Science.gov

Sample records for spouted bed reactor

  1. EMERGING TECHNOLOGY BULLETIN: SPOUTED BED REACTOR

    EPA Science Inventory

    The Spouted Bed Reactor (SBR) technology utilizes the unique attributes of the "spouting " fluidization regime, which can provide heat transfer rates comparable to traditional fluid beds, while providing robust circulation of highly heterogeneous solids, concurrent with very agg...

  2. A Spouted Bed Reactor Monitoring System for Particulate Nuclear Fuel

    SciTech Connect

    D. S. Wendt; R. L. Bewley; W. E. Windes

    2007-06-01

    Conversion and coating of particle nuclear fuel is performed in spouted (fluidized) bed reactors. The reactor must be capable of operating at temperatures up to 2000°C in inert, flammable, and coating gas environments. The spouted bed reactor geometry is defined by a graphite retort with a 2.5 inch inside diameter, conical section with a 60° included angle, and a 4 mm gas inlet orifice diameter through which particles are removed from the reactor at the completion of each run. The particles may range from 200 µm to 2 mm in diameter. Maintaining optimal gas flow rates slightly above the minimum spouting velocity throughout the duration of each run is complicated by the variation of particle size and density as conversion and/or coating reactions proceed in addition to gas composition and temperature variations. In order to achieve uniform particle coating, prevent agglomeration of the particle bed, and monitor the reaction progress, a spouted bed monitoring system was developed. The monitoring system includes a high-sensitivity, low-response time differential pressure transducer paired with a signal processing, data acquisition, and process control unit which allows for real-time monitoring and control of the spouted bed reactor. The pressure transducer is mounted upstream of the spouted bed reactor gas inlet. The gas flow into the reactor induces motion of the particles in the bed and prevents the particles from draining from the reactor due to gravitational forces. Pressure fluctuations in the gas inlet stream are generated as the particles in the bed interact with the entering gas stream. The pressure fluctuations are produced by bulk movement of the bed, generation and movement of gas bubbles through the bed, and the individual motion of particles and particle subsets in the bed. The pressure fluctuations propagate upstream to the pressure transducer where they can be monitored. Pressure fluctuation, mean differential pressure, gas flow rate, reactor

  3. Hydrodynamic Reaction Model of a Spouted Bed Electrolytic Reactor

    NASA Astrophysics Data System (ADS)

    Alireza Shirvanian, Pezhman; Calo, Joseph

    2002-08-01

    An Eulerian model is presented that has been developed to describe the hydrodynamics, mass transfer, and metal ion reduction mass transfer in a cylindrical, spouted bed electrolytic reactor. Appropriate boundary conditions are derived from kinetic theory and reaction kinetics for the hydrodynamics and mass transfer and reaction on the cathodic conical bottom of the reactor, respectively. This study was undertaken as a part of a project focused on the development of a Spouted Bed Electrolytic Reactor (SBER) for metals recovery. The results presented here include the effect of particle loading, inlet jet velocity, Solution pH, and temperature on void fraction distribution, pressure drop, particles recirculation rate, and metal recovery rate.

  4. Styrene recovery from polystyrene by flash pyrolysis in a conical spouted bed reactor.

    PubMed

    Artetxe, Maite; Lopez, Gartzen; Amutio, Maider; Barbarias, Itsaso; Arregi, Aitor; Aguado, Roberto; Bilbao, Javier; Olazar, Martin

    2015-11-01

    Continuous pyrolysis of polystyrene has been studied in a conical spouted bed reactor with the main aim of enhancing styrene monomer recovery. Thermal degradation in a thermogravimetric analyser was conducted as a preliminary study in order to apply this information in the pyrolysis in the conical spouted bed reactor. The effects of temperature and gas flow rate in the conical spouted bed reactor on product yield and composition have been determined in the 450-600°C range by using a spouting velocity from 1.25 to 3.5 times the minimum one. Styrene yield is strongly influenced by both temperature and gas flow rate, with the maximum yield being 70.6 wt% at 500°C and a gas velocity twice the minimum one. PMID:26077230

  5. Fast pyrolysis of eucalyptus waste in a conical spouted bed reactor.

    PubMed

    Amutio, Maider; Lopez, Gartzen; Alvarez, Jon; Olazar, Martin; Bilbao, Javier

    2015-10-01

    The fast pyrolysis of a forestry sector waste composed of Eucalyptus globulus wood, bark and leaves has been studied in a continuous bench-scale conical spouted bed reactor plant at 500°C. A high bio-oil yield of 75.4 wt.% has been obtained, which is explained by the suitable features of this reactor for biomass fast pyrolysis. Gas and bio-oil compositions have been determined by chromatographic techniques, and the char has also been characterized. The bio-oil has a water content of 35 wt.%, and phenols and ketones are the main organic compounds, with a concentration of 26 and 10 wt.%, respectively. In addition, a kinetic study has been carried out in thermobalance using a model of three independent and parallel reactions that allows quantifying this forestry waste's content of hemicellulose, cellulose and lignin. PMID:26203554

  6. Removal of toxic metals from aqueous effluents by electrodeposition in a spouted bed electrochemical reactor.

    PubMed

    Martins, Rosimeire; Britto-Costa, Pedro H; Ruotolo, Luís Augusto M

    2012-06-01

    This work investigates the removal of metal ions from synthetic aqueous effluents using a spouted bed electrochemical reactor whose cathode was composed of 1.0 mm copper particles. Using a Box-Behnken factorial design, the effects of current (I), electrode thickness (L), draught distance (d) and support electrolyte concentration (C(s)) on current efficiency (CE), space-time yield (Y) and energy consumption (EC) were analysed. The results were statistically analysed and the effect of each variable was evaluated using the surface response methodology. The results showed that C(s) is the most important variable to consider in the process optimization. A current of 8.0 A can be applied in order to obtain high Y and CE with an acceptable EC. Electrode thicknesses greater than 1.3 cm are not recommended because the irregular potential distribution leads to a Y drop owing to the low CE observed for this condition. The draught distance does not have statistical significance; therefore, the particle circulation rate is not important in this kind of electrochemical reactor. PMID:22856281

  7. Catalytic pyrolysis of miscanthus × giganteus in a spouted bed reactor.

    PubMed

    Du, Shoucheng; Sun, Yijia; Gamliel, David P; Valla, Julia A; Bollas, George M

    2014-10-01

    A conical spouted bed reactor was designed and tested for fast catalytic pyrolysis of miscanthus × giganteus over Zeolite Socony Mobil-5 (ZSM-5) catalyst, in the temperature range of 400-600 °C and catalyst to biomass ratios 1:1-5:1. The effect of operating conditions on the lumped product distribution, bio-oil selectivity and gas composition was investigated. In particular, it was shown that higher temperature favors the production of gas and bio-oil aromatics and results in lower solid and liquid yields. Higher catalyst to biomass ratios increased the gas yield, at the expense of liquid and solid products, while enhancing aromatic selectivity. The separate catalytic effects of ZSM-5 catalyst and its Al2O3 support were studied. The support contributes to increased coke/char formation, due to the uncontrolled spatial distribution and activity of its alumina sites. The presence of ZSM-5 zeolite in the catalyst enhanced the production of aromatics due to its proper pore size distribution and activity. PMID:25058293

  8. Plasma spouted/fluidized bed for materials processing

    NASA Astrophysics Data System (ADS)

    Sathiyamoorthy, D.

    2010-02-01

    Plasma when coupled with spout/fluidized bed reactor for gas-solid reaction brings in several advantages such as high rate of heat and mass transfer, generation of high bulk temperature using a thin jet of plasma itself as a heat source. The science and technology of plasma and fluidization or spouted bed are well established except of these two put together for high temperature application. Plasma heating of fluid/ spouted bed can bring down the size of the equipment and increase the productivity. However the theory and practice of the hybrid technology has not been tested in a variety of applications that involves high temperature synthesis of materials, TRISO particle coating for nuclear fuel particle, thermal decomposition of refractory type ore, halogenations of minerals, particulate processes and synthesis of advanced materials. This paper gives an account of the use and exploitation of plasma coupled with spouted/ fluidized bed especially for material processing and also addresses the issues for adapting the same in the era of developing advanced high temperature materials.

  9. Investigation of in situ and ex situ catalytic pyrolysis of miscanthus × giganteus using a PyGC-MS microsystem and comparison with a bench-scale spouted-bed reactor.

    PubMed

    Gamliel, David P; Du, Shoucheng; Bollas, George M; Valla, Julia A

    2015-09-01

    The objective of the present work is to explore the particularities of a micro-scale experimental apparatus with regards to the study of catalytic fast pyrolysis (CFP) of biomass. In situ and ex situ CFP of miscanthus × giganteus were performed with ZSM-5 catalyst. Higher permanent gas yields and higher selectivity to aromatics in the bio-oil were observed from ex situ CFP, but higher bio-oil yields were recorded during in situ CFP. Solid yields were comparable across both configurations. The results from in situ and ex situ PyGC were also compared with the product yields and selectivities obtained using a bench-scale, spouted-bed reactor. The bio-oil composition and overall product distribution for the PyGC ex situ configuration more closely resembled that of the spouted-bed reactor. The coke/char from in situ CFP in the PyGC was very similar in nature to that obtained from the spouted-bed reactor. PMID:25997007

  10. Spouted bed electrowinning of zinc: Part II. Investigations of the dynamics of particles in large thin spouted beds

    NASA Astrophysics Data System (ADS)

    Verma, A.; Evans, J. W.; Salas-Morales, Juan Carlos

    1997-02-01

    The behavior of particles in thin spouted beds, mostly equipped with draft tubes, has been investigated. Three apparatuses have been used: a laboratory-scale cylindrical bed, a 2-m-tall “flat” (rectangular cross section) bed and a 2-m-wide flat bed, the last equipped with multiple draft tubes. Most of the results were obtained on the tall bed. Minimum spouting flow rate, pressure distribution, particle velocities, and solid circulation rates were determined as a function of bed geometry (including draft tube dimensions and position). Observations were made of the direction of liquid flow in the bed outside the draft tube and of the occurrence of zones in the bed where the particles appeared stationary. The wide bed was used to determine that there is a maximum separation between draft tubes beyond which particles cannot be kept in motion across the whole width of the bed.

  11. Production of amylases from rice by solid-state fermentation in a gas-solid spouted-Bed bioreactor

    PubMed

    Silva; Yang

    1998-07-01

    A gas-solid spouted-bed bioreactor was developed to produce amylases from rice in solid-state fermentation by Aspergillus oryzae. The spouted-bed bioreactor was developed to overcome many of the problems inherent to large-scale solid-state fermentation, including mass- and heat-transfer limitations in the conventional tray reactors and solids-handling difficulties seen in packed-bed bioreactors. The solid-state fermentation results from the tray-type reactor with surface aeration were poor because of mass- and heat-transfer problems. A packed-bed bioreactor with continuous aeration through the rice bed produced high protein and enzymes, but the fermented rice was difficult to remove and process due to the formation of large chunks of rice aggregates knitted together with fungal mycelia. Also, the fermentation was not uniform in the packed bed. The spouted-bed bioreactor with intermittent spouting with air achieved high production levels in both total protein and enzymes (alpha-amylase, beta-amylase, and glucoamylase) that were comparable to those found in the packed-bed bioreactor, but without the nonuniformity and solids-handling problems. However, continual spouting was found to be detrimental to this solid-state fermentation, possibly because of shear or impact damage to fungal mycelia during spouting. Increasing spouting frequency from 4-h intervals to 1-h intervals decreased protein and enzyme production. Other operating conditions critical to the fermentation include proper humidification to prevent drying of the substrate and control of reactor wall temperature to prevent excessive condensation, which would interfere with proper spouting. PMID:9694679

  12. Hydrodynamic characteristics of a novel annular spouted bed with multiple air nozzles

    SciTech Connect

    Gong, X.W.; Hu, G.X.; Li, Y.H.

    2006-06-21

    A novel spouted bed, namely, an annular spouted bed with multiple air nozzles, has been proposed for drying, pyrolysis, and gasification of coal particulates. It consists of two homocentric upright cylinders with some annularly located spouting air nozzles between inner and outer cylinders. Experiments have been performed to study hydrodynamic characteristics of this device. The test materials studied are ash particle, soy bean, and black bean. Three distinct spouting stages have been examined and outlined with the hold-ups increase. In the fully developed spouting stage, three flow behaviors of particles have been observed and delimited. The effects of nozzle mode and spouting velocity on the maximum spouting height of the dense-phase region, spoutable static bed height, and spouting pressure drop in the bed have been investigated experimentally.

  13. Flow and combustion characteristics of a 2-dimensional spouted bed

    NASA Astrophysics Data System (ADS)

    Sawyer, R. F.; Hart, J. R.; Ohtake, K.

    1982-03-01

    A two dimensional spouted bed laboratory combustor was designed and constructed with the objective of studying the interaction among the gas flow, particle flow, and combustion. The facility, designed for a maximum thermal power of 20 kW, has a quartz front wall providing full optical access to particle flows and combustion processes. The combustor was characterized in terms of pressure, temperature, gas velocity, and particle velocity profiles and operating limits. Initial studies employed premixed propane and air and a fixed bed height, bed material, injector slot width, and combustor geometry. As in previous investigations of axisymmetric spouted beds, the ratio of particle mass circulation rate to jet mass flow rate was observed to be about ten. Combustion increased this ratio by about 10%. A pulsating mode of operation was noted with a characteristic frequency of about 10 Hz, controlled by the interaction of the particle and gas flows.

  14. Theory of describing processes with phase transformations in spouted bed apparatus

    NASA Astrophysics Data System (ADS)

    Kafarov, V. V.; Dorokhov, I. N.; Kol'Tsova, É. M.; Men'shutina, N. V.

    1983-08-01

    The article presents the averaged equations of mass, momentum, and energy transfer for the zones of the ring and the core of spouted beds. An analytical relation for determining the diameter of the bed diameter is given.

  15. Effect of a peripheral gas supply on the hydrodynamics of a spouting bed

    NASA Astrophysics Data System (ADS)

    Akulich, P. V.

    1994-07-01

    The results of experimental investigations of the resistance of a pyramidal spouting bed with a peripheral gas supply are discussed, including the rates at the beginning and end of the process of spouting and material entrainment from an apparatus. Data is generalized in the form of dimensionless relations.

  16. Experimental analysis and visualization of spatiotemporal patterns in spouted fluidized beds

    NASA Astrophysics Data System (ADS)

    Palacios, Antonio; Finney, Charles; Cizmas, Paul; Daw, Stuart; O'Brien, Thomas

    2004-06-01

    A numerical characterization based on experimental data of the spouting regime in a two-dimensional fluidized bed is presented. The aspect ratio of the bed allowed for good visualization of the spouting and solids circulation as the spouting jet gas velocity was varied to highlight the visited bifurcation sequence. Digital video sequences were recorded and then preprocessed for numerical analysis. In this paper, the proper orthogonal decomposition (POD) was applied to these data sets in order to identify and separate the dominant spatial features from the temporal evolution of the spouting dynamics. The results indicate that the overall spatiotemporal dynamics can be captured by a few POD eigenfunctions, and that the POD amplitudes can be used to distinguish between varying degrees of spouting.

  17. Experimental analysis and visualization of spatiotemporal patterns in spouted fluidized beds.

    PubMed

    Palacios, Antonio; Finney, Charles; Cizmas, Paul; Daw, Stuart; O'Brien, Thomas

    2004-06-01

    A numerical characterization based on experimental data of the spouting regime in a two-dimensional fluidized bed is presented. The aspect ratio of the bed allowed for good visualization of the spouting and solids circulation as the spouting jet gas velocity was varied to highlight the visited bifurcation sequence. Digital video sequences were recorded and then preprocessed for numerical analysis. In this paper, the proper orthogonal decomposition (POD) was applied to these data sets in order to identify and separate the dominant spatial features from the temporal evolution of the spouting dynamics. The results indicate that the overall spatiotemporal dynamics can be captured by a few POD eigenfunctions, and that the POD amplitudes can be used to distinguish between varying degrees of spouting. PMID:15189077

  18. Electrically recharged battery employing a packed/spouted bed metal particle electrode

    SciTech Connect

    Siu, Stanley C.; Evans, James W.; Salas-Morales, Juan

    1995-01-01

    A secondary metal air cell, employing a spouted/packed metal particle bed and an air electrode. More specifically a zinc air cell well suited for use in electric vehicles which is capable of being either electrically or hydraulically recharged.

  19. A New Dry Flue Gas Desulfurization Process-Underfeed Circulating Spouted Bed

    NASA Astrophysics Data System (ADS)

    Tao, M.; Jin, B. S.; Yang, Y. P.

    Applying an underfeed system, the underfeed circulating spouted bed was designed as a desulfurization reactor. The main objective of the technology is to improve the mixing effect and distribution uniformity of solid particles, and therefore to advance the desulfurization efficiency and calcium utility. In this article, a series of experimental studies were conducted to investigate the fluidization behavior of the solid-gas two-phase flow in the riser. The results show that the technology can distinctly improve the distribution of gas velocity and particle flux on sections compared with the facefeed style. Analysis of pressure fluctuation signals indicates that the operation parameters have significant influence on the flow field in the reaction bed. The existence of injecting flow near the underfeed nozzle has an evident effect on strengthening the particle mixing.

  20. The production of cellulase in a spouted bed fermentor using cells immobilized in biomass support particles.

    PubMed

    Webb, C; Fukuda, H; Atkinson, B

    1986-01-01

    Continuous cellulase production by Trichoderma viride QM 9123, immobilized in 6 mm diameter, spherical, stainless steel biomass support particles, has been achieved using a medium containing glucose as the main carbon source. Experiments were carried out in a 10-L spouted bed fermentor. In this type of reactor-recycled broth is used to create a jet at the base of a bed of particles, causing the particles to spout and circulate. During the circulation, particles pass through a region of high shear near the jet inlet. This effectively prevents a buildup of excess biomass and thus enables steady-state conditions to be achieved during continuous operation. Continuous production of cellulase was achieved at significantly higher yield and productivity than in conventional systems. At a dilution rate of 0.15 h(-1) (nominal washout rate for freely suspended cells is 0.012 h(-1)), the yield of cellulase on glucose was 31% higher than that measured during batch operation, while the volumetric productivity (31.5 FPA U/L. h) was 53% greater than in the batch system. The specific cellulase productivity of the immobilized cells was more than 3 times that of freely suspended cells, showing that diffusional limitations can be beneficial. This offers significant opportunity for the further development of biomass support particles and associated bioreactors. PMID:18553840

  1. SPOUTED BED ELECTRODES (SBE) FOR DIRECT UTILIZATION OF CARBON IN FUEL CELLS

    SciTech Connect

    J.M. Calo

    2004-12-01

    This Phase I project was focused on an investigation of spouted bed particulate electrodes for the direct utilization of solid carbon in fuel cells. This approach involves the use of a circulating carbon particle/molten carbonate slurry in the cell that provides a few critical functions: it (1) fuels the cell continuously with entrained carbon particles; (2) brings particles to the anode surfaces hydrodynamically; (3) removes ash from the anode surfaces and the cell hydrodynamically; (4) provides a facile means of cell temperature control due to its large thermal capacitance; (5) provides for electrolyte maintenance and control in the electrode separator(s); and (6) can (potentially) improve carbon conversion rates by ''pre-activating'' carbon particle surfaces via formation of intermediate oxygen surface complexes in the bulk molten carbonate. The approach of this scoping project was twofold: (1) adaptation and application of a CFD code, originally developed to simulate particle circulation in spouted bed electrolytic reactors, to carbon particle circulation in DCFC systems; and (2) experimental investigation of the hydrodynamics of carbon slurry circulation in DCFC systems using simulated slurry mixtures. The CFD model results demonstrated that slurry recirculation can be used to hydrodynamically feed carbon particles to anode surfaces. Variations of internal configurations were investigated in order to explore effects on contacting. It was shown that good contacting with inclined surfaces could be achieved even when the particles are of the same density as the molten carbonate. The use of CO{sub 2} product gas from the fuel cell as a ''lift-gas'' to circulate the slurry was also investigated with the model. The results showed that this is an effective method of slurry circulation; it entrains carbon particles more effectively in the draft duct and produces a somewhat slower recirculation rate, and thus higher residence times on anode surfaces, and can be

  2. Effects of cohesion on the flow patterns of granular materials in spouted beds

    NASA Astrophysics Data System (ADS)

    Zhu, Runru; Li, Shuiqing; Yao, Qiang

    2013-02-01

    Two-dimensional spouted bed, capable to provide both dilute granular gas and dense granular solid flow patterns in one system, was selected as a prototypical system for studying granular materials. Effects of liquid cohesion on such kind of complex granular patterns were studied using particle image velocimetry. It is seen that the addition of liquid oils by a small fraction of 10-3-10-2 causes a remarkable narrowing (about 15%) of the spout area. In the dense annulus, as the liquid fraction increases, the downward particle velocity gradually decreases and approaches a minimum where, at a microscopic grain scale, the liquid bridge reaches spherical regimes with a maximum capillarity. Viscous lubrication effect is observed at a much higher fraction but is really weak with respect to the capillary effect. In the dilute spout, in contrast to the dry grains, the wet grains have a lightly smaller acceleration in the initial 1/3 of the spout, but have a dramatically higher acceleration in the rest of the spout. We attribute the former to the additional work needed to overcome interparticle cohesion during particle entrainment at the spout-annulus interface. Then, using mass and momentum balances, the latter is explained by the relative higher drag force resulting from both higher gas velocities and higher voidages due to spout narrowing in the wet system. The experimental findings will provide useful data for the validation of discrete element simulation of cohesive granular-fluid flows.

  3. Effects of cohesion on the flow patterns of granular materials in spouted beds.

    PubMed

    Zhu, Runru; Li, Shuiqing; Yao, Qiang

    2013-02-01

    Two-dimensional spouted bed, capable to provide both dilute granular gas and dense granular solid flow patterns in one system, was selected as a prototypical system for studying granular materials. Effects of liquid cohesion on such kind of complex granular patterns were studied using particle image velocimetry. It is seen that the addition of liquid oils by a small fraction of 10(-3)-10(-2) causes a remarkable narrowing (about 15%) of the spout area. In the dense annulus, as the liquid fraction increases, the downward particle velocity gradually decreases and approaches a minimum where, at a microscopic grain scale, the liquid bridge reaches spherical regimes with a maximum capillarity. Viscous lubrication effect is observed at a much higher fraction but is really weak with respect to the capillary effect. In the dilute spout, in contrast to the dry grains, the wet grains have a lightly smaller acceleration in the initial 1/3 of the spout, but have a dramatically higher acceleration in the rest of the spout. We attribute the former to the additional work needed to overcome interparticle cohesion during particle entrainment at the spout-annulus interface. Then, using mass and momentum balances, the latter is explained by the relative higher drag force resulting from both higher gas velocities and higher voidages due to spout narrowing in the wet system. The experimental findings will provide useful data for the validation of discrete element simulation of cohesive granular-fluid flows. PMID:23496504

  4. II. Electrodeposition/removal of nickel in a spouted electrochemical reactor

    PubMed Central

    Grimshaw, Pengpeng; Calo, Joseph M.; Shirvanian, Pezhman A.; Hradil, George

    2011-01-01

    An investigation is presented of nickel electrodeposition from acidic solutions in a cylindrical spouted electrochemical reactor. The effects of solution pH, temperature, and applied current on nickel removal/recovery rate, current efficiency, and corrosion rate of deposited nickel on the cathodic particles were explored under galvanostatic operation. Nitrogen sparging was used to decrease the dissolved oxygen concentration in the electrolyte in order to reduce the nickel corrosion rate, thereby increasing the nickel electrowinning rate and current efficiency. A numerical model of electrodeposition, including corrosion and mass transfer in the particulate cathode moving bed, is presented that describes the behavior of the experimental net nickel electrodeposition data quite well. PMID:22039317

  5. II. Electrodeposition/removal of nickel in a spouted electrochemical reactor.

    PubMed

    Grimshaw, Pengpeng; Calo, Joseph M; Shirvanian, Pezhman A; Hradil, George

    2011-08-17

    An investigation is presented of nickel electrodeposition from acidic solutions in a cylindrical spouted electrochemical reactor. The effects of solution pH, temperature, and applied current on nickel removal/recovery rate, current efficiency, and corrosion rate of deposited nickel on the cathodic particles were explored under galvanostatic operation. Nitrogen sparging was used to decrease the dissolved oxygen concentration in the electrolyte in order to reduce the nickel corrosion rate, thereby increasing the nickel electrowinning rate and current efficiency. A numerical model of electrodeposition, including corrosion and mass transfer in the particulate cathode moving bed, is presented that describes the behavior of the experimental net nickel electrodeposition data quite well. PMID:22039317

  6. Recovery of valuable materials from spent NIMH batteries using spouted bed elutriation.

    PubMed

    Tanabe, Eduardo H; Schlemmer, Diego F; Aguiar, Mônica L; Dotto, Guilherme L; Bertuol, Daniel A

    2016-04-15

    In recent years, a great increase in the generation of spent batteries occurred. Then, efficient recycling ways and correct disposal of hazardous wastes are necessary. An alternative to recover the valuable materials from spent NiMH batteries is the spouted bed elutriation. The aim of this study was to apply the mechanical processing (grinding and sieving) followed by spouted bed elutriation to separate the valuable materials present in spent NiMH batteries. The results of the manual characterization showed that about 62 wt.% of the batteries are composed by positive and negative electrodes. After the mechanical separation processes (grinding, sieving and spouted bed elutriation), three different fractions were obtained: 24.21 wt.% of metals, 28.20 wt.% of polymers and 42.00 wt.% of powder (the positive and negative electrodes). It was demonstrated that the different materials present in the spent NiMH batteries can be efficiently separated using a simple and inexpensive mechanical processing. PMID:26895722

  7. Effect of cohesion on granular-fluid flows in spouted beds: PIV measurement and DEM simulations

    NASA Astrophysics Data System (ADS)

    Zhu, Runru; LI, Shuiqing; Yao, Qiang

    2013-06-01

    In contrast to wet granular flows, the effect of cohesion on complex granular-fluid flows is intriguing but much challenging. The liquid bridges, forming between binary particles with the addition of a small amount of liquids, might significantly change the granular-fluid system due to both cohesion and lubrication effects. In this paper, a spouted bed, among various fluidization technologies, is particularly selected as a prototypical system for studying granular-fluid flows, since it can provide a quasi-steady flow pattern of granular particles, i.e., a core of upward granular-fluid flow called the "spout" and a surrounding region of downward quasi-static granular flow called the "annulus". Firstly, using self-developed particle image velocimetery (PIV) technique, the effects of cohesion on the spout-annulus interface (namely the spout width) and on the particle velocity profiles in distinct zones are examined. Further, the discrete element method (DEM), by incorporating liquid bridge adhesion into soft-sphere model, is established and used to predict the microdynamic behavior of particles in spouted beds. Finally, based on both experiments and DEM validation, the effects on the granular patterns in these two zones are comparatively discussed.

  8. Electrically recharged battery employing a packed/spouted bed metal particle electrode

    SciTech Connect

    Siu, S.C.; Evans, J.W.; Salas-Morales, J.

    1995-08-15

    A secondary metal air cell, employing a spouted/packed metal particle bed and an air electrode, is described. More specifically a zinc air cell well suited for use in electric vehicles which is capable of being either electrically or hydraulically recharged. 5 figs.

  9. Packed Bed Reactor Experiment

    NASA Video Gallery

    The purpose of the Packed Bed Reactor Experiment in low gravity is to determine how a mixture of gas and liquid flows through a packed bed in reduced gravity. A packed bed consists of a metal pipe ...

  10. Assessment of the energy dissipation parameters inside the draft tube of a liquid spout-fluid bed.

    PubMed

    Erbíl, Ayşe Ceçen; Turan, Mustafa

    2005-04-15

    Spouted beds are fluid-particle contactors in which the fluid is introduced centrally through a nozzle instead of a distributor plate, resulting in a regular particle circulation pattern. To assess the suitability of such sytems to environmental engineering applications such as filter backwashing and biofilm systems, a priori knowledge of the energy dissipation parameters is essential. A new model is developed for evaluating the energy dissipation parameters inside the draft tube of spout-fluid beds. The shear stress, velocity gradient, and turbulence fluctuation parameters in the draft tube of a liquid spout-fluid bed are calculated with the help of an energy equation for flows carrying suspensions and the experimentally determined pressure losses inside the draft tube and compared with results for particulately fluidized beds. A spout-fluid bed with a draft tube provides higher shear stress inside the draft tube than a fluidized bed. The mean velocity gradient in the draft tube is comparable to and higher than in a fluidized bed and increases with solids fraction. The turbulence dissipation coefficient decreases very slightlywith increasing solids fraction for both systems. Consequently, according to the model calculations, a spout-fluid bed with a draft tube can be an alternative to the classical fluidized bed filter backwashing system. PMID:15884391

  11. High-temperature air/steam-blown gasification of coal in a pressurized spout-fluid bed

    SciTech Connect

    Rui Xiao; Mingyao Zhang; Baosheng Jin; Yaji Huang; Hongcang Zhou

    2006-03-15

    The concept of high-temperature air/steam-blown gasification technology for converting coal into low-caloric-value gas for power generation is proposed and evaluated experimentally. Preliminary experiments are performed in a 0.1 MW thermal input pressurized spout-fluid bed gasifier. The influences of the gasifying agent preheat temperature, the gasification temperature and pressure, the equivalence ratio, the ratio of steam-to-coal on gas composition, gas higher heating value, carbon conversion, and cold gas efficiency are examined. The experimental results prove the feasibility of high-temperature air/steam-blown gasification process. The gas heating value is increased by 23%, when the gasifying agent temperature is increased from 300 to 700 C. For the operation conditions studied, the results show that gasification temperature is the most important factor influencing coal gasification in the spout-fluid bed. The gasifier performance is improved at elevated pressure mainly due to the better fluidization in the reactor. The operating parameters of the equivalence ratio and the ratio of steam-to-coal exist at optimum operating range for a certain coal gasification process. 21 refs., 10 figs., 4 tabs.

  12. Application of spouted bed elutriation in the recycling of lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Bertuol, Daniel A.; Toniasso, Camila; Jiménez, Bernardo M.; Meili, Lucas; Dotto, Guilherme L.; Tanabe, Eduardo H.; Aguiar, Mônica L.

    2015-02-01

    The growing environmental concern, associated with the continuous increase in electronic equipment production, has induced the development of new technologies to recycle the large number of spent batteries generated in recent years. The amount of spent lithium-ion batteries (LIBs) tends to grow over the next years. These batteries are composed by valuable metals, such as Li, Co, Cu and Al, which can be recovered. Thus, the present work is carried out in two main steps: In the first step, a characterization of the LIBs is performed. Batteries from different brands and models are dismantled and their components characterized regarding to the chemical composition and main phases. In the second step, a sample of LIBs is shredded and the different materials present are separated by spouted bed elutriation. The results show that spouted bed elutriation is a simple and inexpensive way to obtain the separation of the different materials (polymers, metals, active electrode materials) present in spent LIBs.

