Science.gov

Sample records for spontaneous four-wave mixing

  1. Broadband photon pair generation in green fluorescent proteins through spontaneous four-wave mixing

    PubMed Central

    Shi, Siyuan; Thomas, Abu; Corzo, Neil V.; Kumar, Prem; Huang, Yuping; Lee, Kim Fook

    2016-01-01

    Recent studies in quantum biology suggest that quantum mechanics help us to explore quantum processes in biological system. Here, we demonstrate generation of photon pairs through spontaneous four-wave mixing process in naturally occurring fluorescent proteins. We develop a general empirical method for analyzing the relative strength of nonlinear optical interaction processes in five different organic fluorophores. Our results indicate that the generation of photon pairs in green fluorescent proteins is subject to less background noises than in other fluorophores, leading to a coincidence-to-accidental ratio ~145. As such proteins can be genetically engineered and fused to many biological cells, our experiment enables a new platform for quantum information processing in a biological environment such as biomimetic quantum networks and quantum sensors. PMID:27076032

  2. Conversion efficiency in the process of copolarized spontaneous four-wave mixing

    SciTech Connect

    Garay-Palmett, Karina; U'Ren, Alfred B.; Rangel-Rojo, Raul

    2010-10-15

    We study the process of copolarized spontaneous four-wave mixing in single-mode optical fibers, with an emphasis on an analysis of the conversion efficiency. We consider both the monochromatic-pump and pulsed-pump regimes, as well as both the degenerate-pump and nondegenerate-pump configurations. We present analytical expressions for the conversion efficiency, which are given in terms of double integrals. In the case of pulsed pumps we take these expressions to closed analytical form with the help of certain approximations. We present results of numerical simulations, and compare them to values obtained from our analytical expressions, for the conversion efficiency as a function of several key experimental parameters.

  3. Broadband photon pair generation in green fluorescent proteins through spontaneous four-wave mixing.

    PubMed

    Shi, Siyuan; Thomas, Abu; Corzo, Neil V; Kumar, Prem; Huang, Yuping; Lee, Kim Fook

    2016-01-01

    Recent studies in quantum biology suggest that quantum mechanics help us to explore quantum processes in biological system. Here, we demonstrate generation of photon pairs through spontaneous four-wave mixing process in naturally occurring fluorescent proteins. We develop a general empirical method for analyzing the relative strength of nonlinear optical interaction processes in five different organic fluorophores. Our results indicate that the generation of photon pairs in green fluorescent proteins is subject to less background noises than in other fluorophores, leading to a coincidence-to-accidental ratio ~145. As such proteins can be genetically engineered and fused to many biological cells, our experiment enables a new platform for quantum information processing in a biological environment such as biomimetic quantum networks and quantum sensors. PMID:27076032

  4. Broadband photon pair generation in green fluorescent proteins through spontaneous four-wave mixing

    NASA Astrophysics Data System (ADS)

    Shi, Siyuan; Thomas, Abu; Corzo, Neil V.; Kumar, Prem; Huang, Yuping; Lee, Kim Fook

    2016-04-01

    Recent studies in quantum biology suggest that quantum mechanics help us to explore quantum processes in biological system. Here, we demonstrate generation of photon pairs through spontaneous four-wave mixing process in naturally occurring fluorescent proteins. We develop a general empirical method for analyzing the relative strength of nonlinear optical interaction processes in five different organic fluorophores. Our results indicate that the generation of photon pairs in green fluorescent proteins is subject to less background noises than in other fluorophores, leading to a coincidence-to-accidental ratio ~145. As such proteins can be genetically engineered and fused to many biological cells, our experiment enables a new platform for quantum information processing in a biological environment such as biomimetic quantum networks and quantum sensors.

  5. Heralded single-photon source from spontaneous four-wave mixing process in lossy waveguides

    NASA Astrophysics Data System (ADS)

    Silva, Nuno A.; Pinto, Armando N.

    2015-10-01

    We investigate theoretically the spontaneous four-wave mixing (FWM) process that occurs in optical waveguides, as a source of quantum correlated photon-pairs. We consider that the waveguide used to implement the spontaneous FWM process presents a high value of nonlinear parameter, γ = 93.4 W-1m-1, and a non-negligible value of loss coefficient, α = 133.3 dB/m. Moreover, the theoretical model also consider the Raman scattering that inevitably accompanies the FWM process, and generates time-uncorrelated (noise) photon pairs. We use the coincident-to-accidental ratio (CAR) as a figure of merit of the photon pair source, and we were able to observe a CAR of the order of 65 in a high loss regime. After, we use the time-correlated photon pairs generated by the spontaneous FWM process to implement a heralded single photon source at waveguide output. In this scenario, the detection of one photon of the pair heralds the presence of the other photon. The quality of the source was studied by the evaluation of the second order coherence function for one photon of the pair conditioned by the detection of its twin photon. We observe that the presence of a high loss coefficient tends to improve the quality of the photon source, when compared with the lossless regime, even considering the Raman noise photons. We obtain a value for the conditional second order coherence function of the order of 0.11 in absence of loss, and a value of 0.03 for a loss coefficient of 133.3 dB/m.

  6. Stimulated and spontaneous four-wave mixing in silicon-on-insulator coupled photonic wire nano-cavities

    NASA Astrophysics Data System (ADS)

    Azzini, Stefano; Grassani, Davide; Galli, Matteo; Gerace, Dario; Patrini, Maddalena; Liscidini, Marco; Velha, Philippe; Bajoni, Daniele

    2013-07-01

    We report on four-wave mixing in coupled photonic crystal nano-cavities on a silicon-on-insulator platform. Three photonic wire cavities are side-coupled to obtain three modes equally separated in energy. The structure is designed to be self-filtering, and we show that the pump is rejected by almost two orders of magnitude. We study both the stimulated and the spontaneous four-wave mixing processes: owing to the small modal volume, we find that signal and idler photons are generated with a hundred-fold increase in efficiency as compared to silicon micro-ring resonators.

  7. Parasitic nonlinearities in photon pair generation via integrated spontaneous four-wave mixing: Critical problem or distraction?

    NASA Astrophysics Data System (ADS)

    Helt, L. G.; Steel, M. J.; Sipe, J. E.

    2013-05-01

    We consider integrated photon pair sources based on spontaneous four-wave mixing and derive expressions for the pump powers at which various nonlinear processes become relevant for a variety of source materials and structures. These expressions serve as rules of thumb in identifying reasonable parameter regimes for the design of such sources. We demonstrate that if pump powers are kept low enough to suppress cross-phase modulation, multi-pair events as well as many other nonlinear effects are often also constrained to negligible levels.

  8. Photon-pair generation by intermodal spontaneous four-wave mixing in birefringent, weakly guiding optical fibers

    NASA Astrophysics Data System (ADS)

    Garay-Palmett, K.; Cruz-Delgado, D.; Dominguez-Serna, F.; Ortiz-Ricardo, E.; Monroy-Ruz, J.; Cruz-Ramirez, H.; Ramirez-Alarcon, R.; U'Ren, A. B.

    2016-03-01

    We present a theoretical and experimental study of the generation of photon pairs through the process of spontaneous four-wave mixing (SFWM) in a few-mode, birefringent fiber. Under these conditions, multiple SFWM processes are in fact possible, each associated with a different combination of transverse modes for the four waves involved. We show that in the weakly guiding regime, for which the propagation modes may be well approximated by linearly polarized modes, the departure from circular symmetry due to the fiber birefringence translates into conservation rules, which retain elements from azimuthal and rectangular symmetries: both OAM and parity must be conserved for a process to be viable. We have implemented a SFWM source based on a bowtie birefringent fiber, and have measured for a collection of pump wavelengths the SFWM spectra of each of the signal and idler photons in coincidence with its partner photon. We have used this information, together with knowledge of the transverse modes into which the signal and idler photons are emitted, as input for a genetic algorithm, which accomplishes two tasks: (i) the identification of the particular SFWM processes that are present in the source, and (ii) the characterization of the fiber used.

  9. Ultrafast optical transistor and router of multi-order fluorescence and spontaneous parametric four-wave mixing in Pr³⁺:YSO.

    PubMed

    Wen, Feng; Ali, Imran; Hasan, Abdulkhaleq; Li, Changbiao; Tang, Haijun; Zhang, Yufei; Zhang, Yanpeng

    2015-10-15

    We study the realization of an optical transistor (switch and amplifier) and router in multi-order fluorescence (FL) and spontaneous parametric four-wave mixing (SP-FWM). We estimate that the switching speed is about 15 ns. The router action results from the Autler-Townes splitting in spectral or time domain. The switch and amplifier are realized by dressing suppression and enhancement in FL and SP-FWM. The optical transistor and router can be controlled by multi-parameters (i.e., power, detuning, or polarization). PMID:26469573

  10. Resonantly enhanced four-wave mixing

    DOEpatents

    Begley, Richard F.; Kurnit, Norman A.

    1978-01-01

    A method and apparatus for achieving large susceptibilities and long interaction lengths in the generation of new wavelengths in the infrared spectral region. A process of resonantly enhanced four-wave mixing is employed, utilizing existing laser sources, such as the CO.sub.2 laser, to irradiate a gaseous media. The gaseous media, comprising NH.sub.3, CH.sub.3 F, D.sub.2, HCl, HF, CO, and H.sub.2 or some combination thereof, are of particular interest since they are capable of providing high repetition rate operation at high flux densities where crystal damage problems become a limitation.

  11. Effect of chromatic-dispersion-induced chirp on the temporal coherence properties of individual beams from spontaneous four-wave mixing

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoxin; Li, Xiaoying; Cui, Liang; Guo, Xueshi; Yang, Lei

    2011-08-01

    Temporal coherence of individual signal or idler beam, determined by the spectral correlation property of photon pairs, is important for realizing quantum interference among independent sources. Based on spontaneous four-wave mixing in optical fibers, we study the effect of chirp on the temporal coherence property by introducing a different amount of chirp into either the pulsed pump or individual signal (idler) beam. The investigation shows that the pump chirp induces additional frequency correlation into photon pairs; the mutual spectral correlation of photon pairs and the coherence of individual beam can be characterized by measuring the intensity correlation function g(2) of the individual beam. To improve the coherence degree, the pump chirp should be minimized. Moreover, a Hong-Ou-Mandel-type two-photon interference experiment with the signal beams generated in two different fibers illustrates that the chirp of the individual signal (idler) beam does not change the temporal coherence degree, but affects the temporal mode matching. To achieve high visibility among multiple sources, apart from improving the coherence degree, mode matching should be optimized by managing the chirps of individual beams.

  12. Propagation of a strong x-ray pulse: Pulse compression, stimulated Raman scattering, amplified spontaneous emission, lasing without inversion, and four-wave mixing

    SciTech Connect

    Sun Yuping; Wang Chuankui; Liu Jicai; Gel'mukhanov, Faris

    2010-01-15

    We study the compression of strong x-ray pulses from x-ray free-electron lasers (XFELs) propagating through the resonant medium of atomic argon. The simulations are based on the three-level model with the frequency of the incident x-ray pulse tuned in the 2p{sub 3/2}-4s resonance. The pulse propagation is accompanied by the self-seeded stimulated resonant Raman scattering (SRRS). The SRRS starts from two channels of amplified spontaneous emission (ASE), 4s-2p{sub 3/2} and 3s-2p{sub 3/2}, which form the extensive ringing pattern and widen the power spectrum. The produced seed field triggers the Stokes ASE channel 3s-2p{sub 3/2}. The population inversion is quenched for longer propagation distances where the ASE is followed by the lasing without inversion (LWI), which amplifies the Stokes component. Both ASE and LWI reshape the input pulse: The compressed front part of the pulse (up to 100 as) is followed by the long tail of the ringing and beating between the pump and Stokes frequencies. The pump pulse also generates weaker Stokes and anti-Stokes fields caused by four-wave mixing. These four spectral bands have fine structures caused by the dynamical Stark effect. A slowdown of the XFEL pulse up to 78% of the speed of light in vacuum is found because of a large nonlinear refractive index.

  13. Quantum dynamics of Kerr optical frequency combs below and above threshold: Spontaneous four-wave mixing, entanglement, and squeezed states of light

    NASA Astrophysics Data System (ADS)

    Chembo, Yanne K.

    2016-03-01

    The dynamical behavior of Kerr optical frequency combs is very well understood today from the perspective of the semiclassical approximation. These combs are obtained by pumping an ultrahigh-Q whispering-gallery mode resonator with a continuous-wave laser. The long-lifetime photons are trapped within the toruslike eigenmodes of the resonator, where they interact nonlinearly via the Kerr effect. In this article, we use quantum Langevin equations to provide a theoretical understanding of the nonclassical behavior of these combs when pumped below and above threshold. In the configuration where the system is under threshold, the pump field is the unique oscillating mode inside the resonator, and it triggers the phenomenon of spontaneous four-wave mixing, where two photons from the pump are symmetrically up- and down-converted in the Fourier domain. This phenomenon, also referred to as parametric fluorescence, can only be understood and analyzed from a fully quantum perspective as a consequence of the coupling between the field of the central (pumped) mode and the vacuum fluctuations of the various side modes. We analytically calculate the power spectra of the spontaneous emission noise, and we show that these spectra can be either single- or double-peaked depending on the value of the laser frequency, chromatic dispersion, pump power, and spectral distance between the central mode and the side mode of interest. We also calculate as well the overall spontaneous noise power per side mode and propose simplified analytical expressions for some particular cases. In the configuration where the system is pumped above threshold, we investigate the phenomena of quantum correlations and multimode squeezed states of light that can occur in the Kerr frequency combs originating from stimulated four-wave mixing. We show that for all stationary spatiotemporal patterns, the side modes that are symmetrical relative to the pumped mode in the frequency domain display quantum correlations

  14. Geometric interpretation of four-wave mixing

    NASA Astrophysics Data System (ADS)

    Ott, J. R.; Steffensen, H.; Rottwitt, K.; McKinstrie, C. J.

    2013-10-01

    The nonlinear phenomenon of four-wave mixing (FWM) is investigated using a method, where, without the need of calculus, both phase and amplitudes of the mixing fields are visualized simultaneously, giving a complete overview of the FWM dynamics. This is done by introducing a set of Stokes-like coordinates of the electric fields, which reduce the FWM dynamics to a closed two-dimensional surface, similar to the Bloch sphere of quantum electrodynamics or the Pointcaré sphere in polarization dynamics. The coordinates are chosen so as to use the gauge invariance symmetries of the FWM equations which also give the conservation of action flux known as the Manley-Rowe relations. This reduces the dynamics of FWM to the one-dimensional intersection between the closed two-dimensional surface and the phase-plane given by the conserved Hamiltonian. The analysis is advantageous for visualizing phase-dependent FWM phenomena which are found in a large variety of nonlinear systems and even in various optical communication schemes.

  15. Polarization switch of four-wave mixing in large mode area hybrid photonic crystal fibers.

    PubMed

    Petersen, Sidsel R; Alkeskjold, Thomas T; Olausson, Christina B; Lægsgaard, Jesper

    2015-02-15

    Degenerate spontaneous four-wave mixing is considered in a large mode area hybrid photonic crystal fiber. Numerical and experimental results show birefringence assisted four-wave mixing for a certain polarization state of the pump field. The parametric gain can be turned on and off by switching the polarization state of the pump field between the two principal axis of the hybrid photonic crystal fiber. PMID:25680131

  16. Signal enhancement in collinear four-wave mixing

    SciTech Connect

    McKinstrie, C.J.; Luther, G.G.; Batha, S. )

    1990-03-01

    The solitary-wave solutions of the four-wave equations are studied, and their relevance to four-wave mixing in finite media is discussed. In general, the transfer of action from the pump waves to the probe and signal waves is limited by nonlinear phase shifts that detune the interaction. However, by controlling the linear phase mismatch judiciously, it is often possible to effect a complete transfer of action from the pump waves to the probe and signal waves.

  17. Intermodal and cross-polarization four-wave mixing in large-core hybrid photonic crystal fibers.

    PubMed

    Petersen, Sidsel R; Alkeskjold, Thomas T; Olausson, Christina B; Lægsgaard, Jesper

    2015-03-01

    Degenerate four-wave mixing is considered in large mode area hybrid photonic crystal fibers, combining photonic bandgap guidance and index guidance. Co- and orthogonally polarized pump, signal and idler fields are considered numerically by calculating the parametric gain and experimentally by spontaneous degenerate four-wave mixing. Intermodal and birefringence assisted intramodal phase matching is observed. Good agreement between calculations and experimental observations is obtained. Intermodal four-wave mixing is achieved experimentally with a conversion efficiency of 17%. PMID:25836821

  18. Effect of four-wave mixing on copropagating spatial solitons

    NASA Astrophysics Data System (ADS)

    Ansari, Nadeem A.; Sammut, Rowland A.; Tran, Hai-Tan

    1996-07-01

    It is known that in the absence of four-wave mixing, spatial solitons of two frequencies can copropagate stably in a Kerr-law nonlinear medium. We investigate the effect of including four-wave mixing. We show that when phase-matching conditions are satisfied, Stokes and anti-Stokes waves can be generated to produce a new steady-state solution consisting of four copropagating beams. On the other hand, if weak signal beams are injected along with the pump beams, then four-wave mixing can be used to amplify those side beams. When phase-matching conditions are not satisfied, the Stokes and anti-Stokes waves simply propagate as linear modes in the effective waveguides induced by the pump solitons.

  19. Dressed four-wave mixing second-order Talbot effect

    NASA Astrophysics Data System (ADS)

    Chen, Haixia; Zhang, Xun; Zhu, Dayu; Yang, Chang; Jiang, Tao; Zheng, Huaibin; Zhang, Yanpeng

    2014-10-01

    We theoretically demonstrate second-order Talbot effect (SOTE) based on entangled photon pairs. The photon pairs are generated from the spontaneous parametric four-wave mixing (SPFWM) process in a cold atomic medium and can be taken as the imaging light in order to realize coincidence recording. A strong standing wave is used to create the electromagnetically induced grating in the entangled photon pairs channels. By changing the frequency detuning of the standing wave or the other optical fields participating in the process, we can manipulate the contrast of the second-order Talbot image. We use the second-order correlation function and the dressed-state picture to explain the SOTE occurring in the SPFWM process. Moreover, we demonstrate the scheme for SOTE based on the spatially correlated twin beams generated from the SPFWM process with injection. This scheme provides a convenient detection proposal for the SOTE at the cost of the image contrast. Compared to the previous self-imaging schemes, the present schemes have the characteristic of controllable image contrast and of nonlocal imaging, and thus, they might broaden their applications in imaging techniques and find applications in quantum lithography.

  20. Four-wave mixing and phase conjugation in plasmas

    SciTech Connect

    Federici, J.F.

    1989-01-01

    Nonlinear optical effects such as Stimulated Brillouin Scattering, Stimulated Raman Scattering, self-focusing, wave-mixing, parametric mixing, etc., have a long history in plasma physics. Recently, four-wave mixing in plasmas and its applications to phase conjugation has been extensively studied. Although four-wave mixing (FWM), using various nonlinear mediums, has many practical applications in the visible regime, no successful attempt has been made to study or demonstrate FWM for wavelengths longer than 10{mu}m. Plasmas as phase conjugate mirrors have received considerable attention since they become more efficient at longer wavelengths (far-infrared to microwave). The purpose of this thesis is to study various fundamental issues which concern the suitability of plasmas for four-wave mixing and phase conjugation. The major contributions of this thesis are the identification and study of thermal and ionization nonlinearities as potential four-wave mixing and phase conjugation mechanisms and the study of the affect of density inhomogeneities on the FWM process. Using a fluid description for the plasma, this thesis demonstrates that collisional heating generates a thermal force which substantially enhances the phase conjugate reflectivity. The prospect of using a novel ionization nonlinearity in weakly ionized plasmas for wave-mixing and phase conjugation is discussed. The ionization nonlinearity arises from localized heating of the plasma by the beat-wave. Wherever, the local temperature is increased, a plasma density grating is produced due to increased electron-impact ionization. Numerical estimates of the phase conjugate reflectivity indicate reflectivities in the range of 10{sup {minus}4}-10{sup {minus}3} are possible in a weakly ionized steady-state gas discharge plasma.

  1. Coherent Light Generation Using Four-Wave Mixing

    NASA Astrophysics Data System (ADS)

    Brekke, Erik; Alderson, Laura

    2013-05-01

    Four-wave mixing can be used to generate coherent, diffraction limited output beams, with frequencies difficult to acquire in commercial lasers. Here a narrow ECDL locked to the two photon 5s-5d transition in Rubidium, combined with a tapered amplifier system, generates a high power cw beam at 778 which is used to generate coherent light at 420 nm through parametric four-wave mixing. By controlling both the intensity and frequency of the incoming beam, this process has been optimized, and the frequency dependence analyzed. The efficiency of the process is limited when on resonance, and further investigations are underway to increase efficiency and characterize the frequency of the generated beam.

  2. Parametric four-wave mixing using a single cw laser.

    PubMed

    Brekke, E; Alderson, L

    2013-06-15

    Four-wave mixing can be used to generate coherent output beams, with frequencies difficult to acquire in commercial lasers. Here, a single narrow external cavity diode laser locked to the two photon 5s-5d transition in rubidium is combined with a tapered amplifier system to produce a high power cw beam at 778 nm and used to generate coherent light at 420 nm through parametric four-wave mixing. This process is analyzed in terms of the intensity and frequency of the incoming beam as well as the atomic density of the sample. The efficiency of the process is currently limited when on resonance due to the absorption of the 420 nm beam, and modifications should allow a significant increase in output power. PMID:23939005

  3. Phase conjugation by four-wave mixing in inhomogeneous plasmas

    NASA Technical Reports Server (NTRS)

    Williams, Edward A.; Lininger, Diana M.; Goldman, Martin V.

    1989-01-01

    The effects of density, temperature, and velocity gradients on four-wave mixing (FWM) in a plasma are investigated. A fluid model is used in which the stimulated Brillouin terms are included, but pump depletion is neglected. The steady state phase conjugate reflectivity and signal transmission coefficients are calculated and discussed for both degenerate and resonant FWM. The substantial effects of inhomogeneity on the use of FWM as a plasma diagnostic are discussed.

  4. Quantum-network generation based on four-wave mixing

    NASA Astrophysics Data System (ADS)

    Cai, Yin; Feng, Jingliang; Wang, Hailong; Ferrini, Giulia; Xu, Xinye; Jing, Jietai; Treps, Nicolas

    2015-01-01

    We present a scheme to realize versatile quantum networks by cascading several four-wave mixing (FWM) processes in warm rubidium vapors. FWM is an efficient χ(3 ) nonlinear process, already used as a resource for multimode quantum state generation and which has been proved to be a promising candidate for applications to quantum information processing. We analyze theoretically the multimode output of cascaded FWM systems, derive its independent squeezed modes, and show how, with phase controlled homodyne detection and digital postprocessing, they can be turned into a versatile source of continuous variable cluster states.

  5. Four-wave mixing in a ring cavity

    NASA Astrophysics Data System (ADS)

    Mikhailov, Eugeniy E.; Evans, Jesse; Budker, Dmitry; Rochester, Simon M.; Novikova, Irina

    2014-10-01

    We investigate a four-wave-mixing process in an N interaction scheme in Rb vapor placed inside a low-finesse ring cavity. We observe strong amplification and generation of a probe signal, circulating in the cavity, in the presence of two strong optical pump fields. We study the variations in probe field gain and dispersion as functions of experimental parameters with an eye on the potential application of such a system for enhanced rotation measurements. Density-matrix calculations are performed to model the system and are shown to provide good qualitative agreement with the experiment.

  6. Indirect precise angular control using four-wave mixing

    SciTech Connect

    Zhang, Wei; Ding, Dong-Sheng; Shi, Bao-Sen Guo, Guang-Can; Jiang, Yun-Kun

    2014-04-28

    Here, we show indirect precise angular control using a four-wave mixing (FWM) process. This was performed with a superposition of light with orbital angular momentum in an M-Type configuration of a hot {sup 85}Rb atomic ensemble. A gear-shaped interference pattern is observed at FWM light with a donut-shaped input signal. The gear could be rotated and is controlled through the change of the polarization of the pump laser. Our experimental results that are based on nonlinear coherent interactions have applications in image processing and precise angular control.

  7. Four wave mixing as a probe of the vacuum

    NASA Astrophysics Data System (ADS)

    Tennant, Daniel M.

    2016-06-01

    Much attention has been paid to the quantum structure of the vacuum. Higher order processes in quantum electrodynamics are strongly believed to cause polarization and even breakdown of the vacuum in the presence of strong fields soon to be accessible in high intensity laser experiments. Less explored consequences of strong field electrodynamics include effects from Born-Infeld type of electromagnetic theories, a nonlinear electrodynamics that follows from classical considerations as opposed to coupling to virtual fluctuations. In this article, I will demonstrate how vacuum four wave mixing has the possibility to differentiate between these two types of vacuum responses: quantum effects on one hand and nonlinear classical extensions on the other.

  8. Multiresonant four-wave mixing in diphenyloctatetraene doped bibenzyl crystals

    NASA Astrophysics Data System (ADS)

    Hawi, Sharon R.; Wright, John C.

    1995-07-01

    A diphenyloctatetraene (DPOT) doped bibenzyl crystal is a model system for studying the spectroscopic properties of polyenes because the well-defined local environment of the DPOT eliminates most of the inhomogeneous broadening that obscures many transitions. The spectra of the three DPOT sites in this host are measured with site-selective laser spectroscopy to define the vibrational, electronic, and vibronic states of the S0, S1, and S2 electronic states. Multiply resonant four-wave mixing spectra were then obtained using a coherent anti-Stokes Raman spectroscopy method (CARS) for a series of different laser frequencies in order to define the CARS excitation profile (CEP). The CEP profile of the C=C and C-C stretch vibrations showed strong enhancement of the four-wave mixing from the S2 state but only the C=C stretch mode had observable enhancement from the S1 state. Contrary to previous studies in pentacene, azulene, and perylene, DPOT did not exhibit enhancement of vibronic transitions that would permit mode selective or site-selective nonlinear spectroscopy.

  9. Effect of propagation on pulsed four-wave mixing

    NASA Astrophysics Data System (ADS)

    Weisman, P.; Wilson-Gordon, A. D.; Friedmann, H.

    2000-05-01

    We examine the effect of propagation on the resonance Rabi sideband of the four-wave mixing (FWM) spectrum, obtained when short temporally displaced pump and probe pulses interact with an optically thick medium of two-level atoms. We find that the dependence of the time-integrated FWM signal on the pump-probe delay is considerably altered by propagation. In particular, the logarithm of the FWM signal, for the case where the probe precedes the pump, deviates from linearity and may even increase over a range of values. An explanation is given in terms of the overlap of the pump envelope with the coherent response of the atomic system to the probe, both of which are modified on propagation.

  10. Parametric Four-Wave Mixing Using a Single cw Laser

    NASA Astrophysics Data System (ADS)

    Brekke, Erik; Herman, Emily; Alderson, Laura

    2014-05-01

    We present progress in using parametric four-wave mixing in a rubidium cell for the generation of coherent emission at 420 nm and 5.4 μm. A simple system using a single external cavity diode laser at 778 nm and a tapered amplifier supplies the needed optical beams. The efficiency is limited by absorption of the 420 nm beam, with single pass outputs of 40 μW. Optical pumping presents a possibility for increased output powers, but radiation trapping must be overcome at high densities. Several methods for increasing the effectiveness of the process are currently underway. The resulting beam at 420 nm presents an intriguing alternative method of exciting Rydberg states in Rubidium atoms.

  11. Nondegenerate four-wave mixing in rubidium vapor: Transient regime

    SciTech Connect

    Becerra, F. E.; Willis, R. T.; Rolston, S. L.; Orozco, L. A.; Carmichael, H. J.

    2010-10-15

    We investigate the transient response of the generated light from four-wave mixing (FWM) in the diamond configuration using a step-down field excitation. The transients show fast decay times and oscillations that depend on the detunings and intensities of the fields. A simplified model taking into account the thermal motion of the atoms, propagation, absorption, and dispersion effects shows qualitative agreement with the experimental observations with the energy levels in rubidium (5S{sub 1/2}, 5P{sub 1/2}, 5P{sub 3/2}, and 6S{sub 1/2}). The atomic polarization comes from all the contributions of different velocity classes of atoms in the ensemble modifying dramatically the total transient behavior of the light from FWM.

  12. Degenerate four-wave mixing in silicon hybrid plasmonic waveguides.

    PubMed

    Duffin, Thorin J; Nielsen, Michael P; Diaz, Fernando; Palomba, Stefano; Maier, Stefan A; Oulton, Rupert F

    2016-01-01

    Silicon-based plasmonic waveguides show high confinement well beyond the diffraction limit. Various devices have been demonstrated to outperform their dielectric counterparts at micrometer scales, such as linear modulators, capable of generating high field confinement and improving device efficiency by increasing access to nonlinear processes, limited by ohmic losses. By using hybridized plasmonic waveguide architectures and nonlinear materials, silicon-based plasmonic waveguides can generate strong nonlinear effects over just a few wavelengths. We have theoretically investigated the nonlinear optical performance of two hybrid plasmonic waveguides (HPWG) with three different nonlinear materials. Based on this analysis, the hybrid gap plasmon waveguide (HGPW), combined with the DDMEBT nonlinear polymer, shows a four-wave mixing (FWM) conversion efficiency of -16.4  dB over a 1 μm propagation length, demonstrating that plasmonic waveguides can be competitive with standard silicon photonics structures over distances three orders of magnitude shorter. PMID:26696182

  13. Stimulated degenerate four-wave mixing in Si nanocrystal waveguides

    NASA Astrophysics Data System (ADS)

    Manna, Santanu; Bernard, Martino; Biasi, Stefano; Ramiro Manzano, Fernando; Mancinelli, Mattia; Ghulinyan, Mher; Pucker, George; Pavesi, Lorenzo

    2016-07-01

    Parametric frequency conversion via four-wave mixing (FWM) in silicon nanocrystal (Si NC) waveguides is observed at 1550 nm. To investigate the role of Si NC, different types of waveguides containing Si NC in a SiO2 matrix were fabricated. Owing to the increase of the dipole oscillator strength mediated by the quantum confinement effect, the non-linear refractive index ({n}2) of Si NCs is found to be more than one order of magnitude larger than the one of bulk Si. Coupled differential equations for the degenerate FWM process taking into account the role of Si NC were numerically solved to model the experimental data. The modeling yields an effective {n}2 for Si NCs in SiO2 waveguides which is similar to the one of Si waveguides. We also measured a large signal to idler conversion bandwidth of ∼22 nm. The large non-linear refractive index is joined with a large two photon absorption coefficient which makes the use of Si NC in non-linear optical devices mostly suitable for mid-infrared applications.

  14. Enhanced four-wave mixing with nonlinear plasmonic metasurfaces

    NASA Astrophysics Data System (ADS)

    Jin, Boyuan; Argyropoulos, Christos

    2016-06-01

    Plasmonic metasurfaces provide an effective way to increase the efficiency of several nonlinear processes while maintaining nanoscale dimensions. In this work, nonlinear metasurfaces based on film-coupled silver nanostripes loaded with Kerr nonlinear material are proposed to achieve efficient four-wave mixing (FWM). Highly localized plasmon resonances are formed in the nanogap between the metallic film and nanostripes. The local electric field is dramatically enhanced in this subwavelength nanoregion. These properties combined with the relaxed phase matching condition due to the ultrathin area lead to a giant FWM efficiency, which is enhanced by nineteen orders of magnitude compared to a bare silver screen. In addition, efficient visible and low-THz sources can be constructed based on the proposed nonlinear metasurfaces. The FWM generated coherent wave has a directional radiation pattern and its output power is relatively insensitive to the incident angles of the excitation sources. This radiated power can be further enhanced by increasing the excitation power. The dielectric nonlinear material placed in the nanogap is mainly responsible for the ultrastrong FWM response. Compact and efficient wave mixers and optical sources spanning different frequency ranges are envisioned to be designed based on the proposed nonlinear metasurface designs.

  15. Enhanced four-wave mixing with nonlinear plasmonic metasurfaces

    PubMed Central

    Jin, Boyuan; Argyropoulos, Christos

    2016-01-01

    Plasmonic metasurfaces provide an effective way to increase the efficiency of several nonlinear processes while maintaining nanoscale dimensions. In this work, nonlinear metasurfaces based on film-coupled silver nanostripes loaded with Kerr nonlinear material are proposed to achieve efficient four-wave mixing (FWM). Highly localized plasmon resonances are formed in the nanogap between the metallic film and nanostripes. The local electric field is dramatically enhanced in this subwavelength nanoregion. These properties combined with the relaxed phase matching condition due to the ultrathin area lead to a giant FWM efficiency, which is enhanced by nineteen orders of magnitude compared to a bare silver screen. In addition, efficient visible and low-THz sources can be constructed based on the proposed nonlinear metasurfaces. The FWM generated coherent wave has a directional radiation pattern and its output power is relatively insensitive to the incident angles of the excitation sources. This radiated power can be further enhanced by increasing the excitation power. The dielectric nonlinear material placed in the nanogap is mainly responsible for the ultrastrong FWM response. Compact and efficient wave mixers and optical sources spanning different frequency ranges are envisioned to be designed based on the proposed nonlinear metasurface designs. PMID:27345755

  16. Enhanced four-wave mixing with nonlinear plasmonic metasurfaces.

    PubMed

    Jin, Boyuan; Argyropoulos, Christos

    2016-01-01

    Plasmonic metasurfaces provide an effective way to increase the efficiency of several nonlinear processes while maintaining nanoscale dimensions. In this work, nonlinear metasurfaces based on film-coupled silver nanostripes loaded with Kerr nonlinear material are proposed to achieve efficient four-wave mixing (FWM). Highly localized plasmon resonances are formed in the nanogap between the metallic film and nanostripes. The local electric field is dramatically enhanced in this subwavelength nanoregion. These properties combined with the relaxed phase matching condition due to the ultrathin area lead to a giant FWM efficiency, which is enhanced by nineteen orders of magnitude compared to a bare silver screen. In addition, efficient visible and low-THz sources can be constructed based on the proposed nonlinear metasurfaces. The FWM generated coherent wave has a directional radiation pattern and its output power is relatively insensitive to the incident angles of the excitation sources. This radiated power can be further enhanced by increasing the excitation power. The dielectric nonlinear material placed in the nanogap is mainly responsible for the ultrastrong FWM response. Compact and efficient wave mixers and optical sources spanning different frequency ranges are envisioned to be designed based on the proposed nonlinear metasurface designs. PMID:27345755

  17. Four-wave mixing in wavelength-division-multiplexed soliton systems: damping and amplification

    NASA Astrophysics Data System (ADS)

    Ablowitz, M. J.; Biondini, G.; Chakravarty, S.; Jenkins, R. B.; Sauer, J. R.

    1996-10-01

    Four-wave mixing in wavelength-division-multiplexed soliton systems with damping and amplification is studied. An analytical model is introduced that explains the dramatic growth of the four-wave terms. The model yields a resonance condition relating the soliton frequency and the amplifier distance. It correctly predicts all essential features regarding the resonant growth of the four-wave contributions.

  18. Temporally uncorrelated photon-pair generation by dual-pump four-wave mixing

    NASA Astrophysics Data System (ADS)

    Christensen, Jesper B.; McKinstrie, C. J.; Rottwitt, K.

    2016-07-01

    We study the preparation of heralded single-photon states using dual-pump spontaneous four-wave mixing. The dual-pump configuration, which in our case employs cross-polarized pumps, allows for a gradual variation of the nonlinear interaction strength enabled by a birefringence-induced walk-off between the pump pulses. The scheme enables the preparation of highly pure heralded single-photon states, and proves to be extremely robust against the effect of nonlinear phase modulation at the required photon-pair production rates.

  19. Degenerate four wave mixing of pyridazine from a slit nozzle

    NASA Astrophysics Data System (ADS)

    Li, Hongzhi; Kong, Wei

    1998-09-01

    Using a pulsed supersonic slit nozzle, the nonfluorescing π*←n transition of pyridazine was investigated. The degenerate four wave mixing (DFWM) spectra showed numerous vibrational bands over a 1200 cm-1 region. Most of these bands were parallel transitions with a strong Q branch and weaker but observable P and R branches. Based on our previous model [H. Li and W. Kong, J. Chem. Phys. 107, 3774 (1997)], these transitions were simulated with success. The polarization dependence of the rotational branching ratios suggested that primary contributions to the DFWM signal were from large spaced gratings formed by ground state molecules. The lack of contributions from excited state gratings and small spaced gratings was attributed to the fast internal conversion process on the S1 surface of pyridazine (0.3-3 ns), the wash-out time due to movements of the sample in a molecular beam, and the duration time of the excitation laser (7 ns). Two vibrational bands showed unexpected enhancement in the P or R branch, but for each band, one adjustment factor was sufficient to reproduce the spectra recorded under all different polarization combinations. Perturbations were observable from the rotationally resolved spectra, however in most cases, rotational progressions did not seem to be affected by the perturbation in terms of both line positions and intensities. A more detailed analysis of the supersonically cooled spectra, together with data from a room temperature gas cell and ab initio calculations, will be necessary to completely interpret the spectroscopy of pyridazine. This paper demonstrates that with the increased sensitivity achievable through a slit nozzle, DFWM is an effective technique for detailed spectroscopic studies, particularly for nonfluorescing species.

  20. Four-wave mixing experiments with extreme ultraviolet transient gratings

    NASA Astrophysics Data System (ADS)

    Bencivenga, F.; Cucini, R.; Capotondi, F.; Battistoni, A.; Mincigrucci, R.; Giangrisostomi, E.; Gessini, A.; Manfredda, M.; Nikolov, I. P.; Pedersoli, E.; Principi, E.; Svetina, C.; Parisse, P.; Casolari, F.; Danailov, M. B.; Kiskinova, M.; Masciovecchio, C.

    2015-04-01

    Four-wave mixing (FWM) processes, based on third-order nonlinear light-matter interactions, can combine ultrafast time resolution with energy and wavevector selectivity, and enable the exploration of dynamics inaccessible by linear methods. The coherent and multi-wave nature of the FWM approach has been crucial in the development of advanced technologies, such as silicon photonics, subwavelength imaging and quantum communications. All these technologies operate at optical wavelengths, which limits the spatial resolution and does not allow the probing of excitations with energy in the electronvolt range. Extension to shorter wavelengths--that is, the extreme ultraviolet and soft-X-ray ranges--would allow the spatial resolution to be improved and the excitation energy range to be expanded, as well as enabling elemental selectivity to be achieved by exploiting core resonances. So far, FWM applications at such wavelengths have been prevented by the absence of coherent sources of sufficient brightness and of suitable experimental set-ups. Here we show how transient gratings, generated by the interference of coherent extreme-ultraviolet pulses delivered by the FERMI free-electron laser, can be used to stimulate FWM processes at suboptical wavelengths. Furthermore, we have demonstrated the possibility of observing the time evolution of the FWM signal, which shows the dynamics of coherent excitations as molecular vibrations. This result opens the way to FWM with nanometre spatial resolution and elemental selectivity, which, for example, would enable the investigation of charge-transfer dynamics. The theoretical possibility of realizing these applications has already stimulated ongoing developments of free-electron lasers: our results show that FWM at suboptical wavelengths is feasible, and we hope that they will enable advances in present and future photon sources.

  1. Four wave mixing experiments with extreme ultraviolet transient gratings

    PubMed Central

    Bencivenga, F.; Cucini, R.; Capotondi, F.; Battistoni, A.; Mincigrucci, R.; Giangrisostomi, E.; Gessini, A.; Manfredda, M.; Nikolov, I. P.; Pedersoli, E.; Principi, E.; Svetina, C.; Parisse, P.; Casolari, F.; Danailov, M. B.; Kiskinova, M.; Masciovecchio, C.

    2015-01-01

    Four wave mixing (FWM) processes, based on third-order non-linear light-matter interactions, can combine ultrafast time resolution with energy and wavevector selectivity, and enables to explore dynamics inaccessible by linear methods.1-7 The coherent and multi-wave nature of FWM approach has been crucial in the development of cutting edge technologies, such as silicon photonics,8 sub-wavelength imaging9 and quantum communications.10 All these technologies operate with optical wavelengths, which limit the spatial resolution and do not allow probing excitations with energy in the eV range. The extension to shorter wavelengths, that is the extreme ultraviolet (EUV) and soft-x-ray (SXR) range, will allow to improve the spatial resolution and to expand the excitation energy range, as well as to achieve elemental selectivity by exploiting core resonances.5-7,11-14 So far FWM applications at these wavelengths have been prevented by the absence of coherent sources of sufficient brightness and suitable experimental setups. Our results show how transient gratings, generated by the interference of coherent EUV pulses delivered by the FERMI free electron laser (FEL),15 can be used to stimulate FWM processes at sub-optical wavelengths. Furthermore, we have demonstrated the possibility to read the time evolution of the FWM signal, which embodies the dynamics of coherent excitations as molecular vibrations. This result opens the perspective for FWM with nanometer spatial resolution and elemental selectivity, which, for example, would enable the investigation of charge-transfer dynamics.5-7 The theoretical possibility to realize these applications have already stimulated dedicated and ongoing FEL developments;16-20 today our results show that FWM at sub-optical wavelengths is feasible and would be the spark to the further advancements of the present and new sources. PMID:25855456

  2. Influence of stimulated Raman scattering on the conversion efficiency in four wave mixing

    SciTech Connect

    Wunderlich, R.; Moore, M.A.; Garrett, W.R.; Payne, M.G.

    1988-01-01

    Secondary nonlinear optical effects following parametric four wave mixing in sodium vapor are investigated. The generated ultraviolet radiation induces stimulated Raman scattering and other four wave mixing process. Population transfer due to Raman transitions strongly influences the phase matching conditions for the primary mixing process. Pulse shortening and a reduction in conversion efficiency are observed. 8 refs., 3 figs.

  3. Quantum theory of Rabi sideband generation by forward four-wave mixing

    SciTech Connect

    Agarwal, G.S.; Boyd, R.W.

    1988-10-15

    The predictions of a quantum-mechanical theory of forward four-wave mixing in a homogeneously broadened system of two-level atoms are presented. In the limit of a very short interaction region, the predictions of this theory reproduce those of well-known theories for the spontaneous-emission spectrum of an atom in the presence of an intense laser field. More generally, the theory predicts how the emission spectrum is modified due to propagation effects for a medium of arbitrary length. For long propagation path lengths, the emitted radiation can be quite intense and has a spectrum that is strongly peaked at the Rabi sidebands of the incident laser frequency. The theory shows that Rabi sideband generation in the forward direction can be understood as parametric amplification of weak radiation emitted spontaneously at the Rabi sidebands. The quantum noise that initiates the four-wave-mixing process has contributions both from fluctuations in the incident vacuum radiation field and from fluctuations in the polarization of the atomic dipoles. Both contributions are important for the case of a radiatively broadened medium, although the material fluctuations make the dominant contribution for the case of a medium in which the broadening is largely collisional. Under certain conditions large amounts of squeezing in the radiated field are predicted.

  4. Studies of Four Wave Mixing in a Cold Atomic Ensemble for Efficient Generation of Photon Pairs

    NASA Astrophysics Data System (ADS)

    Ferdinand, Andrew Richard; Luo, Xijie; Becerra, Francisco Elohim

    2016-05-01

    Photon pairs generated by spontaneous four-wave mixing (FWM) in atomic ensembles provide a natural path toward quantum light-matter interfaces due to their intrinsic compatibility with atomic quantum memories. We study the generation of light from a semi-classical FWM process in an elongated ensemble of cold cesium (Cs) atoms. We investigate the generation efficiency as a function of power, detuning, and polarization of the pump fields in the process. This study will allow us to determine the pump-field parameters in our system for the efficient generation of correlated photon pairs from a spontaneous FWM process. This work is supported by AFOSR Grant FA9550-14-1-0300.

  5. Atomic entanglement generation with reduced decoherence via four-wave mixing

    SciTech Connect

    Genes, C.; Berman, P. R.

    2006-06-15

    In most proposals for the generation of entanglement in large ensembles of atoms via projective measurements, the interaction with the vacuum is responsible for both the generation of the signal that is detected and the spin depolarization or decoherence. In consequence, one must usually work in a regime where the information acquisition via detection is sufficiently slow (weak measurement regime) such as not to strongly disturb the system. We propose here a four-wave mixing scheme where, owing to the pumping of the atomic system into a dark state, the polarization of the ensemble is not critically affected by spontaneous emission. In the language of spin squeezing, the removal of the limitations imposed by spontaneous emission allows one to work in a strong signal regime where the Heisenberg limit can be reached.

  6. Polarization controlled intensity noise correlation and squeezing of four-wave mixing processes in rubidium vapor

    NASA Astrophysics Data System (ADS)

    Li, Changbiao; Jiang, Zihai; Wang, Xiuxiu; Ahmed, Irfan; Raza, Faizan; Yang, Yiheng; Zhang, Yanpeng

    2016-05-01

    We observed four-wave mixing (FWM) processes in a double-Λ level of rubidium atomic system with electromagnetically induced transparency window having different polarization. The Autler-Townes splitting of FWM induced by the polarized multi-dark-state is observed. And the two-stage line shape of correlation that exhibits a sharp peak and a broad peak is also studied. The sharp peak and the broad peak are from the correlation of two spontaneous parametric FWMs and that of the vertical component and horizontal component of two coherent FWMs. Moreover we demonstrate that the intensity noise correlation and intensity-difference squeezing can be well modulated by the relative initial phase and nonlinear phase shift. Meanwhile, we also found the following of correlation (anti-correlation) by intensity-difference squeezing (anti-squeezing). The associated results may be applicable in all-optical communication and optical information processing on photonic chips.

  7. Degenerate four wave mixing in large mode area hybrid photonic crystal fibers.

    PubMed

    Petersen, Sidsel R; Alkeskjold, Thomas T; Lægsgaard, Jesper

    2013-07-29

    Spontaneous degenerate four wave mixing (FWM) is investigated in large mode area hybrid photonic crystal fibers, in which photonic bandgap guidance and index guidance is combined. Calculations show the parametric gain is maximum on the edge of a photonic bandgap, for a large range of pump wavelengths. The FWM products are observed on the edges of a transmission band experimentally, in good agreement with the numerical results. Thereby the bandedges can be used to control the spectral positions of FWM products through a proper fiber design. The parametric gain control combined with a large mode area fiber design potentially allows for power scaling of light at wavelengths not easily accessible with e.g. rare earth ions. PMID:23938682

  8. All-incoherent wavelength conversion in highly nonlinear fiber using four-wave mixing

    NASA Astrophysics Data System (ADS)

    Kharraz, Osayd M.; Ahmad, Harith; Forsyth, David I.; Dernaika, Mohamad; Zulkifli, Mohd Zamani B.; Ismail, Mohd Faizal B.; Mohammad, Abu Bakar B.

    2014-09-01

    This work describes efficient and polarization insensitive, all-incoherent four-wave mixing wavelength conversion achieved within a short length of highly nonlinear fiber medium, created by using both spectrally sliced pump and probe channels from a single-amplified spontaneous emission source coupled to two narrowband Fiber Bragg grating (FBG) filters. This simple and cost-effective scheme is capable of generating a down-converted probe channel across a 17.2-nm wavelength span, while still maintaining a high conversion efficiency of around -22 dB and an optical-signal-to-noise ratio of ˜21 dB. The effects of pump power, FBG detuning, and polarization are also reported.

  9. Implications of Raman scattering and phase noise on multiple four-wave mixing processes in an optical fiber.

    PubMed

    Khubchandani, Bhaskar Lachman

    2014-08-15

    Implications of spontaneous and stimulated Raman scattering (SSRS) and phase noise on the spatial evolution of multiple-order sidebands arising from four-wave mixing (FWM) along the length of an optical fiber are investigated. A modified split-step Fourier method is used to solve the governing coupled nonlinear Schrödinger equations. The phase noise overcomes the depletive nature of SSRS and stabilizes the FWM sidebands, in good agreement with experimental results. PMID:25121893

  10. [Study on phase-matching of four-wave mixing spectrum in photonic crystal fiber].

    PubMed

    Liu, Xiao-xu; Wang, Shu-tao; Zhao, Xing-tao; Chen, Shuang; Zhou, Gui-yao; Wu, Xi-jun; Li, Shu-guang; Hou, Lan-Tian

    2014-06-01

    In the present paper, the four-wave mixing principle of fiber was analyzed, and the high-gain phase-matching conditions were shown. The nonlinear coefficient and dispersion characteristics of photonic crystal fibers were calculated by multipole method. The phase mismatch characteristics of fibers with multiple zero-dispersion wavelengths were analyzed for the first time. The changing rules of phase matching wavelength with the pump wavelength and the pump power were obtained, and the phase matching curves were shown. The characteristics of phase matching wavelengths for different dispersion curves were analyzed. There are four new excitation wavelengths of four-wave mixing spectrum in two zero-dispersion wavelength photonic crystal fiers. Four-wave mixing spectroscopy of photonic crystal fibers with two zero-dispersion wavelengths was obtained in the experi-ent, which is consistent with the theoretical analysis, and verified the reliability of the phase matching theory. The fiber with multiple zero-dispersion wavelengths can create a ricbhphase-matching topology, excite more four-wave mixing wavelengths, ena-ling enhanced control over the spectral locations of the four-wave mixing and resonant-radiation bands emitted by solitons and short pulses. These provide theoretical guidance for photonic crystal fiber wavelength conversion and supercontinoum generation based on four-wave mixing. PMID:25358145

  11. Energy correlations of photon pairs generated by a silicon microring resonator probed by Stimulated Four Wave Mixing.

    PubMed

    Grassani, Davide; Simbula, Angelica; Pirotta, Stefano; Galli, Matteo; Menotti, Matteo; Harris, Nicholas C; Baehr-Jones, Tom; Hochberg, Michael; Galland, Christophe; Liscidini, Marco; Bajoni, Daniele

    2016-01-01

    Compact silicon integrated devices, such as micro-ring resonators, have recently been demonstrated as efficient sources of quantum correlated photon pairs. The mass production of integrated devices demands the implementation of fast and reliable techniques to monitor the device performances. In the case of time-energy correlations, this is particularly challenging, as it requires high spectral resolution that is not currently achievable in coincidence measurements. Here we reconstruct the joint spectral density of photons pairs generated by spontaneous four-wave mixing in a silicon ring resonator by studying the corresponding stimulated process, namely stimulated four wave mixing. We show that this approach, featuring high spectral resolution and short measurement times, allows one to discriminate between nearly-uncorrelated and highly-correlated photon pairs. PMID:27032688

  12. Energy correlations of photon pairs generated by a silicon microring resonator probed by Stimulated Four Wave Mixing

    PubMed Central

    Grassani, Davide; Simbula, Angelica; Pirotta, Stefano; Galli, Matteo; Menotti, Matteo; Harris, Nicholas C.; Baehr-Jones, Tom; Hochberg, Michael; Galland, Christophe; Liscidini, Marco; Bajoni, Daniele

    2016-01-01

    Compact silicon integrated devices, such as micro-ring resonators, have recently been demonstrated as efficient sources of quantum correlated photon pairs. The mass production of integrated devices demands the implementation of fast and reliable techniques to monitor the device performances. In the case of time-energy correlations, this is particularly challenging, as it requires high spectral resolution that is not currently achievable in coincidence measurements. Here we reconstruct the joint spectral density of photons pairs generated by spontaneous four-wave mixing in a silicon ring resonator by studying the corresponding stimulated process, namely stimulated four wave mixing. We show that this approach, featuring high spectral resolution and short measurement times, allows one to discriminate between nearly-uncorrelated and highly-correlated photon pairs. PMID:27032688

  13. Energy correlations of photon pairs generated by a silicon microring resonator probed by Stimulated Four Wave Mixing

    NASA Astrophysics Data System (ADS)

    Grassani, Davide; Simbula, Angelica; Pirotta, Stefano; Galli, Matteo; Menotti, Matteo; Harris, Nicholas C.; Baehr-Jones, Tom; Hochberg, Michael; Galland, Christophe; Liscidini, Marco; Bajoni, Daniele

    2016-04-01

    Compact silicon integrated devices, such as micro-ring resonators, have recently been demonstrated as efficient sources of quantum correlated photon pairs. The mass production of integrated devices demands the implementation of fast and reliable techniques to monitor the device performances. In the case of time-energy correlations, this is particularly challenging, as it requires high spectral resolution that is not currently achievable in coincidence measurements. Here we reconstruct the joint spectral density of photons pairs generated by spontaneous four-wave mixing in a silicon ring resonator by studying the corresponding stimulated process, namely stimulated four wave mixing. We show that this approach, featuring high spectral resolution and short measurement times, allows one to discriminate between nearly-uncorrelated and highly-correlated photon pairs.

  14. Four-wave mixing microscopy: a high potential nonlinear imaging method

    NASA Astrophysics Data System (ADS)

    Ehmke, Tobias; Knebl, Andreas; Heisterkamp, Alexander

    2015-03-01

    In this work we present non-resonant four-wave mixing microscopy as an additional contrast mechanism in nonlinear microscopy. The setup for this technique was based on a commercially available multiphoton microscope setup equipped with a titanium:sapphire-laser and an optical parametric oscillator as light sources. Fundamental system characteristics with respect to the spatio-temporal pulse overlap and the influence of aberrations on the process are presented. Experiments regarding the directionality of the four-wave mixing signal performed on fresh porcine meat showed an average ratio of the backward to forward signal mean intensity of 0.16 +/- 0.01. Nevertheless, structural information is comparable for both detection modalities. This highlights the potential of four-wave mixing microscopy for in vivo applications. Furthermore, results on porcine meat show the additional contrast generated by four-wave mixing. In summary, the results show a great potential of non-resonant four-wave mixing microscopy as label-free imaging modality in the biomedical sciences.

  15. Inverse four-wave-mixing and self-parametric amplification effect in optical fibre

    PubMed Central

    Turitsyn, Sergei K.; Bednyakova, Anastasia E.; Fedoruk, Mikhail P.; Papernyi, Serguei B.; Clements, Wallace R.L.

    2015-01-01

    An important group of nonlinear processes in optical fibre involves the mixing of four waves due to the intensity dependence of the refractive index. It is customary to distinguish between nonlinear effects that require external/pumping waves (cross-phase modulation and parametric processes such as four-wave mixing) and self-action of the propagating optical field (self-phase modulation and modulation instability). Here, we present a new nonlinear self-action effect, self-parametric amplification (SPA), which manifests itself as optical spectrum narrowing in normal dispersion fibre, leading to very stable propagation with a distinctive spectral distribution. The narrowing results from an inverse four-wave mixing, resembling an effective parametric amplification of the central part of the spectrum by energy transfer from the spectral tails. SPA and the observed stable nonlinear spectral propagation with random temporal waveform can find applications in optical communications and high power fibre lasers with nonlinear intra-cavity dynamics. PMID:26345290

  16. Strongly modified four-wave mixing in a coupled semiconductor quantum dot-metal nanoparticle system

    SciTech Connect

    Paspalakis, Emmanuel; Evangelou, Sofia; Kosionis, Spyridon G.; Terzis, Andreas F.

    2014-02-28

    We study the four-wave mixing effect in a coupled semiconductor quantum dot-spherical metal nanoparticle structure. Depending on the values of the pump field intensity and frequency, we find that there is a critical distance that changes the form of the spectrum. Above this distance, the four-wave mixing spectrum shows an ordinary three-peaked form and the effect of controlling its magnitude by changing the interparticle distance can be obtained. Below this critical distance, the four-wave mixing spectrum becomes single-peaked; and as the interparticle distance decreases, the spectrum is strongly suppressed. The behavior of the system is explained using the effective Rabi frequency that creates plasmonic metaresonances in the hybrid structure. In addition, the behavior of the effective Rabi frequency is explained via an analytical solution of the density matrix equations.

  17. Adaptive defect and pattern detection in amplitude and phase structures via photorefractive four-wave mixing.

    PubMed

    Nehmetallah, George; Banerjee, Partha; Khoury, Jed

    2015-11-10

    This work comprises the theoretical and numerical validations of experimental work on pattern and defect detection of periodic amplitude and phase structures using four-wave mixing in photorefractive materials. The four-wave mixing optical processor uses intensity filtering in the Fourier domain. Specifically, the nonlinear transfer function describing four-wave mixing is modeled, and the theory for detection of amplitude and phase defects and dislocations are developed. Furthermore, numerical simulations are performed for these cases. The results show that this technique successfully detects the slightest defects clearly even with no prior enhancement. This technique should prove to be useful in quality control systems, production-line defect inspection, and e-beam lithography. PMID:26560795

  18. Entangled photon generation using four-wave mixing in azimuthally symmetric microresonators.

    PubMed

    Camacho, Ryan M

    2012-09-24

    A novel quantum mechanical formulation of the bi-photon wavefunction and spectra resulting from four-wave mixing is developed for azimuthally symmetric systems. Numerical calculations are performed verifying the use of the angular group velocity and angular group velocity dispersion in such systems, as opposed their commonly used linear counterparts. The dispersion profile and bi-photon spectra of two illustrative examples are given, emphasizing the physical origin of the effects leading to the conditions for angular momentum and energy conservation. A scheme is proposed in which widely spaced narrowband entangled photons may be produced through a four-wave mixing process in a chip-scale ring resonator. The entangled photon pairs are found to conserve energy and momentum in the four-wave mixing interaction, even though both photon modes lie in spectral regions of steep angular group velocity dispersion. PMID:23037348

  19. Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides

    SciTech Connect

    Zhou, Hao E-mail: tg2342@columbia.edu; Gu, Tingyi E-mail: tg2342@columbia.edu McMillan, James F.; Wong, Chee Wei E-mail: tg2342@columbia.edu; Petrone, Nicholas; Zande, Arend van der; Hone, James C.; Yu, Mingbin; Lo, Guoqiang; Kwong, Dim-Lee; Feng, Guoying; Zhou, Shouhuan

    2014-09-01

    We demonstrate the enhanced four-wave mixing of monolayer graphene on slow-light silicon photonic crystal waveguides. 200-μm interaction length, a four-wave mixing conversion efficiency of −23 dB is achieved in the graphene-silicon slow-light hybrid, with an enhanced 3-dB conversion bandwidth of about 17 nm. Our measurements match well with nonlinear coupled-mode theory simulations based on the measured waveguide dispersion, and provide an effective way for all-optical signal processing in chip-scale integrated optics.

  20. Low-power four-wave mixing in porous silicon microring resonators

    NASA Astrophysics Data System (ADS)

    Simbula, A.; Rodriguez, G. A.; Menotti, M.; De Pace, S.; Weiss, S. M.; Galli, M.; Liscidini, M.; Bajoni, D.

    2016-07-01

    We report the measurement of low-power continuous-wave four-wave mixing in porous silicon microring resonators operating in the 1550 nm telecom band. Resonantly enhanced stimulated four-wave mixing has been measured in rings with 25 μm radius and quality factor around 5000 for pump powers as low as a few hundreds of microwatts. A waveguide nonlinear parameter γ = 20 W-1 m-1 has been determined. These results suggest further research on porous silicon for low-power nonlinear optics, possibly taking advantage of its tunable porosity.

  1. Coupling of four-wave mixing and Raman scattering by ground-state atomic coherence

    NASA Astrophysics Data System (ADS)

    Parniak, Michał; Leszczyński, Adam; Wasilewski, Wojciech

    2016-05-01

    We demonstrate coupling of light resonant to transition between two excited states of rubidium and long-lived ground-state atomic coherence. In our proof-of-principle experiment a nonlinear process of four-wave mixing is used to achieve light emission proportional to independently prepared ground-state atomic coherence. Strong correlations between stimulated Raman-scattering light heralding the generation of ground-state coherence and the four-wave mixing signal are measured and shown to survive the storage period, which is promising in terms of quantum memory applications. The process is characterized as a function of laser detunings.

  2. Multi-photon microscopy based on resonant four-wave mixing of colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Masia, F.; Langbein, W.; Borri, P.

