Science.gov

Sample records for spontaneous deposition methanol

  1. Palladium deposits spontaneously grown on nickel foam for electro-catalyzing methanol oxidation: Effect of precursors

    NASA Astrophysics Data System (ADS)

    Niu, Xiangheng; Zhao, Hongli; Lan, Minbo

    2016-02-01

    Methanol, a high-energy substance, is widely used for green fuel cells. However, the sluggish electrochemical methanol oxidation reaction (MOR) on state-of-the-art catalysts still requires for exploring high-performance and low-cost materials to further promote the reaction kinetics at low overpotentials. Here we carried out the first electrocatalytic comparison study of two Ni foam-supported Pd nanomaterials (Pd-2-Ni and Pd-4-Ni, respectively), obtained through the spontaneous galvanic replacement of Ni with different palladic precursors ([PdCl4]2- and [PdCl6]2-, respectively), toward MOR. With replacement, Pd deposits with discrepant arrangements and coverages were grown on the porous Ni support. Compared to commercial Pd/C, both Pd-2-Ni and Pd-4-Ni exhibited better mass activity and catalytic durability for MOR in alkaline media. More interestingly, different palladic precursors made a significant effect on the catalytic performance of the Ni foam-supported Pd deposits. In Pd-4-Ni, the 2:1 stoichiometric replacement of Ni with [PdCl6]2- enabled the incompact arrangement of Pd structures, with more exposure of Ni atoms adjoined to Pd atoms on the catalytic interface compared to Pd-2-Ni. As a result, with the favorable Ni-neighbor-Pd regime and the higher utilization efficiency of Pd atoms, the synthesized Pd-4-Ni catalyst provided a mass activity of approximately 1.5 times higher than Pd-2-Ni toward MOR.

  2. Carbon monoxide, methanol and ethanol electro-oxidation on Ru-decorated carbon-supported Pt nanoparticles prepared by spontaneous deposition

    NASA Astrophysics Data System (ADS)

    Velázquez-Palenzuela, Amado; Brillas, Enric; Arias, Conchita; Centellas, Francesc; Garrido, José Antonio; Rodríguez, Rosa María; Cabot, Pere-Lluís

    2013-03-01

    Carbon-supported Pt nanoparticles (Pt/C) were modified by spontaneous deposition of Ru species in 0.1 M HClO4 solutions with different Ru concentrations and treatment duration. Cyclic voltammetry (CV) of thin-layer electrodes in 0.5 M H2SO4 allowed determining the coverage θ of Pt by the Ru deposits. The CO oxidation activity of the Ru-decorated Pt specimens (Ru(Pt)/C) was evaluated by CO stripping measurements in the same background electrolyte. The activity towards methanol and ethanol oxidation was tested using CV in 0.5 M H2SO4 with 1.0 M CH3OH or 1.0 M CH3CH2OH. A promotional effect of all the anodic reactions due to the introduction of Ru species was detected, with a significant reduction of the overpotential in all cases. The optimum coverage for achieving the best CO oxidation activity and the highest current for the oxidation of these alcohols was found around θ = 0.20-0.30, indicating the involvement of CO as intermediate in the oxidation pathway of both, methanol and ethanol. The observed activation was mainly assigned to the deposited hydrous Ru oxide (RuOxHy). The Tafel slopes were analyzed and discussed on the basis of the presence of Ru species and the proposed mechanism for each oxidation reaction.

  3. Atmospheric deposition of methanol over the Atlantic Ocean

    PubMed Central

    Yang, Mingxi; Nightingale, Philip D.; Beale, Rachael; Liss, Peter S.; Blomquist, Byron; Fairall, Christopher

    2013-01-01

    In the troposphere, methanol (CH3OH) is present ubiquitously and second in abundance among organic gases after methane. In the surface ocean, methanol represents a supply of energy and carbon for marine microbes. Here we report direct measurements of air–sea methanol transfer along a ∼10,000-km north–south transect of the Atlantic. The flux of methanol was consistently from the atmosphere to the ocean. Constrained by the aerodynamic limit and measured rate of air–sea sensible heat exchange, methanol transfer resembles a one-way depositional process, which suggests dissolved methanol concentrations near the water surface that are lower than what were measured at ∼5 m depth, for reasons currently unknown. We estimate the global oceanic uptake of methanol and examine the lifetimes of this compound in the lower atmosphere and upper ocean with respect to gas exchange. We also constrain the molecular diffusional resistance above the ocean surface—an important term for improving air–sea gas exchange models. PMID:24277830

  4. Palladium catalysts synthesized by atomic layer deposition for methanol decomposition.

    SciTech Connect

    Elam, J. W.; Feng, H.; Stair, P. C.; Libera, J. A.; Setthapun, W.; Northwestern Univ.

    2010-05-25

    Atomic layer deposition (ALD) palladium films were deposited at 200 C on various ALD metal oxide surfaces using sequential exposures to Pd(II) hexafluoroacetylacetonate (Pd(hfac)2) and formalin. In situ quartz crystal microbalance measurements as well as ex situ measurements performed on planar substrates revealed that the Pd growth begins with a relatively slow nucleation process and accelerates once an adequate amount of Pd has deposited on the surface. Furthermore, the Pd nucleation is faster on ALD ZnO surfaces compared to ALD Al2O3 surfaces. ALD was utilized to synthesize highly dispersed, uniform Pd nanoparticles (1 to 2 nm in diameter) on ALD ZnO and Al2O3 coated mesoporous silica gel, and the catalytic performances of these samples were compared in the methanol decomposition reaction. The ALD Pd-Al2O3 showed high activity and hydrogen selectivity at relatively low temperatures while the ALD Pd-ZnO showed very low activity as well as quick deactivation. In situ extended X-ray absorption fine structure (EXAFS) measurement revealed that the Pd supported on ZnO 'dissolves' into the substrate during the methanol decomposition reaction which accounts for the gradual disappearance of its catalytic activity. By applying one cycle of ALD Al2O3 on top of the Pd-ZnO catalyst, the activity was enhanced and the catalyst deactivation was mitigated. This Al2O3 overcoating method stabilizes the Pd-ZnO and effectively prevents the dissolution of Pd into the ZnO substrate.

  5. Methanol

    Integrated Risk Information System (IRIS)

    Methanol ; CASRN 67 - 56 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects )

  6. Tuneable stability of nanoemulsions fabricated using spontaneous emulsification by biopolymer electrostatic deposition.

    PubMed

    Saberi, Amir Hossein; Zeeb, Benjamin; Weiss, Jochen; McClements, David Julian

    2015-10-01

    Nanoemulsions can be formed spontaneously from surfactant-oil-water systems using low energy methods. In this work, we showed that the droplets in oil-in-water nanoemulsions fabricated by spontaneous emulsification could be coated with an anionic biopolymer (beet pectin) using electrostatic deposition. Nanoemulsions were formed by titrating oil (medium chain triglycerides) and surfactant (polyoxyethylene sorbitan monostearate+lauric arginate) mixtures into an aqueous solution (10 mM citrate buffer, pH 4). Lauric arginate was used to generate a positive charge on the droplet surfaces, thereby enabling subsequent electrostatic deposition of anionic pectin. Extensive droplet aggregation occurred when intermediate pectin concentrations were used due to bridging flocculation. However, stable anionic pectin-coated lipid droplets could be formed at high pectin concentrations. These results demonstrate the possibility of tailoring the functionality of lipid nanodroplets produced by spontaneous emulsification. PMID:26070187

  7. Spontaneous deposition of polylysine on surfaces: role of the secondary structure to optimize noncovalent coating strategies.

    PubMed

    Di Mauro, Alessandro; Mirabella, Francesca; D'Urso, Alessandro; Randazzo, Rosalba; Purrello, Roberto; Fragalà, Maria Elena

    2015-01-01

    Understanding the factors that governs spontaneous molecular transfer from solution to solid surface is fundamental to control noncovalent surface functionalization strategies, both in term of robustness and reproducibility. The comprehension of the nature of interaction involved in the mechanism of spontaneous adsorption will allow for a fine modulation of the deposition process. Herein, we provide experimental evidences to demonstrate that poly-lysine secondary structure represents a crucial factor profoundly influencing the outcome of its spontaneous deposition on quartz surfaces. In particular, random coil to α-helix transition is required to drive an effective transfer of the poly-l-lysine at the liquid-solid interface. β-sheet deposition requires longer times to be accomplished, while random-coil deposition is highly unfavored. Accordingly, polylysine deposition on quartz and silicon is effective when α-helix is formed in solution (pH>10). This surface noncovalent functionalization represents a simple strategy to fabricate hybrid organic-inorganic or biocompatible materials. In fact, the proposed methodology is proven robust and repeatable and compatible for combination with solution or vapor phases (i.e. MOCVD) nanomaterial deposition approaches. PMID:25441360

  8. Beta amyloid deposition and neurofibrillary tangles spontaneously occur in the brains of captive cheetahs (Acinonyx jubatus).

    PubMed

    Serizawa, S; Chambers, J K; Une, Y

    2012-03-01

    Alzheimer disease is a dementing disorder characterized pathologically by Aβ deposition, neurofibrillary tangles, and neuronal loss. Although aged animals of many species spontaneously develop Aβ deposits, only 2 species (chimpanzee and wolverine) have been reported to develop Aβ deposits and neurofibrillary tangles in the same individual. Here, the authors demonstrate the spontaneous occurrence of Aβ deposits and neurofibrillary tangles in captive cheetahs (Acinonyx jubatus). Among 22 cheetahs examined in this study, Aβ deposits were observed in 13. Immunostaining (AT8) revealed abnormal intracellular tau immunoreactivity in 10 of the cheetahs with Aβ deposits, and they were mainly distributed in the parahippocampal cortex and CA1 in a fashion similar to that in human patients with Alzheimer disease. Ultrastructurally, bundles of straight filaments filled the neuronal somata and axons, consistent with tangles. Interestingly, 2 of the cheetahs with the most severe abnormal tau immunoreactivity showed clinical cognitive dysfunction. The authors conclude that cheetahs spontaneously develop age-related neurodegenerative disease with pathologic changes similar to Alzheimer disease. PMID:21712514

  9. Growth-surface-driven anisotropy and spontaneous layering in vapor-deposited alloy films

    NASA Astrophysics Data System (ADS)

    Shapiro, Alexander Leon

    Perpendicular magnetic anisotropy (PMA) developed on the growth surface has been studied in a number of vapor-deposited alloy film systems. Epitaxial (100), (110), (100) and polycrystalline CoXPt1-X ,CoX Pt1-X 1-YSiY, and NiXPt1-X alloy films have been deposited by co-evaporation over a range of growth temperatures from -50°C to 800°C. Growth induced PMA is reported in samples deposited at temperatures between 200--400°C. This PMA is closely correlated with evidence for clustering of the magnetic species. A model of the magnetic species clustered into thin platelets, with the interfaces between the platelets and the Pt matrix providing the source of PMA, is presented. Magnetic moment and Magneto-Optic Kerr Effect (MOKE) results support an interpretation of interfaces, like spontaneous incoherent multilayer fragments, perpendicular to the growth direction. Deposition rate experiments show that surface atomic mobility plays an important role in the development of platelets and PMA. Results from annealing experiments indicate that anisotropy and clustering are not bulk equilibrium phenomena, but are trapped into the growing surface. The presence of surface atomic mobility then at intermediate deposition temperatures along with a lack of bulk atomic mobility allow platelets on the surface to be trapped into the bulk by succeeding deposition layers. Studies of ternary Co-Pt-Si alloys, in which Si acts to slow surface atomic mobility, confirm that the mobility of adatoms on the surface is critical to the formation of platelet structures and PMA. The clustering and PMA found in Ni-Pt alloys remove magnetic interaction as a source of platelet formation, leading to surface segregation and reconstruction as likely to be critical to the development of PMA. The lack of clustering and anisotropy seen in (100) oriented NiPt films is correlated with a non-flat surface reconstruction which disrupts the formation of platelets.

  10. Spontaneous wrinkling of soft matter by energetic deposition of Cr and Au

    NASA Astrophysics Data System (ADS)

    Teixeira, F. S.; Araújo, W. W. R.; Salvadori, M. C.

    2016-04-01

    Wrinkling of stiff thin films deposited on compliant substrates is an effect that has been broadly investigated. However, wrinkling consequent to metal ion implantation has been less studied. In the work described here, we have explored the sub-micron wrinkling phenomena that spontaneously occur when metal ions (Au and Cr) are implanted with energy of a few tens of electron volts (49 eV for Au and 72 eV for Cr) into a compliant material (PDMS). This very low energy ion implantation was performed using a Filtered Cathodic Vacuum Arc technique, a process often referred to as energetic deposition or energetic condensation. For comparison, Au and Cr depositions with similar doses were also done using a sputtering technique (with lower particle energy of approximately 2 eV), and no wrinkle formation was then observed. In this way, we can discuss the role of ion energy in wrinkle formation. Depth profiles of the implanted material were calculated using the Tridyn computer simulation code for each metal, for several implantation doses. UV-vis absorption spectroscopy analysis confirmed the presence of metal nanoparticles. Atomic Force Microscopy imaging with spectral processing was used to compare the wrinkle morphology for each case investigated.

  11. The importance of acid digestion of urine prior to spontaneous deposition of 210Po.

    PubMed

    Fellman, A; Ralston, L; Hickman, D; Ayres, L; Cohen, N; Spitz, H; Robinson, B

    1989-10-01

    Historically, radiochemical analysis of 210Po in urine has used spontaneous deposition of the nuclide directly from raw urine onto a suitable metal disc. Consequently, the urinary excretion fraction for Po in some current metabolic and dosimetric models is based on studies which inherently assume that metabolized (i.e., filtered out of the blood by the kidneys) 210Po is plated with the same efficiency as tracer 210Po which has been added to urine samples. Urine samples collected after intravenous administration of 210Po citrate to two species of nonhuman primates were divided and simultaneously analyzed via two methods: the historical procedure of plating 210Po from raw urine for one sample and a method which includes the addition of 208Po tracer and sample digestion with concentrated HNO3 prior to 210Po deposition for the other sample. A more significant amount of 210Po was consistently recovered when the urine was wet ashed then when it was not wet ashed. A temporal relationship was found to describe the change in the ratio of the deposition recoveries for the two methods. Possible mechanisms for this phenomenon and its dosimetric implications are discussed. PMID:2507478

  12. The synthesis of methanol and the reverse water-gas shift reaction over Zn-deposited Cu(100) and Cu(110) surfaces: comparison with Zn/Cu(111)

    NASA Astrophysics Data System (ADS)

    Nakamura, I.; Fujitani, T.; Uchijima, T.; Nakamura, J.

    1998-03-01

    The catalytic activity of Zn vapor-deposited Cu(100) and Cu(110) surfaces for methanol synthesis by the hydrogenation of CO 2 and the reverse water-gas shift reaction were studied using an XPS apparatus combined with a high-pressure flow reactor (18 atm). At a reaction temperature of 523 K, no promotional effect of Zn was observed for the methanol synthesis on both Zn/Cu(100) and Zn/Cu(110). The results were quite different from those for Zn/Cu(111), on which a significant promotion of methanol synthesis activity appeared to be due to the deposition of Zn, indicating that the promotional effect of Zn was sensitive to the surface structure of Cu. However, hysteresis was observed in the catalytic activity for methanol synthesis over the Zn/Cu(110) surface upon heating above 543 K in the reaction mixture. The activity became twice that measured before heating, which was close to the methanol synthesis activity of Zn/Cu(111) at the same Zn coverage. On the other hand, no such hysteresis was observed for the reverse water-gas shift reaction on Zn/Cu(110), indicating that the active site for methanol synthesis was not identical to that for the reverse water-gas shift reaction. In the post-reaction surface analysis, formate species was detected on both Zn/Cu(100) and Zn/Cu(110), whose coverage increased with increasing Zn coverage at 0< ΘZn<0.2. No correlation between the formate coverage and the methanol synthesis activity was obtained, which was in contrast to the results for Zn/Cu(111). Thus, the structure sensitivity observed in the catalytic activity of methanol synthesis over Zn-deposited Cu surfaces is ascribed to the significant difference in the reactivity of the formate intermediate.

  13. Method of plasma enhanced chemical vapor deposition of diamond using methanol-based solutions

    NASA Technical Reports Server (NTRS)

    Tzeng, Yonhua (Inventor)

    2009-01-01

    Briefly described, methods of forming diamond are described. A representative method, among others, includes: providing a substrate in a reaction chamber in a non-magnetic-field microwave plasma system; introducing, in the absence of a gas stream, a liquid precursor substantially free of water and containing methanol and at least one carbon and oxygen containing compound having a carbon to oxygen ratio greater than one, into an inlet of the reaction chamber; vaporizing the liquid precursor; and subjecting the vaporized precursor, in the absence of a carrier gas and in the absence in a reactive gas, to a plasma under conditions effective to disassociate the vaporized precursor and promote diamond growth on the substrate in a pressure range from about 70 to 130 Torr.

  14. Os layers spontaneously deposited on the Pt(111) electrode : XPS, STM and GIF-XAS study.

    SciTech Connect

    Rhee, C. K.; Wakisaka, M.; Tolmachev, Y.; Johnston, C.; Haasch, R.; Attenkofer, K.; Lu, G. Q.; You, H.; Wieckowski, A.; Univ. of Illinois Champaigh-Urbana

    2003-01-01

    Scanning tunneling microscopy (STM) characterized adlayers of spontaneously deposited osmium on a Pt(111) electrode were investigated using ex-situ X-ray photoemission spectroscopy (XPS) and in-situ grazing incidence fluorescence X-ray absorption spectroscopy (GIF-XAS). After a single spontaneous deposition, monoatomic (or nearly monoatomic) nanoislands of osmium are formed. The island diameter varies from 2 to 5 nm depending on the Os coverage, which in turn is adjusted by varying the concentration of the Os precursor salt (OsCl3) in the deposition bath and/or by the deposition time. XPS reveals three oxidation states: a metallic Os (the 4f7/2 core level binding energy of 50.8 eV), Os(IV) (51.5 eV) and Os(VIII) (52.4 eV). The metallic osmium exists at potentials below 500 mV (vs. RHE) while above 500 mV osmium is oxidized to Os(IV). Electrodissolution of osmium begins above 900 mV and occurs simultaneously with platinum oxidation. At ca. 1200 mV V versus the RHE reference, the oxidation state of some small amounts of osmium that survive dissolution is the Os(VIII). We demonstrate, for the first time, that mixed or odd valencies of osmium exist on the platinum surface at potentials higher that 800 mV. In-situ GIF-XAS measurements of an Os LIII edge also reveal the presence of three Os oxidation states. Namely, below the electrode potential of 400 mV, the X-ray fluorescent energy at maximum absorption is 10.8765 keV, and is characteristic of the metallic Os. In the potential range between 500 and 1000 mV this energy is gradually shifted to higher values, assignable to higher valencies of osmium, like Os(IV). This tendency continues to higher potentials consistent with the third, highly oxidized osmium form present, most likely Os(VIII). The variation of the 'raw edge jump height' of Os with the electrode potential, which is equivalent to a drop in osmium surface concentration, demonstrates that the electrochemical stripping of Os begins below 1.0 V versus RHE, as

  15. The kinetics and mechanism of methanol synthesis by hydrogenation of CO 2 over a Zn-deposited Cu(111) surface

    NASA Astrophysics Data System (ADS)

    Fujitani, T.; Nakamura, I.; Uchijima, T.; Nakamura, J.

    1997-07-01

    The hydrogenation of CO 2 over a Zn-deposited Cu(111) surface has been studied using an X-ray photoelectron spectroscopy (XPS) apparatus combined with a high-pressure flow reactor. It was shown that the turnover frequency (TOF) for methanol formation linearly increased with Zn coverage below ϑZn=0.19 and decreased above ϑZn=0.20. The optimum TOF obtained at ϑZn=0.19 was thirteen-fold larger than that of the Zn-free Cu(111) surface. On the other hand, the TOF for CO formation started to decrease at ϑZn=0.10 and approached zero at ϑZn=0.5. No promotional effect of Zn was thus observed for the reverse water-gas shift (RWGS) reaction on Cu(111). Post-reaction surface analysis by XPS showed the formation of formate species (HCOO a) on the Cu(111) surfaces. The formate coverage linearly increased with the Zn coverage below ϑZn=0.15, suggesting that the formation of the formate species was stabilized by the Zn species. The relation between ϑHCOO and ϑZn is similar to that between TOF and ϑZn; thus, the formate species is considered to be the reaction intermediates during methanol formation, and the amount of the formate species should determine the rate of the reaction. It was found that the surface chemistry of the Zn-deposited Cu surface drastically changed at ϑZn=0.15. At higher Zn coverages ( ϑZn>0.15), Zn on Cu(111) was readily oxidized to ZnO during the CO 2 hydrogenation reaction. On the other hand, at low Zn coverages below ϑZn=0.15, Zn was partially oxidized in the absence of oxygen in ZnO or O a on the Cu surface under the reaction conditions. It was suggested that the Zn on Cu(111) was directly bound to the oxygen in the surface formate species as the role of the active sites.

  16. Atomic layer deposition of ZnO on Cu-nanoclusters for methanol synthesis

    SciTech Connect

    Zhang Ziyu; Patterson, Matthew; Ren Maoming; Wang Ying; Flake, John C.; Sprunger, Phillip T.; Kurtz, Richard L.

    2013-01-15

    The properties of ALD-grown ZnO thin films on Cu clusters supported on ZnO(1010) have been studied with scanning tunneling and scanning electron microscopy in combination with angle-resolved x-ray photoelectron spectroscopy. Deposition at room temperature of two monolayers of Cu on ZnO(1010) results in metallic Cu{sup 0} clusters {approx}8 nm wide by 1.4 nm high. Higher coverages of 15 ML results in a similar morphology, with slightly larger cluster sizes. Following air-exposure and ALD-growth of two cycles of ZnO, the Cu exhibits Cu{sup +} species characteristic of Cu{sub 2}O and the thin ZnO coating is hydroxylated. Electrochemical studies of ALD ZnO coatings on Cu suggest that they are more active for CO{sub 2} reduction.

  17. Methanol oxidation on Pd/Pt(poly) in alkaline solution

    NASA Astrophysics Data System (ADS)

    Maksic, A.; Rakocevic, Z.; Smiljanic, M.; Nenadovic, M.; Strbac, S.

    2015-01-01

    Bimetallic electrodes prepared by Pd nanoislands spontaneously deposited on polycrystalline platinum, Pt(poly), at submonolayer coverage were explored for methanol oxidation in alkaline media. Characterization of obtained Pd/Pt(poly) nanostructures was performed ex situ by AFM imaging, spectroscopic ellipsometry and by X-ray photoelectron spectroscopy. In situ characterization of the obtained electrodes and subsequent methanol oxidation measurements were performed by cyclic voltammetry in 0.1 M KOH. Platinum surface with 35% Pd coverage exhibited the highest catalytic activity for methanol oxidation in alkaline media, exceeding those of bare Pt and Pd. Both synergistic and electronic effects are responsible for such enhanced catalysis. The origin of the synergistic effect and possible reaction pathways for methanol oxidation were discussed taking into account the activity of obtained bimetallic electrodes for the oxidation of CO and formaldehyde, as the most probable reaction intermediates.

  18. One-pot synthesis of single-crystal Pt nanoplates uniformly deposited on reduced graphene oxide, and their high activity and stability on the electrocalalytic oxidation of methanol.

    PubMed

    Hao, Yanfei; Wang, Xudan; Shen, Jianfeng; Yuan, Junhua; Wang, Ai-Jun; Niu, Li; Huang, Shengtang

    2016-04-01

    We demonstrate a one-pot thermoreduction approach towards the preparation of single-crystal Pt nanoplates, which were uniformly deposited on the reduced graphene oxide (RGO) using polyvinylpyrrolidone (PVP) as a stabilizer. The size of Pt nanoplates can be tuned from 6.8 to 10.1 nm by controlling Pt loading. The as-prepared Pt/PVP/RGO catalysts show high stability and activity towards the methanol oxidation reaction (MOR). Their MOR current can reach up to 401 mA mg(-1) Pt and MOR current can maintain 89.4% of its initial value after 10 000 potential cycles. PMID:26906081

  19. Enhanced formic acid oxidation on polycrystalline platinum modified by spontaneous deposition of gold. Fourier transform infrared spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Cappellari, Paula S.; García, Gonzalo; Florez-Montaño, Jonathan; Barbero, Cesar A.; Pastor, Elena; Planes, Gabriel A.

    2015-11-01

    Formic acid and adsorbed carbon monoxide electrooxidation on polycrystalline Pt and Au-modified Pt surfaces were studied by cyclic voltammetry, lineal sweep voltammetry and in-situ Fourier transform infrared spectroscopy techniques. With this purpose, a polycrystalline Pt electrode was modified by spontaneous deposition of gold atoms, achieving a gold surface coverage (θ) in the range of 0 ≤ θ ≤ 0.47. Results indicate the existence of two main pathways during the formic acid oxidation reaction, i.e. dehydration and dehydrogenation routes. At higher potentials than 0.5 V the dehydrogenation pathway appears to be the operative at both Pt and Au electrodes. Meanwhile, the dehydration reaction is the main pathway for Pt at lower potentials than 0.5 V. It was found that reaction routes are easily tuned by Au deposition on the Pt sites responsible for the formic acid dehydration reaction, and hence for the catalytic formation of adsorbed carbon monoxide. Gold deposition on these Pt open sites produces an enhanced activity toward the HCOOH oxidation reaction. In general terms, the surface inhibition of the reaction by adsorbed intermediates (indirect pathway) is almost absent at gold-modified Pt electrodes, and therefore the direct pathway appears as the main route during the formic acid electrooxidation reaction.

  20. Multi-laminated copper nanoparticles deposited on conductive substrates for electrocatalytic oxidation of methanol in alkaline electrolytes

    NASA Astrophysics Data System (ADS)

    Xia, Lun-Peng; Guo, Peng; Wang, Yan; Ding, Shi-Qi; He, Jian-Bo

    2014-09-01

    A simple electrodeposition approach to grow multi-laminated copper particles on two conductive substrates is presented. Morphological and structural characterization was performed using SEM and XRD. The copper crystallites are preferentially oriented with {111} planes parallel to the substrate surfaces, providing an optimum interface for methanol oxidation. There are a large number of edges, corners, and atomic steps around individual multi-laminated nanostructured particles. The excellent electrocatalytic activity of the particles to methanol oxidation in alkaline solutions is demonstrated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. The presence of the conductive poly(2-amino-5-mercapto-1,3,4-thiadiazole) interlayer between the Cu particles and the carbon paste substrate results in larger specific surface areas of the particles and smaller charge-transfer resistances of methanol oxidation reaction in the lower potential range. Such an anisotropic laminated structure of non-noble metal nanomaterials deserves further investigation for finding a suitable alternative to noble metal-based anodic catalysts in fuel cells.

  1. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation.

    PubMed

    Hu, Yaojuan; Zhang, Hua; Wu, Ping; Zhang, Hui; Zhou, Bo; Cai, Chenxin

    2011-03-01

    The burgeoning demand for clean and energy-efficient fuel cell system requires electrocatalysts to deliver greater activity and selectivity. Bimetallic catalysts have proven superior to single metal catalysts in this respect. This work reports the preparation, characterization, and electrocatalytic characteristics of a new bimetallic nanocatalyst. The catalyst, Pt-Au-graphene, was synthesized by electrodeposition of Pt-Au nanostructures on the surface of graphene sheets, and characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray powder diffraction (XRD), and voltammetry. The morphology and composition of the nanocatalyst can be easily controlled by adjusting the molar ratio between Pt and Au precursors. The electrocatalytic characteristics of the nanocatalysts for the oxygen reduction reaction (ORR) and the methanol oxidation reaction (MOR) were systematically investigated by cyclic voltammetry. The Pt-Au-graphene catalysts exhibits higher catalytic activity than Au-graphene and Pt-graphene catalysts for both the ORR and the MOR, and the highest activity is obtained at a Pt/Au molar ratio of 2:1. Moreover, graphene can significantly enhance the long-term stability of the nanocatalyst toward the MOR by effectively removing the accumulated carbonaceous species formed in the oxidation of methanol from the surface of the catalyst. Therefore, this work has demonstrated that a higher performance of ORR and the MOR could be realized at the Pt-Au-graphene electrocatalyst while Pt utilization also could be greatly diminished. This method may open a general approach for the morphology-controlled synthesis of bimetallic Pt-M nanocatalysts, which can be expected to have promising applications in fuel cells. PMID:21229152

  2. Chemical and structural analyses of subsurface crevices formed during spontaneous deposition of cerium-based conversion coatings

    SciTech Connect

    Heller, Daimon K Fahrenholtz, William G. O'Keefe, Matthew J.

    2011-11-15

    Subsurface crevices formed during the deposition of cerium-based conversion coatings were analyzed in cross-section to assess the effect of deposition and post-treatment on the structure and chemistry of phases present. An Al-O containing phase, believed to be amorphous Al(OH){sub 3}, was formed in crevices during coating deposition. Analysis by energy dispersive X-ray spectroscopy revealed the presence of up to 1.6 at.% chlorine within the Al-O phase, which was likely a product of soluble chlorides that were present in the coating solution. Cerium was not detected within crevices. After post-treatment in an 85 deg. C aqueous phosphate solution, the chloride concentration was reduced to {<=} 0.30 at.% and electron diffraction of the Al-O phase produced ring patterns, indicating it had crystallized. Some diffraction patterns could be indexed to gibbsite (Al(OH){sub 3}), but others are believed to be a combination of hydrated aluminum hydroxides and/or oxides. Aluminum phosphate was not identified. Separately from its effect on cerium-based conversion coatings, phosphate post-treatment improved the corrosion resistance of Al 2024-T3 substrates by acting to crystallize Al(OH){sub 3} present on interior surfaces of crevices and by reducing the chloride concentration in this phase. - Highlights: {yields} Analysis of subsurface crevices formed during deposition of Ce-based conversion coatings. {yields} Phosphate post-treatment improved corrosion protection in salt spray testing. {yields} Post-treatment affected the composition and structure of regions within crevices. {yields} Crystallized Al(OH){sub 3} within crevices acted as a more effective barrier to chloride ions.

  3. Correlating the chemical composition and size of various metal oxide substrates with the catalytic activity and stability of as-deposited Pt nanoparticles for the methanol oxidation reaction

    SciTech Connect

    Megan E. Scofield; Wong, Stanislaus S.; Koenigsmann, Christopher; Bobb-Semple, Dara; Tao, Jing; Tong, Xiao; Wang, Lei; Lewis, Crystal S.; Vuklmirovic, Miomir; Zhu, Yimei; Adzic, Radoslav R.

    2015-12-09

    The performance of electrode materials in conventional direct alcohol fuel cells (DAFC) is constrained by (i) the low activity of the catalyst materials relative to their overall cost, (ii) the poisoning of the active sites due to the presence of partially oxidized carbon species (such as but not limited to CO, formate, and acetate) produced during small molecule oxidation, and (iii) the lack of catalytic stability and durability on the underlying commercial carbon support. Therefore, as a viable alternative, we have synthesized various metal oxide and perovskite materials of different sizes and chemical compositions as supports for Pt nanoparticles (NPs). Our results including unique mechanistic studies demonstrate that the SrRuO3 substrate with immobilized Pt NPs at its surface evinces the best methanol oxidation performance as compared with all of the other substrate materials tested herein, including commercial carbon itself. In addition, data from electron energy loss spectroscopy (EELS) and X-ray photoelectron spectroscopy (XPS) confirmed the presence of electron transfer from bound Pt NPs to surface Ru species within the SrRuO3 substrate itself, thereby suggesting that favorable metal support interactions are responsible for the increased methanol oxidation reaction (MOR) activity of Pt species with respect to the underlying SrRuO3 composite catalyst material.

  4. Correlating the chemical composition and size of various metal oxide substrates with the catalytic activity and stability of as-deposited Pt nanoparticles for the methanol oxidation reaction

    DOE PAGESBeta

    Megan E. Scofield; Wong, Stanislaus S.; Koenigsmann, Christopher; Bobb-Semple, Dara; Tao, Jing; Tong, Xiao; Wang, Lei; Lewis, Crystal S.; Vuklmirovic, Miomir; Zhu, Yimei; et al

    2015-12-09

    The performance of electrode materials in conventional direct alcohol fuel cells (DAFC) is constrained by (i) the low activity of the catalyst materials relative to their overall cost, (ii) the poisoning of the active sites due to the presence of partially oxidized carbon species (such as but not limited to CO, formate, and acetate) produced during small molecule oxidation, and (iii) the lack of catalytic stability and durability on the underlying commercial carbon support. Therefore, as a viable alternative, we have synthesized various metal oxide and perovskite materials of different sizes and chemical compositions as supports for Pt nanoparticles (NPs).more » Our results including unique mechanistic studies demonstrate that the SrRuO3 substrate with immobilized Pt NPs at its surface evinces the best methanol oxidation performance as compared with all of the other substrate materials tested herein, including commercial carbon itself. In addition, data from electron energy loss spectroscopy (EELS) and X-ray photoelectron spectroscopy (XPS) confirmed the presence of electron transfer from bound Pt NPs to surface Ru species within the SrRuO3 substrate itself, thereby suggesting that favorable metal support interactions are responsible for the increased methanol oxidation reaction (MOR) activity of Pt species with respect to the underlying SrRuO3 composite catalyst material.« less

  5. Enhanced photoluminescence and Raman properties of Al-Doped ZnO nanostructures prepared using thermal chemical vapor deposition of methanol assisted with heated brass.

    PubMed

    Thandavan, Tamil Many K; Gani, Siti Meriam Abdul; San Wong, Chiow; Md Nor, Roslan

    2015-01-01

    Vapor phase transport (VPT) assisted by mixture of methanol and acetone via thermal evaporation of brass (CuZn) was used to prepare un-doped and Al-doped zinc oxide (ZnO) nanostructures (NSs). The structure and morphology were characterized by field emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). Photoluminescence (PL) properties of un-doped and Al-doped ZnO showed significant changes in the optical properties providing evidence for several types of defects such as zinc interstitials (Zni), oxygen interstitials (Oi), zinc vacancy (Vzn), singly charged zinc vacancy (VZn-), oxygen vacancy (Vo), singly charged oxygen vacancy (Vo+) and oxygen anti-site defects (OZn) in the grown NSs. The Al-doped ZnO NSs have exhibited shifted PL peaks at near band edge (NBE) and red luminescence compared to the un-doped ZnO. The Raman scattering results provided evidence of Al doping into the ZnO NSs due to peak shift from 145 cm-1 to an anomalous peak at 138 cm-1. Presence of enhanced Raman signal at around 274 and 743 cm-1 further confirmed Al in ZnO NSs. The enhanced D and G band in all Al-doped ZnO NSs shows possible functionalization and doping process in ZnO NSs. PMID:25756598

  6. Enhanced Photoluminescence and Raman Properties of Al-Doped ZnO Nanostructures Prepared Using Thermal Chemical Vapor Deposition of Methanol Assisted with Heated Brass

    PubMed Central

    Thandavan, Tamil Many K.; Gani, Siti Meriam Abdul; San Wong, Chiow; Md. Nor, Roslan

    2015-01-01

    Vapor phase transport (VPT) assisted by mixture of methanol and acetone via thermal evaporation of brass (CuZn) was used to prepare un-doped and Al-doped zinc oxide (ZnO) nanostructures (NSs). The structure and morphology were characterized by field emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). Photoluminescence (PL) properties of un-doped and Al-doped ZnO showed significant changes in the optical properties providing evidence for several types of defects such as zinc interstitials (Zni), oxygen interstitials (Oi), zinc vacancy (Vzn), singly charged zinc vacancy (VZn-), oxygen vacancy (Vo), singly charged oxygen vacancy (Vo+) and oxygen anti-site defects (OZn) in the grown NSs. The Al-doped ZnO NSs have exhibited shifted PL peaks at near band edge (NBE) and red luminescence compared to the un-doped ZnO. The Raman scattering results provided evidence of Al doping into the ZnO NSs due to peak shift from 145 cm-1 to an anomalous peak at 138 cm-1. Presence of enhanced Raman signal at around 274 and 743 cm-1 further confirmed Al in ZnO NSs. The enhanced D and G band in all Al-doped ZnO NSs shows possible functionalization and doping process in ZnO NSs. PMID:25756598

  7. Spontaneous Fission

    DOE R&D Accomplishments Database

    Segre, Emilio

    1950-11-22

    The first attempt to discover spontaneous fission in uranium was made by [Willard] Libby, who, however, failed to detect it on account of the smallness of effect. In 1940, [K. A.] Petrzhak and [G. N.] Flerov, using more sensitive methods, discovered spontaneous fission in uranium and gave some rough estimates of the spontaneous fission decay constant of this substance. Subsequently, extensive experimental work on the subject has been performed by several investigators and will be quoted in the various sections. [N.] Bohr and [A.] Wheeler have given a theory of the effect based on the usual ideas of penetration of potential barriers. On this project spontaneous fission has been studied for the past several years in an effort to obtain a complete picture of the phenomenon. For this purpose the spontaneous fission decay constants {lambda} have been measured for separated isotopes of the heavy elements wherever possible. Moreover, the number {nu} of neutrons emitted per fission has been measured wherever feasible, and other characteristics of the spontaneous fission process have been studied. This report summarizes the spontaneous fission work done at Los Alamos up to January 1, 1945. A chronological record of the work is contained in the Los Alamos monthly reports.

  8. The Methanol Economy Project

    SciTech Connect

    Olah, George; Prakash, G. K.

    2014-02-01

    The Methanol Economy Project is based on the concept of replacing fossil fuels with methanol generated either from renewable resources or abundant natural (shale) gas. The full methanol cycle was investigated in this project, from production of methanol through bromination of methane, bireforming of methane to syngas, CO2 capture using supported amines, co-electrolysis of CO2 and water to formate and syngas, decomposition of formate to CO2 and H2, and use of formic acid in a direct formic acid fuel cell. Each of these projects achieved milestones and provided new insights into their respective fields.

  9. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-17

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  10. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    1999-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  11. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    2001-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  12. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-24

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  13. Peritonitis - spontaneous

    MedlinePlus

    ... a catheter used in peritoneal dialysis. Antibiotics may control infection in cases of spontaneous peritonitis with liver or kidney disease. Intravenous therapy can treat dehydration . You may need to stay in the hospital so health care providers can rule out conditions ...

  14. Biofiltration of methanol vapor

    SciTech Connect

    Shareefdeen, Z.; Baltzis, B.C. ); Oh, Youngsook; Bartha, R. )

    1993-03-05

    Biofiltration of solvent and fuel vapors may offer a cost-effective way to comply with increasingly strict air emission standards. An important step in the development of this technology is to derive and validate mathematical models of the biofiltration process for predictive and scaleup calculations. For the study of methanol vapor biofiltration, an 8-membered bacterial consortium was obtained from methanol-exposed soil. The bacteria were immobilized on solid support and packed into a 5-cm diameter, 60-cm-high column provided with appropriate flowmeters and sampling ports. The solid support was prepared by mixing two volumes of peat with three volumes of perlite particles. Two series of experiments were performed. In the first, the inlet methanol concentration was kept constant while the superficial air velocity was varied from run to run. In the second series, the air flow rate (velocity) was kept constant while the inlet methanol concentration was varied. The unit proved effective in removing methanol at rates up to 112.8 g h[sup [minus]1] m[sup [minus]3] packing. A mathematical model has been derived and validated. The model described and predicted experimental results closely. Both experimental data and model predictions suggest that the methanol biofiltration process was limited by oxygen diffusion and methanol degradation kinetics.

  15. Molecular Active Sites in Heterogeneous Ir-La/C-Catalyzed Carbonylation of Methanol to Acetates.

    PubMed

    Kwak, Ja Hun; Dagle, Robert; Tustin, Gerald C; Zoeller, Joseph R; Allard, Lawrence F; Wang, Yong

    2014-02-01

    We report that when Ir and La halides are deposited on carbon, exposure to CO spontaneously generates a discrete molecular heterobimetallic structure, containing an Ir-La covalent bond that acts as a highly active, selective, and stable heterogeneous catalyst for the carbonylation of methanol to produce acetic acid. This catalyst exhibits a very high productivity of ∼1.5 mol acetyl/mol Ir·s with >99% selectivity to acetyl (acetic acid and methyl acetate) without detectable loss in activity or selectivity for more than 1 month of continuous operation. The enhanced activity can be mechanistically rationalized by the presence of La within the ligand sphere of the discrete molecular Ir-La heterobimetallic structure, which acts as a Lewis acid to accelerate the normally rate-limiting CO insertion in Ir-catalyzed carbonylation. Similar approaches may provide opportunities for attaining molecular (single site) behavior similar to homogeneous catalysis on heterogeneous surfaces for other industrial applications. PMID:26276610

  16. The Methanol Multibeam Survey

    NASA Astrophysics Data System (ADS)

    Green, James A.; Cohen, R. J.; Caswell, J. L.; Fuller, G. A.; Brooks, K.; Burton, M. G.; Chrysostomou, A.; Diamond, P. J.; Ellingsen, S. P.; Gray, M. D.; Hoare, M. G.; Masheder, M. R. W.; McClure-Griffiths, N.; Pestalozzi, M.; Phillips, C.; Quinn, L.; Thompson, M. A.; Voronkov, M.; Walsh, A.; Ward-Thompson, D.; Wong-McSweeney, D.; Yates, J. A.; Cox, J.

    2007-03-01

    A new 7-beam methanol multibeam receiver is being used to survey the Galaxy for newly forming massive stars, that are pinpointed by strong methanol maser emission at 6.668 GHz. The receiver, jointly constructed by Jodrell Bank Observatory (JBO) and the Australia Telescope National Facility (ATNF), was successfully commissioned at Parkes in January 2006. The Parkes-Jodrell survey of the Milky Way for methanol masers is two orders of magnitude faster than previous systematic surveys using 30-m class dishes, and is the first systematic survey of the entire Galactic plane. The first 53 days of observations with the Parkes telescope have yielded 518 methanol sources, of which 218 are new discoveries. We present the survey methodology as well as preliminary results and analysis.

  17. Methanol Cannon Demonstrations Revisited.

    ERIC Educational Resources Information Center

    Dolson, David A.; And Others

    1995-01-01

    Describes two variations on the traditional methanol cannon demonstration. The first variation is a chain reaction using real metal chains. The second example involves using easily available components to produce sequential explosions that can be musical in nature. (AIM)

  18. The Asian methanol market

    SciTech Connect

    Nagase, Hideki

    1995-12-31

    For the purpose of this presentation, Asia has been broadly defined as a total of 15 countries, namely Japan, Korea, Taiwan, China, Hong Kong, the Philippines, Thailand, Malaysia, Singapore, Indonesia, Myanmar, India, Vietnam, Australia and New Zealand. In 1994 and the first half of 1995, the methanol industry and its derivative industries experienced hard time, because of extraordinarily high methanol prices. In spite of this circumstance, methanol demand in Asian countries has been growing steadily and remarkably, following Asian high economic growth. Most of this growth in demand has been and will continue to be met by outside supply. However, even with increased import of methanol from outside of Asia, as a result of this growth, Asian trade volume will be much larger in the coming years. Asian countries must turn their collective attention to making logistics and transportation for methanol and its derivatives more efficient in the Asian region to make better use of existing supply resources. The author reviews current economic growth as his main topic, and explains the forecast of the growth of methanol demand and supply in Asian countries in the near future.

  19. Methanol in dark clouds

    NASA Technical Reports Server (NTRS)

    Friberg, P.; Hjalmarson, A.; Madden, S. C.; Irvine, W. M.

    1988-01-01

    The first observation of methanol in cold dark clouds TMC 1, L 134 N, and B 335 is reported. In all three clouds, the relative abundance of methanol was found to be in the range of 10 to the -9th (i.e., almost an order of magnitude more abundant than acetaldehyde), with no observable variation between the clouds. Methanol emission showed a complex velocity structure; in TMC 1, clear indications of non-LTE were observed. Dimethyl ether was searched for in L 134 N; the upper limit of the column density of dimethyl ether in L 134 N was estimated to be 4 x 10 to the 12th/sq cm, assuming 5 K rotation temperature and LTE. This limit makes the abundance ratio (CH3)2O/CH3OH not higher than 1/5, indicating that dimethyl ether is not overabundant in this dark cloud.

  20. Methanol from coal

    NASA Technical Reports Server (NTRS)

    Miller, D. R.

    1978-01-01

    Economic feasibility of methanol or methyl fuel produced from coal using existing technology is discussed. Other factors considered include environmental, safety, toxicity, transportation, so storage, ease of burning, and retrofitting of present boilers. Demonstrations of its uses as a boiler fuel and as a turbine fuel are cited.

  1. An ecosystem-scale perspective of the net land methanol flux. Synthesis of micrometeorological flux measurements

    SciTech Connect

    Wohlfahrt, G.; Amelynck, C.; Ammann, C.; Arneth, A.; Bamberger, I.; Goldstein, A. H.; Gu, L.; Guenther, A.; Hansel, A.; Heinesch, B.; Holst, T.; Hörtnagl, L.; Karl, T.; Laffineur, Q.; Neftel, A.; McKinney, K.; Munger, J. W.; Pallardy, S. G.; Schade, G. W.; Seco, R.; Schoon, N.

    2015-07-09

    Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of living plants as the major source and the reaction with OH as the major sink of methanol, global methanol budgets diverge considerably in terms of source/sink estimates, reflecting uncertainties in the approaches used to model and the empirical data used to separately constrain these terms. Here we compiled micrometeorological methanol flux data from eight different study sites and reviewed the corresponding literature in order to provide a first cross-site synthesis of the terrestrial ecosystem-scale methanol exchange and present an independent data-driven view of the land–atmosphere methanol exchange. Our study shows that the controls of plant growth on production, and thus the methanol emission magnitude, as well as stomatal conductance on the hourly methanol emission variability, established at the leaf level, hold across sites at the ecosystem level. Unequivocal evidence for bi-directional methanol exchange at the ecosystem scale is presented. Deposition, which at some sites even exceeds methanol emissions, represents an emerging feature of ecosystem-scale measurements and is likely related to environmental factors favouring the formation of surface wetness. Methanol may adsorb to or dissolve in this surface water and eventually be chemically or biologically removed from it. Management activities in agriculture and forestry are shown to increase local methanol emission by orders of magnitude; however, they are neglected at present in global budgets. While contemporary net land methanol budgets are overall consistent with the grand mean of the micrometeorological methanol flux measurements, we caution that the present approach of simulating methanol emission and deposition separately is prone to opposing systematic errors and does not allow for full advantage to be taken of

  2. An ecosystem-scale perspective of the net land methanol flux. Synthesis of micrometeorological flux measurements

    DOE PAGESBeta

    Wohlfahrt, G.; Amelynck, C.; Ammann, C.; Arneth, A.; Bamberger, I.; Goldstein, A. H.; Gu, L.; Guenther, A.; Hansel, A.; Heinesch, B.; et al

    2015-07-09

    Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of living plants as the major source and the reaction with OH as the major sink of methanol, global methanol budgets diverge considerably in terms of source/sink estimates, reflecting uncertainties in the approaches used to model and the empirical data used to separately constrain these terms. Here we compiled micrometeorological methanol flux data from eight different study sites and reviewed the corresponding literature in order to provide a first cross-site synthesis ofmore » the terrestrial ecosystem-scale methanol exchange and present an independent data-driven view of the land–atmosphere methanol exchange. Our study shows that the controls of plant growth on production, and thus the methanol emission magnitude, as well as stomatal conductance on the hourly methanol emission variability, established at the leaf level, hold across sites at the ecosystem level. Unequivocal evidence for bi-directional methanol exchange at the ecosystem scale is presented. Deposition, which at some sites even exceeds methanol emissions, represents an emerging feature of ecosystem-scale measurements and is likely related to environmental factors favouring the formation of surface wetness. Methanol may adsorb to or dissolve in this surface water and eventually be chemically or biologically removed from it. Management activities in agriculture and forestry are shown to increase local methanol emission by orders of magnitude; however, they are neglected at present in global budgets. While contemporary net land methanol budgets are overall consistent with the grand mean of the micrometeorological methanol flux measurements, we caution that the present approach of simulating methanol emission and deposition separately is prone to opposing systematic errors and does not allow for full advantage to be

  3. An ecosystem-scale perspective of the net land methanol flux: synthesis of micrometeorological flux measurements

    PubMed Central

    Wohlfahrt, G.; Amelynck, C.; Ammann, C.; Arneth, A.; Bamberger, I.; Goldstein, A. H.; Gu, L.; Guenther, A.; Hansel, A.; Heinesch, B.; Holst, T.; Hörtnagl, L.; Karl, T.; Laffineur, Q.; Neftel, A.; McKinney, K.; Munger, J. W.; Pallardy, S. G.; Schade, G. W.; Seco, R.; Schoon, N.

    2015-01-01

    Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of living plants as the major source and the reaction with OH as the major sink of methanol, global methanol budgets diverge considerably in terms of source/sink estimates reflecting uncertainties in the approaches used to model, and the empirical data used to separately constrain these terms. Here we compiled micrometeorological methanol flux data from eight different study sites and reviewed the corresponding literature in order to provide a first cross-site synthesis of the terrestrial ecosystem-scale methanol exchange and present an independent data-driven view of the land–atmosphere methanol exchange. Our study shows that the controls of plant growth on the production, and thus the methanol emission magnitude, and stomatal conductance on the hourly methanol emission variability, established at the leaf level, hold across sites at the ecosystem-level. Unequivocal evidence for bi-directional methanol exchange at the ecosystem scale is presented. Deposition, which at some sites even exceeds methanol emissions, represents an emerging feature of ecosystem-scale measurements and is likely related to environmental factors favouring the formation of surface wetness. Methanol may adsorb to or dissolve in this surface water and eventually be chemically or biologically removed from it. Management activities in agriculture and forestry are shown to increase local methanol emission by orders of magnitude; they are however neglected at present in global budgets. While contemporary net land methanol budgets are overall consistent with the grand mean of the micrometeorological methanol flux measurements, we caution that the present approach of simulating methanol emission and deposition separately is prone to opposing systematic errors and does not allow taking full advantage of the rich

  4. An ecosystem-scale perspective of the net land methanol flux: synthesis of micrometeorological flux measurements

    NASA Astrophysics Data System (ADS)

    Wohlfahrt, G.; Amelynck, C.; Ammann, C.; Arneth, A.; Bamberger, I.; Goldstein, A. H.; Gu, L.; Guenther, A.; Hansel, A.; Heinesch, B.; Holst, T.; Hörtnagl, L.; Karl, T.; Laffineur, Q.; Neftel, A.; McKinney, K.; Munger, J. W.; Pallardy, S. G.; Schade, G. W.; Seco, R.; Schoon, N.

    2015-01-01

    Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of living plants as the major source and the reaction with OH as the major sink of methanol, global methanol budgets diverge considerably in terms of source/sink estimates reflecting uncertainties in the approaches used to model, and the empirical data used to separately constrain these terms. Here we compiled micrometeorological methanol flux data from eight different study sites and reviewed the corresponding literature in order to provide a first cross-site synthesis of the terrestrial ecosystem-scale methanol exchange and present an independent data-driven view of the land-atmosphere methanol exchange. Our study shows that the controls of plant growth on the production, and thus the methanol emission magnitude, and stomatal conductance on the hourly methanol emission variability, established at the leaf level, hold across sites at the ecosystem-level. Unequivocal evidence for bi-directional methanol exchange at the ecosystem scale is presented. Deposition, which at some sites even exceeds methanol emissions, represents an emerging feature of ecosystem-scale measurements and is likely related to environmental factors favouring the formation of surface wetness. Methanol may adsorb to or dissolve in this surface water and eventually be chemically or biologically removed from it. Management activities in agriculture and forestry are shown to increase local methanol emission by orders of magnitude; they are however neglected at present in global budgets. While contemporary net land methanol budgets are overall consistent with the grand mean of the micrometeorological methanol flux measurements, we caution that the present approach of simulating methanol emission and deposition separately is prone to opposing systematic errors and does not allow taking full advantage of the rich

  5. An ecosystem-scale perspective of the net land methanol flux: synthesis of micrometeorological flux measurements

    NASA Astrophysics Data System (ADS)

    Wohlfahrt, G.; Amelynck, C.; Ammann, C.; Arneth, A.; Bamberger, I.; Goldstein, A. H.; Gu, L.; Guenther, A.; Hansel, A.; Heinesch, B.; Holst, T.; Hörtnagl, L.; Karl, T.; Laffineur, Q.; Neftel, A.; McKinney, K.; Munger, J. W.; Pallardy, S. G.; Schade, G. W.; Seco, R.; Schoon, N.

    2015-07-01

    Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of living plants as the major source and the reaction with OH as the major sink of methanol, global methanol budgets diverge considerably in terms of source/sink estimates, reflecting uncertainties in the approaches used to model and the empirical data used to separately constrain these terms. Here we compiled micrometeorological methanol flux data from eight different study sites and reviewed the corresponding literature in order to provide a first cross-site synthesis of the terrestrial ecosystem-scale methanol exchange and present an independent data-driven view of the land-atmosphere methanol exchange. Our study shows that the controls of plant growth on production, and thus the methanol emission magnitude, as well as stomatal conductance on the hourly methanol emission variability, established at the leaf level, hold across sites at the ecosystem level. Unequivocal evidence for bi-directional methanol exchange at the ecosystem scale is presented. Deposition, which at some sites even exceeds methanol emissions, represents an emerging feature of ecosystem-scale measurements and is likely related to environmental factors favouring the formation of surface wetness. Methanol may adsorb to or dissolve in this surface water and eventually be chemically or biologically removed from it. Management activities in agriculture and forestry are shown to increase local methanol emission by orders of magnitude; however, they are neglected at present in global budgets. While contemporary net land methanol budgets are overall consistent with the grand mean of the micrometeorological methanol flux measurements, we caution that the present approach of simulating methanol emission and deposition separately is prone to opposing systematic errors and does not allow for full advantage to be taken of

  6. California methanol assessment. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    Otoole, R.; Dutzi, E.; Gershman, R.; Heft, R.; Kalema, W.; Maynard, D.

    1983-01-01

    Energy feedstock sources for methanol; methanol and other synfuels; transport, storage, and distribution; air quality impact of methanol use in vehicles, chemical methanol production and use; methanol utilization in vehicles; methanol utilization in stationary applications; and environmental and regulatory constraints are discussed.

  7. Methanol in dark clouds

    NASA Astrophysics Data System (ADS)

    Friberg, P.; Hjalmarson, A.; Madden, S. C.; Irvine, W. M.

    1988-04-01

    The authors report observations, for the first time, of the 20 - 10A+ and E, 2-1 - 1-1 E, and 10 - 00A+ lines of methanol (CH3OH) in three dark cold clouds, TMC 1, L 134N, and B 335. The CH3OH emission is extended in these clouds and shows a complex velocity structure. Clear indications of non LTE excitation are observed in TMC 1. Estimated column densities are a few×1013cm-2. Although less abundant than formaldehyde (H2CO), methanol is almost an order of magnitude more abundant than acetaldehyde (CH3CHO), in these clouds. Dimethyl ether was searched for in L 134N, to an upper limit of 4×1012cm-2 (3σ). Implications for dark cloud excitation and chemistry are discussed.

  8. Eucomic acid methanol monosolvate

    PubMed Central

    Li, Guo-Qiang; Li, Yao-Lan; Wang, Guo-Cai; Liang, Zhi-Hong; Jiang, Ren-Wang

    2011-01-01

    In the crystal structure of the title compound [systematic name: 2-hy­droxy-2-(4-hy­droxy­benz­yl)butane­dioic acid methanol monosolvate], C11H12O6·CH3OH, the dihedral angles between the planes of the carboxyl groups and the benzene ring are 51.23 (9) and 87.97 (9)°. Inter­molecular O—H⋯O hydrogen-bonding inter­actions involving the hy­droxy and carb­oxy­lic acid groups and the methanol solvent mol­ecule give a three-dimensional structure. PMID:22091200

  9. The toxicity of methanol

    SciTech Connect

    Tephly, T.R. )

    1991-01-01

    Methanol toxicity in humans and monkeys is characterized by a latent period of many hours followed by a metabolic acidosis and ocular toxicity. This is not observed in most lower animals. The metabolic acidosis and blindness is apparently due to formic acid accumulation in humans and monkeys, a feature not seen in lower animals. The accumulation of formate is due to a deficiency in formate metabolism which is, in turn, related, in part, to low hepatic tetrahydrofolate (H{sub 4}folate). An excellent correlation between hepatic H{sub 4} folate and formate oxidation rates has been shown within and across species. Thus, humans and monkeys possess low hepatic H{sub 4}folate levels, low rates of formate oxidation and accumulation of formate after methanol. Formate, itself, produces blindness in monkeys in the absence of metabolic acidosis. In addition to low hepatic H{sub 4}folate concentrations, monkeys and humans also have low hepatic 10-formyl H{sub 4}folate dehydrogenase levels, the enzyme which is the ultimate catalyst for conversion of formate to carbon dioxide. This review presents the basis for the role of folic acid-dependent reactions in the regulation of methanol toxicity.

  10. Methanol shutdowns cause anxiety

    SciTech Connect

    Thomas, N.

    1996-10-23

    European methanol players face an anxious few weeks as unscheduled outages combine with planned turnarounds to make an increasingly tight market. Global markets are also described as tightening, with production problems widely reported in North America. Several European producers were in the middle of shutdown periods when problems at Condea`s 400,000-m.t./year unit at Wesseling, Germany reportedly caused production to run at only 50% of capacity. In addition, the methanol plant at the Leuna refinery is said to be operating at only 60% of capacity, and one producer has had to extend a turnaround period. River levels in Germany are also low, putting pressure on shipments from Rotterdam. {open_quotes}This is a very difficult situation and we`re living hand to mouth,{close_quotes} says one producer. Producer sources report bids from consumers up to DM280/m.t. T2 fob Rotterdam, but they are unable to obtain extra product. Derivatives makers may also face problems: One methyl tert-butyl ether producer predicts prices {open_quotes}may hit the roof{close_quotes} once feedstock sourcing problems hit home.

  11. Methanol simplifies gas processing

    SciTech Connect

    Minkkinen, A.; Jonchere, J.P.

    1997-12-31

    Recent development of a simple single solvent technology goes far to meet the complete gas processing needs. The use of methanol, as practiced in the IPFEXOL process, where it is used not only as a hydrate inhibitor and antifreeze agent but as an acid gas extraction solvent makes the complete gas processing scheme simple and probably the most cost effective as well. This paper presents several gas processing applications where water, hydrocarbon liquids and acid gases are removed from natural wellhead production gases. Water and hydrocarbon liquids removal is achieved to the extent necessary to make a pipeline transportable gas or meet downstream cryogenic processing demands. These are illustrated with recent applications of the IFPEX-1 process successfully operating today in North America and the Far East. A recent North Sea offshore project is highlighted showing the particular advantages in offshore applications. For the removal of water and hydrocarbon liquids together with a substantial quantity of not only CO{sub 2} but H{sub 2}S, the most complete methanol use scheme is presented. This is illustrated with the development of an advanced version of the IFPEX-2 process containing some innovative but simple equipment concepts which yields high pressure dry acid gases for reinjection or a high quality acid gas destined to Claus type sulfur recovery.

  12. Development of methanol evaporation plate to reduce methanol crossover in a direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiming

    This research focuses on methanol crossover reduction in direct methanol fuel cells (DMFC) through separating the methanol vapor from its liquid phase and feeding the vapor passively at low temperature range. Membrane electrode assemblies (MEAs) were fabricated by using commercial available membrane with different thickness at different anode catalyst loading levels, and tested under the operating conditions below 100°C in cell temperature and cathode exit open to ambient pressure. Liquid methanol transport from the anode through the membrane into cathode ("methanol crossover") is identified as one of the major efficiency losses in a DMFC. It is known that the methanol crossover rate in the vapor phase is much lower than in liquid phase. Vapor feed can be achieved by heating the liquid methanol to elevated temperatures (>100°C), but other issues limit the performance of the cell when operating above 100°C. High temperature membranes and much more active cathode catalyst structures are required, and a complex temperature control system must be employed. However, methanol vapor feed can also occur at a lower temperature range (<100°C) by separating its vapor from the liquid phase by evaporation through a porous body. The methanol crossover with this vapor feed mode is lower compared with the direct liquid methanol feed. A new method of using a methanol evaporation plate (MEP) to separate the vapor from its liquid phase to reduce the liquid methanol crossover at low temperature range is developed. A MEP plays the roles of liquid/vapor methanol phase separation and evaporation in a DMFC. The goal of this study is to develop a MEP with the proper properties to achieve high methanol phase separation efficiency and fast methanol evaporation rate over a wide range of temperature, i.e., from room temperature up to near boiling temperature (100°C). MEP materials were selected and characterized. MEPs made from three different types were tested extensively with different

  13. California methanol assessment. Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    Otoole, R.; Dutzi, E.; Gershman, R.; Heft, R.; Kalema, W.; Maynard, D.

    1983-01-01

    The near term methanol industry, the competitive environment, long term methanol market, the transition period, air quality impacts of methanol, roles of the public and private sectors are considered.