  13. Roasting green coffee beans using spouted bed roaster: changes in physical characteristics.

    PubMed

    Nagaraju, V D; Bhattacharya, Suvendu

    2010-12-01

    Pea-berry grade of green coffee (Coffea arabica) beans were roasted in a laboratory model spouted bed roaster at different temperatures (150-250°C) and times (30-300 s). The roasted samples were analysed for instrumental colour (hue, chroma and brightness) and texture. Brightness of the roasted samples varied between 5.2 and 20.4%, and time of roasting markedly decreased the brightness values. The chroma showed a curvilinear decrease with both time and temperature of roasting; the lowest values were with highest roasting times and temperatures. The hue or dominant wavelength increased from 576 to 603 nm due to roasting. The maximum force offered by the roasted beans decreased with temperature and/or time of roasting. An appropriate condition for spouted bed roasting of green coffee beans was obtained considering colour of samples and desirable low failure/fracture force. PMID:23572704

  14. Arsenic removal via ZVI in a hybrid spouted vessel/fixed bed filter system.

    PubMed

    Calo, Joseph M; Madhavan, Lakshmi; Kirchner, Johannes; Bain, Euan J

    2012-05-01

    The description and operation of a novel, hybrid spouted vessel/fixed bed filter system for the removal of arsenic from water are presented. The system utilizes zero-valent iron (ZVI) particles circulating in a spouted vessel that continuously generates active colloidal iron corrosion products via the "self-polishing" action between ZVI source particles rolling in the moving bed that forms on the conical bottom of the spouted vessel. This action also serves as a "surface renewal" mechanism for the particles that provides for maximum utilization of the ZVI material. (Results of batch experiments conducted to examine this mechanism are also presented.) The colloidal material produced in this fashion is continuously captured and concentrated in a fixed bed filter located within the spouted vessel reservoir wherein arsenic complexation occurs. It is demonstrated that this system is very effective for arsenic removal in the microgram per liter arsenic concentration (i.e., drinking water treatment) range, reducing 100 μg/L of arsenic to below detectable levels (≪10 μg/L) in less than an hour.A mechanistic analysis of arsenic behavior in the system is presented, identifying the principal components of the population of active colloidal material for arsenic removal that explains the experimental observations and working principles of the system. It is concluded that the apparent kinetic behavior of arsenic in systems where colloidal (i.e., micro/nano) iron corrosion products are dominant can be complex and may not be explained by simple first or zeroth order kinetics. PMID:22539917

  15. Arsenic removal via ZVI in a hybrid spouted vessel/fixed bed filter system

    PubMed Central

    Calo, Joseph M.; Madhavan, Lakshmi; Kirchner, Johannes; Bain, Euan J.

    2012-01-01

    The description and operation of a novel, hybrid spouted vessel/fixed bed filter system for the removal of arsenic from water are presented. The system utilizes zero-valent iron (ZVI) particles circulating in a spouted vessel that continuously generates active colloidal iron corrosion products via the “self-polishing” action between ZVI source particles rolling in the moving bed that forms on the conical bottom of the spouted vessel. This action also serves as a “surface renewal” mechanism for the particles that provides for maximum utilization of the ZVI material. (Results of batch experiments conducted to examine this mechanism are also presented.) The colloidal material produced in this fashion is continuously captured and concentrated in a fixed bed filter located within the spouted vessel reservoir wherein arsenic complexation occurs. It is demonstrated that this system is very effective for arsenic removal in the microgram per liter arsenic concentration (i.e., drinking water treatment) range, reducing 100 μg/L of arsenic to below detectable levels (≪10 μg/L) in less than an hour. A mechanistic analysis of arsenic behavior in the system is presented, identifying the principal components of the population of active colloidal material for arsenic removal that explains the experimental observations and working principles of the system. It is concluded that the apparent kinetic behavior of arsenic in systems where colloidal (i.e., micro/nano) iron corrosion products are dominant can be complex and may not be explained by simple first or zeroth order kinetics. PMID:22539917

  16. Properties of spent active coke particles analysed via comminution in spouted bed.

    PubMed

    Buczek, Bronislaw

    2013-01-01

    Samples of active coke, fresh and spent after cleaning flue gases from communal waste incinerators, were investigated. The outer layers of both coke particles were separately removed by comminution in a spouted bed. The samples of both active cokes were analysed by means of densities, mercury porosimetry, and adsorption technique. Remaining cores were examined to determine the degree of consumption of coke by the sorption of hazardous emissions (SO2, HCl, and heavy metals) through its bed. Differences in contamination levels within the porous structure of the particles were estimated. The study demonstrated the effectiveness of commercial active coke in the cleaning of flue gases. PMID:24459454

  17. Properties of Spent Active Coke Particles Analysed via Comminution in Spouted Bed

    PubMed Central

    Buczek, Bronislaw

    2013-01-01

    Samples of active coke, fresh and spent after cleaning flue gases from communal waste incinerators, were investigated. The outer layers of both coke particles were separately removed by comminution in a spouted bed. The samples of both active cokes were analysed by means of densities, mercury porosimetry, and adsorption technique. Remaining cores were examined to determine the degree of consumption of coke by the sorption of hazardous emissions (SO2, HCl, and heavy metals) through its bed. Differences in contamination levels within the porous structure of the particles were estimated. The study demonstrated the effectiveness of commercial active coke in the cleaning of flue gases. PMID:24459454

  18. A Kinetic-theory Analysis of the Scale-up for Hydrodynamics of a Rectangular Slot, Spouted Fluidized Bed

    NASA Astrophysics Data System (ADS)

    Alireza Shirvanian, Pezhman; Calo, Joseph Manuel

    2003-03-01

    An Eulerian model that was presented by the same authors [1], has been used to identify the important scaling parameters for the hydrodynamic scale-up of a rectangular slot, spouted bed. In this research, the scaling relationships proposed by Glicksman [2] for fluidized bed scale-up has been modified to provide a full set of scaling parameters for a 2D rectangular slot, spouted bed. The simulation results have been compared against the experimental ones [3] to substantiate the validity of the simulation. Thereafter, scale-up has been performed exclusively by simulation to investigate the effect of different dimensionless parameters on the performance of the spouted bed. References [1] Shirvanian, A.P., Calo, J.M., Hradil, G., An Investigation of the Hydrodynamics of a Rectangular Slot, Spouted Bed, Proceedings of 2001 ASME conference, Fluids Engineering Division. [2] Glicksman, L.R.; Hyre, M.; Woloshun, K., Simplified scaling relationships for fluidized beds, Powder Technology, 77 (1993) 177-199. [3] Shirvanian, A.P., Calo, J.M., Hradil, G., An experimental investigation of the hydrodynamics of a rectangular, spouted vessel with a draft tube., Particle Technology Forum, AiChE, 2002.

  19. Experimental investigation of a draft tube spouted bed for effects of geometric parameters on operation

    NASA Astrophysics Data System (ADS)

    Azizaddini, Seyednezamaddin; Lin, Weigang; Dam-Johansen, Kim

    2016-06-01

    Experiments are performed in a draft tube spouted bed (DTSB) to investigate effects of the operating conditions and the geometric parameters on the hydrodynamics. Geometry parameters, such as heights of the entrained zone, draft tube inner diameter, inner angle of the conical section were studied. Increasing the draft tube inner diameter, sharper inner angle of the conical section and higher height of entrained zone increase the internal solid circulation rate and the pressure drop. Even though, for all different configurations, higher gas feeding rate leads to higher internal solid circulation rate considering a maximum value.

  20. Enteric coating of soft gelatin capsules by spouted bed: effect of operating conditions on coating efficiency and on product quality.

    PubMed

    Pissinati, Rafael; Oliveira, Wanderley Pereira

    2003-05-01

    The present study was conducted in order to analyze the viability of the spouted bed process for application of a gastric-resistant coating to soft gelatin capsules. The variables investigated were: included angle of conical base, (gamma), the relation between the feed mass flow rate of the coating suspension and the feed mass flow rate of spouting gas (W(s)/W(g)); the ratio between the flow rate of the spouting gas and the flow rate at minimum spouting condition (Q/Q(ms)); the mass of capsules in the bed (M(0)), and the capsule's size. The product quality was measured by disintegration tests, traction x deformation tests, image analysis and by the evaluation of the coating mass distribution and shape factor variation during the coating operation. The experiments were performed in a spouted bed with a column diameter of 200 mm and included a conical base angle of 40 degrees. The best coating efficiency values were obtained for M(0)=300 g. Coating efficiency tended to increase with increasing W(s)/W(g) ratio. Disintegration tests showed that the gastric-resistant effect was obtained with a coating mass of 3.86 mg/cm(2). The shape factor increase during the coating operation. The capsule's coating mass distribution tended to maintain the original distribution. PMID:12754006

  1. Technical aspects of the production of dried extract of Maytenus ilicifolia leaves by jet spouted bed drying.

    PubMed

    Cordeiro, Daniel S; Oliveira, Wanderley P

    2005-08-11

    This work presents an evaluation of the performance of jet spouted bed with inert particles for production of dried extracts of Maytenus ilicifolia leaves. The development of the extraction procedure was carried-out with the aid of three factors and three levels Box-Behnken design. The effects of the extraction variables, temperature (Text); stirring time (theta); and the ratio of the plant to solvent mass (m(p)/m(s)) on the extraction yield were investigated. The drying performance and product properties were evaluated through the measurement of the product size distribution, loss on drying (Up), flavonoid degradation (D) and, process thermal efficiency (eta). These parameters were measured as a function of the inlet temperature of the spouting gas (Tgi), the feed mass flow rate of the concentrated extract relative to mass flow rate of the spouting gas (Ws/Wg), the ratio between the feed flow rate of spouting gas relative to feed flow rate at a minimum spouting condition (Q/Qms) and the static bed height (H0). A powder product with a low degradation of active substances and good physical properties were obtained for selected operating conditions. These results indicate the feasibility of this drying equipment for the production of dried extracts of M. ilicifolia Martius ex Reiss leaves. PMID:15978755

  2. Reduced Order Model of a Spouted Fluidized Bed Utilizing Proper Orthogonal Decomposition

    NASA Astrophysics Data System (ADS)

    Beck-Roth, Stephanie R.

    2011-07-01

    A reduced order model utilizing proper orthogonal decomposition for approximation of gas and solids velocities as well as pressure, solids granular temperature and gas void fraction for use in multiphase incompressible fluidized beds is developed and presented. The methodology is then tested on data representing a flat-bottom spouted fluidized bed and comparative results against the software Multiphase Flow with Interphase eXchanges (MFIX) are provided. The governing equations for the model development are based upon those implemented in the (MFIX) software. The three reduced order models explored are projective, extrapolative and interpolative. The first is an extension of the system solution beyond an original time sequence. The second is a numerical approximation to a new solution based on a small selected parameter deviation from an existing CFD data set. Finally an interpolative methodology approximates a solution between two existing CFD data sets both which vary a single parameter.

  3. Computational fluid dynamics modeling of coal gasification in a pressurized spout-fluid bed

    SciTech Connect

    Zhongyi Deng; Rui Xiao; Baosheng Jin; He Huang; Laihong Shen; Qilei Song; Qianjun Li

    2008-05-15

    Computational fluid dynamics (CFD) modeling, which has recently proven to be an effective means of analysis and optimization of energy-conversion processes, has been extended to coal gasification in this paper. A 3D mathematical model has been developed to simulate the coal gasification process in a pressurized spout-fluid bed. This CFD model is composed of gas-solid hydrodynamics, coal pyrolysis, char gasification, and gas phase reaction submodels. The rates of heterogeneous reactions are determined by combining Arrhenius rate and diffusion rate. The homogeneous reactions of gas phase can be treated as secondary reactions. A comparison of the calculated and experimental data shows that most gasification performance parameters can be predicted accurately. This good agreement indicates that CFD modeling can be used for complex fluidized beds coal gasification processes. 37 refs., 7 figs., 5 tabs.

  4. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, J.

    1996-03-19

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  5. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, Juhani

    1996-01-01

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  6. Magnetic resonance measurements of high-velocity particle motion in a three-dimensional gas-solid spouted bed

    NASA Astrophysics Data System (ADS)

    Müller, C. R.; Holland, D. J.; Sederman, A. J.; Dennis, J. S.; Gladden, L. F.

    2010-11-01

    Magnetic resonance imaging has been used to measure particle velocities, exceeding 1ms-1 in a two-phase granular system, namely, a spouted bed. The measurements are complicated due to the high voidage, i.e., low particle density, in the region of the highest particle velocity. However, applying gradient shapes which allow fast switching and, thus, short encoding and observation times in combination with a short echo time enable these measurements. It was found that the profile of the particle velocity is nonparabolic. Based on these measurements it was possible to confirm observations made in numerical simulations that there must be a continuous momentum exchange between the annulus region and the spout along the entire length of the spout.

  7. Magnetic resonance measurements of high-velocity particle motion in a three-dimensional gas-solid spouted bed.

    PubMed

    Müller, C R; Holland, D J; Sederman, A J; Dennis, J S; Gladden, L F

    2010-11-01

    Magnetic resonance imaging has been used to measure particle velocities, exceeding 1 m s⁻¹ in a two-phase granular system, namely, a spouted bed. The measurements are complicated due to the high voidage, i.e., low particle density, in the region of the highest particle velocity. However, applying gradient shapes which allow fast switching and, thus, short encoding and observation times in combination with a short echo time enable these measurements. It was found that the profile of the particle velocity is nonparabolic. Based on these measurements it was possible to confirm observations made in numerical simulations that there must be a continuous momentum exchange between the annulus region and the spout along the entire length of the spout. PMID:21230423

  8. Particle bed reactor modeling

    NASA Technical Reports Server (NTRS)

    Sapyta, Joe; Reid, Hank; Walton, Lew

    1993-01-01

    The topics are presented in viewgraph form and include the following: particle bed reactor (PBR) core cross section; PBR bleed cycle; fuel and moderator flow paths; PBR modeling requirements; characteristics of PBR and nuclear thermal propulsion (NTP) modeling; challenges for PBR and NTP modeling; thermal hydraulic computer codes; capabilities for PBR/reactor application; thermal/hydralic codes; limitations; physical correlations; comparison of predicted friction factor and experimental data; frit pressure drop testing; cold frit mask factor; decay heat flow rate; startup transient simulation; and philosophy of systems modeling.

  9. Investigating particle phase velocity in a 3D spouted bed by a novel fiber high speed photography method

    NASA Astrophysics Data System (ADS)

    Qian, Long; Lu, Yong; Zhong, Wenqi; Chen, Xi; Ren, Bing; Jin, Baosheng

    2013-07-01

    A novel fiber high speed photography method has been developed to measure particle phase velocity in a dense gas-solid flow. The measurement system mainly includes a fiber-optic endoscope, a high speed video camera, a metal halide light source and a powerful computer with large memory. The endoscope which could be inserted into the reactors is used to form motion images of particles within the measurement window illuminated by the metal halide lamp. These images are captured by the high speed video camera and processed through a series of digital image processing algorithms, such as calibration, denoising, enhancement and binarization in order to improve the image quality. Then particles' instantaneous velocity is figured out by tracking each particle in consecutive frames. Particle phase velocity is statistically calculated according to the probability of particle velocity in each frame within a time period. This system has been applied to the investigation of particles fluidization characteristics in a 3D spouted bed. The experimental results indicate that the particle fluidization feature in the region investigated could be roughly classified into three sections by particle phase vertical velocity and the boundary between the first section and the second is the surface where particle phase velocity tends to be 0, which is in good agreement with the results published in other literature.

  10. Dynamic bed reactor

    DOEpatents

    Stormo, Keith E.

    1996-07-02

    A dynamic bed reactor is disclosed in which a compressible open cell foam matrix is periodically compressed and expanded to move a liquid or fluid through the matrix. In preferred embodiments, the matrix contains an active material such as an enzyme, biological cell, chelating agent, oligonucleotide, adsorbent or other material that acts upon the liquid or fluid passing through the matrix. The active material may be physically immobilized in the matrix, or attached by covalent or ionic bonds. Microbeads, substantially all of which have diameters less than 50 microns, can be used to immobilize the active material in the matrix and further improve reactor efficiency. A particularly preferred matrix is made of open cell polyurethane foam, which adsorbs pollutants such as polychlorophenol or o-nitrophenol. The reactors of the present invention allow unidirectional non-laminar flow through the matrix, and promote intimate exposure of liquid reactants to active agents such as microorganisms immobilized in the matrix.

  11. Dynamic bed reactor

    SciTech Connect

    Stormo, K.E.

    1996-07-02

    A dynamic bed reactor is disclosed in which a compressible open cell foam matrix is periodically compressed and expanded to move a liquid or fluid through the matrix. In preferred embodiments, the matrix contains an active material such as an enzyme, biological cell, chelating agent, oligonucleotide, adsorbent or other material that acts upon the liquid or fluid passing through the matrix. The active material may be physically immobilized in the matrix, or attached by covalent or ionic bonds. Microbeads, substantially all of which have diameters less than 50 microns, can be used to immobilize the active material in the matrix and further improve reactor efficiency. A particularly preferred matrix is made of open cell polyurethane foam, which adsorbs pollutants such as polychlorophenol or o-nitrophenol. The reactors of the present invention allow unidirectional non-laminar flow through the matrix, and promote intimate exposure of liquid reactants to active agents such as microorganisms immobilized in the matrix. 27 figs.

  12. Spouted bed electrowinning of zinc: Part I. Laboratory-scale electrowinning experiments

    NASA Astrophysics Data System (ADS)

    Salas-Morales, Juan Carlos; Evans, J. W.; Newman, O. M. G.; Adcock, P. A.

    1997-02-01

    Two types of laboratory cells have been constructed to electrowin zinc from sulfate electrolytes: one cell was cylindrical while the other had a rectangular (flat) geometry. Cells were operated on industrial or synthetic electrolytes to electrodeposit zinc onto a spouted bed of zinc particles in the range of 0.75 to 1.45 mm. Current efficiencies and cell voltages have been measured during the course of batch experiments, enabling the calculation of the energy consumption per kilogram of zinc deposited. Electrolyte samples have been analyzed. Current densities (current per unit of cell cross-sectional area) were in the range of 1380 to 6200 A/m2. Most catholytes were initially neutral and contained on the order of 150 g/L of zinc. Final acid contents were in the range of 39 to 114 g/L of sulfuric acid. The performance of the cells (particularly with respect to current efficiency) was superior to prior work on fluidized bed electrowinning from similar electrolytes. The flat cell was superior to the cylindrical cell and showed energy consumptions of less than 3 kWh/kg zinc at current densities up to 3500 A/m2 when used to take the zinc content from 150 to 100 g/L zinc. Current efficiencies in this application ranged from 91 to 92 pct.

  13. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.; Marasco, J.A.

    1995-04-25

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.

  14. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.; Marasco, Joseph A.

    1995-01-01

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  15. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.; Marasco, Joseph A.

    1996-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves.

  16. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.

    1993-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  17. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.; Marasco, J.A.

    1996-02-27

    A fluidized bed reactor system is described which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves. 3 figs.

  18. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.

    1993-12-14

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.

  19. Evaluation of the tablet coating by the conventional spouted-bed process.

    PubMed

    Silva, G D; Publio, M C; Oliveira, W P

    2001-01-01

    The purpose of this paper was to present an analysis of the tablet coating by the conventional spouted-bed process. To analyze the equipment performance, the rate of increase of the tablets mass, K1, and the adhesion coefficient eta were determined as a function of the feed flow rate of coating suspension Ws; of the Reynolds number Rep; of the flow rate of atomizing gas Wat, and of the cone base angle gamma. To analyze the product quality, the uniformity of coating mass deposition onto the tablet's surface was used. Three different procedures for description of kinetics growth, weighing method, image analysis, and measurements with a micrometer were used to verify the validity of the commonly used weighing method. Comparison between experimental results of kinetics growth with estimates obtained by a literature model was also performed. A tendency toward an increase in K1 and in eta with the feeding flow rate of coating suspension Ws was detected. The weighing method can be used for the process analysis. The kinetics of growth can be described by the growth model used. The variable that produce more pronounced effect on K1 and eta was the feed flow rate of coating suspension, the weighing method describes very well the increase of particle diameter with coating time, the growth model can be used for the describe the kinetics of growth during the coating operation, and the coating does not deposit uniformly onto the tablet's surface. PMID:11291201

  20. Plasma-catalytic hybrid system using spouted bed with a gliding arc discharge: CH4 reforming as a model reaction

    NASA Astrophysics Data System (ADS)

    Lee, H.; Sekiguchi, H.

    2011-07-01

    A combination of a gliding arc discharge and a spouted catalytic bed was used to investigate a plasma-catalytic hybrid system using CH4 reforming as a model reaction. Alumina-supported catalysts that contained 0.5 wt% of Pt, Pd, Rh, and Ru (denoted as Pt/Al2O3, Pd/Al2O3, Rh/Al2O3 and Ru/Al2O3, respectively) were used. For comparison, active Al2O3 particles were also examined. The conversion of CH4 and the selectivity of the product were investigated by changing the feed flow rate and reaction time. The production of C2H2, H2 and soot was observed in the gliding arc discharge without a catalyst. Using Pt/Al2O3 and Pd/Al2O3with the gliding arc discharge, C2H4, C2H6 and C2H2 were produced. It is considered that C2H4 and C2H6 were formed by the hydrogenation of C2H2 on the active site of Pt/Al2O3 and Pd/Al2O3. A stronger resistance to deactivation was shown in the presence of Pd/Al2O3 than in the presence of Pt/Al2O3, whereas the selectivity of hydrocarbon using Rh/Al2O3 and Ru/Al2O3 showed a tendency similar to that in active Al2O3 and non-catalytic experiments. The proposed reactor has a potential to improve the selectivity of the plasma process.

  1. Evaluating of scale-up methodologies of gas-solid spouted beds for coating TRISO nuclear fuel particles using advanced measurement techniques

    NASA Astrophysics Data System (ADS)

    Ali, Neven Y.

    The work focuses on implementing for the first time advanced non-invasive measurement techniques to evaluate the scale-up methodology of gas-solid spouted beds for hydrodynamics similarity that has been reported in the literature based on matching dimensionless groups and the new mechanistic scale up methodology that has been developed in our laboratory based on matching the radial profile of gas holdup since the gas dynamics dictate the hydrodynamics of the gas-solid spouted beds. These techniques are gamma-ray computed tomography (CT) to measure the cross-sectional distribution of the phases' holdups and their radial profiles along the bed height and radioactive particle tracking (RPT) to measure in three-dimension (3D) solids velocity and their turbulent parameters. The measured local parameters and the analysis of the results obtained in this work validate our new methodology of scale up of gas-solid spouted beds by comparing for the similarity the phases' holdups and the dimensionless solids velocities and their turbulent parameters that are non-dimensionalized using the minimum spouting superficial gas velocity. However, the scale-up methodology of gas-solid spouted beds that is based on matching dimensionless groups has not been validated for hydrodynamics similarity with respect to the local parameters such as phases' holdups and dimensionless solids velocities and their turbulent parameters. Unfortunately, this method was validated in the literature by only measuring the global parameters. Thus, this work confirms that validation of the scale-up methods of gas-solid spouted beds for hydrodynamics similarity should reside on measuring and analyzing the local hydrodynamics parameters.

  2. A mathematical model for constant and intermittent batch drying of grains in a novel rotating jet spouted bed

    SciTech Connect

    Jumah, R.Y.; Mujumdar, A.S.; Raghavan, G.S.V.

    1996-05-01

    A diffusion-based mathematical model is presented for batch drying of corn in a novel rotating jet spouted bed device under constant as well as intermittent drying conditions. Such a device is suited for drying of large particles (e.g. grains, beans, seeds, etc.) for which internal heat and mass transfer rates control the drying kinetics. Based on literature data for moisture diffusivities the model predictions are compared with experimental data for both continuous and time-dependent air supply and/or heat input. Effects of relevant parameters are evaluated and discussed in the light of potential practical applications. 44 refs.

  3. III. Co-electrodeposition/removal of copper and nickel in a spouted electrochemical reactor

    PubMed Central

    Grimshaw, Pengpeng; Calo, Joseph M.; Hradil, George

    2011-01-01

    Results are presented of an investigation of co-electrodeposition of copper and nickel from acidic solution mixtures in a cylindrical spouted electrochemical reactor. The effects of solution pH, temperature, and applied current on metal removal/recovery rate, current efficiency, and corrosion of the deposited metals from the cathodic particles were examined under galvanostatic operation. The quantitative and qualitative behavior of co-electrodeposition of the two metals from their mixtures differs significantly from that of the individual single metal solutions. This is primarily attributed to the metal displacement reaction between Ni0 and Cu2+. This reaction effectively reduces copper corrosion, and amplifies that for nickel (at least at high concentrations). It also amplifies the separation of the deposition regimes of the two metals in time, which indicates that the recovery of each metal as a relatively pure deposit from the mixture is possible. It was also shown that nitrogen sparging considerably increases the observed net electrodeposition rates for both metals – considerably more so than from solutions with just the single metals alone. A numerical model of co-electrodeposition, corrosion, metal displacement, and mass transfer in the cylindrical spouted electrochemical reactor is presented that describes the behavior of the experimental copper and nickel removal data quite well. PMID:21874093

  4. Fluidized-Bed Reactor System

    NASA Technical Reports Server (NTRS)

    Morrison, A. D.

    1985-01-01

    Gas pyrolysis in hot fluidized beds minimized by use of selectively filtered radiation and parabolic cavity. Reactor is parabolic cavity of two or more axes in which light emanating from one axis bounces off walls of cavity and passes through object axis to heat sample.

  5. Spouting of biomass particles: a review.

    PubMed

    Cui, Heping; Grace, John R

    2008-07-01

    Recent research on biomass multiphase flow in spouted beds is reviewed, beginning with fundamental work on hydrodynamic parameters, such as minimum spouting velocity, pressure drop and fountain height. We then consider experimental studies on biomass multiphase flow in such processes as pulp drying, liquid spouting of pulp fibres, drying and coating of agricultural biomass, and bioreactors. Finally, we summarize modelling efforts with respect to spouting of biomass particles. PMID:17570657

  6. Encapsulated multicellular spheroids of rat hepatocytes produce albumin and urea in a spouted bed circulating culture system.

    PubMed

    Takabatake, H; Koide, N; Tsuji, T

    1991-12-01

    Multicellular spheroids are spherical cell-aggregates that retain tridimensional architecture and tissue-specific functions. For use of multicellular spheroids of hepatocytes in a bioreactor for hybrid artificial liver support, we studied the effect of encapsulation and circulating culture on their integrity and tissue-specific functions. Multicellular spheroids of rat hepatocytes were encapsulated into microdroplets of calcium alginate gel and were used as a bioreactor in medium circulating in a spouted bed chamber. Approximately 10% of the hepatocytes of an adult rat were entrapped in a bioreactor chamber, connected to a gas exchanger and a medium reservoir. The total bed volume of the system was 250 ml. The pH and DO2 of the hormonally defined circulating medium was maintained constantly. Albumin and urea were produced in a linear fashion for 64 h at the rates of 0.02 micrograms/microgram cell protein/day and 0.15-0.2 ng/micrograms cell protein/day, respectively. Viability and structural stability of the spheroids were well preserved after the culture period. These results indicate that these encapsulated multicellular hepatocyte spheroids will provide a useful bioreactor for the continuous production of albumin, in vitro and also a prototype hybrid artificial liver support. PMID:1763969

  7. Evaluation of the anti-ulcerogenic activity of a dry extract of Maytenus ilicifolia Martius ex. Reiss produced by a jet spouted bed dryer.

    PubMed

    Tabach, R; Oliveira, W P

    2003-08-01

    We undertook the present study to evaluate the activity of the dried extract of Maytenus ilicifolia against stomach ulcers and in the increase of the volume and pH of the gastric juice of Wistar rats, as a model to evaluate the viability of the Jet Spouted Bed Dryer for the production of dry-extracts of medicinal Brazilian plants. The extract was obtained from the drying of a hydro-alcoholic extract with drying aid (40% of colloidal SiO2 related to solid content in the concentrated extract, at a concentration of 15.82% in water). The drying conditions employed were: Temperature of the spouting gas 150 degrees C, feed flow-rate of hydro-alcoholic extract 16.0 g/min, feed flow rate of the spouting gas 1.67 m3/min and static bed height 7.0 cm. Wistar rats received three different doses (140, 280 and 420 mg/kg) of the dried extract by intraperitoneal way and, after 60 minutes, were immobilized with wire screen and placed at temperature of 4 degrees C for two hours (cold-restraint stress). The animals were sacrificed and the stomach removed, examined and the volume and pH of the gastric secretion determined. A significant reduction in the ulceration index, was observed as well as a significant increase of the volume and of the pH of the gastric secretion for all doses administered. This is an indication that the preparation of dried extracts by the Jet spouted bed technique does not alter the biological activity of Maytenus ilicifolia. PMID:12967037

  8. Fluidized bed coal combustion reactor

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.; Young, D. L. (Inventor)

    1981-01-01

    A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor.

  9. Fluidized bed coal combustion reactor

    SciTech Connect

    Moynihan, P.I.; Young, D.L.

    1981-09-01

    A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor. Official Gazette of the U.S. Patent and Trademark Office

  10. Processing of uranium oxide powders in a fluidized-bed reactor. I. Experimental

    NASA Astrophysics Data System (ADS)

    Cho, W. D.; Han, Man-Hee; Bronson, Mark C.; Zundelevich, Yury

    2002-10-01

    The oxidation of UN powders was carried out in a spout-type fluidized-bed reactor in gas mixtures of oxygen and argon, and over the temperature range of 200-500 °C. The rate of the conversion from UN to U 3O 8 powders was measured using gas chromatography and found to be dependent on temperature, partial pressure of oxygen and gas flowrate. The solid reactants and products were analyzed using SEM and XRD. Based on the experimental results, the conversion process was explained by the crackling core model.

  11. Packed fluidized bed blanket for fusion reactor

    DOEpatents

    Chi, John W. H.

    1984-01-01

    A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

  12. Particle Bed Reactor engine technology

    SciTech Connect

    Sandler, S.; Feddersen, R. )

    1992-01-01

    This paper discusses the Particle Bed Reactor (PBR) based propulsion system being developed under the Space Nuclear Thermal Propulsion (SNTP) program. A PBR engine is a light weight, compact propulsion system which offers significant improvement over current technology systems. Current performance goals are a system thrust of 75,000 pounds at an Isp of 1000 sec. A target thrust to weight ratio (T/W) of 30 has been established for an unshielded engine. The functionality of the PBR, its pertinent technology issues and the systems required to make up a propulsion system are described herein. Accomplishments to date which include hardware development and tests for the PBR engine are also discussed. This paper is intended to provide information on and describe the current state-of-the-art of PBR technology. 4 refs.

  13. Fluidized-Bed Reactor With Zone Heating

    NASA Technical Reports Server (NTRS)

    Iya, Sridhar K.

    1989-01-01

    Deposition of silicon on wall suppressed. In new fluidized bed, silicon seed particles heated in uppermost zone of reactor. Hot particles gradually mix with lower particles and descend through fluidized bed. Lower wall of vessel kept relatively cool. Because silane enters at bottom and circulates through reactor pyrolized to silicon at high temperatures, silicon deposited on particles in preference wall. Design of fluidized bed for production of silicon greatly reduces tendency of silicon to deposit on wall of reaction vessel.