    2009-02-01

    We demonstrate a novel multi-photon imaging modality based on the detection of four-wave mixing (FWM) from colloidal nanoparticles. Four-wave mixing is a third-order signal which can be excited and detected in resonance with the ground-state excitonic transition of CdSe/ZnS quantum dots. The coherent FWM signal is detected interferometrically to reject incoherent backgrounds for improved image contrast compared to fluorescence methods. We measure transversal and axial resolutions of 140nm and 590nm respectively, significantly beating the one-photon diffraction limit. We also demonstrate optical imaging of quantum-dot-labeled Golgi structures of HepG2 cells.

  3. Second-order self-imaging with parametric amplification four-wave mixing

    NASA Astrophysics Data System (ADS)

    Wen, Feng; Zhang, Zhaoyang; Ahmed, Irfan; Li, Zepei; Wang, Hongxing; Liu, Zongchen; Gao, Hong; Zhang, Yanpeng

    2016-07-01

    By modulating the emission characteristics of a twin-correlated bright beam in a parametric amplification of the four-wave mixing process, a nondestructive and lensless imaging scheme to image ultra-cold atoms or molecules is proposed. The optical lattice state, which is induced via the coupling between ultra-cold atoms and a standing wave, is used to effectively modulate the dressing-suppressed/enhanced nonlinear susceptibility, and an emission-intensity-modulated grating of a correlated bright beam is formed. The intensity fluctuations of the correlated bright beam are taken as the imaging light to implement second-order coincidence measurement. As an important complementary scheme to a previous self-imaging scheme with spontaneous parametric down-conversion, our scheme has the characteristic of an efficient generation and detection rate. In addition, the visibility of the imaging can be significantly improved by enhanced nonlinear susceptibility. Our work may offer a nondestructive and lensless way to image ultra-cold atoms or molecules.

  4. Image processing by four-wave mixing in photorefractive GaAs

    NASA Technical Reports Server (NTRS)

    Gheen, Gregory; Cheng, Li-Jen

    1987-01-01

    Three image processing experiments were performed by degenerate four-wave mixing in photorefractive GaAs. The experiments were imaging by phase conjugation, edge enhancement, and autocorrelation. The results show that undoped, semiinsulating, liquid-encapsulated Czochralski-grown GaAs crystals can be used as effective optical processing media despite their small electrooptic coefficient.

  5. Nonperturbative quantum solutions to resonant four-wave mixing of two single-photon wave packets

    SciTech Connect

    Johnsson, Mattias; Fleischhauer, Michael

    2003-08-01

    We analyze both analytically and numerically the resonant four-wave mixing of two co-propagating single-photon wave packets. We present analytic expressions for the two-photon wave function, and show that quantum solutions exist which display a shape-preserving oscillatory exchange of excitations between the modes. Potential applications including quantum-information processing are discussed.

  6. Nonlinear-optical response in polythiophene films using four-wave mixing techniques

    NASA Astrophysics Data System (ADS)

    Dorsinville, R.; Yang, Lina; Alfano, R. R.; Zamboni, R.; Danieli, R.

    1989-12-01

    Measurement of chi(3) in polythiophene and a homologous series of polycondensed thiophene-based polymers above and below the absorption edge using the folded-boxcar four-wave mixing technique is reported. Above gap the nonlinear coefficient chi(3) was found to be one of the largest and fastest in a polymer.

  7. Z-scan and four-wave mixing characterization of semiconductor cadmium chalcogenide nanomaterials

    NASA Astrophysics Data System (ADS)

    Yang, Qiguang; Seo, Jae Tae; Creekmore, Santiel; Tan, Guolong; Brown, Herbert; Ma, Seong Min; Creekmore, Linwood; Jackson, Ashley; Skyles, Tifney; Tabibi, Bagher; Wang, Huitian; Jung, Sung Soo; Namkung, Min

    2006-05-01

    The possible physical origin of third-order nonlinearity of cadmium chalcogenide (Te, Se, and S) semiconductor nanocrystals were discussed based on the results of both Z-scan and degenerate four-wave mixing spectroscopies at 532, 775, 800, and 1064 nm in nanosecond, picosecond, and femtosecond time scale for nonlinear photonic applications.

  8. Optical imaging through turbid media with a degenerate four-wave mixing correlation time gate

    DOEpatents

    Sappey, Andrew D.

    1998-04-14

    Optical imaging through turbid media is demonstrated using a degenerate four-wave mixing correlation time gate. An apparatus and method for detecting ballistic and/or snake light while rejecting unwanted diffusive light for imaging structures within highly scattering media are described. Degenerate four-wave mixing (DFWM) of a doubled YAG laser in rhodamine 590 is used to provide an ultrafast correlation time gate to discriminate against light that has undergone multiple scattering and therefore has lost memory of the structures within the scattering medium. Images have been obtained of a test cross-hair pattern through highly turbid suspensions of whole milk in water that are opaque to the naked eye, which demonstrates the utility of DFWM for imaging through turbid media. Use of DFWM as an ultrafast time gate for the detection of ballistic and/or snake light in optical mammography is discussed.

  9. Four-wave mixing in quantum wells using femtosecond pulses with Laguerre-Gauss modes

    NASA Astrophysics Data System (ADS)

    Persuy, Déborah; Ziegler, Marc; Crégut, Olivier; Kheng, Kuntheak; Gallart, Mathieu; Hönerlage, Bernd; Gilliot, Pierre

    2015-09-01

    We demonstrate theoretically and experimentally that four-wave mixing processes obey phase-matching conditions that determine not only the conservation of the photon energy and k-momentum but also the orbital angular momentum of light. We report on time-resolved four-wave mixing experiments performed on a CdTe/CdZnTe quantum well in both noncollinear and collinear configurations with Laguerre-Gauss beams. They demonstrate that the polarization wave which is induced in the material keeps memory of the excitation pulse orbital momentum. We show that in the collinear configuration, the large angular acceptance opens up new horizons for improving the spatial resolution in time-resolved experiments.

  10. Detailed investigation of intermodal four-wave mixing in SMF-28: blue-red generation from green.

    PubMed

    Pourbeyram, Hamed; Nazemosadat, Elham; Mafi, Arash

    2015-06-01

    A short piece of commercial-grade SMF-28 optical fiber is pumped with a 680 ps high-peak power green laser. Red Stokes and blue anti-Stokes beams are generated spontaneously from vacuum noise in different modes in the fiber via intermodal four-wave mixing. Detailed experimental and theoretical analyses are performed and are in reasonable agreement. The large spectral shifts from the pump protect the Stokes and anti-Stokes from contamination by spontaneous Raman scattering noise. This work highlights the predictive power and limitations of a theoretical model to explain the experimental results for a process that relies on the amplification of quantum vacuum energy over more than 11 orders of magnitude. PMID:26072809

  11. Atom laser based on four-wave mixing with Bose-Einstein condensates in nonlinear lattices

    NASA Astrophysics Data System (ADS)

    Wasak, T.; Konotop, V. V.; Trippenbach, M.

    2013-12-01

    Optical lattices are typically used to modify the dispersion relation of the matter wave, in particular, to ensure resonant conditions for multiwave interactions. Here we propose an alternative mechanism of wave interactions. It can be implemented using a nonlinear lattice and modifies the momentum conservation law of the interacting atoms, leaving the energy conservation unchanged. We propose to apply this phenomenon to construct an atom laser via a resonant four-wave mixing process.

  12. Four-wave mixing in a three-level bichromatic electromagnetically induced transparency system

    SciTech Connect

    Yang, G. Q.; Xu, P.; Wang, J.; Zhan, M. S.; Zhu Yifu

    2010-10-15

    We investigate the four-wave mixing (FWM) phenomenon in a three-level bichromatic electromagnetically induced transparency system. Theoretical results predict that the FWM will exhibit a multipeak structure under bichromatic coupling fields. The stronger the coupling fields are, the more FWM the peaks should exhibit. Results of an experiment carried out with cold {sup 87}Rb atoms in a magneto-optical trap agree with the theoretical prediction.

  13. Degenerate four-wave mixing in phenylbenzimidazole proton-transfer laser dyes

    NASA Astrophysics Data System (ADS)

    Costela, A.; Garcia-Moreno, I.

    1996-02-01

    Thermally induced phase conjugation by degenerate four-wave mixing in 1,4-dioxane solutions of the 5'-fluoro and 5'-chloro derivatives of the 2-(2'-hydroxyphenyl) benzimidazole proton-transfer dye is reported in the weak absorption region, low-reflectivity regime and nanosecond time domain. Efficiency-related aspects of the nonlinear process are investigated and the different contributions to the thermalization processes are discussed. Evidence of oscillatory acoustic modes in the nonlinear medium is presented.

  14. Bunching-induced asymmetry in degenerate four-wave mixing with cold atoms

    SciTech Connect

    Gattobigio, G. L.; Michaud, F.; Kaiser, R.; Javaloyes, J.

    2006-10-15

    We have investigated degenerate four-wave mixing in a sample of cold rubidium atoms. A red-blue asymmetry is observed for high intensities of the pumping beams. This asymmetry is explained by the spatial bunching of the atoms in the nodes or antinodes of the strong standing wave of the pump beams. This explanation is confirmed by different experimental configurations and by numerical simulations.

  15. Robust and compact entanglement generation from diode-laser-pumped four-wave mixing

    DOE PAGESBeta

    Lawrie, B. J.; Yang, Y.; Eaton, M.; Black, A. N.; Pooser, R. C.

    2016-04-11

    Four-wave-mixing processes are now routinely used to demonstrate multi-spatial-mode Einstein- Podolsky-Rosen entanglement and intensity difference squeezing. Recently, diode-laser-pumped four-wave mixing processes have been shown to provide an affordable, compact, and stable source for intensity difference squeezing, but it was unknown if excess phase noise present in power amplifier pump configurations would be an impediment to achieving quadrature entanglement. Here, we demonstrate the operating regimes under which these systems are capable of producing entanglement and under which excess phase noise produced by the amplifier contaminates the output state. We show that Einstein-Podolsky-Rosen entanglement in two mode squeezed states can be generatedmore » by a four-wave-mixing source deriving both the pump field and the local oscillators from a tapered-amplifier diode-laser. In conclusion, this robust continuous variable entanglement source is highly scalable and amenable to miniaturization, making it a critical step toward the development of integrated quantum sensors and scalable quantum information processors, such as spatial comb cluster states.« less

  16. Four-wave mixing in nonlinear interferometer Fabry-Perot with saturable absorbers

    NASA Astrophysics Data System (ADS)

    Ormachea, Omar A.; Romanov, Oleg G.; Tolstik, Alexei L.; Arce Diego, José Luis; Pereda Cubian, David; Fanjul Vélez, Félix

    2005-09-01

    In this work the different schemes of propagation and interaction of the light beams in nonlinear Fabry-Perot interferometer have been studied theoretically and experimentally. Degenerate and non-degenerate four-wave mixing have been realized in the cavity of Fabry-Perot type using Rhodamine-6G dye and polymethine dye 3274U solution as saturable absorber. The diffraction efficiency of intracavity dynamic grating has been studied in dependence on intensity of interacting beams and parameters of resonator. The theoretical model of the processes of intracavity degenerate and non-degenerate four-wave mixing has been developed and applied to the analysis of the efficiency of light beams conversion by mean of Bragg diffraction from intracavity dynamic gratings. For theoretical description of typical experimental situations we used the round-trip model of nonlinear interferometer adapted for the geometry of degenerate four-wave mixing, which can be realized in the scheme of symmetrical oblique incidence of pump, signal and probe beams to the front and back mirrors of cavity.

  17. Robust and compact entanglement generation from diode-laser-pumped four-wave mixing

    NASA Astrophysics Data System (ADS)

    Lawrie, B. J.; Yang, Y.; Eaton, M.; Black, A. N.; Pooser, R. C.

    2016-04-01

    Four-wave-mixing processes are now routinely used to demonstrate multi-spatial-mode Einstein-Podolsky-Rosen entanglement and intensity difference squeezing. Diode-laser-pumped four-wave mixing processes have recently been shown to provide an affordable, compact, and stable source for intensity difference squeezing, but it was unknown if excess phase noise present in power amplifier pump configurations would be an impediment to achieving quadrature entanglement. Here, we demonstrate the operating regimes under which these systems are capable of producing entanglement and under which excess phase noise produced by the amplifier contaminates the output state. We show that Einstein-Podolsky-Rosen entanglement in two mode squeezed states can be generated by a four-wave-mixing source deriving both the pump field and the local oscillators from a tapered-amplifier diode-laser. This robust continuous variable entanglement source is highly scalable and amenable to miniaturization, making it a critical step toward the development of integrated quantum sensors and scalable quantum information processors, such as spatial comb cluster states.

  18. Studies of degenerate and nearly degenerate four wave mixing of laser radiation in plasmas

    SciTech Connect

    Joshi, Chan . Dept. of Electrical Engineering)

    1990-12-01

    Optical Phase Conjugation is an area of nonlinear optics with a wide variety of potential applications. One method of generating as phase conjugate signal is with four wave mixing (FWM). In FWM, three input beams interact in a nonlinear medium, and a fourth beam is produced that is the phase conjugate of one of the input waves. Degeneate Four Wave Mixing (DFWM) is a special case of FWM in which all of the beams are at the same frequency. In a plasma, DFWM is an effective technique for phase conjugation in high density, low temperature plasmas. One way of enhancing the phase conjugate signal over and above the DFWM level is with Resonant Four Wave Mixing (RFWM), in which two of the input beams beat at a plasma resonance. In addition to enhancing the generated wave, RFWM can also serve as a diagnostic for many plasma parameters, such as the electron and ion temperatures, the ion acoustic velocity, and the damping rate. In this report, experimental evidence of RFWM with CO{sub 2} laser radiation (10.6 {mu}m) is presented, and the data is compared with theoretical predictions.

  19. Efficient calculation of time- and frequency-resolved four-wave-mixing signals.

    PubMed

    Gelin, Maxim F; Egorova, Dassia; Domcke, Wolfgang

    2009-09-15

    "Four-wave-mixing" is the generic name for a family of nonlinear electronic and vibrational spectroscopies. These techniques are widely used to explore dissipation, dephasing, solvation, and interstate coupling mechanisms in various material systems. Four-wave-mixing spectroscopy needs a firm theoretical support, because it delivers information on material systems indirectly, through certain transients, which are measured as functions of carrier frequencies, durations, and relative time delays of the laser pulses. The observed transients are uniquely determined by the three-pulse-induced third-order polarization. There exist two conceptually different approaches to the calculation of the nonlinear polarization. In the standard perturbative approach to nonlinear spectroscopy, the third-order polarization is expressed in terms of the nonlinear response functions. As the material systems become more complex, the evaluation of the response functions becomes cumbersome and the calculation of the signals necessitates a number of approximations. Herein, we review alternative methods for the calculation of four-wave-mixing signals, in which the relevant laser pulses are incorporated into the system Hamiltonian and the driven system dynamics is simulated numerically exactly. The emphasis is on the recently developed equation-of-motion phase-matching approach (EOM-PMA), which allows us to calculate the three-pulse-induced third-order polarization in any phase-matching direction by performing three (with the rotating wave approximation) or seven (without the rotating wave approximation) independent propagations of the density matrix. The EOM-PMA is limited to weak laser fields (its domain of validity is equivalent to the approach based on the third-order response functions) but allows for arbitrary pulse durations and automatically accounts for pulse-overlap effects. As an illustration, we apply the EOM-PMA to the calculation of optical three-pulse photon-echo two

  20. Graphene Near-Degenerate Four-Wave Mixing for Phase Characterization of Broadband Pulses in Ultrafast Microscopy.

    PubMed

    Ciesielski, Richard; Comin, Alberto; Handloser, Matthias; Donkers, Kevin; Piredda, Giovanni; Lombardo, Antonio; Ferrari, Andrea C; Hartschuh, Achim

    2015-08-12

    We investigate near-degenerate four-wave mixing in graphene using femtosecond laser pulse shaping microscopy. Intense near-degenerate four-wave mixing signals on either side of the exciting laser spectrum are controlled by amplitude and phase shaping. Quantitative signal modeling for the input pulse parameters shows a spectrally flat phase response of the near-degenerate four-wave mixing due to the linear dispersion of the massless Dirac Fermions in graphene. Exploiting these properties we demonstrate that graphene is uniquely suited for the intrafocus phase characterization and compression of broadband laser pulses, circumventing disadvantages of common methods utilizing second or third harmonic light. PMID:26121487

  1. Photonic millimeter-wave frequency multiplication based on cascaded four-wave mixing and polarization pulling.

    PubMed

    Vidal, B

    2012-12-15

    A technique for the frequency multiplication of microwave signals based on the combination of two optical nonlinear phenomena in a single nonlinear fiber is investigated. Multiple four-wave mixing is used to generate harmonics on an externally modulated optical carrier while polarization pulling through stimulated Brillouin scattering is used to filter the desired harmonics. Microwave signals in the 60 GHz region are generated showing harmonic frequency multiplication factors of up to 25 with a suppression of undesired harmonics better than 20 dB. PMID:23258003

  2. Optical imaging through turbid media using a degenerate-four-wave mixing correlation time gate

    SciTech Connect

    Bigio, I.J.; Strauss, C.E.M.; Zerkle, D.K.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have demonstrated the use of a degenerate-four-wave-mixing time gate to allow imaging through turbid media, with potential application to tissue imaging. A near infrared (NIR), long-pulse Cr{sup +3}:Li{sub 2}SrAlF{sub 6} laser was used as the light source (during most the project) for imaging through clear and turbid media. Preliminary experiments were also carried out with a continuous diode laser.

  3. Sub-poissonian number differences in four-wave mixing of matter waves.

    PubMed

    Jaskula, J-C; Bonneau, M; Partridge, G B; Krachmalnicoff, V; Deuar, P; Kheruntsyan, K V; Aspect, A; Boiron, D; Westbrook, C I

    2010-11-01

    We demonstrate sub-Poissonian number differences in four-wave mixing of Bose-Einstein condensates of metastable helium. The collision between two Bose-Einstein condensates produces a scattering halo populated by pairs of atoms of opposing velocities, which we divide into several symmetric zones. We show that the atom number difference for opposing zones has sub-Poissonian noise fluctuations, whereas that of nonopposing zones is well described by shot noise. The atom pairs produced in a dual number state are well adapted to sub-shot-noise interferometry and studies of Einstein-Podolsky-Rosen-type nonlocality tests. PMID:21231151

  4. Sub-Poissonian Number Differences in Four-Wave Mixing of Matter Waves

    SciTech Connect

    Jaskula, J.-C.; Bonneau, M.; Partridge, G. B.; Krachmalnicoff, V.; Aspect, A.; Boiron, D.; Westbrook, C. I.; Deuar, P.

    2010-11-05

    We demonstrate sub-Poissonian number differences in four-wave mixing of Bose-Einstein condensates of metastable helium. The collision between two Bose-Einstein condensates produces a scattering halo populated by pairs of atoms of opposing velocities, which we divide into several symmetric zones. We show that the atom number difference for opposing zones has sub-Poissonian noise fluctuations, whereas that of nonopposing zones is well described by shot noise. The atom pairs produced in a dual number state are well adapted to sub-shot-noise interferometry and studies of Einstein-Podolsky-Rosen-type nonlocality tests.

  5. Real-time monitoring of graphene patterning with wide-field four-wave mixing microscopy

    NASA Astrophysics Data System (ADS)

    Koivistoinen, Juha; Aumanen, Jukka; Hiltunen, Vesa-Matti; Myllyperkiö, Pasi; Johansson, Andreas; Pettersson, Mika

    2016-04-01

    The single atom thick two-dimensional graphene is a promising material for various applications due to its extraordinary electronic, optical, optoelectronic, and mechanical properties. The demand for developing graphene based applications has entailed a requirement for development of methods for fast imaging techniques for graphene. Here, we demonstrate imaging of graphene with femtosecond wide-field four-wave mixing microscopy. The method provides a sensitive, non-destructive approach for rapid large area characterization of graphene. We show that the method is suitable for online following of a laser patterning process of microscale structures on single-layer graphene.

  6. A universal quantum frequency converter via four-wave-mixing processes

    NASA Astrophysics Data System (ADS)

    Cheng, Mingfei; Fang, Jinghuai

    2016-06-01

    We present a convenient and flexible way to realize a universal quantum frequency converter by using nondegenerate four-wave-mixing processes in the ladder-type three-level atomic system. It is shown that quantum state exchange between two fields with large frequency difference can be readily achieved, where one corresponds to the atomic resonant transition in the visible spectral region for quantum memory and the other to the telecommunication range wavelength (1550 nm) for long-distance transmission over optical fiber. This method would bring great facility in realistic quantum information processing protocols with atomic ensembles as quantum memory and low-loss optical fiber as transmission channel.

  7. Demonstration of CNOT gate with Laguerre Gaussian beams via four-wave mixing in atom vapor.

    PubMed

    Cao, Mingtao; Yu, Ya; Zhang, Liyun; Ye, Fengjuan; Wang, Yunlong; Wei, Dong; Zhang, Pei; Guo, Wenge; Zhang, Shougang; Gao, Hong; Li, Fuli

    2014-08-25

    We present an experimental study of controlled-NOT (CNOT) gate through four-wave mixing (FWM) process in a Rubidium vapor cell. A degenerate FWM process in a two level atomic system is directly excited by a single diode laser, where backward pump beam and probe beam are Laguerre Gaussian mode. By means of photons carrying orbital angular momentum, we demonstrate the ability to realize CNOT gate with topological charges transformation in this nonlinear process. The fidelity of CNOT gate for a superposition state with different topological charge reaches about 97% in our experiment. PMID:25321227

  8. Fully resonant four-wave mixing spectroscopy of pentacene and dye molecules in condensed phases

    SciTech Connect

    Chang, T.C.

    1985-07-01

    Four-wave mixing spectroscopy (FWM) including coherent anti-Stokes Raman spectroscopy (CARS) and coherent Stokes Raman spectroscopy (CSRS) have been studied for pentacene doped in naphthalene crystals at low temperatures (4.5 to 35 K) in order to investigate nonlinear optical behavior of the third-order nonlinear susceptibility, X. Further, its application to study of cresyl violet perchlorate embedded in polyacrylic acid and in polyvinyl carbazole has been examined. Separate abstracting and indexing has been completed for the two papers.

  9. Sub-Poissonian Number Differences in Four-Wave Mixing of Matter Waves

    NASA Astrophysics Data System (ADS)

    Jaskula, J.-C.; Bonneau, M.; Partridge, G. B.; Krachmalnicoff, V.; Deuar, P.; Kheruntsyan, K. V.; Aspect, A.; Boiron, D.; Westbrook, C. I.

    2010-11-01

    We demonstrate sub-Poissonian number differences in four-wave mixing of Bose-Einstein condensates of metastable helium. The collision between two Bose-Einstein condensates produces a scattering halo populated by pairs of atoms of opposing velocities, which we divide into several symmetric zones. We show that the atom number difference for opposing zones has sub-Poissonian noise fluctuations, whereas that of nonopposing zones is well described by shot noise. The atom pairs produced in a dual number state are well adapted to sub-shot-noise interferometry and studies of Einstein-Podolsky-Rosen-type nonlocality tests.

  10. Spectrally resolved four-wave mixing experiments on bulk GaAs with 14-fs pulses

    SciTech Connect

    Wehner, M.U.; Steinbach, D.; Wegener, M.; Marschner, T.; Stolz, W.

    1996-05-01

    We investigate the coherent dynamics at the band edge of GaAs at low temperatures for carrier densities ranging from 4.3{times}10{sup 14} cm{sup {minus}3} to 4.4{times}10{sup 17} cm{sup {minus}3} by means of spectrally resolved transient four-wave mixing with 14-fs pulses. At large nonequilibrium carrier densities we observe oscillations with an energy-dependent oscillation period related to interference among continuum states. The experimental findings are compared with a simple model. This comparison delivers a weak energy dependence of dephasing in the initial buildup phase of screening. {copyright} {ital 1996 Optical Society of America.}

  11. Four-wave mixing stability in hybrid photonic crystal fibers with two zero-dispersion wavelengths.

    PubMed

    Sévigny, Benoit; Vanvincq, Olivier; Valentin, Constance; Chen, Na; Quiquempois, Yves; Bouwmans, Géraud

    2013-12-16

    The four-wave mixing process in optical fibers is generally sensitive to dispersion uniformity along the fiber length. However, some specific phase matching conditions show increased robustness to longitudinal fluctuations in fiber dimensions, which affect the dispersion, even for signal and idler wavelengths far from the pump. In this paper, we present the method by which this point is found, how the fiber design characteristics impact on the stable point and demonstrate the stability through propagation simulations using the non-linear Schrödinger equation. PMID:24514659

  12. High-efficiency infrared four-wave mixing signal in monolayer graphene

    NASA Astrophysics Data System (ADS)

    Liu, Shasha; Liu, Shaopeng; Zhu, Zhonghu; Yang, Wen-Xing

    2016-03-01

    A scheme of enhanced four-wave mixing (FWM) signal is exploited in graphene under an external magnetic field via multiphoton quantum destructive interference. By solving the coupled Schrödinger-Maxwell formalism, a time-dependent analysis performs the integrated analytical expressions of the input probe pulse and generated FWM field. Taking into account the tunable optical transition frequency between the Landau levels (LLs) in graphene, it is found that the generated FWM signal in the infrared region can be significantly enhanced and its efficiency is nearly 60% . As a result, the proposed magnetised graphene system may provide a striking potential for generating long-wavelength radiation.

  13. Highly efficient picosecond degenerate four-wave mixing in a tellurite microstructured optical fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Hoang Tuan, Tong; Kawamura, Harutaka; Nagasaka, Kenshiro; Suzuki, Takenobu; Ohishi, Yasutake

    2016-06-01

    Wavelength-tunable picosecond degenerate four-wave mixing was demonstrated in a tellurite microstructured optical fiber (TMOF). The zero-dispersion wavelength of the TMOF was shifted to 1570 nm by introducing a single ring of air holes in the cladding. The anti-Stokes signal sideband can be generated from 1490 to 1500 nm, and the Stokes idler sideband can emit from 1595 to 1645 nm. Because of the high nonlinearity of the TMOF and the large peak power of the picosecond pump, a maximal signal gain of 31.2 dB and an idler conversion efficiency of +35 dB were achieved.

  14. Role of electromagnetically induced transparency in resonant four-wave-mixing schemes

    NASA Astrophysics Data System (ADS)

    Petch, J. C.; Keitel, C. H.; Knight, P. L.; Marangos, J. P.

    1996-01-01

    The effect of electromagnetically induced transparency in resonant four-wave-mixing schemes is investigated in an analysis that goes beyond perturbation theory in the coherent driving field. In addition we examine the case where the two-photon pump field is sufficiently strong to necessitate a nonperturbative treatment. This allows us to examine the cases where either one or both of the driving fields are strong. Phase matching is included in a plane-wave propagation treatment that matches the situation most likely to be encountered in actual experiments. The calculations are in part intended to model real experimental situations and thus incorporate driving and pump-field linewidths via the phase-diffusion model and Doppler broadening. With a strong pump-field laser, large enhancements in the efficiency of light generation occur at frequencies corresponding to the Autler-Townes satellites induced by the strong driving field. In this situation gain and high four-wave-mixing efficiency are simultaneously present, resulting in the production of a large intensity of coherent radiation.

  15. Fully resonant four-wave mixing spectroscopy of pentacene and dye molecules in condensed phases

    SciTech Connect

    Chang, T.C.

    1985-01-01

    Four-wave mixing spectroscopy (FWM) including coherent antistokes Raman spectroscopy (CARS) and coherent stokes Raman spectroscopy (CSRS) have been studied for pentacene doped in naphthalene crystals at low temperatures (4.5 to 35 K) in order to investigate nonlinear optical behavior of the third-order nonlinear susceptibility, X/sup (3)/. Further, its application to study of cresyl violet perchlorate embedded in polyacrylic acid and in polyvinyl carbazole has been examined. The theoretical basis for line narrowing has been established for fully resonant four wave mixing for a four-level system. A careful line-narrowing study for the pentacene 755 cm/sup -1/ resonance in naphthalene illustrates that line narrowing is operative. Temperature dependent studies indicate that the excited state population mechanism for negative detuning involves phonon hotband absorption. Power broadening data are discussed in terms of dynamic Stark shifts resulting from the site inhomogeneous line broadening of vibronic transitions. Cresyl violet perchlorate in polyacrylic acid shows that the CARS intensity of the excited state resonance at 585 cm/sup -1/ depends on the location of the omega/sub 1/-field within the severely inhomogeneously broadened absorption profile of the dye. It is argued that the linear electron-phonon interaction is an important mechanism for the intensity of the excited state resonance.

  16. Superradiant cascade emissions in an atomic ensemble via four-wave mixing

    SciTech Connect

    Jen, H.H.

    2015-09-15

    We investigate superradiant cascade emissions from an atomic ensemble driven by two-color classical fields. The correlated pair of photons (signal and idler) is generated by adiabatically driving the system with large-detuned light fields via four-wave mixing. The signal photon from the upper transition of the diamond-type atomic levels is followed by the idler one which can be superradiant due to light-induced dipole–dipole interactions. We then calculate the cooperative Lamb shift (CLS) of the idler photon, which is a cumulative effect of interaction energy. We study its dependence on a cylindrical geometry, a conventional setup in cold atom experiments, and estimate the maximum CLS which can be significant and observable. Manipulating the CLS of cascade emissions enables frequency qubits that provide alternative robust elements in quantum network. - Highlights: • Superradiance from a cascade atomic transition. • Correlated photon pair generation via four-wave mixing. • Dynamical light–matter couplings in a phased symmetrical state. • Cooperative Lamb shift in a cylindrical atomic ensemble.

  17. Influence of Four-Wave Mixing and Walk-Off on the Self-Focusing of Coupled Waves

    NASA Astrophysics Data System (ADS)

    Bergé, L.; Bang, O.; Krolikowski, W.

    2000-04-01

    Four-wave mixing and walk-off between two optical beams are investigated for focusing Kerr media. It is shown that four-wave mixing reinforces the self-focusing of mutually trapped waves by lowering their power threshold for collapse, only when their phase mismatch is small. On the contrary, walk-off inhibits the collapse by detrapping the beams, whose partial centroids experience nonlinear oscillations.

  18. Experimental characterization of quantum correlated triple beams generated by cascaded four-wave mixing processes

    SciTech Connect

    Qin, Zhongzhong; Cao, Leiming; Jing, Jietai

    2015-05-25

    Quantum correlations and entanglement shared among multiple modes are fundamental ingredients of most continuous-variable quantum technologies. Recently, a method used to generate multiple quantum correlated beams using cascaded four-wave mixing (FWM) processes was theoretically proposed and experimentally realized by our group [Z. Qin et al., Phys. Rev. Lett. 113, 023602 (2014)]. Our study of triple-beam quantum correlation paves the way to showing the tripartite entanglement in our system. Our system also promises to find applications in quantum information and precision measurement such as the controlled quantum communications, the generation of multiple quantum correlated images, and the realization of a multiport nonlinear interferometer. For its applications, the degree of quantum correlation is a crucial figure of merit. In this letter, we experimentally study how various parameters, such as the cell temperatures, one-photon, and two-photon detunings, influence the degree of quantum correlation between the triple beams generated from the cascaded two-FWM configuration.

  19. Widely tunable spectrum translation and wavelength exchange by four-wave mixing in optical fibers.

    PubMed

    Marhic, M E; Park, Y; Yang, F S; Kazovsky, L G

    1996-12-01

    By a suitable choice of the wavelengths of two pumps and one signal about the zero-dispersion wavelength of a fiber, it is possible to generate mainly one four-wave-mixing product (idler) whose spectrum is a translated version of that of the signal; no spectral inversion or phase conjugation is involved. Unit conversion efficiency can in principle be obtained. Complete exchange of power between two wavelengths can be implemented. One can adjust the wavelengths of the signal and the idler at will over tens of nanometers, while maintaining high conversion efficiency, by suitably tuning the pumps. For fixed pump wavelengths, the signal bandwidth scales linearly with pump power and can reach several nanometers for pump powers of the order of several watts in silica fibers or less in highly nonlinear fibers. PMID:19881841

  20. Rational design of metallic nanocavities for resonantly enhanced four-wave mixing

    PubMed Central

    Almeida, Euclides; Prior, Yehiam

    2015-01-01

    Optimizing the shape of nanostructures and nano-antennas for specific optical properties has evolved to be a very fruitful activity. With modern fabrication tools a large variety of possibilities is available for shaping both nanoparticles and nanocavities; in particular nanocavities in thin metal films have emerged as attractive candidates for new metamaterials and strong linear and nonlinear optical systems. Here we rationally design metallic nanocavities to boost their Four-Wave Mixing response by resonating the optical plasmonic resonances with the incoming and generated beams. The linear and nonlinear optical responses as well as the propagation of the electric fields inside the cavities are derived from the solution of Maxwell’s equations by using the 3D finite-differences time domain method. The observed conversion-efficiency of near-infrared to visible light equals or surpasses that of BBO of equivalent thickness. Implications to further optimization for efficient and broadband ultrathin nonlinear optical materials are discussed. PMID:25974175

  1. Ghost imaging with different frequencies through non-degenerated four-wave mixing.

    PubMed

    Yu, Ya; Wang, Chengyuan; Liu, Jun; Wang, Jinwen; Cao, Mingtao; Wei, Dong; Gao, Hong; Li, Fuli

    2016-08-01

    As a novel imaging method, ghost imaging has been widely explored in various fields of research, such as lensless ghost imaging, computational ghost imaging, turbulence-free ghost imaging. Recently, ghost imaging in non-degenerated system with pseudo-thermal light has been discussed theoretically, however, to our best knowledge, no experimental evidence has been proven yet. In this paper, we propose a new approach to realize ghost imaging with different frequencies, which are generated through a non-degenerated four-wave mixing(FWM) process in Rb vapor. In our experiment, by employing pseudo-thermal light as the probe beam, we found that the generated FWM signal has a strong second-order correlation with the original thermal light. On basis of that, we successfully implement non-degenerate ghost imaging, and reconstruct highly similar images of objects. PMID:27505792

  2. Microwave-Photonic Frequency Multiplication Utilizing Optical Four-Wave Mixing and Fiber Bragg Gratings

    NASA Astrophysics Data System (ADS)

    Wiberg, Andreas; Pérez-Millán, Pere; Andrés, Miguel V.; Hedekvist, Per Olof

    2006-01-01

    A novel technique for optical multiplication of a millimeter-wave carrier is presented. It utilizes optical four-wave mixing (FWM) in a highly nonlinear fiber (HNLF) and the filtering properties of matched fiber Bragg gratings (FBGs). The technique includes a sixfold electrical frequency multiplication in the optical domain. In this experiment, the multiplicator is driven electronically at 6.67 GHz, and the created millimeter wave has a frequency of 40 GHz. The generated carrier has a linewidth lower than 3 Hz and a carrier to noise ratio exceeding 50 dB. Furthermore, successful data transmission over the optical fiber of 2.5 Gb/s on the generated millimeter-wave carrier was performed.

  3. Parametric non-degenerate four wave mixing in hot potassium vapor

    NASA Astrophysics Data System (ADS)

    Zlatković, Bojan; Krmpot, Aleksandar J.; Šibalić, Nikola; Radonjić, Milan; Jelenković, Branislav M.

    2015-01-01

    In this study we show the results for parametric non-degenerate four wave mixing (FWM) obtained using double lambda scheme at D1 line in hot potassium vapor. We have investigated the influence of one-photon detuning and two-photon detuning on the FWM gain. The laser frequency is locked at approximately 1GHz from the resonance 4S1/2 Fg=1 -< 4P1/2, using external reference cavity. The probe beam passes through acoustooptic modulator that enables controllable detuning around 460 MHz (ground state hyperfine splitting) in respect to the pump beam. The vacuum glass cell containing the potassium vapor was heated by hot air in order to achieve necessary concentration of atoms. The efficiency of FWM process is studied by measuring the gains of the conjugate beam the probe beam, simultaneously. The maximal gain was achieved for nonzero two photon detuning.

  4. Cascaded four-wave mixing for broadband tunable laser sideband generation.

    PubMed

    Liu, Weimin; Zhu, Liangdong; Wang, Liang; Fang, Chong

    2013-06-01

    We demonstrate the versatile broadband wavelength tunability of frequency upconverted multicolor cascaded four-wave-mixing (CFWM) signals spanning the continuous wavelength range from UV to near IR in a thin type-I BBO crystal using 35 fs, 800 nm fundamental and chirped IR supercontinuum white light pulses. Two sets of spatially dispersed CFWM laser sidebands are concomitantly generated from two incident pulses as well as their second-harmonic-generation and sum-frequency-generation pulses in a crossing geometry. The tunable cascaded signals with ultrabroad bandwidth can be readily achieved via spatially rotating the BBO crystal to different phase-matching conditions and temporally varying the time delay between the two incident near-IR pulses. PMID:23722739

  5. Theory of optical phase conjugation via four-wave mixing in laser plasmas

    SciTech Connect

    Lahiri, J.; Sinha, B.K.

    1995-05-01

    Theoretical studies of optical phase conjugation via four-wave mixing in a two-temperature laser produced carbon plasma are reported. Starting from Maxwell equations and using the theory of parametric decay instability, analytical expressions of the phase conjugate reflectivity for a steady-state probe have been obtained and numerically evaluated for the case of the laser plasma formed by irradiating a carbon slab target with a Nd:Glass laser operating at {lambda}{sub 0}=1.06 {mu}. The variation of reflectivity as a function of frequency and angular mismatch between the pump and probe waves has been considered. It is observed that the reflectivity peaks occur under the situation of resonance when the frequency mismatch equals the ion-acoustic frequency of the plasma. The detailed numerical results are graphically reported and discussed. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  6. Instantaneous microwave frequency measurement using four-wave mixing in a chalcogenide chip

    NASA Astrophysics Data System (ADS)

    Pagani, Mattia; Vu, Khu; Choi, Duk-Yong; Madden, Steve J.; Eggleton, Benjamin J.; Marpaung, David

    2016-08-01

    We present the first instantaneous frequency measurement (IFM) system using four-wave mixing (FWM) in a compact photonic chip. We exploit the high nonlinearity of chalcogenide to achieve efficient FWM in a short 23 mm As2S3 waveguide. This reduces the measurement latency by orders of magnitude, compared to fiber-based approaches. We demonstrate the tuning of the system response to maximize measurement bandwidth (40 GHz, limited by the equipment used), or accuracy (740 MHz rms error). Additionally, we modify the previous FWM-based IFM system structure to allow for ultra-fast reconfiguration of the bandwidth and resolution of the measurement. This has the potential to become the first IFM system capable of ultra-fast accurate frequency measurement, with no compromise of bandwidth.

  7. Multi-channel entanglement distribution using spatial multiplexing from four-wave mixing in atomic vapor

    NASA Astrophysics Data System (ADS)

    Gupta, Prasoon; Horrom, Travis; Anderson, Brian E.; Glasser, Ryan; Lett, Paul D.

    2016-02-01

    Four-wave mixing in atomic vapor allows for the generation of multi-spatial-mode states of light containing many pairs of two-mode entangled vacuum beams. This in principle can be used to send independent secure keys to multiple parties simultaneously using a single light source. In our experiment, we demonstrate this spatial multiplexing of information by selecting three independent pairs of entangled modes and performing continuous-variable measurements to verify the correlations between entangled partners. In this way, we generate three independent pairs of correlated random bit streams that could be used as secure keys. We then demonstrate a classical four-party secret sharing scheme as an example for how this spatially multiplexed source could be used.

  8. Enhancement of four-wave mixing via interference of multiple plasmonic conversion paths

    NASA Astrophysics Data System (ADS)

    Singh, Shailendra K.; Abak, M. Kurtulus; Tasgin, Mehmet Emre

    2016-01-01

    Recent experiments demonstrate that plasmonic resonators can enhance the four-wave mixing (FWM) process by several orders of magnitude, due to the localization of the incident fields. We show that, when the plasmonic resonator is coupled to two quantum emitters, a three orders of magnitude enhancement can be obtained on top of the enhancement due to the localization. We explicitly demonstrate—on an expression for the steady-state FWM amplitude—how the presence of a Fano resonance leads to the cancellation of nonresonant terms in a FWM process. A cancellation in the denominator gives rise to an enhancement in the nonlinearity. The explicit demonstration we present here guides one to a method for achieving even larger enhancement factors by introducing additional coupling terms. The method is also applicable to Fano resonances induced by all-plasmonic couplings, which are easier to control in experiments.

  9. Two-mode entanglement of dressed parametric amplification four-wave mixing in an atomic ensemble

    NASA Astrophysics Data System (ADS)

    Li, Zepei; Wang, Xiaoli; Li, Chenyu; Zhang, Yufei; Wen, Feng; Ahmed, Irfan; Zhang, Yanpeng

    2016-02-01

    We demonstrate the influence of dressed states on two-mode optical entanglement in a double Λ-type energy level atomic ensemble of parametric amplification four-wave mixing (PA-FWM) processes. By injecting a coherent or Einstein-Podolsky-Rosen field into PA-FWM channels, we investigate the corresponding entanglement. The quantum entanglement may be enhanced or suppressed via a bright state or a dark state. In free space, the two-mode entanglement is determined by nonlinear gain, which can be manipulated by field dressing in an atomic ensemble (i.e. Autler-Towns splitting, dressed enhancement/suppression of entanglement). However, in a ring cavity, the cavity dressing brings about the AT-like splitting of entanglement. Such an entanglement profile may be modified by field dressing through vacuum Rabi splitting, vacuum-induced enhancement and suppression of entanglement.

  10. Methods and apparatus of entangled photon generation using four-wave mixing

    DOEpatents

    Camacho, Ryan

    2016-02-23

    A non-linear optical device is provided. The device comprises an optical disk or ring microresonator fabricated from a material that exhibits an optical nonlinearity able to produce degenerate four-wave mixing (FWM) in response to a pump beam having a pump frequency in a specified effective range. The microresonator is conformed to exhibit an angular group velocity minimum at a pump frequency within the specified effective range such that there is zero angular group velocity dispersion at the pump frequency. We refer to such a pump frequency as the "zero dispersion frequency". In embodiments, excitation of the resonator by a pump beam of sufficient intensity at the zero-dispersion frequency causes the resonator to emit a frequency comb of entangled photon pairs wherein the respective frequencies in each pair are symmetrically placed about the zero-dispersion frequency.

  11. Coherent transfer of orbital angular momentum to excitons by optical four-wave mixing.

    PubMed

    Ueno, Y; Toda, Y; Adachi, S; Morita, R; Tawara, T

    2009-10-26

    We demonstrate the coherent transfer of optical orbital angular momentum (OAM) to the center of mass momentum of excitons in semiconductor GaN using a four-wave mixing (FWM) process. When we apply the optical vortex (OV) as an excitation pulse, the diffracted FWM signal exhibits phase singularities that satisfy the OAM conservation law, which remain clear within the exciton dephasing time (approximately 1ps). We also demonstrate the arbitrary control of the topological charge in the output signal by changing the OAM of the input pulse. The results provide a way of controlling the optical OAM through carriers in solids. Moreover, the time evolution of the FWM with OAM leads to the study of the closed-loop carrier coherence in materials. PMID:19997285

  12. Efficient parametric non-degenerate four-wave mixing in hot potassium vapor

    NASA Astrophysics Data System (ADS)

    Zlatković, B.; Krmpot, A. J.; Šibalić, N.; Radonjić, M.; Jelenković, B. M.

    2016-01-01

    We have observed high gains of the probe and the conjugate beams in non-degenerate four-wave mixing in hot potassium vapor, using a double-Λ configuration at the D1 line of the 39 K isotope. Gains of up to 82 for the conjugate beam and 63 for the probe beam have been achieved. Higher gains were obtained than with other alkali atoms under comparable experimental conditions due to lower ground state hyperfine splitting in the potassium atom. Experimental parameters for maximal gain have been determined. Notable gains are achieved at low pump intensities (~10 W cm-2) that are attainable even by conventional laser diodes. Due to their high gains, the probe and the conjugate beams may be suitable for utilization in quantum correlation and relative intensity squeezing experiments.

  13. Freely designable optical frequency conversion in Raman-resonant four-wave-mixing process.

    PubMed

    Zheng, Jian; Katsuragawa, Masayuki

    2015-01-01

    Nonlinear optical processes are governed by the relative-phase relationships among the relevant electromagnetic fields in these processes. In this Report, we describe the physics of arbitrary manipulation of Raman-resonant four-wave-mixing process by artificial control of relative phases. As a typical example, we show freely designable optical-frequency conversions to extreme spectral regions, mid-infrared and vacuum-ultraviolet, with near-unity quantum efficiencies. Furthermore, we show that such optical-frequency conversions can be realized by using a surprisingly simple technology where transparent plates are placed in a nonlinear optical medium and their positions and thicknesses are adjusted precisely. In a numerical simulation assuming practically applicable parameters in detail, we demonstrate a single-frequency tunable laser that covers the whole vacuum-ultraviolet spectral range of 120 to 200 nm. PMID:25748023

  14. Quantitative degenerate four-wave mixing spectroscopy: Probes for molecular species

    SciTech Connect

    Farrow, R.; Rakestraw, D.; Paul, P.; Lucht, R.; Danehy, P.; Friedman-Hill, E.; Germann, G.

    1993-12-01

    Resonant degenerate four-wave mixing (DFWM) is currently the subject of intensive investigation as a sensitive diagnostic tool for molecular species. DFWM has the advantage of generating a coherent (beam-like) signal which results in null-background detection and provides excellent immunity to background-light interference. Since multiple one-photon resonances are involved in the signal generation process, the DFWM technique can allow sensitive detection of molecules via electronic, vibrational or rotational transitions. These properties combine to make DFWM a widely applicable diagnostic technique for the probing of molecular species. The authors are conducting fundamental and applied investigations of DFWM for quantitative measurements of trace species in reacting gases. During the past year, efforts have been focussed in two areas: (1) understanding the effects of collisional processes on the DFWM signal generation process, and (2) exploring the applicability of infrared DFWM to detect polyatomic molecules via rovibrational transitions.

  15. Vibrational-coherence measurement of nonequilibrium quantum systems by four-wave mixing

    NASA Astrophysics Data System (ADS)

    Schubert, Alexander; Falvo, Cyril; Meier, Christoph

    2015-11-01

    We show theoretically that a quantum system in a nonequilibrium state interacting with a set of laser pulses in a four-wave-mixing setup leads to signal emission in directions opposite to the ones usually considered. When combined with a pump mechanism which sets a time origin for the nonequilibrium state creation, this particular optical response can be utilized to directly follow decoherence processes in real time. By varying the time delays within the probe sequence, signals in these unconventional directions can also be used to detect two-dimensional spectra determined by the dynamics of up to three-quantum coherences, revealing energetical anharmonicities and environmental influences. As a numerical example, these findings are demonstrated by considering a model of vibrational decoherence of carbon monoxide after photolysis from a hemeprotein.

  16. Format transparent, wide range and independent dispersion monitoring method based on four-wave mixing

    NASA Astrophysics Data System (ADS)

    Cui, Sheng; He, Sheng; Sun, Simin; Ke, Changjian; Liu, Deming

    2013-11-01

    In this paper we propose an improved all optical chromatic dispersion (CD) monitoring method based on highly nonlinear power transfer function (PTF) provided by four-wave mixing (FWM) in highly nonlinear fibers (HNLFs). This method can be applied for various modulation formats, including on-off keying and advanced multi-level modulation formats, without necessitating any changes of the hardware or software. Furthermore, it can expand the CD monitoring range beyond the limitation of Talbot effects and is insensitive to optical signal-to-noise ratio (OSNR) and polarization mode dispersion (PMD). These improvements are achieved by optimizing the profile of the PTF curve and utilizing a sweeping tunable dispersion compensator (TDC) in combination with an extremely simple digital signal processing (DSP) to find the zero residual dispersion point. Numerical simulations are then used to demonstrate the effectiveness of this method.

  17. Enhanced four-wave mixing in a hollow-core photonic-crystal fiber.

    PubMed

    Konorov, S O; Fedotov, A B; Zheltikov, A M

    2003-08-15

    Hollow-core photonic-crystal fibers are shown to substantially enhance four-wave mixing (FWM) of laser pulses in a gas filling the fiber core. Picosecond pulses of Nd:YAG fundamental radiation and its second harmonic are used to generate a signal at the frequency of the third harmonic by the FWM process 3omega = 2omega + 2omega - omega. The efficiency achieved for this process in a 9-cm-long, 13-microm-hollow-core-diameter photonic-crystal fiber, designed to simultaneously transmit a two-color pump and the FWM signal, is shown to be approximately 800 times higher than the maximum FWM efficiency attainable with the same laser pulses in the tight-focusing regime. PMID:12943087

  18. Vacuum-induced suppression and enhancement of four-wave mixing in an optical cavity

    NASA Astrophysics Data System (ADS)

    Chen, Haixia; Wang, Xiuxiu; Ahmed, Irfan; Yao, Xin; Wu, Zhenkun; Zhu, Dayu; Zhang, Yanpeng

    2015-09-01

    We report on an experimental study of vacuum-induced suppression and enhancement of four-wave mixing (FWM) signal in a composite atom-cavity system. By scanning the additional dressing field, the suppression ratio of the FWM signal can reach 90 % compared with 40 % without cavity. We attribute the enhanced suppression and enhancement to the atom-cavity coupling arising from a vacuum-induced Raman process, which amplifies the dressing effect from the additional field. Also, the dressing asymmetry of the atom-cavity coupling is discussed and used to estimate the nonlinearity of atomic medium in the cavity. The suppression and enhancement can be interpreted by a dressed-state picture and agree with theoretical calculations. The investigation may find applications in optical switch and quantum memory controlled by cavity.

  19. All-optical mode conversion via spatially multimode four-wave mixing

    NASA Astrophysics Data System (ADS)

    Danaci, Onur; Rios, Christian; Glasser, Ryan T.

    2016-07-01

    We experimentally demonstrate the conversion of a Gaussian beam to an approximate Bessel–Gauss mode by making use of a non-collinear four-wave mixing (4WM) process in hot atomic vapor. The presence of a strong, spatially non-Gaussian pump both converts the probe beam into a non-Gaussian mode, and generates a conjugate beam that is in a similar non-Gaussian mode. The resulting probe and conjugate modes are compared to the output of a Gaussian beam incident on an annular aperture that is then spatially filtered according to the phase-matching conditions imposed by the 4WM process. We find that the resulting experimental data agrees well with both numerical simulations, as well as analytical formulae describing the effects of annular apertures on Gaussian modes. These results show that spatially multimode gain platforms may be used as a new method of mode conversion.

  20. Visualization of Oil Body Distribution in Jatropha curcas L. by Four-Wave Mixing Microscopy

    NASA Astrophysics Data System (ADS)

    Ishii, Makiko; Uchiyama, Susumu; Ozeki, Yasuyuki; Kajiyama, Sin'ichiro; Itoh, Kazuyoshi; Fukui, Kiichi

    2013-06-01

    Jatropha curcas L. (jatropha) is a superior oil crop for biofuel production. To improve the oil yield of jatropha by breeding, the development of effective and reliable tools to evaluate the oil production efficiency is essential. The characteristics of the jatropha kernel, which contains a large amount of oil, are not fully understood yet. Here, we demonstrate the application of four-wave mixing (FWM) microscopy to visualize the distribution of oil bodies in a jatropha kernel without staining. FWM microscopy enables us to visualize the size and morphology of oil bodies and to determine the oil content in the kernel to be 33.2%. The signal obtained from FWM microscopy comprises both of stimulated parametric emission (SPE) and coherent anti-Stokes Raman scattering (CARS) signals. In the present situation, where a very short pump pulse is employed, the SPE signal is believed to dominate the FWM signal.

  1. Intense terahertz-pulse generation by four-wave mixing process in induced gas plasma

    NASA Astrophysics Data System (ADS)

    Wicharn, S.; Buranasiri, P.

    2015-08-01

    In this article, we have numerically investigated an intense terahertz (THz) pulses generation in gaseous plasma based on the third-order nonlinear effect, four-wave mixing rectification (FWMR). We have proposed that the fundamental fields and second-harmonic field of ultra-short pulse lasers are combined and focused into a very small gas chamber to induce a gaseous plasma, which intense THz pulse is produced. To understand the THz generation process, the first-order multiple-scale perturbation method (MSPM) has been utilized to derive a set of nonlinear coupled-mode equations for interacting fields such as two fundamental fields, a second-harmonic field, and a THz field. Then, we have simulate the intense THz-pulse generation by using split step-beam propagation method (SS-BPM) and calculated output THz intensities. Finally, the output THz intensities generated from induced air, nitrogen, and argon plasma have been compared.

  2. Triply surface-plasmon resonant four-wave mixing imaging of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Masia, Francesco; Langbein, Wolfgang; Watson, Peter; Borri, Paola

    2011-03-01

    We have developed a novel multiphoton microscopy technique not relying on (and hence not limited by) fluorescence emission, which exploits the third-order nonlinearity called four-wave mixing of gold nanoparticles in resonance with their surface Plasmon. The coherent, transient and resonant nature of this signal allows its detection free from backgrounds that limit other contrast methods for gold nanoparticles. We show detection of single 10nm gold nanoparticles with low excitation intensities, corresponding to negligible average thermal heating. Owing to the the third-order nonlinearity we measure a transversal and axial resolution of 140nm and 470nm respectively, better than the one-photon diffraction limit. We also show high-contrast imaging of gold-labels down to 5nm size in Golgi structures of HepG2 cells at useful imaging speeds (10 kHz pixel rate). Thermal dissociation of gold nanoparticles from their bonding sites when varying the excitation intensity is also investigated.

  3. Frequency characteristics of far-detuned parametric four-wave mixing in Rb.

    PubMed

    Brekke, E; Herman, E

    2015-12-01

    We have investigated the frequency characteristics of the coherent 420 nm beam generated via parametric four-wave mixing (FWM). A single, high-power 778 nm laser is directed through a high-density rubidium cell with a detuning of 1 THz from the intermediate state, generating fields at 420 nm and 5.23 μm through FWM. The frequency of the 420 nm light has been found to shift as the excitation laser is tuned. The measured frequency shift ratio of 1.87±0.04 corresponds with the selection of a different velocity class at each excitation frequency, implying that the 5.23 μm beam frequency is correspondingly shifted. The 420 nm light has been tuned over a range of 1 GHz. This parametric FWM process has potential application as a tunable photon source at novel wavelengths. PMID:26625079

  4. Infrared pulse characterization using four-wave mixing inside a few cycle pulse filament in air

    SciTech Connect

    Marceau, Claude Thomas, Steven; Kassimi, Yacine; Gingras, Guillaume; Witzel, Bernd

    2014-02-03

    We demonstrate a four-wave mixing (FWM) technique to measure near- and mid-infrared (IR) laser pulse shapes in time domain. Few cycle 800 nm laser pulses were synchronized with the IR pulse and focused colinearly to generate a plasma filament in air. Second harmonic radiation around 400 nm was generated through FWM, with a yield proportional to the IR pulse intensity. Excellent signal to noise ratio was observed from 2.1 μm to 18 μm. With proper phase stabilization of the IR beam, this technique is a promising step toward direct electric field sensing of near-IR pulses in air.

  5. Four-wave mixing using polarization grating induced thermal grating in liquids exhibiting circular dichroism

    SciTech Connect

    Nunes, J.A.; Tong, W.G.; Chandler, D.W.; Rahn, L.A.

    1995-04-01

    A novel four-wave mixing technique for the detection of circular dichroism in optically active liquid samples is demonstrated. When two cross-polarized laser beams are crossed at a small angle in a circular dichroic liquid a weak thermal grating is produced with a phase depending on the sign of the circular dichroism. The authors show that the polarization of one of the beams can be modified to allow coherent interference with an intensity-grating induced thermal grating. A probe beam scattering from the composite grating results in a signal that reveals the sign and magnitude of the circular dichroism. The use of this technique to optimize the signal-to-noise ratio in the presence of scattered light and laser intensity noise is discussed.

  6. Performance evaluation of four-wave mixing in a graphene-covered tapered fiber

    NASA Astrophysics Data System (ADS)

    Jin, Qiang; Lu, Jiamei; Li, Xibin; Yan, Qiang; Gao, Qianyu; Gao, Shiming

    2016-07-01

    Four-wave mixing in a monolayer graphene-covered tapered fiber is theoretically analyzed by taking into account the influence of the graphene layer on the light-field distribution. A figure-of-merit (FOM) coefficient, considering both the high nonlinearity and the heavy absorption, is redefined to evaluate nonlinear performance. The fiber diameter and length are optimized to acquire a higher FOM. Using such a graphene-covered tapered fiber with an optimal diameter of 0.736 μm, a maximum conversion efficiency of ‑38.07 dB is numerically obtained for the 1.55 μm pump when the graphene length is 34.4 μm and the peak pump power is 10 W. Moreover, a 3 dB bandwidth as broad as 430 nm can be realized in the 1.55 μm telecommunication band.

  7. Photon statistics of pulse-pumped four-wave mixing in fiber with weak signal injection

    NASA Astrophysics Data System (ADS)

    Nan-Nan, Liu; Yu-Hong, Liu; Jia-Min, Li; Xiao-Ying, Li

    2016-07-01

    We study the photon statistics of pulse-pumped four-wave mixing in fibers with weak coherent signal injection by measuring the intensity correlation functions of individual signal and idler fields. The experimental results show that the intensity correlation function of individual signal (idler) field decreases with the intensity of signal injection. After applying narrow band filter in signal (idler) band, the value of decreases from 1.9 ± 0.02 (1.9 ± 0.02) to 1.03 ± 0.02 (1.05 ± 0.02) when the intensity of signal injection varies from 0 to 120 photons/pulse. The results indicate that the photon statistics changes from Bose–Einstein distribution to Poisson distribution. We calculate the intensity correlation functions by using the multi-mode theory of four-wave mixing in fibers. The theoretical curves well fit the experimental results. Our investigation will be useful for mitigating the crosstalk between quantum and classical channels in a dense wavelength division multiplexing network. Project supported by the National Natural Science Foundation of China (Grant No. 11527808), the State Key Development Program for Basic Research of China (Grant No. 2014CB340103), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120032110055), the Natural Science Foundation of Tianjin, China (Grant No. 14JCQNJC02300), the Program for Changjiang Scholars and Innovative Research Team in University, China, and the Program of Introducing Talents of Discipline to Universities, China (Grant No. B07014).

  8. Electric Field Measurements in Non-Equilibrium Electric Discharge Plasmas Using Picosecond Four-Wave Mixing

    NASA Astrophysics Data System (ADS)

    Goldberg, Benjamin M.

    This dissertation presents the results of development of a picosecond four wave mixing technique and its use for electric field measurements in nanosecond pulse discharges. This technique is similar to coherent anti-Stokes Raman spectroscopy and is well suited for electric field measurements in high pressure plasmas with high spatial and temporal resolution. The results show that the signal intensity scales proportionally to the square of the electric field, the signal is emitted as a coherent beam, and is polarized parallel to the electric field vector, making possible electric field vector component measurements. The signal is generated when a collinear pair of pump and Stokes beams, which are generated in a stimulated Raman shifting cell (SRS), generate coherent excitation of molecules into a higher energy level, hydrogen for the present work. The coherent excitation mixes with a dipole moment induced by an external electric field. The mixing of these three "waves'" allows the molecules to radiate at their Raman frequency, producing a fourth, signal, wave which is proportional to the square of the electric field. The time resolution of this technique is limited by the coherence decay time of the molecules, which is a few hundred picoseconds.