  14. A simple preparation of very high methanol tolerant cathode electrocatalyst for direct methanol fuel cell based on polymer-coated carbon nanotube/platinum

    PubMed Central

    Yang, Zehui; Nakashima, Naotoshi

    2015-01-01

    The development of a durable and methanol tolerant electrocatalyst with a high oxygen reduction reaction activity is highly important for the cathode side of direct methanol fuel cells. Here, we describe a simple and novel methodology to fabricate a practically applicable electrocatalyst with a high methanol tolerance based on poly[2,2′-(2,6-pyridine)-5,5′-bibenzimidazole]-wrapped multi-walled carbon nanotubes, on which Pt nanoparticles have been deposited, then coated with poly(vinylphosphonic acid) (PVPA). The polymer coated electrocatalyst showed an ~3.3 times higher oxygen reduction reaction activity compared to that of the commercial CB/Pt and methanol tolerance in the presence of methanol to the electrolyte due to a 50% decreased methanol adsorption on the Pt after coating with the PVPA. Meanwhile, the peroxide generation of the PVPA coated electrocatalyst was as low as 0.8% with 2 M methanol added to the electrolyte, which was much lower than those of the non-PVPA-coated electrocatalyst (7.5%) and conventional CB/Pt (20.5%). Such a high methanol tolerance is very important for the design of a direct methanol fuel cell cathode electrocatalyst with a high performance. PMID:26192397

  15. Early Mars may have had a methanol ocean

    NASA Astrophysics Data System (ADS)

    Tang, Yan; Chen, Qianwang; Huang, Yujie

    2006-01-01

    The detection of gray crystalline hematite deposits on Mars by Thermal Emission Spectrometer (TES) has been used to argue for the presence of liquid water on Mars in the distant past. By methanol-thermal treatment of anhydrous FeCl 3 at low temperatures (70-160 °C), crystalline gray hematite with layered structure was synthesized, based on this result an alternative explanation for the origin of martian hematite deposits is suggested. Methane could be abundant in the early martian atmosphere; process such as photochemical oxidation of methane could result in the formation of ocean or pool of organic compounds such as methanol, which provides an environment for the formation of large-scale hematite deposits on Mars.

  16. A bottom-up perspective of the net land methanol flux: synthesis of global eddy covariance flux measurements

    NASA Astrophysics Data System (ADS)

    Wohlfahrt, Georg; Amelynck, Crist; Ammann, Christof; Arneth, Almut; Bamberger, Ines; Goldstein, Allen; Hansel, Armin; Heinesch, Bernhard; Holst, Thomas; Hörtnagl, Lukas; Karl, Thomas; Neftel, Albrecht; McKinney, Karena; Munger, William; Schade, Gunnar; Schoon, Niels

    2014-05-01

    Methanol (CH3OH) is, after methane, the second most abundant VOC in the troposphere and globally represents nearly 20% of the total biospheric VOC emissions. With typical concentrations of 1-10 ppb in the continental boundary layer, methanol plays a crucial role in atmospheric chemistry, which needs to be evaluated in the light of ongoing changes in land use and climate. Previous global methanol budgets have approached the net land flux by summing up the various emission terms (namely primary biogenic and anthropogenic emissions, plant decay and biomass burning) and by subtracting dry and wet deposition, resulting in a net land flux in the range of 75-245 Tg y-1. The data underlying these budget calculations largely stem from small-scale leaf gas exchange measurements and while recently column-integrated remotely sensed methanol concentrations have become available for constraining budget calculations, there have been few attempts to contrast model calculations with direct net ecosystem-scale methanol flux measurements. Here we use eddy covariance methanol flux measurements from 8 sites in Europe and North America to study the magnitude of and controls on the diurnal and seasonal variability in the net ecosystem methanol flux. In correspondence with leaf-level literature, our data show that methanol emission and its strong environmental and biotic control (by temperature and stomatal conductance) prevailed at the more productive (agricultural) sites and at a perturbed forest site. In contrast, at more natural, less productive sites substantial deposition of methanol occurred, in particular during periods of surface wetness. These deposition processes are poorly represented by currently available temperature/light and/or production-driven modelling algorithms. A new framework for modelling the bi-directional land-atmosphere methanol exchange is proposed which accounts for the production of methanol in leaves, the regulation of leaf methanol emission by stomatal

  17. Methanol crossover in direct methanol fuel cell systems.

    SciTech Connect

    Pivovar, B. S.; Bender, G.; Davey, J. R.; Zelenay, P.

    2003-01-01

    Direct methanol fuel cells (DMFCs) are currently being investigated for a number of different applications from several milliwatts to near kilowatt size scales (cell phones, laptops, auxiliary power units, etc .). Because methanol has a very high energy density, over 6000 W hr/kg, a DMFC can possibly have greatly extended lifetimes compared to the batteries, doesn't present the storage problems associated with hydrogen fuel cells and can possibly operate more efficiently and cleanly than internal combustion engines.

  18. Methanol Oxidation on Pt3Sn(111) for Direct Methanol Fuel Cells: Methanol Decomposition.

    PubMed

    Lu, Xiaoqing; Deng, Zhigang; Guo, Chen; Wang, Weili; Wei, Shuxian; Ng, Siu-Pang; Chen, Xiangfeng; Ding, Ning; Guo, Wenyue; Wu, Chi-Man Lawrence

    2016-05-18

    PtSn alloy, which is a potential material for use in direct methanol fuel cells, can efficiently promote methanol oxidation and alleviate the CO poisoning problem. Herein, methanol decomposition on Pt3Sn(111) was systematically investigated using periodic density functional theory and microkinetic modeling. The geometries and energies of all of the involved species were analyzed, and the decomposition network was mapped out to elaborate the reaction mechanisms. Our results indicated that methanol and formaldehyde were weakly adsorbed, and the other derivatives (CHxOHy, x = 1-3, y = 0-1) were strongly adsorbed and preferred decomposition rather than desorption on Pt3Sn(111). The competitive methanol decomposition started with the initial O-H bond scission followed by successive C-H bond scissions, (i.e., CH3OH → CH3O → CH2O → CHO → CO). The Brønsted-Evans-Polanyi relations and energy barrier decomposition analyses identified the C-H and O-H bond scissions as being more competitive than the C-O bond scission. Microkinetic modeling confirmed that the vast majority of the intermediates and products from methanol decomposition would escape from the Pt3Sn(111) surface at a relatively low temperature, and the coverage of the CO residue decreased with an increase in the temperature and decrease in partial methanol pressure. PMID:27119198

  19. Competitive adsorption-driven separation of water/methanol mixtures using hydrogen as a third competitor.

    PubMed

    Lee, Dong-Wook; Yu, Chang-Yeol; Lee, Kew-Ho

    2009-12-01

    In this study, we report competitive adsorption-driven separation of a water/methanol mixture in Pd-deposited silica membranes, which is induced by introducing hydrogen carrier gas as a third competitor. After replacing helium carrier gas by hydrogen carrier gas, water vapor permeance showed a slight decrease, whereas methanol vapor permeance significantly decreased. The water/methanol separation factor remarkably increased from 1.7-16.5 to 6.8-58.2 in the feed water content of 5.8-83.0 wt.%. From single vapor permeation tests in the presence of carrier gas (hydrogen or helium), it was confirmed that those permeation behavior was derived from stronger effect of the competitive adsorption between hydrogen and methanol vapor than that between hydrogen and water vapor. That is, hydrogen carrier gas dominantly inhibits adsorption of methanol vapor on the membrane surface, and the partial pressure of methanol on the membrane surface decreases, which leads to a decrease in methanol permeance with reduced driving force. In addition, temperature programmed desorption (TPD) results of water and methanol from Pd/silica particles also demonstrated that hydrogen carrier gas suppresses methanol adsorption on Pd/silica surface more dominantly than water adsorption. PMID:19772967

  20. Unusual case of methanol poisoning

    SciTech Connect

    Shapiro, L.; Henderson, M. . Dept. of Chemical Pathology); Madi, S.; Mellor, L. . Dept. of Medicine, and Pharmacy)

    1993-01-09

    A 31-year-old man with a history of alcohol abuse presented to the accident and emergency department complaining of blurred vision. 4 h previously he had drunk 300 mL de-icer fluid. Electrolytes, urea, creatinine, glucose, and blood-gas analysis were normal. Measured osmolality, however, was 368 mosmol/kg with a calculated osmolality of 300 mosmol/kg, which indicated a greatly increased osmolar gap. He was therefore given 150 mL whisky and admitted. Methanol was later reported as 200 mg/dL. Ethylene glycol was not detected, but another glycol, propylene glycol, was present at 47 mg/dL. 10 h after ingestion an intravenous infusion of ethanol was started and he was hemodialysed for 7 h. After dialysis he was given a further 100 mL whisky and the rate of ethanol infusion was reduced to 11 g per h. Methanol and ethanol were measured twice daily until methanol was under 10/mg/dL: The recommendation is that blood ethanol be maintained between 100 and 200 mg/dL during treatment of methanol poisoning. This concentration was not achieved, presumably because of the high rate of ethanol metabolism often found in alcoholics. Antifreeze solutions commonly contain methanol and ethylene glycol. Sometimes propylene glycol is substituted because it has properties similar to those of ethylene glycol but is less toxic. The authors postulate that propylene glycol inhibited the metabolism of methanol in the patient, thus sparing him from the toxic effects of methanol.

  1. Rapid starting methanol reactor system

    DOEpatents

    Chludzinski, Paul J.; Dantowitz, Philip; McElroy, James F.

    1984-01-01

    The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

  2. CHARACTERIZATION OF EMISSIONS FROM VEHICLES USING METHANOL AND METHANOL-GASOLINE BLENDED FUELS

    EPA Science Inventory

    Exhaust and evaporative emissions were examined from vehicles fueled with methanol or a gasoline-methanol blend. Regulated automobile pollutants, as well as detailed hydrocarbons, methanol, and aldehydes were measured, and exhaust emission trends were obtained for vehicle operati...

  3. Fabrication and Characterization of a Micro Methanol Sensor Using the CMOS-MEMS Technique.

    PubMed

    Fong, Chien-Fu; Dai, Ching-Liang; Wu, Chyan-Chyi

    2015-01-01

    A methanol microsensor integrated with a micro heater manufactured using the complementary metal oxide semiconductor (CMOS)-microelectromechanical system (MEMS) technique was presented. The sensor has a capability of detecting low concentration methanol gas. Structure of the sensor is composed of interdigitated electrodes, a sensitive film and a heater. The heater located under the interdigitated electrodes is utilized to provide a working temperature to the sensitive film. The sensitive film prepared by the sol-gel method is tin dioxide doped cadmium sulfide, which is deposited on the interdigitated electrodes. To obtain the suspended structure and deposit the sensitive film, the sensor needs a post-CMOS process to etch the sacrificial silicon dioxide layer and silicon substrate. The methanol senor is a resistive type. A readout circuit converts the resistance variation of the sensor into the output voltage. The experimental results show that the methanol sensor has a sensitivity of 0.18 V/ppm. PMID:26512671

  4. Fabrication and Characterization of a Micro Methanol Sensor Using the CMOS-MEMS Technique

    PubMed Central

    Fong, Chien-Fu; Dai, Ching-Liang; Wu, Chyan-Chyi

    2015-01-01

    A methanol microsensor integrated with a micro heater manufactured using the complementary metal oxide semiconductor (CMOS)-microelectromechanical system (MEMS) technique was presented. The sensor has a capability of detecting low concentration methanol gas. Structure of the sensor is composed of interdigitated electrodes, a sensitive film and a heater. The heater located under the interdigitated electrodes is utilized to provide a working temperature to the sensitive film. The sensitive film prepared by the sol-gel method is tin dioxide doped cadmium sulfide, which is deposited on the interdigitated electrodes. To obtain the suspended structure and deposit the sensitive film, the sensor needs a post-CMOS process to etch the sacrificial silicon dioxide layer and silicon substrate. The methanol senor is a resistive type. A readout circuit converts the resistance variation of the sensor into the output voltage. The experimental results show that the methanol sensor has a sensitivity of 0.18 V/ppm. PMID:26512671

  5. Photoionization of methanol and formaldehyde

    NASA Technical Reports Server (NTRS)

    Warneck, P.

    1971-01-01

    Photoions produced in methanol and formaldehyde by radiation in the spectral region 450-1150 A were analyzed mass spectrometrically, and their relative yields were determined as a function of wavelength. First ionization potentials were determined, and the ion yield curves were interpreted in terms of ionization processes in conjunction with other data. Fragment ions were detected on mass numbers of 31, 30, 29, 15, and 14 for methanol, and 29, 2, and 1 for formaldehyde. The associated appearance potentials were determined and were used to calculate heats of formation of the ions CH2OH(+) and HCO(+), and the radicals CH3, CH2, and HCO.

  6. ACUTE METHANOL TOXICITY IN MINIPIGS

    EPA Science Inventory

    The pig hos been proposed as a potential animal model for methanol-induced neuro-ocular toxicosis in humans because of its reported low liver tetrahydro folate levels and therefore, slower formate metabolism as compared to humans. o determine the validity of the animal model, min...

  7. Air Breathing Direct Methanol Fuel Cell

    DOEpatents

    Ren; Xiaoming

    2003-07-22

    A method for activating a membrane electrode assembly for a direct methanol fuel cell is disclosed. The method comprises operating the fuel cell with humidified hydrogen as the fuel followed by running the fuel cell with methanol as the fuel.

  8. Spontaneous combustion of hydrogen

    NASA Technical Reports Server (NTRS)

    Nusselt, Wilhelm; Pothmann, PH

    1923-01-01

    It is shown by the author's experiments that hydrogen which escapes to the atmosphere through openings in the system may burn spontaneously if it contains dust. Purely thermal reasoning can not account for the combustion. It seems to be rather an electrical ignition. In order to determine whether the cause of the spontaneous ignition was thermo-chemical, thermo-mechanical, or thermo-electrical, the experiments in this paper were performed.

  9. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.

  10. Enhanced methanol utilization in direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2001-10-02

    The fuel utilization of a direct methanol fuel cell is enhanced for improved cell efficiency. Distribution plates at the anode and cathode of the fuel cell are configured to distribute reactants vertically and laterally uniformly over a catalyzed membrane surface of the fuel cell. A conductive sheet between the anode distribution plate and the anodic membrane surface forms a mass transport barrier to the methanol fuel that is large relative to a mass transport barrier for a gaseous hydrogen fuel cell. In a preferred embodiment, the distribution plate is a perforated corrugated sheet. The mass transport barrier may be conveniently increased by increasing the thickness of an anode conductive sheet adjacent the membrane surface of the fuel cell.

  11. Heterogeneous Chemistry Involving Methanol in Tropospheric Clouds

    NASA Technical Reports Server (NTRS)

    Tabazadeh, A.; Yokelson, R. J.; Singh, H. B.; Hobbs, P. V.; Crawford, J. H.; Iraci, L. T.

    2004-01-01

    In this report we analyze airborne measurements to suggest that methanol in biomass burning smoke is lost heterogeneously in clouds. When a smoke plume intersected a cumulus cloud during the SAFARI 2000 field project, the observed methanol gas phase concentration rapidly declined. Current understanding of gas and aqueous phase chemistry cannot explain the loss of methanol documented by these measurements. Two plausible heterogeneous reactions are proposed to explain the observed simultaneous loss and production of methanol and formaldehyde, respectively. If the rapid heterogeneous processing of methanol, seen in a cloud impacted by smoke, occurs in more pristine clouds, it could affect the oxidizing capacity of the troposphere on a global scale.

  12. The direct methanol fuel cell

    SciTech Connect

    Halpert, G.; Narayanan, S.R.; Frank, H.

    1995-08-01

    This presentation describes the approach and progress in the ARPA-sponsored effort to develop a Direct Methanol, Liquid-Feed Fuel Cell (DMLFFC) with a solid Polymer Electrolyte Membrane (PEM) for battery replacement in small portable applications. Using Membrane Electrode Assemblies (MEAs) developed by JPL and Giner, significant voltage was demonstrated at relatively high current densities. The DMLFFC utilizes a 3 percent aqueous solution of methanol that is oxidized directly in the anode (fuel) chamber and oxygen (air) in the cathode chamber to produce water and significant power. The only products are water and CO{sub 2}. The ARPA effort is aimed at replacing the battery in the BA 5590 military radio.

  13. Stevioside methanol tetra-solvate.

    PubMed

    Wu, Yunshan; Rodenburg, Douglas L; Ibrahim, Mohamed A; McChesney, James D; Avery, Mitchell A

    2013-03-01

    Stevioside is a naturally occurring diterpenoid glycoside in Stevia rebaudiana Bertoni. The title compound, C38H60O18·4CH3OH, crystallized as its methanol tetrasolvate. Stevioside consists of an aglycone steviol (a tetra-cyclic diterpene in which the four-fused-ring system consists of three six-membered rings and one five-membered ring) and a sugar part (three glucose units). A weak intra-molecular O-H⋯O hydrogen bond occurs. In the crystal, the methanol mol-ecules participate in a two-dimensional hydrogen-bonded network parallel to b axis with the sugars and together they form a hydrophilic tunnel which encloses the lipophilic part of the molecule. PMID:23476589

  14. Methanol production method and system

    DOEpatents

    Chen, Michael J.; Rathke, Jerome W.

    1984-01-01

    Ethanol is selectively produced from the reaction of methanol with carbon monoxide and hydrogen in the presence of a transition metal carbonyl catalyst. Methanol serves as a solvent and may be accompanied by a less volatile co-solvent. The solution includes the transition metal carbonyl catalysts and a basic metal salt such as an alkali metal or alkaline earth metal formate, carbonate or bicarbonate. A gas containing a high carbon monoxide to hydrogen ratio, as is present in a typical gasifer product, is contacted with the solution for the preferential production of ethanol with minimal water as a byproduct. Fractionation of the reaction solution provides substantially pure ethanol product and allows return of the catalysts for reuse.

  15. Direct methanol fuel cell and system

    DOEpatents

    Wilson, Mahlon S.

    2004-10-26

    A fuel cell having an anode and a cathode and a polymer electrolyte membrane located between anode and cathode gas diffusion backings uses a methanol vapor fuel supply. A permeable polymer electrolyte membrane having a permeability effective to sustain a carbon dioxide flux equivalent to at least 10 mA/cm.sup.2 provides for removal of carbon dioxide produced at the anode by reaction of methanol with water. Another aspect of the present invention includes a superabsorpent polymer material placed in proximity to the anode gas diffusion backing to hold liquid methanol or liquid methanol solution without wetting the anode gas diffusion backing so that methanol vapor from the liquid methanol or liquid methanol-water solution is supplied to the membrane.

  16. The toxicity of inhaled methanol vapors

    SciTech Connect

    Kavet, R.; Nauss, K.M. )

    1990-01-01

    Methanol could become a major automotive fuel in the U.S., and its use may result in increased exposure of the public to methanol vapor. Nearly all of the available information on methanol toxicity in humans relates to the consequences of acute, rather than chronic, exposures. Acute methanol toxicity evolves in a well-understood pattern and consists of an uncompensated metabolic acidosis with superimposed toxicity to the visual system. The toxic properties of methanol are rooted in the factors that govern both the conversion of methanol to formic acid and the subsequent metabolism of formate to carbon dioxide in the folate pathway. In short, the toxic syndrome sets in if formate generation continues at a rate that exceeds its rate of metabolism. Current evidence indicates that formate accumulation will not challenge the metabolic capacity of the folate pathway at the anticipated levels of exposure to automotive methanol vapor.117 references.

  17. The toxicity of inhaled methanol vapors.

    PubMed

    Kavet, R; Nauss, K M

    1990-01-01

    Methanol could become a major automotive fuel in the U.S., and its use may result in increased exposure of the public to methanol vapor. Nearly all of the available information on methanol toxicity in humans relates to the consequences of acute, rather than chronic, exposures. Acute methanol toxicity evolves in a well-understood pattern and consists of an uncompensated metabolic acidosis with superimposed toxicity to the visual system. The toxic properties of methanol are rooted in the factors that govern both the conversion of methanol to formic acid and the subsequent metabolism of formate to carbon dioxide in the folate pathway. In short, the toxic syndrome sets in if formate generation continues at a rate that exceeds its rate of metabolism. Current evidence indicates that formate accumulation will not challenge the metabolic capacity of the folate pathway at the anticipated levels of exposure to automotive methanol vapor. PMID:2264926

  18. Biomodal spontaneous fission

    SciTech Connect

    Hulet, E.K. )

    1989-09-26

    Investigations of mass and kinetic-energy distributions from spontaneous fission have been extended in recent years to an isotope of element 104 and, for half-lives, to an isotope of element 108. The results have been surprising in that spontaneous fission half-lives have turned out to be much longer than expected and mass and kinetic- energy distributions were found to abruptly shift away from those of the lighter actinides, showing two modes of fission. These new developments have caused a re-evaluation of our understanding of the fission process, bringing an even deeper appreciation of the role played by nuclear shell effects upon spontaneous fission properties. 16 refs., 10 figs.

  19. Sol-gel based silica electrodes for inorganic membrane direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Kim, Hyea; Kohl, Paul A.

    Inorganic glass electrodes are of interest for use with inorganic proton exchange membranes for direct methanol fuel cells. Platinum-ruthenium glass electrodes (PtRu/C-SiO 2) have been prepared by incorporating the PtRu/C nanoparticles into a silica-based matrix. The SiO 2 matrix was synthesized through the sol-gel reaction of 3-(trihydroxysilyl)-1-propanesulfonic acid (3TPS) and 3-glycidoxypropyltrimethoxysilane (GPTMS). The distribution of the PtRu/C particles can be controlled by changing the properties of the gel matrix. The effect of gelation time, mole fraction of reactants within the sol, curing temperature, and glass ionomer content were investigated. The adhesion of the catalyst layer on the membrane, catalytic activity for methanol oxidation, and inhibition of methanol permeation through the membrane have been characterized and optimized. The electroless deposition of PtRu onto the PtRu/C nanoparticles was performed to increase the sheet conductivity of the electrode. It was found that the electrolessly deposited metal improved the catalytic activity for methanol oxidation and decreased the methanol cross-over. The methanol fuel cell performance using the inorganic membrane electrode assembly was 236 μA cm -2 at 0.4 V and was stable for more than 10 days.

  20. [Spontaneous mediastinal emphysema].

    PubMed

    Svedbrand, Charlotte; Lange, Peter; Nielsen, Klaus

    2016-01-01

    Spontaneous mediastinal emphysema, also known as spontaneous pneumomediastinum, is defined as radiologically detected free air in the mediastinum, without preceding trauma. It is a rare condition, mainly affecting young adults. It can be caused by coughing, strenuous sports or cocaine inhalation, however, 40% are idiopatic. Common symptoms are chest pain and dyspnoea. 75-90% can be diagnosed with a chest X-ray, and 100% with a computed tomography. Treatment is symptomatic and complications are rare, however, pneumothorax and pneumorrachis have been reported. PMID:26750190

  1. Spontaneous sarcomere dynamics

    NASA Astrophysics Data System (ADS)

    Günther, Stefan; Kruse, Karsten

    2010-12-01

    Sarcomeres are the basic force generating units of striated muscles and consist of an interdigitating arrangement of actin and myosin filaments. While muscle contraction is usually triggered by neural signals, which eventually set myosin motors into motion, isolated sarcomeres can oscillate spontaneously between a contracted and a relaxed state. We analyze a model for sarcomere dynamics, which is based on a force-dependent detachment rate of myosin from actin. Our numerical bifurcation analysis of the spontaneous sarcomere dynamics reveals notably Hopf bifurcations, canard explosions, and gluing bifurcations. We discuss possible implications for experiments.

  2. Metabolic methanol: molecular pathways and physiological roles.

    PubMed

    Dorokhov, Yuri L; Shindyapina, Anastasia V; Sheshukova, Ekaterina V; Komarova, Tatiana V

    2015-04-01

    Methanol has been historically considered an exogenous product that leads only to pathological changes in the human body when consumed. However, in normal, healthy individuals, methanol and its short-lived oxidized product, formaldehyde, are naturally occurring compounds whose functions and origins have received limited attention. There are several sources of human physiological methanol. Fruits, vegetables, and alcoholic beverages are likely the main sources of exogenous methanol in the healthy human body. Metabolic methanol may occur as a result of fermentation by gut bacteria and metabolic processes involving S-adenosyl methionine. Regardless of its source, low levels of methanol in the body are maintained by physiological and metabolic clearance mechanisms. Although human blood contains small amounts of methanol and formaldehyde, the content of these molecules increases sharply after receiving even methanol-free ethanol, indicating an endogenous source of the metabolic methanol present at low levels in the blood regulated by a cluster of genes. Recent studies of the pathogenesis of neurological disorders indicate metabolic formaldehyde as a putative causative agent. The detection of increased formaldehyde content in the blood of both neurological patients and the elderly indicates the important role of genetic and biochemical mechanisms of maintaining low levels of methanol and formaldehyde. PMID:25834233

  3. Endogenous Methanol Regulates Mammalian Gene Activity

    PubMed Central

    Komarova, Tatiana V.; Petrunia, Igor V.; Shindyapina, Anastasia V.; Silachev, Denis N.; Sheshukova, Ekaterina V.; Kiryanov, Gleb I.; Dorokhov, Yuri L.

    2014-01-01

    We recently showed that methanol emitted by wounded plants might function as a signaling molecule for plant-to-plant and plant-to-animal communications. In mammals, methanol is considered a poison because the enzyme alcohol dehydrogenase (ADH) converts methanol into toxic formaldehyde. However, the detection of methanol in the blood and exhaled air of healthy volunteers suggests that methanol may be a chemical with specific functions rather than a metabolic waste product. Using a genome-wide analysis of the mouse brain, we demonstrated that an increase in blood methanol concentration led to a change in the accumulation of mRNAs from genes primarily involved in detoxification processes and regulation of the alcohol/aldehyde dehydrogenases gene cluster. To test the role of ADH in the maintenance of low methanol concentration in the plasma, we used the specific ADH inhibitor 4-methylpyrazole (4-MP) and showed that intraperitoneal administration of 4-MP resulted in a significant increase in the plasma methanol, ethanol and formaldehyde concentrations. Removal of the intestine significantly decreased the rate of methanol addition to the plasma and suggested that the gut flora may be involved in the endogenous production of methanol. ADH in the liver was identified as the main enzyme for metabolizing methanol because an increase in the methanol and ethanol contents in the liver homogenate was observed after 4-MP administration into the portal vein. Liver mRNA quantification showed changes in the accumulation of mRNAs from genes involved in cell signalling and detoxification processes. We hypothesized that endogenous methanol acts as a regulator of homeostasis by controlling the mRNA synthesis. PMID:24587296

  4. Recent Studies on Methanol Crossover in Liquid-Feed Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Narayanan, S. R.

    2000-01-01

    In this work, the effects of methanol crossover and airflow rates on the cathode potential of an operating direct methanol fuel cell are explored. Techniques for quantifying methanol crossover in a fuel cell and for separating the electrical performance of each electrode in a fuel cell are discussed. The effect of methanol concentration on cathode potential has been determined to be significant. The cathode is found to be mass transfer limited when operating on low flow rate air and high concentrations of methanol. Improvements in cathode structure and operation at low methanol concentration have been shown to result in improved cell performance.

  5. Spontaneous otogenic pneumocephalus.

    PubMed

    Mohammed, El Romyssa; Profant, Milan

    2011-06-01

    The diagnosis and management of spontaneous otogenic pneumocephalus with literature review is described. A young sportsman experienced headache and fluctuating mass in his occiput during increased physical activity. A large extradural intracranial pneumocephalus with corresponding emphysema was imaged on a CT scan. Transmastoid identification and plugging of temporal bone defect solved the problem with complete pneumocephalus and emphysema resorption. PMID:21254960

  6. The Effects Of Methanol On The Trapping Of Volatile Ice Components

    NASA Astrophysics Data System (ADS)

    Brown, Wendy; Burke, D.

    2012-05-01

    Icy mantle evaporation gives the rich chemistry observed around hot cores. Water ice is the dominant component of many astrophysical ices and this has motivated studies to identify the sublimation of volatile ice components when water-rich ices are heated. Most investigations focus on binary ices, with water as the main component. To understand thermal processing of real astrophysical ices, the current laboratory definition of these ices needs to be extended. Methanol is important in this regard, due to its close association with water. It is typically the second most abundant species and the most abundant organic molecule detected in cometary comae, interstellar ices and on a variety of bodies at the edge of our solar system. Methanol abundance varies depending on the environment, ranging from as low as 5% with respect to water in dark clouds, to approximately 30% near low and high mass proto-stars. With this in mind, we present an investigation of the adsorption and desorption of interstellar ices, showing the effect of methanol on the trapping and release of volatiles from water-rich ices. OCS and CO2 are used as probe molecules since they reside in water and methanol-rich environments. Experiments show that OCS thermal desorption depends on ice morphology and composition. Data suggest that OCS is incorporated into amorphous water ice during heating, as a result of morphological changes in the ice, and it then explosively desorbs as the water crystallises. Similar effects are observed for OCS deposited on/within methanol ice. In contrast, OCS desorption from mixed water/methanol ices is complex. Desorption occurs at the onset of methanol desorption, in addition to co-desorption with crystalline water. Hence co-depositing impurities, e.g. methanol, with water ice significantly alters the desorption dynamics of volatiles. These results are of interest as they can be used to model star formation.

  7. Methods of conditioning direct methanol fuel cells

    DOEpatents

    Rice, Cynthia; Ren, Xiaoming; Gottesfeld, Shimshon

    2005-11-08

    Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell ("DMFC") are disclosed. In a first method, an electrical current of polarity opposite to that used in a functioning direct methanol fuel cell is passed through the anode surface of the membrane electrode assembly. In a second method, methanol is supplied to an anode surface of the membrane electrode assembly, allowed to cross over the polymer electrolyte membrane of the membrane electrode assembly to a cathode surface of the membrane electrode assembly, and an electrical current of polarity opposite to that in a functioning direct methanol fuel cell is drawn through the membrane electrode assembly, wherein methanol is oxidized at the cathode surface of the membrane electrode assembly while the catalyst on the anode surface is reduced. Surface oxides on the direct methanol fuel cell anode catalyst of the membrane electrode assembly are thereby reduced.

  8. Propane Clathrate Hydrate Formation Accelerated by Methanol.

    PubMed

    Amtawong, Jaruwan; Guo, Jin; Hale, Jared S; Sengupta, Suvrajit; Fleischer, Everly B; Martin, Rachel W; Janda, Kenneth C

    2016-07-01

    The role of methanol as both an inhibitor and a catalyst for the formation of clathrate hydrates (CHs) has been a topic of intense study. We report a new quantitative study of the kinetics of propane CH formation at 253 K from the reaction of propane gas with <75 μm ice particles that have been doped with varying amounts of methanol. We find that methanol significantly accelerates the formation reaction with quite small doping quantities. Even for only 1 methanol molecule per 10 000 water molecules, the maximum uptake rate of propane into CHs is enhanced and the initiation pressure is reduced. These results enable more efficient production of CHs for gas storage. This remarkable acceleration of the CH formation reaction by small quantities of methanol may place constraints on the mechanism of the inhibition effect observed under other conditions, usually employing much larger quantities of methanol. PMID:27275862

  9. Methanol incorporation in clathrate hydrates and the implications for oil and gas pipeline flow assurance and icy planetary bodies

    PubMed Central

    Shin, Kyuchul; Udachin, Konstantin A.; Moudrakovski, Igor L.; Leek, Donald M.; Alavi, Saman; Ratcliffe, Christopher I.; Ripmeester, John A.

    2013-01-01

    One of the best-known uses of methanol is as antifreeze. Methanol is used in large quantities in industrial applications to prevent methane clathrate hydrate blockages from forming in oil and gas pipelines. Methanol is also assigned a major role as antifreeze in giving icy planetary bodies (e.g., Titan) a liquid subsurface ocean and/or an atmosphere containing significant quantities of methane. In this work, we reveal a previously unverified role for methanol as a guest in clathrate hydrate cages. X-ray diffraction (XRD) and NMR experiments showed that at temperatures near 273 K, methanol is incorporated in the hydrate lattice along with other guest molecules. The amount of included methanol depends on the preparative method used. For instance, single-crystal XRD shows that at low temperatures, the methanol molecules are hydrogen-bonded in 4.4% of the small cages of tetrahydrofuran cubic structure II hydrate. At higher temperatures, NMR spectroscopy reveals a number of methanol species incorporated in hydrocarbon hydrate lattices. At temperatures characteristic of icy planetary bodies, vapor deposits of methanol, water, and methane or xenon show that the presence of methanol accelerates hydrate formation on annealing and that there is unusually complex phase behavior as revealed by powder XRD and NMR spectroscopy. The presence of cubic structure I hydrate was confirmed and a unique hydrate phase was postulated to account for the data. Molecular dynamics calculations confirmed the possibility of methanol incorporation into the hydrate lattice and show that methanol can favorably replace a number of methane guests. PMID:23661058

  10. Methanol incorporation in clathrate hydrates and the implications for oil and gas pipeline flow assurance and icy planetary bodies.

    PubMed

    Shin, Kyuchul; Udachin, Konstantin A; Moudrakovski, Igor L; Leek, Donald M; Alavi, Saman; Ratcliffe, Christopher I; Ripmeester, John A

    2013-05-21

    One of the best-known uses of methanol is as antifreeze. Methanol is used in large quantities in industrial applications to prevent methane clathrate hydrate blockages from forming in oil and gas pipelines. Methanol is also assigned a major role as antifreeze in giving icy planetary bodies (e.g., Titan) a liquid subsurface ocean and/or an atmosphere containing significant quantities of methane. In this work, we reveal a previously unverified role for methanol as a guest in clathrate hydrate cages. X-ray diffraction (XRD) and NMR experiments showed that at temperatures near 273 K, methanol is incorporated in the hydrate lattice along with other guest molecules. The amount of included methanol depends on the preparative method used. For instance, single-crystal XRD shows that at low temperatures, the methanol molecules are hydrogen-bonded in 4.4% of the small cages of tetrahydrofuran cubic structure II hydrate. At higher temperatures, NMR spectroscopy reveals a number of methanol species incorporated in hydrocarbon hydrate lattices. At temperatures characteristic of icy planetary bodies, vapor deposits of methanol, water, and methane or xenon show that the presence of methanol accelerates hydrate formation on annealing and that there is unusually complex phase behavior as revealed by powder XRD and NMR spectroscopy. The presence of cubic structure I hydrate was confirmed and a unique hydrate phase was postulated to account for the data. Molecular dynamics calculations confirmed the possibility of methanol incorporation into the hydrate lattice and show that methanol can favorably replace a number of methane guests. PMID:23661058

  11. Method of steam reforming methanol to hydrogen

    DOEpatents

    Beshty, Bahjat S.

    1990-01-01

    The production of hydrogen by the catalyzed steam reforming of methanol is accomplished using a reformer of greatly reduced size and cost wherein a mixture of water and methanol is superheated to the gaseous state at temperatures of about 800.degree. to about 1,100.degree. F. and then fed to a reformer in direct contact with the catalyst bed contained therein, whereby the heat for the endothermic steam reforming reaction is derived directly from the superheated steam/methanol mixture.

  12. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Water loss from the cell is minimized by making the conductive cathode assembly hydrophobic and the conductive anode assembly hydrophilic.

  13. Negligible photodesorption of methanol ice and active photon-induced desorption of its irradiation products

    NASA Astrophysics Data System (ADS)

    Cruz-Diaz, G. A.; Martín-Doménech, R.; Muñoz Caro, G. M.; Chen, Y.-J.

    2016-07-01

    Context. Methanol is a common component of interstellar and circumstellar ice mantles and is often used as an evolution indicator in star-forming regions. The observations of gas-phase methanol in the interiors of dense molecular clouds at temperatures as low as 10 K suggest that non-thermal ice desorption must be active. Ice photodesorption has been proposed to explain the abundances of gas-phase molecules toward the coldest regions. Aims: Laboratory experiments were performed to investigate the potential photodesorption of methanol toward the coldest regions. Methods: Solid methanol was deposited at 8 K and UV-irradiated at various temperatures starting from 8 K. The irradiation of the ice was monitored by means of infrared spectroscopy and the molecules in the gas phase were detected using quadrupole mass spectroscopy. Fully deuterated methanol was used for confirmation of the results. Results: The photodesorption of methanol to the gas phase was not observed in the mass spectra at different irradiation temperatures. We estimate an upper limit of 3 × 10-5 molecules per incident photon. On the other hand, photon-induced desorption of the main photoproducts was clearly observed. Conclusions: The negligible photodesorption of methanol could be explained by the ability of UV-photons in the 114-180 nm (10.87-6.88 eV) range to dissociate this molecule efficiently. Therefore, the presence of gas-phase methanol in the absence of thermal desorption remains unexplained. On the other hand, we find CH4 to desorb from irradiated methanol ice, which was not found to desorb in the pure CH4 ice irradiation experiments.

  14. Methanol optic neuropathy: a histopathological study.

    PubMed

    Sharpe, J A; Hostovsky, M; Bilbao, J M; Rewcastle, N B

    1982-10-01

    The histopathologic effects of methanol on the optic nerve were studied in four patients. Circumscribed myelin damage occurred behind the lamina cribrosa in each nerve. Axons were preserved. Demyelination also occurred in cerebral hemispheric white matter in one patient. This selective myelinoclastic effect of methanol metabolism is probably caused by histotoxic anoxia in watershed areas of the cerebral and distal optic nerve circulations. Juxtabulbar demyelination may cause optic disk edema in methanol poisoning by compressive obstruction of orthograde axoplasmic flow. Visual loss may be due to disruption of saltatory conduction. Retrolaminar demyelinating optic neuropathy is an early morphologic correlate of visual loss in methanol intoxication. PMID:6889696

  15. The degree and effect of methanol crossover in the direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Cruickshank, John; Scott, Keith

    A simple model is presented to describe the permeation of methanol from the anode to the cathode in direct methanol fuel cell (DMFC). Measured permeation rates of water and methanol through Nafion ® 117 under varied pressure differentials across the membrane are used to determine key parameters in the model. This model is able to explain the effect of oxygen pressure at the cathode and methanol concentration at the anode on the measured cell voltage-current response of the DMFC.

  16. Density functional theory study of O-H and C-H bond scission of methanol catalyzed by a chemisorbed oxygen layer on Cu(111)

    NASA Astrophysics Data System (ADS)

    Li, Jonathan; Zhou, Guangwen

    2016-04-01

    Using the density-functional theory within the generalized gradient approximation, we have studied the partial oxidation of methanol on a Cu(111) surface covered with a chemisorbed oxygen layer that resembles a Cu2O layer. Adsorption energies and geometries were computed for methanol, methoxy, hydroxymethyl and formaldehyde on both clean Cu(111) and Cu2O/Cu(111) and electronic structures were computed for the reaction intermediates on Cu2O/Cu(111). We also calculated the energy barrier for partial oxidation of methanol to formaldehyde on Cu2O/Cu(111). These results show that the Cu2O monolayer slightly lowers the stability of each of the surface adsorbates and the oxygen strongly promotes hydrogen dissociation by lowering the energy barrier of methanol decomposition and causing the spontaneous dissociation of methanol into methoxy.

  17. Biogeochemical Cycle of Methanol in Anoxic Deep-Sea Sediments

    PubMed Central

    Yanagawa, Katsunori; Tani, Atsushi; Yamamoto, Naoya; Hachikubo, Akihiro; Kano, Akihiro; Matsumoto, Ryo; Suzuki, Yohey

    2016-01-01

    The biological flux and lifetime of methanol in anoxic marine sediments are largely unknown. We herein reported, for the first time, quantitative methanol removal rates in subsurface sediments. Anaerobic incubation experiments with radiotracers showed high rates of microbial methanol consumption. Notably, methanol oxidation to CO2 surpassed methanol assimilation and methanogenesis from CO2/H2 and methanol. Nevertheless, a significant decrease in methanol was not observed after the incubation, and this was attributed to the microbial production of methanol in parallel with its consumption. These results suggest that microbial reactions play an important role in the sources and sinks of methanol in subseafloor sediments. PMID:27301420

  18. Breakdown in vapors of alcohols: methanol and ethanol

    NASA Astrophysics Data System (ADS)

    Petrovic, Zoran Lj.; Sivos, Jelena; Skoro, Nikola; Maric, Dragana; Malovic, Gordana

    2014-10-01

    Breakdown data for vapors of the two simplest alcohols - methanol and ethanol - are presented. The breakdown is achieved between plan-parallel electrodes, where cathode is made of copper and anode is a thin film of platinum deposited on quartz window. Diameter of electrodes is 5.4 cm and electrode gap 1.1 cm. We compare breakdown voltages (Paschen curves) for methyl and ethyl alcohol in the pressure range 0.1--2 Torr. In both vapors, the pressure is kept well below the vapor pressure, to prevent formation of liquid droplets. For each point of Paschen curves corresponding axial profiles of emission are recorded by ICCD camera in visual part of the spectra. Axial intensity distributions reveal important processes of excitation. Both vapors show strong emission peak near the cathode at all pd values covered by measurements, which indicates that excitation by ions and fast neutrals play important role in the discharge. Preliminary spectrally resolved measurements of the discharge structure with optical filters show that dominantly emission comes from CH band at 431 nm. There is a very low intensity of H α emission detected in ethanol vapor at high E/N, while it is much stronger in methanol even at lower E/N. It is interesting to note that H α emission in methanol exhibits exponential increase of intensity from the cathode to the anode, so it comes mainly from excitation by electrons, not heavy particles. Supported by MESTD Projects ON171037 and III41011.

  19. SnS2 Thin Film Deposition by Spray Pyrolysis

    NASA Astrophysics Data System (ADS)

    Yahia Jaber, Abdallah; Noaiman Alamri, Saleh; Salah Aida, Mohammed

    2012-06-01

    Tin disulfide (SnS2) thin films have been synthesized using a simplified spray pyrolysis technique using a perfume atomizer. The films were deposited using two different solutions prepared by the dilution of SnCl2 and thiourea in distilled water and in methanol. The obtained films have a microcrystalline structure. The film deposited using methanol as the solvent is nearly stochiometric SnS2 with a spinel phase having a (001) preferential orientation. The film prepared with an aqueous solution is Sn-rich. Scanning electronic microscopy (SEM) images reveal that the film deposited with the aqueous solution is rough and is formed with large wires. However, the film deposited with methanol is dense and smooth. Conductivity measurements indicate that the aqueous solution leads to an n-type semiconductor, while methanol leads to a p-type semiconductor.

  20. Arachnoid cyst spontaneous rupture.

    PubMed

    Marques, Inês Brás; Vieira Barbosa, José

    2014-01-01

    Arachnoid cysts are benign congenital cerebrospinal fluid collections, usually asymptomatic and diagnosed incidentally in children or adolescents. They may become symptomatic after enlargement or complications, frequently presenting with symptoms of intracranial hypertension. We report an unusual case of progressive refractory headache in an adult patient due to an arachnoid cyst spontaneous rupture. Although clinical improvement occurred with conservative treatment, the subdural hygroma progressively enlarged and surgical treatment was ultimately needed. Spontaneous rupture is a very rare complication of arachnoid cysts. Accumulation of cerebrospinal fluid accumulation in the subdural space causes sustained intracranial hypertension that may be life-threatening and frequently requires surgical treatment. Patients with arachnoid cysts must be informed on their small vulnerability to cyst rupture and be aware that a sudden and severe headache, especially if starting after minor trauma or a Valsalva manoeuvre, always requires medical evaluation. PMID:24581205

  1. Spontaneous Quantum Hall Liquids

    NASA Astrophysics Data System (ADS)

    Zhang, Fan

    2012-02-01

    Driven by electron-electron interactions, bilayer graphene and its thicker cousins, chirally (ABC) stacked multilayers, exhibit a variety of distinct broken symmetry states in which each spin-valley flavor spontaneously transfers charge between layers, because of their flat touching bands and large pseudospin chiralities. These gapped states are accompanied by large momentum space Berry curvatures and different types of topological orders. These competing ground states are distinguished by their flavor Hall conductivities, orbital magnetizations, edge state properties, and response to external fields. These spontaneous quantum Hall (SQH) states at zero field smoothly evolve into quantum Hall ferromagnet states at finite field. Various phase transitions occur by tuning carrier densities, temperature, and external fields. Recently, SQH states have started to be observed and explored in transport and Hall experiments on suspended devices with dual gates.

  2. Spontaneous Perforation of Pyometra.

    PubMed

    Sharma, Nalini; Singh, Ahanthem Santa; Bhaphiralyne, Wankhar

    2016-04-01

    Pyometra is collection of purulent material which occurs when there is interference with its normal drainage. It is an uncommon condition with incidence of 0.1 to 0.5% of all gynecological patients. Spontaneous rupture of uterus is an extremely rare complication of pyometra. A 65-year-old lady presented with pain abdomen and purulent vaginal discharge. Preoperative diagnosis of pyometra was made by magnetic resonance imaging (MRI). Laparotomy followed by peritoneal lavage and repair of perforation was performed. Although spontaneously perforated pyometra is rare, the condition must be borne in mind with regard to elderly women with acute abdominal pain. Preoperative diagnosis of perforated pyometra is absolutely essential. Computed tomography (CT) and MRI are diagnostic tools. In selected cases conservative approach at surgery can be opted. PMID:27152313

  3. Spontaneous Perforation of Pyometra

    PubMed Central

    Singh, Ahanthem Santa; Bhaphiralyne, Wankhar

    2016-01-01

    Pyometra is collection of purulent material which occurs when there is interference with its normal drainage. It is an uncommon condition with incidence of 0.1 to 0.5% of all gynecological patients. Spontaneous rupture of uterus is an extremely rare complication of pyometra. A 65-year-old lady presented with pain abdomen and purulent vaginal discharge. Preoperative diagnosis of pyometra was made by magnetic resonance imaging (MRI). Laparotomy followed by peritoneal lavage and repair of perforation was performed. Although spontaneously perforated pyometra is rare, the condition must be borne in mind with regard to elderly women with acute abdominal pain. Preoperative diagnosis of perforated pyometra is absolutely essential. Computed tomography (CT) and MRI are diagnostic tools. In selected cases conservative approach at surgery can be opted. PMID:27152313

  4. Spontaneous ileostomy closure

    PubMed Central

    Alyami, Mohammad S.; Lundberg, Peter W.; Cotte, Eddy G.; Glehen, Olivier J.

    2016-01-01

    Iatrogenic ileostomies are routinely placed during colorectal surgery for the diversion of intestinal contents to permit healing of the distal anastomosis prior to elective reversal. We present an interesting case of spontaneous closure of a diverting ileostomy without any adverse effects to the patient. A 65-year-old woman, positive for hereditary non-polyposis colorectal cancer type-I, with locally invasive cancer of the distal colon underwent en-bloc total colectomy, hysterectomy, and bilateral salpingoophorectomy with creation of a proximal loop ileostomy. The ostomy temporarily closed without reoperation at 10 weeks, after spontaneously reopening, it definitively closed, again without surgical intervention at 18 weeks following the original surgery. This rare phenomenon has occurred following variable colorectal pathology and is poorly understood, particularly in patients with aggressive disease and adjunct perioperative interventions. PMID:27279518

  5. [Spontaneous intraperitoneal hemorrhage: etiology].

    PubMed

    Ksontini, R; Roulet, D; Cosendey, B A; Cavin, R

    2001-10-01

    Spontaneous intraperitoneal hemorrhage is a rare and sometime fatal condition. The clinical presentation may range from a non-specific abdominal pain to an acute abdomen with hemodynamic instability. Often, a preoperative diagnosis cannot be obtained. Immediate surgical exploration remains the treatment of choice. However, pre or postoperative diagnosis can sometime be confirmed and treated with interventional radiology. In rare cases, the site of bleeding remains unknown despite intraoperative exploration and radiographic studies. PMID:11715286

  6. Design of a stable and methanol resistant membrane with cross-linked multilayered polyelectrolyte complexes for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Zhao, Chengji; Lin, Haidan; Zhang, Gang; Zhang, Yang; Ni, Jing; Ma, Wenjia; Na, Hui

    Sulfonated poly (arylene ether ketone) bearing carboxyl groups (SPAEK-C) membranes have been prepared as proton exchange membranes for applications in direct methanol fuel cells (DMFCs). Multilayered polyelectrolyte complexes (PECs) which applied as methanol barrier agents are prepared by alternate deposition of the oppositely charged amino-containing poly (ether ether ketone) (Am-PEEK) and the highly sulfonated SPAEK-C via a layer-by-layer method. The cross-linked PEC (c-PEC) is derived from a simple heat-induced cross-linking reaction between Am-PEEK and SPAEK-C. Fourier transform infrared spectroscopy confirms that Am-PEEK and SPAEK-C are assembled successfully in the multilayers. The morphology of the membranes is studied by scanning electron microscopy, which shows the presence of the thin layers coated on the SPAEK-C membrane. After PEC and c-PEC modification, the methanol permeability decreases obviously when compared to that of the pristine membrane. Notably, improved proton conductivities are obtained for the PEC modified membranes in comparison with the pristine membrane. Moreover, the selectivity of these modified membranes is one order of magnitude higher than that of Nafion 117. The thermal stability, oxidative stability, water uptake and swelling of PEC and c-PEC modified membranes are also investigated.

  7. Methanol Steam Reforming for Hydrogen Production

    SciTech Connect

    Palo, Daniel R.; Dagle, Robert A.; Holladay, Jamie D.

    2007-09-11

    Review article covering developments in methanol steam reforming in the context of PEM fuel cell power systems. Subjects covered include methanol background, use, and production, comparison to other fuels, power system considerations, militrary requirements, competing technologies, catalyst development, and reactor and system development and demonstration.

  8. Alternative resources for the methanol economy

    NASA Astrophysics Data System (ADS)

    Reschetilowski, W.

    2013-07-01

    Generally, methanol produced for chemical applications is made predominantly via fossil resources. But it can also be obtained from any carbon-containing feedstock, including biomass, biogas, forest residues, and municipal or other waste products. Perspective viewing and critical assessment show the possibilities and constraints of such alternative resources for the realization of the methanol economy with high sustainability. The bibliography includes 57 references.

  9. Developmental and Reproductive Toxicology of Methanol

    EPA Science Inventory

    Methanol is a high production volume chemical used as a feedstock for chemical syntheses and as a solvent and fuel additive. Methanol is acutely toxic to humans, causing acidosis, blindness in death at high dosages, but its developmental and reproductive toxicity in humans is poo...

  10. [Spontaneous abortion. Etiologic survey. Results].

    PubMed

    Baaklini, N; Anguenot, J L; Boulanger, J C; Vitse, M

    1990-12-01

    The definition of repeated spontaneous abortions is subject to caution. For some, it corresponds to at least three repeated spontaneous abortions with no normal previous pregnancy; for others, it comprises the repeated spontaneous abortions occurring after a normal pregnancy. It is a frequent problem, especially if one tries to give a wider definition. The authors studied the frequency of repeated spontaneous abortions in a continuous series of 14,857 pregnancies which took place between January 1982 and December 1988. In the study of the aetiology of the repeated spontaneous abortions in the various groups of women defined according to the number of previous pregnancies and abortions, they find the classical causes of repeated spontaneous abortions in all the categories: therefore, it seems legitimate to them that a wider definition be given for repeated spontaneous abortions. PMID:2291048

  11. The detection of extragalactic methanol

    NASA Astrophysics Data System (ADS)

    Henkel, C.; Jacq, T.; Mauersberger, R.; Menten, K. M.; Steppe, H.

    1987-12-01

    The detection of emission in the 96 GHz 2(kappa)-1(kappa) lines of methanol is reported toward the central regions of NGC253 and IC342. A possible detection is also obtained toward NGC6946, while no emission is seen toward M82. (CH3OH)/(H2) abundance ratios appear to be consistent with those determined for galactic sources. The strength of the CH3OH emission, however, is not found to be correlated with infrared or CO luminosities. Toward NGC253, two distinct clouds are identified. One of these appears to be directly associated with the nucleus and remains spatially unresolved. The recently detected H2O maser at 100-150 km/s does not originate from this centrally located cloud.

  12. Identification of interstellar methanol lines

    NASA Astrophysics Data System (ADS)

    Sutton, E. C.; Herbst, Eric

    1988-10-01

    The extended internal axis method Hamiltonian of Herbst et al. has been employed to study the rotational spectrum of methanol out to high values of the rotational quantum number J. For 12CH3OH the available laboratory data, consisting of 783 lines out to J = 22, have been fitted with a Hamiltonian containing 32 free parameters. For 13CH3OH a Hamiltonian with 23 free parameters is sufficient for fitting 455 lines, also out to J = 22. Frequency predictions based on these fits have permitted the identification of a number of previously unidentified interstellar lines from OMC-1. The majority of these are b-type R-branch transitions of 12CH3OH.

  13. Methanol Conversion for the Production of Hydrogen

    SciTech Connect

    Taylor, C.E.; Howard, B.H.; Myers, C.R.

    2007-12-19

    The production of methanol from a variety of biomass sources is gaining favor. Several facilities exist or are under construction throughout the world to convert biogenerated methane from the decomposition of biomass into methanol using conventional steam reforming. Methanol is an excellent liquid-hydrogen-transport medium. When powered by hydrogen, fuel cells have the potential to be the cleanest and most efficient source of electricity for use by the automotive industry. On-board reforming of liquid hydrocarbon fuels is a viable alternative to the storage of compressed hydrogen. A problem in current reforming processes is the quantity of carbon monoxide (CO) produced. Our research is geared toward circumventing the production of carbon monoxide in methanol reforming through the development of novel reforming catalysts. By modifying a copper-based catalyst, we have produced several catalysts that retain their activity and high surface area after extended methanol reforming runs both with and without the addition of steam.

  14. Look what you can make from methanol

    SciTech Connect

    King, D.L.; Grate, J.H.

    1985-04-01

    In a synthetic gas based chemicals industry there are many advantages in using an indirect methanol-based route for producing two carbon or higher oxygenated chemicals. Because of poor product selectivity and low production rates, direct syngas mechanisms are not commercially viable. Specific examples of indirect methanol-based routes and also routes from formaldehyde are given. These include the production of ethanol by reductive carbonylation of methanol and the production of vinyl acetate, although more work needs to be done on the methanol-syngas route to vinyl acetate. The chemistry of ethylene glycol from formaldehyde is discussed. It is concluded that the success of syngas-based technologies will be linked to the economics of ethylene production and new methanol-based processes will contribute to this success. 35 references.

  15. Spontaneous Achilles tendon rupture in alkaptonuria

    PubMed Central

    Alajoulin, Omar A.; Alsbou, Mohammed S.; Ja’afreh, Somayya O.; Kalbouneh, Heba M.

    2015-01-01

    Alkaptonuria (AKU) is a rare inborn metabolic disease characterized by accumulation of homogentisic acid (HGA). Excretion of HGA in urine causes darkening of urine and its deposition in connective tissues causes dark pigmentation (ochronosis), early degeneration of articular cartilage, weakening of the tendons, and subsequent rupture. In this case report, we present a rare case of a patient presented with unilateral spontaneous rupture of Achilles tendon due to AKU. The patient developed most of the orthopedic manifestations of the disease earlier than typical presentations. Alkaptonuria patients should avoid strenuous exercises and foot straining especially in patients developing early orthopedic manifestations. PMID:26620992

  16. Thin Film Catalyst Layers for Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Witham, C. K.; Chun, W.; Ruiz, R.; Valdez, T. I.; Narayanan, S. R.

    2000-01-01

    One of the primary obstacles to the widespread use of the direct methanol fuel cell (DMFC) is the high cost of the catalyst. Therefore, reducing the catalyst loading well below the current level of 8-12 mg/cm 2 would be important to commercialization. The current methods for preparation of catalyst layers consisting of catalyst, ionomer and sometimes a hydrophobic additive are applied by either painting, spraying, decal transfer or screen printing processes. Sputter deposition is a coating technique widely used in manufacturing and therefore particularly attractive. In this study we have begun to explore sputtering as a method for catalyst deposition. Present experiments focus on Pt-Ru catalyst layers for the anode.

  17. Ion-Ice Astrochemistry: Barrierless Low-Energy Deposition Pathways to HCOOH, CH3OH, and CO2 on Icy Grain Mantles from Precursor Cations

    NASA Technical Reports Server (NTRS)

    Woon, David E.

    2011-01-01

    A new family of very favorable reaction pathways is explored involving the deposition of ions on icy grain mantles with very low energies. Quantum chemical cluster calculations at the MP2/6-31+G** level in 4H2O clusters and at the B3LYP/6-31+G** level in 17H2O clusters indicate that HCO+ and CH3 + are able to react spontaneously with one of the water molecules in the cluster to form protonated formic acid (HCOOH2 +) and protonated methanol (CH3OH2 +), respectively. It is furthermore found that these initial adducts spontaneously transfer their excess protons to the cluster to form neutral formic acid and methanol, plus solvated hydronium, H3O+. In the final case, if a CO molecule is bound to the surface of the cluster, OH+ may react with it to form protonated carbon dioxide (HCO2 +), which then loses its proton to yield CO2 and H3O+. In the present model, all of these processes were found to occur with no barriers. Discussion includes the analogous gas phase processes, which have been considered in previous studies, as well as the competitive abstraction pathway for HCO(+) + H2O.

  18. Enantioselective autocatalysis. Spontaneous resolution and the prebiotic generation of chirality

    NASA Astrophysics Data System (ADS)

    Bonner, William A.

    1994-02-01

    Theoretical and experimental models for autocatalytic systems leading to the prebiotic origin of chiralityvia the spontaneous symmetry breaking (resolution) of racemic substrates are reviewed. Of the experimental models so far studied, only 2nd order assymetric transformations during crystallization of optically labile enantiometers, leading to their spontaneous resolution under racemizing conditions (SRURC) have been successful. Our objective was to investigate in further detail the most promising of these systems from the point of view of its overall efficiency and its potential viability as a mechanism for the spontaneous generation of molecular chirality on the prebiotic Earth. To this end the 1,4-benzo-diazepinooxazole derivative XI, having a single asymmetric carbon atom, has been synthesized. We here confirm a report in the literature that (±)-XI undergoes SRURC in methanol, both on crystallization and as a slurry. The ‘total spontaneous resolution’ of (±)-XI has been achieved in a yield of 99%, of which 80% had an optical purity ofca. 93%. Arguments are presented that SRURC of racemic substrates, while thus demonstrably effective in laboratory experiments, was probably not of major importance for the origin or amplification of molecular chirality on the primitive earth.

  19. The electrochemical oxidation of methanol on a Pt/TNTs/Ti electrode enhanced by illumination

    NASA Astrophysics Data System (ADS)

    Wang, Y. Q.; Wei, Z. D.; Gao, B.; Qi, X. Q.; Li, L.; Zhang, Q.; Xia, M. R.

    A Pt/TNTs/Ti electrode is prepared by electrochemically depositing Pt using the modulated pulse current method onto high density, well ordered and uniformly distributed TiO 2 nanotubes (TNTs) on a Ti substrate. The results show that the performance and anti-poison ability of the Pt/TNTs/Ti electrode for methanol electro-oxidation under illumination is remarkably enhanced and is even better than the best bi-metallic Pt-Ru catalysts. CO poisoning is no longer a problem during methanol electro-oxidation with the Pt/TNTs/Ti electrode under illumination.

  20. Thin-Film Deposition of Metal Oxides by Aerosol-Assisted Chemical Vapour Deposition: Evaluation of Film Crystallinity

    NASA Astrophysics Data System (ADS)

    Takeuchi, Masahiro; Maki, Kunisuke

    2007-12-01

    Sn-doped In2O3 (ITO) thin films are deposited on glass substrates using 0.2 M aqueous and methanol solutions of InCl3(4H2O) with 5 mol % SnCl2(2H2O) by aerosol-assisted chemical vapour deposition under positive and negative temperature gradient conditions. The film crystallinity is evaluated by determining the film thickness dependence of X-ray diffraction peak height. When using aqueous solution, the ITO films grow with the same crystallinity during the deposition, but when using methanol solution, the preferred orientation of ITO changes during the deposition.

  1. Spontaneous Tumor Lysis Syndrome

    PubMed Central

    Kimple, Michelle E.

    2015-01-01

    Tumor lysis syndrome (TLS) is a known complication of malignancy and its treatment. The incidence varies on malignancy type, but is most common with hematologic neoplasms during cytotoxic treatment. Spontaneous TLS is thought to be rare. This case study is of a 62-year-old female admitted with multisystem organ failure, with subsequent diagnosis of aggressive B cell lymphoma. On admission, laboratory abnormalities included renal failure, elevated uric acid (20.7 mg/dL), and 3+ amorphous urates on urinalysis. Oliguric renal failure persisted despite aggressive hydration and diuretic use, requiring initiation of hemodialysis prior to chemotherapy. Antihyperuricemic therapy and hemodialysis were used to resolve hyperuricemia. However, due to multisystem organ dysfunction syndrome with extremely poor prognosis, the patient ultimately expired in the setting of a terminal ventilator wean. Although our patient did not meet current TLS criteria, she required hemodialysis due to uric acid nephropathy, a complication of TLS. This poses the clinical question of whether adequate diagnostic criteria exist for spontaneous TLS and if the lack of currently accepted guidelines has resulted in the underestimation of its incidence. Allopurinol and rasburicase are commonly used for prevention and treatment of TLS. Although both drugs decrease uric acid levels, allopurinol mechanistically prevents formation of the substrate rasburicase acts to solubilize. These drugs were administered together in our patient, although no established guidelines recommend combined use. This raises the clinical question of whether combined therapy is truly beneficial or, conversely, detrimental to patient outcomes. PMID:26904699

  2. Quantum Spontaneous Stochasticity

    NASA Astrophysics Data System (ADS)

    Drivas, Theodore; Eyink, Gregory

    Classical Newtonian dynamics is expected to be deterministic, but recent fluid turbulence theory predicts that a particle advected at high Reynolds-numbers by ''nearly rough'' flows moves nondeterministically. Small stochastic perturbations to the flow velocity or to the initial data lead to persistent randomness, even in the limit where the perturbations vanish! Such ``spontaneous stochasticity'' has profound consequences for astrophysics, geophysics, and our daily lives. We show that a similar effect occurs with a quantum particle in a ''nearly rough'' force, for the semi-classical (large-mass) limit, where spreading of the wave-packet is usually expected to be negligible and dynamics to be deterministic Newtonian. Instead, there are non-zero probabilities to observe multiple, non-unique solutions of the classical equations. Although the quantum wave-function remains split, rapid phase oscillations prevent any coherent superposition of the branches. Classical spontaneous stochasticity has not yet been seen in controlled laboratory experiments of fluid turbulence, but the corresponding quantum effects may be observable by current techniques. We suggest possible experiments with neutral atomic-molecular systems in repulsive electric dipole potentials.