  14. Effects of process parameters on quality changes of shrimp during drying in a jet-spouted bed dryer.

    PubMed

    Niamnuy, C; Devahastin, S; Soponronnarit, S

    2007-11-01

    The objective of the present study was to investigate the effects of various parameters, that is, concentration of salt solution (2%, 3%, 4%[w/v]), boiling time (3, 5, 7 min), drying air temperature (80, 100, 120 degrees C), and size of shrimp, on the kinetics of drying and various quality attributes of shrimp, namely, shrinkage, rehydration ability, texture, colors, and microstructure, during drying in a jet-spouted bed dryer. In addition, the effects of these processing parameters on the sensory attributes of dried shrimp were also investigated. Small shrimp (350 to 360 shrimp/kg) and large shrimp (150 to 160 shrimp/kg) were boiled and then dried until their moisture content was around 25% (d.b.). It was found that the degree of color changes, toughness, and shrinkage of shrimp increased while the rehydration ability decreased with an increase in the concentration of salt solution and boiling time. Size of shrimp and drying temperature significantly affected all quality attributes of dried shrimp. The conditions that gave the highest hedonic scores of sensory evaluation for small dried shrimp are the concentration of salt solution of 2% (w/v), boiling time of 7 min, and drying air temperature of 120 degrees C. On the other hand, the conditions that gave the highest hedonic scores of sensory evaluation for large dried shrimp are the concentration of salt solution of 4% (w/v), boiling time of 7 min, and drying air temperature of 100 degrees C. The quality attributes of dried shrimp measured by instruments correlated well with the sensory attributes, especially the color of dried shrimp. PMID:18034725

  15. Reconstruction of liver tissue in vitro: geometry of characteristic flat bed, hollow fiber, and spouted bed bioreactors with reference to the in vivo liver.

    PubMed

    Bader, A; Knop, E; Frühauf, N; Crome, O; Böker, K; Christians, U; Oldhafer, K; Ringe, B; Pichlmayr, R; Sewing, K F

    1995-09-01

    Bioreactors currently being developed for hybrid artificial livers vary greatly with respect to their microenvironment. The specific architecture modifies the relationship parenchymal and nonparenchymal cells have with the exchange surfaces of the bioreactor. Most designs are either based on hollow fiber, spouted bed, or flat bed devices. This diversity is contrasted by the uniform and unique organization of the in vivo liver. The liver cells are arranged as plates and both sinusoidal surfaces of the hepatocytes are enclosed within the matrix of the space of Disse. In this study we intended to define the in vivo liver tissue characteristics in a manner useful for an organotypical approach to hepatic tissue engineering. Transmission electron microscopy of an in vivo liver was utilized to describe these ratios. The ratios defined in this study are based on the constant hepatocellular expression of two sinusoidal surfaces. A relationship is established between the expression of the sinusoidal surfaces and their use as attachment and exchange surfaces inside a bioreactor. The presence of biliary surfaces and nonparenchymal cell surfaces is compared. The functional relevance of an in vivo like extracellular matrix geometry for oxidative biotransformation of primary hepatocytes in vitro was studied using the two model drugs cyclosporin and rapamycin. The generation of the hydroxylated cyclosporin metabolites AM 9 and AM 1 and four rapamycin metabolites was analyzed by high performance liquid chromatography (HPLC). It is shown that the cell-specific biotransformation rates at 1 week in culture in matrix overlayed hepatocytes was 5-10 times that of hepatocytes without matrix overlay. Bilaminar membrane (BLM) bioreactors were used to reconstruct extracellular matrix geometry, three-dimensional cell plates, and sinusoidal analogs in between cell plates. PMID:8687303

  16. Ultra high temperature particle bed reactor design

    SciTech Connect

    Lazareth, O.; Ludewig, H.; Perkins, K.; Powell, J.

    1990-01-01

    This study is a computer analysis of a conceptual nuclear reactor. The purpose of this work is to design a direct nuclear propulsion engine which could be used for a mission to Mars. The main features of this reactor design are high values for I{sub sp} and, secondly, very efficient cooling. This particle bed reactor consists of 37 cylindrical fuel elements embedded in a cylinder of beryllium which acts as a moderator and reflector. The fuel consists of a packed bed of spherical fissionable fuel particles. Gaseous H{sub 2} passes over the fuel bed, removes the heat and is exhausted out of the rocket. The design was found to be neutronically critical and to have tolerable heating rates. Therefore, this Particle Bed Reactor Design is suitable as a propulsion unit for this mission.

  17. Fluidized-Bed Silane-Decomposition Reactor

    NASA Technical Reports Server (NTRS)

    Iya, Sridhar K.

    1991-01-01

    Fluidized-bed pyrolysis reactor produces high-purity polycrystalline silicon from silane or halosilane via efficient heterogeneous deposition of silicon on silicon seed particles. Formation of silicon dust via homogeneous decomposition of silane minimized, and deposition of silicon on wall of reactor effectively eliminated. Silicon used to construct solar cells and other semiconductor products.

  18. Reactor for fluidized bed silane decomposition

    NASA Technical Reports Server (NTRS)

    Iya, Sridhar K. (Inventor)

    1989-01-01

    An improved heated fluidized bed reactor and method for the production of high purity polycrystalline silicon by silane pyrolysis wherein silicon seed particles are heated in an upper heating zone of the reactor and admixed with particles in a lower zone, in which zone a silane-containing gas stream, having passed through a lower cooled gas distribution zone not conducive to silane pyrolysis, contacts the heated seed particles whereon the silane is heterogeneously reduced to silicon.

  19. FBR and RBR particle bed space reactors

    SciTech Connect

    Powell, J.R.; Botts, T.E.

    1983-01-01

    Compact, high-performance nuclear reactor designs based on High-Temperature Gas Reactors (HTGRs) particulate fuel are investigated. The large surface area available with the small-diameter (approx. 500 microns) particulate fuel allows very high power densities (MW's/liter), small temperature differences between fuel and coolant (approx. 10/sup 0/K), high coolant-outlet temperatures (1500 to 3000/sup 0/K, depending on design), and fast reactor startup (approx. 2 to 3 seconds). Two reactor concepts are developed - the Fixed Bed Reactor (FBR), where the fuel particles are packed into a thin annular bed between two porous cylindrical drums, and the Rotating Bed Reactor (RBR), where the fuel particles are held inside a cold rotating (typically approx. 500 rpm) porous cylindrical drum. The FBR can operate steady-state in the closed-cycle He-cooled mode or in the open-cycle H/sub 2/-cooled mode. The RBR will operate only in the open-cycle H/sub 2/-cooled mode.

  20. Particle bed reactor nuclear rocket concept

    NASA Technical Reports Server (NTRS)

    Ludewig, Hans

    1991-01-01

    The particle bed reactor nuclear rocket concept consists of fuel particles (in this case (U,Zr)C with an outer coat of zirconium carbide). These particles are packed in an annular bed surrounded by two frits (porous tubes) forming a fuel element; the outer one being a cold frit, the inner one being a hot frit. The fuel element are cooled by hydrogen passing in through the moderator. These elements are assembled in a reactor assembly in a hexagonal pattern. The reactor can be either reflected or not, depending on the design, and either 19 or 37 elements, are used. Propellant enters in the top, passes through the moderator fuel element and out through the nozzle. Beryllium used for the moderator in this particular design to withstand the high radiation exposure implied by the long run times.

  1. Pebble Bed Reactor Dust Production Model

    SciTech Connect

    Abderrafi M. Ougouag; Joshua J. Cogliati

    2008-09-01

    The operation of pebble bed reactors, including fuel circulation, can generate graphite dust, which in turn could be a concern for internal components; and to the near field in the remote event of a break in the coolant circuits. The design of the reactor system must, therefore, take the dust into account and the operation must include contingencies for dust removal and for mitigation of potential releases. Such planning requires a proper assessment of the dust inventory. This paper presents a predictive model of dust generation in an operating pebble bed with recirculating fuel. In this preliminary work the production model is based on the use of the assumption of proportionality between the dust production and the normal force and distance traveled. The model developed in this work uses the slip distances and the inter-pebble forces computed by the authors’ PEBBLES. The code, based on the discrete element method, simulates the relevant static and kinetic friction interactions between the pebbles as well as the recirculation of the pebbles through the reactor vessel. The interaction between pebbles and walls of the reactor vat is treated using the same approach. The amount of dust produced is proportional to the wear coefficient for adhesive wear (taken from literature) and to the slip volume, the product of the contact area and the slip distance. The paper will compare the predicted volume with the measured production rates. The simulation tallies the dust production based on the location of creation. Two peak production zones from intra pebble forces are predicted within the bed. The first zone is located near the pebble inlet chute due to the speed of the dropping pebbles. The second peak zone occurs lower in the reactor with increased pebble contact force due to the weight of supported pebbles. This paper presents the first use of a Discrete Element Method simulation of pebble bed dust production.

  2. A novel sorbent for transport reactors and fluidized bed reactors

    SciTech Connect

    Copeland, R.; Cesario, M.; Gershanovich, Y.; Sibold, J.; Windecker, B.

    1998-12-31

    Coal Fired Gasifier Combined Cycles (GCC) have both high efficiency and very low emissions. GCCs critically need a method of removing the H{sub 2}S produced from the sulfur in the coal from the hot gases. There has been extensive research on hot gas cleanup systems, focused on the use of a zinc oxide based sorbent (e.g., zinc titanate). TDA Research, Inc. (TDA) is developing a novel sorbent with improved attrition resistance for transport reactors and fluidized bed reactors. The authors are testing sorbents at conditions simulating the operating conditions of the Pinon Pine clean coal technology plant. TDA sulfided several different formulations at 538 C and found several that have high sulfur capacity when tested in a fluidized bed reactor. TDA initiated sorbent regeneration at 538 C. The sorbents retained chemical activity with multiple cycles. Additional tests will be conducted to evaluate the best sorbent formulation.

  3. Method and apparatus for a combination moving bed thermal treatment reactor and moving bed filter

    SciTech Connect

    Badger, Phillip C.; Dunn, Jr., Kenneth J.

    2015-09-01

    A moving bed gasification/thermal treatment reactor includes a geometry in which moving bed reactor particles serve as both a moving bed filter and a heat carrier to provide thermal energy for thermal treatment reactions, such that the moving bed filter and the heat carrier are one and the same to remove solid particulates or droplets generated by thermal treatment processes or injected into the moving bed filter from other sources.

  4. Water Spout

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2013-02-01

    During the AAPT summer meeting at Creighton University in 2011, Vacek Miglus and I took pictures of early apparatus at the Creighton physics department. The apparatus in the left-hand picture, shown with the spigot closed, appeared to be a liquid-level device: the water level was the same in both the narrow tube and the flaring glass vase. However, when I came back nine months later to give a talk about the apparatus, I realized that it was really an early Bernoulli effect demonstration. In the right-hand picture the spigot is open and water can be seen coming out of the spout. The water level in the narrow tube has fallen appreciably, thus showing that the pressure at this point has decreased, in agreement with the non-zero velocity of the water in the horizontal tube. The device was made ca. 1880 by E. S. Ritchie of Boston, MA. (Photos by Thomas B. Greenslade Jr.)

  5. Rapid high temperature formation of polychlorinated dioxins and furans in the bed region of a heterogeneous spouted bed combustor: Development of a surface mediated model for the formation of dioxins

    SciTech Connect

    Ghorishi, S.B.; Altwicker, E.R.

    1996-12-31

    The rapid high temperature (580-680{degrees}C) formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the heterogeneous bed region of a spouted bed combustor occurred within fraction of seconds (0.1-0.2 seconds) using two different precursors; 1,2-dichlorobenzene and 2,4-dichlorophenol. Levels of PCDD/Fs produced from 2,4-dichlorophenol oxidation were two orders of magnitude higher than those produced from 1,2-dichlorobenzene, indicating that the high temperature PCDD/Fs formation rate is much faster from chlorophenol precursors. In agreement with typical incinerator observations observations, the PCDDs to PCDFs ratios were less than one under all conditions. Modeling calculations were performed using gas phase mechanisms for the formation of PCDDs with chlorophenols as precursors, under the conditions existing in the high temperature bed region. A semiempirical surface-mediated model is suggested for estimating the formation of PCDDs from chlorophenols. 25 refs., 3 figs., 4 tabs.

  6. Pyrolysis reactor and fluidized bed combustion chamber

    DOEpatents

    Green, Norman W.

    1981-01-06

    A solid carbonaceous material is pyrolyzed in a descending flow pyrolysis reactor in the presence of a particulate source of heat to yield a particulate carbon containing solid residue. The particulate source of heat is obtained by educting with a gaseous source of oxygen the particulate carbon containing solid residue from a fluidized bed into a first combustion zone coupled to a second combustion zone. A source of oxygen is introduced into the second combustion zone to oxidize carbon monoxide formed in the first combustion zone to heat the solid residue to the temperature of the particulate source of heat.

  7. From CANDLE reactor to pebble-bed reactor

    SciTech Connect

    Chen, X. N.; Maschek, W.

    2006-07-01

    This paper attempts to reveal theoretically, by studying a diffusion-burn-up coupled neutronic model, that a so-called CANDLE reactor and a pebble-bed type reactor have a common burn-up feature. As already known, a solitary burn-up wave that can develop in the common U-Pu and Th-U conversion processes is the basic mechanism of the CANDLE reactor. In this paper it is demonstrated that a family of burn-up wave solution exists in the boundary value problem characterizing a pebble bed reactor, in which the fuel is loaded from above into the core and unloaded from bottom. Among this solution family there is a particular case, namely, a partial solitary wave solution, which begins from the fuel entrance side and extends into infinity on the exit side, and has a maximal bum-up rate in this family. An example dealing with the {sup 232}Th-{sup 233}U conversion chain is studied and the solutions are presented in order to show the mechanism of the burn-up wave. (authors)

  8. Silicon production in a fluidized bed reactor

    NASA Technical Reports Server (NTRS)

    Rohatgi, N. K.

    1986-01-01

    Part of the development effort of the JPL in-house technology involved in the Flat-Plate Solar Array (FSA) Project was the investigation of a low-cost process to produce semiconductor-grade silicon for terrestrial photovoltaic cell applications. The process selected was based on pyrolysis of silane in a fluidized-bed reactor (FBR). Following initial investigations involving 1- and 2-in. diameter reactors, a 6-in. diameter, engineering-scale FBR was constructed to establish reactor performance, mechanism of silicon deposition, product morphology, and product purity. The overall mass balance for all experiments indicates that more than 90% of the total silicon fed into the reactor is deposited on silicon seed particles and the remaining 10% becomes elutriated fines. Silicon production rates were demonstrated of 1.5 kg/h at 30% silane concentration and 3.5 kg/h at 80% silane concentration. The mechanism of silicon deposition is described by a six-path process: heterogeneous deposition, homogeneous decomposition, coalescence, coagulation, scavenging, and heterogeneous growth on fines. The bulk of the growth silicon layer appears to be made up of small diameter particles. This product morphology lends support to the concept of the scavenging of homogeneously nucleated silicon.

  9. A fluidized-bed reactor for silane pyrolysis

    NASA Technical Reports Server (NTRS)

    Iya, S.

    1984-01-01

    The silane decomposition in a fluidized bed reactor was studied. The process feasibility and operating windows were determined. Long duration tests were conducted and silicon purity was demonstrated. A high purity linear was installed in the fluid bed reactor; the FBR product was melted and single crystallized. Product purity improvements are noted.

  10. Survey of Dust Production in Pebble Bed Reactors Cores

    SciTech Connect

    Joshua J. Cogliati; Abderafi M. Ougouag; Javier Ortensi

    2011-06-01

    Graphite dust produced via mechanical wear from the pebbles in a pebble bed reactor is an area of concern for licensing. Both the German pebble bed reactors produced graphite dust that contained activated elements. These activation products constitute an additional source term of radiation and must be taken under consideration during the conduct of accident analysis of the design. This paper discusses the available literature on graphite dust production and measurements in pebble bed reactors. Limited data is available on the graphite dust produced from the AVR and THTR-300 pebble bed reactors. Experiments that have been performed on wear of graphite in pebble-bed-like conditions are reviewed. The calculation of contact forces, which are a key driving mechanism for dust in the reactor, are also included. In addition, prior graphite dust predictions are examined, and future areas of research are identified.

  11. Hydraulic characteristics of packed bed reactors

    SciTech Connect

    Young, H.W.

    1986-01-01

    Tracer response tests were conducted to characterize the hydraulics of plastic crossflow filter media at Reynold's numbers less than 25. Sections of this media were cut to fit a laboratory scale reactor and radioactive tracer tests were conducted to measure the residence time distribution under different flow conditions. Introduction of gas and the use of agar coating were included to simulate the effect of biological solids formed within operating reactors. These tests were conducted for three different sizes of media providing a range of specific surface areas with flow rates typical of the residence times found in fixed-bed anaerobic processes. Tracer response curves were generated for these various conditions, and a computer program was developed to fit these curves based on a relatively simple hydraulic model. The best fit model parameters indicating the extent of plug flow and the hydraulic dead space were found to positively correlate with the Reynold's number within the range tested. An increase in the plug flow behavior of the system was associated with an increase in the specific surface area of the media. Gas was found to produce complete mixing regardless of media specific surface area while the simulated biological film had little effect on the tracer response.

  12. Multiscale Analysis of Pebble Bed Reactors

    SciTech Connect

    Hans Gougar; Woo Yoon; Abderrafi Ougouag

    2010-10-01

    – The PEBBED code was developed at the Idaho National Laboratory for design and analysis of pebble-bed high temperature reactors. The diffusion-depletion-pebble-mixing algorithm of the original PEBBED code was enhanced through coupling with the THERMIX-KONVEK code for thermal fluid analysis and by the COMBINE code for online cross section generation. The COMBINE code solves the B-1 or B-3 approximations to the transport equation for neutron slowing down and resonance interactions in a homogeneous medium with simple corrections for shadowing and thermal self-shielding. The number densities of materials within specified regions of the core are averaged and transferred to COMBINE from PEBBED for updating during the burnup iteration. The simple treatment of self-shielding in previous versions of COMBINE led to inaccurate results for cross sections and unsatisfactory core performance calculations. A new version of COMBINE has been developed that treats all levels of heterogeneity using the 1D transport code ANISN. In a 3-stage calculation, slowing down is performed in 167 groups for each homogeneous subregion (kernel, particle layers, graphite shell, control rod absorber annulus, etc.) Particles in a local average pebble are homogenized using ANISN then passed to the next (pebble) stage. A 1D transport solution is again performed over the pebble geometry and the homogenized pebble cross sections are passed to a 1-d radial model of a wedge of the pebble bed core. This wedge may also include homogeneous reflector regions and a control rod region composed of annuli of different absorbing regions. Radial leakage effects are therefore captured with discrete ordinates transport while axial and azimuthal effects are captured with a transverse buckling term. In this paper, results of various PBR models will be compared with comparable models from literature. Performance of the code will be assessed.

  13. Shielded fluid stream injector for particle bed reactor

    DOEpatents

    Notestein, John E.

    1993-01-01

    A shielded fluid-stream injector assembly is provided for particle bed reactors. The assembly includes a perforated pipe injector disposed across the particle bed region of the reactor and an inverted V-shaped shield placed over the pipe, overlapping it to prevent descending particles from coming into direct contact with the pipe. The pipe and shield are fixedly secured at one end to the reactor wall and slidably secured at the other end to compensate for thermal expansion. An axially extending housing aligned with the pipe and outside the reactor and an in-line reamer are provided for removing deposits from the inside of the pipe. The assembly enables fluid streams to be injected and distributed uniformly into the particle bed with minimized clogging of injector ports. The same design may also be used for extraction of fluid streams from particle bed reactors.

  14. Shielded fluid stream injector for particle bed reactor

    SciTech Connect

    Notestein, J.E.

    1991-12-31

    A shielded fluid-stream injector assembly is provided for particle bed reactors. The assembly includes a perforated pipe injector disposed across the particle bed region of the reactor and an inverted V-shaped shield placed over the pipe, overlapping it to prevent descending particles from coming into direct contact with the pipe. The pipe and shield are fixedly secured at one end to the reactor wall and slidably secured at the other end to compensate for thermal expansion. An axially extending housing aligned with the pipe and outside the reactor and an inline reamer are provided for removing deposits from the inside of the pipe. The assembly enables fluid streams to be injected and distributed uniformly into the particle bed with minimized clogging of injector ports. The same design may also be used for extraction of fluid streams from particle bed reactors.

  15. COMPUTATIONAL MODELING OF CIRCULATING FLUIDIZED BED REACTORS

    SciTech Connect

    Ibrahim, Essam A

    2013-01-09

    Details of numerical simulations of two-phase gas-solid turbulent flow in the riser section of Circulating Fluidized Bed Reactor (CFBR) using Computational Fluid Dynamics (CFD) technique are reported. Two CFBR riser configurations are considered and modeled. Each of these two riser models consist of inlet, exit, connecting elbows and a main pipe. Both riser configurations are cylindrical and have the same diameter but differ in their inlet lengths and main pipe height to enable investigation of riser geometrical scaling effects. In addition, two types of solid particles are exploited in the solid phase of the two-phase gas-solid riser flow simulations to study the influence of solid loading ratio on flow patterns. The gaseous phase in the two-phase flow is represented by standard atmospheric air. The CFD-based FLUENT software is employed to obtain steady state and transient solutions for flow modulations in the riser. The physical dimensions, types and numbers of computation meshes, and solution methodology utilized in the present work are stated. Flow parameters, such as static and dynamic pressure, species velocity, and volume fractions are monitored and analyzed. The differences in the computational results between the two models, under steady and transient conditions, are compared, contrasted, and discussed.

  16. JPL in-house fluidized-bed reactor research

    NASA Technical Reports Server (NTRS)

    Rohatgi, N. K.

    1984-01-01

    Fluidized bed reactor research techniques for fabrication of quartz linears was reviewed. Silane pyrolysis was employed in this fabrication study. Metallic contaminant levels in the silicon particles were below levels detectable by emission spectroscopy.

  17. Deleterious Thermal Effects Due To Randomized Flow Paths in Pebble Bed, and Particle Bed Style Reactors

    NASA Technical Reports Server (NTRS)

    Moran, Robert P.

    2013-01-01

    A review of literature associated with Pebble Bed and Particle Bed reactor core research has revealed a systemic problem inherent to reactor core concepts which utilize randomized rather than structured coolant channel flow paths. For both the Pebble Bed and Particle Bed Reactor designs; case studies reveal that for indeterminate reasons, regions within the core would suffer from excessive heating leading to thermal runaway and localized fuel melting. A thermal Computational Fluid Dynamics model was utilized to verify that In both the Pebble Bed and Particle Bed Reactor concepts randomized coolant channel pathways combined with localized high temperature regions would work together to resist the flow of coolant diverting it away from where it is needed the most to cooler less resistive pathways where it is needed the least. In other words given the choice via randomized coolant pathways the reactor coolant will take the path of least resistance, and hot zones offer the highest resistance. Having identified the relationship between randomized coolant channel pathways and localized fuel melting it is now safe to assume that other reactor concepts that utilize randomized coolant pathways such as the foam core reactor are also susceptible to this phenomenon.

  18. Use fluid bed reactor for maleic anhydride from butane

    SciTech Connect

    Arnold, S.C.; Neri, A.; Suciu, G.D.; Verde, L.

    1985-09-01

    A new process is described that incorporates three major improvements over the conventional air oxidation of benzene in a fixed-bed reactor system. The new ALMA Process was developed jointly by Alusuisse Italia and Lummus Crest. It includes the following process improvements: n-Butane feedstock, fluidized-bed reactor system, and a continuous maleic anhydride recovery system using an organic solvent. A summary of the process is given, as well as the steps in its development and its economic advantages.

  19. Granular Dynamics in Pebble Bed Reactor Cores

    NASA Astrophysics Data System (ADS)

    Laufer, Michael Robert

    This study focused on developing a better understanding of granular dynamics in pebble bed reactor cores through experimental work and computer simulations. The work completed includes analysis of pebble motion data from three scaled experiments based on the annular core of the Pebble Bed Fluoride Salt-Cooled High- Temperature Reactor (PB-FHR). The experiments are accompanied by the development of a new discrete element simulation code, GRECO, which is designed to offer a simple user interface and simplified two-dimensional system that can be used for iterative purposes in the preliminary phases of core design. The results of this study are focused on the PB-FHR, but can easily be extended for gas-cooled reactor designs. Experimental results are presented for three Pebble Recirculation Experiments (PREX). PREX 2 and 3.0 are conventional gravity-dominated granular systems based on the annular PB-FHR core design for a 900 MWth commercial prototype plant and a 16 MWth test reactor, respectively. Detailed results are presented for the pebble velocity field, mixing at the radial zone interfaces, and pebble residence times. A new Monte Carlo algorithm was developed to study the residence time distributions of pebbles in different radial zones. These dry experiments demonstrated the basic viability of radial pebble zoning in cores with diverging geometry before pebbles reach the active core. Results are also presented from PREX 3.1, a scaled facility that uses simulant materials to evaluate the impact of coupled fluid drag forces on the granular dynamics in the PB-FHR core. PREX 3.1 was used to collect first of a kind pebble motion data in a multidimensional porous media flow field. Pebble motion data were collected for a range of axial and cross fluid flow configurations where the drag forces range from half the buoyancy force up to ten times greater than the buoyancy force. Detailed analysis is presented for the pebble velocity field, mixing behavior, and residence time

  20. Pebble Bed Reactor review update. Fiscal year 1979 annual report

    SciTech Connect

    Not Available

    1980-01-01

    Updated information is presented on the Pebble Bed Reactor (PBR) concept being developed in the Federal Republic of Germany for electricity generation and process heat applications. Information is presented concerning nuclear analysis and core performance, fuel cycle evaluation, reactor internals, and safety and availability.

  1. Nuclear rocket engine design based on the particle bed reactor

    SciTech Connect

    Powell, J.R.; Ludewig, H.; Mughabghab, S.; Lazareth, O. Jr.; Schmidt, E.; Maise, G. )

    1993-01-01

    A nuclear thermal rocket (NTR) engine design based on the particle-bed reactor (PBR) concept is described in this paper. This engine is designed to satisfy a mission to Mars and thus must develop a thrust of [approximately]1.75 (6) N. This requirement is satisfied if the reactor generates 2000 MW of power.

  2. Packed bed reactor for photochemical .sup.196 Hg isotope separation

    DOEpatents

    Grossman, Mark W.; Speer, Richard

    1992-01-01

    Straight tubes and randomly oriented pieces of tubing having been employed in a photochemical mercury enrichment reactor and have been found to improve the enrichment factor (E) and utilization (U) compared to a non-packed reactor. One preferred embodiment of this system uses a moving bed (via gravity) for random packing.

  3. Fluidized bed reactor utilizing a plate support and method of operating the reactor

    SciTech Connect

    Korenberg, J.

    1984-10-09

    A bed support, and a fluidizing bed reactor incorporating the bed support, the bed support including a horizontal support surface with a centrally disposed conduit for removing tramp material and/or agglomerated material from the reactor. The horizontal support surface has fluidizing air source jet nozzles for directing pressurized air toward the area above the conduit. In a first embodiment, the conduit has downwardly diverging walls. In a second embodiment, the horizontal support surface further includes a bar grate having central fluidizing air source jet nozzles positioned within the conduit. The method of operating the fluidized bed reactor includes directing pressurized air at an angle to the horizontal support surface both for fluidizing the bed and for moving the tramp material and/or agglomerated material toward the conduit for removal from the reactor through the conduit.

  4. Cold-state spout-fluidizing characteristics of high-carbon ferromanganese powders

    NASA Astrophysics Data System (ADS)

    Chen, Jin; Shi, Wen-Li; Zhao, Jing; Lin, Wan-Ming; Liu, Ke

    2011-12-01

    The spout-fluidizing characteristics of high-carbon ferromanganese powders with different sizes and masses were studied via a plexiglass spout-fluidized bed with an inner diameter of 30 mm and a height of 1000 mm. The relationships between bed voidage and such parameters as bed height, particle size, fluidizing air velocity, and air flow were obtained. Experimental results show that the powder material with high density can be fluidized in the spout-fluidized bed where the particle size is a key factor influencing the quality of fluidization.

  5. Fluidized bed reactor apparatus and related gasification system

    SciTech Connect

    Fernandez, J.M.; Hoffert, F.D.; Marina, J.M.; Milligan, J.D.

    1982-11-16

    A process and pressurized, gasification reactor apparatus are claimed for converting combustible carbon containing materials such as coal char and other carbonaceous solids or carbonaceous solids/heavy oil combinations to an intermediate heating value fuel gas. The gasification reactor includes an insulated fluidized bed reactor chamber, an upper reactor housing for a freely suspended bayonet bundle type heat exchanger for (A) superheating incoming saturated steam and (B) cooling outgoing high temperature product gas, and a lower reactor housing structure which includes a freefloating, conically-shaped perforated plenum chamber. The superheated steam and oxygen are premixed with the plenum chamber before being pressure directed into the fluidized bed reactor chamber for mixture and combustion with the incoming combustible carbon containing materials such as coal char. After reaction of the superheated steam, oxygen and coal char in the fluidized bed reactor at temperatures ranging from 900/sup 0/ F to 1750/sup 0/ F, the product fuel gases and associated particulate matter are cooled by steam flowing through the bayonet heat exchanger, the steam being superheated by this exchange. After discharge from the heat exchanger, the fuel gas product containing particulate matter is pressure directed into a conventional cyclone separator for (A) separation of the desired product gases and (B) return of the particulate matter for further recycling in the reactor chamber. Undesirable ash clinkers are gravitationally and pressure directed out of the reactor chamber through a central ash withdrawal pipe.

  6. Computational fluid dynamic modeling of fluidized-bed polymerization reactors

    SciTech Connect

    Rokkam, Ram

    2012-01-01

    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

  7. Improved lignin pyrolysis for phenolics production in a bubbling bed reactor--Effect of bed materials.

    PubMed

    Li, Dongbing; Briens, Cedric; Berruti, Franco

    2015-01-01

    Lignin pyrolysis was studied in a bubbling fluidized bed reactor equipped with a fractional condensation train, using nitrogen as the fluidization gas. The effect of different bed materials (silica sand, lignin char, activated lignin char, birch bark char, and foamed glass beads) on bio-oil yield and quality was investigated for a pyrolysis temperature of 550 °C. Results how that a bed of activated lignin char is preferable to the commonly used silica sand: pyrolysis of Kraft lignin with a bed of activated lignin char not only provides a pure char product, but also a higher dry bio-oil yield (with a relative increase of 43%), lower pyrolytic water production, and better bio-oil quality. The bio-oil obtained from Kraft lignin pyrolysis with a bed of activated lignin char has a lower average molecular weight, less tar, more phenolics, and less acidity than when sand is used as bed material. PMID:25863324

  8. Effect of Bed Characters on the Direct Synthesis of Dimethyldichlorosilane in Fluidized Bed Reactor

    PubMed Central

    Zhang, Pan; Duan, Ji H.; Chen, Guang H.; Wang, Wei W.

    2015-01-01

    This paper presents the numerical investigation of the effects of the general bed characteristics such as superficial gas velocities, bed temperature, bed heights and particle size, on the direct synthesis in a 3D fluidized bed reactor. A 3D model for the gas flow, heat transfer, and mass transfer was coupled to the direct synthesis reaction mechanism verified in the literature. The model was verified by comparing the simulated reaction rate and dimethyldichlorosilane (M2) selectivity with the experimental data in the open literature and real production data. Computed results indicate that superficial gas velocities, bed temperature, bed heights, and particle size have vital effect on the reaction rates and/or M2 selectivity. PMID:25742729

  9. 198. SPOUT RUN ARCH BRIDGE AND SPOUT RUN WESTBOUND BRIDGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    198. SPOUT RUN ARCH BRIDGE AND SPOUT RUN WESTBOUND BRIDGE FROM POTOMAC RIVER LOOKING SOUTHWEST. - George Washington Memorial Parkway, Along Potomac River from McLean to Mount Vernon, VA, Mount Vernon, Fairfax County, VA

  10. Coal hydrogenation and deashing in ebullated bed catalytic reactor

    DOEpatents

    Huibers, Derk T. A.; Johanson, Edwin S.