  9. Interferometric coherence transfer modulations in triply vibrationally enhanced four-wave mixing.

    PubMed

    Rickard, Mark A; Pakoulev, Andrei V; Kornau, Kathryn; Mathew, Nathan A; Wright, John C

    2006-10-12

    Triply vibrationally enhanced (TRIVE) four-wave mixing (FWM) spectroscopy in a mixed frequency/time domain experiment contains new output coherences that isolate nonlinear pathways that involve coherence transfer. Coherence transfer occurs when a thermal bath induces coupling between two states so a quantum mechanical entanglement of a pair of quantum states evolves to entangle a new pair of quantum states. The FWM includes several equivalent coherence pathways that interfere and create a temporal modulation of the output coherence that is a signature of coherence transfer. The transfer shifts the output coherence frequency and isolates coherence transfer pathways from the stronger FWM processes that form the basis of coherent multidimensional spectroscopy. The use of coherence transfer offers the opportunity for another form of coherent multidimensional spectroscopy where cross-peaks appear because of the coherence transfer between quantum states. Since this approach is based on frequency domain methods, it requires only short-term phase coherence during the excitation process so the method is not constrained to accessing the quantum states lying within the excitation pulse bandwidth. PMID:17020245

  10. Wideband tuning of four-wave mixing in solid-core liquid-filled photonic crystal fibers.

    PubMed

    Velázquez-Ibarra, Lorena; Díez, Antonio; Silvestre, Enrique; Andrés, Miguel V

    2016-06-01

    We present an experimental study of parametric four-wave mixing generation in photonic crystal fibers that have been infiltrated with ethanol. A silica photonic crystal fiber was designed to have the proper dispersion properties after ethanol infiltration for the generation of widely spaced four-wave mixing (FWM) bands under 1064 nm pumping. We demonstrate that the FWM bands can be tuned in a wide wavelength range through the thermo-optic effect. Band shifts of 175 and over 500 nm for the signal and idler bands, respectively, are reported. The reported results can be of interest in many applications, such as CARS microscopy. PMID:27244424

  11. Quantum correlations by four-wave mixing in an atomic vapor in a nonamplifying regime: Quantum beam splitter for photons

    SciTech Connect

    Glorieux, Quentin; Guidoni, Luca; Guibal, Samuel; Likforman, Jean-Pierre; Coudreau, Thomas

    2011-11-15

    We study the generation of intensity quantum correlations using four-wave mixing in a rubidium vapor. The absence of cavities in these experiments allows to deal with several spatial modes simultaneously. In the standard amplifying configuration, we measure relative intensity squeezing up to 9.2 dB below the standard quantum limit. We also theoretically identify and experimentally demonstrate an original regime where, despite no overall amplification, quantum correlations are generated. In this regime, a four-wave mixing setup can play the role of a photonic beam splitter with nonclassical properties, that is, a device that splits a coherent state input into two quantum-correlated beams.

  12. Nondegenerate Four-Wave Mixing in Gold Nanocomposites Formed by Ion Implantation

    SciTech Connect

    Saonov, V.P.; Zhu, J.G.; Lepeshkin, N.N.; Armstrong, R.L.; Shalaev, V.M.; Ying, Z.C.; White, C.W.; Zuhr, R.A.

    1999-07-01

    Nondegenerate four-wave mixing technique has been used to investigate the third-order nonlinear susceptibility for nanocomposite material with Au nanocrystals formed inside a SiO{sub 2} glass matrix. High concentrations of encapsulated Au nanocrystals are formed by implantation of Au ions into fused silica glass substrates and thermal annealing. The size distribution and the depth profiles of the Au nanoparticles can be controlled by the implantation dose, energy and annealing temperatures. The high value of the third-order susceptibility - (0.26--1.3)x10{sup -7} esu was found in the range of the frequency detunings near the surface plasmon resonance. Two characteristic relaxation times, 0.66 ps and 5.3 ps, have been extracted from the detuning curve of the third-order susceptibility as the probe-beam frequency changes and the pump-beam frequency fixed at the plasmon resonance. The first relaxation time was attributed to electron-phonon relaxation, and the second to thermal diffusion to the host medium. The efficient nondegenerate conversion is attractive for optical processing.

  13. Low-frequency four-wave mixing spectroscopy of biomolecules in aqueous solutions

    SciTech Connect

    Bunkin, Aleksei F; Pershin, S M

    2011-01-24

    Four-wave mixing (FWM) spectroscopy is used to detect the rotational resonances of H{sub 2}O and H{sub 2}O{sub 2} molecules in DNA and denatured DNA aqueous solutions in the range {+-}10 cm{sup -1} with a spectral resolution of 3 GHz. It is found that the resonance contribution of the rotational transitions of these molecules increases significantly in solutions rather than in distilled water. This fact is interpreted as a manifestation of specific properties of a hydration layer at DNA-water and denatured DNA-water interfaces. Analysis of the FWM spectra shows that the concentration of H{sub 2}O{sub 2} molecules in the hydration layer of the DNA solution increases by a factor of 3 after denaturation. The FWM spectra of aqueous solutions of {alpha}-chymotrypsin protein are obtained in the range {+-}7cm{sup -1} at the protein concentrations between 0 and 20 mg cm{sup -3}. It is found that the hypersound velocity in the protein aqueous solution, measured by the shift of Brillouin components in the scattering spectrum, obeys a cubic dependence on the protein concentration and reaches a value of about 3000 m s{sup -1} at 20 mg cm{sup -3}. (application of lasers and laser-optical methods in life sciences)

  14. Theory of pulsed four-wave mixing in one-dimensional silicon photonic crystal slab waveguides

    NASA Astrophysics Data System (ADS)

    Lavdas, Spyros; Panoiu, Nicolae C.

    2016-03-01

    We present a comprehensive theoretical analysis and computational study of four-wave mixing (FWM) of optical pulses co-propagating in one-dimensional silicon photonic crystal waveguides (Si-PhCWGs). Our theoretical analysis describes a very general setup of the interacting optical pulses, namely we consider nondegenerate FWM in a configuration in which at each frequency there exists a superposition of guiding modes. We incorporate in our theoretical model all relevant linear optical effects, including waveguide loss, free-carrier (FC) dispersion and FC absorption, nonlinear optical effects such as self- and cross-phase modulation (SPM, XPM), two-photon absorption (TPA), and cross-absorption modulation (XAM), as well as the coupled dynamics of free-carriers FCs and optical field. In particular, our theoretical analysis based on the coupled-mode theory provides rigorously derived formulas for linear dispersion coefficients of the guiding modes, linear coupling coefficients between these modes, as well as the nonlinear waveguide coefficients describing SPM, XPM, TPA, XAM, and FWM. In addition, our theoretical analysis and numerical simulations reveal key differences between the characteristics of FWM in the slow- and fast-light regimes, which could potentially have important implications to the design of ultracompact active photonic devices.

  15. Phase-locking and pulse generation in multi-frequency brillouin oscillator via four wave mixing.

    PubMed

    Büttner, Thomas F S; Kabakova, Irina V; Hudson, Darren D; Pant, Ravi; Poulton, Christopher G; Judge, Alexander C; Eggleton, Benjamin J

    2014-01-01

    There is an increasing demand for pulsed all-fibre lasers with gigahertz repetition rates for applications in telecommunications and metrology. The repetition rate of conventional passively mode-locked fibre lasers is fundamentally linked to the laser cavity length and is therefore typically ~10-100 MHz, which is orders of magnitude lower than required. Cascading stimulated Brillouin scattering (SBS) in nonlinear resonators, however, enables the formation of Brillouin frequency combs (BFCs) with GHz line spacing, which is determined by the acoustic properties of the medium and is independent of the resonator length. Phase-locking of such combs therefore holds a promise to achieve gigahertz repetition rate lasers. The interplay of SBS and Kerr-nonlinear four-wave mixing (FWM) in nonlinear resonators has been previously investigated, yet the phase relationship of the waves has not been considered. Here, we present for the first time experimental and numerical results that demonstrate phase-locking of BFCs generated in a nonlinear waveguide cavity. Using real-time measurements we demonstrate stable 40 ps pulse trains with 8 GHz repetition rate based on a chalcogenide fibre cavity, without the aid of any additional phase-locking element. Detailed numerical modelling, which is in agreement with the experimental results, highlight the essential role of FWM in phase-locking of the BFC. PMID:24849053

  16. Optical negative refraction by four-wave mixing in thin metallic nanostructures.

    PubMed

    Palomba, Stefano; Zhang, Shuang; Park, Yongshik; Bartal, Guy; Yin, Xiaobo; Zhang, Xiang

    2012-01-01

    The law of refraction first derived by Snellius and later introduced as the Huygens-Fermat principle, states that the incidence and refracted angles of a light wave at the interface of two different materials are related to the ratio of the refractive indices in each medium. Whereas all natural materials have a positive refractive index and therefore exhibit refraction in the positive direction, artificially engineered negative index metamaterials have been shown capable of bending light waves negatively. Such a negative refractive index is the key to achieving a perfect lens that is capable of imaging well below the diffraction limit. However, negative index metamaterials are typically lossy, narrow band, and require complicated fabrication processes. Recently, an alternative approach to obtain negative refraction from a very thin nonlinear film has been proposed and experimentally demonstrated in the microwave region. However, such approaches use phase conjugation, which makes optical implementations difficult. Here, we report a simple but different scheme to demonstrate experimentally nonlinear negative refraction at optical frequencies using four-wave mixing in nanostructured metal films. The refractive index can be designed at will by simply tuning the wavelengths of the interacting waves, which could have potential impact on many important applications, such as superlens imaging. PMID:22037671

  17. Degenerate four-wave mixing and phase conjugation in a collisional plasma

    SciTech Connect

    Federici, J.F.; Mansfield, D.K.

    1986-06-01

    Although degenerate four-wave mixing (DFWM) has many practical applications in the visible regime, no successful attempt has been made to study or demonstrate DFWM for wavelengths longer than 10..mu..m. Recently, Steel and Lam established plasma as a viable DFWM and phase conjugation (PC) medium for infrared, far-infrared, and microwaves. However, their analysis is incomplete since collisional effects were not included. Using a fluid description, our results demonstrate that when collisional absorption is small and the collisional mean-free path is shorter than the nonlinear density grating scale length, collisional heating generates a thermal force which substantially enhances the phase conjugate reflectivity. When the collisional attenuation length becomes comparable to the length of the plasma, the dominant effect is collisional absorption of the pump waves. Numerical estimates of the phase conjugate reflectivity indicate that for modest power levels, gains greater than or equal to1 are possible in the submillimeter to centimeter wavelength range. This suggests that a plasma is a viable PC medium at those long wavelengths. In addition, doubly DFWM is discussed.

  18. Light storage based on four-wave mixing and electromagnetically induced transparency in cold atoms

    NASA Astrophysics Data System (ADS)

    Wu, Jinghui; Liu, Yang; Ding, Dong-Sheng; Zhou, Zhi-Yuan; Shi, Bao-Sen; Guo, Guang-Can

    2013-01-01

    We performed an experiment to observe the storage of an input probe field and an idler field generated through an off-axis four-wave mixing (FWM) process via a double-Λ configuration in a cold atomic ensemble. We analyzed the underlying physics in detail and found that the retrieved idler field came from two parts if there was no single-photon detuning for the pump pulse: Part 1 was from the collective atomic spin (the input probe field, the coupling field, and the pump field combined to generate the idler field through FWM; then the idler was stored through electromagnetically induced transparency). Part 2 was from the generated new FWM process during the retrieval process (the retrieved probe field, the coupling field, and the pump field combined to generate a new FWM signal). If there was single-photon detuning for the pump pulse, then the retrieved idler was mainly from part 2. The retrieved two fields exhibited damped oscillations with the same oscillatory period when a homogeneous external magnetic field was applied, which was caused by the Larmor spin precession. We also experimentally realized the storage and retrieval of an image of light using FWM, in which an image was added into the input signal. After the storage, the retrieved idler beams and input signal carried the same image. This image storage technique holds promise for applications in image processing, remote sensing, and quantum communication.

  19. Time-resolved four-wave-mixing spectroscopy for inner-valence transitions.

    PubMed

    Ding, Thomas; Ott, Christian; Kaldun, Andreas; Blättermann, Alexander; Meyer, Kristina; Stooss, Veit; Rebholz, Marc; Birk, Paul; Hartmann, Maximilian; Brown, Andrew; Van Der Hart, Hugo; Pfeifer, Thomas

    2016-02-15

    Noncollinear four-wave-mixing (FWM) techniques at near-infrared (NIR), visible, and ultraviolet frequencies have been widely used to map vibrational and electronic couplings, typically in complex molecules. However, correlations between spatially localized inner-valence transitions among different sites of a molecule in the extreme ultraviolet (XUV) spectral range have not been observed yet. As an experimental step toward this goal, we perform time-resolved FWM spectroscopy with femtosecond NIR and attosecond XUV pulses. The first two pulses (XUV-NIR) coincide in time and act as coherent excitation fields, while the third pulse (NIR) acts as a probe. As a first application, we show how coupling dynamics between odd- and even-parity, inner-valence excited states of neon can be revealed using a two-dimensional spectral representation. Experimentally obtained results are found to be in good agreement with ab initio time-dependent R-matrix calculations providing the full description of multielectron interactions, as well as few-level model simulations. Future applications of this method also include site-specific probing of electronic processes in molecules. PMID:26872169

  20. Experimental setups for FEL-based four-wave mixing experiments at FERMI

    SciTech Connect

    Bencivenga, Filippo; Zangrando, Marco; Svetina, Cristian; Abrami, Alessandro; Battistoni, Andrea; Borghes, Roberto; Capotondi, Flavio; Cucini, Riccardo; Dallari, Francesco; Danailov, Miltcho; Demidovich, Alexander; Fava, Claudio; Gaio, Giulio; Gerusina, Simone; Gessini, Alessandro; Giacuzzo, Fabio; Gobessi, Riccardo; Godnig, Roberto; Grisonich, Riccardo; Kiskinova, Maya; Kurdi, Gabor; Loda, Giorgio; Lonza, Marco; Mahne, Nicola; Manfredda, Michele; Mincigrucci, Riccardo; Pangon, Gianpiero; Parisse, Pietro; Passuello, Roberto; Pedersoli, Emanuele; Pivetta, Lorenzo; Prica, Milan; Principi, Emiliano; Rago, Ilaria; Raimondi, Lorenzo; Sauro, Roberto; Scarcia, Martin; Sigalotti, Paolo; Zaccaria, Maurizio; Masciovecchio, Claudio

    2016-01-01

    The recent advent of free-electron laser (FEL) sources is driving the scientific community to extend table-top laser research to shorter wavelengths adding elemental selectivity and chemical state specificity. Both a compact setup (mini-TIMER) and a separate instrument (EIS-TIMER) dedicated to four-wave-mixing (FWM) experiments has been designed and constructed, to be operated as a branch of the Elastic and Inelastic Scattering beamline: EIS. The FWM experiments that are planned at EIS-TIMER are based on the transient grating approach, where two crossed FEL pulses create a controlled modulation of the sample excitations while a third time-delayed pulse is used to monitor the dynamics of the excited state. This manuscript describes such experimental facilities, showing the preliminary results of the commissioning of the EIS-TIMER beamline, and discusses original experimental strategies being developed to study the dynamics of matter at the fs–nm time–length scales. In the near future such experimental tools will allow more sophisticated FEL-based FWM applications, that also include the use of multiple and multi-color FEL pulses.

  1. Experimental setups for FEL-based four-wave mixing experiments at FERMI.

    PubMed

    Bencivenga, Filippo; Zangrando, Marco; Svetina, Cristian; Abrami, Alessandro; Battistoni, Andrea; Borghes, Roberto; Capotondi, Flavio; Cucini, Riccardo; Dallari, Francesco; Danailov, Miltcho; Demidovich, Alexander; Fava, Claudio; Gaio, Giulio; Gerusina, Simone; Gessini, Alessandro; Giacuzzo, Fabio; Gobessi, Riccardo; Godnig, Roberto; Grisonich, Riccardo; Kiskinova, Maya; Kurdi, Gabor; Loda, Giorgio; Lonza, Marco; Mahne, Nicola; Manfredda, Michele; Mincigrucci, Riccardo; Pangon, Gianpiero; Parisse, Pietro; Passuello, Roberto; Pedersoli, Emanuele; Pivetta, Lorenzo; Prica, Milan; Principi, Emiliano; Rago, Ilaria; Raimondi, Lorenzo; Sauro, Roberto; Scarcia, Martin; Sigalotti, Paolo; Zaccaria, Maurizio; Masciovecchio, Claudio

    2016-01-01

    The recent advent of free-electron laser (FEL) sources is driving the scientific community to extend table-top laser research to shorter wavelengths adding elemental selectivity and chemical state specificity. Both a compact setup (mini-TIMER) and a separate instrument (EIS-TIMER) dedicated to four-wave-mixing (FWM) experiments has been designed and constructed, to be operated as a branch of the Elastic and Inelastic Scattering beamline: EIS. The FWM experiments that are planned at EIS-TIMER are based on the transient grating approach, where two crossed FEL pulses create a controlled modulation of the sample excitations while a third time-delayed pulse is used to monitor the dynamics of the excited state. This manuscript describes such experimental facilities, showing the preliminary results of the commissioning of the EIS-TIMER beamline, and discusses original experimental strategies being developed to study the dynamics of matter at the fs-nm time-length scales. In the near future such experimental tools will allow more sophisticated FEL-based FWM applications, that also include the use of multiple and multi-color FEL pulses. PMID:26698055

  2. Four-wave mixing signals from beta-carotene and its n = 15 homologue.

    PubMed

    Sugisaki, Mitsuru; Fujiwara, Masazumi; Yanagi, Kazuhiro; Cogdell, Richard J; Hashimoto, Hideki

    2008-01-01

    The third-order nonlinear optical responses of beta-carotene and its homologue having a conjugation-double bond n = 15 have been investigated using sub-20 fs ultra-short optical pulses in order to clarify the dissipation processes of excess energy. Using the four-wave mixing spectroscopy, we observed a clear coherent oscillation with a period of a few tens of femtoseconds. The spectral density of these molecules was estimated that allowed the theoretical linear and nonlinear optical signals to be directly compared with the experimental data. Calculations based on the Brownian oscillator model were performed under the impulsive excitation limit. We show that the memory of the vibronic coherence generated upon the excitation into the S(2) state is lost via the relaxation process including the S(1) state. The vibronic decoherence lifetime of the system was estimated to be 1 ps, which is about 5 times larger than the life time of the S(2) state ( approximately 150 fs) determined in previous studies. The role of coherence and the efficient energy transfer in the light-harvesting antenna complexes are discussed. PMID:17929192

  3. Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging

    NASA Astrophysics Data System (ADS)

    Kravtsov, Vasily; Ulbricht, Ronald; Atkin, Joanna M.; Raschke, Markus B.

    2016-05-01

    Femtosecond nonlinear optical imaging with nanoscale spatial resolution would provide access to coupled degrees of freedom and ultrafast response functions on the characteristic length scales of electronic and vibrational excitations. Although near-field microscopy provides the desired spatial resolution, the design of a broadband high-contrast nanoprobe for ultrafast temporal resolution is challenging due to the inherently weak nonlinear optical signals generated in subwavelength volumes. Here, we demonstrate broadband four-wave mixing with enhanced nonlinear frequency conversion efficiency at the apex of a nanometre conical tip. Far-field light is coupled through a grating at the shaft of the tip, generating plasmons that propagate to the apex while undergoing asymptotic compression and amplification, resulting in a nonlinear conversion efficiency of up to 1 × 10–5. We apply this nonlinear nanoprobe to image the few-femtosecond coherent dynamics of plasmonic hotspots on a nanostructured gold surface with spatial resolution of a few tens of nanometres. The approach can be generalized towards spatiotemporal imaging and control of coherent dynamics on the nanoscale, including the extension to multidimensional spectroscopy and imaging.

  4. Theoretical Analysis of the Resonance Four-Wave Mixing Amplitudes: a Fully Non-Degenerate Case.

    NASA Astrophysics Data System (ADS)

    Kouzov, Alexander

    2015-06-01

    Degenerate (one-color) and two-color variants of the resonant four-wave mixing (RFWM) have developed into a sensitive and nonintrusive spectroscopic tool to study molecules in different gaseous environments. Yet, the fully non-degenerate (four-color, 4C) RFWM was scrutinized and implemented only for the Coherent AntiStokes Raman Scattering (CARS) excitation scheme. Here, by using the line-space approach, we analyze other 4C-RFWM schemes potentially interesting for the efficient up- and down-frequency conversion as well as for studies of molecular states. Decoupled expressions of the 4C-RFWM amplitudes are derived which allows to predict their polarization dependence. B. Attal-Trétout, P. Berlemont, and J. P. Taran, Mol. Phys. 70, 1 (1990). J.P. Kuehner, S.V. Naik, W.D. Kulatilaka, N. Chai, N.M. Laurendeau, R.P. Lucht, M.O. Scully, S. Roy, A.K. Patnaik, and J.R. Gord, J. Chem. Phys. 128, 174308 (2008). A. Kouzov and P. Radi, J. Chem. Phys. 140, 194302 (2014).

  5. Pulsed Rydberg four-wave mixing with motion-induced dephasing in a thermal vapor

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Hsin; Ripka, Fabian; Löw, Robert; Pfau, Tilman

    2016-01-01

    We report on time-resolved pulsed four-wave mixing (FWM) signals in a thermal Rubidium vapor involving a Rydberg state. We observe FWM signals with dephasing times up to 7 ns, strongly dependent on the excitation bandwidth to the Rydberg state. The excitation to the Rydberg state is driven by a pulsed two-photon transition on ns timescales. Combined with a cw de-excitation laser, a strongly directional and collective emission is generated according to a combination of the phase matching effect and averaging over Doppler classes. In contrast to a previous report (Huber et al. in Phys Rev A 90: 053806, 2014) using off-resonant FWM, at a resonant FWM scheme we observe additional revivals of the signal shortly after the incident pulse has ended. We infer that this is a revival of motion-induced constructive interference between the coherent emissions of the thermal atoms. The resonant FWM scheme reveals a richer temporal structure of the signals, compared to similar, but off-resonant excitation schemes. A simple explanation lies in the selectivity of Doppler classes. Our numerical simulations based on a four-level model including a whole Doppler ensemble can qualitatively describe the data.

  6. Delayed four-wave-mixing spectroscopy in molecular crystals: A nonperturbative approach

    NASA Astrophysics Data System (ADS)

    Weitekamp, D. P.; Duppen, Koos; Wiersma, Douwe A.

    1983-06-01

    The delayed or time-domain four-wave-mixing experiment is treated in the regime of intense near-resonant pulses. The interaction with the radiation during both pump and probe pulses is considered to all powers of the electric field amplitude. Analytical results are obtained for an effective four-level system. These include the dependence of the coherence amplitudes on the ratio of the pump-field intensities when there is a large vibrational discrepancy between ground and excited electronic states and a general solution for the unitary time development during the probe pulse. For the first time, delayed coherent anti-Stokes Raman scattering is detected from highly dilute (10-ppm) guest molecules. Illustrative examples are presented for the system of pentacene in benzoic acid at low temperature. Vibronic-free induction decay and the effect of field inhomogeneity across the beam profile are found to be essential for understanding the observed intensity and spectral distribution of the signal beam in the region of optimum pulse intensity.

  7. Phase conjugation by degenerate four wave mixing in disodium fluorescein solution in methanol

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin; Sekhar, P. Chandra; Venkateswarlu, P.; Geroge, M. C.

    1989-01-01

    Organic dyes are known to show the resonant type of nonlinear optical properties, including phase conjugation. In the present work, disodium fluorescein in methanol is used as an organic nonlinear medium for degenerate four wave mixing at 532 nm to see the intensity dependence of the phase conjugate signal at different concentrations of the solution. It is observed that the maximum reflectivity of the signal occurs in a concentration range of 5 x 10(exp -3)/cu cm to 1.2 x 10(exp -2) g/cu cm. It is also observed that the intensity of the signal drops suddenly to less than half of its maximum outside the concentration range mentioned above. An investigation of the phase conjugate signal intensity by changing the delay time between probe signal and the forward pump is also examined. Briefly discussed is the possibility of population grating in dye liquids as a source of enhancing the third order susceptibility besides the other techniques mentioned in reference. The experiment is done by beam splitting the second harmonic (532 nm) of Nd:YAG laser, Q-switched at 20 pulses/sec (pulse width is approximately 8 and 200 mJ per pulse).

  8. Nonresonant four-wave mixing in photorefractive CdTe crystals using a picosecond parametric generator

    NASA Astrophysics Data System (ADS)

    JarašiÅ«nas, Kestutis; Gudelis, Vytautas; Delaye, Philippe; Roosen, Gerald

    1998-11-01

    We demonstrate that a parametrically pumped picosecond laser has enough coherence and energy to write transient phase gratings at nonresonant interaction, thus allowing a study of time-resolved carrier transport in CdTe crystals to be made. Autocorrelation trace of light diffraction efficiency on transient grating allowed us to measure a coherence length of the parametric generator. Carrier diffusion, recombination, and drift in light-created internal space-charge (SC) electric fields have been studied in vanadium or germanium doped semi-insulating CdTe crystals by nonresonant four-wave mixing technique at 940 nm wavelength. It was found that modification of the deep level charge state in CdTe:V by As codoping has changed the sign of majority carriers, responsible for the creation of SC field. Dynamics of free carrier grating decay in CdTe:Ge revealed an electron-governed very fast initial grating decay which develops with time into the double-exponential hole-governed grating decay. Time-resolved transient grating technique described in this article provides a powerful tool for investigation of the role of deep traps in photorefractive semiconductors and optimization of their photoelectric properties in a required temporal and spectral range.

  9. Optical imaging through turbid media with a degenerate four wave mixing correlation time gate

    SciTech Connect

    Sappey, A.D. )

    1994-12-20

    A novel method for detection of ballistic light and rejection of unwanted diffusive light to image structures inside highly scattering media is demonstrated. Degenerate four wave mixing (DFWM) of a doubled YAG laser in Rhodamine 6G is used to provide an ultrafast correlation time gate to discriminate against light that has undergone multiple scattering and therefore lost memory of the structures inside the scattering medium. We present preliminary results that determine the nature of the DFWM grating, confirm the coherence time of the laser, prove the phase-conjugate nature of the signal beam, and determine the dependence of the signal (reflectivity) on dye concentration and laser intensity. Finally, we have obtained images of a test cross-hair pattern through highly turbid suspensions of whole milk in water that are opaque to the naked eye. These imaging experiments demonstrate the utility of DFWM for imaging through turbid media. Based on our results, the use of DFWM as an ultrafast time gate for the detection of ballistic light in optical mammography appears to hold great promise for improving the current state of the art.

  10. Phase-locking and Pulse Generation in Multi-Frequency Brillouin Oscillator via Four Wave Mixing

    PubMed Central

    Büttner, Thomas F. S.; Kabakova, Irina V.; Hudson, Darren D.; Pant, Ravi; Poulton, Christopher G.; Judge, Alexander C.; Eggleton, Benjamin J.

    2014-01-01

    There is an increasing demand for pulsed all-fibre lasers with gigahertz repetition rates for applications in telecommunications and metrology. The repetition rate of conventional passively mode-locked fibre lasers is fundamentally linked to the laser cavity length and is therefore typically ~10–100 MHz, which is orders of magnitude lower than required. Cascading stimulated Brillouin scattering (SBS) in nonlinear resonators, however, enables the formation of Brillouin frequency combs (BFCs) with GHz line spacing, which is determined by the acoustic properties of the medium and is independent of the resonator length. Phase-locking of such combs therefore holds a promise to achieve gigahertz repetition rate lasers. The interplay of SBS and Kerr-nonlinear four-wave mixing (FWM) in nonlinear resonators has been previously investigated, yet the phase relationship of the waves has not been considered. Here, we present for the first time experimental and numerical results that demonstrate phase-locking of BFCs generated in a nonlinear waveguide cavity. Using real-time measurements we demonstrate stable 40 ps pulse trains with 8 GHz repetition rate based on a chalcogenide fibre cavity, without the aid of any additional phase-locking element. Detailed numerical modelling, which is in agreement with the experimental results, highlight the essential role of FWM in phase-locking of the BFC. PMID:24849053

  11. Dressed Gain from the Parametrically Amplified Four-Wave Mixing Process in an Atomic Vapor

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoyang; Wen, Feng; Che, Junling; Zhang, Dan; Li, Changbiao; Zhang, Yanpeng; Xiao, Min

    2015-10-01

    With a forward cone emitting from the strong pump laser in a thermal rubidium atomic vapor, we investigate the non-degenerate parametrically amplified four-wave mixing (PA-FWM) process with dressing effects in a three-level “double-Λ” configuration both theoretically and experimentally. By seeding a weak probe field into the Stokes or anti-Stokes channel of the FWM, the gain processes are generated in the bright twin beams which are called conjugate and probe beams, respectively. However, the strong dressing effect of the pump beam will dramatically affect the gain factors both in the probe and conjugate channels, and can inevitably impose an influence on the quantum effects such as entangled degree and the quantum noise reduction between the two channels. We systematically investigate the intensity evolution of the dressed gain processes by manipulating the atomic density, the Rabi frequency and the frequency detuning. Such dressing effects are also visually evidenced by the observation of Autler-Townes splitting of the gain peaks. The investigation can contribute to the development of quantum information processing and quantum communications.

  12. Optical negative refraction by four-wave mixing in thin metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Palomba, Stefano; Zhang, Shuang; Park, Yongshik; Bartal, Guy; Yin, Xiaobo; Zhang, Xiang

    2012-01-01

    The law of refraction first derived by Snellius and later introduced as the Huygens-Fermat principle, states that the incidence and refracted angles of a light wave at the interface of two different materials are related to the ratio of the refractive indices in each medium. Whereas all natural materials have a positive refractive index and therefore exhibit refraction in the positive direction, artificially engineered negative index metamaterials have been shown capable of bending light waves negatively. Such a negative refractive index is the key to achieving a perfect lens that is capable of imaging well below the diffraction limit. However, negative index metamaterials are typically lossy, narrow band, and require complicated fabrication processes. Recently, an alternative approach to obtain negative refraction from a very thin nonlinear film has been proposed and experimentally demonstrated in the microwave region. However, such approaches use phase conjugation, which makes optical implementations difficult. Here, we report a simple but different scheme to demonstrate experimentally nonlinear negative refraction at optical frequencies using four-wave mixing in nanostructured metal films. The refractive index can be designed at will by simply tuning the wavelengths of the interacting waves, which could have potential impact on many important applications, such as superlens imaging.

  13. Dressed Gain from the Parametrically Amplified Four-Wave Mixing Process in an Atomic Vapor.

    PubMed

    Zhang, Zhaoyang; Wen, Feng; Che, Junling; Zhang, Dan; Li, Changbiao; Zhang, Yanpeng; Xiao, Min

    2015-01-01

    With a forward cone emitting from the strong pump laser in a thermal rubidium atomic vapor, we investigate the non-degenerate parametrically amplified four-wave mixing (PA-FWM) process with dressing effects in a three-level "double-Λ" configuration both theoretically and experimentally. By seeding a weak probe field into the Stokes or anti-Stokes channel of the FWM, the gain processes are generated in the bright twin beams which are called conjugate and probe beams, respectively. However, the strong dressing effect of the pump beam will dramatically affect the gain factors both in the probe and conjugate channels, and can inevitably impose an influence on the quantum effects such as entangled degree and the quantum noise reduction between the two channels. We systematically investigate the intensity evolution of the dressed gain processes by manipulating the atomic density, the Rabi frequency and the frequency detuning. Such dressing effects are also visually evidenced by the observation of Autler-Townes splitting of the gain peaks. The investigation can contribute to the development of quantum information processing and quantum communications. PMID:26463588

  14. Non-intrusive detection of methanol in gas phase using infrared degenerate four-wave mixing

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Sahlberg, A. L.; Nilsson, H.; Lundgren, E.; Zetterberg, J.

    2015-11-01

    Sensitive and non-intrusive detection of gas-phase methanol with high spatial and temporal resolution has for the first time been reported using mid-infrared degenerate four-wave mixing (IR-DFWM). IR-DFWM spectra of methanol have been successfully recorded in nitrogen-diluted gas flows at room temperature and at 300 °C, by probing ro-vibrational transitions belonging to the fundamental C-H stretching modes, ν 2 and ν 9, and the O-H stretching mode, ν 1. The detection limit of methanol vapor at room temperature and atmospheric pressure is estimated to be 250 ppm with the present setup. Potential interference from CH4 and CO2 is discussed from recorded IR-DFWM spectra of CH4 and CO2, and it was found that detection of methanol free from CH4 and CO2 interference is possible. These results show the potential of the detection of methanol with IR-DFWM for applications in both combustion and catalytic environments, such as CO2 hydrogenation and CH4 oxidation.

  15. Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging.

    PubMed

    Kravtsov, Vasily; Ulbricht, Ronald; Atkin, Joanna M; Raschke, Markus B

    2016-05-01

    Femtosecond nonlinear optical imaging with nanoscale spatial resolution would provide access to coupled degrees of freedom and ultrafast response functions on the characteristic length scales of electronic and vibrational excitations. Although near-field microscopy provides the desired spatial resolution, the design of a broadband high-contrast nanoprobe for ultrafast temporal resolution is challenging due to the inherently weak nonlinear optical signals generated in subwavelength volumes. Here, we demonstrate broadband four-wave mixing with enhanced nonlinear frequency conversion efficiency at the apex of a nanometre conical tip. Far-field light is coupled through a grating at the shaft of the tip, generating plasmons that propagate to the apex while undergoing asymptotic compression and amplification, resulting in a nonlinear conversion efficiency of up to 1 × 10(-5). We apply this nonlinear nanoprobe to image the few-femtosecond coherent dynamics of plasmonic hotspots on a nanostructured gold surface with spatial resolution of a few tens of nanometres. The approach can be generalized towards spatiotemporal imaging and control of coherent dynamics on the nanoscale, including the extension to multidimensional spectroscopy and imaging. PMID:26854567

  16. Dressed Gain from the Parametrically Amplified Four-Wave Mixing Process in an Atomic Vapor

    PubMed Central

    Zhang, Zhaoyang; Wen, Feng; Che, Junling; Zhang, Dan; Li, Changbiao; Zhang, Yanpeng; Xiao, Min

    2015-01-01

    With a forward cone emitting from the strong pump laser in a thermal rubidium atomic vapor, we investigate the non-degenerate parametrically amplified four-wave mixing (PA-FWM) process with dressing effects in a three-level “double-Λ” configuration both theoretically and experimentally. By seeding a weak probe field into the Stokes or anti-Stokes channel of the FWM, the gain processes are generated in the bright twin beams which are called conjugate and probe beams, respectively. However, the strong dressing effect of the pump beam will dramatically affect the gain factors both in the probe and conjugate channels, and can inevitably impose an influence on the quantum effects such as entangled degree and the quantum noise reduction between the two channels. We systematically investigate the intensity evolution of the dressed gain processes by manipulating the atomic density, the Rabi frequency and the frequency detuning. Such dressing effects are also visually evidenced by the observation of Autler-Townes splitting of the gain peaks. The investigation can contribute to the development of quantum information processing and quantum communications. PMID:26463588

  17. Effects of self- and cross-phase modulation on photon purity for four-wave-mixing photon pair sources

    NASA Astrophysics Data System (ADS)

    Bell, Bryn; McMillan, Alex; McCutcheon, Will; Rarity, John

    2015-11-01

    We consider the effect of self-phase modulation and cross-phase modulation on the joint spectral amplitude of photon pairs generated by spontaneous four-wave mixing. In particular, the purity of a heralded photon from a pair is considered in the context of schemes that aim to maximize the purity and minimize correlation in the joint spectral amplitude using birefringent phase matching and short pump pulses. We find that nonlinear phase-modulation effects will be detrimental and will limit the quantum interference visibility that can be achieved at a given generation rate. An approximate expression for the joint spectral amplitude with phase modulation is found by considering the group velocity walk-off between each photon and the pump but neglecting the group-velocity dispersion at each wavelength. The group-velocity dispersion can also be included with a numerical calculation, and it is shown that it has only a small effect on the purity for the realistic parameters considered.

  18. Line-space description of resonant four-wave mixing: Theory for isotropic molecular states

    SciTech Connect

    Kouzov, A.; Radi, P.

    2014-05-21

    Based on the quantum Liouville formalism, a theory of the two-color, triply resonant four-wave mixing is developed for molecules with isotropically oriented angular momenta. The approach allows to strictly incorporate the relaxation matrices Γ{sup (r)} (r = 0, 1, 2) into the third-order susceptibility χ{sup (3)} whose expression acquires therewith the form of a scalar product in the line space. Thanks to this representation, isolation of all resonance terms from χ{sup (3)} becomes a routine task. Some of these terms correspond to the case when a molecule initially interacts with two pump photons of the same frequency. Such interactions give rise to the grating line-space vectors which have the same (zero) eigenfrequency. Due to this degeneracy, the latter are easily mixed by rotationally inelastic collisions which shows up in a state-resolved coherence transfer. The satellite signals induced thereby provide a great scope to study the state-to-state inelastic rates in situ by purely optical means. If the diagonal form of Γ is assumed, the satellites become forbidden and our results reduce to conventional expressions for the main resonances. Polarization configurations are designed for direct measurements of the population (r = 0), orientation (r = 1), and alignment (r = 2) contributions to χ{sup (3)}. Finally, depending on the photon-molecule interaction sequence, the resonance terms of χ{sup (3)} are shown to be differently affected by velocity averaging, the effect which conspicuously manifests itself when Doppler broadening becomes paramount.

  19. /ital Q/-modulation and four-wave mixing effects caused by RSA materials in a laser cavity

    SciTech Connect

    Zhang Tao; Yao Jianquan

    1989-04-01

    By making use of the density-matrix method, we give a unified explanation of /ital Q/-modulation and four-wave mixing effects caused by resonant saturable absorption (RSA) materials in a laser cavity. The underlying physical mechanism of the effects is expressed clearly. The theoretical calculation results agree very well with the experimental data.

  20. Study of degenerate four-wave mixing in germanium and rhenate-doped potassium chloride at carbon dioxide laser wavelengths

    SciTech Connect

    Watkins, D.E.

    1982-02-01

    Theoretical and experimental studies of degenerate four-wave mixing (DFWM) by three different mechanisms are presented. These are the nonlinear index of refraction of a lossless, Kerr-like medium, the saturable absorption of a resonant optical transition, and the formation of a free-carrier grating.

  1. Higher-Order Squeezing of Quantum Field and the Generalized Uncertainty Relations in Non-Degenerate Four-Wave Mixing

    NASA Technical Reports Server (NTRS)

    Li, Xi-Zeng; Su, Bao-Xia

    1996-01-01

    It is found that the field of the combined mode of the probe wave and the phase-conjugate wave in the process of non-degenerate four-wave mixing exhibits higher-order squeezing to all even orders. And the generalized uncertainty relations in this process are also presented.

  2. Final Report: Investigation of Polarization Spectroscopy and Degenerate Four-Wave Mixing for Quantitative Concentration Measurements

    SciTech Connect

    Robert P. Lucht

    2005-03-09

    Laser-induced polarization spectroscopy (LIPS), degenerate four-wave mixing (DFWM), and electronic-resonance-enhanced (ERE) coherent anti-Stokes Raman scattering (CARS) are techniques that shows great promise for sensitive measurements of transient gas-phase species, and diagnostic applications of these techniques are being pursued actively at laboratories throughout the world. However, significant questions remain regarding strategies for quantitative concentration measurements using these techniques. The primary objective of this research program is to develop and test strategies for quantitative concentration measurements in flames and plasmas using these nonlinear optical techniques. Theoretically, we are investigating the physics of these processes by direct numerical integration (DNI) of the time-dependent density matrix equations that describe the wave-mixing interaction. Significantly fewer restrictive assumptions are required when the density matrix equations are solved using this DNI approach compared with the assumptions required to obtain analytical solutions. For example, for LIPS calculations, the Zeeman state structure and hyperfine structure of the resonance and effects such as Doppler broadening can be included. There is no restriction on the intensity of the pump and probe beams in these nonperturbative calculations, and both the pump and probe beam intensities can be high enough to saturate the resonance. As computer processing speeds have increased, we have incorporated more complicated physical models into our DNI codes. During the last project period we developed numerical methods for nonperturbative calculations of the two-photon absorption process. Experimentally, diagnostic techniques are developed and demonstrated in gas cells and/or well-characterized flames for ease of comparison with model results. The techniques of two-photon, two-color H-atom LIPS and three-laser ERE CARS for NO and C{sub 2}H{sub 2} were demonstrated during the

  3. Forward-scattering degenerate four-wave mixing as a simple sub-attomole-sensitive nonlinear laser analytical spectrometric method.

    PubMed

    Wu, Z; Tong, W G

    1993-01-15

    Optical phase conjugation by "forward-scattering" degenerate four-wave mixing in an absorbing liquid analyte solution is reported as a sensitive and simple nonlinear laser spectroscopic method. Since only two input laser beams are used in this nonlinear four-wave mixing setup, it offers important advantages including ease of optical alignment, efficient use of input photon density, low laser power requirements, and high wave-mixing efficiency. In addition, since the phase-conjugate signal is a laser beam, optical signal detection is very efficient and the signal-to-noise is excellent. Important characteristics of this novel nonlinear laser technique, including signal dependence on analyte concentration, individual input beam power, and modulation frequencies, are examined. Excellent detection sensitivity, small detection volume, and convenient sample introduction promise many applications for this nonlinear laser spectroscopic method. Preliminary detection limits of 0.7 amol of eosin B and 45 amol of iodine inside a probe volume of 98 pL are reported using a forward-scattering degenerate four-wave mixing setup. PMID:8430893

  4. Generation of 12 fs deep-ultraviolet pulses by four-wave mixing through filamentation in neon gas.

    PubMed

    Fuji, Takao; Horio, Takuya; Suzuki, Toshinori

    2007-09-01

    Generation of deep-ultraviolet femtosecond pulses by four-wave mixing through filamentation in neon gas was demonstrated. Fundamental (omega) and second-harmonic (2omega) pulses of 25 fs Ti:sapphire amplifier output were focused into neon gas, and 20 microJ pulses with the center wavelength of 260 nm were produced by a four-wave mixing process, 2omega+2omega-omega?3omega through an ~15 cm filament. Additionally, pulses with an energy of 2 microJ at 200 nm were generated, probably by a cascaded process, 3omega+2omega-omega?4omega. The 260 nm pulses were compressed by a grating-based compressor and characterized by a dispersion-free transient grating frequency-resolved optical gating. The estimated pulse width was 12 fs. PMID:17767278

  5. Investigation on four wave mixing effect in various optical Fibers for different spectral efficient orthogonal modulation Formats

    NASA Astrophysics Data System (ADS)

    Singh, Surinder; Singh, Sukhbir

    2016-01-01

    The paper analyzes the four wave mixing (FWM) effect in different spectral efficient orthognal modulation formats at equal channel spacing of 100 GHz and 50 GHz to design long haul wavelength division multiplexing (WDM) optical system. Further, the comparison of reduction of FWM for existing and proposed modulation format have been analyzed by varying the laser input power from -10 dBm to 10 dBm.

  6. Simulation of pattern and defect detection in periodic amplitude and phase structures using photorefractive four-wave mixing

    NASA Astrophysics Data System (ADS)

    Nehmetallah, Georges; Banerjee, Partha; Khoury, Jed

    2015-03-01

    The nonlinearity inherent in four-wave mixing in photorefractive (PR) materials is used for adaptive filtering. Examples include script enhancement on a periodic pattern, scratch and defect cluster enhancement, periodic pattern dislocation enhancement, etc. through intensity filtering image manipulation. Organic PR materials have large space-bandwidth product, which makes them useful in adaptive filtering techniques in quality control systems. For instance, in the case of edge enhancement, phase conjugation via four-wave mixing suppresses the low spatial frequencies of the Fourier spectrum of an aperiodic image and consequently leads to image edge enhancement. In this work, we model, numerically verify, and simulate the performance of a four wave mixing setup used for edge, defect and pattern detection in periodic amplitude and phase structures. The results show that this technique successfully detects the slightest defects clearly even with no enhancement. This technique should facilitate improvements in applications such as image display sharpness utilizing edge enhancement, production line defect inspection of fabrics, textiles, e-beam lithography masks, surface inspection, and materials characterization.

  7. Mixed β-pyrrole substituted meso-tetraphenylporphyrins and their metal complexes: optical nonlinearity using degenerate four wave mixing technique.

    PubMed

    Kalnoor, Basanth S; Bisht, Prem B; Jena, Kailash C; Velkannan, V; Bhyrappa, P

    2013-08-29

    We have investigated the roles of structural modification and polar effects in the optical nonlinearities of a series of selectively mixed β-pyrrole functionalized tetraphenylporphyrin, MTPP(CHO)(R)2 (R = H, Br, 2-thienyl, phenyl (Ph), phenylethynyl (PE) compounds and their metal (Cu(II), Zn(II)) complexes in toluene. In the present study, we have used phase conjugation geometry of the four wave mixing process to measure the third order nonlinear susceptibility (χ(3)) and the second order hyperpolarizabilty ((γ)) with picosecond laser pulse excitation at 532 nm. An increase in the values of χ(3) and (γ) for electron-withdrawing groups was observed whereas an opposite trend was noticed for the electron-donating groups at the β-pyrrole positions. In the Cu(II) and Zn(II) complexes of substituted free base porphyrins, the distortion of the macrocyclic ring may be responsible for the reduction of the values of χ(3) and (γ). From fluorescence measurements, it has been found that the electron-donating and electron-withdrawing substituted groups at β-pyrrole positions and also the macrocyclic ring distortion of the porphyrin lead to increased radiationless transitions. PMID:23909768

  8. Parametric amplification-assisted cascaded four-wave mixing for ultrabroad laser sideband generation in a thin transparent medium

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Liu, W.; Wang, L.; Fang, C.

    2014-07-01

    We demonstrate distinct sets of broadband up-converted multicolor array (BUMA) signals in a thin transparent medium with an intense 800 nm fundamental pulse (FP) and a weak, unfiltered super-continuum white light (SCWL) in a crossing geometry. Upon varying the time delay between the two incident laser pulses, continuously tunable BUMA signals in the visible to near-IR range sequentially emerge on either side of the FP, in both BBO crystal and BK7 glass. Through numerical calculations at intrinsic phase-matching conditions, the BUMA signals on the SCWL side are shown to arise from the interaction mainly between χ(3)-based four-wave optical parametric amplification and cascaded four-wave mixing processes. The temporally controllable broadband BUMA signals with amplification and tunability all in one thin transparent medium are highly suitable for ultrafast laser spectroscopy and optical communication networks.

  9. Optimisation of amplitude limiters for phase preservation based on the exact solution to degenerate four-wave mixing.

    PubMed

    Bottrill, K R H; Hesketh, G; Parmigiani, F; Richardson, D J; Petropoulos, P

    2016-02-01

    Adopting an exact solution to four-wave mixing (FWM), wherein harmonic evolution is described by the sum of two Bessel functions, we identify two causes of amplitude to phase noise conversion which impair FWM saturation based amplitude regenerators: self-phase modulation (SPM) and Bessel-order mixing (BOM). By increasing the pump to signal power ratio, we may arbitrarily reduce their impact, realising a phase preserving amplitude regenerator. We demonstrate the technique by applying it to the regeneration of a 10 GBaud QPSK signal, achieving a high level of amplitude squeezing with minimal amplitude to phase noise conversion. PMID:26906847

  10. Kinetic Temperature and Electron Density Measurement in an Inductively Coupled Plasma Torch using Degenerate Four-Wave Mixing

    NASA Technical Reports Server (NTRS)

    Schafer, Julia; Lyons, Wendy; Tong, WIlliam G.; Danehy, Paul M.

    2008-01-01

    Laser wave mixing is presented as an effective technique for spatially resolved kinetic temperature measurements in an atmospheric-pressure radio-frequency inductively-coupled plasma. Measurements are performed in a 1 kW, 27 MHz RF plasma using a continuous-wave, tunable 811.5-nm diode laser to excite the 4s(sup 3)P2 approaches 4p(sup 3)D3 argon transition. Kinetic temperature measurements are made at five radial steps from the center of the torch and at four different torch heights. The kinetic temperature is determined by measuring simultaneously the line shape of the sub-Doppler backward phase-conjugate degenerate four-wave mixing and the Doppler-broadened forward-scattering degenerate four-wave mixing. The temperature measurements result in a range of 3,500 to 14,000 K+/-150 K. Electron densities measured range from 6.1 (+/-0.3) x 10(exp 15)/cu cm to 10.1 (+/-0.3) x 10(exp 15)/cu cm. The experimental spectra are analyzed using a perturbative treatment of the backward phase-conjugate and forward-geometry wave-mixing theory. Stark width is determined from the collisional broadening measured in the phase-conjugate geometry. Electron density measurements are made based on the Stark width. The kinetic temperature of the plasma was found to be more than halved by adding deionized water through the nebulizer.

  11. Coexistence of three-wave, four-wave, and five-wave mixing processes in a superconducting artificial atom.

    PubMed

    Li, Hai-Chao; Ge, Guo-Qin; Zhang, Hai-Yang

    2015-03-15

    We present a theoretical study of multiwave mixing in a driven superconducting quantum qubit (artificial atom) with a cyclic Ξ-type three-level structure. We first show that three-wave mixing (3WM), four-wave mixing (4WM), and five-wave mixing (5WM) processes can coexist in the microwave regime in such an artificial system due to the absence of selection rules. Because of electromagnetically induced transparency suppression of linear absorption in a standard Ξ-type configuration, the generated 4WM is enhanced greatly and its efficiency can be as high as 0.1% for only a single artificial atom. We also show that Autler-Townes splitting occurs in the 3WM and 5WM spectra and quantum interference has a significant impact on the total signal intensity being a coherent superposition of these two signals. PMID:25768200

  12. Tunable sideband laser from cascaded four-wave mixing in thin glass for ultra-broadband femtosecond stimulated Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Liangdong; Liu, Weimin; Fang, Chong

    2013-08-01

    We demonstrate the generation of broadband up-converted multicolor array (BUMA) in a thin BK7 glass slide using two noncollinear weak near-IR laser pulses with various crossing angles. The BUMA signal arises from cubic nonlinear χ(3):χ(3) processes via cascaded four-wave mixing of the two incident beams. Broad and continuous tunability of BUMA is simply achieved by varying the time delay between the two pulses. We implement one of the BUMA sidebands as the probe pulse for femtosecond stimulated Raman spectroscopy and collect a solvent mixture anti-Stokes Raman spectrum with an ultrabroad detection range of ca. 100-4000 cm-1.

  13. High-speed all-optical NAND/AND logic gates using four-wave mixing Bragg scattering.

    PubMed

    Li, Kangmei; Ting, Hong-Fu; Foster, Mark A; Foster, Amy C

    2016-07-15

    A high-speed all-optical NAND logic gate is proposed and experimentally demonstrated using four-wave mixing Bragg scattering in highly nonlinear fiber. NAND/AND logic functions are implemented at two wavelengths by encoding logic inputs on two pumps via on-off keying. A 15.2-dB depletion of the signal is obtained for NAND operation, and time domain measurements show 10-Gb/s NAND/AND logic operations with open eye diagrams. The approach can be readily extended to higher data rates and transferred to on-chip waveguide platforms. PMID:27420525

  14. Phase conjugation of vector fields by degenerate four-wave mixing in a Fe-doped LiNbO₃.

    PubMed

    Qian, Sheng-Xia; Li, Yongnan; Kong, Ling-Jun; Tu, Chenghou; Wang, Hui-Tian

    2014-08-15

    We propose a method to generate the phase-conjugate wave of the vector field by degenerate four-wave mixing in a c-cut Fe-doped LiNbO3 crystal. We demonstrate experimentally that the phase-conjugate wave of the vector field can be generated. In particular, the phase-conjugate vector field has also the peculiar function of compensating the polarization distortion, as the traditional phase-conjugate scaler field can compensate the phase distortion. PMID:25121905

  15. Wavelength conversion of 28 GBaud 16-QAM signals based on four-wave mixing in a silicon nanowire.

    PubMed

    Adams, Rhys; Spasojevic, Mina; Chagnon, Mathieu; Malekiha, Mahdi; Li, Jia; Plant, David V; Chen, Lawrence R

    2014-02-24

    We demonstrate error-free wavelength conversion of 28 GBaud 16-QAM single polarization (112 Gb/s) signals based on four-wave mixing in a dispersion engineered silicon nanowire (SNW). Wavelength conversion covering the entire C-band is achieved using a single pump. We characterize the performance of the wavelength converter subsystem through the electrical signal to noise ratio penalty as well as the bit error rate of the converted signal as a function of input signal power. Moreover, we evaluate the degradation of the optical signal to noise ratio due to wavelength conversion in the SNW. PMID:24663730

  16. Generation of a single-photon source via a four-wave mixing process in a cavity

    SciTech Connect

    Fan Bixuan; Duan Zhenglu; Zhou Lu; Yuan Chunhua; Zhang Weiping; Ou, Z. Y.

    2009-12-15

    It is shown that an efficient, well-directional single-photon source can be realized via a four-wave mixing process in a cavity. The probability of producing a single-photon state nearly approaches 50%. The bandwidth of single-photons generated in this way is controllable, which is determined by that of the input pulse. Furthermore, we propose a scheme to generate a coherent multichannel single-photon source, which might have significant applications in wavelength division multiplexing quantum key distribution.

  17. Cherenkov phase-matching in Raman-seeded four-wave mixing by a femtosecond Bessel beam

    NASA Astrophysics Data System (ADS)

    Blonskyi, I.; Kadan, V.; Dmitruk, I.; Korenyuk, P.

    2012-06-01

    It is demonstrated experimentally that the angle vs. wavelength dependence of the emission generated by multi-step four-wave mixing process seeded by stimulated Raman scattering in water under femtosecond Bessel beam excitation is determined by the longitudinal phase-matching from IR to near UV. It is shown that if on-axis phase velocity of the pump Bessel beam is equal to the phase velocity of the Stokes axial wave, then, similar to Cherenkov radiation, all the other anti-Stokes beams too acquire that axial velocity.

  18. Realization of low frequency and controllable-bandwidth squeezing based on a four-wave-mixing amplifer in rubidium vapor

    SciTech Connect

    Liu, Cunjin; Jing, Jietai; Zhou, Zhifan; Pooser, Raphael C; Hudelist, Florian; Zhang, Weiping

    2011-01-01

    We experimentally demonstrate the creation of two correlated beams generated by a nondegenerate four-wave-mixing amplifier at {lambda} = 795 nm in hot rubidium vapor. We achieve intensity difference squeezing at frequencies as low as 1.5 kHz which is so far the lowest frequency to observe squeezing in an atomic system. The squeezing spans from 5.5 to 16.5 MHz with a maximum squeezing of {approx}5 dB at 1 MHz. We can control the squeezing bandwidth by changing the pump power. Both low frequency and controllable bandwidth squeezing show great potential in sensitivity detection and precise control of the atom optics measurement.

  19. Competition between two-photon-resonant three-photon ionization and four-wave mixing in Xe

    SciTech Connect

    Nagai, Hidekazu; Nakanaga, Taisuke

    2011-12-15

    Competitive inhibition of a resonance enhanced multiphoton ionization process by a resonant four-wave mixing has been observed in Xe atoms. When an intense IR (1064 nm) laser was applied to a sample of Xe which was also being irradiated by a UV laser tuned to the two-photon absorption line of Xe, the two-photon-resonant three-photon ionization signals decreased with increasing IR laser power. This phenomenon is dependent on the resonant states of Xe and the polarization of the two laser beams. Three 6s excited states [5/2]{sub 2}, [3/2]{sub 2}, and [1/2]{sub 0} were examined. At the [1/2]{sub 0} resonant state, the ion signals were not decreased but slightly increased with the increase of the IR laser power. No suppression of the ion signal was observed at the [5/2]{sub 2} resonant state, when the polarization directions of the lasers were perpendicular to each other. The result of the polarization dependence reflects the selection rules of four-wave mixing. A simple rate equation analysis including the contribution of two-photon ionization from the [1/2]{sub 0} state by the IR laser well represents the IR laser-power dependence of the ion signal.

  20. Stimulated Raman scattering and four-wave mixing from a mixture of carbon disulfide and phenylethanol in a hollow optical fiber.

    PubMed

    Chen, Y; Wang, L; Lu, X; Chen, Y; Qiu, M

    1991-10-01

    We observe, for what is to our knowledge the first time, stimulated Raman scattering and four-wave mixing in a liquid-core optical fiber filled with a mixture of carbon disulfide and phenylethanol pumped by the frequencydoubled output of a Q-switched YAG laser (lambda = 532.1 nm). The frequencies of the stimulated Raman scattering and four-wave mixing spectra are specified, and theoretical interpretations are also given. PMID:19777003

  1. Stable isotope ratio analysis at trace concentrations using degenerate four-wave mixing with a circularly polarized pulsed probe beam.

    PubMed

    Wu, Z Q; Tong, W G

    1991-05-01

    Stable isotope analysis based on vectorial optical-phase conjugation by resonant degenerate four-wave mixing (D4WM) is reported by using a D4WM method with vertically polarized pump beams and a circularly polarized probe beam. Since the polarization of the signal beam is different from that of the pump beams, the background radiation is suppressed more effectively. Excellent sensitivity, high spectral resolution, and efficient optical detection make this an effective and unusually convenient nonlinear spectrometric method for the analysis of trace amounts of stable isotopes. Using an excimer-pumped pulsed dye laser, the fine structures of lithium are examined. A detection limit of 2.5 ng/mL lithium is observed while a Doppler-free resolution is maintained by using transient "coherent-grating" based D4WM spectroscopy. PMID:1858982

  2. Laser analytical spectrometry based on optical phase conjugation by degenerate four-wave mixing in a flowing liquid analyte cell.

    PubMed

    Wu, Z Q; Tong, W G

    1989-05-01

    Nonlinear laser spectroscopy based on optical phase conjugation by degenerate four-wave mixing in an absorbing liquid analyte solution is reported as a sensitive analytical technique using a relatively low-power continuous-wave argon ion laser as the excitation source. This novel laser method provides excellent detection sensitivity since the analytical signal is a wavefront-reversed replica of the probe beam. Optical signal detection is convenient and efficient since the signal is a visible coherent laser beam. Important characteristics of this nonlinear laser method include cubic dependence of signal on laser power and quadratic dependence of signal on concentration. Excellent sensitivity, small detection volume, and convenient sample introduction offer many potential applications in trace-level condensed-phase analysis of continuously flowing systems. A preliminary detection limit of 2.9 X 10(-18) mol of eosin B in a simple flow cell is reported. PMID:2729603

  3. Four-wave-mixing-based optical parametric oscillator delivering energetic, tunable, chirped femtosecond pulses for non-linear biomedical applications.

    PubMed

    Gottschall, Thomas; Meyer, Tobias; Schmitt, Michael; Popp, Jürgen; Limpert, Jens; Tünnermann, Andreas

    2015-09-01

    A novel concept for an optical parametric oscillator based on four-wave mixing (FOPO) in an optical fiber is presented. This setup has the ability of generating highly chirped signal and idler pulses with compressed pulse durations below 600 fs and pulse energies of up to 250 nJ. At a fixed pump wavelength of 1040 nm, the emerging signal and idler wavelengths can be easily tuned between 867 to 918 nm and 1200 to 1300 nm, respectively, only by altering the cavity length. With compressed peak powers >100 kW and a repetition rate of only 785 kHz, this source provides tunable intense ultra-short pulses at moderate average powers. This setup constitutes a stable, simple and in many ways superior alternative to bulk state-of-the-art OPO light converters for demanding biomedical applications and non-linear microspectroscopy. PMID:26368487

  4. Efficient reflection via four-wave mixing in a Doppler-free electromagnetically-induced-transparency gas system

    SciTech Connect

    Zhou, Hai-Tao; Wang, Dan; Zhang, Jun-Xiang; Wang, Da-Wei; Zhu, Shi-Yao

    2011-11-15

    We experimentally demonstrate the high-efficiency reflection of a probe field in {Lambda}-type three-level atoms of cesium vapor driven by two counterpropagating coupling fields. More than 60% of reflection efficiency is observed at the phase-matching angle. The underlying mechanism theoretically is investigated as the four-wave mixing is enhanced by the electromagnetically-induced transparency. Both of the two Doppler-free two-photon resonances (one for the probe and co-propagating fields, the other for the reflected and the counterpropagation fields) play an important role in satisfying the phase matching in the reflection direction. The phase compensation due to the anomalous dispersion and the decrease of effective absorption length in the atomic system allow the efficient reflection to be observed in a wide range of incident angles of the probe field and detunings of the coupling field.

  5. Surpassing the standard quantum limit in an atom interferometer with four-mode entanglement produced from four-wave mixing

    SciTech Connect

    Haine, S. A.; Ferris, A. J.