  3. Simultaneous bilateral spontaneous pneumothorax.

    PubMed

    Graf-Deuel, E; Knoblauch, A

    1994-04-01

    We describe 12 patients with simultaneous bilateral spontaneous pneumothorax (SBSP). They represent 4 percent of patients with spontaneous pneumothorax seen at our hospital from 1971 to 1990. Five of the 12 had no underlying lung disease. In the seven remaining patients, SBSP was secondary to histiocytosis X, lymphangioleiomyomatosis, osteogenic sarcoma with pleural and pulmonary metastases, Hodgkin's disease, mesothelioma, cystic fibrosis, or miliary tuberculosis. Nineteen of the 56 patients with SBSP (34 percent) described in the literature (this series included) had pulmonary disease related to disorders of cells of mesenchymal origin. Emphysema and bullous lung disease were not associated with SBSP. Long-term prognosis was a function of pulmonary status. Four of the patients described herein died during the period reviewed. All suffered from severe underlying disease. In no case was SBSP the main cause of death. With timely treatment, the short-term prognosis is benign even for patients with underlying lung disease. Surgical pleurectomy should be attempted early, especially in SBSP secondary to underlying lung disease. PMID:8162740

  4. Methanol production from fermentor off-gases

    NASA Astrophysics Data System (ADS)

    Dale, B. E.; Moreira, A. R.

    The off gases from an acetone butanol fermentation facility are composed mainly of CO2 and H2. Such a gas stream is an ideal candidate as a feed to a methanol synthesis plant utilizing modern technology recently developed and known as the CDH-methanol process. A detailed economic analysis for the incremental cost of a methanol synthesis plant utilizing the off gases from an acetone butanol fermentation indicates a profitable rate of return of 25 to 30% under the most likely production conditions. Bench scale studies at different fermentor mixing rates indicate that the volume of gases released during the fermentation is a strong function of the agitation rate and point to a potential interaction between the volume of H2 evolved and the levels of butanol present in the final fermented broth. Such interaction may require establishing optimum operating conditions for an integrated butanol fermentation methanol synthesis plant.

  5. Advances in direct oxidation methanol fuel cells

    NASA Technical Reports Server (NTRS)

    Surampudi, S.; Narayanan, S. R.; Vamos, E.; Frank, H.; Halpert, G.; Laconti, Anthony B.; Kosek, J.; Prakash, G. K. Surya; Olah, G. A.

    1993-01-01

    Fuel cells that can operate directly on fuels such as methanol are attractive for low to medium power applications in view of their low weight and volume relative to other power sources. A liquid feed direct methanol fuel cell has been developed based on a proton exchange membrane electrolyte and Pt/Ru and Pt catalyzed fuel and air/O2 electrodes, respectively. The cell has been shown to deliver significant power outputs at temperatures of 60 to 90 C. The cell voltage is near 0.5 V at 300 mA/cm(exp 2) current density and an operating temperature of 90 C. A deterrent to performance appears to be methanol crossover through the membrane to the oxygen electrode. Further improvements in performance appear possible by minimizing the methanol crossover rate.

  6. Methanol: A Versatile Fuel for Immediate Use

    ERIC Educational Resources Information Center

    Reed, T. B.; Lerner, R. M.

    1973-01-01

    Advocates the large-scale production and use of methanol as a substitute for the diminishing reserves of low-cost petroleum resources. Describes the manufacturing process and advantages of the versatile fuel. (JR)

  7. BHP may scale up methanol production

    SciTech Connect

    Alperowicz, N.

    1993-06-23

    Broken Hill Pty. (BHP: Melbourne) says otherwise uneconomic gas reserves in the Timor Sea off northwest Australia could be developed if the company`s plans to commercialize a novel gas-to-methanol technology prove to be viable. BHP is building an A$70-million ($50 million) research unit in Victoria using ICI`s Leading Concept Methanol gas-to-methanol process. If this unit proves viable, it could be put on a vessel and taken to Timor Sea where BHP has oil exploration and production interests. Timor gas is not economically viable because of lack of nearby markets. The 54,000-m.t./year research plant, located at Werrbee near Melbourne, is scheduled to start production in the second half of 1994, according to BHP manager Joe Evon. The plant is being built by Davy/John Brown. Provided the economic climate is right, BHP is expected to build a world-scale methanol plant offshore.

  8. Homogeneous catalyst formulations for methanol production

    DOEpatents

    Mahajan, Devinder; Sapienza, Richard S.; Slegeir, William A.; O'Hare, Thomas E.

    1991-02-12

    There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.-), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

  9. Homogeneous catalyst formulations for methanol production

    DOEpatents

    Mahajan, Devinder; Sapienza, Richard S.; Slegeir, William A.; O'Hare, Thomas E.

    1990-01-01

    There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.13 ), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

  10. Spontaneously broken complete relativity

    NASA Astrophysics Data System (ADS)

    Andreev, A. F.

    1982-08-01

    It is suggested that the equations of the theory of relativity should have a spontaneously broken invariance with respect to the complex Poincare group, in order that relative velocities stay below that of light. Lorentz transformation matrices corresponding to velocities higher than that of light, which contain imaginary elements, are combined with real transformations in a single group, requiring the introduction of a complex Lorentz group as a symmetry group. For this complex group to be realized in real, physical space-time, the complex character of the coordinates must be eliminated by introducing appropriate Goldstone fields. The properties of these Goldstone fiels are discussed. A massless Goldstone field is deduced which, in the linear approximation, has no manifestations of any sort in classical mechanics and whose sole macroscopic manifestation is the presence of a nonelectromagnetic long-range interaction of bodies having a nonvanishing average spin density. An experiment to detect such a field is suggested.

  11. Spontaneous Atherosclerosis in Pigeons

    PubMed Central

    Santerre, Robert F.; Wight, Thomas N.; Smith, Samuel C.; Brannigan, David

    1972-01-01

    The interpretation of metabolic studies related to early changes in spontaneous atherosclerosis has been hampered by the focal nature of the disease and by the lack of a well-defined model system of the disease process. Gross, histologic and ultrastructural observations of lesion development at the celiac bifurcation of the aorta in atherosclerosis-susceptible White Carneau and atherosclerosis-resistant Show Racer pigeons are compared and discussed in terms of hemodynamics, muscular aggregation and altered metabolism of smooth muscle cells. Detailed knowledge of the morphologic sequence of events in lesion localization makes the celiac bifurcation in White Carneau and Show Racer pigeons a useful model for genetic comparisons of arterial wall metabolism and for investigating metabolic alterations occurring with atherogenesis. ImagesFig 9Fig 10Fig 1Fig 2Fig 10Fig 11Fig 3Fig 4Fig 12Fig 5Fig 6Fig 7Fig 8 PMID:4261591

  12. Spontaneous Iliac Vein Rupture

    PubMed Central

    Kim, Dae Hwan; Park, Hyung Sub; Lee, Taeseung

    2015-01-01

    Spontaneous iliac vein rupture (SIVR) is a rare entity, which usually occurs without a precipitating factor, but can be a life-threatening emergency often requiring an emergency operation. This is a case report of SIVR in a 62-year-old female who presented to the emergency room with left leg swelling. Workup with contrast-enhanced computed tomography revealed a left leg deep vein thrombosis with May-Thurner syndrome and a hematoma in the pelvic cavity without definite evidence of arterial bleeding. She was managed conservatively without surgical intervention, and also underwent inferior vena cava filter insertion and subsequent anticoagulation therapy for pulmonary thromboembolism. This case shows that SIVR can be successfully managed with close monitoring and conservative management, and anticoagulation may be safely applied despite the patient presenting with venous bleeding. PMID:26217647

  13. Spontaneous aortocaval fistula.

    PubMed

    Rajmohan, B

    2002-01-01

    Spontaneous aortocaval fistula is rare, occurring only in 4% of all ruptured abdominal aortic aneurysms. The physical signs can be missed but the presence of low back pain, palpable abdominal aortic aneurysm, machinery abdominal murmur and high-output cardiac failure unresponsive to medical treatment should raise the suspicion. Pre-operative diagnosis is crucial, as adequate preparation has to be made for the massive bleeding expected at operation. Successful treatment depends on management of perioperative haemodynamics, control of bleeding from the fistula and prevention of deep vein thrombosis and pulmonary embolism. Surgical repair of an aortocaval fistula is now standardised--repair of the fistula from within the aneurysm (endoaneurysmorraphy) followed by prosthetic graft replacement of the aneurysm. A case report of a 77-year-old woman, initially suspected to have unstable angina but subsequently diagnosed to have an aortocaval fistula and surgically treated successfully, is presented along with a review of literature. PMID:12432197

  14. Spontaneous Coronary Artery Dissection.

    PubMed

    Tweet, Marysia S; Gulati, Rajiv; Hayes, Sharonne N

    2016-07-01

    Spontaneous coronary artery dissection is an important etiology of nonatherosclerotic acute coronary syndrome, myocardial infarction, and sudden death. Innovations in the catheterization laboratory including optical coherence tomography and intravascular ultrasound have enhanced the ability to visualize intimal disruption and intramural hematoma associated with SCAD. Formerly considered "rare," these technological advances and heightened awareness suggest that SCAD is more prevalent than prior estimates. SCAD is associated with female sex, young age, extreme emotional stress, or extreme exertion, pregnancy, and fibromuscular dysplasia. The clinical characteristics and management strategies of SCAD patients are different than for atherosclerotic heart disease and deserve specific consideration. This review will highlight recent discoveries about SCAD as well as describe current efforts to elucidate remaining gaps in knowledge. PMID:27216840

  15. Transesterification of waste vegetable oil under pulse sonication using ethanol, methanol and ethanol–methanol mixtures

    SciTech Connect

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar

    2014-12-15

    Highlights: • Pulse sonication effect on transesterification of waste vegetable oil was studied. • Effects of ethanol, methanol, and alcohol mixtures on FAMEs yield were evaluated. • Effect of ultrasonic intensity, power density, and its output rates were evaluated. • Alcohol mixtures resulted in higher biodiesel yields due to better solubility. - Abstract: This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, and ethanol–methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol–methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1–2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol–methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions.

  16. Vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters

    SciTech Connect

    Ahmed, Musahid; Ahmed, Musahid; Wilson, Kevin R.; Belau, Leonid; Kostko, Oleg

    2008-05-12

    In this work we report on thevacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuumultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH + (n=1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH)n(H2O)H + (n=2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH +, (CH 3OH)2 +, (CH3OH)nH + (n=1-9), and (CH 3OH)n(H2O)H + (n=2-9 ) as a function of photon energy. With an increase in the water content in the molecular beam, there is an enhancement of photoionization intensity for methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations.

  17. Vacuum-Ultraviolet (VUV) Photoionization of Small Methanol and Methanol-Water Clusters

    SciTech Connect

    Kostko, Oleg; Belau, Leonid; Wilson, Kevin R.; Ahmed, Musahid

    2008-04-24

    In this work, we report on the vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuum-ultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH+(n = 1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH n(H2O)H+ (n = 2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH+, (CH3OH)2+, (CH3OH)nH+ (n = 1-9), and (CH3OH)n(H2O)H+ (n = 2-9) as a function of photon energy. With an increasein the water content in the molecular beam, there is an enhancement of photoionization intensity for the methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations.

  18. Genetic and physical analyses of Methylobacterium organophilum XX genes encoding methanol oxidation

    SciTech Connect

    Machlin, S.M.; Tam, P.E.; Bastien, C.A.; Hanson, R.S.

    1988-01-01

    When allyl alcohol was used as a suicide substrate, spontaneous mutants and UV light- and nitrous acid-generated mutants of Methylobacterium organophilum XX were selected which grew on methylamine but not on methanol. There was no detectable methanol dehydrogenase (MDH) activity in crude extracts of these mutants, yet Western blots revealed that some mutants still produced MDH protein. Complementation of 50 mutants by a cosmid gene bank of M. organophilum XX demonstrated that three major regions of the genome, each of which was separated by a minimum of 40 kilobases, were required for expression of active MDH. By subcloning and Tn5 insertion mutagenesis of subcloned fragments, at least 11 genes clustered within these three regions were subsequently identified. The identity of the MDH structural gene, which was initially determined by hybridization to the structural gene of Methylobacterium sp. strain AM1, was confirmed by Western blot analysis of an MDH-..beta..-galactosidase fusion protein.

  19. Microfluidic distillation chip for methanol concentration detection.

    PubMed

    Wang, Yao-Nan; Liu, Chan-Chiung; Yang, Ruey-Jen; Ju, Wei-Jhong; Fu, Lung-Ming

    2016-03-17

    An integrated microfluidic distillation system is proposed for separating a mixed ethanol-methanol-water solution into its constituent components. The microfluidic chip is fabricated using a CO2 laser system and comprises a serpentine channel, a boiling zone, a heating zone, and a cooled collection chamber filled with de-ionized (DI) water. In the proposed device, the ethanol-methanol-water solution is injected into the microfluidic chip and driven through the serpentine channel and into the collection chamber by means of a nitrogen carrier gas. Following the distillation process, the ethanol-methanol vapor flows into the collection chamber and condenses into the DI water. The resulting solution is removed from the collection tank and reacted with a mixed indicator. Finally, the methanol concentration is inversely derived from the absorbance measurements obtained using a spectrophotometer. The experimental results show the proposed microfluidic system achieves an average methanol distillation efficiency of 97%. The practicality of the proposed device is demonstrated by detecting the methanol concentrations of two commercial fruit wines. It is shown that the measured concentration values deviate by no more than 3% from those obtained using a conventional bench top system. PMID:26920777

  20. Preferential oxidation of methanol and carbon monoxide for gas cleanup during methanol fuel processing

    SciTech Connect

    Birdsell, S.A.; Vanderborgh, N.E.; Inbody, M.A.

    1993-07-01

    Methanol fuel processing generates hydrogen for low-temperature, PEM fuel cell systems now being considered for transportation and other applications. Although liquid methanol fuel is convenient for this application, existing fuel processing techniques generate contaminants that degrade fuel cell performance. Through mathematical models and laboratory experiments chemical processing is described that removes CO and other contaminants from the anode feed stream.

  1. [Lazarus phenomenon: spontaneous resuscitation].

    PubMed

    Casielles García, J L; González Latorre, M V; Fernández Amigo, N; Guerra Vélz, A; Cotta Galán, M; Bravo Capaz, E; de las Mulas Béjar, M

    2004-01-01

    A 94-year-old woman undergoing surgery for simple repair of a duodenal perforation experienced a sudden massive hemorrhage (1500 mL) when the duodenum was separated from adjacent structures. Hemodynamic stability was re-established when fluids were replaced. After the abdominal wall was closed, increased amplitude of the QRS wave was observed and heart rate slowed until there was no pulse. Electromechanical dissociation (EMD) was diagnosed and cardiopulmonary resuscitation was started. When EMD persisted after 40 minutes, resuscitative measures were stopped and the ventilator was disconnected, though orotracheal intubation and arterial and electrocardiographic monitoring were maintained. After 2 or 3 minutes, heart rhythm restarted spontaneously and arterial pressure waves reappeared on the monitor. The patient progressed well for 72 hours, after which she developed septic shock and multiorgan failure, dying 18 days later. The Lazarus phenomenon may be more common than the medical literature would indicate, possibly because a large gap in our understanding of the pathophysiology of the phenomenon underlies anecdotes about "miracles". As we wait for adequate international consensus on a protocol for monitoring the withdrawal of resuscitative measures, we should act prudently before definitively certifying death. The case we report occurred during a surgical intervention in which the patient had received general anesthesia. We believe that the causes that might explain the Lazarus phenomenon are quite different in that context than they would be in a nonsurgical setting, such that it would be useful to create a national database to keep a record of such intraoperative events. PMID:15495638

  2. Spontaneous subgaleal aerocele.

    PubMed

    Ibe, M O N; Onu, D O; Igwe, N N

    2014-01-01

    Apart from reporting about a case of spontaneous subgaleal aerocele this paper looks at the possible causes and management also. A 35-year-old Igbo-Nigerian female, about 4 weeks post-natal, with a 10-month old steadily and gradually enlarging mass around the back of her head, including both temporal regions was referred to us. Plain skull radiographs showed air in this mass. Needle puncture produced air leading to immediate and complete flattening of the lesion. A few hours after this procedure while still in the hospital premises, she had generalized convulsions, for which she was hospitalized and treated. With no further attacks, her request for discharge the following day was granted. At the next visit, 7 days later, there was a re-accumulation, which was treated the same way as previously and with the same result. She has not reported back since then, though she was advised to visit us again in 7 day-time. This lesion should be considered when masses on the head are presented. Our health institutions should have adequate investigative facilities. PMID:24553041

  3. Spontaneous breaking of supersymmetry

    SciTech Connect

    Zumino, B.

    1981-12-01

    There has been recently a revival of interest in supersymmetric gauge theories, stimulated by the hope that supersymmetry might help in clarifying some of the questions which remain unanswered in the so called Grand Unified Theories and in particular the gauge hierarchy problem. In a Grand Unified Theory one has two widely different mass scales: the unification mass M approx. = 10/sup 15/GeV at which the unification group (e.g. SU(5)) breaks down to SU(3) x SU(2) x U(1) and the mass ..mu.. approx. = 100 GeV at which SU(2) x U(1) is broken down to the U(1) of electromagnetism. There is at present no theoretical understanding of the extreme smallness of the ratio ..mu../M of these two numbers. This is the gauge hierarchy problem. This lecture attempts to review the various mechanisms for spontaneous supersymmetry breaking in gauge theories. Most of the discussions are concerned with the tree approximation, but what is presently known about radiative correction is also reviewed.

  4. Neuropharmcological potential of methanolic extract and a triterpene isolated from Madhuca longifolia L leaves in mice.

    PubMed

    Inganakal, Triveni S; Ahmed, Md Liyakhat; Swamy, Paramjyothi

    2012-12-01

    The methanolic extract of M. longifolia (MLME) and a compound a triterpene, derivative of madhucic acid (dMA) isolated from the leaves of M. longifolia, were investigated for their possible neuropharmacological activities in mice using phenobarbitone induced sleeping time, spontaneous motor activity, marble burying test and Eddy's hot plate method. LD50 for MLME and dMA were 100 and 10 mg/kg of body weight, respectively. Both MLME and dMA (10 mg/kg and 2 mg/kg oral route respectively) exhibited significant increase in phenobarbitone induced sleeping time, greater reduction in spontaneous motor activity and marble burying activity, confirming their sedative nature. Both MLME and dMA also exhibited considerable antinociceptive activity in experimental animals. The results suggest that both MLME and dMA have CNS depressant activity in mice. PMID:23986969

  5. Methanol as a gasoline extender: a critique.

    PubMed

    Wigg, E E

    1974-11-29

    The tests conducted with the three vehicles at different emission control levels suggest that, in the area of fuel economy and emissions, potential benefits with methanol blends are related to carburetion and are only significant in the case of the rich-operating cars built before emission control standards were imposed. Theoretical considerations related to methanol's leaning effect on carburetion support this conclusion. Potential advantages for methanol in these areas are therefore continuously diminishing as the older cars leave the roads. At present, these older cars use only about one-fourth of the totalc motor gasoline consumed and, before methanol could be used on a large scale, this fraction would be much smaller. The use of methanol in gasoline would almost certainly create severe product quality problems. Water contamination could lead to phase separation in the distribution system and possibly in the car tank as well, and this would require additional investment in fuel handling and blending equipment. Excess fuel volatility in hot weather may also have adverse effects on car performance if the methanol blends include typical concentrations of butanes and pentanes. Removal of these light hydrocarbon components would detract from methanol's role as a gasoline extender and if current fuel volatility specifications were maintained, its use could lead to a net loss in the total available energy for use in motor fuels. Car performance problems associated with excessively lean operation would also be expected in the case of a significant proportion of late-model cars which are adjusted to operate on lean fuel-air mixtures. If methanol does become available in large quantities, these factors suggest that it would be more practical to use it for purposes other than those related to the extending of motor gasoline, such as for gas turbines used for electric power generation. In this case, the "pure" methanol would act as a cleanburning fuel, having none of the

  6. Biotechnological production of methanol from waste biomass

    SciTech Connect

    Kozak, R.; Morris, D.

    1995-12-01

    The production of methanol (CH{sub 3}OH) from waste biomass is possible through the use of genetically modified bacteria. The biomass to methanol conversion process makes use of a naturally occurring, direct aerobic enzymatic system referred to as oxidative demethylation. Methoxy groups are stripped off of lignin and lignin like plant substances (approximately fifty percent of all plant biomass) and hydrolyzed to form methanol. Since the biotech process is stoichiometric, potentially every methoxy group in the lignin feedstock can be converted to methanol fuel. Approximately 30-35% of lignin is a methoxy compound that can be converted. Biotechnological conversion could produce up to 100 gallons/ton or 20 billion gallons a year of methanol from waste biomass. Current work has focused on the genetic modification of the enzymatic conversion process to reach commercial production. The goals of this research are; increase product yields, implement an operon {open_quotes}switch{close_quotes} mechanism to exploit multiple feedstocks, and produce environmentally safe by-products. Progress on these topics will be reported.

  7. Opportunities for coal to methanol conversion

    SciTech Connect

    Not Available

    1980-04-01

    The accumulations of mining residues in the anthracite coal regions of Pennsylvania offer a unique opportunity to convert the coal content into methanol that could be utilized in that area as an alternative to gasoline or to extend the supplies through blending. Additional demand may develop through the requirements of public utility gas turbines located in that region. The cost to run this refuse through coal preparation plants may result in a clean coal at about $17.00 per ton. After gasification and synthesis in a 5000 ton per day facility, a cost of methanol of approximately $3.84 per million Btu is obtained using utility financing. If the coal is to be brought in by truck or rail from a distance of approximately 60 miles, the cost of methanol would range between $4.64 and $5.50 per million Btu depending upon the mode of transportation. The distribution costs to move the methanol from the synthesis plant to the pump could add, at a minimum, $2.36 per million Btu to the cost. In total, the delivered cost at the pump for methanol produced from coal mining wastes could range between $6.20 and $7.86 per million Btu.

  8. Study of core-shell platinum-based catalyst for methanol and ethylene glycol oxidation

    NASA Astrophysics Data System (ADS)

    Kaplan, D.; Alon, M.; Burstein, L.; Rosenberg, Yu.; Peled, E.

    A Ru core-Pt shell, XC72-supported catalyst was synthesized in a two-step process: first, by deposition of Ru on XC72 by the polyol process and then by deposition of Pt on the XC72-supported Ru, with NaBH 4 as reducing agent. The structure and composition of this core-shell catalyst were determined by EDS, XPS, TEM and XRD. Electrochemical characterization was determined with the use of cyclic voltammetry and chronoamperometry. The methanol and ethylene glycol oxidation activities of the core-shell catalyst were studied at 80 °C and compared to those of a commercial catalyst. It was found to be significantly better (in terms of A g -1 of Pt) in the case of methanol oxidation and worse in the case of ethylene glycol oxidation. Possible reasons for the lower ethylene glycol oxidation activity of the core-shell catalyst are discussed.

  9. Improved Anode for a Direct Methanol Fuel Cell

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas; Narayanan, Sekharipuram

    2005-01-01

    A modified chemical composition has been devised to improve the performance of the anode of a direct methanol fuel cell. The main feature of the modified composition is the incorporation of hydrous ruthenium oxide into the anode structure. This modification can reduce the internal electrical resistance of the cell and increase the degree of utilization of the anode catalyst. As a result, a higher anode current density can be sustained with a smaller amount of anode catalyst. These improvements can translate into a smaller fuel-cell system and higher efficiency of conversion. Some background information is helpful for understanding the benefit afforded by the addition of hydrous ruthenium oxide. The anode of a direct methanol fuel cell sustains the electro-oxidation of methanol to carbon dioxide in the reaction CH3OH + H2O--->CO2 + 6H(+) + 6e(-). An electrocatalyst is needed to enable this reaction to occur. The catalyst that offers the highest activity is an alloy of approximately equal numbers of atoms of the noble metals platinum and ruthenium. The anode is made of a composite material that includes high-surface-area Pt/Ru alloy particles and a proton-conducting ionomeric material. This composite is usually deposited onto a polymer-electrolyte (proton-conducting) membrane and onto an anode gas-diffusion/current-collector sheet that is subsequently bonded to the proton-conducting membrane by hot pressing. Heretofore, the areal density of noble-metal catalyst typically needed for high performance has been about 8 mg/cm2. However, not all of the catalyst has been utilized in the catalyzed electro-oxidation reaction. Increasing the degree of utilization of the catalyst would make it possible to improve the performance of the cell for a given catalyst loading and/or reduce the catalyst loading (thereby reducing the cost of the cell). The use of carbon and possibly other electronic conductors in the catalyst layer has been proposed for increasing the utilization of the

  10. Methanol Emission from Leaves (Enzymatic Detection of Gas-Phase Methanol and Relation of Methanol Fluxes to Stomatal Conductance and Leaf Development).

    PubMed Central

    Nemecek-Marshall, M.; MacDonald, R. C.; Franzen, J. J.; Wojciechowski, C. L.; Fall, R.

    1995-01-01

    We recently reported the detection of methanol emissions from leaves (R. MacDonald, R. Fall [1993] Atmos Environ 27A: 1709-1713). This could represent a substantial flux of methanol to the atmosphere. Leaf methanol production and emission have not been investigated in detail, in part because of difficulties in sampling and analyzing methanol. In this study we used an enzymatic method to convert methanol to a fluorescent product and verified that leaves from several species emit methanol. Methanol was emitted almost exclusively from the abaxial surfaces of hypostomatous leaves but from both surfaces of amphistomatous leaves, suggesting that methanol exits leaves via stomates. The role of stomatal conductance was verified in experiments in which stomates were induced to close, resulting in reduced methanol. Free methanol was detected in bean leaf extracts, ranging from 26.8 [mu]g g-1 fresh weight in young leaves to 10.0 [mu]g g-1 fresh weight in older leaves. Methanol emission was related to leaf development, generally declining with increasing leaf age after leaf expansion; this is consistent with volatilization from a cellular pool that declines in older leaves. It is possible that leaf emission could be a major source of methanol found in the atmosphere of forests. PMID:12228547

  11. Methanol as an alternative automotive fuel: CMC's approach and experience

    SciTech Connect

    Ashton, P.M.; McCurdy, G.; Osler, C.F.

    1983-08-01

    This paper highlights experiences of Canadian Methanol Canadien (CMC) in demonstration of both methanol fuel and methanol-gasoline blends in Winnipeg since 1980 and describes CMC's commercial and technical approach to development of methanol as an alternative automotive fuel. CMC's marketing approach is to equip existing retail service station outlets with the capability to dispense a full slate of fuels (methanol, methanol containing gasolines, as well as conventional fuels) with fuel blending occurring at the service station location. In this way, the fuel distribution infrastructure can be put in place to service simultaneously both existing vehicles (with a range of methyl gasoline blends) and new methanol fuelled vehicles while assuming a high degree of blended fuel quality in a cost-effective manner. It is concluded that methanol and methanol containing gasolines are excellent transportation fuels for Canada and elsewhere, and can be readily integrated into existing transport fuel retail infrastructure.

  12. Methanol-use options study: Phase 1. Final report

    SciTech Connect

    Not Available

    1981-05-01

    This volume contains data on the transportation and distribution of methanol fuels and end uses of methanol. Appendix D describes the transportation and distribution of pure methanol and methanol-gasoline blend fuels from production facilities to bulk terminals. It includes both the technical and commercial aspects of the distribution system. It indicates that the particular properties of methanol require slightly different technology than petroleum products for bulk distribution. Likewise, the adaptation of pure methanol and blends into the present petroleum products distribution system will require slight changes, both technical and commercial. Appendix E examines the use of methanol fuels in the transportation sector in terms of: (1) impacts on engine performance and engine design as well as passenger safety and health; (2) the implications for methanol fuels of government regulations and policies in the area of transportation; and finally, (3) the costs of methanol utilization in transportation for both the consumer and the manufacturer.

  13. Methanol and the productivity of tropical crops

    SciTech Connect

    Ferguson, T.U.

    1995-12-31

    Studies are being conducted in Trinidad and Tobago, St. Lucia and St. Kitts/Nevis to determine the effect of aqueous solutions of methanol on the growth and yield of a wide range of vegetable, field and perennial crops. The paper presents a summary of results to data for ten of the crops studied. Six of these crops, lettuce, sweet pepper, tomato, mango and breadfruit, have shown significant increases in growth or yield with methanol application, while others such as pigeon pea, rice, banana and cocoa have shown more limited responses. There appears to be some potential for the use of methanol in tropical crop production but further studies are required before this apparent potential can be harnessed.

  14. Efficient green methanol synthesis from glycerol

    NASA Astrophysics Data System (ADS)

    Haider, Muhammad H.; Dummer, Nicholas F.; Knight, David W.; Jenkins, Robert L.; Howard, Mark; Moulijn, Jacob; Taylor, Stuart H.; Hutchings, Graham J.

    2015-12-01

    The production of biodiesel from the transesterification of plant-derived triglycerides with methanol has been commercialized extensively. Impure glycerol is obtained as a by-product at roughly one-tenth the mass of the biodiesel. Utilization of this crude glycerol is important in improving the viability of the overall process. Here we show that crude glycerol can be reacted with water over very simple basic or redox oxide catalysts to produce methanol in high yields, together with other useful chemicals, in a one-step low-pressure process. Our discovery opens up the possibility of recycling the crude glycerol produced during biodiesel manufacture. Furthermore, we show that molecules containing at least two hydroxyl groups can be converted into methanol, which demonstrates some aspects of the generality of this new chemistry.

  15. Methanol sensor operated in a passive mode

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2002-01-01

    A sensor outputs a signal related to a concentration of methanol in an aqueous solution adjacent the sensor. A membrane electrode assembly (MEA) is included with an anode side and a cathode side. An anode current collector supports the anode side of the MEA and has a flow channel therethrough for flowing a stream of the aqueous solution and forms a physical barrier to control access of the methanol to the anode side of the MEA. A cathode current collector supports the cathode side of the MEA and is configured for air access to the cathode side of the MEA. A current sensor is connected to measure the current in a short circuit across the sensor electrodes to provide an output signal functionally related to the concentration of methanol in the aqueous solution.

  16. Acute toxicity of methanol to mytilus edulis

    SciTech Connect

    Helmstetter, A.; Gamerdinger, A.P.; Pruell, R.J.

    1996-12-31

    Methanol is being promoted as an alternative fuel because of the clean air benefits of reduced carbon monoxide and other by-product emissions. In the event of an accidental spill or leakage from a storage tank, there is limited data available on the impact of alternative fuels on marine ecosystems. Before considering the impact of methanol on ecosystem processes, it is necessary to establish the acute toxicity. The blue mussel (Mytilus edulis) was selected for study because of its use as an indicator species of marine ecosystem health (Widdows and Donkin 1992). Our primary objective was to determine the LC-50 value of methanol to adult Mytilus edulis. We also not sublethal effects that were observed during the course of the 96-hr exposure. 16 refs., 1 fig. 3 tabs.

  17. Interstellar A-type methanol masers

    NASA Astrophysics Data System (ADS)

    Zeng, Q.; Lou, G. F.

    1990-02-01

    The formation conditions for A-type methanol masers are discussed. The correlation between A-type masers and external radiation fields is determined, with emphasis on the energy levels of A-type methanol and brightness temperature. Radiative transfer equations and statistical equilibrium are solved using a large velocity gradient model and the escape probability model. It is demonstrated that the 9(2)-10(1)A+ emission in W3(OH) and 7(0)-6(1)A in SgrB2 are masers, as discovered previously. The formation of the first type of masers requires pumping from an external radiation field, while the second type might be excited in the absence of an external radiation field. It is also pointed out that according to calculations there are A-type maser series similar to E-type methanol maser series of J2-J1E.

  18. Dynamic signature of molecular association in methanol

    NASA Astrophysics Data System (ADS)

    Bertrand, C. E.; Self, J. L.; Copley, J. R. D.; Faraone, A.

    2016-07-01

    Quasielastic neutron scattering measurements and molecular dynamics simulations were combined to investigate the collective dynamics of deuterated methanol, CD3OD. In the experimentally determined dynamic structure factor, a slow, non-Fickian mode was observed in addition to the standard density-fluctuation heat mode. The simulation results indicate that the slow dynamical process originates from the hydrogen bonding of methanol molecules. The qualitative behavior of this mode is similar to the previously observed α-relaxation in supercooled water [M. C. Bellissent-Funel et al., Phys. Rev. Lett. 85, 3644 (2000)] which also originates from the formation and dissolution of hydrogen-bonded associates (supramolecular clusters). In methanol, however, this mode is distinguishable well above the freezing transition. This finding indicates that an emergent slow mode is not unique to supercooled water, but may instead be a general feature of hydrogen-bonding liquids and associating molecular liquids.

  19. Dynamic signature of molecular association in methanol.

    PubMed

    Bertrand, C E; Self, J L; Copley, J R D; Faraone, A

    2016-07-01

    Quasielastic neutron scattering measurements and molecular dynamics simulations were combined to investigate the collective dynamics of deuterated methanol, CD3OD. In the experimentally determined dynamic structure factor, a slow, non-Fickian mode was observed in addition to the standard density-fluctuation heat mode. The simulation results indicate that the slow dynamical process originates from the hydrogen bonding of methanol molecules. The qualitative behavior of this mode is similar to the previously observed α-relaxation in supercooled water [M. C. Bellissent-Funel et al., Phys. Rev. Lett. 85, 3644 (2000)] which also originates from the formation and dissolution of hydrogen-bonded associates (supramolecular clusters). In methanol, however, this mode is distinguishable well above the freezing transition. This finding indicates that an emergent slow mode is not unique to supercooled water, but may instead be a general feature of hydrogen-bonding liquids and associating molecular liquids. PMID:27394112

  20. Olefins from methanol by modified zeolites

    SciTech Connect

    Inui, T.; Takegami, Y.

    1982-11-01

    Compares the effects of modified catalysts (ZSM-34 and ZSM-5 class zeolites) on methanol conversion to olefins (MTO) with regard to olefin selectivity and cost. Presents tables with prices of olefins in the US and Japan; comparison of methanol-cracking with naphtha cracking; methanol conversion data for Type-1, Type-II and reference catalysts; hydrocarbon distribution from MTO processes; and speculative economics for MTO processes of Concept-1 and 2. Diagrams the proposed MTO process scheme. Scanning electron micrographs of the zeolite catalysts are shown. Graphs indicate the change of ethylene prices in the US since 1978 and forecast ethylene prices in several countries. Concludes that the prices of ethylene for both MTO processes examined compare favorably with products of conventional processes.

  1. On coherence in spontaneous emission

    NASA Astrophysics Data System (ADS)

    Cummings, F. W.; Dorri, Ali

    1983-05-01

    The case of a single excited two-level atom emitting spontaneously in the presence of N unexcited atoms is solved exactly for emission into a single electromagnetic mode. The two-level atoms are in inequivalent mode positions.

  2. Quantifying global terrestrial methanol emissions using observations from the TES satellite sensor

    NASA Astrophysics Data System (ADS)

    Wells, K. C.; Millet, D. B.; Cady-Pereira, K. E.; Shephard, M. W.; Henze, D. K.; Bousserez, N.; Apel, E. C.; de Gouw, J.; Warneke, C.; Singh, H. B.

    2014-03-01

    We employ new global space-based measurements of atmospheric methanol from the Tropospheric Emission Spectrometer (TES) with the adjoint of the GEOS-Chem chemical transport model to quantify terrestrial emissions of methanol to the atmosphere. Biogenic methanol emissions in the model are based on version 2.1 of the Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1), using leaf area data from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) and GEOS-5 assimilated meteorological fields. We first carry out a pseudo observation test to validate the overall approach, and find that the TES sampling density is sufficient to accurately quantify regional- to continental-scale methanol emissions using this method. A global inversion of two years of TES data yields an optimized annual global surface flux of 122 Tg yr-1 (including biogenic, pyrogenic, and anthropogenic sources), an increase of 60% from the a priori global flux of 76 Tg yr-1. Global terrestrial methanol emissions are thus nearly 25% those of isoprene (~540 Tg yr-1), and are comparable to the combined emissions of all anthropogenic volatile organic compounds (~100-200 Tg yr-1). Our a posteriori terrestrial methanol source leads to a strong improvement of the simulation relative to an ensemble of airborne observations, and corroborates two other recent top-down estimates (114-120 Tg yr-1) derived using in situ and space-based measurements. Inversions testing the sensitivity of optimized fluxes to model errors in OH, dry deposition, and oceanic uptake of methanol, as well as to the assumed a priori constraint, lead to global fluxes ranging from 118 to 126 Tg yr-1. The TES data imply a relatively modest revision of model emissions over most of the tropics, but a significant upward revision in midlatitudes, particularly over Europe and North America. We interpret the inversion results in terms of specific source types using the methanol : CO correlations measured by TES, and find that

  3. Photocatalytic conversion of methane to methanol

    SciTech Connect

    Taylor, C.E.; Noceti, R.P.; D`Este, J.R.

    1995-12-31

    A long-term goal of our research group is the exploration of novel pathways for the direct oxidation of methane to liquid fuels, chemicals, and intermediates. The use of three relatively abundant and inexpensive reactants, light, water, and methane, to produce methanol is attractive. The products of reaction, methanol and hydrogen, are both commercially desirable, methanol being used as is or converted to a variety of other chemicals, and the hydrogen could be utilized in petroleum and/or chemical manufacturing. Methane is produced as a by-product of coal gasification. Depending upon reactor design and operating conditions, up to 18% of total gasifier product may be methane. In addition, there are vast proven reserves of geologic methane in the world. Unfortunately, a large fraction of these reserves are in regions where there is little local demand for methane and it is not economically feasible to transport it to a market. There is a global research effort under way in academia, industry, and government to find methods to convert methane to useful, more readily transportable and storable materials. Methanol, the initial product of methane oxidation, is a desirable product of conversion because it retains much of the original energy of the methane while satisfying transportation and storage requirements. Investigation of direct conversion of methane to transportation fuels has been an ongoing effort at PETC for over 10 years. One of the current areas of research is the conversion of methane to methanol, under mild conditions, using light, water, and a semiconductor photocatalyst. The use of three relatively abundant and inexpensive reactants, light, water, and methane, to produce methanol, is attractive. Research in the laboratory is directed toward applying the techniques developed for the photocatalytic splitting of the water and the photochemical conversion of methane.

  4. Neuromuscular Functions on Experimental Acute Methanol Intoxication

    PubMed Central

    Moral, Ali Reşat; Çankayalı, İlkin; Sergin, Demet; Boyacılar, Özden

    2015-01-01

    Objective The incidence of accidental or suicidal ingestion of methyl alcohol is high and methyl alcohol intoxication has high mortality. Methyl alcohol intoxication causes severe neurological sequelae and appears to be a significant problem. Methyl alcohol causes acute metabolic acidosis, optic neuropathy leading to permanent blindness, respiratory failure, circulatory failure and death. It is metabolised in the liver, and its metabolite formic acid has direct toxic effects, causing oxidative stress, mitochondrial damage and increased lipid peroxidation associated with the mechanism of neurotoxicity. Methanol is known to cause acute toxicity of the central nervous system; however, the effects on peripheral neuromuscular transmission are unknown. In our study, we aimed to investigate the electrophysiological effects of experimentally induced acute methanol intoxication on neuromuscular transmission in the early period (first 24 h). Methods After approval by the Animal Experiment Ethics Committee of Ege University, the study was carried out on 10 Wistar rats, each weighing about 200 g. During electrophysiological recordings and orogastric tube insertion, the rats were anaesthetised using intra-peritoneal (IP) injection of ketamine 100 mg kg−1 and IP injection of xylazine 10 mg kg−1. The rats were given 3 g kg−1 methyl alcohol by the orogastric tube. Electrophysiological measurements from the gastrocnemius muscle were compared with baseline. Results Latency measurements before and 24 h after methanol injection were 0.81±0.11 ms and 0.76±0.12 ms, respectively. CMAP amplitude measurements before and 24 h after methanol injection were 9.85±0.98 mV and 9.99±0.40 mV, respectively. CMAP duration measurements before and 24 h after methanol injection were 9.86±0.03 ms and 9.86±0.045 ms, respectively. Conclusion It was concluded that experimental methanol intoxication in the acute phase (first 24 h) did not affect neuromuscular function. PMID:27366524

  5. Platinum-coated porous gold nanorods in methanol electrooxidation: dependence of catalytic activity on ligament size.

    PubMed

    Yoo, Sang-Hoon; Liu, Lichun; Cho, Sang Hyun; Park, Sungho

    2012-12-01

    Here we demonstrate that, in the dealloying process of Au-Ag nanorods, temperature is the key parameter for producing porous Au nanorods with tunable ligament sizes. The vertically aligned Au-Ag alloy nanorods were first synthesized by the electrochemical co-deposition of Au and Ag onto anodic aluminum oxide (AAO) membrane templates. Porous Au nanorods were then obtained by selectively etching Ag away from the precursor Au-Ag alloy nanorods. Control of the ligament size was achieved by controlling the dealloying temperature. Pt deposited on the porous Au nanorods with smaller ligaments exhibited a higher catalytic activity during methanol electrooxidation than those deposited on nanorods with larger ligaments produced by dealloying at higher temperatures. The strong dependence of the catalytic activity on the ligament size of porous Au is principally due to different amounts of carbon monoxide (CO) generated during methanol electrooxidation. Less CO was generated as the ligament size decreased. This finding is of importance for developing highly efficient cathode materials for carrying out methanol electrooxidation in practical applications in which porous Au with a large surface area is used as a supporting substrate. PMID:23023934

  6. Spin trapping of radicals in tritiated methanol

    NASA Astrophysics Data System (ADS)

    Halpern, A.

    1984-01-01

    The radicals in [methyl- 3H]-methanol have been detected by spin trapping with PBN. Two radicals observed in deaerated samples at 273 K are methoxy and hydroxymethyl radicals. The relative contribution of these two radicals changes with the storage time, finally only the PBNCH 2OH adduct being observed. This behaviour is hypothetically explained as resulting from the secondary reactions with a product formed in methanol by internal β-radiolysis or otherwise, whose steadily increasing concentration accelerates the decay of the PBNCH 3O adduct.

  7. Neat methanol fuel cell power plant

    NASA Astrophysics Data System (ADS)

    Abens, S.; Farooque, M.

    1985-12-01

    Attention is given to a fuel cell development effort which has been directed, by ease-of-supply, low weight, and low volume criteria toward the use of undiluted methanol. Partial oxidation and internal water recovery concepts are incorporated, allowing the onboard dilution of methanol fuel through mixing with exhaust-recovered water. This scheme is successfully demonstrated for the case of a 3 kW unit employing commercial cross flow heat exchangers, as well as for a 5 kW reformer flue exhaust water recovery design with U.S. Air force baseload stationary applications. The USAF powerplant has an overall thermal efficiency of 32 percent at rated load.

  8. Acid Deposition

    EPA Science Inventory

    This indicator presents acid deposition trends in the contiguous U.S. from 1989 to 2007. Data are broken down by wet and dry deposition and deposition of nitrogen and sulfur compounds. Acid deposition is particularly damaging to lakes, streams, and forests and the plants and a...

  9. 37 GHz Methanol Masers : Horsemen of the Apocalypse for the Class II Methanol Maser Phase?

    NASA Astrophysics Data System (ADS)

    Ellingsen, S. P.; Breen, S. L.; Sobolev, A. M.; Voronkov, M. A.; Caswell, J. L.; Lo, N.

    2011-12-01

    We report the results of a search for class II methanol masers at 37.7, 38.3, and 38.5 GHz toward a sample of 70 high-mass star formation regions. We primarily searched toward regions known to show emission either from the 107 GHz class II methanol maser transition, or from the 6.035 GHz excited OH transition. We detected maser emission from 13 sources in the 37.7 GHz transition, eight of these being new detections. We detected maser emission from three sources in the 38 GHz transitions, one of which is a new detection. We find that 37.7 GHz methanol masers are only associated with the most luminous 6.7 and 12.2 GHz methanol maser sources, which in turn are hypothesized to be the oldest class II methanol sources. We suggest that the 37.7 GHz methanol masers are associated with a brief evolutionary phase (of 1000-4000 years) prior to the cessation of class II methanol maser activity in the associated high-mass star formation region.

  10. Water and methanol uptakes in Nafion membranes and membrane effects on direct methanol cell performance

    SciTech Connect

    Ren, X.; Springer, T.E.; Gottesfeld, S.

    2000-01-01

    This paper compares direct methanol fuel cells (DMFCs) employing two types of Nafion{reg{underscore}sign} (E.I.DuPont de Nemours and Company) membranes of different equivalent weight (EW). Methanol and water uptakes in 1,100 and 1,200 EW Nafion membranes were determined by weighing P{sub 2}O{sub 5}-dried and methanol solution-equilibrated membranes. Both methanol and water uptakes in the 1,200 EW membrane were about 70--74% of those in the 1,100 EW membrane. The methanol crossover rate corresponding to that in a DMFC at open circuit was measured using a voltammetric method in the DMFC configuration and under the same cell operating conditions. After accounting for the thickness difference between the membrane samples, the methanol crossover rate through a 1,200 EW membrane was 52% of that through an 1,100 EW membrane. To resolve the cathode and anode performances in an operating DMFC, a dynamic hydrogen electrode was used as a reference electrode. Results show that in an operating DMFC the cathode can be easily flooded, as shown in a DMFC using 1,100 EW membrane. An increase in methanol crossover rate decreases the DMFC cathode potential at open circuit. At a high cell current density, the DMFC cathode potential can approach that of a H{sub 2}/air cell.

  11. The Acid Catalyzed Nitration of Methanol: Formation of Methyl Nitrate via Aerosol Chemistry

    NASA Technical Reports Server (NTRS)

    Riffel, Brent G.; Michelsen, Rebecca R.; Iraci, Laura T.

    2004-01-01

    The liquid phase acid catalyzed reaction of methanol with nitric acid to yield methyl nitrate under atmospheric conditions has been investigated using gas phase infrared spectroscopy. This nitration reaction is expected to occur in acidic aerosol particles found in the upper troposphere/lower stratosphere as highly soluble methanol and nitric acid diffuse into these aerosols. Gaseous methyl nitrate is released upon formation, suggesting that some fraction of NO(x) may he liberated from nitric acid (methyl nitrate is later photolyzed to NO(x)) before it is removed from the atmosphere by wet deposition. Thus, this reaction may have important implications for the NO(x) budget. Reactions have been initiated in 45-62 wt% H2SO4 solutions at 10.0 C. Methyl nitrate production rates increased exponentially with acidity within the acidity regime studied. Preliminary calculations suggest that the nitronium ion (NO2(+) is the active nitrating agent under these conditions. The reaction order in methanol appears to depend on the water/methanol ratio and varies from first to zeroth order under conditions investigated. The nitration is first order in nitronium at all acidities investigated. A second order rate constant, kappa(sub 2), has been calculated to be 1 x 10(exp 8)/ M s when the reaction is first order in methanol. Calculations suggest the nitration is first order in methanol under tropospheric conditions. The infinitesimal percentage of nitric acid in the nitronium ion form in this acidity regime probably makes this reaction insignificant for the upper troposphere; however, this nitration may become significant in the mid stratosphere where colder temperatures increase nitric acid solubility and higher sulfuric acid content shifts nitric acid speciation toward the nitronium ion.

  12. Liquid phase methanol reactor staging process for the production of methanol

    DOEpatents

    Bonnell, Leo W.; Perka, Alan T.; Roberts, George W.

    1988-01-01

    The present invention is a process for the production of methanol from a syngas feed containing carbon monoxide, carbon dioxide and hydrogen. Basically, the process is the combination of two liquid phase methanol reactors into a staging process, such that each reactor is operated to favor a particular reaction mechanism. In the first reactor, the operation is controlled to favor the hydrogenation of carbon monoxide, and in the second reactor, the operation is controlled so as to favor the hydrogenation of carbon dioxide. This staging process results in substantial increases in methanol yield.

  13. Role of retinal metabolism in methanol-induced retinal toxicity

    SciTech Connect

    Garner, C.D. |; Lee, E.W.; Terzo, T.S.; Louis-Ferdinand, R.T.

    1995-08-01

    Methanol is a toxicant that causes systemic and ocular toxicity after acute exposure. The folate-reduced (FR) rat is an excellent animal model that mimics characteristic human methanol toxic responses. The present study examines the role of the methanol metabolites formaldehyde and formate in the initiation of methanol-induced retinal toxicity. After a single oral dose of 3.0 g/kg methanol, blood methanol concentrations were not significantly different in FR rats compared with folate-sufficient (FS) (control) rats. However, FR rats treated with 3.0 g/kg methanol displayed elevated blood (14.6 mM) and vitreous humor (19.5 mM) formate levels and abnormal electroretinograms (loss of b-wave) 48 h postdose. FR rats pretreated with disulfiram (DSF) prior to 3.0 g/kg methanol treatment failed to display these symptoms. Formaldehyde was not detected in blood or vitreous humor with or without DSF treatment, suggesting that formate is the toxic metabolite in methanol-induced retinal toxicity. Additionally, creating a blood formate profile (14.2 mM at 48 h) similar to that observed in methanol-treated rats by iv infusion of pH-buffered formate does not alter the electroretinogram as is observed with methanol treatment. These data suggest that intraretinal metabolism of methanol is necessary for the formate-mediated initiation of methanol-induced retinal toxicity. 31 refs., 5 figs., 2 tabs.

  14. The Relationship among Spontaneity, Impulsivity, and Creativity

    ERIC Educational Resources Information Center

    Kipper, David A.; Green, Doreen J.; Prorak, Amanda

    2010-01-01

    The present study was designed to investigate two characteristics of spontaneity, its relationship to creativity and to impulsivity. We hypothesized a positive relationship between spontaneity and creativity, consistent with Moreno, 1953 "canon of spontaneity-creativity." We also predicted a negative relationship between spontaneity and…

  15. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2004-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.

  16. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2001-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.

  17. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2000-01-01

    Improvements to non-acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.

  18. Metacridamide B methanol-d4 monosolvate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The title compound was extracted from conidia of the fungus Metarhizium acridum. Crystals were obtained as a methanol-d4 solvate. The tail part of the 4-methylhexan-2-yl group exhibits disorder over two positions, with an occupancy ratio of 0.682 (9):0.318 (9). The crystal structure confirms the abs...

  19. [Optic neuropathy in acute poisoning with methanol].

    PubMed

    Sekkat, A; Maillard, P; Dupeyron, G; Bensouda, J; Arne, J L; Bec, P

    1982-01-01

    The authors report four cases of methanol poisoning, two of which suffering acute bilateral optic neuropathy which secondarily leads to optic atrophy. The report the main clinical features of such a poisoning and the actual basis of its physiopathology and treatment. According to the four cases reported, they underline the importance of early diagnosis and specific treatment. PMID:7169508

  20. Methanex, Hoechst Celanese dissolve methanol partnership

    SciTech Connect

    Morris, G.D.L.

    1993-03-31

    One of the many joint venture alliances recently announced in the petrochemical sector is ending in divorce. Hoechst Celanese Chemical (Dallas) and Methanex Corp. (Vancouver) are in the process of dissolving the partnership they had formed to restart Hoechst Celanese's methanol plant at Clear Lake, TX. Hoechst Celanese says it is actively seeking replacement partners and has several likely prospects, while Methanex is concentrating on its other ventures. Those include its just-completed acquisition of Fletcher Challenge's (Auckland, NZ) methanol business and a joint venture with American Cyanamid to convert an ammonia plant at Fortier, LA to methanol. Methanex will still be the world's largest producer of methanol. Officially, the negotiations between Methanex and Hoechst Celanese just broke down over the last month or so,' says Steve Yurich, operations manager for the Clear Lake plant. Market sources, however, say that Methanex found itself with too many irons in the fire' and pulled out before it ran into financial or perhaps even antitrust difficulties.

  1. A novel process for methanol synthesis

    SciTech Connect

    Tierney, J.W.; Wender, I.

    1991-01-01

    A bench-scale reactor is being used to conduct studies of the conversion of synthesis gas to methanol by a novel process. In previous reports, we provided evidence for a two step reaction in series, the carbonylation reaction mainly taking place in a non-equilibrium region in the vicinity of the Cu-chromite surface, and the hydrogenolysis reaction taking place on the surface of the Cu-chromite. The synergism between the two catalysts enhances the rate of methanol formation. In this quarter, we studied the effect of pressure and temperature on the rate of MeOH synthesis. We also compared the reaction rate of a syngas feed simulated for an H{sub 2}/CO ratio from a Texaco gasifier with a methanol balanced syngas feed (H{sub 2}/CO=2). Atomic absorption analysis of solid and liquid samples for the KOMe/Cu-chromite runs was undertaken to identify the distribution of potassium at the end of the methanol synthesis runs. Modelling studies were initiated with emphasis on both kinetic and process behavior. 12 refs., 7 figs., 1 tab.

  2. DEVELOPMENTAL NEUROTOXICITY OF INHALED METHANOL IN RATS

    EPA Science Inventory

    Dr. Weiss and his colleagues conducted a controlled series of experiments in which they exposed pregnant rats and their newborn offspring to 4,500 parts per million (ppm) methanol by inhalation, and then submitted them to tests of behavioral function.

    Exposure to 4,500...

  3. Gasoline-methanol blends boost mileage

    SciTech Connect

    Not Available

    1981-06-17

    A 16-month study commissioned by the Bank of America reports that by blending gasoline with methanol, substantial increases in fuel economy can be obtained in late-model cars. Fuel economy was found to increase by 3% in 1975-79 models and by 13% in 1980 models. Operating costs were found to be lower, and there was an improvement in engine performance.

  4. THE SOLUBILITY OF ACID GASES IN METHANOL

    EPA Science Inventory

    The report describes a thermodynamic model developed to predict phase-equilibrium behavior in a methanol/carbon-dioxide/nitrogen/hydrogen-sulfide system based on parameters determined from binary vapor/liquid equilibrium data available in the literature. Model predictions are com...

  5. Methanol decomposition bottoming cycle for IC engines

    NASA Technical Reports Server (NTRS)

    Purohit, G.; Houseman, J.

    1979-01-01

    This paper presents the concept of methanol decomposition using engine exhaust heat, and examines its potential for use in the operation of passenger cars, diesel trucks, and diesel-electric locomotives. Energy economy improvements of 10-20% are calculated over the representative driving cycles without a net loss in power. Some reductions in exhaust emissions are also projected.

  6. HYDROGEN BONDING IN THE METHANOL DIMER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work, two methanol molecules are placed in different arrangements to study hydrogen bonding in carbohydrate materials such as cellulose. Energy was calculated as a function of both hydrogen bond length and angle over wide ranges, using quantum mechanics (QM). The QM wavefunctions are analyze...

  7. Approach to the Treatment of Methanol Intoxication.

    PubMed

    Kraut, Jeffrey A

    2016-07-01

    Methanol intoxication is an uncommon but serious poisoning. Its adverse effects are due primarily to the impact of its major metabolite formic acid and lactic acid resulting from cellular hypoxia. Symptoms including abdominal pain and loss of vision can appear a few hours to a few days after exposure, reflecting the time necessary for accumulation of the toxic byproducts. In addition to a history of exposure, increases in serum osmolal and anion gaps can be clues to its presence. However, increments in both parameters can be absent depending on the nature of the toxic alcohol, time of exposure, and coingestion of ethanol. Definitive diagnosis requires measurement with gas or liquid chromatography, which are laborious and expensive procedures. Tests under study to detect methanol or its metabolite formate might facilitate the diagnosis of this poisoning. Treatment can include administration of ethanol or fomepizole, both inhibitors of the enzyme alcohol dehydrogenase to prevent formation of its metabolites, and hemodialysis to remove methanol and formate. In this Acid-Base and Electrolyte Teaching Case, a patient with methanol intoxication due to ingestion of model airplane fuel is described, and the value and limitations of current and new diagnostic and treatment measures are discussed. PMID:27180631

  8. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2008-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.

  9. Methanol Steam Reformer on a Silicon Wafer

    SciTech Connect

    Park, H; Malen, J; Piggott, T; Morse, J; Sopchak, D; Greif, R; Grigoropoulos, C; Havstad, M; Upadhye, R

    2004-04-15

    A study of the reforming rates, heat transfer and flow through a methanol reforming catalytic microreactor fabricated on a silicon wafer are presented. Comparison of computed and measured conversion efficiencies are shown to be favorable. Concepts for insulating the reactor while maintaining small overall size and starting operation from ambient temperature are analyzed.

  10. Optimized fuel cell grade hydrogen from methanol

    NASA Astrophysics Data System (ADS)

    Choi, Yongtaek

    2003-10-01

    To evaluate reaction rates liar making hydrogen from methanol, kinetic studies of methanol decomposition, methanol steam reforming, water gas shift reaction, and CO selective oxidation have been performed. These reactions were studied in a micro reactor testing unit using a commercial Cu-ZnO/Al2O3 catalyst for the first three reactions and Pt-Fe/gamma-alumina catalyst for the last reaction. The activity tests were performed between 120˜325°C and atmospheric pressure with a range of feed rates and compositions. For methanol decomposition, water addition to the feed increased the yield of hydrogen and reduced the formation of by-products. XPS analysis of used catalyst samples and time on-stream data showed that the Cu2+ oxidation state of copper favors methanol decomposition. A simplified reaction network of 5 elementary reactions was proposed and all five rate expressions were obtained using non-linear least squares optimization, numerical integration of a one-dimensional PFR model, and extensive experimental data. Similar numerical analysis was carried out to obtain the rate expressions for methanol steam reaction, the water gas shift reaction, and CO selective oxidation. For the kinetics of the water gas shift reaction, an empirical rate expression was obtained from the experimental data. Based on a review of published work on the WGS reaction mechanism, our study found that a rate expression derived from a regenerative mechanism and another rate expression derived from adsorptive mechanism fit the experimental data equally well. For the kinetics of CO preferential oxidation, a reaction model in which three reactions (CO oxidation, H2 oxidation and the WGS reaction) occur simultaneously was chosen to predict the reactor performance. In particular the reverse water gas shift reaction had an important role when fitting the experimental data precisely and explained the selectivity decrease at higher reaction temperatures. Combining the three reactors and several

  11. Novel Formaldehyde-Activating Enzyme in Methylobacterium extorquens AM1 Required for Growth on Methanol

    PubMed Central

    Vorholt, Julia A.; Marx, Christopher J.; Lidstrom, Mary E.; Thauer, Rudolf K.

    2000-01-01

    Formaldehyde is toxic for all organisms from bacteria to humans due to its reactivity with biological macromolecules. Organisms that grow aerobically on single-carbon compounds such as methanol and methane face a special challenge in this regard because formaldehyde is a central metabolic intermediate during methylotrophic growth. In the α-proteobacterium Methylobacterium extorquens AM1, we found a previously unknown enzyme that efficiently catalyzes the removal of formaldehyde: it catalyzes the condensation of formaldehyde and tetrahydromethanopterin to methylene tetrahydromethanopterin, a reaction which also proceeds spontaneously, but at a lower rate than that of the enzyme-catalyzed reaction. Formaldehyde-activating enzyme (Fae) was purified from M. extorquens AM1 and found to be one of the major proteins in the cytoplasm. The encoding gene is located within a cluster of genes for enzymes involved in the further oxidation of methylene tetrahydromethanopterin to CO2. Mutants of M. extorquens AM1 defective in Fae were able to grow on succinate but not on methanol and were much more sensitive toward methanol and formaldehyde. Uncharacterized orthologs to this enzyme are predicted to be encoded by uncharacterized genes from archaea, indicating that this type of enzyme occurs outside the methylotrophic bacteria. PMID:11073907

  12. On the classification and list of transitions of methanol masers

    NASA Astrophysics Data System (ADS)

    Sobolev, A. M.

    A classification of methanol masers according to the type of maser sources is suggested. The list of candidates to be methanol masering transitions is compiled on the basis of general regularities analysis combined with results of statistical equilibrium calculations.

  13. Selectivity of Direct Methanol Fuel Cell Membranes

    PubMed Central

    Aricò, Antonino S.; Sebastian, David; Schuster, Michael; Bauer, Bernd; D’Urso, Claudia; Lufrano, Francesco; Baglio, Vincenzo

    2015-01-01

    Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion® were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK), new generation perfluorosulfonic acid (PFSA) systems, and composite zirconium phosphate–PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA) was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC). The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA) was higher than the benchmark Nafion® 115-based MEA (77 mW·cm−2 vs. 64 mW·cm−2). This result was due to a lower methanol crossover (47 mA·cm−2 equivalent current density for s-PEEK vs. 120 mA·cm−2 for Nafion® 115 at 60 °C as recorded at OCV with 2 M methanol) and a suitable area specific resistance (0.15 Ohm cm2 for s-PEEK vs. 0.22 Ohm cm2 for Nafion® 115). PMID:26610582

  14. Optical antenna enhanced spontaneous emission.

    PubMed

    Eggleston, Michael S; Messer, Kevin; Zhang, Liming; Yablonovitch, Eli; Wu, Ming C

    2015-02-10

    Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ∼ 200 THz optical frequency show a spontaneous emission intensity enhancement of 35 × corresponding to a spontaneous emission rate speedup ∼ 115 ×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ∼ 2,500 × spontaneous emission speedup at d ∼ 10 nm, proportional to 1/d(2). Unfortunately, at d < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, I(o) = qω|x(o)|/d, feeding the antenna-enhanced spontaneous emission, where q|x(o)| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Moreover, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency. PMID:25624503

  15. Optical antenna enhanced spontaneous emission

    PubMed Central

    Eggleston, Michael S.; Messer, Kevin; Zhang, Liming; Yablonovitch, Eli; Wu, Ming C.

    2015-01-01

    Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ∼200 THz optical frequency show a spontaneous emission intensity enhancement of 35× corresponding to a spontaneous emission rate speedup ∼115×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ∼2,500× spontaneous emission speedup at d ∼ 10 nm, proportional to 1/d2. Unfortunately, at d < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, Io = qω|xo|/d, feeding the antenna-enhanced spontaneous emission, where q|xo| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Moreover, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency. PMID:25624503

  16. Methanol production from Eucalyptus wood chips. Final report

    SciTech Connect

    Fishkind, H.H.

