Sample records for spontaneous sleep slow

  1. Slow spontaneous hemodynamic oscillations during sleep measured with near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Virtanen, Jaakko; Näsi, Tiina; Noponen, Tommi; Toppila, Jussi; Salmi, Tapani; Ilmoniemi, Risto J.

    2011-07-01

    Spontaneous cerebral hemodynamic oscillations below 100 mHz reflect the level of cerebral activity, modulate hemodynamic responses to tasks and stimuli, and may aid in detecting various pathologies of the brain. Near-infrared spectroscopy (NIRS) is ideally suited for both measuring spontaneous hemodynamic oscillations and monitoring sleep, but little research has been performed to combine these two applications. We analyzed 30 all-night NIRS-electroencephalography (EEG) sleep recordings to investigate spontaneous hemodynamic activity relative to sleep stages determined by polysomnography. Signal power of hemodynamic oscillations in the low-frequency (LF, 40-150 mHz) and very-low-frequency (VLF, 3-40 mHz) bands decreased in slow-wave sleep (SWS) compared to light sleep (LS) and rapid-eye-movement (REM) sleep. No statistically significant (p < 0.05) differences in oscillation power between LS and REM were observed. However, the period of VLF oscillations around 8 mHz increased in REM sleep in line with earlier studies with other modalities. These results increase our knowledge of the physiology of sleep, complement EEG data, and demonstrate the applicability of NIRS to studying spontaneous hemodynamic fluctuations during sleep.

  2. Spontaneous activity of single neurones in the hypothalamus of rabbits during sleep and waking

    PubMed Central

    Findlay, Alan L. R.; Hayward, James N.

    1969-01-01

    1. A method is described for recording from single cells in the hypothalamus of unanaesthetized freely moving rabbits. Behaviour, bodily movement, skin and brain temperatures and e.e.g. were monitored. 2. Patterns of unit firing during slow sleep, paradoxical sleep and waking were studied in several regions of the hypothalamus, thalamus and in the septum. 3. Of the 144 cells analysed from waking to slow sleep, fifty-six (39%) decreased mean firing rates, thirty (21%) increased spike discharges and fifty-eight (40%) showed no marked change. Dorsal hypothalamic and massa intermedia thalamic cells fired in brief high frequency clusters during slow sleep with a characteristic `bimodal' interspike interval histogram. Waking and paradoxical sleep abolished these cluster discharges with a concomitant change to an `asymmetric' histogram. 4. Of the thirty-two cells observed during the three states of waking, slow sleep and paradoxical sleep, a majority (twenty-five or 78%) showed their highest rates of spontaneous discharge during paradoxical sleep. Discharge rates of cells sometimes changed in the course of paradoxical sleep according to the presence or absence of phasic events such as myoclonic motor activity. Two hypothalmic cells were almost totally arrested during paradoxical sleep. 5. Analysis of unit firing rates during spontaneous rises in brain temperature during waking and paradoxical sleep revealed that a majority of the neurones (22/24) changed their discharge rates in relation to behaviour rather than to brain temperature. Two cells did appear to respond specifically to the central thermal stimulus. 6. Hypothalamic cells do not behave as a homogeneous population in relation to changes in the state of arousal of the rabbit. Spontaneous changes in cell discharge related to sleep-waking behaviour must be considered in any interpretation of hypothalamic unit activity as related to neuroendocrine or autonomic mechanisms. PMID:4304342

  3. Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex

    PubMed Central

    Nir, Yuval; Mukamel, Roy; Dinstein, Ilan; Privman, Eran; Harel, Michal; Fisch, Lior; Gelbard-Sagiv, Hagar; Kipervasser, Svetlana; Andelman, Fani; Neufeld, Miri Y; Kramer, Uri; Arieli, Amos; Fried, Itzhak; Malach, Rafael

    2009-01-01

    Animal studies have shown robust electrophysiological activity in the sensory cortex in the absence of stimuli or tasks. Similarly, recent human functional magnetic resonance imaging (fMRI) revealed widespread, spontaneously emerging cortical fluctuations. However, it is unknown what neuronal dynamics underlie this spontaneous activity in the human brain. Here we studied this issue by combining bilateral single-unit, local field potentials (LFPs) and intracranial electrocorticography (ECoG) recordings in individuals undergoing clinical monitoring. We found slow (<0.1 Hz, following 1/f-like profiles) spontaneous fluctuations of neuronal activity with significant interhemispheric correlations. These fluctuations were evident mainly in neuronal firing rates and in gamma (40–100 Hz) LFP power modulations. Notably, the interhemispheric correlations were enhanced during rapid eye movement and stage 2 sleep. Multiple intracranial ECoG recordings revealed clear selectivity for functional networks in the spontaneous gamma LFP power modulations. Our results point to slow spontaneous modulations in firing rate and gamma LFP as the likely correlates of spontaneous fMRI fluctuations in the human sensory cortex. PMID:19160509

  4. The occurrence of individual slow waves in sleep is predicted by heart rate

    PubMed Central

    Mensen, Armand; Zhang, Zhongxing; Qi, Ming; Khatami, Ramin

    2016-01-01

    The integration of near-infrared spectroscopy and electroencephalography measures presents an ideal method to study the haemodynamics of sleep. While the cortical dynamics and neuro-modulating influences affecting the transition from wakefulness to sleep is well researched, the assumption has been that individual slow waves, the hallmark of deep sleep, are spontaneously occurring cortical events. By creating event-related potentials from the NIRS recording, time-locked to the onset of thousands of individual slow waves, we show the onset of slow waves is phase-locked to an ongoing oscillation in the NIRS recording. This oscillation stems from the moment to moment fluctuations of light absorption caused by arterial pulsations driven by the heart beat. The same oscillating signal can be detected if the electrocardiogram is time-locked to the onset of the slow wave. The ongoing NIRS oscillation suggests that individual slow wave initiation is dependent on that signal, and not the other way round. However, the precise causal links remain speculative. We propose several potential mechanisms: that the heart-beat or arterial pulsation acts as a stimulus which evokes a down-state; local fluctuations in energy supply may lead to a network effect of hyperpolarization; that the arterial pulsations lead to corresponding changes in the cerebral-spinal-fluid which evokes the slow wave; or that a third neural generator, regulating heart rate and slow waves may be involved. PMID:27445083

  5. Slow eye movements distribution during nocturnal sleep.

    PubMed

    Pizza, Fabio; Fabbri, Margherita; Magosso, Elisa; Ursino, Mauro; Provini, Federica; Ferri, Raffaele; Montagna, Pasquale

    2011-08-01

    To assess the distribution across nocturnal sleep of slow eye movements (SEMs). We evaluated SEMs distribution in the different sleep stages, and across sleep cycles in nocturnal recordings of 10 healthy women. Sleep was scored according to standard criteria, and the percentage of time occupied by the SEMs was automatically detected. SEMs were differently represented during sleep stages with the following order: wakefulness after sleep onset (WASO): 61%, NREM sleep stage 1: 54%, REM sleep: 43%, NREM sleep stage 2: 21%, NREM sleep stage 3: 7%, and NREM sleep stage 4: 3% (p<0.0001). There was no difference between phasic and tonic REM sleep. SEMs progressively decreased across the NREM sleep cycles (38%, 15%, 13% during NREM sleep stage 2 in the first three sleep cycles, p=0.006), whereas no significant difference was found for REM, NREM sleep stage 1, slow-wave sleep and WASO. Our findings confirm that SEMs are a phenomenon typical of the sleep onset period, but are also found in REM sleep. The nocturnal evolution of SEMs during NREM sleep stage 2 parallels the homeostatic process underlying slow-wave sleep. SEMs are a marker of sleepiness and, potentially, of sleep homeostasis. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Properties of slow oscillation during slow-wave sleep and anesthesia in cats

    PubMed Central

    Chauvette, Sylvain; Crochet, Sylvain; Volgushev, Maxim; Timofeev, Igor

    2011-01-01

    Deep anesthesia is commonly used as a model of slow-wave sleep (SWS). Ketamine-xylazine anesthesia reproduces the main features of sleep slow oscillation: slow, large amplitude waves in field potential, which are generated by the alternation of hyperpolarized and depolarized states of cortical neurons. However, direct quantitative comparison of field potential and membrane potential fluctuations during natural sleep and anesthesia is lacking, so it remains unclear how well the properties of sleep slow oscillation are reproduced by the ketamine-xylazine anesthesia model. Here, we used field potential and intracellular recordings in different cortical areas in the cat, to directly compare properties of slow oscillation during natural sleep and ketamine-xylazine anesthesia. During SWS cortical activity showed higher power in the slow/delta (0.1-4 Hz) and spindle (8-14 Hz) frequency range, while under anesthesia the power in the gamma band (30-100 Hz) was higher. During anesthesia, slow waves were more rhythmic and more synchronous across the cortex. Intracellular recordings revealed that silent states were longer and the amplitude of membrane potential around transition between active and silent states was bigger under anesthesia. Slow waves were largely uniform across cortical areas under anesthesia, but in SWS they were most pronounced in associative and visual areas, but smaller and less regular in somatosensory and motor cortices. We conclude that although the main features of the slow oscillation in sleep and anesthesia appear similar, multiple cellular and network features are differently expressed during natural SWS as compared to ketamine-xylazine anesthesia. PMID:22016533

  7. Properties of slow oscillation during slow-wave sleep and anesthesia in cats.

    PubMed

    Chauvette, Sylvain; Crochet, Sylvain; Volgushev, Maxim; Timofeev, Igor

    2011-10-19

    Deep anesthesia is commonly used as a model of slow-wave sleep (SWS). Ketamine-xylazine anesthesia reproduces the main features of sleep slow oscillation: slow, large-amplitude waves in field potential, which are generated by the alternation of hyperpolarized and depolarized states of cortical neurons. However, direct quantitative comparison of field potential and membrane potential fluctuations during natural sleep and anesthesia is lacking, so it remains unclear how well the properties of sleep slow oscillation are reproduced by the ketamine-xylazine anesthesia model. Here, we used field potential and intracellular recordings in different cortical areas in the cat to directly compare properties of slow oscillation during natural sleep and ketamine-xylazine anesthesia. During SWS cortical activity showed higher power in the slow/delta (0.1-4 Hz) and spindle (8-14 Hz) frequency range, whereas under anesthesia the power in the gamma band (30-100 Hz) was higher. During anesthesia, slow waves were more rhythmic and more synchronous across the cortex. Intracellular recordings revealed that silent states were longer and the amplitude of membrane potential around transition between active and silent states was bigger under anesthesia. Slow waves were mostly uniform across cortical areas under anesthesia, but in SWS, they were most pronounced in associative and visual areas but smaller and less regular in somatosensory and motor cortices. We conclude that, although the main features of the slow oscillation in sleep and anesthesia appear similar, multiple cellular and network features are differently expressed during natural SWS compared with ketamine-xylazine anesthesia.

  8. The Fate of Incoming Stimuli during NREM Sleep is Determined by Spindles and the Phase of the Slow Oscillation.

    PubMed

    Schabus, Manuel; Dang-Vu, Thien Thanh; Heib, Dominik Philip Johannes; Boly, Mélanie; Desseilles, Martin; Vandewalle, Gilles; Schmidt, Christina; Albouy, Geneviève; Darsaud, Annabelle; Gais, Steffen; Degueldre, Christian; Balteau, Evelyne; Phillips, Christophe; Luxen, André; Maquet, Pierre

    2012-01-01

    The present study aimed at identifying the neurophysiological responses associated with auditory stimulation during non-rapid eye movement (NREM) sleep using simultaneous electroencephalography (EEG)/functional magnetic resonance imaging (fMRI) recordings. It was reported earlier that auditory stimuli produce bilateral activation in auditory cortex, thalamus, and caudate during both wakefulness and NREM sleep. However, due to the spontaneous membrane potential fluctuations cortical responses may be highly variable during NREM. Here we now examine the modulation of cerebral responses to tones depending on the presence or absence of sleep spindles and the phase of the slow oscillation. Thirteen healthy young subjects were scanned successfully during stage 2-4 NREM sleep in the first half of the night in a 3 T scanner. Subjects were not sleep-deprived and sounds were post hoc classified according to (i) the presence of sleep spindles or (ii) the phase of the slow oscillation during (±300 ms) tone delivery. These detected sounds were then entered as regressors of interest in fMRI analyses. Interestingly wake-like responses - although somewhat altered in size and location - persisted during NREM sleep, except during present spindles (as previously published in Dang-Vu et al., 2011) and the negative going phase of the slow oscillation during which responses became less consistent or even absent. While the phase of the slow oscillation did not alter brain responses in primary sensory cortex, it did modulate responses at higher cortical levels. In addition EEG analyses show a distinct N550 response to tones during the presence of light sleep spindles and suggest that in deep NREM sleep the brain is more responsive during the positive going slope of the slow oscillation. The presence of short temporal windows during which the brain is open to external stimuli is consistent with the fact that even during deep sleep meaningful events can be detected. Altogether, our

  9. Regional Slow Waves and Spindles in Human Sleep

    PubMed Central

    Nir, Yuval; Staba, Richard J.; Andrillon, Thomas; Vyazovskiy, Vladyslav V.; Cirelli, Chiara; Fried, Itzhak; Tononi, Giulio

    2011-01-01

    SUMMARY The most prominent EEG events in sleep are slow waves, reflecting a slow (<1 Hz) oscillation between up and down states in cortical neurons. It is unknown whether slow oscillations are synchronous across the majority or the minority of brain regions—are they a global or local phenomenon? To examine this, we recorded simultaneously scalp EEG, intracerebral EEG, and unit firing in multiple brain regions of neurosurgical patients. We find that most sleep slow waves and the underlying active and inactive neuronal states occur locally. Thus, especially in late sleep, some regions can be active while others are silent. We also find that slow waves can propagate, usually from medial prefrontal cortex to the medial temporal lobe and hippocampus. Sleep spindles, the other hallmark of NREM sleep EEG, are likewise predominantly local. Thus, intracerebral communication during sleep is constrained because slow and spindle oscillations often occur out-of-phase in different brain regions. PMID:21482364

  10. Slow Wave Sleep and Long Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Whitmire, Alexandra; Orr, Martin; Arias, Diana; Rueger, Melanie; Johnston, Smith; Leveton, Lauren

    2012-01-01

    While ground research has clearly shown that preserving adequate quantities of sleep is essential for optimal health and performance, changes in the progression, order and /or duration of specific stages of sleep is also associated with deleterious outcomes. As seen in Figure 1, in healthy individuals, REM and Non-REM sleep alternate cyclically, with stages of Non-REM sleep structured chronologically. In the early parts of the night, for instance, Non-REM stages 3 and 4 (Slow Wave Sleep, or SWS) last longer while REM sleep spans shorter; as night progresses, the length of SWS is reduced as REM sleep lengthens. This process allows for SWS to establish precedence , with increases in SWS seen when recovering from sleep deprivation. SWS is indeed regarded as the most restorative portion of sleep. During SWS, physiological activities such as hormone secretion, muscle recovery, and immune responses are underway, while neurological processes required for long term learning and memory consolidation, also occur. The structure and duration of specific sleep stages may vary independent of total sleep duration, and changes in the structure and duration have been shown to be associated with deleterious outcomes. Individuals with narcolepsy enter sleep through REM as opposed to stage 1 of NREM. Disrupting slow wave sleep for several consecutive nights without reducing total sleep duration or sleep efficiency is associated with decreased pain threshold, increased discomfort, fatigue, and the inflammatory flare response in skin. Depression has been shown to be associated with a reduction of slow wave sleep and increased REM sleep. Given research that shows deleterious outcomes are associated with changes in sleep structure, it is essential to characterize and mitigate not only total sleep duration, but also changes in sleep stages.

  11. Spontaneous and electrically modulated spatiotemporal dynamics of the neocortical slow oscillation and associated local fast activity.

    PubMed

    Greenberg, Anastasia; Dickson, Clayton T

    2013-12-01

    The neocortical slow oscillation (SO; ~1Hz) of non-REM sleep and anesthesia reflects synchronized network activity composed of alternating active and silent (ON/OFF) phases at the local network and cellular level. The SO itself shows self-organized spatiotemporal dynamics as it appears to originate at unique foci on each cycle and then propagates across the cortical surface. During sleep, this rhythm is relevant for neuroplastic processes mediating memory consolidation especially since its enhancement by slow, rhythmic electrical fields improves subsequent recall. However, the neurobiological mechanism by which spontaneous or enhanced SO activity might operate on memory traces is unknown. Here we show a series of original results, using cycle to cycle tracking across multiple neocortical sites in urethane anesthetized rats: The spontaneous spatiotemporal dynamics of the SO are complex, showing interfering propagation patterns in the anterior-to-posterior plane. These patterns compete for expression and tend to alternate following phase resets that take place during the silent OFF phase of the SO. Applying sinusoidal electrical field stimulation to the anterior pole of the cerebral cortex progressively entrained local field, gamma, and multi-unit activity at all sites, while disrupting the coordination of endogenous SO activity. Field stimulation also biased propagation in the anterior-to-posterior direction and more notably, enhanced the long-range gamma synchrony between cortical regions. These results are the first to show that changes to slow wave dynamics cause enhancements in high frequency cortico-cortical communication and provide mechanistic clues into how the SO is relevant for sleep-dependent memory consolidation. © 2013.

  12. The sleep slow oscillation as a traveling wave.

    PubMed

    Massimini, Marcello; Huber, Reto; Ferrarelli, Fabio; Hill, Sean; Tononi, Giulio

    2004-08-04

    During much of sleep, virtually all cortical neurons undergo a slow oscillation (<1 Hz) in membrane potential, cycling from a hyperpolarized state of silence to a depolarized state of intense firing. This slow oscillation is the fundamental cellular phenomenon that organizes other sleep rhythms such as spindles and slow waves. Using high-density electroencephalogram recordings in humans, we show here that each cycle of the slow oscillation is a traveling wave. Each wave originates at a definite site and travels over the scalp at an estimated speed of 1.2-7.0 m/sec. Waves originate more frequently in prefrontal-orbitofrontal regions and propagate in an anteroposterior direction. Their rate of occurrence increases progressively reaching almost once per second as sleep deepens. The pattern of origin and propagation of sleep slow oscillations is reproducible across nights and subjects and provides a blueprint of cortical excitability and connectivity. The orderly propagation of correlated activity along connected pathways may play a role in spike timing-dependent synaptic plasticity during sleep.

  13. Relationship of slow and rapid EEG components of CAP to ASDA arousals in normal sleep.

    PubMed

    Parrino, L; Smerieri, A; Rossi, M; Terzano, M G

    2001-12-15

    Besides arousals (according to the ASDA definition), sleep contains also K-complexes and delta bursts which, in spite of their sleep-like features, are endowed with activating effects on autonomic functions. The link between phasic delta activities and enhancement of vegetative functions indicates the possibility of physiological activation without sleep disruption (i.e., arousal without awakening). A functional connection seems to include slow (K-complexes and delta bursts) and rapid (arousals) EEG events within the comprehensive term of activating complexes. CAP (cyclic alternating pattern) is the spontaneous EEG rhythm that ties both slow and rapid activating complexes together during NREM sleep. The present study aims at exploring the relationship between arousals and CAP components in a selected sample of healthy sleepers. Polysomnographic analysis according to the scoring rules for sleep stages and arousals. CAP analysis included also tabulation of subtypes A1 (slow EEG activating complexes), A2 and A3 (activating complexes with fast EEG components). 40 sleep-lab accomplished recordings. Healthy subjects belonging to a wide age range (38 +/- 20 yrs.). N/A. Of all the arousals occurring in NREM sleep, 87% were inserted within CAP. Subtypes A2 and A3 of CAP corresponded strikingly with arousals (r=0.843; p<0.0001), while no statistical relationship emerged when arousals were matched with subtypes A1 of CAP. Subtypes A1 instead correlated positively with the percentages of deep sleep (r=0.366; p<0.02). The CAP subtype classification encompasses both the process of sleep maintenance (subtypes A1) and sleep fragmentation (subtypes A2 and A3), and provides a periodicity dimension to the activating events of NREM sleep.

  14. Altered Sleep Patterns and Physiologic Characteristics in Spontaneous Dwarf Rats

    PubMed Central

    Andersen, Monica L; Lee, Kil S; Guindalini, Camila; Leite, Waldemarks A; Bignotto, Magda; Tufik, Sergio

    2009-01-01

    Spontaneous dwarf rats are a useful experimental model for studying various biologic events associated with pituitary dwarfism. Dwarf rats occurred serendipitously in our colony of Wistar rats during experimental breeding. This study aimed to describe the sleep pattern and physiologic characteristics of these rats compared with normal-sized adult rats. Because growth hormone can attenuate the upregulation of ceruloplasmin expression caused by acute inflammation, we also assessed the basal levels of serum ceruloplasmin in these animals. At 90 d of age, body weight and length were significantly lower in dwarf rats relative to normal rats. Dwarves had lower concentrations of serum testosterone and growth hormone, but progesterone was unchanged. Corticosterone levels did not differ between groups. During the light period, the percentage of sleep time recorded and duration of slow-wave sleep did not differ between groups. However, compared with controls, dwarf rats had marked fragmentation of sleep and less paradoxical sleep. During the dark phase, sleep patterns in dwarf rats were within the normal range. Immunoblotting data showed that the levels of ceruloplasmin in serum were lower in dwarf rats. Our findings provide insight into pathologic processes related to growth hormone deficiency. PMID:19712574

  15. Fast and Slow Spindles during the Sleep Slow Oscillation: Disparate Coalescence and Engagement in Memory Processing

    PubMed Central

    Mölle, Matthias; Bergmann, Til O.; Marshall, Lisa; Born, Jan

    2011-01-01

    Study Objectives: Thalamo-cortical spindles driven by the up-state of neocortical slow (< 1 Hz) oscillations (SOs) represent a candidate mechanism of memory consolidation during sleep. We examined interactions between SOs and spindles in human slow wave sleep, focusing on the presumed existence of 2 kinds of spindles, i.e., slow frontocortical and fast centro-parietal spindles. Design: Two experiments were performed in healthy humans (24.5 ± 0.9 y) investigating undisturbed sleep (Experiment I) and the effects of prior learning (word paired associates) vs. non-learning (Experiment II) on multichannel EEG recordings during sleep. Measurements and Results: Only fast spindles (12-15 Hz) were synchronized to the depolarizing SO up-state. Slow spindles (9-12 Hz) occurred preferentially at the transition into the SO down-state, i.e., during waning depolarization. Slow spindles also revealed a higher probability to follow rather than precede fast spindles. For sequences of individual SOs, fast spindle activity was largest for “initial” SOs, whereas SO amplitude and slow spindle activity were largest for succeeding SOs. Prior learning enhanced this pattern. Conclusions: The finding that fast and slow spindles occur at different times of the SO cycle points to disparate generating mechanisms for the 2 kinds of spindles. The reported temporal relationships during SO sequences suggest that fast spindles, driven by the SO up-state feed back to enhance the likelihood of succeeding SOs together with slow spindles. By enforcing such SO-spindle cycles, particularly after prior learning, fast spindles possibly play a key role in sleep-dependent memory processing. Citation: Mölle M; Bergmann TO; Marshall L; Born J. Fast and slow spindles during the sleep slow oscillation: disparate coalescence and engagement in memory processing. SLEEP 2011;34(10):1411–1421. PMID:21966073

  16. Involvement of Spindles in Memory Consolidation Is Slow Wave Sleep-Specific

    ERIC Educational Resources Information Center

    Cox, Roy; Hofman, Winni F.; Talamini, Lucia M.

    2012-01-01

    Both sleep spindles and slow oscillations have been implicated in sleep-dependent memory consolidation. Whereas spindles occur during both light and deep sleep, slow oscillations are restricted to deep sleep, raising the possibility of greater consolidation-related spindle involvement during deep sleep. We assessed declarative memory retention…

  17. Effects of partial sleep deprivation on slow waves during non-rapid eye movement sleep: A high density EEG investigation.

    PubMed

    Plante, David T; Goldstein, Michael R; Cook, Jesse D; Smith, Richard; Riedner, Brady A; Rumble, Meredith E; Jelenchick, Lauren; Roth, Andrea; Tononi, Giulio; Benca, Ruth M; Peterson, Michael J

    2016-02-01

    Changes in slow waves during non-rapid eye movement (NREM) sleep in response to acute total sleep deprivation are well-established measures of sleep homeostasis. This investigation utilized high-density electroencephalography (hdEEG) to examine topographic changes in slow waves during repeated partial sleep deprivation. Twenty-four participants underwent a 6-day sleep restriction protocol. Spectral and period-amplitude analyses of sleep hdEEG data were used to examine changes in slow wave energy, count, amplitude, and slope relative to baseline. Changes in slow wave energy were dependent on the quantity of NREM sleep utilized for analysis, with widespread increases during sleep restriction and recovery when comparing data from the first portion of the sleep period, but restricted to recovery sleep if the entire sleep episode was considered. Period-amplitude analysis was less dependent on the quantity of NREM sleep utilized, and demonstrated topographic changes in the count, amplitude, and distribution of slow waves, with frontal increases in slow wave amplitude, numbers of high-amplitude waves, and amplitude/slopes of low amplitude waves resulting from partial sleep deprivation. Topographic changes in slow waves occur across the course of partial sleep restriction and recovery. These results demonstrate a homeostatic response to partial sleep loss in humans. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Auditory closed-loop stimulation of the sleep slow oscillation enhances memory.

    PubMed

    Ngo, Hong-Viet V; Martinetz, Thomas; Born, Jan; Mölle, Matthias

    2013-05-08

    Brain rhythms regulate information processing in different states to enable learning and memory formation. The <1 Hz sleep slow oscillation hallmarks slow-wave sleep and is critical to memory consolidation. Here we show in sleeping humans that auditory stimulation in phase with the ongoing rhythmic occurrence of slow oscillation up states profoundly enhances the slow oscillation rhythm, phase-coupled spindle activity, and, consequently, the consolidation of declarative memory. Stimulation out of phase with the ongoing slow oscillation rhythm remained ineffective. Closed-loop in-phase stimulation provides a straight-forward tool to enhance sleep rhythms and their functional efficacy. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Looking for a precursor of spontaneous Sleep Slow Oscillations in human sleep: The role of the sigma activity

    PubMed Central

    Allegrini, Paolo; Bedini, Remo; Bergamasco, Massimo; Laurino, Marco; Sebastiani, Laura; Gemignani, Angelo

    2016-01-01

    Sleep Slow Oscillations (SSOs), paradigmatic EEG markers of cortical bistability (alternation between cellular downstates and upstates), and sleep spindles, paradigmatic EEG markers of thalamic rhythm, are two hallmarks of sleeping brain. Selective thalamic lesions are reportedly associated to reductions of spindle activity and its spectrum ~14 Hz (sigma), and to alterations of SSO features. This apparent, parallel behavior suggests that thalamo-cortical entrainment favors cortical bistability. Here we investigate temporally-causal associations between thalamic sigma activity and shape, topology, and dynamics of SSOs. We recorded sleep EEG and studied whether spatio-temporal variability of SSO amplitude, negative slope (synchronization in downstate falling) and detection rate are driven by cortical-sigma-activity expression (12–18 Hz), in 3 consecutive 1 s-EEG-epochs preceding each SSO event (Baselines). We analyzed: (i) spatial variability, comparing maps of baseline sigma power and of SSO features, averaged over the first sleep cycle; (ii) event-by-event shape variability, computing for each electrode correlations between baseline sigma power and amplitude/slope of related SSOs; (iii) event-by-event spreading variability, comparing baseline sigma power in electrodes showing an SSO event with the homologous ones, spared by the event. The scalp distribution of baseline sigma power mirrored those of SSO amplitude and slope; event-by-event variability in baseline sigma power was associated with that in SSO amplitude in fronto-central areas; within each SSO event, electrodes involved in cortical bistability presented higher baseline sigma activity than those free of SSO. In conclusion, spatio-temporal variability of thalamocortical entrainment, measured by background sigma activity, is a reliable estimate of the cortical proneness to bistability. PMID:26003553

  20. Vagus Nerve Stimulation for Electrographic Status Epilepticus in Slow-Wave Sleep.

    PubMed

    Carosella, Christopher M; Greiner, Hansel M; Byars, Anna W; Arthur, Todd M; Leach, James L; Turner, Michele; Holland, Katherine D; Mangano, Francesco T; Arya, Ravindra

    2016-07-01

    Electrographic status epilepticus in slow sleep or continuous spike and waves during slow-wave sleep is an epileptic encephalopathy characterized by seizures, neurocognitive regression, and significant activation of epileptiform discharges during nonrapid eye movement sleep. There is no consensus on the diagnostic criteria and evidence-based optimal treatment algorithm for children with electrographic status epilepticus in slow sleep. We describe a 12-year-old girl with drug-resistant electrographic status epilepticus in slow wave sleep that was successfully treated with vagus nerve stimulation. Her clinical presentation, presurgical evaluation, decision-making, and course after vagus nerve stimulator implantation are described in detail. After vagus nerve stimulator implantation, the girl remained seizure free for more than a year, resolved the electrographic status epilepticus in slow sleep pattern on electroencephalography, and exhibited significant cognitive improvement. Vagus nerve stimulation may be considered for electrographic status epilepticus in slow sleep. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Memory improvement via slow-oscillatory stimulation during sleep in older adults.

    PubMed

    Westerberg, Carmen E; Florczak, Susan M; Weintraub, Sandra; Mesulam, M-Marsel; Marshall, Lisa; Zee, Phyllis C; Paller, Ken A

    2015-09-01

    We examined the intriguing but controversial idea that disrupted sleep-dependent consolidation contributes to age-related memory decline. Slow-wave activity during sleep may help strengthen neural connections and provide memories with long-term stability, in which case decreased slow-wave activity in older adults could contribute to their weaker memories. One prediction from this account is that age-related memory deficits should be reduced by artificially enhancing slow-wave activity. In young adults, applying transcranial current oscillating at a slow frequency (0.75 Hz) during sleep improves memory. Here, we tested whether this procedure can improve memory in older adults. In 2 sessions separated by 1 week, we applied either slow-oscillatory stimulation or sham stimulation during an afternoon nap in a double-blind, crossover design. Memory tests were administered before and after sleep. A larger improvement in word-pair recall and higher slow-wave activity was observed with slow-oscillatory stimulation than with sham stimulation. This is the first demonstration that this procedure can improve memory in older adults, suggesting that declarative memory performance in older adults is partly dependent on slow-wave activity during sleep. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Synaptic Mechanisms of Memory Consolidation during Sleep Slow Oscillations

    PubMed Central

    Wei, Yina; Krishnan, Giri P.

    2016-01-01

    Sleep is critical for regulation of synaptic efficacy, memories, and learning. However, the underlying mechanisms of how sleep rhythms contribute to consolidating memories acquired during wakefulness remain unclear. Here we studied the role of slow oscillations, 0.2–1 Hz rhythmic transitions between Up and Down states during stage 3/4 sleep, on dynamics of synaptic connectivity in the thalamocortical network model implementing spike-timing-dependent synaptic plasticity. We found that the spatiotemporal pattern of Up-state propagation determines the changes of synaptic strengths between neurons. Furthermore, an external input, mimicking hippocampal ripples, delivered to the cortical network results in input-specific changes of synaptic weights, which persisted after stimulation was removed. These synaptic changes promoted replay of specific firing sequences of the cortical neurons. Our study proposes a neuronal mechanism on how an interaction between hippocampal input, such as mediated by sharp wave-ripple events, cortical slow oscillations, and synaptic plasticity, may lead to consolidation of memories through preferential replay of cortical cell spike sequences during slow-wave sleep. SIGNIFICANCE STATEMENT Sleep is critical for memory and learning. Replay during sleep of temporally ordered spike sequences related to a recent experience was proposed to be a neuronal substrate of memory consolidation. However, specific mechanisms of replay or how spike sequence replay leads to synaptic changes that underlie memory consolidation are still poorly understood. Here we used a detailed computational model of the thalamocortical system to report that interaction between slow cortical oscillations and synaptic plasticity during deep sleep can underlie mapping hippocampal memory traces to persistent cortical representation. This study provided, for the first time, a mechanistic explanation of how slow-wave sleep may promote consolidation of recent memory events. PMID

  3. Fast and slow spindles during the sleep slow oscillation: disparate coalescence and engagement in memory processing.

    PubMed

    Mölle, Matthias; Bergmann, Til O; Marshall, Lisa; Born, Jan

    2011-10-01

    Thalamo-cortical spindles driven by the up-state of neocortical slow (< 1 Hz) oscillations (SOs) represent a candidate mechanism of memory consolidation during sleep. We examined interactions between SOs and spindles in human slow wave sleep, focusing on the presumed existence of 2 kinds of spindles, i.e., slow frontocortical and fast centro-parietal spindles. Two experiments were performed in healthy humans (24.5 ± 0.9 y) investigating undisturbed sleep (Experiment I) and the effects of prior learning (word paired associates) vs. non-learning (Experiment II) on multichannel EEG recordings during sleep. Only fast spindles (12-15 Hz) were synchronized to the depolarizing SO up-state. Slow spindles (9-12 Hz) occurred preferentially at the transition into the SO down-state, i.e., during waning depolarization. Slow spindles also revealed a higher probability to follow rather than precede fast spindles. For sequences of individual SOs, fast spindle activity was largest for "initial" SOs, whereas SO amplitude and slow spindle activity were largest for succeeding SOs. Prior learning enhanced this pattern. The finding that fast and slow spindles occur at different times of the SO cycle points to disparate generating mechanisms for the 2 kinds of spindles. The reported temporal relationships during SO sequences suggest that fast spindles, driven by the SO up-state feed back to enhance the likelihood of succeeding SOs together with slow spindles. By enforcing such SO-spindle cycles, particularly after prior learning, fast spindles possibly play a key role in sleep-dependent memory processing.

  4. Slow oscillating transcranial direct current stimulation during sleep has a sleep-stabilizing effect in chronic insomnia: a pilot study.

    PubMed

    Saebipour, Mohammad R; Joghataei, Mohammad T; Yoonessi, Ali; Sadeghniiat-Haghighi, Khosro; Khalighinejad, Nima; Khademi, Soroush

    2015-10-01

    Recent evidence suggests that lack of slow-wave activity may play a fundamental role in the pathogenesis of insomnia. Pharmacological approaches and brain stimulation techniques have recently offered solutions for increasing slow-wave activity during sleep. We used slow (0.75 Hz) oscillatory transcranial direct current stimulation during stage 2 of non-rapid eye movement sleeping insomnia patients for resonating their brain waves to the frequency of sleep slow-wave. Six patients diagnosed with either sleep maintenance or non-restorative sleep insomnia entered the study. After 1 night of adaptation and 1 night of baseline polysomnography, patients randomly received sham or real stimulation on the third and fourth night of the experiment. Our preliminary results show that after termination of stimulations (sham or real), slow oscillatory transcranial direct current stimulation increased the duration of stage 3 of non-rapid eye movement sleep by 33 ± 26 min (P = 0.026), and decreased stage 1 of non-rapid eye movement sleep duration by 22 ± 17.7 min (P = 0.028), compared with sham. Slow oscillatory transcranial direct current stimulation decreased stage 1 of non-rapid eye movement sleep and wake time after sleep-onset durations, together, by 55.4 ± 51 min (P = 0.045). Slow oscillatory transcranial direct current stimulation also increased sleep efficiency by 9 ± 7% (P = 0.026), and probability of transition from stage 2 to stage 3 of non-rapid eye movement sleep by 20 ± 17.8% (P = 0.04). Meanwhile, slow oscillatory transcranial direct current stimulation decreased transitions from stage 2 of non-rapid eye movement sleep to wake by 12 ± 6.7% (P = 0.007). Our preliminary results suggest a sleep-stabilizing role for the intervention, which may mimic the effect of sleep slow-wave-enhancing drugs. © 2015 European Sleep Research Society.

  5. Thalamic Atrophy Contributes to Low Slow Wave Sleep in Neuromyelitis Optica Spectrum Disorder.

    PubMed

    Su, Lei; Han, Yujuan; Xue, Rong; Wood, Kristofer; Shi, Fu-Dong; Liu, Yaou; Fu, Ying

    2016-12-01

    Slow wave sleep abnormality has been reported in neuromyelitis optica spectrum disorder (NMOSD), but mechanism for such abnormality is unknown. To determine the structural defects in the brain that account for the decrease of slow wave sleep in NMOSD patients. Thirty-three NMOSD patients and 18 matched healthy controls (HC) were enrolled. Polysomnography was used to monitor slow wave sleep and three-dimensional T1-weighted MRIs were obtained to assess the alterations of grey matter volume. The percentage of deep slow wave sleep decreased in 93% NMOSD patients. Compared to HC, a reduction of grey matter volume was found in the bilateral thalamus of patients with a lower percentage of slow wave sleep (FWE corrected at cluster-level, p < 0.05, cluster size > 400 voxels). Furthermore, the right thalamic fraction was positively correlated with the decrease in the percentage of slow wave sleep in NMOSD patients (p < 0.05, FDR corrected, cluster size > 200 voxels). Our study identified that thalamic atrophy is associated with the decrease of slow wave sleep in NMOSD patients. Further studies should evaluate whether neurotransmitters or hormones which stem from thalamus are involved in the decrease of slow wave sleep.

  6. Respiratory and spontaneous arousals in patients with Sleep Apnea Hypopnea Syndrome.

    PubMed

    Mesquita, J; Porée, F; Carrault, G; Fiz, J A; Abad, J; Jané, R

    2012-01-01

    Sleep in patients with Sleep Apnea-Hypopnea Syndrome (SAHS) is frequently interrupted with arousals. Increased amounts of arousals result in shortening total sleep time and repeated sleep-arousal change can result in sleep fragmentation. According to the American Sleep Disorders Association (ASDA) an arousal is a marker of sleep disruption representing a detrimental and harmful feature for sleep. The nature of arousals and its role on the regulation of the sleep process raises controversy and has sparked the debate in the last years. In this work, we analyzed and compared the EEG spectral content of respiratory and spontaneous arousals on a database of 45 SAHS subjects. A total of 3980 arousals (1996 respiratory and 1984 spontaneous) were analyzed. The results showed no differences between the spectral content of the two kinds of arousals. Our findings raise doubt as to whether these two kinds of arousals are truly triggered by different organic mechanisms. Furthermore, they may also challenge the current beliefs regarding the underestimation of the importance of spontaneous arousals and their contribution to sleep fragmentation in patients suffering from SAHS.

  7. Role of biological membranes in slow-wave sleep.

    PubMed

    Karnovsky, M L

    1991-02-01

    Two involvements of cellular membranes in slow-wave sleep (SWS) are discussed. In the first the endoplasmic reticulum (ER) is focussed upon, and in the second, the plasmalemma, where specific binding sites (receptors?) for promoters of slow-wave sleep are believed to be located. The study concerning the ER focuses on an enzyme in the brain, glucose-6-phosphatase, which, although present at low levels, manifests greatly increased activity during SWS compared to the waking state. The work on the plasmalemma has to do with the specific binding of muramyl peptides, inducers of slow-wave sleep, to various cells, and membrane preparations of various sorts, including those from brain tissue. Such cells as macrophages from mice, B-lymphocytes from human blood, and cells from a cell line (C-6 glioma) have been examined in this context.

  8. Slow Wave Sleep Induced by GABA Agonist Tiagabine Fails to Benefit Memory Consolidation

    PubMed Central

    Feld, Gordon B.; Wilhelm, Ines; Ma, Ying; Groch, Sabine; Binkofski, Ferdinand; Mölle, Matthias; Born, Jan

    2013-01-01

    Study Objectives: Slow wave sleep (SWS) plays a pivotal role in consolidating memories. Tiagabine has been shown to increase SWS in favor of REM sleep without impacting subjective sleep. However, it is unknown whether this effect is paralleled by an improved sleep-dependent consolidation of memory. Design: This double-blind within-subject crossover study tested sensitivity of overnight retention of declarative neutral and emotional materials (word pairs, pictures) as well as a procedural memory task (sequence finger tapping) to oral administration of placebo or 10 mg tiagabine (at 22:30). Participants: Fourteen healthy young men aged 21.9 years (range 18-28 years). Measurements and Results: Tiagabine significantly increased the time spent in SWS and decreased REM sleep compared to placebo. Tiagabine also enhanced slow wave activity (0.5-4.0 Hz) and density of < 1 Hz slow oscillations during NREM sleep. Fast (12-15 Hz) and slow (9-12 Hz) spindle activity, in particular that occurring phase-locked to the slow oscillation cycle, was decreased following tiagabine. Despite signs of deeper and more SWS, overnight retention of memory tested after sleep the next evening (19:30) was generally not improved after tiagabine, but on average even lower than after placebo, with this impairing effect reaching significance for procedural sequence finger tapping. Conclusions: Our data show that increasing slow wave sleep with tiagabine does not improve memory consolidation. Possibly this is due to functional differences from normal slow wave sleep, i.e., the concurrent suppressive influence of tiagabine on phase-locked spindle activity. Citation: Feld GB; Wilhelm I; Ma Y; Groch S; Binkofski F; Mölle M; Born J. Slow wave sleep induced by GABA agonist tiagabine fails to benefit memory consolidation. SLEEP 2013;36(9):1317-1326. PMID:23997364

  9. Glutamate microinjection in the medial septum of rats decreases paradoxical sleep and increases slow wave sleep.

    PubMed

    Mukherjee, Didhiti; Kaushik, Mahesh K; Jaryal, Ashok Kumar; Kumar, Velayudhan Mohan; Mallick, Hruda Nanda

    2012-05-09

    The role of the medial septum in suppressing paradoxical sleep and promoting slow wave sleep was suggested on the basis of neurotoxic lesion studies. However, these conclusions need to be substantiated with further experiments, including chemical stimulation studies. In this report, the medial septum was stimulated in adult male rats by microinjection of L-glutamate. Sleep-wakefulness was electrophysiologically recorded, through chronically implanted electrodes, for 2 h before the injection and 4 h after the injection. There was a decrease in paradoxical sleep during the first hour and an increase in slow wave sleep during the second hour after the injection. The present findings not only supported the lesion studies but also showed that the major role of the medial septum is to suppress paradoxical sleep.

  10. Enhancing Slow Wave Sleep with Sodium Oxybate Reduces the Behavioral and Physiological Impact of Sleep Loss

    PubMed Central

    Walsh, James K.; Hall-Porter, Janine M.; Griffin, Kara S.; Dodson, Ehren R.; Forst, Elizabeth H.; Curry, Denise T.; Eisenstein, Rhody D.; Schweitzer, Paula K.

    2010-01-01

    Study Objectives: To investigate whether enhancement of slow wave sleep (SWS) with sodium oxybate reduces the impact of sleep deprivation. Design: Double-blind, parallel group, placebo-controlled design Setting: Sleep research laboratory Participants: Fifty-eight healthy adults (28 placebo, 30 sodium oxybate), ages 18-50 years. Interventions: A 5-day protocol included 2 screening/baseline nights and days, 2 sleep deprivation nights, each followed by a 3-h daytime (08:00-11:00) sleep opportunity and a recovery night. Sodium oxybate or placebo was administered prior to each daytime sleep period. Multiple sleep latency test (MSLT), psychomotor vigilance test (PVT), Karolinska Sleepiness Scale (KSS), and Profile of Mood States were administered during waking hours. Measurements and Results: During daytime sleep, the sodium oxybate group had more SWS, more EEG spectral power in the 1-9 Hz range, and less REM. Mean MSLT latency was longer for the sodium oxybate group on the night following the first daytime sleep period and on the day following the second day sleep period. Median PVT reaction time was faster in the sodium oxybate group following the second day sleep period. The change from baseline in SWS was positively correlated with the change in MSLT and KSS. During recovery sleep the sodium oxybate group had less TST, SWS, REM, and slow wave activity (SWA) than the placebo group. Conclusions: Pharmacological enhancement of SWS with sodium oxybate resulted in a reduced response to sleep loss on measures of alertness and attention. In addition, SWS enhancement during sleep restriction appears to result in a reduced homeostatic response to sleep loss. Citation: Walsh JK; Hall-Porter JM; Griffin KS; Dodson ER; Forst EH; Curry DT; Eisenstein RD; Schweitzer PK. Enhancing slow wave sleep with sodium oxybate reduces the behavioral and physiological impact of sleep loss. SLEEP 2010;33(9):1217-1225. PMID:20857869

  11. Slow Wave Sleep Enhancement with Gaboxadol Reduces Daytime Sleepiness During Sleep Restriction

    PubMed Central

    Walsh, James K.; Snyder, Ellen; Hall, Janine; Randazzo, Angela C.; Griffin, Kara; Groeger, John; Eisenstein, Rhody; Feren, Stephen D.; Dickey, Pam; Schweitzer, Paula K.

    2008-01-01

    Study Objectives: To evaluate the impact of enhanced slow wave sleep (SWS) on behavioral, psychological, and physiological changes resulting from sleep restriction. Design: A double-blind, parallel group, placebo-controlled design was used to compare gaboxadol (GBX) 15 mg, a SWS-enhancing drug, to placebo during 4 nights of sleep restriction (5 h/night). Behavioral, psychological, and physiological measures of the impact of sleep restriction were assessed in both groups at baseline, during sleep restriction and following recovery sleep. Setting: Sleep research laboratory. Participants: Forty-one healthy adults; 9 males and 12 females (mean age: 32.0 ± 9.9 y) in the placebo group and 10 males and 10 females (mean age: 31.9 ± 10.2 y) in the GBX group. Interventions: Both experimental groups underwent 4 nights of sleep restriction. Each group received either GBX 15 mg or placebo on all sleep restriction nights, and both groups received placebo on baseline and recovery nights. Measurements and Results: Polysomnography documented a SWS-enhancing effect of GBX with no group difference in total sleep time during sleep restriction. The placebo group displayed the predicted deficits due to sleep restriction on the multiple sleep latency test (MSLT) and on introspective measures of sleepiness and fatigue. Compared to placebo, the GBX group showed significantly less physiological sleepiness on the MSLT and lower levels of introspective sleepiness and fatigue during sleep restriction. There were no differences between groups on the psychomotor vigilance task (PVT) and a cognitive test battery, but these measures were minimally affected by sleep restriction in this study. The correlation between change from baseline in MSLT on Day 6 and change from baseline in SWS on Night 6 was significant in the GBX group and in both groups combined. Conclusions: The results of this study are consistent with the hypothesis that enhanced SWS, in this study produced by GBX, reduces

  12. Odors enhance slow-wave activity in non-rapid eye movement sleep

    PubMed Central

    Perl, Ofer; Arzi, Anat; Sela, Lee; Secundo, Lavi; Holtzman, Yael; Samnon, Perry; Oksenberg, Arie; Sobel, Noam

    2016-01-01

    Most forms of suprathreshold sensory stimulation perturb sleep. In contrast, presentation of pure olfactory or mild trigeminal odorants does not lead to behavioral or physiological arousal. In fact, some odors promote objective and subjective measures of sleep quality in humans and rodents. The brain mechanisms underlying these sleep-protective properties of olfaction remain unclear. Slow oscillations in the electroencephalogram (EEG) are a marker of deep sleep, and K complexes (KCs) are an EEG marker of cortical response to sensory interference. We therefore hypothesized that odorants presented during sleep will increase power in slow EEG oscillations. Moreover, given that odorants do not drive sleep interruption, we hypothesized that unlike other sensory stimuli odorants would not drive KCs. To test these hypotheses we used polysomnography to measure sleep in 34 healthy subjects (19 women, 15 men; mean age 26.5 ± 2.5 yr) who were repeatedly presented with odor stimuli via a computer-controlled air-dilution olfactometer over the course of a single night. Each participant was exposed to one of four odorants, lavender oil (n = 13), vetiver oil (n = 5), vanillin (n = 12), or ammonium sulfide (n = 4), for durations of 5, 10, and 20 s every 9–15 min. Consistent with our hypotheses, we found that odor presentation during sleep enhanced the power of delta (0.5–4 Hz) and slow spindle (9–12 Hz) frequencies during non-rapid eye movement sleep. The increase was proportionate to odor duration. In addition, odor presentation did not modulate the occurrence of KCs. These findings imply a sleep-promoting olfactory mechanism that may deepen sleep through driving increased slow-frequency oscillations. PMID:26888107

  13. Odors enhance slow-wave activity in non-rapid eye movement sleep.

    PubMed

    Perl, Ofer; Arzi, Anat; Sela, Lee; Secundo, Lavi; Holtzman, Yael; Samnon, Perry; Oksenberg, Arie; Sobel, Noam; Hairston, Ilana S

    2016-05-01

    Most forms of suprathreshold sensory stimulation perturb sleep. In contrast, presentation of pure olfactory or mild trigeminal odorants does not lead to behavioral or physiological arousal. In fact, some odors promote objective and subjective measures of sleep quality in humans and rodents. The brain mechanisms underlying these sleep-protective properties of olfaction remain unclear. Slow oscillations in the electroencephalogram (EEG) are a marker of deep sleep, and K complexes (KCs) are an EEG marker of cortical response to sensory interference. We therefore hypothesized that odorants presented during sleep will increase power in slow EEG oscillations. Moreover, given that odorants do not drive sleep interruption, we hypothesized that unlike other sensory stimuli odorants would not drive KCs. To test these hypotheses we used polysomnography to measure sleep in 34 healthy subjects (19 women, 15 men; mean age 26.5 ± 2.5 yr) who were repeatedly presented with odor stimuli via a computer-controlled air-dilution olfactometer over the course of a single night. Each participant was exposed to one of four odorants, lavender oil (n = 13), vetiver oil (n = 5), vanillin (n = 12), or ammonium sulfide (n = 4), for durations of 5, 10, and 20 s every 9-15 min. Consistent with our hypotheses, we found that odor presentation during sleep enhanced the power of delta (0.5-4 Hz) and slow spindle (9-12 Hz) frequencies during non-rapid eye movement sleep. The increase was proportionate to odor duration. In addition, odor presentation did not modulate the occurrence of KCs. These findings imply a sleep-promoting olfactory mechanism that may deepen sleep through driving increased slow-frequency oscillations. Copyright © 2016 the American Physiological Society.

  14. Oscillatory brain activity in spontaneous and induced sleep stages in flies.

    PubMed

    Yap, Melvyn H W; Grabowska, Martyna J; Rohrscheib, Chelsie; Jeans, Rhiannon; Troup, Michael; Paulk, Angelique C; van Alphen, Bart; Shaw, Paul J; van Swinderen, Bruno

    2017-11-28

    Sleep is a dynamic process comprising multiple stages, each associated with distinct electrophysiological properties and potentially serving different functions. While these phenomena are well described in vertebrates, it is unclear if invertebrates have distinct sleep stages. We perform local field potential (LFP) recordings on flies spontaneously sleeping, and compare their brain activity to flies induced to sleep using either genetic activation of sleep-promoting circuitry or the GABA A agonist Gaboxadol. We find a transitional sleep stage associated with a 7-10 Hz oscillation in the central brain during spontaneous sleep. Oscillatory activity is also evident when we acutely activate sleep-promoting neurons in the dorsal fan-shaped body (dFB) of Drosophila. In contrast, sleep following Gaboxadol exposure is characterized by low-amplitude LFPs, during which dFB-induced effects are suppressed. Sleep in flies thus appears to involve at least two distinct stages: increased oscillatory activity, particularly during sleep induction, followed by desynchronized or decreased brain activity.

  15. Shorter duration of non-rapid eye movement sleep slow waves in EphA4 knockout mice.

    PubMed

    Freyburger, Marlène; Poirier, Gaétan; Carrier, Julie; Mongrain, Valérie

    2017-10-01

    Slow waves occurring during non-rapid eye movement sleep have been associated with neurobehavioural performance and memory. In addition, the duration of previous wakefulness and sleep impacts characteristics of these slow waves. However, molecular mechanisms regulating the dynamics of slow-wave characteristics remain poorly understood. The EphA4 receptor regulates glutamatergic transmission and synaptic plasticity, which have both been linked to sleep slow waves. To investigate if EphA4 regulates slow-wave characteristics during non-rapid eye movement sleep, we compared individual parameters of slow waves between EphA4 knockout mice and wild-type littermates under baseline conditions and after a 6-h sleep deprivation. We observed that, compared with wild-type mice, knockout mice display a shorter duration of positive and negative phases of slow waves under baseline conditions and after sleep deprivation. However, the mutation did not change slow-wave density, amplitude and slope, and did not affect the sleep deprivation-dependent changes in slow-wave characteristics, suggesting that EphA4 is not involved in the response to elevated sleep pressure. Our present findings suggest a role for EphA4 in shaping cortical oscillations during sleep that is independent from sleep need. © 2017 European Sleep Research Society.

  16. Traveling Slow Oscillations During Sleep: A Marker of Brain Connectivity in Childhood.

    PubMed

    Kurth, Salome; Riedner, Brady A; Dean, Douglas C; O'Muircheartaigh, Jonathan; Huber, Reto; Jenni, Oskar G; Deoni, Sean C L; LeBourgeois, Monique K

    2017-09-01

    Slow oscillations, a defining characteristic of the nonrapid eye movement sleep electroencephalogram (EEG), proliferate across the scalp in highly reproducible patterns. In adults, the propagation of slow oscillations is a recognized fingerprint of brain connectivity and excitability. In this study, we (1) describe for the first time maturational features of sleep slow oscillation propagation in children (n = 23; 2-13 years) using high-density (hd) EEG and (2) examine associations between sleep slow oscillatory propagation characteristics (ie, distance, traveling speed, cortical involvement) and white matter myelin microstructure as measured with multicomponent Driven Equilibrium Single Pulse Observation of T1 and T2-magnetic resonance imaging (mcDESPOT-MRI). Results showed that with increasing age, slow oscillations propagated across longer distances (average growth of 0.2 cm per year; R(21) = 0.50, p < .05), while traveling speed and cortical involvement (ie, slow oscillation expanse) remained unchanged across childhood. Cortical involvement (R(20) = 0.44) and slow oscillation speed (R(20) = -0.47; both p < .05, corrected for age) were associated with myelin content in the superior longitudinal fascicle, the largest anterior-posterior, intrahemispheric white matter connectivity tract. Furthermore, slow oscillation distance was moderately associated with whole-brain (R(21) = 0.46, p < .05) and interhemispheric myelin content, the latter represented by callosal myelin water fraction (R(21) = 0.54, p < .01, uncorrected). Thus, we demonstrate age-related changes in slow oscillation propagation distance, as well as regional associations between brain activity during sleep and the anatomical connectivity of white matter microstructure. Our findings make an important contribution to knowledge of the brain connectome using a noninvasive and novel analytic approach. These data also have implications for understanding the emergence of neurodevelopmental disorders and the

  17. Role of Somatostatin-Positive Cortical Interneurons in the Generation of Sleep Slow Waves.

    PubMed

    Funk, Chadd M; Peelman, Kayla; Bellesi, Michele; Marshall, William; Cirelli, Chiara; Tononi, Giulio

    2017-09-20

    During non-rapid eye-movement (NREM) sleep, cortical and thalamic neurons oscillate every second or so between ON periods, characterized by membrane depolarization and wake-like tonic firing, and OFF periods, characterized by membrane hyperpolarization and neuronal silence. Cortical slow waves, the hallmark of NREM sleep, reflect near-synchronous OFF periods in cortical neurons. However, the mechanisms triggering such OFF periods are unclear, as there is little evidence for somatic inhibition. We studied cortical inhibitory interneurons that express somatostatin (SOM), because ∼70% of them are Martinotti cells that target diffusely layer I and can block excitatory transmission presynaptically, at glutamatergic terminals, and postsynaptically, at apical dendrites, without inhibiting the soma. In freely moving male mice, we show that SOM+ cells can fire immediately before slow waves and their optogenetic stimulation during ON periods of NREM sleep triggers long OFF periods. Next, we show that chemogenetic activation of SOM+ cells increases slow-wave activity (SWA), slope of individual slow waves, and NREM sleep duration; whereas their chemogenetic inhibition decreases SWA and slow-wave incidence without changing time spent in NREM sleep. By contrast, activation of parvalbumin+ (PV+) cells, the most numerous population of cortical inhibitory neurons, greatly decreases SWA and cortical firing, triggers short OFF periods in NREM sleep, and increases NREM sleep duration. Thus SOM+ cells, but not PV+ cells, are involved in the generation of sleep slow waves. Whether Martinotti cells are solely responsible for this effect, or are complemented by other classes of inhibitory neurons, remains to be investigated. SIGNIFICANCE STATEMENT Cortical slow waves are a defining feature of non-rapid eye-movement (NREM) sleep and are thought to be important for many of its restorative benefits. Yet, the mechanism by which cortical neurons abruptly and synchronously cease firing, the

  18. Technologically sensed social exposure related to slow-wave sleep in healthy adults.

    PubMed

    Butt, Maryam; Ouarda, Taha B M J; Quan, Stuart F; Pentland, Alex Sandy; Khayal, Inas

    2015-03-01

    The aim of this study is to understand the relationship between automatically captured social exposure and detailed sleep parameters of healthy young adults. This study was conducted in a real-world setting in a graduate-student housing community at a US university. Social exposure was measured using Bluetooth proximity sensing technology in mobile devices. Sleep was monitored in a naturalistic setting using a headband sleep monitoring device over a period of 2 weeks. The analysis included a total of 11 subjects (6 males and 5 females) aged 24-35 (149 subject nights). Slow-wave sleep showed a significant positive correlation (Spearman's rho = 0.51, p < 0.0001) with social exposure, whereas light non-REM (N1 + N2) sleep and wake time were found to be negatively correlated (rho = -0.25, p < 0.01; rho = -0.21, p < 0.01, respectively). The correlation of median slow-wave sleep with median social exposure per subject showed a strong positive significance (rho = 0.88, p < 0.001). On average, within subjects, following day's social exposure was higher when (slow-wave NREM + REM) percentage was high (Wilcoxon sign-ranked test, p < 0.05). Subjects with higher social exposure spent more time in slow-wave sleep. Following day's social exposure was found to be positively affected by previous night's (slow-wave NREM + REM) percentage. This suggests that sleep affects following day's social exposure and not vice versa. Capturing an individual's dynamic social behavior and sleep from their natural environment can provide novel insights into these relationships.

  19. Overnight changes in the slope of sleep slow waves during infancy.

    PubMed

    Fattinger, Sara; Jenni, Oskar G; Schmitt, Bernhard; Achermann, Peter; Huber, Reto

    2014-02-01

    Slow wave activity (SWA, 0.5-4.5 Hz) is a well-established marker for sleep pressure in adults. Recent studies have shown that increasing sleep pressure is reflected by an increased synchronized firing pattern of cortical neurons, which can be measured by the slope of sleep slow waves. Thus we aimed at investigating whether the slope of sleep slow waves might provide an alternative marker to study the homeostatic regulation of sleep during early human development. All-night sleep electroencephalography (EEG) was recorded longitudinally at 2, 4, 6, and 9 months after birth. Home recording. 11 healthy full-term infants (5 male, 6 female). None. The slope of sleep slow waves increased with age. At all ages the slope decreased from the first to the last hour of non rapid-eye-movement (NREM) sleep, even when controlling for amplitude differences (P < 0.002). The decrease of the slope was also present in the cycle-by-cycle time course across the night (P < 0.001) at the age of 6 months when the alternating pattern of low-delta activity (0.75-1.75 Hz) is most prominent. Moreover, we found distinct topographical differences exhibiting the steepest slope over the occipital cortex. The results suggest an age-dependent increase in synchronization of cortical activity during infancy, which might be due to increasing synaptogenesis. Previous studies have shown that during early postnatal development synaptogenesis is most pronounced over the occipital cortex, which could explain why the steepest slope was found in the occipital derivation. Our results provide evidence that the homeostatic regulation of sleep develops early in human infants.

  20. REM sleep behaviour disorder is associated with lower fast and higher slow sleep spindle densities.

    PubMed

    O'Reilly, Christian; Godin, Isabelle; Montplaisir, Jacques; Nielsen, Tore

    2015-12-01

    To investigate differences in sleep spindle properties and scalp topography between patients with rapid eye movement sleep behaviour disorder (RBD) and healthy controls, whole-night polysomnograms of 35 patients diagnosed with RBD and 35 healthy control subjects matched for age and sex were compared. Recordings included a 19-lead 10-20 electroencephalogram montage and standard electromyogram, electrooculogram, electrocardiogram and respiratory leads. Sleep spindles were automatically detected using a standard algorithm, and their characteristics (amplitude, duration, density, frequency and frequency slope) compared between groups. Topological analyses of group-discriminative features were conducted. Sleep spindles occurred at a significantly (e.g. t34 = -4.49; P = 0.00008 for C3) lower density (spindles ∙ min(-1) ) for RBD (mean ± SD: 1.61 ± 0.56 for C3) than for control (2.19 ± 0.61 for C3) participants. However, when distinguishing slow and fast spindles using thresholds individually adapted to the electroencephalogram spectrum of each participant, densities smaller (31-96%) for fast but larger (20-120%) for slow spindles were observed in RBD in all derivations. Maximal differences were in more posterior regions for slow spindles, but over the entire scalp for fast spindles. Results suggest that the density of sleep spindles is altered in patients with RBD and should therefore be investigated as a potential marker of future neurodegeneration in these patients. © 2015 European Sleep Research Society.

  1. Role of slow oscillatory activity and slow wave sleep in consolidation of episodic-like memory in rats.

    PubMed

    Oyanedel, Carlos N; Binder, Sonja; Kelemen, Eduard; Petersen, Kimberley; Born, Jan; Inostroza, Marion

    2014-12-15

    Our previous experiments showed that sleep in rats enhances consolidation of hippocampus dependent episodic-like memory, i.e. the ability to remember an event bound into specific spatio-temporal context. Here we tested the hypothesis that this enhancing effect of sleep is linked to the occurrence of slow oscillatory and spindle activity during slow wave sleep (SWS). Rats were tested on an episodic-like memory task and on three additional tasks covering separately the where (object place recognition), when (temporal memory), and what (novel object recognition) components of episodic memory. In each task, the sample phase (encoding) was followed by an 80-min retention interval that covered either a period of regular morning sleep or sleep deprivation. Memory during retrieval was tested using preferential exploration of novelty vs. familiarity. Consistent with previous findings, the rats which had slept during the retention interval showed significantly stronger episodic-like memory and spatial memory, and a trend of improved temporal memory (although not significant). Object recognition memory was similarly retained across sleep and sleep deprivation retention intervals. Recall of episodic-like memory was associated with increased slow oscillatory activity (0.85-2.0Hz) during SWS in the retention interval. Spatial memory was associated with increased proportions of SWS. Against our hypothesis, a relationship between spindle activity and episodic-like memory performance was not detected, but spindle activity was associated with object recognition memory. The results provide support for the role of SWS and slow oscillatory activity in consolidating hippocampus-dependent memory, the role of spindles in this process needs to be further examined. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Slow Sleep Spindle Activity, Declarative Memory, and General Cognitive Abilities in Children

    PubMed Central

    Hoedlmoser, Kerstin; Heib, Dominik P.J.; Roell, Judith; Peigneux, Philippe; Sadeh, Avi; Gruber, Georg; Schabus, Manuel

    2014-01-01

    Study Objectives: Functional interactions between sleep spindle activity, declarative memory consolidation, and general cognitive abilities in school-aged children. Design: Healthy, prepubertal children (n = 63; mean age 9.56 ± 0.76 y); ambulatory all-night polysomnography (2 nights); investigating the effect of prior learning (word pair association task; experimental night) versus nonlearning (baseline night) on sleep spindle activity; general cognitive abilities assessed using the Wechsler Intelligence Scale for Children-IV (WISC-IV). Measurements and Results: Analysis of spindle activity during nonrapid eye movement sleep (N2 and N3) evidenced predominant peaks in the slow (11-13 Hz) but not in the fast (13-15 Hz) sleep spindle frequency range (baseline and experimental night). Analyses were restricted to slow sleep spindles. Changes in spindle activity from the baseline to the experimental night were not associated with the overnight change in the number of recalled words reflecting declarative memory consolidation. Children with higher sleep spindle activity as measured at frontal, central, parietal, and occipital sites during both baseline and experimental nights exhibited higher general cognitive abilities (WISC-IV) and declarative learning efficiency (i.e., number of recalled words before and after sleep). Conclusions: Slow sleep spindles (11-13 Hz) in children age 8–11 y are associated with inter-individual differences in general cognitive abilities and learning efficiency. Citation: Hoedlmoser K, Heib DPJ, Roell J, Peigneux P, Sadeh A, Gruber G, Schabus M. Slow sleep spindle activity, declarative memory, and general cognitive abilities in children. SLEEP 2014;37(9):1501-1512. PMID:25142558

  3. Cardiovascular Stress Reactivity and Carotid Intima-Media Thickness: The Buffering Role of Slow-Wave Sleep.

    PubMed

    Brindle, Ryan C; Duggan, Katherine A; Cribbet, Matthew R; Kline, Christopher E; Krafty, Robert T; Thayer, Julian F; Mulukutla, Suresh R; Hall, Martica H

    2018-04-01

    Exaggerated cardiovascular reactivity to acute psychological stress has been associated with increased carotid intima-media thickness (IMT). However, interstudy variability in this relationship suggests the presence of moderating factors. The current study aimed to test the hypothesis that poor nocturnal sleep, defined as short total sleep time or low slow-wave sleep, would moderate the relationship between cardiovascular reactivity and IMT. Participants (N = 99, 65.7% female, age = 59.3 ± 9.3 years) completed a two-night laboratory sleep study and cardiovascular examination where sleep and IMT were measured. The multisource interference task was used to induce acute psychological stress, while systolic and diastolic blood pressure and heart rate were monitored. Moderation was tested using the PROCESS framework in SPSS. Slow-wave sleep significantly moderated the relationship between all cardiovascular stress reactivity variables and IMT (all pinteraction ≤ .048, all ΔRinteraction ≥ .027). Greater stress reactivity was associated with higher IMT values in the low slow-wave sleep group and lower IMT values in the high slow-wave sleep group. No moderating effects of total sleep time were observed. The results provide evidence that nocturnal slow-wave sleep moderates the relationship between cardiovascular stress reactivity and IMT and may buffer the effect of daytime stress-related disease processes.

  4. Facilitation of epileptic activity during sleep is mediated by high amplitude slow waves

    PubMed Central

    von Ellenrieder, Nicolás; Ferrari-Marinho, Taissa; Avoli, Massimo; Dubeau, François; Gotman, Jean

    2015-01-01

    Epileptic discharges in focal epilepsy are frequently activated during non-rapid eye movement sleep. Sleep slow waves are present during this stage and have been shown to include a deactivated (‘down’, hyperpolarized) and an activated state (‘up’, depolarized). The ‘up’ state enhances physiological rhythms, and we hypothesize that sleep slow waves and particularly the ‘up’ state are the specific components of non-rapid eye movement sleep that mediate the activation of epileptic activity. We investigated eight patients with pharmaco-resistant focal epilepsies who underwent combined scalp-intracerebral electroencephalography for diagnostic evaluation. We analysed 259 frontal electroencephalographic channels, and manually marked 442 epileptic spikes and 8487 high frequency oscillations during high amplitude widespread slow waves, and during matched control segments with low amplitude widespread slow waves, non-widespread slow waves or no slow waves selected during the same sleep stages (total duration of slow wave and control segments: 49 min each). During the slow waves, spikes and high frequency oscillations were more frequent than during control segments (79% of spikes during slow waves and 65% of high frequency oscillations, both P ∼ 0). The spike and high frequency oscillation density also increased for higher amplitude slow waves. We compared the density of spikes and high frequency oscillations between the ‘up’ and ‘down’ states. Spike and high frequency oscillation density was highest during the transition from the ‘up’ to the ‘down’ state. Interestingly, high frequency oscillations in channels with normal activity expressed a different peak at the transition from the ‘down’ to the ‘up’ state. These results show that the apparent activation of epileptic discharges by non-rapid eye movement sleep is not a state-dependent phenomenon but is predominantly associated with specific events, the high amplitude widespread slow

  5. Estradiol and Progesterone Modulate Spontaneous Sleep Patterns and Recovery from Sleep Deprivation in Ovariectomized Rats

    PubMed Central

    Deurveilher, Samüel; Rusak, Benjamin; Semba, Kazue

    2009-01-01

    Study Objectives: Women undergo hormonal changes both naturally during their lives and as a result of sex hormone treatments. The objective of this study was to gain more knowledge about how these hormones affect sleep and responses to sleep loss. Design: Rats were ovariectomized and implanted subcutaneously with Silastic capsules containing oil vehicle, 17β-estradiol and/or progesterone. After 2 weeks, sleep/wake states were recorded during a 24-h baseline period, 6 h of total sleep deprivation induced by gentle handling during the light phase, and an 18-h recovery period. Measurements and Results: At baseline and particularly in the dark phase, ovariectomized rats treated with estradiol or estradiol plus progesterone spent more time awake at the expense of non-rapid eye movement sleep (NREMS) and/or REMS, whereas those given progesterone alone spent less time in REMS than ovariectomized rats receiving no hormones. Following sleep deprivation, all rats showed rebound increases in NREMS and REMS, but the relative increase in REMS was larger in females receiving hormones, especially high estradiol. In contrast, the normal increase in NREMS EEG delta power (an index of NREMS intensity) during recovery was attenuated by all hormone treatments. Conclusions: Estradiol promotes arousal in the active phase in sleep-satiated rats, but after sleep loss, both estradiol and progesterone selectively facilitate REMS rebound while reducing NREMS intensity. These results indicate that effects of ovarian hormones on recovery sleep differ from those on spontaneous sleep. The hormonal modulation of recovery sleep architecture may affect recovery of sleep related functions after sleep loss. Citation: Deurveilher S; Rusak B; Semba K. Estradiol and progesterone modulate spontaneous sleep patterns and recovery from sleep deprivation in ovariectomized rats. SLEEP 2009;32(7):865-877. PMID:19639749

  6. Hippocampal gamma-slow oscillation coupling in macaques during sedation and sleep.

    PubMed

    Richardson, Andrew G; Liu, Xilin; Weigand, Pauline K; Hudgins, Eric D; Stein, Joel M; Das, Sandhitsu R; Proekt, Alexander; Kelz, Max B; Zhang, Milin; Van der Spiegel, Jan; Lucas, Timothy H

    2017-11-01

    Behavioral and neurophysiological evidence suggests that the slow (≤1 Hz) oscillation (SO) during sleep plays a role in consolidating hippocampal (HIPP)-dependent memories. The effects of the SO on HIPP activity have been studied in rodents and cats both during natural sleep and during anesthetic administration titrated to mimic sleep-like slow rhythms. In this study, we sought to document these effects in primates. First, HIPP field potentials were recorded during ketamine-dexmedetomidine sedation and during natural sleep in three rhesus macaques. Sedation produced regionally-specific slow and gamma (∼40 Hz) oscillations with strong coupling between the SO phase and gamma amplitude. These same features were seen in slow-wave sleep (SWS), but the coupling was weaker and the coupled gamma oscillation had a higher frequency (∼70 Hz) during SWS. Second, electrical stimuli were delivered to HIPP afferents in the parahippocampal gyrus (PHG) during sedation to assess the effects of sleep-like SO on excitability. Gamma bursts after the peak of SO cycles corresponded to periods of increased gain of monosynaptic connections between the PHG and HIPP. However, the two PHG-HIPP connectivity gains during sedation were both substantially lower than when the animal was awake. We conclude that the SO is correlated with rhythmic excitation and inhibition of the PHG-HIPP network, modulating connectivity and gamma generators intrinsic to this network. Ketamine-dexmedetomidine sedation produces a similar effect, but with a decreased contribution of the PHG to HIPP activity and gamma generation. © 2017 Wiley Periodicals, Inc.

  7. Sleep duration, vital exhaustion, and odds of spontaneous preterm birth: a case-control study.

    PubMed

    Kajeepeta, Sandhya; Sanchez, Sixto E; Gelaye, Bizu; Qiu, Chunfang; Barrios, Yasmin V; Enquobahrie, Daniel A; Williams, Michelle A

    2014-09-27

    Preterm birth is a leading cause of perinatal morbidity and mortality worldwide, resulting in a pressing need to identify risk factors leading to effective interventions. Limited evidence suggests potential relationships between maternal sleep or vital exhaustion and preterm birth, yet the literature is generally inconclusive. We examined the relationship between maternal sleep duration and vital exhaustion in the first six months of pregnancy and spontaneous (non-medically indicated) preterm birth among 479 Peruvian women who delivered a preterm singleton infant (<37 weeks gestation) and 480 term controls who delivered a singleton infant at term (≥37 weeks gestation). Maternal nightly sleep and reports of vital exhaustion were ascertained through in-person interviews. Spontaneous preterm birth cases were further categorized as those following either spontaneous preterm labor or preterm premature rupture of membranes. In addition, cases were categorized as very (<32 weeks), moderate (32-33 weeks), and late (34- <37 weeks) preterm birth for additional analyses. Logistic regression was used to estimate adjusted odds ratios (aORs) and 95% confidence intervals (CIs). After adjusting for confounders, we found that short sleep duration (≤6 hours) was significantly associated with preterm birth (aOR = 1.56; 95% CI 1.11-2.19) compared to 7-8 hours of sleep. Vital exhaustion was also associated with increased odds of preterm birth (aOR = 2.41; 95% CI 1.79-3.23) compared to no exhaustion (Ptrend <0.001). These associations remained significant for spontaneous preterm labor and preterm premature rupture of membranes. We also found evidence of joint effects of sleep duration and vital exhaustion on the odds of spontaneous preterm birth. The results of this case-control study suggest maternal sleep duration, particularly short sleep duration, and vital exhaustion may be risk factors for spontaneous preterm birth. These findings call for increased clinical attention to

  8. Different Effects of Sleep Deprivation and Torpor on EEG Slow-Wave Characteristics in Djungarian Hamsters

    PubMed Central

    Palchykova, S.; Achermann, P.; Tobler, I.; Deboer, T.

    2017-01-01

    Abstract It has been shown previously in Djungarian hamsters that the initial electroencephalography (EEG) slow-wave activity (power in the 0.5–4.0 Hz band; SWA) in non-rapid eye movement (NREM) sleep following an episode of daily torpor is consistently enhanced, similar to the SWA increase after sleep deprivation (SD). However, it is unknown whether the network mechanisms underlying the SWA increase after torpor and SD are similar. EEG slow waves recorded in the neocortex during sleep reflect synchronized transitions between periods of activity and silence among large neuronal populations. We therefore set out to investigate characteristics of individual cortical EEG slow waves recorded during NREM sleep after 4 h SD and during sleep after emergence from an episode of daily torpor in adult male Djungarian hamsters. We found that during the first hour after both SD and torpor, the SWA increase was associated with an increase in slow-wave incidence and amplitude. However, the slopes of single slow waves during NREM sleep were steeper in the first hour after SD but not after torpor, and, in contrast to sleep after SD, the magnitude of change in slopes after torpor was unrelated to the changes in SWA. Furthermore, slow-wave slopes decreased progressively within the first 2 h after SD, while a progressive increase in slow-wave slopes was apparent during the first 2 h after torpor. The data suggest that prolonged waking and torpor have different effects on cortical network activity underlying slow-wave characteristics, while resulting in a similar homeostatic sleep response of SWA. We suggest that sleep plays an important role in network homeostasis after both waking and torpor, consistent with a recovery function for both states. PMID:28168294

  9. Sleep Improves Prospective Remembering by Facilitating Spontaneous-Associative Retrieval Processes

    PubMed Central

    Diekelmann, Susanne; Wilhelm, Ines; Wagner, Ullrich; Born, Jan

    2013-01-01

    Memories are of the past but for the future, enabling individuals to implement intended plans and actions at the appropriate time. Prospective memory is the specific ability to remember and execute an intended behavior at some designated point in the future. Although sleep is well-known to benefit the consolidation of memories for past events, its role for prospective memory is still not well understood. Here, we show that sleep as compared to wakefulness after prospective memory instruction enhanced the successful execution of prospective memories two days later. We further show that sleep benefited both components of prospective memory, i.e. to remember that something has to be done (prospective component) and to remember what has to be done (retrospective component). Finally, sleep enhanced prospective remembering particularly when attentional resources were reduced during task execution, suggesting that subjects after sleep were able to recruit additional spontaneous-associative retrieval processes to remember intentions successfully. Our findings indicate that sleep supports the maintenance of prospective memory over time by strengthening intentional memory representations, thus favoring the spontaneous retrieval of the intended action at the appropriate time. PMID:24143246

  10. Desynchronization of slow oscillations in the basal ganglia during natural sleep.

    PubMed

    Mizrahi-Kliger, Aviv D; Kaplan, Alexander; Israel, Zvi; Bergman, Hagai

    2018-05-01

    Slow oscillations of neuronal activity alternating between firing and silence are a hallmark of slow-wave sleep (SWS). These oscillations reflect the default activity present in all mammalian species, and are ubiquitous to anesthesia, brain slice preparations, and neuronal cultures. In all these cases, neuronal firing is highly synchronous within local circuits, suggesting that oscillation-synchronization coupling may be a governing principle of sleep physiology regardless of anatomical connectivity. To investigate whether this principle applies to overall brain organization, we recorded the activity of individual neurons from basal ganglia (BG) structures and the thalamocortical (TC) network over 70 full nights of natural sleep in two vervet monkeys. During SWS, BG neurons manifested slow oscillations (∼0.5 Hz) in firing rate that were as prominent as in the TC network. However, in sharp contrast to any neural substrate explored thus far, the slow oscillations in all BG structures were completely desynchronized between individual neurons. Furthermore, whereas in the TC network single-cell spiking was locked to slow oscillations in the local field potential (LFP), the BG LFP exhibited only weak slow oscillatory activity and failed to entrain nearby cells. We thus show that synchrony is not inherent to slow oscillations, and propose that the BG desynchronization of slow oscillations could stem from its unique anatomy and functional connectivity. Finally, we posit that BG slow-oscillation desynchronization may further the reemergence of slow-oscillation traveling waves from multiple independent origins in the frontal cortex, thus significantly contributing to normal SWS.

  11. Slow sleep spindle and procedural memory consolidation in patients with major depressive disorder

    PubMed Central

    Nishida, Masaki; Nakashima, Yusaku; Nishikawa, Toru

    2016-01-01

    Introduction Evidence has accumulated, which indicates that, in healthy individuals, sleep enhances procedural memory consolidation, and that sleep spindle activity modulates this process. However, whether sleep-dependent procedural memory consolidation occurs in patients medicated for major depressive disorder remains unclear, as are the pharmacological and physiological mechanisms that underlie this process. Methods Healthy control participants (n=17) and patients medicated for major depressive disorder (n=11) were recruited and subjected to a finger-tapping motor sequence test (MST; nondominant hand) paradigm to compare the averaged scores of different learning phases (presleep, postsleep, and overnight improvement). Participants’ brain activity was recorded during sleep with 16 electroencephalography channels (between MSTs). Sleep scoring and frequency analyses were performed on the electroencephalography data. Additionally, we evaluated sleep spindle activity, which divided the spindles into fast-frequency spindle activity (12.5–16 Hz) and slow-frequency spindle activity (10.5–12.5 Hz). Result Sleep-dependent motor memory consolidation in patients with depression was impaired in comparison with that in control participants. In patients with depression, age correlated negatively with overnight improvement. The duration of slow-wave sleep correlated with the magnitude of motor memory consolidation in patients with depression, but not in healthy controls. Slow-frequency spindle activity was associated with reduction in the magnitude of motor memory consolidation in both groups. Conclusion Because the changes in slow-frequency spindle activity affected the thalamocortical network dysfunction in patients medicated for depression, dysregulated spindle generation may impair sleep-dependent memory consolidation. Our findings may help to elucidate the cognitive deficits that occur in patients with major depression both in the waking state and during sleep. PMID

  12. Slow sleep spindle and procedural memory consolidation in patients with major depressive disorder.

    PubMed

    Nishida, Masaki; Nakashima, Yusaku; Nishikawa, Toru

    2016-01-01

    Evidence has accumulated, which indicates that, in healthy individuals, sleep enhances procedural memory consolidation, and that sleep spindle activity modulates this process. However, whether sleep-dependent procedural memory consolidation occurs in patients medicated for major depressive disorder remains unclear, as are the pharmacological and physiological mechanisms that underlie this process. Healthy control participants (n=17) and patients medicated for major depressive disorder (n=11) were recruited and subjected to a finger-tapping motor sequence test (MST; nondominant hand) paradigm to compare the averaged scores of different learning phases (presleep, postsleep, and overnight improvement). Participants' brain activity was recorded during sleep with 16 electroencephalography channels (between MSTs). Sleep scoring and frequency analyses were performed on the electroencephalography data. Additionally, we evaluated sleep spindle activity, which divided the spindles into fast-frequency spindle activity (12.5-16 Hz) and slow-frequency spindle activity (10.5-12.5 Hz). Sleep-dependent motor memory consolidation in patients with depression was impaired in comparison with that in control participants. In patients with depression, age correlated negatively with overnight improvement. The duration of slow-wave sleep correlated with the magnitude of motor memory consolidation in patients with depression, but not in healthy controls. Slow-frequency spindle activity was associated with reduction in the magnitude of motor memory consolidation in both groups. Because the changes in slow-frequency spindle activity affected the thalamocortical network dysfunction in patients medicated for depression, dysregulated spindle generation may impair sleep-dependent memory consolidation. Our findings may help to elucidate the cognitive deficits that occur in patients with major depression both in the waking state and during sleep.

  13. Circadian regulation of slow waves in human sleep: Topographical aspects

    PubMed Central

    Lazar, Alpar S.; Lazar, Zsolt I.; Dijk, Derk-Jan

    2015-01-01

    Slow waves (SWs, 0.5–4 Hz) in field potentials during sleep reflect synchronized alternations between bursts of action potentials and periods of membrane hyperpolarization of cortical neurons. SWs decline during sleep and this is thought to be related to a reduction of synaptic strength in cortical networks and to be central to sleep's role in maintaining brain function. A central assumption in current concepts of sleep function is that SWs during sleep, and associated recovery processes, are independent of circadian rhythmicity. We tested this hypothesis by quantifying all SWs from 12 EEG derivations in 34 participants in whom 231 sleep periods were scheduled across the circadian cycle in a 10-day forced-desynchrony protocol which allowed estimation of the separate circadian and sleep-dependent modulation of SWs. Circadian rhythmicity significantly modulated the incidence, amplitude, frequency and the slope of the SWs such that the peaks of the circadian rhythms in these slow-wave parameters were located during the biological day. Topographical analyses demonstrated that the sleep-dependent modulation of SW characteristics was most prominent in frontal brain areas whereas the circadian effect was similar to or greater than the sleep-dependent modulation over the central and posterior brain regions. The data demonstrate that circadian rhythmicity directly modulates characteristics of SWs thought to be related to synaptic plasticity and that this modulation depends on topography. These findings have implications for the understanding of local sleep regulation and conditions such as ageing, depression, and neurodegeneration which are associated with changes in SWs, neural plasticity and circadian rhythmicity. PMID:25979664

  14. The dream-lag effect: Selective processing of personally significant events during Rapid Eye Movement sleep, but not during Slow Wave Sleep.

    PubMed

    van Rijn, E; Eichenlaub, J-B; Lewis, P A; Walker, M P; Gaskell, M G; Malinowski, J E; Blagrove, M

    2015-07-01

    Incorporation of details from waking life events into Rapid Eye Movement (REM) sleep dreams has been found to be highest on the night after, and then 5-7 nights after events (termed, respectively, the day-residue and dream-lag effects). In experiment 1, 44 participants kept a daily log for 10 days, reporting major daily activities (MDAs), personally significant events (PSEs), and major concerns (MCs). Dream reports were collected from REM and Slow Wave Sleep (SWS) in the laboratory, or from REM sleep at home. The dream-lag effect was found for the incorporation of PSEs into REM dreams collected at home, but not for MDAs or MCs. No dream-lag effect was found for SWS dreams, or for REM dreams collected in the lab after SWS awakenings earlier in the night. In experiment 2, the 44 participants recorded reports of their spontaneously recalled home dreams over the 10 nights following the instrumental awakenings night, which thus acted as a controlled stimulus with two salience levels, high (sleep lab) and low (home awakenings). The dream-lag effect was found for the incorporation into home dreams of references to the experience of being in the sleep laboratory, but only for participants who had reported concerns beforehand about being in the sleep laboratory. The delayed incorporation of events from daily life into dreams has been proposed to reflect REM sleep-dependent memory consolidation. However, an alternative emotion processing or emotional impact of events account, distinct from memory consolidation, is supported by the finding that SWS dreams do not evidence the dream-lag effect. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Slow Wave Sleep and Long Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Orr, M.; Whitmire, A.; Arias, D.; Leveton, L.

    2011-01-01

    To review the literature on slow wave sleep (SWS) in long duration space flight, and place this within the context of the broader literature on SWS particularly with respect to analogous environments such as the Antarctic. Explore how SWS could be measured within the International Space Station (ISS) context with the aim to utilize the ISS as an analog for future extra-orbital long duration missions. Discuss the potential use of emergent minimally intrusive wireless technologies like ZEO for integrated prelaunch, flight, and return to Earth analysis and optimization of SWS (and general quality of sleep).

  16. Topographical distribution of fast and slow sleep spindles in medicated depressive patients.

    PubMed

    Nishida, Masaki; Nakashima, Yusaku; Nishikawa, Toru

    2014-10-01

    To compare the properties of sleep spindles between healthy subjects and medicated patients with major depressive episode, including frequency range, spectra power, and spatial distribution of spindle power. Continuous 16-channel EEG was used to record nocturnal sleep in healthy control subjects and medicated depressive patients. Recordings were analyzed for changes in EEG power spectra and power topography. Additionally, we graphically demonstrated the pattern of spatial distribution of each type of sleep spindle, divided into fast (12.5-14 Hz) and slow spindles (11-12.5 Hz). Sleep EEG records of depressive subjects exhibited a significantly higher amplitude of slow spindles in the prefrontal region, compared with the healthy controls (P < 0.01). Fast spindles were dominant in the centroparietal region in both depressive patients and the control group. Enhanced slow spindles in the prefrontal region were observed in the medicated depressive patients and not in the healthy controls. The frequency of fast spindles in depressive patients was globally higher than that in healthy participants. The alteration in sleep spindles seen in medicated depressive subjects may reflect a pharmacological modulation of synaptic function involving the thalamic-reticular and thalamocortical mechanisms.

  17. Acoustic Enhancement of Sleep Slow Oscillations and Concomitant Memory Improvement in Older Adults

    PubMed Central

    Papalambros, Nelly A.; Santostasi, Giovanni; Malkani, Roneil G.; Braun, Rosemary; Weintraub, Sandra; Paller, Ken A.; Zee, Phyllis C.

    2017-01-01

    Acoustic stimulation methods applied during sleep in young adults can increase slow wave activity (SWA) and improve sleep-dependent memory retention. It is unknown whether this approach enhances SWA and memory in older adults, who generally have reduced SWA compared to younger adults. Additionally, older adults are at risk for age-related cognitive impairment and therefore may benefit from non-invasive interventions. The aim of this study was to determine if acoustic stimulation can increase SWA and improve declarative memory in healthy older adults. Thirteen participants 60–84 years old completed one night of acoustic stimulation and one night of sham stimulation in random order. During sleep, a real-time algorithm using an adaptive phase-locked loop modeled the phase of endogenous slow waves in midline frontopolar electroencephalographic recordings. Pulses of pink noise were delivered when the upstate of the slow wave was predicted. Each interval of five pulses (“ON interval”) was followed by a pause of approximately equal length (“OFF interval”). SWA during the entire sleep period was similar between stimulation and sham conditions, whereas SWA and spindle activity were increased during ON intervals compared to matched periods during the sham night. The increases in SWA and spindle activity were sustained across almost the entire five-pulse ON interval compared to matched sham periods. Verbal paired-associate memory was tested before and after sleep. Overnight improvement in word recall was significantly greater with acoustic stimulation compared to sham and was correlated with changes in SWA between ON and OFF intervals. Using the phase-locked-loop method to precisely target acoustic stimulation to the upstate of sleep slow oscillations, we were able to enhance SWA and improve sleep-dependent memory storage in older adults, which strengthens the theoretical link between sleep and age-related memory integrity. PMID:28337134

  18. Old Brains Come Uncoupled in Sleep: Slow Wave-Spindle Synchrony, Brain Atrophy, and Forgetting.

    PubMed

    Helfrich, Randolph F; Mander, Bryce A; Jagust, William J; Knight, Robert T; Walker, Matthew P

    2018-01-03

    The coupled interaction between slow-wave oscillations and sleep spindles during non-rapid-eye-movement (NREM) sleep has been proposed to support memory consolidation. However, little evidence in humans supports this theory. Moreover, whether such dynamic coupling is impaired as a consequence of brain aging in later life, contributing to cognitive and memory decline, is unknown. Combining electroencephalography (EEG), structural MRI, and sleep-dependent memory assessment, we addressed these questions in cognitively normal young and older adults. Directional cross-frequency coupling analyses demonstrated that the slow wave governs a precise temporal coordination of sleep spindles, the quality of which predicts overnight memory retention. Moreover, selective atrophy within the medial frontal cortex in older adults predicted a temporal dispersion of this slow wave-spindle coupling, impairing overnight memory consolidation and leading to forgetting. Prefrontal-dependent deficits in the spatiotemporal coordination of NREM sleep oscillations therefore represent one pathway explaining age-related memory decline. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Automated selective disruption of slow wave sleep.

    PubMed

    Ooms, Sharon J; Zempel, John M; Holtzman, David M; Ju, Yo-El S

    2017-04-01

    Slow wave sleep (SWS) plays an important role in neurophysiologic restoration. Experimentally testing the effect of SWS disruption previously required highly time-intensive and subjective methods. Our goal was to develop an automated and objective protocol to reduce SWS without affecting sleep architecture. We developed a custom Matlab™ protocol to calculate electroencephalogram spectral power every 10s live during a polysomnogram, exclude artifact, and, if measurements met criteria for SWS, deliver increasingly louder tones through earphones. Middle-aged healthy volunteers (n=10) each underwent 2 polysomnograms, one with the SWS disruption protocol and one with sham condition. The SWS disruption protocol reduced SWS compared to sham condition, as measured by spectral power in the delta (0.5-4Hz) band, particularly in the 0.5-2Hz range (mean 20% decrease). A compensatory increase in the proportion of total spectral power in the theta (4-8Hz) and alpha (8-12Hz) bands was seen, but otherwise normal sleep features were preserved. N3 sleep decreased from 20±34 to 3±6min, otherwise there were no significant changes in total sleep time, sleep efficiency, or other macrostructural sleep characteristics. This novel SWS disruption protocol produces specific reductions in delta band power similar to existing methods, but has the advantage of being automated, such that SWS disruption can be performed easily in a highly standardized and operator-independent manner. This automated SWS disruption protocol effectively reduces SWS without impacting overall sleep architecture. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Automated selective disruption of slow wave sleep

    PubMed Central

    Ooms, Sharon J.; Zempel, John M.; Holtzman, David M.; Ju, Yo-El S.