    2011-10-15

    We theoretically investigate a scheme for atom interferometry that surpasses the standard quantum limit. A four-wave mixing scheme similar to the recent experiment performed by Pertot et al.[Phys. Rev. Lett. 104, 200402 (2010)] is used to generate subshotnoise correlations between two modes. These two modes are then interfered with the remaining two modes in such a way as to surpass the standard quantum limit, whilst utilizing all of the available atoms. Our scheme can be viewed as using two correlated interferometers. That is, the signal from each interferometer when looked at individually is classical, but there are correlations between the two interferometers that allow for the standard quantum limit to be surpassed.

  6. Enhanced four-wave mixing efficiency in four-subband semiconductor quantum wells via Fano-type interference.

    PubMed

    Liu, Shaopeng; Yang, Wen-Xing; Chuang, You-Lin; Chen, Ai-Xi; Liu, Ang; Huang, Yan; Lee, Ray-Kuang

    2014-11-17

    We propose and analyze an efficient way to enhance four-wave mixing (FWM) signals in a four-subband semiconductor quantum well via Fano-type interference. By using Schrödinger-Maxwell formalism, we derive explicitly analytical expressions for the input probe pulse and the generated FWM field in linear regime under the steady-state condition. With the aid of interference between two excited subbands tunneling to the common continuum, the efficiency to generate FWM field is found to be significantly enhanced, up to 35%. More interestingly, a linear growth rate in the FWM efficiency is demonstrated as the strength of Fano-type interference increases in presence of the continuum states, which can be maintained for a certain propagation distance (i.e., 50μm). PMID:25402157

  7. Frequency shift in three-photon resonant four-wave mixing by internal atom-field interaction

    NASA Astrophysics Data System (ADS)

    de Melo, Natalia R.; Vianna, Sandra S.

    2015-11-01

    We report on experimental results of four-wave mixing processes in rubidium vapor where coherence is induced on the three-photon resonant transition from 5 s to 6 p states via intermediate Rydberg levels. It is shown that the use of two beams in a noncollinear configuration, i.e., θ ≠0 , and high atomic density unveil new features. First, the θ =0 (collinear configuration) odd-photon destructive interference between the incident and generated fields is strongly inhibited for θ ≠0 . Second, most importantly, the observed cooperative frequency shift of the three-photon transition is strongly enhanced for small, but nonzero, values of θ due to the factor (1-cosθ ) -1, which is not present if the generated radiation field is not considered self-consistently in the Maxwell-Bloch equations.

  8. Large electronic third-order optical nonlinearities of cyanine dyes measured by resonant femtosecond degenerate four-wave mixing

    NASA Astrophysics Data System (ADS)

    Kasatani, Kazuo

    2003-01-01

    Third-order optical nonlinearities of several cyanine dyes were measured under resonant conditions by the femtosecond degenerate four-wave mixing (DFWM) technique. Temporal profiles of the DFWM signal were measured with a time resolution of 0.3 ps, and were found to consist of at least two components, the coherent instantaneous nonlinear response and the delayed response with a decay time constant of several hundred picoseconds. The latter can be attributed to molecular rotational relaxation of these dyes. The values of electronic component of the optical nonlinear susceptibility, χ e xxxx (3), for these dyes were ≈2×10 -12 esu at the very low concentration of 1×10 -5 mol dm -3. The electronic component of molecular hyperpolarizability, γe, was calculated to be ≈1×10 -28 esu for each dye.

  9. FOUR WAVE MIXING SPECTROSCOPY OF THE NO_3 tilde{B} ^2E' - tilde{X} ^2A_2' transition

    NASA Astrophysics Data System (ADS)

    Fukushima, Masaru; Ishiwata, Takashi

    2014-06-01

    The tilde{B} ^2E' - tilde{X} ^2A_2' electronic transition of NO_3 generated in a supersonic free jet expansion was investigated by four wave mixing ( 4WM ) spectroscopy. The degenerated 4WM and laser induced fluorescence ( LIF ) spectra around the 0_0^0 band region were measured simultaneously. The D4WM spectrum shows broad band features for the 0_0^0 band similar to that of the LIF spectrum. The broad 0_0^0 band does not consist of one sub-band, but of several bands. The intensity distribution of the sub-bands of the D4WM spectrum is similar, but not identical to that of the LIF spectrum.

  10. Nonperturbative transient four-wave-mixing line shapes due to excitation-induced shift and excitation-induced dephasing

    NASA Astrophysics Data System (ADS)

    Shacklette, J. M.; Cundiff, S. T.

    2003-04-01

    We numerically calculate the transient-four-wave-mixing (TFWM) response in systems that exhibit either a resonance frequency or a dephasing rate that depends on the level of excitation, which can occur in semiconductors or a dense atomic vapor. These effects change the intensity dependence of the TFWM signal, causing it to display noncubic behavior for significantly lower pulse areas and even a reduction in signal intensity for increasing pulse area. They also qualitatively change both the temporal behavior and spectrum of the TFWM signal in ways that cannot adequately be described in perturbation theory. For time-integrated TFWM, the saturation behavior is also found to depend on the delay between pulses. For comparison, the effects of local fields are also calculated as they produce similar effects. These results can help provide discrimination among the various phenomena.

  11. Free-Electron Laser Design for Four-Wave Mixing Experiments with Soft-X-Ray Pulses

    NASA Astrophysics Data System (ADS)

    Marcus, G.; Penn, G.; Zholents, A. A.

    2014-07-01

    We present the design of a single-pass free-electron laser amplifier suitable for enabling four-wave mixing x-ray spectroscopic investigations. The production of longitudinally coherent, single-spike pulses of light from a single electron beam in this scenario relies on a process of selective amplification where a strong undulator taper compensates for a large energy chirp only for a short region of the electron beam. This proposed scheme offers improved flexibility of operation and allows for independent control of the color, timing, and angle of incidence of the individual pulses of light at an end user station. Detailed numerical simulations are used to illustrate the more impressive characteristics of this scheme.

  12. Analytical analysis of adaptive defect detection in amplitude and phase structures using photorefractive four-wave mixing

    NASA Astrophysics Data System (ADS)

    Nehmetallah, George; Donoghue, John; Banerjee, Partha; Khoury, Jed; Yamamoto, Michiharu; Peyghambarian, Nasser

    2016-04-01

    In this work, brief theoretical modeling, analysis, and novel numerical verification of a photorefractive polymer based four wave mixing (FWM) setup for defect detection has been developed. The numerical simulation helps to validate our earlier experimental results to perform defect detection in periodic amplitude and phase objects using FWM. Specifically, we develop the theory behind the detection of isolated defects, and random defects in amplitude, and phase periodic patterns. In accordance with the developed theory, the results show that this technique successfully detects the slightest defects through band-pass intensity filtering and requires minimal additional post image processing contrast enhancement. This optical defect detection technique can be applied to the detection of production line defects, e.g., scratch enhancement, defect cluster enhancement, and periodic pattern dislocation enhancement. This technique is very useful in quality control systems, production line defect inspection, and computer vision.

  13. Performance analysis of incoherent multi-wavelength OCDMA systems under the impact of four-wave mixing.

    PubMed

    Dang, Ngoc T; Pham, Anh T

    2010-05-10

    In this paper, we comprehensively analyze the impact of four wave mixing (FWM) on the performance of incoherent multi-wavelength optical code-division multiple-access (MW-OCDMA) systems. We also consider many other interferences and noises, including multiple access interference, optical beating interference, and receiver noise, in the analysis. From the numerical results, we can find the power ranges of different MW-OCDMA systems, in which the impact of FWM is dominant and consequently results in an increase in the bit-error rate of the systems. We also find that the impact of FWM becomes more severe when the frequency spacing is small and/or dispersion-shifted fiber is used. In addition, we quantitatively discuss the impact of FWM on the number of supportable users and power penalty in the MW-OCDMA systems. PMID:20588844

  14. Wavelength conversion for polarization multiplexing signal using four-wave mixing in semiconductor optical amplifier with reduced polarization crosstalk

    NASA Astrophysics Data System (ADS)

    Zhou, Hui; Chen, Ming; Wan, Qiuzhen; Zheng, Zhiwei

    2016-06-01

    We investigated wavelength conversion for polarization multiplexing signal based on four-wave mixing in a semiconductor optical amplifier. We found that the converted signals endured crosstalk among the pol-muxed channels. We also proposed and demonstrated a wavelength conversion scheme with polarization diversity technique. By utilizing the technique, the converted polarization multiplexing signal can be received without crosstalk. In addition, the performance of the proposed system is numerically analyzed with respect to the bit error rate of the converted signal, different frequency spacing between signal and pump and modulated data rate. The simulation results show that the proposed scheme may be a promising method to realize transparent wavelength conversion for polarization multiplexing signals.

  15. Graphene-assisted nonlinear optical device for four-wave mixing based tunable wavelength conversion of QPSK signal.

    PubMed

    Hu, Xiao; Zeng, Mengqi; Wang, Andong; Zhu, Long; Fu, Lei; Wang, Jian

    2015-10-01

    We fabricate a nonlinear optical device based on a fiber pigtail cross-section coated with a single-layer graphene grown by chemical vapor deposition (CVD) method. Using such graphene-assisted nonlinear optical device, we experimentally demonstrate tunable wavelength conversion of a 10 Gbaud quadrature phase-shift keying (QPSK) signal by exploiting degenerate four-wave mixing (FWM) progress in graphene. We study the conversion efficiency as functions of the pump power and pump wavelength and evaluate the bit-error rate (BER) performance. The observed optical signal-to-noise ratio (OSNR) penalties for tunable QPSK wavelength conversion are less than 2.2 dB at a BER of 1 × 10(-3). PMID:26480130

  16. Degenerate four-wave mixing of optical vortices assisted by self-phase and cross-phase modulation

    NASA Astrophysics Data System (ADS)

    Maleshkov, G.; Hansinger, P.; Garanovich, I. L.; Skryabin, D.; Neshev, D. N.; Dreischuh, A.; Paulus, G. G.

    2010-10-01

    We study theoretically the non-phase-matched degenerate four-wave mixing of type ωs = 2ω1 ωω2 , involving beams carrying two-dimensional spatial phase dislocations in the form of singly-charged optical vortices (OVs). Accompanying third-order nonlinear processes in the non-resonant nonlinear medium (NLM), which are accounted for, are self- and cross-phase modulation. In the case of pump OV beams with identical topological charges the model predicts the generation of signal beams carrying OVs of the same charge. If the pump beams carry OVs with opposite charges, the generated signals are predicted to carry triply charged vortices which, in the case of a nonnegligible initial free-space propagation from the plane of vortex generation to the NLM, decay inside the NLM into three singly-charged vortices with highly overlapping cores.

  17. Imaging the uptake of gold nanoshells in live cells using plasmon resonance enhanced four wave mixing microscopy

    PubMed Central

    Garrett, Natalie; Whiteman, Matt; Moger, Julian

    2014-01-01

    Gold nanoshells (GNS) are novel metal nanoparticles exhibiting attractive optical properties which make them highly suitable for biophotonics applications. We present a novel investigation using plasmon-enhanced four wave mixing microscopy combined with coherent anti-Stokes Raman scattering (CARS) microscopy to visualize the distribution of 75 nm radius GNS within live cells. During a laser tolerance study we found that cells containing nanoshells could be exposed to < 2.5 mJ each with no photo-thermally induced necrosis detected, while cell death was linearly proportional to the power over this threshold. The majority of the GNS signal detected was from plasmon-enhanced four wave mixing (FWM) that we detected in the epi-direction with the incident lasers tuned to the silent region of the Raman spectrum. The cellular GNS distribution was visualized by combining the epi-detected signal with forwards-detected CARS at the CH2 resonance. The applicability of this technique to real-world nanoparticle dosing problems was demonstrated in a study of the effect of H2S on nanoshell uptake using two donor molecules, NaHS and GYY4137. As GYY4137 concentration was increased from 10 μM to 1 mM, the nanoshell pixel percentage as a function of cell volume (PPCV) increased from 2.15% to 3.77%. As NaHS concentration was increased over the same range, the nanoshell PPCV decreased from 12.67% to 11.47%. The most important factor affecting uptake in this study was found to be the rate of H2S release, with rapid-release from NaHS resulting in significantly greater uptake. PMID:21935123

  18. Imaging the uptake of gold nanoshells in live cells using plasmon resonance enhanced four wave mixing microscopy.

    PubMed

    Garrett, Natalie; Whiteman, Matt; Moger, Julian

    2011-08-29

    Gold nanoshells (GNS) are novel metal nanoparticles exhibiting attractive optical properties which make them highly suitable for biophotonics applications. We present a novel investigation using plasmon-enhanced four wave mixing microscopy combined with coherent anti-Stokes Raman scattering (CARS) microscopy to visualize the distribution of 75 nm radius GNS within live cells. During a laser tolerance study we found that cells containing nanoshells could be exposed to < 2.5 mJ each with no photo-thermally induced necrosis detected, while cell death was linearly proportional to the power over this threshold. The majority of the GNS signal detected was from plasmon-enhanced four wave mixing (FWM) that we detected in the epi-direction with the incident lasers tuned to the silent region of the Raman spectrum. The cellular GNS distribution was visualized by combining the epi-detected signal with forwards-detected CARS at the CH2 resonance. The applicability of this technique to real-world nanoparticle dosing problems was demonstrated in a study of the effect of H2S on nanoshell uptake using two donor molecules, NaHS and GYY4137. As GYY4137 concentration was increased from 10 µM to 1 mM, the nanoshell pixel percentage as a function of cell volume (PPCV) increased from 2.15% to 3.77%. As NaHS concentration was increased over the same range, the nanoshell PPCV decreased from 12.67% to 11.47%. The most important factor affecting uptake in this study was found to be the rate of H2S release, with rapid-release from NaHS resulting in significantly greater uptake. PMID:21935123

  19. Generation and Amplification of Tunable Multicolored Femtosecond Laser Pulses by Using Cascaded Four-Wave Mixing in Transparent Bulk Media

    PubMed Central

    Liu, Jun; Kobayashi, Takayoshi

    2010-01-01

    We have reviewed the generation and amplification of wavelength-tunable multicolored femtosecond laser pulses using cascaded four-wave mixing (CFWM) in transparent bulk media, mainly concentrating on our recent work. Theoretical analysis and calculations based on the phase-matching condition could explain well the process semi-quantitatively. The experimental studies showed: (1) as many as fifteen spectral up-shifted and two spectral down-shifted sidebands were obtained simultaneously with spectral bandwidth broader than 1.8 octaves from near ultraviolet (360 nm) to near infrared (1.2 μm); (2) the obtained sidebands were spatially separated well and had extremely high beam quality with M2 factor better than 1.1; (3) the wavelengths of the generated multicolor sidebands could be conveniently tuned by changing the crossing angle or simply replacing with different media; (4) as short as 15-fs negatively chirped or nearly transform limited 20-fs multicolored femtosecond pulses were obtained when one of the two input beams was negatively chirped and the other was positively chirped; (5) the pulse energy of the sideband can reach a μJ level with power stability better than 1% RMS; (6) broadband two-dimensional (2-D) multicolored arrays with more than ten periodic columns and more than ten rows were generated in a sapphire plate; (7) the obtained sidebands could be simultaneously spectra broadened and power amplified in another bulk medium by using cross-phase modulation (XPM) in conjunction with four-wave optical parametric amplification (FOPA). The characterization showed that this is interesting and the CFWM sidebands generated by this novel method have good enough qualities in terms of power stability, beam quality, and temporal features suited to various experiments such as ultrafast multicolor time-resolved spectroscopy and multicolor-excitation nonlinear microscopy. PMID:22399882

  20. Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion

    PubMed Central

    Morichetti, Francesco; Canciamilla, Antonio; Ferrari, Carlo; Samarelli, Antonio; Sorel, Marc; Melloni, Andrea

    2011-01-01

    Wave mixing inside optical resonators, while experiencing a large enhancement of the nonlinear interaction efficiency, suffers from strong bandwidth constraints, preventing its practical exploitation for processing broad-band signals. Here we show that such limits are overcome by the new concept of travelling-wave resonant four-wave mixing (FWM). This approach combines the efficiency enhancement provided by resonant propagation with a wide-band conversion process. Compared with conventional FWM in bare waveguides, it exhibits higher robustness against chromatic dispersion and propagation loss, while preserving transparency to modulation formats. Travelling-wave resonant FWM has been demonstrated in silicon-coupled ring resonators and was exploited to realize a 630-μm-long wavelength converter operating over a wavelength range wider than 60 nm and with 28-dB gain with respect to a bare waveguide of the same physical length. Full compatibility of the travelling-wave resonant FWM with optical signal processing applications has been demonstrated through signal retiming and reshaping at 10 Gb s−1 PMID:21540838

  1. High Efficiency Four-Wave Mixing with Relaxation Coupling of Longitude-Optical Phonons in Semiconductor Quantum Wells

    NASA Astrophysics Data System (ADS)

    She, Yan-Chao; Zheng, Xue-Jun; Wang, Deng-Long; Ding, Jian-Wen

    2015-05-01

    The time-dependent analysis of four-wave mixing (FWM) has been performed in four-level double semiconductor quantum wells (SQWs) considering the cross-coupling of the longitude-optical phonons (LOP) relaxation. It is shown that both the amplitude and the conversion efficiency of the FWM field enhance greatly with the increasing strength of cross-coupling of LOP relaxation. Interestingly, a double peak value of the conversion efficiency is obtained under a relatively weak single-photon detuning considering the LOP coupling. When the detuning becomes stronger, the double peaks turn into one peak appearing at the line respect to the about equality two control fields. The results can be interpreted by the effect of electromagnetically induced transparency and the indirect transition. Such controlled high efficiency FWM based on the cross-coupling LOP may have potential applications in quantum control and communications. Supported by Program for Changjiang Scholars and Innovative Research Team in University under Grant (IRT1080), National Natural Science Foundation of China under Grant Nos. 51272158, 11374252, and 51372214, Changjiang Scholar Incentive Program under Grant No. [2009] 17, Scientific Research Fund of Hunan Provincial Education Department of China under Grant No. 12A140, the Science and Technology Foundation of Guizhou Province of China under Grant No. J20122314

  2. Frequency-domain time-resolved four wave mixing spectroscopy of vibrational coherence transfer with single-color excitation.

    PubMed

    Pakoulev, Andrei V; Rickard, Mark A; Mathew, Nathan A; Kornau, Kathryn M; Wright, John C

    2008-07-17

    Triply vibrationally enhanced four-wave mixing spectroscopy is employed to observe vibrational coherence transfer between the asymmetric and symmetric CO-stretching modes of rhodium(I) dicarbonyl acetylacetonate (RDC). Coherence transfer is a nonradiative transition of a coherent superposition of quantum states to a different coherent superposition due to coupling of the vibrational modes through the bath. All three excitation pulses in the experiment are resonant with a single quantum coherence, but coherence transfer results in new coherences with different frequencies. The new output frequency is observed with a monochromator that resolves it from the stronger peak at the original excitation frequency. This technique spectrally resolves pathways that include coherence transfer, discriminates against spectral features created solely by radiative transitions, and temporally resolves modulations created by interference between different coherence transfer pathways. Redfield theory simulates the temporal modulations in the impulsive limit, but it is also clear that coherence transfer violates the secular approximation invoked in most Redfield theories. Instead, it requires non-Markovian and bath memory effects. RDC may provide a simple model for the development of theories that incorporate these effects. PMID:18572931

  3. Theory of intermodal four-wave mixing with random linear mode coupling in few-mode fibers.

    PubMed

    Xiao, Yuzhe; Essiambre, René-Jean; Desgroseilliers, Marc; Tulino, Antonia M; Ryf, Roland; Mumtaz, Sami; Agrawal, Govind P

    2014-12-29

    We study intermodal four-wave mixing (FWM) in few-mode fibers in the presence of birefringence fluctuations and random linear mode coupling. Two different intermodal FWM processes are investigated by including all nonlinear contributions to the phase-matching condition and FWM bandwidth. We find that one of the FWM processes has a much larger bandwidth than the other. We include random linear mode coupling among fiber modes using three different models based on an analysis of the impact of random coupling on differences of propagation constants between modes. We find that random coupling always reduces the FWM efficiency relative to its vale in the absence of linear coupling. The reduction factor is relatively small (about 3 dB) when only a few modes are linearly coupled but can become very large (> 40 dB) when all modes couple strongly. In the limit of a coupling length much shorter than the nonlinear length, intermodal FWM efficiency becomes vanishingly small. These results should prove useful in the context of space-division multiplexing with few-mode and multimode fibers. PMID:25607171

  4. Four-Wave Mixing Crosstalk Suppression Based on the Pairing Combinations of Differently Linear-Polarized Optical Signals

    PubMed Central

    Abd, Haider; Din, Norashidah Md.; Al-Mansoori, M. H.; Abdullah, F.; Fadhil, H. A.

    2014-01-01

    A new approach to suppressing the four-wave mixing (FWM) crosstalk by using the pairing combinations of differently linear-polarized optical signals was investigated. The simulation was conducted using a four-channel system, and the total data rate was 40 Gb/s. A comparative study on the suppression of FWM for existing and suggested techniques was conducted by varying the input power from 2 dBm to 14 dBm. The robustness of the proposed technique was examined with two types of optical fiber, namely, single-mode fiber (SMF) and dispersion-shifted fiber (DSF). The FWM power drastically reduced to less than −68 and −25 dBm at an input power of 14 dBm, when the polarization technique was conducted for SMF and DSF, respectively. With the conventional method, the FWM powers were, respectively, −56 and −20 dBm. The system performance greatly improved with the proposed polarization approach, where the bit error rates (BERs) at the first channel were 2.57 × 10−40 and 3.47 × 10−29 at received powers of −4.90 and −13.84 dBm for SMF and DSF, respectively. PMID:24883364

  5. Time-delayed behaviors of transient four-wave mixing signal intensity in inverted semiconductor with carrier-injection pumping

    NASA Astrophysics Data System (ADS)

    Hu, Zhenhua; Gao, Shen; Xiang, Bowen

    2016-01-01

    An analytical expression of transient four-wave mixing (TFWM) in inverted semiconductor with carrier-injection pumping was derived from both the density matrix equation and the complex stochastic stationary statistical method of incoherent light. Numerical analysis showed that the TFWM decayed decay is towards the limit of extreme homogeneous and inhomogeneous broadenings in atoms and the decaying time is inversely proportional to half the power of the net carrier densities for a low carrier-density injection and other high carrier-density injection, while it obeys an usual exponential decay with other decaying time that is inversely proportional to half the power of the net carrier density or it obeys an unusual exponential decay with the decaying time that is inversely proportional to a third power of the net carrier density for a moderate carrier-density injection. The results can be applied to studying ultrafast carrier dephasing in the inverted semiconductors such as semiconductor laser amplifier and semiconductor optical amplifier.

  6. Coherent anti-Stokes Raman scattering microscopy imaging with suppression of four-wave mixing in optical fibers.

    PubMed

    Wang, Zhiyong; Gao, Liang; Luo, Pengfei; Yang, Yaliang; Hammoudi, Ahmad A; Wong, Kelvin K; Wong, Stephen T C

    2011-04-25

    We demonstrated an optical fiber delivered coherent anti-Stokes Raman scattering (CARS) microscopy imaging system with a polarization-based mechanism for suppression of four-wave mixing (FWM) signals in delivery fiber. Polarization maintaining fibers (PMF) were used as the delivery fiber to ensure stability of the state of polarization (SOP) of lasers. The pump and Stokes waves were coupled into PMFs at orthogonal SOPs along the slow and fast axes of PMFs, respectively, resulting in a significant reduction of FWM signals generated in the fiber. At the output end of PMFs, a dual-wavelength waveplate was used to realign the SOPs of the two waves into identical SOPs prior to their entrance into the CARS microscope. Therefore, it allows the pump and Stokes waves with identical SOPs to excite samples at highest excitation efficiency. Our experimental results showed that this polarization-based FWM-suppressing mechanism can dramatically reduce FWM signals generated in PMFs up to approximately 99%. Meanwhile, the PMF-delivered CARS microscopy system with this mechanism can still produce high-quality CARS images. Consequently, our PMF-delivered CARS microscopy imaging system with the polarization-based FWM-suppressing mechanism potentially offers a new strategy for building fiber-based CARS endoscopes with effective suppression of FWM background noises. PMID:21643045

  7. Synthesis, z-scan and degenerate four wave mixing characterization of certain functionalized photosensitive polyesters containing ortho-hydroxyazo chromophores

    NASA Astrophysics Data System (ADS)

    Jayakrishnan, K.; Siji Narendran, N. K.; Sreejith, P.; Joseph, Antony; Chandrasekharan, K.; Purushothaman, E.

    2015-07-01

    The preparation and NLO characterization of photosensitive polyesters containing azoaromatic residues in the molecular backbone, functionalized with orthohydroxy chromophores is presented. Samples were studied for its UV-vis absorption, FT-IR and intensity dependent nonlinear absorption properties. Nonlinear characterization was carried out with z-scan using frequency doubled, Q-switched Nd:YAG laser operating at 532 nm. The closed aperture z-scan spectra reveal the self defocusing effects of the samples with negative nonlinearity coefficient (n2) showing values as high as -1.28 × 10-10 (esu) for certain samples and the corresponding third order susceptibility coefficient of the order of 29.9 × 10-12 (esu). Degenerate four wave mixing technique was employed to substantiate the findings. The numerical fits show that the molecules exhibit reverse saturable absorption. A study of beam fluence dependence of nonlinear absorption coefficient (βeff) has been presented. All phenomena indicate that molecules are reverse saturable absorbers whose optical limiting property gets enhanced with increasing conjugation length.

  8. 2D IR Spectroscopy using Four-Wave Mixing, Pulse Shaping, and IR Upconversion: A Quantitative Comparison

    PubMed Central

    Rock, William; Li, Yun-Liang; Pagano, Philip; Cheatum, Christopher M.

    2013-01-01

    Recent technological advances have led to major changes in the apparatuses used to collect 2D IR spectra. Pulse shaping offers several advantages including rapid data collection, inherent phase stability, and phase cycling capabilities. Visible array detection via upconversion allows the use of visible detectors that are cheaper, faster, more sensitive, and less noisy than IR detectors. However, despite these advantages, many researchers are reluctant to implement these technologies. Here we present a quantitative study of the S/N of 2D IR spectra collected with a traditional four-wave mixing (FWM) apparatus, with a pulse shaping apparatus, and with visible detection via upconversion to address the question of whether or not weak chromophores at low concentrations are still accessible with such an apparatus. We find that the enhanced averaging capability of the pulse shaping apparatus enables the detection of small signals that would be challenging to measure even with the traditional FWM apparatus, and we demonstrate this ability on a sample of cyanylated dihydrofolate reductase (DHFR). PMID:23687988

  9. Two-photon resonances in femtosecond time-resolved four-wave mixing spectroscopy: {beta}-carotene

    SciTech Connect

    Namboodiri, V.; Namboodiri, M.; Flachenecker, G.; Materny, A.

    2010-08-07

    Femtosecond time-resolved pump-degenerate four-wave mixing (pump-DFWM) spectroscopy has been used to study the ultrafast dynamics of {beta}-carotene involving several electronic and vibrational states. An initial pump pulse, resonant with the S{sub 0}-to-S{sub 2} transition, excites the molecular system and a DFWM process, resonant with the S{sub 1}-to-S{sub n} transition, is used to probe the relaxation pathways. The transient shows a peculiar decay behavior, which is due to the contributions of resonant DFWM signal of the excited S{sub 1} state, nonresonant DFWM signal of the ground S{sub 0} state and vibrational hot S{sub 0}{sup *} state, and the two-photon resonant DFWM signal of the ground S{sub 0} state. We have used a kinetic model including all the signal contributions to successfully fit the transient. The time constants extracted are in very good agreement with the known values for {beta}-carotene. For comparison, a two-pulse pump-probe experiment was performed measuring the transient absorption at the wavelength of the DFWM experiment.

  10. Spectrally-isolated violet to blue wavelength generation by cascaded degenerate four-wave mixing in a photonic crystal fiber.

    PubMed

    Yuan, Jinhui; Kang, Zhe; Li, Feng; Zhang, Xianting; Zhou, Guiyao; Sang, Xinzhu; Wu, Qiang; Yan, Binbin; Zhou, Xian; Wang, Liang; Zhong, Kangping; Wang, Kuiru; Yu, Chongxiu; Tam, Hwa Yaw; Wai, P K A

    2016-06-01

    Generation of spectrally-isolated wavelengths in the violet to blue region based on cascaded degenerate four-wave mixing (FWM) is experimentally demonstrated for the first time in a tailor-made photonic crystal fiber, which has two adjacent zero dispersion wavelengths (ZDWs) at 696 and 852 nm in the fundamental mode. The influences of the wavelength λp and the input average power Pav of the femtosecond pump pulses on the phase-matched frequency conversion process are studied. When femtosecond pump pulses at λp of 880, 870, and 860 nm and Pav of 500 mW are coupled into the normal dispersion region close to the second ZDW, the first anti-Stokes waves generated near the first ZDW act as a secondary pump for the next FWM process. The conversion efficiency ηas2 of the second anti-Stokes waves, which are generated at the violet to blue wavelengths of 430, 456, and 472 nm, are 4.8, 6.48, and 9.66%, for λp equalling 880, 870, and 860 nm, respectively. PMID:27244427

  11. Generation of optical frequency combs via four-wave mixing processes for low- and medium-resolution astronomy

    NASA Astrophysics Data System (ADS)

    Zajnulina, M.; Boggio, J. M. Chavez; Böhm, M.; Rieznik, A. A.; Fremberg, T.; Haynes, R.; Roth, M. M.

    2015-07-01

    We investigate the generation of optical frequency combs through a cascade of four-wave mixing processes in nonlinear fibres with optimised parameters. The initial optical field consists of two continuous-wave lasers with frequency separation larger than 40 GHz (312.7 pm at 1531 nm). It propagates through three nonlinear fibres. The first fibre serves to pulse shape the initial sinusoidal-square pulse, while a strong pulse compression down to sub-100 fs takes place in the second fibre which is an amplifying erbium-doped fibre. The last stage is a low-dispersion highly nonlinear fibre where the frequency comb bandwidth is increased and the line intensity is equalised. We model this system using the generalised nonlinear Schrödinger equation and investigate it in terms of fibre lengths, fibre dispersion, laser frequency separation and input powers with the aim to minimise the frequency comb noise. With the support of the numerical results, a frequency comb is experimentally generated, first in the near infra-red and then it is frequency-doubled into the visible spectral range. Using a MUSE-type spectrograph, we evaluate the comb performance for astronomical wavelength calibration in terms of equidistancy of the comb lines and their stability.

  12. Nonlinear phase mismatch and optimal input combination in atomic four-wave mixing in Bose-Einstein condensates

    SciTech Connect

    Yang Qiguang; Seo, J.T.; Creekmore, Santiel; Temple, Doyle A.; Ye Peixian; Bonner, Carl; Namkung, M.; Jung, S.S.; Kim, J.H.

    2003-01-01

    This work treats four-wave mixing (4WM) in Bose-Einstein condensates (BEC), focusing on the nonlinear phase mismatch, maximum output, and optimal input combination. We show that the nonlinear phase mismatch decreases the 4WM efficiency. It was found that the 4WM efficiency depends on both the coupling coefficient (i.e., the product of the total number of atoms, the scattering length, and the overlap integral) and the ratios among the three initial input beams. The 4WM efficiency increases with the increase of the coupling coefficient when it is small, then saturates, and finally decreases at high coupling coefficient due to both pump depletion and phase-modulation effects. A maximum output efficiency of about 50% in our case is predicted. In order to get the maximum output, the two pump beams should have equal amplitude and the probe beam should be as small as possible. In addition, a large coupling coefficient (>{pi}/2), which is determined by the ratio of the probe beam to the total input, is required. On the other hand, when the coupling coefficient is fixed, a maximum output for this case can be obtained by optimizing the input ratios among the three input beams. Other ratio combinations will decrease the 4WM efficiency.

  13. Laser-Induced Thermal Acoustics (LITA): Four-wave mixing measurement of sound speed, thermal diffusivity, and viscosity

    NASA Astrophysics Data System (ADS)

    Cummings, Eric B.

    1994-08-01

    Laser-induced thermal acoustics (LITA) is a promising optical four-wave mixing technique for gasdynamic measurement. The Chi(3) nonlinear process is a sequence of two opto-acoustic effects, electrostriction and absorption/ rapid-thermalization, and the acousto-optic effect. The evolution of the laser-induced acoustic structures temporally modulates Chi(3) and thereby the LITA signal. Time resolution of the signal provides the sound speed, thermal diffusivity, and acoustic damping rate, along with information about atomic or molecular energy transfer rates. LITA can also measure spectra of both the real and imaginary gas susceptibility. The physics of LITA is discussed and the derivation is sketched of a simple analytical expression that accurately describes both the magnitude and time history of the LITA signal. Early experimental results are presented. Sound speeds accurate to 0.5% and transport properties accurate to 30% have been measured in a single-shot without calibration. More realistic modeling should dramatically improve transport-property measurement. LITA spectra have been taken of weak spectral lines of NO2 in concentrations less than 50 ppb. Signal reflectivities as high as 0.0001 have been estimated. New applications of LITA, including velocimetry, are suggested.

  14. Experimental demonstration of optical phase conjugation using counter-propagating dual pumped four-wave mixing in semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Anchal, Abhishek; Pradeep Kumar, K.; O'Duill, Sean; Anandarajah, Prince M.; Landais, Pascal

    2016-06-01

    We report optical phase conjugation in C-band by counter-propagating dual pumped non-degenerate four-wave mixing in a semiconductor optical amplifier (SOA). The co-propagating signal and pump waves create a grating inside SOA which diffracts counter-propagating pump and generates the conjugate wave. Since the signal and conjugate waves appear at opposite ends, the conjugate is easily filtered out from the rest of spectrum with minimal spectral shift of the conjugate with respect to the incoming signal. With pump powers of -3.2 dBm each and signal input power of -7 dBm, conjugate power was of -27.2 dBm, giving a conversion efficiency of 1% at 18 GHz pump-signal detuning. By modulating the signal by a periodic pattern '1000' at 10 Gbps using a non-zero chirp intensity modulator and resolving the temporal profile of the electric field envelope of the conjugate wave, we demonstrate spectral inversion.

  15. Realisation of four-wave mixing phase matching for frequency components at intracavity stimulated Raman scattering in a calcite crystal

    SciTech Connect

    Smetanin, Sergei N; Fedin, Aleksandr V; Shurygin, Anton S

    2013-06-30

    The possibilities of implementing four-wave mixing (FWM) phase matching at stimulated Raman scattering (SRS) in a birefringent SRS-active crystal placed in a cavity with highly reflecting mirrors have been theoretically and experimentally investigated. Phase-matching angles providing conditions for five types of phase matching are determined for a calcite crystal. These types are characterised by different combinations of polarisation directions for the interacting waves and ensure FWM generation of either an anti-Stokes wave or the second Stokes SRS component. In agreement with the calculation results, low-threshold generation of the second Stokes SRS component with a wavelength 0.602 {mu}m was observed at angles of incidence on a calcite crystal of 4.8 Degree-Sign and 18.2 Degree-Sign , under SRS pumping at a wavelength of 0.532 {mu}m. This generation is due to the FWM coupling of the first and second Stokes SRS components with the SRS-pump wave. (nonlinear optical phenomena)

  16. Four-wave mixing based light sources for real-world biomedical applications of coherent Raman microscopy

    NASA Astrophysics Data System (ADS)

    Gottschall, Thomas; Meyer, Tobias; Jauregui, Cesar; Schmitt, Michael; Popp, Jürgen; Limpert, Jens; Tünnermann, Andreas

    2016-03-01

    Stimulated Raman Scattering requires an extremely quiet, widely wavelength tunable laser, which, up to now, is unheard of in fiber lasers. We present a compact and maintenance-free optical parametric oscillator based on degenerate four-wave mixing in a photonic crystal fiber. By employing an all-fiber frequency and repetition rate tunable laser as a seed source, we are able to generate tunable light between 1015 and 1065 nm. After amplification and subsequent conversion in the fiber OPO, signal and idler radiation between 785 and 960 nm and 1177 and 1500 nm may be generated with a repetition rate of 9 MHz. Therefore, we are able to address Raman shifts between 910 and 3030 cm-1. An additional output provides the Stokes radiation at 18 MHz required for the SRS process, which is passively synchronized to the tunable radiation. We measure the relative intensity noise of the Stokes beam at 9 MHz to be -150 dBc enabling high speed SRS imaging with a good signal-to-noise ratio. The combination of FWM based conversion, coupled with all-fiber Yb-based fiber lasers allows for the first turn-key, widely tunable and extremely compact laser systems developed for applications of CRS microscopy in clinics. This source could very well be the missing key instrument that CRS imaging requires for its real world transition.

  17. Complete Characterization of Weak Ultrashort Coherent Four-Wave-Mixing Signals from Quantum Wells by Spectral Interferometry

    NASA Astrophysics Data System (ADS)

    Walecki, Wojciech J.; Fittinghoff, David N.; Smirl, Arthur L.

    1997-03-01

    Four wave mixing (FWM) techniques using ultrashort pulses have proven to be extremely powerful tools for studying coherent processes and excitonic effects in semiconductors and multiple quantum wells (MQWs). Complete characterization of the emitted electromagnetic field requires the measurement of the phase, the polarization, and the amplitude. Failure to measure any one of these will result in a loss of essential information about the optical interactions. Present techniques for measuring the phase and the polarization state, however, are insensitive, and labor intensive. Here, we demonstrate that spectral interferometry can be used to completely characterize the FWM emission from MQWs. This method, involving only a linear measurement at a single fixed time delay, is simpler and more sensitive than previous techniques, which require measurements for various orientations of waveplates and for various time delays and which require a cross correlation with a reference pulse. We demonstrate the power of this technique by investigating the temporal dynamics of the FWM signal emitted from GaAs/AlGaAs MQWs as a function of the excitation fluence, time delay between the two incident pulses, and orientation of the input polarizations.

  18. Frequency-shift free optical phase conjugation using counter-propagating dual pump four-wave mixing in fiber

    NASA Astrophysics Data System (ADS)

    Anchal, Abhishek; K, Pradeep Kumar; Landais, Pascal

    2016-03-01

    We propose and numerically verify a novel scheme of frequency-shift free optical phase conjugation by counter-propagating dual pump four-wave mixing in nonlinear fiber. The two counter-propagating pumps create a Bragg grating inside the fiber, which diffracts the forward propagating signal and generates a backward propagating idler wave whose phase is conjugate of signal phase. The two pump frequencies are placed symmetrically about signal frequency to ensure that idler wave will have same frequency as that of signal wave. Since the signal and idler waves appear at opposite ends, the idler is easily filtered out from the rest of the spectrum. Using nonlinear Schrödinger equation, we derive equations of signal and idler evolution. We obtain expressions for idler phase and show that perfect phase conjugation is achieved at an optimum length of fiber for a given pump power. We study the effect of fiber length and pump power on phase conjugation. Simulation results show the perfect phase conjugation at optimum fiber length under lossless conditions and small phase-offset when fiber loss and self and cross phase modulations are included. The small phase-offset is avoided by choosing fiber length smaller than optimum fiber length. Simulation results exhibit close agreement to theoretical values, which validates our simulations.

  19. Correlation effects beyond Hartree-Fock theory and polarization dependence of four-wave mixing in bulk GaAs at high magnetic field

    SciTech Connect

    Fromer, N. A.; Kner, P.; Schaefer, W.

    2000-07-15

    Combining linear polarization excitation and magnetic-field breaking of chiral symmetry of optical transitions in Group-III-V semiconductors, we use resonant degenerate four-wave mixing to observe effects beyond the time-dependent Hartree-Fock theory that are not seen by other techniques. (c) 2000 The American Physical Society.

  20. Stimulated Raman scattering and four-wave mixing in CO/sub 2/-pumped para-H/sub 2/

    SciTech Connect

    Carlsten, J.L.; Kurnit, N.A.

    1981-01-01

    The Stokes source and CO/sub 2/ are combined with orthogonal polarization on a Ge beamsplitter and rendered oppositely circularly polarized by a KBr Fresnel rhomb, and then co-propagated through the amplifying medium contained in a 3m LN/sub 2/-cooled alumina waveguide. With this system, gain as high as e/sup 9/ on the peak of mode-locked spikes was observed, and with an HF OPO as input source, the system could be driven into pump depletion, but only for well-mode-locked pulses. Work with multipass refocusing cells is described both with a room temperature multipass cell (MPC) and also with a LN/sub 2/-cooled MPC. In addition to the gain measurements with the diode, we have obtained fully-depleted pump pulses with an OPO input, and have observed two-frequency depletion using two-pump pulses and one Stokes input, which is initiated by four-wave mixing. We have also obtained pump depletion starting from noise with a strong 9-..mu..m pump. The process involved is stimulated rotational Raman scattering in para-H/sub 2/. Scattering occurs from the J = 0 to the J = 2 rotational state which gives a Raman shift of 354.36 cm/sup -1/. By using para-H/sub 2/, from the blowoff of LH/sub 2/, one eliminates the odd rotational levels and thereby increase the gain for the J = 0 to J = 2 Raman transition. Results are presented and discussed. (WHK)

  1. Degenerate four-wave mixing and two-photon induced gratings in colloidal quantum dots CdSe/ZnS

    NASA Astrophysics Data System (ADS)

    Smirnov, A. M.; Kozlova, M. V.; Dneprovskii, V. S.

    2015-05-01

    The features of nonlinear and electro-optical processes has been discovered in the case of two-photon resonant excitation of the excitons in colloidal CdSe/ZnS quantum dots. Self-diffraction arises for two laser beams intersecting in the cell with colloidal CdSe/ZnS quantum dots (QDs) due to the dynamic phase grating formatting. The calculated induced change in the refractive is sufficient to form a phase diffraction grating. Such a large value of χ(3) as compared to the third-order nonlinear susceptibility for the solvent (hexane) is due to the increase in χ(3) occurring when the intermediate resonance is attained in a medium transparent for laser radiation. In order to identify physical processes responsible for the induced grating formation and the diffraction efficiency self-diffracted pulse intensity dependences on the incident pulse intensity were measured for two samples of colloidal QD CdSe/ZnS, which frequency of the fundamental exciton transition is tuned to the high-frequency and low-frequency region from the double laser frequency. The discovered cubic dependence of the self-diffracted pulse intensity on the incident pulse intensity was explained by four-wave mixing process. Discovered above 5-th index of power dependence of the self-diffracted pulse intensity on the excitation pulses intensity we explained by the increasing magnitude of two-photon absorption (due to shifting of two photons energy of laser radiation to the exact exciton absorption resonance by red Stark shift of the exciton absorption), accompanied by the growth absorption by two-photon excited carriers that leads to the induced amplitude grating formation in addition to the phase grating.

  2. Self-pumped phase conjugation and four-wave mixing in 0- and 45-deg-cut n-type BaTiO3:Co

    NASA Technical Reports Server (NTRS)

    Garrett, M. H.; Chang, J. Y.; Jenssen, H. P.; Warde, C.

    1993-01-01

    Relatively fast self-pumped phase-conjugate and four-wave-mixing rise times are reported in n-type cobalt-doped barium titanate. With the crystal oriented in a 45-deg cut as compared with the same crystal in a 0-deg cut we find a factor of 3 decrease in the 0-90-percent rise time to 800 ms with 25-mW input power at 514.5 nm. Also, the self-pumped phase-conjugate reflectivity increases from 20 to 40 percent. We deduce that the phase conjugation is from internally seeded stimulated photorefractive backscattering. The four-wave-mixing rise time of the 45-deg-cut crystal is 4 ms with a reflectivity of 48 percent when the pumping beams are derived from self-pumped phase conjugation that has an input power of 25 mW.

  3. Optical phase conjugation by four-wave mixing in Nd:YAG laser oscillator for optical energy transfer to a remote target

    SciTech Connect

    Kawakami, K. Komurasaki, K.; Okamura, H.

    2015-02-28

    A self-starting phase conjugator was designed for optical energy transfer to a remote target. Saturable-gain four-wave mixing in a laser resonator was achieved using a flash-lamp pumped Nd:YAG crystal and phase-conjugate light (PCL) generation were verified. Wavefront correction experimentation revealed that beam wander caused by air turbulence is compensated. Tracking capability was demonstrated in the range of 9 mrad with tracking accuracy of ±0.04 mrad. The maximum field of view was measured to be 4.7°. Dependence of phase-conjugate light energy on reference light energy was investigated. The maximum output of 320 mJ was obtained. The temporal behavior of PCL is discussed based on the four-wave mixing mechanism. Unlike a conventional loop resonator type phase conjugator, this system is applicable for wireless energy transfer to a remote target.

  4. Origin of picosecond-pulse-induced, degenerate four-wave-mixing signals in KTa sub 1 minus x Nb sub x O sub 3 crystals

    SciTech Connect

    Liu, H.; Powell, R.C. ); Boatner, L.A. )

    1991-07-01

    Transient gratings have been produced in KTa{sub 1{minus}{ital x}}Nb{sub {ital x}}O{sub 3} by picosecond-pulse, two-photon excitation using degenerate four-wave-mixing techniques. The excitation process has been characterized through fluorescence studies, and the fluorescence is attributed to the transition between an excited state and the ground state of B{sup 4+} ions that are produced in ABO{sub 3} perovskite crystals. Strong electron-phonon coupling gives rise to the luminescence quenching. The observed degenerate four-wave-mixing signal is shown to be due predominantly to a phase grating caused by a change in the susceptibility associated with the formation of Nb{sup 4+} or Ta{sup 4+} ions in the peak region of the grating. The grating signal intensity was found to be dependent on the concentration of niobium ions and the crossing angle of the two laser write beams.

  5. Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light

    NASA Astrophysics Data System (ADS)

    Turnbull, M. T.; Petrov, P. G.; Embrey, C. S.; Marino, A. M.; Boyer, V.

    2013-09-01

    Nondegenerate forward four-wave mixing in hot atomic vapors has been shown to produce strong quantum correlations between twin beams of light [McCormick , Opt. Lett.OPLEDP0146-959210.1364/OL.32.000178 32, 178 (2007)], in a configuration which minimizes losses by absorption. In this paper, we look at the role of the phase-matching condition in the trade-off that occurs between the efficiency of the nonlinear process and the absorption of the twin beams. To this effect, we develop a semiclassical model by deriving the atomic susceptibilities in the relevant double-Λ configuration and by solving the classical propagation of the twin-beam fields for parameters close to those found in typical experiments. These theoretical results are confirmed by a simple experimental study of the nonlinear gain experienced by the twin beams as a function of the phase mismatch. The model shows that the amount of phase mismatch is key to the realization of the physical conditions in which the absorption of the twin beams is minimized while the cross coupling between the twin beams is maintained at the level required for the generation of strong quantum correlations. The optimum is reached when the four-wave mixing process is not phase matched for fully resonant four-wave mixing.

  6. Four-wave mixing of a chirped signal with bandwidth-limited pump waves in a resonant medium

    SciTech Connect

    Kabanov, V V

    1998-07-31

    An investigation is reported of the characteristic features of four-wave interaction of a chirped signal with bandwidth-limited pump waves in a resonant medium modelled by a two-level scheme. Analytic estimates are obtained and a numerical analysis is made of the combined influence of various mechanisms (spatial phase matching, a finite nonlinear response time, and phase cross-modulation) on the spectral composition and on the temporal behaviour of the fourth pulse. Conditions are found for achieving, with practically undetectable distortions, phase conjugation of a chirped signal accompanied by shortening of the pulse envelope and narrowing of the spectrum of the phase-conjugate wave. (nonlinear optical phenomena)

  7. Electrically Tunable Microlens via Photopolymerization-Induced Phase Separation of Liquid Crystal/Monomer Mixtures Based on Four-Wave Mixing

    NASA Astrophysics Data System (ADS)

    Kyu, Thein; Nwabunma, Domasius

    2001-03-01

    We introduce a new method of fabricating electrically tunable liquid crystal (LC) microlens via photopolymerization-induced phase separation of LC/monomer mixtures using four-wave mixing technique, i.e., interference of two horizontal and two vertical waves. The microlens forming process was simulated based on a spatially modulated photopolymerization reaction coupled with the time-dependent Ginzburg-Landau (TDGL) Model C equations, which incorporate free energy densities due to isotropic mixing, LC ordering, and polymer network elasticity. Our simulation revealed that the calculated LC microlens are similar to the compound eyes found in the eyes of insects such as flies, ants, and wasps.

  8. Phase-matched waveguide four-wave mixing scaled to higher peak powers with large-core-area hollow photonic-crystal fibers.

    PubMed

    Konorov, S O; Serebryannikov, E E; Fedotov, A B; Miles, R B; Zheltikov, A M

    2005-05-01

    Hollow photonic-crystal fibers with large core diameters are shown to allow waveguide nonlinear-optical interactions to be scaled to higher pulse peak powers. Phase-matched four-wave mixing is predicted theoretically and demonstrated experimentally for millijoule nanosecond pulses propagating in a hollow photonic-crystal fiber with a core diameter of about 50 microm , suggesting the way to substantially enhance the efficiency of nonlinear-optical spectral transformations and wave mixing of high-power laser pulses in the gas phase. PMID:16089705

  9. Phase discrimination and simultaneous frequency conversion of the orthogonal components of an optical signal by four-wave mixing in an SOA.

    PubMed

    Webb, R P; Dailey, J M; Manning, R J; Ellis, A D

    2011-10-10

    Simultaneous conversion of the two orthogonal phase components of an optical input to different output frequencies has been demonstrated by simulation and experiment. A single stage of four-wave mixing between the input signal and four pumps derived from a frequency comb was employed. The nonlinear device was a semiconductor optical amplifier, which provided overall signal gain and sufficient contrast for phase sensitive signal processing. The decomposition of a quadrature phase-shift keyed signal into a pair of binary phase-shift keyed outputs at different frequencies was also demonstrated by simulation. PMID:21997012

  10. Cross talk free multi channel processing of 10 Gbit/s data via four wave mixing in a 1550 nm InAs/InP quantum dash amplifier.

    PubMed

    Capua, A; O'Duill, S; Mikhelashvili, V; Eisenstein, G; Reithmaier, J P; Somers, A; Forchel, A

    2008-11-10

    We demonstrate multi wavelength processing in a broad band 1550 nm quantum dash optical amplifier. Two 10 Gbit/s signals, spectrally separated by 30 nm are individually wavelength converted via four wave mixing (FWM) with no cross talk. High power signal levels cause depletion of high energy and wetting layer states resulting in some homogenizing of the gain medium and generation of cross FWM components near each channel due to FWM in the other channel. These do not affect the cross-talkless multichannel processing except when the two channels use equal detuning between signal and pump. PMID:19581999

  11. Transient analysis of degenerate four-wave mixing in saturable absorbers: application to Cr 4+:GSGG at 1.06 μm

    NASA Astrophysics Data System (ADS)

    Brignon, A.; Huignard, J.-P.

    1994-09-01

    We introduce a model of degenerate four-wave mixing in saturable absorbers in the transient regime when the interacting pulses have a duration much shorter than the lifetime of the excited-state level. Our model takes into account of the depletion and the mutual interaction of the pump waves. We study the influence of excited-state absorption on phase conjugate reflectivity. This theory agrees with experimental investigations made in Cr 4+:GSGG with nanosecond pulses at λ0 = 1.06 μm. A reflectivity of 0.6% is achieved and imaging capabilities are demonstrated.

  12. Mechanism and computational model for Lyman-{alpha}-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas

    SciTech Connect

    Louchev, Oleg A.; Saito, Norihito; Wada, Satoshi; Bakule, Pavel; Yokoyama, Koji; Ishida, Katsuhiko; Iwasaki, Masahiko

    2011-09-15

    We present a theoretical model combined with a computational study of a laser four-wave mixing process under optical discharge in which the non-steady-state four-wave amplitude equations are integrated with the kinetic equations of initial optical discharge and electron avalanche ionization in Kr-Ar gas. The model is validated by earlier experimental data showing strong inhibition of the generation of pulsed, tunable Lyman-{alpha} (Ly-{alpha}) radiation when using sum-difference frequency mixing of 212.6 nm and tunable infrared radiation (820-850 nm). The rigorous computational approach to the problem reveals the possibility and mechanism of strong auto-oscillations in sum-difference resonant Ly-{alpha} generation due to the combined effect of (i) 212.6-nm (2+1)-photon ionization producing initial electrons, followed by (ii) the electron avalanche dominated by 843-nm radiation, and (iii) the final breakdown of the phase matching condition. The model shows that the final efficiency of Ly-{alpha} radiation generation can achieve a value of {approx}5x10{sup -4} which is restricted by the total combined absorption of the fundamental and generated radiation.

  13. Mechanism and computational model for Lyman-α-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas

    NASA Astrophysics Data System (ADS)

    Louchev, Oleg A.; Bakule, Pavel; Saito, Norihito; Wada, Satoshi; Yokoyama, Koji; Ishida, Katsuhiko; Iwasaki, Masahiko

    2011-09-01

    We present a theoretical model combined with a computational study of a laser four-wave mixing process under optical discharge in which the non-steady-state four-wave amplitude equations are integrated with the kinetic equations of initial optical discharge and electron avalanche ionization in Kr-Ar gas. The model is validated by earlier experimental data showing strong inhibition of the generation of pulsed, tunable Lyman-α (Ly-α) radiation when using sum-difference frequency mixing of 212.6 nm and tunable infrared radiation (820-850 nm). The rigorous computational approach to the problem reveals the possibility and mechanism of strong auto-oscillations in sum-difference resonant Ly-α generation due to the combined effect of (i) 212.6-nm (2+1)-photon ionization producing initial electrons, followed by (ii) the electron avalanche dominated by 843-nm radiation, and (iii) the final breakdown of the phase matching condition. The model shows that the final efficiency of Ly-α radiation generation can achieve a value of ˜5×10-4 which is restricted by the total combined absorption of the fundamental and generated radiation.

  14. The first search for sub-eV scalar fields via four-wave mixing at a quasi-parallel laser collider

    NASA Astrophysics Data System (ADS)

    Homma, Kensuke; Hasebe, Takashi; Kume, Kazuki

    2014-08-01

    A search for sub-eV scalar fields coupling to two photons has been performed via four-wave mixing at a quasi-parallel laser collider for the first time. The experiment demonstrates the novel approach of searching for resonantly produced sub-eV scalar fields by combining two-color laser fields in the vacuum. The aim of this paper is to provide the concrete experimental setup and the analysis method based on specific combinations of polarization states between incoming and outgoing photons, which is extendable to higher-intensity laser systems operated at high repetition rates. No significant signal of four-wave mixing was observed by combining a 0.2 μ J/0.75 ns pulse laser and a 2 mW CW laser on the same optical axis. Based on the prescription developed for this particular experimental approach, we obtained the upper limit at a confidence level of 95% on the coupling-mass relation.

  15. All-optical ultrafast wavelength and mode converter based on inter-modal four-wave mixing in few-mode fibers

    NASA Astrophysics Data System (ADS)

    Weng, Yi; He, Xuan; Wang, Junyi; Pan, Zhongqi

    2015-08-01

    An ultrafast all-optical simultaneous wavelength and mode conversion scheme is purposed based on intermodal four-wave mixing (IM-FWM), with the capability of switching state of polarization (SOP) and mode degeneracy orientation (MDO) in few-mode fibers (FMF). The relation among the conversion efficiency, pump power and phase matching conditions is investigated in theory analysis and simulation. Using this scheme, cross-polarization modulation (XPolM) and cross-mode modulation (XMM) can be achieved, by in the best case up to 50% conversion efficiency. Furthermore, numerical results further indicate that the proposed configuration has the potential application for generating doughnut modes by the mixing of three characteristic spatial frequencies.

  16. Study of optical phase conjugation in amorphous Zn(x)-S(y)-Se(100-x-y) chalcogenide thin films using degenerate four-wave mixing.

    PubMed

    Rani, Sunita; Mohan, Devendra; Kishore, Nawal

    2014-01-24

    Degenerate four-wave mixing (DFWM) experiment is performed to obtain light wavefront inversion (phase conjugation) in semiconducting chalcogenide thin films. Third order nonlinearity of amorphous Zn(x)-S(y)-Se(100-x-y) chalcogenide thin films using DFWM technique is studied at second harmonic of Nd:YAG laser. Influence of total input irradiance on phase conjugate signal is deliberated using log-log plot that has a slope of three and hence implies third order nonlinearity. The dependence of phase conjugate signal on forward beam and backward beam is also studied. The period of the grating formed by interference of forward and probe beam is determined. As the temporal overlapping and sample thickness conditions are satisfied, the third order nonlinear susceptibility, figure of merit and nonlinear refractive index of amorphous films are estimated. The nonlinear behavior is analyzed in terms of decrease in band gap with increasing Zinc and decreasing Sulfur content. PMID:24121601

  17. Study of optical phase conjugation in amorphous Znx-Sy-Se100-x-y chalcogenide thin films using degenerate four-wave mixing

    NASA Astrophysics Data System (ADS)

    Rani, Sunita; Mohan, Devendra; Kishore, Nawal

    2014-01-01

    Degenerate four-wave mixing (DFWM) experiment is performed to obtain light wavefront inversion (phase conjugation) in semiconducting chalcogenide thin films. Third order nonlinearity of amorphous Znx-Sy-Se100-x-y chalcogenide thin films using DFWM technique is studied at second harmonic of Nd:YAG laser. Influence of total input irradiance on phase conjugate signal is deliberated using log-log plot that has a slope of three and hence implies third order nonlinearity. The dependence of phase conjugate signal on forward beam and backward beam is also studied. The period of the grating formed by interference of forward and probe beam is determined. As the temporal overlapping and sample thickness conditions are satisfied, the third order nonlinear susceptibility, figure of merit and nonlinear refractive index of amorphous films are estimated. The nonlinear behavior is analyzed in terms of decrease in band gap with increasing Zinc and decreasing Sulfur content.

  18. Degenerate four-wave mixing based all-optical wavelength conversion in a semiconductor optical amplifier and highly-nonlinear photonic crystal fiber parametric loop mirror

    NASA Astrophysics Data System (ADS)

    Liu, Jianguo; Cheng, Tee Hiang; Yeo, Yong kee; Wang, Yixin; Xue, Lifang; Wang, Dawei; Yu, Xiaojun

    2008-11-01

    The idler is separated from the co-propagating pump in a degenerate four-wave mixing (DFWM) with a symmetrical parametric loop mirror (PALM), which is composed of two identical SOAs and a 70 m highly-nonlinear photonic crystal fiber (HN-PCF). The signal and pump are coupled into the symmetrical PALM from different ports, respectively. After the DFWM based wavelength conversion (WC) in the clockwise and anticlockwise, the idler exits from the signal port, while the pump outputs from its input port. Therefore, the pump is effectively suppressed in the idler channel without a high-speed tunable filter. Contrast to a traditional PALM, the DFWM based conversion efficiency is increased greatly, and the functions of the amplification and the WC are integrated in the smart SOA and HN-PCF PALM.

  19. Non-degenerate four-wave mixing in an optically injection-locked InAs/InP quantum dot Fabry–Perot laser

    SciTech Connect

    Huang, H.; Schires, K.; Grillot, F.; Poole, P. J.

    2015-04-06

    Non-degenerate four-wave mixing in an InAs/InP quantum dot Fabry–Perot laser is investigated with an optical injection-locking scheme. Wavelength conversion is obtained for frequency detunings ranging from +2.5 THz to −3.5 THz. The normalized conversion efficiency is maintained above −40 dB between −1.5 and +0.5 THz with an optical signal-to-noise ratio above 20 dB and a maximal third-order nonlinear susceptibility normalized to material gain of 2 × 10{sup −19} m{sup 3}/V{sup 2}. In addition, we show that injection-locking at different positions in the gain spectrum has an impact on the nonlinear conversion process and the symmetry between up- and down- converted signals.

  20. χ{sup (3)} measurements of axial ligand modified high valent tin(IV) porphyrins using degenarete four wave mixing at 532nm

    SciTech Connect

    Narendran, N. K. Siji Chandrasekharan, K.; Soman, Rahul; Arunkumar, Chellaiah; Sudheesh, P.