    1982-06-01

    This feasibility study includes all phases of methanol production from seedling to delivery of finished methanol. The study examines: production of 55 million, high quality, Eucalyptus seedlings through tissue culture; establishment of a Eucalyptus energy plantation on approximately 70,000 acres; engineering for a 100 million gallon-per-day methanol production facility; potential environmental impacts of the whole project; safety and health aspects of producing and using methanol; and development of site specific cost estimates.

  17. Methane and methanol oxidation in supercritical water: Chemical kinetics and hydrothermal flame studies

    SciTech Connect

    Steeper, R.R.

    1996-01-01

    Supercritical water oxidation (SCWO) is an emerging technology for the treatment of wastes in the presence of a large concentration of water at conditions above water`s thermodynamic critical point. A high-pressure, optically accessible reaction cell was constructed to investigate the oxidation of methane and methanol in this environment. Experiments were conducted to examine both flame and non-flame oxidation regimes. Optical access enabled the use of normal and shadowgraphy video systems for visualization, and Raman spectroscopy for in situ measurement of species concentrations. Flame experiments were performed by steadily injecting pure oxygen into supercritical mixtures of water and methane or methanol at 270 bar and at temperatures from 390 to 510{degrees}C. The experiments mapped conditions leading to the spontaneous ignition of diffusion flames in supercritical water. Above 470{degrees}C, flames spontaneously ignite in mixtures containing only 6 mole% methane or methanol. This data is relevant to the design and operation of commercial SCWO processes that may be susceptible to inadvertent flame formation. Non-flame oxidation kinetics experiments measured rates of methane oxidation in supercritical water at 270 bar and at temperatures from 390 to 442{degrees}C. The initial methane concentration was nominally 0.15 gmol/L, a level representative of commercial SCWO processes. The observed methane concentration histories were fit to a one-step reaction rate expression indicating a reaction order close to two for methane and zero for oxygen. Experiments were also conducted with varying water concentrations (0 to 8 gmol/L) while temperature and initial reactant concentrations were held constant. The rate of methane oxidation rises steadily with water concentration up to about 5 gmol/L and then abruptly falls off at higher concentrations.

  18. Spontaneous resorption of calcification at the long head of the biceps tendon

    PubMed Central

    Amri, Adriansyah; Nakai, Sho; Hara, Michiharu; Yamanaka, Issei; Hamawaki, Jun-ichi

    2015-01-01

    Calcific tendinitis of the long head of the biceps tendon is a rare cause of shoulder pain. Calcium deposits are often spontaneously resorbed or reduced in size in the rotator cuff tendons, which represent the most common sites of calcific tendinitis around the shoulder. To our knowledge, no case of spontaneous resorption of calcification in the long head of the biceps tendon has been reported in the literature. Here, we report one such case and describe its successful treatment using a conservative approach.

  19. Acidities of Water and Methanol in Aqueous Solution and DMSO

    ERIC Educational Resources Information Center

    Gao, Daqing

    2009-01-01

    The relative acidities of water and methanol have been a nagging issue. In gas phase, methanol is more acidic than water by 36.0 kJ/mol; however, in aqueous solution, the acidities of methanol and water are almost identical. The acidity of an acid in solution is determined by both the intrinsic gas-phase ionization Gibbs energy and the solvent…

  20. THERMOREGULATORY EFFECTS OF METHANOL IN FISCHER AND LONG EVANS RATS

    EPA Science Inventory

    While methanol neurotoxicity has been studied for decades, there are very few data available on the thermoregulatory effects of methanol exposure. his paper will present the results of three studies designed to assess the effects of methanol on body temperature and behavioral the...

  1. Tungsten carbides as potential alternative direct methanol fuel cell anode electrocatalysts

    NASA Astrophysics Data System (ADS)

    Zellner, Michael

    The reduction of precious metal loading and the improvement of sluggish kinetics at the anode electrocatalyst are two primary concerns for economical development of direct methanol fuel cells (DMFC). The purpose of this research is to examine the feasibility of using tungsten carbides as alternative fuel cell anode electrocatalysts. The anodic chemistry of the direct methanol fuel cell requires the oxidation of methanol and the decomposition of water to produce protons, electrons, and gas-phase CO2. Currently, the most effective anode electrocatalyst for DMFC is the Pt/Ru bimetallic catalyst, which efficiently oxidizes methanol, as well as decomposes water for the oxidation and removal of adsorbed CO species. Although the Pt/Ru bimetallic system exhibits desirable electrochemical activities, both Pt and Ru are expensive due to limited supplies. In addition, strong chemisorption of CO on Pt and Ru makes the electrocatalyst susceptible to CO poisoning, blocking the active sites for methanol oxidation. This work began by examining the reactions of methanol, water, and CO on carbide-modified tungsten (C/W) single crystal surfaces, with and without submonolayer coverages of Pt. These fundamental surface science results demonstrated the potential for tungsten carbides to be used as anode catalysts in DMFC, exhibiting decomposition of both methanol and water along with significantly lowered CO desorption temperatures. Additionally, submonolayer Pt-modification of the C/W surfaces resulted in a synergistic effect, eliminating the undesired reaction pathway on the C/W surface that produced gas-phase CH4. To bridge the materials gap between model single crystal surfaces and the more realistic thin film electrocatalysts, polycrystalline tungsten carbide thin films were created via physical vapor deposition (PVD) and carburization of polycrystalline tungsten foil. Fundamental surface science techniques were applied to the PVD films to examine the reaction pathways of DMFC

  2. Children spontaneously police adults' transgressions.

    PubMed

    Heyman, Gail D; Chiu Loke, Ivy; Lee, Kang

    2016-10-01

    Maintaining social order requires the policing of transgressions. Prior research suggests that policing emerges early in life, but little is known about children's engagement in such behavior in live interactions where there is uncertainty about the consequences. In this study, 4- to 11-year-old children (N=158) witnessed an unfamiliar adult confederate intentionally destroy another adult's property. Of interest was whether children would engage in policing behavior by protesting to the transgressor or by spontaneously reporting the transgression to a third party. Some children engaged in these behaviors spontaneously; nearly half (42%) protested the transgression, and 27% reported it without being prompted. Even when children did not spontaneously report the transgression, they almost always reported it when asked directly. The findings show that children commonly engage in policing even in the face of potentially negative consequences. PMID:27295206

  3. [Three cases of spontaneous pneumomediastinum].

    PubMed

    Kobayashi, Kashin; Tachikawa, Soichi; Horiguchi, Takahiko; Kondo, Rieko; Shiga, Mamoru; Hirose, Masahiro; Sasaki, Yasushi; Torigoe, Hiroshi

    2006-04-01

    We encountered 3 male patients with spontaneous pneumomediastinum. The patients were a 16-year old and a 17-year old and a 24-year old. Predisposing episodes for the development of spontaneous pneumomediastinum could be identified in all 3 patients: throwing a ball during a baseball game in 1, lifting a heavy load during work in 2. However, they were healthy and suddenly developed symptoms in the absence of any underlying disease. The presenting complaint was chest pain in all 3 patients. Chest X-ray films and chest CT images revealed pneumomediastinum. A diagnosis of spontaneous pneumomediastinum was made based on chest X-ray films and chest CT images. After conservative treatment, all 3 patients recovered. PMID:16681254

  4. Spontaneous Scalarization of Massive Fields

    NASA Astrophysics Data System (ADS)

    Ramazanoglu, Fethi M.; Pretorius, Frans

    2014-03-01

    Spontaneous scalarization is a phenomenon in certain scalar-tensor theories where large deviations from general relativity can be observed inside compact stars, while the known observational bounds can also be satisfied far away. This scenario has been investigated for massless scalars and binary neutron stars using numerical relativity, but the parameter space for such theories have been severely restricted by recent observations. Here, we present our results on the spontaneous scalarization of massive scalars. We simulate cases with different equations of state and scalar field parameters, and comment on the detectability of the scalar field effects from the gravitational wave signal.

  5. Spontaneous baryogenesis from asymmetric inflaton

    NASA Astrophysics Data System (ADS)

    Takahashi, Fuminobu; Yamada, Masaki

    2016-05-01

    We propose a variant scenario of spontaneous baryogenesis from asymmetric inflaton based on current-current interactions between the inflaton and matter fields with a non-zero B - L charge. When the inflaton starts to oscillate around the minimum after inflation, it may lead to excitation of a CP-odd component, which induces an effective chemical potential for the B - L number through the current-current interactions. We study concrete inflation models and show that the spontaneous baryogenesis scenario can be naturally implemented in the chaotic inflation in supergravity.

  6. Flow Friction or Spontaneous Ignition?

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M.; Gallus, Timothy D.; Sparks, Kyle

    2012-01-01

    "Flow friction," a proposed ignition mechanism in oxygen systems, has proved elusive in attempts at experimental verification. In this paper, the literature regarding flow friction is reviewed and the experimental verification attempts are briefly discussed. Another ignition mechanism, a form of spontaneous combustion, is proposed as an explanation for at least some of the fire events that have been attributed to flow friction in the literature. In addition, the results of a failure analysis performed at NASA Johnson Space Center White Sands Test Facility are presented, and the observations indicate that spontaneous combustion was the most likely cause of the fire in this 2000 psig (14 MPa) oxygen-enriched system.

  7. Torsion-rotation intensities in methanol

    NASA Astrophysics Data System (ADS)

    Pearson, John

    Methanol exists in numerous kinds of astronomical objects featuring a wide range of local conditions. The light nature of the molecule coupled with the internal rotation of the methyl group with respect to the hydroxyl group results in a rich, strong spectrum that spans the entire far-infrared region. As a result, any modest size observational window will have a number of strong methanol transitions. This has made it the gas of choice for testing THz receivers and to extract the local physical conditions from observations covering small frequency windows. The latter has caused methanol to be dubbed the Swiss army knife of astrophysics. Methanol has been increasingly used in this capacity and will be used even more for subsequent investigations into the Herschel archive, and with SOFIA and ALMA. Interpreting physical conditions on the basis of a few methanol lines requires that the molecular data, line positions, intensities, and collision rates, be complete, consistent and accurate to a much higher level than previously required for astrophysics. The need for highly reliable data is even more critical for modeling the two classes of widespread maser action and many examples of optical pumping through the torsional bands. Observation of the torsional bands in the infrared will be a unique opportunity to directly connect JWST observations with those of Herschel, SOFIA, and ALMA. The theory for the intensities of torsion-rotation transitions in a molecule featuring a single internally rotating methyl group is well developed after 70 years of research. However, other than a recent very preliminary and not completely satisfactory investigation of a few CH3OH torsional bands, this theory has never been experimentally tested for any C3V internal rotor. More alarming is a set of recent intensity calibrated microwave measurements that showed deviations relative to calculations of up to 50% in some ground state rotational transitions commonly used by astronomers to extract

  8. A pharmacokinetic model of inhaled methanol in humans and comparison to methanol disposition in mice and rats.

    PubMed Central

    Perkins, R A; Ward, K W; Pollack, G M

    1995-01-01

    We estimated kinetic parameters associated with methanol disposition in humans from data reported in the literature. Michaelis-Menten elimination parameters (Vmax = 115 mg/L/hr; Km = 460 mg/L) were selected for input into a semi-physiologic pharmacokinetic model. We used reported literature values for blood or urine methanol concentrations in humans and nonhuman primates after methanol inhalation as input to an inhalation disposition model that evaluated the absorption of methanol, expressed as the fraction of inhaled methanol concentration that was absorbed (phi). Values of phi for nonexercising subjects typically varied between 0.64 and 0.75; 0.80 was observed to be a reasonable upper boundary for fractional absorption. Absorption efficiency in exercising subjects was lower than that in resting individuals. Incorporation of the kinetic parameters and phi into a pharmacokinetic model of human exposure to methanol, compared to a similar analysis in rodents, indicated that following an 8-hr exposure to 5000 ppm of methanol vapor, blood methanol concentrations in the mouse would be 13- to 18-fold higher than in humans exposed to the same methanol vapor concentration; blood methanol concentrations in the rat under similar conditions would be 5-fold higher than in humans. These results demonstrate the importance in the risk assessment for methanol of basing extrapolations from rodents to humans on actual blood concentrations rather than on methanol vapor exposure concentrations. Images Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. A Figure 5. B Figure 5. C PMID:7588485

  9. Rapid detection of methanol in artisanal alcoholic beverages

    NASA Astrophysics Data System (ADS)

    de Goes, R. E.; Muller, M.; Fabris, J. L.

    2015-09-01

    In the industry of artisanal beverages, uncontrolled production processes may result in contaminated products with methanol, leading to risks for consumers. Owing to the similar odor of methanol and ethanol, as well as their common transparency, the distinction between them is a difficult task. Contamination may also occur deliberately due to the lower price of methanol when compared to ethanol. This paper describes a spectroscopic method for methanol detection in beverages based on Raman scattering and Principal Component Analysis. Associated with a refractometric assessment of the alcohol content, the method may be applied in field for a rapid detection of methanol presence.

  10. Compact Fuel-Cell System Would Consume Neat Methanol

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Kindler, Andrew; Valdez, Thomas

    2007-01-01

    In a proposed direct methanol fuel-cell electric-power-generating system, the fuel cells would consume neat methanol, in contradistinction to the dilute aqueous methanol solutions consumed in prior direct methanol fuel-cell systems. The design concept of the proposed fuel-cell system takes advantage of (1) electro-osmotic drag and diffusion processes to manage the flows of hydrogen and water between the anode and the cathode and (2) evaporative cooling for regulating temperature. The design concept provides for supplying enough water to the anodes to enable the use of neat methanol while ensuring conservation of water for the whole fuel-cell system.

  11. Platinum Nickel Nanowires as Methanol Oxidation Electrocatalysts

    SciTech Connect

    Alia, Shaun M.; Pylypenko, Svitlana; Neyerlin, Kenneth C.; Kocha, Shyam S.; Pivovar, Bryan S.

    2015-08-27

    We investigated platinum(Pt) nickel (Ni) nanowires (PtNiNWs) as methanol oxidation reaction (MOR) catalysts in rotating disk electrode (RDE) half-cells under acidic conditions. Pt-ruthenium (Ru) nanoparticles have long been the state of the art MOR catalyst for direct methanol fuel cells (DMFCs) where Ru provides oxophilic sites, lowering the potential for carbon monoxide oxidation and the MOR onset. Ru, however, is a precious metal that has long term durability concerns. Ni/Ni oxide species offer a potential to replace Ru in MOR electrocatalysis. PtNiNWs were investigated for MOR and oxygen annealing was investigated as a route to improve catalyst performance (mass activity 65% greater) and stability to potential cycling. Our results presented show that PtNiNWs offer significant promise in the area, but also result in Ni ion leaching that is a concern requiring further evaluation in fuel cells.

  12. Depolymerization of polyethylene terephthalate in supercritical methanol

    NASA Astrophysics Data System (ADS)

    Goto, Motonobu; Koyamoto, Hiroshi; Kodama, Akio; Hirose, Tsutomu; Nagaoka, Shoji

    2002-11-01

    The degradation of polyethylene terephthalate (PET) in supercritical methanol was investigated with the aim of developing a process for chemical recycling of waste plastics. A batch reactor was used at temperatures of 573-623 K under an estimated pressure of 20 MPa for a reaction time of 2-120 min. PET was decomposed to its monomers, dimethyl terephthalate and ethylene glycol, by methanolysis in supercritical methanol. The reaction products were analysed using size-exclusion chromatography, gas chromatography-mass spectrometry, and reversed-phase liquid chromatography. The molecular weight distribution of the products was obtained as a function of reaction time. The yields of monomer components of the decomposition products including by-products were measured. Continuous kinetics analysis was performed on the experimental data.

  13. Platinum Nickel Nanowires as Methanol Oxidation Electrocatalysts

    DOE PAGESBeta

    Alia, Shaun M.; Pylypenko, Svitlana; Neyerlin, Kenneth C.; Kocha, Shyam S.; Pivovar, Bryan S.

    2015-08-27

    We investigated platinum(Pt) nickel (Ni) nanowires (PtNiNWs) as methanol oxidation reaction (MOR) catalysts in rotating disk electrode (RDE) half-cells under acidic conditions. Pt-ruthenium (Ru) nanoparticles have long been the state of the art MOR catalyst for direct methanol fuel cells (DMFCs) where Ru provides oxophilic sites, lowering the potential for carbon monoxide oxidation and the MOR onset. Ru, however, is a precious metal that has long term durability concerns. Ni/Ni oxide species offer a potential to replace Ru in MOR electrocatalysis. PtNiNWs were investigated for MOR and oxygen annealing was investigated as a route to improve catalyst performance (mass activitymore » 65% greater) and stability to potential cycling. Our results presented show that PtNiNWs offer significant promise in the area, but also result in Ni ion leaching that is a concern requiring further evaluation in fuel cells.« less

  14. Supercritical methanol for polyethylene terephthalate depolymerization: observation using simulator.

    PubMed

    Genta, Minoru; Iwaya, Tomoko; Sasaki, Mitsuru; Goto, Motonobu

    2007-01-01

    To apply PET depolymerization in supercritical methanol to commercial recycling, the benefits of supercritical methanol usage in PET depolymerization was investigated from the viewpoint of the reaction rate and energy demands. PET was depolymerized in a batch reactor at 573 K in supercritical methanol under 14.7 MPa and in vapor methanol under 0.98 MPa in our previous work. The main products of both reactions were the PET monomers of dimethyl terephthalate (DMT) and ethylene glycol (EG). The rate of PET depolymerization in supercritical methanol was faster than that of PET depolymerization in vapor methanol. This indicates supercritical fluid is beneficial in reducing reaction time without the use of a catalyst. We depicted the simple process flow of PET depolymerization in supercritical methanol and in vapor methanol, and by simulation evaluated the total heat demand of each process. In this simulation, bis-hydroxyethyl terephthalate (BHET) was used as a model component of PET. The total heat demand of PET depolymerization in supercritical methanol was 2.35 x 10(6)kJ/kmol Produced-DMT. That of PET depolymerization in vapor methanol was 2.84 x 10(6)kJ/kmol Produced-DMT. The smaller total heat demand of PET depolymerization in supercritical methanol clearly reveals the advantage of using supercritical fluid in terms of energy savings. PMID:16914302

  15. Supercritical methanol for polyethylene terephthalate depolymerization: Observation using simulator

    SciTech Connect

    Genta, Minoru; Iwaya, Tomoko; Sasaki, Mitsuru; Goto, Motonobu

    2007-07-01

    To apply PET depolymerization in supercritical methanol to commercial recycling, the benefits of supercritical methanol usage in PET depolymerization was investigated from the viewpoint of the reaction rate and energy demands. PET was depolymerized in a batch reactor at 573 K in supercritical methanol under 14.7 MPa and in vapor methanol under 0.98 MPa in our previous work. The main products of both reactions were the PET monomers of dimethyl terephthalate (DMT) and ethylene glycol (EG). The rate of PET depolymerization in supercritical methanol was faster than that of PET depolymerization in vapor methanol. This indicates supercritical fluid is beneficial in reducing reaction time without the use of a catalyst. We depicted the simple process flow of PET depolymerization in supercritical methanol and in vapor methanol, and by simulation evaluated the total heat demand of each process. In this simulation, bis-hydroxyethyl terephthalate (BHET) was used as a model component of PET. The total heat demand of PET depolymerization in supercritical methanol was 2.35 x 10{sup 6} kJ/kmol Produced-DMT. That of PET depolymerization in vapor methanol was 2.84 x 10{sup 6} kJ/kmol Produced-DMT. The smaller total heat demand of PET depolymerization in supercritical methanol clearly reveals the advantage of using supercritical fluid in terms of energy savings.

  16. Isotopic quantum effects in liquid methanol.

    PubMed

    Ludwig, Ralf

    2005-07-11

    Density functional calculations (B3 LYP/6-31+G*) on molecular clusters and a quantum cluster equilibrium (QCE) model were used to calculate thermodynamic and structural properties of four isotopically labeled methanol species. The method allowed the reproduction of the characteristic differences in boiling points and heats of vaporization. Structural changes were also detected and related to recent experimental findings. It was shown that isotopic effects clearly have a quantum-mechanical origin. PMID:15991271

  17. Towards oil independence through renewable methanol chemistry.

    PubMed

    Olah, George A

    2013-01-01

    Recycling of CO(2) into methanol, dimethyl ether (DME), and derived fuels and materials is a feasible approach to address our carbon conundrum. It would free humankind from its dependence on fossil fuel while at the same time help mitigate the problems associated with excessive CO(2) emission. The energy needed for this carbon cycle can come from renewable sources (hydro, solar, wind) as well as atomic energy. PMID:23208664

  18. Materials experience in methanol reforming units

    SciTech Connect

    Baumert, K.L.; Hoffman, J.J.

    1997-09-01

    Metallurgical evaluations were performed on samples of Type 310 and aluminized 304 SS after long-term, high temperature exposure in methanol reforming service. The secondary phases were identified and the effectiveness of aluminizing at inhibiting metal dusting was examined. Secondary phases adversely affect the materials service life and repairability. Aluminizing effectively inhibits metal dusting for at least 13--14 years. Metal dusting is most severe in crevices on bare metal.

  19. Spontaneous Number Representation in Mosquitofish

    ERIC Educational Resources Information Center

    Dadda, Marco; Piffer, Laura; Agrillo, Christian; Bisazza, Angelo

    2009-01-01

    While there is convincing evidence that preverbal human infants and non-human primates can spontaneously represent number, considerable debate surrounds the possibility that such capacity is also present in other animals. Fish show a remarkable ability to discriminate between different numbers of social companions. Previous work has demonstrated…

  20. Toddlers' Spontaneous Attention to Number

    ERIC Educational Resources Information Center

    Baroody, Arthur J.; Li, Xia; Lai, Meng-lung

    2008-01-01

    Hannula and Lehtinen (2001, 2005) defined spontaneous focusing on numerosity (SFON) as the tendency to notice the relatively abstract attribute of number despite the presence of other attributes. According to nativists, an innate concept of one to three directs young children's attention to these "intuitive numbers" in everyday situations--even…

  1. Student Experiments in Spontaneous Fission.

    ERIC Educational Resources Information Center

    Becchetti, F. D.; Ying, J. S.

    1981-01-01

    Advanced undergraduate experiments utilizing a commercially available, thin spontaneous fission source are described, including studies of the energy and mass distribution of the fission fragments and their energy and angular correlation. The experiments provide a useful introduction to fission, nuclear mass equations, heavy-ion physics, and…

  2. Liquid methanol under a static electric field

    NASA Astrophysics Data System (ADS)

    Cassone, Giuseppe; Giaquinta, Paolo V.; Saija, Franz; Saitta, A. Marco

    2015-02-01

    We report on an ab initio molecular dynamics study of liquid methanol under the effect of a static electric field. We found that the hydrogen-bond structure of methanol is more robust and persistent for field intensities below the molecular dissociation threshold whose value (≈0.31 V/Å) turns out to be moderately larger than the corresponding estimate obtained for liquid water. A sustained ionic current, with ohmic current-voltage behavior, flows in this material for field intensities above 0.36 V/Å, as is also the case of water, but the resulting ionic conductivity (≈0.40 S cm-1) is at least one order of magnitude lower than that of water, a circumstance that evidences a lower efficiency of proton transfer processes. We surmise that this study may be relevant for the understanding of the properties and functioning of technological materials which exploit ionic conduction, such as direct-methanol fuel cells and Nafion membranes.

  3. Photolysis of oxyfluorfen in aqueous methanol.

    PubMed

    Chakraborty, Subhasish K; Chakraborty, Savitri; Bhattacharyya, Anjan; Chowdhury, Ashim

    2013-01-01

    Photolysis of oxyfluorfen, an herbicide of the nitrodiphenyl ether class, was studied in aqueous methanol under UV and sunlight. UV irradiation was carried out in a borosilicate glass photoreactor (containing 250 ppm oxyfluorfen in 50% aqueous methanol) equipped with a quartz filter and 125 watt mercury lamp (maximum output 254 nm) at 25 ± 1°C. Sunlight irradiation was conducted at 28 ± 1°C in borosilicate Erlenmeyer flasks containing 250 ppm oxyfluorfen in 50% aqueous methanol. The samples from both the irradiated conditions were withdrawn at a definite time interval and extracted to measure oxyfluorfen content by gas chromatography-flame ionization detector for rate study. The half-life values were 20 hours and 2.7 days under UV and sunlight exposure, respectively. Photolysis of oxyfluorfen yielded 13 photoproducts of which three were characterized by infrared spectrophotometer and (1)H NMR and (13)C NMR spectroscopy. The rest of the photoproducts were identified by gas chromatography-mass spectrometry (GC-MS) and thin layer chromatography (TLC). An ionization potential 70 eV was used for electron impact-mass spectrometry (EI-MS) and methane was used as reagent gas for chemical ionization-mass spectrometry (CI-MS). Two of the photoproducts were also synthesized for comparison. The main phototransformation pathways of oxyfluorfen involved nitro reduction, dechlorination, and hydrolysis as well as nucleophiles displacement reaction. PMID:23998303

  4. Class i Methanol Maser Conditions Near SNRS

    NASA Astrophysics Data System (ADS)

    McEwen, Bridget C.; Pihlström, Ylva M.; Sjouwerman, Loránt O.

    2015-06-01

    We present results from calculations of the physical conditions necessary for the occurrence of 36.169 (4-1-30 E), 44.070 (70-61 A^+), 84.521 (5-1-40 E), and 95.169 (80-71 A^+) GHz methanol (CH_3OH) maser emission lines near supernova remnants (SNRs), using the MOLPOP-CEP program. The calculations show that given a sufficient methanol abundance, methanol maser emission arises over a wide range of densities and temperatures, with optimal conditions at n˜ 10^4-10^6 cm-3 and T>60 K. The 36~GHz and 44~GHz transitions display more significant maser optical depths compared to the 84~GHz and 95~GHz transitions over the majority of physical conditions. It is also shown that line ratios are an important and applicable probe of the gas conditions. The line ratio changes are largely a result of the E-type transitions becoming quenched faster at increasing densities. The modeling results will be discussed using recent observations of CH_3OH masers near the SNRs G1.4-0.1, W28, and Sgr A East and used as a diagnostic tool to estimate densities and temperatures of the regions in which the CH_3OH masers are observed.

  5. Vibrational analysis of phenol/(methanol)1

    NASA Astrophysics Data System (ADS)

    Gerhards, M.; Beckmann, K.; Kleinermanns, K.

    1994-09-01

    Ab initio calculations at the Hartree-Fock 4-31G* level were performed in order to calculate binding energies and vibrational frequencies of the phenol/CH3OH-cluster and two deuterated isotopomers ( d-phenol/CH3OD, d-phenol-CD3OD). The minimum energy structure is trans-linear, as for the phenol/H2O-cluster. The calculated frequencies of phenol and methanol as well as the intramolecular frequencies of the phenol/CH3OH-cluster are assigned to experimental values. The calculated intermolecular frequencies of the phenol/CH3OH-cluster are compared with the available experimental frequencies of the S 0 (and S 1)-state of the phenol/methanol-cluster and the similar p-cresol/methanol-cluster. Assignments are suggested for the σ and p 1-mode. In order to clarify the assignment of the low frequency vibration at 22 cm-1 anharmonic corrections for the β2-mode of the phenol/CH3OH-cluster are calculated. These calculations show only slight anharmonicity compared with the β2-mode calculations carried out for the phenol/H2O-cluster.

  6. Liquid methanol under a static electric field

    SciTech Connect

    Cassone, Giuseppe; Giaquinta, Paolo V.; Saija, Franz; Saitta, A. Marco

    2015-02-07

    We report on an ab initio molecular dynamics study of liquid methanol under the effect of a static electric field. We found that the hydrogen-bond structure of methanol is more robust and persistent for field intensities below the molecular dissociation threshold whose value (≈0.31 V/Å) turns out to be moderately larger than the corresponding estimate obtained for liquid water. A sustained ionic current, with ohmic current-voltage behavior, flows in this material for field intensities above 0.36 V/Å, as is also the case of water, but the resulting ionic conductivity (≈0.40 S cm{sup −1}) is at least one order of magnitude lower than that of water, a circumstance that evidences a lower efficiency of proton transfer processes. We surmise that this study may be relevant for the understanding of the properties and functioning of technological materials which exploit ionic conduction, such as direct-methanol fuel cells and Nafion membranes.

  7. Lightweight Stacks of Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Valdez, Thomas

    2004-01-01

    An improved design concept for direct methanol fuel cells makes it possible to construct fuel-cell stacks that can weigh as little as one-third as much as do conventional bipolar fuel-cell stacks of equal power. The structural-support components of the improved cells and stacks can be made of relatively inexpensive plastics. Moreover, in comparison with conventional bipolar fuel-cell stacks, the improved fuel-cell stacks can be assembled, disassembled, and diagnosed for malfunctions more easily. These improvements are expected to bring portable direct methanol fuel cells and stacks closer to commercialization. In a conventional bipolar fuel-cell stack, the cells are interspersed with bipolar plates (also called biplates), which are structural components that serve to interconnect the cells and distribute the reactants (methanol and air). The cells and biplates are sandwiched between metal end plates. Usually, the stack is held together under pressure by tie rods that clamp the end plates. The bipolar stack configuration offers the advantage of very low internal electrical resistance. However, when the power output of a stack is only a few watts, the very low internal resistance of a bipolar stack is not absolutely necessary for keeping the internal power loss acceptably low.

  8. Spontaneous remission of membranous glomerulonephritis with successful fetal outcome

    PubMed Central

    Huang, Yan-Mei; Zhou, Hui-Rong; Zhang, Ling; Yang, Ke-Ke; Luo, Jiang-Xi; Zhao, Hai-Lu

    2016-01-01

    Abstract Membranous glomerulonephritis (MGN) represents an immunologically mediated disease characterized by deposition of immune complexes in the glomerular subepithelial space. Persistent proteinuria at diagnosis predicts poor prognosis. Pregnancy with MGN is a risk of fetal loss and may worsen maternal renal function. Here, we report a lady with MGN and proteinuria achieved spontaneous remission and successful fetal outcome naive to any medications. The 26-year old woman had 1-year history of persistent proteinuria (5.5–12.56 g/24 hours) and biopsy-proven MGN. Histopathological characteristics included glomerular basement membrane spikes, subepithelial monoclonal IgG immunofluorescence, and diffuse electron dense deposits. She was sticking to a regular morning exercise routine without any medications. After successful delivery of a full-term baby girl, the mother had improved proteinuria (0.56 g/24 hours) and albuminuria (351.96 g/24 hours contrasting 2281.6 g/24 hours before pregnancy). The baby had normal height and body weight at 4 months old. We identified more pregnancies with MGN in 5 case reports and 5 clinical series review articles (7–33 cases included). Spontaneous remission of maternal MGN with good fetal outcome rarely occurred in mothers on immunosuppressive therapy. Mothers naive to immunosuppressive therapy may achieve spontaneous remission of maternal membranous glomerulonephritis and successful fetal outcome. Theoretically, fetus might donate stem cells to heal mother's kidney. PMID:27368022

  9. High performance methanol-oxygen fuel cell with hollow fiber electrode

    NASA Technical Reports Server (NTRS)

    Lawson, Daniel D. (Inventor); Ingham, John D. (Inventor)

    1983-01-01

    A methanol/air-oxygen fuel cell including an electrode formed by open-ended ion-exchange hollow fibers having a layer of catalyst deposited on the inner surface thereof and a first current collector in contact with the catalyst layer. A second current collector external of said fibers is provided which is immersed along with the hollow fiber electrode in an aqueous electrolyte body. Upon passage of air or oxygen through the hollow fiber electrode and introduction of methanol into the aqueous electrolyte, a steady current output is obtained. Two embodiments of the fuel cell are disclosed. In the first embodiment the second metal electrode is displaced away from the hollow fiber in the electrolyte body while in the second embodiment a spiral-wrap electrode is provided about the outer surface of the hollow fiber electrode.

  10. Surface science studies of catalyzed methanol synthesis on model copper and Cu-Zn-O surfaces

    SciTech Connect

    Fu, Sabrina Su-Bin . Dept. of Chemistry Lawrence Berkeley Lab., CA )

    1991-06-01

    Cu-Zn-O surfaces that are catalysts for methanol synthesis from CO, CO{sub 2}, and H{sub 2} modeled using zinc oxide overlayers on copper single crystals. These studies were performed in ultra-high vacuum (UHV) utilizing Temperature Programmed Desorption, Auger Electron Spectroscopy, and Low Energy Electron Diffraction techniques. The chemisorption of O{sub 2}, CO, CO{sub 2}, and D{sub 2} were compared on a stepped on Cu(311), and a flat Cu(110). At low pressures ({approximately}10{sup {minus}6} Torr), Cu(311) was found to be much more reactive than Cu(110) for the dissociative adsorption of CO{sub 2} and D{sub 2}, and the formation of CO{sub 2} from surface oxygen and CO. Since these reactions are important in methanol synthesis, these results suggest that methanol synthesis over copper may be a structure sensitive reaction. The interaction of copper, zinc, and oxygen were examined by the deposition of submonolayers to multilayers of zinc and oxygen in UHV on Cu(110). The interaction of methanol with these model Cu-Zn-O surfaces was also studied. Oxygen was adsorbed onto these exposed copper part of the surface to form ZnO{sub x}/y ML O/Cu(110) surfaces. The roles of ZnO{sub x} islands and chemisorbed oxygen on copper were investigated by monitoring methanol decomposition, into surface formate and methoxy species, on these ZnO{sub x}/y ML O/Cu(11) surfaces.

  11. Efficient Ceria-Platinum Inverse Catalyst for Partial Oxidation of Methanol.

    PubMed

    Ostroverkh, Anna; Johánek, Viktor; Kúš, Peter; Šedivá, Romana; Matolín, Vladimír

    2016-06-28

    Ceria-platinum-based bilayered thin films deposited by magnetron sputtering were developed and tested in regard to their catalytic activity for methanol oxidation by employing a temperature-programmed reaction (TPR) technique. The composition and structure of the samples were characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Both conventional (oxide-supported metal nanoparticles [NPs]) and inverse configurations (metal with oxide overlayer) were analyzed to uncover the structural dependence of activity and selectivity of these catalysts with respect to different pathways of methanol oxidation. We clearly demonstrate that the amount of cerium oxide (ceria) loading has a profound influence on methanol oxidation reaction characteristics. Adding a noncontinuous adlayer of ceria greatly enhances the catalytic performance of platinum (Pt) in favor of partial oxidation of methanol (POM), gaining an order of magnitude in the absolute yield of hydrogen. Moreover, the undesired by-production of carbon monoxide (CO) is strongly suppressed, making the ceria-platinum inverse catalyst a great candidate for clean hydrogen production. It is suggested that the methanol oxidation process is facilitated by the synergistic effect between both components of the inverse catalyst (involving oxygen from ceria and providing a reaction site on the adjacent Pt surface) as well as by the fact that the ability of ceria to exchange oxygen (i.e., to alter the oxidation state of Ce between 3+ and 4+) during the reaction is inversely proportional to its thickness. The increased redox capability of the discontinuous ceria adlayer shifts the preferred reaction pathway from dehydrogenation of hydroxymethyl intermediate to CO in favor of its oxidation to formate. PMID:27254727

  12. Discovery of Methanol in a Planetary Birthplace

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    Data from the Atacama Large Millimeter/submillimeter Array (ALMA) has recently revealed the first detection of gas-phase methanol, a derivative of methane, in a protoplanetary disk. This milestone discovery is an important step in understanding the conditions for planet formation that can lead to life-supporting planets like Earth.Planetary ChemistryOne major goal in the study of exoplanets is to find planets that orbit in their host stars habitable zones, a measure that determines whether the planet receives the right amount of sunlight to support liquid water. But theres another crucial element in the formation of a life-supporting planet: chemistry.To understand the chemistry of newly born planets, we need to study protoplanetary disks because its from these that young planets form. The elements and molecules contained in these dusty disks are what initially make up the atmospheres of planets forming within the disks.The Atacama Large Millimeter/submillimeter Array under the southern sky. [ESO/B. Tafreshi]The Hunt for ComplexityThe detection of complex molecules in protoplanetary disks is an important milestone, because complex molecules are necessary to build the correct chemistry to support life. Unfortunately, detecting these molecules is very difficult, requiring observations with both high spatial resolution and high sensitivity. Thus far, though weve observed elements and simple molecules in protoplanetary disks, detections of complex molecules have been elusive with only one success before now.Luckily, we now have an observatory up to the challenge! ALMAs unprecedented spatial resolution and sensitivity has recently allowed a team of scientists led by Catherine Walsh (Leiden University) to observe gas-phase methanol in a protoplanetary disk for the first time. This detection was made in the disk around the young star TW Hya, and it represents one of the largest molecules that has ever been observed in a disk to date.Locating IcesThe model (purple line

  13. Speeding up spontaneous disease extinction

    NASA Astrophysics Data System (ADS)

    Khasin, Michael

    2012-02-01

    The dynamics of epidemic in a susceptible population is affected both by the random character of interactions between the individuals and by environmental variations. As a consequence, the sizes of the population groups (infected, susceptible, etc.) fluctuate in the course of evolution of the epidemic. In a small community a rare large fluctuation in the number of infected can result in extinction of the disease. We suggest a novel paradigm of controlling the epidemic, where the control field, such as vaccination, is designed to maximize the rate of spontaneous disease extinction. We show that, for a limited-scope vaccination, the optimal vaccination protocol and its impact on the epidemics have universal features: (i) the vaccine must be applied in pulses, (ii) the spontaneous disease extinction is synchronized with the vaccination. We trace this universality to general properties of the response of large fluctuations to external perturbations.

  14. Spontaneous chirality in simple systems

    PubMed

    Pickett; Gross; Okuyama

    2000-10-23

    Two simple examples of spontaneous chiral symmetry breaking are presented. The first is close-packed cylindrically confined spheres. As the cylinder diameter is varied, one obtains a variety of chiral phases. The second example involves unconfined dipolar particles with an isotropic attraction, which also exhibits chiral ground states. We speculate that a dilute magnetorheological fluid film, with the addition of smaller particles to provide an attractive entropic interaction, will exhibit a chiral columnar ground state. PMID:11030973

  15. Spontaneous mid-oesophageal rupture.

    PubMed

    Holt, S; Millar, J W; Heading, R C; Charles, R G

    1978-08-01

    The clinical presentation and management of spontaneous rupture of the middle third of the oesophagus is described in two patients. Early presentation and treatment in one case led to uncomplicated recovery. In the other patient late presentation and diagnosis resulted in delayed surgical intervention with an unsuccessful outcome. The nature of this rare lesion is discussed and nine previously described cases are reviewed. PMID:733690

  16. Methanol may function as a cross-kingdom signal.

    PubMed

    Dorokhov, Yuri L; Komarova, Tatiana V; Petrunia, Igor V; Kosorukov, Vyacheslav S; Zinovkin, Roman A; Shindyapina, Anastasia V; Frolova, Olga Y; Gleba, Yuri Y

    2012-01-01

    Recently, we demonstrated that leaf wounding results in the synthesis of pectin methylesterase (PME), which causes the plant to release methanol into the air. Methanol emitted by a wounded plant increases the accumulation of methanol-inducible gene mRNA and enhances antibacterial resistance as well as cell-to-cell communication, which facilitates virus spreading in neighboring plants. We concluded that methanol is a signaling molecule involved in within-plant and plant-to-plant communication. Methanol is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of methanol into toxic formaldehyde. However, recent data showed that methanol is a natural compound in normal, healthy humans. These data call into question whether human methanol is a metabolic waste product or whether methanol has specific function in humans. Here, to reveal human methanol-responsive genes (MRGs), we used suppression subtractive hybridization cDNA libraries of HeLa cells lacking ADH and exposed to methanol. This design allowed us to exclude genes involved in formaldehyde and formic acid detoxification from our analysis. We identified MRGs and revealed a correlation between increases in methanol content in the plasma and changes in human leukocyte MRG mRNA levels after fresh salad consumption by volunteers. Subsequently, we showed that the methanol generated by the pectin/PME complex in the gastrointestinal tract of mice induces the up- and downregulation of brain MRG mRNA. We used an adapted Y-maze to measure the locomotor behavior of the mice while breathing wounded plant vapors in two-choice assays. We showed that mice prefer the odor of methanol to other plant volatiles and that methanol changed MRG mRNA accumulation in the mouse brain.We hypothesize that the methanol emitted by wounded plants may have a role in plant-animal signaling. The known positive effect of plant food intake on human health suggests a role for physiological methanol in

  17. Methanol May Function as a Cross-Kingdom Signal

    PubMed Central

    Dorokhov, Yuri L.; Komarova, Tatiana V.; Petrunia, Igor V.; Kosorukov, Vyacheslav S.; Zinovkin, Roman A.; Shindyapina, Anastasia V.; Frolova, Olga Y.; Gleba, Yuri Y.

    2012-01-01

    Recently, we demonstrated that leaf wounding results in the synthesis of pectin methylesterase (PME), which causes the plant to release methanol into the air. Methanol emitted by a wounded plant increases the accumulation of methanol-inducible gene mRNA and enhances antibacterial resistance as well as cell-to-cell communication, which facilitates virus spreading in neighboring plants. We concluded that methanol is a signaling molecule involved in within-plant and plant-to-plant communication. Methanol is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of methanol into toxic formaldehyde. However, recent data showed that methanol is a natural compound in normal, healthy humans. These data call into question whether human methanol is a metabolic waste product or whether methanol has specific function in humans. Here, to reveal human methanol-responsive genes (MRGs), we used suppression subtractive hybridization cDNA libraries of HeLa cells lacking ADH and exposed to methanol. This design allowed us to exclude genes involved in formaldehyde and formic acid detoxification from our analysis. We identified MRGs and revealed a correlation between increases in methanol content in the plasma and changes in human leukocyte MRG mRNA levels after fresh salad consumption by volunteers. Subsequently, we showed that the methanol generated by the pectin/PME complex in the gastrointestinal tract of mice induces the up- and downregulation of brain MRG mRNA. We used an adapted Y-maze to measure the locomotor behavior of the mice while breathing wounded plant vapors in two-choice assays. We showed that mice prefer the odor of methanol to other plant volatiles and that methanol changed MRG mRNA accumulation in the mouse brain. We hypothesize that the methanol emitted by wounded plants may have a role in plant-animal signaling. The known positive effect of plant food intake on human health suggests a role for physiological methanol in

  18. Spontaneous scalarization with massive fields

    NASA Astrophysics Data System (ADS)

    Ramazanoǧlu, Fethi M.; Pretorius, Frans

    2016-03-01

    We study the effect of a mass term in the spontaneous scalarization of neutron stars, for a wide range of scalar field parameters and neutron star equations of state. Even though massless scalars have been the focus of interest in spontaneous scalarization so far, recent observations of binary systems rule out most of their interesting parameter space. We point out that adding a mass term to the scalar field potential is a natural extension to the model that avoids these observational bounds if the Compton wavelength of the scalar is small compared to the binary separation. Our model is formally similar to the asymmetron scenario recently introduced in application to cosmology, though here we are interested in consequences for neutron stars and thus consider a mass term that does not modify the geometry on cosmological scales. We review the allowed values for the mass and scalarization parameters in the theory given current binary system observations and black hole spin measurements. We show that within the allowed ranges, spontaneous scalarization can have nonperturbative, strong effects that may lead to observable signatures in binary neutron star or black hole-neutron star mergers, or even in isolated neutron stars.

  19. Spontaneous shrinkage of vestibular schwannoma

    PubMed Central

    Romani, Rossana; Pollock, Jonathan

    2016-01-01

    Background: “Watch, wait, and rescan” (WWR) has an established place as a successful management option for a significant proportion of vestibular schwannomas (VS) as an alternative to microsurgical removal or stereotactic radiotherapy. VS may grow slowly and continuously, followed by stagnation or even shrinkage. We present two case reports of spontaneous shrinkage of VS along with a review of the literature. Case Description: A 29-year-old female presented with a progressive history of visual blurring and intermittent diplopia over 2 months. A 29 mm of maximum intracranial diameter (ICD) VS with secondary obstructive hydrocephalus was diagnosed. The patient underwent a ventriculo-peritoneal shunt with resolution of her symptoms and opted for initial WWR management. Interval scanning between 2007 and 2014 showed progressive reduction in the maximum ICD together with reduction in the degree of central tumor enhancement. Maximum ICD at most recent follow up was 22 mm. A 28-year-old female was referred with right sensorineural deafness. A right VS of maximum ICD of 27 mm was diagnosed. Initial WWR management was planned after discussion. Serial imaging showed an initial increase in the size of the tumor followed by progressive reduction in size. The most recent follow up showed a maximum ICD of 20 mm. Conclusion: Early WWR management can be associated with spontaneous shrinkage of VS over time. Prospective clinical study of larger numbers of such cases using the UK VS database may help to identify predictive factors for the spontaneous regression of VS. PMID:27280055

  20. Spontaneous regression of breast cancer.

    PubMed

    Lewison, E F

    1976-11-01

    The dramatic but rare regression of a verified case of breast cancer in the absence of adequate, accepted, or conventional treatment has been observed and documented by clinicians over the course of many years. In my practice limited to diseases of the breast, over the past 25 years I have observed 12 patients with a unique and unusual clinical course valid enough to be regarded as spontaneous regression of breast cancer. These 12 patients, with clinically confirmed breast cancer, had temporary arrest or partial remission of their disease in the absence of complete or adequate treatment. In most of these cases, spontaneous regression could not be equated ultimately with permanent cure. Three of these case histories are summarized, and patient characteristics of pertinent clinical interest in the remaining case histories are presented and discussed. Despite widespread doubt and skepticism, there is ample clinical evidence to confirm the fact that spontaneous regression of breast cancer is a rare phenomenon but is real and does occur. PMID:799758

  1. Spontaneous Curvature of Polymer Brushes

    NASA Astrophysics Data System (ADS)

    Sheiko, Sergei; da Silva, Marcelo; Shirvaniants, David; Rodrigues, Carlos; Beers, Kathryn; Matyjaszewski, Krzysztof; Potemkin, Igor; Moeller, Martin

    2003-03-01

    Experimental studies of cylindrical brushes on surfaces revealed peculiar shape of brush molecules with a curved backbone. According to scaling analysis, spontaneous bending of the backbone can be driven by entropic elasticity of the side chains: smaller extension of the chains is attained due to their asymmetric distribution with respect to the backbone. An equilibrium, i.e. spontaneous curvature results from the balance of the elasticity of the side chains and the elasticity of the interface. The curvature is predicted to increase with the side chain length. The system is of general interest because cylindrical brushes confined to a flat surface represent a two-dimensional cross-section of a planar brush grafted on both sides. Here we present systematic studies of cylindrical brushes with different length of the side chains. The curvature of cylindrical brushes confined to a flat substrate was investigated by atomic force microscopy. The method allowed visualization of individual molecules and quantitative analysis of their conformation. In agreement with theory, adsorbed brushes demonstrated spontaneous curvature, however the curvature was shown to decrease with the side chain length.

  2. Etiology of primary spontaneous pneumothorax.

    PubMed

    Lyra, Roberto de Menezes

    2016-01-01

    With the advent of HRCT, primary spontaneous pneumothorax has come to be better understood and managed, because its etiology can now be identified in most cases. Primary spontaneous pneumothorax is mainly caused by the rupture of a small subpleural emphysematous vesicle (designated a bleb) or of a subpleural paraseptal emphysematous lesion (designated a bulla). The aim of this pictorial essay was to improve the understanding of primary spontaneous pneumothorax and to propose a description of the major anatomical lesions found during surgery. RESUMO Com o advento da TCAR, o pneumotórax espontâneo primário passou a ser mais bem entendido e conduzido, pois sua etiologia pode ser atualmente identificada na maioria dos casos. O pneumotórax espontâneo primário tem como principal causa a rotura de uma pequena vesícula enfisematosa subpleural, denominada bleb ou de uma lesão enfisematosa parasseptal subpleural, denominada bulla. O objetivo deste ensaio pictórico foi melhorar o entendimento do pneumotórax espontâneo primário e propor uma descrição das principais lesões anatômicas encontradas durante a cirurgia. PMID:27383937

  3. A novel process for manufacture of methanol

    SciTech Connect

    Tierney, J.W.; Wender, I.

    1990-01-01

    A bench-scale reactor is being used to conduct studies of the conversion of synthesis gas to methanol by a novel process. During the last quarter, the effect of potassium methoxide and Cu-chromite loading on the MeOH formation rate was investigated. The rate obtained with Cu-chromite was compared to that using Cu-ZnO as catalyst. Work also continued on the modification of the experimental equipment to permit on-line monitoring of liquid and gas compositions.

  4. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2009-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous. The fuel cell system also comprises a fuel supplying part including a meter which meters an amount of fuel which is used by the fuel cell, and controls the supply of fuel based on said metering.

  5. Improved Direct Methanol Fuel Cell Stack

    DOEpatents

    Wilson, Mahlon S.; Ramsey, John C.

    2005-03-08

    A stack of direct methanol fuel cells exhibiting a circular footprint. A cathode and anode manifold, tie-bolt penetrations and tie-bolts are located within the circular footprint. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet and outlet cathode manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold, where the serpentine channels of the anode are orthogonal to the serpentine channels of the cathode. Located between the two plates is the fuel cell active region.

  6. Methanol-use options study: Phase 1. Final report

    SciTech Connect

    Not Available

    1981-05-01

    Coal derived methanol is a potentially important alternative fuel for the US. If methanol fuels are to be considered with other federal options on synthetic fuels such as SRC-2, H-coal and ethanol (from biomass), the barriers to large scale methanol fuel use, including technical, economic, institutional, regulatory, and environmental issues, should be identified and sharply defined. The Office of Coal and Synthetic Fuels of the Assistant Secretary for Policy and Evaluation requested that a three-phase methanol use options study be undertaken. Phase I of this study was a preliminary scoping effort which (1) developed an overall system evaluation framework; (2) updated cost estimates for producing neat methanol and M-gasoline (via the Mobile-Zeolite Catalytic process); and (3) identified the technical, economic, institutional, regulatory and environmental issues of producing, distributing, and using neat methanol in transportation, utility peaking turbines and petrochemical markets.

  7. Hydrogenotitanates nanotubes supported platinum anode for direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Abida, Bochra; Chirchi, Lotfi; Baranton, Stève; Napporn, Teko Wilhelmin; Morais, Cláudia; Léger, Jean-Michel; Ghorbel, Abdelhamid

    2013-11-01

    Hydrogenotitanates nanotubes (HTNs) are prepared from TiO2 powder via hydrothermal processing in 11.25 M NaOH aq. The reaction temperature is 130 °C for 20 h. Afterward a heat treatment is done during 2 h at 500 °C in air, to obtain calcined HTNs (HTNs-cal). The structural change on the molecular TiO2 during the hydrothermal treatment is investigated in detail by various analytic techniques such as XRD and TEM, which reveal that the crystal structure of the HTNs materials is similar to that of H2Ti2O5·H2O nanotubes with 160 nm in length and 10 nm in diameter. Nitrogen adsorption-desorption isotherms indicate that synthesized solids are mesoporous materials with a multiwalled nanotubular structure and high specific surface area. Platinum nanoparticles are deposited on the HTNs by the impregnation method for a total noble metal loading of 10 wt%. The electrocatalytic activity of these electrocatalysts is evaluated by cyclic voltammetry in acid medium. Typical CO stripping voltammetry in acidic solutions is investigated. The results demonstrate that the HTNs can greatly enhance the catalytic activity of Pt for methanol oxidation. The CO stripping test shows that the Pt/HTNs can shift the CO oxidation potential to lower direction than Pt/C (XC72) and Pt/HTNs-cal catalysts.

  8. Activation of catalysts for synthesizing methanol from synthesis gas

    DOEpatents

    Blum, David B.; Gelbein, Abraham P.

    1985-01-01

    A method for activating a methanol synthesis catalyst is disclosed. In this method, the catalyst is slurried in an inert liquid and is activated by a reducing gas stream. The activation step occurs in-situ. That is, it is conducted in the same reactor as is the subsequent step of synthesizing methanol from a methanol gas stream catalyzed by the activated catalyst still dispersed in a slurry.

  9. Pressure Effects on Combustion of Methanol and Methanol-Docecanol Droplets

    NASA Technical Reports Server (NTRS)

    Okai, K.; Ono, Y.; Muriue, O.; Tsue, M.; Kono, M.; Sato, J.; Dietrich, D. L.; Williams, F. A.

    1999-01-01

    The objective of this research is to improve understanding of the combustion of binary fuel mixtures in the vicinity of the critical point. Fiber-supported single droplets and two-droplet arrays of methanol and of mixtures of methanol and 1-dodecanol, initially 0.9 mm in diameter, were burned in room-temperature air at pressures from 0.1 MPa to 9.0 MPa in the NASA Lewis 2.2-second drop tower. The work is a continuation of a collaborative Japan-US research effort designed to increase knowledge of high-pressure combustion of fuel sprays, relevant to application in propulsive and power-production devices such as Diesel engines. Some previous publications from this cooperative program may be cited. All of the previous experiments concerned alkanes and alkane mixtures. The new research reported here addresses alcohols and alcohol mixtures, to ascertain the degree to which previous results for alkanes extend to alcohols. There have been many previous experimental studies of methanol droplet combustion and a few of alcohol mixtures, but not at the high pressures of interest here. There is some experimental information on methanol droplet combustion at elevated pressure but none on the alcohol mixtures extending to critical pressures, as in the present study.

  10. Exoemission accompanying the decomposition of methanol on zinc oxide

    NASA Astrophysics Data System (ADS)

    Krylova, I. V.

    2008-09-01

    The electronic phenomena accompanying the adsorption and dehydrogenation of methanol on zinc oxide were studied using the method of exoemission of negative charges. Postemission excited from ZnO by an electron beam was found to be suppressed by the adsorption of methanol vapor, which exhibited electron acceptor properties. Subsequent heating to temperatures close to the temperature of the beginning of methanol decomposition increased the intensity of exoemission, which was evidence of the participation of emission centers (Oδ-) in dehydrogenation. A possible mechanism of methanol decomposition with the participation of surface V s hole centers (Oδ-) of zinc oxide was suggested.

  11. [Extraction of alpha-cypermethrin from aqueous methanol solutions].

    PubMed

    Shormanov, V K; Chigareva, E N; Belousova, O V

    2010-01-01

    Alpha cypermethrin was extracted from aqueous methanol solutions using hydrophobic organic solvents. The efficiency of extraction was shown to depend on the chemical nature of the solvent, the water to methanol ratio, and saturation of the aqueous methanol layer with an electrolyte. Optimal extraction of alpha-cypermethrin was achieved using toluene as the solvent under desalinization conditions. The extraction factor for the removal of the sought amount of alpha-cypermethrin from the water-methanol solution (4:1) using various solvents was calculated. PMID:20734789

  12. Evaluation of composite membranes for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Li, X.; Roberts, E. P. L.; Holmes, S. M.

    The performance of direct methanol fuel cells (DMFCs) can be significantly affected by the transport of methanol through the membrane, depolarising the cathode. In this paper, the literature on composite membranes that have been developed for reduction of methanol crossover in DMFCs is reviewed. While such membranes can be effective in reducing methanol permeability, this is usually combined with a reduction in proton conductivity. Measurements of methanol permeability and proton conductivity are relatively straightforward, and these parameters (or a membrane 'selectivity' based on the ratio between them) are often used to characterize DMFC membranes. However, we have carried out one-dimensional simulations of DMFC performance for a wide range of membrane properties, and the results indicate that DMFC performance is normally either limited by methanol permeability or proton conductivity. Thus use of a 'selectivity' is not appropriate for comparison of membrane materials, and results from the model can be used to compare different membranes. The results also show that Nafion ® 117 has an optimum thickness, where DMFC performance is equally limited by both methanol permeability and proton conductivity. The model also indicates that new composite membranes based on Nafion ® can only offer significant improvement in DMFC performance by enabling operation with increased methanol concentration in the fuel. A number of composite membrane materials that have been reported in the literature are shown to deliver significant reduction in DMFC performance due to reduced proton conductivity, although improved performance at high methanol concentration may be possible.

  13. Biological Methanol Production by a Type II Methanotroph Methylocystis bryophila.

    PubMed

    Patel, Sanjay K S; Mardina, Primata; Kim, Sang-Yong; Lee, Jung-Kul; Kim, In-Won

    2016-04-28

    Methane (CH₄) is the most abundant component in natural gas. To reduce its harmful environmental effect as a greenhouse gas, CH₄ can be utilized as a low-cost feed for the synthesis of methanol by methanotrophs. In this study, several methanotrophs were examined for their ability to produce methanol from CH₄; including Methylocella silvestris, Methylocystis bryophila, Methyloferula stellata, and Methylomonas methanica. Among these methanotrophs, M. bryophila exhibited the highest methanol production. The optimum process parameters aided in significant enhancement of methanol production up to 4.63 mM. Maximum methanol production was observed at pH 6.8, 30°C, 175 rpm, 100 mM phosphate buffer, 50 mM MgCl₂ as a methanol dehydrogenase inhibitor, 50% CH₄ concentration, 24 h of incubation, and 9 mg of dry cell mass ml(-1) inoculum load, respectively. Optimization of the process parameters, screening of methanol dehydrogenase inhibitors, and supplementation with formate resulted in significant improvements in methanol production using M. bryophila. This report suggests, for the first time, the potential of using M. bryophila for industrial methanol production from CH₄. PMID:26838340

  14. Standardized treatment of severe methanol poisoning with ethanol and hemodialysis

    SciTech Connect

    Ekins, B.R.; Rollins, D.E.; Duffy, D.P.; Gregory, M.C.

    1985-03-01

    Seven patients with methanol poisoning were treated with ethanol, hemodialysis and supportive measures. The interval between ingestion and initiation of ethanol therapy varied from 3 to 67 hours and from ingestion to dialysis from 9 to 93 hours. All patients survived, but one had permanent visual impairment. A 10% ethanol solution administered intravenously is a safe and effective antidote for severe methanol poisoning. Ethanol therapy is recommended when plasma methanol concentrations are higher than 20 mg per dl, when ingested doses are greater than 30 ml and when there is evidence of acidosis or visual abnormalities in cases of suspected methanol poisoning. 13 references, 1 figure, 2 table.

  15. Methanol production from eucalyptus wood chips. Attachment IV. Health and safety aspects of the eucalypt biomass to methanol energy system

    SciTech Connect

    Fishkind, H.H.

    1982-06-01

    The basic eucalyptus-to-methanol energy process is described and possible health and safety risks are identified at all steps of the process. The toxicology and treatment for exposure to these substances are described and mitigating measures are proposed. The health and safety impacts and risks of the wood gasification/methanol synthesis system are compared to those of the coal liquefaction and conversion system. The scope of this report includes the health and safety risks of workers (1) in the laboratory and greenhouse, where eucalyptus seedlings are developed, (2) at the biomass plantation, where these seedlings are planted and mature trees harvested, (3) transporting these logs and chips to the refinery, (4) in the hammermill, where the logs and chips will be reduced to small particles, (5) in the methanol synthesis plant, where the wood particles will be converted to methanol, and (6) transporting and dispensing the methanol. Finally, the health and safety risks of consumers using methanol is discussed.

  16. X-ray photodesorption from methanol ice

    NASA Astrophysics Data System (ADS)

    Andrade, D. P. P.; Rocco, M. L. M.; Boechat-Roberty, H. M.

    2010-12-01

    The abundances of molecules and ions depend on the mechanisms of their formation and destruction that can occur both in the gas phase and in the condensed phase on grain surfaces. Photodesorption of grain surface species may explain the relative high abundances of gaseous neutral or ionic species detected in cold environments. X-ray photons from young stars are able to penetrate cold and dense regions inside protoplanetary discs, leading to molecular dissociation and desorption of photo-products from icy molecules on grain mantles. This paper aims to experimentally investigate the contribution of ion desorption from methanol ice stimulated by soft X-rays for producing chemically active ions in protoplanetary discs. The measurements were carried out at the Brazilian synchrotron light source (LNLS), using X-ray photons at the methanol O1s resonance energy (537 eV). Some possible pathways for the H- and O- formation from singly charged desorbed ions are suggested. The photodesorption yields for positive and negative ions were determined and compared with previous results obtained using different ionization agents, such as electrons, heavy ions and photons at different energies. We also correlate our results to the ion production in protoplanetary discs.

  17. Artificial photosynthesis - CO2 towards methanol

    NASA Astrophysics Data System (ADS)

    Nazimek, D.; Czech, B.

    2011-03-01

    The new insight into the problem of carbon dioxide utilization into valuable compound - methanol and then its transformation into fuel is presented. Because the highly endothermic requirements of the reaction of CO2 hydrogenation a photocatalytic route is applied. Combining of the two reactions: water splitting and CO2 hydrogenation using H2O as a source of hydrogen at the same time and place are proposed. The studies over modified TiO2 catalysts supported on Al2O3 were conducted in a self-designed circulated photocatalytic reaction system under at room temperature and constant pressure. Experimental results indicated that the highest yield of the photoreduction of CO2 with H2O were obtained using TiO2 with the active anatase phase modified by Ru and WO3 addition. The conversion was very high - almost 97% of CO2 was transformed mainly into methanol (14%vol.) and into small amount of formic and acetic acid and ester.