    2017-01-01

    Background Slow wave sleep (SWS) plays an important role in neurophysiologic restoration. Experimentally testing the effect of SWS disruption previously required highly time-intensive and subjective methods. Our goal was to develop an automated and objective protocol to reduce SWS without affecting sleep architecture. New Method We developed a custom Matlab™ protocol to calculate electroencephalogram spectral power every 10 seconds live during a polysomnogram, exclude artifact, and, if measurements met criteria for SWS, deliver increasingly louder tones through earphones. Middle-aged healthy volunteers (n=10) each underwent 2 polysomnograms, one with the SWS disruption protocol and one with sham condition. Results The SWS disruption protocol reduced SWS compared to sham condition, as measured by spectral power in the delta (0.5–4 Hz) band, particularly in the 0.5–2 Hz range (mean 20% decrease). A compensatory increase in the proportion of total spectral power in the theta (4–8 Hz) and alpha (8–12 Hz) bands was seen, but otherwise normal sleep features were preserved. N3 sleep decreased from 20±34 to 3±6 minutes, otherwise there were no significant changes in total sleep time, sleep efficiency, or other macrostructural sleep characteristics. Comparison with existing method This novel SWS disruption protocol produces specific reductions in delta band power similar to existing methods, but has the advantage of being automated, such that SWS disruption can be performed easily in a highly standardized and operator-independent manner. Conclusion This automated SWS disruption protocol effectively reduces SWS without impacting overall sleep architecture. PMID:28238859

  1. Age-Related Reduction in Daytime Sleep Propensity and Nocturnal Slow Wave Sleep

    PubMed Central

    Dijk, Derk-Jan; Groeger, John A.; Stanley, Neil; Deacon, Stephen

    2010-01-01

    Objective: To investigate whether age-related and experimental reductions in SWS and sleep continuity are associated with increased daytime sleep propensity. Methods: Assessment of daytime sleep propensity under baseline conditions and following experimental disruption of SWS. Healthy young (20-30 y, n = 44), middle-aged (40-55 y, n = 35) and older (66-83 y, n = 31) men and women, completed a 2-way parallel group study. After an 8-h baseline sleep episode, subjects were randomized to 2 nights with selective SWS disruption by acoustic stimuli, or without disruption, followed by 1 recovery night. Objective and subjective sleep propensity were assessed using the Multiple Sleep Latency Test (MSLT) and the Karolinska Sleepiness Scale (KSS). Findings: During baseline sleep, SWS decreased (P < 0.001) and the number of awakenings increased (P < 0.001) across the 3 age groups. During the baseline day, MSLT values increased across the three age groups (P < 0.0001) with mean values of 8.7min (SD: 4.5), 11.7 (5.1) and 14.2 (4.1) in the young, middle-aged, and older adults, respectively. KSS values were 3.7 (1.0), 3.2 (0.9), and 3.4 (0.6) (age-group: P = 0.031). Two nights of SWS disruption led to a reduction in MSLT and increase in KSS in all 3 age groups (SWS disruption vs. control: P < 0.05 in all cases). Conclusions: Healthy aging is associated with a reduction in daytime sleep propensity, sleep continuity, and SWS. In contrast, experimental disruption of SWS leads to an increase in daytime sleep propensity. The age-related decline in SWS and reduction in daytime sleep propensity may reflect a lessening in homeostatic sleep requirement. Healthy older adults without sleep disorders can expect to be less sleepy during the daytime than young adults. Citation: Dijk DJ; Groeger JA; Stanley N; Deacon S. Age-related reduction in daytime sleep propensity and nocturnal slow wave sleep. SLEEP 2010;33(2):211-223. PMID:20175405

  2. A Mechanism for Upper Airway Stability during Slow Wave Sleep

    PubMed Central

    McSharry, David G.; Saboisky, Julian P.; DeYoung, Pam; Matteis, Paul; Jordan, Amy S.; Trinder, John; Smales, Erik; Hess, Lauren; Guo, Mengshuang; Malhotra, Atul

    2013-01-01

    Study Objectives: The severity of obstructive sleep apnea is diminished (sometimes markedly) during slow wave sleep (SWS). We sought to understand why SWS stabilizes the upper airway. Increased single motor unit (SMU) activity of the major upper airway dilating muscle (genioglossus) should improve upper airway stability. Therefore, we hypothesized that genioglossus SMUs would increase their activity during SWS in comparison with Stage N2 sleep. Design: The activity of genioglossus SMUs was studied on both sides of the transition between Stage N2 sleep and SWS. Setting: Sleep laboratory. Participants: Twenty-nine subjects (age 38 ± 13 yr, 17 males) were studied. Intervention: SWS. Measurement and Results: Subjects slept overnight with fine-wire electrodes in their genioglossus muscles and with full polysomnographic and end tidal carbon dioxide monitors. Fifteen inspiratory phasic (IP) and 11 inspiratory tonic (IT) units were identified from seven subjects and these units exhibited significantly increased inspiratory discharge frequencies during SWS compared with Stage N2 sleep. The peak discharge frequency of the inspiratory units (IP and IT) was 22.7 ± 4.1 Hz in SWS versus 20.3 ± 4.5 Hz in Stage N2 (P < 0.001). The IP units also fired for a longer duration (expressed as a percentage of inspiratory time) during SWS (104.6 ± 39.5 %TI) versus Stage N2 sleep (82.6 ± 39.5 %TI, P < 0.001). The IT units fired faster during expiration in SWS (14.2 ± 1.8 Hz) versus Stage N2 sleep (12.6 ± 3.1 Hz, P = 0.035). There was minimal recruitment or derecruitment of units between SWS and Stage N2 sleep. Conclusion: Increased genioglossus SMU activity likely makes the airway more stable and resistant to collapse throughout the respiratory cycle during SWS. Citation: McSharry DG; Saboisky JP; DeYoung P; Matteis P; Jordan AS; Trinder J; Smales E; Hess L; Guo M; Malhotra A. A mechanism for upper airway stability during slow wave sleep. SLEEP 2013;36(4):555-563. PMID:23565001

  3. Mechanisms of Memory Retrieval in Slow-Wave Sleep.

    PubMed

    Cairney, Scott A; Sobczak, Justyna M; Lindsay, Shane; Gaskell, M Gareth

    2017-09-01

    Memories are strengthened during sleep. The benefits of sleep for memory can be enhanced by re-exposing the sleeping brain to auditory cues; a technique known as targeted memory reactivation (TMR). Prior studies have not assessed the nature of the retrieval mechanisms underpinning TMR: the matching process between auditory stimuli encountered during sleep and previously encoded memories. We carried out two experiments to address this issue. In Experiment 1, participants associated words with verbal and nonverbal auditory stimuli before an overnight interval in which subsets of these stimuli were replayed in slow-wave sleep. We repeated this paradigm in Experiment 2 with the single difference that the gender of the verbal auditory stimuli was switched between learning and sleep. In Experiment 1, forgetting of cued (vs. noncued) associations was reduced by TMR with verbal and nonverbal cues to similar extents. In Experiment 2, TMR with identical nonverbal cues reduced forgetting of cued (vs. noncued) associations, replicating Experiment 1. However, TMR with nonidentical verbal cues reduced forgetting of both cued and noncued associations. These experiments suggest that the memory effects of TMR are influenced by the acoustic overlap between stimuli delivered at training and sleep. Our findings hint at the existence of two processing routes for memory retrieval during sleep. Whereas TMR with acoustically identical cues may reactivate individual associations via simple episodic matching, TMR with nonidentical verbal cues may utilize linguistic decoding mechanisms, resulting in widespread reactivation across a broad category of memories. © Sleep Research Society 2017. Published by Oxford University Press [on behalf of the Sleep Research Society].

  4. Blindfolding during wakefulness causes decrease in sleep slow wave activity.

    PubMed

    Korf, Eva Magdalena; Mölle, Matthias; Born, Jan; Ngo, Hong-Viet V

    2017-04-01

    Slow wave activity (SWA, 0.5-4 Hz) represents the predominant EEG oscillatory activity during slow wave sleep (SWS). Its amplitude is considered in part a reflection of synaptic potentiation in cortical networks due to encoding of information during prior waking, with higher amplitude indicating stronger potentiation. Previous studies showed that increasing and diminishing specific motor behaviors produced corresponding changes in SWA in the respective motor cortical areas during subsequent SWS Here, we tested whether this relationship can be generalized to the visual system, that is, whether diminishing encoding of visual information likewise leads to a localized decrease in SWA over the visual cortex. Experiments were performed in healthy men whose eyes on two different days were or were not covered for 10.5 h before bedtime. The subject's EEG was recorded during sleep and, after sleep, visual evoked potentials (VEPs) were recorded. SWA during nonrapid eye movement sleep (NonREM sleep) was lower after blindfolding than after eyes open ( P  < 0.01). The decrease in SWA that was most consistent during the first 20 min of NonREM sleep, did not remain restricted to visual cortex regions, with changes over frontal and parietal cortical regions being even more pronounced. In the morning after sleep, the N75-P100 peak-to-peak-amplitude of the VEP was significantly diminished in the blindfolded condition. Our findings confirm a link between reduced wake encoding and diminished SWA during ensuing NonREM sleep, although this link appears not to be restricted to sensory cortical areas. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  5. Neuronal Networks in Children with Continuous Spikes and Waves during Slow Sleep

    ERIC Educational Resources Information Center

    Siniatchkin, Michael; Groening, Kristina; Moehring, Jan; Moeller, Friederike; Boor, Rainer; Brodbeck, Verena; Michel, Christoph M.; Rodionov, Roman; Lemieux, Louis; Stephani, Ulrich

    2010-01-01

    Epileptic encephalopathy with continuous spikes and waves during slow sleep is an age-related disorder characterized by the presence of interictal epileptiform discharges during at least greater than 85% of sleep and cognitive deficits associated with this electroencephalography pattern. The pathophysiological mechanisms of continuous spikes and…

  6. Medical management with diazepam for electrical status epilepticus during slow wave sleep in children.

    PubMed

    Francois, Densley; Roberts, Jessica; Hess, Stephany; Probst, Luke; Eksioglu, Yaman

    2014-03-01

    Oral diazepam, administered in varying doses, is among the few proposed treatment options for electrical status epilepticus during slow wave sleep in children. We sought to retrospectively evaluate the long-term efficacy of high-dose oral diazepam in reducing electrographic and clinical evidence of electrical status epilepticus during slow wave sleep in children. Additionally, we surveyed caregivers to assess safety and behavioral outcomes related to ongoing therapy. We collected demographic and clinical data on children treated for electrical status epilepticus during slow wave sleep between October 2010 and March 2013. We sought to identify the number of patients who achieved at least a 50% reduction in spike wave index on electroencephalograph after receiving high-dose oral diazepam. We also administered a questionnaire to caregivers to assess for behavioral problems and side effects. We identified 42 evaluable patients who received high-dose diazepam (range 0.23-2.02 mg/kg per day) to treat electrical status epilepticus during slow wave sleep. Twenty-six patients had spike reduction data and 18/26 (69.2%) children achieved a greater than 50% reduction in spike wave count from an average of 15.54 to 5.05 (P = 0.001). We received 28 responses to the questionnaire. Some patients experienced new onset of difficulties with problem-solving and speech and writing development. Sleep disturbances (50%) and irritability (57.1%) were the most frequent side effects reported. There did not appear to be a dose-related effect with electroencephalograph changes, behavioral effects, or side effects. High-dose oral diazepam significantly reduces the spike wave count on electroencephalograph in children with electrical status epilepticus during slow wave sleep. Although this therapy improves electroencephalograph-related findings, it can be associated with concerning neurological and behavioral side effects in some individuals, so further study is warranted. Copyright © 2014

  7. Slow wave and REM sleep deprivation effects on explicit and implicit memory during sleep.

    PubMed

    Casey, Sarah J; Solomons, Luke C; Steier, Joerg; Kabra, Neeraj; Burnside, Anna; Pengo, Martino F; Moxham, John; Goldstein, Laura H; Kopelman, Michael D

    2016-11-01

    It has been debated whether different stages in the human sleep cycle preferentially mediate the consolidation of explicit and implicit memories, or whether all of the stages in succession are necessary for optimal consolidation. Here we investigated whether the selective deprivation of slow wave sleep (SWS) or rapid eye movement (REM) sleep over an entire night would have a specific effect on consolidation in explicit and implicit memory tasks. Participants completed a set of explicit and implicit memory tasks at night, prior to sleep. They had 1 control night of undisturbed sleep and 2 experimental nights, during which either SWS or REM sleep was selectively deprived across the entire night (sleep conditions counterbalanced across participants). Polysomnography recordings quantified precisely the amount of SWS and REM sleep that occurred during each of the sleep conditions, and spindle counts were recorded. In the morning, participants completed the experimental tasks in the same sequence as the night before. SWS deprivation disrupted the consolidation of explicit memories for visuospatial information (ηp2 = .23), and both SWS (ηp2 = .53) and REM sleep (ηp2 = .52) deprivation adversely affected explicit verbal recall. Neither SWS nor REM sleep deprivation affected aspects of short-term or working memory, and did not affect measures of verbal implicit memory. Spindle counts did not correlate significantly with memory performance. These findings demonstrate the importance of measuring the sleep cycles throughout the entire night, and the contribution of both SWS and REM sleep to memory consolidation. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  8. Effects of Tiagabine on Slow Wave Sleep and Arousal Threshold in Patients With Obstructive Sleep Apnea.

    PubMed

    Taranto-Montemurro, Luigi; Sands, Scott A; Edwards, Bradley A; Azarbarzin, Ali; Marques, Melania; de Melo, Camila; Eckert, Danny J; White, David P; Wellman, Andrew

    2017-02-01

    Obstructive sleep apnea (OSA) severity is markedly reduced during slow-wave sleep (SWS) even in patients with a severe disease. The reason for this improvement is uncertain but likely relates to non-anatomical factors (i.e. reduced arousability, chemosensitivity, and increased dilator muscle activity). The anticonvulsant tiagabine produces a dose-dependent increase in SWS in subjects without OSA. This study aimed to test the hypothesis that tiagabine would reduce OSA severity by raising the overall arousal threshold during sleep. After a baseline physiology night to assess patients' OSA phenotypic traits, a placebo-controlled, double-blind, crossover trial of tiagabine 12 mg administered before sleep was performed in 14 OSA patients. Under each condition, we assessed the effects on sleep and OSA severity using standard clinical polysomnography. Tiagabine increased slow-wave activity (SWA) of the electroencephalogram (1-4 Hz) compared to placebo (1.8 [0.4] vs. 2.0 [0.5] LogμV2, p = .04) but did not reduce OSA severity (apnea-hypopnea index [AHI] 41.5 [20.3] vs. 39.1 [16.5], p > .5). SWS duration (25 [20] vs. 26 [43] mins, p > .5) and arousal threshold (-26.5 [5.0] vs. -27.6 [5.1] cmH2O, p = .26) were also unchanged between nights. Tiagabine modified sleep microstructure (increase in SWA) but did not change the duration of SWS, OSA severity, or arousal threshold in this group of OSA patients. Based on these findings, tiagabine should not be considered as a therapeutic option for OSA treatment. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  9. Effects of aniracetam on impaired sleep patterns in stroke-prone spontaneously hypertensive rats.

    PubMed

    Kimura, M; Okano, S; Inoué, S

    2000-06-01

    The aim of the present study was to determine the pattern of sleep disturbances and the effects on sleep of aniracetam, a cognitive enhancer, in stroke-prone spontaneously hypertensive rats (SHRSP). Compared with normotensive control rats, SHRSP exhibited an impaired sleep pattern characterized by suppressed diurnal rapid eye movement (REM) sleep and excessive nocturnal non-REM sleep. At a dose of 30 mg/kg per day p.o., aniracetam increased REM sleep in the light period after administration for 5 consecutive days. Consequently, suppressed REM sleep in SHRSP was restored by repeated treatment with aniracetam. Aniracetam could be useful in improving REM sleep impairment associated with vascular dementia.

  10. Mechanisms of Memory Retrieval in Slow-Wave Sleep

    PubMed Central

    Cairney, Scott A; Sobczak, Justyna M; Lindsay, Shane

    2017-01-01

    Abstract Study Objectives Memories are strengthened during sleep. The benefits of sleep for memory can be enhanced by re-exposing the sleeping brain to auditory cues; a technique known as targeted memory reactivation (TMR). Prior studies have not assessed the nature of the retrieval mechanisms underpinning TMR: the matching process between auditory stimuli encountered during sleep and previously encoded memories. We carried out two experiments to address this issue. Methods In Experiment 1, participants associated words with verbal and nonverbal auditory stimuli before an overnight interval in which subsets of these stimuli were replayed in slow-wave sleep. We repeated this paradigm in Experiment 2 with the single difference that the gender of the verbal auditory stimuli was switched between learning and sleep. Results In Experiment 1, forgetting of cued (vs. noncued) associations was reduced by TMR with verbal and nonverbal cues to similar extents. In Experiment 2, TMR with identical nonverbal cues reduced forgetting of cued (vs. noncued) associations, replicating Experiment 1. However, TMR with nonidentical verbal cues reduced forgetting of both cued and noncued associations. Conclusions These experiments suggest that the memory effects of TMR are influenced by the acoustic overlap between stimuli delivered at training and sleep. Our findings hint at the existence of two processing routes for memory retrieval during sleep. Whereas TMR with acoustically identical cues may reactivate individual associations via simple episodic matching, TMR with nonidentical verbal cues may utilize linguistic decoding mechanisms, resulting in widespread reactivation across a broad category of memories. PMID:28934526

  11. Why Does Sleep Slow-Wave Activity Increase After Extended Wake? Assessing the Effects of Increased Cortical Firing During Wake and Sleep

    PubMed Central

    Rodriguez, Alexander V.; Funk, Chadd M.; Vyazovskiy, Vladyslav V.; Nir, Yuval; Tononi, Giulio

    2016-01-01

    During non-rapid eye movement (NREM) sleep, cortical neurons alternate between ON periods of firing and OFF periods of silence. This bi-stability, which is largely synchronous across neurons, is reflected in the EEG as slow waves. Slow-wave activity (SWA) increases with wake duration and declines homeostatically during sleep, but the underlying mechanisms remain unclear. One possibility is neuronal “fatigue”: high, sustained firing in wake would force neurons to recover with more frequent and longer OFF periods during sleep. Another possibility is net synaptic potentiation during wake: stronger coupling among neurons would lead to greater synchrony and therefore higher SWA. Here, we obtained a comparable increase in sustained firing (6 h) in cortex by: (1) keeping mice awake by exposure to novel objects to promote plasticity and (2) optogenetically activating a local population of cortical neurons at wake-like levels during sleep. Sleep after extended wake led to increased SWA, higher synchrony, and more time spent OFF, with a positive correlation between SWA, synchrony, and OFF periods. Moreover, time spent OFF was correlated with cortical firing during prior wake. After local optogenetic stimulation, SWA and cortical synchrony decreased locally, time spent OFF did not change, and local SWA was not correlated with either measure. Moreover, laser-induced cortical firing was not correlated with time spent OFF afterward. Overall, these results suggest that high sustained firing per se may not be the primary determinant of SWA increases observed after extended wake. SIGNIFICANCE STATEMENT A long-standing hypothesis is that neurons fire less during slow-wave sleep to recover from the “fatigue” accrued during wake, when overall synaptic activity is higher than in sleep. This idea, however, has rarely been tested and other factors, namely increased cortical synchrony, could explain why sleep slow-wave activity (SWA) is higher after extended wake. We forced

  12. Why Does Sleep Slow-Wave Activity Increase After Extended Wake? Assessing the Effects of Increased Cortical Firing During Wake and Sleep.

    PubMed

    Rodriguez, Alexander V; Funk, Chadd M; Vyazovskiy, Vladyslav V; Nir, Yuval; Tononi, Giulio; Cirelli, Chiara

    2016-12-07

    During non-rapid eye movement (NREM) sleep, cortical neurons alternate between ON periods of firing and OFF periods of silence. This bi-stability, which is largely synchronous across neurons, is reflected in the EEG as slow waves. Slow-wave activity (SWA) increases with wake duration and declines homeostatically during sleep, but the underlying mechanisms remain unclear. One possibility is neuronal "fatigue": high, sustained firing in wake would force neurons to recover with more frequent and longer OFF periods during sleep. Another possibility is net synaptic potentiation during wake: stronger coupling among neurons would lead to greater synchrony and therefore higher SWA. Here, we obtained a comparable increase in sustained firing (6 h) in cortex by: (1) keeping mice awake by exposure to novel objects to promote plasticity and (2) optogenetically activating a local population of cortical neurons at wake-like levels during sleep. Sleep after extended wake led to increased SWA, higher synchrony, and more time spent OFF, with a positive correlation between SWA, synchrony, and OFF periods. Moreover, time spent OFF was correlated with cortical firing during prior wake. After local optogenetic stimulation, SWA and cortical synchrony decreased locally, time spent OFF did not change, and local SWA was not correlated with either measure. Moreover, laser-induced cortical firing was not correlated with time spent OFF afterward. Overall, these results suggest that high sustained firing per se may not be the primary determinant of SWA increases observed after extended wake. A long-standing hypothesis is that neurons fire less during slow-wave sleep to recover from the "fatigue" accrued during wake, when overall synaptic activity is higher than in sleep. This idea, however, has rarely been tested and other factors, namely increased cortical synchrony, could explain why sleep slow-wave activity (SWA) is higher after extended wake. We forced neurons in the mouse cortex to fire

  13. Sleep effects on slow-brain-potential reflections of associative learning.

    PubMed

    Verleger, Rolf; Ludwig, Janna; Kolev, Vasil; Yordanova, Juliana; Wagner, Ullrich

    2011-03-01

    Previous research has indicated that information acquired before sleep gets consolidated during sleep. This process of consolidation might be reflected after sleep in changed extent and topography of cortical activation during retrieval of information. Here, we designed an experiment to measure those changes by means of slow event-related EEG potentials (SPs). Retrieval of newly learnt verbal or spatial associations was tested both immediately after learning and two days later. In the night directly following immediate recall, participants either slept or stayed awake. In line with previous studies, SPs measured during retrieval from memory had parietal or left-frontal foci depending on whether the retrieved associations were spatial or verbal. However, contrary to our expectations, sleep-related consolidation did not further accentuate these content-specific topographic profiles. Rather, sleep modified SPs independently of the spatial or verbal type of learned association: SPs were reduced more after sleep than after waking specifically for those stimulus configurations that had been presented in the same combination at retrieval before sleep. The association-independent stimulus-specific effect might generally form a major component of sleep-related effects on memory. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Slow wave sleep in the chronically fatigued: Power spectra distribution patterns in chronic fatigue syndrome and primary insomnia.

    PubMed

    Neu, Daniel; Mairesse, Olivier; Verbanck, Paul; Le Bon, Olivier

    2015-10-01

    To investigate slow wave sleep (SWS) spectral power proportions in distinct clinical conditions sharing non-restorative sleep and fatigue complaints without excessive daytime sleepiness (EDS), namely the chronic fatigue syndrome (CFS) and primary insomnia (PI). Impaired sleep homeostasis has been suspected in both CFS and PI. We compared perceived sleep quality, fatigue and sleepiness symptom-intensities, polysomnography (PSG) and SWS spectral power distributions of drug-free CFS and PI patients without comorbid sleep or mental disorders, with a good sleeper control group. Higher fatigue without EDS and impaired perceived sleep quality were confirmed in both patient groups. PSG mainly differed in sleep fragmentation and SWS durations. Spectral analysis revealed a similar decrease in central ultra slow power (0.3-0.79Hz) proportion during SWS for both CFS and PI and an increase in frontal power proportions of faster frequencies during SWS in PI only. The latter was correlated to affective symptoms whereas lower central ultra slow power proportions were related to fatigue severity and sleep quality impairment. In combination with normal (PI) or even increased SWS durations (CFS), we found consistent evidence for lower proportions of slow oscillations during SWS in PI and CFS. Observing normal or increased SWS durations but lower proportions of ultra slow power, our findings suggest a possible quantitative compensation of altered homeostatic regulation. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Polysomnographic measures of sleep in cocaine dependence and alcohol dependence: Implications for age‐related loss of slow wave, stage 3 sleep

    PubMed Central

    Bjurstrom, Martin F.; Olmstead, Richard

    2016-01-01

    Abstract Background and aims Sleep disturbance is a prominent complaint in cocaine and alcohol dependence. This controlled study evaluated differences of polysomnographic (PSG) sleep in cocaine‐ and alcohol‐dependent subjects, and examined whether substance dependence interacts with age to alter slow wave sleep and rapid eye movement (REM) sleep. Design Cross‐sectional comparison. Setting Los Angeles and San Diego, CA, USA. Participants Abstinent cocaine‐dependent subjects (n = 32), abstinent alcohol‐dependent subjects (n = 73) and controls (n = 108); mean age 40.3 years recruited 2005–12. Measurements PSG measures of sleep continuity and sleep architecture primary outcomes of Stage 3 sleep and REM sleep. Covariates included age, ethnicity, education, smoking, body mass index and depressive symptoms. Findings Compared with controls, both groups of substance dependent subjects showed loss of Stage 3 sleep (P < 0.001). A substance dependence × age interaction was found in which both cocaine‐ and alcohol‐dependent groups showed loss of Stage 3 sleep at an earlier age than controls (P < 0.05 for all), and cocaine‐dependent subjects showed loss of Stage 3 sleep at an earlier age than alcoholics (P < 0.05). Compared with controls, REM sleep was increased in both substance‐dependent groups (P < 0.001), and cocaine and alcohol dependence were associated with earlier age‐related increase in REM sleep (P < 0.05 for all). Conclusions Cocaine and alcohol dependence appear to be associated with marked disturbances of sleep architecture, including increased rapid eye movement sleep and accelerated age‐related loss of slow wave, Stage 3 sleep. PMID:26749502

  16. How do children fall asleep? A high-density EEG study of slow waves in the transition from wake to sleep.

    PubMed

    Spiess, Mathilde; Bernardi, Giulio; Kurth, Salome; Ringli, Maya; Wehrle, Flavia M; Jenni, Oskar G; Huber, Reto; Siclari, Francesca

    2018-05-17

    Slow waves, the hallmarks of non-rapid eye-movement (NREM) sleep, are thought to reflect maturational changes that occur in the cerebral cortex throughout childhood and adolescence. Recent work in adults has revealed evidence for two distinct synchronization processes involved in the generation of slow waves, which sequentially come into play in the transition to sleep. In order to understand how these two processes are affected by developmental changes, we compared slow waves between children and young adults in the falling asleep period. The sleep onset period (starting 30s before end of alpha activity and ending at the first slow wave sequence) was extracted from 72 sleep onset high-density EEG recordings (128 electrodes) of 49 healthy subjects (age 8-25). Using an automatic slow wave detection algorithm, the number, amplitude and slope of slow waves were analyzed and compared between children (age 8-11) and young adults (age 20-25). Slow wave number and amplitude increased linearly in the falling asleep period in children, while in young adults, isolated high-amplitude slow waves (type I) dominated initially and numerous smaller slow waves (type II) with progressively increasing amplitude occurred later. Compared to young adults, children displayed faster increases in slow wave amplitude and number across the falling asleep period in central and posterior brain regions, respectively, and also showed larger slow waves during wakefulness immediately prior to sleep. Children do not display the two temporally dissociated slow wave synchronization processes in the falling asleep period observed in adults, suggesting that maturational factors underlie the temporal segregation of these two processes. Our findings provide novel perspectives for studying how sleep-related behaviors and dreaming differ between children and adults. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Cerebellar Purkinje Cells Generate Highly Correlated Spontaneous Slow-Rate Fluctuations.

    PubMed

    Cao, Ying; Liu, Yu; Jaeger, Dieter; Heck, Detlef H

    2017-01-01

    Cerebellar Purkinje cells (PC) fire action potentials at high, sustained rates. Changes in spike rate that last a few tens of milliseconds encode sensory and behavioral events. Here we investigated spontaneous fluctuations of PC simple spike rate at a slow time scale of the order of 1 s. Simultaneous recordings from pairs of PCs that were aligned either along the sagittal or transversal axis of the cerebellar cortex revealed that simple spike rate fluctuations at the 1 s time scale were highly correlated. Each pair of PCs had either a predominantly positive or negative slow-rate correlation, with negative correlations observed only in PC pairs aligned along the transversal axis. Slow-rate correlations were independent of faster rate changes that were correlated with fluid licking behavior. Simultaneous recordings from PCs and cerebellar nuclear (CN) neurons showed that slow-rate fluctuations in PC and CN activity were also highly correlated, but their correlations continually alternated between periods of positive and negative correlation. The functional significance of this new aspect of cerebellar spike activity remains to be determined. Correlated slow-rate fluctuations seem too slow to be involved in the real-time control of ongoing behavior. However, slow-rate fluctuations of PCs converging on the same CN neuron are likely to modulate the excitability of the CN neuron, thus introduce a possible slow modulation of cerebellar output activity.

  18. Slow oscillating transcranial direct current stimulation during non-rapid eye movement sleep improves behavioral inhibition in attention-deficit/hyperactivity disorder

    PubMed Central

    Munz, Manuel T.; Prehn-Kristensen, Alexander; Thielking, Frederieke; Mölle, Matthias; Göder, Robert; Baving, Lioba

    2015-01-01

    Background: Behavioral inhibition, which is a later-developing executive function (EF) and anatomically located in prefrontal areas, is impaired in attention-deficit and hyperactivity disorder (ADHD). While optimal EFs have been shown to depend on efficient sleep in healthy subjects, the impact of sleep problems, frequently reported in ADHD, remains elusive. Findings of macroscopic sleep changes in ADHD are inconsistent, but there is emerging evidence for distinct microscopic changes with a focus on prefrontal cortical regions and non-rapid eye movement (non-REM) slow-wave sleep. Recently, slow oscillations (SO) during non-REM sleep were found to be less functional and, as such, may be involved in sleep-dependent memory impairments in ADHD. Objective:By augmenting slow-wave power through bilateral, slow oscillating transcranial direct current stimulation (so-tDCS, frequency = 0.75 Hz) during non-REM sleep, we aimed to improve daytime behavioral inhibition in children with ADHD. Methods: Fourteen boys (10–14 years) diagnosed with ADHD were included. In a randomized, double-blind, cross-over design, patients received so-tDCS either in the first or in the second experimental sleep night. Inhibition control was assessed with a visuomotor go/no-go task. Intrinsic alertness was assessed with a simple stimulus response task. To control for visuomotor performance, motor memory was assessed with a finger sequence tapping task. Results: SO-power was enhanced during early non-REM sleep, accompanied by slowed reaction times and decreased standard deviations of reaction times, in the go/no-go task after so-tDCS. In contrast, intrinsic alertness, and motor memory performance were not improved by so-tDCS. Conclusion: Since behavioral inhibition but not intrinsic alertness or motor memory was improved by so-tDCS, our results suggest that lateral prefrontal slow oscillations during sleep might play a specific role for executive functioning in ADHD. PMID:26321911

  19. Slow oscillating transcranial direct current stimulation during non-rapid eye movement sleep improves behavioral inhibition in attention-deficit/hyperactivity disorder.

    PubMed

    Munz, Manuel T; Prehn-Kristensen, Alexander; Thielking, Frederieke; Mölle, Matthias; Göder, Robert; Baving, Lioba

    2015-01-01

    Behavioral inhibition, which is a later-developing executive function (EF) and anatomically located in prefrontal areas, is impaired in attention-deficit and hyperactivity disorder (ADHD). While optimal EFs have been shown to depend on efficient sleep in healthy subjects, the impact of sleep problems, frequently reported in ADHD, remains elusive. Findings of macroscopic sleep changes in ADHD are inconsistent, but there is emerging evidence for distinct microscopic changes with a focus on prefrontal cortical regions and non-rapid eye movement (non-REM) slow-wave sleep. Recently, slow oscillations (SO) during non-REM sleep were found to be less functional and, as such, may be involved in sleep-dependent memory impairments in ADHD. By augmenting slow-wave power through bilateral, slow oscillating transcranial direct current stimulation (so-tDCS, frequency = 0.75 Hz) during non-REM sleep, we aimed to improve daytime behavioral inhibition in children with ADHD. Fourteen boys (10-14 years) diagnosed with ADHD were included. In a randomized, double-blind, cross-over design, patients received so-tDCS either in the first or in the second experimental sleep night. Inhibition control was assessed with a visuomotor go/no-go task. Intrinsic alertness was assessed with a simple stimulus response task. To control for visuomotor performance, motor memory was assessed with a finger sequence tapping task. SO-power was enhanced during early non-REM sleep, accompanied by slowed reaction times and decreased standard deviations of reaction times, in the go/no-go task after so-tDCS. In contrast, intrinsic alertness, and motor memory performance were not improved by so-tDCS. Since behavioral inhibition but not intrinsic alertness or motor memory was improved by so-tDCS, our results suggest that lateral prefrontal slow oscillations during sleep might play a specific role for executive functioning in ADHD.

  20. Slow waves, sharp waves, ripples, and REM in sleeping dragons.

    PubMed

    Shein-Idelson, Mark; Ondracek, Janie M; Liaw, Hua-Peng; Reiter, Sam; Laurent, Gilles

    2016-04-29

    Sleep has been described in animals ranging from worms to humans. Yet the electrophysiological characteristics of brain sleep, such as slow-wave (SW) and rapid eye movement (REM) activities, are thought to be restricted to mammals and birds. Recording from the brain of a lizard, the Australian dragon Pogona vitticeps, we identified SW and REM sleep patterns, thus pushing back the probable evolution of these dynamics at least to the emergence of amniotes. The SW and REM sleep patterns that we observed in lizards oscillated continuously for 6 to 10 hours with a period of ~80 seconds. The networks controlling SW-REM antagonism in amniotes may thus originate from a common, ancient oscillator circuit. Lizard SW dynamics closely resemble those observed in rodent hippocampal CA1, yet they originate from a brain area, the dorsal ventricular ridge, that has no obvious hodological similarity with the mammalian hippocampus. Copyright © 2016, American Association for the Advancement of Science.

  1. Modeling aircraft noise induced sleep disturbance

    NASA Astrophysics Data System (ADS)

    McGuire, Sarah M.

    One of the primary impacts of aircraft noise on a community is its disruption of sleep. Aircraft noise increases the time to fall asleep, the number of awakenings, and decreases the amount of rapid eye movement and slow wave sleep. Understanding these changes in sleep may be important as they could increase the risk for developing next-day effects such as sleepiness and reduced performance and long-term health effects such as cardiovascular disease. There are models that have been developed to predict the effect of aircraft noise on sleep. However, most of these models only predict the percentage of the population that is awakened. Markov and nonlinear dynamic models have been developed to predict an individual's sleep structure during the night. However, both of these models have limitations. The Markov model only accounts for whether an aircraft event occurred not the noise level or other sound characteristics of the event that may affect the degree of disturbance. The nonlinear dynamic models were developed to describe normal sleep regulation and do not have a noise effects component. In addition, the nonlinear dynamic models have slow dynamics which make it difficult to predict short duration awakenings which occur both spontaneously and as a result of nighttime noise exposure. The purpose of this research was to examine these sleep structure models to determine how they could be altered to predict the effect of aircraft noise on sleep. Different approaches for adding a noise level dependence to the Markov Model was explored and the modified model was validated by comparing predictions to behavioral awakening data. In order to determine how to add faster dynamics to the nonlinear dynamic sleep models it was necessary to have a more detailed sleep stage classification than was available from visual scoring of sleep data. An automatic sleep stage classification algorithm was developed which extracts different features of polysomnography data including the

  2. Effect of Conditioned Stimulus Exposure during Slow Wave Sleep on Fear Memory Extinction in Humans

    PubMed Central

    He, Jia; Sun, Hong-Qiang; Li, Su-Xia; Zhang, Wei-Hua; Shi, Jie; Ai, Si-Zhi; Li, Yun; Li, Xiao-Jun; Tang, Xiang-Dong; Lu, Lin

    2015-01-01

    Study Objectives: Repeated exposure to a neutral conditioned stimulus (CS) in the absence of a noxious unconditioned stimulus (US) elicits fear memory extinction. The aim of the current study was to investigate the effects of mild tone exposure (CS) during slow wave sleep (SWS) on fear memory extinction in humans. Design: The healthy volunteers underwent an auditory fear conditioning paradigm on the experimental night, during which tones served as the CS, and a mild shock served as the US. They were then randomly assigned to four groups. Three groups were exposed to the CS for 3 or 10 min or an irrelevant tone (control stimulus, CtrS) for 10 min during SWS. The fourth group served as controls and was not subjected to any interventions. All of the subjects completed a memory test 4 h after SWS-rich stage to evaluate the effect on fear extinction. Moreover, we conducted similar experiments using an independent group of subjects during the daytime to test whether the memory extinction effect was specific to the sleep condition. Participants: Ninety-six healthy volunteers (44 males) aged 18–28 y. Measurements and Results: Participants exhibited undisturbed sleep during 2 consecutive nights, as assessed by sleep variables (all P > 0.05) from polysomnographic recordings and power spectral analysis. Participants who were re-exposed to the 10 min CS either during SWS and wakefulness exhibited attenuated fear responses (wake-10 min CS, P < 0.05; SWS-10 min CS, P < 0.01). Conclusions: Conditioned stimulus re-exposure during slow wave sleep promoted fear memory extinction without altering sleep profiles. Citation: He J, Sun HQ, Li SX, Zhang WH, Shi J, Ai SZ, Li Y, Li XJ, Tang XD, Lu L. Effect of conditioned stimulus exposure during slow wave sleep on fear memory extinction in humans. SLEEP 2015;38(3):423–431. PMID:25348121

  3. Human longevity is associated with regular sleep patterns, maintenance of slow wave sleep, and favorable lipid profile

    PubMed Central

    Mazzotti, Diego Robles; Guindalini, Camila; Moraes, Walter André dos Santos; Andersen, Monica Levy; Cendoroglo, Maysa Seabra; Ramos, Luiz Roberto; Tufik, Sergio

    2014-01-01

    Some individuals are able to successfully reach very old ages, reflecting higher adaptation against age-associated effects. Sleep is one of the processes deeply affected by aging; however few studies evaluating sleep in long-lived individuals (aged over 85) have been reported to date. The aim of this study was to characterize the sleep patterns and biochemical profile of oldest old individuals (N = 10, age 85–105 years old) and compare them to young adults (N = 15, age 20–30 years old) and older adults (N = 13, age 60–70 years old). All subjects underwent full-night polysomnography, 1-week of actigraphic recording and peripheral blood collection. Sleep electroencephalogram spectral analysis was also performed. The oldest old individuals showed lower sleep efficiency and REM sleep when compared to the older adults, while stage N3 percentage and delta power were similar across the groups. Oldest old individuals maintained strictly regular sleep-wake schedules and also presented higher HDL-cholesterol and lower triglyceride levels than older adults. The present study revealed novel data regarding specific sleep patterns and maintenance of slow wave sleep in the oldest old group. Taken together with the favorable lipid profile, these results contribute with evidence to the importance of sleep and lipid metabolism regulation in the maintenance of longevity in humans. PMID:25009494

  4. Effects of oral temazepam on slow waves during non-rapid eye movement sleep in healthy young adults: A high-density EEG investigation.

    PubMed

    Plante, D T; Goldstein, M R; Cook, J D; Smith, R; Riedner, B A; Rumble, M E; Jelenchick, L; Roth, A; Tononi, G; Benca, R M; Peterson, M J

    2016-03-01

    Slow waves are characteristic waveforms that occur during non-rapid eye movement (NREM) sleep that play an integral role in sleep quality and brain plasticity. Benzodiazepines are commonly used medications that alter slow waves, however, their effects may depend on the time of night and measure used to characterize slow waves. Prior investigations have utilized minimal scalp derivations to evaluate the effects of benzodiazepines on slow waves, and thus the topography of changes to slow waves induced by benzodiazepines has yet to be fully elucidated. This study used high-density electroencephalography (hdEEG) to evaluate the effects of oral temazepam on slow wave activity, incidence, and morphology during NREM sleep in 18 healthy adults relative to placebo. Temazepam was associated with significant decreases in slow wave activity and incidence, which were most prominent in the latter portions of the sleep period. However, temazepam was also associated with a decrease in the magnitude of high-amplitude slow waves and their slopes in the first NREM sleep episode, which was most prominent in frontal derivations. These findings suggest that benzodiazepines produce changes in slow waves throughout the night that vary depending on cortical topography and measures used to characterize slow waves. Further research that explores the relationships between benzodiazepine-induced changes to slow waves and the functional effects of these waveforms is indicated. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Napping to renew learning capacity: enhanced encoding after stimulation of sleep slow oscillations.

    PubMed

    Antonenko, Daria; Diekelmann, Susanne; Olsen, Cathrin; Born, Jan; Mölle, Matthias

    2013-04-01

    As well as consolidating memory, sleep has been proposed to serve a second important function for memory, i.e. to free capacities for the learning of new information during succeeding wakefulness. The slow wave activity (SWA) that is a hallmark of slow wave sleep could be involved in both functions. Here, we aimed to demonstrate a causative role for SWA in enhancing the capacity for encoding of information during subsequent wakefulness, using transcranial slow oscillation stimulation (tSOS) oscillating at 0.75 Hz to induce SWA in healthy humans during an afternoon nap. Encoding following the nap was tested for hippocampus-dependent declarative materials (pictures, word pairs, and word lists) and procedural skills (finger sequence tapping). As compared with a sham stimulation control condition, tSOS during the nap enhanced SWA and significantly improved subsequent encoding on all three declarative tasks (picture recognition, cued recall of word pairs, and free recall of word lists), whereas procedural finger sequence tapping skill was not affected. Our results indicate that sleep SWA enhances the capacity for encoding of declarative materials, possibly by down-scaling hippocampal synaptic networks that were potentiated towards saturation during the preceding period of wakefulness. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  6. Long-term history and immediate preceding state affect EEG slow wave characteristics at NREM sleep onset in C57BL/6 mice.

    PubMed

    Cui, N; Mckillop, L E; Fisher, S P; Oliver, P L; Vyazovskiy, V V

    2014-01-01

    The dynamics of cortical activity across the 24-h day and at vigilance state transitions is regulated by an interaction between global subcortical neuromodulatory influences and local shifts in network synchrony and excitability. To address the role of long-term and immediate preceding history in local and global cortical dynamics, we investigated cortical EEG recorded from both frontal and occipital regions during an undisturbed 24-h recording in mice. As expected, at the beginning of the light period, under physiologically increased sleep pressure, EEG slow waves were more frequent and had higher amplitude and slopes, compared to the rest of the light period. Within discrete NREM sleep episodes, the incidence, amplitude and slopes of individual slow waves increased progressively after episode onset in both derivations by approximately 10-30%. Interestingly, at the beginning of NREM sleep episodes slow waves in the frontal and occipital derivations frequently occurred in isolation, as quantified by longer latencies between consecutive slow waves in the two regions. Notably, slow waves during the initial period of NREM sleep following REM sleep episodes were significantly less frequent, lower in amplitude and exhibited shallower slopes, compared to those that occurred in NREM episodes after prolonged waking. Moreover, the latencies between consecutive frontal and occipital NREM slow waves were substantially longer when they occurred directly after REM sleep compared to following consolidated wakefulness. Overall these data reveal a complex picture, where both time of day and preceding state contribute to the characteristics and dynamics of slow waves within NREM sleep. These findings suggest that NREM sleep initiates in a more "local" fashion when it occurs following REM sleep episodes as opposed to sustained waking bouts. While the mechanisms and functional significance of such a re-setting of brain state after individual REM sleep episodes remains to be

  7. Distinct associations between energy balance and the sleep characteristics slow wave sleep and rapid eye movement sleep.

    PubMed

    Rutters, F; Gonnissen, H K; Hursel, R; Lemmens, S G; Martens, E A; Westerterp-Plantenga, M S

    2012-10-01

    Epidemiologically, an inverse relationship between body mass index (BMI) and sleep duration is observed. Intra-individual variance in the amount of slow wave sleep (SWS) or rapid eye movement (REM) sleep has been related to variance of metabolic and endocrine parameters, which are risk factors for the disturbance of energy balance (EB). To investigate inter-individual relationships between EB (EB= energy intake-energy expenditure∣, MJ/24 h), SWS or REM sleep, and relevant parameters in normal-weight men during two 48 h stays in the controlled environment of a respiration chamber. A total of 16 men (age 23±3.7 years, BMI 23.9±1.9 kg m(-2)) stayed in the respiration chamber twice for 48 h to assure EB. Electroencephalography was used to monitor sleep (2330-0730 hrs). Hunger and fullness were scored by visual analog scales; mood was determined by State Trait Anxiety Index-state and food reward by liking and wanting. Baseline blood and salivary samples were collected before breakfast. Subjects were fed in EB, except for the last dinner, when energy intake was ad libitum. The subjects slept on average 441.8±49 min per night, and showed high within-subject reliability for the amount of SWS and REM sleep. Linear regression analyses showed that EB was inversely related to the amount of SWS (r=-0.43, P<0.03), and positively related to the amount of REM sleep (r=0.40, P<0.05). Relevant parameters such as hunger, reward, stress and orexigenic hormone concentrations were related to overeating, as well as to the amount of SWS and REM sleep, however, after inclusion of these parameters in a multiple regression, the amount of SWS and REM sleep did not add to the explained variance of EB, which suggests that due to their individual associations, these EB parameters are mediator variables. A positive EB due to overeating, was explained by a smaller amount of SWS and higher amount of REM sleep, mediated by hunger, fullness, State Trait Anxiety Index-state scores, glucose

  8. Slow-oscillatory Transcranial Direct Current Stimulation Modulates Memory in Temporal Lobe Epilepsy by Altering Sleep Spindle Generators: A Possible Rehabilitation Tool.

    PubMed

    Del Felice, Alessandra; Magalini, Alessandra; Masiero, Stefano

    2015-01-01

    Temporal lobe epilepsy (TLE) is often associated with memory deficits. Given the putative role for sleep spindles memory consolidation, spindle generators skewed toward the affected lobe in TLE subjects may be a neurophysiological marker of defective memory. Slow-oscillatory transcranial direct current stimulation (sotDCS) during slow waves sleep (SWS) has previously been shown to enhance sleep-dependent memory consolidation by increasing slow-wave sleep and modulating sleep spindles. To test if anodal sotDCS over the affected TL prior to a nap affects sleep spindles and whether this improves memory consolidation. Randomized controlled cross-over study. 12 people with TLE underwent sotDCS (0.75 Hz; 0-250 μV, 30 min) or sham before daytime nap. Declarative verbal and visuospatial learning were tested. Fast and slow spindle signals were recorded by 256-channel EEG during sleep. In both study arms, electrical source imaging (ESI) localized cortical generators. Neuropsychological data were analyzed with general linear model statistics or the Kruskal-Wallis test (P or Z < 0.05), and neurophysiological data tested with the Mann-Whitney t test and binomial distribution test (P or Z < 0.05). An improvement in declarative (P = 0.05) and visuospatial memory performance (P = 0.048) emerged after sotDCS. SotDCS increased slow spindle generators current density (Z = 0.001), with a shift to the anterior cortical areas. Anodal sotDCS over the affected temporal lobe improves declarative and visuospatial memory performance by modulating slow sleep spindles cortical source generators. SotDCS appears a promising tool for memory rehabilitation in people with TLE. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. APOEε4 and slow wave sleep in older adults

    PubMed Central

    Yaffe, Kristine; Nievergelt, Caroline M.; Parimi, Neeta; Glymour, M. Maria; Ensrud, Kristine E.; Cauley, Jane A.; Ancoli-Israel, Sonia; Mariani, Sara; Redline, Susan; Stone, Katie L.

    2018-01-01

    Slow wave (or stage N3) sleep has been linked to a variety of cognitive processes. However, the role of stage N3 in the elderly is debated. The link between stage N3 and episodic memory may be weakened or changed in the older adult population, possibly due to several altered mechanisms impacting the cellular structure of the brain. The bases for the age-related dissociation between stage N3 and cognition are not understood. Since APOEε4 status is the strongest genetic risk factor for cognitive decline, we assessed whether the ε4 allele is associated with stage N3 sleep. Participants were from the population-based Osteoporotic Fractures in Men (MrOS) cohort with polysomnography and APOEε4 genotype data (n = 2,302, 100% male, mean age 76.6 years). Sleep stages were objectively measured using overnight in-home polysomnography and central electroencephalogram data were used to score stage N3 sleep. Cognitive function was assessed using the Modified Mini Mental State Exam (3MS). The APOE rs429358 single nucleotide polymorphism, which defines the APOEε4 allele, was genotyped using a custom genotyping array. Total time in stage N3 sleep was significantly higher (p<0.0001) among the 40 MrOS participants carrying two copies of the ε4 allele (62±5.2 minutes) compared with 43±1.5 minutes for carriers of one ε4 allele (n = 515) and 40±0.8 minutes for ε4 non-carriers (n = 1747). All results were independent of sleep efficiency, number of sleep cycles, and apnea hypopnea index. These findings support an association between APOEε4 genotype and sleep stage N3 in the elderly. Increased total stage N3 duration among ε4/ε4 carriers does not appear to reflect compensation for prior cognitive decline and may reflect overactive downscaling of synapses during sleep. If confirmed, these results might in part explain the high risk of age-related cognitive decline and AD among APOE ε4/ε4 carriers. PMID:29370207

  10. EEG slow waves in traumatic brain injury: Convergent findings in mouse and man

    PubMed Central

    Modarres, Mo; Kuzma, Nicholas N.; Kretzmer, Tracy; Pack, Allan I.; Lim, Miranda M.

    2016-01-01

    Objective Evidence from previous studies suggests that greater sleep pressure, in the form of EEG-based slow waves, accumulates in specific brain regions that are more active during prior waking experience. We sought to quantify the number and coherence of EEG slow waves in subjects with mild traumatic brain injury (mTBI). Methods We developed a method to automatically detect individual slow waves in each EEG channel, and validated this method using simulated EEG data. We then used this method to quantify EEG-based slow waves during sleep and wake states in both mouse and human subjects with mTBI. A modified coherence index that accounts for information from multiple channels was calculated as a measure of slow wave synchrony. Results Brain-injured mice showed significantly higher theta:alpha amplitude ratios and significantly more slow waves during spontaneous wakefulness and during prolonged sleep deprivation, compared to sham-injured control mice. Human subjects with mTBI showed significantly higher theta:beta amplitude ratios and significantly more EEG slow waves while awake compared to age-matched control subjects. We then quantified the global coherence index of slow waves across several EEG channels in human subjects. Individuals with mTBI showed significantly less EEG global coherence compared to control subjects while awake, but not during sleep. EEG global coherence was significantly correlated with severity of post-concussive symptoms (as assessed by the Neurobehavioral Symptom Inventory scale). Conclusion and implications Taken together, our data from both mouse and human studies suggest that EEG slow wave quantity and the global coherence index of slow waves may represent a sensitive marker for the diagnosis and prognosis of mTBI and post-concussive symptoms. PMID:28018987

  11. EEG slow waves in traumatic brain injury: Convergent findings in mouse and man.

    PubMed

    Modarres, Mo; Kuzma, Nicholas N; Kretzmer, Tracy; Pack, Allan I; Lim, Miranda M

    2016-07-01

    Evidence from previous studies suggests that greater sleep pressure, in the form of EEG-based slow waves, accumulates in specific brain regions that are more active during prior waking experience. We sought to quantify the number and coherence of EEG slow waves in subjects with mild traumatic brain injury (mTBI). We developed a method to automatically detect individual slow waves in each EEG channel, and validated this method using simulated EEG data. We then used this method to quantify EEG-based slow waves during sleep and wake states in both mouse and human subjects with mTBI. A modified coherence index that accounts for information from multiple channels was calculated as a measure of slow wave synchrony. Brain-injured mice showed significantly higher theta:alpha amplitude ratios and significantly more slow waves during spontaneous wakefulness and during prolonged sleep deprivation, compared to sham-injured control mice. Human subjects with mTBI showed significantly higher theta:beta amplitude ratios and significantly more EEG slow waves while awake compared to age-matched control subjects. We then quantified the global coherence index of slow waves across several EEG channels in human subjects. Individuals with mTBI showed significantly less EEG global coherence compared to control subjects while awake, but not during sleep. EEG global coherence was significantly correlated with severity of post-concussive symptoms (as assessed by the Neurobehavioral Symptom Inventory scale). Taken together, our data from both mouse and human studies suggest that EEG slow wave quantity and the global coherence index of slow waves may represent a sensitive marker for the diagnosis and prognosis of mTBI and post-concussive symptoms.

  12. Analysis of Slow-Wave Activity and Slow-Wave Oscillations Prior to Somnambulism

    PubMed Central

    Jaar, Olivier; Pilon, Mathieu; Carrier, Julie; Montplaisir, Jacques; Zadra, Antonio

    2010-01-01

    Study Objectivies: Several studies have investigated slow wave sleep EEG parameters, including slow-wave activity (SWA) in relation to somnambulism, but results have been both inconsistent and contradictory. The first goal of the present study was to conduct a quantitative analysis of sleepwalkers' sleep EEG by studying fluctuations in spectral power for delta (1-4 Hz) and slow delta (0.5-1 Hz) before the onset of somnambulistic episodes. A secondary aim was to detect slow-wave oscillations to examine changes in their amplitude and density prior to behavioral episodes. Participants: Twenty-two adult sleepwalkers were investigated polysomnographically following 25 h of sleep deprivation. Results: Analysis of patients' sleep EEG over the 200 sec prior to the episodes' onset revealed that the episodes were not preceded by a gradual increase in spectral power for either delta or slow delta over frontal, central, or parietal leads. However, time course comparisons revealed significant changes in the density of slow-wave oscillations as well as in very slow oscillations with significant increases occurring during the final 20 sec immediately preceding episode onset. Conclusions: The specificity of these sleep EEG parameters for the occurrence and diagnosis of NREM parasomnias remains to be determined. Citation: Jaar O; Pilon M; Carrier J; Montplaisir J; Zadra A. Analysis of slow-wave activity and slow-wave oscillations prior to somnambulism. SLEEP 2010;33(11):1511-1516. PMID:21102993

  13. A mechanism for upper airway stability during slow wave sleep.

    PubMed

    McSharry, David G; Saboisky, Julian P; Deyoung, Pam; Matteis, Paul; Jordan, Amy S; Trinder, John; Smales, Erik; Hess, Lauren; Guo, Mengshuang; Malhotra, Atul

    2013-04-01

    The severity of obstructive sleep apnea is diminished (sometimes markedly) during slow wave sleep (SWS). We sought to understand why SWS stabilizes the upper airway. Increased single motor unit (SMU) activity of the major upper airway dilating muscle (genioglossus) should improve upper airway stability. Therefore, we hypothesized that genioglossus SMUs would increase their activity during SWS in comparison with Stage N2 sleep. The activity of genioglossus SMUs was studied on both sides of the transition between Stage N2 sleep and SWS. Sleep laboratory. Twenty-nine subjects (age 38 ± 13 yr, 17 males) were studied. SWS. Subjects slept overnight with fine-wire electrodes in their genioglossus muscles and with full polysomnographic and end tidal carbon dioxide monitors. Fifteen inspiratory phasic (IP) and 11 inspiratory tonic (IT) units were identified from seven subjects and these units exhibited significantly increased inspiratory discharge frequencies during SWS compared with Stage N2 sleep. The peak discharge frequency of the inspiratory units (IP and IT) was 22.7 ± 4.1 Hz in SWS versus 20.3 ± 4.5 Hz in Stage N2 (P < 0.001). The IP units also fired for a longer duration (expressed as a percentage of inspiratory time) during SWS (104.6 ± 39.5 %TI) versus Stage N2 sleep (82.6 ± 39.5 %TI, P < 0.001). The IT units fired faster during expiration in SWS (14.2 ± 1.8 Hz) versus Stage N2 sleep (12.6 ± 3.1 Hz, P = 0.035). There was minimal recruitment or derecruitment of units between SWS and Stage N2 sleep. Increased genioglossus SMU activity likely makes the airway more stable and resistant to collapse throughout the respiratory cycle during SWS.

  14. Pupillographic assessment of sleepiness in sleep-deprived healthy subjects.

    PubMed

    Wilhelm, B; Wilhelm, H; Lüdtke, H; Streicher, P; Adler, M

    1998-05-01

    Spontaneous pupillary-behavior in darkness provides information about a subject's level of sleepiness. In the present work, pupil measurements in complete darkness and quiet have been recorded continuously over 11-minute period with infrared video pupillography at 25 Hz. The data have been analyzed to yield three parameters describing pupil behavior; the power of diameter variation at frequencies below 0.8 Hz (slow changes in pupil size), the pupillary unrest index, and the average pupil size. To investigate the changes of these parameters in sleep deprivation, spontaneous pupillary behavior in darkness was recorded every 2 hours in 13 healthy subjects from 19:00 to 07:00 during forced wakefulness. On each occasion, comparative subjective sleepiness was assessed with a self-rating scale (Stanford Sleepiness Scale, SSS). The power of slow pupillary oscillations (< or = 0.8 Hz) increased significantly and so did the values of SSS, while basic pupil diameter decreased significantly. Slow pupillary oscillations and SSS did not correlate well in general but high values of pupil parameters were always associated with high values in subjective rating. Our results demonstrate a strong relationship between ongoing sleep deprivation and typical changes in the frequency profiles of spontaneous pupillary oscillations and the tendency to instability in pupil size in normals. These findings suggest that the results of pupil data analysis permit an objective measurement of sleepiness.

  15. Landau-Kleffner Syndrome, Electrical Status Epilepticus in Slow Wave Sleep, and Language Regression in Children

    ERIC Educational Resources Information Center

    McVicar, Kathryn A.; Shinnar, Shlomo

    2004-01-01

    The Landau-Kleffner syndrome (LKS) and electrical status epilepticus in slow wave sleep (ESES) are rare childhood-onset epileptic encephalopathies in which loss of language skills occurs in the context of an epileptiform EEG activated in sleep. Although in LKS the loss of function is limited to language, in ESES there is a wider spectrum of…

  16. Coordination of Slow Waves With Sleep Spindles Predicts Sleep-Dependent Memory Consolidation in Schizophrenia.

    PubMed

    Demanuele, Charmaine; Bartsch, Ullrich; Baran, Bengi; Khan, Sheraz; Vangel, Mark G; Cox, Roy; Hämäläinen, Matti; Jones, Matthew W; Stickgold, Robert; Manoach, Dara S

    2017-01-01

    Schizophrenia patients have correlated deficits in sleep spindle density and sleep-dependent memory consolidation. In addition to spindle density, memory consolidation is thought to rely on the precise temporal coordination of spindles with slow waves (SWs). We investigated whether this coordination is intact in schizophrenia and its relation to motor procedural memory consolidation. Twenty-one chronic medicated schizophrenia patients and 17 demographically matched healthy controls underwent two nights of polysomnography, with training on the finger tapping motor sequence task (MST) on the second night and testing the following morning. We detected SWs (0.5-4 Hz) and spindles during non-rapid eye movement (NREM) sleep. We measured SW-spindle phase-amplitude coupling and its relation with overnight improvement in MST performance. Patients did not differ from controls in the timing of SW-spindle coupling. In both the groups, spindles peaked during the SW upstate. For patients alone, the later in the SW upstate that spindles peaked and the more reliable this phase relationship, the greater the overnight MST improvement. Regression models that included both spindle density and SW-spindle coordination predicted overnight improvement significantly better than either parameter alone, suggesting that both contribute to memory consolidation. Schizophrenia patients show intact spindle-SW temporal coordination, and these timing relationships, together with spindle density, predict sleep-dependent memory consolidation. These relations were seen only in patients suggesting that their memory is more dependent on optimal spindle-SW timing, possibly due to reduced spindle density. Interventions to improve memory may need to increase spindle density while preserving or enhancing the coordination of NREM oscillations. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e

  17. Analysis of slow-wave activity and slow-wave oscillations prior to somnambulism.

    PubMed

    Jaar, Olivier; Pilon, Mathieu; Carrier, Julie; Montplaisir, Jacques; Zadra, Antonio

    2010-11-01

    STUDY OBJECTIVIES: several studies have investigated slow wave sleep EEG parameters, including slow-wave activity (SWA) in relation to somnambulism, but results have been both inconsistent and contradictory. The first goal of the present study was to conduct a quantitative analysis of sleepwalkers' sleep EEG by studying fluctuations in spectral power for delta (1-4 Hz) and slow delta (0.5-1 Hz) before the onset of somnambulistic episodes. A secondary aim was to detect slow-wave oscillations to examine changes in their amplitude and density prior to behavioral episodes. twenty-two adult sleepwalkers were investigated polysomnographically following 25 h of sleep deprivation. analysis of patients' sleep EEG over the 200 sec prior to the episodes' onset revealed that the episodes were not preceded by a gradual increase in spectral power for either delta or slow delta over frontal, central, or parietal leads. However, time course comparisons revealed significant changes in the density of slow-wave oscillations as well as in very slow oscillations with significant increases occurring during the final 20 sec immediately preceding episode onset. the specificity of these sleep EEG parameters for the occurrence and diagnosis of NREM parasomnias remains to be determined.

  18. Temporal coordination of olfactory cortex sharp-wave activity with up- and downstates in the orbitofrontal cortex during slow-wave sleep.

    PubMed

    Onisawa, Naomi; Manabe, Hiroyuki; Mori, Kensaku

    2017-01-01

    During slow-wave sleep, interareal communications via coordinated, slow oscillatory activities occur in the large-scale networks of the mammalian neocortex. Because olfactory cortex (OC) areas, which belong to paleocortex, show characteristic sharp-wave (SPW) activity during slow-wave sleep, we examined whether OC SPWs in freely behaving rats occur in temporal coordination with up- and downstates of the orbitofrontal cortex (OFC) slow oscillation. Simultaneous recordings of local field potentials and spike activities in the OC and OFC showed that during the downstate in the OFC, the OC also exhibited downstate with greatly reduced neuronal activity and suppression of SPW generation. OC SPWs occurred during two distinct phases of the upstate of the OFC: early-phase SPWs occurred at the start of upstate shortly after the down-to-up transition in the OFC, whereas late-phase SPWs were generated at the end of upstate shortly before the up-to-down transition. Such temporal coordination between neocortical up- and downstates and olfactory system SPWs was observed between the prefrontal cortex areas (OFC and medial prefrontal cortex) and the OC areas (anterior piriform cortex and posterior piriform cortex). These results suggest that during slow-wave sleep, OC and OFC areas communicate preferentially in specific time windows shortly after the down-to-up transition and shortly before the up-to-down transition. Simultaneous recordings of local field potentials and spike activities in the anterior piriform cortex (APC) and orbitofrontal cortex (OFC) during slow-wave sleep showed that APC sharp waves tended to occur during two distinct phases of OFC upstate: early phase, shortly after the down-to-up transition, and late phase, shortly before the up-to-down transition, suggesting that during slow-wave sleep, olfactory cortex and OFC areas communicate preferentially in the specific time windows. Copyright © 2017 the American Physiological Society.

  19. Temporal coordination of olfactory cortex sharp-wave activity with up- and downstates in the orbitofrontal cortex during slow-wave sleep

    PubMed Central

    Onisawa, Naomi; Mori, Kensaku

    2016-01-01

    During slow-wave sleep, interareal communications via coordinated, slow oscillatory activities occur in the large-scale networks of the mammalian neocortex. Because olfactory cortex (OC) areas, which belong to paleocortex, show characteristic sharp-wave (SPW) activity during slow-wave sleep, we examined whether OC SPWs in freely behaving rats occur in temporal coordination with up- and downstates of the orbitofrontal cortex (OFC) slow oscillation. Simultaneous recordings of local field potentials and spike activities in the OC and OFC showed that during the downstate in the OFC, the OC also exhibited downstate with greatly reduced neuronal activity and suppression of SPW generation. OC SPWs occurred during two distinct phases of the upstate of the OFC: early-phase SPWs occurred at the start of upstate shortly after the down-to-up transition in the OFC, whereas late-phase SPWs were generated at the end of upstate shortly before the up-to-down transition. Such temporal coordination between neocortical up- and downstates and olfactory system SPWs was observed between the prefrontal cortex areas (OFC and medial prefrontal cortex) and the OC areas (anterior piriform cortex and posterior piriform cortex). These results suggest that during slow-wave sleep, OC and OFC areas communicate preferentially in specific time windows shortly after the down-to-up transition and shortly before the up-to-down transition. NEW & NOTEWORTHY Simultaneous recordings of local field potentials and spike activities in the anterior piriform cortex (APC) and orbitofrontal cortex (OFC) during slow-wave sleep showed that APC sharp waves tended to occur during two distinct phases of OFC upstate: early phase, shortly after the down-to-up transition, and late phase, shortly before the up-to-down transition, suggesting that during slow-wave sleep, olfactory cortex and OFC areas communicate preferentially in the specific time windows. PMID:27733591

  20. Thalamic Spindles Promote Memory Formation during Sleep through Triple Phase-Locking of Cortical, Thalamic, and Hippocampal Rhythms.

    PubMed

    Latchoumane, Charles-Francois V; Ngo, Hong-Viet V; Born, Jan; Shin, Hee-Sup

    2017-07-19

    While the interaction of the cardinal rhythms of non-rapid-eye-movement (NREM) sleep-the thalamo-cortical spindles, hippocampal ripples, and the cortical slow oscillations-is thought to be critical for memory consolidation during sleep, the role spindles play in this interaction is elusive. Combining optogenetics with a closed-loop stimulation approach in mice, we show here that only thalamic spindles induced in-phase with cortical slow oscillation up-states, but not out-of-phase-induced spindles, improve consolidation of hippocampus-dependent memory during sleep. Whereas optogenetically stimulated spindles were as efficient as spontaneous spindles in nesting hippocampal ripples within their excitable troughs, stimulation in-phase with the slow oscillation up-state increased spindle co-occurrence and frontal spindle-ripple co-occurrence, eventually resulting in increased triple coupling of slow oscillation-spindle-ripple events. In-phase optogenetic suppression of thalamic spindles impaired hippocampus-dependent memory. Our results suggest a causal role for thalamic sleep spindles in hippocampus-dependent memory consolidation, conveyed through triple coupling of slow oscillations, spindles, and ripples. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Enhanced slow wave sleep and improved sleep maintenance after gaboxadol administration during seven nights of exposure to a traffic noise model of transient insomnia.

    PubMed

    Dijk, D-J; Stanley, N; Lundahl, J; Groeger, J A; Legters, A; Trap Huusom, A K; Deacon, S

    2012-08-01

    Slow wave sleep (SWS) has been reported to correlate with sleep maintenance, but whether pharmacological enhancement of SWS also leads to improved sleep maintenance is not known. Here we evaluate the time-course of the effects of gaboxadol, an extra-synaptic gamma-aminobutyric acid (GABA) agonist, on SWS, sleep maintenance, and other sleep measures in a traffic noise model of transient insomnia. After a placebo run-in, 101 healthy subjects (20-78 y) were randomized to gaboxadol (n = 50; 15 mg in subjects <65 y and 10 mg in subjects ≥65 y) or placebo (n = 51) for 7 nights (N1-N7). The model caused some disruption of sleep initiation and maintenance, with greatest effects on N1. Compared with placebo, gaboxadol increased SWS and slow wave activity throughout N1 to N7 (p < 0.05). Gaboxadol reduced latency to persistent sleep overall (N1-N7) by 4.5 min and on N1 by 11 min (both p < 0.05). Gaboxadol increased total sleep time (TST) overall by 16 min (p < 0.001) and on N1 by 38 min (p < 0.0001). Under gaboxadol, wakefulness after sleep onset was reduced by 11 min overall (p < 0.01) and by 29 min on N1 (p < 0.0001), and poly-somnographic awakenings were reduced on N1 (p < 0.05). Gaboxadol reduced self-reported sleep onset latency overall and on N1 (both p < 0.05) and increased self-reported TST overall (p < 0.05) and on N1 (p < 0.01). Subjective sleep quality improved overall (p < 0.01) and on N1 (p < 0.0001). Increases in SWS correlated with objective and subjective measures of sleep maintenance and subjective sleep quality under placebo and gaboxadol (p < 0.05). Gaboxadol enhanced SWS and reduced the disruptive effects of noise on sleep initiation and maintenance.

  2. Daytime Ayahuasca administration modulates REM and slow-wave sleep in healthy volunteers.

    PubMed

    Barbanoj, Manel J; Riba, Jordi; Clos, S; Giménez, S; Grasa, E; Romero, S

    2008-02-01

    Ayahuasca is a traditional South American psychoactive beverage and the central sacrament of Brazilian-based religious groups, with followers in Europe and the United States. The tea contains the psychedelic indole N,N-dimethyltryptamine (DMT) and beta-carboline alkaloids with monoamine oxidase-inhibiting properties that render DMT orally active. DMT interacts with serotonergic neurotransmission acting as a partial agonist at 5-HT(1A) and 5-HT(2A/2C) receptor sites. Given the role played by serotonin in the regulation of the sleep/wake cycle, we investigated the effects of daytime ayahuasca consumption in sleep parameters. Subjective sleep quality, polysomnography (PSG), and spectral analysis were assessed in a group of 22 healthy male volunteers after the administration of a placebo, an ayahuasca dose equivalent to 1 mg DMT kg(-1) body weight, and 20 mg d-amphetamine, a proaminergic drug, as a positive control. Results show that ayahuasca did not induce any subjectively perceived deterioration of sleep quality or PSG-measured disruptions of sleep initiation or maintenance, in contrast with d-amphetamine, which delayed sleep initiation, disrupted sleep maintenance, induced a predominance of 'light' vs 'deep' sleep and significantly impaired subjective sleep quality. PSG analysis also showed that similarly to d-amphetamine, ayahuasca inhibits rapid eye movement (REM) sleep, decreasing its duration, both in absolute values and as a percentage of total sleep time, and shows a trend increase in its onset latency. Spectral analysis showed that d-amphetamine and ayahuasca increased power in the high frequency range, mainly during stage 2. Remarkably, whereas slow-wave sleep (SWS) power in the first night cycle, an indicator of sleep pressure, was decreased by d-amphetamine, ayahuasca enhanced power in this frequency band. Results show that daytime serotonergic psychedelic drug administration leads to measurable changes in PSG and sleep power spectrum and suggest an

  3. Deep sleep after social stress: NREM sleep slow-wave activity is enhanced in both winners and losers of a conflict.

    PubMed

    Kamphuis, Jeanine; Lancel, Marike; Koolhaas, Jaap M; Meerlo, Peter

    2015-07-01

    Sleep is considered to be a recovery process of prior wakefulness. Not only duration of the waking period affects sleep architecture and sleep EEG, the quality of wakefulness is also highly important. Studies in rats have shown that social defeat stress, in which experimental animals are attacked and defeated by a dominant conspecific, is followed by an acute increase in NREM sleep EEG slow wave activity (SWA). However, it is not known whether this effect is specific for the stress of social defeat or a result of the conflict per se. In the present experiment, we examined how sleep is affected in both the winners and losers of a social conflict. Sleep-wake patterns and sleep EEG were recorded in male wild-type Groningen rats that were subjected to 1h of social conflict in the middle of the light phase. All animals were confronted with a conspecific of similar aggression level and the conflict took place in a neutral arena where both individuals had an equal chance to either win or lose the conflict. NREM sleep SWA was significantly increased after the social conflict compared to baseline values and a gentle stimulation control condition. REM sleep was significantly suppressed in the first hours after the conflict. Winners and losers did not differ significantly in NREM sleep time, NREM sleep SWA and REM sleep time immediately after the conflict. Losers tended to have slightly more NREM sleep later in the recovery period. This study shows that in rats a social conflict with an unpredictable outcome has quantitatively and qualitatively largely similar acute effects on subsequent sleep in winners and losers. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. The role of fast and slow EEG activity during sleep in males and females with Major Depressive Disorder

    PubMed Central

    Cheng, Philip; Goldschmied, Jennifer; Deldin, Patricia; Hoffmann, Robert; Armitage, Roseanne

    2015-01-01

    Sleep difficulties are highly prevalent in depression, and appears to be a contributing factor in the development and maintenance of symptoms. However, despite the generally acknowledged relationship between sleep and depression, the neurophysiological substrates underlying this relationship still remain unclear. Two main hypotheses were tested in this study. The first hypothesis states that sleep in depression is characterized by inadequate generation of restorative sleep, as indexed by reduced amounts of slow-wave activity. Conversely, the second hypothesis states that poor sleep in depression is due to intrusions of fast-frequency activity that may be reflective of a hyperaroused central nervous system. This study aimed to test both hypotheses in a large sample of individuals with clinically validated depression, as well as examine sex as a moderator. Results suggest that depression is better characterized by an overall decrease in slow-wave activity, which is related to elevated anxious and depressed mood the following morning. Results also suggest that females may be more likely to experience fast frequency activity related to depression symptom severity. PMID:26175101

  5. Dissociating the contributions of slow-wave sleep and rapid eye movement sleep to emotional item and source memory.

    PubMed

    Groch, S; Zinke, K; Wilhelm, I; Born, J

    2015-07-01

    Sleep benefits the consolidation of emotional memories, and this influence is commonly attributed to the rapid eye movement (REM) stage of sleep. However, the contributions of sleep stages to memory for an emotional episode may differ for the event per se (i.e., item memory), and the context in which it occurred (source memory). Here, we examined the effects of slow wave sleep (SWS) and REM sleep on the consolidation of emotionally negative and neutral item (picture recognition) and source memory (recall of picture-location and picture-frame color association) in humans. In Study 1, the participants (n=18) learned 48 negative and 48 neutral pictures which were presented at specific locations and preceded by colored frames that had to be associated with the picture. In a within-subject design, learning was either followed by a 3-h early-night SWS-rich or by a late-night REM sleep-rich retention interval, then retrieval was tested. Only after REM-rich sleep, and not after SWS-rich sleep, was there a significant emotional enhancement, i.e., a significantly superior retention of emotional over neutral pictures. On the other hand, after SWS-rich sleep the retention of picture-frame color associations was better than after REM-rich sleep. However, this benefit was observed only for neutral pictures; and it was completely absent for the emotional pictures. To examine whether this absent benefit reflected a suppressive effect of emotionality on associations of minor task relevance, in Study 2 we manipulated the relevance of the picture-frame color association by combining it with information about monetary reward, following otherwise comparable procedures. Here, rewarded picture-frame color associations were equally well retained over SWS-rich early sleep no matter if the frames were associated with emotional or neutral pictures. Results are consistent with the view that REM sleep favors the emotional enhancement of item memory whereas SWS appears to contribute primarily

  6. Glucose Induces Slow-Wave Sleep by Exciting the Sleep-Promoting Neurons in the Ventrolateral Preoptic Nucleus: A New Link between Sleep and Metabolism.

    PubMed

    Varin, Christophe; Rancillac, Armelle; Geoffroy, Hélène; Arthaud, Sébastien; Fort, Patrice; Gallopin, Thierry

    2015-07-08

    Sleep-active neurons located in the ventrolateral preoptic nucleus (VLPO) play a crucial role in the induction and maintenance of slow-wave sleep (SWS). However, the cellular and molecular mechanisms responsible for their activation at sleep onset remain poorly understood. Here, we test the hypothesis that a rise in extracellular glucose concentration in the VLPO can promote sleep by increasing the activity of sleep-promoting VLPO neurons. We find that infusion of a glucose concentration into the VLPO of mice promotes SWS and increases the density of c-Fos-labeled neurons selectively in the VLPO. Moreover, we show in patch-clamp recordings from brain slices that VLPO neurons exhibiting properties of sleep-promoting neurons are selectively excited by glucose within physiological range. This glucose-induced excitation implies the catabolism of glucose, leading to a closure of ATP-sensitive potassium (KATP) channels. The extracellular glucose concentration monitors the gating of KATP channels of sleep-promoting neurons, highlighting that these neurons can adapt their excitability according to the extracellular energy status. Together, these results provide evidence that glucose may participate in the mechanisms of SWS promotion and/or consolidation. Although the brain circuitry underlying vigilance states is well described, the molecular mechanisms responsible for sleep onset remain largely unknown. Combining in vitro and in vivo experiments, we demonstrate that glucose likely contributes to sleep onset facilitation by increasing the excitability of sleep-promoting neurons in the ventrolateral preoptic nucleus (VLPO). We find here that these neurons integrate energetic signals such as ambient glucose directly to regulate vigilance states accordingly. Glucose-induced excitation of sleep-promoting VLPO neurons should therefore be involved in the drowsiness that one feels after a high-sugar meal. This novel mechanism regulating the activity of VLPO neurons reinforces the

  7. The role of sleep spindles and slow-wave activity in integrating new information in semantic memory.

    PubMed

    Tamminen, Jakke; Lambon Ralph, Matthew A; Lewis, Penelope A

    2013-09-25

    Assimilating new information into existing knowledge is a fundamental part of consolidating new memories and allowing them to guide behavior optimally and is vital for conceptual knowledge (semantic memory), which is accrued over many years. Sleep is important for memory consolidation, but its impact upon assimilation of new information into existing semantic knowledge has received minimal examination. Here, we examined the integration process by training human participants on novel words with meanings that fell into densely or sparsely populated areas of semantic memory in two separate sessions. Overnight sleep was polysomnographically monitored after each training session and recall was tested immediately after training, after a night of sleep, and 1 week later. Results showed that participants learned equal numbers of both word types, thus equating amount and difficulty of learning across the conditions. Measures of word recognition speed showed a disadvantage for novel words in dense semantic neighborhoods, presumably due to interference from many semantically related concepts, suggesting that the novel words had been successfully integrated into semantic memory. Most critically, semantic neighborhood density influenced sleep architecture, with participants exhibiting more sleep spindles and slow-wave activity after learning the sparse compared with the dense neighborhood words. These findings provide the first evidence that spindles and slow-wave activity mediate integration of new information into existing semantic networks.

  8. Optimizing detection and analysis of slow waves in sleep EEG.

    PubMed

    Mensen, Armand; Riedner, Brady; Tononi, Giulio

    2016-12-01

    Analysis of individual slow waves in EEG recording during sleep provides both greater sensitivity and specificity compared to spectral power measures. However, parameters for detection and analysis have not been widely explored and validated. We present a new, open-source, Matlab based, toolbox for the automatic detection and analysis of slow waves; with adjustable parameter settings, as well as manual correction and exploration of the results using a multi-faceted visualization tool. We explore a large search space of parameter settings for slow wave detection and measure their effects on a selection of outcome parameters. Every choice of parameter setting had some effect on at least one outcome parameter. In general, the largest effect sizes were found when choosing the EEG reference, type of canonical waveform, and amplitude thresholding. Previously published methods accurately detect large, global waves but are conservative and miss the detection of smaller amplitude, local slow waves. The toolbox has additional benefits in terms of speed, user-interface, and visualization options to compare and contrast slow waves. The exploration of parameter settings in the toolbox highlights the importance of careful selection of detection METHODS: The sensitivity and specificity of the automated detection can be improved by manually adding or deleting entire waves and or specific channels using the toolbox visualization functions. The toolbox standardizes the detection procedure, sets the stage for reliable results and comparisons and is easy to use without previous programming experience. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Spontaneous Swallowing during All-Night Sleep in Patients with Parkinson Disease in Comparison with Healthy Control Subjects

    PubMed Central

    Uludag, Irem Fatma; Tiftikcioglu, Bedile Irem; Ertekin, Cumhur

    2016-01-01

    Study Objectives: Spontaneous saliva swallows (SS) appear especially during sleep. The rate of SS was rarely investigated in all-night sleep in patients with Parkinson disease (PD). Dysphagia is a frequent symptom in PD, but the rate of SS was never studied with an all-night sleep electroencephalogram (EEG). Methods: A total of 21 patients with PD and 18 age-matched healthy controls were included in the study. Frequencies of SS and coughing were studied in all-night sleep recordings of patients with PD and controls. During all-night sleep, video-EEG 12-channel recording was used including the electromyography (EMG) of the swallowing muscles, nasal airflow, and recording of vertical laryngeal movement using a pair of EEG electrodes over the thyroid cartilage. Results: The total number of SS was increased while the mean duration of sleep was decreased in PD when compared to controls. Sialorrhea and clinical dysphagia, assessed by proper questionnaires, had no effect in any patient group. The new finding was the so-called salvo type of consecutive SS in one set of swallowing. The amount of coughing was significantly increased just after the salvo SS. Conclusions: In PD, the rate of SS was not sufficient to demonstrate the swallowing disorder, such as oropharyngeal dysphagia, but the salvo type of SS was quite frequent. This is a novel finding and may contribute to the understanding of swallowing problems in patients with dysphagic or nondysphagic PD. Citation: Uludag IF, Tiftikcioglu BI, Ertekin C. Spontaneous swallowing during all-night sleep in patients with Parkinson disease in comparison with healthy control subjects. SLEEP 2016;39(4):847–854. PMID:26943467

  10. A review of short naps and sleep inertia: do naps of 30 min or less really avoid sleep inertia and slow-wave sleep?

    PubMed

    Hilditch, Cassie J; Dorrian, Jillian; Banks, Siobhan

    2017-04-01

    Napping is a widely used countermeasure to sleepiness and impaired performance caused by sleep loss and circadian pressure. Sleep inertia, the period of grogginess and impaired performance experienced after waking, is a potential side effect of napping. Many industry publications recommend naps of 30 min or less to avoid this side effect. However, the evidence to support this advice is yet to be thoroughly reviewed. Electronic databases were searched, and defined criteria were applied to select articles for review. The review covers literature on naps of 30 min or less regarding (a) sleep inertia, (b) slow-wave sleep (SWS) and (c) the relationship between sleep inertia and SWS. The review found that although the literature on short afternoon naps is relatively comprehensive, there are very few studies on naps of 30 min or less at night. Studies have mixed results regarding the onset of SWS and the duration and severity of sleep inertia following short naps, making guidelines regarding their use unclear. The varying results are likely due to differing sleep/wake profiles before the nap of interest and the time of the day at waking. The review highlights the need to have more detailed guidelines about the implementation of short naps according to the time of the day and prior sleep/wake history. Without this context, such a recommendation is potentially misleading. Further research is required to better understand the interactions between these factors, especially at night, and to provide more specific recommendations. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. No effect of odor-induced memory reactivation during REM sleep on declarative memory stability

    PubMed Central

    Cordi, Maren J.; Diekelmann, Susanne; Born, Jan; Rasch, Björn

    2014-01-01

    Memory reactivations in hippocampal brain areas are critically involved in memory consolidation processes during sleep. In particular, specific firing patterns of hippocampal place cells observed during learning are replayed during subsequent sleep and rest in rodents. In humans, experimentally inducing hippocampal memory reactivations during slow-wave sleep (but not during wakefulness) benefits consolidation and immediately stabilizes declarative memories against future interference. Importantly, spontaneous hippocampal replay activity can also be observed during rapid eye movement (REM) sleep and some authors have suggested that replay during REM sleep is related to processes of memory consolidation. However, the functional role of reactivations during REM sleep for memory stability is still unclear. Here, we reactivated memories during REM sleep and examined its consequences for the stability of declarative memories. After 3 h of early, slow-wave sleep (SWS) rich sleep, 16 healthy young adults learned a 2-D object location task in the presence of a contextual odor. During subsequent REM sleep, participants were either re-exposed to the odor or to an odorless vehicle, in a counterbalanced within subject design. Reactivation was followed by an interference learning task to probe memory stability after awakening. We show that odor-induced memory reactivation during REM sleep does not stabilize memories against future interference. We propose that the beneficial effect of reactivation during sleep on memory stability might be critically linked to processes characterizing SWS including, e.g., slow oscillatory activity, sleep spindles, or low cholinergic tone, which are required for a successful redistribution of memories from medial temporal lobe regions to neocortical long-term stores. PMID:25225474

  12. Induction of slow oscillations by rhythmic acoustic stimulation.

    PubMed

    Ngo, Hong-Viet V; Claussen, Jens C; Born, Jan; Mölle, Matthias

    2013-02-01

    Slow oscillations are electrical potential oscillations with a spectral peak frequency of ∼0.8 Hz, and hallmark the electroencephalogram during slow-wave sleep. Recent studies have indicated a causal contribution of slow oscillations to the consolidation of memories during slow-wave sleep, raising the question to what extent such oscillations can be induced by external stimulation. Here, we examined whether slow oscillations can be effectively induced by rhythmic acoustic stimulation. Human subjects were examined in three conditions: (i) with tones presented at a rate of 0.8 Hz ('0.8-Hz stimulation'); (ii) with tones presented at a random sequence ('random stimulation'); and (iii) with no tones presented in a control condition ('sham'). Stimulation started during wakefulness before sleep and continued for the first ∼90 min of sleep. Compared with the other two conditions, 0.8-Hz stimulation significantly delayed sleep onset. However, once sleep was established, 0.8-Hz stimulation significantly increased and entrained endogenous slow oscillation activity. Sleep after the 90-min period of stimulation did not differ between the conditions. Our data show that rhythmic acoustic stimulation can be used to effectively enhance slow oscillation activity. However, the effect depends on the brain state, requiring the presence of stable non-rapid eye movement sleep. © 2012 European Sleep Research Society.

  13. Brain extracellular glucose assessed by voltammetry throughout the rat sleep-wake cycle.

    PubMed

    Netchiporouk, L; Shram, N; Salvert, D; Cespuglio, R

    2001-04-01

    In the present study, cortical extracellular levels of glucose were monitored for the first time throughout the sleep-wake states of the freely moving rat. For this purpose, polygraphic recordings (electroencephalogram of the fronto-occipital cortices and electromyogram of the neck muscles) were achieved in combination with differential normal pulse voltammetry (DNPV) using a specific glucose sensor. Data obtained reveal that the basal extracellular glucose concentration in the conscious rat is 0.59 +/- 0.3 m M while under chloral hydrate anaesthesia (0.4 g/kg, i.p.) it increases up to 180% of its basal concentration. Regarding the sleep-wake cycle, the existence of spontaneous significant variations in the mean glucose level during slow-wave sleep (SWS = +13%) and paradoxical sleep (PS = -11%) compared with the waking state (100%) is also reported. It is to be noticed that during long periods of active waking, glucose level tends towards a decrease that becomes significant after 15 min (active waking = -32%). On the contrary, during long episodes of slow-wave sleep, it tends towards an increase which becomes significant after 12 min (SWS = +28%). It is suggested that voltammetric techniques using enzymatic biosensors are useful tools allowing direct glucose measurements in the freely moving animal. On the whole, paradoxical sleep is pointed out as a state highly dependent on the availability of energy and slow-wave sleep as a period of energy saving.

  14. Both neurons and astrocytes exhibited tetrodotoxin-resistant metabotropic glutamate receptor-dependent spontaneous slow Ca2+ oscillations in striatum.

    PubMed

    Tamura, Atsushi; Yamada, Naohiro; Yaguchi, Yuichi; Machida, Yoshio; Mori, Issei; Osanai, Makoto

    2014-01-01

    The striatum plays an important role in linking cortical activity to basal ganglia outputs. Group I metabotropic glutamate receptors (mGluRs) are densely expressed in the medium spiny projection neurons and may be a therapeutic target for Parkinson's disease. The group I mGluRs are known to modulate the intracellular Ca(2+) signaling. To characterize Ca(2+) signaling in striatal cells, spontaneous cytoplasmic Ca(2+) transients were examined in acute slice preparations from transgenic mice expressing green fluorescent protein (GFP) in the astrocytes. In both the GFP-negative cells (putative-neurons) and astrocytes of the striatum, spontaneous slow and long-lasting intracellular Ca(2+) transients (referred to as slow Ca(2+) oscillations), which lasted up to approximately 200 s, were found. Neither the inhibition of action potentials nor ionotropic glutamate receptors blocked the slow Ca(2+) oscillation. Depletion of the intracellular Ca(2+) store and the blockade of inositol 1,4,5-trisphosphate receptors greatly reduced the transient rate of the slow Ca(2+) oscillation, and the application of an antagonist against mGluR5 also blocked the slow Ca(2+) oscillation in both putative-neurons and astrocytes. Thus, the mGluR5-inositol 1,4,5-trisphosphate signal cascade is the primary contributor to the slow Ca(2+) oscillation in both putative-neurons and astrocytes. The slow Ca(2+) oscillation features multicellular synchrony, and both putative-neurons and astrocytes participate in the synchronous activity. Therefore, the mGluR5-dependent slow Ca(2+) oscillation may involve in the neuron-glia interaction in the striatum.

  15. Effect of Slow Wave Sleep Disruption on Metabolic Parameters in Adolescents

    PubMed Central

    Shaw, Natalie D.; McHill, Andrew W.; Schiavon, Michele; Kangarloo, Tairmae; Mankowski, Piotr W.; Cobelli, Claudio; Klerman, Elizabeth B.; Hall, Janet E.

    2016-01-01

    Study Objectives: Cross-sectional studies report a correlation between slow wave sleep (SWS) duration and insulin sensitivity (SI) in children and adults. Suppression of SWS causes insulin resistance in adults but effects in children are unknown. This study was designed to determine the effect of SWS fragmentation on SI in children. Methods: Fourteen pubertal children (11.3–14.1 y, body mass index 29th to 97th percentile) were randomized to sleep studies and mixed meal (MM) tolerance tests with and without SWS disruption. Beta-cell responsiveness (Φ) and SI were determined using oral minimal modeling. Results: During the disruption night, auditory stimuli (68.1 ± 10.7/night; mean ± standard error) decreased SWS by 40.0 ± 8.0%. SWS fragmentation did not affect fasting glucose (non-disrupted 76.9 ± 2.3 versus disrupted 80.6 ± 2.1 mg/dL), insulin (9.2 ± 1.6 versus 10.4 ± 2.0 μIU/mL), or C-peptide (1.9 ± 0.2 versus 1.9 ± 0.1 ng/mL) levels and did not impair SI (12.9 ± 2.3 versus 10.1 ± 1.6 10−4 dL/kg/min per μIU/mL) or Φ (73.4 ± 7.8 versus 74.4 ± 8.4 10−9 min−1) to a MM challenge. Only the subjects in the most insulin-sensitive tertile demonstrated a consistent decrease in SI after SWS disruption. Conclusion: Pubertal children across a range of body mass indices may be resistant to the adverse metabolic effects of acute SWS disruption. Only those subjects with high SI (i.e., having the greatest “metabolic reserve”) demonstrated a consistent decrease in SI. These results suggest that adolescents may have a unique ability to adapt to metabolic stressors, such as acute SWS disruption, to maintain euglycemia. Additional studies are necessary to confirm that this resiliency is maintained in settings of chronic SWS disruption. Citation: Shaw ND, McHill AW, Schiavon M, Kangarloo T, Mankowski PW, Cobelli C, Klerman EB, Hall JE. Effect of slow wave sleep disruption on metabolic parameters in adolescents. SLEEP 2016;39(8):1591–1599. PMID:27166229

  16. Influence of general anaesthesia on slow waves of intracranial pressure.

    PubMed

    Lalou, Despina A; Czosnyka, Marek; Donnelly, Joseph; Lavinio, Andrea; Pickard, John D; Garnett, Matthew; Czosnyka, Zofia

    2016-07-01

    Slow vasogenic intracranial pressure (ICP) waves are spontaneous ICP oscillations with a low frequency bandwidth of 0.3-4 cycles/min (B-waves). B-waves reflect dynamic oscillations in cerebral blood volume associated with autoregulatory cerebral vasodilation and vasoconstriction. This study quantifies the effects of general anaesthesia (GA) on the magnitude of B-waves compared to natural sleep and conscious state. The magnitude of B-waves was assessed in 4 groups of 30 patients each with clinical indications for ICP monitoring. Normal pressure hydrocephalus patients undergoing Cerebrospinal Fluid (CSF) infusion studies in the conscious state (GROUP A) and under GA (GROUP B), and hydrocephalus patients undergoing overnight ICP monitoring during physiological sleep (GROUP C) were compared to deeply sedated traumatic brain injury (TBI) patients with well-controlled ICP during the first night of Intensive Care Unit (ICU) stay (GROUP D). A total of 120 patients were included. During CSF infusion studies, the magnitude of slow waves was higher in conscious patients ( 0.23+/-0.10 mm Hg) when compared to anaesthetised patients ( 0.15+/-0.10 mm Hg; p = 0.011). Overnight magnitude of slow waves was higher in patients during natural sleep (GROUP C: 0.20+/-0.13 mm Hg) when compared to TBI patients under deep sedation (GROUP D: 0.11+/- 0.09 mm Hg; p = 0.002). GA and deep sedation are associated with a reduced magnitude of B-waves. ICP monitoring carried out under GA is affected by iatrogenic suppression of slow vasogenic waves of ICP. Accounting for the effects of anaesthesia on vasogenic waves may prevent the misidentification of potential shunt-responders as non-responders.

  17. Age affects sleep microstructure more than sleep macrostructure.

    PubMed

    Schwarz, Johanna F A; Åkerstedt, Torbjörn; Lindberg, Eva; Gruber, Georg; Fischer, Håkan; Theorell-Haglöw, Jenny

    2017-06-01

    It is well known that the quantity and quality of physiological sleep changes across age. However, so far the effect of age on sleep microstructure has been mostly addressed in small samples. The current study examines the effect of age on several measures of sleep macro- and microstructure in 211 women (22-71 years old) of the 'Sleep and Health in Women' study for whom ambulatory polysomnography was registered. Older age was associated with significantly lower fast spindle (effect size f 2  = 0.32) and K-complex density (f 2  = 0.19) during N2 sleep, as well as slow-wave activity (log) in N3 sleep (f 2  = 0.21). Moreover, total sleep time (f 2  = 0.10), N3 sleep (min) (f 2  = 0.10), rapid eye movement sleep (min) (f 2  = 0.11) and sigma (log) (f 2  = 0.05) and slow-wave activity (log) during non-rapid eye movement sleep (f 2  = 0.09) were reduced, and N1 sleep (f 2  = 0.03) was increased in older age. No significant effects of age were observed on slow spindle density, rapid eye movement density and beta power (log) during non-rapid eye movement sleep. In conclusion, effect sizes indicate that traditional sleep stage scoring may underestimate age-related changes in sleep. © 2017 European Sleep Research Society.

  18. Characterization of Topographically Specific Sleep Spindles in Mice

    PubMed Central

    Kim, Dongwook; Hwang, Eunjin; Lee, Mina; Sung, Hokun; Choi, Jee Hyun

    2015-01-01

    Study Objective: Sleep spindles in humans have been classified as slow anterior and fast posterior spindles; recent findings indicate that their profiles differ according to pharmacology, pathology, and function. However, little is known about the generation mechanisms within the thalamocortical system for different types of spindles. In this study, we aim to investigate the electrophysiological behaviors of the topographically distinctive spindles within the thalamocortical system by applying high-density EEG and simultaneous thalamic LFP recordings in mice. Design: 32-channel extracranial EEG and 2-channel thalamic LFP were recorded simultaneously in freely behaving mice to acquire spindles during spontaneous sleep. Subjects: Hybrid F1 male mice of C57BL/6J and 129S4/svJae. Measurements and Results: Spindle events in each channel were detected by spindle detection algorithm, and then a cluster analysis was applied to classify the topographically distinctive spindles. All sleep spindles were successfully classified into 3 groups: anterior, posterior, and global spindles. Each spindle type showed distinct thalamocortical activity patterns regarding the extent of similarity, phase synchrony, and time lags between cortical and thalamic areas during spindle oscillation. We also found that sleep slow waves were likely to associate with all types of sleep spindles, but also that the ongoing cortical decruitment/recruitment dynamics before the onset of spindles and their relationship with spindle generation were also variable, depending on the spindle types. Conclusion: Topographically specific sleep spindles show distinctive thalamocortical network behaviors. Citation: Kim D, Hwang E, Lee M, Sung H, Choi JH. Characterization of topographically specific sleep spindles in mice. SLEEP 2015;38(1):85–96. PMID:25325451

  19. Brain and muscle oxygenation monitoring using near-infrared spectroscopy (NIRS) during all-night sleep

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongxing; Khatami, Ramin

    2013-03-01

    The hemodynamic changes during natural human sleep are still not well understood. NIRS is ideally suited for monitoring the hemodynamic changes during sleep due to the properties of local measurement, totally safe application and good tolerance to motion. Several studies have been conducted using NIRS in both normal subjects and patients with various sleep disorders during sleep to characterize the hemodynamic changing patterns during different sleep stages and during different symptoms such as obstructive apneas. Here we assessed brain and muscle oxygenation changes in 7 healthy adults during all-night sleep with combined polysomnography measurement to test the notion if hemodynamic changes in sleep are indeed brain specific. We found that muscle and brain showed similar hemodynamic changes during sleep initiation. A decrease in HbO2 and tissue oxygenation index (TOI) while an increase in HHb was observed immediately after sleep onset, and an opposite trend was found after transition with progression to deeper slow-wave sleep (SWS) stage. Spontaneous low frequency oscillations (LFO) and very low frequency oscillations (VLFO) were smaller (Levene's test, p<0.05) during SWS compared to light sleep (LS) and rapid-eye-movement (REM) sleep in both brain and muscle. Spectral analysis of the NIRS signals measured from brain and muscle also showed reductions in VLFO and LFO powers during SWS with respect to LS and REM sleep. These results indicate a systemic attenuation rather than local cerebral reduction of spontaneous hemodynamic activity in SWS. A systemic physiological mechanism may exist to regulate the hemodynamic changes in brain and muscle during sleep.

  20. Scale-Free Fluctuations in Behavioral Performance: Delineating Changes in Spontaneous Behavior of Humans with Induced Sleep Deficiency

    PubMed Central

    Beldzik, Ewa; Chialvo, Dante R.; Domagalik, Aleksandra; Fafrowicz, Magdalena; Gudowska-Nowak, Ewa; Marek, Tadeusz; Nowak, Maciej A.; Oginska, Halszka; Szwed, Jerzy

    2014-01-01

    The timing and dynamics of many diverse behaviors of mammals, e.g., patterns of animal foraging or human communication in social networks exhibit complex self-similar properties reproducible over multiple time scales. In this paper, we analyze spontaneous locomotor activity of healthy individuals recorded in two different conditions: during a week of regular sleep and a week of chronic partial sleep deprivation. After separating activity from rest with a pre-defined activity threshold, we have detected distinct statistical features of duration times of these two states. The cumulative distributions of activity periods follow a stretched exponential shape, and remain similar for both control and sleep deprived individuals. In contrast, rest periods, which follow power-law statistics over two orders of magnitude, have significantly distinct distributions for these two groups and the difference emerges already after the first night of shortened sleep. We have found steeper distributions for sleep deprived individuals, which indicates fewer long rest periods and more turbulent behavior. This separation of power-law exponents is the main result of our investigations, and might constitute an objective measure demonstrating the severity of sleep deprivation and the effects of sleep disorders. PMID:25222128

  1. β oscillation during slow wave sleep and rapid eye movement sleep in the electroencephalogram of a transgenic mouse model of Huntington's disease.