    2014-10-15

    Porphyrins and metalloporphyrins are unique class of molecules for Nonlinear Optical applications because of their unique structure of altering the central metal atom, large extended π-system, high thermal stability, tunable shape, symmetry and synthetic versatility Here, we report χ{sup (3)} Measurements of a simple phenyl porphyrins and its highvalent tin(IV) porphyrins with Bromination characterized by UV-Visible spectroscopic method. In this study, we employed the Degenerate Four Wave Mixing technique using forward Boxcar geometry with an Nd:YAG nano second pulsed laser as source and it was found that the tin(IV) porphyrin with Bromination exhibits good χ{sup (3)} value and figure of merit.

  1. Third-order optical nonlinearities of sol-gel silica coating films containing metal porphyrin derivatives measured by resonant femtosecond degenerate four-wave mixing technique

    NASA Astrophysics Data System (ADS)

    Kasatani, Kazuo; Okamoto, Hiroaki; Takenaka, Shunsuke

    2003-11-01

    Third-order optical nonlinearities of sol-gel silica coating films containing metal porphyrin derivatives were measured under resonant conditions by the femtosecond degenerate four-wave mixing (DFWM) technique. Temporal profiles of the DFWM signal were measured with a time resolution of 0.3 ps, and were found to consist of two components, the coherent instantaneous nonlinear response and the delayed response with a decay time constant of several to several hundred ps. The latter can be attributed to population grating of an excited state, and contribution of slow component was very little for a zinc porphyrin derivative. The values of electronic component of the optical nonlinear susceptibility, χ(3) xxxx, for these films were ca. 2 x 10-10 esu.

  2. Broadband optical parametric amplifier formed by two pairs of adjacent four-wave mixing sidebands in a tellurite microstructured optical fibre

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Tuan, Tong-Hoang; Kawamura, Harutaka; Nagasaka, Kenshiro; Suzuki, Takenobu; Ohishi, Yasutake

    2016-05-01

    A broadband fibre-optical parametric amplifier (FOPA) operating at a novel wavelength region that is far from the pump wavelength has been demonstrated by exploiting two pairs of adjacent four-wave mixing (FWM) sidebands generated simultaneously in a tellurite microstructured optical fibre (TMOF). Owing to the large nonlinearity of the TMOF and the high pump peak power provided by a picosecond laser, a maximal average gain of 65.1 dB has been obtained. When the FOPA is operated in a saturated state, a flat-gain amplification from 1424 nm to 1459 nm can be achieved. This broadband and high-gain FOPA operating at new wavelength regions far from the pump offers the prospect of all-optical signal processing.

  3. Wavelength-assignable 1310/1550 nm wavelength conversion using completely phase-matched two-pump four-wave mixing in a silicon waveguide

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Gao, Shiming

    2015-12-01

    A wavelength converter between 1310 and 1550 nm bands is presented based on two-pump four-wave mixing (FWM) in a silicon waveguide. The principle of the inter-band wavelength conversion is analyzed. For an arbitrary incident signal, the converted idler wavelength can be freely assigned by suitably setting the two pump wavelengths to completely satisfy the phase-matching condition. Simulation results show that the signal can be flexibly converted between 1310 and 1550 bands. The conversion efficiencies for the signals with different wavelengths are very stable because the FWM phase-matching condition is completely met. Using this two-pump FWM configuration, channel-selective function can also be realized for wavelength division multiplexing (WDM) signals by engineering the dispersion profile of the silicon waveguide according to the WDM channel spacing.

  4. Observation of the exciton and Urbach band tail in low-temperature-grown GaAs using four-wave mixing spectroscopy

    SciTech Connect

    Webber, D.; Yildirim, M.; Hacquebard, L.; March, S.; Mathew, R.; Gamouras, A.; Hall, K. C.; Liu, X.; Dobrowolska, M.; Furdyna, J. K.

    2014-11-03

    Four-wave mixing (FWM) spectroscopy reveals clear signatures associated with the exciton, free carrier inter-band transitions, and the Urbach band tail in low-temperature-grown GaAs, providing a direct measure of the effective band gap as well as insight into the influence of disorder on the electronic structure. The ability to detect (and resolve) these contributions, in contrast to linear spectroscopy, is due to an enhanced sensitivity of FWM to the optical joint density of states and to many-body effects. Our experiments demonstrate the power of FWM for studying the near-band-edge optical properties and coherent carrier dynamics in low-temperature-grown semiconductors.

  5. Improved multiple-wavelength Brillouin-Raman fiber laser assisted by four-wave mixing with a micro-air cavity.

    PubMed

    Li, Xuejiao; Ren, Liyong; Lin, Xiao; Ju, Haijuan; Chen, Nana; Liang, Jian; Ren, Kaili; Xu, Yiping

    2015-11-20

    In this paper, a multiple-wavelength Brillouin-Raman fiber laser (MBRFL) with enhanced performance is presented. This is attributed to the improved Fresnel reflection, thus strengthening four-wave mixing in the fiber laser cavity due to the insertion of a micro-air cavity. As a result, compared with the conventional MBRFL without a micro-air cavity, the thresholds of Brillouin Stokes (BS) lines are observed to be reduced, and more BS lines can be generated. In the experiment, a MBRFL having 40 BS lines is achieved with good stability on laser wavelengths and output power. In view of the fact that more BS lines can be established with a simple scheme and low pump power, our MBRFL promises to be employed as a multiwavelength source for optical communication. PMID:26836558

  6. Phase-conjugate reflection by degenerate four-wave mixing in 2-(2'-hydroxyphenyl)benzimidazole dye solutions: solvent effects

    NASA Astrophysics Data System (ADS)

    Costela, A.; Garcia-Moreno, I.

    1996-06-01

    Thermally induced phase conjugation by degenerate four-wave mixing in solutions of the proton-transfer dye 2-(2'-hydroxyphenyl)benzimidazole in methanol, acetonitrile, 1,4-dioxane, and N,N-dimethylformamide in the weak absorption region, low-reflectivity regime, and nanosecond time domain is reported. Evidence of oscillatory acoustic modes in the non-linear medium is presented and existing theories are shown to explain satisfactorily the experimental results. Several aspects of the thermally induced phase conjugation process have been explored, with emphasis on the effect in the process efficiency of variables such as dye concentration, fluorescence quantum yield, and read beam time delay. The fast processes leading to the formation of the electronically excited tautomer seem to be the main contributors to the formation of thermal grating in the studied media.

  7. Alignment and maintenance free all-fiber laser source for CARS microscopy based on frequency conversion by four-wave-mixing

    NASA Astrophysics Data System (ADS)

    Baumgartl, Martin; Chemnitz, Mario; Jauregui, Cesar; Meyer, Tobias; Dietzek, Benjamin; Popp, Jürgen; Limpert, Jens; Tünnermann, Andreas

    2012-01-01

    In this contribution we report on a novel approach for pump and stokes pulse generation in extremely compact all-fiber systems using parametric frequency conversion (four-wave-mixing) in photonic-crystal fibers. Representing a completely alignment-free approach, the all-fiber ytterbium-based short-pulse laser system provides intrinsically synchronized tunable two-color picosecond pulses emitted from a single fiber end. The system was designed to address important CH-stretch vibrational resonances. Strong CARS signals are generated and proved by spectroscopic experiments, tuning the laser over the resonance of toluene at 3050cm-1. Furthermore the whole laser setup with a footprint of only 30x30cm2 is mounted on a home-built laser-scanning-microscope and CARS imaging capabilities are verified. The compact turn-key system represents a significant advance for CARS microscopy to enter real-world, in particular bio-medical, applications.

  8. Simultaneous multichannel wavelength multicasting and XOR logic gate multicasting for three DPSK signals based on four-wave mixing in quantum-dot semiconductor optical amplifier.

    PubMed

    Qin, Jun; Lu, Guo-Wei; Sakamoto, Takahide; Akahane, Kouichi; Yamamoto, Naokatsu; Wang, Danshi; Wang, Cheng; Wang, Hongxiang; Zhang, Min; Kawanishi, Tetsuya; Ji, Yuefeng

    2014-12-01

    In this paper, we experimentally demonstrate simultaneous multichannel wavelength multicasting (MWM) and exclusive-OR logic gate multicasting (XOR-LGM) for three 10Gbps non-return-to-zero differential phase-shift-keying (NRZ-DPSK) signals in quantum-dot semiconductor optical amplifier (QD-SOA) by exploiting the four-wave mixing (FWM) process. No additional pump is needed in the scheme. Through the interaction of the input three 10Gbps DPSK signal lights in QD-SOA, each channel is successfully multicasted to three wavelengths (1-to-3 for each), totally 3-to-9 MWM, and at the same time, three-output XOR-LGM is obtained at three different wavelengths. All the new generated channels are with a power penalty less than 1.2dB at a BER of 10(-9). Degenerate and non-degenerate FWM components are fully used in the experiment for data and logic multicasting. PMID:25606876

  9. All-optical frequency downconversion technique utilizing a four-wave mixing effect in a single semiconductor optical amplifier for wavelength division multiplexing radio-over-fiber applications.

    PubMed

    Kim, Hyoung-Jun; Song, Jong-In

    2012-03-26

    An all-optical frequency downconversion utilizing a four-wave mixing effect in a single semiconductor optical amplifier (SOA) was experimentally demonstrated for wavelength division multiplexing (WDM) radio-over-fiber (RoF) applications. Two WDM optical radio frequency (RF) signals having 155 Mbps differential phase shift keying (DPSK) data at 28.5 GHz were simultaneously down-converted to two WDM optical intermediate frequency (IF) signals having an IF frequency of 4.5 GHz by mixing with an optical local oscillator (LO) signal having a LO frequency of 24 GHz in the SOA. The bit-error-rate (BER) performance of the RoF up-links with different optical fiber lengths employing all-optical frequency downconversion was investigated. The receiver sensitivity of the RoF up-link with a 6 km single mode fiber and an optical IF signal in an optical double-sideband format was approximately -8.5 dBm and the power penalty for simultaneous frequency downconversion was approximately 0.63 dB. The BER performance showed a strong dependence on the fiber length due to the fiber dispersion. The receiver sensitivity of the RoF up-link with the optical IF signal in the optical single-sideband format was reduced to approximately -17.4 dBm and showed negligible dependence on the fiber length. PMID:22453476

  10. An all-optical frequency up-converter utilizing four-wave mixing in a semiconductor optical amplifier for sub-carrier multiplexed radio-over-fiber applications.

    PubMed

    Kim, Hyoung-Jun; Song, Jong-In; Song, Ho-Jin

    2007-03-19

    A novel all-optical frequency up-converter utilizing four-wave mixing (FWM) in a semiconductor optical amplifier (SOA) was proposed and experimentally demonstrated. The frequency up-converter converted an optical intermediate frequency (IF) signal (f(IF) = 2.5 GHz) to an optical radio frequency (RF) signal (f(RF) = 35 and 40 GHz) through mixing with an optical local oscillator (LO) signal (f(LO) = 37.5 GHz). The up-converter showed positive conversion efficiency of 5.77 dB for the optical IF power of -22 dBm and the optical LO power of -13 dBm. This scheme showed broad bandwidths with respect to both LO and IF frequencies. The up-converter showed a phase noise of -84.5 dBc/Hz for the LO frequency of 37.5 GHz (f(LO)) and the offset frequency of 10 kHz after the frequency up-conversion. PMID:19532579

  11. Near-resonant four-wave mixing of attosecond extreme-ultraviolet pulses with near-infrared pulses in neon: Detection of electronic coherences

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Warrick, Erika R.; Fidler, Ashley; Leone, Stephen R.; Neumark, Daniel M.

    2016-08-01

    Coherent narrow-band extreme-ultraviolet (EUV) light is generated by a near-resonant four-wave mixing (FWM) process between attosecond pulse trains and near-infrared pulses in neon gas. The near-resonant FWM process involves one vacuum-ultraviolet (VUV) photon and two near-infrared (NIR) photons and produces new higher-energy frequency components corresponding to the n s /n d to ground-state (2 s22 p6) transitions in the neon atom. The EUV emission exhibits small angular divergence (2 mrad) and monotonically increasing intensity over a pressure range of 0.5-16 Torr, suggesting phase matching in the production of the narrow-bandwidth coherent EUV light. In addition, time-resolved scans of the NIR nonlinear mixing process reveal the detection of a persistent, ultrafast bound electronic wave packet based on a coherent superposition initiated by the VUV pulse in the neon atoms. This FWM process using attosecond pulses offers a means for both efficient narrow-band EUV source generation and time-resolved investigations of ultrafast dynamics.

  12. Trace-concentration detection of cobalt in a liquid flow cell by degenerate four-wave mixing using low-power off-resonant laser excitation.

    PubMed

    Wu, Z Q; Tong, W G

    1991-09-15

    Optical phase conjugation by degenerate four-wave mixing (D4WM) in an absorbing metal-ion solution using a low-power argon-ion laser as the excitation source is demonstrated. This nonlinear laser technique can be used as a sensitive analytical spectroscopic method for trace-concentration measurement of metal ions in a small-volume continuously flowing analyte cell. Several important characteristics are discussed, including the effects of solvent properties, excitation wave-length, laser intensity, and analyte absorptivity on signal intensity. Detection of 0.26 ng (4.4 pmol) of cobalt inside the laser probe volume of 0.14 microL is reported using an excitation wavelength that is 136 nm away from the maximum absorption wavelength of the analyte solution. The minimum absorbance measured in our D4WM experiment is 2.0 X 10(-5) without complex formation for cobalt. The D4WM detection sensitivity, in terms of the concentration-absorptivity product, is 4.05 X 10(-4) cm-1 for cobalt(II) in ethanol. Our preliminary detection sensitivity compares favorably with other laser-based spectrometric methods. This nonlinear laser technique is applicable to both fluorescing and nonfluorescing analytes. PMID:1750697

  13. Unified explanation for linear and nonlinear optical responses in β -carotene: A sub- 20-fs degenerate four-wave mixing spectroscopic study

    NASA Astrophysics Data System (ADS)

    Sugisaki, Mitsuru; Yanagi, Kazuhiro; Cogdell, Richard J.; Hashimoto, Hideki

    2007-04-01

    The four-wave mixing signal of β -carotene measured under the resonant excitation is reported. A clear coherent oscillation with a period of a few tens of femtoseconds was observed. We have estimated the line broadening function required to simulate this oscillation behavior. The parameters, including the solvation effect, which are essential for calculating the optical signals have also been determined. The validity of our simulation has been evaluated by comparing the theoretically calculated linear and nonlinear optical signals with the experimental results. It was found that in addition to the CC and CC stretching modes the methyl in-plane rocking mode significantly contributes to the optical responses of β -carotene. Calculations based on the Brownian oscillator model were performed under the impulsive excitation limit, and we find that the memory of the vibronic coherence generated in the S2 state is lost via relaxation processes, which include the S1 state. Comparison between the simulation and experiment revealed that the two-photon absorption process plays an important role in the very early optical process taking place in β -carotene. The vibronic decoherent time of the system is estimated to be 1ps , which is about five times longer than the population lifetime of the S2 state determined in the previous studies. The possible relationship between the lifetime of the vibronic coherence and the efficient energy transfer in light-harvesting antenna complexes is discussed.

  14. Demonstration and optimisation of an ultrafast all-optical AND logic gate using four-wave mixing in a semiconductor optical amplifier

    SciTech Connect

    Razaghi, M; Nosratpour, A; Das, N K

    2013-02-28

    We have proposed an all-optical AND logic gate based on four-wave mixing (FWM) in a semiconductor optical amplifier (SOA) integrated with an optical filter. In the scheme proposed, the preferred logical function can be performed without using a continuous-wave (cw) signal. The modified nonlinear Schroedinger equation (MNLSE) is used for the modelling wave propagation in a SOA. The MNLSE takes into account all nonlinear effects relevant to pico- and sub-picosecond pulse durations and is solved by the finite-difference beam-propagation method (FD-BPM). Based on the simulation results, the optimal output signal with a 40-fJ energy can be obtained at a bit rate of 50 Gb s{sup -1}. In the simulations, besides the nonlinearities included in the model, the pattern effect of the signals propagating in the SOA medium and the effect of the input signal bit rate are extensively investigated to optimise the system performance. (optical logic elements)

  15. Third-Order Optical Nonlinearities of Naphthalocyanine-Derivative-Doped Polymer Films Measured by Resonant Femtosecond Degenerate Four-Wave Mixing

    NASA Astrophysics Data System (ADS)

    Fu, Gang; Yoda, Takefumi; Kasatani, Kazuo; Okamoto, Hiroaki; Takenaka, Shunsuke

    2005-06-01

    Third-order optical nonlinearities of several polymer films doped with naphthalocyanine derivatives have been measured under resonant conditions by femtosecond degenerate four-wave mixing (DFWM). The metal substitution and the peripheral groups influence both the magnitude and the response of the third-order optical nonlinearities. Temporal profiles of the DFWM signal were measured with a time resolution of 0.3 ps and were found to consist of at least two components, the coherent instantaneous nonlinear response and the slow response. The latter for the films decayed much faster than that for the solutions due to effects of aggregation or intermolecular interactions. The electronic component of the effective third-order nonlinear optical suscepitibilities, χe(3), of the polymer films was evaluated and a film of poly(methyl methacrylate) doped with 20 wt% octabutoxy-substituted zinc 2,3-naphthalocyanine showed the largest χe(3) value of 8.9× 10-9 esu. The results were compared with those in the literature.

  16. Quantum squeezing and entanglement from a two-mode phase-sensitive amplifier via four-wave mixing in rubidium vapor

    NASA Astrophysics Data System (ADS)

    Fang, Yami; Jing, Jietai

    2015-02-01

    Phase-sensitive amplifiers (PSAs) have been widely studied in fiber amplifiers, with remarkable recent advances. They have also been implemented in an SU(1,1) interferometer. In this paper, we study an experimental scheme for the implementation of a two-mode PSA based on a four-wave mixing process in rubidium vapor. With the process seeded by coherent probe and conjugate beams, quantum correlation including intensity difference/sum squeezing and quadrature entanglement between the output probe and conjugate fields are theoretically analyzed. Compared to previous related research, several new and interesting results are reported here. The maximal degree of intensity difference squeezing can be enhanced by nearly 3 dB compared to a phase-insensitive amplifier with the same gain. It is also possible to generate intensity sum squeezing between the probe and conjugate fields by choosing the specific phase of the input beams. Moreover, quadrature entanglement between the probe and conjugate beams, which can be manipulated by the phase of the input beams, is predicted. Our scheme may find a variety of applications in quantum metrology and quantum information processing owing to its ability of quantum squeezing and entanglement manipulation.

  17. Synthesis, Z-Scan and Degenerate Four Wave Mixing characterization of certain novel thiocoumarin derivatives for third order nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Jayakrishnan, K.; Joseph, Antony; Mathew, K. Paulson; Siji, T. B.; Chandrasekharan, K.; Narendran, N. K. Siji; Jaseela, M. A.; Muraleedharan, K.

    2016-08-01

    The third order nonlinear optical features of certain novel thiocoumarin derivatives have been studied. Single beam Z-scan study on these compounds reveals that the compounds exhibit self defocusing effect upon irradiation with 532 nm, 7 ns pulses of Nd:YAG laser. Nonlinear absorption coefficient, nonlinear refractive index and second-order molecular hyperpolarizability values were estimated. The optical power limiting properties of the compounds are found to be attributable to both two-photon and excited state absorption. Some of the samples show nonlinear absorption coefficient (βeff) as high as 24.5 cm/GW. UV-Visible and photoluminescence outputs of these compounds reveal remarkable absorptive and emissive properties. This article also reports extraordinary growth of third order optical nonlinearity in pure coumarin upon certain donor substitutions in lieu of hydrogen. Degenerate Four Wave Mixing (DFWM) signals of the compounds were analyzed to verify the Z-scan results. Electrostatic Surface Potential (ESP) mapping and structure optimization techniques have been employed to interpret the structure-property relationship of each molecule.

  18. Characterization of the 1 ^5Πu - 1 ^5Πg Band of C_2 by Two-Color Resonant Four-Wave Mixing and Lif

    NASA Astrophysics Data System (ADS)

    Radi, Peter

    2015-06-01

    The application of two-color resonant four-wave mixing (TC-RFWM) in combination with a discharge slit-source in a molecular beam environment is advantageous for the study of perturbations in C_2. Initial investigations have shown the potential of the method by a detailed deperturbation of the d3Π_g, v=4 state. The deperturbation of the d3Π_g, v=6 state unveiled the presence of the energetically lowest high-spin state of C_2. This dark state gains transition strength through the perturbation process with the d3Π_g, v=6 state yielding weak spectral features that are observable by the high sensitivity of the TC-RFWM technique. The successful deperturbation study of the d3Π_g, v=6 state resulted in the spectroscopic characterization of the quintet (15Πg) and an additional triplet state (d3Π_g, v=19). More recently, investigations have been performed by applying unfolded TC-RFWM to obtain further information on the quintet manifold. The first high-spin transition (15Πu) - 15Πg)) has been observed via an intermediate ``gateway'' state exhibiting both substantial triplet and quintet character owing to the perturbation between the 15Πg), v=0 and the d3Π_g, v=6 states. The high-lying quintet state is found to be predissociative and displays a shallow potential that accommodates three vibrational levels only. Further studies of the high-spin system will be presented in this contribution. By applying TC-RFWM and laser-induced fluorescence, data on the vibrational structure of the 15Πu - 15Πg system is obtained. The results are combined with high-level ab initio computations at the multi-reference configuration interaction (MRCI) level of theory and the largest possible basis currently implemented in the 2012 version of MOLPRO. P. Bornhauser, G. Knopp, T. Gerber, and P.P. Radi, Journal of Molecular Spectroscopy 262, 69 (2010) P. Bornhauser, Y. Sych, G. Knopp, T. Gerber, and P.P. Radi, Journal of Chemical Physics 134, 044302 (2011) Bornhauser, P., Marquardt, R

  19. Tunable error-free optical frequency conversion of a 4ps optical short pulse over 25 nm by four-wave mixing in a polarisation-maintaining optical fibre

    NASA Astrophysics Data System (ADS)

    Morioka, T.; Kawanishi, S.; Saruwatari, M.

    1994-05-01

    Error-free, tunable optical frequency conversion of a transform-limited 4.0 ps optical pulse signalis demonstrated at 6.3 Gbit/s using four-wave mixing in a polarization-maintaining optical fibre. The process generates 4.0-4.6 ps pulses over a 25nm range with time-bandwidth products of 0.31-0.43 and conversion power penalties of less than 1.5 dB.

  20. Measurements of the nonlinear refractive index of air, N2, and O2 at 10 μm using four-wave mixing.

    PubMed

    Pigeon, J J; Tochitsky, S Ya; Welch, E C; Joshi, C

    2016-09-01

    We report on measurements of the nonlinear index of refraction of air, N2, and O2 at a wavelength close to 10 μm by collinear four-wave mixing of a 200 MW CO2 laser beat-wave. The use of a 200 ps long beat-wave comprising radiation amplified on the 10P20 and 10R16 lines of the CO2 laser provides a sensitive method to measure the small nonlinearities characteristic of the gas phase in a spectral region where no such data exists. PMID:27607938

  1. Spontaneous translation and language mixing in a polyglot aphasic.

    PubMed

    Perecman, E

    1984-09-01

    The literature on language mixing in polyglot aphasics is reviewed and a case report of a patient with spontaneous translation is presented. A microgenetic model of language processing provides an interpretive framework for language mixing and spontaneous translation as symptoms of polyglot aphasia. It is suggested that language mixing reflects a deficit at the linguistic level while spontaneous translation reflects a deficit at the prelinguistic level of language processing. A hypothesis about the organization of multiple languages in a single speaker is proposed. PMID:6206915

  2. All-optical continuously tunable delay with a high linear-chirp-rate fiber Bragg grating based on four-wave mixing in a highly-nonlinear photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Liu, Jianguo; Cheng, Tee Hiang; Yeo, Yong Kee; Wang, Yixin; Xue, Lifang; Zhu, Ninghua; Xu, ZhaoWen; Wang, Dawei

    2009-11-01

    A scheme for hi-fi all-optical continuously tunable delay is proposed. The signal wavelength is converted to a desired idler wavelength and converted back after being delayed by a high linear-chirp-rate (HLCR) fiber Bragg grating (FBG) based on four-wave mixing (FWM) in a highly-nonlinear photonic crystal fiber (HN-PCF). In our experiment, 400 ps (more than 8 full width of half maximum, FWHM) tunable delay is achieved for a 10 GHz clock pulse with relative pulse width broaden ratio (RPWBR) of 2.08%. The power penalty is only 0.3 dB at 10 -9 BER for a 10 Gb/s 2 31-1 pseudo random bit sequence (PRBS) data.

  3. Phase-matched four-wave mixing of sub-100-TW/ cm2 femtosecond laser pulses in isolated air-guided modes of a hollow photonic-crystal fiber.

    PubMed

    Konorov, S O; Serebryannikov, E E; Akimov, D A; Ivanov, A A; Alfimov, M V; Zheltikov, A M

    2004-12-01

    Hollow-core photonic-crystal fibers are shown to allow propagation and nonlinear-optical frequency conversion of high-intensity ultrashort laser pulses in the regime of isolated guided modes confined in the hollow gas-filled fiber core. With a specially designed dispersion of such modes, the 3omega=2omega+2omega-omega four-wave mixing of fundamental (omega) and second-harmonic (2omega) sub-100- TW/ cm(2) femtosecond pulses of a Cr:forsterite laser can be phase matched in a hollow photonic-crystal fiber within a spectral band of more than 10 nm, resulting in the efficient generation of femtosecond pulses in a well-resolved higher-order air-guided mode of 417-nm radiation. PMID:15697544

  4. Highly efficient non-degenerate four-wave mixing under dual-mode injection in InP/InAs quantum-dash and quantum-dot lasers at 1.55 μm

    NASA Astrophysics Data System (ADS)

    Sadeev, T.; Huang, H.; Arsenijević, D.; Schires, K.; Grillot, F.; Bimberg, D.

    2015-11-01

    This work reports on non-degenerate four-wave mixing under dual-mode injection in metalorganic vapor phase epitaxy grown InP/InAs quantum-dash and quantum dot Fabry-Perot laser operating at 1550 nm. High values of normalized conversion efficiency of -18.6 dB, optical signal-to-noise ratio of 37 dB, and third order optical susceptibility normalized to material gain χ(3)/g0 of ˜4 × 10-19 m3/V3 are measured for 1490 μm long quantum-dash lasers. These values are similar to those obtained with distributed-feedback lasers and semiconductor optical amplifiers, which are much more complicated to fabricate. On the other hand, due to the faster gain saturation and enhanced modulation of carrier populations, quantum-dot lasers demonstrate 12 dB lower conversion efficiency and 4 times lower χ(3)/g0 compared to quantum dash lasers.

  5. Highly efficient non-degenerate four-wave mixing under dual-mode injection in InP/InAs quantum-dash and quantum-dot lasers at 1.55 μm

    SciTech Connect

    Sadeev, T. Arsenijević, D.; Huang, H.; Schires, K.; Grillot, F.; Bimberg, D.

    2015-11-09

    This work reports on non-degenerate four-wave mixing under dual-mode injection in metalorganic vapor phase epitaxy grown InP/InAs quantum-dash and quantum dot Fabry-Perot laser operating at 1550 nm. High values of normalized conversion efficiency of −18.6 dB, optical signal-to-noise ratio of 37 dB, and third order optical susceptibility normalized to material gain χ{sup (3)}/g{sub 0} of ∼4 × 10{sup −19} m{sup 3}/V{sup 3} are measured for 1490 μm long quantum-dash lasers. These values are similar to those obtained with distributed-feedback lasers and semiconductor optical amplifiers, which are much more complicated to fabricate. On the other hand, due to the faster gain saturation and enhanced modulation of carrier populations, quantum-dot lasers demonstrate 12 dB lower conversion efficiency and 4 times lower χ{sup (3)}/g{sub 0} compared to quantum dash lasers.

  6. Electrically controllable spontaneous magnetism in nanoscale mixed phase multiferroics.

    PubMed

    He, Q; Chu, Y-H; Heron, J T; Yang, S Y; Liang, W I; Kuo, C Y; Lin, H J; Yu, P; Liang, C W; Zeches, R J; Kuo, W C; Juang, J Y; Chen, C T; Arenholz, E; Scholl, A; Ramesh, R

    2011-01-01

    Magnetoelectrics and multiferroics present exciting opportunities for electric-field control of magnetism. However, there are few room-temperature ferromagnetic-ferroelectrics. Among the various types of multiferroics the bismuth ferrite system has received much attention primarily because both the ferroelectric and the antiferromagnetic orders are quite robust at room temperature. Here we demonstrate the emergence of an enhanced spontaneous magnetization in a strain-driven rhombohedral and super-tetragonal mixed phase of BiFeO₃. Using X-ray magnetic circular dichroism-based photoemission electron microscopy coupled with macroscopic magnetic measurements, we find that the spontaneous magnetization of the rhombohedral phase is significantly enhanced above the canted antiferromagnetic moment in the bulk phase, as a consequence of a piezomagnetic coupling to the adjacent tetragonal-like phase and the epitaxial constraint. Reversible electric-field control and manipulation of this magnetic moment at room temperature is also shown. PMID:21407191

  7. Four-wave interference and perfect blaze.

    PubMed

    Güther, R

    2012-10-01

    The recently calculated high diffraction efficiencies for TE- and TM-polarized light (perfect blaze) for echelette gratings are explained by four-wave interference, which is formed as a double periodical pattern in the cross section of the grating plane. The blazed grating profile should match this interference pattern for a single reference light wavelength. The recently published data are the special case of a general design. The prognoses of the model are connected with large grating constants in comparison with the light wavelength, where short grating constants need comparison with numerical methods. PMID:23027283

  8. Electrically Controllable Spontaneous Magnetism in Nanoscale Mixed Phase Multiferroics

    SciTech Connect

    He, Q.; Chu, Y. H.; Heron, J. T.; Yang, S. Y.; Wang, C. H.; Kuo, C. Y.; Lin, H. J.; Yu, P.; Liang, C. W.; Zeches, R. J.; Chen, C. T.; Arenholz, E.; Scholl, A.; Ramesh, R.

    2010-08-02

    The emergence of enhanced spontaneous magnetic moments in self-assembled, epitaxial nanostructures of tetragonal (T-phase) and rhombohedral phases (R-phase) of the multiferroic BiFeO{sub 3} system is demonstrated. X-ray magnetic circular dichroism based photoemission electron microscopy (PEEM) was applied to investigate the local nature of this magnetism. We find that the spontaneous magnetization of the R-phase is significantly enhanced above the canted antiferromagnetic moment in the bulk phase, as a consequence of a piezomagnetic coupling to the adjacent T-phase and the epitaxial constraint. Reversible electric field control and manipulation of this magnetic moment at room temperature is shown using a combination of piezoresponse force microscopy and PEEM studies.

  9. Optical gyroscope with controllable dispersion in four wave mixing regime.

    NASA Astrophysics Data System (ADS)

    Mikhailov, Eugeniy; Wolfe, Owen; Du, Shuangli; Rochester, Simon; Budker, Dmitry; Novikova, Irina

    2016-05-01

    We present our work towards realization of the fast-light gyroscope prototype, in which the sensitivity enhancement (compared to a regular laser gyroscopes) is achieved by adjusting the intra-cavity dispersion. We discuss schematics and underlying nonlinear effects leading to the negative dispersion in Rb vapor: level structure, optically addressed transitions, and configuration of the resonant cavity. We investigate dependence of the pulling factor (i.e., the ratio of the lasing frequency shift with the change of the cavity length to the equivalent resonance frequency shift in the empty cavity) on pump lasers detunings, power, and density of the atomic vapor. The observation of the pulling factor exceeding unity implies the gyroscope sensitivity improvement over the regular system This work is supported by Naval Air Warfare Center STTR program N68335-11-C-0428.

  10. Distortion correction by phase conjugation using four-wave mixing

    NASA Astrophysics Data System (ADS)

    Klingenberg, Hans H.; Hall, Thomas; Riede, Wolfgang

    1996-04-01

    Pulsed energy deposition into a high power carbon-dioxide gas discharge as well as high pump energy deposition into a solid-state laser material results in a distortion of the transverse mode profile of the laser beam. In the first case the transverse field distribution is influenced by the laser induced medium perturbation and shock waves due to the inhomogeneous energy deposition into the amplifying medium. For the second case the known thermal lensing problems occur in optically pumped systems, flashlamp- and diode-pumped, respectively, under various pump power levels. The technique successfully applied in both cases for correcting the distorted phases is by means of phase conjugation. Through numerical simulations using the Fresnel-Kirchhoff diffraction theory by including the relevant beam distorting effects for the individual laser a restoration of the beam quality was found when a phase conjugate mirror (PM) was installed. These findings agree well with experimental results.

  11. Spontaneous Esophageal Perforation in a Patient with Mixed Connective Tissue Disease

    PubMed Central

    Lyman, David

    2011-01-01

    Spontaneous esophageal perforation is a rare and life-threatening disorder. Failure to diagnosis within the first 24-48 hours of presentation portends a poor prognosis. A patient with mixed connective tissue disease (MCTD) on low-dose prednisone and methotrexate presented moribund with chest and shoulder pain, a left hydropneumothorax, progressive respiratory failure and shock. Initial management focussed on presumed community acquired pneumonia (CAP) in a patient on immunosuppressants. Bilateral yeast empyemas were treated and attributed to immunosuppression. On day 26, the patient developed mediastinitis, and the diagnosis of esophageal perforation was first considered. A review of the literature suggests that the diagnosis and management of spontaneous esophageal perforation could have been more timely and the outcome less catastrophic. PMID:22279514

  12. Spontaneous pattern formation in a thin film of bacteriorhodopsin with mixed absorptive-dispersive nonlinearity

    NASA Astrophysics Data System (ADS)

    Glückstad, J.; Saffman, M.

    1995-03-01

    We have observed the spontaneous formation of transverse spatial patterns in a thin film of bacteriorhodopsin with a feedback mirror. Bacteriorhodopsin has a mixed absorptive-dispersive nonlinearity at the wavelength used in the experiments (633 nm). Threshold values of the incident intensity for observation of pattern formation are found from a linear stability analysis of a model that describes bacteriorhodopsin as a sluggish saturable nonlinear medium with a complex Kerr coefficient. The calculated threshold intensity is in good agreement with the experimental observations, and the patterns are predicted to be frequency offset from the pump radiation.

  13. A method for Hamiltonian truncation: a four-wave example

    NASA Astrophysics Data System (ADS)

    Viscondi, Thiago F.; Caldas, Iberê L.; Morrison, Philip J.

    2016-04-01

    A method for extracting finite-dimensional Hamiltonian systems from a class of 2 + 1 Hamiltonian mean field theories is presented. These theories possess noncanonical Poisson brackets, which normally resist Hamiltonian truncation, but a process of beatification by coordinate transformation near a reference state is described in order to perturbatively overcome this difficulty. Two examples of four-wave truncation of Euler’s equation for scalar vortex dynamics are given and compared: one a direct non-Hamiltonian truncation of the equations of motion, the other obtained by beatifying the Poisson bracket and then truncating.

  14. Spontaneous Emulsification of Triolein Induced by Mixed Micellar Solutions of Sodium Polyoxyethylene Alkyl Ether Sulfate and Dodecyldimethyl Amine Oxide.

    PubMed

    Endo, Chika; Ito, Yoshiko; Akabane, Chika; Kaneko, Yukihiro; Sakai, Hideki

    2015-01-01

    A new mechanism of spontaneous emulsification without any salts or co-solvents is described, and is related to the dilatational behavior. Spontaneous emulsification can reduce the time required to remove oily soils from hard surfaces and enhance the detergency, because this type of emulsification requires no external mechanical work. In this paper, we focused on triolein, the main component of food oils and human sebum soil, and tried to induce spontaneous emulsification by using mixed micellar solutions of sodium polyoxyethylene alkyl ether sulfate and N, N-dimethyldodecylamine oxide (AES/DDAO). We characterized the dilatation of the oil/water interface using dynamic interfacial tension and elasticity measurements. This study confirmed that the degree of spontaneous emulsification can be enhanced by controlling the molar ratio of DDAO to AES. This enhancement can be attributed to an increased rate of decrease in the dynamic interfacial tension (i.e., a decreased interface dilatational elasticity), allowing for much greater suppression of the Marangoni effect. Further, we determined that one of the reasons for the decrease in the interface dilatational elasticity is the increasing number of micelles near the oil drop interface, which results from a decrease in the electrostatic repulsion between the micelles and the drop interface. Therefore, controlling the molar ratio of a mixed anionic/amphoteric surfactant solution is an effective way to induce spontaneous emulsification in the absence of salts or co-solvents. PMID:26250425

  15. Mixed cryoglobulinemia-associated Sjögren’s syndrome leading to spontaneous rupture of the kidney: a case report

    PubMed Central

    Haddiya, Intissar; Hamzaoui, Hakim; Alhamany, Zitouna; Berkchi, Fatime-zohra; Rhou, Hakima; Benamar, Loubna; Ouzeddoun, Naima; Bayahia, Rabea

    2016-01-01

    Background Spontaneous rupture of the kidney is uncommon and is mainly caused by renal tumors. Only a few cases are caused by vasculitis. We report here the first case of spontaneous rupture of kidney resulting from mixed cryoglobulinemia. Case presentation A 44-year-old man presented with sudden onset of fever, acute pulmonary edema, left flank abdominal pain unassociated with trauma, and rapidly progressive renal failure requiring dialysis. Computed tomography of the abdomen revealed a large perirenal hematoma of the left kidney. During conservative surgery, the patient underwent renal biopsy that showed renal vasculitis and membranoproliferative glomerulonephritis with intracapillary microthrombi. Tests were positive for mixed cryoglobulinemia caused by Sjögren’s syndrome. The patient was better after immunosuppressive therapy, with the disappearance of clinical symptoms and the recovery of baseline renal function. Conclusion We report on this case and discuss a possible link between spontaneous rupture of kidney and mixed cryoglobulinemia-associated Sjögren’s syndrome. PMID:27042145

  16. Comparative analysis of the use of various solid-state laser media for the self-starting of four-wave PCW generation in a loop laser resonator

    NASA Astrophysics Data System (ADS)

    Smetanin, Sergei N.

    2013-01-01

    A generalised theory has been used to carry out a comparative analysis of the use of various four-level and quasi-threelevel media for the self-starting of degenerate four-wave mixing PCW generation directly in a laser medium placed in a loop resonator. It has been shown that quasi-three-level media can compete with four-level media at long upper laser level lifetimes and increased pump intensities. The most attractive solid-state laser media for four-wave PCW generation have been identified that have the highest deposited energy at a given pump intensity. In addition to neodymium-doped crystals, which are already widely used for four-wave PCW generation, promising materials are fourlevel chromium-doped media, e.g. alexandrite and Cr : LiCAF, and quasi-three-level media with the longest upper laser level lifetime, such as Yb : YAG and Tm, Ho : YAG, at high pump intensities.

  17. Spontaneous formation of vorticity staircase and multiple jets in a 1D barotropic model with parameterized eddy mixing

    NASA Astrophysics Data System (ADS)

    Zhu, D.; Nakamura, N.

    2009-12-01

    Spontaneous formation of a vorticity staircase and multiple jets is simulated using a one dimensional barotropic model on a beta-plane with parameterized eddy mixing. The model represents nearly inviscid geostrophic turbulence characterized by a uniform forcing of pseudomomentum, nonuniform dissipation due to mixing, and no frictional damping of the mean flow. The dissipation of pseudomomentum (diffusive flux of vorticity) is modeled with the effective diffusivity parameterization proposed recently by Ferrari and Nikurashin(2009). Rossby wave dynamics and upscale energy cascade are not modeled explicitly but implicit in the parameterization. The parameterized effective diffusivity is a decreasing function of squared vorticity gradient, revealing the active role of (potential) vorticity gradient as a barrier to mixing, consistent with the Rossby elasticity idea. Not only does the parameterized diffusivity agree well with the effective diffusivity of a direct numerical simulation, but it allows the 1D model to reproduce other salient features of the direct simulation, most notably the formation of a welldefined vorticity staircase from a uniform vorticity gradient, through inhomogeneous mixing of vorticity. The staircase formation starts as a small-scale, antidiffusive instability in vorticity gradient that develops when the eddy scale is comparable to the Rhines scale. This spawns numerous gaps (barriers) in diffusivity and corresponding small steps in vorticity, but many of them become unstable and disappear later, until a few stable ones remain. The final number of barriers (vorticity steps) is predictable to a good approximation with a few model parameters.

  18. Nonlinear optical properties of porphyrin and chlorophyll dimers studied by degenerated four wave mixing

    SciTech Connect

    Chen, L.X.Q.

    1992-12-31

    As one of the important elements in natural and artificial electron transfer and energy transfer processes, porphyrin and its derivatives have received much attention in photoelectronics and photoelectronic materials. As our first attempt to relate the {pi}-{pi} electronic couplings between porphyrin macrocycles to apparent third order nonlinear susceptibilities, we measured {chi}({sup 3}) for several porphyrin and chlorophyll a derivatives, including dimers with different configurations. Our preliminary results show that the dimers have enhanced {chi}({sup 3}) compared to those of the monomer. This enhancement is related to the relative orientations between the two macrocycles in the dimers. The parallel dimers with close face-to-face distances seem to have the highest enhancement in {chi}({sup 3}). Thus, we believe that {chi}({sup 3}) is strongly related to the {pi}-{pi} electronic coupling between the two conjugated ring systems.

  19. Geometries for the coherent control of four-wave mixing in graphene multilayers

    NASA Astrophysics Data System (ADS)

    Rao, Shraddha M.; Lyons, Ashley; Roger, Thomas; Clerici, Matteo; Zheludev, Nikolay I.; Faccio, Daniele

    2015-10-01

    Deeply sub-wavelength two-dimensional films may exhibit extraordinarily strong nonlinear effects. Here we show that 2D films exhibit the remarkable property of a phase-controllable nonlinearity, i.e., the amplitude of the nonlinear polarisation wave in the medium can be controlled via the pump beam phase and determines whether a probe beam will “feel” or not the nonlinearity. This is in stark contrast to bulk nonlinearities where propagation in the medium averages out any such phase dependence. We perform a series of experiments in multilayer graphene that highlight some of the consequences of the optical nonlinearity phase-dependence, such as the coherent control of nonlinearly diffracted beams, single-pump-beam induced phase-conjugation and the demonstration of a nonlinear mirror characterised by negative reflection. The observed phase sensitivity is not specific to graphene but rather is solely a result of the dimensionality and is therefore expected in all 2D materials.

  20. Geometries for the coherent control of four-wave mixing in graphene multilayers.

    PubMed

    Rao, Shraddha M; Lyons, Ashley; Roger, Thomas; Clerici, Matteo; Zheludev, Nikolay I; Faccio, Daniele

    2015-01-01

    Deeply sub-wavelength two-dimensional films may exhibit extraordinarily strong nonlinear effects. Here we show that 2D films exhibit the remarkable property of a phase-controllable nonlinearity, i.e., the amplitude of the nonlinear polarisation wave in the medium can be controlled via the pump beam phase and determines whether a probe beam will "feel" or not the nonlinearity. This is in stark contrast to bulk nonlinearities where propagation in the medium averages out any such phase dependence. We perform a series of experiments in multilayer graphene that highlight some of the consequences of the optical nonlinearity phase-dependence, such as the coherent control of nonlinearly diffracted beams, single-pump-beam induced phase-conjugation and the demonstration of a nonlinear mirror characterised by negative reflection. The observed phase sensitivity is not specific to graphene but rather is solely a result of the dimensionality and is therefore expected in all 2D materials. PMID:26486075

  1. Nonlinear optical properties of porphyrin and chlorophyll dimers studied by degenerated four wave mixing

    SciTech Connect

    Chen, L.X.Q.

    1992-01-01

    As one of the important elements in natural and artificial electron transfer and energy transfer processes, porphyrin and its derivatives have received much attention in photoelectronics and photoelectronic materials. As our first attempt to relate the [pi]-[pi] electronic couplings between porphyrin macrocycles to apparent third order nonlinear susceptibilities, we measured [chi]([sup 3]) for several porphyrin and chlorophyll a derivatives, including dimers with different configurations. Our preliminary results show that the dimers have enhanced [chi]([sup 3]) compared to those of the monomer. This enhancement is related to the relative orientations between the two macrocycles in the dimers. The parallel dimers with close face-to-face distances seem to have the highest enhancement in [chi]([sup 3]). Thus, we believe that [chi]([sup 3]) is strongly related to the [pi]-[pi] electronic coupling between the two conjugated ring systems.

  2. Probing ultrafast dynamics in adenine with mid-UV four-wave mixing spectroscopies.

    PubMed

    West, Brantley A; Womick, Jordan M; Moran, Andrew M

    2011-08-11

    Heterodyne-detected transient grating (TG) and two-dimensional photon echo (2DPE) spectroscopies are extended to the mid-UV spectral range in this investigation of photoinduced relaxation processes of adenine in aqueous solution. These experiments are the first to combine a new method for generating 25 fs laser pulses (at 263 nm) with the passive phase stability afforded by diffractive optics-based interferometry. We establish a set of conditions (e.g., laser power density, solute concentration) appropriate for the study of dynamics involving the neutral solute. Undesired solute photoionization is shown to take hold at higher peak powers of the laser pulses. Signatures of internal conversion and vibrational cooling dynamics are examined using TG measurements with signal-to-noise ratios as high as 350 at short delay times. In addition, 2DPE line shapes reveal correlations between excitation and emission frequencies in adenine, which reflect electronic and nuclear relaxation processes associated with particular tautomers. Overall, this study demonstrates the feasibility of techniques that will hold many advantages for the study of biomolecules whose lowest-energy electronic resonances are found in the mid-UV (e.g., DNA bases, amino acids). PMID:21756005

  3. Dynamics of four-wave-mixing oscillators with quasi-phase-matching

    SciTech Connect

    Rebhi, Riadh; Mathey, Pierre; Jauslin, Hans-Rudolf; Cook, Gary; Evans, Dean R.; Rytz, Daniel; Odoulov, Serguey

    2009-07-15

    The effect of pump-wave misalignment on the oscillation spectra of a semilinear photorefractive oscillator is studied numerically and compared with the results of experiments performed with BaTiO{sub 3}:Co and KNbO{sub 3}:Ag,Fe crystals.

  4. Geometries for the coherent control of four-wave mixing in graphene multilayers

    PubMed Central

    Rao, Shraddha M.; Lyons, Ashley; Roger, Thomas; Clerici, Matteo; Zheludev, Nikolay I.; Faccio, Daniele

    2015-01-01

    Deeply sub-wavelength two-dimensional films may exhibit extraordinarily strong nonlinear effects. Here we show that 2D films exhibit the remarkable property of a phase-controllable nonlinearity, i.e., the amplitude of the nonlinear polarisation wave in the medium can be controlled via the pump beam phase and determines whether a probe beam will “feel” or not the nonlinearity. This is in stark contrast to bulk nonlinearities where propagation in the medium averages out any such phase dependence. We perform a series of experiments in multilayer graphene that highlight some of the consequences of the optical nonlinearity phase-dependence, such as the coherent control of nonlinearly diffracted beams, single-pump-beam induced phase-conjugation and the demonstration of a nonlinear mirror characterised by negative reflection. The observed phase sensitivity is not specific to graphene but rather is solely a result of the dimensionality and is therefore expected in all 2D materials. PMID:26486075

  5. Degenerate four-wave mixing in a mercury-argon discharge

    NASA Technical Reports Server (NTRS)

    Richardson, W.; Maleki, L.; Garmire, E.

    1986-01-01

    Phase conjugation has been obtained with pump powers as low as 0.5 mW on the 546.1-nm line of atomic mercury. Collisional processes that oppose the effects of optical pumping sustain the signal. Line splittings observed in the Doppler regime are compared with theory. Reflectivities agree with those obtained from a model that includes pump absorption.

  6. Dissecting X-Ray Raman Resonances Using Four-Wave Mixing

    SciTech Connect

    Biggs, Jason D.; Zhang, Yu; Healion, Daniel; Govind, Niranjan; Shaul, Mukamel; Chergui, M.; Taylor, A.; Cundiff, S.; de Vivie-Riedle, R.; Yamagouchi, K.

    2013-01-01

    The stimulated x-ray Raman signal has been calculated for the amino acid cysteine using broadband (FWHM ≃14.2eV, 128 as) pulses tuned to the nitrogen K-edge. Peaks correspond to those valence excited states and reveal electronic Frank-Condon overlaps between canonical valence orbitals and relaxed orbitals in the presence of the core hole. The coupling between excited states with valence- and core-holes is further explored using a coherent, wave-vector matched photon echo technique, where it is possible to eliminate stimulated emission and excited-state absorption by taking the waiting time to be longer the lifetime of the core hole (~ 7:1 fs for nitrogen).

  7. Trimaximal TM1 neutrino mixing in S4 with spontaneous CP violation

    NASA Astrophysics Data System (ADS)

    Luhn, Christoph

    2013-10-01

    The measurement of the reactor angle by the Daya Bay and RENO experiments in 2012 has ruled out the tri-bimaximal paradigm. Adopting an S4 family symmetry, we propose direct models of the trimaximal type TM1 in which the tri-bimaximal Klein symmetry of the neutrino sector is broken to a residual Z2 symmetry. In such a scenario, the solar mixing angle is decreased compared to its tri-bimaximal value by about 1°, thus bringing it in excellent agreement with experimental observation. The atmospheric mixing angle, on the other hand, depends on the CP violating Dirac phase δ. Imposing CP conservation in the family symmetry limit, we show how to break the CP symmetry via flavon VEVs with well-defined complex phases, so that sizable deviations of the atmospheric angle from maximal mixing, consistent with the latest global fits, are produced. A related approach adopts non-Abelian groups which contain only half the Klein symmetry of the neutrino sector [44-47].

  8. Applying Chemical Potential and Partial Pressure Concepts to Understand the Spontaneous Mixing of Helium and Air in a Helium-Inflated Balloon

    ERIC Educational Resources Information Center

    Jee-Yon Lee; Hee-Soo Yoo; Jong Sook Park; Kwang-Jin Hwang; Jin Seog Kim

    2005-01-01

    The spontaneous mixing of helium and air in a helium-inflated balloon is described in an experiment in which the partial pressure of the gases in the balloon are determined from the mole factions and the total pressure measured in the balloon. The results described provide a model for teaching concepts of partial pressure, chemical potential, and…

  9. Spontaneous Time Symmetry Breaking in System with Mixed Strategy Nash Equilibrium: Evidences in Experimental Economics Data

    NASA Astrophysics Data System (ADS)

    Wang, Zhijian; Xu, Bin; Zhejiang Collaboration

    2011-03-01

    In social science, laboratory experiment with human subjects' interaction is a standard test-bed for studying social processes in micro level. Usually, as in physics, the processes near equilibrium are suggested as stochastic processes with time-reversal symmetry (TRS). To the best of our knowledge, near equilibrium, the breaking time symmetry, as well as the existence of robust time anti-symmetry processes, has not been reported clearly in experimental economics till now. By employing Markov transition method to analysis the data from human subject 2x2 Games with wide parameters and mixed Nash equilibrium, we study the time symmetry of the social interaction process near Nash equilibrium. We find that, the time symmetry is broken, and there exists a robust time anti-symmetry processes. We also report the weight of the time anti-symmetry processes in the total processes of each the games. Evidences in laboratory marketing experiments, at the same time, are provided as one-dimension cases. In these cases, time anti-symmetry cycles can also be captured. The proposition of time anti-symmetry processes is small, but the cycles are distinguishable.

  10. Adverse events associated with incretin-based drugs in Japanese spontaneous reports: a mixed effects logistic regression model

    PubMed Central

    Narushima, Daichi; Kawasaki, Yohei; Takamatsu, Shoji

    2016-01-01

    Background: Spontaneous Reporting Systems (SRSs) are passive systems composed of reports of suspected Adverse Drug Events (ADEs), and are used for Pharmacovigilance (PhV), namely, drug safety surveillance. Exploration of analytical methodologies to enhance SRS-based discovery will contribute to more effective PhV. In this study, we proposed a statistical modeling approach for SRS data to address heterogeneity by a reporting time point. Furthermore, we applied this approach to analyze ADEs of incretin-based drugs such as DPP-4 inhibitors and GLP-1 receptor agonists, which are widely used to treat type 2 diabetes. Methods: SRS data were obtained from the Japanese Adverse Drug Event Report (JADER) database. Reported adverse events were classified according to the MedDRA High Level Terms (HLTs). A mixed effects logistic regression model was used to analyze the occurrence of each HLT. The model treated DPP-4 inhibitors, GLP-1 receptor agonists, hypoglycemic drugs, concomitant suspected drugs, age, and sex as fixed effects, while the quarterly period of reporting was treated as a random effect. Before application of the model, Fisher’s exact tests were performed for all drug-HLT combinations. Mixed effects logistic regressions were performed for the HLTs that were found to be associated with incretin-based drugs. Statistical significance was determined by a two-sided p-value <0.01 or a 99% two-sided confidence interval. Finally, the models with and without the random effect were compared based on Akaike’s Information Criteria (AIC), in which a model with a smaller AIC was considered satisfactory. Results: The analysis included 187,181 cases reported from January 2010 to March 2015. It showed that 33 HLTs, including pancreatic, gastrointestinal, and cholecystic events, were significantly associated with DPP-4 inhibitors or GLP-1 receptor agonists. In the AIC comparison, half of the HLTs reported with incretin-based drugs favored the random effect, whereas HLTs

  11. Comparative analysis of the use of various solid-state laser media for the self-starting of four-wave PCW generation in a loop laser resonator

    SciTech Connect

    Smetanin, Sergei N

    2013-01-31

    A generalised theory has been used to carry out a comparative analysis of the use of various four-level and quasi-threelevel media for the self-starting of degenerate four-wave mixing PCW generation directly in a laser medium placed in a loop resonator. It has been shown that quasi-three-level media can compete with four-level media at long upper laser level lifetimes and increased pump intensities. The most attractive solid-state laser media for four-wave PCW generation have been identified that have the highest deposited energy at a given pump intensity. In addition to neodymium-doped crystals, which are already widely used for four-wave PCW generation, promising materials are fourlevel chromium-doped media, e.g. alexandrite and Cr : LiCAF, and quasi-three-level media with the longest upper laser level lifetime, such as Yb : YAG and Tm, Ho : YAG, at high pump intensities. (nonlinear optical phenomena)

  12. Polarization properties of four-wave interaction in dynamic recording material based on bacteriorhodopsin

    NASA Astrophysics Data System (ADS)

    Korchemskaya, Ellen Y.; Soskin, Marat S.

    1994-10-01

    The polarization properties of four-wave interaction on polymer films with bacteriorhodopsin that possess anisotropically saturating nonlinearity are studied both theoretically and experimentally. The amplitude and the polarization of the diffracted wave for recording material with anisotropically saturating nonlinearity are calculated. Low saturation intensity allows the operation of the polarization of low-intensity signals to be realized. It is shown that control of the diffractive wave polarization is possible only with the variation of the light recording intensity.

  13. Self-Organization in Active Cytoskeletal Mixtures: Cilia-like Beating of Microtubule Bundles and Spontaneous Bulk Mixing

    NASA Astrophysics Data System (ADS)

    Sanchez, Tim

    This thesis discusses circularization and supercoiling of actin biofilaments, as well as the various examples of self-organization observed in a simple non-equilibrium system of microtubules, motor clusters, and a depletion agent (PEG). When the ends of an actin filament approach each other, annealing can occur, resulting in the assumption of a circular conformation. In order to facilitate this experimentally, we dramatically reduce the space available for the ends to explore by confining the filaments to a quasi-2D region. This is accomplished through the use of a depletion attraction. In addition to the pronounced effects of this topological ring constraint on the statistical fluctuations of the filaments, we also observe a spontaneous supercoiling transition in fluorescently labeled actin rings that is directly driven by illumination. To better understand this transition in natural twist, we investigate real-time twist of a filament trapped between two beads, held by optical traps. The main focus of this graduate work was on the behavior of non-equilibrium in vitro mixtures of microtubules, kinesin motor clusters, and a depletion agent. We observed several striking and distinct examples of self-organization on near-macroscopic length scales, due to the interactions of very simple components. First we investigate the driving mechanism behind the beating of biological cilia and flagella, and find that this beating functionality can be reproduced in our vastly simpler system. This occurs only when minimalist components are reconstituted: motors, biofilaments, elastic links to hold the filaments together, and a basal attachment. Beyond the cooperativity of the motors to produce oscillatory beating in individual bundles, we also observe that active bundles in close proximity can synchronize their beating to produce stable, periodic metachronal waves that propagate along the bundle array. By changing only the length distribution of the microtubules in our system, we

  14. Phase matching of four-wave interactions of SRS components in birefringent SRS-active crystals

    SciTech Connect

    Smetanin, Sergei N; Basiev, Tasoltan T

    2012-03-31

    A new method has been proposed for achieving wave vector matching in four-wave interactions of frequency components upon SRS in birefringent SRS-active crystals. The method ensures anti-Stokes wave generation and enables a substantial reduction in higher order Stokes SRS generation thresholds. Phase matching directions in BaWO{sub 4} SRS-active negative uniaxial crystals and SrWO{sub 4} SRS-active positive uniaxial crystals have been found in the wavelength range 0.4 - 0.7 {mu}m.

  15. Model for particle masses, flavor mixing, and {ital CP} violation, based on spontaneously broken discrete chiral symmetry as the origin of families

    SciTech Connect

    Adler, S.L.

    1999-01-01

    We construct extensions of the standard model based on the hypothesis that Higgs bosons also exhibit a family structure and that the flavor weak eigenstates in the three families are distinguished by a discrete Z{sub 6} chiral symmetry that is spontaneously broken by the Higgs sector. We study in detail at the tree level models with three Higgs doublets and with six Higgs doublets comprising two weakly coupled sets of three. In a leading approximation of S{sub 3} cyclic permutation symmetry the three-Higgs-doublet model gives a {open_quotes}democratic{close_quotes} mass matrix of rank 1, while the six-Higgs-doublet model gives either a rank-1 mass matrix or, in the case when it spontaneously violates {ital CP}, a rank-2 mass matrix corresponding to nonzero second family masses. In both models, the CKM matrix is exactly unity in the leading approximation. Allowing small explicit violations of cyclic permutation symmetry generates small first family masses in the six-Higgs-doublet model, and first and second family masses in the three-Higgs-doublet model, and gives a nontrivial CKM matrix in which the mixings of the first and second family quarks are naturally larger than mixings involving the third family. Complete numerical fits are given for both models, flavor-changing neutral current constraints are discussed in detail, and the issues of unification of couplings and neutrino masses are addressed. On a technical level, our analysis uses the theory of circulant and retrocirculant matrices, the relevant parts of which are reviewed. {copyright} {ital 1998} {ital The American Physical Society}

  16. Reconfigurable all-optical logic gate using four-wave mixing (FWM) in HNLF for NRZ-PolSK signal

    NASA Astrophysics Data System (ADS)

    Li, Lanlan; Wu, Jian; Qiu, Jifang; Wu, Bingbing; Xu, Kun; Hong, Xiaobin; Li, Yan; Lin, Jintong

    2010-10-01

    We demonstrate a reconfigurable all-optical logic gate for NRZ-PolSK signal based on FWM in a highly nonlinear fiber at 10 Gb/s. Half subtracter, XOR, AB¯, Ā B or XNOR, AND, and NOR logic gates can be implemented simultaneously. The input power for the HNLF is optimized to be as low as about 15.2 dBm and the high Q factors above 8 dB for eye diagrams are achieved. Experimental results show Q factors of AB¯, Ā B, AND, and NOR were higher than those of XOR, and XNOR. Error-free operation is achieved experimentally for 10 Gb/s 2 7-1 pseudorandom bit sequence (PRBS) data. Power penalties for the logic gate are less than 3 dB. Simulation analysis about the wavelength characteristic for all logic gates is given and it predicts that the reconfigurable logic gate can realize error-free operation when the wavelength separation is less than 5 nm.