  18. Te/Pt nanonetwork modified carbon fiber microelectrodes for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Tsai, Hsiang-Yu; Shih, Zih-Yu; Lin, Zong-Hong; Chang, Huan-Tsung

    2013-05-01

    Te/Pt nanonetwork-decorated carbon fiber microelectrodes (CFMEs) have been fabricated and employed as anodic catalysts in a direct methanol fuel cell (DMFC). Te nanowires were prepared from tellurite ions (TeO32-) through a seed-mediated growth process and were deposited onto CFMEs to form three-dimensional Te nanonetworks. The Te nanonetworks then acted as a framework and reducing agent to reduce PtCl62- ions to form Te/Pt through a galvanic replacement reaction, leading to the formation of Te/PtCFMEs. By controlling the reaction time, the amount of Pt and morphology of Te/Pt nanonetworks were controlled, leading to various degrees of electrocatalytic activity. The Te/PtCFMEs provide a high electrochemical active surface area (129.2 m2 g-1), good catalytic activity (1.2 A mg-1), high current density (20.0 mA cm-2), long durability, and tolerance toward the poisoning species for methanol oxidation in 0.5 M sulfuric acid containing 1 M methanol. We have further demonstrated an enhanced current density by separately using 3 and 5 Te/PtCFMEs. Our results show that the low-cost, stable, and effective Te/PtCFMEs have great potential in the fabrication of cost-effective fuel cells.

  19. Te/Pt nanonetwork modified carbon fiber microelectrodes for methanol oxidation.

    PubMed

    Tsai, Hsiang-Yu; Shih, Zih-Yu; Lin, Zong-Hong; Chang, Huan-Tsung

    2013-05-17

    Te/Pt nanonetwork-decorated carbon fiber microelectrodes (CFMEs) have been fabricated and employed as anodic catalysts in a direct methanol fuel cell (DMFC). Te nanowires were prepared from tellurite ions (TeO3(2-)) through a seed-mediated growth process and were deposited onto CFMEs to form three-dimensional Te nanonetworks. The Te nanonetworks then acted as a framework and reducing agent to reduce PtCl6(2-) ions to form Te/Pt through a galvanic replacement reaction, leading to the formation of Te/PtCFMEs. By controlling the reaction time, the amount of Pt and morphology of Te/Pt nanonetworks were controlled, leading to various degrees of electrocatalytic activity. The Te/PtCFMEs provide a high electrochemical active surface area (129.2 m(2) g(-1)), good catalytic activity (1.2 A mg(-1)), high current density (20.0 mA cm(-2)), long durability, and tolerance toward the poisoning species for methanol oxidation in 0.5 M sulfuric acid containing 1 M methanol. We have further demonstrated an enhanced current density by separately using 3 and 5 Te/PtCFMEs. Our results show that the low-cost, stable, and effective Te/PtCFMEs have great potential in the fabrication of cost-effective fuel cells. PMID:23579734

  20. Support effect in oxide catalysis: methanol oxidation on vanadia/ceria.

    PubMed

    Kropp, Thomas; Paier, Joachim; Sauer, Joachim

    2014-10-15

    Density functional theory is used for periodic models of monomeric vanadia species deposited on the CeO2(111) surface to study dissociative adsorption of methanol and its subsequent dehydrogenation to formaldehyde. Dispersion-corrected PBE+U calculations are performed and compared with HSE and B3LYP results. Dissociative adsorption of methanol at different sites on VO2·CeO2(111) is highly exothermic with adsorption energies of 1.8 to 1.9 eV (HSE+D). Two relevant pathways for desorption of formaldehyde are found with intrinsic barriers for the redox step of 1.0 and 1.4 eV (HSE+D). The calculated desorption temperatures (370 and 495 K) explain the peaks observed in temperature-programmed desorption experiments. Different sites of the supported catalyst system are involved in the two pathways: (i) methanol can chemisorb on the CeO2 surface filling a so-called pseudovacancy and the H atom is transferred to an V-O-Ce interphase bond or (ii) CH3OH may chemisorb at the V-O-Ce interphase bond and form a V-OCH3 species from which H is transferred to the ceria surface, providing evidence for true cooperativity. In both cases, ceria is directly involved in the redox process, as two electrons are accommodated in Ce f states forming two Ce(3+) ions whereas vanadium remains fully oxidized (V(5+)). PMID:25275568

  1. Methanol and ethanol electroxidation using Pt electrodes prepared by the polymeric precursor method

    NASA Astrophysics Data System (ADS)

    Freitas, R. G.; Santos, M. C.; Oliveira, R. T. S.; Bulhões, L. O. S.; Pereira, E. C.

    The results of methanol and ethanol oxidation in acidic medium on Pt electrodes deposited on Ti substrate using the Pechini method are presented. In this route the metallic salts were dissolved in a mixture of ethylene glycol (EG) and citric acid (CA) forming a polyester network, which is painted onto a Ti substrate and then heat treated at 600 °C in order to obtain the metallic Pt thin films. The X-ray diffraction analysis showed the presence of Pt pattern peaks. The presence of the (4 2 0) plane in a higher amount compared to bulk Pt was observed and the peak position of the planes (2 0 0) and (4 2 0) were displaced by approximately -0.3°. The roughness data presented almost the same values for Ti and Ti/Pt. The electrochemical characterization of the electrodes in 0.1 M HClO 4 showed a typical Pt voltammetric profile. Although the voltammetric profiles of Ti/Pt and bulk Pt were the same, the electrocatalytical behavior for methanol oxidation showed an enhancement of the oxidation current density peak, which increased by 170% compared to bulk platinum. Although, the current density peak for ethanol oxidation on Ti/Pt is smaller than for Pt, it began at 0.11 V less positive than the same process on bulk Pt. The chronoamperometric experiments for methanol and ethanol oxidation on Ti/Pt increased by almost 934% and 440%, respectively, compared with Pt bulk.

  2. Water-methanol separation with carbon nanotubes and electric fields

    NASA Astrophysics Data System (ADS)

    Winarto, Affa; Takaiwa, Daisuke; Yamamoto, Eiji; Yasuoka, Kenji

    2015-07-01

    Methanol is used in various applications, such as fuel for transportation vehicles, fuel cells, and in chemical industrial processes. Conventionally, separation of methanol from aqueous solution is by distillation. However, this method consumes a large amount of energy; hence development of a new method is needed. In this work, molecular dynamics simulations are performed to investigate the effect of an electric field on water-methanol separation by carbon nanotubes (CNTs) with diameters of 0.81 to 4.07 nm. Without an electric field, methanol molecules fill the CNTs in preference to water molecules. The preference of methanol to occupy the CNTs over water results in a separation effect. This separation effect is strong for small CNT diameters and significantly decreases with increasing diameter. In contrast, under an electric field, water molecules strongly prefer to occupy the CNTs over methanol molecules, resulting in a separation effect for water. More interestingly, the separation effect for water does not decrease with increasing CNT diameter. Formation of water structures in CNTs induced by an electric field has an important role in the separation of water from methanol.Methanol is used in various applications, such as fuel for transportation vehicles, fuel cells, and in chemical industrial processes. Conventionally, separation of methanol from aqueous solution is by distillation. However, this method consumes a large amount of energy; hence development of a new method is needed. In this work, molecular dynamics simulations are performed to investigate the effect of an electric field on water-methanol separation by carbon nanotubes (CNTs) with diameters of 0.81 to 4.07 nm. Without an electric field, methanol molecules fill the CNTs in preference to water molecules. The preference of methanol to occupy the CNTs over water results in a separation effect. This separation effect is strong for small CNT diameters and significantly decreases with increasing

  3. Characterization of Polyethylene-Graft-Sulfonated Polyarylsulfone Proton Exchange Membranes for Direct Methanol Fuel Cell Applications

    PubMed Central

    Kim, Hyung Kyu; Zhang, Gang; Nam, Changwoo; Chung, T.C. Mike

    2015-01-01

    This paper examines polymer film morphology and several important properties of polyethylene-graft-sulfonated polyarylene ether sulfone (PE-g-s-PAES) proton exchange membranes (PEMs) for direct methanol fuel cell applications. Due to the extreme surface energy differences between a semi-crystalline and hydrophobic PE backbone and several amorphous and hydrophilic s-PAES side chains, the PE-g-s-PAES membrane self-assembles into a unique morphology, with many proton conductive s-PAES channels embedded in the stable and tough PE matrix and a thin hydrophobic PE layer spontaneously formed on the membrane surfaces. In the bulk, these membranes show good mechanical properties (tensile strength >30 MPa, Young’s modulus >1400 MPa) and low water swelling (λ < 15) even with high IEC >3 mmol/g in the s-PAES domains. On the surface, the thin hydrophobic and semi-crystalline PE layer shows some unusual barrier (protective) properties. In addition to exhibiting higher through-plane conductivity (up to 160 mS/cm) than in-plane conductivity, the PE surface layer minimizes methanol cross-over from anode to cathode with reduced fuel loss, and stops the HO• and HO2• radicals, originally formed at the anode, entering into PEM matrix. Evidently, the thin PE surface layer provides a highly desirable protecting layer for PEMs to reduce fuel loss and increase chemical stability. Overall, the newly developed PE-g-s-PAES membranes offer a desirable set of PEM properties, including conductivity, selectivity, mechanical strength, stability, and cost-effectiveness for direct methanol fuel cell applications. PMID:26690232

  4. On the Non-Equilibrium Population Distribution of E-Methanol in Dark Clouds

    NASA Astrophysics Data System (ADS)

    Wollman, Emma

    2007-12-01

    The goal of this project was to determine the typical distribution of rotational level populations in the k=0 ladder of E-methanol in dark clouds in order to provide another observational test for theoretical models of pumping. We used our own observations of several sources with the 12-m ARO telescope on Kitt Peak as well as the published observational results by Slysh et al. (1999). The relative level populations (excitation temperatures) were determined from the measured intensity ratios of a series of the J(0)-J(-1) transitions of E-methanol under the assumption of spontaneous, optically thin emission. We observed the J(0)-J(-1) lines in six sources: W75N, DR21N, DR21, and three positions at DR21OH. The J=1 to J=5 lines were observed for all sources and the J=7 line was observed for W75N, DR21N, and one position in DR21OH. We also used Slysh et al.'s results for the J=1 through 4 lines in 52 sources, for the J=5 line in 50 sources, for the J=6 line in 15 sources, and for the J=7 and 8 lines in 2 sources. We determined the excitation temperatures of the involved levels in the k=0 ladder relative to the 1(0) level for each source and averaged the results over the sources. The average excitation temperatures demonstrate strong evidence of overcooling in the k=0 ladder - the excitation temperature increases linearly with increasing energy, from 8 K to 35 K. Our observations confirm this tendency of overcooling. We will discuss the agreement of these results with the predictions of the current models of methanol pumping. The author thanks the technical staff of the 12-m ARO telescope for help with the observations. This project was supported by the NSF/REU grant AST-0354056 and the Nantucket Maria Mitchell Association.

  5. Metabolic Engineering of Corynebacterium glutamicum for Methanol Metabolism

    PubMed Central

    Witthoff, Sabrina; Schmitz, Katja; Niedenführ, Sebastian; Nöh, Katharina; Noack, Stephan

    2015-01-01

    Methanol is already an important carbon feedstock in the chemical industry, but it has found only limited application in biotechnological production processes. This can be mostly attributed to the inability of most microbial platform organisms to utilize methanol as a carbon and energy source. With the aim to turn methanol into a suitable feedstock for microbial production processes, we engineered the industrially important but nonmethylotrophic bacterium Corynebacterium glutamicum toward the utilization of methanol as an auxiliary carbon source in a sugar-based medium. Initial oxidation of methanol to formaldehyde was achieved by heterologous expression of a methanol dehydrogenase from Bacillus methanolicus, whereas assimilation of formaldehyde was realized by implementing the two key enzymes of the ribulose monophosphate pathway of Bacillus subtilis: 3-hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase. The recombinant C. glutamicum strain showed an average methanol consumption rate of 1.7 ± 0.3 mM/h (mean ± standard deviation) in a glucose-methanol medium, and the culture grew to a higher cell density than in medium without methanol. In addition, [13C]methanol-labeling experiments revealed labeling fractions of 3 to 10% in the m + 1 mass isotopomers of various intracellular metabolites. In the background of a C. glutamicum Δald ΔadhE mutant being strongly impaired in its ability to oxidize formaldehyde to CO2, the m + 1 labeling of these intermediates was increased (8 to 25%), pointing toward higher formaldehyde assimilation capabilities of this strain. The engineered C. glutamicum strains represent a promising starting point for the development of sugar-based biotechnological production processes using methanol as an auxiliary substrate. PMID:25595770

  6. Methanol synthesis studies using in situ FTIR spectroscopy

    SciTech Connect

    Edwards, J.F.; Schrader, G.L.

    1986-04-01

    Future demand for methanol could expand multifold as coal assumes a greater proportion of energy needs. Although methanol is presently economically unattractive as a substitute for gasoline, the State of California has begun a program to operate 550 vehicles with methanol because it produces fewer pollutants than gasoline. More than 300 privately-owned vehicles, converted by Future Fuels of America, Inc., are running on methanol in the Sacramento, San Francisco, and Los Angeles areas. Even if gasoline remains the major automotive fuel into the next century, methanol production could increase significantly if technology such as Mobil Oil's M-Gasoline process is used to produce gasoline. This process uses a zeolite catalyst (ZSM-5) to convert methanol into a blend of paraffins, cycloparaffins, and aromatics with a research octane number of 93, i.e., an unleaded premium gasoline. New Zealand will use this technology to convert natural gas into approximately 12,500 bbl/d of gasoline. Utilities using coal gasification technology for power generation will probably also manufacture methanol. During off-peak hours, part of the syngas would be converted to methanol and stored; during peak hours, the methanol would be used as fuel in gas turbines to meet the high electrical demand. And finally, there is great potential for future development of methanol as a primary feedstock in the chemical industry, especially as supplies of ethylene and propylene decrease. An example is the manufacture of acetic acid, where methanol has replaced ethylene as the primary feedstock in new technologies by BASF and Monsanto.

  7. Spontaneous Pneumomediastinum Associated with Sex

    PubMed Central

    Flatman, Sam; Morrison, Edwin; Elahi, Maqsood

    2010-01-01

    We present a case of spontaneous pneumomediastinum (SPM) associated with sex. A 22-year-old lesbian with a history of asthma, cigarette and illicit drug smoking was diagnosed with a SPM after developing chest pain and dyspnoea in the context of performing oral sex. The main finding was subcutaneous emphysema involving the neck. SPM is an important differential diagnosis for chest pain in young people. It is a benign condition and diagnosis mainly limited to chest X-ray with increased incidence in asthmatics, smokers and drug addicts. PMID:22470723

  8. Turbulent excitation of spontaneous reconnection

    NASA Technical Reports Server (NTRS)

    Deeds, D.; Van Hoven, G.

    1989-01-01

    The long-term nonlinear evolution of a tearing-mode-unstable sheared-field plasma in a turbulent environment is explored. Two different physical configurations are modeled, and a different computational system is used for each. Results of both sets of calculations show that magnetic tearing arises spontaneously provided that the initial turbulence energy level is below the natural saturation level of the tearing instability. The relationship between these results and those of previous calculations are briefly discussed, concluding that there are no significant unexplainable disagreements.

  9. Acute spontaneous tumor lysis syndrome.

    PubMed

    Jasek, A M; Day, H J

    1994-10-01

    An 83-year-old woman with no previous history of malignancy was admitted to our institution with weakness and anemia and subsequently developed acute tumor lysis syndrome secondary to newly diagnosed Burkitt's leukemia/lymphoma. This syndrome has been previously described in patients with hematologic malignancies; however, its development has been related to the administration of chemotherapy, steroids, or radiotherapy. The spontaneous occurrence of tumor lysis syndrome has not been previously reported; however, Cohen et al. [Am J Med 58:486-491, 1980] report 8 of 37 patients with "clinically insignificant pretreatment derangements" of serum potassium, phosphate, and calcium. PMID:8092128

  10. Nano-Engineered Catalysts for Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Myung, Nosang; Narayanan, Sekharipuram; Wiberg, Dean

    2008-01-01

    Nano-engineered catalysts, and a method of fabricating them, have been developed in a continuing effort to improve the performances of direct methanol fuel cells as candidate power sources to supplant primary and secondary batteries in a variety of portable electronic products. In order to realize the potential for high energy densities (as much as 1.5 W h/g) of direct methanol fuel cells, it will be necessary to optimize the chemical compositions and geometric configurations of catalyst layers and electrode structures. High performance can be achieved when catalyst particles and electrode structures have the necessary small feature sizes (typically of the order of nanometers), large surface areas, optimal metal compositions, high porosity, and hydrophobicity. The present method involves electrodeposition of one or more catalytic metal(s) or a catalytic-metal/polytetrafluoroethylene nanocomposite on an alumina nanotemplate. The alumina nanotemplate is then dissolved, leaving the desired metal or metal/polytetrafluoroethylene-composite catalyst layer. Unlike some prior methods of making fine metal catalysts, this method does not involve processing at elevated temperature; all processing can be done at room temperature. In addition, this method involves fewer steps and is more amenable to scaling up for mass production. Alumina nanotemplates are porous alumina membranes that have been fabricated, variously, by anodizing either pure aluminum or aluminum that has been deposited on silicon by electronbeam evaporation. The diameters of the pores (7 to 300 nm), areal densities of pores (as much as 7 x 10(exp 10)sq cm), and lengths of pores (up to about 100 nm) can be tailored by selection of fabrication conditions. In a given case, the catalytic metal, catalytic metal alloy, or catalytic metal/ polytetrafluoroethylene composite is electrodeposited in the pores of the alumina nanotemplate. The dimensions of the pores, together with the electrodeposition conditions

  11. Spontaneous recovery in dynamical networks

    NASA Astrophysics Data System (ADS)

    Majdandzic, Antonio; Podobnik, Boris; Buldyrev, Sergey V.; Kenett, Dror Y.; Havlin, Shlomo; Eugene Stanley, H.

    2014-01-01

    Much research has been carried out to explore the structural properties and vulnerability of complex networks. Of particular interest are abrupt dynamic events that cause networks to irreversibly fail. However, in many real-world phenomena, such as brain seizures in neuroscience or sudden market crashes in finance, after an inactive period of time a significant part of the damaged network is capable of spontaneously becoming active again. The process often occurs repeatedly. To model this marked network recovery, we examine the effect of local node recoveries and stochastic contiguous spreading, and find that they can lead to the spontaneous emergence of macroscopic `phase-flipping' phenomena. As the network is of finite size and is stochastic, the fraction of active nodes z switches back and forth between the two network collective modes characterized by high network activity and low network activity. Furthermore, the system exhibits a strong hysteresis behaviour analogous to phase transitions near a critical point. We present real-world network data exhibiting phase switching behaviour in accord with the predictions of the model.

  12. Surfactant therapy and spontaneous diuresis.

    PubMed

    Bhat, R; John, E; Diaz-Blanco, J; Ortega, R; Fornell, L; Vidyasagar, D

    1989-03-01

    The effect of artificial surfactant therapy on renal function and the onset of spontaneous diuresis was prospectively evaluated in 19 infants with hyaline membrane disease in a double-blind, controlled study. Twelve infants were in the surfactant group; seven infants received placebo (0.9% saline solution). There was no difference in the time of onset of spontaneous diuresis (as defined by output greater than or equal to 80% of intake). The glomerular filtration rate, determined by endogenous creatinine clearance, was also similar in the surfactant- and placebo-treated infants during the first 3 days of life. The fractional excretion of sodium was significantly higher in the placebo group at 24 hours and 36 hours. Infants in the placebo group had a higher negative sodium balance than those in the surfactant group. Ventilatory status improved significantly soon after surfactant treatment, as evidenced by improvement in the alveolar/arterial oxygen pressure ratio and by a lower mean airway pressure. These data suggest that ventilatory status can be improved without diuresis; the factors that regulate diuresis are multiple and not fully understood. PMID:2646416

  13. Spontaneous apoptosis in human thymocytes.

    PubMed Central

    Tiso, M.; Gangemi, R.; Bargellesi Severi, A.; Pizzolitto, S.; Fabbi, M.; Risso, A.

    1995-01-01

    Apoptosis seems to be involved in different stages of immune cell development. In particular, experimental evidence suggests that it is a major form of cell death in the thymus. The present analysis of human thymocytes reveals that a fraction of these cells, cultured in vitro, undergoes spontaneous apoptosis. This observation is based both on molecular (DNA fragmentation) and morphological (electron microscopic) investigations of the cells. The apoptotic thymocytes are CD3- or CD3lo, CD4lo, and CD8lo and do not express Bcl-2 protein. Furthermore, thymocytes die by apoptosis when exposed to pharmacological stimuli, such as tumor necrosis factor-alpha, dexamethasone, ATP, or Ca++ ionophore. Thus the apoptotic machinery in thymocytes can be triggered by an imbalance in growth factors in the in vitro culture media and can be modulated by various biochemical signals. The process of spontaneous apoptosis is independent of mRNA or protein synthesis, as actinomycin D and cycloheximide fail to inhibit this phenomenon. Furthermore, apoptosis seems to require active oxidative phosphorylation, as it is prevented by incubation of the cells with inhibitors of the respiratory chain. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 Figure 7 Figure 8 PMID:7639336

  14. Crows spontaneously exhibit analogical reasoning.

    PubMed

    Smirnova, Anna; Zorina, Zoya; Obozova, Tanya; Wasserman, Edward

    2015-01-19

    Analogical reasoning is vital to advanced cognition and behavioral adaptation. Many theorists deem analogical thinking to be uniquely human and to be foundational to categorization, creative problem solving, and scientific discovery. Comparative psychologists have long been interested in the species generality of analogical reasoning, but they initially found it difficult to obtain empirical support for such thinking in nonhuman animals (for pioneering efforts, see [2, 3]). Researchers have since mustered considerable evidence and argument that relational matching-to-sample (RMTS) effectively captures the essence of analogy, in which the relevant logical arguments are presented visually. In RMTS, choice of test pair BB would be correct if the sample pair were AA, whereas choice of test pair EF would be correct if the sample pair were CD. Critically, no items in the correct test pair physically match items in the sample pair, thus demanding that only relational sameness or differentness is available to support accurate choice responding. Initial evidence suggested that only humans and apes can successfully learn RMTS with pairs of sample and test items; however, monkeys have subsequently done so. Here, we report that crows too exhibit relational matching behavior. Even more importantly, crows spontaneously display relational responding without ever having been trained on RMTS; they had only been trained on identity matching-to-sample (IMTS). Such robust and uninstructed relational matching behavior represents the most convincing evidence yet of analogical reasoning in a nonprimate species, as apes alone have spontaneously exhibited RMTS behavior after only IMTS training. PMID:25532894

  15. [Spontaneous fracture: a potential clinical concern].

    PubMed

    Lin, Chia-Huei; Tzeng, Wen-Chii; Li, Shu-Yen; Liao, Ru-Wen; Chiang, Shang-Lin; Chiang, Li-Chi

    2013-08-01

    Spontaneous fracture is an issue of increasing concern in clinical care. However, this topic has received only limited attention in nursing research. Gaps in understanding related to spontaneous fractures may increase medical-legal risks faced by frontline care nurses, exacerbate nursing pressures, and serve as a disincentive to remain in the already understaffed nursing profession. This article reviews previous research on spontaneous fractures to determine the epidemiological causes of clinical spontaneous fracture and identify effective prevention strategies. We hope this paper may increase clinical practitioner and expert awareness of spontaneous fractures; help establish a screening mechanism to identify high risk spontaneous fracture patients; and help nurses develop and implement proactive prevention / treatment strategies to strengthen awareness of this topic among patients and their families. PMID:23922095

  16. A Case of Multiple Spontaneous Keloid Scars

    PubMed Central

    Jfri, Abdulhadi; Rajeh, Nawal; Karkashan, Eman

    2015-01-01

    Keloid scars result from an abnormal healing response to cutaneous injury or inflammation that extends beyond the borders of the original wound. Spontaneous keloid scars forming in the absence of any previous trauma or surgical procedure are rare. Certain syndromes have been associated with this phenomenon, and few reports have discussed the evidence of single spontaneous keloid scar, which raises the question whether they are really spontaneous. Here, we present a 27-year-old mentally retarded single female with orbital hypertelorism, broad nasal bridge, repaired cleft lip and high-arched palate who presented with progressive multiple spontaneous keloid scars in different parts of her body which were confirmed histologically by the presence of typical keloidal collagen. This report supports the fact that keloid scars can appear spontaneously and are possibly linked to a genetic factor. Furthermore, it describes a new presentation of spontaneous keloid scars in the form of multiple large lesions in different sites of the body. PMID:26351423

  17. Methanol Oxidation Using Ozone on Titania-Supported Vanadium Catalyst

    EPA Science Inventory

    Ozone-enhanced catalytic oxidation of methanol has been conducted at mild temperatures of 100 to 250NC using V2O5/TiO2 catalyst prepared by the sol-gel method. The catalyst was characterized using XRD, surface area measurements, and temperature-programmed desorption of methanol. ...

  18. Corrosion of aluminum alloys by chlorinated hydrocarbon/methanol mixtures

    NASA Technical Reports Server (NTRS)

    De Forest, W. S.

    1967-01-01

    Laboratory investigations show that water-free mixtures of Freon MF /trichlorofluoromethane/ and methanol vigorously attack aluminum alloys which contain significant amounts of copper. Freon MF alone did not attack the aluminum alloys at room temperature. Pure methanol had only a slight corrosive effect on the alloy.

  19. Aerobic and anaerobic growth of Paracoccus denitrificans on methanol.

    PubMed

    Bamforth, C W; Quayle, J R

    1978-10-01

    1. The dye-linked methanol dehydrogenase from Paracoccus denitrificans grown aerobically on methanol has been purified and its properties compared with similar enzymes from other bacteria. It was shown to be specific and to have high affinity for primary alcohols and formaldehyde as substrate, ammonia was the best activator and the enzyme could be linked to reduction of phenazine methosulphate. 2. Paracoccus denitrificans could be grown anaerobically on methanol, using nitrate or nitrite as electron acceptor. The methanol dehydrogenase synthesized under these conditions could not be differentiated from the aerobically-synthesized enzyme. 3. Activities of methanol dehydrogenase, formaldehyde dehydrogenase, formate dehydrogenase, nitrate reductase and nitrite reductase were measured under aerobic and anaerobic growth conditions. 4. Difference spectra of reduced and oxidized cytochromes in membrane and supernatant fractions of methanol-grown P. denitrificans were measured. 5. From the results of the spectral and enzymatic analyses it has been suggested that anaerobic growth on methanol/nitrate is made possible by reduction of nitrate to nitrite using electrons derived from the pyridine nucleotide-linked dehydrogenations of formaldehyde and formate, the nitrite so produced then functioning as electron acceptor for methanol dehydrogenase via cytochrome c and nitrite reductase. PMID:718372

  20. DOES INHALATION OF METHANOL VAPOR AFFECT HUMAN NEUROBEHAVIOR?

    EPA Science Inventory

    In this pilot study, Dr. Mary Cook and colleagues exposed 12 young male volunteers to either filtered air or methanol vapor (192 parts per million) for 75 minutes. (This concentration of methanol is estimated to approach the highest concentration that individuals might expe...

  1. Silver catalysts in the partial oxidation of methanol to formaldehyde

    SciTech Connect

    Devochkin, A.N.; Pestryakov, A.N.; Kurina, L.N.; Sakharov, A.A.

    1992-07-20

    A comparative study of the catalytic activity of supported (Ag/pumice, LNKh-M) and bulk (Ag{sub cryst}, SD, KS) catalysts for methanol oxidation was carried out. The effect of technological parameters on the partial oxidation of methanol was studied. The optimum conditions for conducting the process on the catalysts studied were determined. 5 refs., 1 tab.

  2. METHANOL: THE CURRENT STATUS OF ENVIRONMENTAL HEALTH ISSUES

    EPA Science Inventory

    Methanol has been a topic of interest both as an environmental pollutant and as a fuel. The Clean Air Act (CAA) includes methanol in a list of 189 toxic air pollutants that the U.S. Congress identified for special consideration in the 1990 CAA Amendments. In addition, growing i...

  3. Mobil plans methanol plant in Nigeria

    SciTech Connect

    Alperowicz, N.

    1992-08-12

    Mobil Chemical (Houston) is in discussions with Nigerian National Petroleum Corp. (NNPC; Lagos) on a joint venture methanol plant at Port Harcourt, Nigeria. The U.S. firm has invited process owners to submit proposals for a 1-million m.t./year unit and hopes to select the technology by the end of this year. Three proposals have been submitted: Lurgi, offering its own low-pressure process; John Brown/Davy, with the ICI process; and M.W. Kellogg, proposing its own technology. Shareholding in the joint venture is yet to be decided, but it is likely to be a 50/50 tie-up. Marketing of Mobil's share or of the entire tonnage would be handled by Mobil Petrochemical International (Brussels). The plant could be onstream in late 1996.

  4. Low temperature catalysts for methanol production

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1986-09-30

    A catalyst and process useful at low temperatures (below about 160 C) and preferably in the range 80--120 C used in the production of methanol from carbon monoxide and hydrogen are disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa-M(OAc)[sub 2] where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1--6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M = Ni and R = tertiary amyl). Mo(CO)[sub 6] is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  5. Low temperature catalyst system for methanol production

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.

    1984-04-20

    This patent discloses a catalyst and process useful at low temperatures (150/sup 0/C) and preferably in the range 80 to 120/sup 0/C used in the production of methanol from carbon monoxide and hydrogen. The catalyst components are used in slurry form and comprise (1) a complex reducing agent derived from the component structure NaH-ROH-M(OAc)/sub 2/ where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1 to 6 carbon atoms and (2) a metal carbonyl of a group VI (Mo, Cr, W) metal. For the first component, Nic is preferred (where M = Ni and R = tertiary amyl). For the second component, Mo(CO)/sub 6/ is preferred. The mixture is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  6. Spontaneous Pneumocephalus Associated with Pneumosinus Dilatans

    PubMed Central

    Lee, Jung-Sup; Kwon, Jeong-Taik; Suk, Jong-Sik

    2010-01-01

    The majority of cases of pneumocephalus are secondary to trauma or medical intervention. Spontaneous, non-traumatic pneumocephalus is an uncommon condition. Most cases of spontaneous pneumocephalus require surgery. However, if there is no evidence of infection or cerebrospinal fluid leak, bed rest and follow-up imaging is an alternative treatment. Herein, we report a 31-year-old man with spontaneous pneumocephalus associated with pneumosinus dilatans. PMID:20539803

  7. Spontaneous rupture of a splenotic nodule.

    PubMed Central

    Lanigan, D. J.

    1990-01-01

    A case is presented of spontaneous rupture of splenic tissue occurring 14 years after a splenectomy was carried out for trauma. Spontaneous rupture of a splenotic nodule has not previously been described and it may be added to the list of causes of spontaneous haemoperitoneum. The incidence and function of residual splenic tissue are briefly discussed and other causes of splenic rupture are outlined. PMID:2267217

  8. Methanol dimer formation drastically enhances hydrogen abstraction from methanol by OH at low temperature.

    PubMed

    Siebrand, Willem; Smedarchina, Zorka; Martínez-Núñez, Emilio; Fernández-Ramos, Antonio

    2016-08-10

    The kinetics of the reaction of methanol with hydroxyl radicals is revisited in light of the reported new kinetic data, measured in cold expansion beams. The rate constants exhibit an approximately 10(2)-fold increase when the temperature decreases from 200 to 50 K, a result that cannot be fully explained by tunneling, as we confirm by new calculations. These calculations also show that methanol dimers are much more reactive to hydroxyl than monomers and imply that a dimer concentration of about 30% of the equilibrium concentration can account quantitatively for the observed rates. The assumed presence of dimers is supported by the observation of cluster formation in these and other cold beams of molecules subject to hydrogen bonding. The calculations imply an important caveat with respect to the use of cold expansion beams for the study of interstellar chemistry. PMID:27479134

  9. Studies on Methanol Crossover in Liquid-Feed Direct Methanol Pem Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.

    1995-01-01

    The performance of liquid feed direct methanol fuel cells using various types of Nafion membranes as the solid polymer electrolyte have been studied. The rate of fuel crossover and electrical performance has been measured for cells with Nafion membranes of various thicknesses and equivalent weights. The crossover rate is found to decrease with increasing thickness and applied current. The dependence of crossover rate on current density can be understood in terms of a simple linear diffusion model which suggests that the crossover rate can be influenced by the electrode structure in addition to the membrane. The studies suggest that Nafion EW 1500 is a very promising alternate to Nafion EW 1100 for direct methanol fuel cells.

  10. Outdoor smog-chamber experiments: reactivity of methanol exhaust

    SciTech Connect

    Jeffries, H.E.; Sexton, K.G.; Holleman, M.S.

    1985-09-01

    The purpose of the report was to provide an experimental smog-chamber database especially designed to test photochemical kinetics mechanisms that would be used to assess the effects of methanol fuel use in automobiles. The mechanisms would be used in urban air-quality control models to investigate the advantages of large-scale use of methanol fuel in automobiles. The smog-chamber experiments were performed during three summer months. They have been added to the existing UNC database for photochemical mechanism validation and testing, bringing the total number of dual experiments in the database to over 400. Three different hydrocarbon mixtures were used: a 13-component mixture representing synthetic automobile exhaust; an 18-component mixture representing synthetic urban ambient hydrocarbons; and a 14-component mixture derived from the synthetic automobile exhaust by the addition of n-butane. Three different synthetic methanol-exhaust mixtures were used: 80% methanol/10% formaldehyde; and 100% methanol.

  11. Regulation of methanol utilisation pathway genes in yeasts

    PubMed Central

    Hartner, Franz S; Glieder, Anton

    2006-01-01

    Methylotrophic yeasts such as Candida boidinii, Hansenula polymorpha, Pichia methanolica and Pichia pastoris are an emerging group of eukaryotic hosts for recombinant protein production with an ever increasing number of applications during the last 30 years. Their applications are linked to the use of strong methanol-inducible promoters derived from genes of the methanol utilisation pathway. These promoters are tightly regulated, highly repressed in presence of non-limiting concentrations of glucose in the medium and strongly induced if methanol is used as carbon source. Several factors involved in this tight control and their regulatory effects have been described so far. This review summarises available data about the regulation of promoters from methanol utilisation pathway genes. Furthermore, the role of cis and trans acting factors (e.g. transcription factors, glucose processing enzymes) in the expression of methanol utilisation pathway genes is reviewed both in the context of the native cell environment as well as in heterologous hosts. PMID:17169150

  12. Adsorption of methanol in zeolite, gallosilicate and SAPO catalysts

    NASA Astrophysics Data System (ADS)

    Limtrakul, Jumras

    1995-04-01

    Methanol adsorption in zeolite, gallosilicate and silicoaluminophosphate (SAPO) catalysts has been investigated within the framework of ab initio molecular orbital calculations. Full optimization of all cluster models and their complexes has been carried out at the DZP/SCF level of theory. Physisorbed methanol and methoxonium cation complexed to the framework catalyst are found for SAPO catalysts, the latter complexes are observed only at high coverages, while only hydrogen-bonded physisorbed methanol complexes are obtained for gallosilicates and zeolitic catalysts. The conversion energy of the hydrogen-bonded physisorbed structure, H 3SiOHAl(OH) 2OPH 3/[CH 3OH] 2 to the methoxonium structure, H 3SiOAl(OH) 2OPH 3]/[CH 3OH 2+][CH 3OH], is about 6.69 kcal/mol. Comparison with hydrogen halides and related complexes of methanol shows that protonated SAPO/methanol is a very strong acid.

  13. Performance, methanol tolerance and stability of Fe-aminobenzimidazole derived catalyst for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Sebastián, David; Serov, Alexey; Artyushkova, Kateryna; Atanassov, Plamen; Aricò, Antonino S.; Baglio, Vincenzo

    2016-07-01

    Highly active and durable non-platinum group metals (non-PGM) catalyst based on iron-nitrogen-carbon (Fe-N-C) for the oxygen reduction reaction (ORR) derived from pyrolyzed Fe-aminobenzimidazole (Fe-ABZIM) was synthesized by sacrificial support method (SSM), and characterized by several physical-chemical techniques: scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller method and X-ray photoelectron spectroscopy. In half-cell electrochemical configuration, the Fe-ABZIM catalyst presented a significant improvement of ORR activity with respect to a recently reported non-PGM formulation based on Fe-aminoantipyrine, with an enhancement of half-wave potential of about 85 mV in O2-saturated sulfuric acid solution. To the moment, the gap with respect to a benchmark Pt/C catalyst was about 90 mV. The Fe-ABZIM catalyst showed a remarkably high tolerance to methanol, resulting in superior ORR performance compared to Pt/C at methanol concentrations higher than 0.02 M. In direct methanol fuel cell (DMFC) good performances were also obtained. A durability test (100 h) at 90 °C, feeding 5 M methanol, was carried out. A certain decrease of performance was recorded, amounting to -0.20 mW cm-2 h-1 at the very beginning of test and -0.05 mW cm-2 h-1 at the end. However, the Fe-ABZIM is more adequate than previously reported formulations in terms of both ORR activity and stability.

  14. SPONTANEOUS COAL COMBUSTION; MECHANISMS AND PREDICTION.

    USGS Publications Warehouse

    Herring, James R.; Rich, Fredrick J.

    1983-01-01

    Spontaneous ignition and combustion of coal is a major problem to the coal mining, shipping, and use industries; unintentional combustion causes loss of the resource as well as jeopardy to life and property. The hazard to life is especially acute in the case of underground coal mine fires that start by spontaneous ignition. It is the intention of this research to examine previously suggested causes of spontaneous ignition, to consider new evidence, and to suggest an experimental approach to determine which of these suggested causes is relevant to western U. S. coal. This discussion focuses only on causes and mechanism of spontaneous ignition.

  15. Protection against methanol-induced retinal toxicity by LED photostimulation

    NASA Astrophysics Data System (ADS)

    Whelan, Harry T.; Wong-Riley, Margaret T. T.; Eells, Janis T.

    2002-06-01

    We have initiated experiments designed to test the hypothesis that 670-nm Light-Emitting Diode (LED) exposure will attenuate formate-induced retinal dysfunction in a rodent model of methanol toxicity. Methanol intoxication produces toxic injury to the retina. The toxic metabolite formed in methanol intoxication is formic acid, a mitochondrial toxin known to inhibit cytochrome oxidase activity. 670-nm LED light has been hypothesized to act by stimulating cytochrome oxidase activity. To test this hypothesis, one group of animals was intoxicated with methanol, a second group was intoxicated with methanol and LED-treated and a third group was untreated. LED treatment (670 nm for 1 min 45 seconds equals 50 mW/cm2, 4 joules/cm2) was administered at 5, 25, and 50 hours after the initial dose of methanol. At 72 hours of methanol intoxication, retinal function was assessed by measurement of ERG responses and retinas were prepared for histologic analysis. ERG responses recorded in methanol-intoxicated animals revealed profound attenuation of both rod-dominated and UV-cone mediated responses. In contrast, methanol- intoxicated animals exposed to LED treatment exhibited a nearly complete recovery of rod-dominated ERG responses and a slight improvement of UV-cone mediated ERG responses. LED treatment also protected the retina against the histopathologic changes produced by formate in methanol intoxication. These data provide evidence that LED phototherapy protects the retina against the cytotoxic actions of formate and are consistent with the hypothesis that LED photostimulation improves mitochondrial respiratory chain function.

  16. Brine shrimp cytotoxicity of crude methanol extract and antispasmodic activity of α-amyrin acetate from Tylophora hirsuta Wall

    PubMed Central

    2013-01-01

    Background We have previously reported that aerial parts of Tylophora hirsuta have antispasmodic profile. The current work is an attempt for isolation of pharmacologically active compound(s) that contribute for its antispasmodic activity. Methods Preliminary phytochemical screening for crude methanol extract of Tylophora hirsuta (Th.Cr) is performed. Brine shrimp cytotoxicity of crude methanol extract is performed. Column chromatography was used for isolation of compounds. Mass spectroscopy, H1 NMR and C13 NMR were used for structural determination of compounds. α-amyrin acetate was tried for possible spasmolytic activity in rabbit’s jejunal preparations and KCl-induced contractions. Results Th.Cr tested positive for saponins, alkaloids, flavonoids and terpenoids. Compound 1 was isolated as α-amyrin acetate. Compound 2 was heptaeicosanol. Crude methanol extract tested positive for brine shrimp cytotoxicity with LC50 492.33± 8.08 mg/ml. Compound 1 tested positive for antispasmodic activity on spontaneous rabbits’ jejunum preparations with EC50 (60 ± 2) × 10-5M. The compound also tested positive on KCl induced contractions with EC50 (72 ± 3) × 10-5M. Conclusions The present work confirms that α-amyrin acetate is has antispasmodic profile and the relaxant effect may be attributed to α-amyrin acetate which is a major compound. PMID:23773697

  17. Modifications for use of methanol or methanol-gasoline blends in automotive vehicles, September 1976-January 1980

    SciTech Connect

    Patterson, D.J.; Bolt, J.A.; Cole, D.E.

    1980-01-01

    Methanol or blends of methanol and gasoline as automotive fuels may be attractive means for extending the nation's petroleum reserves. The present study was aimed at identifying potential problems and solutions for this use of methanol. Retrofitting of existing vehicles as well as future vehicle design have been considered. The use of ethanol or higher alcohols was not addressed in this study but will be included at a later date. Several potentially serious problems have been identified with methanol use. The most attractive solutions depend upon an integrated combination of vehicle modifications and fuel design. No vehicle problems were found which could not be solved with relatively minor developments of existing technology providing the methanol or blend fuel was itself engineered to ameliorate the solution. Research needs have been identified in the areas of lubrication and materials. These, while apparently solvable, must precede use of methanol or methanol-gasoline blends as motor fuels. Because of the substantial costs and complexities of a retrofitting program, use of methanol must be evaluated in relation to other petroleum-saving alternatives. Future vehicles can be designed initially to operate satisfactorily on these alternate fuels. However a specific fuel composition must be specified around which the future engines and vehicles can be designed.

  18. An algebraic model on the performance of a direct methanol fuel cell with consideration of methanol crossover

    NASA Astrophysics Data System (ADS)

    Yin, Ken-Ming

    An algebraic one-dimensional model on the membrane-electrode-assembly (MEA) of direct methanol fuel cell (DMFC) is proposed. Non-linear regression procedure was imposed on the model to retrieve important parameters: solid polymer electrolyte conductivity κ m, exchange current density of methanol electro-oxidation at anode catalyst surface i oM,ref, and mass diffusivity of methanol in aqueous phase within the porous electrode D a that correspond to the experimentally measured polarization curves. Although numerical iteration is required for a complete solution, the explicit relationships of methanol concentration, methanol crossover rate, oxygen concentration and cell discharge current density do provide a clear picture of the mass transport and electrochemical kinetics within the various porous media in the MEA. It is shown the cathode mixed potential induced by the parallel reactions of oxygen reduction and oxidation of crossover methanol elucidates the potential drop of the cathode and the decrease of the cell open circuit voltage (OCV). Methanol transport in the membrane is described by the diffusion, electro-osmosis, and pressure induced convection. Detailed accounts of the effects of anode methanol and cathode oxygen feed concentrations on the cell discharge performance are given with correlation to the physical structure and chemical compositions of the catalyst layers (CLs).

  19. Spontaneous immune complex orchitis in brown Norway rats.

    PubMed

    Fürbeth, C; Hübner, G; Thoenes, G H

    1989-01-01

    Immune complexes occur spontaneously in the testis of Brown-Norway (BN) inbred rats between the basal lamina of the seminiferous tubules and the outer lamina of the myoid testicular cells. The deposits can be detected immunohistologically (IgG; C3) and by electron microscopy. The immune complexes appear between the 8th and 12th weeks of life, increase in amount up to the 30th week and decrease thereafter. After about the 20th week, of life, 15% of the animals show destruction of the germinal epithelium accompanied by an infiltration of lymphocytes and plasma cells. The final stage of this disease, which initially shows no signs of inflammation, is characterized by diffuse tubular atrophy. However, up to the 70th week of life, 85% of the animals with immune complexes show no pathological alterations. Antibodies eluated from the testes react with spermatocytes I and structures close to the lumen of the seminiferous tubules, but not with mature sperms. Serum antibodies to sperms occur in about 25% of the BN rats, but the presence of these antibodies shows no correlation with the immunohistological findings. This newly described spontaneous immune complex orchitis is regarded as a further example of an in-situ-induced immune complex disease. The observations made here can be compared with those in (peri-) membraneous glomerulonephritis, another example of a disorder resulting from in-situ-formation of immune deposits. PMID:2567548

  20. Combined production and purification of hydrogen from methanol using steam iron process in fixed bed reactor

    NASA Astrophysics Data System (ADS)

    Campo, R.; Durán, P.; Plou, J.; Herguido, J.; Peña, J. A.

    2013-11-01

    A research work is being conducted to study the combined production and purification of hydrogen by means of redox processes departing from biomass fast pyrolysis oils (bio-oils). To achieve that goal, methanol has been used as featured material because it is the most representative compound of the alcoholic fraction of bio-oils. The study has been carried out in a fixed bed reactor where methanol decomposes in H2 and CO when gets in contact with a reactive solid based in an iron oxide at temperatures above 600 °C. During the first stage of the “steam-iron” process, reactive gases reduce the iron oxide to metallic iron. Afterward, in a following step, the previously reduced iron is reoxidized by steam producing a high purity hydrogen stream. Although coke deposition does exist during the reducing stage, this behaves as inert during the reoxidation process. Coke inert role has been corroborated by GC, SEM and TEM techniques, showing that carbon deposits were constituted by ordered structures (carbon nanotubes). The determination of the hydrogen production along successive cycles allowed the evaluation of the effect of temperature and alternating reactive atmospheres on the stability of the solid, as well as the optimum conditions for such purpose.

  1. Steam reforming of methanol over copper loaded anodized aluminum oxide (AAO) prepared through electrodeposition

    NASA Astrophysics Data System (ADS)

    Linga Reddy, E.; Karuppiah, J.; Lee, Hyun Chan; Kim, Dong Hyun

    2014-12-01

    In order to study the steam reforming of methanol (SRM) to produce hydrogen for fuel cells, porous γ-alumina support is developed on Al substrate using anodic oxidation process and copper catalyst particles are deposited homogeneously over anodic aluminum oxide (AAO) surface by electrodeposition method. We investigated the effect of electrodeposition time and hot water treatment (HWT) on the activity of catalysts for SRM reaction in the temperature range between 160 and 360 °C. The experimental results indicate that the SRM activity, CO2 and dimethyl ether (DME) selectivity's over Cu catalysts increased as the electrodeposition time increased from 30 to 120 s, further increment in deposition time of Cu have no significant effect on it. The rates of SRM conversion are found to be higher for the catalysts made from the supports obtained after HWT, which may be due to the enhancement in the surface area of AAO support. It is found that the SRM activity and CO2 selectivity strongly depended upon the free exposed copper sites available for methanol adsorption and reaction, and DME in products is mainly observed in the reaction temperature range between 300 and 350 °C and it is higher for the catalysts with low Cu content.

  2. Protective effect of Urtica dioica methanol extract against experimentally induced urinary calculi in rats.

    PubMed

    Zhang, Haiying; Li, Ning; Li, Kun; Li, Peng

    2014-12-01

    Renal calculi formation is one of the most common urological disorders. Urinary stone disease is a common disease, which affects 10‑12% of the population in industrialized countries. In males, the highest prevalence of the disease occurs between the age of 20 and 40 years, while in females, the highest incidence of the disease occurs later. Previous studies have shown that long‑term exposure to oxalate is toxic to renal epithelial cells and results in oxidative stress. In the present study, a methanolic extract of aerial parts of Urtica dioica was screened for antiurolithiatic activity against ethylene glycol and ammonium chloride‑induced calcium oxalate renal stones in male rats. In the control rats, ethylene glycol and ammonium chloride administration was observed to cause an increase in urinary calcium, oxalate and creatinine levels, as well as an increase in renal calcium and oxalate deposition. Histopathological observations revealed calcium oxalate microcrystal deposits in the kidney sections of the rats treated with ethylene glycol and ammonium chloride, indicating the induction of lithiasis. In the test rats, treatment with the methanolic extract of Urtica dioica was found to decrease the elevated levels of urinary calcium, oxalate and creatinine, and significantly decrease the renal deposition of calcium and oxalate. Furthermore, renal histological observations revealed a significant reduction in calcium oxalate crystal deposition in the test rats. Phytochemical analysis of the Urtica dioica extract was also performed using liquid chromatography‑electrospray ionization tandem mass spectrometry and high-performance liquid chromatography with photodiode array detection, to determine the chemical composition of the extract. The eight chemical constituents identified in the extract were protocatechuic acid, salicylic acid, luteolin, gossypetin, rutin, kaempferol‑3‑O‑rutinoside, kaempferol‑3‑O‑glucoside and chlorogenic acid. In conclusion

  3. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite for methanol synthesis

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1993-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  4. Methanol production from Eucalyptus wood chips. Working Document 9. Economics of producing methanol from Eucalyptus in Central Florida

    SciTech Connect

    Fishkind, H.H.

    1982-06-01

    A detailed feasibility study of producing methanol from Eucalyptus in Central Florida encompasses all phases of production - from seedling to delivery of finished methanol. The project includes the following components: (1) production of 55 million, high quality, Eucalyptus seedlings through tissue culture; (2) establishment of a Eucalyptus energy plantation on approximately 70,000 acres; and (3) engineering for a 100 million gallon-per-year methanol production facility. In addition, the potential environmental impacts of the whole project were examined, safety and health aspects of producing and using methanol were analyzed, and site specific cost estimates were made. The economics of the project are presented here. Each of the three major components of the project - tissue culture lab, energy plantation, and methanol refinery - are examined individually. In each case a site specific analysis of the potential return on investment was conducted.

  5. Adaptation of Hansenula polymorpha to methanol: a transcriptome analysis

    PubMed Central

    2010-01-01

    Background Methylotrophic yeast species (e.g. Hansenula polymorpha, Pichia pastoris) can grow on methanol as sole source of carbon and energy. These organisms are important cell factories for the production of recombinant proteins, but are also used in fundamental research as model organisms to study peroxisome biology. During exponential growth on glucose, cells of H. polymorpha typically contain a single, small peroxisome that is redundant for growth while on methanol multiple, enlarged peroxisomes are present. These organelles are crucial to support growth on methanol, as they contain key enzymes of methanol metabolism. In this study, changes in the transcriptional profiles during adaptation of H. polymorpha cells from glucose- to methanol-containing media were investigated using DNA-microarray analyses. Results Two hours after the shift of cells from glucose to methanol nearly 20% (1184 genes) of the approximately 6000 annotated H. polymorpha genes were significantly upregulated with at least a two-fold differential expression. Highest upregulation (> 300-fold) was observed for the genes encoding the transcription factor Mpp1 and formate dehydrogenase, an enzyme of the methanol dissimilation pathway. Upregulated genes also included genes encoding other enzymes of methanol metabolism as well as of peroxisomal β-oxidation. A moderate increase in transcriptional levels (up to 4-fold) was observed for several PEX genes, which are involved in peroxisome biogenesis. Only PEX11 and PEX32 were higher upregulated. In addition, an increase was observed in expression of the several ATG genes, which encode proteins involved in autophagy and autophagy processes. The strongest upregulation was observed for ATG8 and ATG11. Approximately 20% (1246 genes) of the genes were downregulated. These included glycolytic genes as well as genes involved in transcription and translation. Conclusion Transcriptional profiling of H. polymorpha cells shifted from glucose to methanol showed

  6. Whole Spontaneous Spinal Epidural Hematoma

    PubMed Central

    Yoon, Kyeong-Wook; Song, Jae Gyok; Ryu, Jae-Wook

    2014-01-01

    A 26-year-old male who had no underlying disease, including coagulopathy, underwent thoracotomy and bleeding control due to hemothorax. On the fifth postoperative day, paralysis of both lower limbs occurred. Urgent spine magnetic resonance imaging showed a massive anterior spinal epidural hematoma from C2 to L1 level with different signal intensities, which was suspected to be staged hemorrhage. Hematoma evacuation with decompressive laminectomy was performed. The patient's neurologic deterioration was recovered immediately, and he was discharged without neurological deficits. A drug history of naftazone, which could induce a drug-induced platelet dysfunction, was revealed retrospectively. To our knowledge, this is the first report of whole spontaneous spinal epidural hematoma in a young patient, with a history of hemorrhoid medication. PMID:24967052

  7. Spontaneous Spinal Epidural Hematoma Report.

    PubMed

    Kukreja, Sunil; Nanda, Anil

    2016-01-01

    We report a case of spontaneous spinal epidural hematoma in a 12-year-old female, who presented with significant upper and lower extremities weakness preceded by pain around the neck and shoulder girdle. Magnetic resonance imaging revealed epidural hematoma extending from C6-T2 with characteristic heterogeneously hyperintensity on T2 and homogenously isointensity on T1. Emergent spinal decompression was performed. However, the patient remained substantially weak in her lower extremities and was wheelchair bound at 3 months postoperatively. We have discussed clinical features, predisposing events, pathogenesis and treatment guidelines described in the literature. We also aim to reinforce the notion of keeping a high degree of clinical suspicion to identify and intervene at the earliest stage to prevent the physically and socially challenging consequences of SSEH. PMID:27598898

  8. Spontaneous onset of atrial fibrillation

    PubMed Central

    Zemlin, Christian W.; Mitrea, Bogdan G.; Pertsov, Arkady M.

    2009-01-01

    Most commonly, atrial fibrillation is triggered by rapid bursts of electrical impulses originating in the myocardial sleeves of pulmonary veins (PVs). However, the nature of such bursts remains poorly understood. Here, we propose a mechanism of bursting consistent with the extensive empirical information about the electrophysiology of the PVs. The mechanism is essentially non-local and involves the spontaneous initiation of non-sustained spiral waves in the distal end of the muscle sleeves of the PVs. It reproduces the experimentally observed dynamics of the bursts, including their frequency, their intermittent character, and the unusual shape of the electrical signals in the pulmonary veins that are reminiscent of so-called early afterdepolarizations (EADs). PMID:20160895

  9. Spontaneous rupture on irregular faults

    NASA Astrophysics Data System (ADS)

    Liu, C.

    2014-12-01

    It is now know (e.g. Robinson et al., 2006) that when ruptures propagate around bends, the rupture velocity decrease. In the extreme case, a large bend in the fault can stop the rupture. We develop a 2-D finite difference method to simulate spontaneous dynamic rupture on irregular faults. This method is based on a second order leap-frog finite difference scheme on a uniform mesh of triangles. A relaxation method is used to generate an irregular fault geometry-conforming mesh from the uniform mesh. Through this numerical coordinate mapping, the elastic wave equations are transformed and solved in a curvilinear coordinate system. Extensive numerical experiments using the linear slip-weakening law will be shown to demonstrate the effect of fault geometry on rupture properties. A long term goal is to simulate the strong ground motion near the vicinity of bends, jogs, etc.

  10. Gravity from spontaneous Lorentz violation

    SciTech Connect

    Kostelecky, V. Alan; Potting, Robertus

    2009-03-15

    We investigate a class of theories involving a symmetric two-tensor field in Minkowski spacetime with a potential triggering spontaneous violation of Lorentz symmetry. The resulting massless Nambu-Goldstone modes are shown to obey the linearized Einstein equations in a fixed gauge. Imposing self-consistent coupling to the energy-momentum tensor constrains the potential for the Lorentz violation. The nonlinear theory generated from the self-consistent bootstrap is an alternative theory of gravity, containing kinetic and potential terms along with a matter coupling. At energies small compared to the Planck scale, the theory contains general relativity, with the Riemann-spacetime metric constructed as a combination of the two-tensor field and the Minkowski metric. At high energies, the structure of the theory is qualitatively different from general relativity. Observable effects can arise in suitable gravitational experiments.

  11. Spontaneous polaron transport in biopolymers

    NASA Astrophysics Data System (ADS)

    Chakrabarti, B.; Piette, B. M. A. G.; Zakrzewski, W. J.

    2012-02-01

    Polarons, introduced by Davydov to explain energy transport in α-helices, correspond to electrons localised on a few lattice sites because of their interaction with phonons. While the static polaron field configurations have been extensively studied, their displacement is more difficult to explain. In this paper we show that, when the next-to-nearest-neighbour interactions are included, for physical values of the parameters, polarons can spontaneously move, at T=0, on bent chains that exhibit a positive gradient in their curvature. At room temperature polarons perform a random walk but a curvature gradient can induce a non-zero average speed similar to the one observed at zero temperature. We also show that, at zero temperature, a polaron bounces on sharply kinked junctions. We interpret these results in the light of the energy transport by transmembrane proteins.

  12. Fog spontaneously folds mosquito wings

    NASA Astrophysics Data System (ADS)

    Dickerson, Andrew K.; Liu, Xing; Zhu, Ting; Hu, David L.

    2015-02-01

    The flexibility of insect wings confers aerodynamic benefits, but can also present a hazard if exposed to fog or dew. Fog can cause water to accumulate on wings, bending them into tight taco shapes and rendering them useless for flight. In this combined experimental and theoretical study, we use high-speed video to film the spontaneous folding of isolated mosquito wings due to the evaporation of a water drop. We predict shapes of the deformed wing using two-dimensional elastica theory, considering both surface tension and Laplace pressure. We also recommend fold-resistant geometries for the wings of flapping micro-aerial vehicles. Our work reveals the mechanism of insect wing folding and provides a framework for further study of capillarity-driven folding in both natural and biomimetic systems at small scales.

  13. Spontaneous Pneumoperitoneum due to Constipation

    PubMed Central

    Yamana, Ippei; Noritomi, Tomoaki; Takeno, Shinsuke; Tatsuya, Hashimoto; Sato, Keisuke; Shimaoka, Hideki; Yamaguchi, Ryosuke; Ishii, Fumiaki; Yamada, Teppei; Yamashita, Yuichi

    2015-01-01

    We report a rare case of spontaneous pneumoperitoneum. An 82-year-old Japanese male patient was referred to our hospital because of constipation and abdominal pain. Abdominal computed tomography revealed a large amount of feces in the colon and rectum, and free air in the abdomen. Based on these findings, the patient was diagnosed with gastrointestinal perforation. Emergency exploratory laparotomy was performed. Neither perforation nor ischemic changes were recognized in the digestive tract. The patient's defecation was managed postoperatively until discharge on the 13th postoperative day. The authors assumed that free air, which was released after a mucosal injury due to the internal pressure caused by the presence of a large amount of feces in the colon and rectum, had penetrated the bowel wall through the bowel mucosa. We herein report the present case while also reviewing the pertinent literature. PMID:26676063

  14. Spontaneous onset of atrial fibrillation

    NASA Astrophysics Data System (ADS)

    Zemlin, Christian W.; Mitrea, Bogdan G.; Pertsov, Arkady M.

    2009-06-01

    Most commonly, atrial fibrillation is triggered by rapid bursts of electrical impulses originating in the myocardial sleeves of pulmonary veins (PVs). However, the nature of such bursts remains poorly understood. Here, we propose a mechanism of bursting consistent with the extensive empirical information about the electrophysiology of the PVs. The mechanism is essentially non-local and involves the spontaneous initiation of non-sustained spiral waves in the distal end of the muscle sleeves of the PVs. It reproduces the experimentally observed dynamics of the bursts, including their frequency, their intermittent character, and the unusual shape of the electrical signals in the pulmonary veins that are reminiscent of so-called early afterdepolarizations (EADs).

  15. A high-performance platinum electrocatalyst loaded on a graphene hydrogel for high-rate methanol oxidation.

    PubMed

    Wang, Xiluan; Li, Chun; Shi, Gaoquan

    2014-06-01

    Platinum (Pt)-based catalysts used in direct methanol fuel cells (DMFCs) usually suffer from low catalytic activity, slow kinetics of methanol oxidation and poor electrochemical stability. This is mainly due to the toxic effect of carbon monoxide and inefficient use of the Pt catalysts. To address these problems, we immobilized Pt nanoparticles with diameters of 4-6 nm onto the three-dimensional (3D) interpenetrating graphene networks (graphene hydrogel or G-Gel) deposited in the micropores of nickel foam (NF). In this Pt/G-Gel/NF composite catalyst, nearly all the Pt nanoparticles are accessible to methanol and can be efficiently used for electrocatalyzation. It showed excellent electrochemical stability and an activity 2.6 times that of a conventional Pt/reduced graphene oxide (Pt/rGO) composite catalyst. Furthermore, the rate of methanol electro-oxidation at the Pt/G-Gel/NF catalyst can be about 27 times that at the Pt/rGO catalyst, making it applicable for fabricating DMFCs with high current and/or power outputs. PMID:24553960

  16. Polymer electrolyte membrane fuel cell grade hydrogen production by methanol steam reforming: A comparative multiple reactor modeling study

    NASA Astrophysics Data System (ADS)

    Katiyar, Nisha; Kumar, Shashi; Kumar, Surendra

    2013-12-01

    Analysis of a fuel processor based on methanol steam reforming has been carried out to produce fuel cell grade H2. Six reactor configurations namely FBR1 (fixed bed reactor), MR1 (H2 selective membrane reactor with one reaction tube), MR2 (H2 selective membrane reactor with two reaction tubes), FBR2 (FBR1 + preferential CO oxidation (PROX) reactor), MR3 (MR1 + PROX), and MR4 (MR2 + PROX) are evaluated by simulation to identify the suitable processing scheme. The yield of H2 is significantly affected by H2 selective membrane, residence time, temperature, and pressure conditions at complete methanol conversion. The enhancement in residence time in MR2 by using two identical reaction tubes provides H2 yield of 2.96 with 91.25 mol% recovery at steam/methanol ratio of 1.5, pressure of 2 bar and 560 K temperature. The exit retentate gases from MR2 are further treated in PROX reactor of MR4 to reduce CO concentration to 4.1 ppm to ensure the safe discharge to the environment. The risk of carbon deposition on reforming catalyst is highly reduced in MR4, and MR4 reactor configuration generates 7.4 NL min-1 of CO free H2 from 0.12 mol min-1 of methanol which can provide 470 W PEMFC feedstock requirement. Hence, process scheme in MR4 provides a compact and innovative fuel cell grade H2 generating unit.