    PubMed

    Jeantet, Yannick; Cayzac, Sebastien; Cho, Yoon H

    2013-01-01

    To search for early abnormalities in electroencephalogram (EEG) during sleep which may precede motor symptoms in a transgenic mouse model of hereditary neurodegenerative Huntington's disease (HD). In the R6/1 transgenic mouse model of HD, rhythmic brain activity in EEG recordings was monitored longitudinally and across vigilance states through the onset and progression of disease. Mice with chronic electrode implants were recorded monthly over wake-sleep cycles (4 hours), beginning at 9-11 weeks (presymptomatic period) through 6-7 months (symptomatic period). Recording data revealed a unique β rhythm (20-35 Hz), present only in R6/1 transgenic mice, which evolves in close parallel with the disease. In addition, there was an unusual relationship between this β oscillation and vigilance states: while nearly absent during the active waking state, the β oscillation appeared with drowsiness and during slow wave sleep (SWS) and, interestingly, strengthened rather than dissipating when the brain returned to an activated state during rapid eye movement (REM) sleep. In addition to providing a new in vivo biomarker and insight into Huntington's disease pathophysiology, this serendipitous observation opens a window onto the rarely explored neurophysiology of the cortico-basal ganglia circuit during SWS and REM sleep.

  2. Pediatric sleep apnea

    MedlinePlus

    Sleep apnea - pediatric; Apnea - pediatric sleep apnea syndrome; Sleep-disordered breathing - pediatric ... Untreated pediatric sleep apnea may lead to: High blood pressure Heart or lung problems Slow growth and development

  3. β Oscillation during Slow Wave Sleep and Rapid Eye Movement Sleep in the Electroencephalogram of a Transgenic Mouse Model of Huntington’s Disease

    PubMed Central

    Jeantet, Yannick; Cayzac, Sebastien; Cho, Yoon H.

    2013-01-01

    Study objectives To search for early abnormalities in electroencephalogram (EEG) during sleep which may precede motor symptoms in a transgenic mouse model of hereditary neurodegenerative Huntington’s disease (HD). Design In the R6/1 transgenic mouse model of HD, rhythmic brain activity in EEG recordings was monitored longitudinally and across vigilance states through the onset and progression of disease. Measurements and results Mice with chronic electrode implants were recorded monthly over wake-sleep cycles (4 hours), beginning at 9–11 weeks (presymptomatic period) through 6–7 months (symptomatic period). Recording data revealed a unique β rhythm (20–35 Hz), present only in R6/1 transgenic mice, which evolves in close parallel with the disease. In addition, there was an unusual relationship between this β oscillation and vigilance states: while nearly absent during the active waking state, the β oscillation appeared with drowsiness and during slow wave sleep (SWS) and, interestingly, strengthened rather than dissipating when the brain returned to an activated state during rapid eye movement (REM) sleep. Conclusions In addition to providing a new in vivo biomarker and insight into Huntington's disease pathophysiology, this serendipitous observation opens a window onto the rarely explored neurophysiology of the cortico-basal ganglia circuit during SWS and REM sleep. PMID:24244517

  4. Time-frequency dynamics during sleep spindles on the EEG in rodents with a genetic predisposition to absence epilepsy (WAG/Rij rats)

    NASA Astrophysics Data System (ADS)

    Hramov, Alexander E.; Sitnikova, Evgenija Y.; Pavlov, Alexey N.; Grubov, Vadim V.; Koronovskii, Alexey A.; Khramova, Marina V.

    2015-03-01

    Sleep spindles are known to appear spontaneously in the thalamocortical neuronal network of the brain during slow-wave sleep; pathological processes in the thalamocortical network may be the reason of the absence epilepsy. The aim of the present work is to study developed changes in the time-frequency structure of sleep spindles during the progressive development of the absence epilepsy in WAG/Rij rats. EEG recordings were made at age 7 and 9 months. Automatic recognition and subsequent analysis of sleep spindles on the EEG were performed using the continuous wavelet transform. The duration of epileptic discharges and the total duration of epileptic activity were found to increase with age, while the duration of sleep spindles, conversely, decreased. In terms of the mean frequency, sleep spindles could be divided into three classes: `slow' (mean frequency 9.3Hz), `medium' (11.4Hz), and `fast' (13.5Hz). Slow and medium (transitional) spindles in five-month-old animals showed increased frequency from the beginning to the end of the spindle. The more intense the epilepsy is, the shorter are the durations of spindles of all types. The mean frequencies of `medium' and `fast' spindles were higher in rats with more intense signs of epilepsy. Overall, high epileptic activity in WAG/Rij rats was linked with significant changes in spindles of the transitional type, with less marked changes in the two traditionally identified types of spindle, slow and fast.

  5. Reactivation of emergent task-related ensembles during slow-wave sleep after neuroprosthetic learning

    PubMed Central

    Gulati, Tanuj; Ramanathan, Dhakshin; Wong, Chelsea; Ganguly, Karunesh

    2017-01-01

    Brain-Machine Interfaces can allow neural control over assistive devices. They also provide an important platform to study neural plasticity. Recent studies indicate that optimal engagement of learning is essential for robust neuroprosthetic control. However, little is known about the neural processes that may consolidate a neuroprosthetic skill. Based on the growing body of evidence linking slow-wave activity (SWA) during sleep to consolidation, we examined if there is ‘offline’ processing after neuroprosthetic learning. Using a rodent model, here we show that after successful learning, task-related units specifically experienced increased locking and coherency to SWA during sleep. Moreover, spike-spike coherence among these units was significantly enhanced. These changes were not present with poor skill acquisition or after control awake periods, demonstrating specificity of our observations to learning. Interestingly, time spent in SWA predicted performance gains. Thus, SWA appears to play a role in offline processing after neuroprosthetic learning. PMID:24997761

  6. Delayed Sleep Phase Disorder In Temporal Isolation

    PubMed Central

    Campbell, Scott S.; Murphy, Patricia J.

    2007-01-01

    Study Objectives: This study sought to characterize sleep and the circadian rhythm of body core temperature of an individual with delayed sleep phase disorder (DSPD) in the absence of temporal cues and social entrainment and to compare those measures to age-matched normal control subjects studied under identical conditions. Design: Polysomnography and body temperature were recorded continuously for 4 days in entrained conditions, followed immediately by 17 days in a “free-running” environment. Setting: Temporal isolation facility in the Laboratory of Human Chronobiology, Weill Cornell Medical College. Participants: One individual who met criteria for delayed sleep phase disorder according to the International Classification of Sleep Disorders Diagnostic and Coding Manual (ICSD-2) and 3 age-matched control subjects. Interventions: None. Measurements and Results: The DSPD subject had a spontaneous period length (tau) of 25.38 hours compared to an average tau of 24.44 hours for the healthy controls. The DSPD subject also showed an altered phase relationship between sleep/wake and body temperature rhythms, as well as longer sleep latency, poorer sleep efficiency, and altered distribution of slow wave sleep (SWS) within sleep episodes, compared to control subjects. Conclusions: Delayed sleep phase disorder may be the reflection of an abnormal circadian timing system characterized not only by a long tau, but also by an altered internal phase relationship between the sleep/wake system and the circadian rhythm of body temperature. The latter results in significantly disturbed sleep, even when DSPD patients are permitted to sleep and wake at their preferred times. Citation: Campbell SS; Murphy PJ. Delayed sleep phase disorder in temporal isolation. SLEEP 2007;30(9):1225-1228. PMID:17910395

  7. Nonlinear dynamical systems effects of homeopathic remedies on multiscale entropy and correlation dimension of slow wave sleep EEG in young adults with histories of coffee-induced insomnia.

    PubMed

    Bell, Iris R; Howerter, Amy; Jackson, Nicholas; Aickin, Mikel; Bootzin, Richard R; Brooks, Audrey J

    2012-07-01

    Investigators of homeopathy have proposed that nonlinear dynamical systems (NDS) and complex systems science offer conceptual and analytic tools for evaluating homeopathic remedy effects. Previous animal studies demonstrate that homeopathic medicines alter delta electroencephalographic (EEG) slow wave sleep. The present study extended findings of remedy-related sleep stage alterations in human subjects by testing the feasibility of using two different NDS analytic approaches to assess remedy effects on human slow wave sleep EEG. Subjects (N=54) were young adult male and female college students with a history of coffee-related insomnia who participated in a larger 4-week study of the polysomnographic effects of homeopathic medicines on home-based all-night sleep recordings. Subjects took one bedtime dose of a homeopathic remedy (Coffea cruda or Nux vomica 30c). We computed multiscale entropy (MSE) and the correlation dimension (Mekler-D2) for stages 3 and 4 slow wave sleep EEG sampled in artifact-free 2-min segments during the first two rapid-eye-movement (REM) cycles for remedy and post-remedy nights, controlling for placebo and post-placebo night effects. MSE results indicate significant, remedy-specific directional effects, especially later in the night (REM cycle 2) (CC: remedy night increases and post-remedy night decreases in MSE at multiple sites for both stages 3 and 4 in both REM cycles; NV: remedy night decreases and post-remedy night increases, mainly in stage 3 REM cycle 2 MSE). D2 analyses yielded more sporadic and inconsistent findings. Homeopathic medicines Coffea cruda and Nux vomica in 30c potencies alter short-term nonlinear dynamic parameters of slow wave sleep EEG in healthy young adults. MSE may provide a more sensitive NDS analytic method than D2 for evaluating homeopathic remedy effects on human sleep EEG patterns. Copyright © 2012 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  8. Nonlinear Dynamical Systems Effects of Homeopathic Remedies on Multiscale Entropy and Correlation Dimension of Slow Wave Sleep EEG in Young Adults with Histories of Coffee-Induced Insomnia

    PubMed Central

    Bell, Iris R.; Howerter, Amy; Jackson, Nicholas; Aickin, Mikel; Bootzin, Richard R.; Brooks, Audrey J.

    2012-01-01

    Background Investigators of homeopathy have proposed that nonlinear dynamical systems (NDS) and complex systems science offer conceptual and analytic tools for evaluating homeopathic remedy effects. Previous animal studies demonstrate that homeopathic medicines alter delta electroencephalographic (EEG) slow wave sleep. The present study extended findings of remedy-related sleep stage alterations in human subjects by testing the feasibility of using two different NDS analytic approaches to assess remedy effects on human slow wave sleep EEG. Methods Subjects (N=54) were young adult male and female college students with a history of coffee-related insomnia who participated in a larger 4-week study of the polysomnographic effects of homeopathic medicines on home-based all-night sleep recordings. Subjects took one bedtime dose of a homeopathic remedy (Coffea cruda or Nux vomica 30c). We computed multiscale entropy (MSE) and the correlation dimension (Mekler-D2) for stage 3 and 4 slow wave sleep EEG sampled in artifact-free 2-minute segments during the first two rapid-eye-movement (REM) cycles for remedy and post-remedy nights, controlling for placebo and post-placebo night effects. Results MSE results indicate significant, remedy-specific directional effects, especially later in the night (REM cycle 2) (CC: remedy night increases and post-remedy night decreases in MSE at multiple sites for both stages 3 and 4 in both REM cycles; NV: remedy night decreases and post-remedy night increases, mainly in stage 3 REM cycle 2 MSE). D2 analyses yielded more sporadic and inconsistent findings. Conclusions Homeopathic medicines Coffea cruda and Nux vomica in 30c potencies alter short-term nonlinear dynamic parameters of slow wave sleep EEG in healthy young adults. MSE may provide a more sensitive NDS analytic method than D2 for evaluating homeopathic remedy effects on human sleep EEG patterns. PMID:22818237

  9. Effect of conditioned stimulus exposure during slow wave sleep on fear memory extinction in humans.

    PubMed

    He, Jia; Sun, Hong-Qiang; Li, Su-Xia; Zhang, Wei-Hua; Shi, Jie; Ai, Si-Zhi; Li, Yun; Li, Xiao-Jun; Tang, Xiang-Dong; Lu, Lin

    2015-03-01

    Repeated exposure to a neutral conditioned stimulus (CS) in the absence of a noxious unconditioned stimulus (US) elicits fear memory extinction. The aim of the current study was to investigate the effects of mild tone exposure (CS) during slow wave sleep (SWS) on fear memory extinction in humans. The healthy volunteers underwent an auditory fear conditioning paradigm on the experimental night, during which tones served as the CS, and a mild shock served as the US. They were then randomly assigned to four groups. Three groups were exposed to the CS for 3 or 10 min or an irrelevant tone (control stimulus, CtrS) for 10 min during SWS. The fourth group served as controls and was not subjected to any interventions. All of the subjects completed a memory test 4 h after SWS-rich stage to evaluate the effect on fear extinction. Moreover, we conducted similar experiments using an independent group of subjects during the daytime to test whether the memory extinction effect was specific to the sleep condition. Ninety-six healthy volunteers (44 males) aged 18-28 y. Participants exhibited undisturbed sleep during 2 consecutive nights, as assessed by sleep variables (all P > 0.05) from polysomnographic recordings and power spectral analysis. Participants who were re-exposed to the 10 min CS either during SWS and wakefulness exhibited attenuated fear responses (wake-10 min CS, P < 0.05; SWS-10 min CS, P < 0.01). Conditioned stimulus re-exposure during SWS promoted fear memory extinction without altering sleep profiles. © 2015 Associated Professional Sleep Societies, LLC.

  10. Electroencephalographic slow waves prior to sleepwalking episodes.

    PubMed

    Perrault, Rosemarie; Carrier, Julie; Desautels, Alex; Montplaisir, Jacques; Zadra, Antonio

    2014-12-01

    Recent studies have suggested that the onset of sleepwalking episodes may be preceded by fluctuations in slow-wave sleep electroencephalographic characteristics. However, whether or not such fluctuations are specific to sleepwalking episodes or generalized to all sleep-wake transitions in sleepwalkers remains unknown. The goal of this study was to compare spectral power for delta (1-4 Hz) and slow delta (0.5-1 Hz) as well as slow oscillation density before the onset of somnambulistic episodes versus non-behavioral awakenings recorded from the same group of sleepwalkers. A secondary aim was to describe the time course of observed changes in slow-wave activity and slow oscillations during the 3 min immediately preceding the occurrence of somnambulistic episodes. Twelve adult sleepwalkers were investigated polysomnographically during the course of one night. Slow-wave activity and slow oscillation density were significantly greater prior to patients' somnambulistic episodes as compared with non-behavioral awakenings. However, there was no evidence for a gradual increase over the 3 min preceding the episodes. Increased slow-wave activity and slow oscillation density appear to be specific to sleepwalking episodes rather than generalized to all sleep-wake transitions in sleepwalkers. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Sleep for cognitive enhancement.

    PubMed

    Diekelmann, Susanne

    2014-01-01

    Sleep is essential for effective cognitive functioning. Loosing even a few hours of sleep can have detrimental effects on a wide variety of cognitive processes such as attention, language, reasoning, decision making, learning and memory. While sleep is necessary to ensure normal healthy cognitive functioning, it can also enhance performance beyond the boundaries of the normal condition. This article discusses the enhancing potential of sleep, mainly focusing on the domain of learning and memory. Sleep is known to facilitate the consolidation of memories learned before sleep as well as the acquisition of new memories to be learned after sleep. According to a widely held model this beneficial effect of sleep relies on the neuronal reactivation of memories during sleep that is associated with sleep-specific brain oscillations (slow oscillations, spindles, ripples) as well as a characteristic neurotransmitter milieu. Recent research indicates that memory processing during sleep can be boosted by (i) cueing memory reactivation during sleep; (ii) stimulating sleep-specific brain oscillations; and (iii) targeting specific neurotransmitter systems pharmacologically. Olfactory and auditory cues can be used, for example, to increase reactivation of associated memories during post-learning sleep. Intensifying neocortical slow oscillations (the hallmark of slow wave sleep (SWS)) by electrical or auditory stimulation and modulating specific neurotransmitters such as noradrenaline and glutamate likewise facilitates memory processing during sleep. With this evidence in mind, this article concludes by discussing different methodological caveats and ethical issues that should be considered when thinking about using sleep for cognitive enhancement in everyday applications.

  12. Sleep for cognitive enhancement

    PubMed Central

    Diekelmann, Susanne

    2014-01-01

    Sleep is essential for effective cognitive functioning. Loosing even a few hours of sleep can have detrimental effects on a wide variety of cognitive processes such as attention, language, reasoning, decision making, learning and memory. While sleep is necessary to ensure normal healthy cognitive functioning, it can also enhance performance beyond the boundaries of the normal condition. This article discusses the enhancing potential of sleep, mainly focusing on the domain of learning and memory. Sleep is known to facilitate the consolidation of memories learned before sleep as well as the acquisition of new memories to be learned after sleep. According to a widely held model this beneficial effect of sleep relies on the neuronal reactivation of memories during sleep that is associated with sleep-specific brain oscillations (slow oscillations, spindles, ripples) as well as a characteristic neurotransmitter milieu. Recent research indicates that memory processing during sleep can be boosted by (i) cueing memory reactivation during sleep; (ii) stimulating sleep-specific brain oscillations; and (iii) targeting specific neurotransmitter systems pharmacologically. Olfactory and auditory cues can be used, for example, to increase reactivation of associated memories during post-learning sleep. Intensifying neocortical slow oscillations (the hallmark of slow wave sleep (SWS)) by electrical or auditory stimulation and modulating specific neurotransmitters such as noradrenaline and glutamate likewise facilitates memory processing during sleep. With this evidence in mind, this article concludes by discussing different methodological caveats and ethical issues that should be considered when thinking about using sleep for cognitive enhancement in everyday applications. PMID:24765066

  13. Spontaneous Swallowing during All-Night Sleep in Patients with Parkinson Disease in Comparison with Healthy Control Subjects.

    PubMed

    Uludag, Irem Fatma; Tiftikcioglu, Bedile Irem; Ertekin, Cumhur

    2016-04-01

    Spontaneous saliva swallows (SS) appear especially during sleep. The rate of SS was rarely investigated in all-night sleep in patients with Parkinson disease (PD). Dysphagia is a frequent symptom in PD, but the rate of SS was never studied with an all-night sleep electroencephalogram (EEG). A total of 21 patients with PD and 18 age-matched healthy controls were included in the study. Frequencies of SS and coughing were studied in all-night sleep recordings of patients with PD and controls. During all-night sleep, video-EEG 12-channel recording was used including the electromyography (EMG) of the swallowing muscles, nasal airflow, and recording of vertical laryngeal movement using a pair of EEG electrodes over the thyroid cartilage. The total number of SS was increased while the mean duration of sleep was decreased in PD when compared to controls. Sialorrhea and clinical dysphagia, assessed by proper questionnaires, had no effect in any patient group. The new finding was the so-called salvo type of consecutive SS in one set of swallowing. The amount of coughing was significantly increased just after the salvo SS. In PD, the rate of SS was not sufficient to demonstrate the swallowing disorder, such as oropharyngeal dysphagia, but the salvo type of SS was quite frequent. This is a novel finding and may contribute to the understanding of swallowing problems in patients with dysphagic or nondysphagic PD. © 2016 Associated Professional Sleep Societies, LLC.

  14. Oxytocin versus no treatment or delayed treatment for slow progress in the first stage of spontaneous labour.

    PubMed

    Bugg, George J; Siddiqui, Farah; Thornton, Jim G

    2013-06-23

    Slow progress in the first stage of spontaneous labour is associated with an increased caesarean section rate and fetal and maternal morbidity. Oxytocin has long been advocated as a treatment for slow progress in labour but it is unclear to what extent it improves the outcomes for that labour and whether it actually reduces the caesarean section rate or maternal and fetal morbidity. This review will address the use of oxytocin and whether it improves the outcomes for women who are progressing slowly in labour compared to situations where it is not used or where its administration is delayed. To determine if the use of oxytocin for the treatment of slow progress in the first stage of spontaneous labour is associated with a reduction in the incidence of caesarean sections, or maternal and fetal morbidity compared to situations where it is not used or where its administration is delayed. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (23 February 2013) and bibliographies of relevant papers. Randomised controlled trials which compared oxytocin with either placebo, no treatment or delayed oxytocin in the active stage of spontaneous labour in low-risk women at term. Two authors independently assessed studies for inclusion, assessed risk of bias and extracted data. We sought additional information from trial authors. We included eight studies in the review involving a total of 1338 low-risk women in the first stage of spontaneous labour at term. Two comparisons were made; 1) the use of oxytocin versus placebo or no treatment (three trials); 2) the early use of oxytocin versus its delayed use (five trials). There were no significant differences in the rates of caesarean section or instrumental vaginal delivery in either comparison. Early use of oxytocin resulted in an increase in uterine hyperstimulation associated with fetal heart changes. However, the early use of oxytocin versus its delayed use resulted in no significant differences in a range

  15. Age-Dependency of Location of Epileptic Foci in "Continuous Spike-and-Waves during Sleep": A Parallel to the Posterior-Anterior Trajectory of Slow Wave Activity.

    PubMed

    Bölsterli Heinzle, Bigna Katrin; Bast, Thomas; Critelli, Hanne; Huber, Reto; Schmitt, Bernhard

    2017-02-01

    Epileptic encephalopathy with continuous spike-and-waves during sleep (CSWS) occurs during childhood and is characterized by an activation of spike wave complexes during slow wave sleep. The location of epileptic foci is variable, as is etiology. A relationship between the epileptic focus and age has been shown in various focal epilepsies following a posterior-anterior trajectory, and a link to brain maturation has been proposed. We hypothesize that in CSWS, maximal spike wave activity, corresponding to the epileptic focus, is related to age and shows a posterior-anterior evolution. In a retrospective cross-sectional study on CSWS (22 EEGs of 22 patients aged 3.1–13.5 years), the location of the epileptic focus is related to age and follows a posterior-anterior course. Younger patients are more likely to have posterior foci than older ones. We propose that the posterior-anterior trajectory of maximal spike waves in CSWS might reflect maturational changes of maximal expression of sleep slow waves, which follow a comparable course. Epileptic spike waves, that is, “hyper-synchronized slow waves” may occur at the place where the highest and therefore most synchronized slow waves meet brain tissue with an increased susceptibility to synchronization. Georg Thieme Verlag KG Stuttgart · New York.

  16. Slow oscillation amplitudes and up-state lengths relate to memory improvement.

    PubMed

    Heib, Dominik P J; Hoedlmoser, Kerstin; Anderer, Peter; Zeitlhofer, Josef; Gruber, Georg; Klimesch, Wolfgang; Schabus, Manuel

    2013-01-01

    There is growing evidence of the active involvement of sleep in memory consolidation. Besides hippocampal sharp wave-ripple complexes and sleep spindles, slow oscillations appear to play a key role in the process of sleep-associated memory consolidation. Furthermore, slow oscillation amplitude and spectral power increase during the night after learning declarative and procedural memory tasks. However, it is unresolved whether learning-induced changes specifically alter characteristics of individual slow oscillations, such as the slow oscillation up-state length and amplitude, which are believed to be important for neuronal replay. 24 subjects (12 men) aged between 20 and 30 years participated in a randomized, within-subject, multicenter study. Subjects slept on three occasions for a whole night in the sleep laboratory with full polysomnography. Whereas the first night only served for adaptation purposes, the two remaining nights were preceded by a declarative word-pair task or by a non-learning control task. Slow oscillations were detected in non-rapid eye movement sleep over electrode Fz. Results indicate positive correlations between the length of the up-state as well as the amplitude of both slow oscillation phases and changes in memory performance from pre to post sleep. We speculate that the prolonged slow oscillation up-state length might extend the timeframe for the transfer of initial hippocampal to long-term cortical memory representations, whereas the increase in slow oscillation amplitudes possibly reflects changes in the net synaptic strength of cortical networks.

  17. Information processing during sleep and stress-related sleep vulnerability.

    PubMed

    Lin, Yen-Hsuan; Jen, Chun-Hui; Yang, Chien-Ming

    2015-02-01

    Previous studies showed enhanced attention and decreased inhibitory processes during early non-rapid eye movement sleep in primary insomnia patients, as measured by event-related potentials. The current study aims to examine information processing during sleep in non-insomniac individuals with high vulnerability (HV) to stress-related sleep disturbances. Twenty-seven non-insomniac individuals were recruited, 14 with low vulnerability and 13 with HV. After passing a screening interview and polysomnographic recording, subjects came to the sleep laboratory for 2 nights (a baseline night and a stress-inducing night) for event-related potentials recordings. The HV group demonstrated shorter P2 latency during the first 5 min of stage 2 sleep and higher P900 amplitudes under the stress condition during slow-wave sleep, which indicates an increased level of inhibitory processes. In addition, they had shorter N1 latencies during slow-wave sleep that could indicate an elevated level of attention processing during deep sleep. Unlike patients with chronic insomnia, individuals with high sleep vulnerability to stress show a compensatory process that may prevent external stimulation from interfering with their sleep. This may be one of the factors preventing their acute sleep disturbances from becoming chronic problems. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.

  18. Nap sleep spindle correlates of intelligence.

    PubMed

    Ujma, Péter P; Bódizs, Róbert; Gombos, Ferenc; Stintzing, Johannes; Konrad, Boris N; Genzel, Lisa; Steiger, Axel; Dresler, Martin

    2015-11-26

    Sleep spindles are thalamocortical oscillations in non-rapid eye movement (NREM) sleep, that play an important role in sleep-related neuroplasticity and offline information processing. Several studies with full-night sleep recordings have reported a positive association between sleep spindles and fluid intelligence scores, however more recently it has been shown that only few sleep spindle measures correlate with intelligence in females, and none in males. Sleep spindle regulation underlies a circadian rhythm, however the association between spindles and intelligence has not been investigated in daytime nap sleep so far. In a sample of 86 healthy male human subjects, we investigated the correlation between fluid intelligence and sleep spindle parameters in an afternoon nap of 100 minutes. Mean sleep spindle length, amplitude and density were computed for each subject and for each derivation for both slow and fast spindles. A positive association was found between intelligence and slow spindle duration, but not any other sleep spindle parameter. As a positive correlation between intelligence and slow sleep spindle duration in full-night polysomnography has only been reported in females but not males, our results suggest that the association between intelligence and sleep spindles is more complex than previously assumed.

  19. CAP, epilepsy and motor events during sleep: the unifying role of arousal.

    PubMed

    Parrino, Liborio; Halasz, Peter; Tassinari, Carlo Alberto; Terzano, Mario Giovanni

    2006-08-01

    Arousal systems play a topical neurophysiologic role in protecting and tailoring sleep duration and depth. When they appear in NREM sleep, arousal responses are not limited to a single EEG pattern but are part of a continuous spectrum of EEG modifications ranging from high-voltage slow rhythms to low amplitude fast activities. The hierarchic features of arousal responses are reflected in the phase A subtypes of CAP (cyclic alternating pattern) including both slow arousals (dominated by the <1Hz oscillation) and fast arousals (ASDA arousals). CAP is an infraslow oscillation with a periodicity of 20-40s that participates in the dynamic organization of sleep and in the activation of motor events. Physiologic, paraphysiologic and pathologic motor activities during NREM sleep are always associated with a stereotyped arousal pattern characterized by an initial increase in EEG delta power and heart rate, followed by a progressive activation of faster EEG frequencies. These findings suggest that motor patterns are already written in the brain codes (central pattern generators) embraced with an automatic sequence of EEG-vegetative events, but require a certain degree of activation (arousal) to become visibly apparent. Arousal can appear either spontaneously or be elicited by internal (epileptic burst) or external (noise, respiratory disturbance) stimuli. Whether the outcome is a physiologic movement, a muscle jerk or a major epileptic attack will depend on a number of ongoing factors (sleep stage, delta power, neuro-motor network) but all events share the common trait of arousal-activated phenomena.

  20. Auditory stimulation of sleep slow oscillations modulates subsequent memory encoding through altered hippocampal function

    PubMed Central

    Ong, Ju Lynn; Chee, Nicholas I Y N; Lee, Xuan Kai; Poh, Jia-Hou; Chee, Michael W L

    2018-01-01

    Abstract Study Objectives Slow oscillations (SO) during sleep contribute to the consolidation of learned material. How the encoding of declarative memories during subsequent wakefulness might benefit from their enhancement during sleep is less clear. In this study, we investigated the impact of acoustically enhanced SO during a nap on subsequent encoding of declarative material. Methods Thirty-seven healthy young adults were studied under two conditions: stimulation (STIM) and no stimulation (SHAM), in counter-balanced order following a night of sleep restriction (4 hr time-in-bed [TIB]). In the STIM condition, auditory tones were phase-locked to the SO up-state during a 90 min nap opportunity. In the SHAM condition, corresponding time points were marked but tones were not presented. Thirty minutes after awakening, participants encoded pictures while undergoing fMRI. Picture recognition was tested 60 min later. Results Acoustic stimulation augmented SO across the group, but there was no group level benefit on memory. However, the magnitude of SO enhancement correlated with greater recollection. SO enhancement was also positively correlated with hippocampal activation at encoding. Although spindle activity increased, this did not correlate with memory benefit or shift in hippocampal signal. Conclusions Acoustic stimulation during a nap can benefit encoding of declarative memories. Hippocampal activation positively correlated with SO augmentation. PMID:29425369

  1. Auditory stimulation of sleep slow oscillations modulates subsequent memory encoding through altered hippocampal function.

    PubMed

    Ong, Ju Lynn; Patanaik, Amiya; Chee, Nicholas I Y N; Lee, Xuan Kai; Poh, Jia-Hou; Chee, Michael W L

    2018-05-01

    Slow oscillations (SO) during sleep contribute to the consolidation of learned material. How the encoding of declarative memories during subsequent wakefulness might benefit from their enhancement during sleep is less clear. In this study, we investigated the impact of acoustically enhanced SO during a nap on subsequent encoding of declarative material. Thirty-seven healthy young adults were studied under two conditions: stimulation (STIM) and no stimulation (SHAM), in counter-balanced order following a night of sleep restriction (4 hr time-in-bed [TIB]). In the STIM condition, auditory tones were phase-locked to the SO up-state during a 90 min nap opportunity. In the SHAM condition, corresponding time points were marked but tones were not presented. Thirty minutes after awakening, participants encoded pictures while undergoing fMRI. Picture recognition was tested 60 min later. Acoustic stimulation augmented SO across the group, but there was no group level benefit on memory. However, the magnitude of SO enhancement correlated with greater recollection. SO enhancement was also positively correlated with hippocampal activation at encoding. Although spindle activity increased, this did not correlate with memory benefit or shift in hippocampal signal. Acoustic stimulation during a nap can benefit encoding of declarative memories. Hippocampal activation positively correlated with SO augmentation.

  2. Effects of Aging on Cortical Neural Dynamics and Local Sleep Homeostasis in Mice

    PubMed Central

    Fisher, Simon P.; Cui, Nanyi; Peirson, Stuart N.; Foster, Russell G.

    2018-01-01

    Healthy aging is associated with marked effects on sleep, including its daily amount and architecture, as well as the specific EEG oscillations. Neither the neurophysiological underpinnings nor the biological significance of these changes are understood, and crucially the question remains whether aging is associated with reduced sleep need or a diminished capacity to generate sufficient sleep. Here we tested the hypothesis that aging may affect local cortical networks, disrupting the capacity to generate and sustain sleep oscillations, and with it the local homeostatic response to sleep loss. We performed chronic recordings of cortical neural activity and local field potentials from the motor cortex in young and older male C57BL/6J mice, during spontaneous waking and sleep, as well as during sleep after sleep deprivation. In older animals, we observed an increase in the incidence of non-rapid eye movement sleep local field potential slow waves and their associated neuronal silent (OFF) periods, whereas the overall pattern of state-dependent cortical neuronal firing was generally similar between ages. Furthermore, we observed that the response to sleep deprivation at the level of local cortical network activity was not affected by aging. Our data thus suggest that the local cortical neural dynamics and local sleep homeostatic mechanisms, at least in the motor cortex, are not impaired during healthy senescence in mice. This indicates that powerful protective or compensatory mechanisms may exist to maintain neuronal function stable across the life span, counteracting global changes in sleep amount and architecture. SIGNIFICANCE STATEMENT The biological significance of age-dependent changes in sleep is unknown but may reflect either a diminished sleep need or a reduced capacity to generate deep sleep stages. As aging has been linked to profound disruptions in cortical sleep oscillations and because sleep need is reflected in specific patterns of cortical activity, we

  3. Restricting Time in Bed in Early Adolescence Reduces Both NREM and REM Sleep but Does Not Increase Slow Wave EEG

    PubMed Central

    Campbell, Ian G.; Kraus, Amanda M.; Burright, Christopher S.; Feinberg, Irwin

    2016-01-01

    Study Objectives: School night total sleep time decreases across adolescence (9–18 years) by 10 min/year. This decline is comprised entirely of a selective decrease in NREM sleep; REM sleep actually increases slightly. Decreasing sleep duration across adolescence is often attributed to insufficient time in bed. Here we tested whether sleep restriction in early adolescence produces the same sleep stage changes observed on school nights across adolescence. Methods: All-night sleep EEG was recorded in 76 children ranging in age from 9.9 to 14.0 years. Each participant kept 3 different sleep schedules that consisted of 3 nights of 8.5 h in bed followed by 4 nights of either 7, 8.5, or 10 h in bed. Sleep stage durations and NREM delta EEG activity were compared across the 3 time in bed conditions. Results: Shortening time in bed from 10 to 7 hours reduced sleep duration by approximately 2 hours, roughly equal to the decrease in sleep duration we recorded longitudinally across adolescence. However, sleep restriction significantly reduced both NREM (by 83 min) and REM (by 47 min) sleep. Sleep restriction did not affect NREM delta EEG activity. Conclusions: Our findings suggest that the selective NREM reduction and the small increase in REM we observed longitudinally across 9–18 years are not produced by sleep restriction. We hypothesize that the selective NREM decline reflects adolescent brain maturation (synaptic elimination) that reduces the need for the restorative processes of NREM sleep. Citation: Campbell IG, Kraus AM, Burright CS, Feinberg I. Restricting time in bed in early adolescence reduces both NREM and REM sleep but does not increase slow wave EEG. SLEEP 2016;39(9):1663–1670. PMID:27397569

  4. Topography of Slow Sigma Power during Sleep is Associated with Processing Speed in Preschool Children.

    PubMed

    Doucette, Margaret R; Kurth, Salome; Chevalier, Nicolas; Munakata, Yuko; LeBourgeois, Monique K

    2015-11-04

    Cognitive development is influenced by maturational changes in processing speed, a construct reflecting the rapidity of executing cognitive operations. Although cognitive ability and processing speed are linked to spindles and sigma power in the sleep electroencephalogram (EEG), little is known about such associations in early childhood, a time of major neuronal refinement. We calculated EEG power for slow (10-13 Hz) and fast (13.25-17 Hz) sigma power from all-night high-density electroencephalography (EEG) in a cross-sectional sample of healthy preschool children (n = 10, 4.3 ± 1.0 years). Processing speed was assessed as simple reaction time. On average, reaction time was 1409 ± 251 ms; slow sigma power was 4.0 ± 1.5 μV²; and fast sigma power was 0.9 ± 0.2 μV². Both slow and fast sigma power predominated over central areas. Only slow sigma power was correlated with processing speed in a large parietal electrode cluster (p < 0.05, r ranging from -0.6 to -0.8), such that greater power predicted faster reaction time. Our findings indicate regional correlates between sigma power and processing speed that are specific to early childhood and provide novel insights into the neurobiological features of the EEG that may underlie developing cognitive abilities.

  5. The Effects of Sleep Continuity Disruption on Positive Mood and Sleep Architecture in Healthy Adults.

    PubMed

    Finan, Patrick H; Quartana, Phillip J; Smith, Michael T

    2015-11-01

    The purpose of this study was to test an experimental model of the effects of sleep continuity disturbance on sleep architecture and positive mood in order to better understand the mechanisms linking insomnia and depression. Participants were randomized to receive 3 consecutive nights of sleep continuity disruption via forced nocturnal awakenings (FA, n = 21), or one of two control conditions: restricted sleep opportunity (RSO, n = 17) or uninterrupted sleep (US, n = 24). The study was set in an inpatient clinical research suite. Healthy, good-sleeping men and women were included. Polysomnography was used to measure sleep architecture, and mood was assessed via self-report each day. Compared to restricted sleep opportunity controls, forced awakenings subjects had significantly less slow wave sleep (P < 0.05) after the first night of sleep deprivation, and significantly lower positive mood (P < 0.05) after the second night of sleep deprivation. The differential change in slow wave sleep statistically mediated the observed group differences in positive mood (P = 0.002). To our knowledge, this is the first human experimental study to demonstrate that, despite comparable reductions in total sleep time, partial sleep loss from sleep continuity disruption is more detrimental to positive mood than partial sleep loss from delaying bedtime, even when controlling for concomitant increases in negative mood. With these findings, we provide temporal evidence in support of a putative biologic mechanism (slow wave sleep deficit) that could help explain the strong comorbidity between insomnia and depression. © 2015 Associated Professional Sleep Societies, LLC.

  6. Are Slow Waves of Intracranial Pressure Suppressed by General Anaesthesia?

    PubMed

    Lalou, Despina Afroditi; Czosnyka, Marek; Donnelly, Joseph; Lavinio, Andrea; Pickard, John D; Garnett, Matthew; Czosnyka, Zofia

    2018-01-01

    Slow waves of intracranial pressure (ICP) are spontaneous oscillations with a frequency of 0.3-4 cycles/min. They are often associated with pathological conditions, following vasomotor activity in the cranial enclosure. This study quantifies the effects of general anaesthesia (GA) on the magnitude of B-waves compared with natural sleep and the conscious state. Four groups of 30 patients each were formed to assess the magnitude of slow waves. Group A and group B consisted of normal pressure hydrocephalus (NPH) patients, each undergoing cerebrospinal fluid (CSF) infusion studies, conscious and under GA respectively. Group C comprised conscious, naturally asleep hydrocephalic patients undergoing overnight ICP monitoring; group D, which included deeply sedated head injury patients monitored in the intensive care unit (ICU), was compared with group C. The average amplitude for group A patients was higher (0.23 ± 0.10 mmHg) than that of group B (0.15 ± 0.10 mmHg; p = 0.01). Overnight magnitude of slow waves was higher in group C (0.20 ± 0.13 mmHg) than in group D (0.11 ± 0.09 mmHg; p = 0.002). Slow waves of ICP are suppressed by GA and deep sedation. When using slow waves in clinical decision-making, it is important to consider the patients' level of consciousness to avoid incorrect therapeutic and management decisions.

  7. Sustained Sleep Fragmentation Induces Sleep Homeostasis in Mice

    PubMed Central

    Baud, Maxime O.; Magistretti, Pierre J.; Petit, Jean-Marie

    2015-01-01

    Study Objectives: Sleep fragmentation (SF) is an integral feature of sleep apnea and other prevalent sleep disorders. Although the effect of repetitive arousals on cognitive performance is well documented, the effects of long-term SF on electroencephalography (EEG) and molecular markers of sleep homeostasis remain poorly investigated. To address this question, we developed a mouse model of chronic SF and characterized its effect on EEG spectral frequencies and the expression of genes previously linked to sleep homeostasis including clock genes, heat shock proteins, and plasticity-related genes. Design: N/A. Setting: Animal sleep research laboratory. Participants : Sixty-six C57BL6/J adult mice. Interventions: Instrumental sleep disruption at a rate of 60/h during 14 days Measurements and Results: Locomotor activity and EEG were recorded during 14 days of SF followed by recovery for 2 days. Despite a dramatic number of arousals and decreased sleep bout duration, SF minimally reduced total quantity of sleep and did not significantly alter its circadian distribution. Spectral analysis during SF revealed a homeostatic drive for slow wave activity (SWA; 1–4 Hz) and other frequencies as well (4–40 Hz). Recordings during recovery revealed slow wave sleep consolidation and a transient rebound in SWA, and paradoxical sleep duration. The expression of selected genes was not induced following chronic SF. Conclusions: Chronic sleep fragmentation (SF) increased sleep pressure confirming that altered quality with preserved quantity triggers core sleep homeostasis mechanisms. However, it did not induce the expression of genes induced by sleep loss, suggesting that these molecular pathways are not sustainably activated in chronic diseases involving SF. Citation: Baud MO, Magistretti PJ, Petit JM. Sustained sleep fragmentation induces sleep homeostasis in mice. SLEEP 2015;38(4):567–579. PMID:25325477

  8. Human cortical–hippocampal dialogue in wake and slow-wave sleep

    PubMed Central

    Mitra, Anish; Hacker, Carl D.; Pahwa, Mrinal; Tagliazucchi, Enzo; Laufs, Helmut; Leuthardt, Eric C.; Raichle, Marcus E.

    2016-01-01

    Declarative memory consolidation is hypothesized to require a two-stage, reciprocal cortical–hippocampal dialogue. According to this model, higher frequency signals convey information from the cortex to hippocampus during wakefulness, but in the reverse direction during slow-wave sleep (SWS). Conversely, lower-frequency activity propagates from the information “receiver” to the “sender” to coordinate the timing of information transfer. Reversal of sender/receiver roles across wake and SWS implies that higher- and lower-frequency signaling should reverse direction between the cortex and hippocampus. However, direct evidence of such a reversal has been lacking in humans. Here, we use human resting-state fMRI and electrocorticography to demonstrate that δ-band activity and infraslow activity propagate in opposite directions between the hippocampus and cerebral cortex. Moreover, both δ activity and infraslow activity reverse propagation directions between the hippocampus and cerebral cortex across wake and SWS. These findings provide direct evidence for state-dependent reversals in human cortical–hippocampal communication. PMID:27791089

  9. Initiation of sleep-dependent cortical-hippocampal correlations at wakefulness-sleep transition.

    PubMed

    Haggerty, Daniel C; Ji, Daoyun

    2014-10-01

    Sleep is involved in memory consolidation. Current theories propose that sleep-dependent memory consolidation requires active communication between the hippocampus and neocortex. Indeed, it is known that neuronal activities in the hippocampus and various neocortical areas are correlated during slow-wave sleep. However, transitioning from wakefulness to slow-wave sleep is a gradual process. How the hippocampal-cortical correlation is established during the wakefulness-sleep transition is unknown. By examining local field potentials and multiunit activities in the rat hippocampus and visual cortex, we show that the wakefulness-sleep transition is characterized by sharp-wave ripple events in the hippocampus and high-voltage spike-wave events in the cortex, both of which are accompanied by highly synchronized multiunit activities in the corresponding area. Hippocampal ripple events occur earlier than the cortical high-voltage spike-wave events, and hippocampal ripple incidence is attenuated by the onset of cortical high-voltage spike waves. This attenuation leads to a temporary weak correlation in the hippocampal-cortical multiunit activities, which eventually evolves to a strong correlation as the brain enters slow-wave sleep. The results suggest that the hippocampal-cortical correlation is established through a concerted, two-step state change that first synchronizes the neuronal firing within each brain area and then couples the synchronized activities between the two regions. Copyright © 2014 the American Physiological Society.

  10. The Roles of Cortical Slow Waves in Synaptic Plasticity and Memory Consolidation.

    PubMed

    Miyamoto, Daisuke; Hirai, Daichi; Murayama, Masanori

    2017-01-01

    Sleep plays important roles in sensory and motor memory consolidation. Sleep oscillations, reflecting neural population activity, involve the reactivation of learning-related neurons and regulate synaptic strength and, thereby affect memory consolidation. Among sleep oscillations, slow waves (0.5-4 Hz) are closely associated with memory consolidation. For example, slow-wave power is regulated in an experience-dependent manner and correlates with acquired memory. Furthermore, manipulating slow waves can enhance or impair memory consolidation. During slow wave sleep, inter-areal interactions between the cortex and hippocampus (HC) have been proposed to consolidate declarative memory; however, interactions for non-declarative (HC-independent) memory remain largely uninvestigated. We recently showed that the directional influence in a slow-wave range through a top-down cortical long-range circuit is involved in the consolidation of non-declarative memory. At the synaptic level, the average cortical synaptic strength is known to be potentiated during wakefulness and depressed during sleep. Moreover, learning causes plasticity in a subset of synapses, allocating memory to them. Sleep may help to differentiate synaptic strength between allocated and non-allocated synapses (i.e., improving the signal-to-noise ratio, which may facilitate memory consolidation). Herein, we offer perspectives on inter-areal interactions and synaptic plasticity for memory consolidation during sleep.

  11. The Roles of Cortical Slow Waves in Synaptic Plasticity and Memory Consolidation

    PubMed Central

    Miyamoto, Daisuke; Hirai, Daichi; Murayama, Masanori

    2017-01-01

    Sleep plays important roles in sensory and motor memory consolidation. Sleep oscillations, reflecting neural population activity, involve the reactivation of learning-related neurons and regulate synaptic strength and, thereby affect memory consolidation. Among sleep oscillations, slow waves (0.5–4 Hz) are closely associated with memory consolidation. For example, slow-wave power is regulated in an experience-dependent manner and correlates with acquired memory. Furthermore, manipulating slow waves can enhance or impair memory consolidation. During slow wave sleep, inter-areal interactions between the cortex and hippocampus (HC) have been proposed to consolidate declarative memory; however, interactions for non-declarative (HC-independent) memory remain largely uninvestigated. We recently showed that the directional influence in a slow-wave range through a top-down cortical long-range circuit is involved in the consolidation of non-declarative memory. At the synaptic level, the average cortical synaptic strength is known to be potentiated during wakefulness and depressed during sleep. Moreover, learning causes plasticity in a subset of synapses, allocating memory to them. Sleep may help to differentiate synaptic strength between allocated and non-allocated synapses (i.e., improving the signal-to-noise ratio, which may facilitate memory consolidation). Herein, we offer perspectives on inter-areal interactions and synaptic plasticity for memory consolidation during sleep. PMID:29213231

  12. Urodynamic function during sleep-like brain states in urethane anesthetized rats.

    PubMed

    Crook, J; Lovick, T

    2016-01-28

    The aim was to investigate urodynamic parameters and functional excitability of the periaqueductal gray matter (PAG) during changes in sleep-like brain states in urethane anesthetized rats. Simultaneous recordings of detrusor pressure, external urethral sphincter (EUS) electromyogram (EMG), cortical electroencephalogram (EEG), and single-unit activity in the PAG were made during repeated voiding induced by continuous infusion of saline into the bladder. The EEG cycled between synchronized, high-amplitude slow wave activity (SWA) and desynchronized low-amplitude fast activity similar to slow wave and 'activated' sleep-like brain states. During (SWA, 0.5-1.5 Hz synchronized oscillation of the EEG waveform) voiding became more irregular than in the 'activated' brain state (2-5 Hz low-amplitude desynchronized EEG waveform) and detrusor void pressure threshold, void volume threshold and the duration of bursting activity in the external urethral sphincter EMG were raised. The spontaneous firing rate of 23/52 neurons recorded within the caudal PAG and adjacent tegmentum was linked to the EEG state, with the majority of responsive cells (92%) firing more slowly during SWA. Almost a quarter of the cells recorded (12/52) showed phasic changes in firing rate that were linked to the occurrence of voids. Inhibition (n=6), excitation (n=4) or excitation/inhibition (n=2) was seen. The spontaneous firing rate of 83% of the micturition-responsive cells was sensitive to changes in EEG state. In nine of the 12 responsive cells (75%) the responses were reduced during SWA. We propose that during different sleep-like brain states changes in urodynamic properties occur which may be linked to changing excitability of the micturition circuitry in the periaqueductal gray. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Gene expression in the rat cerebral cortex: comparison of recovery sleep and hypnotic-induced sleep.

    PubMed

    Wisor, J P; Morairty, S R; Huynh, N T; Steininger, T L; Kilduff, T S

    2006-08-11

    Most hypnotic medications currently on the market target some aspect of GABAergic neurotransmission. Although all such compounds increase sleep, these drugs differentially affect the activity of the cerebral cortex as measured by the electroencephalogram. Whereas benzodiazepine medications such as triazolam tend to suppress slow wave activity in the cortex, the GABA(B) ligand gamma-hydroxybutyrate greatly enhances slow wave activity and the non-benzodiazepine, zolpidem, which binds to the omega1 site on the GABA(A) receptor/Cl(-) ionophore complex, is intermediate in this regard. Our previous studies have demonstrated that a small number of genes exhibit increased expression in the cerebral cortex of the mouse and rat during recovery sleep after sleep deprivation: egr-3, fra-2, grp78, grp94, ngfi-b, and nr4a3. Using these genes as a panel of biomarkers associated with sleep, we asked whether hypnotic medications induce similar molecular changes in the rat cerebral cortex to those observed when both sleep continuity and slow wave activity are enhanced during recovery sleep. We find that, although each drug increases the expression of a subset of genes in the panel of biomarkers, no drug fully replicates the molecular changes in the cortex associated with recovery sleep. Furthermore, high levels of slow wave activity in the cortex are correlated with increased expression of fra-2 whereas the expression of grp94 is correlated with body temperature. These results demonstrate that sleep-related changes in gene expression may be affected by physiological covariates of sleep and wakefulness rather than by vigilance state per se.

  14. Insufficient sleep: Enhanced risk-seeking relates to low local sleep intensity.

    PubMed

    Maric, Angelina; Montvai, Eszter; Werth, Esther; Storz, Matthias; Leemann, Janina; Weissengruber, Sebastian; Ruff, Christian C; Huber, Reto; Poryazova, Rositsa; Baumann, Christian R

    2017-09-01

    Chronic sleep restriction is highly prevalent in modern society and is, in its clinical form, insufficient sleep syndrome, one of the most prevalent diagnoses in clinical sleep laboratories, with substantial negative impact on health and community burden. It reflects every-day sleep loss better than acute sleep deprivation, but its effects and particularly the underlying mechanisms remain largely unknown for a variety of critical cognitive domains, as, for example, risky decision making. We assessed financial risk-taking behavior after 7 consecutive nights of sleep restriction and after 1 night of acute sleep deprivation compared to a regular sleep condition in a within-subject design. We further investigated potential underlying mechanisms of sleep-loss-induced changes in behavior by high-density electroencephalography recordings during restricted sleep. We show that chronic sleep restriction increases risk-seeking, whereas this was not observed after acute sleep deprivation. This increase was subjectively not noticed and was related to locally lower values of slow-wave energy during preceding sleep, an electrophysiological marker of sleep intensity and restoration, in electrodes over the right prefrontal cortex. This study provides, for the first time, evidence that insufficient sleep restoration over circumscribed cortical areas leads to aberrant behavior. In chronically sleep restricted subjects, low slow-wave sleep intensity over the right prefrontal cortex-which has been shown to be linked to risk behavior-may lead to increased and subjectively unnoticed risk-seeking. Ann Neurol 2017;82:409-418. © 2017 American Neurological Association.

  15. Sleep Disturbances in Patients Admitted to a Step-Down Unit After ICU Discharge: the Role of Mechanical Ventilation

    PubMed Central

    Fanfulla, Francesco; Ceriana, Piero; D'Artavilla Lupo, Nadia; Trentin, Rossella; Frigerio, Francesco; Nava, Stefano

    2011-01-01

    Background: Severe sleep disruption is a well-documented problem in mechanically ventilated, critically ill patients during their time in the intensive care unit (ICU), but little attention has been paid to the period when these patients become clinically stable and are transferred to a step-down unit (SDU). We monitored the 24-h sleep pattern in 2 groups of patients, one on mechanical ventilation and the other breathing spontaneously, admitted to our SDU to assess the presence of sleep abnormalities and their association with mechanical ventilation. Methods: Twenty-two patients admitted to an SDU underwent 24-h polysomnography with monitoring of noise and light. Results: One patient did not complete the study. At night, 10 patients showed reduced sleep efficiency, 6 had reduced percentage of REM sleep, and 3 had reduced percentage of slow wave sleep (SWS). Sleep amount and quality did not differ between patients breathing spontaneously and those on mechanical ventilation. Clinical severity (SAPSII score) was significantly correlated with daytime total sleep time and efficiency (r = 0.51 and 0.5, P < 0.05, respectively); higher pH was correlated with reduced sleep quantity and quality; and higher PaO2 was correlated with increased SWS (r = 0.49; P = 0.02). Conclusions: Patients admitted to an SDU after discharge from an ICU still have a wide range of sleep abnormalities. These abnormalities are mainly associated with a high severity score and alkalosis. Mechanical ventilation does not appear to be a primary cause of sleep impairment. Citation: Fanfulla F; Ceriana P; Lupo ND; Trentin R; Frigerio F; Nava S. Sleep disturbances in patients admitted to a step-down unit after ICU discharge: the role of mechanical ventilation. SLEEP 2011;34(3):355-362. PMID:21358853

  16. Neurocognitive and neurobehavioral disabilities in Epilepsy with Electrical Status Epilepticus in slow sleep (ESES) and related syndromes.

    PubMed

    Raha, Sarbani; Shah, Urvashi; Udani, Vrajesh

    2012-11-01

    The aims of this study were to assess the cognitive and behavioral problems of patients with Epilepsy with Electrical Status Epilepticus in slow sleep (ESES) and related syndromes and to review their EEG (electroencephalography) findings and treatment options. Fourteen patients with ESES were evaluated and treated in 2010. Nine children had continuous spike and wave during slow-wave sleep (CSWS)/ESES syndrome, 3 had Atypical BECTS (benign epilepsy with centrotemporal spikes), 1 had Opercular syndrome, and 1 had Landau-Kleffner syndrome. The duration of ESES ranged from 6 to 52 months. Eleven (91%) children had behavioral issues, most prominent being hyperactivity. Seven of the 13 children (53%) showed evidence of borderline to moderate cognitive impairment. A total of 28 EEG findings of ESES were analyzed for SWI (spike-wave index). Antiepileptic drugs received by the patients included valproate, clobazam, levetiracetam, and others. Eleven patients had been treated with oral steroids and it was found to be efficacious in seven (63%). Disabilities caused by ESES affect multiple domains. Patients with an SWI>50% should be followed up frequently with neuropsychological assessments. Steroids appear to be effective, although there is a need to standardize the dose and duration of treatment. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. The Effects of Sleep Continuity Disruption on Positive Mood and Sleep Architecture in Healthy Adults

    PubMed Central

    Finan, Patrick H.; Quartana, Phillip J.; Smith, Michael T.

    2015-01-01

    Objective: The purpose of this study was to test an experimental model of the effects of sleep continuity disturbance on sleep architecture and positive mood in order to better understand the mechanisms linking insomnia and depression. Design: Participants were randomized to receive 3 consecutive nights of sleep continuity disruption via forced nocturnal awakenings (FA, n = 21), or one of two control conditions: restricted sleep opportunity (RSO, n = 17) or uninterrupted sleep (US, n = 24). Setting: The study was set in an inpatient clinical research suite. Participants: Healthy, good-sleeping men and women were included. Measurement and Results: Polysomnography was used to measure sleep architecture, and mood was assessed via self-report each day. Compared to restricted sleep opportunity controls, forced awakenings subjects had significantly less slow wave sleep (P < 0.05) after the first night of sleep deprivation, and significantly lower positive mood (P < 0.05) after the second night of sleep deprivation. The differential change in slow wave sleep statistically mediated the observed group differences in positive mood (P = 0.002). Conclusions: To our knowledge, this is the first human experimental study to demonstrate that, despite comparable reductions in total sleep time, partial sleep loss from sleep continuity disruption is more detrimental to positive mood than partial sleep loss from delaying bedtime, even when controlling for concomitant increases in negative mood. With these findings, we provide temporal evidence in support of a putative biologic mechanism (slow wave sleep deficit) that could help explain the strong comorbidity between insomnia and depression. Citation: Finan PH, Quartana PJ, Smith MT. The effects of sleep continuity disruption on positive mood and sleep architecture in healthy adults. SLEEP 2015;38(11):1735–1742. PMID:26085289

  18. Topography of Slow Sigma Power during Sleep is Associated with Processing Speed in Preschool Children

    PubMed Central

    Doucette, Margaret R.; Kurth, Salome; Chevalier, Nicolas; Munakata, Yuko; LeBourgeois, Monique K.

    2015-01-01

    Cognitive development is influenced by maturational changes in processing speed, a construct reflecting the rapidity of executing cognitive operations. Although cognitive ability and processing speed are linked to spindles and sigma power in the sleep electroencephalogram (EEG), little is known about such associations in early childhood, a time of major neuronal refinement. We calculated EEG power for slow (10–13 Hz) and fast (13.25–17 Hz) sigma power from all-night high-density electroencephalography (EEG) in a cross-sectional sample of healthy preschool children (n = 10, 4.3 ± 1.0 years). Processing speed was assessed as simple reaction time. On average, reaction time was 1409 ± 251 ms; slow sigma power was 4.0 ± 1.5 μV2; and fast sigma power was 0.9 ± 0.2 μV2. Both slow and fast sigma power predominated over central areas. Only slow sigma power was correlated with processing speed in a large parietal electrode cluster (p < 0.05, r ranging from −0.6 to −0.8), such that greater power predicted faster reaction time. Our findings indicate regional correlates between sigma power and processing speed that are specific to early childhood and provide novel insights into the neurobiological features of the EEG that may underlie developing cognitive abilities. PMID:26556377

  19. Sound asleep: processing and retention of slow oscillation phase-targeted stimuli.

    PubMed

    Cox, Roy; Korjoukov, Ilia; de Boer, Marieke; Talamini, Lucia M

    2014-01-01

    The sleeping brain retains some residual information processing capacity. Although direct evidence is scarce, a substantial literature suggests the phase of slow oscillations during deep sleep to be an important determinant for stimulus processing. Here, we introduce an algorithm for predicting slow oscillations in real-time. Using this approach to present stimuli directed at both oscillatory up and down states, we show neural stimulus processing depends importantly on the slow oscillation phase. During ensuing wakefulness, however, we did not observe differential brain or behavioral responses to these stimulus categories, suggesting no enduring memories were formed. We speculate that while simpler forms of learning may occur during sleep, neocortically based memories are not readily established during deep sleep.

  20. Sound Asleep: Processing and Retention of Slow Oscillation Phase-Targeted Stimuli

    PubMed Central

    Cox, Roy; Korjoukov, Ilia; de Boer, Marieke; Talamini, Lucia M.

    2014-01-01

    The sleeping brain retains some residual information processing capacity. Although direct evidence is scarce, a substantial literature suggests the phase of slow oscillations during deep sleep to be an important determinant for stimulus processing. Here, we introduce an algorithm for predicting slow oscillations in real-time. Using this approach to present stimuli directed at both oscillatory up and down states, we show neural stimulus processing depends importantly on the slow oscillation phase. During ensuing wakefulness, however, we did not observe differential brain or behavioral responses to these stimulus categories, suggesting no enduring memories were formed. We speculate that while simpler forms of learning may occur during sleep, neocortically based memories are not readily established during deep sleep. PMID:24999803

  1. Acute Optogenetic Silencing of Orexin/Hypocretin Neurons Induces Slow-Wave Sleep in Mice

    PubMed Central

    Tsunematsu, Tomomi; Kilduff, Thomas S.; Boyden, Edward S.; Takahashi, Satoru; Tominaga, Makoto; Yamanaka, Akihiro

    2013-01-01

    Orexin/hypocretin neurons have a crucial role in the regulation of sleep and wakefulness. To help determine how these neurons promote wakefulness, we generated transgenic mice in which orexin neurons expressed halorhodopsin (orexin/Halo mice), an orange light-activated neuronal silencer. Slice patch-clamp recordings of orexin neurons that expressed halorhodopsin demonstrated that orange light photic illumination immediately hyperpolarized membrane potential and inhibited orexin neuron discharge in proportion to illumination intensity. Acute silencing of orexin neurons in vivo during the day (the inactive period) induced synchronization of the electroencephalogram and a reduction in amplitude of the electromyogram that is characteristic of slow-wave sleep (SWS). In contrast, orexin neuron photoinhibition was ineffective during the night (active period). Acute photoinhibition of orexin neurons during the day in orexin/Halo mice also reduced discharge of neurons in an orexin terminal field, the dorsal raphe (DR) nucleus. However, serotonergic DR neurons exhibited normal discharge rates in mice lacking orexin neurons. Thus, although usually highly dependent on orexin neuronal activity, serotonergic DR neuronal activity can be regulated appropriately in the chronic absence of orexin input. Together, these results demonstrate that acute inhibition of orexin neurons results in time-of-day-dependent induction of SWS and in reduced firing rate of neurons in an efferent projection site thought to be involved in arousal state regulation. The results presented here advance our understanding of the role of orexin neurons in the regulation of sleep/wakefulness and may be relevant to the mechanisms that underlie symptom progression in narcolepsy. PMID:21775598

  2. Effects of Aging on Cortical Neural Dynamics and Local Sleep Homeostasis in Mice.

    PubMed

    McKillop, Laura E; Fisher, Simon P; Cui, Nanyi; Peirson, Stuart N; Foster, Russell G; Wafford, Keith A; Vyazovskiy, Vladyslav V

    2018-04-18

    Healthy aging is associated with marked effects on sleep, including its daily amount and architecture, as well as the specific EEG oscillations. Neither the neurophysiological underpinnings nor the biological significance of these changes are understood, and crucially the question remains whether aging is associated with reduced sleep need or a diminished capacity to generate sufficient sleep. Here we tested the hypothesis that aging may affect local cortical networks, disrupting the capacity to generate and sustain sleep oscillations, and with it the local homeostatic response to sleep loss. We performed chronic recordings of cortical neural activity and local field potentials from the motor cortex in young and older male C57BL/6J mice, during spontaneous waking and sleep, as well as during sleep after sleep deprivation. In older animals, we observed an increase in the incidence of non-rapid eye movement sleep local field potential slow waves and their associated neuronal silent (OFF) periods, whereas the overall pattern of state-dependent cortical neuronal firing was generally similar between ages. Furthermore, we observed that the response to sleep deprivation at the level of local cortical network activity was not affected by aging. Our data thus suggest that the local cortical neural dynamics and local sleep homeostatic mechanisms, at least in the motor cortex, are not impaired during healthy senescence in mice. This indicates that powerful protective or compensatory mechanisms may exist to maintain neuronal function stable across the life span, counteracting global changes in sleep amount and architecture. SIGNIFICANCE STATEMENT The biological significance of age-dependent changes in sleep is unknown but may reflect either a diminished sleep need or a reduced capacity to generate deep sleep stages. As aging has been linked to profound disruptions in cortical sleep oscillations and because sleep need is reflected in specific patterns of cortical activity, we

  3. Interneuron-mediated inhibition synchronizes neuronal activity during slow oscillation.

    PubMed

    Chen, Jen-Yung; Chauvette, Sylvain; Skorheim, Steven; Timofeev, Igor; Bazhenov, Maxim

    2012-08-15

    The signature of slow-wave sleep in the electroencephalogram (EEG) is large-amplitude fluctuation of the field potential, which reflects synchronous alternation of activity and silence across cortical neurons. While initiation of the active cortical states during sleep slow oscillation has been intensively studied, the biological mechanisms which drive the network transition from an active state to silence remain poorly understood. In the current study, using a combination of in vivo electrophysiology and thalamocortical network simulation, we explored the impact of intrinsic and synaptic inhibition on state transition during sleep slow oscillation. We found that in normal physiological conditions, synaptic inhibition controls the duration and the synchrony of active state termination. The decline of interneuron-mediated inhibition led to asynchronous downward transition across the cortical network and broke the regular slow oscillation pattern. Furthermore, in both in vivo experiment and computational modelling, we revealed that when the level of synaptic inhibition was reduced significantly, it led to a recovery of synchronized oscillations in the form of seizure-like bursting activity. In this condition, the fast active state termination was mediated by intrinsic hyperpolarizing conductances. Our study highlights the significance of both intrinsic and synaptic inhibition in manipulating sleep slow rhythms.

  4. Interneuron-mediated inhibition synchronizes neuronal activity during slow oscillation

    PubMed Central

    Chen, Jen-Yung; Chauvette, Sylvain; Skorheim, Steven; Timofeev, Igor; Bazhenov, Maxim

    2012-01-01

    The signature of slow-wave sleep in the electroencephalogram (EEG) is large-amplitude fluctuation of the field potential, which reflects synchronous alternation of activity and silence across cortical neurons. While initiation of the active cortical states during sleep slow oscillation has been intensively studied, the biological mechanisms which drive the network transition from an active state to silence remain poorly understood. In the current study, using a combination of in vivo electrophysiology and thalamocortical network simulation, we explored the impact of intrinsic and synaptic inhibition on state transition during sleep slow oscillation. We found that in normal physiological conditions, synaptic inhibition controls the duration and the synchrony of active state termination. The decline of interneuron-mediated inhibition led to asynchronous downward transition across the cortical network and broke the regular slow oscillation pattern. Furthermore, in both in vivo experiment and computational modelling, we revealed that when the level of synaptic inhibition was reduced significantly, it led to a recovery of synchronized oscillations in the form of seizure-like bursting activity. In this condition, the fast active state termination was mediated by intrinsic hyperpolarizing conductances. Our study highlights the significance of both intrinsic and synaptic inhibition in manipulating sleep slow rhythms. PMID:22641778

  5. Differential modulation of global and local neural oscillations in REM sleep by homeostatic sleep regulation.

    PubMed

    Kim, Bowon; Kocsis, Bernat; Hwang, Eunjin; Kim, Youngsoo; Strecker, Robert E; McCarley, Robert W; Choi, Jee Hyun

    2017-02-28

    Homeostatic rebound in rapid eye movement (REM) sleep normally occurs after acute sleep deprivation, but REM sleep rebound settles on a persistently elevated level despite continued accumulation of REM sleep debt during chronic sleep restriction (CSR). Using high-density EEG in mice, we studied how this pattern of global regulation is implemented in cortical regions with different functions and network architectures. We found that across all areas, slow oscillations repeated the behavioral pattern of persistent enhancement during CSR, whereas high-frequency oscillations showed progressive increases. This pattern followed a common rule despite marked topographic differences. The findings suggest that REM sleep slow oscillations may translate top-down homeostatic control to widely separated brain regions whereas fast oscillations synchronizing local neuronal ensembles escape this global command. These patterns of EEG oscillation changes are interpreted to reconcile two prevailing theories of the function of sleep, synaptic homeostasis and sleep dependent memory consolidation.

  6. Effect of Slow Wave Sleep Disruption on Metabolic Parameters in Adolescents.

    PubMed

    Shaw, Natalie D; McHill, Andrew W; Schiavon, Michele; Kangarloo, Tairmae; Mankowski, Piotr W; Cobelli, Claudio; Klerman, Elizabeth B; Hall, Janet E

    2016-08-01

    Cross-sectional studies report a correlation between slow wave sleep (SWS) duration and insulin sensitivity (SI) in children and adults. Suppression of SWS causes insulin resistance in adults but effects in children are unknown. This study was designed to determine the effect of SWS fragmentation on SI in children. Fourteen pubertal children (11.3-14.1 y, body mass index 29(th) to 97(th) percentile) were randomized to sleep studies and mixed meal (MM) tolerance tests with and without SWS disruption. Beta-cell responsiveness (Φ) and SI were determined using oral minimal modeling. During the disruption night, auditory stimuli (68.1 ± 10.7/night; mean ± standard error) decreased SWS by 40.0 ± 8.0%. SWS fragmentation did not affect fasting glucose (non-disrupted 76.9 ± 2.3 versus disrupted 80.6 ± 2.1 mg/dL), insulin (9.2 ± 1.6 versus 10.4 ± 2.0 μIU/mL), or C-peptide (1.9 ± 0.2 versus 1.9 ± 0.1 ng/mL) levels and did not impair SI (12.9 ± 2.3 versus 10.1 ± 1.6 10(-4) dL/kg/min per μIU/mL) or Φ (73.4 ± 7.8 versus 74.4 ± 8.4 10(-9) min(-1)) to a MM challenge. Only the subjects in the most insulin-sensitive tertile demonstrated a consistent decrease in SI after SWS disruption. Pubertal children across a range of body mass indices may be resistant to the adverse metabolic effects of acute SWS disruption. Only those subjects with high SI (i.e., having the greatest "metabolic reserve") demonstrated a consistent decrease in SI. These results suggest that adolescents may have a unique ability to adapt to metabolic stressors, such as acute SWS disruption, to maintain euglycemia. Additional studies are necessary to confirm that this resiliency is maintained in settings of chronic SWS disruption. © 2016 Associated Professional Sleep Societies, LLC.

  7. Association between slow-wave activity, cognition and behaviour in children with sleep-disordered breathing.

    PubMed

    Weichard, Aidan J; Walter, Lisa M; Hollis, Samantha L; Nixon, Gillian M; Davey, Margot J; Horne, Rosemary S C; Biggs, Sarah N

    2016-09-01

    It has been suggested that impaired dissipation of slow-wave activity (SWA) in children with sleep-disordered breathing (SDB) may be a potential mechanism for daytime dysfunction. We aimed to examine whether resolution of SDB resulted in normalisation of SWA dissipation and whether this was associated with improved cognition and behaviour. Children (aged 3-6 y) diagnosed with SDB and age-matched non-snoring control children were followed up for 3 y after a baseline study. At the follow-up, children were categorised into control (N = 13), resolved SDB (N = 15) and unresolved SDB (N = 14). Delta activity on the electroencephalogram over the sleep period was used to calculate SWA and a battery of cognitive assessments and behaviour questionnaires were conducted at both time points. There was no change in the average SWA between the baseline and follow-up and no differences between the groups. Cognitive and behavioural performance in the resolved group did not improve to control levels. However, decreased SWA at the beginning of the sleep period (β = -0.04, p = 0.002) and a decrease in obstructive apnoea-hypopnoea index (β = -2.2, p = 0.022) between the baseline and follow-up predicted improvements in measures of sustained attention. Increased SWA at the beginning of the sleep period between the baseline and follow-up predicted worsening of externalising behaviour (β = 0.02, p = 0.039). This study suggests that resolution of SDB is not associated with changes in the dissipation of SWA. However, the association between decreases in SWA and improvements in cognitive and behavioural outcomes suggest that irrespective of disease, children whose quantitative sleepiness improves have improved attention and reduced externalising behaviours. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Differential modulation of global and local neural oscillations in REM sleep by homeostatic sleep regulation

    PubMed Central

    Kim, Bowon; Kocsis, Bernat; Hwang, Eunjin; Kim, Youngsoo; Strecker, Robert E.; McCarley, Robert W.; Choi, Jee Hyun

    2017-01-01

    Homeostatic rebound in rapid eye movement (REM) sleep normally occurs after acute sleep deprivation, but REM sleep rebound settles on a persistently elevated level despite continued accumulation of REM sleep debt during chronic sleep restriction (CSR). Using high-density EEG in mice, we studied how this pattern of global regulation is implemented in cortical regions with different functions and network architectures. We found that across all areas, slow oscillations repeated the behavioral pattern of persistent enhancement during CSR, whereas high-frequency oscillations showed progressive increases. This pattern followed a common rule despite marked topographic differences. The findings suggest that REM sleep slow oscillations may translate top-down homeostatic control to widely separated brain regions whereas fast oscillations synchronizing local neuronal ensembles escape this global command. These patterns of EEG oscillation changes are interpreted to reconcile two prevailing theories of the function of sleep, synaptic homeostasis and sleep dependent memory consolidation. PMID:28193862

  9. Local sleep homeostasis in the avian brain: convergence of sleep function in mammals and birds?

    PubMed

    Lesku, John A; Vyssotski, Alexei L; Martinez-Gonzalez, Dolores; Wilzeck, Christiane; Rattenborg, Niels C

    2011-08-22

    The function of the brain activity that defines slow wave sleep (SWS) and rapid eye movement (REM) sleep in mammals is unknown. During SWS, the level of electroencephalogram slow wave activity (SWA or 0.5-4.5 Hz power density) increases and decreases as a function of prior time spent awake and asleep, respectively. Such dynamics occur in response to waking brain use, as SWA increases locally in brain regions used more extensively during prior wakefulness. Thus, SWA is thought to reflect homeostatically regulated processes potentially tied to maintaining optimal brain functioning. Interestingly, birds also engage in SWS and REM sleep, a similarity that arose via convergent evolution, as sleeping reptiles and amphibians do not show similar brain activity. Although birds deprived of sleep show global increases in SWA during subsequent sleep, it is unclear whether avian sleep is likewise regulated locally. Here, we provide, to our knowledge, the first electrophysiological evidence for local sleep homeostasis in the avian brain. After staying awake watching David Attenborough's The Life of Birds with only one eye, SWA and the slope of slow waves (a purported marker of synaptic strength) increased only in the hyperpallium--a primary visual processing region--neurologically connected to the stimulated eye. Asymmetries were specific to the hyperpallium, as the non-visual mesopallium showed a symmetric increase in SWA and wave slope. Thus, hypotheses for the function of mammalian SWS that rely on local sleep homeostasis may apply also to birds.

  10. The effects of slow-wave sleep (SWS) deprivation and time of night on behavioral performance upon awakening.

    PubMed

    Ferrara, M; De Gennaro, L; Bertini, M

    The aim of the present study is to evaluate the effects of selective SWS deprivation on the motor and sensory motor performance impairment immediately after awakening from nocturnal sleep at different times of the night. Ten normal males slept for 6 consecutive nights in the laboratory: one adaptation, two baseline, two selective SWS deprivation, and one recovery night. During the last 4 nights performance was assessed four times: (a) before sleep, as a baseline measure; (b) within 30 s from the first nighttime awakening, after 2 h of sleep; (c) within 30 s from the second nighttime awakening, after 5 h of sleep; (d) within 30 s from the final morning awakening. After each awakening, following a 3-min cognitive test, a simple Auditory Reaction Time task (ART, about 5 min) and a Finger Tapping Task (FTT, 3 min) were administered. Median of Reaction Times (RT) and of Intertapping Intervals (ITI), 10% fastest RT, 10% slowest RT, and number of misses were considered as dependent variables. The selective SWS deprivation was very effective: SWS percentage during both the deprivation nights was close to zero. This strong manipulation of SWS amount interacted with time-of-night factors in influencing sleep inertia. The SWS deprivation procedure caused a worsening of behavioral performance during the deprivation nights. as well as upon the final awakening of the recovery night. Behavioral performance slowing upon awakening is accounted for by: (1) a general decrement in overall response speed (median of RT); (2) an "optimum response shift", i.e., a decrease in speed of the fastest responses; (3) an increase of lapsing, with more marked response delays resulting in a further decrease in response speed in the "lapse domain". Finally, our results do not support the existence of a circadian rhythm of sleep inertia linked to body temperature rhythm.

  11. Sleep, consciousness and the spontaneous and evoked electrical activity of the brain. Is there a cortical integrating mechanism?

    PubMed

    Evans, B M

    2003-02-01

    The physiological mechanisms that underlie consciousness and unconsciousness are the sleep/wake mechanisms. Deep sleep is a state of physiological reversible unconsciousness. The change from that state to wakefulness is mediated by the reticular activating mechanism. The reverse change from wakefulness to sleep is also an active process effected by an arousal inhibitory mechanism based on a partial blockade of the thalamus and upper brain stem, associated with thalamic sleep spindles and also with cortical sub-delta activity (<1 Hz). The deactivation of the thalamus has been demonstrated both electrically and by positron emission tomography during deep sleep. Normally, wakefulness is associated with instant awareness (defined as the ability to integrate all sensory information from the external environment and the internal environment of the body). Awareness may be a function of the thalamo-cortical network in the cerebral hemispheres, which forms the final path of the sleep/wake mechanism. Anatomical and physiological studies suggest that there may be a double thalamo-cortical network; one relating to cortical and thalamic areas with specific functions and the other global, involving all cortical areas and so-called 'non-specific' thalamic nuclei. The global system might function as a cortical integrating mechanism permitting the spread of information between the specific cortical areas and thus underlying awareness. The global system may also be responsible for much of the spontaneous and evoked electrical activity of the brain. The cognitive change between sleep and wakefulness is accompanied by changes in the autonomic system, the cerebral blood flow and cerebral metabolism. Awareness is an essential component of total consciousness (defined as continuous awareness of the external and internal environment, both past and present, together with the emotions arising from it). In addition to awareness, full consciousness requires short-term and explicit memory and

  12. Mild Airflow Limitation during N2 Sleep Increases K-complex Frequency and Slows Electroencephalographic Activity

    PubMed Central

    Nguyen, Chinh D.; Wellman, Andrew; Jordan, Amy S.; Eckert, Danny J.

    2016-01-01

    Study Objectives: To determine the effects of mild airflow limitation on K-complex frequency and morphology and electroencephalogram (EEG) spectral power. Methods: Transient reductions in continuous positive airway pressure (CPAP) during stable N2 sleep were performed to induce mild airflow limitation in 20 patients with obstructive sleep apnea (OSA) and 10 healthy controls aged 44 ± 13 y. EEG at C3 and airflow were measured in 1-min windows to quantify K-complex properties and EEG spectral power immediately before and during transient reductions in CPAP. The frequency and morphology (amplitude and latency of P200, N550 and N900 components) of K-complexes and EEG spectral power were compared between conditions. Results: During mild airflow limitation (18% reduction in peak inspiratory airflow from baseline, 0.38 ± 0.11 versus 0.31 ± 0.1 L/sec) insufficient to cause American Academy of Sleep Medicine-defined cortical arousal, K-complex frequency (9.5 ± 4.5 versus 13.7 ± 6.4 per min, P < 0.01), N550 amplitude (25 ± 3 versus 27 ± 3 μV, P < 0.01) and EEG spectral power (delta: 147 ± 48 versus 230 ± 99 μV2, P < 0.01 and theta bands: 31 ± 14 versus 34 ± 13 μV2, P < 0.01) significantly increased whereas beta band power decreased (14 ± 5 versus 11 ± 4 μV2, P < 0.01) compared to the preceding non flow-limited period on CPAP. K-complex frequency, morphology, and timing did not differ between patients and controls. Conclusion: Mild airflow limitation increases K-complex frequency, N550 amplitude, and spectral power of delta and theta bands. In addition to providing mechanistic insight into the role of mild airflow limitation on K-complex characteristics and EEG activity, these findings may have important implications for respiratory conditions in which airflow limitation during sleep is common (e.g., snoring and OSA). Citation: Nguyen CD, Wellman A, Jordan AS, Eckert DJ. Mild airflow limitation during N2 sleep increases k-complex frequency and slows

  13. An automated sleep-state classification algorithm for quantifying sleep timing and sleep-dependent dynamics of electroencephalographic and cerebral metabolic parameters

    PubMed Central

    Rempe, Michael J; Clegern, William C; Wisor, Jonathan P

    2015-01-01

    Introduction Rodent sleep research uses electroencephalography (EEG) and electromyography (EMG) to determine the sleep state of an animal at any given time. EEG and EMG signals, typically sampled at >100 Hz, are segmented arbitrarily into epochs of equal duration (usually 2–10 seconds), and each epoch is scored as wake, slow-wave sleep (SWS), or rapid-eye-movement sleep (REMS), on the basis of visual inspection. Automated state scoring can minimize the burden associated with state and thereby facilitate the use of shorter epoch durations. Methods We developed a semiautomated state-scoring procedure that uses a combination of principal component analysis and naïve Bayes classification, with the EEG and EMG as inputs. We validated this algorithm against human-scored sleep-state scoring of data from C57BL/6J and BALB/CJ mice. We then applied a general homeostatic model to characterize the state-dependent dynamics of sleep slow-wave activity and cerebral glycolytic flux, measured as lactate concentration. Results More than 89% of epochs scored as wake or SWS by the human were scored as the same state by the machine, whether scoring in 2-second or 10-second epochs. The majority of epochs scored as REMS by the human were also scored as REMS by the machine. However, of epochs scored as REMS by the human, more than 10% were scored as SWS by the machine and 18 (10-second epochs) to 28% (2-second epochs) were scored as wake. These biases were not strain-specific, as strain differences in sleep-state timing relative to the light/dark cycle, EEG power spectral profiles, and the homeostatic dynamics of both slow waves and lactate were detected equally effectively with the automated method or the manual scoring method. Error associated with mathematical modeling of temporal dynamics of both EEG slow-wave activity and cerebral lactate either did not differ significantly when state scoring was done with automated versus visual scoring, or was reduced with automated state

  14. Propofol Anesthesia and Sleep: A High-Density EEG Study

    PubMed Central

    Murphy, Michael; Bruno, Marie-Aurelie; Riedner, Brady A.; Boveroux, Pierre; Noirhomme, Quentin; Landsness, Eric C.; Brichant, Jean-Francois; Phillips, Christophe; Massimini, Marcello; Laureys, Steven; Tononi, Giulio; Boly, Melanie

    2011-01-01

    Study Objectives: The electrophysiological correlates of anesthetic sedation remain poorly understood. We used high-density electroencephalography (hd-EEG) and source modeling to investigate the cortical processes underlying propofol anesthesia and compare them to sleep. Design: 256-channel EEG recordings in humans during propofol anesthesia. Setting: Hospital operating room. Patients or Participants: 8 healthy subjects (4 males) Interventions: N/A Measurements and Results: Initially, propofol induced increases in EEG power from 12–25 Hz. Loss of consciousness (LOC) was accompanied by the appearance of EEG slow waves that resembled the slow waves of NREM sleep. We compared slow waves in propofol to slow waves recorded during natural sleep and found that both populations of waves share similar cortical origins and preferentially propagate along the mesial components of the default network. However, propofol slow waves were spatially blurred compared to sleep slow waves and failed to effectively entrain spindle activity. Propofol also caused an increase in gamma (25–40 Hz) power that persisted throughout LOC. Source modeling analysis showed that this increase in gamma power originated from the anterior and posterior cingulate cortices. During LOC, we found increased gamma functional connectivity between these regions compared to the wakefulness. Conclusions: Propofol anesthesia is a sleep-like state and slow waves are associated with diminished consciousness even in the presence of high gamma activity. Citation: Murphy M; Bruno MA; Riedner BA; Boveroux P; Noirhomme Q; Landsness EC; Brichant JF; Phillips C; Massimini M; Laureys S; Tononi G; Boly M. Propofol anesthesia and sleep: a high-density EEG study. SLEEP 2011;34(3):283-291. PMID:21358845

  15. Circadian Gene Variants Influence Sleep and the Sleep Electroencephalogram in Humans

    PubMed Central

    Chang, Anne-Marie; Bjonnes, Andrew; Aeschbach, Daniel; Buxton, Orfeu M.; Gooley, Joshua J.; Anderson, Clare; Van Reen, Eliza; Cain, Sean W.; Czeisler, Charles A.; Duffy, Jeanne F.; Lockley, Steven W.; Shea, Steven; Scheer, Frank A.J.L.; Saxena, Richa

    2017-01-01

    The sleep electroencephalogram is highly heritable in humans and yet little is known about the genetic basis of inter-individual differences in sleep architecture. The aim of this study was to identify associations between candidate circadian gene variants and the polysomnogram, recorded under highly controlled laboratory conditions during a baseline, overnight, 8-h sleep opportunity. A candidate gene approach was employed to analyze single nucleotide polymorphisms from five circadian-related genes in a two-phase analysis of 84 healthy young adults (28 F; 23.21 ± 2.97 years) of European ancestry. A common variant in Period2 (PER2) was associated with 20 minutes less slow wave sleep (SWS) in carriers of the minor allele than in non-carriers, representing a 22% difference in SWS duration. Moreover, spectral analysis in a subset of samples (n=37), showed the same PER2 polymorphism was associated with reduced EEG power density in the low delta range (0.25–1.0 Hz) during non-REM sleep and lower slow-wave activity (0.75–4.5 Hz) in the early part of the sleep episode. These results indicate the involvement of PER2 in the homeostatic process of sleep. Additionally, a rare variant in Melatonin Receptor 1B was associated with longer REM sleep latency, with minor allele carriers exhibiting an average of 65 minutes (87%) longer latency from sleep onset to REM sleep, compared to non-carriers. These findings suggest that circadian-related genes may modulate sleep architecture and the sleep EEG, including specific parameters previously implicated in the homeostatic regulation of sleep. PMID:27089043

  16. The Impact of Cortical Deafferentation on the Neocortical Slow Oscillation

    PubMed Central

    Lemieux, Maxime; Chen, Jen-Yung; Lonjers, Peter; Bazhenov, Maxim

    2014-01-01

    Slow oscillation is the main brain rhythm observed during deep sleep in mammals. Although several studies have demonstrated its neocortical origin, the extent of the thalamic contribution is still a matter of discussion. Using electrophysiological recordings in vivo on cats and computational modeling, we found that the local thalamic inactivation or the complete isolation of the neocortical slabs maintained within the brain dramatically reduced the expression of slow and fast oscillations in affected cortical areas. The slow oscillation began to recover 12 h after thalamic inactivation. The slow oscillation, but not faster activities, nearly recovered after 30 h and persisted for weeks in the isolated slabs. We also observed an increase of the membrane potential fluctuations recorded in vivo several hours after thalamic inactivation. Mimicking this enhancement in a network computational model with an increased postsynaptic activity of long-range intracortical afferents or scaling K+ leak current, but not several other Na+ and K+ intrinsic currents was sufficient for recovering the slow oscillation. We conclude that, in the intact brain, the thalamus contributes to the generation of cortical active states of the slow oscillation and mediates its large-scale synchronization. Our study also suggests that the deafferentation-induced alterations of the sleep slow oscillation can be counteracted by compensatory intracortical mechanisms and that the sleep slow oscillation is a fundamental and intrinsic state of the neocortex. PMID:24741059

  17. Neurobehavioral consequences of continuous spike and waves during slow sleep (CSWS) in a pediatric population: A pattern of developmental hindrance.

    PubMed

    De Giorgis, Valentina; Filippini, Melissa; Macasaet, Joyce Ann; Masnada, Silvia; Veggiotti, Pierangelo

    2017-09-01

    Continuous spike and waves during slow sleep (CSWS) is a typical EEG pattern defined as diffuse, bilateral and recently also unilateral or focal localization spike-wave occurring in slow sleep or non-rapid eye movement sleep. Literature results so far point out a progressive deterioration and decline of intellectual functioning in CSWS patients, i.e. a loss of previously normally acquired skills, as well as persistent neurobehavioral disorders, beyond seizure and EEG control. The objective of this study was to shed light on the neurobehavioral impact of CSWS and to identify the potential clinical risk factors for development. We conducted a retrospective study involving a series of 16 CSWS idiopathic patients age 3-16years, considering the entire duration of epilepsy from the onset to the outcome, i.e. remission of CSWS pattern. All patients were longitudinally assessed taking into account clinical (sex, age at onset, lateralization and localization of epileptiform abnormalities, spike wave index, number of antiepileptic drugs) and behavioral features. Intelligent Quotient (IQ) was measured in the whole sample, whereas visuo-spatial attention, visuo-motor skills, short term memory and academic abilities (reading and writing) were tested in 6 out of 16 patients. Our results showed that the most vulnerable from an intellectual point of view were those children who had an early-onset of CSWS whereas those with later onset resulted less affected (p=0.004). Neuropsychological outcome was better than the behavioral one and the lexical-semantic route in reading and writing resulted more severely affected compared to the phonological route. Cognitive deterioration is one but not the only consequence of CSWS. Especially with respect to verbal skills, CSWS is responsible of a pattern of consequences in terms of developmental hindrance, including slowing of development and stagnation, whereas deterioration is rare. Behavioral and academic problems tend to persist beyond

  18. Phase-Locked Loop for Precisely Timed Acoustic Stimulation during Sleep

    PubMed Central

    Santostasi, Giovanni; Malkani, Roneil; Riedner, Brady; Bellesi, Michele; Tononi, Giulio; Paller, Ken A.; Zee, Phyllis C.

    2016-01-01

    Background A Brain-Computer Interface could potentially enhance the various benefits of sleep. New Method We describe a strategy for enhancing slow-wave sleep (SWS) by stimulating the sleeping brain with periodic acoustic stimuli that produce resonance in the form of enhanced slow-wave activity in the electroencephalogram (EEG). The system delivers each acoustic stimulus at a particular phase of an electrophysiological rhythm using a Phase-Locked Loop (PLL). Results The PLL is computationally economical and well suited to follow and predict the temporal behavior of the EEG during slow-wave sleep. Comparison with Existing Methods Acoustic stimulation methods may be able to enhance SWS without the risks inherent in electrical stimulation or pharmacological methods. The PLL method differs from other acoustic stimulation methods that are based on detecting a single slow wave rather than modeling slow-wave activity over an extended period of time. Conclusions By providing real-time estimates of the phase of ongoing EEG oscillations, the PLL can rapidly adjust to physiological changes, thus opening up new possibilities to study brain dynamics during sleep. Future application of these methods hold promise for enhancing sleep quality and associated daytime behavior and improving physiologic function. PMID:26617321

  19. Sleep characteristics in the quail Coturnix coturnix.

    PubMed

    Mexicano, Graciela; Montoya-Loaiza, Bibiana; Ayala-Guerrero, Fructuoso

    2014-04-22

    As mammals, birds exhibit two sleep phases, slow wave sleep (SWS) and REM (Rapid Eye Movement) sleep characterized by presenting different electrophysiological patterns of brain activity. During SWS a high amplitude slow wave pattern in brain activity is observed. This activity is substituted by a low amplitude fast frequency pattern during REM sleep. Common quail (Coturnix coturnix) is an animal model that has provided information related to different physiological mechanisms present in man. There are reports related to its electrophysiological brain activity, however the sleep characteristics that have been described are not. The objectives of this study is describing the sleep characteristics throughout the nychthemeral cycle of the common quail and consider this bird species as an avian model to analyze the regulatory mechanisms of sleep. Experiments were carried out in implanted exemplars of C. coturnix. Under general anesthesia induced by ether inhalation, stainless steel electrodes were placed to register brain activity from the anterior and posterior areas during 24 continuous hours throughout the sleep-wake cycle. Ocular and motor activities were visually monitored. Quail showed four electrophysiologically and behaviorally different states of vigilance: wakefulness (53.28%), drowsiness (14.27%), slow wave sleep (30.47%) and REM sleep (1.98%). The animals presented 202 REM sleep episodes throughout the nychthemeral cycle. Sleep distribution was polyphasic; however sleep amount was significantly greater during the period corresponding to the night. The number of nocturnal REM sleep episodes was significantly greater than that of diurnal one. The quail C. coturnix shows a polyphasic distribution of sleep; however the amount of this state of vigilance is significantly greater during the nocturnal period. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. The temporal structure of behaviour and sleep homeostasis.

    PubMed

    Vyazovskiy, Vladyslav V; Tobler, Irene

    2012-01-01

    The amount and architecture of vigilance states are governed by two distinct processes, which occur at different time scales. The first, a slow one, is related to a wake/sleep dependent homeostatic Process S, which occurs on a time scale of hours, and is reflected in the dynamics of NREM sleep EEG slow-wave activity. The second, a fast one, is manifested in a regular alternation of two sleep states--NREM and REM sleep, which occur, in rodents, on a time scale of ~5-10 minutes. Neither the mechanisms underlying the time constants of these two processes--the slow one and the fast one, nor their functional significance are understood. Notably, both processes are primarily apparent during sleep, while their potential manifestation during wakefulness is obscured by ongoing behaviour. Here, we find, in mice provided with running wheels, that the two sleep processes become clearly apparent also during waking at the level of behavior and brain activity. Specifically, the slow process was manifested in the total duration of waking periods starting from dark onset, while the fast process was apparent in a regular occurrence of running bouts during the waking periods. The dynamics of both processes were stable within individual animals, but showed large interindividual variability. Importantly, the two processes were not independent: the periodic structure of waking behaviour (fast process) appeared to be a strong predictor of the capacity to sustain continuous wakefulness (slow process). The data indicate that the temporal organization of vigilance states on both the fast and the slow time scales may arise from a common neurophysiologic mechanism.

  1. Sleep-Related Electrophysiology and Behavior of Tinamous (Eudromia elegans): Tinamous Do Not Sleep Like Ostriches.

    PubMed

    Tisdale, Ryan K; Vyssotski, Alexei L; Lesku, John A; Rattenborg, Niels C

    2017-01-01

    The functions of slow wave sleep (SWS) and rapid eye movement (REM) sleep, distinct sleep substates present in both mammals and birds, remain unresolved. One approach to gaining insight into their function is to trace the evolution of these states through examining sleep in as many taxonomic groups as possible. The mammalian and avian clades are each composed of two extant groups, i.e., the monotremes (echidna and platypus) and therian (marsupial and eutherian [or placental]) mammals, and Palaeognaths (cassowaries, emus, kiwi, ostriches, rheas, and tinamous) and Neognaths (all other birds) among birds. Previous electrophysiological studies of monotremes and ostriches have identified a unique "mixed" sleep state combining features of SWS and REM sleep unlike the well-delineated sleep states observed in all therian mammals and Neognath birds. In the platypus this state is characterized by periods of REM sleep-related myoclonic twitching, relaxed skeletal musculature, and rapid eye movements, occurring in conjunction with SWS-related slow waves in the forebrain electroencephalogram (EEG). A similar mixed state was also observed in ostriches; although in addition to occurring during periods with EEG slow waves, reduced muscle tone and rapid eye movements also occurred in conjunction with EEG activation, a pattern typical of REM sleep in Neognath birds. Collectively, these studies suggested that REM sleep occurring exclusively as an integrated state with forebrain activation might have evolved independently in the therian and Neognath lineages. To test this hypothesis, we examined sleep in the elegant crested tinamou (Eudromia elegans), a small Palaeognath bird that more closely resembles Neognath birds in size and their ability to fly. A 24-h period was scored for sleep state based on electrophysiology and behavior. Unlike ostriches, but like all of the Neognath birds examined, all indicators of REM sleep usually occurred in conjunction with forebrain activation in

  2. Cycle-Triggered Cortical Stimulation during Slow Wave Sleep Facilitates Learning a BMI Task: A Case Report in a Non-Human Primate

    PubMed Central

    Rembado, Irene; Zanos, Stavros; Fetz, Eberhard E.