  17. Distinguishing non-resonant four-wave-mixing noise in coherent stokes and anti-stokes Raman scattering

    NASA Technical Reports Server (NTRS)

    Marks, Daniel L. (Inventor); Boppart, Stephen A. (Inventor)

    2009-01-01

    A method of examining a sample comprises exposing the sample to a pump pulse of electromagnetic radiation for a first period of time, exposing the sample to a stimulant pulse of electromagnetic radiation for a second period of time which overlaps in time with at least a portion of the first exposing, to produce a signal pulse of electromagnetic radiation for a third period of time, and interfering the signal pulse with a reference pulse of electromagnetic radiation, to determine which portions of the signal pulse were produced during the exposing of the sample to the stimulant pulse. The first and third periods of time are each greater than the second period of time.

  18. Two-color interference effect involving three-photon atomic excitation and four-wave mixing in crossed laser beams

    SciTech Connect

    Peet, V.

    2007-09-15

    Through multiphoton ionization measurements, the polarization effects in destructive quantum interference under three-photon resonant excitation have been studied. Recent observations [V. Peet, Phys. Rev. A 74, 033406 (2006)] have indicated that contrary to the well-known pattern of a total suppression of resonance excitation, the destructive interference becomes incomplete if three-photon transition is driven by crossed beams with orthogonal polarization planes. These observations have been tested for a more general case of two-color excitation and very similar polarization-dependent anomalies in the interference character have been registered. It has been shown that the destructive interference is modified and the resonance excitation does occur if two crossed laser beams have opposite circular polarizations. The pressure-induced evolution of the uncanceled ionization peaks has the ratio of blue shift to width close to 0.5 exactly as it is known for resonance ionization peaks registered under excitation by counterpropagating laser beams.

  19. Four-wave mixing spectroscopy of molecular dimers. Application to dimers of pentacene in p-terphenyl

    NASA Astrophysics Data System (ADS)

    Levinsky, Howard; Wiersma, Douwe A.

    1982-10-01

    Dispersive coherent Stokes-Raman scattering (CSRS) experiments on pentacene dimers in p-terphenyl were performed to locate the corresponding singly excited, delocalized, dimer levels. In addition the CNRS technique was used to locate the doubly excited dimer state. Future experiments exploring the dynamics of this novel state are discussed.

  20. Interplay of phase-sensitive amplification and cascaded four-wave mixing in dispersion-controlled waveguides

    NASA Astrophysics Data System (ADS)

    Martin, Aude; Combrié, Sylvain; Willinger, Amnon; Eisenstein, Gadi; de Rossi, Alfredo

    2016-08-01

    Phase-sensitive parametric interactions can selectively process the two complex quadratures of the optical field. We implement phase-sensitive amplification in a large band-gap semiconductor photonic crystal waveguide in order to avoid two-photon absorption and free-carrier-related effects. Experimentally, an extinction ratio of 15 dB is achieved in a 1.5-mm-long photonic crystal waveguide, at a peak pump power of about 600 mW. We show that cascaded parametric interaction has a strong impact on squeezing and phase-sensitive extinction ratio and that this depends on the dispersion profile of the waveguide.

  1. Quantum frequency conversion and strong coupling of photonic modes using four-wave mixing in integrated microresonators

    NASA Astrophysics Data System (ADS)

    Vernon, Z.; Liscidini, M.; Sipe, J. E.

    2016-08-01

    Single-photon-level quantum frequency conversion has recently been demonstrated using silicon nitride microring resonators. The resonance enhancement offered by such systems enables high-efficiency translation of quantum states of light across wide frequency ranges at subwatt pump powers. We present a detailed theoretical analysis of the conversion dynamics in these systems and show that they are capable of converting single- and multiphoton quantum states. Analytic formulas for the conversion efficiency, spectral conversion probability density, and pump-power requirements are derived which are in good agreement with previous theoretical and experimental results. We show that with only modest improvement to the state of the art, efficiencies exceeding 95% are achievable using less than 100 mW of pump power. At the critical driving strength that yields maximum conversion efficiency, the spectral conversion probability density is shown to exhibit a flat-topped peak, indicating a range of insensitivity to the spectrum of a single-photon input. Two alternate theoretical approaches are presented to study the conversion dynamics: a dressed-mode approach that yields a better intuitive picture of the conversion process, and a study of the temporal dynamics of the participating modes in the resonator, which uncovers a regime of Rabi-like coherent oscillations of single photons between two different frequency modes. This oscillatory regime arises from the strong coupling of distinct frequency modes mediated by coherent pumps.

  2. Modulating the correlation and squeezing of phase-conjugate four-wave mixing via the polarizable dressing states.

    PubMed

    Wang, Ruimin; Guo, Yao; Liu, Zheng; Ma, Jiaqi; Yin, Ming; Wang, Xiuxiu; Li, Changbiao; Zhang, Yanpeng

    2015-05-28

    We report the experimental observation of the intensity noise correlation and squeezing between counter propagating Stokes and anti-Stokes signals in Pr(3+):Y2SiO5 crystals. Both the degree of correlation and squeezing as well as the oscillation frequency of correlation curves are modulated by changing the polarization states and powers of the dressing fields. The double-dressed effect and the triple-dressed effect in V-type three-level, Λ-type three-level and N-type four-level systems are compared. The polarization and power dependencies in these systems are different, and the oscillation frequency of the correlation curve in the triple-dressed process is greater than that of the double-dressed process. Our results show that the correlation and squeezing of photon pairs can be controlled via polarized dark states. PMID:25930060

  3. Parametric amplification of dressed multi-wave mixing in an atomic ensemble

    NASA Astrophysics Data System (ADS)

    Chen, H. X.; Qin, M. Z.; Zhang, Y. Q.; Zhang, X.; Wen, F.; Wen, J. M.; Zhang, Y. P.

    2014-04-01

    We theoretically investigate the influence of a dressing field on parametric amplification multi-wave mixing (PA-MWM) processes in an atomic ensemble for the first time. The quantum spatial properties of PA-MWM signals are demonstrated by studying the cone emissions. Meanwhile, we investigate the intensities, the intensity difference squeezing, and the intensity noise correlation of bright twin PA-MWM beams, which are generated by injecting the MWM signals into the input ports of a spontaneous parametric four-wave mixing process. Both the spatial properties and the quantum correlation can be enhanced or suppressed via a bright state or a dark state, which is induced by the single or double dressing effect. This study has potential applications in quantum security, quantum imaging and long distance quantum communications.

  4. Relations between Political Violence and Child Adjustment: A Four-Wave Test of the Role of Emotional Insecurity about Community

    PubMed Central

    Cummings, E. Mark; Taylor, Laura K.; Merrilees, Christine E.; Goeke-Morey, Marcie C.; Shirlow, Peter; Cairns, Ed

    2015-01-01

    This study further explored the impact of sectarian violence and children’s emotional insecurity about community on child maladjustment using a four-wave longitudinal design. The study included 999 mother-child dyads in Belfast, Northern Ireland (482 boys, 517 girls). Across the four-waves, child mean age was 12.19 (SD = 1.82), 13.24 (SD = 1.83), 13.61 (SD = 1.99), and 14.66 years (SD = 1.96), respectively. Building on previous studies of the role of emotional insecurity in child adjustment, the current study examines within-person change in emotional insecurity using latent growth curve analyses. The results showed that children’s trajectories of emotional insecurity about community were related to risk for developing conduct and emotion problems. These findings controlled for earlier adjustment problems, age and gender, and took into account the time-varying nature of experience with sectarian violence. Discussion considers the implications for children’s emotional insecurity about community for relations between political violence and children’s adjustment, including the significance of trajectories of emotional insecurity over time. PMID:23527495

  5. Phase Coupling in Langmuir Wave Packets: Evidence for Four Wave Interactions in Solar Type III Radio Bursts

    NASA Technical Reports Server (NTRS)

    Thejappa, G.; MacDowall, R. J.; Bergamo, M.

    2012-01-01

    The four wave interaction process, known as the oscillating two stream instability (OTSI) is considered as one of the mechanisms responsible for stabilizing the electron beams associated with solar type III radio bursts. It has been reported that (1) an intense localized Langmuir wave packet associated with a type III burst contains the spectral characteristics of the OTSI: (a) a resonant peak at the local electron plasma frequency, f(sub pe), (b) a Stokes peak at a frequency slightly lower than f(sub pe), (c) anti-Stokes peak at a frequency slightly higher than f(sub pe), and (d) a low frequency enhancement below a few hundred Hz, (2) the frequencies and wave numbers of these spectral components satisfy the resonance conditions of the OTSI, and (3) the peak intensity of the wave packet is well above the thresholds for the OTSI as well as spatial collapse of envelope solitons. Here, for the first time, applying the trispectral analysis on this wave packet, we show that the tricoherence, which measures the degree of coherent four-wave coupling amongst the observed spectral components exhibits a peak. This provides an additional evidence for the OTSI and related spatial collapse of Langmuir envelope solitons in type III burst sources.

  6. The relationship between perceptions of organizational functioning and voluntary counselor turnover: a four-wave longitudinal study.

    PubMed

    Eby, Lillian T; Rothrauff-Laschober, Tanja C

    2012-03-01

    Using data from a nationwide study, we annually track a cohort of 598 substance use disorder counselors over a four-wave period to (a) document the cumulative rates of voluntary turnover and (b) examine how counselor perceptions of the organizational environment (procedural justice, distributive justice, perceived organizational support, and job satisfaction) and clinical supervisor leadership effectiveness (relationship quality, in-role performance, extra-role performance) predict voluntary turnover over time. Survey data were collected from counselors in Year 1, and actual turnover data were collected from organizational records in Years 2, 3, and 4. Findings reveal that 25% of the original counselors turned over by Year 2, 39% by Year 3, and 47% by Year 4. Counselors with more favorable perceptions of the organizational environment are between 13.8% and 22.8% less likely to turn over than those with less favorable perceptions. None of the leadership effectiveness variables are significant. PMID:22116013

  7. Spontaneous Fission

    DOE R&D Accomplishments Database

    Segre, Emilio

    1950-11-22

    The first attempt to discover spontaneous fission in uranium was made by [Willard] Libby, who, however, failed to detect it on account of the smallness of effect. In 1940, [K. A.] Petrzhak and [G. N.] Flerov, using more sensitive methods, discovered spontaneous fission in uranium and gave some rough estimates of the spontaneous fission decay constant of this substance. Subsequently, extensive experimental work on the subject has been performed by several investigators and will be quoted in the various sections. [N.] Bohr and [A.] Wheeler have given a theory of the effect based on the usual ideas of penetration of potential barriers. On this project spontaneous fission has been studied for the past several years in an effort to obtain a complete picture of the phenomenon. For this purpose the spontaneous fission decay constants {lambda} have been measured for separated isotopes of the heavy elements wherever possible. Moreover, the number {nu} of neutrons emitted per fission has been measured wherever feasible, and other characteristics of the spontaneous fission process have been studied. This report summarizes the spontaneous fission work done at Los Alamos up to January 1, 1945. A chronological record of the work is contained in the Los Alamos monthly reports.

  8. Peritonitis - spontaneous

    MedlinePlus

    ... a catheter used in peritoneal dialysis. Antibiotics may control infection in cases of spontaneous peritonitis with liver or kidney disease. Intravenous therapy can treat dehydration . You may need to stay in the hospital so health care providers can rule out conditions ...

  9. Power-scalable tunable UV, visible, and NIR generation from an ultrafast fiber OPA based on four wave mixing in PCF

    NASA Astrophysics Data System (ADS)

    Yarrow, Michael J.; Wadsworth, William J.; Lavoute, Laure; Clowes, John R.; Grudinin, Anatoly B.

    2012-02-01

    An ultrafast fiber MOPA was developed which delivered high average power and rapid and continuous tunability over the range 1035 - 1070 nm. Through FWM in a single PCF, this source generated greater than 30% conversion efficiency to a narrow linewidth signal with tunability from 720 to 880 nm and a corresponding idler tunable from 1370 to 1880 nm. Generation of tunable signal SHG, signal-pump SFG, pump SHG and pump-idler SFG were demonstrated in a single angle tuned BBO crystal. The combined system enabled tunability over large portions of the UV, visible and NIR spectral range from 370 - 1900 nm with a very simple setup. There is scope for power scaling of the source and extending the wavelength coverage.

  10. Measurement of the soft polariton in KTa[sub 0. 93]Nb[sub 0. 07]O[sub 3] by time-resolved four-wave mixing

    SciTech Connect

    Grenier, P. ); Houde, D. ); Jandl, S. ); Boatner, L.A. )

    1994-12-01

    Measurement of the [ital A][sub 1](TO) soft-polariton mode in KTa[sub 0.93]Nb[sub 0.07]O[sub 3] has been made as a function of wave vector and temperature by means of a time-resolved third-order optical susceptibility technique. With the use of a polariton model calculation, the [ital A][sub 1](TO) soft-phonon mode self-energy wave-vector dependence, the Raman tensor, and the electro-optic tensor are inferred. The results indicate the particularity of the soft-phonon mode dynamics in the polariton region. The soft-phonon self-energy shows the presence of a four-particle interaction relaxation process and of an additional relaxation process associated with the intercluster dynamics, while the Raman and electro-optic tensor behavior as a function of temperature indicates the predominance of the electromagnetic interaction in the soft-phonon mode dynamics close to [ital T][sub [ital c

  11. Coherent anti-Stokes Raman scattering and spontaneous Raman scattering diagnostics of nonequilibrium plasmas and flows

    NASA Astrophysics Data System (ADS)

    Lempert, Walter R.; Adamovich, Igor V.

    2014-10-01

    The paper provides an overview of the use of coherent anti-Stokes Raman scattering (CARS) and spontaneous Raman scattering for diagnostics of low-temperature nonequilibrium plasmas and nonequilibrium high-enthalpy flows. A brief review of the theoretical background of CARS, four-wave mixing and Raman scattering, as well as a discussion of experimental techniques and data reduction, are included. The experimental results reviewed include measurements of vibrational level populations, rotational/translational temperature, electric fields in a quasi-steady-state and transient molecular plasmas and afterglow, in nonequilibrium expansion flows, and behind strong shock waves. Insight into the kinetics of vibrational energy transfer, energy thermalization mechanisms and dynamics of the pulse discharge development, provided by these experiments, is discussed. Availability of short pulse duration, high peak power lasers, as well as broadband dye lasers, makes possible the use of these diagnostics at relatively low pressures, potentially with a sub-nanosecond time resolution, as well as obtaining single laser shot, high signal-to-noise spectra at higher pressures. Possibilities for the development of single-shot 2D CARS imaging and spectroscopy, using picosecond and femtosecond lasers, as well as novel phase matching and detection techniques, are discussed.

  12. Polarization dependence of nonlinear wave mixing of spinor polaritons in semiconductor microcavities

    NASA Astrophysics Data System (ADS)

    Lewandowski, Przemyslaw; Lafont, Ombline; Baudin, Emmanuel; Chan, Chris K. P.; Leung, P. T.; Luk, Samuel M. H.; Galopin, Elisabeth; Lemaître, Aristide; Bloch, Jacqueline; Tignon, Jerome; Roussignol, Philippe; Kwong, N. H.; Binder, Rolf; Schumacher, Stefan

    2016-07-01

    The pseudospin dynamics of propagating exciton-polaritons in semiconductor microcavities are known to be strongly influenced by TE-TM splitting. As a vivid consequence, in the Rayleigh scattering regime, the TE-TM splitting gives rise to the optical spin Hall effect (OSHE). Much less is known about its role in the nonlinear optical regime in which four-wave mixing, for example, allows the formation of spatial patterns in the polariton density, such that hexagons and two-spot patterns are observable in the far field. Here we present a detailed analysis of spin-dependent four-wave mixing processes, by combining the (linear) physics of TE-TM splitting with spin-dependent nonlinear processes, i.e., exciton-exciton interaction and fermionic phase-space filling. Our combined theoretical and experimental study elucidates the complex physics of the four-wave mixing processes that govern polarization and orientation of off-axis modes.

  13. Negative spontaneous magnetization and semi-spin glass magnetic order in mixed spinel Co{sub 0.6}Zn{sub 0.4}Fe{sub 1.7}Mn{sub 0.3}O{sub 4}

    SciTech Connect

    Gupta, Arti; Tandon, R. P.; Shinde, A. B.; Krishna, P. S. R.; Chatterjee, Ratnamala

    2015-10-07

    In this paper, we establish the negative spontaneous magnetization in Mn and Zn substituted cobalt ferrite Co{sub 0.6}Zn{sub 0.4}Fe{sub 1.7}Mn{sub 0.3}O{sub 4} (CZFMO). It is suggested that the origin of negative spontaneous magnetization is due to the substitution of small sized Mn{sup +4} ions (compared to Fe{sup +3} ions) at the octahedral B site in compound Co{sub 0.6}Zn{sub 0.4} Fe{sub 2}O{sub 4}. The low value of Poisson's ratio ∼0.202 for this compound possibly contributes towards the easy distortion in the bond length and bond angle, causing increase in Fe-O bond distance/decrease in Fe-O-Fe bond angle with Mn substitution, leading to considerably weak Fe-O-Fe superexchange interaction at the octahedral B site. The neutron diffraction data clearly illustrated the significant reduction in ordered magnetic moment at the B site, with the resultant negative spontaneous magnetization (M = M{sub B} − M{sub A}) in this mixed spinel system. The spin disorder also gives rise to an interesting semi-spin glass behavior in CZFMO.

  14. Spontaneous combustion of hydrogen

    NASA Technical Reports Server (NTRS)

    Nusselt, Wilhelm; Pothmann, PH

    1923-01-01

    It is shown by the author's experiments that hydrogen which escapes to the atmosphere through openings in the system may burn spontaneously if it contains dust. Purely thermal reasoning can not account for the combustion. It seems to be rather an electrical ignition. In order to determine whether the cause of the spontaneous ignition was thermo-chemical, thermo-mechanical, or thermo-electrical, the experiments in this paper were performed.

  15. Wave mixing spectroscopy

    SciTech Connect

    Smith, R.W.

    1980-08-01

    Several new aspects of nonlinear or wave mixing spectroscopy were investigated utilizing the polarization properties of the nonlinear output field and the dependence of this field upon the occurrence of multiple resonances in the nonlinear susceptibility. First, it is shown theoretically that polarization-sensitive detection may be used to either eliminate or controllably reduce the nonresonant background in coherent anti-Stokes Raman spectroscopy, allowing weaker Raman resonances to be studied. The features of multi-resonant four-wave mixing are examined in the case of an inhomogeneously broadened medium. It is found that the linewidth of the nonlinear output narrows considerably (approaching the homogeneous width) when the quantum mechanical expressions for the doubly- and triply-resonant susceptibilities are averaged over a Doppler or strain broadened profile. Experimental studies of nonlinear processes in Pr/sup +3/:LaF/sub 3/ verify this linewidth narrowing, but indicate that this strain broadened system cannot be treated with a single broadening parameter as in the case of Doppler broadening in a gas. Several susceptibilities are measured from which are deduced dipole matrix elements and Raman polarizabilities related to the /sup 3/H/sub 4/, /sup 3/H/sub 6/, and /sup 3/P/sub 0/ levels of the praseodymium ions.

  16. Spontaneous endomyometrial neoplasms in aging Chinese hamsters

    SciTech Connect

    Brownstein, D.G.; Brooks, A.L.

    1980-05-01

    Twenty-one endomyometrial neoplasms among 93 nulliparous noninbred Chinese hamsters were evaluated. The median survival time of the 93 females was 1040 days. The median age of hamsters with endomyometrial neoplasms was 1200 days. Neoplasms were classified as carcinomas or malignant mixed muellerian tumors of the endometrium and benign or malignant myometrial neoplasms. There were 13 endometrial adenocarcinomas. Three tumors were mixed adenosquamous carcinomas, which occurred in significantly older Chinese hamsters than did adenocarcinomas. Three malignant mixed muellerian tumors consisted of 2 carcinosarcomas and 1 mixed mesodermal tumor. The 2 myometrial neoplasms were a lelomyoma and a lelomyosarcoma. The classification and relative frequency of these neoplasms were similar to endomyometrial neoplasms of women, which makes Chinese hamsters useful subjects for studies of spontaneous endomyometrial cancers.

  17. Biomodal spontaneous fission

    SciTech Connect

    Hulet, E.K. )

    1989-09-26

    Investigations of mass and kinetic-energy distributions from spontaneous fission have been extended in recent years to an isotope of element 104 and, for half-lives, to an isotope of element 108. The results have been surprising in that spontaneous fission half-lives have turned out to be much longer than expected and mass and kinetic- energy distributions were found to abruptly shift away from those of the lighter actinides, showing two modes of fission. These new developments have caused a re-evaluation of our understanding of the fission process, bringing an even deeper appreciation of the role played by nuclear shell effects upon spontaneous fission properties. 16 refs., 10 figs.

  18. Influence of inversion creation processes in atomic transitions on four-wave parametric oscillation process (FWPOP) under optical pumping of barium and europium vapor

    NASA Astrophysics Data System (ADS)

    Sokovikov, V. G.; Klimkin, A. V.; Prokopiev, V. E.

    2015-12-01

    Processes of inversion creation in a number of barium and europium atomic transitions under pumping of vapors by eximer XeCl* and KrF* lasers have been investigated. Qualitative study of inversion creation mechanisms that are common for barium and europium atoms has been carried out. Necessary conditions for observation of atom lines of Ba and Eu amplified spontaneous emission (ASE) have been formulated. It has been found that observed absence of long-wave satellites of Eu resonant lines is caused by ASE absence in atomic transitions 8p8P9/2 --> 6d8D07/2 and 8p8P9/2 --> 6d8D011/2 of europium atom. Whereas, absence of ASE in transitions 8p8P9/2 --> 6d8D07/2 and 8p8P9/2 --> 6d8D011/2 of Eu atom is a result of high offset, or starting of pre-dissociating pumping channel of 6d8D07/2,11/2 Eu levels. Problems, caused by of undetermined nature of resonant emission that is observed under optical pumping of europium and barium vapor, are discussed in this paper.

  19. [Spontaneous mediastinal emphysema].

    PubMed

    Svedbrand, Charlotte; Lange, Peter; Nielsen, Klaus

    2016-01-01

    Spontaneous mediastinal emphysema, also known as spontaneous pneumomediastinum, is defined as radiologically detected free air in the mediastinum, without preceding trauma. It is a rare condition, mainly affecting young adults. It can be caused by coughing, strenuous sports or cocaine inhalation, however, 40% are idiopatic. Common symptoms are chest pain and dyspnoea. 75-90% can be diagnosed with a chest X-ray, and 100% with a computed tomography. Treatment is symptomatic and complications are rare, however, pneumothorax and pneumorrachis have been reported. PMID:26750190

  20. Spontaneous sarcomere dynamics

    NASA Astrophysics Data System (ADS)

    Günther, Stefan; Kruse, Karsten

    2010-12-01

    Sarcomeres are the basic force generating units of striated muscles and consist of an interdigitating arrangement of actin and myosin filaments. While muscle contraction is usually triggered by neural signals, which eventually set myosin motors into motion, isolated sarcomeres can oscillate spontaneously between a contracted and a relaxed state. We analyze a model for sarcomere dynamics, which is based on a force-dependent detachment rate of myosin from actin. Our numerical bifurcation analysis of the spontaneous sarcomere dynamics reveals notably Hopf bifurcations, canard explosions, and gluing bifurcations. We discuss possible implications for experiments.

  1. Non-linear line-narrowing spectroscopy in mixed organic crystals

    NASA Astrophysics Data System (ADS)

    Riebe, Michael T.; Wright, John C.

    1987-08-01

    We report the elimination of inhomogeneous broadening in mixed organic crystals with multiply resonant four-wave mixing methods. Line narrowing and the line shifts characteristic of site selective methods are observed for both coherent anti-Stokes Raman spectroscopy (CARS) and multiply enhanced non-parametric spectrosocopy (MENS). The site selective capability of CARS is in agreement with the model proposed by Ouellette and Denariez-Roberge.

  2. Spontaneous otogenic pneumocephalus.

    PubMed

    Mohammed, El Romyssa; Profant, Milan

    2011-06-01

    The diagnosis and management of spontaneous otogenic pneumocephalus with literature review is described. A young sportsman experienced headache and fluctuating mass in his occiput during increased physical activity. A large extradural intracranial pneumocephalus with corresponding emphysema was imaged on a CT scan. Transmastoid identification and plugging of temporal bone defect solved the problem with complete pneumocephalus and emphysema resorption. PMID:21254960

  3. Arachnoid cyst spontaneous rupture.

    PubMed

    Marques, Inês Brás; Vieira Barbosa, José

    2014-01-01

    Arachnoid cysts are benign congenital cerebrospinal fluid collections, usually asymptomatic and diagnosed incidentally in children or adolescents. They may become symptomatic after enlargement or complications, frequently presenting with symptoms of intracranial hypertension. We report an unusual case of progressive refractory headache in an adult patient due to an arachnoid cyst spontaneous rupture. Although clinical improvement occurred with conservative treatment, the subdural hygroma progressively enlarged and surgical treatment was ultimately needed. Spontaneous rupture is a very rare complication of arachnoid cysts. Accumulation of cerebrospinal fluid accumulation in the subdural space causes sustained intracranial hypertension that may be life-threatening and frequently requires surgical treatment. Patients with arachnoid cysts must be informed on their small vulnerability to cyst rupture and be aware that a sudden and severe headache, especially if starting after minor trauma or a Valsalva manoeuvre, always requires medical evaluation. PMID:24581205

  4. Spontaneous Quantum Hall Liquids

    NASA Astrophysics Data System (ADS)

    Zhang, Fan

    2012-02-01

    Driven by electron-electron interactions, bilayer graphene and its thicker cousins, chirally (ABC) stacked multilayers, exhibit a variety of distinct broken symmetry states in which each spin-valley flavor spontaneously transfers charge between layers, because of their flat touching bands and large pseudospin chiralities. These gapped states are accompanied by large momentum space Berry curvatures and different types of topological orders. These competing ground states are distinguished by their flavor Hall conductivities, orbital magnetizations, edge state properties, and response to external fields. These spontaneous quantum Hall (SQH) states at zero field smoothly evolve into quantum Hall ferromagnet states at finite field. Various phase transitions occur by tuning carrier densities, temperature, and external fields. Recently, SQH states have started to be observed and explored in transport and Hall experiments on suspended devices with dual gates.

  5. Spontaneous Perforation of Pyometra.

    PubMed

    Sharma, Nalini; Singh, Ahanthem Santa; Bhaphiralyne, Wankhar

    2016-04-01

    Pyometra is collection of purulent material which occurs when there is interference with its normal drainage. It is an uncommon condition with incidence of 0.1 to 0.5% of all gynecological patients. Spontaneous rupture of uterus is an extremely rare complication of pyometra. A 65-year-old lady presented with pain abdomen and purulent vaginal discharge. Preoperative diagnosis of pyometra was made by magnetic resonance imaging (MRI). Laparotomy followed by peritoneal lavage and repair of perforation was performed. Although spontaneously perforated pyometra is rare, the condition must be borne in mind with regard to elderly women with acute abdominal pain. Preoperative diagnosis of perforated pyometra is absolutely essential. Computed tomography (CT) and MRI are diagnostic tools. In selected cases conservative approach at surgery can be opted. PMID:27152313

  6. Spontaneous Perforation of Pyometra

    PubMed Central

    Singh, Ahanthem Santa; Bhaphiralyne, Wankhar

    2016-01-01

    Pyometra is collection of purulent material which occurs when there is interference with its normal drainage. It is an uncommon condition with incidence of 0.1 to 0.5% of all gynecological patients. Spontaneous rupture of uterus is an extremely rare complication of pyometra. A 65-year-old lady presented with pain abdomen and purulent vaginal discharge. Preoperative diagnosis of pyometra was made by magnetic resonance imaging (MRI). Laparotomy followed by peritoneal lavage and repair of perforation was performed. Although spontaneously perforated pyometra is rare, the condition must be borne in mind with regard to elderly women with acute abdominal pain. Preoperative diagnosis of perforated pyometra is absolutely essential. Computed tomography (CT) and MRI are diagnostic tools. In selected cases conservative approach at surgery can be opted. PMID:27152313

  7. Spontaneous ileostomy closure

    PubMed Central

    Alyami, Mohammad S.; Lundberg, Peter W.; Cotte, Eddy G.; Glehen, Olivier J.

    2016-01-01

    Iatrogenic ileostomies are routinely placed during colorectal surgery for the diversion of intestinal contents to permit healing of the distal anastomosis prior to elective reversal. We present an interesting case of spontaneous closure of a diverting ileostomy without any adverse effects to the patient. A 65-year-old woman, positive for hereditary non-polyposis colorectal cancer type-I, with locally invasive cancer of the distal colon underwent en-bloc total colectomy, hysterectomy, and bilateral salpingoophorectomy with creation of a proximal loop ileostomy. The ostomy temporarily closed without reoperation at 10 weeks, after spontaneously reopening, it definitively closed, again without surgical intervention at 18 weeks following the original surgery. This rare phenomenon has occurred following variable colorectal pathology and is poorly understood, particularly in patients with aggressive disease and adjunct perioperative interventions. PMID:27279518

  8. [Spontaneous intraperitoneal hemorrhage: etiology].

    PubMed

    Ksontini, R; Roulet, D; Cosendey, B A; Cavin, R

    2001-10-01

    Spontaneous intraperitoneal hemorrhage is a rare and sometime fatal condition. The clinical presentation may range from a non-specific abdominal pain to an acute abdomen with hemodynamic instability. Often, a preoperative diagnosis cannot be obtained. Immediate surgical exploration remains the treatment of choice. However, pre or postoperative diagnosis can sometime be confirmed and treated with interventional radiology. In rare cases, the site of bleeding remains unknown despite intraoperative exploration and radiographic studies. PMID:11715286

  9. [Spontaneous abortion. Etiologic survey. Results].

    PubMed

    Baaklini, N; Anguenot, J L; Boulanger, J C; Vitse, M

    1990-12-01

    The definition of repeated spontaneous abortions is subject to caution. For some, it corresponds to at least three repeated spontaneous abortions with no normal previous pregnancy; for others, it comprises the repeated spontaneous abortions occurring after a normal pregnancy. It is a frequent problem, especially if one tries to give a wider definition. The authors studied the frequency of repeated spontaneous abortions in a continuous series of 14,857 pregnancies which took place between January 1982 and December 1988. In the study of the aetiology of the repeated spontaneous abortions in the various groups of women defined according to the number of previous pregnancies and abortions, they find the classical causes of repeated spontaneous abortions in all the categories: therefore, it seems legitimate to them that a wider definition be given for repeated spontaneous abortions. PMID:2291048

  10. Feasibility of a two-step culture method to improve the CO2-fixing efficiency of nonphotosynthetic microbial community and simultaneously decrease the spontaneous oxidative precipitates from mixed electron donors.

    PubMed

    Hu, Jiajun; Wang, Lei; Zhang, Shiping; Le, Yiquan; Fu, Xiaohua

    2014-08-01

    When compared with H2, mixed electron donors (MED), comprising S(2-), S2O3 (2-), and NO2 (-), could generally improve the CO2-fixing efficiency of nonphotosynthetic microbial communities (NPMCs). However, a large amount of abiotic precipitates combined with bacteria produced during culture may be unfavorable for the recycling and reuse of bacteria. The main component of the abiotic precipitates is S(0), which influences the enrichment and reuse of bacteria but is not conducive for CO2 fixation in the subsequent step. In this study, a two-step culture method (TSCM), employing H2 and MED, respectively, was verified to be feasible for improving the CO2-fixing efficiency of NPMCs in the second step. In the TSCM, the net-fixed CO2 increased to 854 mg/L and abiotic precipitates were not produced in the medium. Sequence analysis of 16 s rDNA from NPMC indicated the presence of microbial symbioses in the NPMC, supporting the possible applications of TSCM. PMID:24980751

  11. Drying low rank coal and retarding spontaneous ignition

    SciTech Connect

    Bixel, J.C.; Bellow, E.J.; Heaney, W.F.; Facinelli, S.H.

    1989-05-09

    A method is described of producing a dried particulate coal fuel having a reduced tendency to ignite spontaneously comprising spraying and intimately mixing the dried coal with an aqueous emulsion of a material selected from the group consisting of foots oils, petrolatum filtrate, and hydrocracker recycle oil.

  12. Spontaneous Tumor Lysis Syndrome

    PubMed Central

    Kimple, Michelle E.

    2015-01-01

    Tumor lysis syndrome (TLS) is a known complication of malignancy and its treatment. The incidence varies on malignancy type, but is most common with hematologic neoplasms during cytotoxic treatment. Spontaneous TLS is thought to be rare. This case study is of a 62-year-old female admitted with multisystem organ failure, with subsequent diagnosis of aggressive B cell lymphoma. On admission, laboratory abnormalities included renal failure, elevated uric acid (20.7 mg/dL), and 3+ amorphous urates on urinalysis. Oliguric renal failure persisted despite aggressive hydration and diuretic use, requiring initiation of hemodialysis prior to chemotherapy. Antihyperuricemic therapy and hemodialysis were used to resolve hyperuricemia. However, due to multisystem organ dysfunction syndrome with extremely poor prognosis, the patient ultimately expired in the setting of a terminal ventilator wean. Although our patient did not meet current TLS criteria, she required hemodialysis due to uric acid nephropathy, a complication of TLS. This poses the clinical question of whether adequate diagnostic criteria exist for spontaneous TLS and if the lack of currently accepted guidelines has resulted in the underestimation of its incidence. Allopurinol and rasburicase are commonly used for prevention and treatment of TLS. Although both drugs decrease uric acid levels, allopurinol mechanistically prevents formation of the substrate rasburicase acts to solubilize. These drugs were administered together in our patient, although no established guidelines recommend combined use. This raises the clinical question of whether combined therapy is truly beneficial or, conversely, detrimental to patient outcomes. PMID:26904699

  13. Quantum Spontaneous Stochasticity

    NASA Astrophysics Data System (ADS)

    Drivas, Theodore; Eyink, Gregory

    Classical Newtonian dynamics is expected to be deterministic, but recent fluid turbulence theory predicts that a particle advected at high Reynolds-numbers by ''nearly rough'' flows moves nondeterministically. Small stochastic perturbations to the flow velocity or to the initial data lead to persistent randomness, even in the limit where the perturbations vanish! Such ``spontaneous stochasticity'' has profound consequences for astrophysics, geophysics, and our daily lives. We show that a similar effect occurs with a quantum particle in a ''nearly rough'' force, for the semi-classical (large-mass) limit, where spreading of the wave-packet is usually expected to be negligible and dynamics to be deterministic Newtonian. Instead, there are non-zero probabilities to observe multiple, non-unique solutions of the classical equations. Although the quantum wave-function remains split, rapid phase oscillations prevent any coherent superposition of the branches. Classical spontaneous stochasticity has not yet been seen in controlled laboratory experiments of fluid turbulence, but the corresponding quantum effects may be observable by current techniques. We suggest possible experiments with neutral atomic-molecular systems in repulsive electric dipole potentials.

  14. Simultaneous bilateral spontaneous pneumothorax.

    PubMed

    Graf-Deuel, E; Knoblauch, A

    1994-04-01

    We describe 12 patients with simultaneous bilateral spontaneous pneumothorax (SBSP). They represent 4 percent of patients with spontaneous pneumothorax seen at our hospital from 1971 to 1990. Five of the 12 had no underlying lung disease. In the seven remaining patients, SBSP was secondary to histiocytosis X, lymphangioleiomyomatosis, osteogenic sarcoma with pleural and pulmonary metastases, Hodgkin's disease, mesothelioma, cystic fibrosis, or miliary tuberculosis. Nineteen of the 56 patients with SBSP (34 percent) described in the literature (this series included) had pulmonary disease related to disorders of cells of mesenchymal origin. Emphysema and bullous lung disease were not associated with SBSP. Long-term prognosis was a function of pulmonary status. Four of the patients described herein died during the period reviewed. All suffered from severe underlying disease. In no case was SBSP the main cause of death. With timely treatment, the short-term prognosis is benign even for patients with underlying lung disease. Surgical pleurectomy should be attempted early, especially in SBSP secondary to underlying lung disease. PMID:8162740

  15. Spontaneous hypoglycemia: diagnostic evaluation and management.

    PubMed

    Kandaswamy, Leelavathy; Raghavan, Rajeev; Pappachan, Joseph M

    2016-07-01

    Spontaneous hypoglycemia is a puzzling clinical problem and an important reason for referral to endocrinologists. Several clinical conditions such as insulinomas, non-insulinoma pancreatogenous hypoglycemia syndrome, insulin autoimmune syndrome, postprandial hypoglycemia (reactive hypoglycemia), non-islet cell tumor hypoglycemia, primary adrenal insufficiency, hypopituitarism, and critical illness can be associated with spontaneous hypoglycemia. Rarely, in patients with mental health issues, factious hypoglycemia from extrinsic insulin use or ingestion of oral hypoglycemic agents can obfuscate the clinical picture for clinicians trying to identify an organic cause. In those presenting with Whipple's triad (symptoms ± signs of hypoglycemia, low plasma glucose, and resolution symptoms ± signs after hypoglycemia correction), a 72-h supervised fast test with measurement of plasma insulin, c-peptide, pro-insulin, and beta-hydroxybutyrate levels, coupled with plasma/urine sulphonylurea screen, forms the first step in diagnostic evaluation. A mixed meal test is preferable for those with predominantly postprandial symptoms. Additional non-invasive and/or invasive diagnostic evaluation is necessary if an organic hypoglycemic disorder is suspected. With the aid of a few brief clinical case scenarios, we discuss the diagnostic evaluation and management of spontaneous hypoglycemia through this comprehensive article. PMID:26951054

  16. Spontaneously broken complete relativity

    NASA Astrophysics Data System (ADS)

    Andreev, A. F.

    1982-08-01

    It is suggested that the equations of the theory of relativity should have a spontaneously broken invariance with respect to the complex Poincare group, in order that relative velocities stay below that of light. Lorentz transformation matrices corresponding to velocities higher than that of light, which contain imaginary elements, are combined with real transformations in a single group, requiring the introduction of a complex Lorentz group as a symmetry group. For this complex group to be realized in real, physical space-time, the complex character of the coordinates must be eliminated by introducing appropriate Goldstone fields. The properties of these Goldstone fiels are discussed. A massless Goldstone field is deduced which, in the linear approximation, has no manifestations of any sort in classical mechanics and whose sole macroscopic manifestation is the presence of a nonelectromagnetic long-range interaction of bodies having a nonvanishing average spin density. An experiment to detect such a field is suggested.

  17. Spontaneous Atherosclerosis in Pigeons

    PubMed Central

    Santerre, Robert F.; Wight, Thomas N.; Smith, Samuel C.; Brannigan, David

    1972-01-01

    The interpretation of metabolic studies related to early changes in spontaneous atherosclerosis has been hampered by the focal nature of the disease and by the lack of a well-defined model system of the disease process. Gross, histologic and ultrastructural observations of lesion development at the celiac bifurcation of the aorta in atherosclerosis-susceptible White Carneau and atherosclerosis-resistant Show Racer pigeons are compared and discussed in terms of hemodynamics, muscular aggregation and altered metabolism of smooth muscle cells. Detailed knowledge of the morphologic sequence of events in lesion localization makes the celiac bifurcation in White Carneau and Show Racer pigeons a useful model for genetic comparisons of arterial wall metabolism and for investigating metabolic alterations occurring with atherogenesis. ImagesFig 9Fig 10Fig 1Fig 2Fig 10Fig 11Fig 3Fig 4Fig 12Fig 5Fig 6Fig 7Fig 8 PMID:4261591

  18. Spontaneous Iliac Vein Rupture

    PubMed Central

    Kim, Dae Hwan; Park, Hyung Sub; Lee, Taeseung

    2015-01-01

    Spontaneous iliac vein rupture (SIVR) is a rare entity, which usually occurs without a precipitating factor, but can be a life-threatening emergency often requiring an emergency operation. This is a case report of SIVR in a 62-year-old female who presented to the emergency room with left leg swelling. Workup with contrast-enhanced computed tomography revealed a left leg deep vein thrombosis with May-Thurner syndrome and a hematoma in the pelvic cavity without definite evidence of arterial bleeding. She was managed conservatively without surgical intervention, and also underwent inferior vena cava filter insertion and subsequent anticoagulation therapy for pulmonary thromboembolism. This case shows that SIVR can be successfully managed with close monitoring and conservative management, and anticoagulation may be safely applied despite the patient presenting with venous bleeding. PMID:26217647

  19. Spontaneous aortocaval fistula.

    PubMed

    Rajmohan, B

    2002-01-01

    Spontaneous aortocaval fistula is rare, occurring only in 4% of all ruptured abdominal aortic aneurysms. The physical signs can be missed but the presence of low back pain, palpable abdominal aortic aneurysm, machinery abdominal murmur and high-output cardiac failure unresponsive to medical treatment should raise the suspicion. Pre-operative diagnosis is crucial, as adequate preparation has to be made for the massive bleeding expected at operation. Successful treatment depends on management of perioperative haemodynamics, control of bleeding from the fistula and prevention of deep vein thrombosis and pulmonary embolism. Surgical repair of an aortocaval fistula is now standardised--repair of the fistula from within the aneurysm (endoaneurysmorraphy) followed by prosthetic graft replacement of the aneurysm. A case report of a 77-year-old woman, initially suspected to have unstable angina but subsequently diagnosed to have an aortocaval fistula and surgically treated successfully, is presented along with a review of literature. PMID:12432197

  20. Spontaneous Coronary Artery Dissection.

    PubMed

    Tweet, Marysia S; Gulati, Rajiv; Hayes, Sharonne N

    2016-07-01

    Spontaneous coronary artery dissection is an important etiology of nonatherosclerotic acute coronary syndrome, myocardial infarction, and sudden death. Innovations in the catheterization laboratory including optical coherence tomography and intravascular ultrasound have enhanced the ability to visualize intimal disruption and intramural hematoma associated with SCAD. Formerly considered "rare," these technological advances and heightened awareness suggest that SCAD is more prevalent than prior estimates. SCAD is associated with female sex, young age, extreme emotional stress, or extreme exertion, pregnancy, and fibromuscular dysplasia. The clinical characteristics and management strategies of SCAD patients are different than for atherosclerotic heart disease and deserve specific consideration. This review will highlight recent discoveries about SCAD as well as describe current efforts to elucidate remaining gaps in knowledge. PMID:27216840

  1. High-resolution inverse Raman and resonant-wave-mixing spectroscopy

    SciTech Connect

    Rahn, L.A.

    1993-12-01

    These research activities consist of high-resolution inverse Raman spectroscopy (IRS) and resonant wave-mixing spectroscopy to support the development of nonlinear-optical techniques for temperature and concentration measurements in combustion research. Objectives of this work include development of spectral models of important molecular species needed to perform coherent anti-Stokes Raman spectroscopy (CARS) measurements and the investigation of new nonlinear-optical processes as potential diagnostic techniques. Some of the techniques being investigated include frequency-degenerate and nearly frequency-degenerate resonant four-wave-mixing (DFWM and NDFWM), and resonant multi-wave mixing (RMWM).

  2. [Lazarus phenomenon: spontaneous resuscitation].

    PubMed

    Casielles García, J L; González Latorre, M V; Fernández Amigo, N; Guerra Vélz, A; Cotta Galán, M; Bravo Capaz, E; de las Mulas Béjar, M

    2004-01-01

    A 94-year-old woman undergoing surgery for simple repair of a duodenal perforation experienced a sudden massive hemorrhage (1500 mL) when the duodenum was separated from adjacent structures. Hemodynamic stability was re-established when fluids were replaced. After the abdominal wall was closed, increased amplitude of the QRS wave was observed and heart rate slowed until there was no pulse. Electromechanical dissociation (EMD) was diagnosed and cardiopulmonary resuscitation was started. When EMD persisted after 40 minutes, resuscitative measures were stopped and the ventilator was disconnected, though orotracheal intubation and arterial and electrocardiographic monitoring were maintained. After 2 or 3 minutes, heart rhythm restarted spontaneously and arterial pressure waves reappeared on the monitor. The patient progressed well for 72 hours, after which she developed septic shock and multiorgan failure, dying 18 days later. The Lazarus phenomenon may be more common than the medical literature would indicate, possibly because a large gap in our understanding of the pathophysiology of the phenomenon underlies anecdotes about "miracles". As we wait for adequate international consensus on a protocol for monitoring the withdrawal of resuscitative measures, we should act prudently before definitively certifying death. The case we report occurred during a surgical intervention in which the patient had received general anesthesia. We believe that the causes that might explain the Lazarus phenomenon are quite different in that context than they would be in a nonsurgical setting, such that it would be useful to create a national database to keep a record of such intraoperative events. PMID:15495638

  3. Spontaneous subgaleal aerocele.

    PubMed

    Ibe, M O N; Onu, D O; Igwe, N N

    2014-01-01

    Apart from reporting about a case of spontaneous subgaleal aerocele this paper looks at the possible causes and management also. A 35-year-old Igbo-Nigerian female, about 4 weeks post-natal, with a 10-month old steadily and gradually enlarging mass around the back of her head, including both temporal regions was referred to us. Plain skull radiographs showed air in this mass. Needle puncture produced air leading to immediate and complete flattening of the lesion. A few hours after this procedure while still in the hospital premises, she had generalized convulsions, for which she was hospitalized and treated. With no further attacks, her request for discharge the following day was granted. At the next visit, 7 days later, there was a re-accumulation, which was treated the same way as previously and with the same result. She has not reported back since then, though she was advised to visit us again in 7 day-time. This lesion should be considered when masses on the head are presented. Our health institutions should have adequate investigative facilities. PMID:24553041

  4. Spontaneous breaking of supersymmetry

    SciTech Connect

    Zumino, B.

    1981-12-01

    There has been recently a revival of interest in supersymmetric gauge theories, stimulated by the hope that supersymmetry might help in clarifying some of the questions which remain unanswered in the so called Grand Unified Theories and in particular the gauge hierarchy problem. In a Grand Unified Theory one has two widely different mass scales: the unification mass M approx. = 10/sup 15/GeV at which the unification group (e.g. SU(5)) breaks down to SU(3) x SU(2) x U(1) and the mass ..mu.. approx. = 100 GeV at which SU(2) x U(1) is broken down to the U(1) of electromagnetism. There is at present no theoretical understanding of the extreme smallness of the ratio ..mu../M of these two numbers. This is the gauge hierarchy problem. This lecture attempts to review the various mechanisms for spontaneous supersymmetry breaking in gauge theories. Most of the discussions are concerned with the tree approximation, but what is presently known about radiative correction is also reviewed.

  5. On coherence in spontaneous emission

    NASA Astrophysics Data System (ADS)

    Cummings, F. W.; Dorri, Ali

    1983-05-01

    The case of a single excited two-level atom emitting spontaneously in the presence of N unexcited atoms is solved exactly for emission into a single electromagnetic mode. The two-level atoms are in inequivalent mode positions.

  6. Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces.

    PubMed

    Nelson, Christopher T; Winchester, Benjamin; Zhang, Yi; Kim, Sung-Joo; Melville, Alexander; Adamo, Carolina; Folkman, Chad M; Baek, Seung-Hyub; Eom, Chang-Beom; Schlom, Darrell G; Chen, Long-Qing; Pan, Xiaoqing

    2011-02-01

    The polarization of the ferroelectric BiFeO(3) sub-jected to different electrical boundary conditions by heterointerfaces is imaged with atomic resolution using a spherical aberration-corrected transmission electron microscope. Unusual triangular-shaped nanodomains are seen, and their role in providing polarization closure is understood through phase-field simulations. Heterointerfaces are key to the performance of ferroelectric devices, and this first observation of spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces reveals properties unlike the surrounding film including mixed Ising-Néel domain walls, which will affect switching behavior, and a drastic increase of in-plane polarization. The importance of magnetization closure has long been appreciated in multidomain ferromagnetic systems; imaging this analogous effect with atomic resolution at ferroelectric heterointerfaces provides the ability to see device-relevant interface issues. Extension of this technique to visualize domain dynamics is envisioned. PMID:21247184

  7. The Relationship among Spontaneity, Impulsivity, and Creativity

    ERIC Educational Resources Information Center

    Kipper, David A.; Green, Doreen J.; Prorak, Amanda

    2010-01-01

    The present study was designed to investigate two characteristics of spontaneity, its relationship to creativity and to impulsivity. We hypothesized a positive relationship between spontaneity and creativity, consistent with Moreno, 1953 "canon of spontaneity-creativity." We also predicted a negative relationship between spontaneity and…

  8. Polyglot aphasics and language mixing: a comment on Perecman (1984).

    PubMed

    Grosjean, F

    1985-11-01

    Perecman (1984) Brain and Language, 23, 43-63, proposes that language mixing (and especially utterance level mixing) in polyglot aphasics reflects a linguistic deficit and that spontaneous translation indicates a prelinguistic processing deficit. It is argued in this comment that both language mixing (including utterance-level mixing) and spontaneous translation are also found in normal polyglots, and that they may not therefore always be reflecting language deficit in aphasics. Only a good assessment of the patient's language and speech before and after the injury will determine if these behaviors do indeed reflect deficits. PMID:4084770

  9. Optical antenna enhanced spontaneous emission.

    PubMed

    Eggleston, Michael S; Messer, Kevin; Zhang, Liming; Yablonovitch, Eli; Wu, Ming C

    2015-02-10

    Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ∼ 200 THz optical frequency show a spontaneous emission intensity enhancement of 35 × corresponding to a spontaneous emission rate speedup ∼ 115 ×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ∼ 2,500 × spontaneous emission speedup at d ∼ 10 nm, proportional to 1/d(2). Unfortunately, at d < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, I(o) = qω|x(o)|/d, feeding the antenna-enhanced spontaneous emission, where q|x(o)| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Moreover, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency. PMID:25624503

  10. Optical antenna enhanced spontaneous emission

    PubMed Central

    Eggleston, Michael S.; Messer, Kevin; Zhang, Liming; Yablonovitch, Eli; Wu, Ming C.

    2015-01-01

    Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ∼200 THz optical frequency show a spontaneous emission intensity enhancement of 35× corresponding to a spontaneous emission rate speedup ∼115×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ∼2,500× spontaneous emission speedup at d ∼ 10 nm, proportional to 1/d2. Unfortunately, at d < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, Io = qω|xo|/d, feeding the antenna-enhanced spontaneous emission, where q|xo| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Moreover, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency. PMID:25624503

  11. From mind wandering to involuntary retrieval: Age-related differences in spontaneous cognitive processes.

    PubMed

    Maillet, David; Schacter, Daniel L

    2016-01-01

    The majority of studies that have investigated the effects of healthy aging on cognition have focused on age-related differences in voluntary and deliberately engaged cognitive processes. Yet many forms of cognition occur spontaneously, without any deliberate attempt at engaging them. In this article we review studies that have assessed age-related differences in four such types of spontaneous thought processes: mind-wandering, involuntary autobiographical memory, intrusive thoughts, and spontaneous prospective memory retrieval. These studies suggest that older adults exhibit a reduction in frequency of both mind-wandering and involuntary autobiographical memory, whereas findings regarding intrusive thoughts have been more mixed. Additionally, there is some preliminary evidence that spontaneous prospective memory retrieval may be relatively preserved in aging. We consider the roles of age-related differences in cognitive resources, motivation, current concerns and emotional regulation in accounting for these findings. We also consider age-related differences in the neural correlates of spontaneous cognitive processes. PMID:26617263

  12. Children spontaneously police adults' transgressions.

    PubMed

    Heyman, Gail D; Chiu Loke, Ivy; Lee, Kang

    2016-10-01

    Maintaining social order requires the policing of transgressions. Prior research suggests that policing emerges early in life, but little is known about children's engagement in such behavior in live interactions where there is uncertainty about the consequences. In this study, 4- to 11-year-old children (N=158) witnessed an unfamiliar adult confederate intentionally destroy another adult's property. Of interest was whether children would engage in policing behavior by protesting to the transgressor or by spontaneously reporting the transgression to a third party. Some children engaged in these behaviors spontaneously; nearly half (42%) protested the transgression, and 27% reported it without being prompted. Even when children did not spontaneously report the transgression, they almost always reported it when asked directly. The findings show that children commonly engage in policing even in the face of potentially negative consequences. PMID:27295206

  13. [Three cases of spontaneous pneumomediastinum].

    PubMed

    Kobayashi, Kashin; Tachikawa, Soichi; Horiguchi, Takahiko; Kondo, Rieko; Shiga, Mamoru; Hirose, Masahiro; Sasaki, Yasushi; Torigoe, Hiroshi

    2006-04-01

    We encountered 3 male patients with spontaneous pneumomediastinum. The patients were a 16-year old and a 17-year old and a 24-year old. Predisposing episodes for the development of spontaneous pneumomediastinum could be identified in all 3 patients: throwing a ball during a baseball game in 1, lifting a heavy load during work in 2. However, they were healthy and suddenly developed symptoms in the absence of any underlying disease. The presenting complaint was chest pain in all 3 patients. Chest X-ray films and chest CT images revealed pneumomediastinum. A diagnosis of spontaneous pneumomediastinum was made based on chest X-ray films and chest CT images. After conservative treatment, all 3 patients recovered. PMID:16681254

  14. Spontaneous Scalarization of Massive Fields

    NASA Astrophysics Data System (ADS)

    Ramazanoglu, Fethi M.; Pretorius, Frans

    2014-03-01

    Spontaneous scalarization is a phenomenon in certain scalar-tensor theories where large deviations from general relativity can be observed inside compact stars, while the known observational bounds can also be satisfied far away. This scenario has been investigated for massless scalars and binary neutron stars using numerical relativity, but the parameter space for such theories have been severely restricted by recent observations. Here, we present our results on the spontaneous scalarization of massive scalars. We simulate cases with different equations of state and scalar field parameters, and comment on the detectability of the scalar field effects from the gravitational wave signal.

  15. Spontaneous baryogenesis from asymmetric inflaton

    NASA Astrophysics Data System (ADS)

    Takahashi, Fuminobu; Yamada, Masaki

    2016-05-01

    We propose a variant scenario of spontaneous baryogenesis from asymmetric inflaton based on current-current interactions between the inflaton and matter fields with a non-zero B - L charge. When the inflaton starts to oscillate around the minimum after inflation, it may lead to excitation of a CP-odd component, which induces an effective chemical potential for the B - L number through the current-current interactions. We study concrete inflation models and show that the spontaneous baryogenesis scenario can be naturally implemented in the chaotic inflation in supergravity.

  16. Flow Friction or Spontaneous Ignition?

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M.; Gallus, Timothy D.; Sparks, Kyle

    2012-01-01

    "Flow friction," a proposed ignition mechanism in oxygen systems, has proved elusive in attempts at experimental verification. In this paper, the literature regarding flow friction is reviewed and the experimental verification attempts are briefly discussed. Another ignition mechanism, a form of spontaneous combustion, is proposed as an explanation for at least some of the fire events that have been attributed to flow friction in the literature. In addition, the results of a failure analysis performed at NASA Johnson Space Center White Sands Test Facility are presented, and the observations indicate that spontaneous combustion was the most likely cause of the fire in this 2000 psig (14 MPa) oxygen-enriched system.

  17. Spontaneous Number Representation in Mosquitofish

    ERIC Educational Resources Information Center

    Dadda, Marco; Piffer, Laura; Agrillo, Christian; Bisazza, Angelo

    2009-01-01

    While there is convincing evidence that preverbal human infants and non-human primates can spontaneously represent number, considerable debate surrounds the possibility that such capacity is also present in other animals. Fish show a remarkable ability to discriminate between different numbers of social companions. Previous work has demonstrated…

  18. Toddlers' Spontaneous Attention to Number

    ERIC Educational Resources Information Center

    Baroody, Arthur J.; Li, Xia; Lai, Meng-lung

    2008-01-01

    Hannula and Lehtinen (2001, 2005) defined spontaneous focusing on numerosity (SFON) as the tendency to notice the relatively abstract attribute of number despite the presence of other attributes. According to nativists, an innate concept of one to three directs young children's attention to these "intuitive numbers" in everyday situations--even…

  19. Student Experiments in Spontaneous Fission.

    ERIC Educational Resources Information Center

    Becchetti, F. D.; Ying, J. S.

    1981-01-01

    Advanced undergraduate experiments utilizing a commercially available, thin spontaneous fission source are described, including studies of the energy and mass distribution of the fission fragments and their energy and angular correlation. The experiments provide a useful introduction to fission, nuclear mass equations, heavy-ion physics, and…

  20. Mixed Dementia

    MedlinePlus

    ... bodies , What Is Alzheimer's? NIA-Funded Memory & Aging Project Reveals Mixed Dementia Common Data from the first ... disease. For example, in the Memory and Aging Project study involving long-term cognitive assessments followed by ...

  1. Speeding up spontaneous disease extinction

    NASA Astrophysics Data System (ADS)

    Khasin, Michael

    2012-02-01

    The dynamics of epidemic in a susceptible population is affected both by the random character of interactions between the individuals and by environmental variations. As a consequence, the sizes of the population groups (infected, susceptible, etc.) fluctuate in the course of evolution of the epidemic. In a small community a rare large fluctuation in the number of infected can result in extinction of the disease. We suggest a novel paradigm of controlling the epidemic, where the control field, such as vaccination, is designed to maximize the rate of spontaneous disease extinction. We show that, for a limited-scope vaccination, the optimal vaccination protocol and its impact on the epidemics have universal features: (i) the vaccine must be applied in pulses, (ii) the spontaneous disease extinction is synchronized with the vaccination. We trace this universality to general properties of the response of large fluctuations to external perturbations.

  2. Spontaneous chirality in simple systems

    PubMed

    Pickett; Gross; Okuyama

    2000-10-23

    Two simple examples of spontaneous chiral symmetry breaking are presented. The first is close-packed cylindrically confined spheres. As the cylinder diameter is varied, one obtains a variety of chiral phases. The second example involves unconfined dipolar particles with an isotropic attraction, which also exhibits chiral ground states. We speculate that a dilute magnetorheological fluid film, with the addition of smaller particles to provide an attractive entropic interaction, will exhibit a chiral columnar ground state. PMID:11030973

  3. Spontaneous mid-oesophageal rupture.

    PubMed

    Holt, S; Millar, J W; Heading, R C; Charles, R G

    1978-08-01

    The clinical presentation and management of spontaneous rupture of the middle third of the oesophagus is described in two patients. Early presentation and treatment in one case led to uncomplicated recovery. In the other patient late presentation and diagnosis resulted in delayed surgical intervention with an unsuccessful outcome. The nature of this rare lesion is discussed and nine previously described cases are reviewed. PMID:733690

  4. Spontaneous scalarization with massive fields

    NASA Astrophysics Data System (ADS)

    Ramazanoǧlu, Fethi M.; Pretorius, Frans

    2016-03-01

    We study the effect of a mass term in the spontaneous scalarization of neutron stars, for a wide range of scalar field parameters and neutron star equations of state. Even though massless scalars have been the focus of interest in spontaneous scalarization so far, recent observations of binary systems rule out most of their interesting parameter space. We point out that adding a mass term to the scalar field potential is a natural extension to the model that avoids these observational bounds if the Compton wavelength of the scalar is small compared to the binary separation. Our model is formally similar to the asymmetron scenario recently introduced in application to cosmology, though here we are interested in consequences for neutron stars and thus consider a mass term that does not modify the geometry on cosmological scales. We review the allowed values for the mass and scalarization parameters in the theory given current binary system observations and black hole spin measurements. We show that within the allowed ranges, spontaneous scalarization can have nonperturbative, strong effects that may lead to observable signatures in binary neutron star or black hole-neutron star mergers, or even in isolated neutron stars.