  17. Management of Spontaneous Vaginal Delivery.

    PubMed

    Dresang, Lee T; Yonke, Nicole

    2015-08-01

    Most of the nearly 4 million births in the United States annually are normal spontaneous vaginal deliveries. In the first stage of labor, normal birth outcomes can be improved by encouraging the patient to walk and stay in upright positions, waiting until at least 6 cm dilation to diagnose active stage arrest, providing continuous labor support, using intermittent auscultation in low-risk deliveries, and following the Centers for Disease Control and Prevention guidelines for group B streptococcus prophylaxis. Most women with a low transverse uterine incision are candidates for a trial of labor after cesarean delivery and should be counseled accordingly. Pain management during labor includes complementary modalities and systemic opioids, epidural anesthesia, and pudendal block. Outcomes in the second stage of labor can be improved by using warm perineal compresses, allowing women more time to push before intervening, and offering labor support. Delayed pushing increases the length of the second stage of labor and does not affect the rate of spontaneous vaginal delivery. A tight nuchal cord can be clamped twice and cut before delivery of the shoulders, or the baby may be delivered using a somersault maneuver in which the cord is left nuchal and the distance from the cord to placenta minimized by pushing the head toward the maternal thigh. After delivery, skin-to-skin contact with the mother is recommended. Beyond 35 weeks' gestation, there is no benefit to bulb suctioning the nose and mouth. Postpartum maternal and neonatal outcomes can be improved through delayed cord clamping, active management to prevent postpartum hemorrhage, careful examination for external anal sphincter injuries, and use of absorbable synthetic suture for second-degree perineal laceration repair. Practices that will not improve outcomes and may result in negative outcomes include discontinuation of epidurals late in labor and routine episiotomy. PMID:26280140

  18. Physiological response of Pichia pastoris GS115 to methanol-induced high level production of the Hepatitis B surface antigen: catabolic adaptation, stress responses, and autophagic processes

    PubMed Central

    2012-01-01

    proceed via the ERAD pathway and through the proteasome. However, the amount of HBsAg did not show any significant decline during the cultivation revealing its general protection from proteolytic degradation. During the methanol fed-batch phase, induction of vacuolar proteases (e.g. strong increase of APR1) and constitutive autophagic processes were observed. Vacuolar enclosures were mainly found around peroxisomes and not close to HBsAg deposits and, thus, were most likely provoked by peroxisomal components damaged by reactive oxygen species generated by methanol oxidation. Conclusions In the methanol fed-batch phase P. pastoris is exposed to dual stress; stress resulting from methanol degradation and stress resulting from the production of the recombinant protein leading to the induction of oxidative stress and unfolded protein response pathways, respectively. Finally, the modest increase of methanol assimilatory enzymes compared to the strong increase of methanol dissimilatory enzymes suggests here a potential to increase methanol incorporation into biomass/product through metabolic enhancement of the methanol assimilatory pathway. PMID:22873405

  19. Methanol Uptake by Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, L. T.; Essin, A. M.; Golden, D. M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    The global methanol budget is currently unbalanced, with source terms significantly larger than the sinks terms. To evaluate possible losses of gaseous methanol to sulfate aerosols, the solubility and reactivity of methanol in aqueous sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosols is under investigation. Methanol will partition into sulfate aerosols according to its Henry's law solubility. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H*, for cold (196 - 220 K) solutions ranging between 45 and 70 wt % H2SO4. We have found that methanol solubility ranges from approx. 10(exp 5) - 10(exp 7) M/atm for UT/LS conditions. Solubility increases with decreasing temperature and with increasing sulfuric acid content. Although methanol is slightly more soluble than are acetone and formaldehyde, current data indicate that uptake by clean aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These solubility measurements include uptake due to physical solvation and any rapid equilibria which are established in solution. Reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H is not significant over our experimental time scale for solutions below 80 wt % H2SO4. To confirm this directly, results obtained using a complementary equilibrium measurement technique will also be presented.

  20. Water–methanol separation with carbon nanotubes and electric fields.

    PubMed

    Winarto; Takaiwa, Daisuke; Yamamoto, Eiji; Yasuoka, Kenji

    2015-08-01

    Methanol is used in various applications, such as fuel for transportation vehicles, fuel cells, and in chemical industrial processes. Conventionally, separation of methanol from aqueous solution is by distillation. However, this method consumes a large amount of energy; hence development of a new method is needed. In this work, molecular dynamics simulations are performed to investigate the effect of an electric field on water–methanol separation by carbon nanotubes (CNTs) with diameters of 0.81 to 4.07 nm. Without an electric field, methanol molecules fill the CNTs in preference to water molecules. The preference of methanol to occupy the CNTs over water results in a separation effect. This separation effect is strong for small CNT diameters and significantly decreases with increasing diameter. In contrast, under an electric field, water molecules strongly prefer to occupy the CNTs over methanol molecules, resulting in a separation effect for water. More interestingly, the separation effect for water does not decrease with increasing CNT diameter. Formation of water structures in CNTs induced by an electric field has an important role in the separation of water from methanol. PMID:26397004

  1. Method of converting environmentally pollutant waste gases to methanol

    SciTech Connect

    Pfingstl, H.; Martyniuk, W.; Hennepin, A. Ill; McNally, T.; Myers, R.; Eberle, L.

    1993-08-03

    A continuous flow method is described of converting environmentally pollutant by-product gases emitted during the manufacture of silicon carbide to methanol comprising: (a) operating a plurality of batch furnaces of a silicon carbide manufacturing plant thereby producing silicon carbide and emitting by-product gases during the operation of the furnaces; (b) staggering the operation of the batch furnaces to achieve a continuous emission of the by-product gases; (c) continuously flowing the by-product gases as emitted from the batch furnaces directly to a methanol manufacturing plant; (d) cleansing the by-product gases of particulate matter, including removing the element sulfur from the by-product gases, as they are flowed to the methanol manufacturing plant, sufficiently for use of the by-product gases in producing methanol; and (e) immediately producing methanol from the by-product gases at the methanol manufacturing plant whereby the producing of silicon carbide is joined with the producing of methanol as a unified process.

  2. Methanol Production by a Broad Phylogenetic Array of Marine Phytoplankton

    PubMed Central

    Mincer, Tracy J.; Aicher, Athena C.

    2016-01-01

    Methanol is a major volatile organic compound on Earth and serves as an important carbon and energy substrate for abundant methylotrophic microbes. Previous geochemical surveys coupled with predictive models suggest that the marine contributions are exceedingly large, rivaling terrestrial sources. Although well studied in terrestrial ecosystems, methanol sources are poorly understood in the marine environment and warrant further investigation. To this end, we adapted a Purge and Trap Gas Chromatography/Mass Spectrometry (P&T-GC/MS) method which allowed reliable measurements of methanol in seawater and marine phytoplankton cultures with a method detection limit of 120 nanomolar. All phytoplankton tested (cyanobacteria: Synechococcus spp. 8102 and 8103, Trichodesmium erythraeum, and Prochlorococcus marinus), and Eukarya (heterokont diatom: Phaeodactylum tricornutum, coccolithophore: Emiliania huxleyi, cryptophyte: Rhodomonas salina, and non-diatom heterokont: Nannochloropsis oculata) produced methanol, ranging from 0.8–13.7 micromolar in culture and methanol per total cellular carbon were measured in the ranges of 0.09–0.3%. Phytoplankton culture time-course measurements displayed a punctuated production pattern with maxima near early stationary phase. Stabile isotope labeled bicarbonate incorporation experiments confirmed that methanol was produced from phytoplankton biomass. Overall, our findings suggest that phytoplankton are a major source of methanol in the upper water column of the world’s oceans. PMID:26963515

  3. Methanol Production by a Broad Phylogenetic Array of Marine Phytoplankton.

    PubMed

    Mincer, Tracy J; Aicher, Athena C

    2016-01-01

    Methanol is a major volatile organic compound on Earth and serves as an important carbon and energy substrate for abundant methylotrophic microbes. Previous geochemical surveys coupled with predictive models suggest that the marine contributions are exceedingly large, rivaling terrestrial sources. Although well studied in terrestrial ecosystems, methanol sources are poorly understood in the marine environment and warrant further investigation. To this end, we adapted a Purge and Trap Gas Chromatography/Mass Spectrometry (P&T-GC/MS) method which allowed reliable measurements of methanol in seawater and marine phytoplankton cultures with a method detection limit of 120 nanomolar. All phytoplankton tested (cyanobacteria: Synechococcus spp. 8102 and 8103, Trichodesmium erythraeum, and Prochlorococcus marinus), and Eukarya (heterokont diatom: Phaeodactylum tricornutum, coccolithophore: Emiliania huxleyi, cryptophyte: Rhodomonas salina, and non-diatom heterokont: Nannochloropsis oculata) produced methanol, ranging from 0.8-13.7 micromolar in culture and methanol per total cellular carbon were measured in the ranges of 0.09-0.3%. Phytoplankton culture time-course measurements displayed a punctuated production pattern with maxima near early stationary phase. Stabile isotope labeled bicarbonate incorporation experiments confirmed that methanol was produced from phytoplankton biomass. Overall, our findings suggest that phytoplankton are a major source of methanol in the upper water column of the world's oceans. PMID:26963515

  4. Chloroform and dichloromethane biodegradation kinetics with methanol as primary substrate

    SciTech Connect

    Sharma, D.; Suidan, M.T.; Gupta, M.; Sayles, G.D.

    1996-12-31

    Chloroform and dichloromethane biodegradation was studied in a methanogenic environment with methanol as the primary substrate. The rate of chloroform degradation was studied in an anaerobic chemostat containing a mixed microbial culture. A constant concentration of 1.93 g/l of methanol was fed to the chemostat and the chloroform concentration was varied up to 16.74 {mu}M. Biochemical Methane Potential (BMP) tests were conducted in serum bottles to study the kinetics of chloroform and dichloromethane degradation. The maximum rate of chloroform degradation of 0.45 {mu}M/hr was seen at an initial chloroform concentration of 3.85 {mu}M. Chloroform was degraded even without methanol, but the presence of methanol greatly increased the rate of chloroform degradation. However, an increase in methanol concentration beyond 50 mg/l did not increase the rate of degradation of chloroform. Chloroform concentration higher than 6.7{mu}M inhibited the degradation of methanol. The maximum rate of dichloromethane degradation of 0.25 {mu}M/hr was observed corresponding to an initial dichloromethane concentration of 3.34 {mu}M. Methanol was not inhibited even at high concentrations of dichloromethane.

  5. Thermodynamic performances of [mmim]DMP/Methanol absorption refrigeration

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Liang, Shiqiang; Guo, Yongxian; Cheng, Keyong; Gui, Xiaohong; Tang, Dawei

    2012-12-01

    In order to study the theoretical cycle characteristic of [mmim]DMP (1-methyl-3-methylimidazolium dimethylphosphate) /methanol absorption refrigeration, the modified UNIFAC group contribution model and the Wilson model are established through correlating the experimental vapor pressure data of [mmim]DMP/methanol at T=280˜370 K and methanol mole fraction x= 0.529˜0.965. Thermodynamic performances of absorption refrigeration utilizing [mmim]DMP/methanol, LiBr/H2O and H2O/NH3 are investigated and compared with each other under the same operating conditions. From the results, some conclusions are obtained as follows: 1) the circulation ratio of the [mmim]DMP /methanol absorption refrigeration is higher than that of the LiBr/H2O absorption refrigeration, but still can be acceptable and tolerable. 2) The COP of the [mmim]DMP/methanol absorption refrigeration is smaller than that of the LiBr/H2O absorption refrigeration, while it is higher than that of the H2O/NH3 absorption refrigeration under most operating conditions. 3) The [mmim]DMP/methanol absorption refrigeration are still available with high COP when the heat source temperature is too high to drive LiBr/H2O absorption refrigeration.

  6. Spontaneous Bruising in a Family Practice Population

    PubMed Central

    Modi, Amita V.

    1992-01-01

    Purpura simplex, or the syndrome of “easy bruisability,” is a benign, non-progressive clinical entity that can at times mimic more serious bleeding disorders. This study investigated the incidence of spontaneous bruising in a family practice population. Results suggest that spontaneous bruising is very common, particularly in women. Postulated mechanisms for purpura simplex are briefly reviewed. PMID:21221312

  7. Spontaneous fission properties and lifetime systematics

    SciTech Connect

    Hoffman, D.C.

    1989-03-01

    Half-lives for spontaneous fission of nuclides with even and odd numbers of particles are compared with recent theoretical calculations. A summary of odd particle hindrance factors is given. The most recent measurements of kinetic-energy and mass distributions and neutron emission for spontaneous fission of the heaviest nuclides are summarized and discussed. 51 refs., 9 figs.

  8. Simultaneous and spontaneous bilateral quadriceps tendons rupture.

    PubMed

    Celik, Evrim Coşkun; Ozbaydar, Mehmet; Ofluoglu, Demet; Demircay, Emre

    2012-07-01

    Simultaneous and spontaneous bilateral quadriceps tendon rupture is an uncommon injury that is usually seen in association with multiple medical conditions and some medications. We report a case of simultaneous and spontaneous bilateral quadriceps tendon rupture that may be related to the long-term use of a statin. PMID:22561379

  9. Abstracting in the Context of Spontaneous Learning

    ERIC Educational Resources Information Center

    Williams, Gaye

    2007-01-01

    There is evidence that spontaneous learning leads to relational understanding and high positive affect. To study spontaneous abstracting, a model was constructed by combining the RBC model of abstraction with Krutetskii's mental activities. Using video-stimulated interviews, the model was then used to analyze the behavior of two Year 8 students…

  10. Spontaneous pneumomediastinum: A complication of swine flu.

    PubMed

    Padhy, Ajit Kumar; Gupta, Anubhav; Aiyer, Palash; Jhajhria, Narender Singh; Grover, Vijay; Gupta, Vijay Kumar

    2015-10-01

    The occurrence of spontaneous pneumomediastinum in swine flu, or H1N1 influenza A infection, is a rare phenomenon and only few cases have been reported in children. We describe a case of spontaneous pneumomediastinum in adult infected with swine flu. PMID:25939913

  11. Spontaneity and Equilibrium II: Multireaction Systems

    ERIC Educational Resources Information Center

    Raff, Lionel M.

    2014-01-01

    The thermodynamic criteria for spontaneity and equilibrium in multireaction systems are developed and discussed. When N reactions are occurring simultaneously, it is shown that G and A will depend upon N independent reaction coordinates, ?a (a = 1,2, ..., N), in addition to T and p for G or T and V for A. The general criteria for spontaneity and…

  12. Reduction of spontaneous combustion of coal

    SciTech Connect

    Burns, E.J.

    1982-05-25

    A composition for the prevention of spontaneous combustion of coal is described which is comprised of at least about 2 percent of polyethylene oxide and the balance water. Also described is a method for reducing the spontaneous combustion tendency of coal by contacting coal with the above composition and then drying the coal.

  13. Children's Spontaneous Vocalisations during Play: Aesthetic Dimensions

    ERIC Educational Resources Information Center

    Countryman, June; Gabriel, Martha; Thompson, Katherine

    2016-01-01

    This paper explores the phenomenon of spontaneous vocalisations in the self-chosen, unstructured outdoor play of children aged 3-12. Spontaneous vocalisations encompass the whole range of children's unprompted, natural, expressive vocal soundings beyond spoken language. Non-participant observations at childcare centres and on elementary school…

  14. Study of catalysis for solid oxide fuel cells and direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Jiang, Xirong

    Fuel cells offer the enticing promise of cleaner electricity with lower environmental impact than traditional energy conversion technologies. Driven by the interest in power sources for portable electronics, and distributed generation and automotive propulsion markets, active development efforts in the technologies of both solid oxide fuel cell (SOFC) and direct methanol fuel cell (DMFC) devices have achieved significant progress. However, current catalysts for fuel cells are either of low catalytic activity or extremely expensive, presenting a key barrier toward the widespread commercialization of fuel cell devices. In this thesis work, atomic layer deposition (ALD), a novel thin film deposition technique, was employed to apply catalytic Pt to SOFC, and investigate both Pt skin catalysts and Pt-Ru catalysts for methanol oxidation, a very important reaction for DMFC, to increase the activity and utilization levels of the catalysts while simultaneously reducing the catalyst loading. For SOFCs, we explored the use of ALD for the fabrication of electrode components, including an ultra-thin Pt film for use as the electrocatalyst, and a Pt mesh structure for a current collector for SOFCs, aiming for precise control over the catalyst loading and catalyst geometry, and enhancement in the current collect efficiency. We choose Pt since it has high chemical stability and excellent catalytic activity for the O2 reduction reaction and the H2 oxidation reaction even at low operating temperatures. Working SOFC fuel cells were fabricated with ALD-deposited Pt thin films as an electrode/catalyst layer. The measured fuel cell performance reveals that comparable peak power densities were achieved for ALD-deposited Pt anodes with only one-fifth of the Pt loading relative to a DC-sputtered counterpart. In addition to the continuous electrocatalyst layer, a micro-patterned Pt structure was developed via the technique of area selective ALD. By coating yttria-stabilized zirconia, a

  15. Method validation for methanol quantification present in working places

    NASA Astrophysics Data System (ADS)

    Muna, E. D. M.; Bizarri, C. H. B.; Maciel, J. R. M.; da Rocha, G. P.; de Araújo, I. O.

    2015-01-01

    Given the widespread use of methanol by different industry sectors and high toxicity associated with this substance, it is necessary to use an analytical method able to determine in a sensitive, precise and accurate levels of methanol in the air of working environments. Based on the methodology established by the National Institute for Occupational Safety and Health (NIOSH), it was validated a methodology for determination of methanol in silica gel tubes which had demonstrated its effectiveness based on the participation of the international collaborative program sponsored by the American Industrial Hygiene Association (AIHA).

  16. Microbial methanol formation: A major end product of pectin metabolism

    SciTech Connect

    Schink, B.; Zeikus, J.G.

    1980-01-01

    Various pectinolytic strains of Clostridium, Erwinia, and Pseudomonas species produced methanol as a major end product during growth on pectin but not on glucose of polygalacturonic acid. Pectin metabolism of Clostridium butyricum strain 4PI correlated with a final product concentration of 16 mM at the end of growth, and a 1:1 stoichiometry for methanol production and percent initial substrate methoxylation. Growth on pectin was associated with high activity of pectin methylesterase and the absence of methanol consumption. The ecological significance of pectin metabolism and the establishment of microbial methylotrophic metabolism in nature is discussed.

  17. Widespread strong methanol masers near H II regions

    NASA Astrophysics Data System (ADS)

    Norris, R. P.; Caswell, J. L.; Gardner, F. F.; Wellington, K. J.

    1987-10-01

    A strong (up to 1000 Jy) methanol maser transition has recently been discovered by Batrla et al. (1987). Here a search of southern sources for masers in this transition is reported, with the aim of establishing how common the masers are, where they might be found, and the extent to which their observation might be hindered by interference. Methanol masers were found in 25 of the 106 star-formation regions searched, predominantly those with associated OH masers. A number of other types of object were searched, including OH/IR stars and OH/H2O megamaser galaxies, but no methanol masers were detected in any of these.

  18. Novel Materials for High Efficiency Direct Methanol Fuel Cells

    SciTech Connect

    Carson, Stephen; Mountz, David; He, Wensheng; Zhang, Tao

    2013-12-31

    Direct methanol fuel cell membranes were developed using blends of different polyelectrolytes with PVDF. The membranes showed complex relationships between polyelectrolyte chemistry, morphology, and processing. Although the PVDF grade was found to have little effect on the membrane permselectivity, it does impact membrane conductivity and methanol permeation values. Other factors, such as varying the polyelectrolyte polarity, using varying crosslinking agents, and adjusting the equivalent weight of the membranes impacted methanol permeation, permselectivity, and areal resistance. We now understand, within the scope of the project work completed, how these inter-related performance properties can be tailored to achieve a balance of performance.

  19. ICI and Penspen in Nigerian and Qatari methanol deals

    SciTech Connect

    Alperowicz, N.

    1992-03-11

    The U.K. consulting and engineering company Penspen Ltd. (London) has signed a second joint venture agreement in Qatar and has selected the ICI (London) methanol process. The technology will also be used in a world-scale methanol plant in Nigeria that Penspen is helping to set up. Under the first agreement, signed on January 1 with Qatar General Petroleum Corp. (QGPC), a 50/50 venture is being formed to build a $370-million, 2,000-m.t./day methanol plant at Umm Said. ICI will provide its low-pressure technology and help market 75% of the output. Completion is due late 1994.

  20. Gastrointestinal and urinary tract bleeding in methanol toxicity

    PubMed Central

    Mostafazadeh, Babak; Talaie, Haleh; Mahdavinejad, Arezou; Mesri, Mehdi; Emanhadi, Mohammadali

    2008-01-01

    Methanol is a clear, colourless liquid with a smell and taste similar to ethanol. Intoxications with methanol are still frequent in large parts of the developing world. Haemodialysis should be done in cases of severe toxicity to eliminate toxic metabolites. In this case report, we describe a 37-year-old chronic alcohol abuser with methanol poisoning, who developed haematuria and upper gastrointestinal (GI) bleeding after haemodialysis. The upper GI endoscopic findings showed only low grade oesophageal ulceration. Haematuria and upper GI bleeding in our patient might also have cause by the effect of heparinisation during haemodialysis. PMID:21716826

  1. Surface structure and reaction property of CuCl2-PdCl2 bimetallic catalyst in methanol oxycarbonylation: A DFT approach

    NASA Astrophysics Data System (ADS)

    Meng, Qingsen; Wang, Shengping; Shen, Yongli; Yan, Bing; Wu, Yuanxin; Ma, Xinbin

    2014-02-01

    Surface structure of CuCl2-PdCl2 bimetallic catalyst (Wacker-type catalyst) was built employing density functional theory (DFT) calculations, and the reaction mechanism of methanol oxycarbonylation over the CuCl2-PdCl2 surfaces was also investigated. On the CuCl2-PdCl2 surface, the active site for methanol oxidation was confirmed as Cu-Cl-Cu (Pd). Comparing with pure CuCl2 surface, the introduction of Pd atom causes the electron repopulation on the surface and lowers the energy barrier for methanol oxidation, but the number of the active site decreases with the increasing of Pd doping volume. Agreed with previous experimental results, the Pd site is most favorable for the CO insertion, indicated by the lowest activation barrier for the formation of COOCH3 on Pd atom. The lowest energy barrier for the formation of DMC appears when COOCH3 species adsorbed on Pd atom and methoxyl adsorbed on Cu atoms, which is 0.42 eV. Finally, the reconstruction of the unsaturated surface is a spontaneous and exothermic process. Comparing with other surfaces, the rate-limiting step, methanol oxidation, on CuCl2-PdCl2 surface with Pd/Cu = 1:17 has the lowest energy barrier, which is agreed with the experimental observation that PdCl2-CuCl2 catalyst with Pd/Cu = 1:20 has the favorable activity. The adsorbed methoxyl will further lower the activation barrier of methanol oxidation, which is agreed with experimental observation that the Wacker-type catalysts have an induction period in the methanol oxidative carbonylation system.

  2. Low temperature catalysts for methanol production

    DOEpatents

    Sapienza, Richard S.; Slegeir, William A.; O'Hare, Thomas E.; Mahajan, Devinder

    1986-01-01

    A catalyst and process useful at low temperatures (below about 160.degree. C.) and preferably in the range 80.degree.-120.degree. C. used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa--M(OAc).sub.2 where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1-6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M=Ni and R=tertiary amyl). Mo(CO).sub.6 is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  3. A novel process for methanol synthesis

    SciTech Connect

    Tierney, J.W.; Wender, I.

    1992-01-01

    A bench-scale reactor is being used to study the conversion of synthesis gas to methanol (MeOH) by a novel process. In previous reports, we provided evidence that the reaction takes place in two steps. A molecule of MeOH is first carbonylated to form methyl formate (MeF) which then reacts with H{sub 2} to form two molecules of MeOH. The second reaction occurs on the surface of a heterogeneous catalyst such as copper chromite, while the first reaction requires a homegenous catalyst such as potassium methoxide (KOMe) and takes place in a non-equilibrium region in the vicinity of the heterogeneous catalyst. A synergism between the two catalysts enhances the rate of MeOH formation. In this quarter, we studied the effect of reaction conditions on the rate of formation of MeF and the effect of CO{sub 2} concentration in the feed gas on the rate of MeOH synthesis. Kinetic studies were also initiated and rate expressions were examined.

  4. Low temperature catalysts for methanol production

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1986-10-28

    A catalyst and process useful at low temperatures (below about 160 C) and preferably in the range 80--120 C used in the production of methanol from carbon monoxide and hydrogen are disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa-M(OAc)[sub 2] where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1-6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is NiC (where M = Ni and R = tertiary amyl). Mo(CO)[sub 6] is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  5. Low temperature catalysts for methanol production

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1985-03-12

    A catalyst and process useful at low temperatures (below about 160/sup 0/C) and preferably in the range 80 to 120/sup 0/C used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH-RONa-M(OAc)/sub 2/ where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1 to 6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M = Ni and R = tertiary amyl). Mo(CO)/sub 6/ is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  6. Effect of pervaporation plate thickness on the rate of methanol evaporation in a passive vapor-feed direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Fauzi, N. F. I.; Hasran, U. A.; Kamarudin, S. K.

    2015-09-01

    In a passive vapor-feed direct methanol fuel cell (DMFC), methanol vapor is typically obtained using a pervaporation plate in a process by which liquid methanol contained in the fuel reservoir undergoes a phase change to vapor in the anodic vapor chamber. This work investigates the effect of pervaporation plate thickness on the rate of methanol evaporation using a three-dimensional simulation model developed by varying the plate thickness. A. The rate of methanol evaporation was measured using Darcy's law. The rate of methanol evaporation was found to be inversely proportional to the plate thickness, where the decrease in thickness inevitably lowers the resistance along the plate and consequently increases the methanol transport through the plate. This shows that the plate thickness has a significant influence on the rate of methanol evaporation and thereby plays an important role in improving the performance of the passive vapor-feed direct methanol fuel cell.

  7. Effects of the Methanolic Extract of Vitellaria paradoxa Stem Bark Against Scopolamine-Induced Cognitive Dysfunction and Oxidative Stress in the Rat Hippocampus.

    PubMed

    Foyet, Harquin Simplice; Asongalem, Acha Emmanuel; Oben, Eyong Kenneth; Cioanca, Oana; Hancianu, Monica; Hritcu, Lucian

    2016-10-01

    Vitellaria paradoxa C.F. Gaertn (Sapotaceae) is a perennial three which naturally grows in the northern part of Cameroon. It has been traditionally used in the Cameroonian folk medicine for treating inflammation and pain. In the present study, we evaluate the possible anti-amnesic and antioxidative effects of the methanolic extract of V. paradoxa stem bark in an Alzheimer's disease (AD) rat model of scopolamine. Rats received a single injection of scopolamine (1.5 mg/kg) before behavioral testing and were treated with the methanolic extract (25 and 50 mg/kg), daily, for eight continuous days. Also, the antioxidant activity in the hippocampus was assessed using the total content of reduced glutathione and malondialdehyde levels. The scopolamine-treated rats exhibited the following: decrease of exploratory time and discrimination index within the novel object recognition test, decrease of spontaneous alternations percentage within Y-maze task, and increase of working memory errors, reference memory errors, and time taken to consume all five baits within radial arm-maze task. Administration of the methanolic extract significantly improved these parameters, suggesting positive effects on memory formation processes and antioxidant potential. Our results suggest that the methanolic extract ameliorates scopolamine-induced memory impairment by attenuation of the oxidative stress in the rat hippocampus. PMID:26620052

  8. Removal of sulfur contaminants in methanol for fuel cell applications

    SciTech Connect

    Lee, S.H.D.; Kumar, R.; Sederquist, R.

    1996-12-31

    Fuel cell power plants are being developed for transit bus and passenger car applications that use methanol as the on-board fuel. Commodity methanol by itself contains very little sulfur; however, it may occasionally be contaminated with up to about 1% diesel fuel or gasoline in current liquid-fuel distribution systems, leading to the presence of sulfur in the methanol fuel. This sulfur must be removed because of its deleterious effect on the reforming catalysts. International Fuel Cells has set the allowable sulfur limit in the methanol fuel at less than 1 ppm. The equilibrium adsorption isotherm and breakthrough data were used to assess the feasibility of developing a granular activated carbon adsorber for the removal of sulfur from transportation fuel cell systems.

  9. Detection of Methanol in a Class 0 Protostellar Disk

    NASA Technical Reports Server (NTRS)

    Langer, W.; Velusamy, T.; Goldsmith, P.

    1999-01-01

    We report the detection of emission from methanol in a compact source coincident with the position of the L1157 infrared source, which we attribute to molecules in the disk surrounding this young, class 0 protostellar object.

  10. Spontaneous Circumrenal Hæmatoma

    PubMed Central

    Heritage, Kenneth

    1934-01-01

    By spontaneous circum-renal hæmatoma is meant a condition of extensive extravasation of blood into the kidney bed and surrounding tissues, unassociated with trauma. Since this is manifested by a fairly uniform clinical picture, by similar operative findings, and by peculiar difficulties in treatment, I propose to discuss it as a clinical entity irrespective of its wide ultimate causation. Very few cases are reported in the English literature. Nevertheless, from the world literature I have collected 170 case reports, and on them, together with three further cases, I base the present paper. Etiologically the cases fall into three groups:— (1) Those due to definite disease of the kidney or its blood-vessels, 58%. (2) Those due to extra-renal causes, 22%. (3) Those cases whose cause is obscure, 20%. In the first group neoplasms and inflammations of the kidney, aneurysms of the renal artery and arteriosclerosis are obvious causes. Many cases are due to obstruction of the renal veins. The classical triad of abdominal pain, signs of internal hæmorrhage, and a tumour in the loin are often obscured by the resemblance of an acute abdominal catastrophe. In acute cases, expectant treatment is almost invariably fatal. Evacuation of the clot, tamponage and drainage has a mortality of about 40%, whilst nephrectomy in 55 cases showed a mortality of 22%. ImagesFig. 1Fig. 2Fig. 3 PMID:19989861

  11. Spontaneous Retropharyngeal and Mediastinal Emphysema.

    PubMed

    Cho, Do-Yeon; Aaron, Geoffrey P; Shepard, Kimberly G

    2016-06-01

    A 14-year-old girl with no significant medical history presented at Emergency Department with sore throat and odynophagia after one episode of nonviolent coughing. She denied any respiratory distress, voice change, foreign body ingestion, retching, substance abuse, dental procedures, or trauma. She was afebrile with normal oxygen saturation and physical examination including the head and neck was unremarkable with the exception of bilateral neck crepitus without tenderness on palpation. Fiberoptic laryngoscopy revealed a patent laryngeal airway with normal vocal fold movement. Lateral neck X-ray demonstrated a linear air-column in the retropharyngeal space and computed tomography confirmed emphysema involving the retropharyngeal space and mediastinum with no evidence of fluid collection or abscess formation. Spontaneous retropharyngeal and mediastinal emphysema are clinical entities where free air is present within the confines of retropharyngeal space and mediastinum without obvious cause. It is benign and self-limited in nature and allows for conservative management. This case is presented with a review of literature. PMID:27090269

  12. Clinical Manifestations of Spontaneous Pneumomediastinum

    PubMed Central

    Park, Soo Jin; Park, Ji Ye; Jung, Joonho; Park, Seong Yong

    2016-01-01

    Background Spontaneous pneumomediastinum (SPM) is an uncommon disorder with only a few reported clinical studies. The goals of this study were to investigate the clinical manifestations and the natural course of SPM, as well as examine the current available treatment options for SPM. Methods We retrospectively reviewed 91 patients diagnosed with SPM between January 2008 and June 2015. Results The mean age of the patients was 22.7±13.2 years, and 67 (73.6%) were male. Chest pain (58, 37.2%) was the predominant symptom. The most frequent precipitating factor before developing SPM was a cough (15.4%), but the majority of patients (51, 56.0%) had no precipitating factors. Chest X-ray was diagnostic in 44 patients (48.4%), and chest computed tomography (CT) showed mediastinal air in all cases. Esophagography (10, 11.0%), esophagoduodenoscopy (1, 1.1%), and bronchoscopy (5, 5.5%) were performed selectively due to clinical suspicion, but no abnormal findings that implicated organ injury were documented. Twelve patients (13.2%) were discharged after a visit to the emergency room, and the others were admitted and received conservative treatment. The mean length of hospital stay was 3.0±1.6 days. There were no complications related to SPM except for recurrence in 2 patients (2.2%). Conclusion SPM responds well to conservative treatment and follows a benign natural course. Hospitalization and aggressive treatment can be performed in selective cases. PMID:27525238

  13. Percolative fragmentation and spontaneous agglomeration

    SciTech Connect

    Hurt, R.; Davis, K.

    1999-03-01

    Captive particle imaging experiments were performed on over 200 coal and char particles in the pulverized size range from four coals of various rank at oxygen concentration from 3--19 mol% and at gas temperatures of about 1250 K. Despite wide variations in single-particle behavior, the data set reveals two clear trends that provide new information on the nature of char combustion. First, the low-rank coal chars are observed to maintain their high reactivity through the late stages of combustion, thus avoiding the near-extinction events and long burnout tails observed for bituminous coal chars. Secondly, percolative fragmentation in the late stages of combustion is a rare event under these conditions. Some particles reach a percolation threshold rate in combustion, but typically undergo spontaneous agglomeration rather than liberation of the incipient fragments. It is concluded that percolative fragmentation behavior in the pulverized size range is determined not only by solid-phase connectivity, but also by a real competition between disruptive and cohesive forces present at the time of formation of the colloidal-sized incipient fragments.

  14. Spontaneous Metacognition in Rhesus Monkeys.

    PubMed

    Rosati, Alexandra G; Santos, Laurie R

    2016-09-01

    Metacognition is the ability to think about thinking. Although monitoring and controlling one's knowledge is a key feature of human cognition, its evolutionary origins are debated. In the current study, we examined whether rhesus monkeys (Macaca mulatta; N = 120) could make metacognitive inferences in a one-shot decision. Each monkey experienced one of four conditions, observing a human appearing to hide a food reward in an apparatus consisting of either one or two tubes. The monkeys tended to search the correct location when they observed this baiting event, but engaged in information seeking-by peering into a center location where they could check both potential hiding spots-if their view had been occluded and information seeking was possible. The monkeys only occasionally approached the center when information seeking was not possible. These results show that monkeys spontaneously use information about their own knowledge states to solve naturalistic foraging problems, and thus provide the first evidence that nonhumans exhibit information-seeking responses in situations with which they have no prior experience. PMID:27388917

  15. Spontaneous Retropharyngeal and Mediastinal Emphysema

    PubMed Central

    Cho, Do-Yeon; Aaron, Geoffrey P.; Shepard, Kimberly G.

    2016-01-01

    A 14-year-old girl with no significant medical history presented at Emergency Department with sore throat and odynophagia after one episode of nonviolent coughing. She denied any respiratory distress, voice change, foreign body ingestion, retching, substance abuse, dental procedures, or trauma. She was afebrile with normal oxygen saturation and physical examination including the head and neck was unremarkable with the exception of bilateral neck crepitus without tenderness on palpation. Fiberoptic laryngoscopy revealed a patent laryngeal airway with normal vocal fold movement. Lateral neck X-ray demonstrated a linear air-column in the retropharyngeal space and computed tomography confirmed emphysema involving the retropharyngeal space and mediastinum with no evidence of fluid collection or abscess formation. Spontaneous retropharyngeal and mediastinal emphysema are clinical entities where free air is present within the confines of retropharyngeal space and mediastinum without obvious cause. It is benign and self-limited in nature and allows for conservative management. This case is presented with a review of literature. PMID:27090269

  16. Cosmological aspects of spontaneous baryogenesis

    NASA Astrophysics Data System (ADS)

    De Simone, Andrea; Kobayashi, Takeshi

    2016-08-01

    We investigate cosmological aspects of spontaneous baryogenesis driven by a scalar field, and present general constraints that are independent of the particle physics model. The relevant constraints are obtained by studying the backreaction of the produced baryons on the scalar field, the cosmological expansion history after baryogenesis, and the baryon isocurvature perturbations. We show that cosmological considerations alone provide powerful constraints, especially for the minimal scenario with a quadratic scalar potential. Intriguingly, we find that for a given inflation scale, the other parameters including the reheat temperature, decoupling temperature of the baryon violating interactions, and the mass and decay constant of the scalar are restricted to lie within ranges of at most a few orders of magnitude. We also discuss possible extensions to the minimal setup, and propose two ideas for evading constraints on isocurvature perturbations: one is to suppress the baryon isocurvature with nonquadratic scalar potentials, another is to compensate the baryon isocurvature with cold dark matter isocurvature by making the scalar survive until the present.

  17. Synthesis of 3D structured graphene as a high performance catalyst support for methanol electro-oxidation.

    PubMed

    Li, Yecheng; Zhang, Lei; Hu, Zhuofeng; Yu, Jimmy C

    2015-07-01

    A simple process for preparing 3D structured graphene (3D-G) by a solution combustion method is reported. The product was deposited with platinum and used for methanol electro-oxidation. The catalyst shows a considerable enhancement in both the activity and stability towards methanol electro-oxidation reaction. Characterization reveals that the Pt/3D-G catalyst has a more negative onset potential as well as a higher electrochemically active specific surface area than a commercial Pt/C catalyst. Moreover, the catalyst exhibits higher tolerance to corrosion than carbon black. This work provides an efficient way for preparing 3D-G as a promising support for the oxidation of small organic molecules in fuel cells. PMID:26058677

  18. Synthesis of 3D structured graphene as a high performance catalyst support for methanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Li, Yecheng; Zhang, Lei; Hu, Zhuofeng; Yu, Jimmy C.

    2015-06-01

    A simple process for preparing 3D structured graphene (3D-G) by a solution combustion method is reported. The product was deposited with platinum and used for methanol electro-oxidation. The catalyst shows a considerable enhancement in both the activity and stability towards methanol electro-oxidation reaction. Characterization reveals that the Pt/3D-G catalyst has a more negative onset potential as well as a higher electrochemically active specific surface area than a commercial Pt/C catalyst. Moreover, the catalyst exhibits higher tolerance to corrosion than carbon black. This work provides an efficient way for preparing 3D-G as a promising support for the oxidation of small organic molecules in fuel cells.

  19. PtRuO 2/Ti anodes with a varying Pt:Ru ratio for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Shao, Zhi-Gang; Zhu, Fuyun; Lin, Wen-Feng; Christensen, Paul A.; Zhang, Huamin

    PtRuO 2/Ti anodes with a varying Pt:Ru ratio were prepared by thermal deposition of a PtRuO 2 catalyst layer onto a Ti mesh for the direct methanol fuel cell (DMFC). The morphology and structure of the catalyst layers were analyzed by SEM, EDX, and XRD. The catalyst coating layers became porous with increase of the Ru content, and showed oxide and alloy characteristics. The relative activities of the PtRuO 2/Ti electrodes were assessed and compared using half-cell tests and single DMFC experiments. The results showed that these electrodes were very active for the methanol oxidation and that the optimum Ru surface coverage was ca. 38% for a DMFC operating at 20-60 °C.

  20. Coke Formation in a Zeolite Crystal During the Methanol-to-Hydrocarbons Reaction as Studied with Atom Probe Tomography.

    PubMed

    Schmidt, Joel E; Poplawsky, Jonathan D; Mazumder, Baishakhi; Attila, Özgün; Fu, Donglong; de Winter, D A Matthijs; Meirer, Florian; Bare, Simon R; Weckhuysen, Bert M

    2016-09-01

    Understanding the formation of carbon deposits in zeolites is vital to developing new, superior materials for various applications, including oil and gas conversion processes. Herein, atom probe tomography (APT) has been used to spatially resolve the 3D compositional changes at the sub-nm length scale in a single zeolite ZSM-5 crystal, which has been partially deactivated by the methanol-to-hydrocarbons reaction using (13) C-labeled methanol. The results reveal the formation of coke in agglomerates that span length scales from tens of nanometers to atomic clusters with a median size of 30-60 (13) C atoms. These clusters correlate with local increases in Brønsted acid site density, demonstrating that the formation of the first deactivating coke precursor molecules occurs in nanoscopic regions enriched in aluminum. This nanoscale correlation underscores the importance of carefully engineering materials to suppress detrimental coke formation. PMID:27485276

  1. Thermodynamic equilibrium composition analysis of methanol autothermal reforming for proton exchanger membrane fuel cell based on FLUENT Software

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Wang, Shudong

    Methanol autothermal reforming was thermodynamically analyzed using FLUENT software. The calculation methodology using this software is simple and convenient, and its validity was confirmed by comparing the obtained data with previous studies. As a function of the effects of temperature, pressure, molar steam-to-carbon ratio (S/C), and molar oxygen-to-carbon ratio (O/C) on the objective products, favorable operational parameters were evaluated, under which H 2 yield maximizes, the CO molar fraction minimizes and carbon deposition can be eliminated. The equilibrium constants of the possible reactions involved in oxidative methanol steam reforming, coupled with the reaction mechanism for the entire investigated temperature range, were elucidated and discussed. On the basis of the concluded possible mechanisms, three areas are inferred. In each individual area, H 2 or CO yield reached a maximum, or solid C was efficiently suppressed. Therein, a favorable operational range is proposed to assure the most optimized product yield.

  2. Coke formation in a zeolite crystal during the methanol-to-hydrocarbons reaction as studied with atom probe tomography

    DOE PAGESBeta

    Schmidt, Joel E.; Poplawsky, Jonathan D.; Mazumder, Baishakhi; Attila, Özgün; Fu, Donglong; de Winter, D. A. Matthijs; Meirer, Florian; Bare, Simon R.; Weckhuysen, Bert M.

    2016-08-03

    Understanding the formation of carbon deposits in zeolites is vital to developing new, superior materials for various applications, including oil and gas conversion processes. Herein, atom probe tomography (APT) has been used to spatially resolve the 3D compositional changes at the sub-nm length scale in a single zeolite ZSM-5 crystal, which has been partially deactivated by the methanol-to-hydrocarbons reaction using 13C-labeled methanol. The results reveal the formation of coke in agglomerates that span length scales from tens of nanometers to atomic clusters with a median size of 30–60 13C atoms. These clusters correlate with local increases in Brønsted acid sitemore » density, demonstrating that the formation of the first deactivating coke precursor molecules occurs in nanoscopic regions enriched in aluminum. Here, this nanoscale correlation underscores the importance of carefully engineering materials to suppress detrimental coke formation.« less

  3. Evaluation of wound healing potential of methanolic Crinum jagus bulb extract

    PubMed Central

    Udegbunam, Sunday Ositadimma; Kene, Raphael Okoli Chukwujekwu; Anika, Silvanus Maduka; Udegbunam, Rita Ijeoma; Nnaji, Theophilus Okafor; Anyanwu, Madubuike Umunna

    2015-01-01

    Objective: Crinum jagus (J. Thomps.) Dandy commonly called Harmattan or St. Christopher’s lily belonging to the family Liliaceae is widely used traditionally in Southeastern Nigeria for treatment of skin sores. This study investigated the wound healing potentials of methanolic C. jagus bulb extract (MCJBE) using incision, excision, and dead space wound healing models. Materials and Methods: Phytochemical screening showed the presence of alkaloids, glycosides, tannins, saponins in the extract, but absence of flavonoids. In the incision and dead space wound models, rats were dosed orally with 300 mg/kg body weight (bw) of 10 and 5% of MCJBE solution, respectively, while in the excision wound model, rats were treated topically with 10 and 5% MCJBE ointments (MCJBEO), respectively. Result: The 10% MCJBE gave significantly (P < 0.05) highest percentage rate of wound contraction, shortest re-epithelialization and complete healing time when compared with 5% MCJBE and reference drug, framycetin sulfate. The extract of C. jagus showed significant (P < 0.05) concentration-dependent wound healing activity in incision, dead space and excision wound models. No contaminating microbial organism was isolated from wound sites of the rats dosed and treated with MCJBE throughout the study period. At day 7, post infliction of excision wound, histomorphological, and histochemical studies revealed more fibroblasts and Type 1 collagen deposits in wound site sections of rats treated with both 10 and 5% MCJBEO while those of the control showed more inflammatory cells and fewer Type 1 collagen deposits. At day 14 post infliction of excision wound, more epithelial regeneration with overlying keratin were seen in the histological sections of wounds of rats treated with both 10 and 5% MCJBEO, while histochemical study showed more Type 1 collagen deposits in wound site sections of rats in 10% MCJBEO treated group. Conclusion: This study established that methanolic C. jagus bulb extract

  4. Architecturally designed Pt-MoS2 and Pt-graphene composites for electrocatalytic methanol oxidation.

    PubMed

    Patil, Sagar H; Anothumakkool, Bihag; Sathaye, Shivaram D; Patil, Kashinath R

    2015-10-21

    Thin films consisting of platinum nanoparticles (Pt NPs) with uniform size and distribution have been successfully prepared at a liquid-liquid interface. Apart from the usual substrates like glass, Si etc. the films were also deposited on the surfaces of MoS2 thin films and graphene nanosheets (GNS) respectively, by using a layer-by-layer (LbL) deposition technique to form Pt-MoS2 and Pt-GNS composites. The loading concentration of Pt NPs on MoS2 and GNS can be adjusted by selecting the number and sequence of the component layers during LbL deposition. The Pt thin films, Pt-MoS2 and Pt-GNS nanocomposite thin films are characterized using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). TEM results of the composites show that Pt NPs with sizes in the range of 1 to 3 nm are uniformly dispersed on the MoS2/GNS surface. The catalytic activities of Pt and Pt-composites for the reaction of methanol oxidation are studied using cyclic voltammetry and chronoamperometry. Electrochemical studies reveal that both the Pt-MoS2 and Pt-GNS nanocomposites show excellent electrocatalytic activity towards methanol oxidation. Pt-MoS2 and Pt-GNS nanocomposite electrodes show excellent stability for reuse of the catalyst. A probable mechanism of catalysis has been discussed. We propose that the similar architecture reported here would be promising for the synthesis of high performance catalysts for fuel cells, gas phase reactions, and other applications such as sensors. PMID:26377752

  5. Serendipitous images of methanol in Comet Levy (1900 XX)

    NASA Technical Reports Server (NTRS)

    Hoban, Susan

    1993-01-01

    Reuter's (1992) model of the IR fluorescence of methanol is used to retrieve a methanol production rate of 3 +/- 1 x 10 exp 26/s and an abundance relative to water of about 0.1 percent. It is argued that calibration is of paramount importance and that a near-simultaneous spectrum is necessary for achieving a reliable estimate of the continuum underlying the emission feature.

  6. Enhanced Methanol Production in Plants Provides Broad Spectrum Insect Resistance

    PubMed Central

    Dixit, Sameer; Upadhyay, Santosh Kumar; Singh, Harpal; Sidhu, Om Prakash; Verma, Praveen Chandra; K, Chandrashekar

    2013-01-01

    Plants naturally emit methanol as volatile organic compound. Methanol is toxic to insect pests; but the quantity produced by most of the plants is not enough to protect them against invading insect pests. In the present study, we demonstrated that the over-expression of pectin methylesterase, derived from Arabidopsis thaliana and Aspergillus niger, in transgenic tobacco plants enhances methanol production and resistance to polyphagous insect pests. Methanol content in the leaves of transgenic plants was measured using proton nuclear spectroscopy (1H NMR) and spectra showed up to 16 fold higher methanol as compared to control wild type (WT) plants. A maximum of 100 and 85% mortality in chewing insects Helicoverpa armigera and Spodoptera litura larvae was observed, respectively when fed on transgenic plants leaves. The surviving larvae showed less feeding, severe growth retardation and could not develop into pupae. In-planta bioassay on transgenic lines showed up to 99 and 75% reduction in the population multiplication of plant sap sucking pests Myzus persicae (aphid) and Bemisia tabaci (whitefly), respectively. Most of the phenotypic characters of transgenic plants were similar to WT plants. Confocal microscopy showed no deformities in cellular integrity, structure and density of stomata and trichomes of transgenic plants compared to WT. Pollen germination and tube formation was also not affected in transgenic plants. Cell wall enzyme transcript levels were comparable with WT. This study demonstrated for the first time that methanol emission can be utilized for imparting broad range insect resistance in plants. PMID:24223989

  7. Improved Flow-Field Structures for Direct Methanol Fuel Cells

    SciTech Connect

    Gurau, Bogdan

    2013-05-31

    The direct methanol fuel cell (DMFC) is ideal if high energy-density liquid fuels are required. Liquid fuels have advantages over compressed hydrogen including higher energy density and ease of handling. Although state-of-the-art DMFCs exhibit manageable degradation rates, excessive fuel crossover diminishes system energy and power density. Although use of dilute methanol mitigates crossover, the concomitant lowering of the gross fuel energy density (GFED) demands a complex balance-of-plant (BOP) that includes higher flow rates, external exhaust recirculation, etc. An alternative approach is redesign of the fuel delivery system to accommodate concentrated methanol. NuVant Systems Inc. (NuVant) will maximize the GFED by design and assembly of a DMFC that uses near neat methanol. The approach is to tune the diffusion of highly concentrated methanol (to the anode catalytic layer) to the back-diffusion of water formed at the cathode (i.e. in situ generation of dilute methanol at the anode layer). Crossover will be minimized without compromising the GFED by innovative integration of the anode flow-field and the diffusion layer. The integrated flow-field-diffusion-layers (IFDLs) will widen the current and potential DMFC operating ranges and enable the use of cathodes optimized for hydrogen-air fuel cells.

  8. First principles Tafel kinetics of methanol oxidation on Pt(111)

    NASA Astrophysics Data System (ADS)

    Fang, Ya-Hui; Liu, Zhi-Pan

    2015-01-01

    Electrocatalytic methanol oxidation is of fundamental importance in electrochemistry and also a key reaction in direct methanol fuel cell. To resolve the kinetics at the atomic level, this work investigates the potential-dependent reaction kinetics of methanol oxidation on Pt(111) using the first principles periodic continuum solvation model based on modified-Poisson-Boltzmann equation (CM-MPB), focusing on the initial dehydrogenation elementary steps. A theoretical model to predict Tafel kinetics (current vs potential) is established by considering that the rate-determining step of methanol oxidation (to CO) is the first Csbnd H bond breaking (CH3OH(aq) → CH2OH* + H*) according to the computed free energy profile. The first Csbnd H bond breaking reaction needs to overcome a large entropy loss during methanol approaching to the surface and replacing the adsorbed water molecules. While no apparent charge transfer is involved in this elementary step, the charge transfer coefficient of the reaction is calculated to be 0.36, an unconventional value for charge transfer reactions, and the Tafel slope is deduced to be 166 mV. The results show that the metal/adsorbate interaction and the solvation environment play important roles on influencing the Tafel kinetics. The knowledge learned from the potential-dependent kinetics of methanol oxidation can be applied in general for understanding the electrocatalytic reactions of organic molecules at the solid-liquid interface.

  9. Towards operating direct methanol fuel cells with highly concentrated fuel

    NASA Astrophysics Data System (ADS)

    Zhao, T. S.; Yang, W. W.; Chen, R.; Wu, Q. X.

    A significant advantage of direct methanol fuel cells (DMFCs) is the high specific energy of the liquid fuel, making it particularly suitable for portable and mobile applications. Nevertheless, conventional DMFCs have to be operated with excessively diluted methanol solutions to limit methanol crossover and the detrimental consequences. Operation with diluted methanol solutions significantly reduces the specific energy of the power pack and thereby prevents it from competing with advanced batteries. In view of this fact, there exists a need to improve conventional DMFC system designs, including membrane electrode assemblies and the subsystems for supplying/removing reactants/products, so that both the cell performance and the specific energy can be simultaneously maximized. This article provides a comprehensive review of past efforts on the optimization of DMFC systems that operate with concentrated methanol. Based on the discussion of the key issues associated with transport of the reactants/products, the strategies to manage the supply/removal of the reactants/products in DMFC operating with highly concentrated methanol are identified. With these strategies, the possible approaches to achieving the goal of concentrated fuel operation are then proposed. Past efforts in the management of the reactants/products for implementing each of the approaches are also summarized and reviewed.

  10. Spontaneous closure of a dural arteriovenous fistula

    PubMed Central

    Al-Afif, Shadi; Nakamura, Makoto; Götz, Friedrich; Krauss, Joachim K

    2014-01-01

    Spontaneous closure of a dural arteriovenous fistula (dAVF) is a rare condition and only a few cases have been reported since its first description in 1976. We report delayed and progressive spontaneous closure of a dAVF after massive intracerebral hemorrhage documented by angiographic studies before and after bleeding. To our knowledge, this is the first report to document gradual closure of a dAVF by serial angiographic studies. The mechanism of spontaneous closure of dAVFs has not been fully elucidated. We suggest different factors for consideration from previously published data and show how each of these factors can influence the others. PMID:25053666

  11. Spontaneous emission in stimulated Raman adiabatic passage

    SciTech Connect

    Ivanov, P. A.; Vitanov, N. V.; Bergmann, K.

    2005-11-15

    This work explores the effect of spontaneous emission on the population transfer efficiency in stimulated Raman adiabatic passage (STIRAP). The approach uses adiabatic elimination of weakly coupled density matrix elements in the Liouville equation, from which a very accurate analytic approximation is derived. The loss of population transfer efficiency is found to decrease exponentially with the factor {omega}{sub 0}{sup 2}/{gamma}, where {gamma} is the spontaneous emission rate and {omega}{sub 0} is the peak Rabi frequency. The transfer efficiency increases with the pulse delay and reaches a steady value. For large pulse delay and large spontaneous emission rate STIRAP degenerates into optical pumping.

  12. Herpetic viruses and spontaneous recovery in melanoma.

    PubMed

    Motofei, I G

    1996-08-01

    The malignant melanoma may display extremely variable forms of development, from clinical forms with a lethal course to the unforeseeable situations of spontaneous cures. The basic immunotherapeutic procedures, as well as hypotheses regarding the mechanisms involved in courses towards spontaneous regressions, are presented. Since viruses of the herpes genus are involved in the mechanisms assumed to be at the basis of spontaneous regressions, it is suggested that these viruses (selected strains) be used in the clinic, in order to check the advanced hypothesis, an opportunity which could permit to study also the very probable therapeutic alternative offered by this virus, namely the association of the well-known immunotherapeutic methods. PMID:8869920

  13. Spontaneous intracranial hypotension syndrome treated with fludrocortisone.

    PubMed

    Rizk, Marwan; El Khatib, Mohammad; Yamout, Bassem; Hujeily, Elissar; Ayoub, Sophie; Ayoub, Chakib; Skaf, Ghassan

    2015-01-01

    Spontaneous intracranial hypotension is a rare syndrome characterized by orthostatic headache not associated with trauma or dural puncture. In most cases, it is caused by a spontaneous spinal cerebrospinal fluid leakage as demonstrated by neuroradiological studies. The standard of care consists of conservative treatment including bed rest, hydration, and administration of caffeine or glucocorticoids. When such conservative therapy fails, an epidural blood patch is recommended. In this report, we describe the treatment of 2 patients with spontaneous intracranial hypotension who failed conservative treatment and went on to have complete and sustained resolution of their symptoms after the administration of oral fludrocortisone. PMID:25612272

  14. Women's perceptions of first trimester spontaneous abortion.

    PubMed

    Wall-Haas, C L

    1985-01-01

    Fifteen to twenty percent of all pregnancies end in spontaneous abortion. For many women, this loss is nearly the equivalent of the loss of a real baby. To explore the complexity of women's responses to spontaneous abortion, nine women were given a questionnaire to complete regarding experiences and behaviors at the time of the miscarriage. The data revealed that each woman was affected, to some degree, by her experience with a spontaneous abortion. A comprehensive psychologic approach to this special client is needed to help more effectively the woman who aborts in the first trimester cope with the very real loss of an infant. PMID:3844461

  15. Vanadium(V) oxyanions. Interactions of vanadate with methanol and methanol/phosphate

    SciTech Connect

    Tracey, A.S.; Gresser, M.J.; Galeffi, B.

    1988-01-13

    /sup 51/V nuclear magnetic resonance studies have been utilized to characterize the interactions between methanol and vanadate. Equilibrium constants for the formation of methyl vanadate and dimethyl vanadate were determined as were those for methyl divanadate and dimethyl divanadate. From the variation in vanadate and methanol concentrations at pH 7.5 the formation constants for the compounds were determined. From the effect of pH on their chemical shifts the pK/sub a/'s of some of the anions were determined. Phosphate was shown to have a catalytic effect on the formation and hydrolysis of the methyl esters. A 2.5 mM phosphate solution was sufficient to enhance the rate of hydrolysis of dimethyl vanadate to methyl vanadate by a factor of about 50. The relevance of these results to formation of adenosine triphosphate analogues was discussed. Investigation of the water requirements for the formation of tetrameric vanadate indicated that 2 mol of water/mol of product was required. This result is in accordance with an adamantane-like structure for tetravanadate. 18 refs., 3 figs., 4 tabs.

  16. Dietary methanol regulates human gene activity.

    PubMed

    Shindyapina, Anastasia V; Petrunia, Igor V; Komarova, Tatiana V; Sheshukova, Ekaterina V; Kosorukov, Vyacheslav S; Kiryanov, Gleb I; Dorokhov, Yuri L

    2014-01-01

    Methanol (MeOH) is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of MeOH to formaldehyde (FA), which is toxic. Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and a modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC) from volunteers after pectin intake showed various responses for 30 significantly differentially regulated mRNAs, most of which were somehow involved in the pathogenesis of Alzheimer's disease (AD). There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes were not significantly expressed. A qRT-PCR analysis of volunteer WBCs after pectin and red wine intake confirmed the complicated relationship between the plasma MeOH content and the mRNA accumulation of both genes that were previously identified, namely, GAPDH and SNX27, and genes revealed in this study, including MME, SORL1, DDIT4, HBA and HBB. We hypothesized that human plasma MeOH has an impact on the WBC mRNA levels of genes involved in cell signaling. PMID:25033451

  17. Dietary Methanol Regulates Human Gene Activity

    PubMed Central

    Komarova, Tatiana V.; Sheshukova, Ekaterina V.; Kosorukov, Vyacheslav S.; Kiryanov, Gleb I.; Dorokhov, Yuri L.

    2014-01-01

    Methanol (MeOH) is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of MeOH to formaldehyde (FA), which is toxic. Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and a modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC) from volunteers after pectin intake showed various responses for 30 significantly differentially regulated mRNAs, most of which were somehow involved in the pathogenesis of Alzheimer's disease (AD). There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes were not significantly expressed. A qRT-PCR analysis of volunteer WBCs after pectin and red wine intake confirmed the complicated relationship between the plasma MeOH content and the mRNA accumulation of both genes that were previously identified, namely, GAPDH and SNX27, and genes revealed in this study, including MME, SORL1, DDIT4, HBA and HBB. We hypothesized that human plasma MeOH has an impact on the WBC mRNA levels of genes involved in cell signaling. PMID:25033451

  18. 26 CFR 48.4041-19 - Exemption for qualified methanol and ethanol fuel.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Exemption for qualified methanol and ethanol....4041-19 Exemption for qualified methanol and ethanol fuel. (a) In general. Under section 4041(b)(2... or use of qualified methanol or ethanol fuel. (b) Qualified methanol or ethanol fuel defined....

  19. 26 CFR 48.4041-19 - Exemption for qualified methanol and ethanol fuel.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 16 2013-04-01 2013-04-01 false Exemption for qualified methanol and ethanol....4041-19 Exemption for qualified methanol and ethanol fuel. (a) In general. Under section 4041(b)(2... or use of qualified methanol or ethanol fuel. (b) Qualified methanol or ethanol fuel defined....

  20. 26 CFR 48.4041-19 - Exemption for qualified methanol and ethanol fuel.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 16 2012-04-01 2012-04-01 false Exemption for qualified methanol and ethanol....4041-19 Exemption for qualified methanol and ethanol fuel. (a) In general. Under section 4041(b)(2... or use of qualified methanol or ethanol fuel. (b) Qualified methanol or ethanol fuel defined....

  1. 26 CFR 48.4041-19 - Exemption for qualified methanol and ethanol fuel.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Exemption for qualified methanol and ethanol....4041-19 Exemption for qualified methanol and ethanol fuel. (a) In general. Under section 4041(b)(2... or use of qualified methanol or ethanol fuel. (b) Qualified methanol or ethanol fuel defined....

  2. Spontaneous self-welding of silver nanowire networks.

    PubMed

    Seong, Baekhoon; Chae, Ilkyeong; Lee, Hyungdong; Nguyen, Vu Dat; Byun, Doyoung

    2015-03-28

    As an alternative to the traditional indium tin oxide transparent electrode, solution-processed metal nanowire thin film has been a promising candidate due to its flexibility. However, high contact resistance between the nanowires remains a major challenge to improve the performance. Here, we have investigated a one-step process of coating and welding of nanowires on flexible film. An electric field-assisted spray coating method developed in this study could generate finely charged droplets of nanowire solution at high flow rate. While charged droplets deposited on the flexible film, electric charges were flowing through the nanowire network producing electrical current. It induced Joule heating and welding at junctions of the nanowires without post-processing steps. Using the coating method, the silver nanowire thin film could be uniformly deposited evenly on a large area substrate, and spontaneously self-welding was carried out between the nanowire networks. The transparent electrode of the silver nanowire prepared by the concurrent deposition and the self-welding process could improve uniformity, roughness and sheet resistance. PMID:25714503

  3. Antioxidant and relaxant activity of fractions of crude methanol extract and essential oil of Artemisia macrocephala jacquem

    PubMed Central

    2013-01-01

    Background The current work is an attempt to know about additional chemical profile of Artemisia macrocephala. Antioxidant activity is performed as the plant is reported to contain flavonoids, which have antioxidant activity in general. Relaxant activity of fractions of crude methanol extract is performed to know in which fraction(s) the relaxant constituents concentrate as we have already reported that its crude methanol has relaxant activity. Antispasmodic activity of essential oil is also performed as the plant is rich with essential oil. Methods Phytochemical profile of the plant is performed. Free radical scavenging activity was performed using 2, 2-diphenyl-1-picrylhydrazyl (DPPH). Relaxation activity tests of fractions and essential oil of Artemisia macrocephala were performed on sections of rabbits’ jejunum. Calcium chloride curves were constructed to investigate the mode of action of plant extracts and its essential oil. Results We detected carbohydrates, flavonoids and saponins in A. macrocephala. At concentration 0.005 mg/ml, free radical scavenging activity of ethyl acetate fraction was 121.5 ± 2.02% of ascorbic acid. n- hexane fraction relaxed spontaneous activity with EC50 0.74 ± 0.04 mg/ml. Essential oil relaxed spontaneous activity with EC50 0.8 ± 0.034 mg/ml. Chloroform and ethylacetate fractions relaxed both spontaneous and KCl-induced contractions suggesting its possible mode through calcium channels. Constructing calcium chloride curves, the test fractions showed a right shift in the EC50. Essential oil at concentration 0.1 mg/ml produced right shift with EC50 (log [Ca++]M) -2.08 ± 0.08 vs. control with EC50 -2.47 ± 0.07. The curve resembled the curves of verapamil, which caused a right shift at 0.1 μM, with EC50 -1.7 ±0.07 vs. control EC50 (log [Ca++]M) -2.45 ± 0.06. Conclusions Crude methanol and its fractions (ethyl acetate, chloroform and butanol) are rich sources of antioxidant constituents. The relaxing constituents following

  4. Physical characteristics of bright Class I methanol masers

    NASA Astrophysics Data System (ADS)

    Leurini, S.; Menten, K. M.; Walmsley, C. M.