    2017-01-01

    Slow wave sleep (SWS) has been identified as the sleep stage involved in consolidating newly acquired information. A growing body of evidence has shown that delta (1–4 Hz) oscillatory activity, the characteristic electroencephalographic signature of SWS, is involved in coordinating interaction between the hippocampus and the neocortex and is thought to take a role in stabilizing memory traces related to a novel task. This case report describes a new protocol that uses neuroprosthetics training of a non-human primate to evaluate the effects of surface cortical electrical stimulation triggered from SWS cycles. The results suggest that stimulation phase-locked to SWS oscillatory activity promoted learning of the neuroprosthetic task. This protocol could be used to elucidate mechanisms of synaptic plasticity underlying off-line learning during sleep and offers new insights into the role of brain oscillations in information processing and memory consolidation. PMID:28450831

  3. An Adenosine-Mediated Glial-Neuronal Circuit for Homeostatic Sleep.

    PubMed

    Bjorness, Theresa E; Dale, Nicholas; Mettlach, Gabriel; Sonneborn, Alex; Sahin, Bogachan; Fienberg, Allen A; Yanagisawa, Masashi; Bibb, James A; Greene, Robert W

    2016-03-30

    Sleep homeostasis reflects a centrally mediated drive for sleep, which increases during waking and resolves during subsequent sleep. Here we demonstrate that mice deficient for glial adenosine kinase (AdK), the primary metabolizing enzyme for adenosine (Ado), exhibit enhanced expression of this homeostatic drive by three independent measures: (1) increased rebound of slow-wave activity; (2) increased consolidation of slow-wave sleep; and (3) increased time constant of slow-wave activity decay during an average slow-wave sleep episode, proposed and validated here as a new index for homeostatic sleep drive. Conversely, mice deficient for the neuronal adenosine A1 receptor exhibit significantly decreased sleep drive as judged by these same indices. Neuronal knock-out of AdK did not influence homeostatic sleep need. Together, these findings implicate a glial-neuronal circuit mediated by intercellular Ado, controlling expression of homeostatic sleep drive. Because AdK is tightly regulated by glial metabolic state, our findings suggest a functional link between cellular metabolism and sleep homeostasis. The work presented here provides evidence for an adenosine-mediated regulation of sleep in response to waking (i.e., homeostatic sleep need), requiring activation of neuronal adenosine A1 receptors and controlled by glial adenosine kinase. Adenosine kinase acts as a highly sensitive and important metabolic sensor of the glial ATP/ADP and AMP ratio directly controlling intracellular adenosine concentration. Glial equilibrative adenosine transporters reflect the intracellular concentration to the extracellular milieu to activate neuronal adenosine receptors. Thus, adenosine mediates a glial-neuronal circuit linking glial metabolic state to neural-expressed sleep homeostasis. This indicates a metabolically related function(s) for this glial-neuronal circuit in the buildup and resolution of our need to sleep and suggests potential therapeutic targets more directly related to

  4. Assisted conception, maternal personality and parenting: Associations with toddler sleep behaviour.

    PubMed

    Johnson, Nikki; McMahon, Catherine; Gibson, Frances

    2014-09-01

    To explore the role of maternal personality (hardiness), sleep-related cognitions and bedtime involvement in child sleep behaviour during the second post-natal year in a sample of spontaneous and assisted conception first-time mothers. Mothers (n = 134 (spontaneous (n = 81); assisted (n = 53) conception)) reported on a resilience measure (hardiness) during pregnancy and child sleep at 7 and 19 months post-partum. At 19 months post-partum, mothers also reported on their cognitions and involvement around their child's bedtime, and half the sample used Actigraph monitors (Acitiwatch-16, Mini Mitter Co. Inc, Bend, OR, USA) to validate maternal report of child sleep. No significant differences were found between spontaneous and assisted conception mothers on any of the study variables; therefore, assisted and spontaneous samples were combined. Structural equation modelling confirmed that lower pre-birth maternal hardiness was associated with more problematic sleep-related cognitions (β = 0.23, P < 0.01) and involvement at bedtime (β = 0.29, P < 0.01) and poorer child sleep outcomes (β = -0.33, P < 0.001) during toddlerhood, even after considering concurrent maternal mood and child temperament. Pre-birth maternal hardiness rather than mode of conception contributes to parenting cognitions and behaviour around child sleep and, ultimately, toddlers' sleep outcomes. Findings suggest that targeting negative maternal perceptions of control and efficacy through clinical interventions could benefit toddlers' sleep. © 2014 The Authors. Journal of Paediatrics and Child Health © 2014 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  5. Synaptic plasticity modulates autonomous transitions between waking and sleep states: Insights from a Morris-Lecar model

    NASA Astrophysics Data System (ADS)

    Ciszak, Marzena; Bellesi, Michele

    2011-12-01

    The transitions between waking and sleep states are characterized by considerable changes in neuronal firing. During waking, neurons fire tonically at irregular intervals and a desynchronized activity is observed at the electroencephalogram. This activity becomes synchronized with slow wave sleep onset when neurons start to oscillate between periods of firing (up-states) and periods of silence (down-states). Recently, it has been proposed that the connections between neurons undergo potentiation during waking, whereas they weaken during slow wave sleep. Here, we propose a dynamical model to describe basic features of the autonomous transitions between such states. We consider a network of coupled neurons in which the strength of the interactions is modulated by synaptic long term potentiation and depression, according to the spike time-dependent plasticity rule (STDP). The model shows that the enhancement of synaptic strength between neurons occurring in waking increases the propensity of the network to synchronize and, conversely, desynchronization appears when the strength of the connections become weaker. Both transitions appear spontaneously, but the transition from sleep to waking required a slight modification of the STDP rule with the introduction of a mechanism which becomes active during sleep and changes the proportion between potentiation and depression in accordance with biological data. At the neuron level, transitions from desynchronization to synchronization and vice versa can be described as a bifurcation between two different states, whose dynamical regime is modulated by synaptic strengths, thus suggesting that transition from a state to an another can be determined by quantitative differences between potentiation and depression.

  6. Activity-Dependent Downscaling of Subthreshold Synaptic Inputs during Slow-Wave-Sleep-like Activity In Vivo.

    PubMed

    González-Rueda, Ana; Pedrosa, Victor; Feord, Rachael C; Clopath, Claudia; Paulsen, Ole

    2018-03-21

    Activity-dependent synaptic plasticity is critical for cortical circuit refinement. The synaptic homeostasis hypothesis suggests that synaptic connections are strengthened during wake and downscaled during sleep; however, it is not obvious how the same plasticity rules could explain both outcomes. Using whole-cell recordings and optogenetic stimulation of presynaptic input in urethane-anesthetized mice, which exhibit slow-wave-sleep (SWS)-like activity, we show that synaptic plasticity rules are gated by cortical dynamics in vivo. While Down states support conventional spike timing-dependent plasticity, Up states are biased toward depression such that presynaptic stimulation alone leads to synaptic depression, while connections contributing to postsynaptic spiking are protected against this synaptic weakening. We find that this novel activity-dependent and input-specific downscaling mechanism has two important computational advantages: (1) improved signal-to-noise ratio, and (2) preservation of previously stored information. Thus, these synaptic plasticity rules provide an attractive mechanism for SWS-related synaptic downscaling and circuit refinement. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Robust Long-Range Coordination of Spontaneous Neural Activity in Waking, Sleep and Anesthesia.

    PubMed

    Liu, Xiao; Yanagawa, Toru; Leopold, David A; Fujii, Naotaka; Duyn, Jeff H

    2015-09-01

    Although the emerging field of functional connectomics relies increasingly on the analysis of spontaneous fMRI signal covariation to infer the spatial fingerprint of the brain's large-scale functional networks, the nature of the underlying neuro-electrical activity remains incompletely understood. In part, this lack in understanding owes to the invasiveness of electrophysiological acquisition, the difficulty in their simultaneous recording over large cortical areas, and the absence of fully established methods for unbiased extraction of network information from these data. Here, we demonstrate a novel, data-driven approach to analyze spontaneous signal variations in electrocorticographic (ECoG) recordings from nearly entire hemispheres of macaque monkeys. Based on both broadband analysis and analysis of specific frequency bands, the ECoG signals were found to co-vary in patterns that resembled the fMRI networks reported in previous studies. The extracted patterns were robust against changes in consciousness associated with sleep and anesthesia, despite profound changes in intrinsic characteristics of the raw signals, including their spectral signatures. These results suggest that the spatial organization of large-scale brain networks results from neural activity with a broadband spectral feature and is a core aspect of the brain's physiology that does not depend on the state of consciousness. Published by Oxford University Press 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  8. Synchronization Properties of Slow Cortical Oscillations

    NASA Astrophysics Data System (ADS)

    Takekawa, T.; Aoyagi, T.; Fukai, T.

    During slow-wave sleep, the brain shows slow oscillatory activity with remarkable long-range synchrony. Intracellular recordings show that the slow oscillation consists of two phases: an textit{up} state and a textit{down} state. Deriving the phase-response function of simplified neuronal systems, we examine the synchronization properties on slow oscillations between the textit{up} state and the textit{down} state. As a result, the strange interaction functions are found in some parameter ranges. These functions indicate that the states with the smaller phase lag than a critical value are all stable.

  9. Characterization of the sleep-wake patterns in mice lacking fatty acid amide hydrolase.

    PubMed

    Huitron-Resendiz, Salvador; Sanchez-Alavez, Manuel; Wills, Derek N; Cravatt, Benjamin F; Henriksen, Steven J

    2004-08-01

    Oleamide and anandamide are fatty acid amides implicated in the regulatory mechanisms of sleep processes. However, due to their prompt catabolism by fatty acid amide hydrolase (FAAH), their pharmacologic and behavioral effects, in vivo, disappear rapidly. To determine if, in the absence of FAAH, the hypnogenic fatty acid amides induce an increase of sleep, we characterized the sleep-wake patters in FAAH-knockout mice [FAAH (-/-)] before and after sleep deprivation. FAAH (-/-), FAAH (+/-), and FAAH (+/+) mice were implanted chronically for sleep, body temperature (Tb), and locomotor activity (LMA) recordings. Sleep-wake states were recorded during a 24-hour baseline session followed by 8 hours of sleep deprivation. Recovery recordings were done during the 16 hours following sleep deprivation. Total amount of wake, slow-wave sleep, and rapid eye movement sleep were calculated and compared between genotypes. The electroencephalographic spectral analysis was performed by fast Fourier transform analysis. Telemetry recordings of Tb and LMA were carried out continuously during 4 days under baseline conditions. N/A. FAAH (-/-) mice and their heterozygote (+/-) and control (+/+) littermates were used. Sleep deprivation. FAAH (-/-) mice possess higher values of slow-wave sleep and more intense episodes of slow-wave sleep than do control littermates under baseline conditions that are not related to differences in Tb and LMA. A rebound of slow-wave sleep and rapid eye movement sleep as well an increase in the levels of slow-wave activity were observed after sleep deprivation in all genotypes. These findings support the role of fatty acid amides as possible modulators of sleep and indicate that the homeostatic mechanisms of sleep in FAAH (-/-) mice are not disrupted.

  10. Physiological correlates to spontaneous physical activity variability in obese patients with already treated sleep apnea syndrome.

    PubMed

    Vivodtzev, Isabelle; Mendelson, Monique; Croteau, Marilie; Gorain, Sandy; Wuyam, Bernard; Tamisier, Renaud; Lévy, Patrick; Maltais, François; Pépin, Jean-Louis

    2017-03-01

    Physical activity is promoted in patients with sleep disorders and obesity. The aim of the present study was to assess physiological factors influencing objectively measured spontaneous physical activity in already treated patients for obstructive sleep apnea (OSA) by nocturnal continuous positive airway pressure (CPAP). Fifty-five patients (age = 53 ± 3 years; body mass index (BMI) = 38 ± 3 kg/m 2 ; compliance with CPAP >4 h/night) were prospectively included. Measurements were 5-day actigraphy with metabolic equivalent of task (METs) assessment, body composition, pulmonary function, quadriceps and respiratory muscle strength, exercise capacity (6-min walking distance and maximal aerobic capacity), as well as sleep parameters (sleepiness, duration, oxygen saturation, and micro-arousals during sleep) and quality of life (SF-36 questionnaire). As expected, the number of steps per day (6879 ± 2511) and mean intensity of physical activity (1.38 ± 0.15 METs) were below the recommendations for obese population. In age-adjusted stepwise regression models, peak oxygen consumption (VO 2 peak ) and peak dyspnea perception during incremental exercise test were independent predictors of the number of steps per day (r = 0.49, p = 0.001) although VO 2 peak and peak minute ventilation were independent predictors of intensity of physical activity (in METs/day; r = 0.49, p = 0.001). In severe obese patients with OSA, exercise capacity, ventilatory requirement, and dyspnea perception were main physiological components of physical activity. These results emphasize the need to consider specific training interventions that increase ability to perform intense physical activity in obese OSA.

  11. Non-REM sleep EEG power distribution in fatigue and sleepiness.

    PubMed

    Neu, Daniel; Mairesse, Olivier; Verbanck, Paul; Linkowski, Paul; Le Bon, Olivier

    2014-04-01

    The aim of this study is to contribute to the sleep-related differentiation between daytime fatigue and sleepiness. 135 subjects presenting with sleep apnea-hypopnea syndrome (SAHS, n=58) or chronic fatigue syndrome (CFS, n=52) with respective sleepiness or fatigue complaints and a control group (n=25) underwent polysomnography and psychometric assessments for fatigue, sleepiness, affective symptoms and perceived sleep quality. Sleep EEG spectral analysis for ultra slow, delta, theta, alpha, sigma and beta power bands was performed on frontal, central and occipital derivations. Patient groups presented with impaired subjective sleep quality and higher affective symptom intensity. CFS patients presented with highest fatigue and SAHS patients with highest sleepiness levels. All groups showed similar total sleep time. Subject groups mainly differed in sleep efficiency, wake after sleep onset, duration of light sleep (N1, N2) and slow wave sleep, as well as in sleep fragmentation and respiratory disturbance. Relative non-REM sleep power spectra distributions suggest a pattern of power exchange in higher frequency bands at the expense of central ultra slow power in CFS patients during all non-REM stages. In SAHS patients, however, we found an opposite pattern at occipital sites during N1 and N2. Slow wave activity presents as a crossroad of fatigue and sleepiness with, however, different spectral power band distributions during non-REM sleep. The homeostatic function of sleep might be compromised in CFS patients and could explain why, in contrast to sleepiness, fatigue does not resolve with sleep in these patients. The present findings thus contribute to the differentiation of both phenomena. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Extracellular levels of lactate, but not oxygen, reflect sleep homeostasis in the rat cerebral cortex.

    PubMed

    Dash, Michael B; Tononi, Giulio; Cirelli, Chiara

    2012-07-01

    It is well established that brain metabolism is higher during wake and rapid eye movement (REM) sleep than in nonrapid eye movement (NREM) sleep. Most of the brain's energy is used to maintain neuronal firing and glutamatergic transmission. Recent evidence shows that cortical firing rates, extracellular glutamate levels, and markers of excitatory synaptic strength increase with time spent awake and decline throughout NREM sleep. These data imply that the metabolic cost of each behavioral state is not fixed but may reflect sleep-wake history, a possibility that is investigated in the current report. Chronic (4d) electroencephalographic (EEG) recordings in the rat cerebral cortex were coupled with fixed-potential amperometry to monitor the extracellular concentration of oxygen ([oxy]) and lactate ([lac]) on a second-by-second basis across the spontaneous sleep-wake cycle and in response to sleep deprivation. Basic sleep research laboratory. Wistar Kyoto (WKY) adult male rats. N/A. Within 30-60 sec [lac] and [oxy] progressively increased during wake and REM sleep and declined during NREM sleep (n = 10 rats/metabolite), but with several differences. [Oxy], but not [lac], increased more during wake with high motor activity and/or elevated EEG high-frequency power. Meanwhile, only the NREM decline of [lac] reflected sleep pressure as measured by slow-wave activity, mirroring previous results for cortical glutamate. The observed state-dependent changes in cortical [lac] and [oxy] are consistent with higher brain metabolism during waking and REM sleep in comparison with NREM sleep. Moreover, these data suggest that glycolytic activity, most likely through its link with glutamatergic transmission, reflects sleep homeostasis.

  13. Light sleep versus slow wave sleep in memory consolidation: a question of global versus local processes?

    PubMed

    Genzel, Lisa; Kroes, Marijn C W; Dresler, Martin; Battaglia, Francesco P

    2014-01-01

    Sleep is strongly involved in memory consolidation, but its role remains unclear. 'Sleep replay', the active potentiation of relevant synaptic connections via reactivation of patterns of network activity that occurred during previous experience, has received considerable attention. Alternatively, sleep has been suggested to regulate synaptic weights homeostatically and nonspecifically, thereby improving the signal:noise ratio of memory traces. Here, we reconcile these theories by highlighting the distinction between light and deep nonrapid eye movement (NREM) sleep. Specifically, we draw on recent studies to suggest a link between light NREM and active potentiation, and between deep NREM and homeostatic regulation. This framework could serve as a key for interpreting the physiology of sleep stages and reconciling inconsistencies in terminology in this field. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Sleep and wake patterns in aircrew on a 2-day layover on westward long distance flights.

    PubMed

    Lowden, A; Akerstedt, T

    1998-06-01

    As part of a research program of sleep/wake disturbances in connection with irregular work hours and time zone transitions, the study aimed to describe the spontaneous sleep/wake pattern in connection with a westward (Stockholm to Los Angeles) transmeridian flight (-9 h) and short layover (50 h). To describe all sleep episodes and the recovery process across 4 d, and to relate adjustment to individual differences. We monitored 42 SAS aircrew for 9 d with activity monitors and diary before, during, and after flight. During the outbound day the wake span was 21.7 h and 90% of the aircrew adopted local bed times on layover. The readaptation to normal sleep/wake patterns were rapid on the return. Napping was common (93%), especially on-board and before the return. Sleep efficiency dropped below 90% during layover, being felt to be too short and disturbed by awakenings, and gradually returned to normal across four recovery days. Recovery sleep was characterized by difficulties waking up and feelings of not being refreshed from sleep. Sleepiness symptoms increased during layover and gradually decreased across recovery days, still being elevated on day 4. In the present study we found that westward flights are associated with extended wake spans during layover, increased sleepiness, and slow recovery on return home. Strategic sleeping may counteract the effect somewhat, but individual differences are few.

  15. Substance P and the neurokinin-1 receptor regulate electroencephalogram non-rapid eye movement sleep slow-wave activity locally

    PubMed Central

    Zielinski, Mark R.; Karpova, Svetlana A.; Yang, Xiaomei; Gerashchenko, Dmitry

    2014-01-01

    The neuropeptide substance P is an excitatory neurotransmitter produced by various cells including neurons and microglia that is involved in regulating inflammation and cerebral blood flow—functions that affect sleep and slow-wave activity (SWA). Substance P is the major ligand for the neurokinin-1 receptor (NK-1R), which is found throughout the brain including the cortex. The NK-1R is found on sleep-active cortical neurons expressing neuronal nitric oxide synthase whose activity is associated with SWA. We determined the effects of local cortical administration of a NK-1R agonist (substance P-fragment 1, 7) and a NK-1R antagonist (CP96345) on sleep and SWA in mice. The NK-1R agonist significantly enhanced SWA for several hours when applied locally to the cortex of the ipsilateral hemisphere as the electroencephalogram (EEG) electrode but not after application to the contralateral hemisphere when compared to saline vehicle control injections. In addition, a significant compensatory reduction in SWA was found after the NK-1R agonist-induced enhancements in SWA. Conversely, injections of the NK-1R antagonist into the cortex of the ipsilateral hemisphere of the EEG electrode attenuated SWA compared to vehicle injections but this effect was not found after injections of the NK-1R antagonist into contralateral hemisphere as the EEG electrode. Non-rapid eye movement sleep and rapid eye movement sleep duration responses after NK-1R agonist and antagonist injections were not significantly different from the responses to the vehicle. Our findings indicate that the substance P and the NK-1R are involved in regulating SWA locally. PMID:25301750

  16. Deepening Sleep by Hypnotic Suggestion

    PubMed Central

    Cordi, Maren J.; Schlarb, Angelika A.; Rasch, Björn

    2014-01-01

    Study Objectives: Slow wave sleep (SWS) plays a critical role in body restoration and promotes brain plasticity; however, it markedly declines across the lifespan. Despite its importance, effective tools to increase SWS are rare. Here we tested whether a hypnotic suggestion to “sleep deeper” extends the amount of SWS. Design: Within-subject, placebo-controlled crossover design. Setting: Sleep laboratory at the University of Zurich, Switzerland. Participants: Seventy healthy females 23.27 ± 3.17 y. Intervention: Participants listened to an auditory text with hypnotic suggestions or a control tape before napping for 90 min while high-density electroencephalography was recorded. Measurements and Results: After participants listened to the hypnotic suggestion to “sleep deeper” subsequent SWS was increased by 81% and time spent awake was reduced by 67% (with the amount of SWS or wake in the control condition set to 100%). Other sleep stages remained unaffected. Additionally, slow wave activity was significantly enhanced after hypnotic suggestions. During the hypnotic tape, parietal theta power increases predicted the hypnosis-induced extension of SWS. Additional experiments confirmed that the beneficial effect of hypnotic suggestions on SWS was specific to the hypnotic suggestion and did not occur in low suggestible participants. Conclusions: Our results demonstrate the effectiveness of hypnotic suggestions to specifically increase the amount and duration of slow wave sleep (SWS) in a midday nap using objective measures of sleep in young, healthy, suggestible females. Hypnotic suggestions might be a successful tool with a lower risk of adverse side effects than pharmacological treatments to extend SWS also in clinical and elderly populations. Citation: Cordi MJ, Schlarb AA, Rasch B. Deepening sleep by hypnotic suggestion. SLEEP 2014;37(6):1143-1152. PMID:24882909

  17. Spontaneous sleep-wake cycle and sleep deprivation differently induce Bdnf1, Bdnf4 and Bdnf9a DNA methylation and transcripts levels in the basal forebrain and frontal cortex in rats.

    PubMed

    Ventskovska, Olena; Porkka-Heiskanen, Tarja; Karpova, Nina N

    2015-04-01

    Brain-derived neurotrophic factor (Bdnf) regulates neuronal plasticity, slow wave activity and sleep homeostasis. Environmental stimuli control Bdnf expression through epigenetic mechanisms, but there are no data on epigenetic regulation of Bdnf by sleep or sleep deprivation. Here we investigated whether 5-methylcytosine (5mC) DNA modification at Bdnf promoters p1, p4 and p9 influences Bdnf1, Bdnf4 and Bdnf9a expression during the normal inactive phase or after sleep deprivation (SD) (3, 6 and 12 h, end-times being ZT3, ZT6 and ZT12) in rats in two brain areas involved in sleep regulation, the basal forebrain and cortex. We found a daytime variation in cortical Bdnf expression: Bdnf1 expression was highest at ZT6 and Bdnf4 lowest at ZT12. Such variation was not observed in the basal forebrain. Also Bdnf p1 and p9 methylation levels differed only in the cortex, while Bdnf p4 methylation did not vary in either area. Factorial analysis revealed that sleep deprivation significantly induced Bdnf1 and Bdnf4 with the similar pattern for Bdnf9a in both basal forebrain and cortex; 12 h of sleep deprivation decreased 5mC levels at the cortical Bdnf p4 and p9. Regression analysis between the 5mC promoter levels and the corresponding Bdnf transcript expression revealed significant negative correlations for the basal forebrain Bdnf1 and cortical Bdnf9a transcripts in only non-deprived rats, while these correlations were lost after sleep deprivation. Our results suggest that Bdnf transcription during the light phase of undisturbed sleep-wake cycle but not after SD is regulated at least partially by brain site-specific DNA methylation. © 2014 European Sleep Research Society.

  18. Performance of an Ambulatory Dry-EEG Device for Auditory Closed-Loop Stimulation of Sleep Slow Oscillations in the Home Environment

    PubMed Central

    Debellemaniere, Eden; Chambon, Stanislas; Pinaud, Clemence; Thorey, Valentin; Dehaene, David; Léger, Damien; Chennaoui, Mounir; Arnal, Pierrick J.; Galtier, Mathieu N.

    2018-01-01

    Recent research has shown that auditory closed-loop stimulation can enhance sleep slow oscillations (SO) to improve N3 sleep quality and cognition. Previous studies have been conducted in lab environments. The present study aimed to validate and assess the performance of a novel ambulatory wireless dry-EEG device (WDD), for auditory closed-loop stimulation of SO during N3 sleep at home. The performance of the WDD to detect N3 sleep automatically and to send auditory closed-loop stimulation on SO were tested on 20 young healthy subjects who slept with both the WDD and a miniaturized polysomnography (part 1) in both stimulated and sham nights within a double blind, randomized and crossover design. The effects of auditory closed-loop stimulation on delta power increase were assessed after one and 10 nights of stimulation on an observational pilot study in the home environment including 90 middle-aged subjects (part 2).The first part, aimed at assessing the quality of the WDD as compared to a polysomnograph, showed that the sensitivity and specificity to automatically detect N3 sleep in real-time were 0.70 and 0.90, respectively. The stimulation accuracy of the SO ascending-phase targeting was 45 ± 52°. The second part of the study, conducted in the home environment, showed that the stimulation protocol induced an increase of 43.9% of delta power in the 4 s window following the first stimulation (including evoked potentials and SO entrainment effect). The increase of SO response to auditory stimulation remained at the same level after 10 consecutive nights. The WDD shows good performances to automatically detect in real-time N3 sleep and to send auditory closed-loop stimulation on SO accurately. These stimulation increased the SO amplitude during N3 sleep without any adaptation effect after 10 consecutive nights. This tool provides new perspectives to figure out novel sleep EEG biomarkers in longitudinal studies and can be interesting to conduct broad studies on the

  19. CONTROL OF SLEEP AND WAKEFULNESS

    PubMed Central

    Brown, Ritchie E.; Basheer, Radhika; McKenna, James T.; Strecker, Robert E.; McCarley, Robert W.

    2013-01-01

    This review summarizes the brain mechanisms controlling sleep and wakefulness. Wakefulness promoting systems cause low-voltage, fast activity in the electroencephalogram (EEG). Multiple interacting neurotransmitter systems in the brain stem, hypothalamus, and basal forebrain converge onto common effector systems in the thalamus and cortex. Sleep results from the inhibition of wake-promoting systems by homeostatic sleep factors such as adenosine and nitric oxide and GABAergic neurons in the preoptic area of the hypothalamus, resulting in large-amplitude, slow EEG oscillations. Local, activity-dependent factors modulate the amplitude and frequency of cortical slow oscillations. Non-rapid-eye-movement (NREM) sleep results in conservation of brain energy and facilitates memory consolidation through the modulation of synaptic weights. Rapid-eye-movement (REM) sleep results from the interaction of brain stem cholinergic, aminergic, and GABAergic neurons which control the activity of glutamatergic reticular formation neurons leading to REM sleep phenomena such as muscle atonia, REMs, dreaming, and cortical activation. Strong activation of limbic regions during REM sleep suggests a role in regulation of emotion. Genetic studies suggest that brain mechanisms controlling waking and NREM sleep are strongly conserved throughout evolution, underscoring their enormous importance for brain function. Sleep disruption interferes with the normal restorative functions of NREM and REM sleep, resulting in disruptions of breathing and cardiovascular function, changes in emotional reactivity, and cognitive impairments in attention, memory, and decision making. PMID:22811426

  20. Is sleep-related verbal memory consolidation impaired in sleepwalkers?

    PubMed

    Uguccioni, Ginevra; Pallanca, Olivier; Golmard, Jean-Louis; Leu-Semenescu, Smaranda; Arnulf, Isabelle

    2015-04-01

    In order to evaluate verbal memory consolidation during sleep in subjects experiencing sleepwalking or sleep terror, 19 patients experiencing sleepwalking/sleep terror and 19 controls performed two verbal memory tasks (16-word list from the Free and Cued Selective Reminding Test, and a 220- and 263-word modified story recall test) in the evening, followed by nocturnal video polysomnography (n = 29) and morning recall (night-time consolidation after 14 h, n = 38). The following morning, they were given a daytime learning task using the modified story recall test in reverse order, followed by an evening recall test after 9 h of wakefulness (daytime consolidation, n = 38). The patients experiencing sleepwalking/sleep terror exhibited more frequent awakenings during slow-wave sleep and longer wakefulness after sleep onset than the controls. Despite this reduction in sleep quality among sleepwalking/sleep terror patients, they improved their scores on the verbal tests the morning after sleep compared with the previous evening (+16 ± 33%) equally well as the controls (+2 ± 13%). The performance of both groups worsened during the daytime in the absence of sleep (-16 ± 15% for the sleepwalking/sleep terror group and -14 ± 11% for the control group). There was no significant correlation between the rate of memory consolidation and any of the sleep measures. Seven patients experiencing sleepwalking also sleep-talked during slow-wave sleep, but their sentences were unrelated to the tests or the list of words learned during the evening. In conclusion, the alteration of slow-wave sleep during sleepwalking/sleep terror does not noticeably impact on sleep-related verbal memory consolidation. © 2014 European Sleep Research Society.

  1. Neuronal plasticity and thalamocortical sleep and waking oscillations

    PubMed Central

    Timofeev, Igor

    2011-01-01

    Throughout life, thalamocortical (TC) network alternates between activated states (wake or rapid eye movement sleep) and slow oscillatory state dominating slow-wave sleep. The patterns of neuronal firing are different during these distinct states. I propose that due to relatively regular firing, the activated states preset some steady state synaptic plasticity and that the silent periods of slow-wave sleep contribute to a release from this steady state synaptic plasticity. In this respect, I discuss how states of vigilance affect short-, mid-, and long-term synaptic plasticity, intrinsic neuronal plasticity, as well as homeostatic plasticity. Finally, I suggest that slow oscillation is intrinsic property of cortical network and brain homeostatic mechanisms are tuned to use all forms of plasticity to bring cortical network to the state of slow oscillation. However, prolonged and profound shift from this homeostatic balance could lead to development of paroxysmal hyperexcitability and seizures as in the case of brain trauma. PMID:21854960

  2. The CaV2.3 R-type voltage-gated Ca2+ channel in mouse sleep architecture.

    PubMed

    Siwek, Magdalena Elisabeth; Müller, Ralf; Henseler, Christina; Broich, Karl; Papazoglou, Anna; Weiergräber, Marco

    2014-05-01

    Voltage-gated Ca(2+) channels (VGCCs) are key elements in mediating thalamocortical rhythmicity. Low-voltage activated (LVA) CaV 3 T-type Ca(2+) channels have been related to thalamic rebound burst firing and to generation of non-rapid eye movement (NREM) sleep. High-voltage activated (HVA) CaV 1 L-type Ca(2+) channels, on the opposite, favor the tonic mode of action associated with higher levels of vigilance. However, the role of the HVA Non-L-type CaV2.3 Ca(2+) channels, which are predominantly expressed in the reticular thalamic nucleus (RTN), still remains unclear. Recently, CaV2.3(-/-) mice were reported to exhibit altered spike-wave discharge (SWD)/absence seizure susceptibility supported by the observation that CaV2.3 mediated Ca(2+) influx into RTN neurons can trigger small-conductance Ca(2+)-activated K(+)-channel type 2 (SK2) currents capable of maintaining thalamic burst activity. Based on these studies we investigated the role of CaV2.3 R-type Ca(2+) channels in rodent sleep. The role of CaV2.3 Ca(2+) channels was analyzed in CaV2.3(-/-) mice and controls in both spontaneous and artificial urethane-induced sleep, using implantable video-EEG radiotelemetry. Data were analyzed for alterations in sleep architecture using sleep staging software and time-frequency analysis. CaV2.3 deficient mice exhibited reduced wake duration and increased slow-wave sleep (SWS). Whereas mean sleep stage durations remained unchanged, the total number of SWS epochs was increased in CaV2.3(-/-) mice. Additional changes were observed for sleep stage transitions and EEG amplitudes. Furthermore, urethane-induced SWS mimicked spontaneous sleep results obtained from CaV2.3 deficient mice. Quantitative Real-time PCR did not reveal changes in thalamic CaV3 T-type Ca(2+) channel expression. The detailed mechanisms of SWS increase in CaV2.3(-/-) mice remain to be determined. Low-voltage activated CaV2.3 R-type Ca(2+) channels in the thalamocortical loop and extra

  3. Sleep Spindles in the Right Hemisphere Support Awareness of Regularities and Reflect Pre-Sleep Activations.

    PubMed

    Yordanova, Juliana; Kolev, Vasil; Bruns, Eike; Kirov, Roumen; Verleger, Rolf

    2017-11-01

    The present study explored the sleep mechanisms which may support awareness of hidden regularities. Before sleep, 53 participants learned implicitly a lateralized variant of the serial response-time task in order to localize sensorimotor encoding either in the left or right hemisphere and induce implicit regularity representations. Electroencephalographic (EEG) activity was recorded at multiple electrodes during both task performance and sleep, searching for lateralized traces of the preceding activity during learning. Sleep EEG analysis focused on region-specific slow (9-12 Hz) and fast (13-16 Hz) sleep spindles during nonrapid eye movement sleep. Fast spindle activity at those motor regions that were activated during learning increased with the amount of postsleep awareness. Independently of side of learning, spindle activity at right frontal and fronto-central regions was involved: there, fast spindles increased with the transformation of sequence knowledge from implicit before sleep to explicit after sleep, and slow spindles correlated with individual abilities of gaining awareness. These local modulations of sleep spindles corresponded to regions with greater presleep activation in participants with postsleep explicit knowledge. Sleep spindle mechanisms are related to explicit awareness (1) by tracing the activation of motor cortical and right-hemisphere regions which had stronger involvement already during learning and (2) by recruitment of individually consolidated processing modules in the right hemisphere. The integration of different sleep spindle mechanisms with functional states during wake collectively supports the gain of awareness of previously experienced regularities, with a special role for the right hemisphere. © Sleep Research Society 2017. Published by Oxford University Press [on behalf of the Sleep Research Society].

  4. Transcranial Electrical Currents to Probe EEG Brain Rhythms and Memory Consolidation during Sleep in Humans

    PubMed Central

    Marshall, Lisa; Kirov, Roumen; Brade, Julian; Mölle, Matthias; Born, Jan

    2011-01-01

    Previously the application of a weak electric anodal current oscillating with a frequency of the sleep slow oscillation (∼0.75 Hz) during non-rapid eye movement sleep (NonREM) sleep boosted endogenous slow oscillation activity and enhanced sleep-associated memory consolidation. The slow oscillations occurring during NonREM sleep and theta oscillations present during REM sleep have been considered of critical relevance for memory formation. Here transcranial direct current stimulation (tDCS) oscillating at 5 Hz, i.e., within the theta frequency range (theta-tDCS) is applied during NonREM and REM sleep. Theta-tDCS during NonREM sleep produced a global decrease in slow oscillatory activity conjoint with a local reduction of frontal slow EEG spindle power (8–12 Hz) and a decrement in consolidation of declarative memory, underlining the relevance of these cortical oscillations for sleep-dependent memory consolidation. In contrast, during REM sleep theta-tDCS appears to increase global gamma (25–45 Hz) activity, indicating a clear brain state-dependency of theta-tDCS. More generally, results demonstrate the suitability of oscillating-tDCS as a tool to analyze functions of endogenous EEG rhythms and underlying endogenous electric fields as well as the interactions between EEG rhythms of different frequencies. PMID:21340034

  5. Increased Sleep Depth in Developing Neural Networks: New Insights from Sleep Restriction in Children

    PubMed Central

    Kurth, Salome; Dean, Douglas C.; Achermann, Peter; O’Muircheartaigh, Jonathan; Huber, Reto; Deoni, Sean C. L.; LeBourgeois, Monique K.

    2016-01-01

    Brain networks respond to sleep deprivation or restriction with increased sleep depth, which is quantified as slow-wave activity (SWA) in the sleep electroencephalogram (EEG). When adults are sleep deprived, this homeostatic response is most pronounced over prefrontal brain regions. However, it is unknown how children’s developing brain networks respond to acute sleep restriction, and whether this response is linked to myelination, an ongoing process in childhood that is critical for brain development and cortical integration. We implemented a bedtime delay protocol in 5- to 12-year-old children to obtain partial sleep restriction (1-night; 50% of their habitual sleep). High-density sleep EEG was assessed during habitual and restricted sleep and brain myelin content was obtained using mcDESPOT magnetic resonance imaging. The effect of sleep restriction was analyzed using statistical non-parametric mapping with supra-threshold cluster analysis. We observed a localized homeostatic SWA response following sleep restriction in a specific parieto-occipital region. The restricted/habitual SWA ratio was negatively associated with myelin water fraction in the optic radiation, a developing fiber bundle. This relationship occurred bilaterally over parieto-temporal areas and was adjacent to, but did not overlap with the parieto-occipital region showing the most pronounced homeostatic SWA response. These results provide evidence for increased sleep need in posterior neural networks in children. Sleep need in parieto-temporal areas is related to myelin content, yet it remains speculative whether age-related myelin growth drives the fading of the posterior homeostatic SWA response during the transition to adulthood. Whether chronic insufficient sleep in the sensitive period of early life alters the anatomical generators of deep sleep slow-waves is an important unanswered question. PMID:27708567

  6. Time course of EEG slow-wave activity in pre-school children with sleep disordered breathing: a possible mechanism for daytime deficits?

    PubMed

    Biggs, Sarah N; Walter, Lisa M; Nisbet, Lauren C; Jackman, Angela R; Anderson, Vicki; Nixon, Gillian M; Davey, Margot J; Trinder, John; Hoffmann, Robert; Armitage, Roseanne; Horne, Rosemary S C

    2012-09-01

    Daytime deficits in children with sleep disordered breathing (SDB) are theorized to result from hypoxic insult to the developing brain or fragmented sleep. Yet, these do not explain why deficits occur in primary snorers (PS). The time course of slow wave EEG activity (SWA), a proxy of homeostatic regulation and cortical maturation, may provide insight. Clinical and control subjects (N=175: mean age 4.3±0.9 y: 61% male) participated in overnight polysomnography (PSG). Standard sleep scoring and power spectral analyses were conducted on EEG (C4/A1; 0.5-<3.9Hz). Univariate ANOVA's evaluated group differences in sleep stages and respiratory parameters. Repeated-measures ANCOVA evaluated group differences in the time course of SWA. Four groups were classified: controls (OAHI ≤ 1 event/h; no clinical history); PS (OAHI ≤ 1 event/h; clinical history); mild OSA (OAHI=1-5 events/h); and moderate to severe OSA (MS OSA: OAHI>5 events/h). Group differences were found in the percentage of time spent in NREM Stages 1 and 4 (p<0.001) and in the time course of SWA. PS and Mild OSA children had higher SWA in the first NREM period than controls (p<0.05). All SDB groups had higher SWA in the fourth NREM period (p<0.01). These results suggest enhanced sleep pressure but impaired restorative sleep function in pre-school children with SDB, providing new insights into the possible mechanism for daytime deficits observed in all severities of SDB. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. From neural plate to cortical arousal-a neuronal network theory of sleep derived from in vitro "model" systems for primordial patterns of spontaneous bioelectric activity in the vertebrate central nervous system.

    PubMed

    Corner, Michael A

    2013-05-22

    In the early 1960s intrinsically generated widespread neuronal discharges were discovered to be the basis for the earliest motor behavior throughout the animal kingdom. The pattern generating system is in fact programmed into the developing nervous system, in a regionally specific manner, already at the early neural plate stage. Such rhythmically modulated phasic bursts were next discovered to be a general feature of developing neural networks and, largely on the basis of experimental interventions in cultured neural tissues, to contribute significantly to their morpho-physiological maturation. In particular, the level of spontaneous synchronized bursting is homeostatically regulated, and has the effect of constraining the development of excessive network excitability. After birth or hatching, this "slow-wave" activity pattern becomes sporadically suppressed in favor of sensory oriented "waking" behaviors better adapted to dealing with environmental contingencies. It nevertheless reappears periodically as "sleep" at several species-specific points in the diurnal/nocturnal cycle. Although this "default" behavior pattern evolves with development, its essential features are preserved throughout the life cycle, and are based upon a few simple mechanisms which can be both experimentally demonstrated and simulated by computer modeling. In contrast, a late onto- and phylogenetic aspect of sleep, viz., the intermittent "paradoxical" activation of the forebrain so as to mimic waking activity, is much less well understood as regards its contribution to brain development. Some recent findings dealing with this question by means of cholinergically induced "aroused" firing patterns in developing neocortical cell cultures, followed by quantitative electrophysiological assays of immediate and longterm sequelae, will be discussed in connection with their putative implications for sleep ontogeny.

  8. Insufficient non-REM sleep intensity in narcolepsy-cataplexy.

    PubMed

    Khatami, Ramin; Landolt, Hans-Peter; Achermann, Peter; Rétey, Julia V; Werth, Esther; Mathis, Johannes; Bassetti, Claudio L

    2007-08-01

    To compare electroencephalogram (EEG) dynamics during nocturnal sleep in patients with narcolepsy-cataplexy and healthy controls. Fragmented nocturnal sleep is a prominent feature and contributes to excessive daytime sleepiness in narcolepsy-cataplexy. Only 3 studies have addressed changes in homeostatic sleep regulation as a possible mechanism underlying nocturnal sleep fragmentation in narcolepsy-cataplexy. Baseline sleep of 11 drug-naive patients with narcolepsy-cataplexy (19-37 years) and 11 matched controls (18-41 years) was polysomnographically recorded. The EEG was subjected to spectral analysis. None, baseline condition. All patients with narcolepsy-cataplexy but no control subjects showed a sleep-onset rapid eye movement (REM) episode. Non-REM (NREM)-REM sleep cycles were longer in patients with narcolepsy-cataplexy than in controls (P = 0.04). Mean slow-wave activity declined in both groups across the first 3 NREM sleep episodes (P<0.001). The rate of decline, however, appeared to be steeper in patients with narcolepsy-cataplexy (time constant: narcolepsy-cataplexy 51.1 +/- 23.8 minutes [mean +/- SEM], 95% confidence interval [CI]: 33.4-108.8 minutes) than in controls (169.4 +/- 81.5 minutes, 95% CI: 110.9-357.6 minutes) as concluded from nonoverlapping 95% confidence interval of the time constants. The steeper decline of SWA in narcolepsy-cataplexy compared to controls was related to an impaired build-up of slow-wave activity in the second cycle. Sleep in the second cycle was interrupted in patients with narcolepsy-cataplexy, when compared with controls, by an increased number (P = 0.01) and longer duration (P = 0.01) of short wake episodes. Insufficient NREM sleep intensity is associated with nonconsolidated nocturnal sleep in narcolepsy-cataplexy. The inability to consolidate sleep manifests itself when NREM sleep intensity has decayed below a certain level and is reflected in an altered time course of slow-wave activity across NREM sleep episodes.

  9. Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss.

    PubMed

    Halassa, Michael M; Florian, Cedrick; Fellin, Tommaso; Munoz, James R; Lee, So-Young; Abel, Ted; Haydon, Philip G; Frank, Marcos G

    2009-01-29

    Astrocytes modulate neuronal activity by releasing chemical transmitters via a process termed gliotransmission. The role of this process in the control of behavior is unknown. Since one outcome of SNARE-dependent gliotransmission is the regulation of extracellular adenosine and because adenosine promotes sleep, we genetically inhibited the release of gliotransmitters and asked if astrocytes play an unsuspected role in sleep regulation. Inhibiting gliotransmission attenuated the accumulation of sleep pressure, assessed by measuring the slow wave activity of the EEG during NREM sleep, and prevented cognitive deficits associated with sleep loss. Since the sleep-suppressing effects of the A1 receptor antagonist CPT were prevented following inhibition of gliotransmission and because intracerebroventricular delivery of CPT to wild-type mice mimicked the transgenic phenotype, we conclude that astrocytes modulate the accumulation of sleep pressure and its cognitive consequences through a pathway involving A1 receptors.

  10. Sleep spindle density in narcolepsy.

    PubMed

    Christensen, Julie Anja Engelhard; Nikolic, Miki; Hvidtfelt, Mathias; Kornum, Birgitte Rahbek; Jennum, Poul

    2017-06-01

    Patients with narcolepsy type 1 (NT1) show alterations in sleep stage transitions, rapid-eye-movement (REM) and non-REM sleep due to the loss of hypocretinergic signaling. However, the sleep microstructure has not yet been evaluated in these patients. We aimed to evaluate whether the sleep spindle (SS) density is altered in patients with NT1 compared to controls and patients with narcolepsy type 2 (NT2). All-night polysomnographic recordings from 28 NT1 patients, 19 NT2 patients, 20 controls (C) with narcolepsy-like symptoms, but with normal cerebrospinal fluid hypocretin levels and multiple sleep latency tests, and 18 healthy controls (HC) were included. Unspecified, slow, and fast SS were automatically detected, and SS densities were defined as number per minute and were computed across sleep stages and sleep cycles. The between-cycle trends of SS densities in N2 and NREM sleep were evaluated within and between groups. Between-group comparisons in sleep stages revealed no significant differences in any type of SS. Within-group analyses of the SS trends revealed significant decreasing trends for NT1, HC, and C between first and last sleep cycle. Between-group analyses of SS trends between first and last sleep cycle revealed that NT2 differ from NT1 patients in the unspecified SS density in NREM sleep, and from HC in the slow SS density in N2 sleep. SS activity is preserved in NT1, suggesting that the ascending neurons to thalamic activation of SS are not significantly affected by the hypocretinergic system. NT2 patients show an abnormal pattern of SS distribution. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Oscillating Square Wave Transcranial Direct Current Stimulation (tDCS) Delivered During Slow Wave Sleep Does Not Improve Declarative Memory More Than Sham: A Randomized Sham Controlled Crossover Study.

    PubMed

    Sahlem, Gregory L; Badran, Bashar W; Halford, Jonathan J; Williams, Nolan R; Korte, Jeffrey E; Leslie, Kimberly; Strachan, Martha; Breedlove, Jesse L; Runion, Jennifer; Bachman, David L; Uhde, Thomas W; Borckardt, Jeffery J; George, Mark S

    2015-01-01

    A 2006 trial in healthy medical students found that anodal slow oscillating tDCS delivered bi-frontally during slow wave sleep had an enhancing effect in declarative, but not procedural memory. Although there have been supporting animal studies, and similar findings in pathological groups, this study has not been replicated, or refuted, in the intervening years. We therefore tested these earlier results for replication using similar methods with the exception of current waveform (square in our study, nearly sinusoidal in the original). Our objective was to test the findings of a 2006 trial suggesting bi-frontal anodal tDCS during slow wave sleep enhances declarative memory. Twelve students (mean age 25, 9 women) free of medical problems underwent two testing conditions (active, sham) in a randomized counterbalanced fashion. Active stimulation consisted of oscillating square wave tDCS delivered during early Non-Rapid Eye Movement (NREM) sleep. The sham condition consisted of setting-up the tDCS device and electrodes, but not turning it on during sleep. tDCS was delivered bi-frontally with anodes placed at F3/F4, and cathodes placed at mastoids. Current density was 0.517 mA/cm(2), and oscillated between zero and maximal current at a frequency of 0.75 Hz. Stimulation occurred during five-five minute blocks with 1-min inter-block intervals (25 min total stimulation). The primary outcomes were both declarative memory consolidation measured by a paired word association test (PWA), and non-declarative memory, measured by a non-dominant finger-tapping test (FTT). We also recorded and analyzed sleep EEG. There was no difference in the number of paired word associations remembered before compared to after sleep [(active = 3.1 ± 3.0 SD more associations) (sham = 3.8 ± 3.1 SD more associations)]. Finger tapping improved, (non-significantly) following active stimulation [(3.6 ± 2.7 SD correctly typed sequences) compared to sham stimulation (2.3 ± 2.2 SD correctly typed

  12. Prediction of general mental ability based on neural oscillation measures of sleep.

    PubMed

    Bódizs, Róbert; Kis, Tamás; Lázár, Alpár Sándor; Havrán, Linda; Rigó, Péter; Clemens, Zsófia; Halász, Péter

    2005-09-01

    The usual assessment of general mental ability (or intelligence) is based on performance attained in reasoning and problem-solving tasks. Differences in general mental ability have been associated with event-related neural activity patterns of the wakeful working brain or physical, chemical and electrical brain features measured during wakeful resting conditions. Recent evidences suggest that specific sleep electroencephalogram oscillations are related to wakeful cognitive performances. Our aim is to reveal the relationship between non-rapid eye movement sleep-specific oscillations (the slow oscillation, delta activity, slow and fast sleep spindle density, the grouping of slow and fast sleep spindles) and general mental ability assessed by the Raven Progressive Matrices Test (RPMT). The grouping of fast sleep spindles by the cortical slow oscillation in the left frontopolar derivation (Fp1) as well as the density of fast sleep spindles over the right frontal area (Fp2, F4), correlated positively with general mental ability. Data from those selected electrodes that showed the high correlations with general mental ability explained almost 70% of interindividual variance in RPMT scores. Results suggest that individual differences in general mental ability are reflected in fast sleep spindle-related oscillatory activity measured over the frontal cortex.

  13. Scatterplot analysis of EEG slow-wave magnitude and heart rate variability: an integrative exploration of cerebral cortical and autonomic functions.

    PubMed

    Kuo, Terry B J; Yang, Cheryl C H

    2004-06-15

    To explore interactions between cerebral cortical and autonomic functions in different sleep-wake states. Active waking (AW), quiet sleep (QS), and paradoxical sleep (PS) of adult male Wistar-Kyoto rats (WKY) on their daytime sleep were compared. Ten WKY. All rats had electrodes implanted for polygraphic recordings. One week later, a 6-hour daytime sleep-wakefulness recording session was performed. A scatterplot analysis of electroencephalogram (EEG) slow-wave magnitude (0.5-4 Hz) and heart rate variability (HRV) was applied in each rat. The EEG slow-wave-RR interval scatterplot from all of the recordings revealed a propeller-like pattern. If the scatterplot was divided into AW, PS, and QS according to the corresponding EEG mean power frequency and nuchal electromyogram, the EEG slow wave-RR interval relationship became nil, negative, and positive for AW, PS, and QS, respectively. A significant negative relationship was found for EEG slow-wave and high-frequency power of HRV (HF) coupling during PS and for EEG slow wave and low-frequency power of HRV to HF ratio (LF/HF) coupling during QS. The optimal time lags for the slow wave-LF/HF relationship were different between PS and QS. Bradycardia noted in QS and PS was related to sympathetic suppression and vagal excitation, respectively. The EEG slow wave-HRV scatterplot may provide unique insights into studies of sleep, and such a relationship may delineate the sleep-state-dependent fluctuations in autonomic nervous system activity.

  14. Optimizing sleep/wake schedules in space: Sleep during chronic nocturnal sleep restriction with and without diurnal naps

    NASA Astrophysics Data System (ADS)

    Mollicone, Daniel J.; Van Dongen, Hans P. A.; Dinges, David F.

    2007-02-01

    Effective sleep/wake schedules for space operations must balance severe time constraints with allocating sufficient time for sleep in order to sustain high levels of neurobehavioral performance. Developing such schedules requires knowledge about the relationship between scheduled "time in bed" (TIB) and actual physiological sleep obtained. A ground-based laboratory study in N=93 healthy adult subjects was conducted to investigate physiological sleep obtained in a range of restricted sleep schedules. Eighteen different conditions with restricted nocturnal anchor sleep, with and without diurnal naps, were examined in a response surface mapping paradigm. Sleep efficiency was found to be a function of total TIB per 24 h regardless of how the sleep was divided among nocturnal anchor sleep and diurnal nap sleep periods. The amounts of sleep stages 1+2 and REM showed more complex relationships with the durations of the anchor and nap sleep periods, while slow-wave sleep was essentially preserved among the different conditions of the experiment. The results of the study indicated that when sleep was chronically restricted, sleep duration was largely unaffected by whether the sleep was placed nocturnally or split between nocturnal anchor sleep periods and daytime naps. Having thus assessed that split-sleep schedules are feasible in terms of obtaining physiological sleep, further research will reveal whether these schedules and the associated variations in the distribution of sleep stages may be advantageous in mitigating neurobehavioral performance impairment in the face of limited time for sleep.

  15. Reverberation, Storage, and Postsynaptic Propagation of Memories during Sleep

    ERIC Educational Resources Information Center

    Ribeiro, Sidarta; Nicolelis, Miguel A. L.

    2004-01-01

    In mammals and birds, long episodes of nondreaming sleep ("slow-wave" sleep, SW) are followed by short episodes of dreaming sleep ("rapid-eye-movement" sleep, REM). Both SW and REM sleep have been shown to be important for the consolidation of newly acquired memories, but the underlying mechanisms remain elusive. Here we review…

  16. Sleep, Torpor and Memory Impairment

    NASA Astrophysics Data System (ADS)

    Palchykova, S.; Tobler, I.

    It is now well known that daily torpor induces a sleep deficit. Djungarian hamsters emerging from this hypometabolic state spend most of the time in sleep. This sleep is characterized by high initial values of EEG slow-wave activity (SWA) that monotonically decline during recovery sleep. These features resemble the changes seen in numerous species during recovery after prolonged wakefulness or sleep deprivation (SD). When hamsters are totally or partially sleep deprived immediately after emerging from torpor, an additional increase in SWA can be induced. It has been therefore postulated, that these slow- waves are homeostatically regulated, as predicted by the two-process model of sleep regulation, and that during daily torpor a sleep deficit is accumulated as it is during prolonged waking. The predominance of SWA in the frontal EEG observed both after SD and daily torpor provides further evidence for the similarity of these conditions. It has been shown in several animal and human studies that sleep can enhance memory consolidation, and that SD leads to memory impairment. Preliminary data obtained in the Djungarian hamster showed that both SD and daily torpor result in object recognition deficits. Thus, animals subjected to SD immediately after learning, or if they underwent an episode of daily torpor between learning and retention, displayed impaired recognition memory for complex object scenes. The investigation of daily torpor can reveal mechanisms that could have important implications for hypometabolic state induction in other mammalian species, including humans.

  17. Sustained increase in hippocampal sharp-wave ripple activity during slow-wave sleep after learning

    PubMed Central

    Eschenko, Oxana; Ramadan, Wiâm; Mölle, Matthias; Born, Jan; Sara, Susan J.

    2008-01-01

    High-frequency oscillations, known as sharp-wave/ripple (SPW-R) complexes occurring in hippocampus during slow-wave sleep (SWS), have been proposed to promote synaptic plasticity necessary for memory consolidation. We recorded sleep for 3 h after rats were trained on an odor-reward association task. Learning resulted in an increased number SPW-Rs during the first hour of post-learning SWS. The magnitude of ripple events and their duration were also elevated for up to 2 h after the newly formed memory. Rats that did not learn the discrimination during the training session did not show any change in SPW-Rs. Successful retrieval from remote memory was likewise accompanied by an increase in SPW-R density and magnitude, relative to the previously recorded baseline, but the effects were much shorter lasting and did not include increases in ripple duration and amplitude. A short-lasting increase of ripple activity was also observed when rats were rewarded for performing a motor component of the task only. There were no increases in ripple activity after habituation to the experimental environment. These experiments show that the characteristics of hippocampal high-frequency oscillations during SWS are affected by prior behavioral experience. Associative learning induces robust and sustained (up to 2 h) changes in several SPW-R characteristics, while after retrieval from remote memory or performance of a well-trained procedural aspect of the task, only transient changes in ripple density were induced. PMID:18385477

  18. Update of sleep alterations in depression

    PubMed Central

    Medina, Andrés Barrera; Lechuga, DeboraYoaly Arana; Escandón, Oscar Sánchez; Moctezuma, Javier Velázquez

    2014-01-01

    Sleep disturbances in depression are up to 70%. Patients frequently have difficulty in falling asleep, frequent awakenings during the night and non-restorative sleep. Sleep abnormalities in depression are mainly characterized by increased rapid eye movement (REM) sleep and reduced slow wave sleep. Among the mechanisms of sleep disturbances in depression are hyperactivation of the hypothalamic-pituitary-adrenal axis, CLOCK gene polymorphism and primary sleep disorders. The habenula is a structure regulating the activities of monoaminergic neurons in the brain. The hyperactivation of the habenula has also been implicated, together with sleep disturbances, in depression. The presence of depression in primary sleep disorders is common. Sleep disturbances treatment include pharmacotherapy or Cognitive Behavioral Therapy. PMID:26483922

  19. Voluntary Sleep Loss in Rats.

    PubMed

    Oonk, Marcella; Krueger, James M; Davis, Christopher J

    2016-07-01

    Animal sleep deprivation (SDEP), in contrast to human SDEP, is involuntary and involves repeated exposure to aversive stimuli including the inability of the animal to control the waking stimulus. Therefore, we explored intracranial self-stimulation (ICSS), an operant behavior, as a method for voluntary SDEP in rodents. Male Sprague-Dawley rats were implanted with electroencephalography/electromyography (EEG/EMG) recording electrodes and a unilateral bipolar electrode into the lateral hypothalamus. Rats were allowed to self-stimulate, or underwent gentle handling-induced SDEP (GH-SDEP), during the first 6 h of the light phase, after which they were allowed to sleep. Other rats performed the 6 h ICSS and 1 w later were subjected to 6 h of noncontingent stimulation (NCS). During NCS the individual stimulation patterns recorded during ICSS were replayed. After GH-SDEP, ICSS, or NCS, time in nonrapid eye movement (NREM) sleep and rapid eye movement (REM) sleep increased. Further, in the 24 h after SDEP, rats recovered all of the REM sleep lost during SDEP, but only 75% to 80% of the NREM sleep lost, regardless of the SDEP method. The magnitude of EEG slow wave responses occurring during NREM sleep also increased after SDEP treatments. However, NREM sleep EEG slow wave activity (SWA) responses were attenuated following ICSS, compared to GH-SDEP and NCS. We conclude that ICSS and NCS can be used to sleep deprive rats. Changes in rebound NREM sleep EEG SWA occurring after ICSS, NCS, and GH-SDEP suggest that nonspecific effects of the SDEP procedure differentially affect recovery sleep phenotypes. © 2016 Associated Professional Sleep Societies, LLC.

  20. Enhanced Memory Consolidation Via Automatic Sound Stimulation During Non-REM Sleep.

    PubMed

    Leminen, Miika M; Virkkala, Jussi; Saure, Emma; Paajanen, Teemu; Zee, Phyllis C; Santostasi, Giovanni; Hublin, Christer; Müller, Kiti; Porkka-Heiskanen, Tarja; Huotilainen, Minna; Paunio, Tiina

    2017-03-01

    Slow-wave sleep (SWS) slow waves and sleep spindle activity have been shown to be crucial for memory consolidation. Recently, memory consolidation has been causally facilitated in human participants via auditory stimuli phase-locked to SWS slow waves. Here, we aimed to develop a new acoustic stimulus protocol to facilitate learning and to validate it using different memory tasks. Most importantly, the stimulation setup was automated to be applicable for ambulatory home use. Fifteen healthy participants slept 3 nights in the laboratory. Learning was tested with 4 memory tasks (word pairs, serial finger tapping, picture recognition, and face-name association). Additional questionnaires addressed subjective sleep quality and overnight changes in mood. During the stimulus night, auditory stimuli were adjusted and targeted by an unsupervised algorithm to be phase-locked to the negative peak of slow waves in SWS. During the control night no sounds were presented. Results showed that the sound stimulation increased both slow wave (p = .002) and sleep spindle activity (p < .001). When overnight improvement of memory performance was compared between stimulus and control nights, we found a significant effect in word pair task but not in other memory tasks. The stimulation did not affect sleep structure or subjective sleep quality. We showed that the memory effect of the SWS-targeted individually triggered single-sound stimulation is specific to verbal associative memory. Moreover, the ambulatory and automated sound stimulus setup was promising and allows for a broad range of potential follow-up studies in the future. © Sleep Research Society 2017. Published by Oxford University Press [on behalf of the Sleep Research Society].

  1. Sleeping on the rubber-hand illusion: Memory reactivation during sleep facilitates multisensory recalibration.

    PubMed

    Honma, Motoyasu; Plass, John; Brang, David; Florczak, Susan M; Grabowecky, Marcia; Paller, Ken A

    2016-01-01

    Plasticity is essential in body perception so that physical changes in the body can be accommodated and assimilated. Multisensory integration of visual, auditory, tactile, and proprioceptive signals contributes both to conscious perception of the body's current state and to associated learning. However, much is unknown about how novel information is assimilated into body perception networks in the brain. Sleep-based consolidation can facilitate various types of learning via the reactivation of networks involved in prior encoding or through synaptic down-scaling. Sleep may likewise contribute to perceptual learning of bodily information by providing an optimal time for multisensory recalibration. Here we used methods for targeted memory reactivation (TMR) during slow-wave sleep to examine the influence of sleep-based reactivation of experimentally induced alterations in body perception. The rubber-hand illusion was induced with concomitant auditory stimulation in 24 healthy participants on 3 consecutive days. While each participant was sleeping in his or her own bed during intervening nights, electrophysiological detection of slow-wave sleep prompted covert stimulation with either the sound heard during illusion induction, a counterbalanced novel sound, or neither. TMR systematically enhanced feelings of bodily ownership after subsequent inductions of the rubber-hand illusion. TMR also enhanced spatial recalibration of perceived hand location in the direction of the rubber hand. This evidence for a sleep-based facilitation of a body-perception illusion demonstrates that the spatial recalibration of multisensory signals can be altered overnight to stabilize new learning of bodily representations. Sleep-based memory processing may thus constitute a fundamental component of body-image plasticity.

  2. Voluntary Sleep Loss in Rats

    PubMed Central

    Oonk, Marcella; Krueger, James M.; Davis, Christopher J.

    2016-01-01

    Study Objectives: Animal sleep deprivation (SDEP), in contrast to human SDEP, is involuntary and involves repeated exposure to aversive stimuli including the inability of the animal to control the waking stimulus. Therefore, we explored intracranial self-stimulation (ICSS), an operant behavior, as a method for voluntary SDEP in rodents. Methods: Male Sprague-Dawley rats were implanted with electroencephalography/electromyography (EEG/EMG) recording electrodes and a unilateral bipolar electrode into the lateral hypothalamus. Rats were allowed to self-stimulate, or underwent gentle handling-induced SDEP (GH-SDEP), during the first 6 h of the light phase, after which they were allowed to sleep. Other rats performed the 6 h ICSS and 1 w later were subjected to 6 h of noncontingent stimulation (NCS). During NCS the individual stimulation patterns recorded during ICSS were replayed. Results: After GH-SDEP, ICSS, or NCS, time in nonrapid eye movement (NREM) sleep and rapid eye movement (REM) sleep increased. Further, in the 24 h after SDEP, rats recovered all of the REM sleep lost during SDEP, but only 75% to 80% of the NREM sleep lost, regardless of the SDEP method. The magnitude of EEG slow wave responses occurring during NREM sleep also increased after SDEP treatments. However, NREM sleep EEG slow wave activity (SWA) responses were attenuated following ICSS, compared to GH-SDEP and NCS. Conclusions: We conclude that ICSS and NCS can be used to sleep deprive rats. Changes in rebound NREM sleep EEG SWA occurring after ICSS, NCS, and GH-SDEP suggest that nonspecific effects of the SDEP procedure differentially affect recovery sleep phenotypes. Citation: Oonk M, Krueger JM, Davis CJ. Voluntary sleep loss in rats. SLEEP 2016;39(7):1467–1479. PMID:27166236

  3. Post-Learning Sleep Transiently Boosts Context Specific Operant Extinction Memory.

    PubMed

    Borquez, Margarita; Contreras, María P; Vivaldi, Ennio; Born, Jan; Inostroza, Marion

    2017-01-01

    Operant extinction is learning to supress a previously rewarded behavior. It is known to be strongly associated with the specific context in which it was acquired, which limits the therapeutic use of operant extinction in behavioral treatments, e.g., of addiction. We examined whether sleep influences contextual memory of operant extinction over time, using two different recall tests (Recent and Remote). Rats were trained in an operant conditioning task (lever press) in context A, then underwent extinction training in context B, followed by a 3-h retention period that contained either spontaneous morning sleep, morning sleep deprivation, or spontaneous evening wakefulness. A recall test was performed either immediately after the 3-h experimental retention period (Recent recall) or after 48 h (Remote), in the extinction context B and in a novel context C. The two main findings were: (i) at the Recent recall test, sleep in comparison with sleep deprivation and spontaneous wakefulness enhanced extinction memory but, only in the extinction context B; (ii) at the Remote recall, extinction performance after sleep was enhanced in both contexts B and C to an extent comparable to levels at Recent recall in context B. Interestingly, extinction performance at Remote recall was also improved in the sleep deprivation groups in both contexts, with no difference to performance in the sleep group. Our results suggest that 3 h of post-learning sleep transiently facilitate the context specificity of operant extinction at a Recent recall. However, the improvement and contextual generalization of operant extinction memory observed in the long-term, i.e., after 48 h, does not require immediate post-learning sleep.

  4. Quantifying Infra-slow Dynamics of Spectral Power and Heart Rate in Sleeping Mice.

    PubMed

    Fernandez, Laura M J; Lecci, Sandro; Cardis, Romain; Vantomme, Gil; Béard, Elidie; Lüthi, Anita

    2017-08-02

    Three vigilance states dominate mammalian life: wakefulness, non-rapid eye movement (non-REM) sleep, and REM sleep. As more neural correlates of behavior are identified in freely moving animals, this three-fold subdivision becomes too simplistic. During wakefulness, ensembles of global and local cortical activities, together with peripheral parameters such as pupillary diameter and sympathovagal balance, define various degrees of arousal. It remains unclear the extent to which sleep also forms a continuum of brain states-within which the degree of resilience to sensory stimuli and arousability, and perhaps other sleep functions, vary gradually-and how peripheral physiological states co-vary. Research advancing the methods to monitor multiple parameters during sleep, as well as attributing to constellations of these functional attributes, is central to refining our understanding of sleep as a multifunctional process during which many beneficial effects must be executed. Identifying novel parameters characterizing sleep states will open opportunities for novel diagnostic avenues in sleep disorders. We present a procedure to describe dynamic variations of mouse non-REM sleep states via the combined monitoring and analysis of electroencephalogram (EEG)/electrocorticogram (ECoG), electromyogram (EMG), and electrocardiogram (ECG) signals using standard polysomnographic recording techniques. Using this approach, we found that mouse non-REM sleep is organized into cycles of coordinated neural and cardiac oscillations that generate successive 25-s intervals of high and low fragility to external stimuli. Therefore, central and autonomic nervous systems are coordinated to form behaviorally distinct sleep states during consolidated non-REM sleep. We present surgical manipulations for polysomnographic (i.e., EEG/EMG combined with ECG) monitoring to track these cycles in the freely sleeping mouse, the analysis to quantify their dynamics, and the acoustic stimulation protocols to

  5. Sleep reduces false memory in healthy older adults.

    PubMed

    Lo, June C; Sim, Sam K Y; Chee, Michael W L

    2014-04-01

    To investigate the effects of post-learning sleep and sleep architecture on false memory in healthy older adults. Balanced, crossover design. False memory was induced using the Deese-Roediger-McDermott (DRM) paradigm and assessed following nocturnal sleep and following a period of daytime wakefulness. Post-learning sleep structure was evaluated using polysomnography (PSG). Sleep research laboratory. Fourteen healthy older adults from the Singapore-Longitudinal Aging Brain Study (mean age ± standard deviation = 66.6 ± 4.1 y; 7 males). At encoding, participants studied lists of words that were semantically related to non-presented critical lures. At retrieval, they made "remember"/"know" and "new" judgments. Compared to wakefulness, post-learning sleep was associated with reduced "remember" responses, but not "know" responses to critical lures. In contrast, there were no significant differences in the veridical recognition of studied words, false recognition of unrelated distractors, discriminability, or response bias between the sleep and the wake conditions. More post-learning slow wave sleep was associated with greater reduction in false memory. In healthy older adults, sleep facilitates the reduction in false memory without affecting veridical memory. This benefit correlates with the amount of slow wave sleep in the post-learning sleep episode.

  6. Cognitive neuroscience. Unlearning implicit social biases during sleep.

    PubMed

    Hu, Xiaoqing; Antony, James W; Creery, Jessica D; Vargas, Iliana M; Bodenhausen, Galen V; Paller, Ken A

    2015-05-29

    Although people may endorse egalitarianism and tolerance, social biases can remain operative and drive harmful actions in an unconscious manner. Here, we investigated training to reduce implicit racial and gender bias. Forty participants processed counterstereotype information paired with one sound for each type of bias. Biases were reduced immediately after training. During subsequent slow-wave sleep, one sound was unobtrusively presented to each participant, repeatedly, to reactivate one type of training. Corresponding bias reductions were fortified in comparison with the social bias not externally reactivated during sleep. This advantage remained 1 week later, the magnitude of which was associated with time in slow-wave and rapid-eye-movement sleep after training. We conclude that memory reactivation during sleep enhances counterstereotype training and that maintaining a bias reduction is sleep-dependent. Copyright © 2015, American Association for the Advancement of Science.

  7. Uncoupling proteins and sleep deprivation.

    PubMed

    Cirelli, C; Tononi, G

    2004-07-01

    In both humans and animals sleep deprivation (SD) produces an increase in food intake and in energy expenditure (EE). The increase in EE is a core element of the SD syndrome and, in rats, is negatively correlated with survival rate. However, the mechanisms involved are not understood. A large component of resting EE is accounted for by the mitochondrial proton leak, which is mediated by uncoupling proteins (UCPs). We measured UCP2, UCP3, and UCP5 mRNA levels in rats during the spontaneous sleep/waking cycle and after short (8 hours) and long (7 days) SD. During spontaneous sleep and waking there was no change in the level of mitochondrial uncoupling as measured by UCPs expression, either in the brain or in peripheral tissues. During SD, by contrast, UCP3 expression in skeletal muscle was elevated, but the increase was similar, compared to sleep, after both short-term and long-term SD. UCP2 expression, on the other hand, was strongly increased in the liver and skeletal muscle of long-term sleep deprived animals and much less so, or not at all, in yoked controls or in rats that lost only 8 hours of sleep. Since the skeletal muscle is the largest tissue in the body, an elevated muscular expression of UCP2 is likely to affect the overall resting EE and may thus contribute to its increase after SD.

  8. Sleep in the domestic hen (Gallus domesticus).

    PubMed

    van Luijtelaar, E L; van der Grinten, C P; Blokhuis, H J; Coenen, A M

    1987-01-01

    Electrophysiological recordings were made of five closely observed hens, all permanently implanted with both EEG and EMG electrodes. Five behavioural postures were distinguished and percentages of wakefulness, sleep and presumably paradoxical sleep (PS) were determined during the third and sixth hour of the dark period. Substantial agreement was generally found between behaviour and sleep with the exception of sitting or standing motionless with at least one eye open. During two thirds of this behavioural posture, the EEG showed large amplitude slow waves undistinguishable from slow wave sleep. Characteristics of PS were determined: periods were short, whereas its percentage increased during the night. Furthermore, EMG atonia was never found. An all night recording was made, and delta activity (2-5 Hz) was filtered and plotted against time for three of the hens. A significant decrease in delta activity across the night was found. Differences and similarities between sleep in hens and in mammals are discussed. Although large similarities exist it is concluded that some properties of birds' sleep make it unique and are a challenge for further study.

  9. Sleep-Related Orgasms in a 57-Year-Old Woman: A Case Report.

    PubMed

    Irfan, Muna; Schenck, Carlos H

    2018-01-15

    We report a case of problematic spontaneous orgasms during sleep in a 57-year-old woman who also complained of hypnic jerks and symptoms of exploding head syndrome. To our knowledge, this is the first case report in the English language literature of problematic spontaneous orgasms during sleep. She had a complex medical and psychiatric history, and was taking oxycontin, venlafaxine, amitriptyline, and lurasidone. Prolonged video electroencephalogram monitoring did not record any ictal or interictal electroencephalogram discharges, and nocturnal video polysomnography monitoring did not record any behavioral or orgasmic event. Periodic limb movement index was zero events/h. Severe central sleep apnea was detected with apnea-hypopnea index = 130 events/h, but she could not tolerate positive airway pressure titration. Sleep architecture was disturbed, with 96.4% of sleep spent in stage N2 sleep. Bedtime clonazepam therapy (1.5 mg) was effective in suppressing the sleep-related orgasms and hypnic jerks. © 2018 American Academy of Sleep Medicine

  10. Natural sleep modifies the rat electroretinogram.

    PubMed Central

    Galambos, R; Juhász, G; Kékesi, A K; Nyitrai, G; Szilágyi, N

    1994-01-01

    We show here electroretinograms (ERGs) recorded from freely moving rats during sleep and wakefulness. Bilateral ERGs were evoked by flashes delivered through a light-emitting diode implanted under the skin above one eye and recorded through electrodes inside each orbit near the optic nerve. Additional electrodes over each visual cortex monitored the brain waves and collected flash-evoked cortical potentials to compare with the ERGs. Connections to the stimulating and recording instruments through a plug on the head made data collection possible at any time without physically disturbing the animal. The three major findings are (i) the ERG amplitude during slow-wave sleep can be 2 or more times that of the waking response; (ii) the ERG patterns in slow-wave and REM sleep are different; and (iii) the sleep-related ERG changes closely mimic those taking place at the same time in the responses evoked from the visual cortex. We conclude that the mechanisms that alter the visual cortical-evoked responses during sleep operate also and similarly at the retinal level. PMID:8197199

  11. Endothelial function and sleep: associations of flow-mediated dilation with perceived sleep quality and rapid eye movement (REM) sleep.

    PubMed

    Cooper, Denise C; Ziegler, Michael G; Milic, Milos S; Ancoli-Israel, Sonia; Mills, Paul J; Loredo, José S; Von Känel, Roland; Dimsdale, Joel E

    2014-02-01

    Endothelial function typically precedes clinical manifestations of cardiovascular disease and provides a potential mechanism for the associations observed between cardiovascular disease and sleep quality. This study examined how subjective and objective indicators of sleep quality relate to endothelial function, as measured by brachial artery flow-mediated dilation (FMD). In a clinical research centre, 100 non-shift working adults (mean age: 36 years) completed FMD testing and the Pittsburgh Sleep Quality Index, along with a polysomnography assessment to obtain the following measures: slow wave sleep, percentage rapid eye movement (REM) sleep, REM sleep latency, total arousal index, total sleep time, wake after sleep onset, sleep efficiency and apnea-hypopnea index. Bivariate correlations and follow-up multiple regressions examined how FMD related to subjective (i.e., Pittsburgh Sleep Quality Index scores) and objective (i.e., polysomnography-derived) indicators of sleep quality. After FMD showed bivariate correlations with Pittsburgh Sleep Quality Index scores, percentage REM sleep and REM latency, further examination with separate regression models indicated that these associations remained significant after adjustments for sex, age, race, hypertension, body mass index, apnea-hypopnea index, smoking and income (Ps < 0.05). Specifically, as FMD decreased, scores on the Pittsburgh Sleep Quality Index increased (indicating decreased subjective sleep quality) and percentage REM sleep decreased, while REM sleep latency increased (Ps < 0.05). Poorer subjective sleep quality and adverse changes in REM sleep were associated with diminished vasodilation, which could link sleep disturbances to cardiovascular disease. © 2013 European Sleep Research Society.

  12. Oscillating square wave Transcranial Direct Current Stimulation (tDCS) delivered during slow wave sleep does not improve declarative memory more than sham: A randomized sham controlled crossover study

    PubMed Central

    Sahlem, Gregory L.; Badran, Bashar W.; Halford, Jonathan J.; Williams, Nolan R.; Korte, Jeffrey E.; Leslie, Kimberly; Strachan, Martha; Breedlove, Jesse L.; Runion, Jennifer; Bachman, David L.; Uhde, Thomas W.; Borckardt, Jeffery J.; George, Mark S.

    2015-01-01

    Background A 2006 trial in healthy medical students found that anodal slow oscillating tDCS delivered bi-frontally during slow wave sleep had an enhancing effect in declarative, but not procedural memory. Although there have been supporting animal studies, and similar findings in pathological groups, this study has not been replicated, or refuted, in the intervening years. We therefore tested these earlier results for replication using similar methods with the exception of current wave form (square in our study, nearly sinusoidal in the original). Objective/Hypothesis Our objective was to test the findings of a 2006 trial suggesting bi-frontal anodal tDCS during slow wave sleep enhances declarative memory. Methods Twelve students (mean age 25, 9 women) free of medical problems underwent two testing conditions (active, sham) in a randomized counterbalanced fashion. Active stimulation consisted of oscillating square wave tDCS delivered during early Non-Rapid Eye Movement (NREM) sleep. The sham condition consisted of setting-up the tDCS device and electrodes, but not turning it on during sleep. tDCS was delivered bi-frontally with anodes placed at F3/F4, and cathodes placed at mastoids. Current density was 0.517mA/CM2, and oscillated between zero and maximal current at a frequency of 0.75Hz. Stimulation occurred during five-five minute blocks with one-minute inter-block intervals (25 minutes total stimulation). The primary outcomes were both declarative memory consolidation measured by a paired word association test (PWA), and non-declarative memory, measured by a non-dominant finger-tapping test (FTT). We also recorded and analyzed sleep EEG. Results There was no difference in the number of paired word associations remembered before compared to after sleep [(active = 3.1±3.0SD more associations) (sham = 3.8±3.1S.D more associations)]. Finger tapping improved, (non-significantly) following active stimulation [(3.6±2.7 S.D. correctly typed sequences) compared to

  13. Therapy for sleep hypoventilation and central apnea syndromes.

    PubMed

    Selim, Bernardo J; Junna, Mithri R; Morgenthaler, Timothy I

    2012-10-01

    • Primary Central Sleep Apnea (CSA): We would recommend a trial of Positive Airway Pressure (PAP), acetazolamide, or zolpidem based on thorough consideration of risks and benefits and incorporation of patient preferences.• Central Sleep Apnea Due to Cheyne-Stokes Breathing Pattern in Congestive Heart Failure (CSR-CHF): We would recommend PAP devices such as continuous positive airway pressure (CPAP) or adaptive servo-ventilation (ASV) to normalize sleep-disordered breathing after optimizing treatment of heart failure. Oxygen may also be an effective therapy. Acetazolamide and theophylline may be considered if PAP or oxygen is not effective.• Central Sleep Apnea due to High-Altitude Periodic Breathing: We would recommend descent from altitude or supplemental oxygen. Acetazolamide may be used when descent or oxygen are not feasible, or in preparation for ascent to high altitude. Slow ascent may be preventative.• Central Sleep Apnea due to Drug or Substance: If discontinuation or reduction of opiate dose is not feasible or effective, we would recommend a trial of CPAP, and if not successful, treatment with ASV. If ASV is ineffective or if nocturnal hypercapnia develops, bilevel positive airway pressure-spontaneous timed mode (BPAP-ST) is recommended.• Obesity hypoventilation syndrome: We would recommend an initial CPAP trial. If hypoxia or hypercapnia persists on CPAP, BPAP, BPAP-ST or average volume assured pressure support (AVAPS™) is recommended. Tracheostomy with nocturnal ventilation should be considered when the above measures are not effective. Weight loss may be curative.• Neuromuscular or chest wall disease: We would recommend early implementation of BPAP-ST based on thorough consideration of risks and benefits and patient preferences. AVAPS™ may also be considered. We recommend close follow up due to disease progression.

  14. Eye Movement Desensitization and Reprocessing and Slow Wave Sleep: A Putative Mechanism of Action.

    PubMed

    Pagani, Marco; Amann, Benedikt L; Landin-Romero, Ramon; Carletto, Sara

    2017-01-01

    Eye Movement Desensitization and Reprocessing (EMDR) is considered highly efficacious for the treatment of Post-traumatic Stress Disorder and has proved to be a valid treatment approach with a wide range of applications. However, EMDR's mechanisms of action is not yet fully understood. This is an active area of clinical and neurophysiological research, and several different hypotheses have been proposed. This paper discusses a conjecture which focuses on the similarity between the delta waves recorded by electroencephalography during Slow Wave Sleep (SWS) and those registered upon typical EMDR bilateral stimulation (eye movements or alternate tapping) during recurrent distressing memories of an emotionally traumatic event. SWS appears to have a key role in memory consolidation and in the reorganization of distant functional networks, as well as Eye Movements seem to reduce traumatic episodic memory and favor the reconsolidation of new associated information. The SWS hypothesis may put forward an explanation of how EMDR works, and is discussed also in light of other theories and neurobiological findings.

  15. Electrocardiogram-Based Sleep Spectrogram Measures of Sleep Stability and Glucose Disposal in Sleep Disordered Breathing

    PubMed Central

    Pogach, Melanie S.; Punjabi, Naresh M.; Thomas, Neil; Thomas, Robert J.

    2012-01-01

    Study Objectives: Sleep disordered breathing (SDB) is independently associated with insulin resistance, glucose intolerance, and type 2 diabetes mellitus. Experimental sleep fragmentation has been shown to impair insulin sensitivity. Conventional electroencephalogram (EEG)-based sleep-quality measures have been inconsistently associated with indices of glucose metabolism. This analysis explored associations between glucose metabolism and an EEG-independent measure of sleep quality, the sleep spectrogram, which maps coupled oscillations of heart-rate variability and electrocardiogram (ECG)-derived respiration. The method allows improved characterization of the quality of stage 2 non-rapid eye movement (NREM) sleep. Design: Cross-sectional study. Setting: N/A. Participants: Nondiabetic subjects with and without SDB (n = 118) underwent the frequently sampled intravenous glucose tolerance test (FSIVGTT) and a full-montage polysomnogram. The sleep spectrogram was generated from ECG collected during polysomnography. Interventions: N/A. Measurements and Results: Standard polysomnographic stages (stages 1, 2, 3+4, and rapid eye movement [REM]) were not associated with the disposition index (DI) derived from the FSIVGTT. In contrast, spectrographic high-frequency coupling (a marker of stable or “effective” sleep) duration was associated with increased, and very-low-frequency coupling (a marker of wake/REM/transitions) associated with reduced DI. This relationship was noted after adjusting for age, sex, body mass index, slow wave sleep, total sleep time, stage 1, the arousal index, and the apnea-hypopnea index. Conclusions: ECG-derived sleep-spectrogram measures of sleep quality are associated with alterations in glucose-insulin homeostasis. This alternate mode of estimating sleep quality could improve our understanding of sleep and sleep-breathing effects on glucose metabolism. Citation: Pogach MS; Punjabi NM; Thomas N; Thomas RJ. Electrocardiogram-based sleep

  16. Interacting Turing-Hopf Instabilities Drive Symmetry-Breaking Transitions in a Mean-Field Model of the Cortex: A Mechanism for the Slow Oscillation

    NASA Astrophysics Data System (ADS)

    Steyn-Ross, Moira L.; Steyn-Ross, D. A.; Sleigh, J. W.

    2013-04-01

    Electrical recordings of brain activity during the transition from wake to anesthetic coma show temporal and spectral alterations that are correlated with gross changes in the underlying brain state. Entry into anesthetic unconsciousness is signposted by the emergence of large, slow oscillations of electrical activity (≲1Hz) similar to the slow waves observed in natural sleep. Here we present a two-dimensional mean-field model of the cortex in which slow spatiotemporal oscillations arise spontaneously through a Turing (spatial) symmetry-breaking bifurcation that is modulated by a Hopf (temporal) instability. In our model, populations of neurons are densely interlinked by chemical synapses, and by interneuronal gap junctions represented as an inhibitory diffusive coupling. To demonstrate cortical behavior over a wide range of distinct brain states, we explore model dynamics in the vicinity of a general-anesthetic-induced transition from “wake” to “coma.” In this region, the system is poised at a codimension-2 point where competing Turing and Hopf instabilities coexist. We model anesthesia as a moderate reduction in inhibitory diffusion, paired with an increase in inhibitory postsynaptic response, producing a coma state that is characterized by emergent low-frequency oscillations whose dynamics is chaotic in time and space. The effect of long-range axonal white-matter connectivity is probed with the inclusion of a single idealized point-to-point connection. We find that the additional excitation from the long-range connection can provoke seizurelike bursts of cortical activity when inhibitory diffusion is weak, but has little impact on an active cortex. Our proposed dynamic mechanism for the origin of anesthetic slow waves complements—and contrasts with—conventional explanations that require cyclic modulation of ion-channel conductances. We postulate that a similar bifurcation mechanism might underpin the slow waves of natural sleep and comment on the

  17. Selective neuronal lapses precede human cognitive lapses following sleep deprivation.

    PubMed

    Nir, Yuval; Andrillon, Thomas; Marmelshtein, Amit; Suthana, Nanthia; Cirelli, Chiara; Tononi, Giulio; Fried, Itzhak

    2017-12-01

    Sleep deprivation is a major source of morbidity with widespread health effects, including increased risk of hypertension, diabetes, obesity, heart attack, and stroke. Moreover, sleep deprivation brings about vehicle accidents and medical errors and is therefore an urgent topic of investigation. During sleep deprivation, homeostatic and circadian processes interact to build up sleep pressure, which results in slow behavioral performance (cognitive lapses) typically attributed to attentional thalamic and frontoparietal circuits, but the underlying mechanisms remain unclear. Recently, through study of electroencephalograms (EEGs) in humans and local field potentials (LFPs) in nonhuman primates and rodents it was found that, during sleep deprivation, regional 'sleep-like' slow and theta (slow/theta) waves co-occur with impaired behavioral performance during wakefulness. Here we used intracranial electrodes to record single-neuron activities and LFPs in human neurosurgical patients performing a face/nonface categorization psychomotor vigilance task (PVT) over multiple experimental sessions, including a session after full-night sleep deprivation. We find that, just before cognitive lapses, the selective spiking responses of individual neurons in the medial temporal lobe (MTL) are attenuated, delayed, and lengthened. These 'neuronal lapses' are evident on a trial-by-trial basis when comparing the slowest behavioral PVT reaction times to the fastest. Furthermore, during cognitive lapses, LFPs exhibit a relative local increase in slow/theta activity that is correlated with degraded single-neuron responses and with baseline theta activity. Our results show that cognitive lapses involve local state-dependent changes in neuronal activity already present in the MTL.

  18. Polysomnographic study of nocturnal sleep in idiopathic hypersomnia without long sleep time.

    PubMed

    Pizza, Fabio; Ferri, Raffaele; Poli, Francesca; Vandi, Stefano; Cosentino, Filomena I I; Plazzi, Giuseppe

    2013-04-01

    We investigated nocturnal sleep abnormalities in 19 patients with idiopathic hypersomnia without long sleep time (IH) in comparison with two age- and sex- matched control groups of 13 normal subjects (C) and of 17 patients with narcolepsy with cataplexy (NC), the latter considered as the extreme of excessive daytime sleepiness (EDS). Sleep macro- and micro- (i.e. cyclic alternating pattern, CAP) structure as well as quantitative analysis of EEG, of periodic leg movements during sleep (PLMS), and of muscle tone during REM sleep were compared across groups. IH and NC patients slept more than C subjects, but IH showed the highest levels of sleep fragmentation (e.g. awakenings), associated with a CAP rate higher than NC during lighter sleep stages and lower than C during slow wave sleep respectively, and with the highest relative amount of A3 and the lowest of A1 subtypes. IH showed a delta power in between C and NC groups, whereas muscle tone and PLMS had normal characteristics. A peculiar profile of microstructural sleep abnormalities may contribute to sleep fragmentation and, possibly, EDS in IH. © 2012 European Sleep Research Society.

  19. The Role of Sleep in Changing Our Minds: A Psychologist's Discussion of Papers on Memory Reactivation and Consolidation in Sleep

    ERIC Educational Resources Information Center

    Cartwright, Rosalind D.

    2004-01-01

    The group of papers on memory reactivation and consolidation during sleep included in this volume represents cutting edge work in both animals and humans. They support that the two types of sleep serve different necessary functions. The role of slow wave sleep (SWS) is reactivation of the hippocampal-neocortical circuits activated during a waking…

  20. Two Distinct Synchronization Processes in the Transition to Sleep: A High-Density Electroencephalographic Study

    PubMed Central

    Siclari, Francesca; Bernardi, Giulio; Riedner, Brady A.; LaRocque, Joshua J.; Benca, Ruth M.; Tononi, Giulio

    2014-01-01

    Objectives: To assess how the characteristics of slow waves and spindles change in the falling-asleep process. Design: Participants undergoing overnight high-density electroencephalographic recordings were awakened at 15- to 30-min intervals. One hundred forty-one falling-asleep periods were analyzed at the scalp and source level. Setting: Sleep laboratory. Participants: Six healthy participants. Interventions: Serial awakenings. Results: The number and amplitude of slow waves followed two dissociated, intersecting courses during the transition to sleep: slow wave number increased slowly at the beginning and rapidly at the end of the falling-asleep period, whereas amplitude at first increased rapidly and then decreased linearly. Most slow waves occurring early in the transition to sleep had a large amplitude, a steep slope, involved broad regions of the cortex, predominated over frontomedial regions, and preferentially originated from the sensorimotor and the posteromedial parietal cortex. Most slow waves occurring later had a smaller amplitude and slope, involved more circumscribed parts of the cortex, and had more evenly distributed origins. Spindles were initially sparse, fast, and involved few cortical regions, then became more numerous and slower, and involved more areas. Conclusions: Our results provide evidence for two types of slow waves, which follow dissociated temporal courses in the transition to sleep and have distinct cortical origins and distributions. We hypothesize that these two types of slow waves result from two distinct synchronization processes: (1) a “bottom-up,” subcorticocortical, arousal system-dependent process that predominates in the early phase and leads to type I slow waves, and (2) a “horizontal,” corticocortical synchronization process that predominates in the late phase and leads to type II slow waves. The dissociation between these two synchronization processes in time and space suggests that they may be differentially

  1. Analysis of sleep parameters in patients with obstructive sleep apnea studied in a hospital vs. a hotel-based sleep center.

    PubMed

    Hutchison, Kimberly N; Song, Yanna; Wang, Lily; Malow, Beth A

    2008-04-15

    Polysomnography is associated with changes in sleep architecture called the first-night effect. This effect is believed to result from sleeping in an unusual environment and the technical equipment used to study sleep. Sleep experts hope to decrease this variable by providing a more familiar, comfortable atmosphere for sleep testing through hotel-based sleep centers. In this study, we compared the sleep parameters of patients studied in our hotel-based and hospital-based sleep laboratories. We retrospectively reviewed polysomnograms completed in our hotel-based and hospital-based sleep laboratories from August 2003 to July 2005. All patients were undergoing evaluation for obstructive sleep apnea. Hospital-based patients were matched for age and apnea-hypopnea index with hotel-based patients. We compared the sleep architecture changes associated with the first-night effect in the two groups. The associated conditions and symptoms listed on the polysomnography referral forms are also compared. No significant differences were detected between the two groups in sleep onset latency, sleep efficiency, REM sleep latency, total amount of slow wave sleep (NREM stages 3 and 4), arousal index, and total stage 1 sleep. This pilot study failed to show a difference in sleep parameters associated with the first-night effect in patients undergoing sleep studies in our hotel and hospital-based sleep laboratories. Future studies need to compare the first-night effect in different sleep disorders, preferably in multi-night recordings.

  2. Sleep Reduces False Memory in Healthy Older Adults

    PubMed Central

    Lo, June C.; Sim, Sam K. Y.; Chee, Michael W. L.

    2014-01-01

    Study Objectives: To investigate the effects of post-learning sleep and sleep architecture on false memory in healthy older adults. Design: Balanced, crossover design. False memory was induced using the Deese-Roediger-McDermott (DRM) paradigm and assessed following nocturnal sleep and following a period of daytime wakefulness. Post-learning sleep structure was evaluated using polysomnography (PSG). Setting: Sleep research laboratory. Participants: Fourteen healthy older adults from the Singapore-Longitudinal Aging Brain Study (mean age ± standard deviation = 66.6 ± 4.1 y; 7 males). Measurements and Results: At encoding, participants studied lists of words that were semantically related to non-presented critical lures. At retrieval, they made “remember”/“know” and “new” judgments. Compared to wakefulness, post-learning sleep was associated with reduced “remember” responses, but not “know” responses to critical lures. In contrast, there were no significant differences in the veridical recognition of studied words, false recognition of unrelated distractors, discriminability, or response bias between the sleep and the wake conditions. More post-learning slow wave sleep was associated with greater reduction in false memory. Conclusions: In healthy older adults, sleep facilitates the reduction in false memory without affecting veridical memory. This benefit correlates with the amount of slow wave sleep in the post-learning sleep episode. Citation: Lo JC; Sim SK; Chee MW. Sleep reduces false memory in healthy older adults. SLEEP 2014;37(4):665-671. PMID:24744453

  3. Sleep and Plasticity in Schizophrenia

    PubMed Central

    Sprecher, Kate E.; Ferrarelli, Fabio

    2016-01-01

    Schizophrenia is a devastating mental illness with a worldwide prevalence of approximately 1 %. Although the clinical features of the disorder were described over one hundred years ago, its neurobiology is still largely elusive despite several decades of research. Schizophrenia is associated with marked sleep disturbances and memory impairment. Above and beyond altered sleep architecture, sleep rhythms including slow waves and spindles are disrupted in schizophrenia. In the healthy brain, these rhythms reflect and participate in plastic processes during sleep. This chapter discusses evidence that schizophrenia patients exhibit dysfunction of sleep-mediated plasticity on a behavioral, cellular, and molecular level and offers suggestions on how the study of sleeping brain activity can shed light on the pathophysiological mechanisms of the disorder. PMID:25608723

  4. Time course of EEG background activity level before spontaneous awakening in infants.

    PubMed

    Zampi, Chiara; Fagioli, Igino; Salzarulo, Piero

    2002-12-01

    This research aimed to investigate the time course of the cortical activity level preceding spontaneous awakening as a function of age and state. Two groups of infants (1-4 and 9-14 weeks of age) were continuously monitored by polygraphic recording and behavioural observation during the night. The electroencephalographic (EEG) activity recorded by the C3-O1 lead was analysed through an automatic analysis method which provides, for each 30-s epoch, a single measure, time domain based, of the EEG synchronization. The EEG parameter values were computed in the 6 min preceding each awakening out of non-rapid eye movement (NREM) sleep and out of rapid eye movement (REM) sleep. The EEG background activity level did not change in the minutes preceding awakening out of REM sleep. Awakening out of NREM sleep was preceded by a change of EEG activity level in the direction of higher activation with different time course according to the age. Both REM and NREM sleep results suggest that a high level of EEG activity is a prerequisite for the occurrence of a spontaneous awakening.