  5. Spontaneous shrinkage of vestibular schwannoma

    PubMed Central

    Romani, Rossana; Pollock, Jonathan

    2016-01-01

    Background: “Watch, wait, and rescan” (WWR) has an established place as a successful management option for a significant proportion of vestibular schwannomas (VS) as an alternative to microsurgical removal or stereotactic radiotherapy. VS may grow slowly and continuously, followed by stagnation or even shrinkage. We present two case reports of spontaneous shrinkage of VS along with a review of the literature. Case Description: A 29-year-old female presented with a progressive history of visual blurring and intermittent diplopia over 2 months. A 29 mm of maximum intracranial diameter (ICD) VS with secondary obstructive hydrocephalus was diagnosed. The patient underwent a ventriculo-peritoneal shunt with resolution of her symptoms and opted for initial WWR management. Interval scanning between 2007 and 2014 showed progressive reduction in the maximum ICD together with reduction in the degree of central tumor enhancement. Maximum ICD at most recent follow up was 22 mm. A 28-year-old female was referred with right sensorineural deafness. A right VS of maximum ICD of 27 mm was diagnosed. Initial WWR management was planned after discussion. Serial imaging showed an initial increase in the size of the tumor followed by progressive reduction in size. The most recent follow up showed a maximum ICD of 20 mm. Conclusion: Early WWR management can be associated with spontaneous shrinkage of VS over time. Prospective clinical study of larger numbers of such cases using the UK VS database may help to identify predictive factors for the spontaneous regression of VS. PMID:27280055

  6. Spontaneous regression of breast cancer.

    PubMed

    Lewison, E F

    1976-11-01

    The dramatic but rare regression of a verified case of breast cancer in the absence of adequate, accepted, or conventional treatment has been observed and documented by clinicians over the course of many years. In my practice limited to diseases of the breast, over the past 25 years I have observed 12 patients with a unique and unusual clinical course valid enough to be regarded as spontaneous regression of breast cancer. These 12 patients, with clinically confirmed breast cancer, had temporary arrest or partial remission of their disease in the absence of complete or adequate treatment. In most of these cases, spontaneous regression could not be equated ultimately with permanent cure. Three of these case histories are summarized, and patient characteristics of pertinent clinical interest in the remaining case histories are presented and discussed. Despite widespread doubt and skepticism, there is ample clinical evidence to confirm the fact that spontaneous regression of breast cancer is a rare phenomenon but is real and does occur. PMID:799758

  7. Spontaneous Curvature of Polymer Brushes

    NASA Astrophysics Data System (ADS)

    Sheiko, Sergei; da Silva, Marcelo; Shirvaniants, David; Rodrigues, Carlos; Beers, Kathryn; Matyjaszewski, Krzysztof; Potemkin, Igor; Moeller, Martin

    2003-03-01

    Experimental studies of cylindrical brushes on surfaces revealed peculiar shape of brush molecules with a curved backbone. According to scaling analysis, spontaneous bending of the backbone can be driven by entropic elasticity of the side chains: smaller extension of the chains is attained due to their asymmetric distribution with respect to the backbone. An equilibrium, i.e. spontaneous curvature results from the balance of the elasticity of the side chains and the elasticity of the interface. The curvature is predicted to increase with the side chain length. The system is of general interest because cylindrical brushes confined to a flat surface represent a two-dimensional cross-section of a planar brush grafted on both sides. Here we present systematic studies of cylindrical brushes with different length of the side chains. The curvature of cylindrical brushes confined to a flat substrate was investigated by atomic force microscopy. The method allowed visualization of individual molecules and quantitative analysis of their conformation. In agreement with theory, adsorbed brushes demonstrated spontaneous curvature, however the curvature was shown to decrease with the side chain length.

  8. Etiology of primary spontaneous pneumothorax.

    PubMed

    Lyra, Roberto de Menezes

    2016-01-01

    With the advent of HRCT, primary spontaneous pneumothorax has come to be better understood and managed, because its etiology can now be identified in most cases. Primary spontaneous pneumothorax is mainly caused by the rupture of a small subpleural emphysematous vesicle (designated a bleb) or of a subpleural paraseptal emphysematous lesion (designated a bulla). The aim of this pictorial essay was to improve the understanding of primary spontaneous pneumothorax and to propose a description of the major anatomical lesions found during surgery. RESUMO Com o advento da TCAR, o pneumotórax espontâneo primário passou a ser mais bem entendido e conduzido, pois sua etiologia pode ser atualmente identificada na maioria dos casos. O pneumotórax espontâneo primário tem como principal causa a rotura de uma pequena vesícula enfisematosa subpleural, denominada bleb ou de uma lesão enfisematosa parasseptal subpleural, denominada bulla. O objetivo deste ensaio pictórico foi melhorar o entendimento do pneumotórax espontâneo primário e propor uma descrição das principais lesões anatômicas encontradas durante a cirurgia. PMID:27383937

  9. Parametrically Amplified Bright-state Polariton of Four- and Six-wave Mixing in an Optical Ring Cavity

    PubMed Central

    Chen, Haixia; Zhang, Yiqi; Yao, Xin; Wu, Zhenkun; Zhang, Xun; Zhang, Yanpeng; Xiao, Min

    2014-01-01

    We report experimental studies of bright-state polaritons of four-wave mixing (FWM) and six-wave mixing (SWM) signals through cascade nonlinear optical parametric amplification processes in an atom-cavity composite system for the first time. Also, the coexisting cavity transmission modes of parametrically amplified FWM and SWM signals are observed. Finally, electromagnetically induced absorption by the FWM cavity modes in the probe beam is investigated. The investigations can find potential applications in multi-channel narrow-band long-distance quantum communication. PMID:24401795

  10. Parametrically Amplified Bright-state Polariton of Four- and Six-wave Mixing in an Optical Ring Cavity

    NASA Astrophysics Data System (ADS)

    Chen, Haixia; Zhang, Yiqi; Yao, Xin; Wu, Zhenkun; Zhang, Xun; Zhang, Yanpeng; Xiao, Min

    2014-01-01

    We report experimental studies of bright-state polaritons of four-wave mixing (FWM) and six-wave mixing (SWM) signals through cascade nonlinear optical parametric amplification processes in an atom-cavity composite system for the first time. Also, the coexisting cavity transmission modes of parametrically amplified FWM and SWM signals are observed. Finally, electromagnetically induced absorption by the FWM cavity modes in the probe beam is investigated. The investigations can find potential applications in multi-channel narrow-band long-distance quantum communication.

  11. Optical dephasing in semiconductor mixed crystals

    NASA Astrophysics Data System (ADS)

    Siegner, U.; Weber, D.; Göbel, E. O.; Bennhardt, D.; Heuckeroth, V.; Saleh, R.; Baranovskii, S. D.; Thomas, P.; Schwab, H.; Klingshirn, C.; Hvam, J. M.; Lyssenko, V. G.

    1992-08-01

    The influence of disorder and localization on optical dephasing of excitons in the semiconductor mixed crystals CdS1-xSex and AlxGa1-xAs has been investigated by means of time-resolved four-wave mixing and photon echo experiments. A dephasing time of several hundreds of picoseconds is found for resonantly excited localized excitons in CdS1-xSex while the dephasing time in AlxGa1-xAs amounts to only a few picoseconds. In CdS1-xSex dephasing results mainly from hopping processes, i.e., exciton-phonon interaction. The contribution of disorder is negligible in terms of phase relaxation in CdS1-xSex. In contrast, in AlxGa1-xAs elastic disorder scattering yields an essential contribution to the dephasing rate. We present a theoretical model, which treats dephasing of optical excitations in a disordered semiconductor, including the influence of disorder as well as exciton-phonon interaction. On the base of this model, the experimentally observed differences in the dephasing behavior of excitons in CdS1-xSex and AlxGa1-xAs are related to the microscopic structure of the disorder potential and the mechanism of exciton localization.

  12. Spontaneous unilamellar polymer vesicles in aqueous solution.

    PubMed

    Kim, Tae-Hwan; Song, Chaeyeon; Han, Young-Soo; Jang, Jong-Dae; Choi, Myung Chul

    2014-01-21

    A unilamellar polymeric vesicle is a self-assembled structure of a block copolymer that forms a spherical single bilayer structure with a hydrophobic interlayer and a hydrophilic surface. Due to their enhanced colloidal stability and mechanical property, controllable surface functionality, or tunable membrane thickness, polymeric vesicles are useful in nano and bio-science, providing potential applications as nanosized carriers for catalysts, drugs, and enzymes. For fabrication of a unilamellar vesicle, however, preparative procedures with a few steps are inherently required. Herein, without complicated preparative procedures, we report spontaneous unilamellar polymeric vesicles with nanometer sizes (<100 nm), which are prepared by simply mixing a triblock copolymer, Pluronic P85 (PEO26PPO40PEO26), and an organic derivative, 5-methyl salicylic acid (5mS), in aqueous solution. Depending on the 5mS concentration and the temperature, the P85-5mS mixtures presented various self-assembled nanostructures such as spherical and cylindrical micelles or vesicles, which were characterized by small angle neutron scattering and cryo-TEM, resulting in a phase diagram drawn as a function of temperature and the 5mS concentration. Interestingly the critical temperature for the micelle-to-vesicle phase transition was easily controlled by varying the 5mS concentration, i.e. it was decreased with increasing the 5mS concentration. PMID:24652418

  13. Spontaneous CP symmetry breaking at the electroweak scale

    SciTech Connect

    Valenzuela, Cristian

    2005-05-01

    We present a top-condensation model in which the CP symmetry is spontaneously broken at the electroweak scale due to the condensation of two composite Higgs doublets. In particular the CP-violating phase of the Cabibbo-Kobayashi-Maskawa quark-mixing matrix is generated. A simpler model where only one quark family is included is also discussed. In this case, for a general four-fermion interaction (G{sub tb}{ne}0), the particle spectrum is the one of the one Higgs doublet model.

  14. Spontaneous Oligomerization of Nucleotide Alternatives in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Smith, Karen E.; House, Christopher H.; Dworkin, Jason P.; Callahan, Michael P.

    2016-03-01

    On early Earth, a primitive polymer that could spontaneously form from likely available precursors may have preceded both RNA and DNA as the first genetic material. Here, we report that heated aqueous solutions containing 5-hydroxymethyluracil (HMU) result in oligomers of uracil, heated solutions containing 5-hydroxymethylcytosine (HMC) result in oligomers of cytosine, and heated solutions containing both HMU and HMC result in mixed oligomers of uracil and cytosine. Oligomerization of hydroxymethylated pyrimidines, which may have been abundant on the primitive Earth, might have been important in the development of simple informational polymers.

  15. Spontaneous Superlattice Formation in Nanorods through PartialCation Exchange

    SciTech Connect

    Robinson, Richard D.; Sadtler, Bryce; Demchenko, Denis O.; Erdonmez, Can K.; Wang, Lin-Wang; Alivisatos, A. Paul

    2007-03-14

    Lattice mismatch strains are widely known to controlnanoscale pattern formation in heteroepitaxy, but such effects have notbeen exploited in colloidal nanocrystal growth. We demonstrate acolloidal route to synthesizing CdS-Ag2S nanorod superlattices throughpartial cation exchange. Strain induces the spontaneous formation ofperiodic structures. Ab initio calculations of the interfacial energy andmodeling of strain energies show that these forces drive theself-organization. The nanorod superlattices exhibit high stabilityagainst ripening and phase mixing. These materials are tunablenear-infrared emitters with potential applications as nanometer-scaleoptoelectronic devices.

  16. Sometimes Losing Your Self in Space: Children's and Adults' Spontaneous Use of Multiple Spatial Reference Frames

    ERIC Educational Resources Information Center

    Surtees, Andrew D. R.; Noordzij, Matthijs L.; Apperly, Ian A.

    2012-01-01

    Two experiments tested 6- to 11-year-old children's and college students' use of different frames of reference when making judgments about descriptions of social and nonsocial scenes. In Experiment 1, when social and nonsocial scenes were mixed, both children and students (N = 144) showed spontaneous sensitivity to the intrinsic and the relative…

  17. Long life catalytic membrane reactors for spontaneous conversion of natural gas to synthesis gas

    SciTech Connect

    Schwartz, M., White, J., Deych, S., Millard, J., Myers, M., Sammells, A.

    1997-10-01

    This program is focusing on the development of mixed ionic and electronic conducting materials based on the brown millerite structure for use in catalytic membrane reactors (CMRs). These CMRs are being evaluated for promoting the spontaneous and highly selective oxidative reforming of carbon dioxide / natural gas mixtures to synthesis gas.

  18. Spontaneous Pneumomediastinum Associated with Sex

    PubMed Central

    Flatman, Sam; Morrison, Edwin; Elahi, Maqsood

    2010-01-01

    We present a case of spontaneous pneumomediastinum (SPM) associated with sex. A 22-year-old lesbian with a history of asthma, cigarette and illicit drug smoking was diagnosed with a SPM after developing chest pain and dyspnoea in the context of performing oral sex. The main finding was subcutaneous emphysema involving the neck. SPM is an important differential diagnosis for chest pain in young people. It is a benign condition and diagnosis mainly limited to chest X-ray with increased incidence in asthmatics, smokers and drug addicts. PMID:22470723

  19. Turbulent excitation of spontaneous reconnection

    NASA Technical Reports Server (NTRS)

    Deeds, D.; Van Hoven, G.

    1989-01-01

    The long-term nonlinear evolution of a tearing-mode-unstable sheared-field plasma in a turbulent environment is explored. Two different physical configurations are modeled, and a different computational system is used for each. Results of both sets of calculations show that magnetic tearing arises spontaneously provided that the initial turbulence energy level is below the natural saturation level of the tearing instability. The relationship between these results and those of previous calculations are briefly discussed, concluding that there are no significant unexplainable disagreements.

  20. Acute spontaneous tumor lysis syndrome.

    PubMed

    Jasek, A M; Day, H J

    1994-10-01

    An 83-year-old woman with no previous history of malignancy was admitted to our institution with weakness and anemia and subsequently developed acute tumor lysis syndrome secondary to newly diagnosed Burkitt's leukemia/lymphoma. This syndrome has been previously described in patients with hematologic malignancies; however, its development has been related to the administration of chemotherapy, steroids, or radiotherapy. The spontaneous occurrence of tumor lysis syndrome has not been previously reported; however, Cohen et al. [Am J Med 58:486-491, 1980] report 8 of 37 patients with "clinically insignificant pretreatment derangements" of serum potassium, phosphate, and calcium. PMID:8092128

  1. [Mixed marriages].

    PubMed

    Harmsen, C N

    1998-08-01

    The author examines the extent and characteristics of mixed marriages in the Netherlands. "Nine out of ten married persons born in Turkey or Morocco have a partner who was born in the same country. The majority of married Surinamese also have a partner originating from the same country. Those who spend (a part of) their youth in Indonesia (the former Dutch East Indies), on the other hand, are mostly married to someone born in the Netherlands." (EXCERPT) PMID:12294179

  2. Spontaneous recovery in dynamical networks

    NASA Astrophysics Data System (ADS)

    Majdandzic, Antonio; Podobnik, Boris; Buldyrev, Sergey V.; Kenett, Dror Y.; Havlin, Shlomo; Eugene Stanley, H.

    2014-01-01

    Much research has been carried out to explore the structural properties and vulnerability of complex networks. Of particular interest are abrupt dynamic events that cause networks to irreversibly fail. However, in many real-world phenomena, such as brain seizures in neuroscience or sudden market crashes in finance, after an inactive period of time a significant part of the damaged network is capable of spontaneously becoming active again. The process often occurs repeatedly. To model this marked network recovery, we examine the effect of local node recoveries and stochastic contiguous spreading, and find that they can lead to the spontaneous emergence of macroscopic `phase-flipping' phenomena. As the network is of finite size and is stochastic, the fraction of active nodes z switches back and forth between the two network collective modes characterized by high network activity and low network activity. Furthermore, the system exhibits a strong hysteresis behaviour analogous to phase transitions near a critical point. We present real-world network data exhibiting phase switching behaviour in accord with the predictions of the model.

  3. Surfactant therapy and spontaneous diuresis.

    PubMed

    Bhat, R; John, E; Diaz-Blanco, J; Ortega, R; Fornell, L; Vidyasagar, D

    1989-03-01

    The effect of artificial surfactant therapy on renal function and the onset of spontaneous diuresis was prospectively evaluated in 19 infants with hyaline membrane disease in a double-blind, controlled study. Twelve infants were in the surfactant group; seven infants received placebo (0.9% saline solution). There was no difference in the time of onset of spontaneous diuresis (as defined by output greater than or equal to 80% of intake). The glomerular filtration rate, determined by endogenous creatinine clearance, was also similar in the surfactant- and placebo-treated infants during the first 3 days of life. The fractional excretion of sodium was significantly higher in the placebo group at 24 hours and 36 hours. Infants in the placebo group had a higher negative sodium balance than those in the surfactant group. Ventilatory status improved significantly soon after surfactant treatment, as evidenced by improvement in the alveolar/arterial oxygen pressure ratio and by a lower mean airway pressure. These data suggest that ventilatory status can be improved without diuresis; the factors that regulate diuresis are multiple and not fully understood. PMID:2646416

  4. Spontaneous apoptosis in human thymocytes.

    PubMed Central

    Tiso, M.; Gangemi, R.; Bargellesi Severi, A.; Pizzolitto, S.; Fabbi, M.; Risso, A.

    1995-01-01

    Apoptosis seems to be involved in different stages of immune cell development. In particular, experimental evidence suggests that it is a major form of cell death in the thymus. The present analysis of human thymocytes reveals that a fraction of these cells, cultured in vitro, undergoes spontaneous apoptosis. This observation is based both on molecular (DNA fragmentation) and morphological (electron microscopic) investigations of the cells. The apoptotic thymocytes are CD3- or CD3lo, CD4lo, and CD8lo and do not express Bcl-2 protein. Furthermore, thymocytes die by apoptosis when exposed to pharmacological stimuli, such as tumor necrosis factor-alpha, dexamethasone, ATP, or Ca++ ionophore. Thus the apoptotic machinery in thymocytes can be triggered by an imbalance in growth factors in the in vitro culture media and can be modulated by various biochemical signals. The process of spontaneous apoptosis is independent of mRNA or protein synthesis, as actinomycin D and cycloheximide fail to inhibit this phenomenon. Furthermore, apoptosis seems to require active oxidative phosphorylation, as it is prevented by incubation of the cells with inhibitors of the respiratory chain. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 Figure 7 Figure 8 PMID:7639336

  5. Crows spontaneously exhibit analogical reasoning.

    PubMed

    Smirnova, Anna; Zorina, Zoya; Obozova, Tanya; Wasserman, Edward

    2015-01-19

    Analogical reasoning is vital to advanced cognition and behavioral adaptation. Many theorists deem analogical thinking to be uniquely human and to be foundational to categorization, creative problem solving, and scientific discovery. Comparative psychologists have long been interested in the species generality of analogical reasoning, but they initially found it difficult to obtain empirical support for such thinking in nonhuman animals (for pioneering efforts, see [2, 3]). Researchers have since mustered considerable evidence and argument that relational matching-to-sample (RMTS) effectively captures the essence of analogy, in which the relevant logical arguments are presented visually. In RMTS, choice of test pair BB would be correct if the sample pair were AA, whereas choice of test pair EF would be correct if the sample pair were CD. Critically, no items in the correct test pair physically match items in the sample pair, thus demanding that only relational sameness or differentness is available to support accurate choice responding. Initial evidence suggested that only humans and apes can successfully learn RMTS with pairs of sample and test items; however, monkeys have subsequently done so. Here, we report that crows too exhibit relational matching behavior. Even more importantly, crows spontaneously display relational responding without ever having been trained on RMTS; they had only been trained on identity matching-to-sample (IMTS). Such robust and uninstructed relational matching behavior represents the most convincing evidence yet of analogical reasoning in a nonprimate species, as apes alone have spontaneously exhibited RMTS behavior after only IMTS training. PMID:25532894

  6. [Spontaneous fracture: a potential clinical concern].

    PubMed

    Lin, Chia-Huei; Tzeng, Wen-Chii; Li, Shu-Yen; Liao, Ru-Wen; Chiang, Shang-Lin; Chiang, Li-Chi

    2013-08-01

    Spontaneous fracture is an issue of increasing concern in clinical care. However, this topic has received only limited attention in nursing research. Gaps in understanding related to spontaneous fractures may increase medical-legal risks faced by frontline care nurses, exacerbate nursing pressures, and serve as a disincentive to remain in the already understaffed nursing profession. This article reviews previous research on spontaneous fractures to determine the epidemiological causes of clinical spontaneous fracture and identify effective prevention strategies. We hope this paper may increase clinical practitioner and expert awareness of spontaneous fractures; help establish a screening mechanism to identify high risk spontaneous fracture patients; and help nurses develop and implement proactive prevention / treatment strategies to strengthen awareness of this topic among patients and their families. PMID:23922095

  7. A Case of Multiple Spontaneous Keloid Scars

    PubMed Central

    Jfri, Abdulhadi; Rajeh, Nawal; Karkashan, Eman

    2015-01-01

    Keloid scars result from an abnormal healing response to cutaneous injury or inflammation that extends beyond the borders of the original wound. Spontaneous keloid scars forming in the absence of any previous trauma or surgical procedure are rare. Certain syndromes have been associated with this phenomenon, and few reports have discussed the evidence of single spontaneous keloid scar, which raises the question whether they are really spontaneous. Here, we present a 27-year-old mentally retarded single female with orbital hypertelorism, broad nasal bridge, repaired cleft lip and high-arched palate who presented with progressive multiple spontaneous keloid scars in different parts of her body which were confirmed histologically by the presence of typical keloidal collagen. This report supports the fact that keloid scars can appear spontaneously and are possibly linked to a genetic factor. Furthermore, it describes a new presentation of spontaneous keloid scars in the form of multiple large lesions in different sites of the body. PMID:26351423

  8. Spontaneous uterine perforation of pyometra presenting as acute abdomen.

    PubMed

    Kitai, Toshihiro; Okuno, Kentaro; Ugaki, Hiromi; Komoto, Yoshiko; Fujimi, Satoshi; Takemura, Masahiko

    2014-01-01

    Pyometra is the accumulation of pus in the uterine cavity, and spontaneous perforation of pyometra resulting in generalized diffuse peritonitis is extremely uncommon. We report a rare case of diffuse peritonitis caused by spontaneous perforation of pyometra. A 66-year-old postmenopausal woman with diffuse abdominal pain and vomiting was admitted to our institution. She had a history of mixed connective-tissue disease and had been taking steroids for 20 years. Under a diagnosis of generalized peritonitis secondary to perforation of the gastrointestinal tract or uterus, supravaginal hysterectomy and bilateral salpingo-oophorectomy were performed. Unfortunately, wound dehiscence and infection occurred during the postoperative course, which were exacerbated by her immunocompromised state. Despite intensive care and a course of antibiotics, the patient died of multiple organ failure resulting from sepsis on the 36th postoperative day. Although correct diagnosis, early intervention, and proper treatment can reduce morbidity and mortality of spontaneous perforation of pyometra, if severe infection occurs, this disease can be life threatening for immunocompromised hosts. PMID:25057420

  9. Spontaneous Pneumocephalus Associated with Pneumosinus Dilatans

    PubMed Central

    Lee, Jung-Sup; Kwon, Jeong-Taik; Suk, Jong-Sik

    2010-01-01

    The majority of cases of pneumocephalus are secondary to trauma or medical intervention. Spontaneous, non-traumatic pneumocephalus is an uncommon condition. Most cases of spontaneous pneumocephalus require surgery. However, if there is no evidence of infection or cerebrospinal fluid leak, bed rest and follow-up imaging is an alternative treatment. Herein, we report a 31-year-old man with spontaneous pneumocephalus associated with pneumosinus dilatans. PMID:20539803

  10. Spontaneous rupture of a splenotic nodule.

    PubMed Central

    Lanigan, D. J.

    1990-01-01

    A case is presented of spontaneous rupture of splenic tissue occurring 14 years after a splenectomy was carried out for trauma. Spontaneous rupture of a splenotic nodule has not previously been described and it may be added to the list of causes of spontaneous haemoperitoneum. The incidence and function of residual splenic tissue are briefly discussed and other causes of splenic rupture are outlined. PMID:2267217

  11. SPONTANEOUS COAL COMBUSTION; MECHANISMS AND PREDICTION.

    USGS Publications Warehouse

    Herring, James R.; Rich, Fredrick J.

    1983-01-01

    Spontaneous ignition and combustion of coal is a major problem to the coal mining, shipping, and use industries; unintentional combustion causes loss of the resource as well as jeopardy to life and property. The hazard to life is especially acute in the case of underground coal mine fires that start by spontaneous ignition. It is the intention of this research to examine previously suggested causes of spontaneous ignition, to consider new evidence, and to suggest an experimental approach to determine which of these suggested causes is relevant to western U. S. coal. This discussion focuses only on causes and mechanism of spontaneous ignition.

  12. Mixed results with mixed disulfides.

    PubMed

    Brigelius-Flohé, Regina

    2016-04-01

    A period of research with Helmut Sies in the 1980s is recalled. Our experiments aimed at an in-depth understanding of metabolic changes due to oxidative challenges under near-physiological conditions, i.e. perfused organs. A major focus were alterations of the glutathione and the NADPH/NADP(+) system by different kinds of oxidants, in particular formation of glutathione mixed disulfides with proteins. To analyze mixed disulfides, a test was adapted which is widely used until today. The observations in perfused rat livers let us believe that glutathione-6-phosphate dehydrogenase (G6PDH), i.a. might be activated by glutathionylation. Although we did not succeed to verify this hypothesis for the special case of G6PDH, the regulation of enzyme/protein activities by glutathionylation today is an accepted posttranslational mechanism in redox biology in general. Our early experimental approaches are discussed in the context of present knowledge. PMID:27095221

  13. Whole Spontaneous Spinal Epidural Hematoma

    PubMed Central

    Yoon, Kyeong-Wook; Song, Jae Gyok; Ryu, Jae-Wook

    2014-01-01

    A 26-year-old male who had no underlying disease, including coagulopathy, underwent thoracotomy and bleeding control due to hemothorax. On the fifth postoperative day, paralysis of both lower limbs occurred. Urgent spine magnetic resonance imaging showed a massive anterior spinal epidural hematoma from C2 to L1 level with different signal intensities, which was suspected to be staged hemorrhage. Hematoma evacuation with decompressive laminectomy was performed. The patient's neurologic deterioration was recovered immediately, and he was discharged without neurological deficits. A drug history of naftazone, which could induce a drug-induced platelet dysfunction, was revealed retrospectively. To our knowledge, this is the first report of whole spontaneous spinal epidural hematoma in a young patient, with a history of hemorrhoid medication. PMID:24967052

  14. Spontaneous Spinal Epidural Hematoma Report.

    PubMed

    Kukreja, Sunil; Nanda, Anil

    2016-01-01

    We report a case of spontaneous spinal epidural hematoma in a 12-year-old female, who presented with significant upper and lower extremities weakness preceded by pain around the neck and shoulder girdle. Magnetic resonance imaging revealed epidural hematoma extending from C6-T2 with characteristic heterogeneously hyperintensity on T2 and homogenously isointensity on T1. Emergent spinal decompression was performed. However, the patient remained substantially weak in her lower extremities and was wheelchair bound at 3 months postoperatively. We have discussed clinical features, predisposing events, pathogenesis and treatment guidelines described in the literature. We also aim to reinforce the notion of keeping a high degree of clinical suspicion to identify and intervene at the earliest stage to prevent the physically and socially challenging consequences of SSEH. PMID:27598898

  15. Spontaneous onset of atrial fibrillation

    PubMed Central

    Zemlin, Christian W.; Mitrea, Bogdan G.; Pertsov, Arkady M.

    2009-01-01

    Most commonly, atrial fibrillation is triggered by rapid bursts of electrical impulses originating in the myocardial sleeves of pulmonary veins (PVs). However, the nature of such bursts remains poorly understood. Here, we propose a mechanism of bursting consistent with the extensive empirical information about the electrophysiology of the PVs. The mechanism is essentially non-local and involves the spontaneous initiation of non-sustained spiral waves in the distal end of the muscle sleeves of the PVs. It reproduces the experimentally observed dynamics of the bursts, including their frequency, their intermittent character, and the unusual shape of the electrical signals in the pulmonary veins that are reminiscent of so-called early afterdepolarizations (EADs). PMID:20160895

  16. Spontaneous rupture on irregular faults

    NASA Astrophysics Data System (ADS)

    Liu, C.

    2014-12-01

    It is now know (e.g. Robinson et al., 2006) that when ruptures propagate around bends, the rupture velocity decrease. In the extreme case, a large bend in the fault can stop the rupture. We develop a 2-D finite difference method to simulate spontaneous dynamic rupture on irregular faults. This method is based on a second order leap-frog finite difference scheme on a uniform mesh of triangles. A relaxation method is used to generate an irregular fault geometry-conforming mesh from the uniform mesh. Through this numerical coordinate mapping, the elastic wave equations are transformed and solved in a curvilinear coordinate system. Extensive numerical experiments using the linear slip-weakening law will be shown to demonstrate the effect of fault geometry on rupture properties. A long term goal is to simulate the strong ground motion near the vicinity of bends, jogs, etc.

  17. Gravity from spontaneous Lorentz violation

    SciTech Connect

    Kostelecky, V. Alan; Potting, Robertus

    2009-03-15

    We investigate a class of theories involving a symmetric two-tensor field in Minkowski spacetime with a potential triggering spontaneous violation of Lorentz symmetry. The resulting massless Nambu-Goldstone modes are shown to obey the linearized Einstein equations in a fixed gauge. Imposing self-consistent coupling to the energy-momentum tensor constrains the potential for the Lorentz violation. The nonlinear theory generated from the self-consistent bootstrap is an alternative theory of gravity, containing kinetic and potential terms along with a matter coupling. At energies small compared to the Planck scale, the theory contains general relativity, with the Riemann-spacetime metric constructed as a combination of the two-tensor field and the Minkowski metric. At high energies, the structure of the theory is qualitatively different from general relativity. Observable effects can arise in suitable gravitational experiments.

  18. Spontaneous polaron transport in biopolymers

    NASA Astrophysics Data System (ADS)

    Chakrabarti, B.; Piette, B. M. A. G.; Zakrzewski, W. J.

    2012-02-01

    Polarons, introduced by Davydov to explain energy transport in α-helices, correspond to electrons localised on a few lattice sites because of their interaction with phonons. While the static polaron field configurations have been extensively studied, their displacement is more difficult to explain. In this paper we show that, when the next-to-nearest-neighbour interactions are included, for physical values of the parameters, polarons can spontaneously move, at T=0, on bent chains that exhibit a positive gradient in their curvature. At room temperature polarons perform a random walk but a curvature gradient can induce a non-zero average speed similar to the one observed at zero temperature. We also show that, at zero temperature, a polaron bounces on sharply kinked junctions. We interpret these results in the light of the energy transport by transmembrane proteins.

  19. Fog spontaneously folds mosquito wings

    NASA Astrophysics Data System (ADS)

    Dickerson, Andrew K.; Liu, Xing; Zhu, Ting; Hu, David L.

    2015-02-01

    The flexibility of insect wings confers aerodynamic benefits, but can also present a hazard if exposed to fog or dew. Fog can cause water to accumulate on wings, bending them into tight taco shapes and rendering them useless for flight. In this combined experimental and theoretical study, we use high-speed video to film the spontaneous folding of isolated mosquito wings due to the evaporation of a water drop. We predict shapes of the deformed wing using two-dimensional elastica theory, considering both surface tension and Laplace pressure. We also recommend fold-resistant geometries for the wings of flapping micro-aerial vehicles. Our work reveals the mechanism of insect wing folding and provides a framework for further study of capillarity-driven folding in both natural and biomimetic systems at small scales.

  20. Spontaneous Pneumoperitoneum due to Constipation

    PubMed Central

    Yamana, Ippei; Noritomi, Tomoaki; Takeno, Shinsuke; Tatsuya, Hashimoto; Sato, Keisuke; Shimaoka, Hideki; Yamaguchi, Ryosuke; Ishii, Fumiaki; Yamada, Teppei; Yamashita, Yuichi

    2015-01-01

    We report a rare case of spontaneous pneumoperitoneum. An 82-year-old Japanese male patient was referred to our hospital because of constipation and abdominal pain. Abdominal computed tomography revealed a large amount of feces in the colon and rectum, and free air in the abdomen. Based on these findings, the patient was diagnosed with gastrointestinal perforation. Emergency exploratory laparotomy was performed. Neither perforation nor ischemic changes were recognized in the digestive tract. The patient's defecation was managed postoperatively until discharge on the 13th postoperative day. The authors assumed that free air, which was released after a mucosal injury due to the internal pressure caused by the presence of a large amount of feces in the colon and rectum, had penetrated the bowel wall through the bowel mucosa. We herein report the present case while also reviewing the pertinent literature. PMID:26676063

  1. Spontaneous onset of atrial fibrillation

    NASA Astrophysics Data System (ADS)

    Zemlin, Christian W.; Mitrea, Bogdan G.; Pertsov, Arkady M.

    2009-06-01

    Most commonly, atrial fibrillation is triggered by rapid bursts of electrical impulses originating in the myocardial sleeves of pulmonary veins (PVs). However, the nature of such bursts remains poorly understood. Here, we propose a mechanism of bursting consistent with the extensive empirical information about the electrophysiology of the PVs. The mechanism is essentially non-local and involves the spontaneous initiation of non-sustained spiral waves in the distal end of the muscle sleeves of the PVs. It reproduces the experimentally observed dynamics of the bursts, including their frequency, their intermittent character, and the unusual shape of the electrical signals in the pulmonary veins that are reminiscent of so-called early afterdepolarizations (EADs).

  2. Management of Spontaneous Vaginal Delivery.

    PubMed

    Dresang, Lee T; Yonke, Nicole

    2015-08-01

    Most of the nearly 4 million births in the United States annually are normal spontaneous vaginal deliveries. In the first stage of labor, normal birth outcomes can be improved by encouraging the patient to walk and stay in upright positions, waiting until at least 6 cm dilation to diagnose active stage arrest, providing continuous labor support, using intermittent auscultation in low-risk deliveries, and following the Centers for Disease Control and Prevention guidelines for group B streptococcus prophylaxis. Most women with a low transverse uterine incision are candidates for a trial of labor after cesarean delivery and should be counseled accordingly. Pain management during labor includes complementary modalities and systemic opioids, epidural anesthesia, and pudendal block. Outcomes in the second stage of labor can be improved by using warm perineal compresses, allowing women more time to push before intervening, and offering labor support. Delayed pushing increases the length of the second stage of labor and does not affect the rate of spontaneous vaginal delivery. A tight nuchal cord can be clamped twice and cut before delivery of the shoulders, or the baby may be delivered using a somersault maneuver in which the cord is left nuchal and the distance from the cord to placenta minimized by pushing the head toward the maternal thigh. After delivery, skin-to-skin contact with the mother is recommended. Beyond 35 weeks' gestation, there is no benefit to bulb suctioning the nose and mouth. Postpartum maternal and neonatal outcomes can be improved through delayed cord clamping, active management to prevent postpartum hemorrhage, careful examination for external anal sphincter injuries, and use of absorbable synthetic suture for second-degree perineal laceration repair. Practices that will not improve outcomes and may result in negative outcomes include discontinuation of epidurals late in labor and routine episiotomy. PMID:26280140

  3. Remoted all optical instantaneous frequency measurement system using nonlinear mixing in highly nonlinear optical fiber.

    PubMed

    Bui, Lam Anh; Mitchell, Arnan

    2013-04-01

    A novel remoted instantaneous frequency measurement system using all optical mixing is demonstrated. This system copies an input intensity modulated optical carrier using four wave mixing, delays this copy and then mixes it with the original signal, to produce an output idler tone. The intensity of this output can be used to determine the RF frequency of the input signal. This system is inherently broadband and can be easily scaled beyond 40 GHz while maintaining a DC output which greatly simplifies receiving electronics. The remoted configuration isolates the sensitive and expensive receiver hardware from the signal sources and importantly allows the system to be added to existing microwave photonic implementations without modification of the transmission module. PMID:23571944

  4. Nondestructive assay confirmatory assessment experiments: mixed oxide

    SciTech Connect

    Lemming, J.F.

    1980-04-30

    The confirmatory assessment experiments demonstrate traceable nondestructive assay (NDA) measurements of plutonium in mixed oxide powder using commercially available spontaneous-fission assay systems. The experiments illustrate two major concepts: the production of calibration materials using calorimetric assay, and the use of paired measurements for measurement assurance. Two batches of well-characterized mixed oxide powder were used to establish the random and systematic error components. The major components of an NDA measurement assurance technique to establish and maintain traceability are identified and their functions are demonstrated. 20 refs., 10 figs., 10 tabs.

  5. Spontaneous motion in hierarchically assembled active matter

    PubMed Central

    Sanchez, Tim; Chen, Daniel T. N.; DeCamp, Stephen J.; Heymann, Michael; Dogic, Zvonimir

    2012-01-01

    With exquisite precision and reproducibility, cells orchestrate the cooperative action of thousands of nanometer-sized molecular motors to carry out mechanical tasks at much larger length scales, such as cell motility, division and replication1. Besides their biological importance, such inherently non-equilibrium processes are an inspiration for developing biomimetic active materials from microscopic components that consume energy to generate continuous motion2–4. Being actively driven, these materials are not constrained by the laws of equilibrium statistical mechanics and can thus exhibit highly sought-after properties such as autonomous motility, internally generated flows and self-organized beating5–7. Starting from extensile microtubule bundles, we hierarchically assemble active analogs of conventional polymer gels, liquid crystals and emulsions. At high enough concentration, microtubules form a percolating active network characterized by internally driven chaotic flows, hydrodynamic instabilities, enhanced transport and fluid mixing. When confined to emulsion droplets, 3D networks spontaneously adsorb onto the droplet surfaces to produce highly active 2D nematic liquid crystals whose streaming flows are controlled by internally generated fractures and self-healing, as well as unbinding and annihilation of oppositely charged disclination defects. The resulting active emulsions exhibit unexpected properties, such as autonomous motility, which are not observed in their passive analogues. Taken together, these observations exemplify how assemblages of animate microscopic objects exhibit collective biomimetic properties that are starkly different from those found in materials assembled from inanimate building blocks, challenging us to develop a theoretical framework that would allow for a systematic engineering of their far-from-equilibrium material properties. PMID:23135402

  6. Spontaneous Bruising in a Family Practice Population

    PubMed Central

    Modi, Amita V.

    1992-01-01

    Purpura simplex, or the syndrome of “easy bruisability,” is a benign, non-progressive clinical entity that can at times mimic more serious bleeding disorders. This study investigated the incidence of spontaneous bruising in a family practice population. Results suggest that spontaneous bruising is very common, particularly in women. Postulated mechanisms for purpura simplex are briefly reviewed. PMID:21221312

  7. Spontaneous fission properties and lifetime systematics

    SciTech Connect

    Hoffman, D.C.

    1989-03-01

    Half-lives for spontaneous fission of nuclides with even and odd numbers of particles are compared with recent theoretical calculations. A summary of odd particle hindrance factors is given. The most recent measurements of kinetic-energy and mass distributions and neutron emission for spontaneous fission of the heaviest nuclides are summarized and discussed. 51 refs., 9 figs.

  8. Simultaneous and spontaneous bilateral quadriceps tendons rupture.

    PubMed

    Celik, Evrim Coşkun; Ozbaydar, Mehmet; Ofluoglu, Demet; Demircay, Emre

    2012-07-01

    Simultaneous and spontaneous bilateral quadriceps tendon rupture is an uncommon injury that is usually seen in association with multiple medical conditions and some medications. We report a case of simultaneous and spontaneous bilateral quadriceps tendon rupture that may be related to the long-term use of a statin. PMID:22561379

  9. Abstracting in the Context of Spontaneous Learning

    ERIC Educational Resources Information Center

    Williams, Gaye

    2007-01-01

    There is evidence that spontaneous learning leads to relational understanding and high positive affect. To study spontaneous abstracting, a model was constructed by combining the RBC model of abstraction with Krutetskii's mental activities. Using video-stimulated interviews, the model was then used to analyze the behavior of two Year 8 students…

  10. Spontaneous pneumomediastinum: A complication of swine flu.

    PubMed

    Padhy, Ajit Kumar; Gupta, Anubhav; Aiyer, Palash; Jhajhria, Narender Singh; Grover, Vijay; Gupta, Vijay Kumar

    2015-10-01

    The occurrence of spontaneous pneumomediastinum in swine flu, or H1N1 influenza A infection, is a rare phenomenon and only few cases have been reported in children. We describe a case of spontaneous pneumomediastinum in adult infected with swine flu. PMID:25939913

  11. Spontaneity and Equilibrium II: Multireaction Systems

    ERIC Educational Resources Information Center

    Raff, Lionel M.

    2014-01-01

    The thermodynamic criteria for spontaneity and equilibrium in multireaction systems are developed and discussed. When N reactions are occurring simultaneously, it is shown that G and A will depend upon N independent reaction coordinates, ?a (a = 1,2, ..., N), in addition to T and p for G or T and V for A. The general criteria for spontaneity and…

  12. Reduction of spontaneous combustion of coal

    SciTech Connect

    Burns, E.J.

    1982-05-25

    A composition for the prevention of spontaneous combustion of coal is described which is comprised of at least about 2 percent of polyethylene oxide and the balance water. Also described is a method for reducing the spontaneous combustion tendency of coal by contacting coal with the above composition and then drying the coal.

  13. Children's Spontaneous Vocalisations during Play: Aesthetic Dimensions

    ERIC Educational Resources Information Center

    Countryman, June; Gabriel, Martha; Thompson, Katherine

    2016-01-01

    This paper explores the phenomenon of spontaneous vocalisations in the self-chosen, unstructured outdoor play of children aged 3-12. Spontaneous vocalisations encompass the whole range of children's unprompted, natural, expressive vocal soundings beyond spoken language. Non-participant observations at childcare centres and on elementary school…

  14. Spontaneous Circumrenal Hæmatoma

    PubMed Central

    Heritage, Kenneth

    1934-01-01

    By spontaneous circum-renal hæmatoma is meant a condition of extensive extravasation of blood into the kidney bed and surrounding tissues, unassociated with trauma. Since this is manifested by a fairly uniform clinical picture, by similar operative findings, and by peculiar difficulties in treatment, I propose to discuss it as a clinical entity irrespective of its wide ultimate causation. Very few cases are reported in the English literature. Nevertheless, from the world literature I have collected 170 case reports, and on them, together with three further cases, I base the present paper. Etiologically the cases fall into three groups:— (1) Those due to definite disease of the kidney or its blood-vessels, 58%. (2) Those due to extra-renal causes, 22%. (3) Those cases whose cause is obscure, 20%. In the first group neoplasms and inflammations of the kidney, aneurysms of the renal artery and arteriosclerosis are obvious causes. Many cases are due to obstruction of the renal veins. The classical triad of abdominal pain, signs of internal hæmorrhage, and a tumour in the loin are often obscured by the resemblance of an acute abdominal catastrophe. In acute cases, expectant treatment is almost invariably fatal. Evacuation of the clot, tamponage and drainage has a mortality of about 40%, whilst nephrectomy in 55 cases showed a mortality of 22%. ImagesFig. 1Fig. 2Fig. 3 PMID:19989861

  15. Spontaneous Retropharyngeal and Mediastinal Emphysema.

    PubMed

    Cho, Do-Yeon; Aaron, Geoffrey P; Shepard, Kimberly G

    2016-06-01

    A 14-year-old girl with no significant medical history presented at Emergency Department with sore throat and odynophagia after one episode of nonviolent coughing. She denied any respiratory distress, voice change, foreign body ingestion, retching, substance abuse, dental procedures, or trauma. She was afebrile with normal oxygen saturation and physical examination including the head and neck was unremarkable with the exception of bilateral neck crepitus without tenderness on palpation. Fiberoptic laryngoscopy revealed a patent laryngeal airway with normal vocal fold movement. Lateral neck X-ray demonstrated a linear air-column in the retropharyngeal space and computed tomography confirmed emphysema involving the retropharyngeal space and mediastinum with no evidence of fluid collection or abscess formation. Spontaneous retropharyngeal and mediastinal emphysema are clinical entities where free air is present within the confines of retropharyngeal space and mediastinum without obvious cause. It is benign and self-limited in nature and allows for conservative management. This case is presented with a review of literature. PMID:27090269

  16. Clinical Manifestations of Spontaneous Pneumomediastinum

    PubMed Central

    Park, Soo Jin; Park, Ji Ye; Jung, Joonho; Park, Seong Yong

    2016-01-01

    Background Spontaneous pneumomediastinum (SPM) is an uncommon disorder with only a few reported clinical studies. The goals of this study were to investigate the clinical manifestations and the natural course of SPM, as well as examine the current available treatment options for SPM. Methods We retrospectively reviewed 91 patients diagnosed with SPM between January 2008 and June 2015. Results The mean age of the patients was 22.7±13.2 years, and 67 (73.6%) were male. Chest pain (58, 37.2%) was the predominant symptom. The most frequent precipitating factor before developing SPM was a cough (15.4%), but the majority of patients (51, 56.0%) had no precipitating factors. Chest X-ray was diagnostic in 44 patients (48.4%), and chest computed tomography (CT) showed mediastinal air in all cases. Esophagography (10, 11.0%), esophagoduodenoscopy (1, 1.1%), and bronchoscopy (5, 5.5%) were performed selectively due to clinical suspicion, but no abnormal findings that implicated organ injury were documented. Twelve patients (13.2%) were discharged after a visit to the emergency room, and the others were admitted and received conservative treatment. The mean length of hospital stay was 3.0±1.6 days. There were no complications related to SPM except for recurrence in 2 patients (2.2%). Conclusion SPM responds well to conservative treatment and follows a benign natural course. Hospitalization and aggressive treatment can be performed in selective cases. PMID:27525238

  17. Percolative fragmentation and spontaneous agglomeration

    SciTech Connect

    Hurt, R.; Davis, K.

    1999-03-01

    Captive particle imaging experiments were performed on over 200 coal and char particles in the pulverized size range from four coals of various rank at oxygen concentration from 3--19 mol% and at gas temperatures of about 1250 K. Despite wide variations in single-particle behavior, the data set reveals two clear trends that provide new information on the nature of char combustion. First, the low-rank coal chars are observed to maintain their high reactivity through the late stages of combustion, thus avoiding the near-extinction events and long burnout tails observed for bituminous coal chars. Secondly, percolative fragmentation in the late stages of combustion is a rare event under these conditions. Some particles reach a percolation threshold rate in combustion, but typically undergo spontaneous agglomeration rather than liberation of the incipient fragments. It is concluded that percolative fragmentation behavior in the pulverized size range is determined not only by solid-phase connectivity, but also by a real competition between disruptive and cohesive forces present at the time of formation of the colloidal-sized incipient fragments.

  18. Spontaneous Metacognition in Rhesus Monkeys.

    PubMed

    Rosati, Alexandra G; Santos, Laurie R

    2016-09-01

    Metacognition is the ability to think about thinking. Although monitoring and controlling one's knowledge is a key feature of human cognition, its evolutionary origins are debated. In the current study, we examined whether rhesus monkeys (Macaca mulatta; N = 120) could make metacognitive inferences in a one-shot decision. Each monkey experienced one of four conditions, observing a human appearing to hide a food reward in an apparatus consisting of either one or two tubes. The monkeys tended to search the correct location when they observed this baiting event, but engaged in information seeking-by peering into a center location where they could check both potential hiding spots-if their view had been occluded and information seeking was possible. The monkeys only occasionally approached the center when information seeking was not possible. These results show that monkeys spontaneously use information about their own knowledge states to solve naturalistic foraging problems, and thus provide the first evidence that nonhumans exhibit information-seeking responses in situations with which they have no prior experience. PMID:27388917

  19. Spontaneous Retropharyngeal and Mediastinal Emphysema

    PubMed Central

    Cho, Do-Yeon; Aaron, Geoffrey P.; Shepard, Kimberly G.

    2016-01-01

    A 14-year-old girl with no significant medical history presented at Emergency Department with sore throat and odynophagia after one episode of nonviolent coughing. She denied any respiratory distress, voice change, foreign body ingestion, retching, substance abuse, dental procedures, or trauma. She was afebrile with normal oxygen saturation and physical examination including the head and neck was unremarkable with the exception of bilateral neck crepitus without tenderness on palpation. Fiberoptic laryngoscopy revealed a patent laryngeal airway with normal vocal fold movement. Lateral neck X-ray demonstrated a linear air-column in the retropharyngeal space and computed tomography confirmed emphysema involving the retropharyngeal space and mediastinum with no evidence of fluid collection or abscess formation. Spontaneous retropharyngeal and mediastinal emphysema are clinical entities where free air is present within the confines of retropharyngeal space and mediastinum without obvious cause. It is benign and self-limited in nature and allows for conservative management. This case is presented with a review of literature. PMID:27090269

  20. Cosmological aspects of spontaneous baryogenesis

    NASA Astrophysics Data System (ADS)

    De Simone, Andrea; Kobayashi, Takeshi

    2016-08-01

    We investigate cosmological aspects of spontaneous baryogenesis driven by a scalar field, and present general constraints that are independent of the particle physics model. The relevant constraints are obtained by studying the backreaction of the produced baryons on the scalar field, the cosmological expansion history after baryogenesis, and the baryon isocurvature perturbations. We show that cosmological considerations alone provide powerful constraints, especially for the minimal scenario with a quadratic scalar potential. Intriguingly, we find that for a given inflation scale, the other parameters including the reheat temperature, decoupling temperature of the baryon violating interactions, and the mass and decay constant of the scalar are restricted to lie within ranges of at most a few orders of magnitude. We also discuss possible extensions to the minimal setup, and propose two ideas for evading constraints on isocurvature perturbations: one is to suppress the baryon isocurvature with nonquadratic scalar potentials, another is to compensate the baryon isocurvature with cold dark matter isocurvature by making the scalar survive until the present.

  1. Spontaneous closure of a dural arteriovenous fistula

    PubMed Central

    Al-Afif, Shadi; Nakamura, Makoto; Götz, Friedrich; Krauss, Joachim K

    2014-01-01

    Spontaneous closure of a dural arteriovenous fistula (dAVF) is a rare condition and only a few cases have been reported since its first description in 1976. We report delayed and progressive spontaneous closure of a dAVF after massive intracerebral hemorrhage documented by angiographic studies before and after bleeding. To our knowledge, this is the first report to document gradual closure of a dAVF by serial angiographic studies. The mechanism of spontaneous closure of dAVFs has not been fully elucidated. We suggest different factors for consideration from previously published data and show how each of these factors can influence the others. PMID:25053666

  2. Spontaneous emission in stimulated Raman adiabatic passage

    SciTech Connect

    Ivanov, P. A.; Vitanov, N. V.; Bergmann, K.

    2005-11-15

    This work explores the effect of spontaneous emission on the population transfer efficiency in stimulated Raman adiabatic passage (STIRAP). The approach uses adiabatic elimination of weakly coupled density matrix elements in the Liouville equation, from which a very accurate analytic approximation is derived. The loss of population transfer efficiency is found to decrease exponentially with the factor {omega}{sub 0}{sup 2}/{gamma}, where {gamma} is the spontaneous emission rate and {omega}{sub 0} is the peak Rabi frequency. The transfer efficiency increases with the pulse delay and reaches a steady value. For large pulse delay and large spontaneous emission rate STIRAP degenerates into optical pumping.

  3. Herpetic viruses and spontaneous recovery in melanoma.

    PubMed

    Motofei, I G

    1996-08-01

    The malignant melanoma may display extremely variable forms of development, from clinical forms with a lethal course to the unforeseeable situations of spontaneous cures. The basic immunotherapeutic procedures, as well as hypotheses regarding the mechanisms involved in courses towards spontaneous regressions, are presented. Since viruses of the herpes genus are involved in the mechanisms assumed to be at the basis of spontaneous regressions, it is suggested that these viruses (selected strains) be used in the clinic, in order to check the advanced hypothesis, an opportunity which could permit to study also the very probable therapeutic alternative offered by this virus, namely the association of the well-known immunotherapeutic methods. PMID:8869920

  4. Spontaneous intracranial hypotension syndrome treated with fludrocortisone.

    PubMed

    Rizk, Marwan; El Khatib, Mohammad; Yamout, Bassem; Hujeily, Elissar; Ayoub, Sophie; Ayoub, Chakib; Skaf, Ghassan

    2015-01-01

    Spontaneous intracranial hypotension is a rare syndrome characterized by orthostatic headache not associated with trauma or dural puncture. In most cases, it is caused by a spontaneous spinal cerebrospinal fluid leakage as demonstrated by neuroradiological studies. The standard of care consists of conservative treatment including bed rest, hydration, and administration of caffeine or glucocorticoids. When such conservative therapy fails, an epidural blood patch is recommended. In this report, we describe the treatment of 2 patients with spontaneous intracranial hypotension who failed conservative treatment and went on to have complete and sustained resolution of their symptoms after the administration of oral fludrocortisone. PMID:25612272

  5. Women's perceptions of first trimester spontaneous abortion.

    PubMed

    Wall-Haas, C L

    1985-01-01

    Fifteen to twenty percent of all pregnancies end in spontaneous abortion. For many women, this loss is nearly the equivalent of the loss of a real baby. To explore the complexity of women's responses to spontaneous abortion, nine women were given a questionnaire to complete regarding experiences and behaviors at the time of the miscarriage. The data revealed that each woman was affected, to some degree, by her experience with a spontaneous abortion. A comprehensive psychologic approach to this special client is needed to help more effectively the woman who aborts in the first trimester cope with the very real loss of an infant. PMID:3844461

  6. Recognition of Posed and Spontaneous Dynamic Smiles in Younger and Older Adults

    PubMed Central

    Murphy, Nora A.; Lehrfeld, Jonathan M.; Isaacowitz, Derek M.

    2010-01-01

    In two studies, we investigated age effects in the ability to recognize dynamic posed and spontaneous smiles. Study 1 found that both younger and older adult participants were above-chance in their ability to distinguish between posed and spontaneous younger adult smiles. Study 2 found that younger adult participant performance declined when judging a combination of both younger and older adult target smiles, while older adult participants outperformed younger adult participants in distinguishing between posed and spontaneous smiles. A synthesis of results across the two studies showed a small-to-medium age effect (d = −0.40) suggesting an older adult advantage when discriminating between smile types. Mixed stimuli (i.e., a mixture of younger and older adult faces) may impact accurate smile discrimination. Future research should investigate both the sources (cues, etc.) and behavioral effects of age-related differences in the discrimination of positive expressions. PMID:20718538

  7. Spontaneous network activity and synaptic development

    PubMed Central

    Kerschensteiner, Daniel

    2014-01-01

    Throughout development, the nervous system produces patterned spontaneous activity. Research over the last two decades has revealed a core group of mechanisms that mediate spontaneous activity in diverse circuits. Many circuits engage several of these mechanisms sequentially to accommodate developmental changes in connectivity. In addition to shared mechanisms, activity propagates through developing circuits and neuronal pathways (i.e. linked circuits in different brain areas) in stereotypic patterns. Increasing evidence suggests that spontaneous network activity shapes synaptic development in vivo. Variations in activity-dependent plasticity may explain how similar mechanisms and patterns of activity can be employed to establish diverse circuits. Here, I will review common mechanisms and patterns of spontaneous activity in emerging neural networks and discuss recent insights into their contribution to synaptic development. PMID:24280071

  8. Spontaneous Coronary Artery Dissection with Cardiac Tamponade.

    PubMed

    Goh, Anne C H; Lundstrom, Robert J

    2015-10-01

    Spontaneous coronary artery dissection is a rare cause of acute coronary syndrome. Clinical presentation ranges from chest pain alone to ST-segment-elevation myocardial infarction, ventricular fibrillation, and sudden death. The treatment of patients with spontaneous coronary artery dissection is challenging because the disease pathophysiology is unclear, optimal treatment is unknown, and short- and long-term prognostic data are minimal. We report the case of a 70-year-old woman who presented with an acute ST-segment-elevation myocardial infarction secondary to a spontaneous dissection of the left anterior descending coronary artery. She was treated conservatively. Cardiac tamponade developed 16 hours after presentation. Repeat coronary angiography revealed extension of the dissection. Medical therapy was continued after the hemopericardium was aspirated. The patient remained asymptomatic 3 years after hospital discharge. To our knowledge, this is the first reported case of spontaneous coronary artery dissection in association with cardiac tamponade that was treated conservatively and had a successful outcome. PMID:26504447

  9. Spontaneously reduced isolated orbital roof fracture.

    PubMed

    Itinteang, Tinte; Lambe, Gerald Francis; MacKinnon, Craig; Agir, Hakan

    2012-07-01

    We report a case of a spontaneously reduced isolated orbital roof blow-in fracture with resolution of associated diplopia and blepharoptosis highlighting the need for a low threshold for reimaging this cohort of facial fracture patients. PMID:22801127

  10. Lunar Cycle Influences Spontaneous Delivery in Cows.

    PubMed

    Yonezawa, Tomohiro; Uchida, Mona; Tomioka, Michiko; Matsuki, Naoaki

    2016-01-01

    There is a popular belief that the lunar cycle influences spontaneous delivery in both humans and cattle. To assess this relationship, we investigated the synodic distribution of spontaneous deliveries in domestic Holstein cows. We used retrospective data from 428 spontaneous, full-term deliveries within a three-year period derived from the calving records of a private farm in Hokkaido, Japan. Spontaneous birth frequency increased uniformly from the new moon to the full moon phase and decreased until the waning crescent phase. There was a statistically significant peak between the waxing gibbous and full moon phases compared with those between the last quarter and the waning crescent. These changes were clearly observed in deliveries among multiparous cows, whereas they were not evident in deliveries among nulliparous cows. These data suggest the utility of dairy cows as models for bio-meteorological studies, and indicate that monitoring lunar phases may facilitate comprehensive understanding of parturition. PMID:27580019

  11. Spontaneous Coronary Artery Dissection with Cardiac Tamponade

    PubMed Central

    Lundstrom, Robert J.

    2015-01-01

    Spontaneous coronary artery dissection is a rare cause of acute coronary syndrome. Clinical presentation ranges from chest pain alone to ST-segment-elevation myocardial infarction, ventricular fibrillation, and sudden death. The treatment of patients with spontaneous coronary artery dissection is challenging because the disease pathophysiology is unclear, optimal treatment is unknown, and short- and long-term prognostic data are minimal. We report the case of a 70-year-old woman who presented with an acute ST-segment-elevation myocardial infarction secondary to a spontaneous dissection of the left anterior descending coronary artery. She was treated conservatively. Cardiac tamponade developed 16 hours after presentation. Repeat coronary angiography revealed extension of the dissection. Medical therapy was continued after the hemopericardium was aspirated. The patient remained asymptomatic 3 years after hospital discharge. To our knowledge, this is the first reported case of spontaneous coronary artery dissection in association with cardiac tamponade that was treated conservatively and had a successful outcome. PMID:26504447

  12. Mixing in colliding, ultrasonically levitated drops.

    PubMed

    Chainani, Edward T; Choi, Woo-Hyuck; Ngo, Khanh T; Scheeline, Alexander

    2014-02-18

    Lab-in-a-drop, using ultrasonic levitation, has been actively investigated for the last two decades. Benefits include lack of contact between solutions and an apparatus and a lack of sample cross-contamination. Understanding and controlling mixing in the levitated drop is necessary for using an acoustically levitated drop as a microreactor, particularly for studying kinetics. A pulsed electrostatic delivery system enables addition and mixing of a desired-volume droplet with the levitated drop. Measurement of mixing kinetics is obtained by high-speed video monitoring of a titration reaction. Drop heterogeneity is visualized as 370 nl of 0.25 M KOH (pH: 13.4) was added to 3.7 μL of 0.058 M HCl (pH: 1.24). Spontaneous mixing time is about 2 s. Following droplet impact, the mixed drop orbits the levitator axis at about 5 Hz during homogenization. The video's green channel (maximum response near 540 nm) shows the color change due to phenolphthalein absorption. While mixing is at least an order of magnitude faster in the levitated drop compared with three-dimensional diffusion, modulation of the acoustic waveform near the surface acoustic wave resonance frequency of the levitated drop does not substantially reduce mixing time. PMID:24460103

  13. Immunologic testing and immunotherapy in recurrent spontaneous abortion.

    PubMed

    McIntyre, J A; Faulk, W P; Nichols-Johnson, V R; Taylor, C G

    1986-02-01

    One hundred sixty-one couples with clinical histories of unexplained recurrent spontaneous abortions were analyzed in part for human leukocyte antigens, antibodies to paternal lymphocytes, and mixed lymphocyte culture reactions. All sera with antipaternal antibodies were investigated on a cell panel and absorbed with various tissues and heparin to help define antigenic specificities, and the couples were categorized as primary or secondary aborters. Primary but not secondary aborters were found to share more human leukocyte antigens with their mates than did 103 control fertile couples. Lymphocytotoxins were rarely identified in primary but were commonly present in secondary aborter sera. Results of mixed lymphocyte culture reactions with primary aborting couples showed an intrinsic cellular inability for the wives to recognize their husbands' cells. Secondary aborting couples' mixed lymphocyte culture reactions also were depressed but as a result of an inhibiting substance in the wives' sera. Thirty-three primary aborting women were treated by immunotherapy with leukocyte infusions as a prophylactic source of trophoblast-lymphocyte cross reactive antigen stimulation to immunologically protect their pregnancies. Eighty-nine percent of primary aborting patients delivered successfully. Six secondary aborting women were treated with heparin therapy; two of these delivered normal infants, two are pregnant, and two have aborted. Clinical implications for immunologic testing and immunotherapy in pregnancy failures are discussed. PMID:2935759

  14. [Spontaneous resolution of a lumbar disc herniation].