    2016-07-01

    Context. Class I methanol masers are thought to be tracers of interstellar shock waves. However, they have received relatively little attention mostly as a consequence of their low luminosities compared to other maser transitions. This situation has changed recently and Class I methanol masers are now routinely used as signposts of outflow activity especially in high extinction regions. The recent detection of polarisation in Class I lines now makes it possible to obtain direct observational information about magnetic fields in interstellar shocks. Aims: We make use of newly calculated collisional rate coefficients for methanol to investigate the excitation of Class I methanol masers and to reconcile the observed Class I methanol maser properties with model results. Methods: We performed large velocity gradient calculations with a plane-parallel slab geometry appropriate for shocks to compute the pump and loss rates which regulate the interactions of the different maser systems with the maser reservoir. We study the dependence of the pump rate coefficient, the maser loss rate, and the inversion efficiency of the pumping scheme of several Class I masers on the physics of the emitting gas. Results: We predict inversion in all transitions where maser emission is observed. Bright Class I methanol masers are mainly high-temperature (>100 K) high-density (n(H2) ~ 107-108 cm-3) structures with methanol maser emission measures, ξ, corresponding to high methanol abundances close to the limits set by collisional quenching. Our model predictions reproduce reasonably well most of the observed properties of Class I methanol masers. Class I masers in the 25 GHz series are the most sensitive to the density of the medium and mase at higher densities than other lines. Moreover, even at high density and high methanol abundances, their luminosity is predicted to be lower than that of the 44 GHz and 36 GHz masers. Our model predictions also reflect the observational result that the

  5. Adsorption of methanol, ethanol and water on well-characterized PtSn surface alloys

    NASA Astrophysics Data System (ADS)

    Panja, Chameli; Saliba, Najat; Koel, Bruce E.

    1998-01-01

    Adsorption and desorption of methanol (CH 3OH), ethanol (C 2H 5OH) and water on Pt(111) and two, ordered, PtSn alloys has been studied primarily using temperature-programmed desorption (TPD) mass spectroscopy. The two alloys studied were the {p(2 × 2) Sn}/{Pt(111) } and (√3 × √3) R30° {Sn}/{Pt(111) } surface alloys prepared by vapor deposition of Sn on Pt(111), with θSn = 0.25 and 0.33, respectively. All three molecules are weakly bonded and reversibly adsorbed under UHV conditions on all three surfaces, molecularly desorbing during TPD without any decomposition. The two PtSn surface alloys were found to chemisorb both methanol and ethanol slightly more weakly than on the Pt(111) surface. The desorption activation energies measured by TPD, and hence the adsorption energies, of both methanol and ethanol progressively decrease as the surface concentration of Sn increases, compared with Pt(111). The decreased binding energy leads one to expect a lower reactivity for these alcohols on the two alloys. The sticking coefficients and the monolayer coverages of these alcohols on the two alloys were identical to that on Pt(111) at 100 K, independent of the amount of Sn present in the surface layer. Alloying Sn in Pt(111) also slightly weakens the adsorption energy of water. Water clusters are formed even at low coverages on all three surfaces, eventually forming a water bilayer prior to the formation of a condensed ice phase. These results are relevant to a molecular-level explanation for the reactivity of Sn-promoted Pt surfaces that have been used in the electro-oxidation of simple organic molecules.

  6. Oxidation of C1 compounds by particulate fractions from Methylococcus capsulatus: properties of methanol oxidase and methanol dehydrogenase.

    PubMed Central

    Wadzinski, A M; Ribbons, D W

    1975-01-01

    Methanol (and formaldehyde) oxidizing activities in crude extracts of Methylococcus capsulatus are associated mainly with particulate fractions sedimenting between 3,000 and 40,000 X g. Most of the phenazine methosulfate (PMS)-dependent methanol (and formaldehyde) dehydrogenase activity observed resides in the soluble fraction but represents only 40% of the total (PMS dependent plus independent) activity. Both PMS-dependent methanol dehydrogenase activity and PMS-independent methanol oxidase activity are found in particulate fractions, and the PMS-dependent dehydrogenase is easily solubilized by treatment with certain phospholipases or detergents. The properties of the PMS-dependent dehydrogenase activities in the soluble fraction and that solubilized from the particles suggested that they may be identical proteins. Their pH optima, temperature dependence, thermolabilities, and sensitivities to the presence of specific antisera were indistinguishable. Homogeneous preparations of the enzyme proteins obtained from the soluble fractions of extracts and the particulate fractions solubilized by detergents had similar: (i) electrophoretic mobilities in native and denatured states (subunit size in sodium dodecyl sulfate 62,000 daltons); (ii) molecular radii under native conditions, (iii) visible absorption spectra, lambdamax 350 nm, (iv) kinetic constants for methanol and formaldehyde; (v) substrate specificity; and (vi) immunological characteristics--antisera to each enzyme preparation showed precipitin lines of identity to either of the enzymes. It is suggested that the major site of methanol and formaldehyde oxidation in M. capsulatus occurs on the intracytoplasmic membranes in vivo and is coupled to oxygen reduction. Images PMID:238947

  7. Deposition fluxes of terpenes over grassland

    NASA Astrophysics Data System (ADS)

    Bamberger, I.; HöRtnagl, L.; Ruuskanen, T. M.; Schnitzhofer, R.; Müller, M.; Graus, M.; Karl, T.; Wohlfahrt, G.; Hansel, A.

    2011-07-01

    Eddy covariance flux measurements were carried out for two subsequent vegetation periods above a temperate mountain grassland in an alpine valley using a proton-transfer-reaction-mass spectrometer (PTR-MS) and a PTR time-of-flight-mass spectrometer (PTR-TOF). In 2008 and during the first half of the vegetation period 2009 the volume mixing ratios (VMRs) for the sum of monoterpenes (MTs) were typically well below 1 ppbv and neither MT emission nor deposition was observed. After a hailstorm in July 2009 an order of magnitude higher amount of terpenes was transported to the site from nearby coniferous forests causing elevated VMRs. As a consequence, deposition fluxes of terpenes to the grassland, which continued over a time period of several weeks without significant reemission, were observed. For days without precipitation the deposition occurred at velocities close to the aerodynamic limit. In addition to monoterpene uptake, deposition fluxes of the sum of sesquiterpenes (SQTs) and the sum of oxygenated terpenes (OTs) were detected. Considering an entire growing season for the grassland (i.e., 1 April to 1 November 2009), the cumulative carbon deposition of monoterpenes reached 276 mg C m-2. This is comparable to the net carbon emission of methanol (329 mg C m-2), which is the dominant nonmethane volatile organic compound (VOC) emitted from this site, during the same time period. It is suggested that deposition of monoterpenes to terrestrial ecosystems could play a more significant role in the reactive carbon budget than previously assumed.

  8. Spontaneous network activity and synaptic development

    PubMed Central

    Kerschensteiner, Daniel

    2014-01-01

    Throughout development, the nervous system produces patterned spontaneous activity. Research over the last two decades has revealed a core group of mechanisms that mediate spontaneous activity in diverse circuits. Many circuits engage several of these mechanisms sequentially to accommodate developmental changes in connectivity. In addition to shared mechanisms, activity propagates through developing circuits and neuronal pathways (i.e. linked circuits in different brain areas) in stereotypic patterns. Increasing evidence suggests that spontaneous network activity shapes synaptic development in vivo. Variations in activity-dependent plasticity may explain how similar mechanisms and patterns of activity can be employed to establish diverse circuits. Here, I will review common mechanisms and patterns of spontaneous activity in emerging neural networks and discuss recent insights into their contribution to synaptic development. PMID:24280071

  9. Spontaneous Coronary Artery Dissection with Cardiac Tamponade.

    PubMed

    Goh, Anne C H; Lundstrom, Robert J

    2015-10-01

    Spontaneous coronary artery dissection is a rare cause of acute coronary syndrome. Clinical presentation ranges from chest pain alone to ST-segment-elevation myocardial infarction, ventricular fibrillation, and sudden death. The treatment of patients with spontaneous coronary artery dissection is challenging because the disease pathophysiology is unclear, optimal treatment is unknown, and short- and long-term prognostic data are minimal. We report the case of a 70-year-old woman who presented with an acute ST-segment-elevation myocardial infarction secondary to a spontaneous dissection of the left anterior descending coronary artery. She was treated conservatively. Cardiac tamponade developed 16 hours after presentation. Repeat coronary angiography revealed extension of the dissection. Medical therapy was continued after the hemopericardium was aspirated. The patient remained asymptomatic 3 years after hospital discharge. To our knowledge, this is the first reported case of spontaneous coronary artery dissection in association with cardiac tamponade that was treated conservatively and had a successful outcome. PMID:26504447

  10. Spontaneously reduced isolated orbital roof fracture.

    PubMed

    Itinteang, Tinte; Lambe, Gerald Francis; MacKinnon, Craig; Agir, Hakan

    2012-07-01

    We report a case of a spontaneously reduced isolated orbital roof blow-in fracture with resolution of associated diplopia and blepharoptosis highlighting the need for a low threshold for reimaging this cohort of facial fracture patients. PMID:22801127

  11. Lunar Cycle Influences Spontaneous Delivery in Cows.

    PubMed

    Yonezawa, Tomohiro; Uchida, Mona; Tomioka, Michiko; Matsuki, Naoaki

    2016-01-01

    There is a popular belief that the lunar cycle influences spontaneous delivery in both humans and cattle. To assess this relationship, we investigated the synodic distribution of spontaneous deliveries in domestic Holstein cows. We used retrospective data from 428 spontaneous, full-term deliveries within a three-year period derived from the calving records of a private farm in Hokkaido, Japan. Spontaneous birth frequency increased uniformly from the new moon to the full moon phase and decreased until the waning crescent phase. There was a statistically significant peak between the waxing gibbous and full moon phases compared with those between the last quarter and the waning crescent. These changes were clearly observed in deliveries among multiparous cows, whereas they were not evident in deliveries among nulliparous cows. These data suggest the utility of dairy cows as models for bio-meteorological studies, and indicate that monitoring lunar phases may facilitate comprehensive understanding of parturition. PMID:27580019

  12. Spontaneous Coronary Artery Dissection with Cardiac Tamponade

    PubMed Central

    Lundstrom, Robert J.

    2015-01-01

    Spontaneous coronary artery dissection is a rare cause of acute coronary syndrome. Clinical presentation ranges from chest pain alone to ST-segment-elevation myocardial infarction, ventricular fibrillation, and sudden death. The treatment of patients with spontaneous coronary artery dissection is challenging because the disease pathophysiology is unclear, optimal treatment is unknown, and short- and long-term prognostic data are minimal. We report the case of a 70-year-old woman who presented with an acute ST-segment-elevation myocardial infarction secondary to a spontaneous dissection of the left anterior descending coronary artery. She was treated conservatively. Cardiac tamponade developed 16 hours after presentation. Repeat coronary angiography revealed extension of the dissection. Medical therapy was continued after the hemopericardium was aspirated. The patient remained asymptomatic 3 years after hospital discharge. To our knowledge, this is the first reported case of spontaneous coronary artery dissection in association with cardiac tamponade that was treated conservatively and had a successful outcome. PMID:26504447

  13. Photochemical reduction of carbon dioxide to methanol using ZnS microcrystallite as a photocatalyst in the presence of methanol dehydrogenase

    SciTech Connect

    Kuwabata, Susumu; Nishida, Kazufumi; Tsuda, Ryo; Inoue, Hiroshi; Yoneyama, Hiroshi . Dept. of Applied Chemistry)

    1994-06-01

    Photoinduced reduction of formate to methanol has been achieved using ZnS microcrystalline colloid which contained formate, methanol dehydrogenase (MDH), pyrroloquinoline quinone (PQQ) as an electron mediator for MDH, and 2-propanol. This reaction was combined with photoreduction of carbon dioxide to formate on the ZnS microcrystallite which had already been reported to provide a new photosynthetic route for production of methanol from carbon dioxide. The production of methanol showed a saturation tendency when it was accumulated to 0.25 mmol dm[sup [minus]3], probably due to oxidation of the produced methanol at MDH or on the ZnS photocatalyst or both. The concentration of PQQ influenced the amount of formate production but not the methanol production. The quantum efficiency obtained at 280 nm for the reduction of carbon dioxide to methanol was 5.9%, which is the highest value that has ever been reported for the photochemical reduction of carbon dioxide to methanol.

  14. The Department of Energy's Federal Methanol Fleet Project: A progress report

    SciTech Connect

    McGill, R.N.

    1987-11-12

    DOE's federal methanol fleet demonstration project is introducing methanol-fueled vehicles into government fleet operations with considerable success. The viability of methanol vehicles is being demonstrated, and vehicle technology is almost mature enough for production vehicles. Drivers seem to accept methanol vehicles as perfectly adequate compared to gasoline vehicles. Where the project goes from here with methanol vehicles is a function of need, economics and/or government initiative. These viewgraphs summarize the project results.

  15. [Spontaneous resolution of a lumbar disc herniation].

    PubMed

    Gelabert-González, M; Serramito-García, R; Aran-Echabe, E; García-Allut, A

    2007-04-01

    Lumbar disc herniation is a common cause of lower leg radiculopathy and the most effective methods of treatment remain in question. Both surgical and nonsurgical treatments may provide a successful outcome in appropriately selected patients. The spontaneous resolution of herniated lumbar discs is a well-established phenomenon. The authors present a case of spontaneous regression of a herniated lumbar nucleus pulpous in a patient with radiculopathy. PMID:17497061

  16. Filum ependymoma mimicking spontaneous intracranial hypotension.

    PubMed

    Schievink, Wouter I; Akopov, Sergey E

    2005-05-01

    A 34-year-old man with a 2-week history of orthostatic headaches and a "dry tap" at lumbar puncture was found to have a lumbar intradural mass on magnetic resonance imaging (MRI) examination. A myxopapillary ependymoma was resected and the patient's headache completely resolved. The combination of spontaneous orthostatic headaches and a "dry tap" at the time of lumbar puncture does not always indicate the presence of a spontaneous cerebrospinal fluid (CSF) leak and intracranial hypotension. PMID:15953283

  17. Symptomatic Tarlov Cyst Following Spontaneous Subarachnoid Hemorrhage

    PubMed Central

    Kong, Woo Keun; Hong, Seung-Koan

    2011-01-01

    Most of Tarlov or perineurial cysts remain asymptomatic throughout the patient's life. The pathogenesis is still unclear. Hemorrhage has been suggested as one of the possible causes and trauma with resultant hemorrhage into subarachnoid space has been suggested as an origin of these cysts. However, Tarlov cysts related to spontaneous subarachnoid hemorrhage has not been reported. The authors report a case of Tarlov cyst which was symptomatic following spontaneous subarachnoid hemorrhage. PMID:22053232

  18. Spontaneous fission of 256Rf, new data

    NASA Astrophysics Data System (ADS)

    Svirikhin, A. I.; Yeremin, A. V.; Izosimov, I. N.; Isaev, A. V.; Kuznetsov, A. N.; Malyshev, O. N.; Popeko, A. G.; Popov, Yu. A.; Sokol, E. A.; Chelnokov, M. L.; Chepigin, V. I.; Andel, B.; Asfari, M. Z.; Gall, B.; Yoshihiro, N.; Kalaninova, Z.; Mullins, S.; Piot, J.; Stefanova, E.; Tonev, D.

    2016-07-01

    Spontaneous fission properties of the short-lived neutron-deficient 256Rf nucleus produced in the complete fusion reaction with a beam of multiply charged heavy 50Ti ions from the U-400 cyclotron (FLNR, JINR) are experimentally investigated. Its half-life and decay branching ratio are measured. The average number of neutrons per spontaneous fission of 256Rf (bar v = 4.47 ± 0.09) is determined for the first time.

  19. The psychiatric consequences of spontaneous abortion.

    PubMed

    Friedman, T; Gath, D

    1989-12-01

    Sixty-seven women were interviewed four weeks after spontaneous abortion. As determined by the Present State Examination, 32 of these women were psychiatric cases. This rate is four times higher than in the general population of women. In each case the diagnosis was depressive disorder, a finding confirmed by scores on three depression rating scales. Many women showed typical features of grief. Depressive symptoms were significantly associated with a history of previous spontaneous abortion, and less so with childlessness. PMID:2620207

  20. FEL gain optimisation and spontaneous radiation

    SciTech Connect

    Bali, L.M.; Srivastava, A.; Pandya, T.P.

    1995-12-31

    Colson have evaluated FEL gains for small deviations from perfect electron beam injection, with radiation of the same polarisation as that of the wiggler fields. We find that for optimum gain the polarisation of the optical field should be the same as that of the spontaneous emission under these conditions. With a helical wiggler the axial oscillations resulting from small departures from perfect electron beam injection lead to injection dependent unequal amplitudes and phases of the spontaneous radiation in the two transverse directions. Viewed along the axis therefore the spontaneous emission is elliptically polarised. The azimuth of the ellipse varies with the difference of phase of the two transverse components of spontaneous emission but the eccentricity remains the same. With planar wigglers the spontaneous emission viewed in the axial direction is linearly polarised, again with an injection dependent azimuth. For optimum coherent gain of a radiation field its polarisation characteristics must be the same as those of the spontaneous radiation with both types of wiggler. Thus, with a helical wiggler and the data reported earlier, an increase of 10% in the FEL gain at the fundamental frequency and of 11% at the fifth harmonic has been calculated in the small gain per pass limit. Larger enhancements in gain may result from more favourable values of input parameters.

  1. Informational Constraints on Spontaneous Visuomotor Entrainment

    PubMed Central

    Varlet, Manuel; Bucci, Colleen; Richardson, Michael J.; Schmidt, R. C.

    2015-01-01

    Past research has revealed that an individual's rhythmic limb movements become spontaneously entrained to an environmental rhythm if visual information about the rhythm is available and its frequency is near that of the individual's movements. Research has also demonstrated that if the eyes track an environmental stimulus, the spontaneous entrainment to the rhythm is strengthened. One hypothesis explaining this enhancement of spontaneous entrainment is that the limb movements and eye movements are linked through a neuromuscular coupling or synergy. Another is that eye-tracking facilitates the pick up of important coordinating information. Experiment 1 investigated the first hypothesis by evaluating whether any rhythmic movement of the eyes would facilitate spontaneous entrainment. Experiment 2 and 3 (respectively) explored whether eye-tracking strengthens spontaneous entrainment by allowing the pickup of trajectory direction change information or allowing an increase in the amount of information to be picked-up. Results suggest that the eye-tracking enhancement of spontaneous entrainment is a consequence of increasing the amount of information available to be picked-up. PMID:25866944

  2. Spontaneous openings of the acetylcholine receptor channel.

    PubMed Central

    Jackson, M B

    1984-01-01

    Patch clamp recordings from embryonic mouse muscle cells in culture revealed spontaneous openings of the acetylcholine receptor channel in the absence of exogenously applied cholinergic agent. The conductance of the spontaneous channel currents was, within experimental error, identical with the conductance of suberyldicholine-activated channel currents. The comparison of channel conductance was made with sodium and with cesium, each at two concentrations, with the same result. Treatment of the cells with alpha-bungarotoxin blocked the spontaneous channel currents. To determine whether the spontaneous openings were caused by an endogenous agent with cholinergic activity a reactive disulfide bond near the receptor binding site was reduced with dithiothreitol and alkylated with N-ethylmaleimide. This chemical modification reduced the effectiveness with which suberyldicholine and curare activated channel currents but did not reduce the frequency of spontaneous openings. These experiments indicate that the acetylcholine receptor briefly and infrequently fluctuates into an active state in the absence of agonist. Agonist activation of the receptor presumably accelerates this spontaneously occurring process. PMID:6328531

  3. Toddlers infer unobserved causes for spontaneous events

    PubMed Central

    Muentener, Paul; Schulz, Laura

    2014-01-01

    Previous research suggests that children infer the presence of unobserved causes when objects appear to move spontaneously. Are such inferences limited to motion events or do children assume that unexplained physical events have causes more generally? Here we introduce an apparently spontaneous event and ask whether, even in the absence of spatiotemporal and co-variation cues linking the events, toddlers treat a plausible variable as a cause of the event. Toddlers (24 months) saw a toy that appeared to light up either spontaneously or after an experimenter’s action. Toddlers were also introduced to a button but were not shown any predictive relation between the button and the light. Across three different dependent measures of exploration, predictive looking (Study 1), prompted intervention (Study 2), and spontaneous exploration (Study 3), toddlers were more likely to represent the button as a cause of the light when the event appeared to occur spontaneously. In Study 4, we found that even in the absence of a plausible candidate cause, toddlers engaged in selective exploration when the light appeared to activate spontaneously. These results suggest that toddlers’ exploration is guided by the causal explanatory power of events. PMID:25566161

  4. Spontaneous vesicle recycling in the synaptic bouton

    PubMed Central

    Truckenbrodt, Sven; Rizzoli, Silvio O.

    2014-01-01

    The trigger for synaptic vesicle exocytosis is Ca2+, which enters the synaptic bouton following action potential stimulation. However, spontaneous release of neurotransmitter also occurs in the absence of stimulation in virtually all synaptic boutons. It has long been thought that this represents exocytosis driven by fluctuations in local Ca2+ levels. The vesicles responding to these fluctuations are thought to be the same ones that release upon stimulation, albeit potentially triggered by different Ca2+ sensors. This view has been challenged by several recent works, which have suggested that spontaneous release is driven by a separate pool of synaptic vesicles. Numerous articles appeared during the last few years in support of each of these hypotheses, and it has been challenging to bring them into accord. We speculate here on the origins of this controversy, and propose a solution that is related to developmental effects. Constitutive membrane traffic, needed for the biogenesis of vesicles and synapses, is responsible for high levels of spontaneous membrane fusion in young neurons, probably independent of Ca2+. The vesicles releasing spontaneously in such neurons are not related to other synaptic vesicle pools and may represent constitutively releasing vesicles (CRVs) rather than bona fide synaptic vesicles. In mature neurons, constitutive traffic is much dampened, and the few remaining spontaneous release events probably represent bona fide spontaneously releasing synaptic vesicles (SRSVs) responding to Ca2+ fluctuations, along with a handful of CRVs that participate in synaptic vesicle turnover. PMID:25538561

  5. Structural Characterization of Methanol Substituted Lanthanum Halides

    PubMed Central

    Boyle, Timothy J.; Ottley, Leigh Anna M.; Alam, Todd M.; Rodriguez, Mark A.; Yang, Pin; Mcintyre, Sarah K.

    2010-01-01

    The first study into the alcohol solvation of lanthanum halide [LaX3] derivatives as a means to lower the processing temperature for the production of the LaBr3 scintillators was undertaken using methanol (MeOH). Initially the de-hydration of {[La(µ-Br)(H2O)7](Br)2}2 (1) was investigated through the simple room temperature dissolution of 1 in MeOH. The mixed solvate monomeric [La(H2O)7(MeOH)2](Br)3 (2) compound was isolated where the La metal center retains its original 9-coordination through the binding of two additional MeOH solvents but necessitates the transfer of the innersphere Br to the outersphere. In an attempt to in situ dry the reaction mixture of 1 in MeOH over CaH2, crystals of [Ca(MeOH)6](Br)2 (3) were isolated. Compound 1 dissolved in MeOH at reflux temperatures led to the isolation of an unusual arrangement identified as the salt derivative {[LaBr2.75•5.25(MeOH)]+0.25 [LaBr3.25•4.75(MeOH)]−0.25} (4). The fully substituted species was ultimately isolated through the dissolution of dried LaBr3 in MeOH forming the 8-coordinated [LaBr3(MeOH)5] (5) complex. It was determined that the concentration of the crystallization solution directed the structure isolated (4 concentrated; 5 dilute) The other LaX3 derivatives were isolated as [(MeOH)4(Cl)2La(µ-Cl)]2 (6) and [La(MeOH)9](I)3•MeOH (7). Beryllium Dome XRD analysis indicated that the bulk material for 5 appear to have multiple solvated species, 6 is consistent with the single crystal, and 7 was too broad to elucidate structural aspects. Multinuclear NMR (139La) indicated that these compounds do not retain their structure in MeOD. TGA/DTA data revealed that the de-solvation temperatures of the MeOH derivatives 4 – 6 were slightly higher in comparison to their hydrated counterparts. PMID:20514349

  6. The Methanol Poisoning Outbreaks in Libya 2013 and Kenya 2014

    PubMed Central

    Rostrup, Morten; Edwards, Jeffrey K.; Abukalish, Mohamed; Ezzabi, Masoud; Some, David; Ritter, Helga; Menge, Tom; Abdelrahman, Ahmed; Rootwelt, Rebecca; Janssens, Bart; Lind, Kyrre; Paasma, Raido; Hovda, Knut Erik

    2016-01-01

    Background Outbreaks of methanol poisoning occur frequently on a global basis, affecting poor and vulnerable populations. Knowledge regarding methanol is limited, likely many cases and even outbreaks go unnoticed, with patients dying unnecessarily. We describe findings from the first three large outbreaks of methanol poisoning where Médecins Sans Frontières (MSF) responded, and evaluate the benefits of a possible future collaboration between local health authorities, a Non-Governmental Organisation and international expertise. Methods Retrospective study of three major methanol outbreaks in Libya (2013) and Kenya (May and July 2014). Data were collected from MSF field personnel, local health personnel, hospital files, and media reports. Findings In Tripoli, Libya, over 1,000 patients were poisoned with a reported case fatality rate of 10% (101/1,066). In Kenya, two outbreaks resulted in approximately 341 and 126 patients, with case fatality rates of 29% (100/341) and 21% (26/126), respectively. MSF launched an emergency team with international experts, medications and equipment, however, the outbreaks were resolving by the time of arrival. Interpretation Recognition of an outbreak of methanol poisoning and diagnosis seem to be the most challenging tasks, with significant delay from time of first presentations to public health warnings being issued. In spite of the rapid response from an emergency team, the outbreaks were nearly concluded by the time of arrival. A major impact on the outcome was not seen, but large educational trainings were conducted to increase awareness and knowledge about methanol poisoning. Based on this training, MSF was able to send a local emergency team during the second outbreak, supporting that such an approach could improve outcomes. Basic training, simplified treatment protocols, point-of-care diagnostic tools, and early support when needed, are likely the most important components to impact the consequences of methanol poisoning

  7. Catalytic gasification of bagasse for the production of methanol

    SciTech Connect

    Baker, E.G.; Brown, M.D.; Robertus, R.J.

    1985-10-01

    The purpose of the study was to evaluate the technical and economic feasibility of catalytic gasification of bagasse to produce methanol. In previous studies, a catalytic steam gasification process was developed which converted wood to methanol synthesis gas in one step using nickel based catalysts in a fluid-bed gasifier. Tests in a nominal 1 ton/day process development unit (PDU) gasifier with these same catalysts showed bagasse to be a good feedstock for fluid-bed gasifiers, but the catalysts deactivated quite rapidly in the presence of bagasse. Laboratory catalyst screening tests showed K/sub 2/CO/sub 3/ doped on the bagasse to be a promising catalyst for converting bagasse to methanol synthesis gas. PDU tests with 10 wt % K/sub 2/CO/sub 3/ doped on bagasse showed the technical feasibility of this type of catalyst on a larger scale. A high quality synthesis gas was produced and carbon conversion to gas was high. The gasifier was successfully operated without forming agglomerates of catalyst, ash, and char in the gasifier. There was no loss of activity throughout the runs because catalysts is continually added with the bagasse. Laboratory tests showed about 80% of the potassium carbonate could be recovered and recycled with a simple water wash. An economic evaluation of the process for converting bagasse to methanol showed the required selling price of methanol to be significantly higher than the current market price of methanol. Several factors make this current evaluaton using bagasse as a feedstock less favorable: (1) capital costs are higher due to inflation and some extra costs required to use bagasse, (2) smaller plant sizes were considered so economies of scale are lost, and (3) the market price of methanol in the US has fallen 44% in the last six months. 24 refs., 14 figs., 16 tabs.

  8. Prediction and validation of hemodialysis duration in acute methanol poisoning

    PubMed Central

    Lachance, Philippe; Mac-Way, Fabrice; Desmeules, Simon; De Serres, Sacha A; Julien, Anne-Sophie; Douville, Pierre; Ghannoum, Marc; Agharazii, Mohsen

    2015-01-01

    The duration of hemodialysis (HD) in methanol poisoning (MP) is dependent on the methanol concentration, the operational parameters used during HD, and the presence and severity of metabolic acidosis. However, methanol assays are not easily available, potentially leading to undue extension or premature termination of treatment. Here we provide a prediction model for the duration of high-efficiency HD in MP. In a retrospective cohort study, we identified 71 episodes of MP in 55 individuals who were treated with alcohol dehydrogenase inhibition and HD. Four patients had residual visual abnormality at discharge and only one patient died. In 46 unique episodes of MP with high-efficiency HD the mean methanol elimination half-life (T1/2) during HD was 108 min in women, significantly different from the 129 min in men. In a training set of 28 patients with MP, using the 90th percentile of gender-specific elimination T1/2 (147 min in men and 141 min in women) and a target methanol concentration of 4 mmol/l allowed all cases to reach a safe methanol of under 6 mmol/l. The prediction model was confirmed in a validation set of 18 patients with MP. High-efficiency HD time in hours can be estimated using 3.390 × (Ln (MCi/4)) for women and 3.534 × (Ln (MCi/4)) for men, where MCi is the initial methanol concentration in mmol/l, provided that metabolic acidosis is corrected. PMID:26244924

  9. Multimodal Imaging of Spontaneously Shifting Primary Vitreoretinal Lymphoma

    PubMed Central

    Mantopoulos, Dimosthenis; Cebulla, Colleen M.

    2015-01-01

    Purpose To correlate spectral domain optical coherence tomography (SD-OCT) and photographic imaging before and after spontaneous regression of primary vitreoretinal lymphoma (PVRL) lesions. Procedures We report the case of a 60-year-old female. Results The patient presented with bilateral creamy deposits under the retina and retinal pigment epithelium (RPE), and lesions were visible along Bruch's membrane with SD-OCT and suspicious for PVRL. Systemic workup revealed nonspecific areas of enhancement on neuroimaging. The patient was largely asymptomatic and the decision was made to observe her. Three months later, a new lesion pattern had developed. The color fundus photographs and SD-OCT demonstrated spontaneous regression of the largest sub-RPE lesion, leaving areas of RPE atrophy, while a new larger sub-RPE lesion had formed in the other eye. Vitreous biopsy showed lymphocytes and no malignant cells, while sub-RPE biopsy of the newly formed lesion revealed highly atypical cells positive for CD19 and CD20. Conclusions Multimodal imaging documents that PVRL lesion regression and early RPE changes can develop within a 3-month period. Immune control is an important factor in lesion regression in the eye. PMID:27172327

  10. Frequencies of spontaneous breast development and spontaneous menarche in Turner syndrome in Japan.

    PubMed

    Tanaka, Toshiaki; Igarashi, Yutaka; Ozono, Keiichi; Ohyama, Kenji; Ogawa, Masamichi; Osada, Hisao; Onigata, Kazumichi; Kanzaki, Susumu; Kohno, Hitoshi; Seino, Yoshiki; Takahashi, Hiroaki; Tajima, Toshihiro; Tachibana, Katsuhiko; Tanaka, Hiroyuki; Nishi, Yoshikazu; Hasegawa, Tomonobu; Fujita, Keinosuke; Yorifuji, Tohru; Horikawa, Reiko; Yokoya, Susumu

    2015-10-01

    The Growject® database on human GH treatment in Turner syndrome was analyzed in the Turner Syndrome Research Collaboration, and the relationships of the frequencies of spontaneous breast development and spontaneous menarche with karyotype and GH treatment were investigated. One hundred and three cases started GH treatment with 0.5 IU/kg/ week (0.5 IU group), and their dose was increased to 0.35 mg/kg/wk midway through the treatment course. Another 109 cases started GH at a dose of 0.35 mg/kg/wk (0.35 mg group). Spontaneous breast development was observed in 77 (36.3%) of the 212 patients, and spontaneous menarche occurred in 31 patients (14.6%). The frequency of spontaneous breast development was significantly lower in patients with the 45,X karyotype and significantly higher in patients with a structural abnormality of the second X chromosome. The frequency of spontaneous menarche was significantly higher in patients with mosaicism characterized by X monosomy and a cellular line with no structural abnormality of the X chromosome. No significant differences in frequencies of spontaneous breast development and spontaneous menarche were observed between the two dose groups, indicating that GH treatment does not increase the frequency of spontaneous puberty. PMID:26568657

  11. Frequencies of spontaneous breast development and spontaneous menarche in Turner syndrome in Japan

    PubMed Central

    Tanaka, Toshiaki; Igarashi, Yutaka; Ozono, Keiichi; Ohyama, Kenji; Ogawa, Masamichi; Osada, Hisao; Onigata, Kazumichi; Kanzaki, Susumu; Kohno, Hitoshi; Seino, Yoshiki; Takahashi, Hiroaki; Tajima, Toshihiro; Tachibana, Katsuhiko; Tanaka, Hiroyuki; Nishi, Yoshikazu; Hasegawa, Tomonobu; Fujita, Keinosuke; Yorifuji, Tohru; Horikawa, Reiko; Yokoya, Susumu

    2015-01-01

    Abstract. The Growject® database on human GH treatment in Turner syndrome was analyzed in the Turner Syndrome Research Collaboration, and the relationships of the frequencies of spontaneous breast development and spontaneous menarche with karyotype and GH treatment were investigated. One hundred and three cases started GH treatment with 0.5 IU/kg/ week (0.5 IU group), and their dose was increased to 0.35 mg/kg/wk midway through the treatment course. Another 109 cases started GH at a dose of 0.35 mg/kg/wk (0.35 mg group). Spontaneous breast development was observed in 77 (36.3%) of the 212 patients, and spontaneous menarche occurred in 31 patients (14.6%). The frequency of spontaneous breast development was significantly lower in patients with the 45,X karyotype and significantly higher in patients with a structural abnormality of the second X chromosome. The frequency of spontaneous menarche was significantly higher in patients with mosaicism characterized by X monosomy and a cellular line with no structural abnormality of the X chromosome. No significant differences in frequencies of spontaneous breast development and spontaneous menarche were observed between the two dose groups, indicating that GH treatment does not increase the frequency of spontaneous puberty. PMID:26568657

  12. Relation between cooperative effects in cyclic water, methanol/water, and methanol trimers and hydrogen bonds in methanol/water, ethanol/water, and dimethylether/water heterodimers

    NASA Astrophysics Data System (ADS)

    Masella, Michel; Flament, Jean Pierre

    1998-05-01

    Ab initio calculations at the MP2 level have been performed on water, methanol/water, ethanol/water, and dimethylether/water dimers and on water, methanol/water, and methanol cyclic trimers. Several properties of their hydrogen bonds have been investigated, such as interoxygen distances, O-H bond lengths, binding energies, electronic densities at hydrogen bond (HB) critical points and OH stretch vibrational frequencies. Results exhibit HB enhancements for dimers where the acceptor molecule corresponds to water (HDA dimers) as compared to dimers where the donor is water (HDD dimers). In particular, HB reinforcement depends on the number of alkyl groups bonded to the donor oxygen. For trimers, a comparison among their HB properties and those of dimers shows that HB reinforcements (as compared to isolated dimers) occurring in trimers correlate with HB reinforcements observed in (HDA dimers (as compared to (HDDs). In particular, HB properties of the cyclic water trimer are close to those of alcohol/water HDA dimers, and for the methanol cyclic trimer to that of the dimethylether/water HDA dimer. All of these results agree with an orbital interpretation of hydrogen bonding in terms of charge transfer from donor lone pairs to acceptor antibond σOH*, even if all of the HB properties in cyclic trimers may not be explained from this approach.

  13. Comparison of methanol and ethylene glycol oxidation by alloy and Core-Shell platinum based catalysts

    NASA Astrophysics Data System (ADS)

    Kaplan, D.; Burstein, L.; Rosenberg, Yu.; Peled, E.

    2011-10-01

    Two Core-Shell, RuCore-PtShell and IrNiCore-PtRuShell, XC72-supported catalyst were synthesized in a two-step deposition process with NaBH4 as reducing agent. The structure and composition of the Core-Shell catalysts were determined by EDS, XPS and XRD. Electrochemical characterization was performed with the use of cyclic voltammetry. Methanol and ethylene glycol oxidation activities of the Core-Shell catalysts (in terms of surface and mass activities) were studied at 80 °C and compared to those of a commercial Pt-Ru alloy catalyst. The surface activity of the alloy based catalyst, in the case of methanol oxidation, was found to be superior as a result of optimized surface Pt:Ru composition. However, the mass activity of the PtRu/IrNi/XC72 was higher than that of the alloy based catalyst by ∼50%. Regarding ethylene glycol oxidation, while the surface activity of the alloy based catalyst was slightly higher than that of the Pt/Ru/XC72 catalyst, the latter showed ∼66% higher activities in terms of A g-1 of Pt. These results show the potential of Core-Shell catalysts for reducing the cost of catalysts for DMFC and DEGFC.

  14. Enhancing the Electrocatalytic Property of Hollow Structured Platinum Nanoparticles for Methanol Oxidation Through A Hybrid Construction

    PubMed Central

    Feng, Yan; Liu, Hui; Wang, Pengfei; Ye, Feng; Tan, Qiangqiang; Yang, Jun

    2014-01-01

    The integration of different components into a hybrid nanosystem for the utilization of the synergistic effects is an effective way to design the electrocatalysts. Herein, we demonstrate a hybrid strategy to enhance the electrocatalytic property of hollow structured Pt nanoparticles for methanol oxidation reaction. This strategy begins with the preparation of bimetallic Ag-Pt nanoparticles with a core-shell construction. Element sulfur is then added to transform the core-shell Ag-Pt nanostructures into hybrid nanodimers consisting of Ag2S nanocrystals and remaining Pt domains with intact hollow interiors (Ag2S-hPt). Finally, Au is deposited at the surface of the Ag2S domain in each hetero-dimer, resulting in the formation of ternary Ag2S-Au-hPt nanocomposites with solid-state interfaces. The ternary nanocomposites exhibit enhanced electrocatalytic property toward methanol oxidation due to the strong electronic coupling between Pt and other domains in the hybrid particles. The concept might be used toward the design and synthesis of other hetero-nanostructures with technological importance. PMID:25160947

  15. Enhancing the Electrocatalytic Property of Hollow Structured Platinum Nanoparticles for Methanol Oxidation Through A Hybrid Construction

    NASA Astrophysics Data System (ADS)

    Feng, Yan; Liu, Hui; Wang, Pengfei; Ye, Feng; Tan, Qiangqiang; Yang, Jun

    2014-08-01

    The integration of different components into a hybrid nanosystem for the utilization of the synergistic effects is an effective way to design the electrocatalysts. Herein, we demonstrate a hybrid strategy to enhance the electrocatalytic property of hollow structured Pt nanoparticles for methanol oxidation reaction. This strategy begins with the preparation of bimetallic Ag-Pt nanoparticles with a core-shell construction. Element sulfur is then added to transform the core-shell Ag-Pt nanostructures into hybrid nanodimers consisting of Ag2S nanocrystals and remaining Pt domains with intact hollow interiors (Ag2S-hPt). Finally, Au is deposited at the surface of the Ag2S domain in each hetero-dimer, resulting in the formation of ternary Ag2S-Au-hPt nanocomposites with solid-state interfaces. The ternary nanocomposites exhibit enhanced electrocatalytic property toward methanol oxidation due to the strong electronic coupling between Pt and other domains in the hybrid particles. The concept might be used toward the design and synthesis of other hetero-nanostructures with technological importance.

  16. Dynamics of spontaneous otoacoustic emissions

    NASA Astrophysics Data System (ADS)

    Bergevin, Christopher; Salerno, Anthony

    2015-12-01

    Spontaneous otoacoustic emissions (SOAEs) have become a hallmark feature in modern theories of an `active' inner ear, given their numerous correlations to auditory function (e.g., threshold microstructure, neurophysiological tuning curves), near universality across tetrapod classes, and physiological correlates at the single hair cell level. However, while several different classes of nonlinear models exist that describe the mechanisms underlying SOAE generation (e.g., coupled limit-cycle oscillators, global standing waves), there is still disagreement as to precisely which biophysical concepts are at work. Such is further compounded by the idiosyncratic nature of SOAEs: Not all ears emit, and when present, SOAE activity can occur at seemingly arbitrary frequencies (though always within the most sensitive range of the audiogram) and in several forms (e.g., peaks, broad `baseline' plateaus). The goal of the present study was to develop new signal processing and stimulation techniques that would allow for novel features of SOAE activity to be revealed. To this end, we analyzed data from a variety of different species: human, lizard, and owl. First, we explored several strategies for examining SOAE waveforms in the absence of external stimuli to further ascertain what constitutes `self-sustained sinusoids' versus `filtered noise'. We found that seemingly similar peaks in the spectral domain could exhibit key differences in the time domain, which we interpret as providing critical information about the underlying oscillators and their coupling. Second, we introduced dynamic stimuli (swept-tones, tone bursts) at a range of levels, whose interaction with SOAEs could be visualized in the time-frequency domain. Aside from offering a readily accessible way to visualize many previously reported effects (e.g., entrainment, facilitation), we observed several new features such as subharmonic distortion generation and competing pulling/pushing effects when multiple tones were

  17. Bifunctional Anode Catalysts for Direct Methanol Fuel Cells

    SciTech Connect

    Rossmeisl, Jan; Ferrin, Peter A.; Tritsaris, Georgios A.; Nilekar, Anand U.; Koh, Shirlaine; Bae, Sang Eun; Brankovic, Stanko R.; Strasser, Peter; Mavrikakis, Manos

    2012-06-13

    Using the binding energy of OH* and CO* on close-packed surfaces as reactivity descriptors, we screen bulk and surface alloy catalysts for methanol electro-oxidation activity. Using these two descriptors, we illustrate that a good methanol electro-oxidation catalyst must have three key properties: (1) the ability to activate methanol, (2) the ability to activate water, and (3) the ability to react off surface intermediates (such as CO* and OH*). Based on this analysis, an alloy catalyst made up of Cu and Pt should have a synergistic effect facilitating the activity towards methanol electro-oxidation. Using these two reactivity descriptors, a surface PtCu3 alloy is proposed to have the best catalytic properties of the Pt–Cu model catalysts tested, similar to those of a Pt–Ru bulk alloy. To validate the model, experiments on a Pt(111) surface modified with different amounts of Cu adatoms are performed. Adding Cu to a Pt(111) surface increases the methanol oxidation current by more than a factor of three, supporting our theoretical predictions for improved electrocatalysts.

  18. Hydrogen bond competition in the ethanol-methanol dimer.

    PubMed

    Finneran, Ian A; Carroll, P Brandon; Mead, Griffin J; Blake, Geoffrey A

    2016-08-10

    Previous theoretical work on the ethanol-methanol dimer has been inconclusive in predicting the preferred hydrogen bond donor/acceptor configuration. Here, we report the microwave spectrum of the dimer using a chirped pulse Fourier transform microwave spectrometer from 8-18 GHz. In an argon-backed expansion, 50 transitions have been assigned to a trans-ethanol-acceptor/methanol-donor structure that is likely stabilized by a secondary weak C-HO hydrogen bond. A higher energy conformer was observed in a helium-backed expansion and tentatively assigned to a gauche-ethanol-acceptor/methanol-donor structure. No ethanol-donor/methanol-acceptor dimers have been found, suggesting such interactions are energetically disfavored. A preliminary analysis of the A-E splitting due to the internal rotation of the methanol methyl group in the ground state species is also presented. We find evidence of the Ubbelohde effect in the measured A-E splittings of three deuterated isotopologues and the normal species of this conformer. PMID:27472828

  19. Performance of direct methanol polymer electrolyte fuel cell

    SciTech Connect

    Shin, Dong Ryul; Jung, Doo Hwan; Lee, Chang Hyeong; Chun, Young Gab

    1996-12-31

    Direct methanol fuel cells (DMFC) using polymer electrolyte membrane are promising candidate for application of portable power sources and transportation applications because they do not require any fuel processing equipment and can be operated at low temperature of 60{degrees}C - 130{degrees}C. Elimination of the fuel processor results in simpler design, higher operation reliability, lower weight volume, and lower capital and operating cost. However, methanol as a fuel is relatively electrochemical inert, so that kinetics of the methanol oxidation is too slow. Platinum and Pt-based binary alloy electrodes have been extensively studied for methanol electro-oxidation in acid electrolyte at ambient and elevated temperatures. Particularly, unsupported carbon Pt-Ru catalyst was found to be superior to the anode of DMFC using a proton exchange membrane electrolyte (Nafion). The objective of this study is to develop the high performance DNTC. This paper summarizes the results from half cell and single cell tests, which focus on the electrode manufacturing process, catalyst selection, and operating conditions of single cell such as methanol concentration, temperature and pressure.

  20. Methanol Uptake By Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    To evaluate the role of upper tropospheric and lower stratospheric aerosols in the global budget of methanol, the solubility and reactivity of CH3OH in aqueous sulfuric acid solutions are under investigation. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H(*), for methanol dissolution into 45 to 70 percent by weight H2SO4. We find that methanol solubility ranges from 10(exp 5) to 10(exp 8) M/atm and increases with decreasing temperature and with increasing sulfuric acid content. These solubility measurements include uptake due to physical solvation and all rapid equilibria which are established in solution. Our data indicate that simple uptake by aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These results differ from those recently reported in the literature, and an explanation of this disparity will be presented. In addition to solvation, reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H may proceed in the atmosphere but is not significant under our experimental conditions. Results obtained using a complementary equilibrium measurement technique confirm this directly. In addition, the extent of methanol sequestration via formation of mono- and dimethylsulfate will be evaluated under several atmospheric conditions.

  1. Sulfur removal from diesel fuel-contaminated methanol.

    SciTech Connect

    Lee, S. H. D.; Kumar, R.; Krumpelt, M.; Chemical Engineering

    2002-03-01

    Methanol is considered to be a potential on-board fuel for fuel cell-powered vehicles. In current distribution systems for liquid fuels used in the transportation sector, commodity methanol can occasionally become contaminated with the sulfur in diesel fuel or gasoline. This sulfur would poison the catalytic materials used in fuel reformers for fuel cells. We tested the removal of this sulfur by means of ten activated carbons (AC) that are commercially available. Tests were conducted with methanol doped with 1 vol.% grade D-2 diesel fuel containing 0.29% sulfur, which was present essentially as 33-35 wt.% benzothiophenes (BTs) and 65-67 wt.% dibenzothiophenes (DBT). In general, coconut shell-based carbons activated by high-temperature steam were more effective at sulfur removal than coal-based carbons. Equilibrium sorption data showed linear increase in sulfur capture with the increase of sulfur concentration in methanol. Both types of carbons had similar breakthrough characteristics, with the dynamic sorption capacity of each being about one-third of its equilibrium sorption capacity. Results of this study suggest that a fixed-bed sorber of granular AC can be used, such as in refueling stations, for the removal of sulfur in diesel fuel-contaminated methanol.

  2. Nature, nomenclature and taxonomy of obligate methanol utilizing strains.

    PubMed

    Cercel, M

    1999-01-01

    In a screening program, a number of different bacterial strains with the ability to utilize methanol as a sole carbon and energy source were isolated and described. They are well known methanol utilizing genera Pseudomonas, Klebsiella, Micrococcus, Methylomonas or, on the contrary, the new, unknown genera and species of methylotrophic bacteria. In the last category, Acinetobacter and Alcaligenes are the new reported genera of organisms able to use methanol as a sole carbon and energy source. The present paper reports the very complex physiological and biochemical modifications when very versatile bacteria such as Pseudomonas aeruginosa and Acinetobacter calcoaceticus are cultured on methanol and when the obligate methylotrophic state is compared with the facultative methylotrophic state of the same bacterial strain. Based on experiments and comparisons with literature data, it seems that Methylomonas methanica is the obligate methylotrophic state of Pseudomonas aeruginosa and that Acinetobacter calcoaceticus is the facultative methylotrophic state of Methylococcus capsulatus, an obligate methylotroph. The relationship of the obligate to the facultative and of the facultative to the obligate methylotrophy were established. These new methylotrophic genera and species, the profound physiological and biochemical modifications as well as the new data concerning nature, nomenclature and taxonomy of methanol utilizing bateria were reported for the first time in 1983. PMID:11845445

  3. Low Crossover Polymer Electrolyte Membranes for Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Prakash, G. K. Surya; Smart, Marshall; Atti, Anthony R.; Olah, George A.; Narayanan, S. R.; Valdez, T.; Surampudi, S.

    1996-01-01

    Direct Methanol Fuel Cells (DMFC's) using polymer electrolyte membranes are promising power sources for portable and vehicular applications. State of the art technology using Nafion(R) 117 membranes (Dupont) are limited by high methanol permeability and cost, resulting in reduced fuel cell efficiencies and impractical commercialization. Therefore, much research in the fuel cell field is focused on the preparation and testing of low crossover and cost efficient polymer electrolyte membranes. The University of Southern California in cooperation with the Jet Propulsion Laboratory is focused on development of such materials. Interpenetrating polymer networks are an effective method used to blend polymer systems without forming chemical links. They provide the ability to modify physical and chemical properties of polymers by optimizing blend compositions. We have developed a novel interpenetrating polymer network based on poly (vinyl - difluoride)/cross-linked polystyrenesulfonic acid polymer composites (PVDF PSSA). Sulfonation of polystyrene accounts for protonic conductivity while the non-polar, PVDF backbone provides structural integrity in addition to methanol rejection. Precursor materials were prepared and analyzed to characterize membrane crystallinity, stability and degree of interpenetration. USC JPL PVDF-PSSA membranes were also characterized to determine methanol permeability, protonic conductivity and sulfur distribution. Membranes were fabricated into membrane electrode assemblies (MEA) and tested for single cell performance. Tests include cell performance over a wide range of temperatures (20 C - 90 C) and cathode conditions (ambient Air/O2). Methanol crossover values are measured in situ using an in-line CO2 analyzer.

  4. Upgrading of high-boiling fraction of bio-oil in supercritical methanol.

    PubMed

    Li, Wang; Pan, Chunyan; Sheng, Li; Liu, Zhen; Chen, Ping; Lou, Hui; Zheng, Xiaoming

    2011-10-01

    In this work, the upgrading reactions of high-boiling fraction (HBF) of bio-oil were carried out over a series of supported mono- and bi-metallic catalysts under the supercritical methanol condition. During these reactions, esterification and cracking (alcoholysis and hydrocracking) were the two dominant processes. PtNi/MgO exhibited good performance, and gave a high yield (72.4 wt.%) of refined oil. The acid-base properties of the supports have an important effect on the coke deposition on the catalyst surface. The acidic catalysts gave the somewhat lower product yields, but tended to inhibit coking reaction. This would improve the life of the catalysts in the practical applications. The refined oil is believed to be a potential substitute or partial substitute for the fossil transportation fuel. PMID:21835611

  5. Characterization of a 1:1 Methanol-Benzene Complex Using Matrix Isolation Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Amicangelo, Jay C.; Romano, Natalie C.; Demay, Geoffrey R.

    2013-06-01

    Matrix isolation infrared spectroscopy was used to characterize a 1:1 complex of methanol (CH_{3}OH) with benzene (C_{6}H_{6}). Co-deposition experiments with CH_{3}OH and C_{6}H_{6} were performed at 17 - 20 K using nitrogen and argon as the matrix gases. New infrared bands attributable to the CH_{3}OH-C_{6}H_{6} complex were observed near the O-H and C-O stretching vibrations of CH_{3}OH and near the hydrogen out-of-plane bending vibration of C_{6}H_{6}. The initial identification of the new infrared bands observed was established by performing a conentration study (1:200 to 1:2000 S:M ratios), by comparing the co-deposition spectra with the spectra of the individual monomers, by matrix annealing experiments, and by performing experiments using isotopically labeled methanol (CD_{3}OD) and benzene (C_{6}D_{6}). Quantum chemical calculations were also performed for the CH_{3}OH-C_{6}H_{6} complex using density functional theory and ab initio methods. Two stable minima were found for the complex: one in which the CH_{3}OH is above the C_{6}H_{6} ring with the hydroxyl hydrogen interacting with the π cloud of the ring (H-π complex) and the other in which the CH_{3}OH is in the plane of the C_{6}H_{6} ring with the hydroxyl oxygen interacting with one of the C-H bonds of the ring (CH-O complex). Comparing the calculated shifts of the vibrational frequencies for both complexes to the observed experimental frequency shifts, it is found that the H-π complex is in best agreement with the experimental shifts in both magnitude and direction. Therefore, it is concluded that the geometry of the CH_{3}OH-C_{6}H_{6} complex observed in the matrix isolation experiments is the H-π complex.

  6. Structure and energetics of hydrogen-bonded networks of methanol on close packed transition metal surfaces

    NASA Astrophysics Data System (ADS)

    Murphy, Colin J.; Carrasco, Javier; Lawton, Timothy J.; Liriano, Melissa L.; Baber, Ashleigh E.; Lewis, Emily A.; Michaelides, Angelos; Sykes, E. Charles H.

    2014-07-01

    Methanol is a versatile chemical feedstock, fuel source, and energy storage material. Many reactions involving methanol are catalyzed by transition metal surfaces, on which hydrogen-bonded methanol overlayers form. As with water, the structure of these overlayers is expected to depend on a delicate balance of hydrogen bonding and adsorbate-substrate bonding. In contrast to water, however, relatively little is known about the structures methanol overlayers form and how these vary from one substrate to another. To address this issue, herein we analyze the hydrogen bonded networks that methanol forms as a function of coverage on three catalytically important surfaces, Au(111), Cu(111), and Pt(111), using a combination of scanning tunneling microscopy and density functional theory. We investigate the effect of intermolecular interactions, surface coverage, and adsorption energies on molecular assembly and compare the results to more widely studied water networks on the same surfaces. Two main factors are shown to direct the structure of methanol on the surfaces studied: the surface coverage and the competition between the methanol-methanol and methanol-surface interactions. Additionally, we report a new chiral form of buckled hexamer formed by surface bound methanol that maximizes the interactions between methanol monomers by sacrificing interactions with the surface. These results serve as a direct comparison of interaction strength, assembly, and chirality of methanol networks on Au(111), Cu(111), and Pt(111) which are catalytically relevant for methanol oxidation, steam reforming, and direct methanol fuel cells.

  7. A non-syn-gas catalytic route to methanol production.

    PubMed

    Wu, Cheng-Tar; Yu, Kai Man Kerry; Liao, Fenglin; Young, Neil; Nellist, Peter; Dent, Andrew; Kroner, Anna; Tsang, Shik Chi Edman

    2012-01-01

    Methanol is an important platform molecule for chemical synthesis and its high energy density also renders it a good candidate as a cleaner transportation fuel. At present, methanol is manufactured from natural gas via the indirect syn-gas route. Here we show that ethylene glycol, a versatile chemical derived from biomass or fossil fuels, can be directly converted to methanol in hydrogen with high selectivity over a Pd/Fe(2)O(3) co-precipitated catalyst. This opens up a possibility for diversification in natural resources for energy-starved countries. The working catalyst contains extremely small 'PdFe' clusters and metal adatoms on defective iron oxide to give the required metal-support interaction for the novel synthesis. PMID:22968696

  8. Graphene oxide aerogel-supported Pt electrocatalysts for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Duan, Jialin; Zhang, Xuelin; Yuan, Weijian; Chen, Hailong; Jiang, Shan; Liu, Xiaowei; Zhang, Yufeng; Chang, Limin; Sun, Zhiyuan; Du, Juan

    2015-07-01

    Graphene oxide aerogel (GOA) was prepared to serve as catalyst support for Pt nanoparticles for methanol electro-oxidation. Analyses by X-ray diffraction (XRD) and scanning electron microscopy (SEM) were conducted to physically characterize the Pt/GOA catalyst. The results show that Pt/GOA has a 3D macroporous structure, which can not only accelerate mass transfer but also provide a larger efficient surface area for methanol oxidation. The results of electrochemical tests reveal that Pt/GOA has an electrochemical surface area as large as 95.5 m2 g-1, and its peak current density toward methanol oxidation is as high as 876 mA mg-1Pt.

  9. Existence of a liquid-liquid phase transition in methanol.

    PubMed

    Huš, Matej; Urbic, Tomaz

    2014-12-01

    A simple model is constructed to study the phase diagram and thermodynamic properties of methanol, which is described as a dimer of an apolar sphere mimicking the methyl group and a sphere with core-softened potential as the hydroxyl group. Performing classical Monte Carlo simulations, we obtained the phase diagram, showing a second critical point between two different liquid phases. Evaluating systems with a different number of particles, we extrapolate to infinite size in accordance with Ising universality class to obtain bulk values for critical temperature, pressure, and density. Strong evidence that the structure of the liquid changes upon transition from high- to low-density phase was provided. From the experimentally determined hydrogen bond strength and length in methanol and water, we propose where the second critical point of methanol should be. PMID:25615092

  10. Methanol sensing characteristics of conducting polypyrrole-silver nanocomposites

    NASA Astrophysics Data System (ADS)

    Kabir, L.; Mandal, S. K.

    2012-05-01

    Methanol sensing characteristics of conducting polypyrrole-silver nanocomposites are reported here. The nanocomposites are synthesized by wet chemical technique with different amount of silver loadings (5-15 mol%). The sensitivity of the nanocomposites upon exposure to gas molecules is critically dependent on the silver loadings and the concentration of the exposed gas. This is possibly instigated by the modified metal-polymer interface and the polar nature of the constituent metal and the exposed gas. Interaction of the alcohol gas with the polypyrrole chains in the presence of silver effectively determines the change in resistance and hence the sensitivity of the nanocomposites upon exposure to methanol. The adsorption of methanol molecules within the nanocomposites and the subsequent chemical reactions are studied by Fourier transform infrared (FTIR) spectroscopy.

  11. Pt-Ru-TiO 2 photoelectrocatalysts for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Polo, André S.; Santos, M. C.; de Souza, Rodrigo F. B.; Alves, Wendel A.

    Novel photoelectrocatalysts composed of PtRuTiO 2/C are prepared by the polymeric precursor method and are characterized by scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy and cyclic voltammetry. The onset potential for methanol oxidation is similar (0.3 V vs. RHE) for all of the photoelectrocatalyst layers investigated, although the peak current density is dependent on the layer composition. Irradiation of UV light on the photoelectrocatalyst surfaces enhances the chronoamperometric responses up to 18%, which clearly demonstrates a synergistic effect between the photo- and electrocatalysts. The comparison between all the layers prepared indicates that there is an appropriate ratio of metallic nanoparticles and TiO 2 to obtain the best performance of these photoelectroactive layers. These results demonstrate that methanol oxidation is achieved by electro- and photocatalysis using a simple and affordable method. This procedure can be conveniently exploited to enhance the response of direct methanol fuel cell electrodes.

  12. Mind the gap: a case of severe methanol intoxication.

    PubMed

    Nazir, Salik; Melnick, Stephen; Ansari, Shabana; Kanneh, Haitham T

    2016-01-01

    We report a case of a 37-year-old woman with non-insulin-dependent diabetes on sitagliptin, an alcohol abuser who was brought unresponsive to the emergency department of our hospital. On arrival, the patient was intubated and mechanically ventilated due to a low Glasgow Coma score of 3/15. Initial laboratory testing identified profound high anion gap metabolic acidosis. Owing to the dubious circumstances and the depth of acidosis, methanol and ethylene glycol intoxication was suspected. Further evaluation revealed a significantly increased serum osmolal gap. Pending volatile compound screen, fomepizole was started and urgent haemodialysis undertaken. Subsequent brain MRI identified changes in putamen of bilateral basal ganglia, suggestive of methanol intoxication. The patient was later found to have an initial methanol level of 237 mg/dL. She was successfully extubated on day 2 of hospitalisation, with residual cognitive and visual deficits. PMID:26917798

  13. Detection of a new type of methanol maser

    NASA Astrophysics Data System (ADS)

    Wilson, T. L.; Walmsley, C. M.; Jewell, P. R.; Snyder, L. E.

    1984-05-01

    The discovery of emission and absorption at 23121 MHz, attributed to the 92 - 101 A+ transition of methanol (CH3OH) is reported. The emission lines are from W3(OH), Orion-KL, and NGC 7538-IRS1; absorption was found toward the compact H II region in W31. Negative results for a number of other regions are given. The emission from W3(OH) is caused by maser amplification of the background continuum source. Maser amplification probably also explains the observed emission from NGC 7538-IRS1. The 92 - 101 A+ maser emission is the first detected from the A symmetry state of methanol and the first methanol maser found outside of Orion-KL.

  14. Solubility of carbon dioxide in methyldiethanolamine + methanol + water

    SciTech Connect

    Henni, A.; Mather, A.E.