  5. The CaV2.3 R-Type Voltage-Gated Ca2+ Channel in Mouse Sleep Architecture

    PubMed Central

    Siwek, Magdalena Elisabeth; Müller, Ralf; Henseler, Christina; Broich, Karl; Papazoglou, Anna; Weiergräber, Marco

    2014-01-01

    Study Objectives: Voltage-gated Ca2+ channels (VGCCs) are key elements in mediating thalamocortical rhythmicity. Low-voltage activated (LVA) CaV 3 T-type Ca2+ channels have been related to thalamic rebound burst firing and to generation of non-rapid eye movement (NREM) sleep. High-voltage activated (HVA) CaV 1 L-type Ca2+ channels, on the opposite, favor the tonic mode of action associated with higher levels of vigilance. However, the role of the HVA Non-L-type CaV2.3 Ca2+ channels, which are predominantly expressed in the reticular thalamic nucleus (RTN), still remains unclear. Recently, CaV2.3−/− mice were reported to exhibit altered spike-wave discharge (SWD)/absence seizure susceptibility supported by the observation that CaV2.3 mediated Ca2+ influx into RTN neurons can trigger small-conductance Ca2+-activated K+-channel type 2 (SK2) currents capable of maintaining thalamic burst activity. Based on these studies we investigated the role of CaV2.3 R-type Ca2+ channels in rodent sleep. Methods: The role of CaV2.3 Ca2+ channels was analyzed in CaV2.3−/− mice and controls in both spontaneous and artificial urethane-induced sleep, using implantable video-EEG radiotelemetry. Data were analyzed for alterations in sleep architecture using sleep staging software and time-frequency analysis. Results: CaV2.3 deficient mice exhibited reduced wake duration and increased slow-wave sleep (SWS). Whereas mean sleep stage durations remained unchanged, the total number of SWS epochs was increased in CaV2.3−/− mice. Additional changes were observed for sleep stage transitions and EEG amplitudes. Furthermore, urethane-induced SWS mimicked spontaneous sleep results obtained from CaV2.3 deficient mice. Quantitative Real-time PCR did not reveal changes in thalamic CaV3 T-type Ca2+ channel expression. The detailed mechanisms of SWS increase in CaV2.3−/− mice remain to be determined. Conclusions: Low-voltage activated CaV2.3 R-type Ca2+ channels in the thalamocortical

  6. The Nucleus Reuniens Controls Long-Range Hippocampo-Prefrontal Gamma Synchronization during Slow Oscillations.

    PubMed

    Ferraris, Maëva; Ghestem, Antoine; Vicente, Ana F; Nallet-Khosrofian, Lauriane; Bernard, Christophe; Quilichini, Pascale P

    2018-03-21

    Gamma oscillations are involved in long-range coupling of distant regions that support various cognitive operations. Here we show in adult male rats that synchronized bursts of gamma oscillations bind the hippocampus (HPC) and prefrontal cortex (mPFC) during slow oscillations and slow-wave sleep, a brain state that is central for consolidation of memory traces. These gamma bursts entrained the firing of the local HPC and mPFC neuronal populations. Neurons of the nucleus reuniens (NR), which is a structural and functional hub between HPC and mPFC, demonstrated a specific increase in their firing before gamma burst onset, suggesting their involvement in HPC-mPFC binding. Chemical inactivation of NR disrupted the temporal pattern of gamma bursts and their synchronization, as well as mPFC neuronal firing. We propose that the NR drives long-range hippocampo-prefrontal coupling via gamma bursts providing temporal windows for information exchange between the HPC and mPFC during slow-wave sleep. SIGNIFICANCE STATEMENT Long-range coupling between hippocampus (HPC) and prefrontal cortex (mPFC) is believed to support numerous cognitive functions, including memory consolidation occurring during sleep. Gamma-band synchronization is a fundamental process in many neuronal operations and is instrumental in long-range coupling. Recent evidence highlights the role of nucleus reuniens (NR) in consolidation; however, how it influences hippocampo-prefrontal coupling is unknown. In this study, we show that HPC and mPFC are synchronized by gamma bursts during slow oscillations in anesthesia and natural sleep. By manipulating and recording the NR-HPC-mPFC network, we provide evidence that the NR actively promotes this long-range gamma coupling. This coupling provides the hippocampo-prefrontal circuit with a novel mechanism to exchange information during slow-wave sleep. Copyright © 2018 the authors 0270-6474/18/383026-13$15.00/0.

  7. The Effects of Caffeine on Sleep and Maturational Markers in the Rat

    PubMed Central

    Olini, Nadja; Kurth, Salomé; Huber, Reto

    2013-01-01

    Adolescence is a critical period for brain maturation during which a massive reorganization of cortical connectivity takes place. In humans, slow wave activity (<4.5 Hz) during NREM sleep was proposed to reflect cortical maturation which relies on use-dependent processes. A stimulant like caffeine, whose consumption has recently increased especially in adolescents, is known to affect sleep wake regulation. The goal of this study was to establish a rat model allowing to assess the relationship between cortical maturation and sleep and to further investigate how these parameters are affected by caffeine consumption. To do so, we assessed sleep and markers of maturation by electrophysiological recordings, behavioral and structural readouts in the juvenile rat. Our results show that sleep slow wave activity follows a similar inverted U-shape trajectory as already known in humans. Caffeine treatment exerted short-term stimulating effects and altered the trajectory of slow wave activity. Moreover, caffeine affected behavioral and structural markers of maturation. Thus, caffeine consumption during a critical developmental period shows long lasting effects on sleep and brain maturation. PMID:24023748

  8. Moderate acoustic changes can disrupt the sleep of very preterm infants in their incubators.

    PubMed

    Kuhn, Pierre; Zores, Claire; Langlet, Claire; Escande, Benoît; Astruc, Dominique; Dufour, André

    2013-10-01

    To evaluate the impact of moderate noise on the sleep of very early preterm infants (VPI). Observational study of 26 VPI of 26-31 weeks' gestation, with prospective measurements of sound pressure level and concomitant video records. Sound peaks were identified and classified according to their signal-to-noise ratio (SNR) above background noise. Prechtl's arousal states during sound peaks were assessed by two observers blinded to the purpose of the study. Changes in sleep/arousal states following sound peaks were compared with spontaneous changes during randomly selected periods without sound peaks. We identified 598 isolated sound peaks (5 ≤ SNR < 10 decibel slow response A (dBA), n = 518; 10 ≤ SNR < 15 dBA, n = 80) during sleep. Awakenings were observed during 33.8% (95% CI, 24-43.7%) of exposures to sound peaks of 5-10 dBA SNR and 39.7% (95% CI, 26-53.3%) of exposures to sound peaks of SNR 10-15 dBA, but only 11.7% (95% CI, 6.2-17.1%) of control periods. The proportions of awakenings following sound peaks were higher than the proportions of arousals during control periods (p < 0.005). Moderate acoustic changes can disrupt the sleep of VPI, and efficient sound abatement measures are needed. ©2013 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  9. EEG slow-wave coherence changes in propofol-induced general anesthesia: experiment and theory

    PubMed Central

    Wang, Kaier; Steyn-Ross, Moira L.; Steyn-Ross, D. A.; Wilson, Marcus T.; Sleigh, Jamie W.

    2014-01-01

    The electroencephalogram (EEG) patterns recorded during general anesthetic-induced coma are closely similar to those seen during slow-wave sleep, the deepest stage of natural sleep; both states show patterns dominated by large amplitude slow waves. Slow oscillations are believed to be important for memory consolidation during natural sleep. Tracking the emergence of slow-wave oscillations during transition to unconsciousness may help us to identify drug-induced alterations of the underlying brain state, and provide insight into the mechanisms of general anesthesia. Although cellular-based mechanisms have been proposed, the origin of the slow oscillation has not yet been unambiguously established. A recent theoretical study by Steyn-Ross et al. (2013) proposes that the slow oscillation is a network, rather than cellular phenomenon. Modeling anesthesia as a moderate reduction in gap-junction interneuronal coupling, they predict an unconscious state signposted by emergent low-frequency oscillations with chaotic dynamics in space and time. They suggest that anesthetic slow-waves arise from a competitive interaction between symmetry-breaking instabilities in space (Turing) and time (Hopf), modulated by gap-junction coupling strength. A significant prediction of their model is that EEG phase coherence will decrease as the cortex transits from Turing–Hopf balance (wake) to Hopf-dominated chaotic slow-waves (unconsciousness). Here, we investigate changes in phase coherence during induction of general anesthesia. After examining 128-channel EEG traces recorded from five volunteers undergoing propofol anesthesia, we report a significant drop in sub-delta band (0.05–1.5 Hz) slow-wave coherence between frontal, occipital, and frontal–occipital electrode pairs, with the most pronounced wake-vs.-unconscious coherence changes occurring at the frontal cortex. PMID:25400558

  10. Independent associations between fatty acids and sleep quality among obese patients with obstructive sleep apnoea syndrome.

    PubMed

    Papandreou, Christopher

    2013-10-01

    The aim of this study was to examine the relationships between gluteal adipose tissue fatty acids and sleep quality in obese patients with obstructive sleep apnoea syndrome after controlling for possible confounders. Sixty-three patients with obstructive sleep apnoea syndrome based on overnight attended polysomnography were included. Gluteal adipose tissue fatty acids were analysed by gas chromatography. Anthropometric measurements were carried out. Depressive symptoms were assessed by the Zung Self-rating Depression Scale. Saturated fatty acids were positively related to total sleep time, sleep efficiency and rapid eye movement sleep. Significant positive associations were found between polyunsaturated fatty acids and sleep efficiency and rapid eye movement sleep. Moreover, n-3 fatty acids were positively associated with sleep efficiency, slow wave sleep and rapid eye movement sleep. This study revealed independent associations between certain gluteal adipose tissue fatty acids and sleep quality after controlling for age, gender, obesity, obstructive sleep apnoea syndrome indices and Zung Self-rating Depression Scale scores in patients with moderate to severe obstructive sleep apnoea syndrome. © 2013 European Sleep Research Society.

  11. Postoperative changes in sleep-disordered breathing and sleep architecture in patients with obstructive sleep apnea.

    PubMed

    Chung, Frances; Liao, Pu; Yegneswaran, Balaji; Shapiro, Colin M; Kang, Weimin

    2014-02-01

    Anesthetics, analgesics, and surgery may profoundly affect sleep architecture and aggravate sleep-related breathing disturbances. The authors hypothesized that patients with preoperative polysomnographic evidence of obstructive sleep apnea (OSA) would experience greater changes in these parameters than patients without OSA. After obtaining approvals from the Institutional Review Boards, consented patients underwent portable polysomnography preoperatively and on postoperative nights (N) 1, 3, 5, and 7 at home or in hospital. The primary and secondary outcome measurements were polysomnographic parameters of sleep-disordered breathing and sleep architecture. Of the 58 patients completed the study, 38 patients had OSA (apnea hypopnea index [AHI] >5) with median preoperative AHI of 18 events per hour and 20 non-OSA patients had median preoperative AHI of 2. AHI was increased after surgery in both OSA and non-OSA patients (P < 0.05), with peak increase on postoperative N3 (OSA vs. non-OSA, 29 [14, 57] vs. 8 [2, 18], median [25th, 75th percentile], P < 0.05). Hypopnea index accounted for 72% of the postoperative increase in AHI. The central apnea index was low (median = 0) but was significantly increased on postoperative N1 in only non-OSA patients. Sleep efficiency, rapid eye movement sleep, and slow-wave sleep were decreased on N1 in both groups, with gradual recovery. Postoperatively, sleep architecture was disturbed and AHI was increased in both OSA and non-OSA patients. Although the disturbances in sleep architecture were greatest on postoperative N1, breathing disturbances during sleep were greatest on postoperative N3.

  12. Differences in activity of cytochrome C oxidase in brain between sleep and wakefulness.

    PubMed

    Nikonova, Elena V; Vijayasarathy, Camasamudram; Zhang, Lin; Cater, Jacqueline R; Galante, Raymond J; Ward, Stephen E; Avadhani, Narayan G; Pack, Allan I

    2005-01-01

    Increased mRNA level of subunit 1 cytochrome c oxidase (COXI) during wakefulness and after short-term sleep deprivation has been described in brain. We hypothesized that this might contribute to increased activity of cytochrome oxidase (COX) enzyme during wakefulness, as part of the mechanisms to provide sufficient amounts of adenosine triphosphate to meet increased neuronal energy demands. COX activity was measured in isolated mitochondria from different brain regions in groups of rats with 3 hours of spontaneous sleep, 3 hours of spontaneous wake, and 3 hours of sleep deprivation. The group with 3 hours of spontaneous wake was added to delineate the circadian component of changes in the enzyme activity. Northern blot analysis was performed to examine the mRNA levels of 2 subunits of the enzyme COXI and COXIV, encoded by mitochondrial and nuclear DNA, respectively. Laboratory of Biochemistry, Department of Animal Biology, and Center for Sleep and Respiratory Neurobiology, University of Pennsylvania. 2-month-old male Fischer rats (N = 21) implanted for polygraphic recording. For COX activity, there was a main effect by analysis of variance of experimental group (P < .0001) with significant increases in COX activity in wake and sleep-deprived groups as compared to the sleep group. A main effect of brain region was also significant (P < .001). There was no difference between brain regions in the degree of increase in enzyme activity in wakefulness. Both COXI and COXIV mRNA were increased with wakefulness as compared to sleep. There is an increase in COX activity after both 3 hours of spontaneous wake and 3 hours of sleep deprivation as compared with 3 hours of spontaneous sleep in diverse brain regions, which could be, in part, explained by the increased levels of bigenomic transcripts of the enzyme. This likely contributes to increased adenosine triphosphate production during wakefulness. ADP, adenosine diphosphate; ATP, adenosine triphosphate; COXI, cytochrome c

  13. Do Older Adults Need Sleep? A Review of Neuroimaging, Sleep, and Aging Studies.

    PubMed

    Scullin, Michael K

    2017-09-01

    Sleep habits, sleep physiology, and sleep disorders change with increasing age. However, there is a longstanding debate regarding whether older adults need sleep to maintain health and daily functioning (reduced-sleep-need view). An alternative possibility is that all older adults need sleep, but that many older adults have lost the ability to obtain restorative sleep (reduced-sleep-ability view). Prior research using behavioral and polysomnography outcomes has not definitively disentangled the reduced-sleep-need and reduced-sleep-ability views. Therefore, this review examines the neuroimaging literature to determine whether age-related changes in sleep cause-or are caused by-age-related changes in brain structure, function, and pathology. In middle-aged and older adults, poorer sleep quality, greater nighttime hypoxia, and shorter sleep duration related to cortical thinning in frontal regions implicated in slow wave generation, in frontoparietal networks implicated in cognitive control, and in hippocampal regions implicated in memory consolidation. Furthermore, poor sleep quality was associated with higher amyloid burden and decreased connectivity in the default mode network, a network that is disrupted in the pathway to Alzheimer's disease. All adults need sleep, but cortical thinning and amyloidal deposition with advancing age may weaken the brain's ability to produce restorative sleep. Therefore, sleep in older adults may not always support identical functions for physical, mental, and cognitive health as in young adults.

  14. Analysis of Sleep Parameters in Patients with Obstructive Sleep Apnea Studied in a Hospital vs. a Hotel-Based Sleep Center

    PubMed Central

    Hutchison, Kimberly N.; Song, Yanna; Wang, Lily; Malow, Beth A.

    2008-01-01

    Background: Polysomnography is associated with changes in sleep architecture called the first-night effect. This effect is believed to result from sleeping in an unusual environment and the technical equipment used to study sleep. Sleep experts hope to decrease this variable by providing a more familiar, comfortable atmosphere for sleep testing through hotel-based sleep centers. In this study, we compared the sleep parameters of patients studied in our hotel-based and hospital-based sleep laboratories. Methods: We retrospectively reviewed polysomnograms completed in our hotel-based and hospital-based sleep laboratories from August 2003 to July 2005. All patients were undergoing evaluation for obstructive sleep apnea. Hospital-based patients were matched for age and apnea-hypopnea index with hotel-based patients. We compared the sleep architecture changes associated with the first-night effect in the two groups. The associated conditions and symptoms listed on the polysomnography referral forms are also compared. Results: No significant differences were detected between the two groups in sleep onset latency, sleep efficiency, REM sleep latency, total amount of slow wave sleep (NREM stages 3 and 4), arousal index, and total stage 1 sleep. Conclusions: This pilot study failed to show a difference in sleep parameters associated with the first-night effect in patients undergoing sleep studies in our hotel and hospital-based sleep laboratories. Future studies need to compare the first-night effect in different sleep disorders, preferably in multi-night recordings. Citation: Hutchison KN; Song Y; Wang L; Malow BA. Analysis of sleep parameters in patients with obstructive sleep apnea studied in a hospital vs. A hotel-based sleep center. J Clin Sleep Med 2008;4(2):119–122. PMID:18468309

  15. Ketamine, sleep, and depression: current status and new questions.

    PubMed

    Duncan, Wallace C; Zarate, Carlos A

    2013-09-01

    Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, has well-described rapid antidepressant effects in clinical studies of individuals with treatment-resistant major depressive disorder (MDD). Preclinical studies investigating the effects of ketamine on brain-derived neurotrophic factor (BDNF) and on sleep slow wave activity (SWA) support its use as a prototype for investigating the neuroplastic mechanisms presumably involved in the mechanism of rapidly acting antidepressants. This review discusses human EEG slow wave sleep parameters and plasma BDNF as central and peripheral surrogate markers of plasticity, and their use in assessing ketamine's effects. Acutely, ketamine elevates BDNF levels, as well as early night SWA and high-amplitude slow waves; each of these measures correlates with change in mood in depressed patients who respond to ketamine. The slow wave effects are limited to the first night post-infusion, suggesting that their increase is part of an early cascade of events triggering improved mood. Increased total sleep and decreased waking occur during the first and second night post infusion, suggesting that these measures are associated with the enduring treatment response observed with ketamine.

  16. Developmental trajectories of EEG sleep slow wave activity as a marker for motor skill development during adolescence: a pilot study.

    PubMed

    Lustenberger, Caroline; Mouthon, Anne-Laure; Tesler, Noemi; Kurth, Salome; Ringli, Maya; Buchmann, Andreas; Jenni, Oskar G; Huber, Reto

    2017-01-01

    Reliable markers for brain maturation are important to identify neural deviations that eventually predict the development of mental illnesses. Recent studies have proposed topographical EEG-derived slow wave activity (SWA) during NREM sleep as a mirror of cortical development. However, studies about the longitudinal stability as well as the relationship with behavioral skills are needed before SWA topography may be considered such a reliable marker. We examined six subjects longitudinally (over 5.1 years) using high-density EEG and a visuomotor learning task. All subjects showed a steady increase of SWA at a frontal electrode and a decrease in central electrodes. Despite these large changes in EEG power, SWA topography was relatively stable within each subject during development indicating individual trait-like characteristics. Moreover, the SWA changes in the central cluster were related to the development of specific visuomotor skills. Taken together with the previous work in this domain, our results suggest that EEG sleep SWA represents a marker for motor skill development and further supports the idea that SWA mirrors cortical development during childhood and adolescence. © 2016 Wiley Periodicals, Inc.

  17. Eye Movement Desensitization and Reprocessing and Slow Wave Sleep: A Putative Mechanism of Action

    PubMed Central

    Pagani, Marco; Amann, Benedikt L.; Landin-Romero, Ramon; Carletto, Sara

    2017-01-01

    Eye Movement Desensitization and Reprocessing (EMDR) is considered highly efficacious for the treatment of Post-traumatic Stress Disorder and has proved to be a valid treatment approach with a wide range of applications. However, EMDR’s mechanisms of action is not yet fully understood. This is an active area of clinical and neurophysiological research, and several different hypotheses have been proposed. This paper discusses a conjecture which focuses on the similarity between the delta waves recorded by electroencephalography during Slow Wave Sleep (SWS) and those registered upon typical EMDR bilateral stimulation (eye movements or alternate tapping) during recurrent distressing memories of an emotionally traumatic event. SWS appears to have a key role in memory consolidation and in the reorganization of distant functional networks, as well as Eye Movements seem to reduce traumatic episodic memory and favor the reconsolidation of new associated information. The SWS hypothesis may put forward an explanation of how EMDR works, and is discussed also in light of other theories and neurobiological findings. PMID:29163309

  18. Effect of environmental temperature on sleep, locomotor activity, core body temperature and immune responses of C57BL/6J mice

    PubMed Central

    Jhaveri, KA; Trammell, RA; Toth, LA

    2007-01-01

    Ambient temperature exerts a prominent influence on sleep. In rats and humans, low ambient temperatures generally impair sleep, whereas higher temperatures tend to promote sleep. The purpose of the current study was to evaluate sleep patterns and core body temperatures of C57BL/6J mice at ambient temperatures of 22°C, 26°C and 30°C under baseline conditions, after sleep deprivation (SD), and after infection with influenza virus. C57BL/6J mice were surgically implanted with electrodes for recording electroencephalogram (EEG) and electromyogram (EMG) and with intraperitoneal transmitters for recording core body temperature (Tc) and locomotor activity. The data indicate that higher ambient temperatures (26°C and 30°C) promote spontaneous slow wave sleep (SWS) in association with reduced delta wave amplitude during SWS in C57BL/6J mice. Furthermore, higher ambient temperatures also promote recuperative sleep after SD. Thus, in mice, higher ambient temperatures reduced sleep depth under normal conditions, but augmented the recuperative response to sleep loss. Mice infected with influenza virus while maintained at 22 or 26°C developed more SWS, less rapid eye movement sleep, lower locomotor activity and greater hypothermia than did mice maintained at 30°C during infection. In addition, despite equivalent viral titers, mice infected with influenza virus at 30°C showed less leucopenia and lower cytokine induction as compared with 22 and 26°C, respectively, suggesting that less inflammation develops at the higher ambient temperature. PMID:17467232

  19. Sleep, sport, and the brain.

    PubMed

    Halson, Shona L; Juliff, Laura E

    2017-01-01

    The recognition that sleep is one of the foundations of athlete performance is increasing both in the elite athlete arena as well as applied performance research. Sleep, as identified through sleep deprivation and sleep extension investigations, has a role in performance, illness, injury, metabolism, cognition, memory, learning, and mood. Elite athletes have been identified as having poorer quality and quantity of sleep in comparison to the general population. This is likely the result on training times, competition stress/anxiety, muscle soreness, caffeine use, and travel. Sleep, in particular slow wave sleep, provides a restorative function to the body to recover from prior wakefulness and fatigue by repairing processes and restoring energy. In addition, research in the general population is highlighting the importance of sleep on neurophysiology, cognitive function, and mood which may have implications for elite athlete performance. It is thus increased understanding of both the effects of sleep deprivation and potential mechanisms of influence on performance that may allow scientists and practitioners to positively influence sleep in athletes and ultimately maximize performances. © 2017 Elsevier B.V. All rights reserved.

  20. Insights into sleep's role for insight: Studies with the number reduction task

    PubMed Central

    Verleger, Rolf; Rose, Michael; Wagner, Ullrich; Yordanova, Juliana; Kolev, Vasil

    2013-01-01

    In recent years, vibrant research has developed on “consolidation” during sleep: To what extent are newly experienced impressions reprocessed or even restructured during sleep? We used the number reduction task (NRT) to study if and how sleep does not only reiterate new experiences but may even lead to new insights. In the NRT, covert regularities may speed responses. This implicit acquisition of regularities may become explicitly conscious at some point, leading to a qualitative change in behavior which reflects this insight. By applying the NRT at two consecutive sessions separated by an interval, we investigated the role of sleep in this interval for attaining insight at the second session. In the first study, a night of sleep was shown to triple the number of participants attaining insight above the base rate of about 20%. In the second study, this hard core of 20% discoverers differed from other participants in their task-related EEG potentials from the very beginning already. In the third study, the additional role of sleep was specified as an effect of the deep-sleep phase of slow-wave sleep on participants who had implicitly acquired the covert regularity before sleep. It was in these participants that a specific increase of EEG during slow-wave sleep in the 10-12 Hz band was obtained. These results support the view that neuronal memory reprocessing during slow-wave sleep restructures task-related representations in the brain, and that such restructuring promotes the gain of explicit knowledge. PMID:24605175

  1. EEG microstates of wakefulness and NREM sleep.

    PubMed

    Brodbeck, Verena; Kuhn, Alena; von Wegner, Frederic; Morzelewski, Astrid; Tagliazucchi, Enzo; Borisov, Sergey; Michel, Christoph M; Laufs, Helmut

    2012-09-01

    EEG-microstates exploit spatio-temporal EEG features to characterize the spontaneous EEG as a sequence of a finite number of quasi-stable scalp potential field maps. So far, EEG-microstates have been studied mainly in wakeful rest and are thought to correspond to functionally relevant brain-states. Four typical microstate maps have been identified and labeled arbitrarily with the letters A, B, C and D. We addressed the question whether EEG-microstate features are altered in different stages of NREM sleep compared to wakefulness. 32-channel EEG of 32 subjects in relaxed wakefulness and NREM sleep was analyzed using a clustering algorithm, identifying the most dominant amplitude topography maps typical of each vigilance state. Fitting back these maps into the sleep-scored EEG resulted in a temporal sequence of maps for each sleep stage. All 32 subjects reached sleep stage N2, 19 also N3, for at least 1 min and 45 s. As in wakeful rest we found four microstate maps to be optimal in all NREM sleep stages. The wake maps were highly similar to those described in the literature for wakefulness. The sleep stage specific map topographies of N1 and N3 sleep showed a variable but overall relatively high degree of spatial correlation to the wake maps (Mean: N1 92%; N3 87%). The N2 maps were the least similar to wake (mean: 83%). Mean duration, total time covered, global explained variance and transition probabilities per subject, map and sleep stage were very similar in wake and N1. In wake, N1 and N3, microstate map C was most dominant w.r.t. global explained variance and temporal presence (ratio total time), whereas in N2 microstate map B was most prominent. In N3, the mean duration of all microstate maps increased significantly, expressed also as an increase in transition probabilities of all maps to themselves in N3. This duration increase was partly--but not entirely--explained by the occurrence of slow waves in the EEG. The persistence of exactly four main microstate

  2. Sleeping on the motor engram: The multifaceted nature of sleep-related motor memory consolidation.

    PubMed

    King, Bradley R; Hoedlmoser, Kerstin; Hirschauer, Franziska; Dolfen, Nina; Albouy, Genevieve

    2017-09-01

    For the past two decades, it has generally been accepted that sleep benefits motor memory consolidation processes. This notion, however, has been challenged by recent studies and thus the sleep and motor memory story is equivocal. Currently, and in contrast to the declarative memory domain, a comprehensive overview and synthesis of the effects of post-learning sleep on the behavioral and neural correlates of motor memory consolidation is not available. We therefore provide an extensive review of the literature in order to highlight that sleep-dependent motor memory consolidation depends upon multiple boundary conditions, including particular features of the motor task, the recruitment of relevant neural substrates (and the hippocampus in particular), as well as the specific architecture of the intervening sleep period (specifically, sleep spindle and slow wave activity). For our field to continue to advance, future research must consider the multifaceted nature of sleep-related motor memory consolidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Catechol-O-Methyltransferase Val158Met Polymorphism Associates with Individual Differences in Sleep Physiologic Responses to Chronic Sleep Loss

    PubMed Central

    Goel, Namni; Banks, Siobhan; Lin, Ling; Mignot, Emmanuel; Dinges, David F.

    2011-01-01

    Background The COMT Val158Met polymorphism modulates cortical dopaminergic catabolism, and predicts individual differences in prefrontal executive functioning in healthy adults and schizophrenic patients, and associates with EEG differences during sleep loss. We assessed whether the COMT Val158Met polymorphism was a novel marker in healthy adults of differential vulnerability to chronic partial sleep deprivation (PSD), a condition distinct from total sleep loss and one experienced by millions on a daily and persistent basis. Methodology/Principal Findings 20 Met/Met, 64 Val/Met, and 45 Val/Val subjects participated in a protocol of two baseline 10h time in bed (TIB) nights followed by five consecutive 4 h TIB nights. Met/Met subjects showed differentially steeper declines in non-REM EEG slow-wave energy (SWE)—the putative homeostatic marker of sleep drive—during PSD, despite comparable baseline SWE declines. Val/Val subjects showed differentially smaller increases in slow-wave sleep and smaller reductions in stage 2 sleep during PSD, and had more stage 1 sleep across nights and a shorter baseline REM sleep latency. The genotypes, however, did not differ in performance across various executive function and cognitive tasks and showed comparable increases in subjective and physiological sleepiness in response to chronic sleep loss. Met/Met genotypic and Met allelic frequencies were higher in whites than African Americans. Conclusions/Significance The COMT Val158Met polymorphism may be a genetic biomarker for predicting individual differences in sleep physiology—but not in cognitive and executive functioning—resulting from sleep loss in a healthy, racially-diverse adult population of men and women. Beyond healthy sleepers, our results may also provide insight for predicting sleep loss responses in patients with schizophrenia and other psychiatric disorders, since these groups repeatedly experience chronically-curtailed sleep and demonstrate COMT

  4. Slow oscillations orchestrating fast oscillations and memory consolidation.

    PubMed

    Mölle, Matthias; Born, Jan

    2011-01-01

    Slow-wave sleep (SWS) facilitates the consolidation of hippocampus-dependent declarative memory. Based on the standard two-stage memory model, we propose that memory consolidation during SWS represents a process of system consolidation which is orchestrated by the neocortical <1Hz electroencephalogram (EEG) slow oscillation and involves the reactivation of newly encoded representations and their subsequent redistribution from temporary hippocampal to neocortical long-term storage sites. Indeed, experimental induction of slow oscillations during non-rapid eye movement (non-REM) sleep by slowly alternating transcranial current stimulation distinctly improves consolidation of declarative memory. The slow oscillations temporally group neuronal activity into up-states of strongly enhanced neuronal activity and down-states of neuronal silence. In a feed-forward efferent action, this grouping is induced not only in the neocortex but also in other structures relevant to consolidation, namely the thalamus generating 10-15Hz spindles, and the hippocampus generating sharp wave-ripples, with the latter well known to accompany a replay of newly encoded memories taking place in hippocampal circuitries. The feed-forward synchronizing effect of the slow oscillation enables the formation of spindle-ripple events where ripples and accompanying reactivated hippocampal memory information become nested into the single troughs of spindles. Spindle-ripple events thus enable reactivated memory-related hippocampal information to be fed back to neocortical networks in the excitable slow oscillation up-state where they can induce enduring plastic synaptic changes underlying the effective formation of long-term memories. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Sleep in the Cape Mole Rat: A Short-Sleeping Subterranean Rodent.

    PubMed

    Kruger, Jean-Leigh; Gravett, Nadine; Bhagwandin, Adhil; Bennett, Nigel C; Archer, Elizabeth K; Manger, Paul R

    2016-01-01

    The Cape mole rat Georychus capensis is a solitary subterranean rodent found in the western and southern Cape of South Africa. This approximately 200-gram bathyergid rodent shows a nocturnal circadian rhythm, but sleep in this species is yet to be investigated. Using telemetric recordings of the electroencephalogram (EEG) and electromyogram (EMG) in conjunction with video recordings, we were able to show that the Cape mole rat, like all other rodents, has sleep periods composed of both rapid eye movement (REM) and slow-wave (non-REM) sleep. These mole rats spent on average 15.4 h awake, 7.1 h in non-REM sleep and 1.5 h in REM sleep each day. Cape mole rats sleep substantially less than other similarly sized terrestrial rodents but have a similar percentage of total sleep time occupied by REM sleep. In addition, the duration of both non-REM and REM sleep episodes was markedly shorter in the Cape mole rat than has been observed in terrestrial rodents. Interestingly, these features (total sleep time and episode duration) are similar to those observed in another subterranean bathyergid mole rat, i.e. Fukomys mechowii. Thus, there appears to be a bathyergid type of sleep amongst the rodents that may be related to their environment and the effect of this on their circadian rhythm. Investigating further species of bathyergid mole rats may fully define the emerging picture of sleep in these subterranean African rodents. © 2016 S. Karger AG, Basel.

  6. Sleep instability and cognitive status in drug-resistant epilepsies.

    PubMed

    Pereira, Alessandra Marques; Bruni, Oliviero; Ferri, Raffaele; Nunes, Magda Lahorgue

    2012-05-01

    The aims of this study were to evaluate the sleep habits of children with drug resistant epilepsy and to correlate sleep abnormalities with epilepsy and level of intelligence. Twenty five subjects with drug resistant epilepsy (14 males, age range 2-16.4 years) were recruited for this study. A control group was formed by 23 normal children. Two instruments to assess sleep habits were administered to the patients with epilepsy: a questionnaire on sleep habits (to preschool children) and a questionnaire on sleep behavior (for children aged more than seven years old); a cognitive test (Wechsler Intelligence Scale for Children-WISC) was also performed. Patients underwent a complete polysomnographic study and sleep parameters, including CAP, were analyzed and correlated according to cognitive-behavioral measures in children with epilepsy. Children with drug-resistant epilepsy and severe mental retardation showed sleep abnormalities such as low sleep efficiency, high percentage of wakefulness after sleep onset, reduced slow wave sleep, and reduced REM sleep. Sleep microstructure evaluated by means of CAP analysis showed a decrease in A1 index during N3 in patients with more severe cognitive impairment. Children with epilepsy and cognitive impairment (n=10) had higher Sleep Behavior Questionnaire for Children (SBQC) total scores (65.60 ± 18.56) compared to children with epilepsy and normal IQ (50.00 ± 10.40), p<0.05. Children with drug-resistant epilepsy have a greater incidence of sleep problems regarding qualitative aspects, macrostructure, and CAP. The decrease of CAP rate and of A1, mainly during slow wave sleep (associated to REM sleep reduction), might represent a sleep microstructural pattern of intellectual disability. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. An 8-year old boy with continuous spikes and waves during slow sleep presenting with positive onconeuronal antibodies.

    PubMed

    Hu, Lin-Yan; Shi, Xiu-Yu; Feng, Chen; Wang, Jian-Wen; Yang, Guan; Lammers, Stephen H T; Yang, Xiao Fan; Ebrahimi-Fakhari, Darius; Zou, Li-Ping

    2015-03-01

    To determine the etiology of epilepsy with continuous spikes and waves during slow sleep (CSWS)/electrical status epilepticus during sleep (ESES) in an 8-year old boy with a history of neuroblastoma and opsoclonus-myoclonus. A combination of clinical characterization and follow-up, video EEG and laboratory investigations. We report the case of an 8-year old boy with a history of neuroblastoma and opsoclonus-myoclonus, who presented with intellectual disability, pharmacotherapy-resistant epilepsy and CSWS/ESES. Although the patient's neuroblastoma had been successfully treated 8 years prior to presentation and an extensive workup did not show a tumor reoccurrence, testing for onconeuronal antibodies was positive for anti-Ma2 and anti-CV2/CRMP5 antibodies. High-dose intravenous methylprednisolone and a taper of oral methylprednisolone were given, leading to a significant clinical improvement. During the taper the patient's condition and EEG manifestations deteriorated again necessitating another cycle of steroid therapy, which lead to a stable improvement. During a 6-month follow-up no CSWS/ESES was seen on EEG and anti-Ma2 and anti-CV2/CRMP5 antibodies remained undetectable. This case suggests that onconeuronal antibodies may be involved in the pathogenesis of CSWS/ESES. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  8. Cerebral correlates of delta waves during non-REM sleep revisited.

    PubMed

    Dang-Vu, Thien Thanh; Desseilles, Martin; Laureys, Steven; Degueldre, Christian; Perrin, Fabien; Phillips, Christophe; Maquet, Pierre; Peigneux, Philippe

    2005-10-15

    We aimed at characterizing the neural correlates of delta activity during Non Rapid Eye Movement (NREM) sleep in non-sleep-deprived normal young adults, based on the statistical analysis of a positron emission tomography (PET) sleep data set. One hundred fifteen PET scans were obtained using H(2)(15)O under continuous polygraphic monitoring during stages 2-4 of NREM sleep. Correlations between regional cerebral blood flow (rCBF) and delta power (1.5-4 Hz) spectral density were analyzed using statistical parametric mapping (SPM2). Delta power values obtained at central scalp locations negatively correlated during NREM sleep with rCBF in the ventromedial prefrontal cortex, the basal forebrain, the striatum, the anterior insula, and the precuneus. These regions embrace the set of brain areas in which rCBF decreases during slow wave sleep (SWS) as compared to Rapid Eye Movement (REM) sleep and wakefulness (Maquet, P., Degueldre, C., Delfiore, G., Aerts, J., Peters, J.M., Luxen, A., Franck, G., 1997. Functional neuroanatomy of human slow wave sleep. J. Neurosci. 17, 2807-S2812), supporting the notion that delta activity is a valuable prominent feature of NREM sleep. A strong association was observed between rCBF in the ventromedial prefrontal regions and delta power, in agreement with electrophysiological studies. In contrast to the results of a previous PET study investigating the brain correlates of delta activity (Hofle, N., Paus, T., Reutens, D., Fiset, P., Gotman, J., Evans, A.C., Jones, B.E., 1997. Regional cerebral blood flow changes as a function of delta and spindle activity during slow wave sleep in humans. J. Neurosci. 17, 4800-4808), in which waking scans were mixed with NREM sleep scans, no correlation was found with thalamus activity. This latter result stresses the importance of an extra-thalamic delta rhythm among the synchronous NREM sleep oscillations. Consequently, this rCBF distribution might preferentially reflect a particular modulation of the

  9. Expression of TASK-1 in brainstem and the occurrence of central sleep apnea in rats.

    PubMed

    Wang, Jing; Zhang, Cheng; Li, Nan; Su, Li; Wang, Guangfa

    2008-03-20

    Recent studies revealed that unstable ventilation control is one of mechanisms underlying the occurrence of sleep apnea. Thus, we investigated whether TASK-1, an acid-sensitive potassium channel, plays a role in the occurrence of sleep apnea. First, the expression of TASK-1 transcriptions on brainstem was checked by in situ hybridization. Then, the correlation between the central apneic episodes and protein contents of TASK-1 measured by western blot was analyzed from 27 male rats. Results showed that TASK-1 mRNAs were widely distributed on the putative central chemoreceptors such as locus coeruleus, nucleus tractus solitarius and medullary raphe, etc. Both the total spontaneous apnea index (TSAI) and spontaneous apnea index in NREM sleep (NSAI) were positively correlated with TASK-1 protein contents (r=0.547 and 0.601, respectively, p<0.01). However, the post-sigh sleep apnea index (PAI) had no relationship with TASK-1 protein. Thus, we concluded that TASK-1 channels may function as central chemoreceptors that play a role in spontaneous sleep apneas in rats.

  10. The multiple time scales of sleep dynamics as a challenge for modelling the sleeping brain.

    PubMed

    Olbrich, Eckehard; Claussen, Jens Christian; Achermann, Peter

    2011-10-13

    A particular property of the sleeping brain is that it exhibits dynamics on very different time scales ranging from the typical sleep oscillations such as sleep spindles and slow waves that can be observed in electroencephalogram (EEG) segments of several seconds duration over the transitions between the different sleep stages on a time scale of minutes to the dynamical processes involved in sleep regulation with typical time constants in the range of hours. There is an increasing body of work on mathematical and computational models addressing these different dynamics, however, usually considering only processes on a single time scale. In this paper, we review and present a new analysis of the dynamics of human sleep EEG at the different time scales and relate the findings to recent modelling efforts pointing out both the achievements and remaining challenges.

  11. Critical evaluation of the effect of valerian extract on sleep structure and sleep quality.

    PubMed

    Donath, F; Quispe, S; Diefenbach, K; Maurer, A; Fietze, I; Roots, I

    2000-03-01

    A carefully designed study assessed the short-term (single dose) and long-term (14 days with multiple dosage) effects of a valerian extract on both objective and subjective sleep parameters. The investigation was performed as a randomised, double-blind, placebo-controlled, cross-over study. Sixteen patients (4 male, 12 female) with previously established psychophysiological insomnia (ICSD-code 1.A.1.), and with a median age of 49 (range: 22 to 55), were included in the study. The main inclusion criteria were reported primary insomnia according to ICSD criteria, which was confirmed by polysomnographic recording, and the absence of acute diseases. During the study, the patients underwent 8 polysomnographic recordings: i.e., 2 recordings (baseline and study night) at each time point at which the short and long-term effects of placebo and valerian were tested. The target variable of the study was sleep efficiency. Other parameters describing objective sleep structure were the usual features of sleep-stage analysis, based on the rules of Rechtschaffen and Kales (1968), and the arousal index (scored according to ASDA criteria, 1992) as a sleep microstructure parameter. Subjective parameters such as sleep quality, morning feeling, daytime performance, subjectively perceived duration of sleep latency, and sleep period time were assessed by means of questionnaires. After a single dose of valerian, no effects on sleep structure and subjective sleep assessment were observed. After multiple-dose treatment, sleep efficiency showed a significant increase for both the placebo and the valerian condition in comparison with baseline polysomnography. We confirmed significant differences between valerian and placebo for parameters describing slow-wave sleep. In comparison with the placebo, slow-wave sleep latency was reduced after administration of valerian (21.3 vs. 13.5 min respectively, p<0.05). The SWS percentage of time in bed (TIB) was increased after long-term valerian

  12. Physiological effects of railway vibration and noise on sleep

    PubMed Central

    Smith, Michael G.; Croy, Ilona; Ögren, Mikael; Hammar, Oscar; Lindberg, Eva; Persson Waye, Kerstin

    2017-01-01

    This paper evaluates the relative contribution of vibration and noise from railway on physiological sleep outcomes. Vibration from railway freight often accompanies airborne noise, yet is almost totally absent in the existing literature. In an experimental investigation, 23 participants, each sleeping for six nights in the laboratory, were exposed to 36 simulated railway freight pass-bys per night with vibration alone (aWd,max = 0.0204 ms−2), noise alone (LAF,max = 49.8 dB), or both vibration and noise simultaneously. A fourth exposure night involved 52 pass-bys with concurrent vibration and noise. Sleep was measured with polysomnography. Cardiac activity was measured with electrocardiography. The probability of cortical arousals or awakenings was greater following all exposures, including vibration alone, than spontaneous reaction probability (p < 0.05). The effects of vibration exposure and noise exposure on changes of sleep stage and arousals were directly additive. Vibration and noise exposure both induced heart rate acceleration above spontaneously expected fluctuations at baseline. The results indicate that vibration and noise are processed in the brain separately yet in parallel, with both contributing towards the likelihood of sleep disruption. The findings show that vibration is of importance when considering the impact of railway freight on sleep. PMID:28599531

  13. Altered Electroencephalographic Activity Associated with Changes in the Sleep-Wakefulness Cycle of C57BL/6J Mice in Response to a Photoperiod Shortening

    PubMed Central

    Rozov, Stanislav V.; Zant, Janneke C.; Gurevicius, Kestutis; Porkka-Heiskanen, Tarja; Panula, Pertti

    2016-01-01

    Aim: Under natural conditions diurnal rhythms of biological processes of the organism are synchronized with each other and to the environmental changes by means of the circadian system. Disturbances of the latter affect hormonal levels, sleep-wakefulness cycle and cognitive performance. To study mechanisms of such perturbations animal models subjected to artificial photoperiods are often used. The goal of current study was to understand the effects of circadian rhythm disruption, caused by a short light-dark cycle regime, on activity of the cerebral cortex in rodents. Methods: We used electroencephalogram to assess the distribution of vigilance states, perform spectral analysis, and estimate the homeostatic sleep drive. In addition, we analyzed spontaneous locomotion of C57BL/6J mice under symmetric, 22-, 21-, and 20-h-long light–dark cycles using video recording and tracking methods. Results and Conclusions: We found that shortening of photoperiod caused a significant increase of slow wave activity during non-rapid eye movement sleep suggesting an elevation of sleep pressure under such conditions. While the rhythm of spontaneous locomotion was completely entrained by all light–dark cycles tested, periodic changes in the power of the θ- and γ-frequency ranges during wakefulness gradually disappeared under 22- and 21-h-long light–dark cycles. This was associated with a significant increase in the θ–γ phase-amplitude coupling during wakefulness. Our results thus provide deeper understanding of the mechanisms underlying the impairment of learning and memory retention, which is associated with disturbed circadian regulation. PMID:27630549

  14. Theta-rhythmic drive between medial septum and hippocampus in slow-wave sleep and microarousal: a Granger causality analysis.

    PubMed

    Kang, D; Ding, M; Topchiy, I; Shifflett, L; Kocsis, B

    2015-11-01

    Medial septum (MS) plays a critical role in controlling the electrical activity of the hippocampus (HIPP). In particular, theta-rhythmic burst firing of MS neurons is thought to drive lasting HIPP theta oscillations in rats during waking motor activity and REM sleep. Less is known about MS-HIPP interactions in nontheta states such as non-REM sleep, in which HIPP theta oscillations are absent but theta-rhythmic burst firing in subsets of MS neurons is preserved. The present study used Granger causality (GC) to examine the interaction patterns between MS and HIPP in slow-wave sleep (SWS, a nontheta state) and during its short interruptions called microarousals (a transient theta state). We found that during SWS, while GC revealed a unidirectional MS→HIPP influence over a wide frequency band (2-12 Hz, maximum: ∼8 Hz), there was no theta peak in the hippocampal power spectra, indicating a lack of theta activity in HIPP. In contrast, during microarousals, theta peaks were seen in both MS and HIPP power spectra and were accompanied by bidirectional GC with MS→HIPP and HIPP→MS theta drives being of equal magnitude. Thus GC in a nontheta state (SWS) vs. a theta state (microarousal) primarily differed in the level of HIPP→MS. The present findings suggest a modification of our understanding of the role of MS as the theta generator in two regards. First, a MS→HIPP theta drive does not necessarily induce theta field oscillations in the hippocampus, as found in SWS. Second, HIPP theta oscillations entail bidirectional theta-rhythmic interactions between MS and HIPP. Copyright © 2015 the American Physiological Society.

  15. Cortical firing and sleep homeostasis.

    PubMed

    Vyazovskiy, Vladyslav V; Olcese, Umberto; Lazimy, Yaniv M; Faraguna, Ugo; Esser, Steve K; Williams, Justin C; Cirelli, Chiara; Tononi, Giulio

    2009-09-24

    The need to sleep grows with the duration of wakefulness and dissipates with time spent asleep, a process called sleep homeostasis. What are the consequences of staying awake on brain cells, and why is sleep needed? Surprisingly, we do not know whether the firing of cortical neurons is affected by how long an animal has been awake or asleep. Here, we found that after sustained wakefulness cortical neurons fire at higher frequencies in all behavioral states. During early NREM sleep after sustained wakefulness, periods of population activity (ON) are short, frequent, and associated with synchronous firing, while periods of neuronal silence are long and frequent. After sustained sleep, firing rates and synchrony decrease, while the duration of ON periods increases. Changes in firing patterns in NREM sleep correlate with changes in slow-wave activity, a marker of sleep homeostasis. Thus, the systematic increase of firing during wakefulness is counterbalanced by staying asleep.

  16. Effect of oxcarbazepine on sleep architecture.

    PubMed

    Ayala-Guerrero, Fructuoso; Mexicano, Graciela; González, Valentín; Hernandez, Mario

    2009-07-01

    The most common side effects following administration of antiepileptic drugs involve alterations in sleep architecture and varying degrees of daytime sleepiness. Oxcarbazepine is a drug that is approved as monotherapy for the treatment of partial seizures and generalized tonic-clonic seizures. However, there is no information about its effects on sleep pattern organization; therefore, the objective of this work was to analyze such effects. Animals (Wistar rats) exhibited three different behavioral and electrophysiological states of vigilance: wakefulness, slow wave sleep (SWS), and rapid eye movement (REM) sleep. Oral treatment with oxcarbazepine (100 mg/kg) produced an increment in total sleep time throughout the recording period. This increment involved both SWS and REM sleep. Mean duration of the REM sleep phase was not affected. In contrast, the frequency of this sleep phase increased significantly across the 10-hour period. REM sleep latency shortened significantly. Results obtained in this work indicate that oxcarbazepine's acute effects point to hypnotic properties.

  17. Frontal predominance of a relative increase in sleep delta and theta EEG activity after sleep loss in humans

    NASA Technical Reports Server (NTRS)

    Cajochen, C.; Foy, R.; Dijk, D. J.; Czeisler, C. A. (Principal Investigator)

    1999-01-01

    The effect of sleep deprivation (40 h) on topographic and temporal aspects of electroencephalographic (EEG) activity during sleep was investigated by all night spectral analysis in six young volunteers. The sleep-deprivation-induced increase of EEG power density in the delta and theta frequencies (1-7 Hz) during nonREM sleep, assessed along the antero-posterior axis (midline: Fz, Cz, Pz, Oz), was significantly larger in the more frontal derivations (Fz, Cz) than in the more parietal derivations (Pz, Oz). This frequency-specific frontal predominance was already present in the first 30 min of recovery sleep, and dissipated in the course of the 8-h sleep episode. The data demonstrate that the enhancement of slow wave EEG activity during sleep following extended wakefulness is most pronounced in frontal cortical areas.

  18. Hippocampal Sleep Features: Relations to Human Memory Function

    PubMed Central

    Ferrara, Michele; Moroni, Fabio; De Gennaro, Luigi; Nobili, Lino

    2012-01-01

    The recent spread of intracranial electroencephalographic (EEG) recording techniques for presurgical evaluation of drug-resistant epileptic patients is providing new information on the activity of different brain structures during both wakefulness and sleep. The interest has been mainly focused on the medial temporal lobe, and in particular the hippocampal formation, whose peculiar local sleep features have been recently described, providing support to the idea that sleep is not a spatially global phenomenon. The study of the hippocampal sleep electrophysiology is particularly interesting because of its central role in the declarative memory formation. Recent data indicate that sleep contributes to memory formation. Therefore, it is relevant to understand whether specific patterns of activity taking place during sleep are related to memory consolidation processes. Fascinating similarities between different states of consciousness (wakefulness, REM sleep, non-REM sleep) in some electrophysiological mechanisms underlying cognitive processes have been reported. For instance, large-scale synchrony in gamma activity is important for waking memory and perception processes, and its changes during sleep may be the neurophysiological substrate of sleep-related deficits of declarative memory. Hippocampal activity seems to specifically support memory consolidation during sleep, through specific coordinated neurophysiological events (slow waves, spindles, ripples) that would facilitate the integration of new information into the pre-existing cortical networks. A few studies indeed provided direct evidence that rhinal ripples as well as slow hippocampal oscillations are correlated with memory consolidation in humans. More detailed electrophysiological investigations assessing the specific relations between different types of memory consolidation and hippocampal EEG features are in order. These studies will add an important piece of knowledge to the elucidation of the ultimate

  19. Prevalence and Correlates of Alpha-Delta Sleep in Major Depressive Disorders

    PubMed Central

    Jaimchariyatam, Nattapong; Rodriguez, Carlos L.

    2011-01-01

    Objective. Major depressive disorder is associated with sleep disturbances. An electroencephalographic pattern of alpha wave intrusion in delta wave sleep (alpha-delta sleep) is observed in some subjects with major depressive disorder. The treatment-resistant symptoms in major depressive disorder, nonrestorative sleep and fatigue, are associated with alpha-delta sleep. The objective of this study is to identify the prevalence and clinical correlates of alpha-delta sleep in major depressive disorder. Design. Retrospective study Setting. Sleep Disorders Center, Cleveland Clinic, Cleveland, Ohio Participants. Polysomnograms were conducted on 150 subjects 18 years of age or older (75 with and 75 without major depressive disorder) were reviewed. Measurements. The percent of delta waves with alpha intrusion was collected and analyzed. Results. Subjects with major depressive disorder compared to nondepressed subjects had a higher sleep efficiency (83.0±9.6; 78.1±8.2%), shorter rapid eye movement latency (85.0±44.5; 189.9±25.6 min), less slow wave sleep (8.3±3.0; 13.5±6.2%), and greater rapid eye movement (24.7±7.0; 19.2±8.2%), and all of these findings were statistically significant. Patients with major depressive disorder had higher alpha-delta sleep (23.4±14.2%; 2.3±6.7%, p<0.01). Patients with major depressive disorder were categorized into high and low alpha-delta sleep based on percentage of alpha-delta sleep present in slow wave sleep (alpha-delta sleep was present ≥15% or ≤15% of slow wave sleep, respectively). Patients with major depressive disorder with high alpha-delta sleep were at 3.15 greater odds (1.22–8.14; p=0.018) to have excessive daytime sleepiness. Conclusion. Patients with major depressive disorder have a higher prevalence of alpha-delta sleep. Alpha-delta sleep is associated with daytime sleepiness in patients with major depressive disorder. Study limitations include the retrospective nature of the project and the fact that the

  20. Sleep pattern and locomotor activity are impaired by doxorubicin in non-tumor-bearing rats.

    PubMed

    Lira, Fabio Santos; Esteves, Andrea Maculano; Pimentel, Gustavo Duarte; Rosa, José Cesar; Frank, Miriam Kannebley; Mariano, Melise Oliveira; Budni, Josiane; Quevedo, João; Santos, Ronaldo Vagner Dos; de Mello, Marco Túlio

    2016-01-01

    We sought explore the effects of doxorubicin on sleep patterns and locomotor activity. To investigate these effects, two groups were formed: a control group and a Doxorubicin (DOXO) group. Sixteen rats were randomly assigned to either the control or DOXO groups. The sleep patterns were examined by polysomnographic recording and locomotor activity was evaluated in an open-field test. In the light period, the total sleep time and slow wave sleep were decreased, while the wake after sleep onset and arousal were increased in the DOXO group compared with the control group (p<0.05). In the dark period, the total sleep time, arousal, and slow wave sleep were increased, while the wake after sleep onset was decreased in the DOXO group compared with the control group (p<0.05). Moreover, DOXO induced a decrease of crossing and rearing numbers when compared control group (p<0.05). Therefore, our results suggest that doxorubicin induces sleep pattern impairments and reduction of locomotor activity.

  1. Effect of obstructive sleep apnea on the sleep architecture in cirrhosis.

    PubMed

    Kappus, Matthew R; Leszczyszyn, David J; Moses, Leonard; Raman, Shekar; Heuman, Douglas M; Bajaj, Jasmohan S

    2013-03-15

    Sleep disturbances in cirrhosis are assumed to be due to hepatic encephalopathy (HE). The interaction between cirrhosis, prior HE, and obstructive sleep apnea (OSA) has not been evaluated. We aimed to evaluate the additional effect of cirrhosis with and without prior HE on the sleep architecture and perceived sleep disturbances of OSA patients. A case-control review of OSA patients who underwent polysomnography (PSG) in a liver-transplant center was performed. OSA patients with cirrhosis (with/without prior HE) were age-matched 1:1 with OSA patients without cirrhosis. Sleep quality, daytime sleepiness, sleep quality, and sleep architecture was compared between groups. Forty-nine OSA cirrhotic patients (age 57.4 ± 8.3 years, model for end-stage liver disease (MELD) 8.3 ± 5.4, 51% HCV, 20% prior HE) were age-matched 1:1 to OSA patients without cirrhosis. Apnea-hypopnea index, arousal index, sleep efficiency, daytime sleepiness, and effect of sleepiness on daily activities were similar between OSA patients with/ without cirrhosis. Sleep architecture, including %slow wave sleep (SWS), was also not different between the groups. MELD was positively correlated with time in early (N1) stage (r = 0.4, p = 0.03). All prior HE patients (n = 10) had a shift of the architecture towards early, non-restorative sleep (higher % [N2] stage [66 vs 52%, p = 0.005], lower % SWS [0 vs 29%, p = 0.02], lower REM latency [95 vs 151 minutes, p = 0.04]) compared to the rest. Alcoholic etiology was associated with higher latency to N1/N2 sleep, but no other effect on sleep architecture was seen. OSA can contribute to sleep disturbance in cirrhosis and should be considered in the differential of sleep disturbances in cirrhosis. Prior HE may synergize with OSA in worsening the sleep architecture.

  2. Re-presentation of Olfactory Exposure Therapy Success Cues during Non-Rapid Eye Movement Sleep did not Increase Therapy Outcome but Increased Sleep Spindles

    PubMed Central

    Rihm, Julia S.; Sollberger, Silja B.; Soravia, Leila M.; Rasch, Björn

    2016-01-01

    Exposure therapy induces extinction learning and is an effective treatment for specific phobias. Sleep after learning promotes extinction memory and benefits therapy success. As sleep-dependent memory-enhancing effects are based on memory reactivations during sleep, here we aimed at applying the beneficial effect of sleep on therapy success by cueing memories of subjective therapy success during non-rapid eye movement sleep after in vivo exposure-based group therapy for spider phobia. In addition, oscillatory correlates of re-presentation during sleep (i.e., sleep spindles and slow oscillations) were investigated. After exposure therapy, spider-phobic patients verbalized their subjectively experienced therapy success under presence of a contextual odor. Then, patients napped for 90 min recorded by polysomnography. Half of the sleep group received the odor during sleep while the other half was presented an odorless vehicle as control. A third group served as a wake control group without odor presentation. While exposure therapy significantly reduced spider-phobic symptoms in all subjects, these symptoms could not be further reduced by re-presenting the odor associated with therapy success, probably due to a ceiling effect of the highly effective exposure therapy. However, odor re-exposure during sleep increased left-lateralized frontal slow spindle (11.0–13.0 Hz) and right-lateralized parietal fast spindle (13.0–15.0 Hz) activity, suggesting the possibility of a successful re-presentation of therapy-related memories during sleep. Future studies need to further examine the possibility to enhance therapy success by targeted memory reactivation (TMR) during sleep. PMID:27445775

  3. Cellular and chemical neuroscience of mammalian sleep.

    PubMed

    Datta, Subimal

    2010-05-01

    Extraordinary strides have been made toward understanding the complexities and regulatory mechanisms of sleep over the past two decades thanks to the help of rapidly evolving technologies. At its most basic level, mammalian sleep is a restorative process of the brain and body. Beyond its primary restorative purpose, sleep is essential for a number of vital functions. Our primary research interest is to understand the cellular and molecular mechanisms underlying the regulation of sleep and its cognitive functions. Here I will reflect on our own research contributions to 50 years of extraordinary advances in the neurobiology of slow-wave sleep (SWS) and rapid eye movement (REM) sleep regulation. I conclude this review by suggesting some potential future directions to further our understanding of the neurobiology of sleep. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Effects of imatinib mesylate on spontaneous electrical and mechanical activity in smooth muscle of the guinea-pig stomach

    PubMed Central

    Hashitani, H; Hayase, M; Suzuki, H

    2008-01-01

    Background and purpose: Effects of imatinib mesylate, a Kit receptor tyrosine kinase inhibitor, on spontaneous activity of interstitial cells of Cajal (ICC) and smooth muscles in the stomach were investigated. Experimental approach: Effects of imatinib on spontaneous electrical and mechanical activity were investigated by measuring changes in the membrane potential and tension recorded from smooth muscles of the guinea-pig stomach. Its effects on spontaneous changes in intracellular concentration of Ca2+ ([Ca2+]i) (Ca2+ transients) were also examined in fura-2-loaded preparations. Key results: Imatinib (1–10 μM) suppressed spontaneous contractions and Ca2+ transients. Simultaneous recordings of electrical and mechanical activity demonstrated that imatinib (1 μM) reduced the amplitude of spontaneous contractions without suppressing corresponding slow waves. In the presence of nifedipine (1 μM), imatinib (10 μM) reduced the duration of slow waves and follower potentials in the antrum and accelerated their generation, but had little affect on their amplitude. In contrast, imatinib reduced the amplitude of antral slow potentials and slow waves in the corpus. Conclusions and implications: Imatinib may suppress spontaneous contractions of gastric smooth muscles by inhibiting pathways that increase [Ca2+]i in smooth muscles rather than by specifically inhibiting the activity of ICC. A high concentration of imatinib (10 μM) reduced the duration of slow waves or follower potentials in the antrum, which reflect activity of ICC distributed in the myenteric layers (ICC-MY), and suppressed antral slow potentials or corporal slow waves, which reflect activity of ICC within the muscle bundles (ICC-IM), presumably by inhibiting intracellular Ca2+ handling. PMID:18414381

  5. Interobserver variability in recognizing arousal in respiratory sleep disorders.

    PubMed

    Drinnan, M J; Murray, A; Griffiths, C J; Gibson, G J

    1998-08-01

    Daytime sleepiness is a common consequence of repeated arousal in obstructive sleep apnea (OSA). Arousal indices are sometimes used to make decisions on treatment, but there is no evidence that arousals are detected similarly even by experienced observers. Using the American Sleep Disorders Association (ASDA) definition of arousal in terms of the accompanying electroencephalogram (EEG) changes, we have quantified interobserver agreement for arousal scoring and identified factors affecting it. Ten patients with suspected OSA were studied; three representative EEG events during each of light, slow-wave, and rapid-eye-movement (REM) sleep were extracted from each record (90 events total) and evaluated by experts in 14 sleep laboratories. Observers differed (ANOVA, p < 0.001) in the number of events scored as arousal (totals ranged from 23 to 53 of the 90 events). Overall agreement was moderate (kappa = 0.47), but it was best for events during slow-wave sleep, moderate for REM, and poor for light sleep (kappa = 0.60, 0.52, and 0.28, respectively). Agreement was unrelated to arousal duration. We conclude that the ASDA definition of arousal is only moderately repeatable. Account should be taken of this variability when results from different centers are compared.

  6. GABA(B) receptors, schizophrenia and sleep dysfunction: a review of the relationship and its potential clinical and therapeutic implications.

    PubMed

    Kantrowitz, Joshua; Citrome, Leslie; Javitt, Daniel

    2009-08-01

    Evidence for an intrinsic relationship between sleep, cognition and the symptomatic manifestations of schizophrenia is accumulating. This review presents evidence for the possible utility of GABA(B) receptor agonists for the treatment of subjective and objective sleep abnormalities related to schizophrenia. At the phenotypic level, sleep disturbance occurs in 16-30% of patients with schizophrenia and is related to reduced quality of life and poor coping skills. On the neurophysiological level, studies suggest that sleep deficits reflect a core component of schizophrenia. Specifically, slow-wave sleep deficits, which are inversely correlated with cognition scores, are seen. Moreover, sleep plays an increasingly well documented role in memory consolidation in schizophrenia. Correlations of slow-wave sleep deficits with impaired reaction time and declarative memory have also been reported. Thus, both behavioural insomnia and sleep architecture are critical therapeutic targets in patients with schizophrenia. However, long-term treatment with antipsychotics often results in residual sleep dysfunction and does not improve slow-wave sleep, and adjunctive GABA(A) receptor modulators, such as benzodiazepines and zolpidem, can impair sleep architecture and cognition in schizophrenia. GABA(B) receptor agonists have therapeutic potential in schizophrenia. These agents have minimal effect on rapid eye movement sleep while increasing slow-wave sleep. Preclinical associations with increased expression of genes related to slow-wave sleep production and circadian rhythm function have also been reported. GABA(B) receptor deficits result in a sustained hyperdopaminergic state and can be reversed by a GABA(B) receptor agonist. Genetic, postmortem and electrophysiological studies also associate GABA(B) receptors with schizophrenia. While studies thus far have not shown significant effects, prior focus on the use of GABA(B) receptor agonists has been on the positive symptoms of

  7. Perchance to dream? Primordial motor activity patterns in vertebrates from fish to mammals: their prenatal origin, postnatal persistence during sleep, and pathological reemergence during REM sleep behavior disorder.

    PubMed

    Corner, Michael A; Schenck, Carlos H

    2015-12-01

    An overview is presented of the literature dealing with sleep-like motility and concomitant neuronal activity patterns throughout the life cycle in vertebrates, ectothermic as well as endothermic. Spontaneous, periodically modulated, neurogenic bursts of non-purposive movements are a universal feature of larval and prenatal behavior, which in endothermic animals (i.e. birds and mammals) continue to occur periodically throughout life. Since the entire body musculature is involved in ever-shifting combinations, it is proposed that these spontaneously active periods be designated as 'rapid-BODY-movement' (RBM) sleep. The term 'rapid-EYE-movement (REM) sleep', characterized by attenuated muscle contractions and reduced tonus, can then be reserved for sleep at later stages of development. Mature stages of development in which sustained muscle atonia is combined with 'paradoxical arousal' of cortical neuronal firing patterns indisputably represent the evolutionarily most recent aspect of REM sleep, but more research with ectothermic vertebrates, such as fish, amphibians and reptiles, is needed before it can be concluded (as many prematurely have) that RBM is absent in these species. Evidence suggests a link between RBM sleep in early development and the clinical condition known as 'REM sleep behavior disorder (RBD)', which is characterized by the resurgence of periodic bouts of quasi-fetal motility that closely resemble RBM sleep. Early developmental neuromotor risk factors for RBD in humans also point to a relationship between RBM sleep and RBD.

  8. Impact of Acute Sleep Deprivation on Sarcasm Detection.

    PubMed

    Deliens, Gaétane; Stercq, Fanny; Mary, Alison; Slama, Hichem; Cleeremans, Axel; Peigneux, Philippe; Kissine, Mikhail

    2015-01-01

    There is growing evidence that sleep plays a pivotal role on health, cognition and emotional regulation. However, the interplay between sleep and social cognition remains an uncharted research area. In particular, little is known about the impact of sleep deprivation on sarcasm detection, an ability which, once altered, may hamper everyday social interactions. The aim of this study is to determine whether sleep-deprived participants are as able as sleep-rested participants to adopt another perspective in gauging sarcastic statements. At 9am, after a whole night of sleep (n = 15) or a sleep deprivation night (n = 15), participants had to read the description of an event happening to a group of friends. An ambiguous voicemail message left by one of the friends on another's phone was then presented, and participants had to decide whether the recipient would perceive the message as sincere or as sarcastic. Messages were uttered with a neutral intonation and were either: (1) sarcastic from both the participant's and the addressee's perspectives (i.e. both had access to the relevant background knowledge to gauge the message as sarcastic), (2) sarcastic from the participant's but not from the addressee's perspective (i.e. the addressee lacked context knowledge to detect sarcasm) or (3) sincere. A fourth category consisted in messages sarcastic from both the participant's and from the addressee's perspective, uttered with a sarcastic tone. Although sleep-deprived participants were as accurate as sleep-rested participants in interpreting the voice message, they were also slower. Blunted reaction time was not fully explained by generalized cognitive slowing after sleep deprivation; rather, it could reflect a compensatory mechanism supporting normative accuracy level in sarcasm understanding. Introducing prosodic cues compensated for increased processing difficulties in sarcasm detection after sleep deprivation. Our findings support the hypothesis that sleep deprivation might

  9. Caffeine Consuming Children and Adolescents Show Altered Sleep Behavior and Deep Sleep

    PubMed Central

    Aepli, Andrina; Kurth, Salome; Tesler, Noemi; Jenni, Oskar G.; Huber, Reto

    2015-01-01

    Caffeine is the most commonly ingested psychoactive drug worldwide with increasing consumption rates among young individuals. While caffeine leads to decreased sleep quality in adults, studies investigating how caffeine consumption affects children’s and adolescents’ sleep remain scarce. We explored the effects of regular caffeine consumption on sleep behavior and the sleep electroencephalogram (EEG) in children and adolescents (10–16 years). While later habitual bedtimes (Caffeine 23:14 ± 11.4, Controls 22:17 ± 15.4) and less time in bed were found in caffeine consumers compared to the control group (Caffeine 08:10 ± 13.3, Controls 09:03 ± 16.1), morning tiredness was unaffected. Furthermore, caffeine consumers exhibited reduced sleep EEG slow-wave activity (SWA, 1–4.5 Hz) at the beginning of the night compared to controls (20% ± 9% average reduction across all electrodes and subjects). Comparable reductions were found for alpha activity (8.25–9.75 Hz). These effects, however, disappeared in the morning hours. Our findings suggest that caffeine consumption in adolescents may lead to later bedtimes and reduced SWA, a well-established marker of sleep depth. Because deep sleep is involved in recovery processes during sleep, further research is needed to understand whether a caffeine-induced loss of sleep depth interacts with neuronal network refinement processes that occur during the sensitive period of adolescent development. PMID:26501326

  10. The disturbance by road traffic noise of the sleep of young male adults as recorded in the home

    NASA Astrophysics Data System (ADS)

    Eberhardt, J. L.; Akselsson, K. R.

    1987-05-01

    Primary effects of road traffic noise on sleep, as derived from EEG, EOG, and EMG, were studied for seven young males (aged 21-27) in their homes along roads with heavy traffic during the night. A more quiet experimental condition was obtained by mounting sound-insulating material in the window openings, thus reducing the interiors noise level by an average of 8 dB(A). The present investigation shows that the subjects had not become completely habituated to the noise, although they had lived at least a year at their residences. The noise reduction caused an earlier onset and a prolonged duration of slow was sleep. No effects on REM sleep were seen. The subjective sleep quality was significantly correlated to the noise dose. The equivalent sound pressure level ( L eq) did not give the most adequate noise dose description. Better characterizations of the noise exposure were found in the number of car per night producing maximum sound pressure levels exceeding 50 or 55 dB(A) in the bedroom. Arousal reactions of type "body movements" and "changes towards lighter sleep" were induced by the noise of car passage but the percentage of cars inducing an effect was only <2% and <0·2% for the two types of reactions, respectively. The number of spontaneous body movements and sleep stage changes per night showed an increase during the more quiet nights as compared to the noisy nights. The sensitivity to arousal reactions was significantly lower in the present field study than the in the laboratory experiments. A description of the continuous sleep process by a few distinct "sleep stages" is too crude a tool for the detection of the rather subtle changes in the sleeping pattern caused by noise. In the present study an increased sensitivity in the analysis was obtained by dividing stage 2 into three substages.

  11. Comparison of a single-channel EEG sleep study to polysomnography

    PubMed Central

    Lucey, Brendan P.; McLeland, Jennifer S.; Toedebusch, Cristina D.; Boyd, Jill; Morris, John C.; Landsness, Eric C.; Yamada, Kelvin; Holtzman, David M.

    2016-01-01

    Summary An accurate home sleep study to assess electroencephalography (EEG)-based sleep stages and EEG power would be advantageous for both clinical and research purposes, such as for longitudinal studies measuring changes in sleep stages over time. The purpose of this study was to compare sleep scoring of a single-channel EEG recorded simultaneously on the forehead against attended polysomnography. Participants were recruited from both a clinical sleep center and a longitudinal research study investigating cognitively-normal aging and Alzheimer's disease. Analysis for overall epoch-by-epoch agreement found strong and substantial agreement between the single-channel EEG compared to polysomnography (kappa=0.67). Slow wave activity in the frontal regions was also similar when comparing the single-channel EEG device to polysomnography. As expected, stage N1 showed poor agreement (sensitivity 0.2) due to lack of occipital electrodes. Other sleep parameters such as sleep latency and REM onset latency had decreased agreement. Participants with disrupted sleep consolidation, such as from obstructive sleep apnea, also had poor agreement. We suspect that disagreement in sleep parameters between the single-channel EEG and polysomnography is partially due to altered waveform morphology and/or poorer signal quality in the single-channel derivation. Our results show that single-channel EEG provides comparable results to polysomnography in assessing REM, combined stages N2 and N3 sleep, and several other parameters including frontal slow wave activity. The data establish that single-channel EEG can be a useful research tool. PMID:27252090

  12. Sleep and bodily functions: the physiological interplay between body homeostasis and sleep homeostasis.

    PubMed

    Amici, R; Bastianini, S; Berteotti, C; Cerri, M; Del Vecchio, F; Lo Martire, V; Luppi, M; Perez, E; Silvani, A; Zamboni, G; Zoccoli, G

    2014-01-01

    Body homeostasis and sleep homeostasis may both rely on the complex integrative activity carried out by the hypothalamus. Thus, the three main wake-sleep (WS) states (i.e. wakefulness, NREM sleep, and REM sleep) may be better understood if the different cardio-respiratory and metabolic parameters, which are under the integrated control of the autonomic and the endocrine systems, are studied during sleep monitoring. According to this view, many physiological events can be considered as an expression of the activity that physiological regulations should perform in order to cope with the need to fulfill body and sleep homeostasis. This review is aimed at making an assessment of data showing the existence of a physiological interplay between body homeostasis and sleep homeostasis, starting from the spontaneous changes observed in the somatic and autonomic activity during sleep, through evidence showing the deep changes occurring in the central integration of bodily functions during the different WS states, to the changes in the WS states observed when body homeostasis is challenged by the external environment and when the return to normal ambient conditions allows sleep homeo- stasis to run without apparent physiological restrictions. The data summarized in this review suggest that an approach to the dichotomy between NREM and REM sleep based on physiological regulations may offer a framework within which observations that a traditional behavioral approach may overlook can be interpreted. The study of the interplay between body and sleep homeostasis appears, therefore, to be a way to understand the function of complex organisms beyond that of the specific regulations.

  13. Effect of Obstructive Sleep Apnea on the Sleep Architecture in Cirrhosis

    PubMed Central

    Kappus, Matthew R.; Leszczyszyn, David J.; Moses, Leonard; Raman, Shekar; Heuman, Douglas M.; Bajaj, Jasmohan S.

    2013-01-01

    Study Objectives: Sleep disturbances in cirrhosis are assumed to be due to hepatic encephalopathy (HE). The interaction between cirrhosis, prior HE, and obstructive sleep apnea (OSA) has not been evaluated. We aimed to evaluate the additional effect of cirrhosis with and without prior HE on the sleep architecture and perceived sleep disturbances of OSA patients. Methods: A case-control review of OSA patients who underwent polysomnography (PSG) in a liver-transplant center was performed. OSA patients with cirrhosis (with/without prior HE) were age-matched 1:1 with OSA patients without cirrhosis. Sleep quality, daytime sleepiness, sleep quality, and sleep architecture was compared between groups. Results: Forty-nine OSA cirrhotic patients (age 57.4 ± 8.3 years, model for end-stage liver disease (MELD) 8.3 ± 5.4, 51% HCV, 20% prior HE) were age-matched 1:1 to OSA patients without cirrhosis. Apnea-hypopnea index, arousal index, sleep efficiency, daytime sleepiness, and effect of sleepiness on daily activities were similar between OSA patients with/ without cirrhosis. Sleep architecture, including %slow wave sleep (SWS), was also not different between the groups. MELD was positively correlated with time in early (N1) stage (r = 0.4, p = 0.03). All prior HE patients (n = 10) had a shift of the architecture towards early, non-restorative sleep (higher % [N2] stage [66 vs 52%, p = 0.005], lower % SWS [0 vs 29%, p = 0.02], lower REM latency [95 vs 151 minutes, p = 0.04]) compared to the rest. Alcoholic etiology was associated with higher latency to N1/N2 sleep, but no other effect on sleep architecture was seen. Conclusions: OSA can contribute to sleep disturbance in cirrhosis and should be considered in the differential of sleep disturbances in cirrhosis. Prior HE may synergize with OSA in worsening the sleep architecture. Citation: Kappus MR; Leszczyszyn DJ; Moses L; Raman S; Heuman DM; Bajaj JS. Effect of obstructive sleep apnea on the sleep architecture in cirrhosis

  14. [Effect of delta-sleep inducing peptide preparation Deltaran on longevity, physiological functions, and carcinogenesis in mice].

    PubMed

    Voĭtenkov, V B; Popovich, I G; Zabezhinskiĭ, M A; Iurova, M A; Piskunova, T A; Mikhaleva, I I

    2009-01-01

    Female SHR mice received 5-days long monthly courses of delta-sleep inducing peptide (DSIP) preparation "Deltaran" subcutaneously in dose 5 mkg/kg during all their lives. It was demonstrated, that last 10% (most aged) of mice which received Deltaran lived for 16% longer than the controls. They had significantly higher amount of vertical activity in the "open field" test, than the controls, starting from time when they were 6 months old and until their natural death. Mice of Deltaran group spent 73% more time in the open arms of elevated plus maze, and 9 times more often explored the extremities of this maze, than controls. Also Deltaran slowed the spontaneous carcinogenesis parameters. It's assumed that DSIP preparation "Deltaran" have geroprotective, anxiolytic and antitumor activity.

  15. Declarative Memory Consolidation: Mechanisms Acting during Human Sleep

    ERIC Educational Resources Information Center

    Gais, Steffen; Born, Jan

    2004-01-01

    Of late, an increasing number of studies have shown a strong relationship between sleep and memory. Here we summarize a series of our own studies in humans supporting a beneficial influence of slow-wave sleep (SWS) on declarative memory formation, and try to identify some mechanisms that might underlie this influence. Specifically, these…

  16. Is There a Relation between EEG-Slow Waves and Memory Dysfunction in Epilepsy? A Critical Appraisal

    PubMed Central

    Höller, Yvonne; Trinka, Eugen

    2015-01-01

    Is there a relationship between peri-ictal slow waves, loss of consciousness, memory, and slow-wave sleep, in patients with different forms of epilepsy? We hypothesize that mechanisms, which result in peri-ictal slow-wave activity as detected by the electroencephalogram, could negatively affect memory processes. Slow waves (≤4 Hz) can be found in seizures with impairment of consciousness and also occur in focal seizures without impairment of consciousness but with inhibited access to memory functions. Peri-ictal slow waves are regarded as dysfunctional and are probably caused by mechanisms, which are essential to disturb the consolidation of memory entries in these patients. This is in strong contrast to physiological slow-wave activity during deep sleep, which is thought to group memory-consolidating fast oscillatory activity. In patients with epilepsy, slow waves may not only correlate with the peri-ictal clouding of consciousness, but could be the epiphenomenon of mechanisms, which interfere with normal brain function in a wider range. These mechanisms may have transient impacts on memory, such as temporary inhibition of memory systems, altered patterns of hippocampal–neocortical interactions during slow-wave sleep, or disturbed cross-frequency coupling of slow and fast oscillations. In addition, repeated tonic–clonic seizures over the years in uncontrolled chronic epilepsy may cause a progressive cognitive decline. This hypothesis can only be assessed in long-term prospective studies. These studies could disentangle the reversible short-term impacts of seizures, and the impacts of chronic uncontrolled seizures. Chronic uncontrolled seizures lead to irreversible memory impairment. By contrast, short-term impacts do not necessarily lead to a progressive cognitive decline but result in significantly impaired peri-ictal memory performance. PMID:26124717

  17. Sleep-wake patterns, non-rapid eye movement, and rapid eye movement sleep cycles in teenage narcolepsy.

    PubMed

    Xu, Xing; Wu, Huijuan; Zhuang, Jianhua; Chen, Kun; Huang, Bei; Zhao, Zhengqing; Zhao, Zhongxin

    2017-05-01

    To further characterize sleep disorders associated with narcolepsy, we assessed the sleep-wake patterns, rapid eye movement (REM), and non-REM (NREM) sleep cycles in Chinese teenagers with narcolepsy. A total of 14 Chinese type 1 narcoleptic patients (13.4 ± 2.6 years of age) and 14 healthy age- and sex-matched control subjects (13.6 ± 1.8 years of age) were recruited. Ambulatory 24-h polysomnography was recorded for two days, with test subjects adapting to the instruments on day one and the study data collection performed on day two. Compared with the controls, the narcoleptic patients showed a 1.5-fold increase in total sleep time over 24 h, characterized by enhanced slow-wave sleep and REM sleep. Frequent sleep-wake transitions were identified in nocturnal sleep with all sleep stages switching to wakefulness, with more awakenings and time spent in wakefulness after sleep onset. Despite eight cases of narcolepsy with sleep onset REM periods at night, the mean duration of NREM-REM sleep cycle episode and the ratio of REM/NREM sleep between patients and controls were not significantly different. Our study identified hypersomnia in teenage narcolepsy despite excessive daytime sleepiness. Sleep fragmentation extended to all sleep stages, indicating impaired sleep-wake cycles and instability of sleep stages. The limited effects on NREM-REM sleep cycles suggest the relative conservation of ultradian regulation of sleep. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Alcohol and the sleeping brain.

    PubMed

    Colrain, Ian M; Nicholas, Christian L; Baker, Fiona C

    2014-01-01

    Alcohol acts as a sedative that interacts with several neurotransmitter systems important in the regulation of sleep. Acute administration of large amounts of alcohol prior to sleep leads to decreased sleep-onset latency and changes in sleep architecture early in the night, when blood alcohol levels are high, with subsequent disrupted, poor-quality sleep later in the night. Alcohol abuse and dependence are associated with chronic sleep disturbance, lower slow-wave sleep, and more rapid-eye-movement sleep than normal, that last long into periods of abstinence and may play a role in relapse. This chapter outlines the evidence for acute and chronic alcohol effects on sleep architecture and sleep electroencephalogram, evidence for tolerance with repeated administration, and possible underlying neurochemical mechanisms for alcohol's effects on sleep. Also discussed are sex differences as well as effects of alcohol on sleep homeostasis and circadian regulation. Evidence for the role of sleep disruption as a risk factor for developing alcohol dependence is discussed in the context of research conducted in adolescents. The utility of sleep-evoked potentials in the assessment of the effects of alcoholism on sleep and the brain and in abstinence-mediated recovery is also outlined. The chapter concludes with a series of questions that need to be answered to determine the role of sleep and sleep disturbance in the development and maintenance of problem drinking and the potential beneficial effects of the treatment of sleep disorders for maintenance of abstinence in alcoholism. © 2014 Elsevier B.V. All rights reserved.

  19. NREM sleep architecture and relation to GH/IGF-1 axis in Laron syndrome.

    PubMed

    Verrillo, Elisabetta; Bizzarri, Carla; Cappa, Marco; Bruni, Oliviero; Pavone, Martino; Cutrera, Renato

    2010-01-01

    Laron syndrome (LS), known as growth hormone (GH) receptor deficiency, is a rare form of inherited GH resistance. Sleep disorders were described as a common feature of adult LS patients, while no data are available in children. Bi-directional interactions between human sleep and the somatotropic system were previously described, mainly between slow wave sleep and the nocturnal GH surge. To analyze the sleep macro- and microstructure in LS and to evaluate the influence of substitutive insulin-like growth factor 1 (IGF-1) therapy on it. Two young LS females underwent polysomnography; the first study was performed during IGF-1 therapy, the second one after a 3-month wash-out period. In both patients, the sleep macrostructure showed that time in bed, sleep period time, total sleep time, sleep efficiency and rapid eye movement (REM) percentage were all increased during wash-out. The sleep microstructure (cyclic alternating pattern: CAP) showed significantly higher EEG slow oscillations (A1%) in NREM sleep, both during IGF-1 therapy and wash-out. Sleep macrostructure in LS children is slightly affected by substitutive IGF-1 therapy. Sleep microstructure shows an increase of A1%, probably related to abnormally high hypothalamic GHRH secretion, due to GH insensitivity. Copyright 2010 S. Karger AG, Basel.

  20. Chronic exposure to insufficient sleep alters processes of pain habituation and sensitization.

    PubMed

    Simpson, Norah S; Scott-Sutherland, Jennifer; Gautam, Shiva; Sethna, Navil; Haack, Monika

    2017-09-01

    Chronic pain conditions are highly co-morbid with insufficient sleep. While the mechanistic relationships between the two are not understood, chronic insufficient sleep may be one pathway through which central pain-modulatory circuits deteriorate, thereby contributing to chronic pain vulnerability over time. To test this hypothesis, an in-laboratory model of three weeks of restricted sleep with limited recovery (five nights of 4-hour sleep/night followed by two nights of 8-hour sleep/night) was compared to three weeks of 8-hour sleep/night (control protocol). Seventeen healthy adults participated, with fourteen completing both three-week protocols. Measures of spontaneous pain, heat-pain thresholds, cold-pain tolerance (measuring habituation to cold over several weeks), and temporal summation of pain (examining the slope of pain ratings during cold water immersion) were assessed at multiple points during each protocol. Compared to the control protocol, participants in the sleep-restriction/recovery protocol experienced mild increases in spontaneous pain (p<0.05). Heat-pain thresholds decreased following the first week of sleep restriction (p<0.05), but normalized with longer exposure to sleep restriction. In contrast, chronic exposure to restricted sleep was associated with decreased habituation to, and increased temporal summation in response to cold pain (both p<0.05), although only in the last two weeks of the sleep restriction protocol. These changes may reflect abnormalities in central pain-modulatory processes. Limited recovery sleep did not completely resolve these alterations in pain-modulatory processes, indicating that more extensive recovery sleep is required. Results suggest that exposure to chronic insufficient sleep may increase vulnerability to chronic pain by altering processes of pain habituation and sensitization.

  1. Excessive sleep need following traumatic brain injury: a case-control study of 36 patients.

    PubMed

    Sommerauer, Michael; Valko, Philipp O; Werth, Esther; Baumann, Christian R

    2013-12-01

    Increased sleep need following traumatic brain injury, referred to in this study as post-traumatic pleiosomnia, is common, but so far its clinical impact and therapeutic implications have not been characterized. We present a case-control study of 36 patients with post-traumatic pleiosomnia, defined by an increased sleep need of at least 2 h per 24 h after traumatic brain injury, compared to 36 controls. We assessed detailed history, sleep-activity patterns with sleep logs and actigraphy, nocturnal sleep with polysomnography and daytime sleep propensity with multiple sleep latency tests. Actigraphy recordings revealed that traumatic brain injury (TBI) patients had longer estimated sleep durations than controls (10.8 h per 24 h, compared to 7.3 h). When using sleep logs, TBI patients underestimated their sleep need. During nocturnal sleep, patients had higher amounts of slow-wave sleep than controls (20 versus 13.8%). Multiple sleep latency tests revealed excessive daytime sleepiness in 15 patients (42%), and 10 of them had signs of chronic sleep deprivation. We conclude that post-traumatic pleiosomnia may be even more frequent than reported previously, because affected patients often underestimate their actual sleep need. Furthermore, these patients exhibit an increase in slow-wave sleep which may reflect recovery mechanisms, intrinsic consequences of diffuse brain damage or relative sleep deprivation. © 2013 European Sleep Research Society.

  2. Cellular consequences of sleep deprivation in the brain.

    PubMed

    Cirelli, Chiara

    2006-10-01

    Several recent studies have used transcriptomics approaches to characterize the molecular correlates of sleep, waking, and sleep deprivation. This analysis may help in understanding the benefits that sleep brings to the brain at the cellular level. The studies are still limited in number and focus on a few brain regions, but some consistent findings are emerging. Sleep, spontaneous wakefulness, short-term, and long-term sleep deprivation are each associated with the upregulation of hundreds of genes in the cerebral cortex and other brain areas. In fruit flies as well as in mammals, three categories of genes are consistently upregulated during waking and short-term sleep deprivation relative to sleep. They include genes involved in energy metabolism, synaptic potentiation, and the response to cellular stress. In the rat cerebral cortex, transcriptional changes associated with prolonged sleep loss differ significantly from those observed during short-term sleep deprivation. However, it is too early to draw firm conclusions relative to the molecular consequences of sleep deprivation, and more extensive studies using DNA and protein arrays are needed in different species and in different brain regions.

  3. A tryptic hydrolysate from bovine milk αs1-casein enhances pentobarbital-induced sleep in mice via the GABAA receptor.

    PubMed

    Dela Peña, Irene Joy I; Kim, Hee Jin; de la Peña, June Bryan; Kim, Mikyung; Botanas, Chrislean Jun; You, Kyung Yi; Woo, Taeseon; Lee, Yong Soo; Jung, Jae-Chul; Kim, Kyung-Mi; Cheong, Jae Hoon

    2016-10-15

    Studies have shown that enzymatic hydrolysis of casein, the primary protein component of cow's milk, produces peptides with various biological activities, and some of these peptides may have sleep-promoting effects. In the present study, we evaluated the sedative and sleep-promoting effects of bovine αS1-casein tryptic hydrolysate (CH), containing a decapeptide αS1-casein known as alpha-casozepine. CH was orally administered to ICR mice at various concentrations (75, 150, 300, or 500mg/kg). An hour after administration, assessment of its sedative (open-field and rota-rod tests) and sleep-potentiating effects (pentobarbital-induced sleeping test and EEG monitoring) were conducted. Although a trend can be observed, CH treatment did not significantly alter the spontaneous locomotor activity and motor function of mice in the open-field and rota-rod tests. On the other hand, CH (150mg/kg, respectively) enhanced the sleep induced by pentobarbital sodium in mice. It also promoted slow-wave (delta) EEG activity in rats; a pattern indicative of sleep or relaxation. These behavioral results indicate that CH has sleep-promoting effects, but no or has minimal sedative effects. To elucidate the probable mechanism behind the effects of CH, we examined its action on intracellular chloride ion influx in cultured human neuroblastoma cells. CH dose-dependently increased chloride ion influx, which was blocked by co-administration of bicuculline, a competitive GABAA receptor antagonist. Taken together, the results of the present study suggest that CH has sleep-promoting properties which are probably mediated through the GABAA receptor-chloride ion channel complex. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Resting-state slow wave power, healthy aging and cognitive performance.

    PubMed

    Vlahou, Eleni L; Thurm, Franka; Kolassa, Iris-Tatjana; Schlee, Winfried

    2014-05-29

    Cognitive functions and spontaneous neural activity show significant changes over the life-span, but the interrelations between age, cognition and resting-state brain oscillations are not well understood. Here, we assessed performance on the Trail Making Test and resting-state magnetoencephalographic (MEG) recordings from 53 healthy adults (18-89 years old) to investigate associations between age-dependent changes in spontaneous oscillatory activity and cognitive performance. Results show that healthy aging is accompanied by a marked and linear decrease of resting-state activity in the slow frequency range (0.5-6.5 Hz). The effects of slow wave power on cognitive performance were expressed as interactions with age: For older (>54 years), but not younger participants, enhanced delta and theta power in temporal and central regions was positively associated with perceptual speed and executive functioning. Consistent with previous work, these findings substantiate further the important role of slow wave oscillations in neurocognitive function during healthy aging.

  5. Spontaneous nystagmus in dorsolateral medullary infarction indicates vestibular semicircular canal imbalance.

    PubMed

    Rambold, H; Helmchen, C

    2005-01-01

    Spontaneous nystagmus caused by dorsolateral medullary infarction may be of vestibular origin. To test if imbalance of the central pathways of the semicircular canals contributes to spontaneous nystagmus in dorsolateral medullary syndrome. We examined four patients with dorsolateral medullary syndrome and recorded spontaneous nystagmus binocularly at gaze straight ahead with the three-dimensional search coil technique. The median slow phase velocity of the nystagmus was analysed in the light and in the dark, and the normalised velocity axes were compared with the rotation axes as predicted from anatomical data of the semicircular canal. The slow phase rotation axes of all patients aligned best with the rotation axes resulting from stimulation of the contralesional posterior and horizontal semicircular canals. This alignment cannot be explained by pure otolith imbalance. We propose that vestibular imbalance caused by an ipsilesional lesion of the central semicircular canal pathways of the horizontal and anterior semicircular canals largely accounts for spontaneous nystagmus in dorsolateral medullary syndrome.

  6. Precipitating factors of somnambulism: impact of sleep deprivation and forced arousals.

    PubMed

    Pilon, Mathieu; Montplaisir, Jacques; Zadra, Antonio

    2008-06-10

    Experimental attempts to induce sleepwalking with forced arousals during slow-wave sleep (SWS) have yielded mixed results in children and have not been investigated in adult patients. We hypothesized that the combination of sleep deprivation and external stimulation would increase the probability of inducing somnambulistic episodes in sleepwalkers recorded in the sleep laboratory. The main goal of this study was to assess the effects of forced arousals from auditory stimuli (AS) in adult sleepwalkers and control subjects during normal sleep and following post-sleep deprivation recovery sleep. Ten sleepwalkers and 10 controls were investigated. After a baseline night, participants were presented with AS at predetermined sleep stages either during normal sleep or recovery sleep following 25 hours of sleep deprivation. One week later, the conditions with AS were reversed. No somnambulistic episodes were induced in controls. When compared to the effects of AS during sleepwalkers' normal sleep, the presentation of AS during sleepwalkers' recovery sleep significantly increased their efficacy in experimentally inducing somnambulistic events and a significantly greater proportion of sleepwalkers (100%) experienced at least one induced episode during recovery SWS as compared to normal SWS (30%). There was no significant difference between the mean intensity of AS that induced episodes during sleepwalkers' SWS and the mean intensity of AS that awakened sleepwalkers and controls from SWS. Sleep deprivation and forced arousals during slow-wave sleep can induce somnambulistic episodes in predisposed adults. The results highlight the potential value of this protocol in establishing a video-polysomnographically based diagnosis for sleepwalking.

  7. "Paradox of slow frequencies" - Are slow frequencies in upper cortical layers a neural predisposition of the level/state of consciousness (NPC)?

    PubMed

    Northoff, Georg

    2017-09-01

    Consciousness research has much focused on faster frequencies like alpha or gamma while neglecting the slower ones in the infraslow (0.001-0.1Hz) and slow (0.1-1Hz) frequency range. These slower frequency ranges have a "bad reputation" though; their increase in power can observed during the loss of consciousness as in sleep, anesthesia, and vegetative state. However, at the same time, slower frequencies have been conceived instrumental for consciousness. The present paper aims to resolve this paradox which I describe as "paradox of slow frequencies". I first show various data that suggest a central role of slower frequencies in integrating faster ones, i.e., "temporo-spatial integration and nestedness". Such "temporo-spatial integration and nestedness" is disrupted during the loss of consciousness as in anesthesia and sleep leading to "temporo-spatial fragmentation and isolation" between slow and fast frequencies. Slow frequencies are supposedly mediated by neural activity in upper cortical layers in higher-order associative regions as distinguished from lower cortical layers that are related to faster frequencies. Taken together, slower and faster frequencies take on different roles for the level/state of consciousness. Faster frequencies by themselves are sufficient and thus a neural correlate of consciousness (NCC) while slower frequencies are a necessary non-sufficient condition of possible consciousness, e.g., a neural predisposition of the level/state of consciousness (NPC). This resolves the "paradox of slow frequencies" in that it assigns different roles to slower and faster frequencies in consciousness, i.e., NCC and NPC. Taken as NCC and NPC, fast and slow frequencies including their relation as in "temporo-spatial integration and nestedness" can be considered a first "building bloc" of a future "temporo-spatial theory of consciousness" (TTC) (Northoff, 2013; Northoff, 2014b; Northoff & Huang, 2017). Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Sleep and breathing in high altitude pulmonary edema susceptible subjects at 4,559 meters.

    PubMed

    Nussbaumer-Ochsner, Yvonne; Schuepfer, Nicole; Ursprung, Justyna; Siebenmann, Christoph; Maggiorini, Marco; Bloch, Konrad E

    2012-10-01

    Susceptible subjects ascending rapidly to high altitude develop pulmonary edema (HAPE). We evaluated whether HAPE leads to sleep and breathing disturbances that are alleviated by dexamethasone. Double-blind, randomized, placebo-controlled trial with open-label extension. One night in sleep laboratory at 490 m, 2 nights in mountain hut at 4,559 m. 21 HAPE susceptibles. Dexamethasone 2 × 8 mg/d, either 24 h prior to ascent and at 4,559 m (dex-early), or started on day 2 at 4,559 m only (dex-late). Polysomnography, questionnaires on sleep and acute mountain sickness. Polysomnographies at 490 m were normal. In dex-late (n = 12) at 4,559 m, night 1 and 3, median oxygen saturation was 71% and 80%, apnea/hypopnea index 91.3/h and 9.6/h. In dex-early (n = 9), corresponding values were 78% and 79%, and 85.3/h and 52.3/h (P < 0.05 vs. 490 m, all instances). In dex-late, ascending from 490 m to 4,559 m (night 1), sleep efficiency decreased from 91% to 65%, slow wave sleep from 20% to 8% (P < 0.05, both instances). In dex-early, corresponding sleep efficiencies were 96% and 95%, slow wave sleep 18% and 9% (P < 0.05). From night 1 to 3, sleep efficiency remained unchanged in both groups while slow wave sleep increased to 20% in dex-late (P < 0.01). Compared to dex-early, initial AMS scores in dex-late were higher but improved during stay at altitude. HAPE susceptibles ascending rapidly to high altitude experience pronounced nocturnal hypoxemia, and reduced sleep efficiency and deep sleep. Dexamethasone taken before ascent prevents severe hypoxemia and sleep disturbances, while dexamethasone taken 24 h after arrival at 4,559 m increases oxygenation and deep sleep.