    1983-01-01

    An improved process for hydrogenation of coal containing ash with agglomeration and removal of ash from an ebullated bed catalytic reactor to produce deashed hydrocarbon liquid and gas products. In the process, a flowable coal-oil slurry is reacted with hydrogen in an ebullated catalyst bed reaction zone at elevated temperature and pressure conditions. The upward velocity and viscosity of the reactor liquid are controlled so that a substantial portion of the ash released from the coal is agglomerated to form larger particles in the upper portion of the reactor above the catalyst bed, from which the agglomerated ash is separately withdrawn along with adhering reaction zone liquid. The resulting hydrogenated hydrocarbon effluent material product is phase separated to remove vapor fractions, after which any ash remaining in the liquid fraction can be removed to produce substantially ash-free coal-derived liquid products.

  11. Flow instability in particle-bed nuclear reactors

    NASA Technical Reports Server (NTRS)

    Kerrebrock, Jack L.

    1993-01-01

    The particle-bed core offers mitigation of some of the problems of solid-core nuclear rocket reactors. Dividing the fuel elements into small spherical particles contained in a cylindrical bed through which the propellant flows radially, may reduce the thermal stress in the fuel elements, allowing higher propellant temperatures to be reached. The high temperature regions of the reactor are confined to the interior of cylindrical fuel assemblies, so most of the reactor can be relatively cool. This enables the use of structural and moderating materials which reduce the minimum critical size and mass of the reactor. One of the unresolved questions about this concept is whether the flow through the particle-bed will be well behaved, or will be subject to destructive flow instabilities. Most of the recent analyses of the stability of the particle-bed reactor have been extensions of the approach of Bussard and Delauer, where the bed is essentially treated as an array of parallel passages, so that the mass flow is continuous from inlet to outlet through any one passage. A more general three dimensional model of the bed is adopted, in which the fluid has mobility in three dimensions. Comparison of results of the earlier approach to the present one shows that the former does not accurately represent the stability at low Re. The more complete model presented should be capable of meeting this deficiency while accurately representing the effects of the cold and hot frits, and of heat conduction and radiation in the particle-bed. It can be extended to apply to the cylindrical geometry of particle-bed reactors without difficulty. From the exemplary calculations which were carried out, it can be concluded that a particle-bed without a cold frit would be subject to instability if operated at the high temperatures desired for nuclear rockets, and at power densities below about 4 megawatts per liter. Since the desired power density is about 40 megawatts per liter, it can be concluded

  12. Liquid distribution in trickle bed reactors

    SciTech Connect

    Sundaresan, S.

    1993-12-31

    The quality of liquid distribution at the top of the bed and the manner in which the flows are established can affect the liquid flow behavior profoundly. This, in turn, can impact the rates of chemical reactions. Some recent experimental results highlighting these points are reviewed.

  13. Hydrodynamics of Packed Bed Reactor in Low Gravity

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Nahra, Henry K.; Balakotaiah, Vemuri

    2005-01-01

    Packed bed reactors are well known for their vast and diverse applications in the chemical industry; from gas absorption, to stripping, to catalytic conversion. Use of this type of reactor in terrestrial applications has been rather extensive because of its simplicity and relative ease of operation. Developing similar reactors for use in microgravity is critical to many space-based advanced life support systems. However, the hydrodynamics of two-phase flow packed bed reactors in this new environment and the effects of one physiochemical process on another has not been adequately assessed. Surface tension or capillary forces play a much greater role which results in a shifting in flow regime transitions and pressure drop. Results from low gravity experiments related to flow regimes and two-phase pressure drop models are presented in this paper along with a description of plans for a flight experiment on the International Space Station (ISS). Understanding the packed bed hydrodynamics and its effects on mass transfer processes in microgravity is crucial for the design of packed bed chemical or biological reactors to be used for water reclamation and other life support processes involving water purification.

  14. Design of a laboratory scale fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Wikström, E.; Andersson, P.; Marklund, S.

    1998-04-01

    The aim of this project was to construct a laboratory scale fluidized bed reactor that simulates the behavior of full scale municipal solid waste combustors. The design of this reactor is thoroughly described. The size of the laboratory scale fluidized bed reactor is 5 kW, which corresponds to a fuel-feeding rate of approximately 1 kg/h. The reactor system consists of four parts: a bed section, a freeboard section, a convector (postcombustion zone), and an air pollution control (APC) device system. The inside diameter of the reactor is 100 mm at the bed section and it widens to 200 mm in diameter in the freeboard section; the total height of the reactor is 1760 mm. The convector part consists of five identical sections; each section is 2700 mm long and has an inside diameter of 44.3 mm. The reactor is flexible regarding the placement and number of sampling ports. At the beginning of the first convector unit and at the end of each unit there are sampling ports for organic micropollutants (OMP). This makes it possible to study the composition of the flue gases at various residence times. Sampling ports for inorganic compounds and particulate matter are also placed in the convector section. All operating parameters, reactor temperatures, concentrations of CO, CO2, O2, SO2, NO, and NO2 are continuously measured and stored at selected intervals for further evaluation. These unique features enable full control over the fuel feed, air flows, and air distribution as well as over the temperature profile. Elaborate details are provided regarding the configuration of the fuel-feeding systems, the fluidized bed, the convector section, and the APC device. This laboratory reactor enables detailed studies of the formation mechanisms of OMP, such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), poly-chlorinated biphenyls (PCBs), and polychlorinated benzenes (PCBzs). With this system formation mechanisms of OMP occurring in both the combustion

  15. Lagrangian Approach to Study Catalytic Fluidized Bed Reactors

    NASA Astrophysics Data System (ADS)

    Madi, Hossein; Hossein Madi Team; Marcelo Kaufman Rechulski Collaboration; Christian Ludwig Collaboration; Tilman Schildhauer Collaboration

    2013-03-01

    Lagrangian approach of fluidized bed reactors is a method, which simulates the movement of catalyst particles (caused by the fluidization) by changing the gas composition around them. Application of such an investigation is in the analysis of the state of catalysts and surface reactions under quasi-operando conditions. The hydrodynamics of catalyst particles within a fluidized bed reactor was studied to improve a Lagrangian approach. A fluidized bed methanation employed in the production of Synthetic Natural Gas from wood was chosen as the case study. The Lagrangian perspective was modified and improved to include different particle circulation patterns, which were investigated through this study. Experiments were designed to evaluate the concepts of the model. The results indicate that the setup is able to perform the designed experiments and a good agreement between the simulation and the experimental results were observed. It has been shown that fluidized bed reactors, as opposed to fixed beds, can be used to avoid the deactivation of the methanation catalyst due to carbon deposits. Carbon deposition on the catalysts tested with the Lagrangian approach was investigated by temperature programmed oxidation (TPO) analysis of ex-situ catalyst samples. This investigation was done to identify the effects of particles velocity and their circulation patterns on the amount and type of deposited carbon on the catalyst surface. Ecole Polytechnique Federale de Lausanne(EPFL), Paul Scherrer Institute (PSI)

  16. EVALUATION OF ANAEROBIC EXPANDED BED REACTOR FOR SEWAGE TREATMENT

    EPA Science Inventory

    Bench scale anaerobic expanded bed reactors were operated at the U.S. EPA Test and Evaluation Facility to determine the effect of relative concentrations between organics and sulfate on the organics removal. The bench scale results showed that less organics were removed as the su...

  17. Heterogeneous decomposition of silane in a fixed bed reactor

    NASA Technical Reports Server (NTRS)

    Iya, S. K.; Flagella, R. N.; Dipaolo, F. S.

    1982-01-01

    Heterogeneous decomposition of silane in a fluidized bed offers an attractive route for the low-cost production of silicon for photovoltaic application. To obtain design data for a fluid bed silane pyrolysis reactor, deposition experiments were conducted in a small-scale fixed bed apparatus. Data on the decomposition mode, plating rate, and deposition morphology were obtained in the temperature range 600-900 C. Conditions favorable for heterogeneous decomposition with good deposition morphology were identified. The kinetic rate data showed the reaction to be first order with an activation energy of 38.8 kcal/mol, which agrees well with work done by others. The results are promising for the development of an economically attractive fluid bed process.

  18. Heterogeneous decomposition of silane in a fixed bed reactor

    NASA Technical Reports Server (NTRS)

    Iya, S. K.; Flagella, R. N.; Dipaolo, F. S.

    1981-01-01

    Heterogeneous decomposition of silane in a fluidized bed offers an attractive route for the low-cost production of silicon for photovoltaic application. To obtain design data for a fluid bed silane pyrolysis reactor, deposition experiments were conducted in a small-scale fixed bed apparatus. Data on the decomposition mode, plating rate, and deposition morphology were obtained in the temperature range 600 900 C. Conditions favorable for heterogenous decomposition with good deposition morphology were identified. The kinetic rate data showed the reaction to be first order with an activation energy of 38.8 kcal/mole, which agrees well with work done by others. The results are promising for the development of an economically attractive fluid bed process.

  19. Torrefaction of sawdust in a fluidized bed reactor.

    PubMed

    Li, Hui; Liu, Xinhua; Legros, Robert; Bi, Xiaotao T; Lim, C J; Sokhansanj, Shahab

    2012-01-01

    In the present work, stable fluidization of sawdust was achieved in a bench fluidized bed with an inclined orifice distributor without inert bed materials. A solids circulation pattern was established in the bed without the presence of slugging and channeling. The effects of treatment severity and weight loss on the solid product properties were identified. The decomposition of hemicelluloses was found to be responsible for the significant changes of chemical, physical and mechanical properties of the torrefied sawdust, including energy content, particle size distribution and moisture absorption capacity. The hydrophobicity of the torrefied sawdust was improved over the raw sawdust with a reduction of around 40 wt.% in saturated water uptake rate, and enhanced with increasing the treatment severity due to the decomposition of hemicelluloses which are rich in hydroxyl groups. The results in this study provided the basis for torrefaction in fluidized bed reactors. PMID:22055091

  20. Granular flow in pebble bed reactors: Dust generation and scaling

    SciTech Connect

    Rycroft, C. H.; Lind, T.; Guentay, S.; Dehbi, A.

    2012-07-01

    In experimental prototypes of pebble bed reactors, significant quantities of graphite dust have been observed due to rubbing between pebbles as they flow through the core. At the high temperatures and pressures in these reactors, little data is available to understand the frictional properties of the pebble surfaces, and as a result, the Paul Scherrer Institut (Switzerland) proposes a conceptual design of a scaled-down version of a pebble bed reactor to investigate this issue in detail. In this paper, simulations of granular flow in pebble bed reactors using the discrete-element method are presented. Simulations in the full geometry (using 440,000 pebbles) are compared to those in geometries scaled down by 3:1 and 6:1. The simulations show complex behavior due to discrete pebble packing effects, meaning that pebble flow and dust generation in a scaled-down facility may be significantly different. The differences between velocity profiles, packing geometry, and pebble wear at the different scales are discussed. The results can aid in the design of the prototypical facility to more accurately reproduce the flow in a full-size reactor. (authors)

  1. High power density reactors based on direct cooled particle beds

    SciTech Connect

    Powell, J.R.; Horn, F.L.

    1985-01-01

    Reactors based on direct cooled HTGR type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out long the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBR's) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed. 12 figs.

  2. Operation of Packed-Bed Reactors Studied in Microgravity

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Balakotaiah, Vemuri

    2004-01-01

    The operation of a packed bed reactor (PBR) involves gas and liquid flowing simultaneously through a fixed-bed of solid particles. Depending on the application, the particles can be various shapes and sizes but are generally designed to force the two fluid phases through a tortuous route of narrow channels connecting the interstitial space. The PBR is the most common type of reactor in industry because it provides for intimate contact and high rates of transport between the phases needed to sustain chemical or biological reactions. The packing may also serve as either a catalyst or as a support for growing biological material. Furthermore, this type of reactor is relatively compact and requires minimal power to operate. This makes it an excellent candidate for unit operations in support of long-duration human space activities.

  3. Flow instability in particle-bed nuclear reactors

    NASA Technical Reports Server (NTRS)

    Kerrebrock, J. L.; Kalamas, J.

    1993-01-01

    A three-dimensional model of the stability of the particle-bed reactor is presented, in which the fluid has mobility in three dimensions. The model accurately represents the stability at low Re numbers as well as the effects of the cold and hot frits and of the heat conduction and radiation in the particle bed. The model can be easily extended to apply to the cylindrical geometry of particle-bed reactors. Exemplary calculations are carried out, showing that a particle bed without a cold frit would be subject to instability if operated at the high-temperature ratios used for nuclear rockets and at power densities below about 4 MW/l; since the desired power density for such a reactor is about 40 MW/l, the operation at design exit temperature but at reduced power could be hazardous. Calculations show however that it might be possible to remove the instability problem by appropriate combinations of cold and hot frits.

  4. Brewery wastewater treatment using anaerobic inverse fluidized bed reactors.

    PubMed

    Alvarado-Lassman, A; Rustrián, E; García-Alvarado, M A; Rodríguez-Jiménez, G C; Houbron, E

    2008-05-01

    Two anaerobic inverse fluidized bed reactors were utilized to evaluate organic matter removal from brewery wastewater, applying different OLR and testing two support materials. Hydrodynamic tests varying liquid flow and solid concentration were developed on the supports in order to establish operational conditions. A batch colonization stage was applied using 25% active volume of extendosphere and triturated polyethylene as support materials. The reactors were subsequently operated continuously with stepwise increments in organic loading rate until limiting conditions was reached. For the supports studied, IFBR technology was suitable for organic matter removal present in brewery wastewater with COD removal efficiencies greater than 90%. The reactor with triturated polyethylene support showed an excellent COD removal with OLR values up to 10 g COD/Ld, whereas the reactor with extendosphere support had an excellent hydrodynamic and biologic behavior working with OLR values up to 70 g COD/Ld. PMID:17716891

  5. Comparison of slurry versus fixed-bed reactor costs for indirect liquefaction applications

    SciTech Connect

    Prakash, A.; Bendale, P.G.

    1991-12-01

    This work is a comparative evaluation of slurry reactors and fixed-bed reactors, with special emphasis on cost. Relative differences between slurry reactors and fixed-bed reactors have been pointed out in previous reviews; the differences pertinent to indirect liquefaction are summarized here. Design of both types is outlined.

  6. Fixed Packed Bed Reactors in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro; McCready, Mark J.

    2004-01-01

    gravity cocurrent flow to determine the mass transfer enhancement and propose new mass transfer correlations for two-phase gas-liquid flows through packed beds in microgravity.

  7. Fixed Packed Bed Reactors in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro; McCready, Mark J.

    2004-01-01

    those in normal gravity cocurrent flow to determine the mass transfer enhancement and propose new mass transfer correlations for two-phase gas-liquid flows through packed beds in microgravity.

  8. Waste tyre pyrolysis: modelling of a moving bed reactor.

    PubMed

    Aylón, E; Fernández-Colino, A; Murillo, R; Grasa, G; Navarro, M V; García, T; Mastral, A M

    2010-12-01

    This paper describes the development of a new model for waste tyre pyrolysis in a moving bed reactor. This model comprises three different sub-models: a kinetic sub-model that predicts solid conversion in terms of reaction time and temperature, a heat transfer sub-model that calculates the temperature profile inside the particle and the energy flux from the surroundings to the tyre particles and, finally, a hydrodynamic model that predicts the solid flow pattern inside the reactor. These three sub-models have been integrated in order to develop a comprehensive reactor model. Experimental results were obtained in a continuous moving bed reactor and used to validate model predictions, with good approximation achieved between the experimental and simulated results. In addition, a parametric study of the model was carried out, which showed that tyre particle heating is clearly faster than average particle residence time inside the reactor. Therefore, this fast particle heating together with fast reaction kinetics enables total solid conversion to be achieved in this system in accordance with the predictive model. PMID:20510597

  9. Maltodextrin hydrolysis in a fluidized-bed immobilized enzyme reactor

    SciTech Connect

    Vallat, I.; Monsan, P.; Riba, J.P.

    1986-02-01

    The present work deals with maltodextrin hydrolysis by glucoamylase immobilized onto corn stover in a fluidized bed reactor. An industrial enzyme preparation was convalently grafted onto corn stover, yielding an activity of up to 372 U/g and 1700 U/g for support particle sizes of 0.8 and 0.2 mm, respectively. A detailed kinetic study, using a differntial reactor, allowed the characterization of the influence of mass transfer resistance on the reaction catalyzed by immobilized glucoamylase. A simple and general mathematical model was then developed to describe the experimental conversion data and found to be vaild.

  10. Optimization of a packed bed reactor for liquid waste treatment

    SciTech Connect

    Schmidt, C.A.; Brower, M.J.; Coogan, J.J.; Tennant, R.A.

    1993-11-01

    The authors describe an optimization study of a packed bed reactor (PBR), developed for the treatment of hazardous liquid wastes. The focus is on the destruction of trichloroethylene (TCE). The PBR technology offers many distinct advantages over other processes: simple design, high destruction rates (99.99%), low costs, ambient pressure operation, easy maintenance and scaleability. The cost effectiveness, optimal operating parameters and scaleability were determined. As a second stage of treatment, a silent discharge plasma (SDP) reactor was installed to further treat offgases from the PBR. A primary advantage of this system is closed loop operation, where exhaust gases are continuously recycled and not released into the atmosphere.

  11. Core Optimization of a Deep-Burn Pebble Bed Reactor

    SciTech Connect

    Brian Boer; Abderrafi M. Ougouag

    2010-06-01

    Achieving a high fuel burnup in the Deep-Burn (DB) pebble bed reactor design, while remaining within the limits for fuel temperature, power peaking and temperature reactivity feedback, is challenging. The high content of Pu and Minor Actinides in the Deep-Burn fuel significantly impacts the thermal neutron energy spectrum as compared to a ’standard’ UO2 fueled core. This can result in power and temperature peaking in the pebble bed core in locally thermalized regions near the graphite reflectors. Furthermore, the interplay of the Pu resonances of the neutron absorption cross sections at low-lying energies can lead to a positive temperature reactivity coefficient for the graphite moderator at certain operating conditions. The DB concept focuses on the destruction of spent fuel transuranics in TRISO coated particle fueled gas-cooled reactors with the aim of a fractional fuel burnup of 60-70% in fissions per initial metal atom (FIMA), using a single-pass, multi in-core fuel (re)cycling scheme. In principle, the DB pebble bed concept employs the same reactor designs as the present low enriched uranium core designs, i.e. the 400 MWth Pebble Bed Modular Reactor (PBMR-400). A Pu and Minor Actinide fueled PBMR-400 design serves as the starting point for a core optimization study. The fuel temperature, power peak, temperature reactivity coefficients, and burnup capabilities of the modified designs are analyzed with the PEBBED code. A code-to-code coupling with the PASTA code allows for the analysis of the TRISO fuel performance for both normal and Loss Of Forced Cooling conditions. An improved core design is sought, maximizing the fuel discharge burnup, while retaining negative temperature reactivity feedback coefficients for the entire temperature range and avoiding high fuel temperatures (fuel failure probabilities).

  12. Development of the Packed Bed Reactor ISS Flight Experiment

    NASA Technical Reports Server (NTRS)

    Patton, Martin O.; Bruzas, Anthony E.; Rame, Enrique; Motil, Brian J.

    2012-01-01

    Packed bed reactors are compact, require minimum power and maintenance to operate, and are highly reliable. These features make this technology a leading candidate as a potential unit operation in support of long duration human space exploration. On earth, this type of reactor accounts for approximately 80% of all the reactors used in the chemical process industry today. Development of this technology for space exploration is truly crosscutting with many other potential applications (e.g., in-situ chemical processing of planetary materials and transport of nutrients through soil). NASA is developing an ISS experiment to address this technology with particular focus on water reclamation and air revitalization. Earlier research and development efforts funded by NASA have resulted in two hydrodynamic models which require validation with appropriate instrumentation in an extended microgravity environment. The first model developed by Motil et al., (2003) is based on a modified Ergun equation. This model was demonstrated at moderate gas and liquid flow rates, but extension to the lower flow rates expected in many advanced life support systems must be validated. The other model, developed by Guo et al., (2004) is based on Darcy s (1856) law for two-phase flow. This model has been validated for a narrow range of flow parameters indirectly (without full instrumentation) and included test points where the flow was not fully developed. The flight experiment presented will be designed with removable test sections to test the hydrodynamic models. The experiment will provide flexibility to test additional beds with different types of packing in the future. One initial test bed is based on the VRA (Volatile Removal Assembly), a packed bed reactor currently on ISS whose behavior in micro-gravity is not fully understood. Improving the performance of this system through an accurate model will increase our ability to purify water in the space environment.

  13. Automated Design and Optimization of Pebble-bed Reactor Cores

    SciTech Connect

    Hans D. Gougar; Abderrafi M. Ougouag; William K. Terry

    2010-07-01

    We present a conceptual design approach for high-temperature gas-cooled reactors using recirculating pebble-bed cores. The design approach employs PEBBED, a reactor physics code specifically designed to solve for and analyze the asymptotic burnup state of pebble-bed reactors, in conjunction with a genetic algorithm to obtain a core that maximizes a fitness value that is a function of user-specified parameters. The uniqueness of the asymptotic core state and the small number of independent parameters that define it suggest that core geometry and fuel cycle can be efficiently optimized toward a specified objective. PEBBED exploits a novel representation of the distribution of pebbles that enables efficient coupling of the burnup and neutron diffusion solvers. With this method, even complex pebble recirculation schemes can be expressed in terms of a few parameters that are amenable to modern optimization techniques. With PEBBED, the user chooses the type and range of core physics parameters that represent the design space. A set of traits, each with acceptable and preferred values expressed by a simple fitness function, is used to evaluate the candidate reactor cores. The stochastic search algorithm automatically drives the generation of core parameters toward the optimal core as defined by the user. The optimized design can then be modeled and analyzed in greater detail using higher resolution and more computationally demanding tools to confirm the desired characteristics. For this study, the design of pebble-bed high temperature reactor concepts subjected to demanding physical constraints demonstrated the efficacy of the PEBBED algorithm.

  14. Nuclear Safeguards Considerations For The Pebble Bed Modular Reactor (PBMR)

    SciTech Connect

    Phillip Casey Durst; David Beddingfield; Brian Boyer; Robert Bean; Michael Collins; Michael Ehinger; David Hanks; David L. Moses; Lee Refalo

    2009-10-01

    High temperature reactors (HTRs) have been considered since the 1940s, and have been constructed and demonstrated in the United Kingdom (Dragon), United States (Peach Bottom and Fort Saint Vrain), Japan (HTTR), Germany (AVR and THTR-300), and have been the subject of conceptual studies in Russia (VGM). The attraction to these reactors is that they can use a variety of reactor fuels, including abundant thorium, which upon reprocessing of the spent fuel can produce fissile U-233. Hence, they could extend the stocks of available uranium, provided the fuel is reprocessed. Another attractive attribute is that HTRs typically operate at a much higher temperature than conventional light water reactors (LWRs), because of the use of pyrolytic carbon and silicon carbide coated (TRISO) fuel particles embedded in ceramic graphite. Rather than simply discharge most of the unused heat from the working fluid in the power plant to the environment, engineers have been designing reactors for 40 years to recover this heat and make it available for district heating or chemical conversion plants. Demonstrating high-temperature nuclear energy conversion was the purpose behind Fort Saint Vrain in the United States, THTR-300 in Germany, HTTR in Japan, and HTR-10 and HTR-PM, being built in China. This resulted in nuclear reactors at least 30% or more thermodynamically efficient than conventional LWRs, especially if the waste heat can be effectively utilized in chemical processing plants. A modern variant of high temperature reactors is the Pebble Bed Modular Reactor (PBMR). Originally developed in the United States and Germany, it is now being redesigned and marketed by the Republic of South Africa and China. The team examined historical high temperature and high temperature gas reactors (HTR and HTGR) and reviewed safeguards considerations for this reactor. The following is a preliminary report on this topic prepared under the ASA-100 Advanced Safeguards Project in support of the NNSA Next

  15. Investigation of Anaerobic Fluidized Bed Reactor/ Aerobic Moving Bed Bio Reactor (AFBR/MMBR) System for Treatment of Currant Wastewater

    PubMed Central

    JAFARI, Jalil; MESDAGHINIA, Alireza; NABIZADEH, Ramin; FARROKHI, Mehrdad; MAHVI, Amir Hossein

    2013-01-01

    Background: Anaerobic treatment methods are more suitable for the treatment of concentrated wastewater streams, offer lower operating costs, the production of usable biogas product. The aim of this study was to investigate the performance of an Anaerobic Fluidized Bed Reactor (AFBR)-Aerobic Moving Bed Bio Reactor (MBBR) in series arrangement to treat Currant wastewater. Methods: The bed materials of AFBR were cylindrical particles made of PVC with a diameter of 2–2.3 mm, particle density of 1250 kg/m3. The volume of all bed materials was 1.7 liter which expanded to 2.46 liters in fluidized situation. In MBBR, support media was composed of 1.5 liters Bee-Cell 2000 having porosity of 87% and specific surface area of 650m2/m3. Results: When system operated at 35 ºC, chemical oxygen demand (COD) removal efficiencies were achieved to 98% and 81.6% for organic loading rates (OLR) of 9.4 and 24.2 g COD/l.d, and hydraulic retention times (HRT) of 48 and 18 h, in average COD concentration feeding of 18.4 g/l, respectively. Conclusion: The contribution of AFBR in total COD removal efficiency at an organic loading rate (OLR) of 9.4 g COD/l.d was 95%, and gradually decreased to 76.5% in OLR of 24.2 g COD/l.d. Also with increasing in organic loading rate the contribution of aerobic reactor in removing COD gradually decreased. In this system, the anaerobic reactor played the most important role in the removal of COD, and the aerobic MBBR was actually needed to polish the anaerobic treated wastewater. PMID:26056640

  16. Two-dimensional model for circulating fluidized-bed reactors

    SciTech Connect

    Schoenfelder, H.; Kruse, M.; Werther, J.

    1996-07-01

    Circulating fluidized bed reactors are widely used for the combustion of coal in power stations as well as for the cracking of heavy oil in the petroleum industry. A two-dimensional reactor model for circulating fluidized beds (CFB) was studied based on the assumption that at every location within the riser, a descending dense phase and a rising lean phase coexist. Fluid mechanical variables may be calculated from one measured radial solids flux profile (upward and downward). The internal mass-transfer behavior is described on the basis of tracer gas experiments. The CFB reactor model was tested against data from ozone decomposition experiments in a CFB cold flow model (15.6-m height, 0.4-m ID) operated in the ranges 2.5--4.5 m/s and 9--45 kg/(m{sup 2}{center_dot}s) of superficial gas velocity and solids mass flux, respectively. Based on effective reaction rate constants determined from the ozone exit concentration, the model was used to predict the spatial reactant distribution within the reactor. Model predictions agreed well with measurements.

  17. Particle bed reactor central to SDI nuclear rocket project

    SciTech Connect

    Asker, J.R.

    1991-04-01

    A classified SDI project designated 'Timberwind' and funded with an estimated $7-8 billion over the project's life is charged with the development and flight testing of nuclear reactor-powered rockets. Timberwind's novel 'particle-bed reactor' technology will employ small pellets of reactor fuel to heat a low molecular weight working fluid, such as hydrogen. The fuel pellets would be 0.5 mm in diameter and may be composed of a kernel of fissionable U together with a carbon alloy, coated by layers of carbon and a sealant. A covering of zirconium carbide would prevent chemical degradation of the pellets by the hydrogen working fluid. Performace projection comparisons are conducted for Timberwind, an advanced Atlas-Centaur, and an advanced Titan launch vehicle.

  18. Tightly Coupled Multiphysics Algorithm for Pebble Bed Reactors

    SciTech Connect

    HyeongKae Park; Dana Knoll; Derek Gaston; Richard Martineau

    2010-10-01

    We have developed a tightly coupled multiphysics simulation tool for the pebble-bed reactor (PBR) concept, a type of Very High-Temperature gas-cooled Reactor (VHTR). The simulation tool, PRONGHORN, takes advantages of the Multiphysics Object-Oriented Simulation Environment library, and is capable of solving multidimensional thermal-fluid and neutronics problems implicitly with a Newton-based approach. Expensive Jacobian matrix formation is alleviated via the Jacobian-free Newton-Krylov method, and physics-based preconditioning is applied to minimize Krylov iterations. Motivation for the work is provided via analysis and numerical experiments on simpler multiphysics reactor models. We then provide detail of the physical models and numerical methods in PRONGHORN. Finally, PRONGHORN's algorithmic capability is demonstrated on a number of PBR test cases.

  19. Pellet bed reactor concepts for nuclear propulsion applications

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Morley, Nicholas J.; Pelaccio, Dennis G.; Juhasz, Albert

    1994-11-01

    Pellet bed reactor (PeBR) concepts have been developed for nuclear thermal and nuclear electric propulsion, and bimodal applications. This annular core, fast spectrum reactor offers many desirable design and safety features. These features include high-power density, small reactor size, full retention of fission products, passive decay heat removal, redundancy in reactor control, negative temperature reactivity feedback, ground testing of the fully assembled reactor using electric heating and nonnuclear fuel elements, and the option of fueling on the launch pad or fueling and refueling in orbit. In addition to these features, the concepts for nuclear electric propulsion and for bimodal power and thermal propulsion have no single point failure. The average power density in the reactor for nuclear thermal propulsion ranges from 2.2 to 3.3 MW/I and for a 15-MWe nuclear electric propulsion system the total power system specific mass is about 3.3 kg/kWe. The bimodal-PeBR system concepts offer specific impulse in excess of 650 s, tens of Newtons of thrust, and total system specific power ranging from 11 to 21.9 We/kg at the 10- and 40-kWe levels, respectively.

  20. Pellet bed reactor for nuclear propelled vehicles: Part 1: Reactor technology

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed S.

    1991-01-01

    The pellet bed reactor (PBR) for nuclear propelled vehicles is briefly discussed. Much of the information is given in viewgraph form. Viewgraphs include information on the layout for a Mars mission using a PBR nuclear thermal rocket, the rocket reactor layout, the fuel pellet design, materials compatibility, fuel microspheres, microsphere coating, melting points in quasibinary systems, stress analysis of microspheres, safety features, and advantages of the PBR concept.

  1. Computational Fluid Dynamics Simulation of Fluidized Bed Polymerization Reactors

    SciTech Connect

    Rong Fan

    2006-08-09

    Fluidized beds (FB) reactors are widely used in the polymerization industry due to their superior heat- and mass-transfer characteristics. Nevertheless, problems associated with local overheating of polymer particles and excessive agglomeration leading to FB reactors defluidization still persist and limit the range of operating temperatures that can be safely achieved in plant-scale reactors. Many people have been worked on the modeling of FB polymerization reactors, and quite a few models are available in the open literature, such as the well-mixed model developed by McAuley, Talbot, and Harris (1994), the constant bubble size model (Choi and Ray, 1985) and the heterogeneous three phase model (Fernandes and Lona, 2002). Most these research works focus on the kinetic aspects, but from industrial viewpoint, the behavior of FB reactors should be modeled by considering the particle and fluid dynamics in the reactor. Computational fluid dynamics (CFD) is a powerful tool for understanding the effect of fluid dynamics on chemical reactor performance. For single-phase flows, CFD models for turbulent reacting flows are now well understood and routinely applied to investigate complex flows with detailed chemistry. For multiphase flows, the state-of-the-art in CFD models is changing rapidly and it is now possible to predict reasonably well the flow characteristics of gas-solid FB reactors with mono-dispersed, non-cohesive solids. This thesis is organized into seven chapters. In Chapter 2, an overview of fluidized bed polymerization reactors is given, and a simplified two-site kinetic mechanism are discussed. Some basic theories used in our work are given in detail in Chapter 3. First, the governing equations and other constitutive equations for the multi-fluid model are summarized, and the kinetic theory for describing the solid stress tensor is discussed. The detailed derivation of DQMOM for the population balance equation is given as the second section. In this section

  2. Characterization of Biofilm in 200W Fluidized Bed Reactors

    SciTech Connect

    Lee, Michelle H.; Saurey, Sabrina D.; Lee, Brady D.; Parker, Kent E.; Eisenhauer, Emalee ER; Cordova, Elsa A.; Golovich, Elizabeth C.