    PubMed

    Gelabert-González, M; Serramito-García, R; Aran-Echabe, E; García-Allut, A

    2007-04-01

    Lumbar disc herniation is a common cause of lower leg radiculopathy and the most effective methods of treatment remain in question. Both surgical and nonsurgical treatments may provide a successful outcome in appropriately selected patients. The spontaneous resolution of herniated lumbar discs is a well-established phenomenon. The authors present a case of spontaneous regression of a herniated lumbar nucleus pulpous in a patient with radiculopathy. PMID:17497061

  15. Filum ependymoma mimicking spontaneous intracranial hypotension.

    PubMed

    Schievink, Wouter I; Akopov, Sergey E

    2005-05-01

    A 34-year-old man with a 2-week history of orthostatic headaches and a "dry tap" at lumbar puncture was found to have a lumbar intradural mass on magnetic resonance imaging (MRI) examination. A myxopapillary ependymoma was resected and the patient's headache completely resolved. The combination of spontaneous orthostatic headaches and a "dry tap" at the time of lumbar puncture does not always indicate the presence of a spontaneous cerebrospinal fluid (CSF) leak and intracranial hypotension. PMID:15953283

  16. Symptomatic Tarlov Cyst Following Spontaneous Subarachnoid Hemorrhage

    PubMed Central

    Kong, Woo Keun; Hong, Seung-Koan

    2011-01-01

    Most of Tarlov or perineurial cysts remain asymptomatic throughout the patient's life. The pathogenesis is still unclear. Hemorrhage has been suggested as one of the possible causes and trauma with resultant hemorrhage into subarachnoid space has been suggested as an origin of these cysts. However, Tarlov cysts related to spontaneous subarachnoid hemorrhage has not been reported. The authors report a case of Tarlov cyst which was symptomatic following spontaneous subarachnoid hemorrhage. PMID:22053232

  17. Spontaneous fission of 256Rf, new data

    NASA Astrophysics Data System (ADS)

    Svirikhin, A. I.; Yeremin, A. V.; Izosimov, I. N.; Isaev, A. V.; Kuznetsov, A. N.; Malyshev, O. N.; Popeko, A. G.; Popov, Yu. A.; Sokol, E. A.; Chelnokov, M. L.; Chepigin, V. I.; Andel, B.; Asfari, M. Z.; Gall, B.; Yoshihiro, N.; Kalaninova, Z.; Mullins, S.; Piot, J.; Stefanova, E.; Tonev, D.

    2016-07-01

    Spontaneous fission properties of the short-lived neutron-deficient 256Rf nucleus produced in the complete fusion reaction with a beam of multiply charged heavy 50Ti ions from the U-400 cyclotron (FLNR, JINR) are experimentally investigated. Its half-life and decay branching ratio are measured. The average number of neutrons per spontaneous fission of 256Rf (bar v = 4.47 ± 0.09) is determined for the first time.

  18. The psychiatric consequences of spontaneous abortion.

    PubMed

    Friedman, T; Gath, D

    1989-12-01

    Sixty-seven women were interviewed four weeks after spontaneous abortion. As determined by the Present State Examination, 32 of these women were psychiatric cases. This rate is four times higher than in the general population of women. In each case the diagnosis was depressive disorder, a finding confirmed by scores on three depression rating scales. Many women showed typical features of grief. Depressive symptoms were significantly associated with a history of previous spontaneous abortion, and less so with childlessness. PMID:2620207

  19. FEL gain optimisation and spontaneous radiation

    SciTech Connect

    Bali, L.M.; Srivastava, A.; Pandya, T.P.

    1995-12-31

    Colson have evaluated FEL gains for small deviations from perfect electron beam injection, with radiation of the same polarisation as that of the wiggler fields. We find that for optimum gain the polarisation of the optical field should be the same as that of the spontaneous emission under these conditions. With a helical wiggler the axial oscillations resulting from small departures from perfect electron beam injection lead to injection dependent unequal amplitudes and phases of the spontaneous radiation in the two transverse directions. Viewed along the axis therefore the spontaneous emission is elliptically polarised. The azimuth of the ellipse varies with the difference of phase of the two transverse components of spontaneous emission but the eccentricity remains the same. With planar wigglers the spontaneous emission viewed in the axial direction is linearly polarised, again with an injection dependent azimuth. For optimum coherent gain of a radiation field its polarisation characteristics must be the same as those of the spontaneous radiation with both types of wiggler. Thus, with a helical wiggler and the data reported earlier, an increase of 10% in the FEL gain at the fundamental frequency and of 11% at the fifth harmonic has been calculated in the small gain per pass limit. Larger enhancements in gain may result from more favourable values of input parameters.

  20. Informational Constraints on Spontaneous Visuomotor Entrainment

    PubMed Central

    Varlet, Manuel; Bucci, Colleen; Richardson, Michael J.; Schmidt, R. C.

    2015-01-01

    Past research has revealed that an individual's rhythmic limb movements become spontaneously entrained to an environmental rhythm if visual information about the rhythm is available and its frequency is near that of the individual's movements. Research has also demonstrated that if the eyes track an environmental stimulus, the spontaneous entrainment to the rhythm is strengthened. One hypothesis explaining this enhancement of spontaneous entrainment is that the limb movements and eye movements are linked through a neuromuscular coupling or synergy. Another is that eye-tracking facilitates the pick up of important coordinating information. Experiment 1 investigated the first hypothesis by evaluating whether any rhythmic movement of the eyes would facilitate spontaneous entrainment. Experiment 2 and 3 (respectively) explored whether eye-tracking strengthens spontaneous entrainment by allowing the pickup of trajectory direction change information or allowing an increase in the amount of information to be picked-up. Results suggest that the eye-tracking enhancement of spontaneous entrainment is a consequence of increasing the amount of information available to be picked-up. PMID:25866944

  1. Spontaneous openings of the acetylcholine receptor channel.

    PubMed Central

    Jackson, M B

    1984-01-01

    Patch clamp recordings from embryonic mouse muscle cells in culture revealed spontaneous openings of the acetylcholine receptor channel in the absence of exogenously applied cholinergic agent. The conductance of the spontaneous channel currents was, within experimental error, identical with the conductance of suberyldicholine-activated channel currents. The comparison of channel conductance was made with sodium and with cesium, each at two concentrations, with the same result. Treatment of the cells with alpha-bungarotoxin blocked the spontaneous channel currents. To determine whether the spontaneous openings were caused by an endogenous agent with cholinergic activity a reactive disulfide bond near the receptor binding site was reduced with dithiothreitol and alkylated with N-ethylmaleimide. This chemical modification reduced the effectiveness with which suberyldicholine and curare activated channel currents but did not reduce the frequency of spontaneous openings. These experiments indicate that the acetylcholine receptor briefly and infrequently fluctuates into an active state in the absence of agonist. Agonist activation of the receptor presumably accelerates this spontaneously occurring process. PMID:6328531

  2. Toddlers infer unobserved causes for spontaneous events

    PubMed Central

    Muentener, Paul; Schulz, Laura

    2014-01-01

    Previous research suggests that children infer the presence of unobserved causes when objects appear to move spontaneously. Are such inferences limited to motion events or do children assume that unexplained physical events have causes more generally? Here we introduce an apparently spontaneous event and ask whether, even in the absence of spatiotemporal and co-variation cues linking the events, toddlers treat a plausible variable as a cause of the event. Toddlers (24 months) saw a toy that appeared to light up either spontaneously or after an experimenter’s action. Toddlers were also introduced to a button but were not shown any predictive relation between the button and the light. Across three different dependent measures of exploration, predictive looking (Study 1), prompted intervention (Study 2), and spontaneous exploration (Study 3), toddlers were more likely to represent the button as a cause of the light when the event appeared to occur spontaneously. In Study 4, we found that even in the absence of a plausible candidate cause, toddlers engaged in selective exploration when the light appeared to activate spontaneously. These results suggest that toddlers’ exploration is guided by the causal explanatory power of events. PMID:25566161

  3. Spontaneous vesicle recycling in the synaptic bouton

    PubMed Central

    Truckenbrodt, Sven; Rizzoli, Silvio O.

    2014-01-01

    The trigger for synaptic vesicle exocytosis is Ca2+, which enters the synaptic bouton following action potential stimulation. However, spontaneous release of neurotransmitter also occurs in the absence of stimulation in virtually all synaptic boutons. It has long been thought that this represents exocytosis driven by fluctuations in local Ca2+ levels. The vesicles responding to these fluctuations are thought to be the same ones that release upon stimulation, albeit potentially triggered by different Ca2+ sensors. This view has been challenged by several recent works, which have suggested that spontaneous release is driven by a separate pool of synaptic vesicles. Numerous articles appeared during the last few years in support of each of these hypotheses, and it has been challenging to bring them into accord. We speculate here on the origins of this controversy, and propose a solution that is related to developmental effects. Constitutive membrane traffic, needed for the biogenesis of vesicles and synapses, is responsible for high levels of spontaneous membrane fusion in young neurons, probably independent of Ca2+. The vesicles releasing spontaneously in such neurons are not related to other synaptic vesicle pools and may represent constitutively releasing vesicles (CRVs) rather than bona fide synaptic vesicles. In mature neurons, constitutive traffic is much dampened, and the few remaining spontaneous release events probably represent bona fide spontaneously releasing synaptic vesicles (SRSVs) responding to Ca2+ fluctuations, along with a handful of CRVs that participate in synaptic vesicle turnover. PMID:25538561

  4. Frequencies of spontaneous breast development and spontaneous menarche in Turner syndrome in Japan.

    PubMed

    Tanaka, Toshiaki; Igarashi, Yutaka; Ozono, Keiichi; Ohyama, Kenji; Ogawa, Masamichi; Osada, Hisao; Onigata, Kazumichi; Kanzaki, Susumu; Kohno, Hitoshi; Seino, Yoshiki; Takahashi, Hiroaki; Tajima, Toshihiro; Tachibana, Katsuhiko; Tanaka, Hiroyuki; Nishi, Yoshikazu; Hasegawa, Tomonobu; Fujita, Keinosuke; Yorifuji, Tohru; Horikawa, Reiko; Yokoya, Susumu

    2015-10-01

    The Growject® database on human GH treatment in Turner syndrome was analyzed in the Turner Syndrome Research Collaboration, and the relationships of the frequencies of spontaneous breast development and spontaneous menarche with karyotype and GH treatment were investigated. One hundred and three cases started GH treatment with 0.5 IU/kg/ week (0.5 IU group), and their dose was increased to 0.35 mg/kg/wk midway through the treatment course. Another 109 cases started GH at a dose of 0.35 mg/kg/wk (0.35 mg group). Spontaneous breast development was observed in 77 (36.3%) of the 212 patients, and spontaneous menarche occurred in 31 patients (14.6%). The frequency of spontaneous breast development was significantly lower in patients with the 45,X karyotype and significantly higher in patients with a structural abnormality of the second X chromosome. The frequency of spontaneous menarche was significantly higher in patients with mosaicism characterized by X monosomy and a cellular line with no structural abnormality of the X chromosome. No significant differences in frequencies of spontaneous breast development and spontaneous menarche were observed between the two dose groups, indicating that GH treatment does not increase the frequency of spontaneous puberty. PMID:26568657

  5. Frequencies of spontaneous breast development and spontaneous menarche in Turner syndrome in Japan

    PubMed Central

    Tanaka, Toshiaki; Igarashi, Yutaka; Ozono, Keiichi; Ohyama, Kenji; Ogawa, Masamichi; Osada, Hisao; Onigata, Kazumichi; Kanzaki, Susumu; Kohno, Hitoshi; Seino, Yoshiki; Takahashi, Hiroaki; Tajima, Toshihiro; Tachibana, Katsuhiko; Tanaka, Hiroyuki; Nishi, Yoshikazu; Hasegawa, Tomonobu; Fujita, Keinosuke; Yorifuji, Tohru; Horikawa, Reiko; Yokoya, Susumu

    2015-01-01

    Abstract. The Growject® database on human GH treatment in Turner syndrome was analyzed in the Turner Syndrome Research Collaboration, and the relationships of the frequencies of spontaneous breast development and spontaneous menarche with karyotype and GH treatment were investigated. One hundred and three cases started GH treatment with 0.5 IU/kg/ week (0.5 IU group), and their dose was increased to 0.35 mg/kg/wk midway through the treatment course. Another 109 cases started GH at a dose of 0.35 mg/kg/wk (0.35 mg group). Spontaneous breast development was observed in 77 (36.3%) of the 212 patients, and spontaneous menarche occurred in 31 patients (14.6%). The frequency of spontaneous breast development was significantly lower in patients with the 45,X karyotype and significantly higher in patients with a structural abnormality of the second X chromosome. The frequency of spontaneous menarche was significantly higher in patients with mosaicism characterized by X monosomy and a cellular line with no structural abnormality of the X chromosome. No significant differences in frequencies of spontaneous breast development and spontaneous menarche were observed between the two dose groups, indicating that GH treatment does not increase the frequency of spontaneous puberty. PMID:26568657

  6. Neural substrates of spontaneous narrative production in focal neurodegenerative disease.

    PubMed

    Gola, Kelly A; Thorne, Avril; Veldhuisen, Lisa D; Felix, Cordula M; Hankinson, Sarah; Pham, Julie; Shany-Ur, Tal; Schauer, Guido P; Stanley, Christine M; Glenn, Shenly; Miller, Bruce L; Rankin, Katherine P

    2015-12-01

    Conversational storytelling integrates diverse cognitive and socio-emotional abilities that critically differ across neurodegenerative disease groups. Storytelling patterns may have diagnostic relevance and predict anatomic changes. The present study employed mixed methods discourse and quantitative analyses to delineate patterns of storytelling across focal neurodegenerative disease groups, and to clarify the neuroanatomical contributions to common storytelling characteristics. Transcripts of spontaneous social interactions of 46 participants (15 behavioral variant frontotemporal dementia (bvFTD), 7 semantic variant primary progressive aphasia (svPPA), 12 Alzheimer's disease (AD), and 12 healthy older normal controls (NC)) were analyzed for storytelling frequency and characteristics, and videos of the interactions were rated for patients' level of social attentiveness. Compared to controls, svPPAs told more stories and autobiographical stories, and perseverated on aspects of self during the interaction, whereas ADs told fewer autobiographical stories than NCs. svPPAs and bvFTDs were rated as less attentive to social cues. Aspects of storytelling were related to diverse cognitive and socio-emotional functions, and voxel-based anatomic analysis of structural magnetic resonance imaging revealed that temporal organization, narrative evaluations patterns, and social attentiveness correlated with atrophy corresponding to known intrinsic connectivity networks, including the default mode, limbic, salience, and stable task control networks. Differences in spontaneous storytelling among neurodegenerative groups elucidated diverse cognitive, socio-emotional, and neural contributions to narrative production, with implications for diagnostic screening and therapeutic intervention. PMID:26485159

  7. Dynamics of spontaneous otoacoustic emissions

    NASA Astrophysics Data System (ADS)

    Bergevin, Christopher; Salerno, Anthony

    2015-12-01

    Spontaneous otoacoustic emissions (SOAEs) have become a hallmark feature in modern theories of an `active' inner ear, given their numerous correlations to auditory function (e.g., threshold microstructure, neurophysiological tuning curves), near universality across tetrapod classes, and physiological correlates at the single hair cell level. However, while several different classes of nonlinear models exist that describe the mechanisms underlying SOAE generation (e.g., coupled limit-cycle oscillators, global standing waves), there is still disagreement as to precisely which biophysical concepts are at work. Such is further compounded by the idiosyncratic nature of SOAEs: Not all ears emit, and when present, SOAE activity can occur at seemingly arbitrary frequencies (though always within the most sensitive range of the audiogram) and in several forms (e.g., peaks, broad `baseline' plateaus). The goal of the present study was to develop new signal processing and stimulation techniques that would allow for novel features of SOAE activity to be revealed. To this end, we analyzed data from a variety of different species: human, lizard, and owl. First, we explored several strategies for examining SOAE waveforms in the absence of external stimuli to further ascertain what constitutes `self-sustained sinusoids' versus `filtered noise'. We found that seemingly similar peaks in the spectral domain could exhibit key differences in the time domain, which we interpret as providing critical information about the underlying oscillators and their coupling. Second, we introduced dynamic stimuli (swept-tones, tone bursts) at a range of levels, whose interaction with SOAEs could be visualized in the time-frequency domain. Aside from offering a readily accessible way to visualize many previously reported effects (e.g., entrainment, facilitation), we observed several new features such as subharmonic distortion generation and competing pulling/pushing effects when multiple tones were

  8. Absorbance detection of amino acids by laser wave mixing in microbore liquid chromatography.

    PubMed

    Wu, Z; Tong, W G

    1998-05-01

    Nonlinear optical phase conjugation by degenerate four-wave mixing is demonstrated as a sensitive "absorbance" detection method for microbore high-performance liquid chromatography. An argon ion laser operating at the 488-nm line is used as the excitation light source to generate the wave-mixing signal for dabsyl-labeled amino acids. Advantages of the nonlinear laser detection method include: virtually 100% optical signal collection efficiency, generation of the signal in the form of a coherent laser beam, signal measurement against a virtually dark background, reliable detection of small absorbance values, excellent detection sensitivity for both fluorescing and non-fluorescing analytes, relatively simple one-color one-laser optical setup, and low power or energy requirements for continuous-wave or pulsed lasers. Using our one-laser one-color nonlinear laser detector for "absorbance" measurements in liquid chromatography, we report a crude preliminary "injected" detection limit of 780 fmol for glycine. PMID:9618915

  9. Spectral quantum beating in mixed frequency/time-domain coherent multidimensional spectroscopy.

    PubMed

    Pakoulev, Andrei V; Rickard, Mark A; Mathew, Nathan A; Kornau, Kathryn M; Wright, John C

    2007-08-01

    Coherent multidimensional spectroscopy performed in the mixed frequency/time domain exhibits both temporal and spectral quantum beating when two quantum states are simultaneously excited. The excitation of both quantum states can occur because either the spectral width of the states or the excitation pulse exceeds the frequency separation of the quantum states. The quantum beating appears as a line that broadens and splits into two peaks and then recombines as the time delay between excitation pulses increases. The splitting depends on the spectral width of the excitation pulses. We observe the spectral quantum beating between the two nearly degenerate asymmetric carbonyl stretch modes in a nickel tricarbonyl chelate using the nonrephasing, ground state bleaching coherence pathway in triply vibrationally enhanced four-wave mixing as the time delay between the first two excitation pulses changes. PMID:17628051

  10. High intensity vacuum ultraviolet and extreme ultraviolet production by noncollinear mixing in laser vaporized media

    NASA Astrophysics Data System (ADS)

    Todt, Michael A.; Albert, Daniel R.; Davis, H. Floyd

    2016-06-01

    A method is described for generating intense pulsed vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) laser radiation by resonance enhanced four-wave mixing of commercial pulsed nanosecond lasers in laser vaporized mercury under windowless conditions. By employing noncollinear mixing of the input beams, the need of dispersive elements such as gratings for separating the VUV/XUV from the residual UV and visible beams is eliminated. A number of schemes are described, facilitating access to the 9.9-14.6 eV range. A simple and convenient scheme for generating wavelengths of 125 nm, 112 nm, and 104 nm (10 eV, 11 eV, and 12 eV) using two dye lasers without the need for dye changes is described.

  11. Treatment of spontaneous tumours by temporary local ligation

    PubMed Central

    Allen, Frederick M.; Kaplan, Martin M.; Meranze, David R.; Gradess, Morton

    1960-01-01

    Previous work in some human cases and in laboratory animals has indicated that temporary local ligation of spontaneous tumours has a selective destructive effect on these tumours, with only temporary inflammation resulting in normal tissues. In the experiments described in this paper, 49 spontaneous accessible tumours in dogs were treated by this method, with periods of ligation of from 4 to 11 hours. Success, as measured by selective necrosis of tumour tissue as compared with normal tissue, was achieved in 29 out of 41 benign tumours, including lipomas, angiomas, adenomas and mixed mammary tumours. Treatment failures were encountered in two cases each of papillomas and fibromas, six mixed mammary tumours and two testicular tumours. Total necrosis of tumour cells occurred in all eight malignant tumours encountered in this series. The outstanding feature was the specific destruction of tumour tissue by a bodily process without participation of any outside agent. Emphasis was placed on an adequate inflammatory response following temporary anoxia, although a precise definition of this inflammation could not be offered. Post-ligation bacterial multiplication, which may be expected to occur in necrotic tumour tissue, is considered to be a secondary effect rather than a possible primary cause of regression and disappearance of the tumour. If ligation treatment can be shown to be successful for a particular type of tumour, it may be possible to apply it to human patients for the treatment of areas not amenable to surgery. The results reported here warrant new experimental approaches to the study of neoplasms at the cellular level to define more precisely the anoxic and inflammatory processes involved in the selective lethal effect on tumour tissues; and the authors suggest that trials should be undertaken of combinations of chemotherapy or irradiation with ligation to reduce ligation time and extend the possible benefits. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5FIG. 6FIG. 7

  12. Housing Mix, School Mix: Barriers to Success

    ERIC Educational Resources Information Center

    Camina, M. M.; Iannone, P.

    2014-01-01

    Recent UK policy has emphasised both the development of socially mixed communities and the creation of balanced school intakes. In this paper, we use a case study of an area of mixed tenure in eastern England to explore policy in practice and the extent to which mechanisms of segregation impact on both the creation of socially mixed neighbourhoods…

  13. Mixing and Transport.

    PubMed

    Chang, Chein-Chi; Chapman, Tom; Siverts-Wong, Elena; Wei, Li; Mei, Ying

    2016-10-01

    This section covers research published during the calendar year 2015 on mixing and transport processes. The review covers mixing of anaerobic digesters, mixing of heat transfer, and environmental fate and transport. PMID:27620101

  14. Spontaneous rupture of fetal hydronephrosis: case report.

    PubMed

    Kosus, A; Kosus, N; Duran, M; Turhan, N

    2011-08-01

    Hydronephrosis is the most common congenital anomaly observed with prenatal ultrasonography. Ureteropelvic junction obstruction (UPJO) is the most common cause of prenatal hydronephrosis. Spontaneous rupture has been reported in adults with severe hydronephrosis. There is no reported spontaneous rupture case in the fetus in the literature. A spontaneous ureteral rupture due to severe UPJO was reported in this case report. Prenatal ultrasound at 33 week gestation in a 21-year-old pregnant woman, revealed a female fetus with grade IV hydronephrosis of the right kidney, suggestive of a UPJO. During the follow-up at XXXVIII week, 5 cm cystic structure was not observed in right kidney. Mild ectasia was present in pelvicalyciel part which make us think about spontaneous rupture. Ultrasonographic examination after a week post-delivery revealed 15 mm pelvicalyciel ectasia on right side which persisted during the second control after 1 month. Vesicoureteral reflux was not detected during voiding cystourethrogram. Diuretic renography revealed loss of right renal function completely. Because there was not any complain or any clinical sign, surgery was not thought. Spontaneous follow-up was recommended. PMID:21959707

  15. Spontaneous intrathyroidal hematoma causing airway obstruction

    PubMed Central

    Best, Corliss A.E.; Dhaliwal, Sandeep; Tam, Samantha; Low, T. Hubert; Hughes, Brian; Fung, Kevin; MacNeil, S. Danielle

    2016-01-01

    Abstract Introduction: Spontaneous thyroid hemorrhage is a rare occurrence that results in pain, discomfort, and occasionally compressive symptoms. Infrequently, extensive thyroid hemorrhage can result in a rapidly expanding hematoma resulting in airway compromise. This is a case of an otherwise healthy young woman, 3 months postpartum, with a slowly expanding spontaneous thyroid hemorrhage that measured at 7 × 5.5 × 5 cm by computed tomography. She ultimately required intubation to manage respiratory distress and subsequently a hemithyroidectomy for definitive treatment. The case presentation is followed by a literature review where known etiologies of thyroid hematoma including traumatic and nontraumatic causes, precipitating anticoagulation, and spontaneous rupture of branches of the external carotid artery are outlined. The potential links to pregnancy are explored. The roles of bedside thyroid ultrasound in the emergency department and lateral neck roentgenogram in diagnosis are explored. The importance of airway management and indications for conservative versus surgical treatments are discussed. Conclusions: This is a case of a spontaneous intrathyroidal hemorrhage, which progressed over days to ultimately cause airway compromise. It is imperative that physicians are educated on the appropriate detection and management of the potentially life-threatening spontaneous thyroid hematoma. PMID:27583841

  16. Hyperprolactinemia due to spontaneous intracranial hypotension.

    PubMed

    Schievink, Wouter I; Nuño, Miriam; Rozen, Todd D; Maya, M Marcel; Mamelak, Adam N; Carmichael, John; Bonert, Vivien S

    2015-05-01

    OBJECT Spontaneous intracranial hypotension is an increasingly recognized cause of headaches. Pituitary enlargement and brain sagging are common findings on MRI in patients with this disorder. The authors therefore investigated pituitary function in patients with spontaneous intracranial hypotension. METHODS Pituitary hormones were measured in a group of 42 consecutive patients with spontaneous intracranial hypotension. For patients with hyperprolactinemia, prolactin levels also were measured following treatment. Magnetic resonance imaging was performed prior to and following treatment. RESULTS The study group consisted of 27 women and 15 men with a mean age at onset of symptoms of 52.2 ± 10.7 years (mean ± SD; range 17-72 years). Hyperprolactinemia was detected in 10 patients (24%), ranging from 16 ng/ml to 96.6 ng/ml in men (normal range 3-14.7 ng/ml) and from 31.3 ng/ml to 102.5 ng/ml in women (normal range 3.8-23.2 ng/ml). In a multivariate analysis, only brain sagging on MRI was associated with hyperprolactinemia. Brain sagging was present in 60% of patients with hyperprolactinemia and in 19% of patients with normal prolactin levels (p = 0.02). Following successful treatment of the spontaneous intracranial hypotension, hyperprolactinemia resolved, along with normalization of brain MRI findings in all 10 patients. CONCLUSIONS Spontaneous intracranial hypotension is a previously undescribed cause of hyperprolactinemia. Brain sagging causing distortion of the pituitary stalk (stalk effect) may be responsible for the hyperprolactinemia. PMID:25380110

  17. Spontaneous intracranial hypotension: diagnosis to management.

    PubMed

    Limaye, Kaustubh; Samant, Rohan; Lee, Ricky W

    2016-06-01

    Spontaneous Intracranial Hypotension typically occurs from spontaneous CSF leak. CSF volume depletion rather than decrease in CSF pressure is thought to be the main causative feature for intracranial hypotension. More and more cases of intracranial hypotension are getting diagnosed with the advances in the imaging. The advances in the imaging have also led to the better understanding of the dynamic changes that occur with intracranial hypotension. The old theories of CSF overproduction or CSF underproduction have not been substantially associated with intracranial hypotension. It has also led to the fore different atypical clinical features and presentations. Although, it has been known for a long time, the diagnosis is still challenging and dilemma persists over one diagnostic modality over other and the subsequent management. Spontaneous CSF leaks occur at the spinal level and the skull base and other locations are rare. The anatomy of spontaneous intracranial hypotension is a very complex process with significant overlap in connective tissue disorders, previous dural weakness or meningeal diverticula. To localize the location of the CSF leak-CT myelography is the modality of choice. CSF cysternography may provide additional confirmation in uncertain cases and also MRI spine imaging may be of significant help in some cases. Spontaneous intracranial hypotension continues to be a diagnostic dilemma and our effort was to consolidate available information on the clinical features, diagnostics, and management for a practicing neurologist for a "15-20 min quick update of the topic". PMID:26661291

  18. Conservative management of spontaneous abortions. Women's experiences.

    PubMed Central

    Wiebe, E.; Janssen, P.

    1999-01-01

    OBJECTIVE: To describe women's experiences with expectant management of spontaneous abortions. DESIGN: Descriptive survey using questionnaires with fixed-choice and open-ended questions. The latter were analyzed for themes, using qualitative methods. SETTING: Urban and suburban private primary care family practices. PARTICIPANTS: A convenience sample of family practice patients (59 of 80 eligible) pregnant for less than 12 weeks who had spontaneous abortions without surgery. Response rate was 84.7%; 50 questionnaires were received from the 59 women. METHOD: Women were asked about their physical experiences, including amount of pain and bleeding; emotional effects; their satisfaction with medical care; and their suggestions for improving care. MAIN FINDINGS: The mean worst pain experienced during a spontaneous abortion on an 11-point scale was 5.9. Bleeding varied, but was often very heavy. Satisfaction rate was 92.9% with family physician care and 84.6% with hospital care. Women described the emotional effect of "natural" spontaneous abortions and made recommendations for improving care. CONCLUSIONS: A better understanding of the physical and emotional experiences of the women in this study might help physicians better prepare and support patients coping with expectant management of spontaneous abortions. PMID:10540695

  19. Spontaneous perception of numerosity in humans.

    PubMed

    Cicchini, Guido Marco; Anobile, Giovanni; Burr, David C

    2016-01-01

    Humans, including infants, and many other species have a capacity for rapid, nonverbal estimation of numerosity. However, the mechanisms for number perception are still not clear; some maintain that the system calculates numerosity via density estimates-similar to those involved in texture-while others maintain that more direct, dedicated mechanisms are involved. Here we show that provided that items are not packed too densely, human subjects are far more sensitive to numerosity than to either density or area. In a two-dimensional space spanning density, area and numerosity, subjects spontaneously react with far greater sensitivity to changes in numerosity, than either area or density. Even in tasks where they were explicitly instructed to make density or area judgments, they responded spontaneously to number. We conclude, that humans extract number information, directly and spontaneously, via dedicated mechanisms. PMID:27555562

  20. Spontaneous Regression of an Incidental Spinal Meningioma

    PubMed Central

    Yilmaz, Ali; Kizilay, Zahir; Sair, Ahmet; Avcil, Mucahit; Ozkul, Ayca

    2016-01-01

    AIM: The regression of meningioma has been reported in literature before. In spite of the fact that the regression may be involved by hemorrhage, calcification or some drugs withdrawal, it is rarely observed spontaneously. CASE REPORT: We report a 17 year old man with a cervical meningioma which was incidentally detected. In his cervical MRI an extradural, cranio-caudal contrast enchanced lesion at C2-C3 levels of the cervical spinal cord was detected. Despite the slight compression towards the spinal cord, he had no symptoms and refused any kind of surgical approach. The meningioma was followed by control MRI and it spontaneously regressed within six months. There were no signs of hemorrhage or calcification. CONCLUSION: Although it is a rare condition, the clinicians should consider that meningiomas especially incidentally diagnosed may be regressed spontaneously. PMID:27275345

  1. Spontaneous pericardial mesothelioma in a rhesus monkey.

    PubMed

    Chandra, M; Mansfield, K G

    1999-06-01

    Spontaneous tumors in nonhuman primates are of great importance. A spontaneous pericardial mesothelioma was observed in an 18-year-old female rhesus monkey. Grossly, the visceral pericardium was multifocally irregular and thickened with tan discoloration and was soft in consistency. Histologically, the pericardium contained highly in-folded branching fronds lined by a single layer of cuboidal cells. Tumor invaded into approximately half of the thickness of the atrial and ventricular muscles. Tumor penetration was not observed into the atrial or ventricular cavity. Within the myocardium, neoplastic cells formed glandular structures which were lined by cuboidal to columnar cells. Neoplastic cells were weakly positive with PAS and strongly positive for colloid iron and alcian blue. Immunohistochemically, neoplastic cells were positive for both vimentin and cytokeratin and negative with CEA and Leu-M1, indicating mesothelial origin. To the best of the authors' knowledge, this is the first report of a spontaneous pericardial mesothelioma in a rhesus monkey. PMID:10475114

  2. Spontaneous perception of numerosity in humans

    PubMed Central

    Cicchini, Guido Marco; Anobile, Giovanni; Burr, David C.

    2016-01-01

    Humans, including infants, and many other species have a capacity for rapid, nonverbal estimation of numerosity. However, the mechanisms for number perception are still not clear; some maintain that the system calculates numerosity via density estimates—similar to those involved in texture—while others maintain that more direct, dedicated mechanisms are involved. Here we show that provided that items are not packed too densely, human subjects are far more sensitive to numerosity than to either density or area. In a two-dimensional space spanning density, area and numerosity, subjects spontaneously react with far greater sensitivity to changes in numerosity, than either area or density. Even in tasks where they were explicitly instructed to make density or area judgments, they responded spontaneously to number. We conclude, that humans extract number information, directly and spontaneously, via dedicated mechanisms. PMID:27555562

  3. Neutrino constraints on spontaneous Lorentz violation

    SciTech Connect

    Grossman, Yuval; Kilic, Can; Thaler, Jesse; Walker, Devin G.E.

    2005-12-15

    We study the effect of spontaneous Lorentz violation on neutrinos. We consider two kinds of effects: static effects, where the neutrino acquires a Lorentz-violating dispersion relation, and dynamic effects, which arise from the interactions of the neutrino with the Goldstone boson of spontaneous Lorentz violation. Static effects are well detailed in the literature. Here, special emphasis is given to the novel dynamic effect of Goldstone-Cerenkov radiation, where neutrinos moving with respect to a preferred rest frame can spontaneously emit Goldstone bosons. We calculate the observable consequences of this process and use them to derive experimental bounds from SN1987A and the CMBR. The bounds derived from dynamic effects are complementary to - and in many cases much stronger than - those obtained from static effects.

  4. Predicting spontaneous heating in coal mine pillars

    SciTech Connect

    Timko, R.J.; Derick, R.L.

    1995-12-31

    This work is a follow-up to previous research that attempted to predict the location of spontaneous heating episodes in underground coal mine pillars. The objective of the original work was to see if the data obtained by commonly used detection methods could accurately predict spontaneous combustion episodes in coal pillars. Data accumulation during the study was enhanced when a spontaneously generated fire occurred within one of the pillars being examined. The fire provided researchers with realistic data that could be used to determine if f ire prediction was possible. Results from the initial study found that the atmospheric status equations that were used provided little advance notice that combustion would occur where it did. This study reevaluated the accumulated data by applying it to recently developed equations and compared these results with previously obtained information to determine if a combination of these techniques could more effectively predict impending combustion.

  5. Spontaneous hypnotic age regression: case report.

    PubMed

    Spiegel, D; Rosenfeld, A

    1984-12-01

    Age regression--reliving the past as though it were occurring in the present, with age appropriate vocabulary, mental content, and affect--can occur with instruction in highly hypnotizable individuals, but has rarely been reported to occur spontaneously, especially as a primary symptom. The psychiatric presentation and treatment of a 16-year-old girl with spontaneous age regressions accessible and controllable with hypnosis and psychotherapy are described. Areas of overlap and divergence between this patient's symptoms and those found in patients with hysterical fugue and multiple personality syndrome are also discussed. PMID:6501240

  6. Spontaneous knotting of self-trapped waves

    PubMed Central

    Desyatnikov, Anton S.; Buccoliero, Daniel; Dennis, Mark R.; Kivshar, Yuri S.

    2012-01-01

    We describe theory and simulations of a spinning optical soliton whose propagation spontaneously excites knotted and linked optical vortices. The nonlinear phase of the self-trapped light beam breaks the wave front into a sequence of optical vortex loops around the soliton, which, through the soliton's orbital angular momentum and spatial twist, tangle on propagation to form links and knots. We anticipate similar spontaneous knot topology to be a universal feature of waves whose phase front is twisted and nonlinearly modulated, including superfluids and trapped matter waves. PMID:23105969

  7. Associative memory model with spontaneous neural activity

    NASA Astrophysics Data System (ADS)

    Kurikawa, Tomoki; Kaneko, Kunihiko

    2012-05-01

    We propose a novel associative memory model wherein the neural activity without an input (i.e., spontaneous activity) is modified by an input to generate a target response that is memorized for recall upon the same input. Suitable design of synaptic connections enables the model to memorize input/output (I/O) mappings equaling 70% of the total number of neurons, where the evoked activity distinguishes a target pattern from others. Spontaneous neural activity without an input shows chaotic dynamics but keeps some similarity with evoked activities, as reported in recent experimental studies.

  8. Primer on spontaneous heating and pyrophoricity

    SciTech Connect

    Not Available

    1994-12-01

    This primer was prepared as an information resource for personnel responsible for operation of DOE nuclear facilities. It has sections on combustion principles, spontaneous heating/ignition of hydrocarbons and organics, pyrophoric gases and liquids, pyrophoric nonmetallic solids, pyrophoric metals (including Pu and U), and accident case studies. Although the information in this primer is not all-encompassing, it should provide the reader with a fundamental knowledge level sufficient to recognize most spontaneous combustion hazards and how to prevent ignition and widespread fires. This primer is provided as an information resource only, and is not intended to replace any fire protection or hazardous material training.

  9. Increasing spontaneous language in three autistic children.

    PubMed

    Matson, J L; Sevin, J A; Fridley, D; Love, S R

    1990-01-01

    A time delay procedure was used to increase spontaneous verbalizations of 3 autistic children. Multiple baseline across behaviors designs were used with target responses, selected via a social validation procedure, of two spontaneous responses ("please" and "thank you") and one verbally prompted response ("you're welcome"). The results indicate gains across target behaviors for all children, with occurrence across other stimuli and settings. These gains were validated socially with 10 adults. Furthermore, increases in appropriate language had no effect on levels of inappropriate speech. PMID:2373659

  10. Spontaneous knotting of self-trapped waves.

    PubMed

    Desyatnikov, Anton S; Buccoliero, Daniel; Dennis, Mark R; Kivshar, Yuri S

    2012-01-01

    We describe theory and simulations of a spinning optical soliton whose propagation spontaneously excites knotted and linked optical vortices. The nonlinear phase of the self-trapped light beam breaks the wave front into a sequence of optical vortex loops around the soliton, which, through the soliton's orbital angular momentum and spatial twist, tangle on propagation to form links and knots. We anticipate similar spontaneous knot topology to be a universal feature of waves whose phase front is twisted and nonlinearly modulated, including superfluids and trapped matter waves. PMID:23105969

  11. Spontaneous Right Hemothorax in the Elderly

    PubMed Central

    Sebai, Asma; Gharsalli, Houda; Zribi, Hazem; Neji, Henda; Maâlej, Sonia; Douik El Gharbi, Leila

    2016-01-01

    Rupture of thoracic aortic aneurysm is a life threatening condition. Rupture in the right pleural cavity is extremely rare. We report the case of an 80-year-old man with a spontaneous right hemothorax. Diagnosis was made by computed tomography (CT) scan. He was managed with chest tube and stabilization. The patient died before any surgical intervention. We report this case to emphasize that rupture of aortic aneurysm should be considered in the evaluation of spontaneous hemothorax even if it is right-sided particularly in the elderly. Emergent therapy is necessary to prevent mortality.

  12. Spontaneous Regression of Primitive Merkel Cell Carcinoma

    PubMed Central

    2015-01-01

    Merkel cell carcinoma (MCC) is a rare, aggressive skin tumor that mainly occurs in the elderly with a generally poor prognosis. Like all skin cancers, its incidence is rising. Despite the poor prognosis, a few reports of spontaneous regression have been published. We describe the case of a 89-year-old male patient who presented two MCC lesions of the scalp. Following biopsy the lesions underwent complete regression with no clinical evidence of residual tumor up to 24 months. The current knowledge of MCC and the other cases of spontaneous regression described in the literature are reviewed. PMID:26788270

  13. LCLS Far-Field Spontaneous Radiation

    Energy Science and Technology Software Center (ESTSC)

    2004-04-16

    This application (FarFieldDisplay) is a tool for displaying and analyzing far-field spontaneous spectral flux data for the Linac Coherent Light Source (LCLS) Calculated by Roman Tatchyn (Stanford University). This tool allows the user to view sliced spatial and energy distributions of the fat-field photons selected for specific energies or positions transverse to the beam axis,

  14. Spontaneous heating more likely with larger bales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spontaneous heating in hay is caused generally by too much moisture in the plant at the time of baling. This costs livestock producers in terms of dry matter losses and forage quality. With conventional small rectangular bales (80 to 100 pounds), a positive linear relationship between moisture conte...

  15. GENERATING SPONTANEOUS SPEECH IN THE UNDERPRIVILEGED CHILD.

    ERIC Educational Resources Information Center

    HURST, CHARLES G., JR.; JONES, WALLACE L.

    IN ORDER TO TEST THE EFFICACY OF METHODS USED BY VARIOUS RESEARCHERS FOR GENERATING SPONTANEOUS SPEECH FROM UNDERPRIVILEGED CHILDREN, 20 THREE- TO FOUR-YEAR-OLD GIRLS WERE SELECTED AT RANDOM FROM A HEADSTART-TYPE PROGRAM AT HOWARD UNIVERSITY FOR TESTING. ALL WERE NEGROES AND FROM A TARGET AREA FOR POVERTY PROGRAMS. THE CHILDREN WERE TESTED…

  16. Spontaneous Sourcing among Students Reading Multiple Documents

    ERIC Educational Resources Information Center

    Stromso, Helge I.; Braten, Ivar; Britt, M. Anne; Ferguson, Leila E.

    2013-01-01

    This study used think-aloud methodology to explore undergraduates' spontaneous attention to and use of source information while reading six documents that presented conflicting views on a controversial social scientific issue in a Google-like environment. Results showed that students explicitly and implicitly paid attention to sources of documents…

  17. Spontaneous Language Markers of Spanish Language Impairment

    ERIC Educational Resources Information Center

    Simon-Cereijido, Gabriela; Gutierrez-Clellen, Vera F.

    2007-01-01

    Spanish-speaking (SS) children with language impairment (LI) present with deficits in morphology and verb argument structure. These language areas may be useful for clinical identification of affected children. This study aimed to evaluate the discrimination accuracy of spontaneous language measures with SS preschoolers to tease out what…

  18. Spontaneous Retroperitoneal Hemorrhage from Adrenal Artery Aneurysm

    SciTech Connect

    Gonzalez Valverde, F.M. Balsalobre, M.; Torregrosa, N.; Molto, M.; Gomez Ramos, M.J.; Vazquez Rojas, J.L.

    2007-04-15

    Spontaneous adrenal hemorrhage is a very rare but serious disorder of the adrenal gland that can require emergent treatment. We report on a 42-year-old man who underwent selective angiography for diagnosis and treatment of retroperitoneal hemorrhage from small adrenal artery aneurysm. This case gives further details about the value of transluminal artery embolization in the management of visceral aneurysm rupture.

  19. Unveiling the Mysteries of Musical Spontaneity.

    ERIC Educational Resources Information Center

    Campbell, Patricia Shehan

    1991-01-01

    Discusses the importance of teaching improvisation. Defines improvisation as the spontaneous generation of melody and rhythm without specific preparation or premeditation. Answers reasons for not teaching improvisation. Suggests training the ear, providing models, allowing for imitation, developing performance facility, guaranteeing success, and…

  20. Spontaneity and the Pursuit of Beautiful Opportunities

    ERIC Educational Resources Information Center

    Pack, Judith

    2011-01-01

    Spontaneity in the classroom provides myriad opportunities and possibilities for learning, building relationships, and collaboration. There is no limit to what can be learned and enjoyed. The teacher does not have to center her curriculum around holidays or a commercial curriculum. She does not have to rigidly follow the seasons, the calendar, or…

  1. The Rise of "Like" in Spontaneous Quotations

    ERIC Educational Resources Information Center

    Tree, Jean E. Fox; Tomlinson, John M., Jr.

    2008-01-01

    A comparison across spontaneous speech collected in the 1980s and the 2000s reveals a dramatic flip between the use of "said" versus "like" as enquoting devices. The greater use of "like" is reflected in a wide variety of quotation types including reported speech, thoughts, exclamations, and sounds. There is no evidence that "like's" increase in…

  2. Spontaneous retroperitoneal haemorrhage in a young adult

    PubMed Central

    Baksi, Aditya; Gupta, Shahana; Ray, Udipta; Ghosh, Shibajyoti

    2014-01-01

    We report a rare case of a primary adrenal cortical malignancy presenting with spontaneous retroperitoneal haemorrhage in a young adult. To the best of our knowledge, this is the thirteenth such case to be reported in the English literature. PMID:24658522

  3. Spontaneous Non-verbal Counting in Toddlers

    ERIC Educational Resources Information Center

    Sella, Francesco; Berteletti, Ilaria; Lucangeli, Daniela; Zorzi, Marco

    2016-01-01

    A wealth of studies have investigated numerical abilities in infants and in children aged 3 or above, but research on pre-counting toddlers is sparse. Here we devised a novel version of an imitation task that was previously used to assess spontaneous focusing on numerosity (i.e. the predisposition to grasp numerical properties of the environment)…

  4. Bilateral spontaneous hyphema in juvenile xanthogranuloma.

    PubMed

    Vijayalakshmi, P; Shetty, Shashikant; Jethani, Jitendra; Devi, T B Uma

    2006-03-01

    This report describes a rare occurrence of bilateral, spontaneous, nontraumatic hyphema in a 6 weeks old infant, associated with a small, multiple skin lesions. The diagnosis of juvenile xanthogranuloma was confirmed by histopathological examination of the cutaneous lesions. The hyphaema cleared gradually in 2 weeks time with conservative management. PMID:16531672

  5. Regulatory T cells in spontaneous autoimmune encephalomyelitis.

    PubMed

    Furtado, G C; Olivares-Villagómez, D; Curotto de Lafaille, M A; Wensky, A K; Latkowski, J A; Lafaille, J J

    2001-08-01

    Spontaneous experimental autoimmune encephalomyelitis (EAE) develops in 100% of mice harboring a monoclonal myelin basic protein (MBP)-specific CD4+ alphabeta T-cell repertoire. Monoclonality of the alphabeta T-cell repertoire can be achieved by crossing MBP-specific T-cell receptor (TCR) transgenic mice with either RAG-/- mice or TCR alpha-/-/TCR beta-/- double knockout mice. Spontaneous EAE can be prevented by a single administration of purified CD4+ splenocytes or thymocytes obtained from wild-type syngeneic mice. The regulatory T cells (T-reg) that protect from spontaneous EAE need not express the CD25 marker, as effective protection can be attained with populations depleted of CD25+ T cells. Although the specificity of the regulatory T cells is important for their generation or regulatory function, T cells that protect from spontaneous EAE can have a diverse TCR alpha and beta chain composition. T-reg cells expand poorly in vivo, and appear to be long lived. Finally, precursors for T-reg are present in fetal liver as well as in the bone marrow of aging mice. We propose that protection of healthy individuals from autoimmune diseases involves several layers of regulation, which consist of CD4+CD25+ regulatory T cells, CD4+CD25- T-reg cells, and anti-TCR T cells, with each layer potentially operating at different stages of T-helper cell-mediated immune responses. PMID:11722629

  6. Pneumothorax: a tale of pain or spontaneity

    PubMed Central

    Lakshminarayana, U. B.; Liu-Shiu-Cheong, P.; Kastelik, J. A.

    2014-01-01

    Pneumothoraces may be due a variety of aetiologies. Here we present two different cases: one with a unilateral pneumothorax due an iatrogenic medical procedure and another of idiopathic spontaneous bilateral nature. Although both cases were initially managed conservatively, the latter case required surgical intervention. We also conduct a literature review of the aetiology and management of pneumothoraces. PMID:25364493

  7. Ultrafast spontaneous emission source using plasmonic nanoantennas

    NASA Astrophysics Data System (ADS)

    Hoang, Thang B.; Akselrod, Gleb M.; Argyropoulos, Christos; Huang, Jiani; Smith, David R.; Mikkelsen, Maiken H.

    2015-07-01

    Typical emitters such as molecules, quantum dots and semiconductor quantum wells have slow spontaneous emission with lifetimes of 1-10 ns, creating a mismatch with high-speed nanoscale optoelectronic devices such as light-emitting diodes, single-photon sources and lasers. Here we experimentally demonstrate an ultrafast (<11 ps) yet efficient source of spontaneous emission, corresponding to an emission rate exceeding 90 GHz, using a hybrid structure of single plasmonic nanopatch antennas coupled to colloidal quantum dots. The antennas consist of silver nanocubes coupled to a gold film separated by a thin polymer spacer layer and colloidal core-shell quantum dots, a stable and technologically relevant emitter. We show an increase in the spontaneous emission rate of a factor of 880 and simultaneously a 2,300-fold enhancement in the total fluorescence intensity, which indicates a high radiative quantum efficiency of ~50%. The nanopatch antenna geometry can be tuned from the visible to the near infrared, providing a promising approach for nanophotonics based on ultrafast spontaneous emission.

  8. Ultrafast spontaneous emission source using plasmonic nanoantennas

    PubMed Central

    Hoang, Thang B.; Akselrod, Gleb M.; Argyropoulos, Christos; Huang, Jiani; Smith, David R.; Mikkelsen, Maiken H.

    2015-01-01

    Typical emitters such as molecules, quantum dots and semiconductor quantum wells have slow spontaneous emission with lifetimes of 1–10 ns, creating a mismatch with high-speed nanoscale optoelectronic devices such as light-emitting diodes, single-photon sources and lasers. Here we experimentally demonstrate an ultrafast (<11 ps) yet efficient source of spontaneous emission, corresponding to an emission rate exceeding 90 GHz, using a hybrid structure of single plasmonic nanopatch antennas coupled to colloidal quantum dots. The antennas consist of silver nanocubes coupled to a gold film separated by a thin polymer spacer layer and colloidal core–shell quantum dots, a stable and technologically relevant emitter. We show an increase in the spontaneous emission rate of a factor of 880 and simultaneously a 2,300-fold enhancement in the total fluorescence intensity, which indicates a high radiative quantum efficiency of ∼50%. The nanopatch antenna geometry can be tuned from the visible to the near infrared, providing a promising approach for nanophotonics based on ultrafast spontaneous emission. PMID:26212857

  9. On Judging Pauses in Spontaneous Speech

    ERIC Educational Resources Information Center

    Martin, James G.

    1970-01-01

    Spectrograms of spontaneous speech revealed that syllables preceding a judged-pause location were usually longer than those following, whether or not a silent interval was present. Most judged-pause locations were junctures, but syllable length governed judgments independently of juncture cues. (Author/FWB)

  10. Spontaneous Intravesical Knotting of Urethral Catheter

    PubMed Central

    2011-01-01

    Infant feeding tubes (IFT) have been universally used as urethral catheters in neonates and children for several decades. Though generally a safe procedure, it may cause significant morbidity if the catheter spontaneously knots inside the bladder. We report this complication in three children including a neonate. PMID:22953288

  11. Electrochemical protection of coal from spontaneous combustion

    SciTech Connect

    Aleksandrov, I.V.; Burkov, P.A.; Kamneva, A.I.; Khokhlov, Yu.I.

    1984-01-01

    An electrochemical method is described for the protection of coal stocks from self-heating and spontaneous combustion. Cathodic polarisation is effected by an external source of direct current using contact electrodes situated in the coal. Practically complete suppression of self-heating is claimed for 450-500 m/sup 3/ volumes of coal at an insignificant energy cost.

  12. A Spontaneous Joint Infection with Corynebacterium striatum▿

    PubMed Central

    Scholle, David

    2007-01-01

    Corynebacterium striatum is a ubiquitous saprophyte with the potential to cause bacteremia in immunocompromised patients. Until now, spontaneous infection of a natural joint has not been reported. When phenotyping failed, gene sequencing was used to identify the species. The isolate demonstrated high-level resistance to most antibiotics. PMID:17151206

  13. Explicit versus spontaneous diffeomorphism breaking in gravity

    NASA Astrophysics Data System (ADS)

    Bluhm, Robert

    2015-03-01

    Gravitational theories with fixed background fields break local Lorentz and diffeomorphism invariance either explicitly or spontaneously. In the case of explicit breaking it is known that conflicts can arise between the dynamics and geometrical constraints, while spontaneous breaking evades this problem. It is for this reason that in the gravity sector of the Standard-Model extension (SME) it is assumed that the background fields (SME coefficients) originate from spontaneous symmetry breaking. However, in other examples, such as Chern-Simons gravity and massive gravity, diffeomorphism invariance is explicitly broken by the background fields, and the potential conflicts between the dynamics and geometry can be avoided in most cases. An analysis of how this occurs is given, and the conditions that are placed on the metric tensor and gravitational structure as a result of the presence of an explicit-breaking background are described. The gravity sector of the SME is then considered for the case of explicit breaking. However, it is found that a useful post-Newtonian limit is only obtained when the symmetry breaking is spontaneous.

  14. Macrovascular Lesions Underlying Spontaneous Intracerebral Hemorrhage.

    PubMed

    Yeung, Jacky; Cord, Branden J; O'Rourke, Timothy K; Maina, Renee M; Sommaruga, Samuel; Matouk, Charles C

    2016-06-01

    Spontaneous intracerebral hemorrhage (ICH) is a morbid disease with a high case fatality rate. Prognosis, rehemorrhage rates, and acute, clinical decision making are greatly affected by the underlying etiology of hemorrhage. This review focuses on the evaluation, diagnosis, and management of structural, macrovascular lesions presenting with ICH, including ruptured aneurysms, brain arteriovenous malformations, cranial dural arteriovenous fistulas, and cerebral cavernous malformations. PMID:27214699

  15. Spontaneous Symmetry Breaking in Nonrelativistic Systems

    NASA Astrophysics Data System (ADS)

    Watanabe, Haruki

    The subject of condensed matter physics is very rich --- there are an infinite number of parameters producing a diversity of exciting phenomena. As a theorist, my goal is to distill general principles out of this complexity --- to construct theories that can coherently explain many known examples altogether. This thesis is composed of several attempts to develop such theories in topics related to spontaneously symmetry breaking. A remarkable feature of many-body interacting systems is that although they are described by equations respecting various symmetries, they may spontaneously organize into a state that explicitly breaks symmetries. Examples are numerous: various types of crystalline and magnetic orders, Bose-Einstein condensates of cold atoms, superfluids of liquid helium, chiral symmetry in QCD, neutron stars, and cosmic inflation. These systems with spontaneously broken continuous symmetries have gapless excitations, so called Nambu-Goldstone bosons (NGBs). Although the properties of NGBs are well understood in Lorentz-invariant systems, surprisingly, some basic properties of NGBs such as their number and dispersion in nonrelativistic systems have not been discussed from a general perspective. In the first part of this thesis, we solve this issue by developing and analyzing an effective Lagrangian that coherently captures the low-energy, long-distance physics of many different symmetry-breaking states all at once. Next, we examine whether these NGBs originating from spontaneous symmetry breaking remain to be well-defined excitations inside a metal, where low-energy electrons near Fermi surface can collide with them. Our result is a one equation criterion that specifies whether the interactions between electrons and NGBs can be ignored, or whether it completely changes their character. In the latter case, unusual phases of matter such as non-Fermi liquids may arise; in that case, NGBs are overdamped and cannot form particle-like excitations in spite of the

  16. Spontaneous sensorimotor coupling with multipart music.

    PubMed

    Hurley, Brian K; Martens, Peter A; Janata, Petr

    2014-08-01

    Music often evokes spontaneous movements in listeners that are synchronized with the music, a phenomenon that has been characterized as being in "the groove." However, the musical factors that contribute to listeners' initiation of stimulus-coupled action remain unclear. Evidence suggests that newly appearing objects in auditory scenes orient listeners' attention, and that in multipart music, newly appearing instrument or voice parts can engage listeners' attention and elicit arousal. We posit that attentional engagement with music can influence listeners' spontaneous stimulus-coupled movement. Here, 2 experiments-involving participants with and without musical training-tested the effect of staggering instrument entrances across time and varying the number of concurrent instrument parts within novel multipart music on listeners' engagement with the music, as assessed by spontaneous sensorimotor behavior and self-reports. Experiment 1 assessed listeners' moment-to-moment ratings of perceived groove, and Experiment 2 examined their spontaneous tapping and head movements. We found that, for both musically trained and untrained participants, music with more instruments led to higher ratings of perceived groove, and that music with staggered instrument entrances elicited both increased sensorimotor coupling and increased reports of perceived groove. Although untrained participants were more likely to rate music as higher in groove, trained participants showed greater propensity for tapping along, and they did so more accurately. The quality of synchronization of head movements with the music, however, did not differ as a function of training. Our results shed new light on the relationship between complex musical scenes, attention, and spontaneous sensorimotor behavior. PMID:24979362

  17. A multi-functional coordination polymer coexisting spontaneous chirality resolution and weak ferromagnetism

    SciTech Connect

    Li, Xiu-Hua; Zhang, Qi; Hu, Ping

    2014-10-15

    A multifunctional homochiral coordination polymer, [Co(H{sub 2}O)(BDC)(4,4′-BPY)]∙3H{sub 2}O (1) (H{sub 2}BDC=1,2-benzenedicarboxylate and 4,4′-BPY=4,4′-bipyridine), has been successfully isolated from Co(II) ions and mixed ligands (1,2-benzenedicarboxylate and 4,4′-bipyridine). Complex 1, which exhibits spontaneous chirality resolution and weak ferromagnetism, is built by chiral helices interconnected via end-to-end 4,4′-BPY bridges into a two-dimensional (2D) layer structure. - Graphical abstract: A 2D cobalt coordination polymer compound showing spontaneous chirality resolution and weak ferromagnetism. - Highlights: • A new 2D cobalt mix-ligand coordination polymer complex has been synthesized. • The cobalt coordination polymer complex shows spontaneous chirality resolution in solid state. • The cobalt coordination polymer complex displays dominant and weak intrachain ferromagnetic interactions.

  18. Communicative Spontaneity of Children with Autism: A Preliminary Analysis

    ERIC Educational Resources Information Center

    Chiang, Hsu-Min

    2008-01-01

    The communicative spontaneity of children with autism who had limited spoken language in their natural environment was investigated. This naturalistic observation is a preliminary study using a continuum model to describe the nature of communicative spontaneity. The results indicate that the level of communicative spontaneity in the natural…

  19. Mixing in explosions

    SciTech Connect

    Kuhl, A.L.

    1993-12-01

    Explosions always contain embedded turbulent mixing regions, for example: boundary layers, shear layers, wall jets, and unstable interfaces. Described here is one particular example of the latter, namely, the turbulent mixing occurring in the fireball of an HE-driven blast wave. The evolution of the turbulent mixing was studied via two-dimensional numerical simulations of the convective mixing processes on an adaptive mesh. Vorticity was generated on the fireball interface by baroclinic effects. The interface was unstable, and rapidly evolved into a turbulent mixing layer. Four phases of mixing were observed: (1) a strong blast wave phase; (2) and implosion phase; (3) a reshocking phase; and (4) an asymptotic mixing phase. The flowfield was azimuthally averaged to evaluate the mean and r.m.s. fluctuation profiles across the mixing layer. The vorticity decayed due to a cascade process. This caused the corresponding enstrophy parameter to increase linearly with time -- in agreement with homogeneous turbulence calculations of G.K. Batchelor.

  20. Mixing in astrophysics

    SciTech Connect

    Fryer, Christopher Lee

    2011-01-07

    Turbulent mixing plays a vital role in many fields in astronomy. Here I review a few of these sites, discuss the importance of this turbulent mixing and the techniques used by astrophysicists to solve these problems.