  9. Quantitative EEG Monitoring of Vigilance: Effects of Sleep Deprivation, Circadian Phase and Sympathetic Activation

    NASA Technical Reports Server (NTRS)

    Dijk, Derk-Jan

    1999-01-01

    Shuttle astronauts typically sleep only 6 to 6.5 hours per day while in orbit. This sleep loss is related to recurrent sleep cycle shifting--due to mission-dependent orbital mechanics and mission duration requirements-- and associated circadian displacement of sleep, the operational demands of space flight, noise and space motion sickness. Such sleep schedules are known to produce poor subjective sleep quality, daytime sleepiness, reduced attention, negative mood, slower reaction times, and impaired daytime alertness. Countermeasures to allow crew members to obtain an adequate amount of sleep and maintain adequate levels of neurobehavioral performance are being developed and investigated. However, it is necessary to develop methods that allow effective and attainable in-flight monitoring of vigilance to evaluate the effectiveness of these countermeasures and to detect and predict online critical decrements in alertness/performance. There is growing evidence to indicate that sleep loss and associated decrements in neurobehavioral function are reflected in the spectral composition of the electroencephalogram (EEG) during wakefulness as well as in the incidence of slow eye movements recorded by the electro-oculogram (EOG). Further-more, our preliminary data indicated that these changes in the EEG during wakefulness are more pronounced when subjects are in a supine posture, which mimics some of the physiologic effects of microgravity. Therefore, we evaluate the following hypotheses: (1) that during a 40-hour period of wakefulness (i.e., one night of total sleep deprivation) neurobehavioral function deteriorates, the incidence of slow eye-movements and EEG power density in the theta frequencies increases especially in frontal areas of the brain; (2) that the sleep deprivation induced deterioration of neurobehavioral function and changes in the incidence of slow eye movements and the spectral composition of the EEG are more pronounced when subjects are in a supine

  10. Uncovering representations of sleep-associated hippocampal ensemble spike activity

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Grosmark, Andres D.; Penagos, Hector; Wilson, Matthew A.

    2016-08-01

    Pyramidal neurons in the rodent hippocampus exhibit spatial tuning during spatial navigation, and they are reactivated in specific temporal order during sharp-wave ripples observed in quiet wakefulness or slow wave sleep. However, analyzing representations of sleep-associated hippocampal ensemble spike activity remains a great challenge. In contrast to wake, during sleep there is a complete absence of animal behavior, and the ensemble spike activity is sparse (low occurrence) and fragmental in time. To examine important issues encountered in sleep data analysis, we constructed synthetic sleep-like hippocampal spike data (short epochs, sparse and sporadic firing, compressed timescale) for detailed investigations. Based upon two Bayesian population-decoding methods (one receptive field-based, and the other not), we systematically investigated their representation power and detection reliability. Notably, the receptive-field-free decoding method was found to be well-tuned for hippocampal ensemble spike data in slow wave sleep (SWS), even in the absence of prior behavioral measure or ground truth. Our results showed that in addition to the sample length, bin size, and firing rate, number of active hippocampal pyramidal neurons are critical for reliable representation of the space as well as for detection of spatiotemporal reactivated patterns in SWS or quiet wakefulness.

  11. Treatment of GABA from Fermented Rice Germ Ameliorates Caffeine-Induced Sleep Disturbance in Mice

    PubMed Central

    Mabunga, Darine Froy N.; Gonzales, Edson Luck T.; Kim, Hee Jin; Choung, Se Young

    2015-01-01

    γ-Aminobutyric acid (GABA), a major inhibitory neurotransmitter in the mammalian central nervous system, is involved in sleep physiology. Caffeine is widely used psychoactive substance known to induce wakefulness and insomnia to its consumers. This study was performed to examine whether GABA extracts from fermented rice germ ameliorates caffeine-induced sleep disturbance in mice, without affecting spontaneous locomotor activity and motor coordination. Indeed, caffeine (10 mg/kg, i.p.) delayed sleep onset and reduced sleep duration of mice. Conversely, rice germ ferment extracts-GABA treatment (10, 30, or 100 mg/kg, p.o.), especially at 100 mg/kg, normalized the sleep disturbance induced by caffeine. In locomotor tests, rice germ ferment extracts-GABA slightly but not significantly reduced the caffeine-induced increase in locomotor activity without affecting motor coordination. Additionally, rice germ ferment extracts-GABA per se did not affect the spontaneous locomotor activity and motor coordination of mice. In conclusion, rice germ ferment extracts-GABA supplementation can counter the sleep disturbance induced by caffeine, without affecting the general locomotor activities of mice. PMID:25995826

  12. Reduction in time-to-sleep through EEG based brain state detection and audio stimulation.

    PubMed

    Zhuo Zhang; Cuntai Guan; Ti Eu Chan; Juanhong Yu; Aung Aung Phyo Wai; Chuanchu Wang; Haihong Zhang

    2015-08-01

    We developed an EEG- and audio-based sleep sensing and enhancing system, called iSleep (interactive Sleep enhancement apparatus). The system adopts a closed-loop approach which optimizes the audio recording selection based on user's sleep status detected through our online EEG computing algorithm. The iSleep prototype comprises two major parts: 1) a sleeping mask integrated with a single channel EEG electrode and amplifier, a pair of stereo earphones and a microcontroller with wireless circuit for control and data streaming; 2) a mobile app to receive EEG signals for online sleep monitoring and audio playback control. In this study we attempt to validate our hypothesis that appropriate audio stimulation in relation to brain state can induce faster onset of sleep and improve the quality of a nap. We conduct experiments on 28 healthy subjects, each undergoing two nap sessions - one with a quiet background and one with our audio-stimulation. We compare the time-to-sleep in both sessions between two groups of subjects, e.g., fast and slow sleep onset groups. The p-value obtained from Wilcoxon Signed Rank Test is 1.22e-04 for slow onset group, which demonstrates that iSleep can significantly reduce the time-to-sleep for people with difficulty in falling sleep.

  13. Sleep: An Open-Source Python Software for Visualization, Analysis, and Staging of Sleep Data

    PubMed Central

    Combrisson, Etienne; Vallat, Raphael; Eichenlaub, Jean-Baptiste; O'Reilly, Christian; Lajnef, Tarek; Guillot, Aymeric; Ruby, Perrine M.; Jerbi, Karim

    2017-01-01

    We introduce Sleep, a new Python open-source graphical user interface (GUI) dedicated to visualization, scoring and analyses of sleep data. Among its most prominent features are: (1) Dynamic display of polysomnographic data, spectrogram, hypnogram and topographic maps with several customizable parameters, (2) Implementation of several automatic detection of sleep features such as spindles, K-complexes, slow waves, and rapid eye movements (REM), (3) Implementation of practical signal processing tools such as re-referencing or filtering, and (4) Display of main descriptive statistics including publication-ready tables and figures. The software package supports loading and reading raw EEG data from standard file formats such as European Data Format, in addition to a range of commercial data formats. Most importantly, Sleep is built on top of the VisPy library, which provides GPU-based fast and high-level visualization. As a result, it is capable of efficiently handling and displaying large sleep datasets. Sleep is freely available (http://visbrain.org/sleep) and comes with sample datasets and an extensive documentation. Novel functionalities will continue to be added and open-science community efforts are expected to enhance the capacities of this module. PMID:28983246

  14. Sleep: An Open-Source Python Software for Visualization, Analysis, and Staging of Sleep Data.

    PubMed

    Combrisson, Etienne; Vallat, Raphael; Eichenlaub, Jean-Baptiste; O'Reilly, Christian; Lajnef, Tarek; Guillot, Aymeric; Ruby, Perrine M; Jerbi, Karim

    2017-01-01

    We introduce Sleep, a new Python open-source graphical user interface (GUI) dedicated to visualization, scoring and analyses of sleep data. Among its most prominent features are: (1) Dynamic display of polysomnographic data, spectrogram, hypnogram and topographic maps with several customizable parameters, (2) Implementation of several automatic detection of sleep features such as spindles, K-complexes, slow waves, and rapid eye movements (REM), (3) Implementation of practical signal processing tools such as re-referencing or filtering, and (4) Display of main descriptive statistics including publication-ready tables and figures. The software package supports loading and reading raw EEG data from standard file formats such as European Data Format, in addition to a range of commercial data formats. Most importantly, Sleep is built on top of the VisPy library, which provides GPU-based fast and high-level visualization. As a result, it is capable of efficiently handling and displaying large sleep datasets. Sleep is freely available (http://visbrain.org/sleep) and comes with sample datasets and an extensive documentation. Novel functionalities will continue to be added and open-science community efforts are expected to enhance the capacities of this module.

  15. Effect of sleep stage on breathing in children with central hypoventilation.

    PubMed

    Huang, Jingtao; Colrain, Ian M; Panitch, Howard B; Tapia, Ignacio E; Schwartz, Michael S; Samuel, John; Pepe, Michelle; Bandla, Preetam; Bradford, Ruth; Mosse, Yael P; Maris, John M; Marcus, Carole L

    2008-07-01

    The early literature suggests that hypoventilation in infants with congenital central hypoventilation syndrome (CHS) is less severe during rapid eye movement (REM) than during non-REM (NREM) sleep. However, this supposition has not been rigorously tested, and subjects older than infancy have not been studied. Given the differences in anatomy, physiology, and REM sleep distribution between infants and older children, and the reduced number of limb movements during REM sleep, we hypothesized that older subjects with CHS would have more severe hypoventilation during REM than NREM sleep. Nine subjects with CHS, aged (mean +/- SD) 13 +/- 7 yr, were studied. Spontaneous ventilation was evaluated by briefly disconnecting the ventilator under controlled circumstances. Arousal was common, occurring in 46% of REM vs. 38% of NREM trials [not significant (NS)]. Central apnea occurred during 31% of REM and 54% of NREM trials (NS). Although minute ventilation declined precipitously during both REM and NREM trials, hypoventilation was less severe during REM (drop in minute ventilation of 65 +/- 23%) than NREM (drop of 87 +/- 16%, P = 0.036). Despite large changes in gas exchange during trials, there was no significant change in heart rate during either REM or NREM sleep. We conclude that older patients with CHS frequently have arousal and central apnea, in addition to hypoventilation, when breathing spontaneously during sleep. The hypoventilation in CHS is more severe during NREM than REM sleep. We speculate that this may be due to increased excitatory inputs to the respiratory system during REM sleep.

  16. Retinoic Acid Signaling Affects Cortical Synchrony During Sleep

    NASA Astrophysics Data System (ADS)

    Maret, Stéphanie; Franken, Paul; Dauvilliers, Yves; Ghyselinck, Norbert B.; Chambon, Pierre; Tafti, Mehdi

    2005-10-01

    Delta oscillations, characteristic of the electroencephalogram (EEG) of slow wave sleep, estimate sleep depth and need and are thought to be closely linked to the recovery function of sleep. The cellular mechanisms underlying the generation of delta waves at the cortical and thalamic levels are well documented, but the molecular regulatory mechanisms remain elusive. Here we demonstrate in the mouse that the gene encoding the retinoic acid receptor beta determines the contribution of delta oscillations to the sleep EEG. Thus, retinoic acid signaling, which is involved in the patterning of the brain and dopaminergic pathways, regulates cortical synchrony in the adult.

  17. An end-to-end framework for real-time automatic sleep stage classification

    PubMed Central

    Ong, Ju Lynn; Gooley, Joshua J; Ancoli-Israel, Sonia; Chee, Michael W L

    2018-01-01

    Abstract Sleep staging is a fundamental but time consuming process in any sleep laboratory. To greatly speed up sleep staging without compromising accuracy, we developed a novel framework for performing real-time automatic sleep stage classification. The client–server architecture adopted here provides an end-to-end solution for anonymizing and efficiently transporting polysomnography data from the client to the server and for receiving sleep stages in an interoperable fashion. The framework intelligently partitions the sleep staging task between the client and server in a way that multiple low-end clients can work with one server, and can be deployed both locally as well as over the cloud. The framework was tested on four datasets comprising ≈1700 polysomnography records (≈12000 hr of recordings) collected from adolescents, young, and old adults, involving healthy persons as well as those with medical conditions. We used two independent validation datasets: one comprising patients from a sleep disorders clinic and the other incorporating patients with Parkinson’s disease. Using this system, an entire night’s sleep was staged with an accuracy on par with expert human scorers but much faster (≈5 s compared with 30–60 min). To illustrate the utility of such real-time sleep staging, we used it to facilitate the automatic delivery of acoustic stimuli at targeted phase of slow-sleep oscillations to enhance slow-wave sleep. PMID:29590492

  18. A distinctive subpopulation of medial septal slow-firing neurons promote hippocampal activation and theta oscillations

    PubMed Central

    Lin, Shih-Chieh; Nicolelis, Miguel A. L.

    2011-01-01

    The medial septum-vertical limb of the diagonal band of Broca (MSvDB) is important for normal hippocampal functions and theta oscillations. Although many previous studies have focused on understanding how MSVDB neurons fire rhythmic bursts to pace hippocampal theta oscillations, a significant portion of MSVDB neurons are slow-firing and thus do not pace theta oscillations. The function of these MSVDB neurons, especially their role in modulating hippocampal activity, remains unknown. We recorded MSVDB neuronal ensembles in behaving rats, and identified a distinct physiologically homogeneous subpopulation of slow-firing neurons (overall firing <4 Hz) that shared three features: 1) much higher firing rate during rapid eye movement sleep than during slow-wave (SW) sleep; 2) temporary activation associated with transient arousals during SW sleep; 3) brief responses (latency 15∼30 ms) to auditory stimuli. Analysis of the fine temporal relationship of their spiking and theta oscillations showed that unlike the theta-pacing neurons, the firing of these “pro-arousal” neurons follows theta oscillations. However, their activity precedes short-term increases in hippocampal oscillation power in the theta and gamma range lasting for a few seconds. Together, these results suggest that these pro-arousal slow-firing MSvDB neurons may function collectively to promote hippocampal activation. PMID:21865435

  19. Sleep Consolidates Motor Learning of Complex Movement Sequences in Mice.

    PubMed

    Nagai, Hirotaka; de Vivo, Luisa; Bellesi, Michele; Ghilardi, Maria Felice; Tononi, Giulio; Cirelli, Chiara

    2017-02-01

    Sleep-dependent consolidation of motor learning has been extensively studied in humans, but it remains unclear why some, but not all, learned skills benefit from sleep. Here, we compared 2 different motor tasks, both requiring the mice to run on an accelerating device. In the rotarod task, mice learn to maintain balance while running on a small rod, while in the complex wheel task, mice run on an accelerating wheel with an irregular rung pattern. In the rotarod task, performance improved to the same extent after sleep or after sleep deprivation (SD). Overall, using 7 different experimental protocols (41 sleep deprived mice, 26 sleeping controls), we found large interindividual differences in the learning and consolidation of the rotarod task, but sleep before/after training did not account for this variability. By contrast, using the complex wheel, we found that sleep after training, relative to SD, led to better performance from the beginning of the retest session, and longer sleep was correlated with greater subsequent performance. As in humans, the effects of sleep showed large interindividual variability and varied between fast and slow learners, with sleep favoring the preservation of learned skills in fast learners and leading to a net offline gain in the performance in slow learners. Using Fos expression as a proxy for neuronal activation, we also found that complex wheel training engaged motor cortex and hippocampus more than the rotarod training. Sleep specifically consolidates a motor skill that requires complex movement sequences and strongly engages both motor cortex and hippocampus. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  20. Sleep and autonomic nervous system changes - enhanced cardiac sympathetic modulations during sleep in permanent night shift nurses.

    PubMed

    Chung, Min-Huey; Kuo, Terry B J; Hsu, Nanly; Chu, Hsin; Chou, Kuei-Ru; Yang, Cheryl C H

    2009-05-01

    Disturbed sleep is the most common problem among the many health-related effects of shift work, with shift workers clearly having higher rates of cardiac disorders. However, the possible mechanism underlying the related health effects of shift work has yet to be examined. Consequently, this study aimed to explore the influence of long-term night shift work on the sleep patterns of nurses and their cardiac autonomic nervous system during sleep. Our sample comprised ten permanent night shift and ten regular morning shift nurses. Nurses slept in their dormitory where they were allowed to sleep and wake spontaneously. All sleep parameters were digitized using an ambulatory polysomnographic recorder. Using sleep patterns and heart rate variability, the day- and nighttime sleep of permanent night shift nurses were compared with the nighttime sleep of regular morning shift nurses. Compared with the nighttime sleep of regular morning shift nurses, the pattern of daytime sleep of permanent night shift nurses showed significantly lower sleep onset latency. Permanent night shift nurses' daytime sleep also had greater proportions of Stage 3 and 4 (deep sleep), and arousal index than recorded during their nighttime sleep. Both the low frequency and low to high frequency ratio of the nighttime sleep of night shift nurses were significantly higher during periods of non-rapid eye movement (NREM) sleep than the nighttime sleep of morning shift workers. In addition, the electroencephalography delta-power of the nighttime sleep of night shift nurses was significantly lower during the first NREM episode sleep than those of both the daytime sleep of night shift workers and the nighttime sleep of morning shift nurses. Permanent night shift nurses have higher sympathetic activity during nighttime sleep than regular morning shift nurses. Night shift working may have effects on the sleeping patterns of nurses in the long run, inducing higher cardiac sympathetic regulation.

  1. Differential effects of sodium oxybate and baclofen on EEG, sleep, neurobehavioral performance, and memory.

    PubMed

    Vienne, Julie; Lecciso, Gianpaolo; Constantinescu, Irina; Schwartz, Sophie; Franken, Paul; Heinzer, Raphaël; Tafti, Mehdi

    2012-08-01

    Sodium oxybate (SO) is a GABAβ agonist used to treat the sleep disorder narcolepsy. SO was shown to increase slow wave sleep (SWS) and EEG delta power (0.75-4.5 Hz), both indexes of NREM sleep (NREMS) intensity and depth, suggesting that SO enhances recuperative function of NREM. We investigated whether SO induces physiological deep sleep. SO was administered before an afternoon nap or before the subsequent experimental night in 13 healthy volunteers. The effects of SO were compared to baclofen (BAC), another GABAβ receptor agonist, to assess the role of GABAβ receptors in the SO response. As expected, a nap significantly decreased sleep need and intensity the subsequent night. Both drugs reversed this nap effect on the subsequent night by decreasing sleep latency and increasing total sleep time, SWS during the first NREMS episode, and EEG delta and theta (0.75-7.25 Hz) power during NREMS. The SO-induced increase in EEG delta and theta power was, however, not specific to NREMS and was also observed during REM sleep (REMS) and wakefulness. Moreover, the high levels of delta power during a nap following SO administration did not affect delta power the following night. SO and BAC taken before the nap did not improve subsequent psychomotor performance and subjective alertness, or memory consolidation. Finally, SO and BAC strongly promoted the appearance of sleep onset REM periods. The SO-induced EEG slow waves seem not to be functionally similar to physiological slow waves. Our findings also suggest a role for GABAβ receptors in REMS generation.

  2. Do birds sleep in flight?

    NASA Astrophysics Data System (ADS)

    Rattenborg, Niels C.

    2006-09-01

    The following review examines the evidence for sleep in flying birds. The daily need to sleep in most animals has led to the common belief that birds, such as the common swift ( Apus apus), which spend the night on the wing, sleep in flight. The electroencephalogram (EEG) recordings required to detect sleep in flight have not been performed, however, rendering the evidence for sleep in flight circumstantial. The neurophysiology of sleep and flight suggests that some types of sleep might be compatible with flight. As in mammals, birds exhibit two types of sleep, slow-wave sleep (SWS) and rapid eye-movement (REM) sleep. Whereas, SWS can occur in one or both brain hemispheres at a time, REM sleep only occurs bihemispherically. During unihemispheric SWS, the eye connected to the awake hemisphere remains open, a state that may allow birds to visually navigate during sleep in flight. Bihemispheric SWS may also be possible during flight when constant visual monitoring of the environment is unnecessary. Nevertheless, the reduction in muscle tone that usually accompanies REM sleep makes it unlikely that birds enter this state in flight. Upon landing, birds may need to recover the components of sleep that are incompatible with flight. Periods of undisturbed postflight recovery sleep may be essential for maintaining adaptive brain function during wakefulness. The recent miniaturization of EEG recording devices now makes it possible to measure brain activity in flight. Determining if and how birds sleep in flight will contribute to our understanding of a largely unexplored aspect of avian behavior and may also provide insight into the function of sleep.

  3. Sleep and Breathing in High Altitude Pulmonary Edema Susceptible Subjects at 4,559 Meters

    PubMed Central

    Nussbaumer-Ochsner, Yvonne; Schuepfer, Nicole; Ursprung, Justyna; Siebenmann, Christoph; Maggiorini, Marco; Bloch, Konrad E.

    2012-01-01

    Study objectives: Susceptible subjects ascending rapidly to high altitude develop pulmonary edema (HAPE). We evaluated whether HAPE leads to sleep and breathing disturbances that are alleviated by dexamethasone. Design: Double-blind, randomized, placebo-controlled trial with open-label extension. Setting: One night in sleep laboratory at 490 m, 2 nights in mountain hut at 4,559 m. Participants: 21 HAPE susceptibles. Intervention: Dexamethasone 2 × 8 mg/d, either 24 h prior to ascent and at 4,559 m (dex-early), or started on day 2 at 4,559 m only (dex-late). Measurements: Polysomnography, questionnaires on sleep and acute mountain sickness. Results: Polysomnographies at 490 m were normal. In dex-late (n = 12) at 4,559 m, night 1 and 3, median oxygen saturation was 71% and 80%, apnea/hypopnea index 91.3/h and 9.6/h. In dex-early (n = 9), corresponding values were 78% and 79%, and 85.3/h and 52.3/h (P < 0.05 vs. 490 m, all instances). In dex-late, ascending from 490 m to 4,559 m (night 1), sleep efficiency decreased from 91% to 65%, slow wave sleep from 20% to 8% (P < 0.05, both instances). In dex-early, corresponding sleep efficiencies were 96% and 95%, slow wave sleep 18% and 9% (P < 0.05). From night 1 to 3, sleep efficiency remained unchanged in both groups while slow wave sleep increased to 20% in dex-late (P < 0.01). Compared to dex-early, initial AMS scores in dex-late were higher but improved during stay at altitude. Conclusions: HAPE susceptibles ascending rapidly to high altitude experience pronounced nocturnal hypoxemia, and reduced sleep efficiency and deep sleep. Dexamethasone taken before ascent prevents severe hypoxemia and sleep disturbances, while dexamethasone taken 24 h after arrival at 4,559 m increases oxygenation and deep sleep. Citation: Nussbaumer-Ochsner Y; Schuepfer N; Ursprung J; Siebenmann C; Maggiorini M; Bloch KE. Sleep and breathing in high altitude pulmonary edema susceptible subjects at 4,559 meters. SLEEP 2012;35(10):1413-1421. PMID

  4. Objective daytime sleepiness in patients with somnambulism or sleep terrors.

    PubMed

    Lopez, Régis; Jaussent, Isabelle; Dauvilliers, Yves

    2014-11-25

    To objectively measure daytime sleepiness and to assess for clinical and polysomnographic determinants of mean sleep latency in adult patients with somnambulism (sleepwalking [SW]) or sleep terrors (ST) compared with controls. Thirty drug-free adult patients with primary SW or ST, and age-, sex-, and body mass index-matched healthy controls underwent a standardized clinical interview, completed questionnaires including the Epworth Sleepiness Scale, and underwent one night of video polysomnography followed by the Multiple Sleep Latency Test (MSLT). Excessive daytime sleepiness defined as Epworth Sleepiness Scale score >10 was reported in 66.7% of patients and 6.7% of controls. The temporal pattern of sleep latencies in individual MSLT trials differed between patients and controls, with progressive increased sleep latency in patients across the trials in contrast to a "U curve" for controls. We did not find between-group differences regarding the mean sleep latency on the 5 MSLT trials, but did observe reduced sleep latencies in patients for the first 2 trials. Despite increased slow-wave sleep disruptions found in patients (i.e, more micro-arousals and hypersynchronous high-voltage delta waves arousals), we did not find polysomnographic characteristic differences when comparing sleepy patients for either subjective or objective daytime sleepiness on the MSLT compared with alert patients. Excessive daytime sleepiness is a common complaint in subjects with SW or ST and shorter sleep latencies in the early morning hours. Despite an increased slow-wave sleep fragmentation found in these patients, we did not identify any association with the level of daytime sleepiness. © 2014 American Academy of Neurology.

  5. Impact of Acute Sleep Deprivation on Sarcasm Detection

    PubMed Central

    Mary, Alison; Slama, Hichem; Cleeremans, Axel; Peigneux, Philippe; Kissine, Mikhail

    2015-01-01

    There is growing evidence that sleep plays a pivotal role on health, cognition and emotional regulation. However, the interplay between sleep and social cognition remains an uncharted research area. In particular, little is known about the impact of sleep deprivation on sarcasm detection, an ability which, once altered, may hamper everyday social interactions. The aim of this study is to determine whether sleep-deprived participants are as able as sleep-rested participants to adopt another perspective in gauging sarcastic statements. At 9am, after a whole night of sleep (n = 15) or a sleep deprivation night (n = 15), participants had to read the description of an event happening to a group of friends. An ambiguous voicemail message left by one of the friends on another's phone was then presented, and participants had to decide whether the recipient would perceive the message as sincere or as sarcastic. Messages were uttered with a neutral intonation and were either: (1) sarcastic from both the participant’s and the addressee’s perspectives (i.e. both had access to the relevant background knowledge to gauge the message as sarcastic), (2) sarcastic from the participant’s but not from the addressee’s perspective (i.e. the addressee lacked context knowledge to detect sarcasm) or (3) sincere. A fourth category consisted in messages sarcastic from both the participant’s and from the addressee’s perspective, uttered with a sarcastic tone. Although sleep-deprived participants were as accurate as sleep-rested participants in interpreting the voice message, they were also slower. Blunted reaction time was not fully explained by generalized cognitive slowing after sleep deprivation; rather, it could reflect a compensatory mechanism supporting normative accuracy level in sarcasm understanding. Introducing prosodic cues compensated for increased processing difficulties in sarcasm detection after sleep deprivation. Our findings support the hypothesis that sleep

  6. Differential Effects of Sodium Oxybate and Baclofen on EEG, Sleep, Neurobehavioral Performance, and Memory

    PubMed Central

    Vienne, Julie; Lecciso, Gianpaolo; Constantinescu, Irina; Schwartz, Sophie; Franken, Paul; Heinzer, Raphaël; Tafti, Mehdi

    2012-01-01

    Study Objectives: Sodium oxybate (SO) is a GABAB agonist used to treat the sleep disorder narcolepsy. SO was shown to increase slow wave sleep (SWS) and EEG delta power (0.75-4.5 Hz), both indexes of NREM sleep (NREMS) intensity and depth, suggesting that SO enhances recuperative function of NREM. We investigated whether SO induces physiological deep sleep. Design: SO was administered before an afternoon nap or before the subsequent experimental night in 13 healthy volunteers. The effects of SO were compared to baclofen (BAC), another GABAB receptor agonist, to assess the role of GABAB receptors in the SO response. Measurements and Results: As expected, a nap significantly decreased sleep need and intensity the subsequent night. Both drugs reversed this nap effect on the subsequent night by decreasing sleep latency and increasing total sleep time, SWS during the first NREMS episode, and EEG delta and theta (0.75-7.25 Hz) power during NREMS. The SO-induced increase in EEG delta and theta power was, however, not specific to NREMS and was also observed during REM sleep (REMS) and wakefulness. Moreover, the high levels of delta power during a nap following SO administration did not affect delta power the following night. SO and BAC taken before the nap did not improve subsequent psychomotor performance and subjective alertness, or memory consolidation. Finally, SO and BAC strongly promoted the appearance of sleep onset REM periods. Conclusions: The SO-induced EEG slow waves seem not to be functionally similar to physiological slow waves. Our findings also suggest a role for GABAB receptors in REMS generation. Citation: Vienne J; Lecciso G; Constantinescu I; Schwartz S; Franken P; Heinzer R; Tafti M. Differential effects of sodium oxybate and baclofen on EEG, sleep, neurobehavioral performance, and memory. SLEEP 2012;35(8):1071–1084. PMID:22851803

  7. Slow-Wave Sleep-Imposed Replay Modulates Both Strength and Precision of Memory

    PubMed Central

    2014-01-01

    Odor perception is hypothesized to be an experience-dependent process involving the encoding of odor objects by distributed olfactory cortical ensembles. Olfactory cortical neurons coactivated by a specific pattern of odorant evoked input become linked through association fiber synaptic plasticity, creating a template of the familiar odor. In this way, experience and memory play an important role in odor perception and discrimination. In other systems, memory consolidation occurs partially via slow-wave sleep (SWS)-dependent replay of activity patterns originally evoked during waking. SWS is ideal for replay given hyporesponsive sensory systems, and thus reduced interference. Here, using artificial patterns of olfactory bulb stimulation in a fear conditioning procedure in the rat, we tested the effects of imposed post-training replay during SWS and waking on strength and precision of pattern memory. The results show that imposed replay during post-training SWS enhanced the subsequent strength of memory, whereas the identical replay during waking induced extinction. The magnitude of this enhancement was dependent on the timing of imposed replay relative to cortical sharp-waves. Imposed SWS replay of stimuli, which differed from the conditioned stimulus, did not affect conditioned stimulus memory strength but induced generalization of the fear memory to novel artificial patterns. Finally, post-training disruption of piriform cortex intracortical association fiber synapses, hypothesized to be critical for experience-dependent odor coding, also impaired subsequent memory precision but not strength. These results suggest that SWS replay in the olfactory cortex enhances memory consolidation, and that memory precision is dependent on the fidelity of that replay. PMID:24719093

  8. Sleep spindles in humans: insights from intracranial EEG and unit recordings

    PubMed Central

    Andrillon, Thomas; Nir, Yuval; Staba, Richard J.; Ferrarelli, Fabio; Cirelli, Chiara; Tononi, Giulio; Fried, Itzhak

    2012-01-01

    Sleep spindles are an electroencephalographic (EEG) hallmark of non-rapid eye movement (NREM) sleep and are believed to mediate many sleep-related functions, from memory consolidation to cortical development. Spindles differ in location, frequency, and association with slow waves, but whether this heterogeneity may reflect different physiological processes and potentially serve different functional roles remains unclear. Here we utilized a unique opportunity to record intracranial depth EEG and single-unit activity in multiple brain regions of neurosurgical patients to better characterize spindle activity in human sleep. We find that spindles occur across multiple neocortical regions, and less frequently also in the parahippocampal gyrus and hippocampus. Most spindles are spatially restricted to specific brain regions. In addition, spindle frequency is topographically organized with a sharp transition around the supplementary motor area between fast (13-15Hz) centroparietal spindles often occurring with slow wave up-states, and slow (9-12Hz) frontal spindles occurring 200ms later on average. Spindle variability across regions may reflect the underlying thalamocortical projections. We also find that during individual spindles, frequency decreases within and between regions. In addition, deeper sleep is associated with a reduction in spindle occurrence and spindle frequency. Frequency changes between regions, during individual spindles, and across sleep may reflect the same phenomenon, the underlying level of thalamocortical hyperpolarization. Finally, during spindles neuronal firing rates are not consistently modulated, although some neurons exhibit phase-locked discharges. Overall, anatomical considerations can account well for regional spindle characteristics, while variable hyperpolarization levels can explain differences in spindle frequency. PMID:22159098

  9. How Sleep Activates Epileptic Networks?

    PubMed Central

    Halász, Peter

    2013-01-01

    Background. The relationship between sleep and epilepsy has been long ago studied, and several excellent reviews are available. However, recent development in sleep research, the network concept in epilepsy, and the recognition of high frequency oscillations in epilepsy and more new results may put this matter in a new light. Aim. The review address the multifold interrelationships between sleep and epilepsy networks and with networks of cognitive functions. Material and Methods. The work is a conceptual update of the available clinical data and relevant studies. Results and Conclusions. Studies exploring dynamic microstructure of sleep have found important gating mechanisms for epileptic activation. As a general rule interictal epileptic manifestations seem to be linked to the slow oscillations of sleep and especially to the reactive delta bouts characterized by A1 subtype in the CAP system. Important link between epilepsy and sleep is the interference of epileptiform discharges with the plastic functions in NREM sleep. This is the main reason of cognitive impairment in different forms of early epileptic encephalopathies affecting the brain in a special developmental window. The impairment of cognitive functions via sleep is present especially in epileptic networks involving the thalamocortical system and the hippocampocortical memory encoding system. PMID:24159386

  10. Cognitive Workload and Sleep Restriction Interact to Influence Sleep Homeostatic Responses

    PubMed Central

    Goel, Namni; Abe, Takashi; Braun, Marcia E.; Dinges, David F.

    2014-01-01

    Study Objectives: Determine the effects of high versus moderate workload on sleep physiology and neurobehavioral measures, during sleep restriction (SR) and no sleep restriction (NSR) conditions. Design: Ten-night experiment involving cognitive workload and SR manipulations. Setting: Controlled laboratory environment. Participants: Sixty-three healthy adults (mean ± standard deviation: 33.2 ± 8.7 y; 29 females), age 22–50 y. Interventions: Following three baseline 8 h time in bed (TIB) nights, subjects were randomized to one of four conditions: high cognitive workload (HW) + SR; moderate cognitive workload (MW) + SR; HW + NSR; or MW + NSR. SR entailed 5 consecutive nights at 4 h TIB; NSR entailed 5 consecutive nights at 8 h TIB. Subjects received three workload test sessions/day consisting of 15-min preworkload assessments, followed by a 60-min (MW) or 120-min (HW) workload manipulation comprised of visually based cognitive tasks, and concluding with 15-min of postworkload assessments. Experimental nights were followed by two 8-h TIB recovery sleep nights. Polysomnography was collected on baseline night 3, experimental nights 1, 4, and 5, and recovery night 1 using three channels (central, frontal, occipital [C3, Fz, O2]). Measurements and Results: High workload, regardless of sleep duration, increased subjective fatigue and sleepiness (all P < 0.05). In contrast, sleep restriction produced cumulative increases in Psychomotor Vigilance Test (PVT) lapses, fatigue, and sleepiness and decreases in PVT response speed and Maintenance of Wakefulness Test (MWT) sleep onset latencies (all P < 0.05). High workload produced longer sleep onset latencies (P < 0.05, d = 0.63) and less wake after sleep onset (P < 0.05, d = 0.64) than moderate workload. Slow-wave energy—the putative marker of sleep homeostasis—was higher at O2 than C3 only in the HW + SR condition (P < 0.05). Conclusions: High cognitive workload delayed sleep onset, but it also promoted sleep homeostatic

  11. The effects of sleep restriction and sleep deprivation in producing false memories.

    PubMed

    Chatburn, Alex; Kohler, Mark J; Payne, Jessica D; Drummond, Sean P A

    2017-01-01

    False memory has been claimed to be the result of an associative process of generalisation, as well as to be representative of memory errors. These can occur at any stage of memory encoding, consolidation, or retrieval, albeit through varied mechanisms. The aim of this paper is to experimentally determine: (i) if cognitive dysfunction brought about by sleep loss at the time of stimulus encoding can influence false memory production; and (ii) whether this relationship holds across sensory modalities. Subjects undertook both the Deese-Roedigger-McDermott (DRM) false memory task and a visual task designed to produce false memories. Performance was measured while subjects were well-rested (9h Time in Bed or TIB), and then again when subjects were either sleep restricted (4h TIB for 4 nights) or sleep deprived (30h total SD). Results indicate (1) that partial and total sleep loss produced equivalent effects in terms of false and veridical verbal memory, (2) that subjects performed worse after sleep loss (regardless of whether this was partial or total sleep loss) on cued recognition-based false and veridical verbal memory tasks, and that sleep loss interfered with subjects' ability to recall veridical, but not false memories under free recall conditions, and (3) that there were no effects of sleep loss on a visual false memory task. This is argued to represent the dysfunction and slow repair of an online verbal associative process in the brain following inadequate sleep. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Changes in processing of masked stimuli across early- and late-night sleep: a study on behavior and brain potentials.

    PubMed

    Verleger, Rolf; Schuknecht, Simon-Vitus; Jaśkowski, Piotr; Wagner, Ullrich

    2008-11-01

    Sleep has proven to support the memory consolidation in many tasks including learning of perceptual skills. Explicit, conscious types of memory have been demonstrated to benefit particularly from slow-wave sleep (SWS), implicit, non-conscious types particularly from rapid eye movement (REM) sleep. By comparing the effects of early-night sleep, rich in SWS, and late-night sleep, rich in REM sleep, we aimed to separate the contribution of these two sleep stages in a metacontrast masking paradigm in which explicit and implicit aspects in perceptual learning could be assessed separately by stimulus identification and priming, respectively. We assumed that early sleep intervening between two sessions of task performance would specifically support stimulus identification, while late sleep would specifically support priming. Apart from overt behavior, event-related EEG potentials (ERPs) were measured to record the cortical mechanisms associated with behavioral changes across sleep. In contrast to our hypothesis, late-night sleep appeared to be more important for changes of behavior, both for stimulus identification, which tended to improve across late-night sleep, and for priming, with the increase of errors induced by masked stimuli correlating with the duration of REM sleep. ERP components proved sensitive to presence of target shapes in the masked stimuli and to their priming effects. Of these components, the N2 component, indicating processing of conflict, became larger across early-night sleep and was related to the duration of S4 sleep, the deepest substage of SWS containing particularly high portions of EEG slow waves. These findings suggest that sleep promotes perceptual learning primarily by its REM sleep portion, but indirectly also by way of improved action monitoring supported by deep slow-wave sleep.

  13. EEG Changes across Multiple Nights of Sleep Restriction and Recovery in Adolescents: The Need for Sleep Study.

    PubMed

    Ong, Ju Lynn; Lo, June C; Gooley, Joshua J; Chee, Michael W L

    2016-06-01

    To investigate sleep EEG changes in adolescents across 7 nights of sleep restriction to 5 h time in bed [TIB]) and 3 recovery nights of 9 h TIB. A parallel-group design, quasi-laboratory study was conducted in a boarding school. Fifty-five healthy adolescents (25 males, age = 15-19 y) who reported habitual TIBs of approximately 6 h on week nights (group average) but extended their sleep on weekends were randomly assigned to Sleep Restriction (SR) or Control groups. Participants underwent a 2-week protocol comprising 3 baseline nights (TIB = 9 h), 7 nights of sleep opportunity manipulation (TIB = 5 h for the SR and 9 h for the Control group), and 3 nights of recovery sleep (TIB = 9 h). Polysomnography was obtained on two baseline, three manipulation, and two recovery nights. Across the sleep restriction nights, total SWS duration was preserved relative to the 9 h baseline sleep opportunity, while other sleep stages were reduced. Considering only the first 5 h of sleep opportunity, SR participants had reduced N1 duration and wake after sleep onset (WASO), and increased total sleep time (TST), rapid eye movement (REM) sleep, and slow wave sleep (SWS) relative to baseline. Total REM sleep, N2, and TST duration remained above baseline levels by the third recovery sleep episode. In spite of preservation of SWS duration over multiple nights of sleep restriction, adolescents accustomed to curtailing nocturnal sleep on school day nights evidence residual effects on sleep macro-structure, even after three nights of recovery sleep. Older teenagers may not be as resilient to successive nights of sleep restriction as is commonly believed. © 2016 Associated Professional Sleep Societies, LLC.

  14. The perilipin homologue, lipid storage droplet 2, regulates sleep homeostasis and prevents learning impairments following sleep loss.

    PubMed

    Thimgan, Matthew S; Suzuki, Yasuko; Seugnet, Laurent; Gottschalk, Laura; Shaw, Paul J

    2010-08-31

    Extended periods of waking result in physiological impairments in humans, rats, and flies. Sleep homeostasis, the increase in sleep observed following sleep loss, is believed to counter the negative effects of prolonged waking by restoring vital biological processes that are degraded during sleep deprivation. Sleep homeostasis, as with other behaviors, is influenced by both genes and environment. We report here that during periods of starvation, flies remain spontaneously awake but, in contrast to sleep deprivation, do not accrue any of the negative consequences of prolonged waking. Specifically, the homeostatic response and learning impairments that are a characteristic of sleep loss are not observed following prolonged waking induced by starvation. Recently, two genes, brummer (bmm) and Lipid storage droplet 2 (Lsd2), have been shown to modulate the response to starvation. bmm mutants have excess fat and are resistant to starvation, whereas Lsd2 mutants are lean and sensitive to starvation. Thus, we hypothesized that bmm and Lsd2 may play a role in sleep regulation. Indeed, bmm mutant flies display a large homeostatic response following sleep deprivation. In contrast, Lsd2 mutant flies, which phenocopy aspects of starvation as measured by low triglyceride stores, do not exhibit a homeostatic response following sleep loss. Importantly, Lsd2 mutant flies are not learning impaired after sleep deprivation. These results provide the first genetic evidence, to our knowledge, that lipid metabolism plays an important role in regulating the homeostatic response and can protect against neuronal impairments induced by prolonged waking.

  15. The thalamic low-threshold Ca2+ potential: a key determinant of the local and global dynamics of the slow (<1 Hz) sleep oscillation in thalamocortical networks

    PubMed Central

    Crunelli, Vincenzo; Errington, Adam C.; Hughes, Stuart W.; Tóth, Tibor I.

    2011-01-01

    During non-rapid eye movement sleep and certain types of anaesthesia, neurons in the neocortex and thalamus exhibit a distinctive slow (<1 Hz) oscillation that consists of alternating UP and DOWN membrane potential states and which correlates with a pronounced slow (<1 Hz) rhythm in the electroencephalogram. While several studies have claimed that the slow oscillation is generated exclusively in neocortical networks and then transmitted to other brain areas, substantial evidence exists to suggest that the full expression of the slow oscillation in an intact thalamocortical (TC) network requires the balanced interaction of oscillator systems in both the neocortex and thalamus. Within such a scenario, we have previously argued that the powerful low-threshold Ca2+ potential (LTCP)-mediated burst of action potentials that initiates the UP states in individual TC neurons may be a vital signal for instigating UP states in related cortical areas. To investigate these issues we constructed a computational model of the TC network which encompasses the important known aspects of the slow oscillation that have been garnered from earlier in vivo and in vitro experiments. Using this model we confirm that the overall expression of the slow oscillation is intricately reliant on intact connections between the thalamus and the cortex. In particular, we demonstrate that UP state-related LTCP-mediated bursts in TC neurons are proficient in triggering synchronous UP states in cortical networks, thereby bringing about a synchronous slow oscillation in the whole network. The importance of LTCP-mediated action potential bursts in the slow oscillation is also underlined by the observation that their associated dendritic Ca2+ signals are the only ones that inform corticothalamic synapses of the TC neuron output, since they, but not those elicited by tonic action potential firing, reach the distal dendritic sites where these synapses are located. PMID:21893530

  16. Control of the spontaneous emission from a single quantum dash using a slow-light mode in a two-dimensional photonic crystal on a Bragg reflector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauvin, N.; Fiore, A.; Nedel, P.

    2009-07-15

    We demonstrate the coupling of a single InAs/InP quantum, emitting around 1.55 {mu}m, to a slow-light mode in a two-dimensional photonic crystal on Bragg reflector. These surface addressable 2.5D photonic crystal band-edge modes present the advantages of a vertical emission and the mode area and localization may be controlled, leading to a less critical spatial alignment with the emitter. An increase in the spontaneous emission rate by a factor of 1.5-2 is measured at low temperature and is compared to the Purcell factor predicted by three-dimensional time-domain electromagnetic simulations.

  17. Relationships between sleep disturbances and gastroesophageal reflux disease in Asian sleep clinic referrals.

    PubMed

    Ju, Gawon; Yoon, In-Young; Lee, Sang Don; Kim, Nayoung

    2013-12-01

    Studies on the association between gastroesophageal reflux disease (GERD) and sleep apnea syndrome (SAS) have reported conflicting results, and attention has not been paid to the relationship between GERD and other sleep disorders. The aim of the study was to evaluate the relationship between GERD and various aspects of sleep disturbances. A total of 564 subjects who were referred to a sleep laboratory were enrolled in the study. They underwent nocturnal polysomnography (NPSG), and they were asked to complete a GERD questionnaire. The questionnaire consisted of 14 items, and included questions on seven reflux symptoms, namely, heartburn, acid regurgitation, chest pain, hoarseness, globus sensation, coughing and epigastric soreness. Subjects reporting heartburn or acid regurgitation at least once a week were classified as having GERD. Among 564 participants, 51 subjects (9.0%) were diagnosed as having GERD. GERD patients had higher scores in Beck depression inventory (p<.01), Epworth sleepiness scale (p=.03), Pittsburg sleep quality index (p<.01), more spontaneous arousals in NPSG, and more alcohol consumption than non-GERD patients. There was no association between presence of GERD, SAS-related variables, and body mass index (BMI). GERD was significantly associated with poor sleep quality (adjusted OR, 3.5; 95% CI, 1.3-9.3) and depressed mood (adjusted OR, 2.8; 95% CI, 1.5-5.3). Poor subjective sleep and depressive symptoms are associated with the presence of GERD with no association between SAS, BMI and GERD. In managing patients with GERD, psychiatric and sleep symptoms need to be evaluated and appropriately treated. © 2013.

  18. The Impact of Sleep-Related Attentional Bias on Polysomnographically Measured Sleep in Primary Insomnia

    PubMed Central

    Spiegelhalder, Kai; Kyle, Simon D.; Feige, Bernd; Prem, Martin; Nissen, Christoph; Espie, Colin A.; Riemann, Dieter

    2010-01-01

    Study Objectives: Although sleep-related attentional bias has been shown to be evident in primary insomnia, the association with objectively measured sleep has not been investigated. In the present study, we used polysomnography (PSG) to fill this void. Design: Patients with primary insomnia and healthy controls were studied using a visual dot probe task (VDP) and an emotional Stroop task (EST). Additionally, polysomnography was carried out in a sub-sample (n = 22) of patients in the subsequent night. Setting: Department of Psychiatry and Psychotherapy of the University of Freiburg Medical Center. Participants: Thirty patients with primary insomnia and 30 matched healthy controls. Interventions: N/A Measurements and Results: Patients with primary insomnia demonstrated a significant sleep-related attentional bias compared to controls in the EST but no significant group effects were found for the VDP. VDP attentional bias scores were positively correlated with measures of sleep pressure, including total sleep time, sleep efficiency, and the amount of slow wave sleep. EST attentional bias scores were not correlated with subsequent PSG parameters, and we did not observe a correlation between attentional bias scores on the two tasks. Conclusions: The unexpected relationship between increased attentional bias, in the VDP task, and improved markers of sleep duration and continuity, may be indicative of a homeostatic craving for sleep in those with high attentional bias. This awaits further testing in multiple night studies, to shed light on the mechanisms and implications of sleep-related attentional bias. Citation: Spiegelhalder K; Kyle SD; Feige B; Prem M; Nissen C; Espie CA; Riemann D. The impact of sleep-related attentional bias on polysomnographically measured sleep in primary insomnia. SLEEP 2010;33(1):107-112. PMID:20120627

  19. Sleep quality and arousal in migraine and tension-type headache: the headache-sleep study.

    PubMed

    Engstrøm, M; Hagen, K; Bjørk, M H; Stovner, L J; Sand, T

    2014-01-01

    The present paper summarizes and compares data from our studies on subjective and objective sleep quality and pain thresholds in tension-type headache (TTH), migraine, and controls. In a blinded controlled explorative study, we recorded polysomnography (PSG) and pressure, heat, and cold pain thresholds in 34 controls, 20 TTH, and 53 migraine patients. Sleep quality was assessed by questionnaires, sleep diaries, and PSG. Migraineurs who had their recordings more than 2 days from an attack were classified as interictal while the rest were classified as either preictal or postictal. Interictal migraineurs (n=33) were also divided into two groups if their headache onsets mainly were during sleep and awakening (sleep migraine, SM), or during daytime and no regular onset pattern (non-sleep migraine, NSM). TTH patients were divided into a chronic or episodic group according to headache days per month. Compared to controls, all headache groups reported more anxiety and sleep-related symptoms. TTH and NSM patients reported more daytime tiredness and tended to have lower pain thresholds. Despite normal sleep times in diary, TTH and NSM had increased slow-wave sleep as seen after sleep deprivation. Migraineurs in the preictal phase had shorter latency to sleep onset than controls. Except for a slight but significantly increased awakening index SM, patients differed little from controls in objective measurements. We hypothesize that TTH and NSM patients on the average need more sleep than healthy controls. SM patients seem more susceptible to sleep disturbances. Inadequate rest might be an attack-precipitating- and hyperalgesia-inducing factor. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Female impulsive aggression: a sleep research perspective.

    PubMed

    Lindberg, Nina; Tani, Pekka; Putkonen, Hanna; Sailas, Eila; Takala, Pirjo; Eronen, Markku; Virkkunen, Matti

    2009-01-01

    The rate of violent crimes among girls and women appears to be increasing. One in every five female prisoners has been reported to have antisocial personality disorder. However, it has been quite unclear whether the impulsive, aggressive behaviour among women is affected by the same biological mechanisms as among men. Psychiatric sleep research has attempted to identify diagnostically sensitive and specific sleep patterns associated with particular disorders. Most psychiatric disorders are typically characterized by a severe sleep disturbance associated with decreased amounts of slow wave sleep (SWS), the physiologically significant, refreshing part of sleep. Among men with antisocial behaviour with severe aggression, on the contrary, increased SWS has been reported, reflecting either specific brain pathology or a delay in the normal development of human sleep patterns. In our preliminary study among medication-free, detoxified female homicidal offenders with antisocial personality disorder, the same profound abnormality in sleep architecture was found. From the perspective of sleep research, the biological correlates of severe impulsive aggression seem to share similar features in both sexes.

  1. Sleep and satisfaction in 8- and 12-h forward-rotating shift systems: Industrial employees prefer 12-h shifts.

    PubMed

    Karhula, Kati; Härmä, Mikko; Ropponen, Annina; Hakola, Tarja; Sallinen, Mikael; Puttonen, Sampsa

    2016-01-01

    Twelve-hour shift systems have become more popular in industry. Survey data of shift length, shift rotation speed, self-rated sleep, satisfaction and perceived health were investigated for the associations among 599 predominantly male Finnish industrial employees. The studied forward-rotating shift systems were 12-h fast (12fast, DDNN------, n = 268), 8-h fast (8fast, MMEENN----, n = 161) and 8-h slow (8slow, MMMM-EEEE-NNNN, n = 170). Satisfaction with shift system differed between the groups (p < 0.01) after controlling for age, gender, shift work experience and self-rated stress. In the 12fast, 98% of employees were satisfied with their shift system (75% 8fast, 54% 8slow). Negative effects on sleep and alertness were rare (8%) in the 12fast group (53% 8fast, 66% 8 slow, p < 0.01) and self-reported sleep difficulties were less frequent than in the 8fast and 8slow groups (8%, 27%, 41%, respectively, p < 0.01). The self-reported average sleep duration (12fast 7:50, 8fast 7:24, 8slow 7:15, p < 0.01), and shift-specific sleep before and between morning shifts and after first night shift were longer in the 12fast group. Perceived negative effects of the current shift system on general health (12fast 4%, 8fast 30%, 8slow 41%, p < 0.001) and work-life balance (12fast 8%, 8fast 52%, 8slow 63%, p < 0.001) differed strongly between the groups. In conclusion, the perceived effects of shift work were dependent on both shift length and shift rotation speed: employees in the 12-h rapidly forward-rotating shift system were most satisfied, perceived better work-life balance and slept better than the employees in the 8fast or especially the employees in the 8-h slowly rotating systems.

  2. Sleep and wakefulness in somnambulism: a spectral analysis study.

    PubMed

    Guilleminault, C; Poyares, D; Aftab, F A; Palombini, L; Abat, F

    2001-08-01

    The sleep structure and the dynamics of EEG slow-wave activity (SWA) were investigated in 12 young adults and age- and gender-matched controls. Polysomnography was performed in subjects with well-documented chronic sleepwalking and in matched controls. Blinded visual scoring was performed using the international criteria from the Rechtschaffen and Kales atlas [A manual of standardized technology, techniques and scoring systems for sleep stages of human subjects. Los Angeles: UCLA Brain Information Service, Brain Research Institute, 1968.] and by determining the presence of microarousals as defined in the American Sleep Disorders Association (ASDA) atlas [Sleep 15 (1992) 173.]. An evaluation of SWA overnight was performed on total nocturnal sleep to determine if a difference existed between groups of subjects, since sleepwalking usually originates with slow-wave sleep. Investigation of the delta power in successive nonoverlapping 4-second windows in the 32 seconds just prior to EMG activity associated with a confusional arousal was also conducted. One central EEG lead was used for all analyses. Somnambulistic individuals experienced more disturbed sleep than controls during the first NREM-REM sleep cycle. They had a higher number of ASDA arousals and presented lower peak of SWA during the first cycle that led to a lower SWA decline overnight. When the investigation focused on the short segment immediately preceding a confusional arousal, they presented an important increase in the relative power of low delta (0.75-2 Hz) just prior to the confusional arousal. Sleepwalkers undergo disturbed nocturnal sleep at the beginning of the night. The increased power of low delta just prior to the confusional arousal experienced may not be related to Stages 3-4 NREM sleep. We hypothesize that it may be translated as a cortical reaction to brain activation.

  3. Coffee, caffeine, and sleep: A systematic review of epidemiological studies and randomized controlled trials.

    PubMed

    Clark, Ian; Landolt, Hans Peter

    2017-02-01

    Caffeine is the most widely consumed psychoactive substance in the world. It is readily available in coffee and other foods and beverages, and is used to mitigate sleepiness, enhance performance, and treat apnea in premature infants. This review systematically explores evidence from epidemiological studies and randomized controlled trials as to whether coffee and caffeine have deleterious effects on sleep. Caffeine typically prolonged sleep latency, reduced total sleep time and sleep efficiency, and worsened perceived sleep quality. Slow-wave sleep and electroencephalographic (EEG) slow-wave activity were typically reduced, whereas stage-1, wakefulness, and arousals were increased. Dose- and timing-response relationships were established. The sleep of older adults may be more sensitive to caffeine compared to younger adults. Pronounced individual differences are also present in young people, and genetic studies isolated functional polymorphisms of genes implicated in adenosine neurotransmission and metabolism contributing to individual sensitivity to sleep disruption by caffeine. Most studies were conducted in male adults of Western countries, which limits the generalizability of the findings. Given the importance of good sleep for general health and functioning, longitudinal investigations aimed at establishing possible causal relationships among coffee- and caffeine-induced changes in sleep quality and health development are warranted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Beta EEG reflects sensory processing in active wakefulness and homeostatic sleep drive in quiet wakefulness.

    PubMed

    Grønli, Janne; Rempe, Michael J; Clegern, William C; Schmidt, Michelle; Wisor, Jonathan P

    2016-06-01

    Markers of sleep drive (<10 Hz; slow-wave activity and theta) have been identified in the course of slow-wave sleep and wakefulness. So far, higher frequencies in the waking electroencephalogram have not been examined thoroughly as a function of sleep drive. Here, electroencephalogram dynamics were measured in epochs of active wake (wake characterized by high muscle tone) or quiet wake (wake characterized by low muscle tone). It was hypothesized that the higher beta oscillations (15-35 Hz, measured by local field potential and electroencephalography) represent fundamentally different processes in active wake and quiet wake. In active wake, sensory stimulation elevated beta activity in parallel with gamma (80-90 Hz) activity, indicative of cognitive processing. In quiet wake, beta activity paralleled slow-wave activity (1-4 Hz) and theta (5-8 Hz) in tracking sleep need. Cerebral lactate concentration, a measure of cerebral glucose utilization, increased during active wake whereas it declined during quiet wake. Mathematical modelling of state-dependent dynamics of cortical lactate concentration was more precisely predictive when quiet wake and active wake were included as two distinct substates rather than a uniform state of wakefulness. The extent to which lactate concentration declined in quiet wake and increased in active wake was proportionate to the amount of beta activity. These data distinguish quiet wake from active wake. Quiet wake, particularly when characterized by beta activity, is permissive to metabolic and electrophysiological changes that occur in slow-wave sleep. These data urge further studies on state-dependent beta oscillations across species. © 2016 European Sleep Research Society.

  5. Hippocampal memory consolidation during sleep: a comparison of mammals and birds

    PubMed Central

    Rattenborg, Niels C.; Martinez-Gonzalez, Dolores; Roth, Timothy C.; Pravosudov, Vladimir V.

    2010-01-01

    The transition from wakefulness to sleep is marked by pronounced changes in brain activity. The brain rhythms that characterize the two main types of mammalian sleep, slow-wave sleep (SWS) and rapid eye movement (REM) sleep, are thought to be involved in the functions of sleep. In particular, recent theories suggest that the synchronous slow-oscillation of neocortical neuronal membrane potentials, the defining feature of SWS, is involved in processing information acquired during wakefulness. According to the Standard Model of memory consolidation, during wakefulness the hippocampus receives input from neocortical regions involved in the initial encoding of an experience and binds this information into a coherent memory trace that is then transferred to the neocortex during SWS where it is stored and integrated within preexisting memory traces. Evidence suggests that this process selectively involves direct connections from the hippocampus to the prefrontal cortex (PFC), a multimodal, high-order association region implicated in coordinating the storage and recall of remote memories in the neocortex. The slow-oscillation is thought to orchestrate the transfer of information from the hippocampus by temporally coupling hippocampal sharp-wave/ripples (SWRs) and thalamocortical spindles. SWRs are synchronous bursts of hippocampal activity, during which waking neuronal firing patterns are reactivated in the hippocampus and neocortex in a coordinated manner. Thalamocortical spindles are brief 7–14 Hz oscillations that may facilitate the encoding of information reactivated during SWRs. By temporally coupling the readout of information from the hippocampus with conditions conducive to encoding in the neocortex, the slow-oscillation is thought to mediate the transfer of information from the hippocampus to the neocortex. Although several lines of evidence are consistent with this function for mammalian SWS, it is unclear whether SWS serves a similar function in birds, the

  6. Hippocampal memory consolidation during sleep: a comparison of mammals and birds.

    PubMed

    Rattenborg, Niels C; Martinez-Gonzalez, Dolores; Roth, Timothy C; Pravosudov, Vladimir V

    2011-08-01

    The transition from wakefulness to sleep is marked by pronounced changes in brain activity. The brain rhythms that characterize the two main types of mammalian sleep, slow-wave sleep (SWS) and rapid eye movement (REM) sleep, are thought to be involved in the functions of sleep. In particular, recent theories suggest that the synchronous slow-oscillation of neocortical neuronal membrane potentials, the defining feature of SWS, is involved in processing information acquired during wakefulness. According to the Standard Model of memory consolidation, during wakefulness the hippocampus receives input from neocortical regions involved in the initial encoding of an experience and binds this information into a coherent memory trace that is then transferred to the neocortex during SWS where it is stored and integrated within preexisting memory traces. Evidence suggests that this process selectively involves direct connections from the hippocampus to the prefrontal cortex (PFC), a multimodal, high-order association region implicated in coordinating the storage and recall of remote memories in the neocortex. The slow-oscillation is thought to orchestrate the transfer of information from the hippocampus by temporally coupling hippocampal sharp-wave/ripples (SWRs) and thalamocortical spindles. SWRs are synchronous bursts of hippocampal activity, during which waking neuronal firing patterns are reactivated in the hippocampus and neocortex in a coordinated manner. Thalamocortical spindles are brief 7-14 Hz oscillations that may facilitate the encoding of information reactivated during SWRs. By temporally coupling the readout of information from the hippocampus with conditions conducive to encoding in the neocortex, the slow-oscillation is thought to mediate the transfer of information from the hippocampus to the neocortex. Although several lines of evidence are consistent with this function for mammalian SWS, it is unclear whether SWS serves a similar function in birds, the only

  7. Nonhuman primates prefer slow tempos but dislike music overall.

    PubMed

    McDermott, Josh; Hauser, Marc D

    2007-09-01

    Human adults generally find fast tempos more arousing than slow tempos, with tempo frequently manipulated in music to alter tension and emotion. We used a previously published method [McDermott, J., & Hauser, M. (2004). Are consonant intervals music to their ears? Spontaneous acoustic preferences in a nonhuman primate. Cognition, 94(2), B11-B21] to test cotton-top tamarins and common marmosets, two new-World primates, for their spontaneous responses to stimuli that varied systematically with respect to tempo. Across several experiments, we found that both tamarins and marmosets preferred slow tempos to fast. It is possible that the observed preferences were due to arousal, and that this effect is homologous to the human response to tempo. In other respects, however, these two monkey species showed striking differences compared to humans. Specifically, when presented with a choice between slow tempo musical stimuli, including lullabies, and silence, tamarins and marmosets preferred silence whereas humans, when similarly tested, preferred music. Thus despite the possibility of homologous mechanisms for tempo perception in human and nonhuman primates, there appear to be motivational ties to music that are uniquely human.

  8. Repeated Sleep Restriction in Adolescent Rats Altered Sleep Patterns and Impaired Spatial Learning/Memory Ability

    PubMed Central

    Yang, Su-Rong; Sun, Hui; Huang, Zhi-Li; Yao, Ming-Hui; Qu, Wei-Min

    2012-01-01

    Study Objectives: To investigate possible differences in the effect of repeated sleep restriction (RSR) during adolescence and adulthood on sleep homeostasis and spatial learning and memory ability. Design: The authors examined electroencephalograms of rats as they were subjected to 4-h daily sleep deprivation that continued for 7 consecutive days and assessed the spatial learning and memory by Morris water maze test (WMT). Participants: Adolescent and adult rats. Measurements and Results: Adolescent rats exhibited a similar amount of rapid eye movement (REM) and nonrapid eye movement (NREM) sleep with higher slow wave activity (SWA, 0.5-4 Hz) and fewer episodes and conversions with prolonged durations, indicating they have better sleep quality than adult rats. After RSR, adult rats showed strong rebound of REM sleep by 31% on sleep deprivation day 1; this value was 37% on sleep deprivation day 7 in adolescents compared with 20-h baseline level. On sleep deprivation day 7, SWA in adult and adolescent rats increased by 47% and 33%, and such elevation lasted for 5 h and 7 h, respectively. Furthermore, the authors investigated the effects of 4-h daily sleep deprivation immediately after the water maze training sessions on spatial cognitive performance. Adolescent rats sleep-restricted for 7 days traveled a longer distance to find the hidden platform during the acquisition training and had fewer numbers of platform crossings in the probe trial than those in the control group, something that did not occur in the sleep-deprived adult rats. Conclusions: Repeated sleep restriction (RSR) altered sleep profiles and mildly impaired spatial learning and memory capability in adolescent rats. Citation: Yang SR; Sun H; Huang ZL; Yao MH; Qu WM. Repeated sleep restriction in adolescent rats altered sleep patterns and impaired spatial learning/memory ability. SLEEP 2012;35(6):849-859. PMID:22654204

  9. Emotional bias of sleep-dependent processing shifts from negative to positive with aging.

    PubMed

    Jones, Bethany J; Schultz, Kurt S; Adams, Sydney; Baran, Bengi; Spencer, Rebecca M C

    2016-09-01

    Age-related memory decline has been proposed to result partially from impairments in memory consolidation over sleep. However, such decline may reflect a shift toward selective processing of positive information with age rather than impaired sleep-related mechanisms. In the present study, young and older adults viewed negative and neutral pictures or positive and neutral pictures and underwent a recognition test after sleep or wake. Subjective emotional reactivity and affect were also measured. Compared with waking, sleep preserved valence ratings and memory for positive but not negative pictures in older adults and negative but not positive pictures in young adults. In older adults, memory for positive pictures was associated with slow wave sleep. Furthermore, slow wave sleep predicted positive affect in older adults but was inversely related to positive affect in young adults. These relationships were strongest for older adults with high memory for positive pictures and young adults with high memory for negative pictures. Collectively, these results indicate preserved but selective sleep-dependent memory processing with healthy aging that may be biased to enhance emotional well-being. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Sex-related differences in sleep slow wave activity in major depressive disorder: a high-density EEG investigation.

    PubMed

    Plante, David T; Landsness, Eric C; Peterson, Michael J; Goldstein, Michael R; Riedner, Brady A; Wanger, Timothy; Guokas, Jeffrey J; Tononi, Giulio; Benca, Ruth M

    2012-09-18

    Sleep disturbance plays an important role in major depressive disorder (MDD). Prior investigations have demonstrated that slow wave activity (SWA) during sleep is altered in MDD; however, results have not been consistent across studies, which may be due in part to sex-related differences in SWA and/or limited spatial resolution of spectral analyses. This study sought to characterize SWA in MDD utilizing high-density electroencephalography (hdEEG) to examine the topography of SWA across the cortex in MDD, as well as sex-related variation in SWA topography in the disorder. All-night recordings with 256 channel hdEEG were collected in 30 unipolar MDD subjects (19 women) and 30 age and sex-matched control subjects. Spectral analyses of SWA were performed to determine group differences. SWA was compared between MDD and controls, including analyses stratified by sex, using statistical non-parametric mapping to correct for multiple comparisons of topographic data. As a group, MDD subjects demonstrated significant increases in all-night SWA primarily in bilateral prefrontal channels. When stratified by sex, MDD women demonstrated global increases in SWA relative to age-matched controls that were most consistent in bilateral prefrontal regions; however, MDD men showed no significant differences relative to age-matched controls. Further analyses demonstrated increased SWA in MDD women was most prominent in the first portion of the night. Women, but not men with MDD demonstrate significant increases in SWA in multiple cortical areas relative to control subjects. Further research is warranted to investigate the role of SWA in MDD, and to clarify how increased SWA in women with MDD is related to the pathophysiology of the disorder.

  11. Sleep dynamics: A self-organized critical system

    NASA Astrophysics Data System (ADS)

    Comte, J. C.; Ravassard, P.; Salin, P. A.

    2006-05-01

    In psychiatric and neurological diseases, sleep is often perturbed. Moreover, recent works on humans and animals tend to show that sleep plays a strong role in memory processes. Reciprocally, sleep dynamics following a learning task is modified [Hubert , Nature (London) 02663, 1 (2004), Peigneux , Neuron 44, 535 (2004)]. However, sleep analysis in humans and animals is often limited to the total sleep and wake duration quantification. These two parameters are not fully able to characterize the sleep dynamics. In mammals sleep presents a complex organization with an alternation of slow wave sleep (SWS) and paradoxical sleep (PS) episodes. Moreover, it has been shown recently that these sleep episodes are frequently interrupted by micro-arousal (without awakening). We present here a detailed analysis of the basal sleep properties emerging from the mechanisms underlying the vigilance states alternation in an animal model. These properties present a self-organized critical system signature and reveal the existence of two W, two SWS, and a PS structure exhibiting a criticality as met in sand piles. We propose a theoretical model of the sleep dynamics based on several interacting neuronal populations. This new model of sleep dynamics presents the same properties as experimentally observed, and explains the variability of the collected data. This experimental and theoretical study suggests that sleep dynamics shares several common features with critical systems.

  12. Probabilistic characterization of sleep architecture: home based study on healthy volunteers.

    PubMed

    Garcia-Molina, Gary; Vissapragada, Sreeram; Mahadevan, Anandi; Goodpaster, Robert; Riedner, Brady; Bellesi, Michele; Tononi, Giulio

    2016-08-01

    The quantification of sleep architecture has high clinical value for diagnostic purposes. While the clinical standard to assess sleep architecture is in-lab based polysomnography, higher ecological validity can be obtained with multiple sleep recordings at home. In this paper, we use a dataset composed of fifty sleep EEG recordings at home (10 per study participant for five participants) to analyze the sleep stage transition dynamics using Markov chain based modeling. The statistical analysis of the duration of continuous sleep stage bouts is also analyzed to identify the speed of transition between sleep stages. This analysis identified two types of NREM states characterized by fast and slow exit rates which from the EEG analysis appear to correspond to shallow and deep sleep respectively.

  13. Functional Anatomy of Non-REM Sleep

    PubMed Central

    de Andrés, Isabel; Garzón, Miguel; Reinoso-Suárez, Fernando

    2011-01-01

    The state of non-REM sleep (NREM), or slow wave sleep, is associated with a synchronized EEG pattern in which sleep spindles and/or K complexes and high-voltage slow wave activity (SWA) can be recorded over the entire cortical surface. In humans, NREM is subdivided into stages 2 and 3–4 (presently named N3) depending on the proportions of each of these polygraphic events. NREM is necessary for normal physical and intellectual performance and behavior. An overview of the brain structures involved in NREM generation shows that the thalamus and the cerebral cortex are absolutely necessary for the most significant bioelectric and behavioral events of NREM to be expressed; other structures like the basal forebrain, anterior hypothalamus, cerebellum, caudal brain stem, spinal cord and peripheral nerves contribute to NREM regulation and modulation. In NREM stage 2, sustained hyperpolarized membrane potential levels resulting from interaction between thalamic reticular and projection neurons gives rise to spindle oscillations in the membrane potential; the initiation and termination of individual spindle sequences depends on corticothalamic activities. Cortical and thalamic mechanisms are also involved in the generation of EEG delta SWA that appears in deep stage 3–4 (N3) NREM; the cortex has classically been considered to be the structure that generates this activity, but delta oscillations can also be generated in thalamocortical neurons. NREM is probably necessary to normalize synapses to a sustainable basal condition that can ensure cellular homeostasis. Sleep homeostasis depends not only on the duration of prior wakefulness but also on its intensity, and sleep need increases when wakefulness is associated with learning. NREM seems to ensure cell homeostasis by reducing the number of synaptic connections to a basic level; based on simple energy demands, cerebral energy economizing during NREM sleep is one of the prevalent hypotheses to explain NREM homeostasis

  14. Short term total sleep deprivation in the rat increases antioxidant responses in multiple brain regions without impairing spontaneous alternation behavior

    PubMed Central

    Ramanathan, Lalini; Hu, Shuxin; Frautschy, Sally A.; Siegel, Jerome M.

    2009-01-01

    Total sleep deprivation (TSD) induces a broad spectrum of cognitive, behavioral and cellular changes. We previously reported that long term (5–11 days) TSD in the rat, by the disk-over-water method, decreases the activity of the antioxidant enzyme superoxide dismutase (SOD) in the brainstem and hippocampus. To gain insight into the mechanisms causing cognitive impairment, here we explore the early associations between metabolic activity, antioxidant responses and working memory (one form of cognitive impairment). Specifically we investigated the impact of short term (6 h) TSD, by gentle handling, on the levels of the endogenous antioxidant, total glutathione (GSHt), and the activities of the antioxidative enzymes, SOD and glutathione peroxidase (GPx). Short term TSD had no significant impact on SOD activity, but increased GSHt levels in the rat cortex, brainstem and basal forebrain, and GPx activity in the rat hippocampus and cerebellum. We also observed increased activity of hexokinase, (HK), the rate limiting enzyme of glucose metabolism, in the rat cortex and hypothalamus. We further showed that 6h of TSD leads to increased exploratory behavior to a new environment, without impairing spontaneous alternation behavior (SAB) in the Y maze. We conclude that acute (6h) sleep loss may trigger compensatory mechanisms (like increased antioxidant responses) that prevent initial deterioration in working memory. PMID:19850085

  15. Relationship of Fluid Accumulation in the Neck to Sleep Structure in Men during Daytime Sleep

    PubMed Central

    Yadollahi, Azadeh; Vena, Daniel; Lyons, Owen D.; Bradley, T. Douglas

    2016-01-01

    Study Objectives: Induction of fluid overload during sleep in older men causes fluid accumulation in the neck, worsens obstructive sleep apnea (OSA), and reduces sleep efficiency and slow wave sleep. However, it is not clear whether disrupted sleep structure was related to age, fluid accumulation, or to OSA severity as assessed by the apnea-hypopnea index (AHI). We hypothesize that fluid accumulation in the neck is a significant contributor to the sleep structure. Methods: Twenty non-obese men, 46 ± 11 years, underwent a daytime sleep study following a night of sleep deprivation. Before and after sleep, neck circumference (NC), upper airway cross-sectional area, and neck fluid volume (NFV) were assessed. Stepwise regression analyses were used to determine factors that contributed to sleep structure, AHI, and arousal frequency. Independent factors were age, NC, ΔNC, ΔNFV, and AHI (excluded for AHI and arousal). Results: Subjects slept for 145 ± 44 minutes with a mean AHI of 26 ± 25. After sleep, NC and NFV increased and the upper airway narrowed (all: p < 0.001). ΔNC and ΔNFV correlated directly with %N2 and inversely with %N3 sleep. Regression analyses revealed that only ΔNC correlated directly with %N2 sleep (r2 = 0.44, p = 0.001). ΔNC, ΔNFV, and pre-sleep NC correlated inversely with %N3 sleep (r2 = 0.76, p < 0.001). Pre-sleep NC and ΔNC correlated directly with AHI and arousal frequency. Conclusions: Fluid accumulation in the neck and larger neck circumference are related to impaired sleep structure with reduced %N3 sleep. Fluid accumulation in the neck had stronger contribution to sleep structure than AHI or age. Citation: Yadollahi A, Vena D, Lyons OD, Bradley TD. Relationship of fluid accumulation in the neck to sleep structure in men during daytime sleep. J Clin Sleep Med 2016;12(10):1365–1371. PMID:27397662

  16. The important role of sleep in metabolism.

    PubMed

    Copinschi, Georges; Leproult, Rachel; Spiegel, Karine

    2014-01-01

    Both reduction in total sleep duration with slow-wave sleep (SWS) largely preserved and alterations of sleep quality (especially marked reduction of SWS) with preservation of total sleep duration are associated with insulin resistance without compensatory increase in insulin secretion, resulting in impaired glucose tolerance and increased risk of type 2 diabetes. When performed under rigorously controlled conditions of energy intake and physical activity, sleep restriction is also associated with a decrease in circulating levels of leptin (an anorexigenic hormone) and an increase in circulating levels of ghrelin (an orexigenic hormone), hunger and appetite. Furthermore, sleep restriction is also associated with a stimulation of brain regions sensitive to food stimuli, indicating that sleep loss may lead to obesity through the selection of high-calorie food. There is also evidence that sleep restriction could provide a permissive environment for the activation of genes that promote obesity. Indeed, the heritability of body mass index is increased in short sleepers. Thus, chronic sleep curtailment, which is on the rise in modern society, including in children, is likely to contribute to the current epidemics of type 2 diabetes and obesity. © 2014 S. Karger AG, Basel.

  17. Effects of Diet on Sleep Quality12

    PubMed Central

    Mikic, Anja; Pietrolungo, Cara E

    2016-01-01

    There is much emerging information surrounding the impact of sleep duration and quality on food choice and consumption in both children and adults. However, less attention has been paid to the effects of dietary patterns and specific foods on nighttime sleep. Early studies have shown that certain dietary patterns may affect not only daytime alertness but also nighttime sleep. In this review, we surveyed the literature to describe the role of food consumption on sleep. Research has focused on the effects of mixed meal patterns, such as high-carbohydrate plus low-fat or low-carbohydrate diets, over the short term on sleep. Such studies highlight a potential effect of macronutrient intakes on sleep variables, particularly alterations in slow wave sleep and rapid eye movement sleep with changes in carbohydrate and fat intakes. Other studies instead examined the intake of specific foods, consumed at a fixed time relative to sleep, on sleep architecture and quality. Those foods, specifically milk, fatty fish, tart cherry juice, and kiwifruit, are reviewed here. Studies provide some evidence for a role of certain dietary patterns and foods in the promotion of high-quality sleep, but more studies are necessary to confirm those preliminary findings. PMID:27633109

  18. Respiratory cycle-related electroencephalographic changes during sleep in healthy children and in children with sleep disordered breathing.

    PubMed

    Immanuel, Sarah A; Pamula, Yvonne; Kohler, Mark; Martin, James; Kennedy, Declan; Saint, David A; Baumert, Mathias

    2014-08-01

    To investigate respiratory cycle-related electroencephalographic changes (RCREC) in healthy children and in children with sleep disordered breathing (SDB) during scored event-free (SEF) breathing periods of sleep. Interventional case-control repeated measurements design. Paediatric sleep laboratory in a hospital setting. Forty children with SDB and 40 healthy, age- and sex-matched children. Adenotonsillectomy in children with SDB and no intervention in controls. Overnight polysomnography; electroencephalography (EEG) power variations within SEF respiratory cycles in the overall and frequency band-specific EEG within stage 2 nonrapid eye movement (NREM) sleep, slow wave sleep (SWS), and rapid eye movement (REM) sleep. Within both groups there was a decrease in EEG power during inspiration compared to expiration across all sleep stages. Compared to controls, RCREC in children with SDB in the overall EEG were significantly higher during REM and frequency band specific RCRECs were higher in the theta band of stage 2 and REM sleep, alpha band of SWS and REM sleep, and sigma band of REM sleep. This between-group difference was not significant postadenotonsillectomy. The presence of nonrandom respiratory cycle-related electroencephalographic changes (RCREC) in both healthy children and in children with sleep disordered breathing (SDB) during NREM and REM sleep has been demonstrated. The RCREC values were higher in children with SDB, predominantly in REM sleep and this difference reduced after adenotonsillectomy. Immanuel SA, Pamula Y, Kohler M, Martin J, Kennedy D, Saint DA, Baumert M. Respiratory cycle-related electroencephalographic changes during sleep in healthy children and in children with sleep disordered breathing.

  19. Sleep-enhancing effects of far-infrared radiation in rats

    NASA Astrophysics Data System (ADS)

    Honda, K.; Inoué, S.

    1988-06-01

    Unrestrained male rats continuously exposed to far-infrared radiation exhibited a significant increase in slow wave sleep (SWS) during the light period but not in the dark period. The change was largely due to the elevated occurrence of SWS episodes but not to the prolongation of their duration. Paradoxical sleep was not affected throughout the observation period except for a significant decrease at the end of the dark period. Thus the far-infrared radiation exerted a sleep modulatory effect closely related to the circadian activity-rest cycle.

  20. Sleep and Epilepsy: Strange Bedfellows No More.

    PubMed

    St Louis, Erik K

    2011-09-01

    Ancient philosophers and theologians believed that altered consciousness freed the mind to prophesy the future, equating sleep with seizures. Only recently has the bidirectional influences of epilepsy and sleep upon one another received more substantive analysis. This article reviews the complex and increasingly recognized interrelationships between sleep and epilepsy. NREM sleep differentially activates interictal epileptiform discharges during slow wave (N3) sleep, while ictal seizure events occur more frequently during light NREM stages N1 and N2. The most commonly encountered types of sleep-related epilepsies (those with preferential occurrence during sleep or following arousal) include frontal and temporal lobe partial epilepsies in adults, and benign epilepsy of childhood with centrotemporal spikes (benign rolandic epilepsy) and juvenile myoclonic epilepsy in children and adolescents. Comorbid sleep disorders are frequent in patients with epilepsy, particularly obstructive sleep apnea in refractory epilepsy patients which may aggravate seizure burden, while treatment with nasal continuous positive airway pressure often improves seizure frequency. Distinguishing nocturnal events such as NREM parasomnias (confusional arousals, sleep walking, and night terrors), REM parasomnias including REM sleep behavior disorder, and nocturnal seizures if frequently difficult and benefits from careful history taking and video-EEG-polysomnography in selected cases. Differentiating nocturnal seizures from primary sleep disorders is essential for determining appropriate therapy, and recognizing co-existent sleep disorders in patients with epilepsy may improve their seizure burden and quality of life.

  1. Behavioral and Physiological Consequences of Sleep Restriction

    PubMed Central

    Banks, Siobhan; Dinges, David F.

    2007-01-01

    Adequate sleep is essential for general healthy functioning. This paper reviews recent research on the effects of chronic sleep restriction on neurobehavioral and physiological functioning and discusses implications for health and lifestyle. Restricting sleep below an individual's optimal time in bed (TIB) can cause a range of neurobehavioral deficits, including lapses of attention, slowed working memory, reduced cognitive throughput, depressed mood, and perseveration of thought. Neurobehavioral deficits accumulate across days of partial sleep loss to levels equivalent to those found after 1 to 3 nights of total sleep loss. Recent experiments reveal that following days of chronic restriction of sleep duration below 7 hours per night, significant daytime cognitive dysfunction accumulates to levels comparable to that found after severe acute total sleep deprivation. Additionally, individual variability in neurobehavioral responses to sleep restriction appears to be stable, suggesting a traitlike (possibly genetic) differential vulnerability or compensatory changes in the neurobiological systems involved in cognition. A causal role for reduced sleep duration in adverse health outcomes remains unclear, but laboratory studies of healthy adults subjected to sleep restriction have found adverse effects on endocrine functions, metabolic and inflammatory responses, suggesting that sleep restriction produces physiological consequences that may be unhealthy. Citation: Banks S; Dinges DF. Behavioral and physiological consequences of sleep restriction. J Clin Sleep Med 2007;3(5):519-528. PMID:17803017

  2. Effects of aging on sleep structure throughout adulthood: a population-based study.

    PubMed

    Moraes, Walter; Piovezan, Ronaldo; Poyares, Dalva; Bittencourt, Lia Rita; Santos-Silva, Rogerio; Tufik, Sergio

    2014-04-01

    Although many studies have shown the evolution of sleep parameters across the lifespan, not many have included a representative sample of the general population. The objective of this study was to describe age-related changes in sleep structure, sleep respiratory parameters and periodic limb movements of the adult population of São Paulo. We selected a representative sample of the city of São Paulo, Brazil that included both genders and an age range of 20-80 years. Pregnant and lactating women, people with physical or mental impairments that prevent self-care and people who work every night were not included. This sample included 1024 individuals who were submitted to polysomnography and structured interviews. We subdivided our sample into five-year age groups. One-way analysis of variance was used to compare age groups. Pearson product-moment was used to evaluate correlation between age and sleep parameters. Total sleep time, sleep efficiency, percentage of rapid eye movement (REM) sleep and slow wave sleep showed a significant age-related decrease (P<0.05). WASO (night-time spent awake after sleep onset), arousal index, sleep latency, REM sleep latency, and the percentage of stages 1 and 2 showed a significant increase (P<0.05). Furthermore, apnea-hypopnea index increased and oxygen saturation decreased with age. The reduction in the percentage of REM sleep significantly correlated with age in women, whereas the reduction in the percentage of slow wave sleep correlated with age in men. The periodic limb movement (PLM) index increased with age in men and women. Sleep structure and duration underwent significant alterations throughout the aging process in the general population. There was an important correlation between age, sleep respiratory parameters and PLM index. In addition, men and women showed similar trends but with different effect sizes. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. African Genetic Ancestry is Associated with Sleep Depth in Older African Americans

    PubMed Central

    Halder, Indrani; Matthews, Karen A.; Buysse, Daniel J.; Strollo, Patrick J.; Causer, Victoria; Reis, Steven E.; Hall, Martica H.

    2015-01-01

    Study Objectives: The mechanisms that underlie differences in sleep characteristics between European Americans (EA) and African Americans (AA) are not fully known. Although social and psychological processes that differ by race are possible mediators, the substantial heritability of sleep characteristics also suggests genetic underpinnings of race differences. We hypothesized that racial differences in sleep phenotypes would show an association with objectively measured individual genetic ancestry in AAs. Design: Cross sectional. Setting: Community-based study. Participants: Seventy AA adults (mean age 59.5 ± 6.7 y; 62% female) and 101 EAs (mean age 60.5 ± 7 y, 39% female). Measurements and Results: Multivariate tests were used to compare the Pittsburgh Sleep Quality Index (PSQI) and in-home polysomnographic measures of sleep duration, sleep efficiency, apnea-hypopnea index (AHI), and indices of sleep depth including percent visually scored slow wave sleep (SWS) and delta EEG power of EAs and AAs. Sleep duration, efficiency, and sleep depth differed significantly by race. Individual % African ancestry (%AF) was measured in AA subjects using a panel of 1698 ancestry informative genetic markers and ranged from 10% to 88% (mean 67%). Hierarchical linear regression showed that higher %AF was associated with lower percent SWS in AAs (β (standard error) = −4.6 (1.5); P = 0.002), and explained 11% of the variation in SWS after covariate adjustment. A similar association was observed for delta power. No association was observed for sleep duration and efficiency. Conclusion: African genetic ancestry is associated with indices of sleep depth in African Americans. Such an association suggests that part of the racial differences in slow-wave sleep may have genetic underpinnings. Citation: Halder I, Matthews KA, Buysse DJ, Strollo PJ, Causer V, Reis SE, Hall MH. African genetic ancestry is associated with sleep depth in older African Americans. SLEEP 2015;38(8):1185–1193

  4. Sleep disruption in critically ill patients--pharmacological considerations.

    PubMed

    Bourne, R S; Mills, G H

    2004-04-01

    Sleep disturbances are common in critically ill patients and contribute to morbidity. Environmental factors, patient care activities and acute illness are all potential causes of disrupted sleep. Additionally, it is important to consider drug therapy as a contributing factor to this adverse experience, which patients perceive as particularly stressful. Sedative and analgesic combinations used to facilitate mechanical ventilation are among the most sleep disruptive drugs. Cardiovascular, gastric protection, anti-asthma, anti-infective, antidepressant and anticonvulsant drugs have also been reported to cause a variety of sleep disorders. Withdrawal reactions to prescribed and occasionally recreational drugs should also be considered as possible triggers for sleep disruption. Tricyclic antidepressants and benzodiazepines are commonly prescribed in the treatment of sleep disorders, but have problems with decreasing slow wave and rapid eye movement sleep phases. Newer non-benzodiazepine hypnotics offer little practical advantage. Melatonin and atypical antipsychotics require further investigation before their routine use can be recommended.

  5. Sleep Spindles and Intellectual Ability: Epiphenomenon or Directly Related?

    PubMed

    Fang, Zhuo; Sergeeva, Valya; Ray, Laura B; Viczko, Jeremy; Owen, Adrian M; Fogel, Stuart M

    2017-01-01

    Sleep spindles-short, phasic, oscillatory bursts of activity that characterize non-rapid eye movement sleep-are one of the only electrophysiological oscillations identified as a biological marker of human intelligence (e.g., cognitive abilities commonly assessed using intelligence quotient tests). However, spindles are also important for sleep maintenance and are modulated by circadian factors. Thus, the possibility remains that the relationship between spindles and intelligence quotient may be an epiphenomenon of a putative relationship between good quality sleep and cognitive ability or perhaps modulated by circadian factors such as morningness-eveningness tendencies. We sought to ascertain whether spindles are directly or indirectly related to cognitive abilities using mediation analysis. Here, we show that fast (13.5-16 Hz) parietal but not slow (11-13.5 Hz) frontal spindles in both non-rapid eye movement stage 2 sleep and slow wave sleep are directly related to reasoning abilities (i.e., cognitive abilities that support "fluid intelligence," such as the capacity to identify complex patterns and relationships and the use of logic to solve novel problems) but not verbal abilities (i.e., cognitive abilities that support "crystalized intelligence"; accumulated knowledge and experience) or cognitive abilities that support STM (i.e., the capacity to briefly maintain information in an available state). The relationship between fast spindles and reasoning abilities is independent of the indicators of sleep maintenance and circadian chronotype, thus suggesting that spindles are indeed a biological marker of cognitive abilities and can serve as a window to further explore the physiological and biological substrates that give rise to human intelligence.

  6. Slow Bursting Neurons of Mouse Cortical Layer 6b Are Depolarized by Hypocretin/Orexin and Major Transmitters of Arousal

    PubMed Central

    Wenger Combremont, Anne-Laure; Bayer, Laurence; Dupré, Anouk; Mühlethaler, Michel; Serafin, Mauro

    2016-01-01

    Neurons firing spontaneously in bursts in the absence of synaptic transmission have been previously recorded in different layers of cortical brain slices. It has been suggested that such neurons could contribute to the generation of alternating UP and DOWN states, a pattern of activity seen during slow-wave sleep. Here, we show that in layer 6b (L6b), known from our previous studies to contain neurons highly responsive to the wake-promoting transmitter hypocretin/orexin (hcrt/orx), there is a set of neurons, endowed with distinct intrinsic properties, which displayed a strong propensity to fire spontaneously in rhythmic bursts. In response to small depolarizing steps, they responded with a delayed firing of action potentials which, upon higher depolarizing steps, invariably inactivated and were followed by a depolarized plateau potential and a depolarizing afterpotential. These cells also displayed a strong hyperpolarization-activated rectification compatible with the presence of an Ih current. Most L6b neurons with such properties were able to fire spontaneously in bursts. Their bursting activity was of intrinsic origin as it persisted not only in presence of blockers of ionotropic glutamatergic and GABAergic receptors but also in a condition of complete synaptic blockade. However, a small number of these neurons displayed a mix of intrinsic bursting and synaptically driven recurrent UP and DOWN states. Most of the bursting L6b neurons were depolarized and excited by hcrt/orx through a direct postsynaptic mechanism that led to tonic firing and eventually inactivation. Similarly, they were directly excited by noradrenaline, histamine, dopamine, and neurotensin. Finally, the intracellular injection of these cells with dye and their subsequent Neurolucida reconstruction indicated that they were spiny non-pyramidal neurons. These results lead us to suggest that the propensity for slow rhythmic bursting of this set of L6b neurons could be directly impeded by hcrt

  7. Sleep spindles during a nap correlate with post sleep memory performance for highly rewarded word-pairs.

    PubMed

    Studte, Sara; Bridger, Emma; Mecklinger, Axel

    2017-04-01

    The consolidation of new associations is thought to depend in part on physiological processes engaged during non-REM (NREM) sleep, such as slow oscillations and sleep spindles. Moreover, NREM sleep is thought to selectively benefit associations that are adaptive for the future. In line with this, the current study investigated whether different reward cues at encoding are associated with changes in sleep physiology and memory retention. Participants' associative memory was tested after learning a list of arbitrarily paired words both before and after taking a 90-min nap. During learning, word-pairs were preceded by a cue indicating either a high or a low reward for correct memory performance at test. The motivation manipulation successfully impacted retention such that memory declined to a greater extent from pre- to post sleep for low rewarded than for high rewarded word-pairs. In line with previous studies, positive correlations between spindle density during NREM sleep and general memory performance pre- and post-sleep were found. In addition to this, however, a selective positive relationship between memory performance for highly rewarded word-pairs at posttest and spindle density during NREM sleep was also observed. These results support the view that motivationally salient memories are preferentially consolidated and that sleep spindles may be an important underlying mechanism for selective consolidation. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. High Resolution Topography of Age-Related Changes in Non-Rapid Eye Movement Sleep Electroencephalography

    PubMed Central

    Sprecher, Kate E.; Riedner, Brady A.; Smith, Richard F.; Tononi, Giulio; Davidson, Richard J.; Benca, Ruth M.

    2016-01-01

    Sleeping brain activity reflects brain anatomy and physiology. The aim of this study was to use high density (256 channel) electroencephalography (EEG) during sleep to characterize topographic changes in sleep EEG power across normal aging, with high spatial resolution. Sleep was evaluated in 92 healthy adults aged 18–65 years old using full polysomnography and high density EEG. After artifact removal, spectral power density was calculated for standard frequency bands for all channels, averaged across the NREM periods of the first 3 sleep cycles. To quantify topographic changes with age, maps were generated of the Pearson’s coefficient of the correlation between power and age at each electrode. Significant correlations were determined by statistical non-parametric mapping. Absolute slow wave power declined significantly with increasing age across the entire scalp, whereas declines in theta and sigma power were significant only in frontal regions. Power in fast spindle frequencies declined significantly with increasing age frontally, whereas absolute power of slow spindle frequencies showed no significant change with age. When EEG power was normalized across the scalp, a left centro-parietal region showed significantly less age-related decline in power than the rest of the scalp. This partial preservation was particularly significant in the slow wave and sigma bands. The effect of age on sleep EEG varies substantially by region and frequency band. This non-uniformity should inform the design of future investigations of aging and sleep. This study provides normative data on the effect of age on sleep EEG topography, and provides a basis from which to explore the mechanisms of normal aging as well as neurodegenerative disorders for which age is a risk factor. PMID:26901503

  9. Shifting from Implicit to Explicit Knowledge: Different Roles of Early- and Late-Night Sleep

    ERIC Educational Resources Information Center

    Yordanova, Juliana; Kolev, Vasil; Verleger, Rolf; Bataghva, Zhamak; Born, Jan; Wagner, Ullrich

    2008-01-01

    Sleep has been shown to promote the generation of explicit knowledge as indicated by the gain of insight into previously unrecognized task regularities. Here, we explored whether this generation of explicit knowledge depends on pre-sleep implicit knowledge, and specified the differential roles of slow-wave sleep (SWS) vs. rapid eye movement (REM)…

  10. Quantitative EEG of Rapid-Eye-Movement Sleep: A Marker of Amnestic Mild Cognitive Impairment.

    PubMed

    Brayet, Pauline; Petit, Dominique; Frauscher, Birgit; Gagnon, Jean-François; Gosselin, Nadia; Gagnon, Katia; Rouleau, Isabelle; Montplaisir, Jacques

    2016-04-01

    The basal forebrain cholinergic system, which is impaired in early Alzheimer's disease, is more crucial for the activation of rapid-eye-movement (REM) sleep electroencephalogram (EEG) than it is for wakefulness. Quantitative EEG from REM sleep might thus provide an earlier and more accurate marker of the development of Alzheimer's disease in subjects with mild cognitive impairment (MCI) subjects than that from wakefulness. To assess the superiority of the REM sleep EEG as a screening tool for preclinical Alzheimer's disease, 22 subjects with amnestic MCI (a-MCI; 63.9±7.7 years), 10 subjects with nonamnestic MCI (na-MCI; 64.1±4.5 years) and 32 controls (63.7±6.6 years) participated in the study. Spectral analyses of the waking EEG and REM sleep EEG were performed and the [(delta+theta)/(alpha+beta)] ratio was used to assess between-group differences in EEG slowing. The a-MCI subgroup showed EEG slowing in frontal lateral regions compared to both na-MCI and control groups. This EEG slowing was present in wakefulness (compared to controls) but was much more prominent in REM sleep. Moreover, the comparison between amnestic and nonamnestic subjects was found significant only for the REM sleep EEG. There was no difference in EEG power ratio between na-MCI and controls for any of the 7 cortical regions studied. These findings demonstrate the superiority of the REM sleep EEG in the discrimination between a-MCI and both na-MCI and control subjects. © EEG and Clinical Neuroscience Society (ECNS) 2015.