    2014-09-29

    Contaminated groundwater beneath the 200 West Area at the Hanford Site in Southeast Washington is currently being treated using a pump and treat system to remove organics, inorganics, radionuclides, and metals. A granular activated carbon-based fluidized bed reactor (FBR) has been added to remove nitrate, hexavalent chromium and carbon tetrachloride. Initial analytical results indicated the microorganisms effectively reduced many of the contaminants to less than cleanup levels. However shortly thereafter operational upsets of the FBR include carbon carry over, over production of microbial extracellular polymeric substance (biofilm) materials, and over production of hydrogen sulfide. As a result detailed investigations were undertaken to understand the functional diversity and activity of the microbial community present in the FBR over time. Molecular analyses including terminal restriction fragment length polymorphism analysis, quantitative polymerase chain reaction and fluorescent in situ hybridization analyses were performed on the microbial community extracted from the biofilm within the bed and from the inoculum, to determine functional dynamics of the FBR bed over time and following operational changes. Findings from these analyses indicated: 1) the microbial community within the bed was completely different than community used for inoculation, and was likely from the groundwater; 2) analyses early in the testing showed an FBR community dominated by a few Curvibacter and Flavobacterium species; 3) the final sample taken indicated that the microbial community in the FBR bed had become more diverse; and 4) qPCR analyses indicated that bacteria involved in nitrogen cycling, including denitrifiers and anaerobic ammonia oxidizing bacteria, were dominant in the bed. These results indicate that molecular tools can be powerful for determining functional diversity within FBR type reactors. Coupled with micronutrient, influent and effluent chemistry evaluations, a more

  3. Olefins by catalytic oxidation of alkanes in fluidized bed reactors

    SciTech Connect

    Bharadwaj, S.S.; Schmidt, L.D.

    1995-09-01

    The production of ethylene or syngas from ethane and olefins from propane, n-butane, and isobutane in the presence of air or O{sub 2} at atmospheric pressure has been examined over 100 {mu}m {alpha}-Al{sub 2}O{sub 3} beads coated with noble metals in a static fluidized bed reactor at contact times from 0.05 to 0.2 s. Variations in feed composition, preheating temperature, and flow rate were examined. 21 refs., 5 figs., 1 tab.

  4. PEBBED ANALYSIS OF HOT SPOTS IN PEBBLE-BED REACTORS

    SciTech Connect

    Abderrafi M. Ougouag; Hans D. Gougar; William K. Terry; Frederik Reitsma; Wessel Joubert

    2005-09-01

    The Idaho National Laboratory’s PEBBED code and simple probability considerations are used to estimate the likelihood and consequences of the accumulation of highly reactive pebbles in the region of peak power in a pebble-bed reactor. The PEBBED code is briefly described, and the logic of the probability calculations is presented in detail. The results of the calculations appear to show that hot-spot formation produces only moderate increases in peak accident temperatures, and no increases at all in normal operating temperatures.

  5. Safety aspects of Particle Bed Reactor plutonium burner system

    SciTech Connect

    Powell, J.R.; Ludewig, H.; Todosow, M.

    1993-08-01

    An assessment is made of the safety aspects peculiar to using the Particle Bed Reactor (PBR) as the burner in a plutonium disposal system. It is found that a combination of the graphitic fuel, high power density possible with the PBR and engineered design features results in an attractive concept. The high power density potentially makes it possible to complete the plutonium burning without requiring reprocessing and remanufacturing fuel. This possibility removes two hazardous steps from a plutonium burning complex. Finally, two backup cooling systems depending on thermo-electric converters and heat pipes act as ultimate heat removal sinks in the event of accident scenarios which result in loss of fuel cooling.

  6. Pyrolysis of Softwood Carbohydrates in a Fluidized Bed Reactor

    PubMed Central

    Aho, Atte; Kumar, Narendra; Eränen, Kari; Holmbom, Bjarne; Hupa, Mikko; Salmi, Tapio; Murzin, Dmitry Yu.

    2008-01-01

    In the present work pyrolysis of pure pine wood and softwood carbohydrates, namely cellulose and galactoglucomannan (the major hemicellulose in coniferous wood), was conducted in a batch mode operated fluidized bed reactor. Temperature ramping (5 °C/min) was applied to the heating until a reactor temperature of 460 °C was reached. Thereafter the temperature was kept until the release of non-condensable gases stopped. The different raw materials gave significantly different bio-oils. Levoglucosan was the dominant product in the cellulose pyrolysis oil. Acetic acid was found in the highest concentrations in both the galactoglucomannan and in the pine wood pyrolysis oils. Acetic acid is most likely formed by removal of O-acetyl groups from mannose units present in GGM structure. PMID:19325824

  7. Upflow fixed bed bioelectrochemical reactor for wastewater treatment applications.

    PubMed

    González-Gutiérrez, Linda; Frontana, Carlos; Martínez, Eduardo

    2015-01-01

    A cylindrical Upflow Fixed Bed Reactor (UFB-BER) with granular activated carbon, steel mesh electrodes and anaerobic microorganisms, was constructed for analyzing how hydrodynamic parameters affect the reactions involved during wastewater treatment processes for azo dye degradation. Dye removal percentage was not compromised by decreasing HRTm (99-90% upon changing HRTm from 4 to 1h in single pass mode). Using the residence time distribution method for hydrodynamic characterization, it was found that a higher dispersion in the reactor occurs for HRTm=1h, than for HRTm=4h. A kinetic analysis suggests that this dispersion effect could be associated to a higher specific reaction rate dependent on the azo dye concentration. PMID:25465794

  8. Kinetics of thermophilic anaerobes in fixed-bed reactors.

    PubMed

    Perez, M; Romero, L I; Sales, D

    2001-08-01

    The main objective of this study is to estimate growth kinetic constants and the concentration of "active" attached biomass in two anaerobic thermophilic reactors which contain different initial sizes of immobilized anaerobic mixed cultures and decompose distillery wastewater. This paper studies the substrate decomposition in two lab-scale fixed-bed reactors operating at batch conditions with corrugated tubes as support media. It can be demonstrated that high micro-organisms-substrate ratios favor the degradation activity of the different anaerobic cultures, allowing the stable operation without lag-phases and giving better quality in effluent. The kinetic parameters obtained--maximum specific growth rates (mu(max)), non-biodegradable substrate (S(NB)) and "active or viable biomass" concentrations (X(V0))--were obtained by applying the Romero kinetic model [L.I. Romero, 1991. Desarrollo de un modelo matemático general para los procesos fermentativos, Cinética de la degradación anaerobia, Ph.D. Thesis, University of Cádiz (Spain), Serv. Pub. Univ. Cádiz], with COD as substrate and methane (CH4) as the main product of the anaerobic process. This method is suitable to calculate and to differentiate the main kinetic parameters of both the total anaerobic mixed culture and the methanogenic population. Comparison of experimental measured concentration of volatile attached solids (VS(att)) in both reactors with the estimated "active" biomass concentrations obtained by applying Romero kinetic model [L.I. Romero, 1991. Desarrollo de un modelo matemático general para los procesos fermentativos, Cinética de la degradación anaerobia, Ph.D. Thesis, University of Cádiz (Spain), Serv. Pub. Univ. Cádiz] shows that a large amount of inert matter is present in the fixed-bed reactor. PMID:11513409

  9. Fast Pyrolysis of Agricultural Wastes in a Fluidized Bed Reactor

    NASA Astrophysics Data System (ADS)

    Wang, X. H.; Chen, H. P.; Yang, H. P.; Dai, X. M.; Zhang, S. H.

    Solid biomass can be converted into liquid fuel through fast pyrolysis, which is convenient to be stored and transported with potential to be used as a fossil oil substitute. In China, agricultural wastes are the main biomass materials, whose pyrolysis process has not been researched adequately compared to forestry wastes. As the representative agricultural wastes in China, peanut shell and maize stalk were involved in this paper and pine wood sawdust was considered for comparing the different pyrolysis behaviors of agricultural wastes and forestry wastes. Fast pyrolysis experiments were carried out in a bench-scale fluidized-bed reactor. The bio-oil yieldsof peanut shell and maize stalk were obviously lower than that ofpine sawdust. Compared with pine sawdust, the char yields of peanut shell and maize stalk were higher but the heating value of uncondensable gaswas lower. This means that the bio-oil cost will be higher for agricultural wastes if taking the conventional pyrolysis technique. And the characteristic and component analysis resultsof bio-oil revealed that the quality of bio-oil from agricultural wastes, especially maize stalk, was worse than that from pine wood. Therefore, it is important to take some methods to improve the quality of bio-oilfrom agricultural wastes, which should promote the exploitation of Chinese biomass resources through fast pyrolysis in afluidized bed reactor.

  10. Improving hydrolysis of food waste in a leach bed reactor

    SciTech Connect

    Browne, James D.; Allen, Eoin; Murphy, Jerry D.

    2013-11-15

    Highlights: • This paper assesses leaching of food waste in a two phase digestion system. • Leaching is assessed with and without an upflow anaerobic sludge blanket (UASB). • Without the UASB, low pH reduces hydrolysis, while increased flows increase leaching. • Inclusion of the UASB increases pH to optimal levels and greatly improves leaching. • The optimal conditions are suggested as low flow with connection to the UASB. - Abstract: This paper examines the rate of degradation of food waste in a leach bed reactor (LBR) under four different operating conditions. The effects of leachate recirculation at a low and high flow rate are examined with and without connection to an upflow anaerobic sludge blanket (UASB). Two dilution rates of the effective volume of the leach bed reactors were investigated: 1 and 6 dilutions per LBR per day. The increase in dilution rate from 1 to 6 improved the destruction of volatile solids without connection to the UASB. However connection to the UASB greatly improved the destruction of volatile solids (by almost 60%) at the low recirculation rate of 1 dilution per day. The increase in volatile solids destruction with connection to the UASB was attributed to an increase in leachate pH and buffering capacity provided by recirculated effluent from the UASB to the leach beds. The destruction of volatile solids for both the low and high dilution rates was similar with connection to the UASB, giving 82% and 88% volatile solids destruction respectively. This suggests that the most efficient leaching condition is 1 dilution per day with connection to the UASB.

  11. Granulation and Sludge Bed Stability in Upflow Anaerobic Sludge Bed Reactors in Relation to Surface Thermodynamics

    PubMed Central

    Thaveesri, J.; Daffonchio, D.; Liessens, B.; Vandermeren, P.; Verstraete, W.

    1995-01-01

    Adhesion of bacteria involved in anaerobic consortia was investigated in upflow anaerobic sludge bed reactors and was related to surface thermodynamics. The adhesion of hydrophilic cells appeared to be enhanced at a low liquid surface tension ((gamma)(infLV)), while the adhesion of hydrophobic cells was favored at a high (gamma)(infLV). Growth in protein-rich growth media resulted in low granular biomass yields; addition of polycations, such as poly-l-lysine and chitosan, increased the (gamma)(infLV) and the granular biomass yield. On the basis of the results of activity tests and microbial counts with wash-out cells, we identified two types of structured granules that were related to the influence of (gamma)(infLV). In one type of granules, hydrophilic acidogens surrounded a more hydrophobic methanogenic association. These granules were selected at a low (gamma)(infLV) provided that carbohydrates were available as substrates. The other type of granules was selected at a high (gamma)(infLV); hydrophobic cells (i.e., methanogens) were predominant throughout these granules. The granules which had acidogens as solid-phase emulsifiers around a methanogenic association appeared to allow more stable reactor performance. Decreasing the (gamma)(infLV) in the reactor by adding trace amounts of a surfactant also increased reactor stability. PMID:16535149

  12. Porous Structure Analysis of the Packed Beds in a High-Temperature Reactor Pebble Bed Modules Heat Transfer Test Facility

    NASA Astrophysics Data System (ADS)

    Ren, Cheng; Yang, Xing-Tuan; Sun, Yan-Fei

    2013-02-01

    We analyse the porous structure of the packed beds in the heat transfer test facility built for high temperature gas cooled reactors from several aspects, such as oscillatory porosity, average porosity, thickness effect, coordination number and contact angle. An understanding and comparison of the porous structure of the facility bed and the real reactor core are developed to make recommendations for the design and analysis of the heat transfer test facility. The results show that there is very little difference between the porous characteristics of the two packed beds of spheres.

  13. Nonproliferation issue of the pebble bed high-temperature reactor

    SciTech Connect

    Teuchert, E.; Haas, K.A.

    1986-02-01

    The constraints of nonproliferation of weapons-grade fuel are most favorably observed in the medium enriched uranium (MEU) fuel cycle of the pebble bed high-temperature reactor, using 20% enriched uranium as feed and thorium as breed material. The cycle can be designed so that the uranium enrichment never exceeds the limitation defined for nonsensitive fuel. In the spent fuel, the amount of fissile plutonium is one order of magnitude lower than for the light water reactor and it is strongly denatured by the even-numbered plutonium isotopes. In the once-through option applied in the introductory phase of the reactor, the proliferation restraints of the plutonium are furnished by the choice of the carbon/heavy metal ratio higher than 450 and of the burnup of 100 MWd/kg heavy metal. The Pu/sub FISS/Pu/sub TOTAL/ is achieved as low as 37%, and the admixing of 8% of /sup 238/Pu would complicate its handling by the decay heat rating. In the closed MEU cycle, the /sup 238/U is continuously separated from the cycle by the use of two different types of fuel elements: Thorium and 20% enriched uranium are inserted into the feed elements, and the uranium recovered from the reprocessing is loaded into the burnup elements, without thorium. These elements are removed from the cycle without reprocessing. Again the proliferation risk of the fissile plutonium is minimized because of its very low quantity and high denaturization.

  14. Effects of Spatial Variations in Packing Fraction on Reactor Physics Parameters in Pebble-Bed Reactors

    SciTech Connect

    William K. Terry; A. M. Ougouag; Farzad Rahnema; Michael Scott McKinley

    2003-04-01

    The well-known spatial variation of packing fraction near the outer boundary of a pebble-bed reactor core is cited. The ramifications of this variation are explored with the MCNP computer code. It is found that the variation has negligible effects on the global reactor physics parameters extracted from the MCNP calculations for use in analysis by diffusion-theory codes, but for local reaction rates the effects of the variation are naturally important. Included is some preliminary work in using first-order perturbation theory for estimating the effect of the spatial variation of packing fraction on the core eigenvalue and the fision density distribution.

  15. Catalytic Pyrolysis of Oak via Pyroprobe and Bench Scale, Packed Bed Pyrolysis Reactors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pyrolytic conversion of oak sawdust at 500°C in flowing He over eight proprietary catalysts is described and compared to the control bed material, quartz sand. The reactions were conducted and compared in two reactors, an analytical, ug-scale pyroprobe reactor and a bench, g-scale packed bed re...

  16. Proliferation resistant fuel for pebble bed modular reactors

    SciTech Connect

    Ronen, Y.; Aboudy, M.; Regev, D.; Gilad, E.

    2012-07-01

    We show that it is possible to denature the Plutonium produced in Pebble Bed Modular Reactors (PBMR) by doping the nuclear fuel with either 3050 ppm of {sup 237}Np or 2100 ppm of Am vector. A correct choice of these isotopes concentration yields denatured Plutonium with isotopic ratio {sup 238}Pu/Pu {>=} 6%, for the entire fuel burnup cycle. The penalty for introducing these isotopes into the nuclear fuel is a subsequent shortening of the fuel burnup cycle, with respect to a non-doped reference fuel, by 41.2 Full Power Days (FPDs) and 19.9 FPDs, respectively, which correspond to 4070 MWd/ton and 1965 MWd/ton reduction in fuel discharge burnup. (authors)

  17. Fluidized-Bed Reactor and Hot Gas Cleanup Facility

    SciTech Connect

    Rockey, J.M.

    1996-12-31

    As part of the Morgantown Energy Technology Center`s (METC) Advanced Gasification and Hot Gas Cleanup Facility, a 907 kg (1 ton) coal-per-day (10-inch inside diameter) jetting fluidized-bed gasifier provides realistic fuel gas for testing and developing high-temperature, high-pressure components and processes in a reducing (gasification) and oxidizing (combustion) environment. Operated mainly as a gasifier, the 0.25-m (10-inch) diameter reactor produces up to 227 kg/hr (500 lb/hr) of coal gas at 866 K (1,100{degrees}F) and 30 atmospheres (425 psig) for downstream testing. The raw coal gas is sampled for major and trace species and sent to a filter vessel capable of operating at 894 K (1,150{degrees}F) and 20 atmospheres (290 psig) of pressure. After particulate removal, the gas can be independently controlled to up to five sampling or reaction vessels including fluid-bed desulfurization, transport desulfurization, chloride, alkali, or other contaminant removal or recovery processes. The fluid-bed desulfurizer is capable of being isolated, purged, and exposed to an oxidizing environment for sorbent regeneration or other oxidation reaction. Isokinetic hazardous air pollutant (HAPS) monitoring is provided at the upstream and downstream of particulate removal. Over the post three years, 1,200 hours of operation have been completed in support of six separate Cooperative Research and Development Agreements (CRADAs). These research agreements have been in the areas of candle filters and materials testing, direct sulfur recovery from sorbent regeneration tail gases, and gasifier development.

  18. Thermofluid effect on energy storage in fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Mahfoudi, Nadjiba; El Ganaoui, Mohammed; Moummi, Abdelhafid

    2016-05-01

    The development of innovative systems of heat storage is imperative to improve the efficiency of the existing systems used in the thermal solar energy applications. Several techniques were developed and realized in this context. The technology of the sand fluidized bed (sandTES) offers a promising alternative to the current state-of-the-art of the heat storage systems, such as fixed bed using a storage materials, as sand, ceramic, and stones, etc. Indeed, the use of the fluidization technique allows an effective heat transfer to the solid particles. With the sand, an important capacity of storage is obtained by an economic and ecological material [N. Mahfoudi, A. Moummi, M. El Ganaoui, Appl. Mech. Mater. 621, 214 (2014); N. Mahfoudi, A. Khachkouch, A. Moummi B. Benhaoua, M. El Ganaoui, Mech. Ind. 16, 411 (2015); N. Mahfoudi, A. Moummi, M. El Ganaoui, F. Mnasri, K.M. Aboudou, 3e Colloque internationale Francophone d"énergétique et mécanique, Comores, 2014, p. 91]. This paper presents a CFD simulation of the hydrodynamics and the thermal transient behavior of a fluidized bed reactor of sand, to determine the characteristics of storage. The simulation shows a symmetry breaking that occurs and gave way to chaotic transient generation of bubble formation after 3 s. Furthermore, the predicted average temperature of the solid phase (sand) increases gradually versus the time with a gain of 1 °C in an interval of 10 s. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  19. EVALUATION OF THE INITIAL CRITICAL CONFIGURATION OF THE HTR-10 PEBBLE-BED REACTOR

    SciTech Connect

    William K. Terry

    2005-11-01

    This report describes the evaluation of data from the initial criticality measurement of the HTR-10 pebble-bed reactor at the Institute of Nuclear Energy Technology in China to determine whether the data are of sufficient quality to use as benchmarks for reactor physics computer codes intended for pebble-bed reactor analysis. The evaluation applied the INL pebble-bed reactor physics code PEBBED to perform an uncertainty analysis on the core critical height. The overall uncertainty in k-effective was slightly over 0.5%, which is considered adequate for an experimental benchmark.

  20. Moving bed biofilm reactor technology: process applications, design, and performance.

    PubMed

    McQuarrie, James P; Boltz, Joshua P

    2011-06-01

    The moving bed biofilm reactor (MBBR) can operate as a 2- (anoxic) or 3-(aerobic) phase system with buoyant free-moving plastic biofilm carriers. These systems can be used for municipal and industrial wastewater treatment, aquaculture, potable water denitrification, and, in roughing, secondary, tertiary, and sidestream applications. The system includes a submerged biofilm reactor and liquid-solids separation unit. The MBBR process benefits include the following: (1) capacity to meet treatment objectives similar to activated sludge systems with respect to carbon-oxidation and nitrogen removal, but requires a smaller tank volume than a clarifier-coupled activated sludge system; (2) biomass retention is clarifier-independent and solids loading to the liquid-solids separation unit is reduced significantly when compared with activated sludge systems; (3) the MBBR is a continuous-flow process that does not require a special operational cycle for biofilm thickness, L(F), control (e.g., biologically active filter backwashing); and (4) liquid-solids separation can be achieved with a variety of processes, including conventional and compact high-rate processes. Information related to system design is fragmented and poorly documented. This paper seeks to address this issue by summarizing state-of-the art MBBR design procedures and providing the reader with an overview of some commercially available systems and their components. PMID:21751715

  1. Submerged bed versus unsaturated flow reactor: A pressurized hydrogenotrophic denitrification reactor as a case study.

    PubMed

    Epsztein, Razi; Beliavski, Michael; Tarre, Sheldon; Green, Michal

    2016-10-01

    The paper compares the main features of a submerged bed reactor (SuBR) with bubbling and recirculation of gas to those of an unsaturated flow reactor (uSFR) with liquid recirculation. A novel pressurized closed-headspace hydrogenotrophic denitrification system characterized by safe and economic utilization of H2 gas was used for the comparison. Under similar conditions, denitrification rates were lower in the SuBR as a result of a lower effective biofilm surface area and overall gas-liquid mass transfer coefficient kLa. Similar values of effluent DOC were achieved for both reactors, although effluent suspended solids concentration of the SuBR were substantially higher. On the other hand, the required cleaning frequency in the SuBR was 2.5 times lower. Moreover, the SuBR is expected to reduce the recirculation energy consumption by 0.35 kWh/m(3) treated. PMID:27424057

  2. Modular Pebble Bed Reactor Project, University Research Consortium Annual Report

    SciTech Connect

    Petti, David Andrew

    2000-07-01

    This project is developing a fundamental conceptual design for a gas-cooled, modular, pebble bed reactor. Key technology areas associated with this design are being investigated which intend to address issues concerning fuel performance, safety, core neutronics and proliferation resistance, economics and waste disposal. Research has been initiated in the following areas: · Improved fuel particle performance · Reactor physics · Economics · Proliferation resistance · Power conversion system modeling · Safety analysis · Regulatory and licensing strategy Recent accomplishments include: · Developed four conceptual models for fuel particle failures that are currently being evaluated by a series of ABAQUS analyses. Analytical fits to the results are being performed over a range of important parameters using statistical/factorial tools. The fits will be used in a Monte Carlo fuel performance code, which is under development. · A fracture mechanics approach has been used to develop a failure probability model for the fuel particle, which has resulted in significant improvement over earlier models. · Investigation of fuel particle physio-chemical behavior has been initiated which includes the development of a fission gas release model, particle temperature distributions, internal particle pressure, migration of fission products, and chemical attack of fuel particle layers. · A balance of plant, steady-state thermal hydraulics model has been developed to represent all major components of a MPBR. Component models are being refined to accurately reflect transient performance. · A comparison between air and helium for use in the energy-conversion cycle of the MPBR has been completed and formed the basis of a master’s degree thesis. · Safety issues associated with air ingress are being evaluated. · Post shutdown, reactor heat removal characteristics are being evaluated by the Heating-7 code. · PEBBED, a fast deterministic neutronic code package suitable for

  3. Stable hydrogen production by methane steam reforming in a two zone fluidized bed reactor: Experimental assessment

    NASA Astrophysics Data System (ADS)

    Pérez-Moreno, L.; Soler, J.; Herguido, J.; Menéndez, M.

    2013-12-01

    The Two Zone Fluidized Bed Reactor concept is proposed for hydrogen production via the steam reforming of methane (SRM) including integrated catalyst regeneration. In order to study the effect of the contact mode, the oxidative SRM has been carried out over a Ni/Al2O3 catalyst using a fixed bed reactor (fBR), a conventional fluidized-bed reactor (FBR) and the proposed two-zone fluidized bed reactor (TZFBR). The technical feasibility of these reactors has been studied experimentally, investigating their performance (CH4 conversion, CO and H2 selectivity, and H2 global yield) and stability under different operating conditions. Coke generation in the process has been verified by several techniques. A stable performance was obtained in the TZFBR, where coke formation was counteracted with continuous catalyst regeneration. The viability of the TZFBR for carrying out this process with a valuable global yield to hydrogen is demonstrated.

  4. Nitrification of industrial and domestic saline wastewaters in moving bed biofilm reactor and sequencing batch reactor.

    PubMed

    Bassin, João P; Dezotti, Marcia; Sant'anna, Geraldo L

    2011-01-15

    Nitrification of saline wastewaters was investigated in bench-scale moving-bed biofilm reactors (MBBR). Wastewater from a chemical industry and domestic sewage, both treated by the activated sludge process, were fed to moving-bed reactors. The industrial wastewater contained 8000 mg Cl(-)/L and the salinity of the treated sewage was gradually increased until that level. Residual substances present in the treated industrial wastewater had a strong inhibitory effect on the nitrification process. Assays to determine inhibitory effects were performed with the industrial wastewater, which was submitted to ozonation and carbon adsorption pretreatments. The latter treatment was effective for dissolved organic carbon (DOC) removal and improved nitrification efficiency. Nitrification percentage of the treated domestic sewage was higher than 90% for all tested chloride concentrations up to 8000 mg/L. Results obtained in a sequencing batch reactor (SBR) were consistent with those attained in the MBBR systems, allowing tertiary nitrification and providing adequate conditions for adaptation of nitrifying microorganisms even under stressing and inhibitory conditions. PMID:20933327

  5. Comparison of slurry versus fixed-bed reactor costs for indirect liquefaction applications. A supplement to final report: Design of slurry reactor for indirect liquefaction applications

    SciTech Connect

    Prakash, A.; Bendale, P.G.

    1991-12-01

    This work is a comparative evaluation of slurry reactors and fixed-bed reactors, with special emphasis on cost. Relative differences between slurry reactors and fixed-bed reactors have been pointed out in previous reviews; the differences pertinent to indirect liquefaction are summarized here. Design of both types is outlined.

  6. Biohydrogen production from tequila vinasses using a fixed bed reactor.

    PubMed

    Buitrón, Germán; Prato-Garcia, Dorian; Zhang, Axue

    2014-01-01

    In Mexico, the industrial production of tequila leads to the discharge of more than 31.2 million of m(3) of vinasse, which causes serious environmental issues because of its acidity, high organic load and the presence of recalcitrant compounds. The aim of this research was to study the feasibility of a fixed bed reactor for the production of biohydrogen by using tequila vinasse as substrate. The experiments were carried out in a continuous mode under mesophilic and acidic conditions. The maximum hydrogen yield and hydrogen production rate were 1.3 mol H2 mol/mol glucose and 72 ± 9 mL H2/(Lreactor h), respectively. Biogas consisted of carbon dioxide (36%) and hydrogen (64%); moreover methane was not observed. The electron-equivalent mass balance fitted satisfactorily (sink of electrons from 0.8 to 7.6%). For vinasses, hydrogen production accounted for 10.9% of the total available electron-equivalents. In the liquid phase, the principal metabolites identified were acetic, butyric and iso-butyric acids, which indicated a butyrate-acetate type fermentation. Tequila vinasses did not result in potential inhibition of the fermentative process. Considering the process as a water treatment system, only 20% of the original carbon was removed (as carbon dioxide and biomass) when the tequila vinasses are used. PMID:25521125

  7. Pressurised pyrolysis of Miscanthus using a fixed bed reactor.

    PubMed

    Melligan, F; Auccaise, R; Novotny, E H; Leahy, J J; Hayes, M H B; Kwapinski, W

    2011-02-01

    Miscanthus x giganteus was pyrolysed, in a fixed bed reactor in a constant flow of dinitrogen gas, at a rate of 13°C/min from ambient to 550°C, then held for 25 min at this temperature. The pressures employed ranged from atmospheric to 26 bar. The major compounds identified in the bio-oil were water, phenol, and phenol derivatives. The water contents impact on the usefulness of the bio-oil as a fuel. However, the phenols could provide useful platform chemicals and products. The properties of the char were determined using elemental analyses, surface area measurements using the Brunauer-Emmett-Teller equation, a calorimetric bomb, Scanning Electron Microscopy, and solid state (13)C NMR spectroscopy. The chars were highly carbonised, especially at the higher pressures, and provided thermally stable materials. Pressure impacted greatly on the surface area. Char formed at atmospheric pressure had a surface area of 162 m(2)/g, whereas that from the highest pressure applied was only 0.137 m(2)/g. PMID:21094043

  8. Packed bed reactor treatment of liquid hazardous and mixed wastes

    SciTech Connect

    Tennant, R.A.; Wantuck, P.J.; Vargas, R.

    1992-01-01

    We are developing thermal-based packed bed reactor (PBR) technology as an alternative to incineration for treatment of hazardous organic liquid wastes. The waste streams targeted by this technology are machining fluids contaminated with chlorocarbons and/or chlorofluorocarbons and low levels of plutonium or tritium The PBR offers several distinct advantages including simplistic design, rugged construction, ambient pressure processing, economical operations, as well as ease of scalability and maintainability. In this paper, we provide a description of the apparatus as well as test results using prepared mixtures of machining oils/emulsions with trichloroethylene (TCE), carbon tetrachloride (CCl{sub 4}), trichloroethane (TCA), and Freon TF. The current treatment system is configured as a two stage device with the PBR (1st stage) coupled to a silent discharge plasma (SDP) cell. The SDP serves as a second stage for further treatment of the gaseous effluent from the PBR. One of the primary advantages of this two stage system is that its suitability for closed loop operation where radioactive components are well contained and even CO{sub 2} is not released to the environment.

  9. Packed bed reactor treatment of liquid hazardous and mixed wastes

    SciTech Connect

    Tennant, R.A.; Wantuck, P.J.; Vargas, R.

    1992-05-01

    We are developing thermal-based packed bed reactor (PBR) technology as an alternative to incineration for treatment of hazardous organic liquid wastes. The waste streams targeted by this technology are machining fluids contaminated with chlorocarbons and/or chlorofluorocarbons and low levels of plutonium or tritium The PBR offers several distinct advantages including simplistic design, rugged construction, ambient pressure processing, economical operations, as well as ease of scalability and maintainability. In this paper, we provide a description of the apparatus as well as test results using prepared mixtures of machining oils/emulsions with trichloroethylene (TCE), carbon tetrachloride (CCl{sub 4}), trichloroethane (TCA), and Freon TF. The current treatment system is configured as a two stage device with the PBR (1st stage) coupled to a silent discharge plasma (SDP) cell. The SDP serves as a second stage for further treatment of the gaseous effluent from the PBR. One of the primary advantages of this two stage system is that its suitability for closed loop operation where radioactive components are well contained and even CO{sub 2} is not released to the environment.

  10. TREATMENT OF VOCS IN HIGH STRENGTH WASTES USING AN ANAEROBIC EXPANDED-BED GAS REACTOR

    EPA Science Inventory

    The potential of the expanded-bed granular activated carbon (GAC) anaerobic reactor in treating a high strength waste containing RCRA volatile organic compounds (VOCs) was studied. A total of six VOCs, methylene chloride, chlorobenzene, carbon tetrachloride, chloroform, toluene ...