    1995-03-01

    Aqueous solutions of methyldiethanolamine (MDEA) are attractive solvents for the selective removal of H{sub 2}S from process stream containing CO{sub 2} and hydrocarbons. The solubility of CO{sub 2} in a mixed nonaqueous solvent of methyldiethanolamine MDEA and methanol has been measured at 40 C. The results are compared with the solubility of CO{sub 2} in pure methanol. The solubility of CO{sub 2} has also been obtained at 40 and 100 C in an aqueous mixed solvent consisting of methanol (40 mass %), MDEA (40 mass %), and water (20 mass %) at partial pressures of the acid gas up to 7.04 MPa. The solubility results are compared with the nonaqueous mixed solvent results and previously reported data for aqueous methyldiethanolamine.

  15. Micro-crack formation in direct methanol fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Li, Qing; Spernjak, Dusan; Zelenay, Piotr; Kim, Yu Seung

    2014-12-01

    This study focuses on the micro-crack formation of Nafion®-based membrane electrode assemblies (MEAs) after extended direct methanol fuel cell (DMFC) operation. All electrodes, both with metal-black and carbon-supported catalysts, contain some micro-cracks initially; the area covered by these cracks increases both in the anode and cathode after 100-hours of DMFC test. X-ray tomography shows an increase in the crack area in both anode and cathode that correlates with methanol feed concentration and methanol crossover. The MEAs with carbon-supported catalysts and thicker membrane are more resistant to the formation of micro-cracks compared to those with metal-black catalysts and thinner membrane, respectively. The impact of the micro-crack formation on cell performance and durability is limited over the 100-hour DMFC operation, with the long-term impact remaining unknown.

  16. Electrochemical conversion of carbon dioxide to methanol with the assistance of formate dehydrogenase and methanol dehydrogenase as biocatalysts

    SciTech Connect

    Kuwabata, Susumu; Tsuda, Ryo; Yoneyama, Hiroshi )

    1994-06-15

    Electrolysis at potentials between -0.7 and -0.9 V vs SCE of carbon dioxide-saturated phosphate buffer solutions (pH7) containing formate dehydrogenase (FDH) and either methyl viologen (MV[sup 2+]) or pyrroloquinolinequinone (PQQ) as an electron mediator yielded formate with current efficiencies as high as 90%. The enzyme was durable as long as the electrolysis was carried out in the dark. Electrolysis of phosphate buffer solutions containing sodium formate in the presence of methanol dehydrogenase (MDH) and MV[sup 2+] at -0.7 V vs SCE yielded formaldehyde if the concentration of the enzyme used was low, whereas both formaldehyde and methanol were produced for relatively high concentrations of the enzyme where the methanol production began to occur when the formaldehyde produced accumulated. The use of PQQ in place of MV[sup 2+] as the electron mediator exclusively produced methanol alone after some induction period in the electrolysis. On the basis of these results, successful attempts have been made to reduce carbon dioxide to methanol with cooperative assistance of FDH and MDH in the presence of PQQ as the electron mediator. The role of enzyme and mediator in these reduction processes is discussed in detail. 34 refs., 10 figs., 2 tabs.

  17. Partial oxidative conversion of methane to methanol through selective inhibition of methanol dehydrogenase in methanotrophic consortium from landfill cover soil.

    PubMed

    Han, Ji-Sun; Ahn, Chang-Min; Mahanty, Biswanath; Kim, Chang-Gyun

    2013-11-01

    Using a methanotrophic consortium (that includes Methylosinus sporium NCIMB 11126, Methylosinus trichosporium OB3b, and Methylococcus capsulatus Bath) isolated from a landfill site, the potential for partial oxidation of methane into methanol through selective inhibition of methanol dehydrogenase (MDH) over soluble methane monooxygenase (sMMO) with some selected MDH inhibitors at varied concentration range, was evaluated in batch serum bottle and bioreactor experiments. Our result suggests that MDH activity could effectively be inhibited either at 40 mM of phosphate, 100 mM of NaCl, 40 mM of NH4Cl or 50 μM of EDTA with conversion ratios (moles of CH3OH produced per mole CH4 consumed) of 58, 80, 80, and 43 %, respectively. The difference between extent of inhibition in MDH activity and sMMO activity was significantly correlated (n = 6, p < 0.05) with resultant methane to methanol conversion ratio. In bioreactor study with 100 mM of NaCl, a maximum specific methanol production rate of 9 μmol/mg h was detected. A further insight with qPCR analysis of MDH and sMMO coding genes revealed that the gene copy number continued to increase along with biomass during reactor operation irrespective of presence or absence of inhibitor, and differential inhibition among two enzymes was rather the key for methanol production. PMID:23963715

  18. Corrosion behaviour of austenitic stainless steel as a function of methanol concentration for direct methanol fuel cell bipolar plate

    NASA Astrophysics Data System (ADS)

    Wang, Lixia; Kang, Bin; Gao, Na; Du, Xiao; Jia, Linan; Sun, Juncai

    2014-05-01

    The corrosion behaviour of an AISI 304 stainless steel (304 SS) is investigated in aqueous acid methanol solutions (0.5 M H2SO4 + 2 ppm HF + x M CH3OH, x = 0, 1, 5, 10 and 20) at 50 °C to simulate the varied anodic operating conditions of direct methanol fuel cells. Electrochemical measurements including potentiodynamic polarisation, potentiostatic polarisation and electrochemical impedance spectroscopy tests, are employed to analyse the corrosion behaviour. The results reveal that the corrosion resistance of 304 SS is enhanced in solutions with higher methanol content. Scanning electron microscopy and inductively coupled plasma atomic emission spectrometry data indicate that the surface corrosion on 304 SS is alleviated when the methanol concentration is increased. According to the X-ray photoelectron spectroscopy and Mott-Schottky analyses, the passive films formed on the 304 SS after potentiostatic tests in all the test solutions are composed of a duplex electronic structure with an external n-type semiconductor layer and an internal p-type semiconductor layer. Further analyses of the surface conductivity conducted by measuring the interfacial contact resistance between the 304 SS and carbon paper reveal that the passive film formed in the solution with higher methanol content exhibits lower conductivity.

  19. Microwave irradiated Ni-MnOx/C as an electrocatalyst for methanol oxidation in KOH solution for fuel cell application

    NASA Astrophysics Data System (ADS)

    Hameed, R. M. Abdel

    2015-12-01

    Ni-MnOx/C electrocatalyst was synthesized by the reduction of nickel precursor salt on MnOx/C powder using NaBH4 and the deposition process was motivated with the aid of microwave irradiation. Finer nickel nanoparticles were detected in Ni-MnOx/C using transmission electron microscopy with a lower particle size of 4.5 nm compared to 6 nm in Ni/C. Cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy (EIS) were applied to study the electrocatalytic activity of Ni-MnOx/C for methanol oxidation in 0.5 M KOH solution. The presence of 7.5 wt.% MnOx in Ni-MnOx/C enhanced the oxidation current density by 1.43 times. The catalytic rate constant of methanol oxidation at Ni-MnOx/C was calculated as 3.26 × 103 cm3 mol-1 s-1. An appreciable shift in the maximum frequency at the transition from the resistive to capacitive regions to a higher value in Bode plots of Ni-MnOx/C was shown when compared to Ni/C. It was accompanied by lowered phase angle values. The lowered Warburg impedance value (W) of Ni-MnOx/C at 400 mV confirmed the faster methanol diffusion rate at its surface.

  20. Spontaneous rupture of fetal hydronephrosis: case report.

    PubMed

    Kosus, A; Kosus, N; Duran, M; Turhan, N

    2011-08-01

    Hydronephrosis is the most common congenital anomaly observed with prenatal ultrasonography. Ureteropelvic junction obstruction (UPJO) is the most common cause of prenatal hydronephrosis. Spontaneous rupture has been reported in adults with severe hydronephrosis. There is no reported spontaneous rupture case in the fetus in the literature. A spontaneous ureteral rupture due to severe UPJO was reported in this case report. Prenatal ultrasound at 33 week gestation in a 21-year-old pregnant woman, revealed a female fetus with grade IV hydronephrosis of the right kidney, suggestive of a UPJO. During the follow-up at XXXVIII week, 5 cm cystic structure was not observed in right kidney. Mild ectasia was present in pelvicalyciel part which make us think about spontaneous rupture. Ultrasonographic examination after a week post-delivery revealed 15 mm pelvicalyciel ectasia on right side which persisted during the second control after 1 month. Vesicoureteral reflux was not detected during voiding cystourethrogram. Diuretic renography revealed loss of right renal function completely. Because there was not any complain or any clinical sign, surgery was not thought. Spontaneous follow-up was recommended. PMID:21959707

  1. Spontaneous intrathyroidal hematoma causing airway obstruction

    PubMed Central

    Best, Corliss A.E.; Dhaliwal, Sandeep; Tam, Samantha; Low, T. Hubert; Hughes, Brian; Fung, Kevin; MacNeil, S. Danielle

    2016-01-01

    Abstract Introduction: Spontaneous thyroid hemorrhage is a rare occurrence that results in pain, discomfort, and occasionally compressive symptoms. Infrequently, extensive thyroid hemorrhage can result in a rapidly expanding hematoma resulting in airway compromise. This is a case of an otherwise healthy young woman, 3 months postpartum, with a slowly expanding spontaneous thyroid hemorrhage that measured at 7 × 5.5 × 5 cm by computed tomography. She ultimately required intubation to manage respiratory distress and subsequently a hemithyroidectomy for definitive treatment. The case presentation is followed by a literature review where known etiologies of thyroid hematoma including traumatic and nontraumatic causes, precipitating anticoagulation, and spontaneous rupture of branches of the external carotid artery are outlined. The potential links to pregnancy are explored. The roles of bedside thyroid ultrasound in the emergency department and lateral neck roentgenogram in diagnosis are explored. The importance of airway management and indications for conservative versus surgical treatments are discussed. Conclusions: This is a case of a spontaneous intrathyroidal hemorrhage, which progressed over days to ultimately cause airway compromise. It is imperative that physicians are educated on the appropriate detection and management of the potentially life-threatening spontaneous thyroid hematoma. PMID:27583841

  2. Hyperprolactinemia due to spontaneous intracranial hypotension.

    PubMed

    Schievink, Wouter I; Nuño, Miriam; Rozen, Todd D; Maya, M Marcel; Mamelak, Adam N; Carmichael, John; Bonert, Vivien S

    2015-05-01

    OBJECT Spontaneous intracranial hypotension is an increasingly recognized cause of headaches. Pituitary enlargement and brain sagging are common findings on MRI in patients with this disorder. The authors therefore investigated pituitary function in patients with spontaneous intracranial hypotension. METHODS Pituitary hormones were measured in a group of 42 consecutive patients with spontaneous intracranial hypotension. For patients with hyperprolactinemia, prolactin levels also were measured following treatment. Magnetic resonance imaging was performed prior to and following treatment. RESULTS The study group consisted of 27 women and 15 men with a mean age at onset of symptoms of 52.2 ± 10.7 years (mean ± SD; range 17-72 years). Hyperprolactinemia was detected in 10 patients (24%), ranging from 16 ng/ml to 96.6 ng/ml in men (normal range 3-14.7 ng/ml) and from 31.3 ng/ml to 102.5 ng/ml in women (normal range 3.8-23.2 ng/ml). In a multivariate analysis, only brain sagging on MRI was associated with hyperprolactinemia. Brain sagging was present in 60% of patients with hyperprolactinemia and in 19% of patients with normal prolactin levels (p = 0.02). Following successful treatment of the spontaneous intracranial hypotension, hyperprolactinemia resolved, along with normalization of brain MRI findings in all 10 patients. CONCLUSIONS Spontaneous intracranial hypotension is a previously undescribed cause of hyperprolactinemia. Brain sagging causing distortion of the pituitary stalk (stalk effect) may be responsible for the hyperprolactinemia. PMID:25380110

  3. Spontaneous intracranial hypotension: diagnosis to management.

    PubMed

    Limaye, Kaustubh; Samant, Rohan; Lee, Ricky W

    2016-06-01

    Spontaneous Intracranial Hypotension typically occurs from spontaneous CSF leak. CSF volume depletion rather than decrease in CSF pressure is thought to be the main causative feature for intracranial hypotension. More and more cases of intracranial hypotension are getting diagnosed with the advances in the imaging. The advances in the imaging have also led to the better understanding of the dynamic changes that occur with intracranial hypotension. The old theories of CSF overproduction or CSF underproduction have not been substantially associated with intracranial hypotension. It has also led to the fore different atypical clinical features and presentations. Although, it has been known for a long time, the diagnosis is still challenging and dilemma persists over one diagnostic modality over other and the subsequent management. Spontaneous CSF leaks occur at the spinal level and the skull base and other locations are rare. The anatomy of spontaneous intracranial hypotension is a very complex process with significant overlap in connective tissue disorders, previous dural weakness or meningeal diverticula. To localize the location of the CSF leak-CT myelography is the modality of choice. CSF cysternography may provide additional confirmation in uncertain cases and also MRI spine imaging may be of significant help in some cases. Spontaneous intracranial hypotension continues to be a diagnostic dilemma and our effort was to consolidate available information on the clinical features, diagnostics, and management for a practicing neurologist for a "15-20 min quick update of the topic". PMID:26661291

  4. Conservative management of spontaneous abortions. Women's experiences.

    PubMed Central

    Wiebe, E.; Janssen, P.

    1999-01-01

    OBJECTIVE: To describe women's experiences with expectant management of spontaneous abortions. DESIGN: Descriptive survey using questionnaires with fixed-choice and open-ended questions. The latter were analyzed for themes, using qualitative methods. SETTING: Urban and suburban private primary care family practices. PARTICIPANTS: A convenience sample of family practice patients (59 of 80 eligible) pregnant for less than 12 weeks who had spontaneous abortions without surgery. Response rate was 84.7%; 50 questionnaires were received from the 59 women. METHOD: Women were asked about their physical experiences, including amount of pain and bleeding; emotional effects; their satisfaction with medical care; and their suggestions for improving care. MAIN FINDINGS: The mean worst pain experienced during a spontaneous abortion on an 11-point scale was 5.9. Bleeding varied, but was often very heavy. Satisfaction rate was 92.9% with family physician care and 84.6% with hospital care. Women described the emotional effect of "natural" spontaneous abortions and made recommendations for improving care. CONCLUSIONS: A better understanding of the physical and emotional experiences of the women in this study might help physicians better prepare and support patients coping with expectant management of spontaneous abortions. PMID:10540695

  5. Reactivity Descriptors for Direct Methanol Fuel Cell Anode Catalysts

    SciTech Connect

    Ferrin, Peter; Nilekar, Anand U.; Greeley, Jeffrey P.; Mavrikakis, Manos; Rossmeisl, Jan

    2008-11-01

    We have investigated the anode reaction in direct methanol fuel cells using a database of adsorption free energies for 16 intermediates on 12 close-packed transition metal surfaces calculated with periodic, selfconsistent, density functional theory (DFT–GGA). This database, combined with a simple electrokinetic model of the methanol electrooxidation reaction, yields mechanistic insights that are consistent with previous experimental and theoretical studies on Pt, and extends these insights to a broad spectrum of other transition metals. In addition, by using linear scaling relations between the adsorption free energies of various intermediates in the reaction network, we find that the results determined with the full database of adsorption energies can be estimated by knowing only two key descriptors for each metal surface: the free energies of OH and CO on the surface. Two mechanisms for methanol oxidation to CO₂ are investigated: an indirect mechanism that goes through a CO intermediate and a direct mechanism where methanol is oxidized to CO₂ without the formation of a CO intermediate. For the direct mechanism, we find that, because of CO poisoning, only a small current will result on all non-group 11 transition metals; of these metals, Pt is predicted to be the most active. For methanol decomposition via the indirect mechanism, we find that the onset potential is limited either by the ability to activate methanol, by the ability to activate water, or by surface poisoning by CO* or OH*/O*. Among pure metals, there is no obvious candidate for a good anode catalyst, and in order to design a better catalyst, one has to look for bi-functional surfaces such as the well-studied PtRu alloy.

  6. Structures of protonated methanol clusters and temperature effects.

    PubMed

    Fifen, Jean Jules; Nsangou, Mama; Dhaouadi, Zoubeida; Motapon, Ousmanou; Jaidane, Nejm-Eddine

    2013-05-14

    The accurate evaluation of pKa's, or solvation energies of the proton in methanol at a given temperature is subject to the determination of the most favored structures of various isomers of protonated (H(+)(MeOH)n) and neutral ((MeOH)n) methanol clusters in the gas phase and in methanol at that temperature. Solvation energies of the proton in a given medium, at a given temperature may help in the determination of proton affinities and proton dissociation energies related to the deprotonation process in that medium and at that temperature. pKa's are related to numerous properties of drugs. In this work, we were interested in the determination of the most favored structures of various isomers of protonated methanol clusters in the gas phase and in methanol, at a given temperature. For this aim, the M062X/6-31++G(d,p) and B3LYP/6-31++G(d,p) levels of theory were used to perform geometries optimizations and frequency calculations on various isomers of (H(+)(MeOH)n) in both phases. Thermal effects were retrieved using our homemade FORTRAN code. Thus, we accessed the relative populations of various isomers of protonated methanol clusters, in both phases for temperatures ranging from 0 to 400 K. As results, in the gas phase, linear structures are entropically more favorable at high temperatures, while more compact ones are energetically more favorable at lower temperatures. The trend is somewhat different when bulk effects are taken into account. At high temperatures, the linear structure only dominates the population for n ≤ 6, while it is dominated by the cyclic structure for larger cluster sizes. At lower temperatures, compact structures still dominate the population, but with an order different from the one established in the gas phase. Hence, temperature effects dominate solvent effects in small cluster sizes (n ≤ 6), while the reverse trend is noted for larger cluster sizes. PMID:23676038

  7. Methane or methanol via catalytic gasification of biomass

    SciTech Connect

    Mitchell, D.H.; Mudge, L.K.; Robertus, R.J.; Weber, S.L.; Sealock, L.J. Jr.

    1980-03-01

    Methane and methanol synthesis gas can be produced by steam gasification of biomass in the presence of appropriate catalysts. A 5 cm diameter reactor has been used to determine the desired catalysts and operating temperature. A process development unit (PDU) has demonstrated steam gasification of biomass with catalysts at rates up to 35 kg per hour. Methane yields of 0.28 nm/sup 3/ per kg of dry wood were produced in the small laboratory reactor. Further methanation of the product gas mixture can increase methane yields to 0.33 nm/sup 3//kg. The catalyst system is nickel and silica-alumina. The preferred reactor operating temperature is 500 to 550/sup 0/C. Tests have been at atmospheric pressure. The PDU performance has confirmed results obtained in the laboratory. Methanol synthesis gas can be produced in a single stage reactor at 750 to 850/sup 0/C by steam gasification of wood with silica-alumina and nickel catalysts present. From this gas, up to 0.6 kg of methanol can be produced per kg of wood. Gasification of the wood to produce synthesis gas has been demonstrated in the laboratory scale reactor, but remains to be successfully done using the PDU. Catalyst deactivation rates and regeneration schemes must be determined in order to determine the economic feasibility of wood to methane or methanol processes. Some advantages of catalytic steam gasification of biomass over steam-oxygen gasification are: no oxygen is required for methane or methanol synthesis gas, therefore, no oxygen plant is needed; little or no tar is produced resulting in simpler gas cleaning equipment; no shift reactor is required for methanol synthesis; methanation requirements are low resulting in high conversion efficiency; and yields and efficiencies are greater than obtained by conventional gasification.

  8. Visual and neurologic sequelae of methanol poisoning in Saudi Arabia

    PubMed Central

    Galvez-Ruiz, Alberto; Elkhamary, Sahar M.; Asghar, Nasira; Bosley, Thomas M.

    2015-01-01

    Objectives: To present the visual sequelae of methanol poisoning and to emphasize the characteristics of methanol exposure in the Kingdom of Saudi Arabia (KSA). Methods: A retrospective case series was carried out on 50 sequential patients with methanol poisoning seen at the King Khaled Eye Specialist Hospital and King Saud University Hospitals in Riyadh, KSA between 2008 and 2014. All patients were examined by a neuro-ophthalmologist at least one month after methanol intoxication. Results: All 50 patients were young or middle-aged males. All admitted to drinking unbranded alcohol within 2-3 days before profound or relatively profound, painless, bilateral visual loss. Mean visual acuity in this group was hand motions (logMAR 2.82; range 0.1 - 5.0) with some eye to eye variability within individuals. Worse visual acuity was correlated with advancing age (Pearson correlation: oculus dextrus [right eye] - 0.37, p=0.008; oculus sinister [left eye] - 0.36, p=0.011). All patients had optic atrophy bilaterally, and all tested patients had visual field defects. Tremors with or without rigidity were present in 12 patients, and 11 of 30 patients who had neuroimaging performed had evidence of putaminal necrosis. Conclusion: Methanol intoxication causes visual loss within 12-48 hours due to relatively severe, painless, bilateral optic nerve damage that may be somewhat variable between eyes, and is generally worse with advancing age. The coincidence of bilateral optic nerve damage and bilateral putaminal necrosis in a young or middle-aged male is very suspicious for methanol-induced damage. PMID:25935177

  9. Adsorption and Deactivation Characteristics of Cu/ZnO-Based Catalysts for Methanol Synthesis from Carbon Dioxide

    SciTech Connect

    Natesakhawat, Sittichai; Ohodnicki, Paul R; Howard, Bret H; Lekse, Jonathan W; Baltrus, John P; Matranga, Christopher

    2013-07-09

    The adsorption and deactivation characteristics of coprecipitated Cu/ZnO-based catalysts were examined and correlated to their performance in methanol synthesis from CO₂ hydrogenation. The addition of Ga₂O₃ and Y₂O₃ promoters is shown to increase the Cu surface area and CO₂/H₂ adsorption capacities of the catalysts and enhance methanol synthesis activity. Infrared studies showed that CO₂ adsorbs spontaneously on these catalysts at room temperature as both monoand bi-dentate carbonate species. These weakly bound species desorb completely from the catalyst surface by 200 °C while other carbonate species persist up to 500 °C. Characterization using N₂O decomposition, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) with energy-dispersive X-ray spectroscopy (EDX) analysis clearly indicated that Cu sintering is the main cause of catalyst deactivation. Ga and Y promotion improves the catalyst stability by suppressing the agglomeration of Cu and ZnO particles under pretreatment and reaction conditions.

  10. Methanol dehydrogenation by iridium N-heterocyclic carbene complexes.

    PubMed

    Campos, Jesús; Sharninghausen, Liam S; Manas, Michael G; Crabtree, Robert H

    2015-06-01

    A series of homogeneous iridium bis(N-heterocyclic carbene) catalysts are active for three transformations involving dehydrogenative methanol activation: acceptorless dehydrogenation, transfer hydrogenation, and amine monoalkylation. The acceptorless dehydrogenation reaction requires base, yielding formate and carbonate, as well as 2-3 equivalents of H2. Of the few homogeneous systems known for this reaction, our catalysts tolerate air and employ simple ligands. Transfer hydrogenation of ketones and imines from methanol is also possible. Finally, N-monomethylation of anilines occurs through a "borrowing hydrogen" reaction. Notably, this reaction is highly selective for the monomethylated product. PMID:25615426

  11. Discovery of methanol electro-oxidation catalysts by combinatorial analysis

    SciTech Connect

    Mallouk, T.E.; Reddington, E.; Pu, C.

    1996-12-31

    Hydrogen fuel cells are likely to become a major energy source in the next century, but they are not ideal for all applications. A safe alternative fuel with a high energy density will be necessary for transportation and mobile applications. Direct methanol-air fuel cells (DMFCs) are an attractive alternative to hydrogen fuel cells because of the high energy density and low cost of methanol as a fuel. However, in order for DMFCs to become commercially viable, better electrocatalysts for the anode reaction need to be developed. This paper describes a combinatorial technique for generating an array of electrodes with varying metal compositions.

  12. Process assessment of small scale low temperature methanol synthesis

    NASA Astrophysics Data System (ADS)

    Hendriyana, Susanto, Herri; Subagjo

    2015-12-01

    Biomass is a renewable energy resource and has the potential to make a significant impact on domestic fuel supplies. Biomass can be converted to fuel like methanol via several step process. The process can be split into following main steps: biomass preparation, gasification, gas cooling and cleaning, gas shift and methanol synthesis. Untill now these configuration still has a problem like high production cost, catalyst deactivation, economy of scale and a huge energy requirements. These problems become the leading inhibition for biomass conversion to methanol, which should be resolved to move towards the economical. To address these issues, we developed various process and new configurations for methanol synthesis via methyl formate. This configuration combining two reactors: the one reactor for the carbonylation of methanol and CO to form methyl formate, and the second for the hydrogenolysis of methyl formate and H2 to form two molecule of methanol. Four plant process configurations were compared with the biomass basis is 300 ton/day. The first configuration (A) is equipped with a steam reforming process for converting methane to CO and H2 for increasing H2/CO ratio. CO2 removal is necessary to avoid poisoning the catalyst. COSORB process used for the purpose of increasing the partial pressure of CO in the feed gas. The steam reforming process in B configuration is not used with the aim of reducing the number of process equipment, so expect lower investment costs. For C configuration, the steam reforming process and COSORB are not used with the aim of reducing the number of process equipment, so expect lower investment costs. D configuration is almost similar to the configuration A. This configuration difference is in the synthesis of methanol which was held in a single reactor. Carbonylation and hydrogenolysis reactions carried out in the same reactor one. These processes were analyzed in term of technical process, material and energy balance and economic

  13. Environmental information volume: Liquid Phase Methanol (LPMEOH{trademark}) project

    SciTech Connect

    1996-05-01

    The purpose of this project is to demonstrate the commercial viability of the Liquid Phase Methanol Process using coal-derived synthesis gas, a mixture of hydrogen and carbon monoxide. This report describes the proposed actions, alternative to the proposed action, the existing environment at the coal gasification plant at Kingsport, Tennessee, environmental impacts, regulatory requirements, offsite fuel testing, and DME addition to methanol production. Appendices include the air permit application, solid waste permits, water permit, existing air permits, agency correspondence, and Eastman and Air Products literature.

  14. The combined oxidation of methanol and ethanol on silver catalysts

    SciTech Connect

    Kurina, L.N.; Gryaznov, V.M.; Gul yanova, S.G.; Plakidkin, A.A.; Vedernikov, V.I.

    1985-10-01

    The authors study the oxidation of methanol, ethanol, and mixtures of these alcohols on industrial silver-pumice and silver membrane catalysts as well as the adsorption of these alcohols on silver. The oxidation of the alcohol mixture on the industrial silver-pumice catalyst gives higher yields of both formaldehyde and acetaldehyde than in the oxidation of the alcohols taken individually. It is also shown that an increase in the rates of formaldehyde formation in the combined oxidation of methanol and ethanol was observed on the silver membrane catalyst.

  15. Process assessment of small scale low temperature methanol synthesis

    SciTech Connect

    Hendriyana; Susanto, Herri Subagjo

    2015-12-29

    Biomass is a renewable energy resource and has the potential to make a significant impact on domestic fuel supplies. Biomass can be converted to fuel like methanol via several step process. The process can be split into following main steps: biomass preparation, gasification, gas cooling and cleaning, gas shift and methanol synthesis. Untill now these configuration still has a problem like high production cost, catalyst deactivation, economy of scale and a huge energy requirements. These problems become the leading inhibition for biomass conversion to methanol, which should be resolved to move towards the economical. To address these issues, we developed various process and new configurations for methanol synthesis via methyl formate. This configuration combining two reactors: the one reactor for the carbonylation of methanol and CO to form methyl formate, and the second for the hydrogenolysis of methyl formate and H{sub 2} to form two molecule of methanol. Four plant process configurations were compared with the biomass basis is 300 ton/day. The first configuration (A) is equipped with a steam reforming process for converting methane to CO and H{sub 2} for increasing H{sub 2}/CO ratio. CO{sub 2} removal is necessary to avoid poisoning the catalyst. COSORB process used for the purpose of increasing the partial pressure of CO in the feed gas. The steam reforming process in B configuration is not used with the aim of reducing the number of process equipment, so expect lower investment costs. For C configuration, the steam reforming process and COSORB are not used with the aim of reducing the number of process equipment, so expect lower investment costs. D configuration is almost similar to the configuration A. This configuration difference is in the synthesis of methanol which was held in a single reactor. Carbonylation and hydrogenolysis reactions carried out in the same reactor one. These processes were analyzed in term of technical process, material and energy

  16. DIRECT METHANOL FUEL CELLS AT REDUCED CATALYST LOADINGS

    SciTech Connect

    P. ZELENAY; F. GUYON; SM. GOTTESFELD

    2001-05-01

    We focus in this paper on the reduction of catalyst loading in direct methanol fuel cells currently under development at Los Alamos National Laboratory. Based on single-cell DMFC testing, we discuss performance vs. catalyst loading trade-offs and demonstrate optimization of the anode performance. We also show test data for a short five-cell DMFC stack with the average total platinum loading of 0.53 mg cm{sup {minus}2} and compare performance of this stack with the performance of a single direct methanol fuel cell using similar total amount of precious metal.

  17. Pharmacological screening of methanolic extract of Ixora species

    PubMed Central

    Latha, Lachimanan Yoga; Darah, Ibrahim; Jain, Kassim; Sasidharan, Sreenivasan

    2012-01-01

    Objective To investigate the antimicrobial activity of methanolic extracts of different parts of Ixora species. Methods Antimicrobial activity was carried out using disc diffusion assay against fungi, gram-positive and gram-negative bacteria. Results All methanolic extracts of different parts of Ixora species showed a broad-spectrum of antibacterial and antiyeast activities, which inhibited the growth of at least one bacterium or yeast. There was no remarkable difference between different Ixora species observed in this study. Conclusions The significant antimicrobial activity shown by this Ixora species suggests its potential against infections caused by pathogens. The extract may be developed as an antimicrobial agent. PMID:23569886

  18. Engine and vehicle concepts for methanol-gasoline blends

    SciTech Connect

    Menrad, H.; Nierhauve, B.

    1983-10-01

    Blending methanol (MEOH) into gasoline results in the variation of the fuel properties, which are partially significant for the vehicle performance. Based on the modified fuel, necessary changes in the engine-vehicle concept are discussed including variations in the characteristics of the cars. Several steps of blending rates are considered: Low percentage in present production gasoline vehicles, medium rate up to 15 % and high values up to 60 % in modified concepts. The most influencing factor proves to be the material compatibility, followed by hot driving problems (vapor lock). Experiences with prototypes are discussed as well as larger test programs, e.g. the German Methanol Program with 1000 M 15 vehicles.

  19. Injector spray characterization of methanol in reciprocating engines

    SciTech Connect

    Dodge, L.; Naegeli, D.

    1994-06-01

    This report covers a study that addressed cold-starting problems in alcohol-fueled, spark-ignition engines by using fine-spray port-fuel injectors to inject fuel directly into the cylinder. This task included development and characterization of some very fine-spray, port-fuel injectors for a methanol-fueled spark-ignition engine. After determining the spray characteristics, a computational study was performed to estimate the evaporation rate of the methanol fuel spray under cold-starting and steady-state conditions.

  20. Highly elevated emission of mercury vapor due to the spontaneous combustion of refuse in a landfill

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Sommar, Jonas; Li, Zhonggen; Feng, Xinbin; Lin, Che-Jen; Li, Guanghui

    2013-11-01

    Refuse disposal (e.g., landfilling and incineration) have been recognized as a significant anthropogenic source of mercury (Hg) emission globally. However, in-situ measurements of Hg emission from landfill or refuse dumping sites where fugitive spontaneous combustion occurs have not been reported. Gaseous elemental mercury (Hg0) concentration and emission flux were observed near spontaneous combustions of refuse at a landfill site in southwestern China. Ambient Hg0 concentrations above the refuse surface ranged from 42.7 ± 20.0 to 396.4 ± 114.2 ng m-3, up to 10 times enhancement due to the spontaneous burning. Using a box model with Hg0 data obtained from 2004 to 2013, we estimated that the Hg0 emission from refuse was amplified by 8-40 times due to spontaneous combustion. A micrometeorological flux measurement system based on relaxed eddy accumulation was configured downwind of the combustion sites to quantify the Hg0 emission. Extremely large turbulent deposition fluxes (up to -128.6 μg m-2 h-1, 20 min average) were detected during periods of high Hg0 concentration events over the measurement footprint. The effect of temperature, moisture and light on the air-surface exchange of Hg0 exchange was found to be masked by the overwhelming deposition of Hg0 from the enriched air from the refuse combustion plumes. This research reveals that mercury emission from the landfill refuse can be boosted by fugitive spontaneous combustion of refuse. The emission represents an anthropogenic source that has been overlooked in Hg inventory estimates.

  1. Preparation of Carbon-Platinum-Ceria and Carbon-Platinum-Cerium catalysts and its application in Polymer Electrolyte Fuel Cell: Hydrogen, Methanol, and Ethanol

    NASA Astrophysics Data System (ADS)

    Guzman Blas, Rolando Pedro

    This thesis is focused on fuel cells using hydrogen, methanol and ethanol as fuel. Also, in the method of preparation of catalytic material for the anode: Supercritical Fluid Deposition (SFD) and impregnation method using ethylenediaminetetraacetic acid (EDTA) as a chelating agent. The first part of the thesis describes the general knowledge about Hydrogen Polymer Exchange Membrane Fuel Cell (HPEMFC),Direct Methanol Fuel Cell (DMFC) and Direct Ethanol Fuel Cell (DEFC), as well as the properties of Cerium and CeO2 (Ceria). The second part of the thesis describes the preparation of catalytic material by Supercritical Fluid Deposition (SFD). SFD was utilized to deposit Pt and ceria simultaneously onto gas diffusion layers. The Pt-ceria catalyst deposited by SFD exhibited higher methanol oxidation activity compared to the platinum catalyst alone. The linear sweep traces of the cathode made for the methanol cross over study indicate that Pt-Ceria/C as the anode catalyst, due to its better activity for methanol, improves the fuel utilization, minimizing the methanol permeation from anode to cathode compartment. The third and fourth parts of the thesis describe the preparation of material catalytic material Carbon-Platinum-Cerium by a simple and cheap impregnation method using EDTA as a chelating agent to form a complex with cerium (III). This preparation method allows the mass production of the material catalysts without additional significant cost. Fuel cell polarization and power curves experiments showed that the Carbon-Platinum-Cerium anode materials exhibited better catalytic activity than the only Vulcan-Pt catalysts for DMFC, DEFC and HPEMFC. In the case of Vulcan-20%Pt-5%w Cerium, this material exhibits better catalytic activity than the Vulcan-20%Pt in DMFC. In the case of Vulcan-40% Pt-doped Cerium, this material exhibits better catalytic activity than the Vulcan-40% Pt in DMFC, DEFC and HPEMFC. Finally, I propose a theory that explains the reason why the

  2. Spontaneous perception of numerosity in humans.

    PubMed

    Cicchini, Guido Marco; Anobile, Giovanni; Burr, David C

    2016-01-01

    Humans, including infants, and many other species have a capacity for rapid, nonverbal estimation of numerosity. However, the mechanisms for number perception are still not clear; some maintain that the system calculates numerosity via density estimates-similar to those involved in texture-while others maintain that more direct, dedicated mechanisms are involved. Here we show that provided that items are not packed too densely, human subjects are far more sensitive to numerosity than to either density or area. In a two-dimensional space spanning density, area and numerosity, subjects spontaneously react with far greater sensitivity to changes in numerosity, than either area or density. Even in tasks where they were explicitly instructed to make density or area judgments, they responded spontaneously to number. We conclude, that humans extract number information, directly and spontaneously, via dedicated mechanisms. PMID:27555562

  3. Spontaneous Regression of an Incidental Spinal Meningioma

    PubMed Central

    Yilmaz, Ali; Kizilay, Zahir; Sair, Ahmet; Avcil, Mucahit; Ozkul, Ayca

    2016-01-01

    AIM: The regression of meningioma has been reported in literature before. In spite of the fact that the regression may be involved by hemorrhage, calcification or some drugs withdrawal, it is rarely observed spontaneously. CASE REPORT: We report a 17 year old man with a cervical meningioma which was incidentally detected. In his cervical MRI an extradural, cranio-caudal contrast enchanced lesion at C2-C3 levels of the cervical spinal cord was detected. Despite the slight compression towards the spinal cord, he had no symptoms and refused any kind of surgical approach. The meningioma was followed by control MRI and it spontaneously regressed within six months. There were no signs of hemorrhage or calcification. CONCLUSION: Although it is a rare condition, the clinicians should consider that meningiomas especially incidentally diagnosed may be regressed spontaneously. PMID:27275345

  4. Spontaneous pericardial mesothelioma in a rhesus monkey.

    PubMed

    Chandra, M; Mansfield, K G

    1999-06-01

    Spontaneous tumors in nonhuman primates are of great importance. A spontaneous pericardial mesothelioma was observed in an 18-year-old female rhesus monkey. Grossly, the visceral pericardium was multifocally irregular and thickened with tan discoloration and was soft in consistency. Histologically, the pericardium contained highly in-folded branching fronds lined by a single layer of cuboidal cells. Tumor invaded into approximately half of the thickness of the atrial and ventricular muscles. Tumor penetration was not observed into the atrial or ventricular cavity. Within the myocardium, neoplastic cells formed glandular structures which were lined by cuboidal to columnar cells. Neoplastic cells were weakly positive with PAS and strongly positive for colloid iron and alcian blue. Immunohistochemically, neoplastic cells were positive for both vimentin and cytokeratin and negative with CEA and Leu-M1, indicating mesothelial origin. To the best of the authors' knowledge, this is the first report of a spontaneous pericardial mesothelioma in a rhesus monkey. PMID:10475114

  5. Spontaneous perception of numerosity in humans

    PubMed Central

    Cicchini, Guido Marco; Anobile, Giovanni; Burr, David C.

    2016-01-01

    Humans, including infants, and many other species have a capacity for rapid, nonverbal estimation of numerosity. However, the mechanisms for number perception are still not clear; some maintain that the system calculates numerosity via density estimates—similar to those involved in texture—while others maintain that more direct, dedicated mechanisms are involved. Here we show that provided that items are not packed too densely, human subjects are far more sensitive to numerosity than to either density or area. In a two-dimensional space spanning density, area and numerosity, subjects spontaneously react with far greater sensitivity to changes in numerosity, than either area or density. Even in tasks where they were explicitly instructed to make density or area judgments, they responded spontaneously to number. We conclude, that humans extract number information, directly and spontaneously, via dedicated mechanisms. PMID:27555562

  6. Neutrino constraints on spontaneous Lorentz violation

    SciTech Connect

    Grossman, Yuval; Kilic, Can; Thaler, Jesse; Walker, Devin G.E.

    2005-12-15

    We study the effect of spontaneous Lorentz violation on neutrinos. We consider two kinds of effects: static effects, where the neutrino acquires a Lorentz-violating dispersion relation, and dynamic effects, which arise from the interactions of the neutrino with the Goldstone boson of spontaneous Lorentz violation. Static effects are well detailed in the literature. Here, special emphasis is given to the novel dynamic effect of Goldstone-Cerenkov radiation, where neutrinos moving with respect to a preferred rest frame can spontaneously emit Goldstone bosons. We calculate the observable consequences of this process and use them to derive experimental bounds from SN1987A and the CMBR. The bounds derived from dynamic effects are complementary to - and in many cases much stronger than - those obtained from static effects.

  7. Predicting spontaneous heating in coal mine pillars

    SciTech Connect

    Timko, R.J.; Derick, R.L.

    1995-12-31

    This work is a follow-up to previous research that attempted to predict the location of spontaneous heating episodes in underground coal mine pillars. The objective of the original work was to see if the data obtained by commonly used detection methods could accurately predict spontaneous combustion episodes in coal pillars. Data accumulation during the study was enhanced when a spontaneously generated fire occurred within one of the pillars being examined. The fire provided researchers with realistic data that could be used to determine if f ire prediction was possible. Results from the initial study found that the atmospheric status equations that were used provided little advance notice that combustion would occur where it did. This study reevaluated the accumulated data by applying it to recently developed equations and compared these results with previously obtained information to determine if a combination of these techniques could more effectively predict impending combustion.

  8. Pressure and temperature dependence of excess enthalpies of methanol + tetraethylene glycol dimethyl ether and methanol + polyethylene glycol dimethyl ether 250

    SciTech Connect

    Lopez, E.R.; Coxam, J.Y.; Fernandez, J.; Grolier, J.P.E.

    1999-12-01

    The excess molar enthalpies at 323.15 K, 373.15 K, and 423.15 K, at 8 MPa, are reported for the binary mixtures methanol + tetraethylene glycol dimethyl ether (TEGDME) and methanol + poly(ethylene glycol) dimethyl ether 250 (PEGDME 250). Excess molar enthalpies were determined with a Setaram C-80 calorimeter equipped with a flow mixing cell. For both systems, the excess enthalpies are positive over the whole composition range, increasing with temperature. The H{sup E}(x) curves are slightly asymmetrical, and their maxima are skewed toward the methanol-rich region. The excess enthalpies slightly change with the pressure, the sign of this change being composition-dependent. In the case of mixtures with TEGDME, the experimental H{sup E} values have been compared with those predicted with the Gmehling et al. version of UNIFAC (Dortmund) and the Nitta-Chao and DISQUAC group contribution models.

  9. Insight into the mechanism of biological methanol activation based on the crystal structure of the methanol-cobalamin methyltransferase complex.

    PubMed

    Hagemeier, Christoph H; Krer, Markus; Thauer, Rudolf K; Warkentin, Eberhard; Ermler, Ulrich

    2006-12-12

    Some methanogenic and acetogenic microorganisms have the catalytic capability to cleave heterolytically the C O bond of methanol. To obtain insight into the elusive enzymatic mechanism of this challenging chemical reaction we have investigated the methanol-activating MtaBC complex from Methanosarcina barkeri composed of the zinc-containing MtaB and the 5-hydroxybenzimidazolylcobamide-carrying MtaC subunits. Here we report the 2.5-A crystal structure of this complex organized as a (MtaBC)(2) heterotetramer. MtaB folds as a TIM barrel and contains a novel zinc-binding motif. Zinc(II) lies at the bottom of a funnel formed at the C-terminal beta-barrel end and ligates to two cysteinyl sulfurs (Cys-220 and Cys-269) and one carboxylate oxygen (Glu-164). MtaC is structurally related to the cobalamin-binding domain of methionine synthase. Its corrinoid cofactor at the top of the Rossmann domain reaches deeply into the funnel of MtaB, defining a region between zinc(II) and the corrinoid cobalt that must be the binding site for methanol. The active site geometry supports a S(N)2 reaction mechanism, in which the C O bond in methanol is activated by the strong electrophile zinc(II) and cleaved because of an attack of the supernucleophile cob(I)amide. The environment of zinc(II) is characterized by an acidic cluster that increases the charge density on the zinc(II), polarizes methanol, and disfavors deprotonation of the methanol hydroxyl group. Implications of the MtaBC structure for the second step of the reaction, in which the methyl group is transferred to coenzyme M, are discussed. PMID:17142327

  10. Hybrid 3D structures of ZnO nanoflowers and PdO nanoparticles as a highly selective methanol sensor.

    PubMed

    Acharyya, D; Huang, K Y; Chattopadhyay, P P; Ho, M S; Fecht, H-J; Bhattacharyya, P

    2016-05-10

    The present study concerns the enhancement of methanol selectivity of three dimensional (3D) nanoflowers (NFs) of ZnO by dispersing nickel oxide (NiO) and palladium oxide (PdO) nanoparticles on the surface of the nanoflowers to form localized hybrid nano-junctions. The nanoflowers were fabricated through a liquid phase deposition technique and the modification was achieved by addition of NiCl and PdCl2 solutions. In addition to the detailed structural (like X-ray diffraction (XRD), electron dispersive spectroscopy (EDS), X-ray mapping, XPS) and morphological characterization (by field emission scanning electron microscopy (FESEM)), the existence of different defect states (viz. oxygen vacancy) was also confirmed by photoluminescence (PL) spectroscopy. The sensing properties of the pristine and metal oxide nanoparticle (NiO/PdO)-ZnO NF hybrid sensor structures, towards different alcohol vapors (methanol, ethanol, 2-propanol) were investigated in the concentration range of 0.5-700 ppm at 100-350 °C. Methanol selectivity study against other interfering species, viz. ethanol, 2-propanol, acetone, benzene, xylene and toluene was also investigated. It was found that the PdO-ZnO NF hybrid system offered enhanced selectivity towards methanol at low temperature (150 °C) compared to the NiO-ZnO NF and pristine ZnO NF counterparts. The underlying mechanism for such improvement has been discussed with respective energy band diagram and preferential dissociation of target species on such 3D hybrid structures. The corresponding improvement in transient characteristics has also been co-related with the proposed model. PMID:27048794

  11. Spontaneous hypnotic age regression: case report.

    PubMed

    Spiegel, D; Rosenfeld, A

    1984-12-01

    Age regression--reliving the past as though it were occurring in the present, with age appropriate vocabulary, mental content, and affect--can occur with instruction in highly hypnotizable individuals, but has rarely been reported to occur spontaneously, especially as a primary symptom. The psychiatric presentation and treatment of a 16-year-old girl with spontaneous age regressions accessible and controllable with hypnosis and psychotherapy are described. Areas of overlap and divergence between this patient's symptoms and those found in patients with hysterical fugue and multiple personality syndrome are also discussed. PMID:6501240

  12. Spontaneous knotting of self-trapped waves

    PubMed Central

    Desyatnikov, Anton S.; Buccoliero, Daniel; Dennis, Mark R.; Kivshar, Yuri S.

    2012-01-01

    We describe theory and simulations of a spinning optical soliton whose propagation spontaneously excites knotted and linked optical vortices. The nonlinear phase of the self-trapped light beam breaks the wave front into a sequence of optical vortex loops around the soliton, which, through the soliton's orbital angular momentum and spatial twist, tangle on propagation to form links and knots. We anticipate similar spontaneous knot topology to be a universal feature of waves whose phase front is twisted and nonlinearly modulated, including superfluids and trapped matter waves. PMID:23105969

  13. Associative memory model with spontaneous neural activity

    NASA Astrophysics Data System (ADS)

    Kurikawa, Tomoki; Kaneko, Kunihiko

    2012-05-01

    We propose a novel associative memory model wherein the neural activity without an input (i.e., spontaneous activity) is modified by an input to generate a target response that is memorized for recall upon the same input. Suitable design of synaptic connections enables the model to memorize input/output (I/O) mappings equaling 70% of the total number of neurons, where the evoked activity distinguishes a target pattern from others. Spontaneous neural activity without an input shows chaotic dynamics but keeps some similarity with evoked activities, as reported in recent experimental studies.

  14. Primer on spontaneous heating and pyrophoricity

    SciTech Connect

    Not Available

    1994-12-01

    This primer was prepared as an information resource for personnel responsible for operation of DOE nuclear facilities. It has sections on combustion principles, spontaneous heating/ignition of hydrocarbons and organics, pyrophoric gases and liquids, pyrophoric nonmetallic solids, pyrophoric metals (including Pu and U), and accident case studies. Although the information in this primer is not all-encompassing, it should provide the reader with a fundamental knowledge level sufficient to recognize most spontaneous combustion hazards and how to prevent ignition and widespread fires. This primer is provided as an information resource only, and is not intended to replace any fire protection or hazardous material training.

  15. Increasing spontaneous language in three autistic children.

    PubMed

    Matson, J L; Sevin, J A; Fridley, D; Love, S R

    1990-01-01

    A time delay procedure was used to increase spontaneous verbalizations of 3 autistic children. Multiple baseline across behaviors designs were used with target responses, selected via a social validation procedure, of two spontaneous responses ("please" and "thank you") and one verbally prompted response ("you're welcome"). The results indicate gains across target behaviors for all children, with occurrence across other stimuli and settings. These gains were validated socially with 10 adults. Furthermore, increases in appropriate language had no effect on levels of inappropriate speech. PMID:2373659

  16. Spontaneous knotting of self-trapped waves.

    PubMed

    Desyatnikov, Anton S; Buccoliero, Daniel; Dennis, Mark R; Kivshar, Yuri S

    2012-01-01

    We describe theory and simulations of a spinning optical soliton whose propagation spontaneously excites knotted and linked optical vortices. The nonlinear phase of the self-trapped light beam breaks the wave front into a sequence of optical vortex loops around the soliton, which, through the soliton's orbital angular momentum and spatial twist, tangle on propagation to form links and knots. We anticipate similar spontaneous knot topology to be a universal feature of waves whose phase front is twisted and nonlinearly modulated, including superfluids and trapped matter waves. PMID:23105969

  17. Spontaneous Right Hemothorax in the Elderly

    PubMed Central

    Sebai, Asma; Gharsalli, Houda; Zribi, Hazem; Neji, Henda; Maâlej, Sonia; Douik El Gharbi, Leila

    2016-01-01

    Rupture of thoracic aortic aneurysm is a life threatening condition. Rupture in the right pleural cavity is extremely rare. We report the case of an 80-year-old man with a spontaneous right hemothorax. Diagnosis was made by computed tomography (CT) scan. He was managed with chest tube and stabilization. The patient died before any surgical intervention. We report this case to emphasize that rupture of aortic aneurysm should be considered in the evaluation of spontaneous hemothorax even if it is right-sided particularly in the elderly. Emergent therapy is necessary to prevent mortality.

  18. Spontaneous Regression of Primitive Merkel Cell Carcinoma

    PubMed Central

    2015-01-01

    Merkel cell carcinoma (MCC) is a rare, aggressive skin tumor that mainly occurs in the elderly with a generally poor prognosis. Like all skin cancers, its incidence is rising. Despite the poor prognosis, a few reports of spontaneous regression have been published. We describe the case of a 89-year-old male patient who presented two MCC lesions of the scalp. Following biopsy the lesions underwent complete regression with no clinical evidence of residual tumor up to 24 months. The current knowledge of MCC and the other cases of spontaneous regression described in the literature are reviewed. PMID:26788270

  19. Environmental controls over methanol production, emission, and δ13C values from Lycopersicon esculentum

    NASA Astrophysics Data System (ADS)

    Oikawa, P.; Giebel, B. M.; Mak, J. E.; Riemer, D. D.; Swart, P. K.; Lerdau, M.

    2009-12-01

    Phytogenic methanol is the dominant source of methanol to the atmosphere, where it is the second most abundant organic compound. Beyond methanol’s role in atmospheric chemistry, it is an indicator of plant function and is linked to plant wound response. Methanol emissions are considered to be a by-product of cell wall expansion and, more specifically, the demethylation of pectin by pectin methylesterase (PME) in cell walls. Production of methanol was investigated in mature and immature tomato Lycopersicon esculentum via measurement of methanol flux, foliar PME activity, and methanol extraction from leaf, root, and stem tissues. δ13C values for mature and immature methanol emissions were also measured using a GC-IRMS system. Environmental control over methanol production and emission was studied by changing temperature and light while holding stomatal conductance constant. As seen previously, mature leaf methanol emissions were significantly less than immature emissions. Surprisingly, preliminary results suggest mature leaf methanol production to be similar to immature leaves, indicating an enhanced metabolic sink for methanol in mature leaves. These data enhance our understanding of methanol production, a term which is not well constrained in current methanol flux models.

  20. ZnS/Zn(O,OH)S-based buffer layer deposition for solar cells

    DOEpatents

    Bhattacharya, Raghu N.

    2009-11-03

    The invention provides CBD ZnS/Zn(O,OH)S and spray deposited ZnS/Zn(O,OH)S buffer layers prepared from a solution of zinc salt, thiourea and ammonium hydroxide dissolved in a non-aqueous/aqueous solvent mixture or in 100% non-aqueous solvent. Non-aqueous solvents useful in the invention include methanol, isopropanol and triethyl-amine. One-step deposition procedures are described for CIS, CIGS and other solar cell devices.

  1. Spontaneous shape transition of thin films into ZnO nanowires with high structural and optical quality.

    PubMed

    Guillemin, Sophie; Sarigiannidou, Eirini; Appert, Estelle; Donatini, Fabrice; Renou, Gilles; Bremond, Georges; Consonni, Vincent

    2015-10-28

    ZnO nanowires are usually formed by physical and chemical deposition techniques following the bottom-up approach consisting in supplying the reactants on a nucleation surface heated at a given temperature. We demonstrate an original alternative approach for the formation of ZnO nanowire arrays with high structural and optical quality, which is based on the spontaneous transformation of a ZnO thin film deposited by sol-gel process following a simple annealing. The development of these ZnO nanowires occurs through successive shape transitions, including the intermediate formation of pyramid-shaped islands. Their nucleation under near-equilibrium conditions is expected to be governed by thermodynamic considerations via the total free energy minimization related to the nanowire shape. It is further strongly assisted by the drastic reordering of the matter and by recrystallization phenomena through the massive transport of zinc and oxygen atoms towards the localized growth areas. The spontaneous shape transition process thus combines the easiness and low-cost of sol-gel process and simple annealing with the assets of the vapor phase deposition techniques. These findings cast a light on the fundamental mechanisms driving the spontaneous formation of ZnO nanowires and, importantly, reveal the great technological potential of the spontaneous shape transition process as a promising alternative approach to the more usual bottom-up approach. PMID:26416227

  2. The shock sensitivity of nitromethane/methanol mixtures

    NASA Astrophysics Data System (ADS)

    Bartram, Brian; Dattelbaum, Dana; Sheffield, Steve; Gibson, Lee

    2013-06-01

    The dilution of liquid explosives has multiple effects on detonation properties including an increase in critical diameter, spatiotemporal lengthening of the chemical reaction zone, and the development of propagating wave instabilities. Earlier detonation studies of NM/methanol mixtures have shown several effects of increasing dilution, including: 1) a continual increase in the critical diameter, 2) lowering of the Chapman-Jouguet detonation pressure, and 3) slowing of the steady detonation velocity (Koldunov et al., Comb. Expl. Shock Waves). Here, we present the results of a series of gas gun-driven plate-impact experiments to study the shock-to-detonation transition in NM/methanol mixtures. Embedded electromagnetic gauges were used to obtain in situ particle velocity wave profiles at multiple Lagrangian positions in the initiating explosive mixture. From the wave profiles obtained in each experiment, an unreacted Hugoniot locus, the initiation mechanism, and the overtake-time-to-detonation were obtained as a function of shock input condition for mixture concentrations from 100% NM to 50 wt%/50 wt% NM/methanol. Desensitization with dilution is less than expected. For example, little change in overtake time occurs in 80 wt%/20 wt% NM/methanol when compared with neat NM. Furthermore, the shock wave profiles from the gauges indicate that wave instabilities grow in as the overdriven detonation wave settles down following the shock-to-detonation transition.

  3. Antinociceptive activity of methanolic extract of Epilobium hirsutum.

    PubMed

    Pourmorad, Fereshteh; Ebrahimzadeh, Mohammad Ali; Mahmoudi, Mitra; Yasini, Siavash

    2007-08-15

    Antinociceptive activity of methanolic extract of aerial parts of Epilobium hirsutum (EH) was determined in the Hot plate and writhing tests in mice. Nearly all extracts showed a dose dependent and marked analgesic activity in mice in the thermal and chemical models of analgesia when compared to the control. Methanol extract at dose of 500 mg kg(-1) showed higher activity (97.7% writhing inhibition) than diclofenac 50 mg kg(-1) i.p., (77.8%, p<0.05) and morphine 5 mg kg(-1) i.p. (91.2%, p<0.05). Methanol extract, in all tested doses (200-500 mg kg(-1)) significantly increased the pain threshold in hot plate test (p<0.05). EH extract at 200 mg kg(-1) showed a similar effect to morphine at 5 mg kg(-1). These finding indicate the potential therapeutic use of methanolic extract of aerial parts of EH as a potent antinociceptive agent. LD50 was obtained 1.5+/-0.1 g kg(-1). EH extract did not induce locomotor impairment in mice at any tested doses. PMID:19070100

  4. Techniques for sensing methanol concentration in aqueous environments

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Valdez, Thomas I. (Inventor)

    2001-01-01

    An analyte concentration sensor that is capable of fast and reliable sensing of analyte concentration in aqueous environments with high concentrations of the analyte. Preferably, the present invention is a methanol concentration sensor device coupled to a fuel metering control system for use in a liquid direct-feed fuel cell.

  5. 25 GHz methanol masers in regions of massive star formation

    NASA Astrophysics Data System (ADS)

    Britton, Tui R.; Voronkov, Maxim A.

    2012-07-01

    The bright 25 GHz series of methanol masers is formed in highly energetic regions of massive star formation and provides a natural signpost of shocked gas surrounding newly forming stars. A systematic survey for the 25 GHz masers has only recently been carried out. We present the preliminary results from the interferometric follow up of 51 masers at 25 GHz in the southern sky.

  6. IRIS Toxicological Review of Methanol (External Review Draft, 2013)

    EPA Science Inventory

    EPA is conducting a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of methanol (non-cancer) that when finalized will appear on the Integrated Risk Information System (IRIS) database.

  7. Analysis of methanol and ethanol in virgin olive oil

    PubMed Central

    Gómez-Coca, Raquel B.; Cruz-Hidalgo, Rosario; Fernandes, Gabriel D.; Pérez-Camino, María del Carmen; Moreda, Wenceslao

    2014-01-01

    This work provides a short and easy protocol that allows the analysis of both methanol and ethanol in the static headspace of olive oil. The procedure avoids any kind of sample pre-treatment beyond that of heating the oil to allow a maximum volatile concentration in the headspace of the vials. The method's LOD is 0.55 mg kg−1 and its LOQ is 0.59 mg kg−1. Advantages of this method are:•Simultaneous determination of methanol and ethanol (the pre-existing Spanish specification UNE-EN 14110 only analyses methanol).•No need of equipment modifications (standard split injectors work perfectly). Use of a highly polar capillary GC column, leading in most cases to chromatograms in which only three dominant peaks are present – methanol, ethanol, and propanol (that is extremely positive for easy interpretation of results).•Use of an internal standard (1-propanol) to determine the concentration of the analytes, reducing the presence of error sources. PMID:26150954

  8. Romania program targets methanol and Fischer-Tropsch research

    SciTech Connect

    Not Available

    1987-03-01

    Currently, the chemical organic industry, the petrochemical and engine fuels industry in Romania are entirely based on hydrocarbons from oil. To reduce the oil dependence of this sector and to ensure the stipulated growth rate of 8-9%, research and development programs have been set up with a view to the diversification of raw materials. In research on hydrocarbons from alcohol conversion, three process variants are known, i.e. olefins from methanol, gasolines from methanol and a combined gasolines and aromatic hydrocarbons from methanol. The Romanian process of methanol conversion to hydrocarbons is very flexible, with all the variants mentioned being carried out in the same plant by modifying the catalysts. In research on hydrocarbons from synthesis gas a modern process is being developed for gasification of brown coal in a fluidized bed, under pressure, in the presence of oxygen and water vapors. In the field of carbon oxide hydrogenation, studies have been carried out on selective Fischer-Tropsch processes in which the reaction products are high value hydrocarbon fractions.

  9. METHANOL PRODUCTION FROM BIOMASS AND NATURAL GAS AS TRANSPORTATION FUEL

    EPA Science Inventory

    Two processes are examined for production of methanol. They are assessed against the essential requirements of a future alternative fuel for road transport: that it (i) is producible in amounts comparable to the 19 EJ of motor fuel annually consumed in the U.S., (ii) minimizes em...

  10. Hydrogenolysis of ethylene glycol to methanol over modified RANEY® catalysts.

    PubMed

    Wu, Cheng-Tar; Qu, Jin; Elliott, Joseph; Yu, Kai Man Kerry; Tsang, Shik Chi Edman

    2013-06-21

    There is tremendous growing interest in utilizing biomass molecules for energy provision due to their carbon neutrality. Here, we employ ethylene glycol as a model compound for catalytic activation, which represents a basic unit for complex carbohydrate molecules (polyols). In this paper, hydrogenolysis of ethylene glycol to produce methanol in hydrogen over modified RANEY® Ni and Cu catalysts has been studied. This work provides essential information that may leads to the development of new catalysts for carbohydrate activation to methanol, a novel but important reaction concerning biomass conversion to transportable form of energy. Particularly, in this study, modification of electronic structure hence adsorption properties of RANEY® catalysts has mainly been achieved by blending with second metal(s). It is found that the activity and selectivity of this reaction can be significantly affected by this approach. In contrast, there is no subtle effect on methanol selectivity despite a great variation in the d-band centre position which shows a distinctive effect on other products. This result suggests that methanol is produced on specific surface sites independent from the other sites at an intrinsic rate and will not be converted to other products by the d-band alteration. PMID:23661262

  11. IRIS Toxicological Review of Methanol (Interagency Science Consultation Draft)

    EPA Science Inventory

    On January 12, 2010, the Toxicological Review of Methanol and the charge to external peer reviewers were released for external peer review and public comment. The Toxicological Review and charge were reviewed internally by EPA and by other federal agencies and White House Offices...

  12. EVALUATION OF A PROCESS TO CONVERT BIOMASS TO METHANOL FUEL

    EPA Science Inventory

    The report gives results of a review of the design of a reactor capable of gasifying approximately 50 lb/hr of biomass for a pilot-scale facility to develop, demonstrate, and evaluate the Hynol Process, a high-temperature, high-pressure method for converting biomass into methanol...

  13. IRIS Toxicological Review of Methanol (Noncancer) (Interagency Science Discussion Draft)

    EPA Science Inventory

    On May 3, 2013, the Toxicological Review of Methanol (noncancer) (Revised External Review Draft) was posted for public review and comment. Subsequently, the draft Toxicological Review, Appendices, and draft IRIS Summary were reviewed internally by EPA and by other federal agenci...

  14. IRIS Toxicological Review of Methanol (Noncancer) (Revised External Review Draft)

    EPA Science Inventory

    EPA is seeking additional public comment and external peer review of the scientific basis supporting the human health hazard and dose-response assessment of methanol (noncancer).