  11. Sex differences in sleep pattern of rats in an experimental model of osteoarthritis.

    PubMed

    Silva, Andressa; Araujo, Paula; Zager, Adriano; Tufik, Sergio; Andersen, Monica Levy

    2011-07-01

    Osteoarthritis (OA) is a major healthcare burden with increasing incidence, and is characterised by the degeneration of articular cartilage. OA is associated with chronic pain and sleep disturbance. The current study examined and compared the long-term effects of chronic articular pain on sleep patterns between female and male rats in an experimental model of OA. Rats were implanted with electrodes for electrocorticography and electromyography and assigned to control, sham or OA groups. OA was induced by the intra-articular administration of (2 mg) monosodium iodoacetate into the left knee joint in male and female rats (at estrus and diestrus phases). Sleep was monitored at days 1, 10, 15, 20 and 28 after iodoacetate injection during light and dark periods. The results showed that the overall sleep architecture changed in both sexes. These alterations occurred during the light and dark periods, began on D1 and persisted until the end of the study. OA rats, regardless of sex, showed a fragmented sleep pattern with reduced sleep efficiency, slow-wave sleep and paradoxical sleep, and fewer paradoxical sleep bouts. However, the males showed lower sleep efficiency and reduced slow-wave sleep compared to females during the dark period. Additionally, OA affected the hormonal levels in male rats, as testosterone levels were reduced in comparison to the control and sham groups. In females, progesterone and estradiol remained unchanged throughout the study. Our results suggest that the chronic model of OA influenced the sleep patterns in both sexes. However, males appeared to be more affected. Copyright © 2010. Published by Elsevier Ltd.

  12. [Cellular mechanism of the generation of spontaneous activity in gastric muscle].

    PubMed

    Nakamura, Eri; Kito, Yoshihiko; Fukuta, Hiroyasu; Yanai, Yoshimasa; Hashitani, Hikaru; Yamamoto, Yoshimichi; Suzuki, Hikaru

    2004-03-01

    In gastric smooth muscles, interstitial cells of Cajal (ICC) might be the pacemaker cells of spontaneous activities since ICC are rich in mitochondria and are connected with smooth muscle cells via gap junctions. Several types of ICC are distributed widely in the stomach wall. A group of ICC distributed in the myenteric layer (ICC-MY) were the pacemaker cells of gastrointestinal smooth muscles. Pacemaker potentials were generated in ICC-MY, and the potentials were conducted to circular smooth muscles to trigger slow waves and also conducted to longitudinal muscles to form follower potentials. In circular muscle preparations, interstitial cells distributed within muscle bundles (ICC-IM) produced unitary potentials, which were conducted to circular muscles to form slow potentials by summation. In mutant mice lacking inositol trisphosphate (IP(3)) receptor, slow waves were absent in gastric smooth muscles. The generation of spontaneous activity was impaired by the inhibition of Ca(2+)-release from internal stores through IP(3) receptors, inhibition of mitochondrial Ca(2+)-handling with proton pump inhibitors, and inhibition of ATP-sensitive K(+)-channels at the mitochondrial inner membrane. These results suggested that mitochondrial Ca(2+)-handling causes the generation of spontaneous activity in pacemaker cells. Possible involvement of protein kinase C (PKC) in the Ca(2+) signaling system was also suggested.

  13. Respiratory Cycle-Related Electroencephalographic Changes during Sleep in Healthy Children and in Children with Sleep Disordered Breathing

    PubMed Central

    Immanuel, Sarah A.; Pamula, Yvonne; Kohler, Mark; Martin, James; Kennedy, Declan; Saint, David A.; Baumert, Mathias

    2014-01-01

    Study Objective: To investigate respiratory cycle-related electroencephalographic changes (RCREC) in healthy children and in children with sleep disordered breathing (SDB) during scored event-free (SEF) breathing periods of sleep. Design: Interventional case-control repeated measurements design. Setting: Paediatric sleep laboratory in a hospital setting. Participants: Forty children with SDB and 40 healthy, age- and sex-matched children. Interventions: Adenotonsillectomy in children with SDB and no intervention in controls. Measurements and Results: Overnight polysomnography; electroencephalography (EEG) power variations within SEF respiratory cycles in the overall and frequency band-specific EEG within stage 2 nonrapid eye movement (NREM) sleep, slow wave sleep (SWS), and rapid eye movement (REM) sleep. Within both groups there was a decrease in EEG power during inspiration compared to expiration across all sleep stages. Compared to controls, RCREC in children with SDB in the overall EEG were significantly higher during REM and frequency band specific RCRECs were higher in the theta band of stage 2 and REM sleep, alpha band of SWS and REM sleep, and sigma band of REM sleep. This between-group difference was not significant postadenotonsillectomy. Conclusion: The presence of nonrandom respiratory cycle-related electroencephalographic changes (RCREC) in both healthy children and in children with sleep disordered breathing (SDB) during NREM and REM sleep has been demonstrated. The RCREC values were higher in children with SDB, predominantly in REM sleep and this difference reduced after adenotonsillectomy. Citation: Immanuel SA, Pamula Y, Kohler M, Martin J, Kennedy D, Saint DA, Baumert M. Respiratory cycle-related electroencephalographic changes during sleep in healthy children and in children with sleep disordered breathing. SLEEP 2014;37(8):1353-1361. PMID:25083016

  14. Network-dependent modulation of brain activity during sleep.

    PubMed

    Watanabe, Takamitsu; Kan, Shigeyuki; Koike, Takahiko; Misaki, Masaya; Konishi, Seiki; Miyauchi, Satoru; Miyahsita, Yasushi; Masuda, Naoki

    2014-09-01

    Brain activity dynamically changes even during sleep. A line of neuroimaging studies has reported changes in functional connectivity and regional activity across different sleep stages such as slow-wave sleep (SWS) and rapid-eye-movement (REM) sleep. However, it remains unclear whether and how the large-scale network activity of human brains changes within a given sleep stage. Here, we investigated modulation of network activity within sleep stages by applying the pairwise maximum entropy model to brain activity obtained by functional magnetic resonance imaging from sleeping healthy subjects. We found that the brain activity of individual brain regions and functional interactions between pairs of regions significantly increased in the default-mode network during SWS and decreased during REM sleep. In contrast, the network activity of the fronto-parietal and sensory-motor networks showed the opposite pattern. Furthermore, in the three networks, the amount of the activity changes throughout REM sleep was negatively correlated with that throughout SWS. The present findings suggest that the brain activity is dynamically modulated even in a sleep stage and that the pattern of modulation depends on the type of the large-scale brain networks. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Sex differences in objective measures of sleep in post-traumatic stress disorder and healthy control subjects.

    PubMed

    Richards, Anne; Metzler, Thomas J; Ruoff, Leslie M; Inslicht, Sabra S; Rao, Madhu; Talbot, Lisa S; Neylan, Thomas C

    2013-12-01

    A growing literature shows prominent sex effects for risk for post-traumatic stress disorder and associated medical comorbid burden. Previous research indicates that post-traumatic stress disorder is associated with reduced slow wave sleep, which may have implications for overall health, and abnormalities in rapid eye movement sleep, which have been implicated in specific post-traumatic stress disorder symptoms, but most research has been conducted in male subjects. We therefore sought to compare objective measures of sleep in male and female post-traumatic stress disorder subjects with age- and sex-matched control subjects. We used a cross-sectional, 2 × 2 design (post-traumatic stress disorder/control × female/male) involving83 medically healthy, non-medicated adults aged 19-39 years in the inpatient sleep laboratory. Visual electroencephalographic analysis demonstrated that post-traumatic stress disorder was associated with lower slow wave sleep duration (F(3,82)  = 7.63, P = 0.007) and slow wave sleep percentage (F(3,82)  = 6.11, P = 0.016). There was also a group × sex interaction effect for rapid eye movement sleep duration (F(3,82)  = 4.08, P = 0.047) and rapid eye movement sleep percentage (F(3,82)  = 4.30, P = 0.041), explained by greater rapid eye movement sleep in post-traumatic stress disorder females compared to control females, a difference not seen in male subjects. Quantitative electroencephalography analysis demonstrated that post-traumatic stress disorder was associated with lower energy in the delta spectrum (F(3,82)  = 6.79, P = 0.011) in non-rapid eye movement sleep. Slow wave sleep and delta findings were more pronounced in males. Removal of post-traumatic stress disorder subjects with comorbid major depressive disorder, who had greater post-traumatic stress disorder severity, strengthened delta effects but reduced rapid eye movement effects to non-significance. These findings support previous evidence that post

  16. About Sleep's Role in Memory

    PubMed Central

    2013-01-01

    Over more than a century of research has established the fact that sleep benefits the retention of memory. In this review we aim to comprehensively cover the field of “sleep and memory” research by providing a historical perspective on concepts and a discussion of more recent key findings. Whereas initial theories posed a passive role for sleep enhancing memories by protecting them from interfering stimuli, current theories highlight an active role for sleep in which memories undergo a process of system consolidation during sleep. Whereas older research concentrated on the role of rapid-eye-movement (REM) sleep, recent work has revealed the importance of slow-wave sleep (SWS) for memory consolidation and also enlightened some of the underlying electrophysiological, neurochemical, and genetic mechanisms, as well as developmental aspects in these processes. Specifically, newer findings characterize sleep as a brain state optimizing memory consolidation, in opposition to the waking brain being optimized for encoding of memories. Consolidation originates from reactivation of recently encoded neuronal memory representations, which occur during SWS and transform respective representations for integration into long-term memory. Ensuing REM sleep may stabilize transformed memories. While elaborated with respect to hippocampus-dependent memories, the concept of an active redistribution of memory representations from networks serving as temporary store into long-term stores might hold also for non-hippocampus-dependent memory, and even for nonneuronal, i.e., immunological memories, giving rise to the idea that the offline consolidation of memory during sleep represents a principle of long-term memory formation established in quite different physiological systems. PMID:23589831

  17. About sleep's role in memory.

    PubMed

    Rasch, Björn; Born, Jan

    2013-04-01

    Over more than a century of research has established the fact that sleep benefits the retention of memory. In this review we aim to comprehensively cover the field of "sleep and memory" research by providing a historical perspective on concepts and a discussion of more recent key findings. Whereas initial theories posed a passive role for sleep enhancing memories by protecting them from interfering stimuli, current theories highlight an active role for sleep in which memories undergo a process of system consolidation during sleep. Whereas older research concentrated on the role of rapid-eye-movement (REM) sleep, recent work has revealed the importance of slow-wave sleep (SWS) for memory consolidation and also enlightened some of the underlying electrophysiological, neurochemical, and genetic mechanisms, as well as developmental aspects in these processes. Specifically, newer findings characterize sleep as a brain state optimizing memory consolidation, in opposition to the waking brain being optimized for encoding of memories. Consolidation originates from reactivation of recently encoded neuronal memory representations, which occur during SWS and transform respective representations for integration into long-term memory. Ensuing REM sleep may stabilize transformed memories. While elaborated with respect to hippocampus-dependent memories, the concept of an active redistribution of memory representations from networks serving as temporary store into long-term stores might hold also for non-hippocampus-dependent memory, and even for nonneuronal, i.e., immunological memories, giving rise to the idea that the offline consolidation of memory during sleep represents a principle of long-term memory formation established in quite different physiological systems.

  18. Methscopolamine Inhibition of Sleep-Related Growth Hormone Secretion

    PubMed Central

    Mendelson, Wallace B.; Sitaram, Natarajan; Wyatt, Richard Jed; Gillin, J. Christian; Jacobs, Laurence S.

    1978-01-01

    We have examined the effects of cholinergic blockade with 0.5 mg methscopolamine bromide, intramuscularly, on sleep-related and insulin-induced growth hormone (GH) secretion. 17 normal young men were studied; 8 had sleep studies, and 12 (including 3 who also had sleep studies) had insulin tolerance tests (ITT) with 0.1 U/kg of regular insulin. After an adjustment night in the sleep laboratory, saline control night and methscopolamine night studies were done in random sequence; study procedures included electroencephalographic, electromyographic, and electrooculographic recordings, and blood sampling every 20 min for hormone radioimmunoassays. Prolactin levels were also measured during sleep. For methscopolamine night studies, the mean overall control GH level of 2.89±0.44 ng/ml and the mean peak control GH level of 11.09±3.11 ng/ml were dramatically reduced to 0.75±0.01 and 1.04±0.25 ng/ml, respectively (P<0.0001 and <0.001). Despite virtual absence of GH secretion during the night in every study subject, no measured sleep characteristic was affected by methscopolamine, including total slow-wave sleep (12.1±2.6% control vs. 10.3±2.5% drug, P>0.2). Sleep prolactin levels were not changed by methscopolamine. In contrast to the abolition of sleep-related GH secretion, administration of methscopolamine had only a marginal effect on the GH response to insulin hypoglycemia. None of nine time points differed significantly, as was also the case with peak levels, mean increments, and areas under the curves (P>0.2). Analysis of variance did, however, indicate that the lower GH concentrations achieved during ITT after methscopolamine (average 31.7% below control) were significantly different than control concentrations. We conclude that the burst of GH secretion which normally occurs after sleep onset is primed by a cholinergic mechanism which does not influence slow-wave sleep. Cholinergic mechanisms do not appear to play an important role in sleep-related prolactin

  19. The effects of sleep on episodic memory in older and younger adults.

    PubMed

    Aly, Mariam; Moscovitch, Morris

    2010-04-01

    Evidence on sleep-dependent benefits for episodic memory remains elusive. Furthermore we know little about age-related changes on the effects of sleep on episodic memory. The study we report is the first to compare the effects of sleep on episodic memories in younger and older adults. Memories of stories and personal events were assessed following a retention interval that included sleep and following an equal duration of wakefulness. Both older and younger adults have superior memory following sleep compared to following wakefulness for both types of material. Amount of forgetting of personal events was less during wakefulness in older adults than in younger adults, possibly due to spontaneous rehearsal. Amount of time spent sleeping correlated highly with sleep benefit in older adults, suggesting that quantity of total sleep, and/or time spent in some stages of sleep, are important contributors to age-related differences in memory consolidation or protection from interference during sleep.

  20. Decision time, slow inhibition, and theta rhythm.

    PubMed

    Smerieri, Anteo; Rolls, Edmund T; Feng, Jianfeng

    2010-10-20

    In this paper, we examine decision making in a spiking neuronal network and show that longer time constants for the inhibitory neurons can decrease the reaction times and produce theta rhythm. We analyze the mechanism and find that the spontaneous firing rate before the decision cues are applied can drift, and thereby influence the speed of the reaction time when the decision cues are applied. The drift of the firing rate in the population that will win the competition is larger if the time constant of the inhibitory interneurons is increased from 10 to 33 ms, and even larger if there are two populations of inhibitory neurons with time constants of 10 and 100 ms. Of considerable interest is that the decision that will be made can be influenced by the noise-influenced drift of the spontaneous firing rate over many seconds before the decision cues are applied. The theta rhythm associated with the longer time constant networks mirrors the greater integration in the firing rate drift produced by the recurrent connections over long time periods in the networks with slow inhibition. The mechanism for the effect of slow waves in the theta and delta range on decision times is suggested to be increased neuronal spiking produced by depolarization of the membrane potential on the positive part of the slow waves when the neuron's membrane potential is close to the firing threshold.

  1. When a gold standard isn't so golden: Lack of prediction of subjective sleep quality from sleep polysomnography.

    PubMed

    Kaplan, Katherine A; Hirshman, Jason; Hernandez, Beatriz; Stefanick, Marcia L; Hoffman, Andrew R; Redline, Susan; Ancoli-Israel, Sonia; Stone, Katie; Friedman, Leah; Zeitzer, Jamie M

    2017-02-01

    Reports of subjective sleep quality are frequently collected in research and clinical practice. It is unclear, however, how well polysomnographic measures of sleep correlate with subjective reports of prior-night sleep quality in elderly men and women. Furthermore, the relative importance of various polysomnographic, demographic and clinical characteristics in predicting subjective sleep quality is not known. We sought to determine the correlates of subjective sleep quality in older adults using more recently developed machine learning algorithms that are suitable for selecting and ranking important variables. Community-dwelling older men (n=1024) and women (n=459), a subset of those participating in the Osteoporotic Fractures in Men study and the Study of Osteoporotic Fractures study, respectively, completed a single night of at-home polysomnographic recording of sleep followed by a set of morning questions concerning the prior night's sleep quality. Questionnaires concerning demographics and psychological characteristics were also collected prior to the overnight recording and entered into multivariable models. Two machine learning algorithms, lasso penalized regression and random forests, determined variable selection and the ordering of variable importance separately for men and women. Thirty-eight sleep, demographic and clinical correlates of sleep quality were considered. Together, these multivariable models explained only 11-17% of the variance in predicting subjective sleep quality. Objective sleep efficiency emerged as the strongest correlate of subjective sleep quality across all models, and across both sexes. Greater total sleep time and sleep stage transitions were also significant objective correlates of subjective sleep quality. The amount of slow wave sleep obtained was not determined to be important. Overall, the commonly obtained measures of polysomnographically-defined sleep contributed little to subjective ratings of prior-night sleep quality

  2. When a gold standard isn't so golden: Lack of prediction of subjective sleep quality from sleep polysomnography

    PubMed Central

    Kaplan, Katherine A.; Hirshman, Jason; Hernandez, Beatriz; Stefanick, Marcia L.; Hoffman, Andrew R.; Redline, Susan; Ancoli-Israel, Sonia; Stone, Katie; Friedman, Leah; Zeitzer, Jamie M.

    2016-01-01

    Background Reports of subjective sleep quality are frequently collected in research and clinical practice. It is unclear, however, how well polysomnographic measures of sleep correlate with subjective reports of prior-night sleep quality in elderly men and women. Furthermore, the relative importance of various polysomnographic, demographic and clinical characteristics in predicting subjective sleep quality is not known. We sought to determine the correlates of subjective sleep quality in in older adults using more recently developed machine learning algorithms that are suitable for selecting and ranking important variables. Methods Community-dwelling older men (n=1024) and women (n=459), a subset of those participating in the Osteoporotic Fractures in Men study and the Study of Osteoporotic Fractures study, respectively, completed a single night of at-home polysomnographic recording of sleep followed by a set of morning questions concerning the prior night's sleep quality. Questionnaires concerning demographics and psychological characteristics were also collected prior to the overnight recording and entered into multivariable models. Two machine learning algorithms, lasso penalized regression and random forests, determined variable selection and the ordering of variable importance separately for men and women. Results Thirty-eight sleep, demographic and clinical correlates of sleep quality were considered. Together, these multivariable models explained only 11-17% of the variance in predicting subjective sleep quality. Objective sleep efficiency emerged as the strongest correlate of subjective sleep quality across all models, and across both sexes. Greater total sleep time and sleep stage transitions were also significant objective correlates of subjective sleep quality. The amount of slow wave sleep obtained was not determined to be important. Conclusions Overall, the commonly obtained measures of polysomnographically-defined sleep contributed little to

  3. Transcranial oscillatory direct current stimulation during sleep improves declarative memory consolidation in children with attention-deficit/hyperactivity disorder to a level comparable to healthy controls.

    PubMed

    Prehn-Kristensen, Alexander; Munz, Manuel; Göder, Robert; Wilhelm, Ines; Korr, Katharina; Vahl, Wiebke; Wiesner, Christian D; Baving, Lioba

    2014-01-01

    Slow oscillations (<1 Hz) during slow wave sleep (SWS) promote the consolidation of declarative memory. Children with attention-deficit/hyperactivity disorder (ADHD) have been shown to display deficits in sleep-dependent consolidation of declarative memory supposedly due to dysfunctional slow brain rhythms during SWS. Using transcranial oscillating direct current stimulation (toDCS) at 0.75 Hz, we investigated whether an externally triggered increase in slow oscillations during early SWS elevates memory performance in children with ADHD. 12 children with ADHD underwent a toDCS and a sham condition in a double-blind crossover study design conducted in a sleep laboratory. Memory was tested using a 2D object-location task. In addition, 12 healthy children performed the same memory task in their home environment. Stimulation enhanced slow oscillation power in children with ADHD and boosted memory performance to the same level as in healthy children. These data indicate that increasing slow oscillation power during sleep by toDCS can alleviate declarative memory deficits in children with ADHD. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Melanin-Concentrating Hormone: A New Sleep Factor?

    PubMed Central

    Torterolo, Pablo; Lagos, Patricia; Monti, Jaime M.

    2011-01-01

    Neurons containing the neuropeptide melanin-concentrating hormone (MCH) are mainly located in the lateral hypothalamus and the incerto-hypothalamic area, and have widespread projections throughout the brain. While the biological functions of this neuropeptide are exerted in humans through two metabotropic receptors, the MCHR1 and MCHR2, only the MCHR1 is present in rodents. Recently, it has been shown that the MCHergic system is involved in the control of sleep. We can summarize the experimental findings as follows: (1) The areas related to the control of sleep and wakefulness have a high density of MCHergic fibers and receptors. (2) MCHergic neurons are active during sleep, especially during rapid eye movement (REM) sleep. (3) MCH knockout mice have less REM sleep, notably under conditions of negative energy balance. Animals with genetically inactivated MCHR1 also exhibit altered vigilance state architecture and sleep homeostasis. (4) Systemically administered MCHR1 antagonists reduce sleep. (5) Intraventricular microinjection of MCH increases both slow wave sleep (SWS) and REM sleep; however, the increment in REM sleep is more pronounced. (6) Microinjection of MCH into the dorsal raphe nucleus increases REM sleep time. REM seep is inhibited by immunoneutralization of MCH within this nucleus. (7) Microinjection of MCH in the nucleus pontis oralis of the cat enhances REM sleep time and reduces REM sleep latency. All these data strongly suggest that MCH has a potent role in the promotion of sleep. Although both SWS and REM sleep are facilitated by MCH, REM sleep seems to be more sensitive to MCH modulation. PMID:21516258

  5. Prolonged exposure to a low-dose of bisphenol A increases spontaneous motor activity in adult male rats.

    PubMed

    Nojima, Kazuo; Takata, Tomoyo; Masuno, Hiroshi

    2013-07-01

    We investigated the effects of bisphenol A (BPA), an environmental endocrine-disrupting chemical, on spontaneous motor activity in adult male rats. The rats were implanted intraperitoneally with mini-osmotic pumps containing either BPA (50 μg/kg body weight per day) in sesame oil (BPA-treated group) or sesame oil only (vehicle-treated group). Spontaneous motor activity during a 24-h period was measured over 5 days from day 9 to day 13 after implantation using an animal movement analysis system. Spontaneous motor activity during the last 2 h of the dark phase and during the first 1-h of the light phase was increased in the BPA-treated group. Total spontaneous motor activity during the 12-h light phase, but not the 12-h dark phase, was higher in the BPA-treated group than in the vehicle-treated group. These findings suggest that BPA may induce hyperactivity in adult male rats during the 12-h light phase, especially during the 2 h immediately preceding sleep-onset and 1 h immediately following sleep-onset.

  6. Sleep disorders associated with primary mitochondrial diseases.

    PubMed

    Ramezani, Ryan J; Stacpoole, Peter W

    2014-11-15

    Primary mitochondrial diseases are caused by heritable or spontaneous mutations in nuclear DNA or mitochondrial DNA. Such pathological mutations are relatively common in humans and may lead to neurological and neuromuscular complication that could compromise normal sleep behavior. To gain insight into the potential impact of primary mitochondrial disease and sleep pathology, we reviewed the relevant English language literature in which abnormal sleep was reported in association with a mitochondrial disease. We examined publication reported in Web of Science and PubMed from February 1976 through January 2014, and identified 54 patients with a proven or suspected primary mitochondrial disorder who were evaluated for sleep disturbances. Both nuclear DNA and mitochondrial DNA mutations were associated with abnormal sleep patterns. Most subjects who underwent polysomnography had central sleep apnea, and only 5 patients had obstructive sleep apnea. Twenty-four patients showed decreased ventilatory drive in response to hypoxia and/ or hyperapnea that was not considered due to weakness of the intrinsic muscles of respiration. Sleep pathology may be an underreported complication of primary mitochondrial diseases. The probable underlying mechanism is cellular energy failure causing both central neurological and peripheral neuromuscular degenerative changes that commonly present as central sleep apnea and poor ventilatory response to hyperapnea. Increased recognition of the genetics and clinical manifestations of mitochondrial diseases by sleep researchers and clinicians is important in the evaluation and treatment of all patients with sleep disturbances. Prospective population-based studies are required to determine the true prevalence of mitochondrial energy failure in subjects with sleep disorders, and conversely, of individuals with primary mitochondrial diseases and sleep pathology. © 2014 American Academy of Sleep Medicine.

  7. Micro-arousals during nocturnal sleep.

    PubMed

    Halász, P; Kundra, O; Rajna, P; Pál, I; Vargha, M

    1979-01-01

    In 8 young adult human subjects EEG- and polygraphic characteristics of transient shifts towards arousal (micro-arousal, MA) have been studied during sleep under five different experimental conditions in 40 night sessions. Out of the five applied experimental situations, two (psychostimulant application and sensory stimulation) resulted in a shift of the balance between the systems of sleep and arousal towards an increased activity of the arousal system, while an other condition (rebound following partial sleep deprivation) led to an opposite change to a rise in "sleep pressure". An inverse correlation has been found between the frequency of MA and the depth of sleep, a finding consistently observed in every subject and in every experimental situation. During the process of sleep periodic changes in the dispersity of MA could be seen; the number of MA-s decreased and increased according to the descending and ascending slope of the sleep cycles. During the ascending slope of cycles there was a coupling between the occurence of MA-s and the changes of phases. Increases in the level of activation and in sleep pressure did not influence the occurrence of MA-s. Increasing the tone of the arousal system in chemical way, or by means of enhancing the phasic sensory input resulted in a reduction of the difference between the number of MA on the descending and ascending slopes of cycles. During the phases of sleep, the spontaneous occurrence of MA-s went parallel with the possibility to evoke MA-s by sensory stimuli. These data show that MA is a regular phenomenon of nocturnal sleep; MA manifests itself as a result of phasic functioning of the reticular arousal system and plays a role in the organization of those periods of the sleep cycle, which tend toward arousal. It is suggested that MA-phenomenon is considered a standard measure of sleep and that it could represent an indicator of the function of the arousal system controlled by external or internal mechanisms during

  8. Human amygdala activation during rapid eye movements of rapid eye movement sleep: an intracranial study.

    PubMed

    Corsi-Cabrera, María; Velasco, Francisco; Del Río-Portilla, Yolanda; Armony, Jorge L; Trejo-Martínez, David; Guevara, Miguel A; Velasco, Ana L

    2016-10-01

    The amygdaloid complex plays a crucial role in processing emotional signals and in the formation of emotional memories. Neuroimaging studies have shown human amygdala activation during rapid eye movement sleep (REM). Stereotactically implanted electrodes for presurgical evaluation in epileptic patients provide a unique opportunity to directly record amygdala activity. The present study analysed amygdala activity associated with REM sleep eye movements on the millisecond scale. We propose that phasic activation associated with rapid eye movements may provide the amygdala with endogenous excitation during REM sleep. Standard polysomnography and stereo-electroencephalograph (SEEG) were recorded simultaneously during spontaneous sleep in the left amygdala of four patients. Time-frequency analysis and absolute power of gamma activity were obtained for 250 ms time windows preceding and following eye movement onset in REM sleep, and in spontaneous waking eye movements in the dark. Absolute power of the 44-48 Hz band increased significantly during the 250 ms time window after REM sleep rapid eye movements onset, but not during waking eye movements. Transient activation of the amygdala provides physiological support for the proposed participation of the amygdala in emotional expression, in the emotional content of dreams and for the reactivation and consolidation of emotional memories during REM sleep, as well as for next-day emotional regulation, and its possible role in the bidirectional interaction between REM sleep and such sleep disorders as nightmares, anxiety and post-traumatic sleep disorder. These results provide unique, direct evidence of increased activation of the human amygdala time-locked to REM sleep rapid eye movements. © 2016 European Sleep Research Society.

  9. Relationship between delta power and the electrocardiogram-derived cardiopulmonary spectrogram: possible implications for assessing the effectiveness of sleep.

    PubMed

    Thomas, Robert Joseph; Mietus, Joseph E; Peng, Chung-Kang; Guo, Dan; Gozal, David; Montgomery-Downs, Hawley; Gottlieb, Daniel J; Wang, Cheng-Yen; Goldberger, Ary L

    2014-01-01

    The physiologic relationship between slow-wave activity (SWA) (0-4 Hz) on the electroencephalogram (EEG) and high-frequency (0.1-0.4 Hz) cardiopulmonary coupling (CPC) derived from electrocardiogram (ECG) sleep spectrograms is not known. Because high-frequency CPC appears to be a biomarker of stable sleep, we tested the hypothesis that that slow-wave EEG power would show a relatively fixed-time relationship to periods of high-frequency CPC. Furthermore, we speculated that this correlation would be independent of conventional nonrapid eye movement (NREM) sleep stages. We analyzed selected datasets from an archived polysomnography (PSG) database, the Sleep Heart Health Study I (SHHS-I). We employed the cross-correlation technique to measure the degree of which 2 signals are correlated as a function of a time lag between them. Correlation analyses between high-frequency CPC and delta power (computed both as absolute and normalized values) from 3150 subjects with an apnea-hypopnea index (AHI) of ≤5 events per hour of sleep were performed. The overall correlation (r) between delta power and high-frequency coupling (HFC) power was 0.40±0.18 (P=.001). Normalized delta power provided improved correlation relative to absolute delta power. Correlations were somewhat reduced in the second half relative to the first half of the night (r=0.45±0.20 vs r=0.34±0.23). Correlations were only affected by age in the eighth decade. There were no sex differences and only small racial or ethnic differences were noted. These results support a tight temporal relationship between slow wave power, both within and outside conventional slow wave sleep periods, and high frequency cardiopulmonary coupling, an ECG-derived biomarker of "stable" sleep. These findings raise mechanistic questions regarding the cross-system integration of neural and cardiopulmonary control during sleep. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Mice Lacking Alternatively Activated (M2) Macrophages Show Impairments in Restorative Sleep after Sleep Loss and in Cold Environment.

    PubMed

    Massie, Ashley; Boland, Erin; Kapás, Levente; Szentirmai, Éva

    2018-06-05

    The relationship between sleep, metabolism and immune functions has been described, but the cellular components of the interaction are incompletely identified. We previously reported that systemic macrophage depletion results in sleep impairment after sleep loss and in cold environment. These findings point to the role of macrophage-derived signals in maintaining normal sleep. Macrophages exist either in resting form, classically activated, pro-inflammatory (M1) or alternatively activated, anti-inflammatory (M2) phenotypes. In the present study we determined the contribution of M2 macrophages to sleep signaling by using IL-4 receptor α-chain-deficient [IL-4Rα knockout (KO)] mice, which are unable to produce M2 macrophages. Sleep deprivation induced robust increases in non-rapid-eye-movement sleep (NREMS) and slow-wave activity in wild-type (WT) animals. NREMS rebound after sleep deprivation was ~50% less in IL-4Rα KO mice. Cold exposure induced reductions in rapid-eye-movement sleep (REMS) and NREMS in both WT and KO mice. These differences were augmented in IL-4Rα KO mice, which lost ~100% more NREMS and ~25% more REMS compared to WTs. Our finding that M2 macrophage-deficient mice have the same sleep phenotype as mice with global macrophage depletion reconfirms the significance of macrophages in sleep regulation and suggests that the main contributors are the alternatively activated M2 cells.

  11. Arousal from sleep mechanisms in infants.

    PubMed

    Franco, Patricia; Kato, Ineko; Richardson, Heidi L; Yang, Joel S C; Montemitro, Enza; Horne, Rosemary S C

    2010-08-01

    Arousals from sleep allow sleep to continue in the face of stimuli that normally elicit responses during wakefulness and also permit awakening. Such an adaptive mechanism implies that any malfunction may have clinical importance. Inadequate control of arousal in infants and children is associated with a variety of sleep-related problems. An excessive propensity to arouse from sleep favors the development of repeated sleep disruptions and insomnia, with impairment of daytime alertness and performance. A lack of an adequate arousal response to a noxious nocturnal stimulus reduces an infant's chances of autoresuscitation, and thus survival, increasing the risk for Sudden Infant Death Syndrome (SIDS). The study of arousability is complicated by many factors including the definition of an arousal; the scoring methodology; the techniques used (spontaneous arousability versus arousal responses to endogenous or exogenous stimuli); and the confounding factors that complicate the determination of arousal thresholds by changing the sleeper's responses to a given stimulus such as prenatal drug, alcohol, or cigarette use. Infant age and previous sleep deprivation also modify thresholds. Other confounding factors include time of night, sleep stages, the sleeper's body position, and sleeping conditions. In this paper, we will review these different aspects for the study of arousals in infants and also report the importance of these studies for the understanding of the pathophysiology of some clinical conditions, particularly SIDS. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Memory traces of long-range coordinated oscillations in the sleeping human brain.

    PubMed

    Piantoni, Giovanni; Van Der Werf, Ysbrand D; Jensen, Ole; Van Someren, Eus J W

    2015-01-01

    Cognition involves coordinated activity across distributed neuronal networks. Neuronal activity during learning triggers cortical plasticity that allows for reorganization of the neuronal network and integration of new information. Animal studies have shown post-learning reactivation of learning-elicited neuronal network activity during subsequent sleep, supporting consolidation of the reorganization. However, no previous studies, to our knowledge, have demonstrated reactivation of specific learning-elicited long-range functional connectivity during sleep in humans. We here show reactivation of learning-induced long-range synchronization of magnetoencephalography power fluctuations in human sleep. Visuomotor learning elicited a specific profile of long-range cortico-cortical synchronization of slow (0.1 Hz) fluctuations in beta band (12-30 Hz) power. The parieto-occipital part of this synchronization profile reappeared in delta band (1-3.5 Hz) power fluctuations during subsequent sleep, but not during the intervening wakefulness period. Individual differences in the reactivated synchronization predicted postsleep performance improvement. The presleep resting-state synchronization profile was not reactivated during sleep. The findings demonstrate reactivation of long-range coordination of neuronal activity in humans, more specifically of reactivation of coupling of infra-slow fluctuations in oscillatory power. The spatiotemporal profile of delta power fluctuations during sleep may subserve memory consolidation by echoing coordinated activation elicited by prior learning. © 2014 Wiley Periodicals, Inc.

  13. Survey of the human acetylator polymorphism in spontaneous disorders.

    PubMed Central

    Evans, D A

    1984-01-01

    There is ample evidence that the human acetylator phenotypes are associated with drug induced phenomena. It is principally the slow acetylators who exhibit toxic adverse effects because of their relative inability to detoxify the original drug compounds. In rare instances, however, it is the rapid acetylators who are at a disadvantage. In the matter of association of spontaneous disease with either acetylator phenotype, there are two groups of disorders to consider. First, disorders in which carcinogenic amines are known to be an aetiological factor. This is because these amines are substrates for the polymorphic N-acetyltransferase activity and hence there is a possible rational basis for searching for an association. Secondly, other disorders where searches for associations are based more on hunches. In the first group there is a definite statistical association between cancer of the bladder and the slow acetylator phenotype. In prevalence studies the slow phenotype is 39% more associated with bladder cancer than is the rapid phenotype. On the basis of the evidence now available it is not possible to say whether this association is because slow acetylators develop the disease more frequently or whether they survive longer. In the second group the relevant studies show (1) a greatly increased prevalence of slow acetylators in Gilbert's disease; (2) a confirmed association between the rapid acetylator phenotype and diabetes; (3) a possible association between the rapid acetylator phenotype and breast cancer; (4) a possible association between the slow acetylator phenotype and leprosy in Chinese patients; (5) an earlier age of onset of thyrotoxicosis (Graves' disease) in slow acetylators than in rapid acetylators; (6) no evidence of an association between either phenotype and spontaneous systemic lupus erythematosus. PMID:6387123

  14. Childhood socioeconomic status and race are associated with adult sleep.

    PubMed

    Tomfohr, Lianne M; Ancoli-Israel, Sonia; Dimsdale, Joel E

    2010-01-01

    Race and current socioeconomic status (SES) are associated with sleep. Parental education, a commonly studied component of childhood SES, is predictive of adult health outcomes; yet, its impact on adult sleep remains unclear. In this study, the sleep of 128 Black and White adults was investigated. Participants with lower childhood SES (assessed via parental education) spent more time in Stage 2 sleep and less time in slow-wave sleep (SWS) than those with higher childhood SES. In addition, women from low childhood SES backgrounds took longer to fall asleep than women from high SES backgrounds. Black participants spent less time in SWS than their White counterparts, and an Age × Race interaction was detected in the prediction of subjective sleep quality. Results were not mediated via current SES or health practices.

  15. Flight crew sleep during multiple layover polar flights.

    PubMed

    Sasaki, M; Kurosaki, Y S; Spinweber, C L; Graeber, R C; Takahashi, T

    1993-07-01

    This study investigated changes in sleep after multiple transmeridian flights. The subjects were 12 B747 airline pilots operating on the following polar flight: Tokyo (TYO)-Anchorage (ANC)-London (LON)-Anchorage-Tokyo. Sleep polysomnograms were recorded on two baseline nights (B1, B2), during layovers, and, after returning to Tokyo, two recovery nights were recorded (R1, R2). In ANC (outbound), total sleep time (TST) was reduced and, sleep efficiency was low (72.0%). In London, time in bed (TIB) increased slightly, but sleep efficiency was still reduced. On return to ANC (inbound), there was considerable slow wave sleep (SWS) rebound and multiple awakenings reduced sleep efficiency to 76.8%. Sleep efficiency on R2 was significantly lower than on B1 (t-test, p < 0.05) but not different from R1. To sum up, sleep of aircrews flying multiple transmeridian flights is disrupted during layovers and this effect persists during the two recovery nights. As a result, there is a marked cumulative sleep loss during multi-legs polar route trip in comparison to single leg flights. These findings suggest that following such extensive transmeridian trips, crews should have at least three nights of recovery sleep in their home time zone before returning to duty.

  16. Characterizing sleeping habits and disturbances among Saudi adults.

    PubMed

    Al-Tannir, Mohamad; Kobrosly, Samer Y; Al-Badr, Ahmad H; Salloum, Nourhan A; Altannir, Youssef M

    2016-12-01

    To characterize sleeping habits, assess sleep disturbance prevalence, and identify associated factors among Saudi adults.  Methods: A total of 1720 adults were approached for this observational cross-sectional study between October 2014 and March 2015. The study took place in Riyadh, the capital of Saudi Arabia. We used a questionnaire to describe sleeping characteristics in relation to existing chronic diseases, smoking status, obesity, daily performance and sociodemographic variables. Results: The response rate was 79.6% (1369 participants), 61.6% have or may have sleeping disturbances of which 18.6% claimed either slowed or stopped breathing during sleep. Women reported a higher prevalence of sleep disturbances (65.2%). Feeling tired was significantly associated with sleep disturbance (49% versus 19.7%) (p greater than 0.001). Approximately 78.4% of those with sleep disturbance significantly believed that their ability to perform daily tasks is affected (p=0.005). Moreover, smoking and obesity were significantly associated with sleep disturbances (p less than 0.01). Participants with asthma, hypertension, chronic heart disease, and diabetes mellitus reported significantly more sleeping disturbance (p=0.016 to p=0.001). Conclusions: Sleep disturbances are associated with obesity, smoking, chronic health conditions, and lower performance among  Saudi adults.

  17. Flight crew sleep during multiple layover polar flights

    NASA Technical Reports Server (NTRS)

    Sasaki, Mitsuo; Kurosaki, Yuko S.; Spinweber, Cheryl L.; Graeber, R. C.; Takahashi, Toshiharu

    1993-01-01

    This study investigated changes in sleep after multiple transmeridian flights. The subjects were 12 B747 airline pilots operating on the following polar flight: Tokyo (TYO)-Anchorage (ANC)-London (LON)-Anchorage-Tokyo. Sleep polysmonograms were recorded on two baseline nights (B1, B2), during layovers, and, after returning to Tokyo, two recovery nights were recorded (R1, R2). In ANC (outbound), total sleep time was reduced and, sleep efficiency was low (72.0 percent). In London, time in bed increased slightly, but sleep efficiency was still reduced. On return to ANC (inbound), there was considerable slow wave sleep rebound and multiple awakenings reduced sleep efficiency to 76.8 percent. Sleep efficiency on R2 was significantly lower than on B1 but not different from R1. To sum up, sleep of aircrews flying multiple transmeridian flights is disrupted during layovers and this effect persists during the two recovery nights. As a result, there is a marked cumulative sleep loss during multilegs polar route trip in comparison to single leg flights. These findings suggest that following such extensive transmeridian trips, crews should have at least three nights of recovery sleep in their home time zone before returning to duty.

  18. Autonomic consequences of arousal from sleep: mechanisms and implications.

    PubMed

    Horner, R L

    1996-12-01

    Normal spontaneous arousals from sleep are associated with transient increases in blood pressure, heart rate, and ventilation caused by large transient changes in autonomic output. These autonomic changes are out of proportion to obvious physiological need and are in excess of those observed in later periods of quiet wakefulness. This paper discusses some of the mechanisms underlying the cardio-respiratory consequences of arousal from sleep, and discusses why the normal onset of wakefulness may be associated with such large changes in autonomic output.

  19. Low Activity Microstates During Sleep.

    PubMed

    Miyawaki, Hiroyuki; Billeh, Yazan N; Diba, Kamran

    2017-06-01

    To better understand the distinct activity patterns of the brain during sleep, we observed and investigated periods of diminished oscillatory and population spiking activity lasting for seconds during non-rapid eye movement (non-REM) sleep, which we call "LOW" activity sleep. We analyzed spiking and local field potential (LFP) activity of hippocampal CA1 region alongside neocortical electroencephalogram (EEG) and electromyogram (EMG) in 19 sessions from four male Long-Evans rats (260-360 g) during natural wake/sleep across the 24-hr cycle as well as data from other brain regions obtained from http://crcns.org.1,2. LOW states lasted longer than OFF/DOWN states and were distinguished by a subset of "LOW-active" cells. LOW activity sleep was preceded and followed by increased sharp-wave ripple activity. We also observed decreased slow-wave activity and sleep spindles in the hippocampal LFP and neocortical EEG upon LOW onset, with a partial rebound immediately after LOW. LOW states demonstrated activity patterns consistent with sleep but frequently transitioned into microarousals and showed EMG and LFP differences from small-amplitude irregular activity during quiet waking. Their likelihood decreased within individual non-REM epochs yet increased over the course of sleep. By analyzing data from the entorhinal cortex of rats,1 as well as the hippocampus, the medial prefrontal cortex, the postsubiculum, and the anterior thalamus of mice,2 obtained from http://crcns.org, we confirmed that LOW states corresponded to markedly diminished activity simultaneously in all of these regions. We propose that LOW states are an important microstate within non-REM sleep that provide respite from high-activity sleep and may serve a restorative function. © Sleep Research Society 2017. Published by Oxford University Press [on behalf of the Sleep Research Society].

  20. Cognitive Neuroscience of Sleep

    PubMed Central

    Poe, Gina R.; Walsh, Christine M.; Bjorness, Theresa E.

    2014-01-01

    Mechanism is at the heart of understanding, and this chapter addresses underlying brain mechanisms and pathways of cognition and the impact of sleep on these processes, especially those serving learning and memory. This chapter reviews the current understanding of the relationship between sleep/waking states and cognition from the perspective afforded by basic neurophysiological investigations. The extensive overlap between sleep mechanisms and the neurophysiology of learning and memory processes provide a foundation for theories of a functional link between the sleep and learning systems. Each of the sleep states, with its attendant alterations in neurophysiology, is associated with facilitation of important functional learning and memory processes. For rapid eye movement (REM) sleep, salient features such as PGO waves, theta synchrony, increased acetylcholine, reduced levels of monoamines and, within the neuron, increased transcription of plasticity-related genes, cumulatively allow for freely occurring bidirectional plasticity (long-term potentiation (LTP) and its reversal, depotentiation). Thus, REM sleep provides a novel neural environment in which the synaptic remodeling essential to learning and cognition can occur, at least within the hippocampal complex. During nonREM sleep Stage 2 spindles, the cessation and subsequent strong bursting of noradrenergic cells and coincident reactivation of hippocampal and cortical targets would also increase synaptic plasticity, allowing targeted bidirectional plasticity in the neocortex as well. In delta nonREM sleep, orderly neuronal reactivation events in phase with slow wave delta activity, together with high protein synthesis levels, would facilitate the events that convert early LTP to long lasting LTP. Conversely, delta sleep does not activate immediate early genes associated with de novo LTP. This nonREM sleep-unique genetic environment combined with low acetylcholine levels may serve to reduce the strength of

  1. Interhemispheric differences of the correlation dimension in a human sleep electroencephalogram.

    PubMed

    Kobayashi, Toshio; Madokoro, Shigeki; Misaki, Kiwamu; Murayama, Jyunichi; Nakagawa, Hiroki; Wada, Yuji

    2002-06-01

    The interhemispheric differences of the correlation dimension (D2) in the sleep electroencephalogram (EEG) of eight healthy right-handed students was investigated. During slow wave sleep (SWS) the D2 of the central EEG and the temporal left hemisphere (LH) EEG were significantly higher than those in the right hemisphere (RH) EEG; but during rapid eye movement (REM) sleep, the D2 of the central EEG and the occipital RH EEG were significantly higher. The D2 of EEG in the left temporal site during REM sleep were significantly higher than in the right during the first and third sleep cycles, but these were significantly lower during the fourth and fifth sleep cycles. During REM sleep, temporal brain activity may shift from the LH to the RH as morning approaches.

  2. Memory consolidation in human sleep depends on inhibition of glucocorticoid release.

    PubMed

    Plihal, W; Born, J

    1999-09-09

    Early sleep dominated by slow-wave sleep has been found to be particularly relevant for declarative memory formation via hippocampo-neocortical networks. Concurrently, early nocturnal sleep is characterized by an inhibition of glucocorticoid release from the adrenals. Here, we show in healthy humans that this inhibition serves to support declarative memory consolidation during sleep. Elevating plasma glucocorticoid concentration during early sleep by administration of cortisol impaired consolidation of paired associate words, but not of non-declarative memory of visuomotor skills. Since glucocorticoid concentration was enhanced only during retention sleep, but not during acquisition or retrieval, a specific effect on the consolidation process is indicated. Blocking mineralocorticoid receptors by canrenoate did not affect memory, suggesting inactivation of glucocorticoid receptors to be the essential prerequisite for memory consolidation during early sleep.

  3. The beneficial role of memory reactivation for language learning during sleep: A review.

    PubMed

    Schreiner, Thomas; Rasch, Björn

    2017-04-01

    Sleep is essential for diverse aspects of language learning. According to a prominent concept these beneficial effects of sleep rely on spontaneous reactivation processes. A series of recent studies demonstrated that inducing such reactivation processes by re-exposure to memory cues during sleep enhances foreign vocabulary learning. Building upon these findings, the present article reviews recent models and empirical findings concerning the beneficial effects of sleep on language learning. Consequently, the memory function of sleep, its neural underpinnings and the role of the sleeping brain in language learning will be summarized. Finally, we will propose a working model concerning the oscillatory requirements for successful reactivation processes and future research questions to advance our understanding of the role of sleep on language learning and memory processes in general. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Aircraft noise: effects on macro- and microstructure of sleep.

    PubMed

    Basner, Mathias; Glatz, Christian; Griefahn, Barbara; Penzel, Thomas; Samel, Alexander

    2008-05-01

    The effects of aircraft noise on sleep macrostructure (Rechtschaffen and Kales) and microstructure (American Sleep Disorders Association [ASDA] arousal criteria) were investigated. For each of 10 subjects (mean age 35.3 years, 5 males), a baseline night without aircraft noise (control), and two nights with exposure to 64 noise events with a maximum sound pressure level (SPL) of either 45 or 65 dBA were chosen. Spontaneous and noise-induced alterations during sleep classified as arousals (ARS), changes to lighter sleep stages (CSS), awakenings including changes to sleep stage 1 (AS1), and awakenings (AWR) were analyzed. The number of events per night increased in the order AWR, AS1, CSS, and ARS under control conditions as well as under the two noise conditions. Furthermore, probabilities for sleep disruptions increased with increasing noise level. ARS were observed about fourfold compared to AWR, irrespective of control or noise condition. Under the conditions investigated, different sleep parameters show different sensitivities, but also different specificities for noise-induced sleep disturbances. We conclude that most information on sleep disturbances can be achieved by investigating robust classic parameters like AWR or AS1, although ASDA electroencephalographic (EEG) arousals might add relevant information in situations with low maximum SPLs, chronic sleep deprivation or chronic exposure.

  5. Sleep underpins the plasticity of language production.

    PubMed

    Gaskell, M Gareth; Warker, Jill; Lindsay, Shane; Frost, Rebecca; Guest, James; Snowdon, Reza; Stackhouse, Abigail

    2014-07-01

    The constraints that govern acceptable phoneme combinations in speech perception and production have considerable plasticity. We addressed whether sleep influences the acquisition of new constraints and their integration into the speech-production system. Participants repeated sequences of syllables in which two phonemes were artificially restricted to syllable onset or syllable coda, depending on the vowel in that sequence. After 48 sequences, participants either had a 90-min nap or remained awake. Participants then repeated 96 sequences so implicit constraint learning could be examined, and then were tested for constraint generalization in a forced-choice task. The sleep group, but not the wake group, produced speech errors at test that were consistent with restrictions on the placement of phonemes in training. Furthermore, only the sleep group generalized their learning to new materials. Polysomnography data showed that implicit constraint learning was associated with slow-wave sleep. These results show that sleep facilitates the integration of new linguistic knowledge with existing production constraints. These data have relevance for systems-consolidation models of sleep. © The Author(s) 2014.

  6. Differential effects of non-REM and REM sleep on memory consolidation?

    PubMed

    Ackermann, Sandra; Rasch, Björn

    2014-02-01

    Sleep benefits memory consolidation. Previous theoretical accounts have proposed a differential role of slow-wave sleep (SWS), rapid-eye-movement (REM) sleep, and stage N2 sleep for different types of memories. For example the dual process hypothesis proposes that SWS is beneficial for declarative memories, whereas REM sleep is important for consolidation of non-declarative, procedural and emotional memories. In fact, numerous recent studies do provide further support for the crucial role of SWS (or non-REM sleep) in declarative memory consolidation. However, recent evidence for the benefit of REM sleep for non-declarative memories is rather scarce. In contrast, several recent studies have related consolidation of procedural memories (and some also emotional memories) to SWS (or non-REM sleep)-dependent consolidation processes. We will review this recent evidence, and propose future research questions to advance our understanding of the role of different sleep stages for memory consolidation.

  7. [Non-linear research of alertness levels under sleep deprivation].

    PubMed

    Xue, Ranting; Zhou, Peng; Gao, Xiang; Dong, Xinming; Wang, Xiaolu; Ming, Dong; Qi, Hongzhi; Wang, Xuemin

    2014-06-01

    We applied Lempel-Ziv complexity (LZC) combined with brain electrical activity mapping (BEAM) to study the change of alertness under sleep deprivation in our research. Ten subjects were involved in 36 hours sleep deprivation (SD), during which spontaneous electroencephalogram (EEG) experiments and auditory evoked EEG experiments-Oddball were recorded once every 6 hours. Spontaneous and evoked EEG data were calculated and BEAMs were structured. Results showed that during the 36 hours of SD, alertness could be divided into three stages, i. e. the first 12 hours as the high stage, the middle 12 hours as the rapid decline stage and the last 12 hours as the low stage. During the period SD, LZC of Spontaneous EEG decreased over the whole brain to some extent, but remained consistent with the subjective scales. By BEAMs of event related potential, LZC on frontal cortex decreased, but kept consistent with the behavioral responses. Therefore, LZC can be effective to reflect the change of brain alertness. At the same time LZC could be used as a practical index to monitor real-time alertness because of its simple computation and fast calculation.

  8. Insufficient sleep in adolescents: causes and consequences.

    PubMed

    Owens, Judith A; Weiss, Miriam R

    2017-08-01

    Insufficient sleep poses an important and complicated set of health risks in the adolescent population. Not only is deficient sleep (defined as both sleep duration inadequate to meet sleep needs and sleep timing misaligned with the body's circadian rhythms) at epidemic levels in this population, but the contributing factors are both complex and numerous and there are a myriad of negative physical and mental health, safety and performance consequences. Causes of inadequate sleep identified in this population include internal biological processes such as the normal shift (delay) in circadian rhythm that occurs in association with puberty and a developmentally-based slowing of the "sleep drive", and external factors including extracurricular activities, excessive homework load, evening use of electronic media, caffeine intake and early school start times. Consequences range from inattentiveness, reduction in executive functioning and poor academic performance to increased risk of obesity and cardio-metabolic dysfunction, mood disturbances which include increased suicidal ideation, a higher risk of engaging in health risk behaviors such as alcohol and substance use, and increased rates of car crashes, occupational injuries and sports-related injuries. In response to these concerns, a number of promising measures have been proposed to reduce the burden of adolescent sleep loss, including healthy sleep education for students and families, and later school start times to allow adolescents to obtain sufficient and appropriately-timed sleep.

  9. How smoking affects sleep: a polysomnographical analysis.

    PubMed

    Jaehne, Andreas; Unbehaun, Thomas; Feige, Bernd; Lutz, Ulrich C; Batra, Anil; Riemann, Dieter

    2012-12-01

    Subjective quality of sleep is impaired in smokers compared with non-smokers, but there is only limited evidence from methodologically sound studies about differences in polysomnography (PSG) sleep characteristics. Therefore, this study used PSG to evaluate sleep in smokers and non-smokers while controlling for other parameters that affect sleep. After an adaptation night, PSG sleep laboratory data were obtained from 44 smokers (29 men and 15 women, median age 29.6 years) and compared with PSG data from 44 healthy, sex- and age-matched never smokers. Exclusion criteria were alcohol or other substance abuse, psychiatric or endocrine diseases, and treatment with any kind of psychotropic medication. Nicotine and cotinine plasma levels were measured (in the smoking group) and subjective sleep quality assessed in both groups. The smokers had a Fagerström tolerance score of 6.4, consumed an average of 21.2 cigarettes per day and had been smoking for 13.1 years (median). Smokers had a shorter sleep period time, longer sleep latency, higher rapid eye movement sleep density, more sleep apneas and leg movements in sleep than non-smokers. There were no differences regarding parameters of spectral analysis of the sleep electroencephalogram as well as in the sleep efficiency measured by PSG. Nevertheless smokers rated their sleep efficiency lower on the Pittsburgh Sleep Quality Index compared with non-smoking individuals, but no differences were detected on the SF-A. Plasma cotinine level correlated negatively with slow wave sleep in the smoking group. Smokers showed a number of insomnia-like sleep impairments. The findings suggest that it is important for sleep researchers to control smoking status in their analyses. Further research should focus on the causes and consequences of impaired sleep during tobacco cessation, as sleep disturbances are a known risk factor for early relapse after initial tobacco abstinence. Copyright © 2012. Published by Elsevier B.V.

  10. Sleep during an Antarctic summer expedition: new light on "polar insomnia".

    PubMed

    Pattyn, Nathalie; Mairesse, Olivier; Cortoos, Aisha; Marcoen, Nele; Neyt, Xavier; Meeusen, Romain

    2017-04-01

    Sleep complaints are consistently cited as the most prominent health and well-being problem in Arctic and Antarctic expeditions, without clear evidence to identify the causal mechanisms. The present investigation aimed at studying sleep and determining circadian regulation and mood during a 4-mo Antarctic summer expedition. All data collection was performed during the continuous illumination of the Antarctic summer. After an habituation night and acclimatization to the environment (3 wk), ambulatory polysomnography (PSG) was performed in 21 healthy male subjects, free of medication. An 18-h profile (saliva sampling every 2 h) of cortisol and melatonin was assessed. Mood, sleepiness, and subjective sleep quality were assessed, and the psychomotor vigilance task was administered. PSG showed, in addition to high sleep fragmentation, a major decrease in slow-wave sleep (SWS) and an increase in stage R sleep. Furthermore, the ultradian rhythmicity of sleep was altered, with SWS occurring mainly at the end of the night and stage R sleep at the beginning. Cortisol secretion profiles were normal; melatonin secretion, however, showed a severe phase delay. There were no mood alterations according to the Profile of Mood States scores, but the psychomotor vigilance test showed an impaired vigilance performance. These results confirm previous reports on "polar insomnia", the decrease in SWS, and present novel insight, the disturbed ultradian sleep structure. A hypothesis is formulated linking the prolonged SWS latency to the phase delay in melatonin. NEW & NOTEWORTHY The present paper presents a rare body of work on sleep and sleep wake regulation in the extreme environment of an Antarctic expedition, documenting the effects of constant illumination on sleep, mood, and chronobiology. For applied research, these results suggest the potential efficiency of melatonin supplementation in similar deployments. For fundamental research, these results warrant further investigation of

  11. Sleep stage dynamics in neocortex and hippocampus.

    PubMed

    Durán, Ernesto; Oyanedel, Carlos N; Niethard, Niels; Inostroza, Marion; Born, Jan

    2018-06-01

    Mammalian sleep comprises the stages of slow-wave sleep (SWS) and rapid eye movement (REM) sleep. Additionally, a transition state is often discriminated which in rodents is termed intermediate stage (IS). Although these sleep stages are thought of as unitary phenomena affecting the whole brain in a congruent fashion, recent findings have suggested that sleep stages can also appear locally restricted to specific networks and regions. Here, we compared in rats sleep stages and their transitions between neocortex and hippocampus. We simultaneously recorded the electroencephalogram (EEG) from skull electrodes over frontal and parietal cortex and the local field potential (LFP) from the medial prefrontal cortex and dorsal hippocampus. Results indicate a high congruence in the occurrence of sleep and SWS (>96.5%) at the different recording sites. Congruence was lower for REM sleep (>87%) and lowest for IS (<36.5%). Incongruences occurring at sleep stage transitions were most pronounced for REM sleep which in 36.6 per cent of all epochs started earlier in hippocampal LFP recordings than in the other recordings, with an average interval of 17.2 ± 1.1 s between REM onset in the hippocampal LFP and the parietal EEG (p < 0.001). Earlier REM onset in the hippocampus was paralleled by a decrease in muscle tone, another hallmark of REM sleep. These findings indicate a region-specific regulation of REM sleep which has clear implications not only for our understanding of the organization of sleep, but possibly also for the functions, e.g. in memory formation, that have been associated with REM sleep.

  12. Effect of short-term acclimatization to high altitude on sleep and nocturnal breathing.

    PubMed

    Nussbaumer-Ochsner, Yvonne; Ursprung, Justyna; Siebenmann, Christoph; Maggiorini, Marco; Bloch, Konrad E

    2012-03-01

    Objective physiologic data on sleep and nocturnal breathing at initial exposure and during acclimatization to high altitude are scant. We tested the hypothesis that acute exposure to high altitude induces quantitative and qualitative changes in sleep and that these changes are partially reversed with acclimatization. Prospective observation. One night in a sleep laboratory at 490 meters, the first and the third night in a mountain hut at 4559 meters. Sixteen healthy mountaineers. Altitude exposure. Polysomnography, questionnaire evaluation of sleep and acute mountain sickness. Compared to 490 m, median nocturnal oxygen saturation decreased during the 1st night at 4559 m from 96% to 67%, minute ventilation increased from 4.4 to 6.3 L/min, and the apnea-hypopnea index increased from 0.1 to 60.9/h; correspondingly, sleep efficiency decreased from 93% to 69%, and slow wave sleep from 18% to 6% (P < 0.05, all instances). During the 3rd night at 4559 m, oxygen saturation was 71%, slow wave sleep 11% (P < 0.05 vs. 1st night, both instances) and the apnea/hypopnea index was 86.5/h (P = NS vs. 1st night). Symptoms of AMS and of disturbed sleep were significantly reduced in the morning after the 3rd vs. the 1st night at 4559 m. In healthy mountaineers ascending rapidly to high altitude, sleep quality is initially impaired but improves with acclimatization in association with improved oxygen saturation, while periodic breathing persists. Therefore, high altitude sleep disturbances seem to be related predominantly to hypoxemia rather than to periodic breathing.

  13. Effects of an alkaloid-rich extract from Mitragyna speciosa leaves and fluoxetine on sleep profiles, EEG spectral frequency and ethanol withdrawal symptoms in rats.

    PubMed

    Cheaha, Dania; Keawpradub, Niwat; Sawangjaroen, Kitja; Phukpattaranont, Pimpimol; Kumarnsit, Ekkasit

    2015-10-15

    Many antidepressants are effective in alleviating ethanol withdrawal symptoms. However, most of them suppress rapid eye movement (REM) sleep. Thus, development of antidepressants without undesirable side effects would be preferable. Previously, crude alkaloid extract from Mitragyna speciosa (MS) Korth was found to produce antidepressant activities. It was hypothesized that the alkaloid extract from MS may attenuate ethanol withdrawal without REM sleep disturbance. Adult male Wistar rats implanted with electrodes over the frontal and parietal cortices were used for two separated studies. For an acute study, 10 mg/kg fluoxetine or 60 mg/kg alkaloid extract from MS were administered intragastrically. Electroencephalographic (EEG) signals were recorded for 3 h to examine sleep profiles and EEG fingerprints. Another set of animal was used for an ethanol withdrawal study. They were rendered dependent on ethanol via a modified liquid diet (MLD) containing ethanol ad libitum for 28 days. On day 29, fluoxetine (10 mg/kg) or alkaloid extract from MS (60 mg/kg) were administered 15 min before the ethanol-containing MLD was replaced with an isocaloric ethanol-free MLD to induced ethanol withdrawal symptoms. The sleep analysis revealed that alkaloid extract from MS did not change any REM parameters which included average duration of each REM episode, total REM time, number of REM episode and REM latency whereas fluoxetine significantly suppressed all REM parameters and delayed REM latency. However, power spectral analysis revealed similar fingerprints for fluoxetine and alkaloid extract from MS characterized by decreasing powers in the slow frequency range in frontal and parietal cortical EEG. Neither treatment affected spontaneous motor activity. Finally, both alkaloid extract from MS and fluoxetine were found to significantly attenuate ethanol withdrawal-induced hyperexcitability (increases gamma activity) in both cortices and to reduce locomotor activity. The present study

  14. Time Alignment as a Necessary Step in the Analysis of Sleep Probabilistic Curves

    NASA Astrophysics Data System (ADS)

    Rošt'áková, Zuzana; Rosipal, Roman

    2018-02-01

    Sleep can be characterised as a dynamic process that has a finite set of sleep stages during the night. The standard Rechtschaffen and Kales sleep model produces discrete representation of sleep and does not take into account its dynamic structure. In contrast, the continuous sleep representation provided by the probabilistic sleep model accounts for the dynamics of the sleep process. However, analysis of the sleep probabilistic curves is problematic when time misalignment is present. In this study, we highlight the necessity of curve synchronisation before further analysis. Original and in time aligned sleep probabilistic curves were transformed into a finite dimensional vector space, and their ability to predict subjects' age or daily measures is evaluated. We conclude that curve alignment significantly improves the prediction of the daily measures, especially in the case of the S2-related sleep states or slow wave sleep.

  15. [Erectile dysfunction and obstructive sleep apnea syndrome].

    PubMed

    Zhuravlev, V N; Frank, M A; Gomzhin, A I

    2008-01-01

    Of 72 patients with obstructive sleep apnea syndrome (OSAS) 32 had erectile dysfunction (ED). OSAS patients with erectile dysfunction had hypogonadism in 24 cases, in 8 men testosterone level was normal. A polysomnographic investigation with monitoring of nocturnal spontaneous erections showed that 32 patients had severe sleep fragmentation with reduced or complete absence of REM and deep sleep phases. In nocturnal penile tumescencia quantitative and qualitative characteristics were abnormal suggesting organic nature of erectile dysfunction in these patients. Eight ED and OSAS patients with normal testosterone received standard OSAS therapy with administration of FDE-5 type inhibitors. Six months later improvement of the erectile function was observed in 6 patients. OSAS patients with hypogonadism were divided into 2 groups. Group 1 (n = 5) received CPAP therapy and group 2 (n = 19) received OSAS standard therapy. Group 2 was treated with inhibitors of FDE-5 type. Three months later improvement of erectile function was seen only in 8. Group 1 received the inhibitors and testosterone replacement. Three months later all 5 patients had no ED complaints, their testosterone was normal. It is recommended to perform monitoring of nocturnal spontaneous erections in the algorithm of examination of all men with OSAS. All patients with OSAS, ED and documented hypogonadism need testosterone replacement therapy if its level persists low despite adequate therapy of OSAS.

  16. The up and down of sleep: From molecules to electrophysiology.

    PubMed

    Navarro-Lobato, Irene; Genzel, Lisa

    2018-03-12

    Alternations of up and down can be seen across many different levels during sleep. Neural firing-rates, synaptic markers, molecular pathways, and gene expression all show differential up and down regulation across brain areas and sleep stages. And also the hallmarks of sleep - sleep stage specific oscillations - are characterized themselves by up and down as seen within the slow oscillation or theta cycles. In this review, we summarize the up and down of sleep covering molecules to electrophysiology and present different theories how this up and down could be regulated by the up and down of sleep oscillations. Further, we propose a tentative theory how this differential up and down could contribute to various outcomes of sleep related memory consolidation: enhancement of hippocampal representations of very novel memories and cortical consolidation of memories congruent with previous knowledge-networks. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Upper Airway Collapsibility During REM Sleep in Children with the Obstructive Sleep Apnea Syndrome

    PubMed Central

    Huang, Jingtao; Karamessinis, Laurie R.; Pepe, Michelle E.; Glinka, Stephen M.; Samuel, John M.; Gallagher, Paul R.; Marcus, Carole L.

    2009-01-01

    Study Objectives: In children, most obstructive events occur during rapid eye movement (REM) sleep. We hypothesized that children with the obstructive sleep apnea syndrome (OSAS), in contrast to age-matched control subjects, would not maintain airflow in the face of an upper airway inspiratory pressure drop during REM sleep. Design: During slow wave sleep (SWS) and REM sleep, we measured airflow, inspiratory time, inspiratory time/total respiratory cycle time, respiratory rate, tidal volume, and minute ventilation at a holding pressure at which flow limitation occurred and at 5 cm H2O below the holding pressure in children with OSAS and in control subjects. Setting: Sleep laboratory. Participants: Fourteen children with OSAS and 23 normal control subjects. Results: In both sleep states, control subjects were able to maintain airflow, whereas subjects with OSAS preserved airflow in SWS but had a significant decrease in airflow during REM sleep (change in airflow of 18.58 ± 12.41 mL/s for control subjects vs −44.33 ± 14.09 mL/s for children with OSAS, P = 0.002). Although tidal volume decreased, patients with OSAS were able to maintain minute ventilation by increasing the respiratory rate and also had an increase in inspiratory time and inspiratory time per total respiratory cycle time Conclusion: Children with OSAS do not maintain airflow in the face of upper-airway inspiratory-pressure drops during REM sleep, indicating a more collapsible upper airway, compared with that of control subjects during REM sleep. However, compensatory mechanisms exist to maintain minute ventilation. Local reflexes, central control mechanisms, or both reflexes and control mechanisms need to be further explored to better understand the pathophysiology of this abnormality and the compensation mechanism. Citation: Huang J; Karamessinis LR; Pepe ME; Glinka SM; Samuel JM; Gallagher PR; Marcus CL. Upper airway collapsibility during REM sleep in children with the obstructive sleep apnea

  18. Effects of imatinib mesylate on the spontaneous activity generated by the guinea-pig prostate.

    PubMed

    Lam, Michelle; Dey, Anupa; Lang, Richard J; Exintaris, Betty

    2013-08-01

    What's known on the subject? and what does the study add?: Several studies have examined the functional role of tyrosine kinase receptors in the generation of spontaneous activity in various segments of the gastrointestinal and urogenital tracts through the application of its inhibitor, imatinib mesylate (Glivec®), but results are fairly inconsistent. This is the first study detailing the effects of imatinib mesylate on the spontaneous activity in the young and ageing prostate gland. As spontaneous electrical activity underlies the spontaneous rhythmic prostatic contractions that occur at rest, elucidating the mechanisms involved in the regulation of the spontaneous electrical activity and the resultant phasic contractions could conceivably lead to the identification of better targets and the development of more specific therapeutic agents to treat prostate conditions. To investigate the effect of imatinib mesylate, a tyrosine kinase receptor inhibitor, in the generation of spontaneous electrical and contractile activity in the young and ageing guinea-pig prostate. Standard tension and intracellular recording were used to measure spontaneous contractions and slow waves, respectively from the guinea-pig prostate at varying concentrations of imatinib mesylate (1-50 μm). Imatinib mesylate (1-10 μm), did not significantly affect slow waves recorded in the prostate of both age groups but at 50 μm, the amplitude of slow waves from the ageing guinea-pig prostate was significantly reduced (P < 0.05, n = 5). In contrast, the amplitude of contractions across all concentrations in the young guinea-pig prostate was reduced to between 35% and 41% of control, while the frequency was reduced to 15.7% at 1 μm (n = 7), 49.8% at 5 μm (n = 10), 46.2% at 10 μm (n = 7) and 53.1% at 50 μm (n = 5). Similarly, imatinib mesylate attenuated the amplitude and slowed the frequency of contractions in ageing guinea-pigs to 5.15% and 3.3% at 1 μm (n = 6); 21.1% and 20.8% at 5 μm (n = 8

  19. Changes in Processing of Masked Stimuli across Early- and Late-Night Sleep: A Study on Behavior and Brain Potentials

    ERIC Educational Resources Information Center

    Verleger, Rolf; Schuknecht, Simon-Vitus; Jaskowski, Piotr; Wagner, Ullrich

    2008-01-01

    Sleep has proven to support the memory consolidation in many tasks including learning of perceptual skills. Explicit, conscious types of memory have been demonstrated to benefit particularly from slow-wave sleep (SWS), implicit, non-conscious types particularly from rapid eye movement (REM) sleep. By comparing the effects of early-night sleep,…

  20. Sleep intensity and the evolution of human cognition.

    PubMed

    Samson, David R; Nunn, Charles L

    2015-01-01

    Over the past four decades, scientists have made substantial progress in understanding the evolution of sleep patterns across the Tree of Life. Remarkably, the specifics of sleep along the human lineage have been slow to emerge. This is surprising, given our unique mental and behavioral capacity and the importance of sleep for individual cognitive performance. One view is that our species' sleep architecture is in accord with patterns documented in other mammals. We promote an alternative view, that human sleep is highly derived relative to that of other primates. Based on new and existing evidence, we specifically propose that humans are more efficient in their sleep patterns than are other primates, and that human sleep is shorter, deeper, and exhibits a higher proportion of REM than expected. Thus, we propose the sleep intensity hypothesis: Early humans experienced selective pressure to fulfill sleep needs in the shortest time possible. Several factors likely served as selective pressures for more efficient sleep, including increased predation risk in terrestrial environments, threats from intergroup conflict, and benefits arising from increased social interaction. Less sleep would enable longer active periods in which to acquire and transmit new skills and knowledge, while deeper sleep may be critical for the consolidation of those skills, leading to enhanced cognitive abilities in early humans. © 2015 Wiley Periodicals, Inc.

  1. Prospective memory and aging: evidence for preserved spontaneous retrieval with exact but not related cues.

    PubMed

    Mullet, Hillary G; Scullin, Michael K; Hess, Theodore J; Scullin, Rachel B; Arnold, Kathleen M; Einstein, Gilles O

    2013-12-01

    We examined whether normal aging spares or compromises cue-driven spontaneous retrieval processes that support prospective remembering. In Experiment 1, young and older adults performed prospective-memory tasks that required either strategic monitoring processes for retrieval (nonfocal) or for which participants relied on spontaneous retrieval processes (focal). We found age differences for nonfocal, but not focal, prospective-memory performance. Experiments 2 and 3 used an intention-interference paradigm in which participants were asked to perform a prospective-memory task (e.g., press "Q" when the word money appears) in the context of an image-rating task and were then told to suspend their prospective-memory intention until after completing an intervening lexical-decision task. During the lexical-decision task, we presented the exact prospective-memory cue (e.g., money; Experiments 2 and 3) or a semantically related lure (e.g., wallet; Experiment 3), and we inferred spontaneous retrieval from slowed lexical-decision responses to these items relative to matched control items. Young and older adults showed significant slowing when the exact prospective-memory cue was presented. Only young adults, however, showed significant slowing to the semantically related lure items. Collectively, these results partially support the multiprocess theory prediction that aging spares spontaneous retrieval processes. Spontaneous retrieval processes may become less sensitive with aging, such that older adults are less likely to respond to cues that do not exactly match their encoded targets. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  2. Biasing the content of hippocampal replay during sleep

    PubMed Central

    Bendor, Daniel; Wilson, Matthew A.

    2013-01-01

    The hippocampus plays an essential role in encoding self-experienced events into memory. During sleep, neural activity in the hippocampus related to a recent experience has been observed to spontaneously reoccur, and this “replay” has been postulated to be important for memory consolidation. Task-related cues can enhance memory consolidation when presented during a post-training sleep session, and if memories are consolidated by hippocampal replay, a specific enhancement for this replay should also be observed. To test this, we have trained rats on an auditory-spatial association task, while recording from neuronal ensembles in the hippocampus. Here we report that during sleep, a task-related auditory cue biases reactivation events towards replaying the spatial memory associated with that cue. These results indicate that sleep replay can be manipulated by external stimulation, and provide further evidence for the role of hippocampal replay in memory consolidation. PMID:22941111

  3. Context odor presentation during sleep enhances memory in honeybees.

    PubMed

    Zwaka, Hanna; Bartels, Ruth; Gora, Jacob; Franck, Vivien; Culo, Ana; Götsch, Moritz; Menzel, Randolf

    2015-11-02

    Sleep plays an important role in stabilizing new memory traces after learning [1-3]. Here we investigate whether sleep's role in memory processing is similar in evolutionarily distant species and demonstrate that a context trigger during deep-sleep phases improves memory in invertebrates, as it does in humans. We show that in honeybees (Apis mellifera), exposure to an odor during deep sleep that has been present during learning improves memory performance the following day. Presentation of the context odor during wake phases or novel odors during sleep does not enhance memory. In humans, memory consolidation can be triggered by presentation of a context odor during slow-wave sleep that had been present during learning [3-5]. Our results reveal that deep-sleep phases in honeybees have the potential to prompt memory consolidation, just as they do in humans. This study provides strong evidence for a conserved role of sleep-and how it affects memory processes-from insects to mammals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Factors involved in sleep satisfaction in the elderly.

    PubMed

    Zilli, Iole; Ficca, Gianluca; Salzarulo, Piero

    2009-02-01

    In healthy aged subjects, subjective complaints of poor sleep are not as frequent as one would expect from the notable objective age-related sleep impairments. This discrepancy could depend on the sleep characteristics they require to feel satisfied about their sleep, which could be different from younger subjects. In order to verify this hypothesis, our study aims to identify changes in sleep satisfaction predictors as a function of age. Sleep features, both quantitative (sleep latency, sleep duration, frequency and duration of night-time awakenings) and qualitative (calmness of sleep, ease of falling asleep, satisfaction with sleep, ease of awakening, freshness after awakening and sufficient sleep), as well as afternoon nap habits were investigated throughout a pre-arranged interview in healthy individuals: 117 elderly subjects (47 men, 70 women, 65-99 years) and 120 young adults (48 men, 72 women, 19-28 years). Quantitative sleep features worsen with age, whereas qualitative ones are equivalent or even improved in the aged group; only "calmness of sleep" decreases with age. Afternoon nap habits increase in elderly subjects, but they do not appear to be linked to sleep satisfaction. Predictors of sleep satisfaction differ between age groups: freshness after awakening but not frequency of night-time awakenings were relevant for elderly subjects, whereas the opposite was observed in young adults. These findings point out that sleep satisfaction is preserved in healthy elderly individuals despite the worsening of quantitative night-time sleep features, reflected by the increase of afternoon naps. This discrepancy could be explained by changes in sleep satisfaction determinants, towards which a spontaneous adaptive adjustment is likely to occur in aged subjects. In contrast with young adults, elderly subjects heed the freshness perceived after the awakening and pay little attention to frequent night-time awakenings.

  5. The relevance of sleep abnormalities to chronic inflammatory conditions.

    PubMed

    Ranjbaran, Z; Keefer, L; Stepanski, E; Farhadi, A; Keshavarzian, A

    2007-02-01

    Sleep is vital to health and quality of life while sleep abnormalities are associated with adverse health consequences. Nevertheless, sleep problems are not generally considered by clinicians in the management of chronic inflammatory conditions (CIC) such as asthma, RA, SLE and IBD. To determine whether this practice is justified, we reviewed the literature on sleep and chronic inflammatory diseases, including effects of sleep on immune system and inflammation. We found that a change in the sleep-wake cycle is often one of the first responses to acute inflammation and infection and that the reciprocal effect of sleep on the immune system in acute states is often protective and restorative. For example, slow wave sleep can attenuate proinflammatory immune responses while sleep deprivation can aggravate those responses. The role of sleep in CIC is not well explored. We found a substantial body of published evidence that sleep disturbances can worsen the course of CIC, aggravate disease symptoms such as pain and fatigue, and increase disease activity and lower quality of life. The mechanism underlying these effects probably involves dysregulation of the immune system. All this suggests that managing sleep disturbances should be considered as an important factor in the overall management of CIC.

  6. Asynchronous ripple oscillations between left and right hippocampi during slow-wave sleep

    PubMed Central

    Villalobos, Claudio

    2017-01-01

    Spatial memory, among many other brain processes, shows hemispheric lateralization. Most of the published evidence suggests that the right hippocampus plays a leading role in the manipulation of spatial information. Concurrently in the hippocampus, memory consolidation during sleep periods is one of the key steps in the formation of newly acquired spatial memory traces. One of the most characteristic oscillatory patterns in the hippocampus are sharp-wave ripple (SWR) complexes. Within this complex, fast-field oscillations or ripples have been demonstrated to be instrumental in the memory consolidation process. Since these ripples are relevant for the consolidation of memory traces associated with spatial navigation, and this process appears to be lateralized, we hypothesize that ripple events between both hippocampi would exhibit different temporal dynamics. We tested this idea by using a modified "split-hyperdrive" that allows us to record simultaneous LFPs from both right and left hippocampi of Sprague-Dawley rats during sleep. We detected individual events and found that during sleep periods these ripples exhibited a different occurrence patterns between hemispheres. Most ripple events were synchronous between intra- rather than inter-hemispherical recordings, suggesting that ripples in the hippocampus are independently generated and locally propagated within a specific hemisphere. In this study, we propose the ripples’ lack of synchrony between left and right hippocampi as the putative physiological mechanism underlying lateralization of spatial memory. PMID:28158285

  7. Asynchronous ripple oscillations between left and right hippocampi during slow-wave sleep.

    PubMed

    Villalobos, Claudio; Maldonado, Pedro E; Valdés, José L

    2017-01-01

    Spatial memory, among many other brain processes, shows hemispheric lateralization. Most of the published evidence suggests that the right hippocampus plays a leading role in the manipulation of spatial information. Concurrently in the hippocampus, memory consolidation during sleep periods is one of the key steps in the formation of newly acquired spatial memory traces. One of the most characteristic oscillatory patterns in the hippocampus are sharp-wave ripple (SWR) complexes. Within this complex, fast-field oscillations or ripples have been demonstrated to be instrumental in the memory consolidation process. Since these ripples are relevant for the consolidation of memory traces associated with spatial navigation, and this process appears to be lateralized, we hypothesize that ripple events between both hippocampi would exhibit different temporal dynamics. We tested this idea by using a modified "split-hyperdrive" that allows us to record simultaneous LFPs from both right and left hippocampi of Sprague-Dawley rats during sleep. We detected individual events and found that during sleep periods these ripples exhibited a different occurrence patterns between hemispheres. Most ripple events were synchronous between intra- rather than inter-hemispherical recordings, suggesting that ripples in the hippocampus are independently generated and locally propagated within a specific hemisphere. In this study, we propose the ripples' lack of synchrony between left and right hippocampi as the putative physiological mechanism underlying lateralization of spatial memory.

  8. Lactate in the brain of the freely moving rat: voltammetric monitoring of the changes related to the sleep-wake states.

    PubMed

    Shram, Nataliya; Netchiporouk, Larissa; Cespuglio, Raymond

    2002-08-01

    Cortical lactate was monitored voltammetrically in freely moving rats equipped with polygraphic electrodes. Differential normal pulse voltammetric measurements were carried out using a lactate biosensor coated with lactate oxidase and cellulose acetate. Changes occurring in lactate level were in keeping with sleep-wake states. During slow wave sleep (SWS), the lactate level decreased significantly (-16.2%) vs. the spontaneous waking state (W) referenced to as 100%. During paradoxical sleep (PS), and still vs. W, it remained low (-9.0%) but this variation was not statistically significant. However, when this PS change was compared to the SWS variation, a significant increase in lactate level was then revealed (+8.5%). Finally, during the active waking (aW) triggered by a water puff stress, lactate level rose significantly in accordance with the animal activity (+53% compared to W). Long-term monitoring also allowed the determination of a circadian component in lactate production, the lowest and highest values being monitored during light and dark periods, respectively. The acrophasis of the circadian change occurred during the dark period, about 3 h after the light-off (+89%). It is suggested that during wakefulness astrocyte metabolism allows the transformation of the blood-borne glucose into lactate. The increase in this substrate observed during PS may fulfil the oxidative phosphorylation in order to supply the important ATP need of PS.

  9. Electroencephalographic findings related with mild cognitive impairment in idiopathic rapid eye movement sleep behavior disorder.

    PubMed

    Sasai, Taeko; Matsuura, Masato; Inoue, Yuichi

    2013-12-01

    Mild cognitive impairment (MCI) and electroencephalographic (EEG) slowing have been reported as common findings of idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) and α-synucleinopathies. The objective of this study is to clarify the relation between MCI and physiological markers in iRBD. Cross-sectional study. Yoyogi Sleep Disorder Center. Thirty-one patients with iRBD including 17 younger patients with iRBD (younger than 70 y) and 17 control patients for the younger patients with iRBD. N/A. Montreal Cognitive Assessment (MoCA) and n-polysomnogram (PSG) were conducted of all participants. In patients with iRBD, the factors associated with MCI were explored among parameters of REM sleep without atonia (RWA), score of Sniffin' Sticks Test (threshold-discrimination-identification [TDI] score), RBD morbidity, and RBD severity evaluated with the Japanese version of the RBD questionnaire (RBDQ-JP). The younger iRBD group showed significantly lower alpha power during wake and lower MoCA score than the age-matched control group. MCI was detected in 13 of 17 patients (76.5%) on MoCA in this group. Among patients wtih iRBD, the MoCA score negatively correlated with age, proportion of slow wave sleep, TDI score, and EEG spectral power. Multiple regression analysis provided the following equation: MoCA score = 50.871-0.116*age -5.307*log (δ power during REM sleep) + 0.086*TDI score (R² = 0.598, P < 0.01). The standardized partial regression coefficients were -0.558 for age, -0.491 for log (δ power during REM sleep), and 0.357 for TDI score (F = 9.900, P < 0.001). Electroencephalographic slowing, especially during rapid eye movement sleep and olfactory dysfunction, was revealed to be associated with cognitive decline in idiopathic rapid eye movement sleep behavior disorder.

  10. Monitoring sleep depth: analysis of bispectral index (BIS) based on polysomnographic recordings and sleep deprivation.

    PubMed

    Giménez, Sandra; Romero, Sergio; Alonso, Joan Francesc; Mañanas, Miguel Ángel; Pujol, Anna; Baxarias, Pilar; Antonijoan, Rosa Maria

    2017-02-01

    The assessment and management of sleep are increasingly recommended in the clinical practice. Polysomnography (PSG) is considered the gold standard test to monitor sleep objectively, but some practical and technical constraints exist due to environmental and patient considerations. Bispectral index (BIS) monitoring is commonly used in clinical practice for guiding anesthetic administration and provides an index based on relationships between EEG components. Due to similarities in EEG synchronization between anesthesia and sleep, several studies have assessed BIS as a sleep monitor with contradictory results. The aim of this study was to evaluate objectively both the feasibility and reliability of BIS for sleep monitoring through a robust methodology, which included full PSG recordings at a baseline situation and after 40 h of sleep deprivation. Results confirmed that the BIS index was highly correlated with the hypnogram (0.89 ± 0.02), showing a progressive decrease as sleep deepened, and an increase during REM sleep (awake: 91.77 ± 8.42; stage N1: 83.95 ± 11.05; stage N2: 71.71 ± 11.99; stage N3: 42.41 ± 9.14; REM: 80.11 ± 8.73). Mean and median BIS values were lower in the post-deprivation night than in the baseline night, showing statistical differences for the slow wave sleep (baseline: 42.41 ± 9.14 vs. post-deprivation: 39.49 ± 10.27; p = 0.02). BIS scores were able to discriminate properly between deep (N3) and light (N1, N2) sleep. BIS values during REM overlapped those of other sleep stages, although EMG activity provided by the BIS monitor could help to identify REM sleep if needed. In conclusion, BIS monitors could provide a useful measure of sleep depth in especially particular situations such as intensive care units, and they could be used as an alternative for sleep monitoring in order to reduce PSG-derived costs and to increase capacity in ambulatory care.

  11. Restricting Time in Bed in Early Adolescence Reduces Both NREM and REM Sleep but Does Not Increase Slow Wave EEG.

    PubMed

    Campbell, Ian G; Kraus, Amanda M; Burright, Christopher S; Feinberg, Irwin

    2016-09-01

    School night total sleep time decreases across adolescence (9-18 years) by 10 min/year. This decline is comprised entirely of a selective decrease in NREM sleep; REM sleep actually increases slightly. Decreasing sleep duration across adolescence is often attributed to insufficient time in bed. Here we tested whether sleep restriction in early adolescence produces the same sleep stage changes observed on school nights across adolescence. All-night sleep EEG was recorded in 76 children ranging in age from 9.9 to 14.0 years. Each participant kept 3 different sleep schedules that consisted of 3 nights of 8.5 h in bed followed by 4 nights of either 7, 8.5, or 10 h in bed. Sleep stage durations and NREM delta EEG activity were compared across the 3 time in bed conditions. Shortening time in bed from 10 to 7 hours reduced sleep duration by approximately 2 hours, roughly equal to the decrease in sleep duration we recorded longitudinally across adolescence. However, sleep restriction significantly reduced both NREM (by 83 min) and REM (by 47 min) sleep. Sleep restriction did not affect NREM delta EEG activity. Our findings suggest that the selective NREM reduction and the small increase in REM we observed longitudinally across 9-18 years are not produced by sleep restriction. We hypothesize that the selective NREM decline reflects adolescent brain maturation (synaptic elimination) that reduces the need for the restorative processes of NREM sleep. © 2016 Associated Professional Sleep Societies, LLC.

  12. Experienced Mindfulness Meditators Exhibit Higher Parietal-Occipital EEG Gamma Activity during NREM Sleep

    PubMed Central

    Ferrarelli, Fabio; Smith, Richard; Dentico, Daniela; Riedner, Brady A.; Zennig, Corinna; Benca, Ruth M.; Lutz, Antoine; Davidson, Richard J.; Tononi, Giulio

    2013-01-01

    Over the past several years meditation practice has gained increasing attention as a non-pharmacological intervention to provide health related benefits, from promoting general wellness to alleviating the symptoms of a variety of medical conditions. However, the effects of meditation training on brain activity still need to be fully characterized. Sleep provides a unique approach to explore the meditation-related plastic changes in brain function. In this study we performed sleep high-density electroencephalographic (hdEEG) recordings in long-term meditators (LTM) of Buddhist meditation practices (approximately 8700 mean hours of life practice) and meditation naive individuals. We found that LTM had increased parietal-occipital EEG gamma power during NREM sleep. This increase was specific for the gamma range (25–40 Hz), was not related to the level of spontaneous arousal during NREM and was positively correlated with the length of lifetime daily meditation practice. Altogether, these findings indicate that meditation practice produces measurable changes in spontaneous brain activity, and suggest that EEG gamma activity during sleep represents a sensitive measure of the long-lasting, plastic effects of meditative training on brain function. PMID:24015304

  13. Normal sleep on mechanical ventilation in adult patients with congenital central alveolar hypoventilation (Ondine's curse syndrome).

    PubMed

    Attali, Valérie; Straus, Christian; Pottier, Michel; Buzare, Marie-Annick; Morélot-Panzini, Capucine; Arnulf, Isabelle; Similowski, Thomas

    2017-01-23

    The purpose of this study was to describe the sleep structure (especially slow wave sleep) in adults with congenital central hypoventilation syndrome (CCHS), a rare genetic disease due to mutations in the PHOX2B gene. Fourteen patients aged 23 (19.0; 24.8) years old (median [1 rst -3rd quartiles]) with CCHS underwent a sleep interview and night-time attended polysomnography with their ventilatory support. Their sleep variables were compared to those collected in 15 healthy control subjects matched for age, sex and body mass index. The latency to N3 sleep was shorter in patients (26.3 min [24.0; 30.1]) than in controls (49.5 min [34.3; 66.9]; P = 0.005), and sleep onset latency tended to be shorter in patients (14.0 min [7.0; 20.5]) than in controls (33.0 min [18.0; 49.0]; P = 0.052). Total sleep time, sleep stage percentages, sleep fragmentation as well as respiratory and movement index were within normal ranges and not different between groups. Normal sleep in adult patients with CCHS and adequate ventilator support indicates that the PHOX2 gene mutations do not affect brain sleep networks. Consequently, any complaint of disrupted sleep should prompt clinicians to look for the usual causes of sleep disorders, primarily inadequate mechanical ventilation. Shorter N3 latency may indicate a higher need for slow wave sleep, to compensate for the abnormal respiratory-related cortical activity during awake quiet breathing observed in patients with CCH.

  14. Muramyl Peptide-Enhanced Sleep: Pharmacological Optimization of Performance.

    DTIC Science & Technology

    1987-06-01

    cycle of 12 h:12 h was maintained, light from 0600 to 1800 h. Food and water were available ad libitum. At the top of the chamber, a BRS/LVE electrical...and temperture in cat. Sleep Res. 16: 150, 1987. 108. Swanson, J. Studies on gonococcus infection. xii. Colony color and opacity variants of...Methods) received infusion. The major effectof increasing Ta to 27°C was to increase duration of slow wave sleep during the entire 6-hour recording

  15. Intraindividual Increase of Homeostatic Sleep Pressure Across Acute and Chronic Sleep Loss: A High-Density EEG Study.

    PubMed

    Maric, Angelina; Lustenberger, Caroline; Werth, Esther; Baumann, Christian R; Poryazova, Rositsa; Huber, Reto

    2017-09-01

    To compare intraindividually the effects of acute sleep deprivation (ASD) and chronic sleep restriction (CSR) on the homeostatic increase in slow wave activity (SWA) and to relate it to impairments in basic cognitive functioning, that is, vigilance. The increase in SWA after ASD (40 hours of wakefulness) and after CSR (seven nights with time in bed restricted to 5 hours per night) relative to baseline sleep was assessed in nine healthy, male participants (age = 18-26 years) by high-density electroencephalography. The SWA increase during the initial part of sleep was compared between the two conditions of sleep loss. The increase in SWA was related to the increase in lapses of vigilance in the psychomotor vigilance task (PVT) during the preceding days. While ASD induced a stronger increase in initial SWA than CSR, the increase was globally correlated across the two conditions in most electrodes. The increase in initial SWA was positively associated with the increase in PVT lapses. The individual homeostatic response in SWA is globally preserved across acute and chronic sleep loss, that is, individuals showing a larger increase after ASD also do so after CSR and vice versa. Furthermore, the increase in SWA is globally correlated to vigilance impairments after sleep loss over both conditions. Thus, the increase in SWA might therefore provide a physiological marker for individual differences in performance impairments after sleep loss. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  16. Endogenous neuropeptide S tone influences sleep-wake rhythm in rats.

    PubMed

    Oishi, Masafumi; Kushikata, Tetsuya; Niwa, Hidetomo; Yakoshi, Chihiro; Ogasawara, Chihiro; Calo, Girolamo; Guerrini, Remo; Hirota, Kazuyoshi

    2014-10-03

    Neuropeptide S (NPS) is an endogenous peptide that exerts wakefulness promoting, analgesic, and anxiolytic effects when administered exogenously. However, it remains to be determined if endogenous NPS tone is involved in the control of the diurnal sleep-wake cycle, or spontanous behavior. In this study, we examined the effects of the NPS receptor antagonist [D-Cys((t)Bu)(5)]NPS (2 and 20 nmol, icv) on physiological sleep and spontaneous locomotor behavior. The higher dose of [D-Cys((t)Bu)(5)]NPS decreased the amount of time spent in wakefulness [control 782.5 ± 25.5 min, treatment 751.7 ± 28.1 min; p<0.05] and increased the time spent in NREMS [control 572.6 ± 17.2 min, treatment 600.2 ± 26.1 min; p<0.05]. There was no statistically significant difference in time spent in REMS. There were no behavioral changes including abnormal gross motor behavior in response to [D-Cys((t)Bu)(5)]NPS administration. Collectively these data suggest an involvement of the endogenous NPS/NPS receptor system in physiological sleep architecture. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Effect of Short-Term Acclimatization to High Altitude on Sleep and Nocturnal Breathing

    PubMed Central

    Nussbaumer-Ochsner, Yvonne; Ursprung, Justyna; Siebenmann, Christoph; Maggiorini, Marco; Bloch, Konrad E.