  11. Treatment of semivolatile compounds in high strength wastes using an anaerobic expanded-bed GAC reactor

    EPA Science Inventory

    The potential of the anaerobic, expanded bed granular activated carbon (GAC) reactor in treating a high strength waste containing RCRA semivolatile organic compounds (VOCs) was studied. Six semivolatiles, orthochlorophenol, nitrobenzene, naphthalene, para-nitrophenol, lindane, a...

  12. A Kinetic and Mass Transfer Model for Glycerol Hydrogenolysis in a Trickle-Bed Reactor

    SciTech Connect

    Xi, Yaoyan; Holladay, Johnathan E.; Frye, John G.; Oberg, Aaron A.; Jackson, James E.; Miller, Dennis J.

    2010-11-15

    A detailed model of glycerol hydrogenolysis in a trickle-bed reactor is presented that includes a mechanistically based kinetic rate expression, energy transport, mass transport across the gas-liquid and liquid-solid interfaces, intraparticle catalyst mass transfer, and partial wetting of the bed. Optimal kinetic parameters for the glycerol hydrogenolysis rate expression were determined via nonlinear regression analysis on the basis of experiments conducted in a laboratory-scale trickle-bed reactor over a broad range of operating conditions. Model predictions agree well with experimental data and accurately predict trends in reactor performance with liquid flow rate, temperature, hydrogen pressure, and base promoter concentration. The model is thus a useful tool for predicting laboratory reactor performance and for design of commercial-scale trickle-bed systems.

  13. Catalytic fast pyrolysis of white oak wood in-situ using a bubbling fluidized bed reactor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Catalytic fast pyrolysis was performed on white oak wood using two zeolite-type catalysts as bed material in a bubbling fluidized bed reactor. The two catalysts chosen, based on a previous screening study, were Ca2+ exchanged Y54 (Ca-Y54) and a proprietary ß-zeolite type catalyst (catalyst M) both ...

  14. Rapid ignition of fluidized bed boiler

    DOEpatents

    Osborn, Liman D.

    1976-12-14

    A fluidized bed boiler is started up by directing into the static bed of inert and carbonaceous granules a downwardly angled burner so that the hot gases cause spouting. Air is introduced into the bed at a rate insufficient to fluidize the entire bed. Three regions are now formed in the bed, a region of lowest gas resistance, a fluidized region and a static region with a mobile region at the interface of the fluidized and static regions. Particles are transferred by the spouting action to form a conical heap with the carbonaceous granules concentrated at the top. The hot burner gases ignite the carbonaceous matter on the top of the bed which becomes distributed in the bed by the spouting action and bed movement. Thereafter the rate of air introduction is increased to fluidize the entire bed, the spouter/burner is shut off, and the entire fluidized bed is ignited.

  15. Production of activated carbon from coconut shell char in a fluidized bed reactor

    SciTech Connect

    Sai, P.M.S.; Ahmed, J.; Krishnaiah, K.

    1997-09-01

    Activated carbon is produced from coconut shell char using steam or carbon dioxide as the reacting gas in a 100 mm diameter fluidized bed reactor. The effect of process parameters such as reaction time, fluidizing velocity, particle size, static bed height, temperature of activation, fluidizing medium, and solid raw material on activation is studied. The product is characterized by determination of iodine number and BET surface area. The product obtained in the fluidized bed reactor is much superior in quality to the activated carbons produced by conventional processes. Based on the experimental observations, the optimum values of process parameters are identified.

  16. Discharge Characteristics of Series Surface/Packed-Bed Discharge Reactor Diven by Bipolar Pulsed Power

    NASA Astrophysics Data System (ADS)

    Hu, Jian; Jiang, Nan; Li, Jie; Shang, Kefeng; Lu, Na; Wu, Yan; Mizuno, Akira

    2016-03-01

    The discharge characteristics of the series surface/packed-bed discharge (SSPBD) reactor driven by bipolar pulse power were systemically investigated in this study. In order to evaluate the advantages of the SSPBD reactor, it was compared with traditional surface discharge (SD) reactor and packed-bed discharge (PBD) reactor in terms of the discharge voltage, discharge current, and ozone formation. The SSPBD reactor exhibited a faster rising time and lower tail voltage than the SD and PBD reactors. The distribution of the active species generated in different discharge regions of the SSPBD reactor was analyzed by optical emission spectra and ozone analysis. It was found that the packed-bed discharge region (3.5 mg/L), rather than the surface discharge region (1.3 mg/L) in the SSPBD reactor played a more important role in ozone generation. The optical emission spectroscopy analysis indicated that more intense peaks of the active species (e.g. N2 and OI) in the optical emission spectra were observed in the packed-bed region. supported by National Natural Science Foundation of China (No. 51177007), the Joint Funds of National Natural Science Foundation of China (No. U1462105), and Dalian University of Technology Fundamental Research Fund of China (No. DUT15RC(3)030)

  17. Coolant flows in prismatic fuel and particle bed nuclear reactors for rocket applications

    NASA Astrophysics Data System (ADS)

    Bohachevsky, Ihor O.

    1993-01-01

    Semiempirical expressions for pressure losses in prismatic and particle bed reactors for nuclear propulsion are combined with the geometric characteristics of core configurations and coolant flow patterns. The results are used to illustrate a limitation on the coolant velocity and to develop a unified approach to a quantitative comparison of merits and demerits of different reactor core concepts intended for space applications.

  18. Design and performance of a high-pressure Fischer-Tropsch fluidized bed reactor

    SciTech Connect

    Weimer, A.W.; Quarderer, G.J.; Cochran, G.A.; Conway, M.M. )

    1988-01-01

    A 900 kg/day, CO/H/sub 2/, high-pressure, fluidized bed, pilot reactor was designed from first principles to achieve high reactant conversions and heat removal rates for the Fischer-Tropsch (F-T) synthesis of liquefied petroleum gases (LPG's). Suppressed bubble growth at high pressure allowed high reactant conversions which nearly matched those obtained at identical conditions in a lab scale fixed bed reactor. For GHSV approximately 1400 hr/sup -1/ and T = 658 {Kappa} at P approximately 7000 {kappa}Pa, reactant conversion exceeded 75%. The reactor heat removal capability exceeded twice design performance with the fluidized bed easily operating under thermally stable conditions. The fluidized catalyst was a potassium promoted, molybdenum on carbon (Mo/{Kappa}/C) catalyst which did not produce any detrimental waxy products. Long catalyst lifetimes of 1000 hrs on steam between regenerations allowed the fluidized bed to be operated in a batch mode.

  19. Development of a trickle bed reactor of electro-Fenton process for wastewater treatment.

    PubMed

    Lei, Yangming; Liu, Hong; Shen, Zhemin; Wang, Wenhua

    2013-10-15

    To avoid electrolyte leakage and gas bubbles in the electro-Fenton (E-Fenton) reactors using a gas diffusion cathode, we developed a trickle bed cathode by coating a layer composed of carbon black and polytetrafluoroethylene (C-PTFE) onto graphite chips instead of carbon cloth. The trickle bed cathode was optimized by single-factor and orthogonal experiments, in which carbon black, PTFE, and a surfactant were considered as the determinant of the performance of graphite chips. In the reactor assembled by the trickle bed cathode, H2O2 was generated with a current of 0.3A and a current efficiency of 60%. This performance was attributed to the fine distribution of electrolyte and air, as well as the effective oxygen transfer from the gas phase to the electrolyte-cathode interface. In terms of H2O2 generation and current efficiency, the developed trickle bed reactor had a performance comparable to that of the conventional E-Fenton reactor using a gas diffusion cathode. Further, 123 mg L(-1) of reactive brilliant red X-3B in aqueous solution was decomposed in the optimized trickle bed reactor as E-Fenton reactor. The decolorization ratio reached 97% within 20 min, and the mineralization reached 87% within 3h. PMID:23994655

  20. Calculational approach and results of the safe shutdown earthquake event for the pebble bed modular reactor

    SciTech Connect

    Van Heerden, G.; Sen, S.; Reitsma, F.

    2006-07-01

    The Pebble Bed Modular Reactor (PBMR) concept can be described as a high-temperature helium-cooled, graphite-moderated pebble-bed reactor with a multi-pass fuelling scheme. The fuel is contained in 6 cm diameter graphite spheres containing carbon-based coated UO{sub 2} kernels. An online fuel reload scheme is applied with the fuel spheres being circulated through the reactor. The pebble-bed reactor core thus consists of fuel pebbles packed in the core cavity in a random way. The packing densities and pebble flow is well known through analysis and tests done in the German experimental and development program. The pebble-bed typically has a packing fraction of 0.61. In the event of an earthquake this packing fraction may increase with the effect that the core geometry and core reactivity will change. The Safe Shutdown Earthquake (SSE) analysis performed for the PBMR 400 MW design is described in this paper, and it specifically covers SSE-induced pebble-bed packing fractions of 0.62 and 0.64. The main effects governing the addition of reactivity in the SSE event are the changes in core neutronic leakage due to the decreased core size and the decreased effectiveness of the control rods as the pebble-bed height decreases. This paper describes the models, methods and tools used to analyse the event, the results obtained for the different approaches and the consequences and safety implications of such an event. (authors)

  1. Continuous biological waste gas treatment in stirred trickle-bed reactor with discontinuous removal of biomass

    SciTech Connect

    Laurenzis, A.; Heits, H.; Wuebker, S.M.; Heinze, U.; Friedrich, C.; Werner, U.

    1998-02-20

    A new reactor for biological waste gas treatment was developed to eliminate continuous solvents from waste gases. A trickle-bed reactor was chosen with discontinuous movement of the packed bed and intermittent percolation. The reactor was operated with toluene as the solvent and an optimum average biomass concentration of between 5 and 30 kg dry cell weight per cubic meter packed bed (m{sub pb}{sup 3}). This biomass concentration resulted in a high volumetric degradation rate. Reduction of surplus biomass by stirring and trickling caused a prolonged service life and prevented clogging of the trickle bed and a pressure drop increase. The pressure drop after biomass reduction was almost identical to the theoretical pressure drop as calculated for the irregular packed bed without biomass. The reduction in biomass and intermittent percolation of mineral medium resulted in high volumetric degradation rates of about 100 g of toluene m{sub pb}{sup {minus}3} h{sup {minus}1} at a load of 150 g of toluene m{sub pb}{sup {minus}3} h{sup {minus}1}. Such a removal rate with a trickle-bed reactor was not reported before.

  2. Modeling for Anaerobic Fixed-Bed Biofilm Reactors

    SciTech Connect

    Liu, B. Y. M.; Pfeffer, J. T.

    1989-06-01

    The specific objectives of this research were: 1. to develop an equilibrium model for chemical aspects of anaerobic reactors; 2. to modify the equilibrium model for non-equilibrium conditions; 3. to incorporate the existing biofilm models into the models above to study the biological and chemical behavior of the fixed-film anaerobic reactors; 4. to experimentally verify the validity of these models; 5. to investigate the biomass-holding ability of difference packing materials for establishing reactor design criteria.

  3. A packed bed membrane reactor for production of biodiesel using activated carbon supported catalyst.

    PubMed

    Baroutian, Saeid; Aroua, Mohamed K; Raman, Abdul Aziz A; Sulaiman, Nik M N

    2011-01-01

    In this study, a novel continuous reactor has been developed to produce high quality methyl esters (biodiesel) from palm oil. A microporous TiO2/Al2O3 membrane was packed with potassium hydroxide catalyst supported on palm shell activated carbon. The central composite design (CCD) of response surface methodology (RSM) was employed to investigate the effects of reaction temperature, catalyst amount and cross flow circulation velocity on the production of biodiesel in the packed bed membrane reactor. The highest conversion of palm oil to biodiesel in the reactor was obtained at 70 °C employing 157.04 g catalyst per unit volume of the reactor and 0.21 cm/s cross flow circulation velocity. The physical and chemical properties of the produced biodiesel were determined and compared with the standard specifications. High quality palm oil biodiesel was produced by combination of heterogeneous alkali transesterification and separation processes in the packed bed membrane reactor. PMID:20888219

  4. Pyrolysis of Uinta Basin Oil Sands in fluidized bed and rotary kiln reactors

    SciTech Connect

    Nagpal, S.; Fletcher, J.V.; Hanson, F.V.

    1995-12-31

    A pilot-scale fluidized bed reactor (FBR) was used to pyrolyze the mined and crushed ore from the PR Spring oil sands deposit which is located in the Uinta Basin of Utah. Liquid yields of approximately 80 wt% of the bitumen fed to the reactor were obtained. This compares to 55-70 wt% obtained from smaller laboratory scale fluidized bed reactors and a pilot-scale rotary kiln. The product yields and distributions exhibited no discernable trends with reactor temperature or solids retention time. The liquid products obtained from the pilot-scale fluidized bed reactor were upgraded compared to the bitumen in terms of volatility, viscosity, molecular weight, and metals (Ni and V) content. The nitrogen and sulphur contents of the total liquid products were also reduced relative to the bitumen. A comparison of oil sands pyrolysis yields from a pilot scale FBR and a rotary kiln of the same diameter (15.2 cm) was made. Under similar pyrolysis conditions, the rotary kiln produced a slightly more upgraded product but at lower total liquid yields. Kinetic modeling of the various reactors indicates that the pilot-scale FBR product distributions may be explained using a simplified two-reaction scheme. It is proposed that secondary cracking is suppressed in the large diameter FBR due to elimination of slugging and the superior quality of fluidization in the reactor. More experimental studies with the rotary kiln and an economic evaluation will be required before concluding which reactor is preferred for the thermal recovery process.

  5. Expansion of a test bed for advanced reactor monitoring and control

    SciTech Connect

    Edwards, R.M.

    2000-07-01

    In previously completed work, the Penn State TRIGA reactor was established as a test bed for monitoring and control research for nuclear reactors. The essential component of this research reactor application is a means for an experiment to change reactor power through an experimental changeable reactivity device (ECRD). An ECRD is implemented as a TRIGA reactor moveable experiment where an aluminum tube containing an absorber material is positioned within the central thimble of the reactor by an experimental setup. The test bed capabilities are now being expanded to enhance research for monitoring, operations, and control under a US Department of Energy Nuclear Engineering Education and Research (NEER) grant initiated in 1999. Areas in which the capabilities of the test bed are being expanded are (a) experimental computer hardware and software upgrades, (b) additional ECRDs, (c) power-reactor thermal-hydraulic simulation fidelity in a hybrid reactor simulator (HRS) application, and (d) incorporation of a thermal-hydraulic testloop in the HRS paradigm. This summary describes progress in (a) and (b).

  6. [Radiation transformation mechanism in a photocatalytic reactor of three-phase internal circulating fluidized bed].

    PubMed

    You, Hong; Luo, Wei-nan; Yao, Jie; Chen, Ping; Cai, Wei-min

    2005-01-01

    A novel three-phase internal circulating fluidized bed photocatalytic reactor was established and the radiation transformation in which was investigated. The experimental results indicate that with the interaction of gas and solid (gas flux > 0.3m3/h), the radiation transformation in the reactor along radial direction conforms to a definite exponential function, which agrees to formula Rose about the rules of light intensity distribution through evenly suspended particles. The value of radiation energy is affected by the initial light intensity, the concentration of photocatalyst and the thickness of liquid layer. The aerated gas amount only influence the state of the fluidized bed and has little effect on the distribution of light intensity along radical direction. Photocatalytic degradation of Rhodamine B indicate that the efficiency of three-phase internal circulating fluidized bed is much higher than slurry bed. The optimal catalyst concentration of this system is 10 - 12g/L. PMID:15859420

  7. Pebble Bed Reactors Design Optimization Methods and their Application to the Pebble Bed Fluoride Salt Cooled High Temperature Reactor (PB-FHR)

    NASA Astrophysics Data System (ADS)

    Cisneros, Anselmo Tomas, Jr.

    The Fluoride salt cooled High temperature Reactor (FHR) is a class of advanced nuclear reactors that combine the robust coated particle fuel form from high temperature gas cooled reactors, direct reactor auxillary cooling system (DRACS) passive decay removal of liquid metal fast reactors, and the transparent, high volumetric heat capacitance liquid fluoride salt working fluids---flibe (33%7Li2F-67%BeF)---from molten salt reactors. This combination of fuel and coolant enables FHRs to operate in a high-temperature low-pressure design space that has beneficial safety and economic implications. In 2012, UC Berkeley was charged with developing a pre-conceptual design of a commercial prototype FHR---the Pebble Bed- Fluoride Salt Cooled High Temperature Reactor (PB-FHR)---as part of the Nuclear Energy University Programs' (NEUP) integrated research project. The Mark 1 design of the PB-FHR (Mk1 PB-FHR) is 236 MWt flibe cooled pebble bed nuclear heat source that drives an open-air Brayton combine-cycle power conversion system. The PB-FHR's pebble bed consists of a 19.8% enriched uranium fuel core surrounded by an inert graphite pebble reflector that shields the outer solid graphite reflector, core barrel and reactor vessel. The fuel reaches an average burnup of 178000 MWt-d/MT. The Mk1 PB-FHR exhibits strong negative temperature reactivity feedback from the fuel, graphite moderator and the flibe coolant but a small positive temperature reactivity feedback of the inner reflector and from the outer graphite pebble reflector. A novel neutronics and depletion methodology---the multiple burnup state methodology was developed for an accurate and efficient search for the equilibrium composition of an arbitrary continuously refueled pebble bed reactor core. The Burnup Equilibrium Analysis Utility (BEAU) computer program was developed to implement this methodology. BEAU was successfully benchmarked against published results generated with existing equilibrium depletion codes VSOP

  8. Pebble bed reactor fiscal year 1980: review summary report

    SciTech Connect

    Not Available

    1980-07-01

    Information on high-temperature reactor development is presented concerning reactor operating experience; core performance assessment; core control and shutdown; reflector and core support; maintenance and availability; safety aspects of PBR and prismatic comparison; PCRV dimensions; and fuel reprocessing cost estimate.

  9. Photocatalytic oxidation of methyl orange in a three-phase fluidized bed reactor.

    PubMed

    Nam, Wooseok; Kim, Jimin; Han, Guiyoung

    2002-06-01

    The photocatalytic oxidation of methyl orange under weak illumination conditions was carried out in two different types of fluidized bed reactors. TiO2 powder was employed as the photocatalysts and a 15 W low pressure mercury lamp was used as the light source and the reactor volume was 2.5 l. The parametric study of photocatalytic oxidation of methyl orange in two different types of fluidized beds was investigated; effect of catalyst loadings, pH, air flow rate, initial concentration and oxygen concentration on the oxidation reaction rate. The experimental results were analyzed in conjunction with the characteristics of fluidized bed and the reactor geometry effect on the reaction rate was analyzed. PMID:12108693

  10. Pellet bed reactor for nuclear propelled vehicles: Part 2: Missions and vehicle integration trades

    NASA Technical Reports Server (NTRS)

    Haloulakos, V. E.

    1991-01-01

    Mission and vehicle integration tradeoffs involving the use of the pellet bed reactor (PBR) for nuclear powered vehicles is discussed, with much of the information being given in viewgraph form. Information is given on propellant tank geometries, shield weight requirements for conventional tank configurations, effective specific impulse, radiation mapping, radiation dose rate after shutdown, space transfer vehicle design data, a Mars mission summary, sample pellet bed nuclear orbit transfer vehicle mass breakdown, and payload fraction vs. velocity increment.

  11. Ambient Laboratory Coater for Advanced Gas Reactor Fuel Development

    SciTech Connect

    Duane D. Bruns; Robert M. Counce; Irma D. Lima Rojas

    2010-06-09

    this research is targeted at developing improved experimentally-based scaling relationships for the hydrodynamics of shallow, gas-spouted beds of dense particles. The work is motivated by the need to more effctively scale up shallow spouted beds used in processes such as in the coating of nuclear fuel particles where precise control of solids and gas circulation is critically important. Experimental results reported here are for a 50 mm diameter spouted bed containing two different types of bed solids (alumina and zirconia) at different static bed depths and fluidized by air and helium. Measurements of multiple local average pressures, inlet gas pressure fluctuations, and spout height were used to characterize the bed hydrodynamics for each operating condition. Follow-on studies are planned that include additional variations in bed size, particle properties, and fluidizing gas. The ultimate objective is to identify the most important non-dimensional hydrodynamic scaling groups and possible spouted-bed design correlations based on these groups.

  12. Wrong-way behavior of fixed-bed reactor in a Fischer-Tropsch synthesis

    SciTech Connect

    Liu Quansheng; Zhang Zhixin; Zhou Jinglai

    1997-12-31

    Fischer-Tropsch Synthesis is one important way to produce liquid fuel from coal-based or natural gas-based syngas. This reaction system is a highly exothermic reaction system, so usually it is finished in a multitubular catalytic fixed-bed reactor of the heat-exchanger type. The control of the reactor maximal temperature and the temperature profile is the key to this type reactor. Generally one can use a steady state model to analyze the temperature profile of a fixed-bed reactor. In the view of dynamics, one should use a dynamic model to analyze the dynamic features of the reactors. The wrong-way behavior is one of these features and is caused by the difference in the speeds of propagation of the concentration and temperature disturbances in the bed. The wrong-way behavior refers to a transient temperature rise in the bed induced by a sudden reduction in the feed temperature. The cold feed cools the upstream section of the bed, and decreases the reaction rate and the conversion in this region, the cold fluid with higher than usual concentration of unconverted reactant eventually contacts hot catalyst particles in downstream section of the bed. This leads to very rapid reaction and a vigorous rate of heat release, which causes a transient temperature rise. The wrong-way behavior may damage the catalyst and initiate undesired side reactions and may lead to unexpected pitfalls in the operation and control and even to a runaway. The goal of this work is to assess the wrong-way behavior of the F-T reactor and the impact of the water-gas shift side-reaction on the wrong-way behavior.

  13. Solar-driven coal gasification in a thermally irradiated packed-bed reactor

    SciTech Connect

    Nicolas Piatkowski; Aldo Steinfeld

    2008-05-15

    Coal gasification for high-quality synthesis gas production is considered using concentrated solar energy as the source of high-temperature process heat. The solar reactor consists of two cavities separated by a radiant emitter plate, with the upper one serving as the solar absorber and the lower one containing the reacting packed bed that shrinks as the reaction progresses. A 5 kW prototype reactor with an 8 cm depth, 14.3 cm diameter cylindrical bed was fabricated and tested in a high-flux solar furnace, subjected to solar flux concentrations up to 2600 suns and packed-bed temperatures up to 1440 K. The reactor is modeled by formulating the 1D unsteady energy conservation equation that couples conductive-radiative heat transfer with the reaction kinetics and solving it by the finite volume technique for a transient shrinking domain. The overall reaction rate was determined experimentally by thermogravimetry, while the effective thermal conductivity was determined experimentally in a radial heat flow oven. Model validation was accomplished in terms of bed temperatures, gasified mass, and bed shrink rates measured in solar experiments conducted with beech charcoal. Heat transfer through the bed proved to be the rate-controlling mechanism, indicating an ablation regime. 31 refs., 18 figs.

  14. Modular Pebble-Bed Reactor Project: Laboratory-Directed Research and Development Program FY 2002 Annual Report

    SciTech Connect

    Petti, David Andrew; Dolan, Thomas James; Miller, Gregory Kent; Moore, Richard Leroy; Terry, William Knox; Ougouag, Abderrafi Mohammed-El-Ami; Oh, Chang H; Gougar, Hans D

    2002-11-01

    This report documents the results of our research in FY-02 on pebble-bed reactor technology under our Laboratory Directed Research and Development (LDRD) project entitled the Modular Pebble-Bed Reactor. The MPBR is an advanced reactor concept that can meet the energy and environmental needs of future generations under DOE’s Generation IV initiative. Our work is focused in three areas: neutronics, core design and fuel cycle; reactor safety and thermal hydraulics; and fuel performance.

  15. Very High Temperature Reactor (VHTR) Deep Burn Core and Fuel Analysis -- Complete Design Selection for the Pebble Bed Reactor

    SciTech Connect

    B. Boer; A. M. Ougouag

    2010-09-01

    The Deep-Burn (DB) concept focuses on the destruction of transuranic nuclides from used light water reactor fuel. These transuranic nuclides are incorporated into TRISO coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400). Although it has been shown in the previous Fiscal Year (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup, while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239-Pu, 240-Pu and 241-Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a ”standard,” UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. The effort of this task in FY 2010 has focused on the optimization of the core to maximize the pebble discharge

  16. JPL in-house fluidized bed reactor research

    NASA Technical Reports Server (NTRS)

    Rohatgi, N. K.

    1985-01-01

    The progress in the in-house program on the silane fluidized-bed system is reported. A seed-particle cleaning procedure was developed to obtain material purity near the level required to produce a semiconductor-grade product. The liner-seal design was consistently proven to withstand heating/cooling cycles in all of the experimental runs.

  17. Influence factors on the flue gas desulfurization in the circulating fluidized bed reactor

    SciTech Connect

    Gao, J.; Tang, D.; Liu, H.; Suzuki, Yoshizo; Kito, Nobo

    1997-12-31

    This paper describes a dry SO{sub 2} removal method -- the absorbent (Ca(OH){sub 2}) was injected into the Circulating Fluidized Bed (CFB) reactor at the coolside of the duct to abate SO{sub 2} in the flue gas -- with the potential to significantly enhance desulfurization performance over that of existing dry/semi-dry Flue Gas Desulfurization (FGD) technology such as Spray Drying. A patent for coolside Flue Gas Desulfurization in the Circulating Fluidized Bed reactor (CFB-FGD) was approved by the China Patent Bureau in September of 1995 and the additional laboratory experiment was carried out in an electrically heated bench scale quartz circulating fluidized bed reactor of 2350mm in height and 23mm in diameter in January, 1996. The influences of steam, ratio of calcium and sulfur, reactor temperature, and absorbent utilization efficiency were invested. The results show that: (1) Water steam plays a key role in the reaction of Ca(OH){sub 2} and SO{sub 2} in the CFB reactor; (2) There is a positive effect of Ca/S on SO{sub 2} removal efficiency; (3) The temperature is an another key factor for SO{sub 2} removal efficiency for the CFB-FGD process; (4) The absorbent can be enhanced in the CFB reactor; (5) The CFB reactor is better than the dry/semi-dry FDG technology. SO{sub 2} removal efficiency can be as high as 84.8%.

  18. Moving bed reactor for solar thermochemical fuel production

    DOEpatents

    Ermanoski, Ivan

    2013-04-16

    Reactors and methods for solar thermochemical reactions are disclosed. Embodiments of reactors include at least two distinct reactor chambers between which there is at least a pressure differential. In embodiments, reactive particles are exchanged between chambers during a reaction cycle to thermally reduce the particles at first conditions and oxidize the particles at second conditions to produce chemical work from heat. In embodiments, chambers of a reactor are coupled to a heat exchanger to pre-heat the reactive particles prior to direct exposure to thermal energy with heat transferred from reduced reactive particles as the particles are oppositely conveyed between the thermal reduction chamber and the fuel production chamber. In an embodiment, particle conveyance is in part provided by an elevator which may further function as a heat exchanger.

  19. Pressurized fluidized bed reactor and a method of operating the same

    DOEpatents

    Isaksson, J.

    1996-02-20

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  20. Pressurized fluidized bed reactor and a method of operating the same

    DOEpatents

    Isaksson, Juhani

    1996-01-01

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  1. Air gasification of rice husk in bubbling fluidized bed reactor with bed heating by conventional charcoal.

    PubMed

    Makwana, J P; Joshi, Asim Kumar; Athawale, Gaurav; Singh, Dharminder; Mohanty, Pravakar

    2015-02-01

    An experimental study of air gasification of rice husk was conducted in a bench-scale fluidized bed gasifier (FBG) having 210 mm diameter and 1600 mm height. Heating of sand bed material was performed using conventional charcoal fuel. Different operating conditions like bed temperature, feeding rate and equivalence ratio (ER) varied in the range of 750-850 °C, 25-31.3 kg/h, and 0.3-0.38, respectively. Flow rate of air was kept constant (37 m(3)/h) during FBG experiments. The carbon conversion efficiencies (CCE), cold gas efficiency, and thermal efficiency were evaluated, where maximum CCE was found as 91%. By increasing ER, the carbon conversion efficiency was decreased. Drastic reduction in electric consumption for initial heating of gasifier bed with charcoal compared to ceramic heater was ∼45%. Hence rice husk is found as a potential candidate to use directly (without any processing) in FBG as an alternative renewable energy source from agricultural field. PMID:25446789

  2. Treatment of cheese whey and soft drink bottling wastes in an anaerboic biological fluidized bed reactor

    SciTech Connect

    Hickey, R.; Owens, R.

    1982-11-01

    This report describes the development of an anaerobic system to produce combustible gas from cheese whey, soft drink bottling plant wastes, and other organic wastes. Experiments conducted using whey and soft drink wastes in a small scale reactor determined the optimum operating conditions to maximize combustible gas yield and minimize operating costs. Economic analyses are presented in the report which demonstrate that anaerobic treatment of these wastes in a fluidized bed reactor is a highly cost-effective process.

  3. Biomass growth restriction in a packed bed reactor

    DOEpatents

    Griffith, William L.; Compere, Alicia L.

    1978-01-01

    When carrying out continuous biologically catalyzed reactions with anaerobic microorganisms attached to a support in an upflow packed bed column, growth of the microorganisms is restricted to prevent the microorganisms from plugging the column by limiting the availability of an essential nutrient and/or by the presence of predatory protozoa which consume the anaerobic microorganisms. A membrane disruptive detergent may be provided in the column to lyse dead microorganisms to make them available as nutrients for live microorganisms.

  4. Deposition reactors for solar grade silicon: A comparative thermal analysis of a Siemens reactor and a fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Ramos, A.; Filtvedt, W. O.; Lindholm, D.; Ramachandran, P. A.; Rodríguez, A.; del Cañizo, C.

    2015-12-01

    Polysilicon production costs contribute approximately to 25-33% of the overall cost of the solar panels and a similar fraction of the total energy invested in their fabrication. Understanding the energy losses and the behaviour of process temperature is an essential requirement as one moves forward to design and build large scale polysilicon manufacturing plants. In this paper we present thermal models for two processes for poly production, viz., the Siemens process using trichlorosilane (TCS) as precursor and the fluid bed process using silane (monosilane, MS). We validate the models with some experimental measurements on prototype laboratory reactors relating the temperature profiles to product quality. A model sensitivity analysis is also performed, and the effects of some key parameters such as reactor wall emissivity and gas distributor temperature, on temperature distribution and product quality are examined. The information presented in this paper is useful for further understanding of the strengths and weaknesses of both deposition technologies, and will help in optimal temperature profiling of these systems aiming at lowering production costs without compromising the solar cell quality.

  5. Immobilized cellulase characterization and use in a fluidized bed reactor

    SciTech Connect

    Oh, S.; Garcia, A.; Engler, C.R.

    1987-01-01

    Cellulase was attached to a high molecular weight ligand which was attached to a 45 ..mu..m Fe/sub 3/O/sub 4/ particle. The optimum pH and temperature was 5.5 compared to 4.0 of the free enzyme. The half-life of the IMC was 44.2 hrs. compared to 0.77 hrs. of the free enzyme. The IMC was successfully used in both batch and continuous modes of operation in a fluidized reactor. The batch and continuous reactor productivity was 0.61 and 1.08 mg . hr/sup -1/ . g-IMC/sup -1/ respectively.

  6. APPARATUS FOR SHORT TIME MEASUREMENTS IN A FIXED-BED, GAS/SOLID REACTOR

    EPA Science Inventory

    An apparatus for exposure of a solid to reactive process gas is described which makes possible short time (≥ 0.3 to 15 s) exposures in a fixed-bed reactor. Operating conditions for differential reaction with respect to the gas concentration and rapid quench for arresting hi...

  7. Large-Scale Simulations of Realistic Fluidized Bed Reactors using Novel Numerical Methods

    NASA Astrophysics Data System (ADS)

    Capecelatro, Jesse; Desjardins, Olivier; Pepiot, Perrine; National Renewable Energy Lab Collaboration

    2011-11-01

    Turbulent particle-laden flows in the form of fluidized bed reactors display good mixing properties, low pressure drops, and a fairly uniform temperature distribution. Understanding and predicting the flow dynamics within the reactor is necessary for improving the efficiency, and providing technologies for large-scale industrialization. A numerical strategy based on an Eulerian representation of the gas phase and Lagrangian tracking of the particles is developed in the framework of NGA, a high- order fully conservative parallel code tailored for turbulent flows. The particles are accounted for using a point-particle assumption. Once the gas-phase quantities are mapped to the particle location a conservative, implicit diffusion operation smoothes the field. Normal and tangential collisions are handled via soft-sphere model, modified to allow the bed to reach close packing at rest. The pressure drop across the bed is compared with theory to accurately predict the minimum fluidization velocity. 3D simulations of the National Renewable Energy Lab's 4-inch reactor are then conducted. Tens of millions of particles are tracked. The reactor's geometry is modeled using an immersed boundary scheme. Statistics for volume fraction, velocities, bed expansion, and bubble characteristics are analyzed and compared with experimental data.

  8. ANALYSIS OF AN AEROBIC FLUIDIZED BED REACTOR DEGRADING MTBE AND BTEX AT REDUCED EBCTS

    EPA Science Inventory

    The purpose of this study was to investigate the biodegradation of MTBE and BTEX using a fluidized bed reactor (FBR) with granular activated carbon (GAC) as a biological attachment medium. Batch experiments were run to analyze the MTBE and TBA degradation kinetics of the culture ...

  9. Modelling of turbulent flow in a radial reactor with fixed bed

    NASA Astrophysics Data System (ADS)

    Zhapbasbayev, U. K.; Ramazanova, G. I.; Kenzhaliev, O. B.

    2015-03-01

    The data of the computation of turbulent flow in the CF- π and CP- π configurations of the radial reactor with a fixed bed are presented. The Reynolds motion equations have been solved jointly with the k- ɛ turbulence model. To couple the parameters of flows at the interface free part-fixed bed the classical continuity equations were used. The computational data are obtained for the averaged and turbulent characteristics, and it is shown that the flow in the fixed bed causes the generation of the turbulence kinetic energy and its dissipation rate; the flow in the CF- π configuration is distributed more uniformly as compared to the CP- π configuration of the radial reactor. Computed data are compared with the experimental ones.

  10. Computational and experimental prediction of dust production in pebble bed reactors, Part II

    SciTech Connect

    Mie Hiruta; Gannon Johnson; Maziar Rostamian; Gabriel P. Potirniche; Abderrafi M. Ougouag; Massimo Bertino; Louis Franzel; Akira Tokuhiro

    2013-10-01

    This paper is the continuation of Part I, which describes the high temperature and high pressure helium environment wear tests of graphite–graphite in frictional contact. In the present work, it has been attempted to simulate a Pebble Bed Reactor core environment as compared to Part I. The experimental apparatus, which is a custom-designed tribometer, is capable of performing wear tests at PBR relevant higher temperatures and pressures under a helium environment. This environment facilitates prediction of wear mass loss of graphite as dust particulates from the pebble bed. The experimental results of high temperature helium environment are used to anticipate the amount of wear mass produced in a pebble bed nuclear reactor.

  11. Optimal feed temperature for an immobilized enzyme packed-bed reactor.

    PubMed

    Lin, S H

    1991-01-01

    Optimal feed temperature was determined for a nonisothermal immobilized enzymatic reaction with enzyme deactivation in a packed-bed reactor. The optimal feed temperature was obtained by maximizing the average substrate conversion over a given reaction period. Simulation showed the optimal feed temperature to be strongly dependent on the flow dispersion, the reaction activation energy, the corresponding enzyme inactivation energy and the heat of reaction. It was also observed that in a plug flow reactor the enzyme reaction generally exhibited a lower optimal feed temperature and higher substrate conversion than in a continuously stirred tank reactor. PMID:1366867

  12. High flux Particle Bed Reactor systems for rapid transmutation of actinides and long lived fission products

    SciTech Connect

    Powell, J.; Ludewig, H.; Maise, G.; Steinberg, M.; Todosow, M.

    1993-08-01

    An initial assessment of several actinide/LLFP burner concepts based on the Particle Bed Reactor (PBR) is described. The high power density/flux level achievable with the PBR make it an attractive candidate for this application. The PBR based actinide burner concept also possesses a number of safety and economic benefits relative to other reactor based transmutation approaches including a low inventory of radionuclides, and high integrity, coated fuel particles which can withstand extremely high in temperatures while retaining virtually all fission products. In addition the reactor also posesses a number of ``engineered safety features,`` which, along with the use of high temperature capable materials further enhance its safety characteristics.

  13. Experimental and Computational Study of Multiphase Flow Hydrodynamics in 2D Trickle Bed Reactors

    NASA Astrophysics Data System (ADS)

    Nadeem, H.; Ben Salem, I.; Kurnia, J. C.; Rabbani, S.; Shamim, T.; Sassi, M.

    2014-12-01

    Trickle bed reactors are largely used in the refining processes. Co-current heavy oil and hydrogen gas flow downward on catalytic particle bed. Fine particles in the heavy oil and/or soot formed by the exothermic catalytic reactions deposit on the bed and clog the flow channels. This work is funded by the refining company of Abu Dhabi and aims at mitigating pressure buildup due to fine deposition in the TBR. In this work, we focus on meso-scale experimental and computational investigations of the interplay between flow regimes and the various parameters that affect them. A 2D experimental apparatus has been built to investigate the flow regimes with an average pore diameter close to the values encountered in trickle beds. A parametric study is done for the development of flow regimes and the transition between them when the geometry and arrangement of the particles within the porous medium are varied. Liquid and gas flow velocities have also been varied to capture the different flow regimes. Real time images of the multiphase flow are captured using a high speed camera, which were then used to characterize the transition between the different flow regimes. A diffused light source was used behind the 2D Trickle Bed Reactor to enhance visualizations. Experimental data shows very good agreement with the published literature. The computational study focuses on the hydrodynamics of multiphase flow and to identify the flow regime developed inside TBRs using the ANSYS Fluent Software package. Multiphase flow inside TBRs is investigated using the "discrete particle" approach together with Volume of Fluid (VoF) multiphase flow modeling. The effect of the bed particle diameter, spacing, and arrangement are presented that may be used to provide guidelines for designing trickle bed reactors.

  14. The importance of the AVR pebble-bed reactor for the future of nuclear power

    SciTech Connect

    Pohl, P.

    2006-07-01

    The AVR pebble-bed high temperature gas-cooled reactor (HTGR) at Juelich (Germany)) operated from 1967 to 1988 and was certainly the most important HTGR project of the past. The reactor was the mass test bed for all development steps of HTGR pebble fuel. Some early fuel charges failed under high temperature conditions and contaminated the reactor. An accurate pebble measurement (Cs 137) allowed to clean the core from unwanted pebbles after 1981. The coolant activity went down and remained very low for the remaining reactor operation. A melt-wire experiment in 1986 revealed max. coolant temperatures of >1280 deg. C and fuel temperatures of >1350 deg. C, explained by under-estimated bypasses. The fuel still in the core achieved high burn-ups and showed under the extreme temperature conditions excellent fission product retention. Thus, the AVR operation qualified the HTGR fuel, and an average discharge burn-up of 112% fifa revealed an excellent fuel economy of the pebble-bed reactor. Furthermore, the AVR operation offers many meaningful data for code-to-experiment comparisons. (authors)

  15. Fluidized-bed atomic layer deposition reactor for the synthesis of core-shell nanoparticles

    SciTech Connect

    Didden, Arjen P.; Middelkoop, Joost; Krol, Roel van de; Besling, Wim F. A.; Nanu, Diana E.

    2014-01-15

    The design of a fluidized bed atomic layer deposition (ALD) reactor is described in detail. The reactor consists of three parts that have all been placed in one protective cabinet: precursor dosing, reactor, and residual gas treatment section. In the precursor dosing section, the chemicals needed for the ALD reaction are injected into the carrier gas using different methods for different precursors. The reactor section is designed in such a way that a homogeneous fluidized bed can be obtained with a constant, actively controlled, reactor pressure. Furthermore, no filters are required inside the reactor chamber, minimizing the risk of pressure increase due to fouling. The residual gas treatment section consists of a decomposition furnace to remove residual precursor and a particle filter and is installed to protect the pump. In order to demonstrate the performance of the reactor, SiO{sub 2} particles have been coated with TiO{sub 2} using tetrakis-dimethylamino titanium (TDMAT) and H{sub 2}O as precursors. Experiments with varying pulse times show that saturated growth can be obtained with TDMAT pulse times larger than 600 s. Analysis of the powder with High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy (HAADF-STEM) and energy dispersive X-ray spectroscopy confirmed that after 50 cycles, all SiO{sub 2} particles were coated with a 1.6 nm homogenous shell of TiO{sub 2}.

  16. Fluidized-bed atomic layer deposition reactor for the synthesis of core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Didden, Arjen P.; Middelkoop, Joost; Besling, Wim F. A.; Nanu, Diana E.; van de Krol, Roel

    2014-01-01

    The design of a fluidized bed atomic layer deposition (ALD) reactor is described in detail. The reactor consists of three parts that have all been placed in one protective cabinet: precursor dosing, reactor, and residual gas treatment section. In the precursor dosing section, the chemicals needed for the ALD reaction are injected into the carrier gas using different methods for different precursors. The reactor section is designed in such a way that a homogeneous fluidized bed can be obtained with a constant, actively controlled, reactor pressure. Furthermore, no filters are required inside the reactor chamber, minimizing the risk of pressure increase due to fouling. The residual gas treatment section consists of a decomposition furnace to remove residual precursor and a particle filter and is installed to protect the pump. In order to demonstrate the performance of the reactor, SiO2 particles have been coated with TiO2 using tetrakis-dimethylamino titanium (TDMAT) and H2O as precursors. Experiments with varying pulse times show that saturated growth can be obtained with TDMAT pulse times larger than 600 s. Analysis of the powder with High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy (HAADF-STEM) and energy dispersive X-ray spectroscopy confirmed that after 50 cycles, all SiO2 particles were coated with a 1.6 nm homogenous shell of TiO2.

  17. Computational fluid dynamics modelling of biomass fast pyrolysis in fluidised bed reactors, focusing different kinetic schemes.

    PubMed

    Ranganathan, Panneerselvam; Gu, Sai

    2016-08-01

    The present work concerns with CFD modelling of biomass fast pyrolysis in a fluidised bed reactor. Initially, a study was conducted to understand the hydrodynamics of the fluidised bed reactor by investigating the particle density and size, and gas velocity effect. With the basic understanding of hydrodynamics, the study was further extended to investigate the different kinetic schemes for biomass fast pyrolysis process. The Eulerian-Eulerian approach was used to model the complex multiphase flows in the reactor. The yield of the products from the simulation was compared with the experimental data. A good comparison was obtained between the literature results and CFD simulation. It is also found that CFD prediction with the advanced kinetic scheme is better when compared to other schemes. With the confidence obtained from the CFD models, a parametric study was carried out to study the effect of biomass particle type and size and temperature on the yield of the products. PMID:26927234

  18. Conceptual Design of a Very High Temperature Pebble-Bed Reactor

    SciTech Connect

    Hans D. Gougar; A. M. Ougouag; Richard M. Moore; W. K. Terry

    2003-11-01

    Efficient electricity and hydrogen production distinguish the Very High Temperature Reactor as the leading Generation IV advanced concept. This graphite-moderated, helium-cooled reactor achieves a requisite high outlet temperature while retaining the passive safety and proliferation resistance required of Generation IV designs. Furthermore, a recirculating pebble-bed VHTR can operate with minimal excess reactivity to yield improved fuel economy and superior resistance to ingress events. Using the PEBBED code developed at the INEEL, conceptual designs of 300 megawatt and 600 megawatt (thermal) Very High Temperature Pebble-Bed Reactors have been developed. The fuel requirements of these compare favorably to the South African PBMR. Passive safety is confirmed with the MELCOR accident analysis code.

  19. Improved performance of parallel surface/packed-bed discharge reactor for indoor VOCs decomposition: optimization of the reactor structure

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Hui, Chun-Xue; Li, Jie; Lu, Na; Shang, Ke-Feng; Wu, Yan; Mizuno, Akira

    2015-10-01

    The purpose of this paper is to develop a high-efficiency air-cleaning system for volatile organic compounds (VOCs) existing in the workshop of a chemical factory. A novel parallel surface/packed-bed discharge (PSPBD) reactor, which utilized a combination of surface discharge (SD) plasma with packed-bed discharge (PBD) plasma, was designed and employed for VOCs removal in a closed vessel. In order to optimize the structure of the PSPBD reactor, the discharge characteristic, benzene removal efficiency, and energy yield were compared for different discharge lengths, quartz tube diameters, shapes of external high-voltage electrode, packed-bed discharge gaps, and packing pellet sizes, respectively. In the circulation test, 52.8% of benzene was removed and the energy yield achieved 0.79 mg kJ-1 after a 210 min discharge treatment in the PSPBD reactor, which was 10.3% and 0.18 mg kJ-1 higher, respectively, than in the SD reactor, 21.8% and 0.34 mg kJ-1 higher, respectively, than in the PBD reactor at 53 J l-1. The improved performance in benzene removal and energy yield can be attributed to the plasma chemistry effect of the sequential processing in the PSPBD reactor. The VOCs mineralization and organic intermediates generated during discharge treatment were followed by CO x selectivity and FT-IR analyses. The experimental results indicate that the PSPBD plasma process is an effective and energy-efficient approach for VOCs removal in an indoor environment.

  20. The dynamics of packed bed reactors loaded with oxide catalysts

    SciTech Connect

    Arnold, E.W.; Sundaresan, S.

    1987-01-01

    The lattice of an oxide catalyst used for oxidation reactions can act as a reservoir for oxygen, storing and releasing it for reactions at the catalyst surface under appropriate conditions. The implication of this oxygen storage property on the dynamic response characteristics of oxide catalysts has been investigated through an experimental study of 2-butene oxidation over vanadium oxide as a model reaction. Isothermal reaction rate measurements in a differential reactor and nonisothermal studies in a single pellet reactor have been carried out. Following a step increase in the feed butene concentration, isothermal reaction rate overshoot and pellet temperature overshoot were observed. These observations could be modelled in a qualitatively correct way by a very simple model accounting for the dynamic participation of lattice oxygen in the catalytic reactions. It is demonstrated through model simulations that the ignition characteristics of a catalyst pellet are significantly affected by the participation of the lattice oxygen, when steady state multiplicity is present. The initiation of dynamic runaway of a wall-cooled packed reactor, upon start-up, owing to the participation of lattice, is illustrated through simulations.

  1. Deleterious Thermal Effects due to Randomized Flow Paths in Pebble Bed, and Particle Bed Style Reactors

    NASA Technical Reports Server (NTRS)

    Moran, Robert P.

    2013-01-01

    Reactor fuel rod surface area that is perpendicular to coolant flow direction (+S) i.e. perpendicular to the P creates areas of coolant stagnation leading to increased coolant temperatures resulting in localized changes in fluid properties. Changes in coolant fluid properties caused by minor increases in temperature lead to localized reductions in coolant mass flow rates leading to localized thermal instabilities. Reductions in coolant mass flow rates result in further increases in local temperatures exacerbating changes to coolant fluid properties leading to localized thermal runaway. Unchecked localized thermal runaway leads to localized fuel melting. Reactor designs with randomized flow paths are vulnerable to localized thermal instabilities, localized thermal runaway, and localized fuel melting.

  2. Cusps and spouts in microfluidic systems

    NASA Astrophysics Data System (ADS)

    Duboin, Aurélien; Malloggi, Florent; Monti, Fabrice; Tabeling, Patrick

    2011-11-01

    By injecting mineral oil (inner phase) and polymer solutions (outer phase), in a microfluidic flow focusing geometry, we observed the formation of cusps. These cusps undergo a transition from a steady state, to a thin cylindrical spout (oil in polymer). These oil spouts, do not touch the walls, and are surprisingly stable (they do not break into droplets). We study the nature of the cusp-spout transition, and find it is of first order. By taking advantage of the stability of the jet, we expect to synthesize micro-wires with this approach.

  3. CORE ANALYSIS, DESIGN AND OPTIMIZATION OF A DEEP-BURN PEBBLE BED REACTOR

    SciTech Connect

    B. Boer; A. M. Ougouag

    2010-05-01

    Achieving a high burnup in the Deep-Burn pebble bed reactor design, while remaining within the limits for fuel temperature, power peaking and temperature reactivity feedback, is challenging. The high content of Pu and Minor Actinides in the Deep-Burn fuel significantly impacts the thermal neutron energy spectrum. This can result in power and temperature peaking in the pebble bed core in locally thermalized regions near the graphite reflectors. Furthermore, the interplay of the Pu resonances of the neutron absorption cross sections at low-lying energies can lead to a positive temperature reactivity coefficient for the graphite moderator at certain operating conditions. To investigate the aforementioned effects a code system using existing codes has been developed for neutronic, thermal-hydraulic and fuel depletion analysis of Deep-Burn pebble bed reactors. A core analysis of a Deep-Burn Pebble Bed Modular Reactor (400 MWth) design has been performed for two Deep-Burn fuel types and possible improvements of the design with regard to power peaking and temperature reactivity feedback are identified.

  4. An earthquake transient method for pebble-bed reactors and a fuel temperature model for TRISO fueled reactors

    NASA Astrophysics Data System (ADS)

    Ortensi, Javier

    This investigation is divided into two general topics: (1) a new method for analyzing the safe shutdown earthquake event in a pebble bed reactor core, and (2) the development of an explicit tristructural-isotropic fuel model for high temperature reactors. The safe shutdown earthquake event is one of the design basis accidents for the pebble bed reactor. The new method captures the dynamic geometric compaction of the pebble bed core. The neutronic and thermal-fluids grids are dynamically re-meshed to simulate the re-arrangement of the pebbles in the reactor during the earthquake. Results are shown for the PBMR-400 assuming it is subjected to the Idaho National Laboratory's design basis earthquake. The study concludes that the PBMR-400 can safely withstand the reactivity insertions induced by the slumping of the core and the resulting relative withdrawal of the control rods. This characteristic stems from the large negative Doppler feedback of the fuel. This Doppler feedback mechanism is a major contributor to the passive safety of gas-cooled, graphite-moderated, high-temperature reactors that use fuel based on TRISO particles. The correct prediction of the magnitude and time-dependence of this feedback effect is essential to the conduct of safety analyses for these reactors. An explicit TRISO fuel temperature model named THETRIS has been developed in this work and incorporated in the CYNOD-THERMIX-KONVEK suite of coupled codes. The new model yields similar results to those obtained with more complex methods, requiring multi-TRISO calculations within one control volume. The performance of the code during fast and moderately-slow transients is verified. These analyses show how explicit TRISO models improve the predictions of the fuel temperature, and consequently, of the power escalation. In addition, a brief study of the potential effects on the transient behavior of high-temperature reactors due to the presence of a gap inside the TRISO particles is included

  5. Experimental and computational investigation of flow of pebbles in a pebble bed nuclear reactor

    NASA Astrophysics Data System (ADS)

    Khane, Vaibhav B.

    The Pebble Bed Reactor (PBR) is a 4th generation nuclear reactor which is conceptually similar to moving bed reactors used in the chemical and petrochemical industries. In a PBR core, nuclear fuel in the form of pebbles moves slowly under the influence of gravity. Due to the dynamic nature of the core, a thorough understanding about slow and dense granular flow of pebbles is required from both a reactor safety and performance evaluation point of view. In this dissertation, a new integrated experimental and computational study of granular flow in a PBR has been performed. Continuous pebble re-circulation experimental set-up, mimicking flow of pebbles in a PBR, is designed and developed. Experimental investigation of the flow of pebbles in a mimicked test reactor was carried out for the first time using non-invasive radioactive particle tracking (RPT) and residence time distribution (RTD) techniques to measure the pebble trajectory, velocity, overall/zonal residence times, flow patterns etc. The tracer trajectory length and overall/zonal residence time is found to increase with change in pebble's initial seeding position from the center towards the wall of the test reactor. Overall and zonal average velocities of pebbles are found to decrease from the center towards the wall. Discrete element method (DEM) based simulations of test reactor geometry were also carried out using commercial code EDEM(TM) and simulation results were validated using the obtained benchmark experimental data. In addition, EDEM(TM) based parametric sensitivity study of interaction properties was carried out which suggests that static friction characteristics play an important role from a packed/pebble beds structural characterization point of view. To make the RPT technique viable for practical applications and to enhance its accuracy, a novel and dynamic technique for RPT calibration was designed and developed. Preliminary feasibility results suggest that it can be implemented as a non

  6. Continuous synthesis of hexanal by immobilized hydroperoxide lyase in packed-bed reactor.

    PubMed

    Liu, Qingqing; Hua, Yufei

    2015-12-01

    This study aimed to develop an optimal continuous procedure of immobilized hydroperoxide lyase (HPL)-catalyzed synthesis of hexanal. A central composite design was used to study the combined effect of substrate concentration and the residence time of the reactant on hexanal concentration. The optimum conditions for hexanal synthesis included a 13-HPOD concentration of 43.54 mM and a residence time of 60.99 min. The maximum hexanal concentration was 3560 ± 130 mg/L when 16 U of immobilized HPLwas used. Furthermore, the stability of immobilized HPL was significantly improved in the packed-bed reactor, as evidenced by the slowed enzyme inactivation and prolonged operation time. The immobilized HPL remained activity until 40 mL substrate solution flowed past the packed-bed reactor. The catalyst productivity of hexanal in the packed-bed reactor was 5.35 ± 0.34 mg/U, much higher than that in the batch stirred reactor. This study was greatly meaningful for providing a green method to the large-scale production of hexanal. PMID:26463182

  7. Pebble Bed Reactors Design Optimization Methods and their Application to the Pebble Bed Fluoride Salt Cooled High Temperature Reactor (PB-FHR)

    NASA Astrophysics Data System (ADS)

    Cisneros, Anselmo Tomas, Jr.

    The Fluoride salt cooled High temperature Reactor (FHR) is a class of advanced nuclear reactors that combine the robust coated particle fuel form from high temperature gas cooled reactors, direct reactor auxillary cooling system (DRACS) passive decay removal of liquid metal fast reactors, and the transparent, high volumetric heat capacitance liquid fluoride salt working fluids---flibe (33%7Li2F-67%BeF)---from molten salt reactors. This combination of fuel and coolant enables FHRs to operate in a high-temperature low-pressure design space that has beneficial safety and economic implications. In 2012, UC Berkeley was charged with developing a pre-conceptual design of a commercial prototype FHR---the Pebble Bed- Fluoride Salt Cooled High Temperature Reactor (PB-FHR)---as part of the Nuclear Energy University Programs' (NEUP) integrated research project. The Mark 1 design of the PB-FHR (Mk1 PB-FHR) is 236 MWt flibe cooled pebble bed nuclear heat source that drives an open-air Brayton combine-cycle power conversion system. The PB-FHR's pebble bed consists of a 19.8% enriched uranium fuel core surrounded by an inert graphite pebble reflector that shields the outer solid graphite reflector, core barrel and reactor vessel. The fuel reaches an average burnup of 178000 MWt-d/MT. The Mk1 PB-FHR exhibits strong negative temperature reactivity feedback from the fuel, graphite moderator and the flibe coolant but a small positive temperature reactivity feedback of the inner reflector and from the outer graphite pebble reflector. A novel neutronics and depletion methodology---the multiple burnup state methodology was developed for an accurate and efficient search for the equilibrium composition of an arbitrary continuously refueled pebble bed reactor core. The Burnup Equilibrium Analysis Utility (BEAU) computer program was developed to implement this methodology. BEAU was successfully benchmarked against published results generated with existing equilibrium depletion codes VSOP

  8. Prevention of clogging in a biological trickle-bed reactor removing toluene from contaminated air

    SciTech Connect

    Weber, F.J.; Hartmans, S.

    1996-04-05

    Removal of organic compounds like toluene from waste gases with a trickle-bed reactor can result in clogging of the reactor due to the formation of an excessive amount of biomass. The authors therefore limited the amount of nutrients available for growth, to prevent clogging of the reactor. As a consequence of this nutrient limitations a lower removal rate was observed. However, when a fungal culture was used to inoculate the reactor, the toluene removal rate under nutrient limiting conditions was higher. Over a period of 375 days, an average removal rate of 27 g C/(m{sup 3} h) was obtained with the reactor inoculated with the fungal culture. From the carbon balance over the reactor and the nitrogen availability it was concluded that, under these nutrient-limited conditions, large amounts of carbohydrates are probably formed. The authors also studied the application of a NaOH wash to remove excess biomass, as a method to prevent clogging. Under these conditions an average toluene removal rate of 35 g C/(m{sup 3} h) was obtained. After about 50 days there was no net increase in the biomass content of the reactor. The amount of biomass which was formed in the reactor equaled the amount removed by the NaOH wash.

  9. Fast start-up of expanded granular sludge bed (EGSB) reactor using stored Anammox sludge.

    PubMed

    Wenjie, Zhang; Yuanyuan, Zhang; Liang, Li; Xuehong, Zhang; Yue, Jin

    2014-01-01

    Stored Anammox sludge (SAS) was used in an expanded granular sludge bed (EGSB) reactor treating synthetic wastewater with the aim of evaluating its possible use as seed sludge. The SAS had been kept in a refrigerator (4 °C) without any feed. After 2 years, only 1-2% Anammox bacteria could survive in the SAS. However, it soon prevailed in the EGSB reactor after loading. Accordingly, the start-up of the EGSB reactor was successfully completed in 34 days. The biomass turned to round reddish granular sludge from irregular brown floc at the end of this study. The results indicate that SAS could serve well as seed sludge. The required time for start-up of the Anammox reactor using SAS was thus demonstrated to be shorter than that of uncultivated sludge under experimental conditions. PMID:24718338

  10. Dual bed reactor for the study of catalytic biomass tars conversion

    SciTech Connect

    Ammendola, P.; Piriou, B.; Lisi, L.; Ruoppolo, G.; Chirone, R.; Russo, G.

    2010-04-15

    A dual fixed bed laboratory scale set up has been used to compare the activity of a novel Rh/LaCoO{sub 3}/Al{sub 2}O{sub 3} catalyst to that of dolomite, olivine and Ni/Al{sub 2}O{sub 3}, typical catalysts used in fluidized bed biomass gasification, to convert tars produced during biomass devolatilization stage. The experimental apparatus allows the catalyst to be operated under controlled conditions of temperature and with a real gas mixture obtained by the pyrolysis of the biomass carried out in a separate fixed bed reactor operated under a selected and controlled heating up rate. The proposed catalyst exhibits much better performances than conventional catalysts tested. It is able to completely convert tars and also to strongly decrease coke formation due to its good redox properties. (author)

  11. Rotating-bed reactor as a power source for EM gun applications

    SciTech Connect

    Powell, J.; Botts, T.; Stickley, C.M.; Meth, S.

    1980-01-01

    Electromagnetic gun applications of the Rotating Bed Reactor (RBR) are examined. The RBR is a compact (approx. 1 m/sup 3/), (up to several thousand MW(th)), high-power reactor concept, capable of producing a high-temperature (up to approx. 300/sup 0/K) gas stream with a MHD generator coupled to it, the RBR can generate electric power (up to approx. 1000 MW(e)) in the pulsed or cw modes. Three EM gun applications are investigated: a rail gun thruster for orbit transfer, a rapid-fire EM gun for point defense, and a direct ground-to-space launch. The RBR appears suitable for all applications.

  12. Kinetics and fixed-bed reactor modeling of butane oxidation to maleic anhydride

    SciTech Connect

    Sharma, R.K.; Cresswell, D.L. ); Newson, E.J. )

    1991-01-01

    This paper reports on selective oxidation kinetics of n-butane to maleic anhydride in air studied over a commercial, fixed-bed vanadium-phosphor oxide catalyst. The temperature range was 573-653 K with butane concentrations up to 3 mol % in the feed, which is within flammability limits but below ignition temperatures. The rate data were modeled using power law kinetics with product inhibition and included total oxidation and decomposition reactions. Kinetic parameters were estimated using a multiresponse, nonlinear regression algorithm showing intercorrelation effects. The kinetics were combined with independent measurements of catalyst diffusivity and reactor heat transfer using a one- dimensional heterogeneous reactor model.

  13. Microstructure of multicrystalline silicon seeded by polysilicon chips and fluidized bed reactor granules

    NASA Astrophysics Data System (ADS)

    Ekstrøm, K. E.; Stokkan, G.; Autruffe, A.; Søndenå, R.; Dalaker, H.; Arnberg, L.; Di Sabatino, M.

    2016-05-01

    Multicrystalline silicon displays a considerable smaller average grain size and reduced dislocation generation when being seeded by polycrystalline silicon chips or fluidized bed reactor silicon granules. A simple texture analysis shows how the initially random grain structure of the seeds develops a weak preference for near-<111> and near-<112> oriented grains upwards in the ingot. Closer investigations reveal a considerable coarsening of the initial microstructure of the seeds during the directional solidification process, especially for small fluidized bed reactor granules. The irregular shape of polysilicon chips allows for melt penetration into the seeding structure and potential indentation effects that may account for the increased dislocation generation observed in this case. The increased generation may, however, also be related to a higher ratio of ∑27 grain boundaries.

  14. PEBBLES: A COMPUTER CODE FOR MODELING PACKING, FLOW AND RECIRCULATIONOF PEBBLES IN A PEBBLE BED REACTOR

    SciTech Connect

    Joshua J. Cogliati; Abderrafi M. Ougouag

    2006-10-01

    A comprehensive, high fidelity model for pebble flow has been developed and embodied in the PEBBLES computer code. In this paper, a description of the physical artifacts included in the model is presented and some results from using the computer code for predicting the features of pebble flow and packing in a realistic pebble bed reactor design are shown. The sensitivity of models to various physical parameters is also discussed.

  15. Nuclear Thermal Propulsion engine based on Particle Bed Reactor using light water steam as a propellant

    SciTech Connect

    Powell, J.R.; Ludewig, H.; Maise, G.

    1993-06-01

    In this paper the possibility of configuring a water cooled Nuclear Thermal Propulsion (NTP) rocket, based on a Particle Bed Reactor (PBR) is investigated. This rocket will be used to operate on water obtained from near earth objects. The conclusions reached in this paper indicate that it is possible to configure a PBR based NTP rocket to operate on water and meet the mission requirements envisioned for it. No insurmountable technology issues have been identified.

  16. Nuclear thermal propulsion engine based on particle bed reactor using light water steam as a propellant

    SciTech Connect

    Powell, J.R.; Ludewig, H.; Maise, G. )

    1993-01-10

    In this paper the possibility of configuring a water cooled Nuclear Thermal Propulsion (NTP) rocket, based on a Particle Bed Reactor (PBR) is investigated. This rocket will be used to operate on water obtained from near earth objects. The conclusions reached in this paper indicate that it is possible to configure a PBR based NTP rocket to operate on water and meet the mission requirements envisioned for it. No insurmountable technology issues have been identified.

  17. A particle bed reactor based NTP in the 112,500 N thrust class

    SciTech Connect

    Ludewig, H.; Powell, J.R.; Lazareth, O.W. Jr.; Todosow, M.