    2012-01-01

    Study Objective: Objective physiologic data on sleep and nocturnal breathing at initial exposure and during acclimatization to high altitude are scant. We tested the hypothesis that acute exposure to high altitude induces quantitative and qualitative changes in sleep and that these changes are partially reversed with acclimatization. Design: Prospective observation. Setting: One night in a sleep laboratory at 490 meters, the first and the third night in a mountain hut at 4559 meters. Participants: Sixteen healthy mountaineers. Intervention: Altitude exposure. Measurements: Polysomnography, questionnaire evaluation of sleep and acute mountain sickness. Results: Compared to 490 m, median nocturnal oxygen saturation decreased during the 1st night at 4559 m from 96% to 67%, minute ventilation increased from 4.4 to 6.3 L/min, and the apnea-hypopnea index increased from 0.1 to 60.9/h; correspondingly, sleep efficiency decreased from 93% to 69%, and slow wave sleep from 18% to 6% (P < 0.05, all instances). During the 3rd night at 4559 m, oxygen saturation was 71%, slow wave sleep 11% (P < 0.05 vs. 1st night, both instances) and the apnea/hypopnea index was 86.5/h (P = NS vs. 1st night). Symptoms of AMS and of disturbed sleep were significantly reduced in the morning after the 3rd vs. the 1st night at 4559 m. Conclusions: In healthy mountaineers ascending rapidly to high altitude, sleep quality is initially impaired but improves with acclimatization in association with improved oxygen saturation, while periodic breathing persists. Therefore, high altitude sleep disturbances seem to be related predominantly to hypoxemia rather than to periodic breathing. Citation: Nussbaumer-Ochsner Y; Ursprung J; Siebenmann C; Maggiorini M; Bloch KE. Effect of short-term acclimatization to high altitude on sleep and nocturnal breathing. SLEEP 2012;35(3):419-423. PMID:22379248

  18. Polysomnographic diagnosis of sleepwalking: effects of sleep deprivation.

    PubMed

    Zadra, Antonio; Pilon, Mathieu; Montplaisir, Jacques

    2008-04-01

    Somnambulism affects up to 4% of adults and constitutes one of the leading causes of sleep-related violence and self-injury. Diagnosing somnambulism with objective instruments is often difficult because episodes rarely occur in the laboratory. Because sleep deprivation can precipitate sleepwalking, we aimed to determine the effects of 25 hours of sleep deprivation on the frequency and complexity of somnambulistic episodes recorded in the laboratory. Thirty consecutive sleepwalkers were evaluated prospectively by video-polysomnography for one baseline night and during recovery sleep after 25 hours of sleep deprivation. Ten sleepwalkers with a concomitant sleep disturbance were investigated with the same protocol. Sleepwalkers experienced a significant increase in the mean frequency of somnambulistic episodes during postdeprivation recovery sleep. Postsleep deprivation also resulted in a significantly greater proportion of patients experiencing more complex forms of somnambulism. Sleep deprivation was similarly effective in 9 of the 10 patients presenting with a comorbid sleep disturbance. Combining data from all 40 patients shows that whereas 32 episodes were recorded from 20 sleepwalkers (50%) at baseline, recovery sleep resulted in 92 episodes being recorded from 36 patients (90%). The findings support the view that sleepwalkers suffer from a dysfunction of the mechanisms responsible for sustaining stable slow-wave sleep and suggest that these patients are particularly vulnerable to increased homeostatic sleep pressure. Strong evidence is provided that 25 hours of sleep deprivation can be a valuable tool that facilitates the polysomnographically based diagnosis of somnambulism in predisposed patients.

  19. After Being Challenged by a Video Game Problem, Sleep Increases the Chance to Solve It

    PubMed Central

    Beijamini, Felipe; Pereira, Sofia Isabel Ribeiro; Cini, Felipe Augusto; Louzada, Fernando Mazzilli

    2014-01-01

    In the past years many studies have demonstrated the role of sleep on memory consolidation. It is known that sleeping after learning a declarative or non-declarative task, is better than remaining awake. Furthermore, there are reports of a possible role for dreams in consolidation of declarative memories. Other studies have reported the effect of naps on memory consolidation. With similar protocols, another set of studies indicated that sleep has a role in creativity and problem-solving. Here we hypothesised that sleep can increase the likelihood of solving problems. After struggling to solve a video game problem, subjects who took a nap (n = 14) were almost twice as likely to solve it when compared to the wake control group (n = 15). It is interesting to note that, in the nap group 9 out 14 subjects engaged in slow-wave sleep (SWS) and all solved the problem. Surprisingly, we did not find a significant involvement of Rapid Eye Movement (REM) sleep in this task. Slow-wave sleep is believed to be crucial for the transfer of memory-related information to the neocortex and implement intentions. Sleep can benefit problem-solving through the generalisation of newly encoded information and abstraction of the gist. In conclusion, our results indicate that sleep, even a nap, can potentiate the solution of problems that involve logical reasoning. Thus, sleep's function seems to go beyond memory consolidation to include managing of everyday-life events. PMID:24416219

  20. After being challenged by a video game problem, sleep increases the chance to solve it.

    PubMed

    Beijamini, Felipe; Pereira, Sofia Isabel Ribeiro; Cini, Felipe Augusto; Louzada, Fernando Mazzilli

    2014-01-01

    In the past years many studies have demonstrated the role of sleep on memory consolidation. It is known that sleeping after learning a declarative or non-declarative task, is better than remaining awake. Furthermore, there are reports of a possible role for dreams in consolidation of declarative memories. Other studies have reported the effect of naps on memory consolidation. With similar protocols, another set of studies indicated that sleep has a role in creativity and problem-solving. Here we hypothesised that sleep can increase the likelihood of solving problems. After struggling to solve a video game problem, subjects who took a nap (n = 14) were almost twice as likely to solve it when compared to the wake control group (n = 15). It is interesting to note that, in the nap group 9 out 14 subjects engaged in slow-wave sleep (SWS) and all solved the problem. Surprisingly, we did not find a significant involvement of Rapid Eye Movement (REM) sleep in this task. Slow-wave sleep is believed to be crucial for the transfer of memory-related information to the neocortex and implement intentions. Sleep can benefit problem-solving through the generalisation of newly encoded information and abstraction of the gist. In conclusion, our results indicate that sleep, even a nap, can potentiate the solution of problems that involve logical reasoning. Thus, sleep's function seems to go beyond memory consolidation to include managing of everyday-life events.

  1. The Time Course of the Probability of Transition Into and Out of REM Sleep

    PubMed Central

    Bassi, Alejandro; Vivaldi, Ennio A.; Ocampo-Garcés, Adrián

    2009-01-01

    Study Objectives: A model of rapid eye movement (REM) sleep expression is proposed that assumes underlying regulatory mechanisms operating as inhomogenous Poisson processes, the overt results of which are the transitions into and out of REM sleep. Design: Based on spontaneously occurring REM sleep episodes (“Episode”) and intervals without REM sleep (“Interval”), 3 variables are defined and evaluated over discrete 15-second epochs using a nonlinear logistic regression method: “Propensity” is the instantaneous rate of into-REM transition occurrence throughout an Interval, “Volatility” is the instantaneous rate of out-of-REM transition occurrence throughout an Episode, and “Opportunity” is the probability of being in non-REM (NREM) sleep at a given time throughout an Interval, a requisite for transition. Setting: 12:12 light:dark cycle, isolated boxes. Participants: Sixteen male Sprague-Dawley rats Interventions: None. Spontaneous sleep cycles. Measurements and Results: The highest levels of volatility and propensity occur, respectively, at the very beginning of Episodes and Intervals. The new condition stabilizes rapidly, and variables reach nadirs at minute 1.25 and 2.50, respectively. Afterward, volatility increases markedly, reaching values close to the initial level. Propensity increases moderately, the increment being stronger through NREM sleep bouts occurring at the end of long Intervals. Short-term homeostasis is evidenced by longer REM sleep episodes lowering propensity in the following Interval. Conclusions: The stabilization after transitions into Episodes or Intervals and the destabilization after remaining for some time in either condition may be described as resulting from continuous processes building up during Episodes and Intervals. These processes underlie the overt occurrence of transitions. Citation: Bassi A; Vivaldi EA; Ocampo-Garcées A. The time course of the probability of transition into and out of REM sleep. SLEEP 2009

  2. Sleep spindles and intelligence in early childhood-developmental and trait-dependent aspects.

    PubMed

    Ujma, Péter P; Sándor, Piroska; Szakadát, Sára; Gombos, Ferenc; Bódizs, Róbert

    2016-12-01

    Sleep spindles act as a powerful marker of individual differences in cognitive ability. Sleep spindle parameters correlate with both age-related changes in cognitive abilities and with the age-independent concept of IQ. While some studies have specifically demonstrated the relationship between sleep spindles and intelligence in young children, our previous work in older subjects revealed sex differences in the sleep spindle correlates of IQ, which was never investigated in small children before. We investigated the relationship between age, Raven Colored Progressive Matrices (CPM) scores and sleep spindles in 28 young children (age 4-8 years, 15 girls). We specifically investigated sex differences in the psychometric correlates of sleep spindles. We also aimed to separate the correlates of sleep spindles that are because of age-related maturation from other effects that reflect an age-independent relationship between sleep spindles and general intelligence. Our results revealed a modest positive correlation between fast spindle amplitude and age. Raven CPM scores positively correlated with both slow and fast spindle amplitude, but this effect remained a tendency in males and vanished after correcting for the effects of age. Age-corrected correlations between Raven CPM scores and both slow and fast spindle amplitude were only significant in females. Overall, our results show that in male children sleep spindles are a maturational marker, but in female children they indicate trait-like intelligence, in line with previous studies in adolescent and adult subjects. Thalamocortical white matter connectivity may be the underlying mechanism behind both higher spindle amplitude and higher intelligence in female, but not male subjects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  3. Region-Specific Dissociation between Cortical Noradrenaline Levels and the Sleep/Wake Cycle

    PubMed Central

    Bellesi, Michele; Tononi, Giulio; Cirelli, Chiara; Serra, Pier Andrea

    2016-01-01

    Study Objectives: The activity of the noradrenergic system of the locus coeruleus (LC) is high in wake and low in sleep. LC promotes arousal and EEG activation, as well as attention, working memory, and cognitive flexibility. These functions rely on prefrontal cortex and are impaired by sleep deprivation, but the extent to which LC activity changes during wake remains unclear. Moreover, it is unknown whether noradrenergic neurons can sustain elevated firing during extended wake. Recent studies show that relative to LC neurons targeting primary motor cortex (M1), those projecting to medial prefrontal cortex (mPFC) have higher spontaneous firing rates and are more excitable. These results suggest that noradrenaline (NA) levels should be higher in mPFC than M1, and that during prolonged wake LC cells targeting mPFC may fatigue more, but direct evidence is lacking. Methods: We performed in vivo microdialysis experiments in adult (9–10 weeks old) C57BL/6 mice implanted for chronic electroencephalographic recordings. Cortical NA levels were measured during spontaneous sleep and wake (n = 8 mice), and in the course of sleep deprivation (n = 6). Results: We found that absolute NA levels are higher in mPFC than in M1. Moreover, in both areas they decline during sleep and increase during wake, but these changes are faster in M1 than mPFC. Finally, by the end of sleep deprivation NA levels decline only in mPFC. Conclusions: Locus coeruleus (LC) neurons targeting prefrontal cortex may fatigue more markedly, or earlier, than other LC cells, suggesting one of the mechanisms underlying the cognitive impairment and the increased sleep presure associated with sleep deprivation. Commentary: A commentary on this article appears in this issue on page 11. Citation: Bellesi M, Tononi G, Cirelli C, Serra PA. Region-specific dissociation between cortical noradrenaline levels and the sleep/wake cycle. SLEEP 2016;39(1):143–154. PMID:26237776

  4. Association between Sleep Duration and 24-Hour Urine Free Cortisol in the MrOS Sleep Study

    PubMed Central

    Rao, Madhu N.; Blackwell, Terri; Redline, Susan; Punjabi, Naresh M.; Barrett-Connor, Elizabeth; Neylan, Thomas C.; Stone, Katie L.

    2013-01-01

    Context Short sleep duration is associated with adverse health outcomes, but the mechanisms involved are unknown. It has been postulated that short sleep duration may elevate cortisol levels, but studies have had conflicting results. It is unclear whether these differing findings may be due to methodological issues, such as assessment of sleep duration. Specifically, objective versus subjective methods of measuring habitual sleep duration may account for the conflicting results found in epidemiological studies. Objective Our goal was to determine whether habitual sleep duration, measured objectively (by actigraphy) and subjectively (by self-report), was associated with 24-hour urine free cortisol (UFC), a measure of integrated cortisol secretion. Our secondary goal was to determine whether slow wave sleep (SWS, determined by polysomnography) was associated with 24-hour UFC. Design/Setting Cross sectional study of community dwelling older men. Patients/Participants 325 men (mean age = 76.6 years, SD = 5.5) from the Portland site of the MrOS Sleep Study, who underwent 24-hour urine collection, polysomnography, actigraphy and sleep questionnaire. Primary Outcome 24-hour UFC. Results In this study of community dwelling older men, self-reported sleep duration was inversely related to 24-hour UFC levels. Participants reporting <5 hours of habitual sleep had an adjusted mean 24-hour UFC of 29.8 ug, compared to 28.0 ug in participants reporting >5 to <8 hours of sleep 25.5 ug in those reporting >8 hours of habitual sleep. However, sleep duration determined by actigraphy was not associated with 24-hour UFC in either univariable or multivariable regression models. SWS was not associated with 24-hour UFC. Conclusion Objectively measured (i.e., actigraphic) sleep duration is not associated with 24-hour UFC in these community dwelling older men. This finding, together with prior studies, suggests that elevated levels of integrated cortisol secretion is not the

  5. Region-Specific Slowing of Alpha Oscillations is Associated with Visual-Perceptual Abilities in Children Born Very Preterm

    PubMed Central

    Doesburg, Sam M.; Moiseev, Alexander; Herdman, Anthony T.; Ribary, Urs; Grunau, Ruth E.

    2013-01-01

    Children born very preterm (≤32 weeks gestational age) without major intellectual or neurological impairments often express selective deficits in visual-perceptual abilities. The alterations in neurophysiological development underlying these problems, however, remain poorly understood. Recent research has indicated that spontaneous alpha oscillations are slowed in children born very preterm, and that atypical alpha-mediated functional network connectivity may underlie selective developmental difficulties in visual-perceptual ability in this group. The present study provides the first source-resolved analysis of slowing of spontaneous alpha oscillations in very preterm children, indicating alterations in a distributed set of brain regions concentrated in areas of posterior parietal and inferior temporal regions associated with visual perception, as well as prefrontal cortical regions and thalamus. We also uniquely demonstrate that slowing of alpha oscillations is associated with selective difficulties in visual-perceptual ability in very preterm children. These results indicate that region-specific slowing of alpha oscillations contribute to selective developmental difficulties prevalent in this population. PMID:24298250

  6. Telemetric Study of Sleep Architecture and Sleep Homeostasis in the Day-Active Tree Shrew Tupaia belangeri

    PubMed Central

    Coolen, Alex; Hoffmann, Kerstin; Barf, R. Paulien; Fuchs, Eberhard; Meerlo, Peter

    2012-01-01

    Study Objectives: In this study the authors characterized sleep architecture and sleep homeostasis in the tree shrew, Tupaia belangeri, a small, omnivorous, day-active mammal that is closely related to primates. Design: Adult tree shrews were individually housed under a 12-hr light/12-hr dark cycle in large cages containing tree branches and a nest box. The animals were equipped with radio transmitters to allow continuous recording of electroencephalogram (EEG), electromyogram (EMG), and body temperature without restricting their movements. Recordings were performed under baseline conditions and after sleep deprivation (SD) for 6 hr or 12 hr during the dark phase. Measurements and Results: Under baseline conditions, the tree shrews spent a total of 62.4 ± 1.4% of the 24-hr cycle asleep, with 91.2 ± 0.7% of sleep during the dark phase and 33.7 ± 2.8% sleep during the light phase. During the dark phase, all sleep occurred in the nest box; 79.6% of it was non-rapid eye movement (NREM) sleep and 20.4% was rapid eye movement (REM) sleep. In contrast, during the light phase, sleep occurred almost exclusively on the top branches of the cage and only consisted of NREM sleep. SD was followed by an immediate increase in NREM sleep time and an increase in NREM sleep EEG slow-wave activity (SWA), indicating increased sleep intensity. The cumulative increase in NREM sleep time and intensity almost made up for the NREM sleep that had been lost during 6-hr SD, but did not fully make up for the NREM sleep lost during 12-hr SD. Also, only a small fraction of the REM sleep that was lost was recovered, which mainly occurred on the second recovery night. Conclusions: The day-active tree shrew shares most of the characteristics of sleep structure and sleep homeostasis that have been reported for other mammalian species, with some peculiarities. Because the tree shrew is an established laboratory animal in neurobiological research, it may be a valuable model species for studies of

  7. Sleep/wake dependent changes in cortical glucose concentrations.

    PubMed

    Dash, Michael B; Bellesi, Michele; Tononi, Giulio; Cirelli, Chiara

    2013-01-01

    Most of the energy in the brain comes from glucose and supports glutamatergic activity. The firing rate of cortical glutamatergic neurons, as well as cortical extracellular glutamate levels, increase with time spent awake and decline throughout non rapid eye movement sleep, raising the question whether glucose levels reflect behavioral state and sleep/wake history. Here chronic (2-3 days) electroencephalographic recordings in the rat cerebral cortex were coupled with fixed-potential amperometry to monitor the extracellular concentration of glucose ([gluc]) on a second-by-second basis across the spontaneous sleep-wake cycle and in response to 3 h of sleep deprivation. [Gluc] progressively increased during non rapid eye movement sleep and declined during rapid eye movement sleep, while during wake an early decline in [gluc] was followed by an increase 8-15 min after awakening. There was a significant time of day effect during the dark phase, when rats are mostly awake, with [gluc] being significantly lower during the last 3-4 h of the night relative to the first 3-4 h. Moreover, the duration of the early phase of [gluc] decline during wake was longer after prolonged wake than after consolidated sleep. Thus, the sleep/wake history may affect the levels of glucose available to the brain upon awakening. © 2012 The Authors Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  8. Sleep spindle activity and cognitive performance in healthy children.

    PubMed

    Chatburn, Alex; Coussens, Scott; Lushington, Kurt; Kennedy, Declan; Baumert, Mathias; Kohler, Mark

    2013-02-01

    To investigate the association between indices of sleep spindle activity and cognitive performance in a sample of healthy children. Correlational. Intelligence (Stanford-Binet) and neurocognitive functioning (NEPSY) were assessed, with sleep variables being measured during overnight polysomnography. Hospital sleep laboratory. Twenty-seven healthy children (mean age 8.19 y; 14 female, 13 male). N/A. Participants underwent a single night of overnight polysomnography after completing measures of intelligence and neurocognitive functioning. Sleep spindles were visually identified by an experienced sleep scoring technician and separated algorithmically into fast (> 13 Hz) and slow spindle (< 13 Hz) categories. The number of fast spindles was significantly correlated with narrative memory (r(s) = 0.38) and sensorimotor functioning (-0.43). Mean central frequency of spindles was also significantly correlated with sensorimotor functioning (-0.41), planning ability (-0.41), and working memory (-0.54). Basal sleep spindle activity is associated with different aspects of cognitive performance in children. To the extent that these associations in a pediatric population are different from what is known in adult sleep may play an important role in development.

  9. Nonhuman Primates Prefer Slow Tempos but Dislike Music Overall

    ERIC Educational Resources Information Center

    McDermott, Josh; Hauser, Marc D.

    2007-01-01

    Human adults generally find fast tempos more arousing than slow tempos, with tempo frequently manipulated in music to alter tension and emotion. We used a previously published method [McDermott, J., & Hauser, M. (2004). Are consonant intervals music to their ears? Spontaneous acoustic preferences in a nonhuman primate. Cognition, 94(2), B11-B21]…

  10. The Multidimensional Aspects of Sleep Spindles and Their Relationship to Word-Pair Memory Consolidation.

    PubMed

    Lustenberger, Caroline; Wehrle, Flavia; Tüshaus, Laura; Achermann, Peter; Huber, Reto

    2015-07-01

    Several studies proposed a link between sleep spindles and sleep dependent memory consolidation in declarative learning tasks. In addition to these state-like aspects of sleep spindles, they have also trait-like characteristics, i.e., were related to general cognitive performance, an important distinction that has often been neglected in correlative studies. Furthermore, from the multitude of different sleep spindle measures, often just one specific aspect was analyzed. Thus, we aimed at taking multidimensional aspects of sleep spindles into account when exploring their relationship to word-pair memory consolidation. Each subject underwent 2 study nights with all-night high-density electroencephalographic (EEG) recordings. Sleep spindles were automatically detected in all EEG channels. Subjects were trained and tested on a word-pair learning task in the evening, and retested in the morning to assess sleep related memory consolidation (overnight retention). Trait-like aspects refer to the mean of both nights and state-like aspects were calculated as the difference between night 1 and night 2. Sleep laboratory. Twenty healthy male subjects (age: 23.3 ± 2.1 y). Overnight retention was negatively correlated with trait-like aspects of fast sleep spindle density and positively with slow spindle density on a global level. In contrast, state-like aspects were observed for integrated slow spindle activity, which was positively related to the differences in overnight retention in specific regions. Our results demonstrate the importance of a multidimensional approach when investigating the relationship between sleep spindles and memory consolidation and thereby provide a more complete picture explaining divergent findings in the literature. © 2015 Associated Professional Sleep Societies, LLC.

  11. The association of mothers' and fathers' insomnia symptoms with school-aged children's sleep assessed by parent report and in-home sleep-electroencephalography.

    PubMed

    Urfer-Maurer, Natalie; Weidmann, Rebekka; Brand, Serge; Holsboer-Trachsler, Edith; Grob, Alexander; Weber, Peter; Lemola, Sakari

    2017-10-01

    Sleep plays an essential role for children's well-being. Because children's sleep is associated with parental sleep patterns, it must be considered in the family context. As a first aim of the present study, we test whether parental insomnia symptoms are related to children's in-home sleep-electroencephalography (EEG). Second, we examine the association between parental insomnia symptoms and maternal and paternal perception of children's sleep using actor-partner interdependence models. A total of 191 healthy children enrolled in public school and aged 7-12 years took part in the study. Ninety-six were formerly very preterm born children. Children underwent in-home sleep-EEG, and parents reported children's sleep-related behavior by using the German version of the Children's Sleep Habits Questionnaire. Further, parents completed the Insomnia Severity Index to report their own insomnia symptoms. Maternal but not paternal insomnia symptoms were related to less children's EEG-derived total sleep time, more stage 2 sleep, less slow wave sleep, later sleep onset time, and later awakening time. Mothers' and fathers' own insomnia symptoms were related to their reports of children's bedtime resistance, sleep duration, sleep anxiety, night wakings, and/or daytime sleepiness. Moreover, maternal insomnia symptoms were associated with paternal reports of children's bedtime resistance, sleep anxiety, and sleep-disordered breathing. The associations between parental insomnia symptoms and parents' perception of children's sleep could not be explained by children's objectively measured sleep. Mothers' insomnia symptoms and children's objective sleep patterns are associated. Moreover, the parents' own insomnia symptoms might bias their perception of children's sleep-related behavior problems. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effects of bedding systems selected by manual muscle testing on sleep and sleep-related respiratory disturbances.

    PubMed

    Tsai, Ling-Ling; Liu, Hau-Min

    2008-03-01

    In this study, we investigated the feasibility of applying manual muscle testing (MMT) for bedding selection and examined the bedding effect on sleep. Four lay testers with limited training in MMT performed muscle tests for the selection of the bedding systems from five different mattresses and eight different pillows for 14 participants with mild sleep-related respiratory disturbances. For each participant individually, two bedding systems-one inducing stronger muscle forces and the other inducing weaker forces-were selected. The tester-participant pairs showed 85% and 100% agreement, respectively, for the selection of mattresses and pillows that induced the strongest muscle forces. The firmness of the mattress and the height of the pillow were significantly correlated with the body weight and body mass index of the participants for the selected strong bedding system but not for the weak bedding system. Finally, differences were observed between the strong and the weak bedding systems with regard to sleep-related respiratory disturbances and the percentage of slow-wave sleep. It was concluded that MMT can be performed by inexperienced testers for the selection of bedding systems.

  13. Visualization of Whole-Night Sleep EEG From 2-Channel Mobile Recording Device Reveals Distinct Deep Sleep Stages with Differential Electrodermal Activity.

    PubMed

    Onton, Julie A; Kang, Dae Y; Coleman, Todd P

    2016-01-01

    Brain activity during sleep is a powerful marker of overall health, but sleep lab testing is prohibitively expensive and only indicated for major sleep disorders. This report demonstrates that mobile 2-channel in-home electroencephalogram (EEG) recording devices provided sufficient information to detect and visualize sleep EEG. Displaying whole-night sleep EEG in a spectral display allowed for quick assessment of general sleep stability, cycle lengths, stage lengths, dominant frequencies and other indices of sleep quality. By visualizing spectral data down to 0.1 Hz, a differentiation emerged between slow-wave sleep with dominant frequency between 0.1-1 Hz or 1-3 Hz, but rarely both. Thus, we present here the new designations, Hi and Lo Deep sleep, according to the frequency range with dominant power. Simultaneously recorded electrodermal activity (EDA) was primarily associated with Lo Deep and very rarely with Hi Deep or any other stage. Therefore, Hi and Lo Deep sleep appear to be physiologically distinct states that may serve unique functions during sleep. We developed an algorithm to classify five stages (Awake, Light, Hi Deep, Lo Deep and rapid eye movement (REM)) using a Hidden Markov Model (HMM), model fitting with the expectation-maximization (EM) algorithm, and estimation of the most likely sleep state sequence by the Viterbi algorithm. The resulting automatically generated sleep hypnogram can help clinicians interpret the spectral display and help researchers computationally quantify sleep stages across participants. In conclusion, this study demonstrates the feasibility of in-home sleep EEG collection, a rapid and informative sleep report format, and novel deep sleep designations accounting for spectral and physiological differences.

  14. Racial differences in sleep architecture: the role of ethnic discrimination.

    PubMed

    Tomfohr, Lianne; Pung, Meredith A; Edwards, Kate M; Dimsdale, Joel E

    2012-01-01

    African Americans have been consistently shown to have less deep (slow wave sleep; SWS) and more light (Stages 1 and 2) sleep than Caucasian Americans. This paper explored whether discrimination, a stressor that uniquely impacts certain ethnic groups, contributes to differences in sleep architecture. The sleep of 164 African and Caucasian Americans was examined with laboratory based polysomnography (PSG). Experiences of perceived discrimination (The Scale of Ethnic Experience) and sociodemographic factors were also assessed. After adjusting for age, body mass index (BMI), socioeconomic status (SES) and smoking status, African Americans slept approximately 4.5% more total sleep time (TST) in Stage 2 sleep and 4.7% less TST in SWS than Caucasian Americans (ps<.05). Perceived discrimination was a partial mediator of ethnic differences in sleep architecture. Individuals who reported experiencing more discrimination slept more time in Stage 2 and less time in SWS (ps<.05). Results suggest that the impact of stress related to ethnic group membership plays a part in explaining differences in sleep architecture. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Sleep in schizophrenia: A systematic review and meta-analysis of polysomnographic findings in case-control studies.

    PubMed

    Chan, Man-Sum; Chung, Ka-Fai; Yung, Kam-Ping; Yeung, Wing-Fai

    2017-04-01

    Polysomnographic studies have been performed to examine the sleep abnormalities in schizophrenia, but the results are inconsistent. An updated systematic review, meta-analysis, and moderator analysis was conducted. Major databases were searched without language restriction from 1968 to January 2014. Data were analyzed using the random-effects model and summarized using the Hedges's g. Thirty-one studies with 574 patients and 515 healthy controls were evaluated. Limited by the number of studies and a lack of patient-level data, moderator analysis was restricted to medication status, duration of medication withdrawal, and illness duration. We showed that patients with schizophrenia have significantly shorter total sleep time, longer sleep onset latency, more wake time after sleep onset, lower sleep efficiency, and decreased stage 4 sleep, slow wave sleep, and duration and latency of rapid eye movement sleep compared to healthy controls. The findings on delta waves and sleep spindles were inconsistent. Moderator analysis could not find any abnormalities in sleep architecture in medication-naïve patients. Patients with antipsychotic withdrawal for longer than eight weeks were shown to have less sleep architectural abnormalities, compared to shorter duration of withdrawal, but the abnormalities in sleep continuity were similar. Slow wave sleep deficit was found in patients with schizophrenia for more than three years, while sleep onset latency was increased in medication-naïve, medication-withdrawn, and medicated patients. Our study showed that polysomnographic abnormalities are present in schizophrenia. Illness duration, medication status, and duration of medication withdrawal are several of the clinical factors that contribute to the heterogeneity between studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Choline acetyltransferase expression during periods of behavioral activity and across natural sleep-wake states in the basal forebrain.

    PubMed

    Greco, M A; McCarley, R W; Shiromani, P J

    1999-01-01

    The present study examined whether the expression of the messenger RNA encoding the protein responsible for acetylcholine synthesis is associated with sleep-wakefulness. Choline acetyltransferase messenger RNA levels were analysed using a semi-quantitative assay in which reverse transcription was coupled to complementary DNA amplification using the polymerase chain reaction. To examine the relationship between steady-state messenger RNA and behavioral activity, rats were killed during the day (4.00 p.m.) or night (4.00 a.m.), and tissue from the vertical and horizontal limbs of the diagonal bands of Broca was analysed. Choline acetyltransferase messenger RNA levels were higher during the day than during the night. The second study examined more closely the association between choline acetyltransferase messenger RNA levels and individual bouts of wakefulness, slow-wave sleep or rapid eye movement sleep. Choline acetyltransferase messenger RNA levels were low during wakefulness, intermediate in slow-wave sleep and high during rapid eye movement sleep. In contrast, protein activity, measured at a projection site of cholinergic neurons of the basal forebrain, was higher during wakefulness than during sleep. These findings suggest that choline acetyltransferase protein and messenger RNA levels exhibit an inverse relationship during sleep and wakefulness. The increased messenger RNA expression during sleep is consistent with a restorative function of sleep.

  17. Sleep architecture in insomniacs with severe benzodiazepine abuse.

    PubMed

    Manconi, Mauro; Ferri, Raffaele; Miano, Silvia; Maestri, Michelangelo; Bottasini, Valentina; Zucconi, Marco; Ferini-Strambi, Luigi

    2017-06-01

    Benzodiazepines (BZDs) are the most commonly prescribed compounds in insomnia. A long-term of BZDs use may cause dependence and abuse. The aim of this study was to evaluate sleep architecture and microstructure (in terms of cyclic alternating pattern - CAP - analysis and of sleep EEG power spectral analysis) in a group of long-term users of high doses of BZDs for their primary chronic insomnia. Twenty patients consecutively admitted at the Sleep Centre for drug discontinuation and 13 matched healthy controls underwent a full nocturnal video-polysomnographic recording, after one adaptation night. Significant differences were found in time in bed, REM sleep latency and sleep stage 1% which were increased in patients compared to controls, while CAP rate was dramatically decreased. During NREM sleep, patients showed a clear decrease in the relative power of delta band. Our data demonstrate that in adults with chronic insomnia, long-term use of high doses of BZDs induces a severe disruption of sleep microstructure, while sleep architecture seems to be much less affected. The long term use of high doses of BZDs for chronic insomnia induces a marked depression of slow wave activity and of its physiological instability. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  18. Neuronal basis of the slow (<1 Hz) oscillation in neurons of the nucleus reticularis thalami in vitro.

    PubMed

    Blethyn, Kate L; Hughes, Stuart W; Tóth, Tibor I; Cope, David W; Crunelli, Vincenzo

    2006-03-01

    During deep sleep and anesthesia, the EEG of humans and animals exhibits a distinctive slow (<1 Hz) rhythm. In inhibitory neurons of the nucleus reticularis thalami (NRT), this rhythm is reflected as a slow (<1 Hz) oscillation of the membrane potential comprising stereotypical, recurring "up" and "down" states. Here we show that reducing the leak current through the activation of group I metabotropic glutamate receptors (mGluRs) with either trans-ACPD [(+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid] (50-100 microM) or DHPG [(S)-3,5-dihydroxyphenylglycine] (100 microM) instates an intrinsic slow oscillation in NRT neurons in vitro that is qualitatively equivalent to that observed in vivo. A slow oscillation could also be evoked by synaptically activating mGluRs on NRT neurons via the tetanic stimulation of corticothalamic fibers. Through a combination of experiments and computational modeling we show that the up state of the slow oscillation is predominantly generated by the "window" component of the T-type Ca2+ current, with an additional supportive role for a Ca2+-activated nonselective cation current. The slow oscillation is also fundamentally reliant on an Ih current and is extensively shaped by both Ca2+- and Na+-activated K+ currents. In combination with previous work in thalamocortical neurons, this study suggests that the thalamus plays an important and active role in shaping the slow (<1 Hz) rhythm during deep sleep.

  19. EEG Functional Connectivity Prior to Sleepwalking: Evidence of Interplay Between Sleep and Wakefulness.

    PubMed

    Desjardins, Marie-Ève; Carrier, Julie; Lina, Jean-Marc; Fortin, Maxime; Gosselin, Nadia; Montplaisir, Jacques; Zadra, Antonio

    2017-04-01

    Although sleepwalking (somnambulism) affects up to 4% of adults, its pathophysiology remains poorly understood. Sleepwalking can be preceded by fluctuations in slow-wave sleep EEG signals, but the significance of these pre-episode changes remains unknown and methods based on EEG functional connectivity have yet to be used to better comprehend the disorder. We investigated the sleep EEG of 27 adult sleepwalkers (mean age: 29 ± 7.6 years) who experienced a somnambulistic episode during slow-wave sleep. The 20-second segment of sleep EEG immediately preceding each patient's episode was compared with the 20-second segment occurring 2 minutes prior to episode onset. Results from spectral analyses revealed increased delta and theta spectral power in the 20 seconds preceding the episodes' onset as compared to the 20 seconds occurring 2 minutes before the episodes. The imaginary part of the coherence immediately prior to episode onset revealed (1) decreased delta EEG functional connectivity in parietal and occipital regions, (2) increased alpha connectivity over a fronto-parietal network, and (3) increased beta connectivity involving symmetric inter-hemispheric networks implicating frontotemporal, parietal and occipital areas. Taken together, these modifications in EEG functional connectivity suggest that somnambulistic episodes are preceded by brain processes characterized by the co-existence of arousal and deep sleep. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  20. The Multidimensional Aspects of Sleep Spindles and Their Relationship to Word-Pair Memory Consolidation

    PubMed Central

    Lustenberger, Caroline; Wehrle, Flavia; Tüshaus, Laura; Achermann, Peter; Huber, Reto

    2015-01-01

    Study Objectives: Several studies proposed a link between sleep spindles and sleep dependent memory consolidation in declarative learning tasks. In addition to these state-like aspects of sleep spindles, they have also trait-like characteristics, i.e., were related to general cognitive performance, an important distinction that has often been neglected in correlative studies. Furthermore, from the multitude of different sleep spindle measures, often just one specific aspect was analyzed. Thus, we aimed at taking multidimensional aspects of sleep spindles into account when exploring their relationship to word-pair memory consolidation. Design: Each subject underwent 2 study nights with all-night high-density electroencephalographic (EEG) recordings. Sleep spindles were automatically detected in all EEG channels. Subjects were trained and tested on a word-pair learning task in the evening, and retested in the morning to assess sleep related memory consolidation (overnight retention). Trait-like aspects refer to the mean of both nights and state-like aspects were calculated as the difference between night 1 and night 2. Setting: Sleep laboratory. Participants: Twenty healthy male subjects (age: 23.3 ± 2.1 y) Measurements and Results: Overnight retention was negatively correlated with trait-like aspects of fast sleep spindle density and positively with slow spindle density on a global level. In contrast, state-like aspects were observed for integrated slow spindle activity, which was positively related to the differences in overnight retention in specific regions. Conclusion: Our results demonstrate the importance of a multidimensional approach when investigating the relationship between sleep spindles and memory consolidation and thereby provide a more complete picture explaining divergent findings in the literature. Citation: Lustenberger C, Wehrle F, Tüshaus L, Achermann P, Huber R. The multidimensional aspects of sleep spindles and their relationship to word

  1. Effect of a medicinal plant (Passiflora incarnata L) on sleep.

    PubMed

    Guerrero, Fructuoso Ayala; Medina, Graciela Mexicano

    2017-01-01

    Extracts of the plant Passiflora incarnata L. (Passifloraceae) were administered intraperitoneally in order to test its effects on sleep. Experiments were carried out on chronically implanted male adult wistar rats to obtain cerebral (EEG), ocular (EOG) and muscular (EMG) activities throughout their states of vigilance. Polygraphic recordings were taken during 9 continuous hours before and after the extract administration (500 mg/kg). Passiflora incarnata induced a significant increment in the total sleep time ( p <0.05). This increment was due to an increase in the time spent by animals in slow wave sleep (SWS). Concomitantly, a significant decrement in wakefulness (W) was observed ( p <0.05). In contrast, time spent in rapid eye movement (REM) sleep showed a decreasing tendency, since both its frequency and mean duration were reduced. The extracts obtained from Passiflora incarnata can be considered as appropriated sleep inducers.

  2. Dynamic Interaction of Spindles and Gamma Activity during Cortical Slow Oscillations and Its Modulation by Subcortical Afferents

    PubMed Central

    Valencia, Miguel; Artieda, Julio; Bolam, J. Paul; Mena-Segovia, Juan

    2013-01-01

    Slow oscillations are a hallmark of slow wave sleep. They provide a temporal framework for a variety of phasic events to occur and interact during sleep, including the expression of high-frequency oscillations and the discharge of neurons across the entire brain. Evidence shows that the emergence of distinct high-frequency oscillations during slow oscillations facilitates the communication among brain regions whose activity was correlated during the preceding waking period. While the frequencies of oscillations involved in such interactions have been identified, their dynamics and the correlations between them require further investigation. Here we analyzed the structure and dynamics of these signals in anesthetized rats. We show that spindles and gamma oscillations coexist but have distinct temporal dynamics across the slow oscillation cycle. Furthermore, we observed that spindles and gamma are functionally coupled to the slow oscillations and between each other. Following the activation of ascending pathways from the brainstem by means of a carbachol injection in the pedunculopontine nucleus, we were able to modify the gain in the gamma oscillations that are independent of the spindles while the spindle amplitude was reduced. Furthermore, carbachol produced a decoupling of the gamma oscillations that are dependent on the spindles but with no effect on their amplitude. None of the changes in the high-frequency oscillations affected the onset or shape of the slow oscillations, suggesting that slow oscillations occur independently of the phasic events that coexist with them. Our results provide novel insights into the regulation, dynamics and homeostasis of cortical slow oscillations. PMID:23844020

  3. Sleep-Wake Disturbances in Sedentary Community-Dwelling Elders With Functional Limitations

    PubMed Central

    Vaz Fragoso, Carlos A.; Miller, Michael E.; Fielding, Roger A.; King, Abby C.; Kritchevsky, Stephen B.; McDermott, Mary M.; Myers, Valerie; Newman, Anne B.; Pahor, Marco; Gill, Thomas M.

    2014-01-01

    OBJECTIVES To evaluate sleep-wake disturbances in sedentary community-dwelling elders with functional limitations. DESIGN Cross-sectional. SETTING Lifestyle Interventions and Independence in Elder (LIFE) Study. PARTICIPANTS 1635 community-dwelling persons, mean age 78.9, who spent <20 minutes/week in the past month of regular physical activity and <125 minutes/week of moderate physical activity, and had a Short Physical Performance Battery (SPPB) score <10. MEASUREMENTS Mobility was evaluated by the 400-meter walk time (slow gait speed defined as <0.8 m/s) and SPPB score (≤7 defined moderate-to-severe mobility impairment). Physical inactivity was defined by sedentary time, as percent of accelerometry wear time with activity <100 counts/min); top quartile established high sedentary time. Sleep-wake disturbances were evaluated by the Insomnia Severity Index (ISI) (range 0–28; ≥8 defined insomnia), Epworth Sleepiness Scale (ESS) (range 0–24; ≥10 defined daytime drowsiness), Pittsburgh Sleep Quality Index (PSQI) (range 0–21; >5 defined poor sleep quality), and Berlin Questionnaire (high risk of sleep apnea). RESULTS Prevalence rates were 43.5% for slow gait speed and 44.7% for moderate-to-severe mobility impairment, with 77.0% of accelerometry wear time spent as sedentary time. Prevalence rates were 33.0% for insomnia, 18.1% for daytime drowsiness, 47.8% for poor sleep quality, and 32.9% for high risk of sleep apnea. Participants with insomnia, daytime drowsiness, and poor sleep quality had mean values of 12.1 for ISI, 12.5 for ESS, and 9.2 for PSQI, respectively. In adjusted models, measures of mobility and physical inactivity were generally not associated with sleep-wake disturbances, using continuous or categorical variables. CONCLUSION In a large sample of sedentary community-dwelling elders with functional limitations, sleep-wake disturbances were prevalent but only mildly severe, and were generally not associated with mobility impairment or physical

  4. Polysomnographic Measurement of Sleep Duration and Bodily Pain Perception in the Sleep Heart Health Study.

    PubMed

    Weingarten, Jeremy A; Dubrovsky, Boris; Basner, Robert C; Redline, Susan; George, Liziamma; Lederer, David J

    2016-08-01

    To determine whether total sleep time (TST) and specific sleep stage duration are associated with bodily pain perception and whether sex, age, or subjective sleepiness modifies this relationship. Data from adults ages 39-90 y (n = 5,199) who took part in the Sleep Heart Health Study Exam 1 were analyzed. TST, rapid eye movement (REM) sleep time, and slow wave sleep (SWS) time were measured by unattended, in-home nocturnal polysomnography. Bodily pain perception was measured via the Short Form-36 questionnaire bodily pain component. We used logistic regression to examine associations between total and individual sleep stage durations and bodily pain perception controlling for age, sex, race, body mass index, apnea-hypopnea index, antidepressant use, and important cardiovascular conditions (smoking [pack-years], history of diabetes, and history of percutaneous coronary intervention and/or coronary artery bypass graft). In the fully adjusted model, REM sleep time and SWS time were not associated with "moderate to severe pain," whereas TST was: Each 1-h decrement in TST was associated with a 7% increased odds of "moderate to severe pain" (odds ratio 1.07, 95% confidence interval 1.002, 1.14). Due to modification of the association between SWS time and "moderate to severe pain" by sex (P for interaction = 0.01), we performed analyses stratified by sex: Each 1-h decrement in SWS time was associated with a 20% higher odds of "moderate to severe pain" among men (odds ratio 1.20, 95% confidence interval 1.03-1.42) whereas an association was not observed among women. Shorter TST among all subjects and shorter SWS time in men was associated with "moderate to severe pain." REM sleep time was not associated with bodily pain perception in this cohort. © 2016 Associated Professional Sleep Societies, LLC.

  5. Shedding light to sleep studies

    NASA Astrophysics Data System (ADS)

    Dieffenderfer, James; Krystal, Andrew; Bozkurt, Alper

    2017-08-01

    This paper presents our efforts in the development of a small wireless, flexible bandage sized near-infrared spectroscopy (NIRS) system for sleep analysis. The current size of the system is 2.8 cm × 1.7 cm × 0.6 cm. It is capable of performing NIRS with 660nm, 940nm and 850nm wavelengths for up to 11 hours continuously. The device is placed on the forehead to measure from the prefrontal cortex and the raw data is continuously streamed over Bluetooth to a nearby data aggregator such as a smartphone for post processing and cloud connection. In this study, we performed traditional polysomnography simultaneously with NIRS to evaluate agreement with traditional measures of sleep and to provide labelled data for future work involving learning algorithms. Ultimately, we expect a machine learning algorithm to be able to generate characterization of sleep states comparable to traditional methods based on this biophotonics data. The system also includes an inertial measurement unit and the features that can be extracted from the presented system include sleep posture, heart rate, respiratory rate, relative change in oxy and deoxy hemoglobin concentrations and tissue oxygenation and cerebral arterial oxygen extracted from these. Preliminary proof of concept results are promising and demonstrate the capability to measure heart rate, respiratory rate and slow-wave-sleep stages. This system serves as a prototype to evaluate the potential of a small bandage-size continuous-wave NIRS device to be a useful means of studying sleep.

  6. Cortex-wide BOLD fMRI activity reflects locally-recorded slow oscillation-associated calcium waves.

    PubMed

    Schwalm, Miriam; Schmid, Florian; Wachsmuth, Lydia; Backhaus, Hendrik; Kronfeld, Andrea; Aedo Jury, Felipe; Prouvot, Pierre-Hugues; Fois, Consuelo; Albers, Franziska; van Alst, Timo; Faber, Cornelius; Stroh, Albrecht

    2017-09-15

    Spontaneous slow oscillation-associated slow wave activity represents an internally generated state which is characterized by alternations of network quiescence and stereotypical episodes of neuronal activity - slow wave events. However, it remains unclear which macroscopic signal is related to these active periods of the slow wave rhythm. We used optic fiber-based calcium recordings of local neural populations in cortex and thalamus to detect neurophysiologically defined slow calcium waves in isoflurane anesthetized rats. The individual slow wave events were used for an event-related analysis of simultaneously acquired whole-brain BOLD fMRI. We identified BOLD responses directly related to onsets of slow calcium waves, revealing a cortex-wide BOLD correlate: the entire cortex was engaged in this specific type of slow wave activity. These findings demonstrate a direct relation of defined neurophysiological events to a specific BOLD activity pattern and were confirmed for ongoing slow wave activity by independent component and seed-based analyses.

  7. Cortex-wide BOLD fMRI activity reflects locally-recorded slow oscillation-associated calcium waves

    PubMed Central

    Backhaus, Hendrik; Kronfeld, Andrea; Aedo Jury, Felipe; Prouvot, Pierre-Hugues; Fois, Consuelo; Albers, Franziska; van Alst, Timo

    2017-01-01

    Spontaneous slow oscillation-associated slow wave activity represents an internally generated state which is characterized by alternations of network quiescence and stereotypical episodes of neuronal activity - slow wave events. However, it remains unclear which macroscopic signal is related to these active periods of the slow wave rhythm. We used optic fiber-based calcium recordings of local neural populations in cortex and thalamus to detect neurophysiologically defined slow calcium waves in isoflurane anesthetized rats. The individual slow wave events were used for an event-related analysis of simultaneously acquired whole-brain BOLD fMRI. We identified BOLD responses directly related to onsets of slow calcium waves, revealing a cortex-wide BOLD correlate: the entire cortex was engaged in this specific type of slow wave activity. These findings demonstrate a direct relation of defined neurophysiological events to a specific BOLD activity pattern and were confirmed for ongoing slow wave activity by independent component and seed-based analyses. PMID:28914607

  8. Brain gene expression during REM sleep depends on prior waking experience.

    PubMed

    Ribeiro, S; Goyal, V; Mello, C V; Pavlides, C

    1999-01-01

    In most mammalian species studied, two distinct and successive phases of sleep, slow wave (SW), and rapid eye movement (REM), can be recognized on the basis of their EEG profiles and associated behaviors. Both phases have been implicated in the offline sensorimotor processing of daytime events, but the molecular mechanisms remain elusive. We studied brain expression of the plasticity-associated immediate-early gene (IEG) zif-268 during SW and REM sleep in rats exposed to rich sensorimotor experience in the preceding waking period. Whereas nonexposed controls show generalized zif-268 down-regulation during SW and REM sleep, zif-268 is upregulated during REM sleep in the cerebral cortex and the hippocampus of exposed animals. We suggest that this phenomenon represents a window of increased neuronal plasticity during REM sleep that follows enriched waking experience.

  9. Impaired memory consolidation in children with obstructive sleep disordered breathing

    PubMed Central

    Katz, Eliot S.; Kapur, Kush; Stickgold, Robert

    2017-01-01

    Memory consolidation is stabilized and even enhanced by sleep (and particularly by 12–15 Hz sleep spindles in NREM stage 2 sleep) in healthy children but it is unclear what happens to these processes when sleep is disturbed by obstructive sleep disordered breathing. This cross-sectional study investigates differences in declarative memory consolidation among children with primary snoring (PS) and obstructive sleep apnea (OSA) compared to controls. We further investigate whether memory consolidation group differences are associated with NREM stage 2 (N2) sigma (12–15 Hz) or NREM slow oscillation (0.5–1 Hz) spectral power bands. In this study, we trained and tested participants on a spatial declarative memory task with cued recall. Retest occurred after a period of daytime wake (Wake) or a night of sleep (Sleep) with in-lab polysomnography. 36 participants ages 5–9 years completed the protocol: 14 with OSA as defined by respiratory disturbance index (RDI) > 1/hour, 12 with primary snoring (PS) and 10 controls. OSA participants had poorer overall memory consolidation than controls across Wake and Sleep conditions [OSA: mean = -18.7% (5.8), controls: mean = 1.9% (7.2), t = -2.20, P = 0.04]. In contrast, PS participants and controls had comparable memory consolidation across conditions (t = 0.41; P = 0.38). We did not detect a main effect for condition (Sleep, Wake) or group x condition interaction on memory consolidation. OSA participants had lower N2 sigma power than PS (P = 0.03) and controls (P = 0.004) and N2 sigma power inversely correlated with percentage of time snoring on the study night (r = -0.33, P<0.05). Across all participants, N2 sigma power modestly correlated with memory consolidation in both Sleep (r = 0.37, P = 0.03) and Wake conditions (r = 0.44, P = 0.009). Further observed variable path analysis showed that N2 sigma power mediated the relationship between group and mean memory consolidation across Sleep and Wake states [Bindirect = 6

  10. Impaired memory consolidation in children with obstructive sleep disordered breathing.

    PubMed

    Maski, Kiran; Steinhart, Erin; Holbrook, Hannah; Katz, Eliot S; Kapur, Kush; Stickgold, Robert

    2017-01-01

    Memory consolidation is stabilized and even enhanced by sleep (and particularly by 12-15 Hz sleep spindles in NREM stage 2 sleep) in healthy children but it is unclear what happens to these processes when sleep is disturbed by obstructive sleep disordered breathing. This cross-sectional study investigates differences in declarative memory consolidation among children with primary snoring (PS) and obstructive sleep apnea (OSA) compared to controls. We further investigate whether memory consolidation group differences are associated with NREM stage 2 (N2) sigma (12-15 Hz) or NREM slow oscillation (0.5-1 Hz) spectral power bands. In this study, we trained and tested participants on a spatial declarative memory task with cued recall. Retest occurred after a period of daytime wake (Wake) or a night of sleep (Sleep) with in-lab polysomnography. 36 participants ages 5-9 years completed the protocol: 14 with OSA as defined by respiratory disturbance index (RDI) > 1/hour, 12 with primary snoring (PS) and 10 controls. OSA participants had poorer overall memory consolidation than controls across Wake and Sleep conditions [OSA: mean = -18.7% (5.8), controls: mean = 1.9% (7.2), t = -2.20, P = 0.04]. In contrast, PS participants and controls had comparable memory consolidation across conditions (t = 0.41; P = 0.38). We did not detect a main effect for condition (Sleep, Wake) or group x condition interaction on memory consolidation. OSA participants had lower N2 sigma power than PS (P = 0.03) and controls (P = 0.004) and N2 sigma power inversely correlated with percentage of time snoring on the study night (r = -0.33, P<0.05). Across all participants, N2 sigma power modestly correlated with memory consolidation in both Sleep (r = 0.37, P = 0.03) and Wake conditions (r = 0.44, P = 0.009). Further observed variable path analysis showed that N2 sigma power mediated the relationship between group and mean memory consolidation across Sleep and Wake states [Bindirect = 6.76(3.5), z = 2

  11. Alcohol and Sleep Restriction Combined Reduces Vigilant Attention, Whereas Sleep Restriction Alone Enhances Distractibility

    PubMed Central

    Lee, James; Manousakis, Jessica; Fielding, Joanne; Anderson, Clare

    2015-01-01

    Study Objectives: Alcohol and sleep loss are leading causes of motor vehicle crashes, whereby attention failure is a core causal factor. Despite a plethora of data describing the effect of alcohol and sleep loss on vigilant attention, little is known about their effect on voluntary and involuntary visual attention processes. Design: Repeated-measures, counterbalanced design. Setting: Controlled laboratory setting. Participants: Sixteen young (18–27 y; M = 21.90 ± 0.60 y) healthy males. Interventions: Participants completed an attention test battery during the afternoon (13:00–14:00) under four counterbalanced conditions: (1) baseline; (2) alcohol (0.05% breath alcohol concentration); (3) sleep restriction (02:00–07:00); and (4) alcohol/sleep restriction combined. This test battery included a Psychomotor Vigilance Task (PVT) as a measure of vigilant attention, and two ocular motor tasks—visually guided and antisaccade—to measure the involuntary and voluntary allocation of visual attention. Measurements and Results: Only the combined condition led to reductions in vigilant attention characterized by slower mean reaction time, fastest 10% responses, and increased number of lapses (P < 0.05) on the PVT. In addition, the combined condition led to a slowing in the voluntary allocation of attention as reflected by increased antisaccade latencies (P < 0.05). Sleep restriction alone however increased both antisaccade inhibitory errors [45.8% errors versus < 28.4% all others; P < 0.001] and the involuntary allocation of attention, as reflected by faster visually guided latencies (177.7 msec versus > 185.0 msec all others) to a peripheral target (P < 0.05). Conclusions: Our data reveal specific signatures for sleep related attention failure: the voluntary allocation of attention is impaired, whereas the involuntary allocation of attention is enhanced. This provides key evidence for the role of distraction in attention failure during sleep loss. Citation: Lee J

  12. Promoting Sleep Oscillations and Their Functional Coupling by Transcranial Stimulation Enhances Memory Consolidation in Mild Cognitive Impairment.

    PubMed

    Ladenbauer, Julia; Ladenbauer, Josef; Külzow, Nadine; de Boor, Rebecca; Avramova, Elena; Grittner, Ulrike; Flöel, Agnes

    2017-07-26

    Alzheimer's disease (AD) not only involves loss of memory functions, but also prominent deterioration of sleep physiology, which is already evident at the stage of mild cognitive impairment (MCI). Cortical slow oscillations (SO; 0.5-1 Hz) and thalamocortical spindle activity (12-15 Hz) during sleep, and their temporal coordination, are considered critical for memory formation. We investigated the potential of slow oscillatory transcranial direct current stimulation (so-tDCS), applied during a daytime nap in a sleep-state-dependent manner, to modulate these activity patterns and sleep-related memory consolidation in nine male and seven female human patients with MCI. Stimulation significantly increased overall SO and spindle power, amplified spindle power during SO up-phases, and led to stronger synchronization between SO and spindle power fluctuations in EEG recordings. Moreover, visual declarative memory was improved by so-tDCS compared with sham stimulation and was associated with stronger synchronization. These findings indicate a well-tolerated therapeutic approach for disordered sleep physiology and memory deficits in MCI patients and advance our understanding of offline memory consolidation. SIGNIFICANCE STATEMENT In the light of increasing evidence that sleep disruption is crucially involved in the progression of Alzheimer's disease (AD), sleep appears as a promising treatment target in this pathology, particularly to counteract memory decline. This study demonstrates the potential of a noninvasive brain stimulation method during sleep in patients with mild cognitive impairment (MCI), a precursor of AD, and advances our understanding of its mechanism. We provide first time evidence that slow oscillatory transcranial stimulation amplifies the functional cross-frequency coupling between memory-relevant brain oscillations and improves visual memory consolidation in patients with MCI. Copyright © 2017 the authors 0270-6474/17/377111-14$15.00/0.

  13. Prolonged enhancement of REM sleep produced by carbachol microinjection into the amygdala.

    PubMed

    Calvo, J M; Simón-Arceo, K; Fernández-Mas, R

    1996-01-31

    The effect on sleep organization of carbachol microinjected into different amygdaloid nuclei was analysed in 12 cats. Single carbachol doses of 8 micrograms in 0.50 microliter saline were delivered unilaterally or bilaterally into the central, basal, lateral or basolateral amygdaloid nucleus. Carbachol administration into the central nucleus induced a prolonged (5 days) enhancement of both REM sleep and its preceeding slow wave sleep episodes with PGO waves (sommeil phasique a ondes lentes, SPHOL), which was more pronounced following bilateral than unilateral carbachol administration. However, neither SPHOL nor REM sleep changes were produced by administration of carbachol into the other amygdaloid nuclei. We conclude that cholinergic activation of the central amygdaloid nucleus produces a long-term facilitation of REM sleep occurrence.

  14. Disorders of Arousal From Sleep and Violent Behavior: The Role of Physical Contact and Proximity

    PubMed Central

    Pressman, Mark R.

    2007-01-01

    Study Objectives: To review medical and legal case reports to determine how many appear to support the belief that violence against other individuals that occurs during Disorders of Arousal - sleepwalking, confusional arousal, and sleep terrors – is triggered by direct physical contact or close proximity to that individual and does not occur randomly or spontaneously. Design: Historical review of case reports in the medical and legal literature. Measurements and Results: A total of 32 cases drawn from medical and legal literature were reviewed. Each case contained a record of violence associated with Disorders of Arousal; in each, details of the violent behavior were available. Violent behaviors associated with provocations and/or close proximity were found to be present in 100% of confusional arousal patients and 81% of sleep terror patients. Violent behaviors were associated with provocation or close proximity in 40%–90% of sleepwalking cases, depending on whether the legal verdict and other factors were taken into account. Often the provocation was quite minor and the response greatly exaggerated. The specific manner in which the violence was triggered differed among sleepwalking, confusional arousals, and sleep terrors. Conclusions: In the cases reviewed, violent behavior directed against other individuals associated with Disorders of Arousal most frequently appeared to follow direct provocation by, or close proximity to, another individual. Sleepwalkers most often did not seek out victims, but rather the victims sought out or encountered the sleepwalker. These conclusions are tempered by several limitations: the selection of cases was not random and may not represent an accurate sample of violent behaviors associated with Disorders of Arousal. Also, final verdicts by juries in reported legal cases should not be confused with scientific proof of the presence or absence of sleepwalking. The pathophysiology of Disorders of Arousal with and without violent

  15. Systematic review: relationships between sleep and gastro-oesophageal reflux.

    PubMed

    Dent, J; Holloway, R H; Eastwood, P R

    2013-10-01

    Gastro-oesophageal reflux disease (GERD) adversely impacts on sleep, but the mechanism remains unclear. To review the literature concerning gastro-oesophageal reflux during the sleep period, with particular reference to the sleep/awake state at reflux onset. Studies identified by systematic literature searches were assessed. Overall patterns of reflux during the sleep period show consistently that oesophageal acid clearance is slower, and reflux frequency and oesophageal acid exposure are higher in patients with GERD than in healthy individuals. Of the 17 mechanistic studies identified by the searches, 15 reported that a minority of reflux episodes occurred during stable sleep, but the prevailing sleep state at the onset of reflux in these studies remains unclear owing to insufficient temporal resolution of recording or analysis methods. Two studies, in healthy individuals and patients with GERD, analysed sleep and pH with adequate resolution for temporal alignment of sleep state and the onset of reflux: all 232 sleep period reflux episodes evaluated occurred during arousals from sleep lasting less than 15 s or during longer duration awakenings. Six mechanistic studies found that transient lower oesophageal sphincter relaxations were the most common mechanism of sleep period reflux. Contrary to the prevailing view, subjective impairment of sleep in GERD is unlikely to be due to the occurrence of reflux during stable sleep, but could result from slow clearance of acid reflux that occurs during arousals or awakenings from sleep. Definitive studies are needed on the sleep/awake state at reflux onset across the full GERD spectrum. © 2013 John Wiley & Sons Ltd.

  16. Sleep stage 2: an electroencephalographic, autonomic, and hormonal duality.

    PubMed

    Brandenberger, Gabrielle; Ehrhart, Jean; Buchheit, Martin

    2005-12-01

    It is generally thought that the electroencephalogram of sleep stage 2 is not uniform, depending on whether sleep stage 2 evolves toward slow-wave sleep (SWS) or toward rapid eye movement (REM) sleep. We provide here further evidence of the duality of sleep stage 2 on the basis of its autonomic and hormonal background. Fourteen healthy men (aged 21-29 years) underwent 1 experimental night. Sleep and cardiac recordings were taken from 11:00 PM to 7:00 AM. Blood was sampled continuously over 10-minute periods. Autonomic activity, as inferred from heart rate variability analysis and hormone profiles, were examined with regard to the normalized hypnograms. We found a dual activity of the autonomic nervous system during sleep stage 2, with a progressive decrease in heart rate variability sympathetic indexes during the transition toward SWS contrasting with high and rather stable levels during sleep stage 2 that evolve toward REM sleep. Also, different profiles were observed in 2 major hormone systems, the activating adrenocorticotropic system and the renin-angiotensin system. Cortisol, in its active period of circadian secretion, was stable during sleep stage 2 preceding SWS and increased significantly when sleep stage 2 preceded REM sleep. For plasma renin activity, sleep stage 2 played a transitional role, initiating increasing levels that peaked during SWS and decreasing levels that reached a nadir during REM sleep. These results indicate an autonomic and hormonal duality of sleep stage 2 that is characterized by a "quiet" period preparing SWS and an "active" period preceding REM sleep. These differences may confer a fundamental role on this sleep stage in ultradian sleep regulation.

  17. The effects of physical activity on sleep: a meta-analytic review.

    PubMed

    Kredlow, M Alexandra; Capozzoli, Michelle C; Hearon, Bridget A; Calkins, Amanda W; Otto, Michael W

    2015-06-01

    A significant body of research has investigated the effects of physical activity on sleep, yet this research has not been systematically aggregated in over a decade. As a result, the magnitude and moderators of these effects are unclear. This meta-analytical review examines the effects of acute and regular exercise on sleep, incorporating a range of outcome and moderator variables. PubMed and PsycINFO were used to identify 66 studies for inclusion in the analysis that were published through May 2013. Analyses reveal that acute exercise has small beneficial effects on total sleep time, sleep onset latency, sleep efficiency, stage 1 sleep, and slow wave sleep, a moderate beneficial effect on wake time after sleep onset, and a small effect on rapid eye movement sleep. Regular exercise has small beneficial effects on total sleep time and sleep efficiency, small-to-medium beneficial effects on sleep onset latency, and moderate beneficial effects on sleep quality. Effects were moderated by sex, age, baseline physical activity level of participants, as well as exercise type, time of day, duration, and adherence. Significant moderation was not found for exercise intensity, aerobic/anaerobic classification, or publication date. Results were discussed with regards to future avenues of research and clinical application to the treatment of insomnia.

  18. The actions of dihydroxyphenylalanine and dihydroxyphenylserine on the sleep-wakefulness cycle of the rat after peripheral decarboxylase inhibition.

    PubMed Central

    Altier, H; Moldes, M; Monti, J M

    1975-01-01

    1. The actions of dihydroxyphenylalanine (DOPA) and dihydroxyphenylserine (DOPS) were assessed on the sleep-wakefulness cycle of male Wistar rats. 2. In comparative studies the extracerebral decarboxylase was inhibited with serinetrihydroxybenzylhydrazide (RO 4-4602) before injection of DOPA or DOPS. 3. DOPA (80-160 mg/kg, i.p.) with or without previous inhibition of the peripheral decarboxylase gave rise to an initial significant increase of slow wave activity, which may be related to a release of 5-hydroxytryptamine. 4. During the subsequent 8 h sessions, DOPA significantly decreased slow wave sleep and rapid eye movement sleep (REM) and increased wakefulness. 5. DOPS (80-160 mg/kg, i.p.) did not significantly modify the sleep-wakefulness cycle apart from a decrease of the latency for the first REM episode after 160 mg/kg in the RO 4-4602 pretreated animals. PMID:166716

  19. Effects of Slow-Stroke Back Massage on Symptom Cluster in Adult Patients With Acute Leukemia: Supportive Care in Cancer Nursing.

    PubMed

    Miladinia, Mojtaba; Baraz, Shahram; Shariati, Abdolali; Malehi, Amal Saki

    Patients with acute leukemia usually experience pain, fatigue, and sleep disorders, which affect their quality of life. Massage therapy, as a nondrug approach, can be useful in controlling such problems. However, very few studies have been conducted on the effects of massage therapy on the complications of leukemia. The aim of this study was to examine the effects of slow-stroke back massage (SSBM) on the symptom cluster in acute leukemia adult patients undergoing chemotherapy. In this randomized controlled trial, 60 patients with acute leukemia were allocated randomly to either the intervention or control group. The intervention group received SSBM 3 times a week (every other day for 10 minutes) for 4 weeks. The pain, fatigue, and sleep disorder intensities were measured using the numeric rating scale. The sleep quality was measured using the Pittsburgh Sleep Quality Index. Statistical tests of χ, t test, and the repeated-measure analysis of variance were used for data analysis. Results showed that the SSBM intervention significantly reduced the progressive sleep disorder, pain, fatigue, and improved sleep quality over time. Slow-stroke back massage, as a simple, noninvasive, and cost-effective approach, along with routine nursing care, can be used to improve the symptom cluster of pain, fatigue, and sleep disorders in leukemia patients. Oncology nurses can increase their knowledge regarding this symptom cluster and work to diminish the cluster components by using SSBM in adult leukemia patients.

  20. Reduction of nocturnal slow-wave activity affects daytime vigilance lapses and memory encoding but not reaction time or implicit learning.

    PubMed

    Van Der Werf, Ysbrand D; Altena, Ellemarije; Vis, José C; Koene, Teddy; Van Someren, Eus J W

    2011-01-01

    Total sleep deprivation in healthy subjects has a profound effect on the performance on tasks measuring sustained attention or vigilance. We here report how a selective disruption of deep sleep only, that is, selective slow-wave activity (SWA) reduction, affects the performance of healthy well-sleeping subjects on several tasks: a "simple" and a "complex" vigilance task, a declarative learning task, and an implicit learning task despite unchanged duration of sleep. We used automated electroencephalogram (EEG) dependent acoustic feedback aimed at selective interference with-and reduction of-SWA. In a within-subject repeated measures crossover design, performance on the tasks was assessed in 13 elderly adults without sleep complaints after either SWA-reduction or after normal sleep. The number of vigilance lapses increased as a result of SWA reduction, irrespective of the type of vigilance task. Recognition on the declarative memory task was also affected by SWA reduction, associated with a decreased activation of the right hippocampus on encoding (measured with fMRI) suggesting a weaker memory trace. SWA reduction, however, did not affect reaction time on either of the vigilance tasks or implicit memory task performance. These findings suggest a specific role of slow oscillations in the subsequent daytime ability to maintain sustained attention and to encode novel declarative information but not to maintain response speed or to build implicit memories. Of particular interest is that selective SWA reduction can mimic some of the effects of total sleep deprivation, while not affecting sleep duration. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Chronic social stress leads to altered sleep homeostasis in mice.

    PubMed

    Olini, Nadja; Rothfuchs, Iru; Azzinnari, Damiano; Pryce, Christopher R; Kurth, Salome; Huber, Reto

    2017-06-01

    Disturbed sleep and altered sleep homeostasis are core features of many psychiatric disorders such as depression. Chronic uncontrollable stress is considered an important factor in the development of depression, but little is known on how chronic stress affects sleep regulation and sleep homeostasis. We therefore examined the effects of chronic social stress (CSS) on sleep regulation in mice. Adult male C57BL/6 mice were implanted for electrocortical recordings (ECoG) and underwent either a 10-day CSS protocol or control handling (CON). Subsequently, ECoG was assessed across a 24-h post-stress baseline, followed by a 4-h sleep deprivation, and then a 20-h recovery period. After sleep deprivation, CSS mice showed a blunted increase in sleep pressure compared to CON mice, as measured using slow wave activity (SWA, electroencephalographic power between 1-4Hz) during non-rapid eye movement (NREM) sleep. Vigilance states did not differ between CSS and CON mice during post-stress baseline, sleep deprivation or recovery, with the exception of CSS mice exhibiting increased REM sleep during recovery sleep. Behavior during sleep deprivation was not affected by CSS. Our data provide evidence that CSS alters the homeostatic regulation of sleep SWA in mice. In contrast to acute social stress, which results in a faster SWA build-up, CSS decelerates the homeostatic build up. These findings are discussed in relation to the causal contribution of stress-induced sleep disturbance to depression. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Chronic high-caloric diet modifies sleep homeostasis in mice.

    PubMed

    Panagiotou, Maria; Meijer, Johanna H; Deboer, Tom

    2018-05-08

    Obesity prevalence and sleep habit changes are commonplace nowadays, due to modern lifestyle. A bidirectional relationship likely exists between sleep quality and metabolic disruptions, that could impact quality of life. In our study, we investigated the effects of a chronic high-caloric diet on sleep architecture and sleep regulation in mice. We studied the effect of three months high-caloric diet (HCD, 45% fat) on sleep and the sleep electroencephalogram (EEG) in C57BL/6J mice during 24-h baseline (BL) recordings, and after 6-h sleep deprivation (SD). We examined the effect of HCD on sleep homeostasis, by performing parameter estimation analysis and simulations of the sleep homeostatic Process S, a measure of sleep pressure, which is reflected in the non-rapid-eye-movement (NREM) sleep slow-wave-activity (SWA, EEG power density between 0.5-4.0 Hz). Compared to controls (n=11, 30.7±0.8g), mice fed with HCD (n=9, 47.6±0.8g) showed an increased likelihood of consecutive NREM-REM sleep cycles, increased REM sleep and decreased NREM sleep EEG SWA. After SD these effects were more pronounced. The simulation resulted in a close fit between the time course of SWA and Process S in both groups. HCD fed mice had a slower time constant (Ti = 15.98 h) for the increase in homeostatic sleep pressure compared to controls (5.95 h) indicating a reduced effect of waking on the increase in sleep pressure. Our results suggest that chronic HCD consumption impacts sleep regulation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Exploratory behavior, cortical BDNF expression, and sleep homeostasis.

    PubMed

    Huber, Reto; Tononi, Giulio; Cirelli, Chiara

    2007-02-01

    Slow-wave activity (SWA; 0.5-4.0 Hz) during non-rapid eye movement (NREM) sleep is a reliable indicator of sleep need, as it increases with the duration of prior wakefulness and decreases during sleep. However, which biologic process occurring during wakefulness is responsible for the increase of sleep SWA remains unknown. The aim of the study was to determine whether neuronal plasticity underlies the link between waking activities and the SWA response. We manipulated, in rats, the amount of exploratory activity while maintaining the total duration of waking constant. We then measured the extent to which exploration increases cortical expression of plasticity-related genes (BDNF, Arc, Homer, NGFI-A), and the SWA response once the animals were allowed to sleep. Basic neurophysiology and molecular laboratory. Male Wistar Kyoto rats (250-300 g; 2-3 month old). None. We found that, within the same animal, the amount of exploratory behavior during wakefulness could predict the extent to which BDNF was induced, as well as the extent of the homeostatic SWA response during subsequent sleep. This study suggests a direct link between the synaptic plasticity triggered by waking activities and the homeostatic sleep response and identifies BDNF as a major mediator of this link at the molecular level.

  4. Electroencephalogram spindle activity during dexmedetomidine sedation and physiological sleep.

    PubMed

    Huupponen, E; Maksimow, A; Lapinlampi, P; Särkelä, M; Saastamoinen, A; Snapir, A; Scheinin, H; Scheinin, M; Meriläinen, P; Himanen, S-L; Jääskeläinen, S

    2008-02-01

    Dexmedetomidine, a selective alpha(2)-adrenoceptor agonist, induces a unique, sleep-like state of sedation. The objective of the present work was to study human electroencephalogram (EEG) sleep spindles during dexmedetomidine sedation and compare them with spindles during normal physiological sleep, to test the hypothesis that dexmedetomidine exerts its effects via normal sleep-promoting pathways. EEG was continuously recorded from a bipolar frontopolar-laterofrontal derivation with Entropy Module (GE Healthcare) during light and deep dexmedetomidine sedation (target-controlled infusions set at 0.5 and 3.2 ng/ml) in 11 healthy subjects, and during physiological sleep in 10 healthy control subjects. Sleep spindles were visually scored and quantitatively analyzed for density, duration, amplitude (band-pass filtering) and frequency content (matching pursuit approach), and compared between the two groups. In visual analysis, EEG activity during dexmedetomidine sedation was similar to physiological stage 2 (S2) sleep with slight to moderate amount of slow-wave activity and abundant sleep spindle activity. In quantitative EEG analyses, sleep spindles were similar during dexmedetomidine sedation and normal sleep. No statistically significant differences were found in spindle density, amplitude or frequency content, but the spindles during dexmedetomidine sedation had longer duration (mean 1.11 s, SD 0.14 s) than spindles in normal sleep (mean 0.88 s, SD 0.14 s; P=0.0014). Analysis of sleep spindles shows that dexmedetomidine produces a state closely resembling physiological S2 sleep in humans, which gives further support to earlier experimental evidence for activation of normal non-rapid eye movement sleep-promoting pathways by this sedative agent.

  5. Disorders of arousal from sleep and violent behavior: the role of physical contact and proximity.

    PubMed

    Pressman, Mark R

    2007-08-01

    To review medical and legal case reports to determine how many appear to support the belief that violence against other individuals that occurs during Disorders of Arousal - sleepwalking, confusional arousal, and sleep terrors - is triggered by direct physical contact or close proximity to that individual and does not occur randomly or spontaneously. Historical review of case reports in the medical and legal literature. A total of 32 cases drawn from medical and legal literature were reviewed. Each case contained a record of violence associated with Disorders of Arousal; in each, details of the violent behavior were available. Violent behaviors associated with provocations and/or close proximity were found to be present in 100% of confusional arousal patients and 81% of sleep terror patients. Violent behaviors were associated with provocation or close proximity in 40%-90% of sleepwalking cases, depending on whether the legal verdict and other factors were taken into account. Often the provocation was quite minor and the response greatly exaggerated. The specific manner in which the violence was triggered differed among sleepwalking, confusional arousals, and sleep terrors. In the cases reviewed, violent behavior directed against other individuals associated with Disorders of Arousal most frequently appeared to follow direct provocation by, or close proximity to, another individual. Sleepwalkers most often did not seek out victims, but rather the victims sought out or encountered the sleepwalker. These conclusions are tempered by several limitations: the selection of cases was not random and may not represent an accurate sample of violent behaviors associated with Disorders of Arousal. Also, final verdicts by juries in reported legal cases should not be confused with scientific proof of the presence or absence of sleepwalking. The pathophysiology of Disorders of Arousal with and without violent behavior could be associated with normally occurring deactivation of the

  6. Prior sleep with zolpidem enhances the effect of caffeine or modafinil during 18 hours continuous work.

    PubMed

    Batéjat, Denise; Coste, Olivier; Van Beers, Pascal; Lagarde, Didier; Piérard, Christophe; Beaumont, Maurice

    2006-05-01

    Continuous military operations may disrupt sleep-wakefulness cycles, resulting in impaired performance and fatigue. We assessed the treatment efficacy of a hypnotic-psychostimulant combination to maintain sleep quality, performance, and alertness during a 42-h simulated military operation. A 6-h prophylactic sleep period with zolpidem (ZOL) followed by a 18-h continuous work period with administration at midway of 300 mg of slow release caffeine (CAF) or 200 mg of modafinil (MOD) was performed by eight healthy male subjects. Performance level was assessed with a reaction time test, a memory search test, a dual task, an attention test, and a computerized Stroop test. Cortical activation level was evaluated by the Critical Flicker Frequency test. Subjective sleepiness was evaluated using a visual analog scale and questionnaires. Effects of drugs on prophylactic and recovery sleep were also quantified from EEG recordings. CAF and MOD maintained performance and alertness throughout the 18-h work period. As shown by EEG recordings, ZOL improved prophylactic sleep without any deleterious effect on performance immediately after waking. As a result of its positive effects on prophylactic sleep, a lower pressure for slow wave sleep during recovery sleep was observed; nevertheless, zolpidem did not enhance the effects of either psychostimulant on performance. MOD and CAF may be of value in promoting performance and wakefulness during shiftwork or military operations while zolpidem improves prophylactic sleep quality without any deleterious effect after waking. We concluded that a zolpidem/ caffeine or modafinil combination could be useful in a context of environmental conditions not conducive to sleep.

  7. Effect of a medicinal plant (Passiflora incarnata L) on sleep

    PubMed Central

    Guerrero, Fructuoso Ayala; Medina, Graciela Mexicano

    2017-01-01

    INTRODUCTION Extracts of the plant Passiflora incarnata L. (Passifloraceae) were administered intraperitoneally in order to test its effects on sleep. METHOD Experiments were carried out on chronically implanted male adult wistar rats to obtain cerebral (EEG), ocular (EOG) and muscular (EMG) activities throughout their states of vigilance. Polygraphic recordings were taken during 9 continuous hours before and after the extract administration (500 mg/kg). RESULTS Passiflora incarnata induced a significant increment in the total sleep time (p<0.05). This increment was due to an increase in the time spent by animals in slow wave sleep (SWS). Concomitantly, a significant decrement in wakefulness (W) was observed (p<0.05). In contrast, time spent in rapid eye movement (REM) sleep showed a decreasing tendency, since both its frequency and mean duration were reduced. CONCLUSIONS The extracts obtained from Passiflora incarnata can be considered as appropriated sleep inducers. PMID:29410738

  8. The effects of various protein synthesis inhibitors on the sleep-wake cycle of rats.

    PubMed

    Rojas-Ramírez, J A; Aguilar-Jiménez, E; Posadas-Andrews, A; Bernal-Pedraza, J G; Drucker-Colín, R R

    1977-07-18

    The present investigation sought to determine the effects of Anisomycin (A), Chloramphenicol (ChA), Vincristine (V), and Penicilline G on the sleep-wake cycle of rats. It was found that both high and low doses of anisomycin decreased rapid eye movement (REM) sleep, while only high doses of ChA and V produced such a decrease. Slow wave sleep (SWS) was unaffected by these drugs. Penicilline G, on the other hand, had no effect on the sleep-wake cycle. It was further shown that the reduction of REM sleep was the result of a decrease in the number of REM periods rather than in the duration of each individual period. These results suggest that protein synthesis may participate in the mechanisms that trigger REM sleep.

  9. [EFFECTS OF ELECTRICAL STIMULATION OF NUCLEUS RETICULARIS PONTIS ORALIS ON THE SLEEP-WAKING STATES IN KRUSHINSKII-MOLODKINA STRAIN RATS].

    PubMed

    Vataev, S I; Malgina, N A; Oganesyan, G A

    2015-07-01

    The effects of electrical stimulation of nucleus reticularis pontis oralis on the behavior and brain electrical activity during all phases of the sleep-waking cycle was studied in Krushinskii-Molodkina strain rats, which have an inherited predisposition to audiogenic seizures. Electrical stimulation with 7 Hz frequency in the deep stage of slow-wave sleep cause appearance the fast-wave sleep. Similar stimulation during fast-wave sleep periods did not effects on the electrographic patterns and EEG spectral characteristics of hippocampus, visual, auditory and somatocnen nrnrenc nf the cnrtey ThPe sfimul1stinns did nnt break a fast-wave sleenhut increased almost twice due the duration of these sleep episodes. After electrical stimulation by same frequency during the wakeftlness and superficial slow-wave sleep states, the patterns and spectral characteristics of brain electrical activity in rats showed no significant changes as compared with controls. The results of this study indicate that the state of the animals sleep-waking cycle at the time of stimulation is a critical variable that influences the responses which are induced by electrical stimulation of the nucleus reticularis pontis oralis.

  10. Effect of inaction on function of fast and slow muscle spindles

    NASA Technical Reports Server (NTRS)

    Arutyunyan, R. S.

    1980-01-01

    There is no data on the comparative effect of tenotomy on the function of the muscle spindles of fast and slow muscles. This study covers this question. The experiments were conducted on cats. The musuculus extensor digitorum longus (m. EDL) was selected as the fast muscle, and the musculus soleus (m. Sol.) as the slow. In a comparison of the spontaneous activity of primary and secondary endings of the fast and slow muscle spindles (i.e., the activity with complete relaxation of the muscles) normally no difference between them was successfully found. The authors recorded the integrative, and not the individual activity, and secondly, under conditions of such recording technique, those slight changes that are observed in the fast muscle receptors could remain unnoticed.

  11. Psychosocial correlates of sleep quality and architecture in women with metastatic breast cancer.

    PubMed

    Aldridge-Gerry, Arianna; Zeitzer, Jamie M; Palesh, Oxana G; Jo, Booil; Nouriani, Bita; Neri, Eric; Spiegel, David

    2013-11-01

    Sleep disturbance is prevalent among women with metastatic breast cancer (MBC). Our study examined the relationship of depression and marital status to sleep assessed over three nights of polysomnography (PSG). Women with MBC (N=103) were recruited; they were predominately white (88.2%) and 57.8±7.7 years of age. Linear regression analyses assessed relationships among depression, marital status, and sleep parameters. Women with MBC who reported more depressive symptoms had lighter sleep (e.g., stage 1 sleep; P<.05), less slow-wave sleep (SWS) (P<.05), and less rapid eye movement (REM) sleep (P<.05). Single women had less total sleep time (TST) (P<.01), more wake after sleep onset (WASO) (P<.05), worse sleep efficiency (SE) (P<.05), lighter sleep (e.g., stage 1; P<.05), and less REM sleep (P<.05) than married women. Significant interactions indicated that depressed and single women had worse sleep quality than partnered women or those who were not depressed. Women with MBC and greater symptoms of depression had increased light sleep and reduced SWS and REM sleep, and single women had worse sleep quality and greater light sleep than married counterparts. Marriage was related to improved sleep for women with more depressive symptoms. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Sleep facilitates learning a new linguistic rule.

    PubMed

    Batterink, Laura J; Oudiette, Delphine; Reber, Paul J; Paller, Ken A

    2014-12-01

    Natural languages contain countless regularities. Extraction of these patterns is an essential component of language acquisition. Here we examined the hypothesis that memory processing during sleep contributes to this learning. We exposed participants to a hidden linguistic rule by presenting a large number of two-word phrases, each including a noun preceded by one of four novel words that functioned as an article (e.g., gi rhino). These novel words (ul, gi, ro and ne) were presented as obeying an explicit rule: two words signified that the noun referent was relatively near, and two that it was relatively far. Undisclosed to participants was the fact that the novel articles also predicted noun animacy, with two of the articles preceding animate referents and the other two preceding inanimate referents. Rule acquisition was tested implicitly using a task in which participants responded to each phrase according to whether the noun was animate or inanimate. Learning of the hidden rule was evident in slower responses to phrases that violated the rule. Responses were delayed regardless of whether rule-knowledge was consciously accessible. Brain potentials provided additional confirmation of implicit and explicit rule-knowledge. An afternoon nap was interposed between two 20-min learning sessions. Participants who obtained greater amounts of both slow-wave and rapid-eye-movement sleep showed increased sensitivity to the hidden linguistic rule in the second session. We conclude that during sleep, reactivation of linguistic information linked with the rule was instrumental for stabilizing learning. The combination of slow-wave and rapid-eye-movement sleep may synergistically facilitate the abstraction of complex patterns in linguistic input. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Sleep facilitates learning a new linguistic rule

    PubMed Central

    Batterink, Laura J.; Oudiette, Delphine; Reber, Paul J.; Paller, Ken A.

    2014-01-01

    Natural languages contain countless regularities. Extraction of these patterns is an essential component of language acquisition. Here we examined the hypothesis that memory processing during sleep contributes to this learning. We exposed participants to a hidden linguistic rule by presenting a large number of two-word phrases, each including a noun preceded by one of four novel words that functioned as an article (e.g., gi rhino). These novel words (ul, gi, ro and ne) were presented as obeying an explicit rule: two words signified that the noun referent was relatively near, and two that it was relatively far. Undisclosed to participants was the fact that the novel articles also predicted noun animacy, with two of the articles preceding animate referents and the other two preceding inanimate referents. Rule acquisition was tested implicitly using a task in which participants responded to each phrase according to whether the noun was animate or inanimate. Learning of the hidden rule was evident in slower responses to phrases that violated the rule. Responses were delayed regardless of whether rule-knowledge was consciously accessible. Brain potentials provided additional confirmation of implicit and explicit rule-knowledge. An afternoon nap was interposed between two 20-min learning sessions. Participants who obtained greater amounts of both slow-wave and rapid-eye-movement sleep showed increased sensitivity to the hidden linguistic rule in the second session. We conclude that during sleep, reactivation of linguistic information linked with the rule was instrumental for stabilizing learning. The combination of slow-wave and rapid-eye-movement sleep may synergistically facilitate the abstraction of complex patterns in linguistic input. PMID:25447376

  14. Antidepressant suppression of non-REM sleep spindles and REM sleep impairs hippocampus-dependent learning while augmenting striatum-dependent learning.

    PubMed

    Watts, Alain; Gritton, Howard J; Sweigart, Jamie; Poe, Gina R

    2012-09-26

    Rapid eye movement (REM) sleep enhances hippocampus-dependent associative memory, but REM deprivation has little impact on striatum-dependent procedural learning. Antidepressant medications are known to inhibit REM sleep, but it is not well understood if antidepressant treatments impact learning and memory. We explored antidepressant REM suppression effects on learning by training animals daily on a spatial task under familiar and novel conditions, followed by training on a procedural memory task. Daily treatment with the antidepressant and norepinephrine reuptake inhibitor desipramine (DMI) strongly suppressed REM sleep in rats for several hours, as has been described in humans. We also found that DMI treatment reduced the spindle-rich transition-to-REM sleep state (TR), which has not been previously reported. DMI REM suppression gradually weakened performance on a once familiar hippocampus-dependent maze (reconsolidation error). DMI also impaired learning of the novel maze (consolidation error). Unexpectedly, learning of novel reward positions and memory of familiar positions were equally and oppositely correlated with amounts of TR sleep. Conversely, DMI treatment enhanced performance on a separate striatum-dependent, procedural T-maze task that was positively correlated with the amounts of slow-wave sleep (SWS). Our results suggest that learning strategy switches in patients taking REM sleep-suppressing antidepressants might serve to offset sleep-dependent hippocampal impairments to partially preserve performance. State-performance correlations support a model wherein reconsolidation of hippocampus-dependent familiar memories occurs during REM sleep, novel information is incorporated and consolidated during TR, and dorsal striatum-dependent procedural learning is augmented during SWS.

  15. Antidepressant Suppression of Non-REM Sleep Spindles and REM Sleep Impairs Hippocampus-Dependent Learning While Augmenting Striatum-Dependent Learning

    PubMed Central

    Watts, Alain; Gritton, Howard J.; Sweigart, Jamie

    2012-01-01

    Rapid eye movement (REM) sleep enhances hippocampus-dependent associative memory, but REM deprivation has little impact on striatum-dependent procedural learning. Antidepressant medications are known to inhibit REM sleep, but it is not well understood if antidepressant treatments impact learning and memory. We explored antidepressant REM suppression effects on learning by training animals daily on a spatial task under familiar and novel conditions, followed by training on a procedural memory task. Daily treatment with the antidepressant and norepinephrine reuptake inhibitor desipramine (DMI) strongly suppressed REM sleep in rats for several hours, as has been described in humans. We also found that DMI treatment reduced the spindle-rich transition-to-REM sleep state (TR), which has not been previously reported. DMI REM suppression gradually weakened performance on a once familiar hippocampus-dependent maze (reconsolidation error). DMI also impaired learning of the novel maze (consolidation error). Unexpectedly, learning of novel reward positions and memory of familiar positions were equally and oppositely correlated with amounts of TR sleep. Conversely, DMI treatment enhanced performance on a separate striatum-dependent, procedural T-maze task that was positively correlated with the amounts of slow-wave sleep (SWS). Our results suggest that learning strategy switches in patients taking REM sleep-suppressing antidepressants might serve to offset sleep-dependent hippocampal impairments to partially preserve performance. State–performance correlations support a model wherein reconsolidation of hippocampus-dependent familiar memories occurs during REM sleep, novel information is incorporated and consolidated during TR, and dorsal striatum-dependent procedural learning is augmented during SWS. PMID:23015432

  16. Deep Conservation of Genes Required for Both Drosophila melanogaster and Caenorhabditis elegans Sleep Includes a Role for Dopaminergic Signaling

    PubMed Central

    Singh, Komudi; Ju, Jennifer Y.; Walsh, Melissa B.; DiIorio, Michael A.; Hart, Anne C.

    2014-01-01

    Objectives: Cross-species conservation of sleep-like behaviors predicts the presence of conserved molecular mechanisms underlying sleep. However, limited experimental evidence of conservation exists. Here, this prediction is tested directly. Measurements and Results: During lethargus, Caenorhabditis elegans spontaneously sleep in short bouts that are interspersed with bouts of spontaneous locomotion. We identified 26 genes required for Drosophila melanogaster sleep. Twenty orthologous C. elegans genes were selected based on similarity. Their effect on C. elegans sleep and arousal during the last larval lethargus was assessed. The 20 most similar genes altered both the quantity of sleep and arousal thresholds. In 18 cases, the direction of change was concordant with Drosophila studies published previously. Additionally, we delineated a conserved genetic pathway by which dopamine regulates sleep and arousal. In C. elegans neurons, G-alpha S, adenylyl cyclase, and protein kinase A act downstream of D1 dopamine receptors to regulate these behaviors. Finally, a quantitative analysis of genes examined herein revealed that C. elegans arousal thresholds were directly correlated with amount of sleep during lethargus. However, bout duration varies little and was not correlated with arousal thresholds. Conclusions: The comprehensive analysis presented here suggests that conserved genes and pathways are required for sleep in invertebrates and, likely, across the entire animal kingdom. The genetic pathway delineated in this study implicates G-alpha S and previously known genes downstream of dopamine signaling in sleep. Quantitative analysis of various components of quiescence suggests that interdependent or identical cellular and molecular mechanisms are likely to regulate both arousal and sleep entry. Citation: Singh K, Ju JY, Walsh MB, Dilorio MA, Hart AC. Deep conservation of genes required for both Drosophila melanogaster and Caenorhabditis elegans sleep includes a role for

  17. Sleep, Cognition, and Normal Aging: Integrating a Half-Century of Multidisciplinary Research

    PubMed Central

    Scullin, Michael K.; Bliwise, Donald L.

    2014-01-01

    Sleep is implicated in cognitive functioning in young adults. With increasing age there are substantial changes to sleep quantity and quality including changes to slow wave sleep, spindle density, and sleep continuity/fragmentation. A provocative question for the field of cognitive aging is whether such changes in sleep physiology affect cognition (e.g., memory consolidation). We review nearly a half-century of research studies across 7 diverse correlational and experimental literature domains, which historically have had little crosstalk. Broadly speaking, sleep and cognitive functions are often related in advancing age, though the prevalence of null effects (including correlations in the unexpected, negative direction) in healthy older adults indicates that age may be an effect modifier of these associations. We interpret the literature as suggesting that maintaining good sleep quality, at least in young adulthood and middle age, promotes better cognitive functioning and serves to protect against age-related cognitive declines. PMID:25620997

  18. Automatic sleep stage classification using two facial electrodes.

    PubMed

    Virkkala, Jussi; Velin, Riitta; Himanen, Sari-Leena; Värri, Alpo; Müller, Kiti; Hasan, Joel

    2008-01-01

    Standard sleep stage classification is based on visual analysis of central EEG, EOG and EMG signals. Automatic analysis with a reduced number of sensors has been studied as an easy alternative to the standard. In this study, a single-channel electro-oculography (EOG) algorithm was developed for separation of wakefulness, SREM, light sleep (S1, S2) and slow wave sleep (S3, S4). The algorithm was developed and tested with 296 subjects. Additional validation was performed on 16 subjects using a low weight single-channel Alive Monitor. In the validation study, subjects attached the disposable EOG electrodes themselves at home. In separating the four stages total agreement (and Cohen's Kappa) in the training data set was 74% (0.59), in the testing data set 73% (0.59) and in the validation data set 74% (0.59). Self-applicable electro-oculography with only two facial electrodes was found to provide reasonable sleep stage information.

  19. Going local: insights from EEG and stereo-EEG studies of the human sleep-wake cycle.

    PubMed

    Ferrara, Michele; De Gennaro, Luigi

    2011-01-01

    In the present paper, we reviewed a large body of evidence, mainly from quantitative EEG studies of our laboratory, supporting the notion that sleep is a local and use-dependent process. Quantitative analyses of sleep EEG recorded from multiple cortical derivations clearly indicate that every sleep phenomenon, from sleep onset to the awakening, is strictly local in nature. Sleep onset first occurs in frontal areas, and a frontal predominance of low-frequency power persists in the first part of the night, when the homeostatic processes mainly occur, and then it vanishes. Upon awakening, we showed an asynchronous EEG activation of different cortical areas, the more anterior ones being the first to wake up. During extended periods of wakefulness, the increase of sleepiness-related low-EEG frequencies is again evident over the frontal derivations. Similarly, experimental manipulations of sleep length by total sleep deprivation, partial sleep curtailment or even selective slow-wave sleep deprivation lead to a slow-wave activity rebound localized especially on the anterior derivations. Thus, frontal areas are crucially involved in sleep homeostasis. According to the local use-dependent theory, this would derive from a higher sleep need of the frontal cortex, which in turn is due to its higher levels of activity during wakefulness. The fact that different brain regions can simultaneously exhibit different sleep intensities indicates that sleep is not a spatially global and uniform state, as hypothesized in the theory. We have also reviewed recent evidence of localized effects of learning and plasticity on EEG sleep measures. These studies provide crucial support to a key concept in the theory, the one claiming that local sleep characteristics should be use-dependent. Finally, we have reported data corroborating the notion that sleep is not necessarily present simultaneously in the entire brain. Our stereo-EEG recordings clearly indicate that sleep and wakefulness can co

  20. Altered Nocturnal Cardiovascular Control in Children With Sleep-Disordered Breathing.

    PubMed

    El-Hamad, Fatima; Immanuel, Sarah; Liu, Xiao; Pamula, Yvonne; Kontos, Anna; Martin, James; Kennedy, Declan; Kohler, Mark; Porta, Alberto; Baumert, Mathias

    2017-10-01

    To assess cardiovascular control during sleep in children with sleep-disordered breathing (SDB) and the effect of adenotonsillectomy in comparison to healthy nonsnoring children. Cardiorespiratory signals obtained from overnight polysomnographic recordings of 28 children with SDB and 34 healthy nonsnoring children were analyzed. We employed an autoregressive closed-loop model with heart period (RR) and pulse transit time (PTT) as outputs and respiration as an external input to obtain estimates of respiratory gain and baroreflex gain. Mean and variability of PTT were increased in children with SDB across all stages of sleep. Low frequency power of RR and PTT were attenuated during non-rapid eye movement (REM) sleep. Baroreflex sensitivity was reduced in children with SDB in stage 2 sleep, while respiratory gain was increased in slow wave sleep. After adenotonsillectomy, these indices normalized in the SDB group attaining values comparable to those of healthy children. In children with mild-to-moderate SDB, vasomotor activity is increased and baroreflex sensitivity decreased during quiet, event-free non-REM sleep. Adenotonsillectomy appears to reverse this effect. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.