    1993-04-01

    This paper discusses the application of a Particle bed Reactor (PBR) to a 112,500 N thrust Nuclear Thermal Propulsion (NTP) Engine. The method of analysis is described, followed by a presentation of the results. It is concluded that the PBR would result in a very competitive NTP engine. In addition, due to the high power densities possible with a PBR, high thrust/weight ratios are possible. This conclusion can be used to satisfy a variety of mission goals.

  18. A particle bed reactor based NTP in the 112,500 N thrust class

    SciTech Connect

    Ludewig, H.; Powell, J.R.; Lazareth, O.W. Jr.; Todosow, M. )

    1993-01-20

    This paper discusses the application of a Particle Bed Reactor (PBR) to a 112,500 N thrust Nuclear Thermal Propulsion (NTP) Engine. The method of analysis is described, followed by a presentation of the results. It is concluded that the PBR would result in a very competitive NTP engine. In addition, due to the high power densities possible with a PBR, high thrust/weight ratios are possible. This conclusion can be used to satisfy a variety of mission goals.

  19. Apparatus for high flux photocatalytic pollution control using a rotating fluidized bed reactor

    DOEpatents

    Tabatabaie-Raissi, Ali; Muradov, Nazim Z.; Martin, Eric

    2003-06-24

    An apparatus based on optimizing photoprocess energetics by decoupling of the process energy efficiency from the DRE for target contaminants. The technique is applicable to both low- and high-flux photoreactor design and scale-up. An apparatus for high-flux photocatalytic pollution control is based on the implementation of multifunctional metal oxide aerogels and other media in conjunction with a novel rotating fluidized particle bed reactor.

  20. Results of theoretical and experimental studies of hydrodynamics of circulation loops in circulating fluidized bed reactors and systems with interconnected reactors

    NASA Astrophysics Data System (ADS)

    Ryabov, G. A.; Folomeev, O. M.; Sankin, D. A.; Melnikov, D. A.

    2015-02-01

    Problems of the calculation of circulation loops in circulating fluidized bed reactors and systems with interconnected reactors (polygeneration systems for the production of electricity, heat, and useful products and chemical cycles of combustion and gasification of solid fuels)are considered. A method has been developed for the calculation of circulation loop of fuel particles with respect to boilers with circulating fluidized bed (CFB) and systems with interconnected reactors with fluidized bed (FB) and CFB. New dependences for the connection between the fluidizing agent flow (air, gas, and steam) and performance of reactors and for the whole system (solids flow rate, furnace and cyclone pressure drops, and bed level in the riser) are important elements of this method. Experimental studies of hydrodynamics of circulation loops on the aerodynamic unit have been conducted. Experimental values of pressure drop of the horizontal part of the L-valve, which satisfy the calculated dependence, have been obtained.

  1. Advanced Core Design And Fuel Management For Pebble-Bed Reactors

    SciTech Connect

    Hans D. Gougar; Abderrafi M. Ougouag; William K. Terry

    2004-10-01

    A method for designing and optimizing recirculating pebble-bed reactor cores is presented. At the heart of the method is a new reactor physics computer code, PEBBED, which accurately and efficiently computes the neutronic and material properties of the asymptotic (equilibrium) fuel cycle. This core state is shown to be unique for a given core geometry, power level, discharge burnup, and fuel circulation policy. Fuel circulation in the pebble-bed can be described in terms of a few well?defined parameters and expressed as a recirculation matrix. The implementation of a few heat?transfer relations suitable for high-temperature gas-cooled reactors allows for the rapid estimation of thermal properties critical for safe operation. Thus, modeling and design optimization of a given pebble-bed core can be performed quickly and efficiently via the manipulation of a limited number key parameters. Automation of the optimization process is achieved by manipulation of these parameters using a genetic algorithm. The end result is an economical, passively safe, proliferation-resistant nuclear power plant.

  2. Advanced core design and fuel management for pebble-bed reactors

    NASA Astrophysics Data System (ADS)

    Gougar, Hans David

    A method for designing and optimizing recirculating pebble-bed reactor cores is presented. At the heart of the method is a new reactor physics computer code, PEBBED, which accurately and efficiently computes the neutronic and material properties of the asymptotic (equilibrium) fuel cycle. This core state is shown to be unique for a given core geometry, power level, discharge burnup, and fuel circulation policy. Fuel circulation in the pebble-bed can be described in terms of a few well-defined parameters and expressed as a recirculation matrix. The implementation of a few heat-transfer relations suitable for high-temperature gas-cooled reactors allows for the rapid estimation of thermal properties critical for safe operation. Thus, modeling and design optimization of a given pebble-bed core can be performed quickly and efficiently via the manipulation of a limited number key parameters. Automation of the optimization process is achieved by manipulation of these parameters using a genetic algorithm. The end result is an economical, passively safe, proliferation-resistant nuclear power plant.

  3. Theoretical and experimental studies of fixed-bed coal gasification reactors. Final report

    SciTech Connect

    Joseph, B.; Bhattacharya, A.; Salam, L.; Dudukovic, M.P.

    1983-09-01

    A laboratory fixed-bed gasification reactor was designed and built with the objective of collecting operational data for model validation and parameter estimation. The reactor consists of a 4 inch stainless steel tube filled with coal or char. Air and steam is fed at one end of the reactor and the dynamic progress of gasification in the coal or char bed is observed through thermocouples mounted at various radial and axial locations. Product gas compositions are also monitored as a function of time. Results of gasification runs using Wyoming coal are included in this report. In parallel with the experimental study, a two-dimensional model of moving bed gasifiers was developed, coded into a computer program and tested. This model was used to study the laboratory gasifier by setting the coal feed rate equal to zero. The model is based on prior work on steady state and dynamic modeling done at Washington University and published elsewhere in the literature. Comparisons are made between model predictions and experimental results. These are also included in this report. 23 references, 18 figures, 6 tables.

  4. Investigation of Multiphase Flow in a Packed Bed Reactor Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Lian, Yongsheng; Motil, Brian; Rame, Enrique

    2016-01-01

    In this paper we study the two-phase flow phenomena in a packed bed reactor using an integrated experimental and numerical method. The cylindrical bed is filled with uniformly sized spheres. In the experiment water and air are injected into the bed simultaneously. The pressure distribution along the bed will be measured. The numerical simulation is based on a two-phase flow solver which solves the Navier-Stokes equations on Cartesian grids. A novel coupled level set and moment of fluid method is used to construct the interface. A sequential method is used to position spheres in the cylinder. Preliminary experimental results showed that the tested flow rates resulted in pulse flow. The numerical simulation revealed that air bubbles could merge into larger bubbles and also could break up into smaller bubbles to pass through the pores in the bed. Preliminary results showed that flow passed through regions where the porosity is high. Comparison between the experimental and numerical results in terms of pressure distributions at different flow injection rates will be conducted. Comparison of flow phenomena under terrestrial gravity and microgravity will be made.

  5. Fluidized bed coupled rotary reactor for nanoparticles coating via atomic layer deposition

    SciTech Connect

    Duan, Chen-Long; Liu, Xiao; Chen, Rong E-mail: bshan@mail.hust.edu.cn; Shan, Bin E-mail: bshan@mail.hust.edu.cn

    2015-07-15

    A fluidized bed coupled rotary reactor has been designed for coating on nanoparticles (NPs) via atomic layer deposition. It consists of five major parts: reaction chamber, dosing and fluidizing section, pumping section, rotary manipulator components, as well as a double-layer cartridge for the storage of particles. In the deposition procedure, continuous fluidization of particles enlarges and homogenizes the void fraction in the particle bed, while rotation enhances the gas-solid interactions to stabilize fluidization. The particle cartridge presented here enables both the fluidization and rotation acting on the particle bed, demonstrated by the analysis of pressure drop. Moreover, enlarged interstitials and intense gas–solid contact under sufficient fluidizing velocity and proper rotation speed facilitate the precursor delivery throughout the particle bed and consequently provide a fast coating process. The cartridge can ensure precursors flowing through the particle bed exclusively to achieve high utilization without static exposure operation. By optimizing superficial gas velocities and rotation speeds, minimum pulse time for complete coating has been shortened in experiment, and in situ mass spectrometry showed the precursor usage can reach 90%. Inductively coupled plasma-optical emission spectroscopy results suggested a saturated growth of nanoscale Al{sub 2}O{sub 3} films on spherical SiO{sub 2} NPs. Finally, the uniformity and composition of the shells were characterized by high angle annular dark field-transmission electron microscopy and energy dispersive X-ray spectroscopy.

  6. Fluidized bed coupled rotary reactor for nanoparticles coating via atomic layer deposition.

    PubMed

    Duan, Chen-Long; Liu, Xiao; Shan, Bin; Chen, Rong

    2015-07-01

    A fluidized bed coupled rotary reactor has been designed for coating on nanoparticles (NPs) via atomic layer deposition. It consists of five major parts: reaction chamber, dosing and fluidizing section, pumping section, rotary manipulator components, as well as a double-layer cartridge for the storage of particles. In the deposition procedure, continuous fluidization of particles enlarges and homogenizes the void fraction in the particle bed, while rotation enhances the gas-solid interactions to stabilize fluidization. The particle cartridge presented here enables both the fluidization and rotation acting on the particle bed, demonstrated by the analysis of pressure drop. Moreover, enlarged interstitials and intense gas-solid contact under sufficient fluidizing velocity and proper rotation speed facilitate the precursor delivery throughout the particle bed and consequently provide a fast coating process. The cartridge can ensure precursors flowing through the particle bed exclusively to achieve high utilization without static exposure operation. By optimizing superficial gas velocities and rotation speeds, minimum pulse time for complete coating has been shortened in experiment, and in situ mass spectrometry showed the precursor usage can reach 90%. Inductively coupled plasma-optical emission spectroscopy results suggested a saturated growth of nanoscale Al2O3 films on spherical SiO2 NPs. Finally, the uniformity and composition of the shells were characterized by high angle annular dark field-transmission electron microscopy and energy dispersive X-ray spectroscopy. PMID:26233411

  7. Fluidized bed coupled rotary reactor for nanoparticles coating via atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Duan, Chen-Long; Liu, Xiao; Shan, Bin; Chen, Rong

    2015-07-01

    A fluidized bed coupled rotary reactor has been designed for coating on nanoparticles (NPs) via atomic layer deposition. It consists of five major parts: reaction chamber, dosing and fluidizing section, pumping section, rotary manipulator components, as well as a double-layer cartridge for the storage of particles. In the deposition procedure, continuous fluidization of particles enlarges and homogenizes the void fraction in the particle bed, while rotation enhances the gas-solid interactions to stabilize fluidization. The particle cartridge presented here enables both the fluidization and rotation acting on the particle bed, demonstrated by the analysis of pressure drop. Moreover, enlarged interstitials and intense gas-solid contact under sufficient fluidizing velocity and proper rotation speed facilitate the precursor delivery throughout the particle bed and consequently provide a fast coating process. The cartridge can ensure precursors flowing through the particle bed exclusively to achieve high utilization without static exposure operation. By optimizing superficial gas velocities and rotation speeds, minimum pulse time for complete coating has been shortened in experiment, and in situ mass spectrometry showed the precursor usage can reach 90%. Inductively coupled plasma-optical emission spectroscopy results suggested a saturated growth of nanoscale Al2O3 films on spherical SiO2 NPs. Finally, the uniformity and composition of the shells were characterized by high angle annular dark field-transmission electron microscopy and energy dispersive X-ray spectroscopy.

  8. Simultaneous carbon and nitrogen removal in anoxic-aerobic circulating fluidized bed biological reactor (CFBBR).

    PubMed

    Cui, Y; Nakhla, G; Zhu, J; Patel, A

    2004-06-01

    Biological nutrient removal (BNR) in municipal wastewater treatment to remove carbonaceous substrates and nutrients, has recently become increasingly popular worldwide due to increasingly stringent regulations. Biological fluidized bed (BFB) technology, which could be potentially used for BNR, can provide some advantages such as high efficiency and a compact structure. This work shows the results of simultaneous elimination of organic carbon and nitrogen using a circulating fluidized bed biological reactor (CFBBR, which has been developed recently for chemical engineering processes. The CFBBR has two fluidized beds, running as anoxic and aerobic processes to accomplish simultaneous nitrification and denitrification, with continuous liquid recirculation through the anoxic bed and the aerobic bed. Soluble COD concentrations in the effluent ranging from 4 to 20 mg l(-1) were obtained at varying COD loading rates; ammonia nitrogen removal efficiencies averaged in excess of 99% at a minimum total hydraulic retention time (HRT) of 2.0 hours over a temperature range of 25 degrees C to 28 degrees C. Effluent nitrate nitrogen concentration of less than 5 mg l(-1) was achieved by increasing effluent recycle rate. No nitrite accumulation was observed either in the anoxic bed or in the aerobic bed. The system was able to treat grit chamber effluent wastewater at a HRT of 2.0 hours while achieving average effluent BOD, COD, NH3-N, TKN, nitrates, total phosphate, TSS and VSS concentrations of 10 mg l(-1), 18 mg l(-1), 1.3 mg l(-1), 1.5 mg l(-1), 7 mg l(-1), 2.0 mg l(-1), 10 mg l(-1) and 8 mg l(-1) respectively. The CFBBR appears to be not only an excellent alternative for conventional activated sludge type BNR technologies but also capable of processing much higher loadings that are suitable for industrial applications. PMID:15369290

  9. Racemization of undesired enantiomers: Immobilization of mandelate racemase and application in a fixed bed reactor.

    PubMed

    Wrzosek, Katarzyna; Rivera, Mariel A García; Bettenbrock, Katja; Seidel-Morgenstern, Andreas

    2016-03-01

    Production of optically pure products can be based on simple unselective synthesis of racemic mixtures combined with a subsequent separation of the enantiomers; however, this approach suffers from a 50% yield limitation which can be overcome by racemization of the undesired enantiomer and recycling. Application of biocatalyst for the racemization steps offers an attractive option for high-yield manufacturing of commercially valuable compounds. Our work focuses on exploiting the potential of racemization with immobilized mandelate racemase. Immobilization of crude mandelate racemase via covalent attachment was optimized for two supports: Eupergit(®) CM and CNBr-activated Sepharose 4 Fast Flow. To allow coupling of enzymatic reaction with enantioselective chromatography, a mobile phase composition compatible with both processes was used in enzymatic reactor. Kinetic parameters obtained analyzing experiments carried out in a batch reactor could be successfully used to predict fixed-bed reactor performance. The applicability of the immobilized enzyme and the determined kinetic parameters were validated in transient experiments recording responses to pulse injections of R-mandelic acid. The approach investigated can be used for futher design and optimization of high yield combined resolution processes. The characterized fixed-bed enzymatic reactor can be integrated e.g. with chromatographic single- or multicolumn steps in various configurations. PMID:26773335

  10. Gas-Liquid Two-Phase Flows Through Packed Bed Reactors in Microgravity

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Balakotaiah, Vemuri

    2001-01-01

    The simultaneous flow of gas and liquid through a fixed bed of particles occurs in many unit operations of interest to the designers of space-based as well as terrestrial equipment. Examples include separation columns, gas-liquid reactors, humidification, drying, extraction, and leaching. These operations are critical to a wide variety of industries such as petroleum, pharmaceutical, mining, biological, and chemical. NASA recognizes that similar operations will need to be performed in space and on planetary bodies such as Mars if we are to achieve our goals of human exploration and the development of space. The goal of this research is to understand how to apply our current understanding of two-phase fluid flow through fixed-bed reactors to zero- or partial-gravity environments. Previous experiments by NASA have shown that reactors designed to work on Earth do not necessarily function in a similar manner in space. Two experiments, the Water Processor Assembly and the Volatile Removal Assembly have encountered difficulties in predicting and controlling the distribution of the phases (a crucial element in the operation of this type of reactor) as well as the overall pressure drop.

  11. Reactor Pressure Vessel Temperature Analysis for Prismatic and Pebble-Bed VHTR Designs

    SciTech Connect

    H. D. Gougar; C. B. Davis

    2006-04-01

    Analyses were performed to determine maximum temperatures in the reactor pressure vessel for two potential Very-High Temperature Reactor (VHTR) designs during normal operation and during a depressurized conduction cooldown accident. The purpose of the analyses was to aid in the determination of appropriate reactor vessel materials for the VHTR. The designs evaluated utilized both prismatic and pebble-bed cores that generated 600 MW of thermal power. Calculations were performed for fluid outlet temperatures of 900 and 950 °C, corresponding to the expected range for the VHTR. The analyses were performed using the RELAP5-3D and PEBBED-THERMIX computer codes. Results of the calculations were compared with preliminary temperature limits derived from the ASME pressure vessel code.

  12. Performance of Anammox granular sludge bed reactor started up with nitrifying granular sludge.

    PubMed

    Zheng, Ping; Lin, Feng-mei; Hu, Bao-lan; Chen, Jian-song

    2004-01-01

    The anaerobic ammonia oxidation (Anammox) granular sludge bed reactor was started up successfully with nitrifying granular sludge. During the operation, the nitrifying granular sludge was gradually converted into Anammox granular sludge with good settling property and high conversion activity. The Anammox reactor worked well with the shortest HRT of 2.43 h. Under the condition that HRT was 6.39 h and influent concentration of ammonia and nitrite was 10 mmol/L, the removal of ammonia and nitrite was 97.17% and 100.00%, respectively. Corresponding volumetric total nitrogen loading rate and volumetric total nitrogen conversion rate were 100.83 mmol/(L x d) and 98.95 mmol/(L x d). The performance of Anammox reactor was efficient and stable. PMID:15137666

  13. Sequential UASB and dual media packed-bed reactors for domestic wastewater treatment - experiment and simulation.

    PubMed

    Rodríguez-Gómez, Raúl; Renman, Gunno

    2016-01-01

    A wastewater treatment system composed of an upflow anaerobic sludge blanket (UASB) reactor followed by a packed-bed reactor (PBR) filled with Sorbulite(®) and Polonite(®) filter material was tested in a laboratory bench-scale experiment. The system was operated for 50 weeks and achieved very efficient total phosphorus (P) removal (99%), 7-day biochemical oxygen demand removal (99%) and pathogenic bacteria reduction (99%). However, total nitrogen was only moderately reduced in the system (40%). A model focusing on simulation of organic material, solids and size of granules was then implemented and validated for the UASB reactor. Good agreement between the simulated and measured results demonstrated the capacity of the model to predict the behaviour of solids and chemical oxygen demand, which is critical for successful P removal and recovery in the PBR. PMID:27332842

  14. Elimination of weapons grade plutonium via burning in a Particle Bed Reactor

    SciTech Connect

    Powell, J.R.; Ludewig, H.; Maise, G.; Todosow, M.

    1993-08-01

    An initial assessment of a concept for burning weapons grade plutonium based on the Particle Bed Reactor (PBR) is described. The high power density/flux level achievable with the PBR make it an attractive candidate for this application. The PBR based plutonium burner concept also possesses a number of safety and economic benefits relative to other reactor based Pu-burner approaches including a safeguards advantages, a low inventory of radionuclides, and high integrity, coated fuel particles which can withstand extremely high temperatures while retaining virtually all fission products. In addition the reactor also possesses a number of ``engineered safety features,`` which, along with the use of high temperature capable materials further enhance its safety characteristics.

  15. Plutonium and minor actinide utilisation in a pebble-bed high temperature reactor

    SciTech Connect

    Petrov, B. Y.; Kuijper, J. C.; Oppe, J.; De Haas, J. B. M.

    2012-07-01

    This paper contains results of the analysis of the pebble-bed high temperature gas-cooled PUMA reactor loaded with plutonium and minor actinide (Pu/MA) fuel. Starting from knowledge and experience gained in the Euratom FP5 projects HTR-N and HTR-N1, this study aims at demonstrating the potential of high temperature reactors to utilize or transmute Pu/MA fuel. The work has been performed within the Euratom FP6 project PUMA. A number of different fuel types and fuel configurations have been analyzed and compared with respect to incineration performance and safety-related reactor parameters. The results show the excellent plutonium and minor actinide burning capabilities of the high temperature reactor. The largest degree of incineration is attained in the case of an HTR fuelled by pure plutonium fuel as it remains critical at very deep burnup of the discharged pebbles. Addition of minor actinides to the fuel leads to decrease of the achievable discharge burnup and therefore smaller fraction of actinides incinerated during reactor operation. The inert-matrix fuel design improves the transmutation performance of the reactor, while the 'wallpaper' fuel does not have advantage over the standard fuel design in this respect. After 100 years of decay following the fuel discharge, the total amount of actinides remains almost unchanged for all of the fuel types considered. Among the plutonium isotopes, only the amount of Pu-241 is reduced significantly due to its relatively short half-life. (authors)

  16. Mild gasification of Usibelli coal in an inclined fluidized-bed reactor

    SciTech Connect

    Merriam, N.W.; Thomas, K.P.; Cha, C.Y.

    1991-02-01

    Results of mild gasification tests of minus 16-mesh Usibelli coal in an inclined fluidized-bed reactor are described in this report. The minus 16-mesh fraction was separated from the coal by screening. The coal was dried to zero moisture content, and about 2 wt % of the volatiles was removed as gas by partial decarboxylation using a 100-lb/hr inclined fluidized-bed dryer. The dried coal was subjected to mild gasification at maximum temperatures of 1050 to 1250{degrees}F (566 to 677{degrees}C) and feed rates of 7.5 lb/hr while using a once-through flow of carbon dioxide as fluidizing gas in a 1-inch-wide, inclined fluidized-bed reactor. Mild gasification of the dried coal resulted in production of 44 to 56 wt % of the dried coal as char, 10 to 13 wt % as liquids, 17 to 28 wt % as gas, and 8 to 21 wt % as fines. The yield of moisture- and ash-free (MAF) liquids varied from 11.4 to 14.2 wt % of the dried coal feed. Chemical analysis was carried out on these products.

  17. Breakthrough of toluene vapours in granular activated carbon filled packed bed reactor.

    PubMed

    Mohan, N; Kannan, G K; Upendra, S; Subha, R; Kumar, N S

    2009-09-15

    The objective of this research was to determine the toluene removal efficiency and breakthrough time using commercially available coconut shell-based granular activated carbon in packed bed reactor. To study the effect of toluene removal and break point time of the granular activated carbon (GAC), the parameters studied were bed lengths (2, 3, and 4 cm), concentrations (5, 10, and 15 mg l(-1)) and flow rates (20, 40, and 60 ml/min). The maximum percentage removal of 90% was achieved and the maximum carbon capacity for 5 mg l(-1) of toluene, 60 ml/min flow rate and 3 cm bed length shows 607.14 mg/g. The results of dynamic adsorption in a packed bed were consistent with those of equilibrium adsorption by gravimetric method. The breakthrough time and quantity shows that GAC with appropriate surface area can be utilized for air cleaning filters. The result shows that the physisorption plays main role in toluene removal. PMID:19369003

  18. Ethanol fermentation in a magnetically fluidized bed reactor with immobilized Saccharomyces cerevisiae in magnetic particles.

    PubMed

    Liu, Chun-Zhao; Wang, Feng; Ou-Yang, Fan

    2009-01-01

    Ethanol fermentation by immobilized Saccharomyces cerevisiae cells in magnetic particles was successfully carried out in a magnetically stabilized fluidized bed reactor (MSFBR). These immobilized magnetic particles solidified in a 2 % CaCl(2) solution were stable and had high ethanol fermentation activity. The performance of ethanol fermentation of glucose in the MSFBR was affected by initial particle loading rate, feed sugar concentration and dilution rate. The ethanol theoretical yield, productivity and concentration reached 95.3%, 26.7 g/L h and 66 g/L, respectively, at a particle loading rate of 41% and a feed dilution rate of 0.4 h(-1) with a glucose concentration of 150 g/L when the magnetic field intensity was kept in the range of 85-120 Oe. In order to use this developed MSFBR system for ethanol production from cheap raw materials, cane molasses was used as the main fermentation substrate for continuous ethanol fermentation with the immobilized S. cerevisiae cells in the reactor system. Molasses gave comparative ethanol productivity in comparison with glucose in the MSFBR, and the higher ethanol production was observed in the MSFBR than in a fluidized bed reactor (FBR) without a magnetic field. PMID:18760598

  19. Remediation of trichloroethylene by bio-precipitated and encapsulated palladium nanoparticles in a fixed bed reactor.

    PubMed

    Hennebel, Tom; Verhagen, Pieter; Simoen, Henri; De Gusseme, Bart; Vlaeminck, Siegfried E; Boon, Nico; Verstraete, Willy

    2009-08-01

    Trichloroethylene is a toxic and recalcitrant groundwater pollutant. Palladium nanoparticles bio-precipitated on Shewanella oneidensis were encapsulated in polyurethane, polyacrylamide, alginate, silica or coated on zeolites. The reactivity of these bio-Pd beads and zeolites was tested in batch experiments and trichloroethylene dechlorination followed first order reaction kinetics. The calculated k-values of the encapsulated catalysts were a factor of six lower compared to non-encapsulated bio-Pd. Bio-Pd, used as a catalyst, was able to dechlorinate 100 mgL(-1) trichloroethylene within a time period of 1h. The main reaction product was ethane; yet small levels of chlorinated intermediates were detected. Subsequently polyurethane cubes empowered with bio-Pd were implemented in a fixed bed reactor for the treatment of water containing trichloroethylene. The influent recycle configuration resulted in a cumulative removal of 98% after 22 h. The same reactor in a flow through configuration achieved removal rates up to 1059 mg trichloroethylene g Pd(-1)d(-1). This work showed that fixed bed reactors with bio-Pd polyurethane cubes can be instrumental for remediation of water contaminated with trichloroethylene. PMID:19560796

  20. A CFD model for biomass fast pyrolysis in fluidized-bed reactors

    NASA Astrophysics Data System (ADS)

    Xue, Qingluan; Heindel, T. J.; Fox, R. O.

    2010-11-01

    A numerical study is conducted to evaluate the performance and optimal operating conditions of fluidized-bed reactors for fast pyrolysis of biomass to bio-oil. A comprehensive CFD model, coupling a pyrolysis kinetic model with a detailed hydrodynamics model, is developed. A lumped kinetic model is applied to describe the pyrolysis of biomass particles. Variable particle porosity is used to account for the evolution of particle physical properties. The kinetic scheme includes primary decomposition and secondary cracking of tar. Biomass is composed of reference components: cellulose, hemicellulose, and lignin. Products are categorized into groups: gaseous, tar vapor, and solid char. The particle kinetic processes and their interaction with the reactive gas phase are modeled with a multi-fluid model derived from the kinetic theory of granular flow. The gas, sand and biomass constitute three continuum phases coupled by the interphase source terms. The model is applied to investigate the effect of operating conditions on the tar yield in a fluidized-bed reactor. The influence of various parameters on tar yield, including operating temperature and others are investigated. Predicted optimal conditions for tar yield and scale-up of the reactor are discussed.

  1. Computational and experimental prediction of dust production in pebble bed reactors -- Part I

    SciTech Connect

    Maziar Rostamian; Gannon Johnson; Mie Hiruta; Gabriel P. Potirniche; Abderrafi M. Ougouag; Joshua J. Cogliati; Akira Tokuhiro

    2013-10-01

    This paper describes the computational modeling and simulation, and experimental testing of graphite moderators in frictional contacts as anticipated in a pebble bed reactor. The potential of carbonaceous particulate generation due to frictional contact at the surface of pebbles and the ensuing entrainment and transport into the gas coolant are safety concerns at elevated temperatures under accident scenarios such as air ingress in the high temperature gas-cooled reactor. The safety concerns are due to the documented ability of carbonaceous particulates to adsorb fission products and transport them in the primary circuit of the pebble bed reactor, thus potentially giving rise to a relevant source term under accident scenarios. Here, a finite element approach is implemented to develop a nonlinear wear model in air environment. In this model, material wear coefficient is related to the changes in asperity height during wear. The present work reports a comparison between the finite element simulations and the experimental results obtained using a custom-designed tribometer. The experimental and computational results are used to estimate the quantity of nuclear grade graphite dust produced from a typical anticipated configuration. In Part II, results from a helium environment at higher temperatures and pressures are experimentally studied.

  2. Degradation of Benzene by Using a Silent-Packed Bed Hybrid Discharge Plasma Reactor

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Lu, Na; Li, Jie; Wu, Yan

    2012-02-01

    In this work, a novel gas phase silent-packed bed hybrid discharge plasma reactor has been proposed, and its ability to control a simulative gas stream containing 240 ppm benzene is experimentally investigated. In order to optimize the geometry of the reactor, the benzene conversion rate and energy yield (EY) were compared for various inner electrode diameters and quartz tube shapes and sizes. In addition, benzene removal efficiency in different discharge regions was qualitatively analyzed and the gas parameter (space velocity) was systematically studied. It has been found that silent-packed bed hybrid discharge plasma reactor can effectively decompose benzene. Benzene removal proved to achieve an optimum value of 60% with a characteristic energy density of 255 J/L in this paper with a 6 mm bolt high-voltage electrode and a 13 mm quartz tube. The optimal space velocity was 188.1 h-1, which resulted in moderate energy yield and removal efficiency. Reaction by-products such as hydroquinone, heptanoic acid, 4-nitrocatechol, phenol and 4-phenoxy-phenol were identified by mean of GC-MS. In addition, based on these organic by-products, a benzene destruction pathway was proposed.

  3. Comparative evaluation of pebble-bed and prismatic fueled high-temperature gas-cooled reactors

    SciTech Connect

    Kasten, P.R.; Bartine, D.E.

    1981-01-01

    A comparative evaluation has been performed of the HTGR and the Federal Republic of Germany's Pebble Bed Reactor (PBR) for potential commercial applications in the US. The evaluation considered two reactor sizes (1000 and 3000 MW(t)) and three process applications (steam cycle, direct cycle, and process heat, with outlet coolant temperatures of 750, 850, and 950/sup 0/C, respectively). The primary criterion for the comparison was the levelized (15-year) cost of producing electricity or process heat. Emphasis was placed on the cost impact of differences between the prismatic-type HTGR core, which requires periodic refuelings during reactor shutdowns, and the pebble bed PBR core, which is refueled continuously during reactor operations. Detailed studies of key technical issues using reference HTGR and PBR designs revealed that two cost components contributing to the levelized power costs are higher for the PBR: capital costs and operation and maintenance costs. A third cost component, associated with nonavailability penalties, tended to be higher for the PBR except for the process heat application, for which there is a large uncertainty in the HTGR nonavailability penalty at the 950/sup 0/C outlet coolant temperature. A fourth cost component, fuel cycle costs, is lower for the PBR, but not sufficiently lower to offset the capital cost component. Thus the HTGR appears to be slightly superior to the PBR in economic performance. Because of the advanced development of the HTGR concept, large HTGRs could also be commercialized in the US with lower R and D costs and shorter lead times than could large PBRs. It is recommended that the US gas-cooled thermal reactor program continue giving primary support to the HTGR, while also maintaining its cooperative PBR program with FRG.

  4. Fluid modelling of a packed bed dielectric barrier discharge plasma reactor

    NASA Astrophysics Data System (ADS)

    Van Laer, Koen; Bogaerts, Annemie

    2016-02-01

    A packed bed dielectric barrier discharge plasma reactor is computationally studied with a fluid model. Two different complementary axisymmetric 2D geometries are used to mimic the intrinsic 3D problem. It is found that a packing enhances the electric field strength and electron temperature at the contact points of the dielectric material due to polarization of the beads by the applied potential. As a result, these contact points prove to be of direct importance to initiate the plasma. At low applied potential, the discharge stays at the contact points, and shows the properties of a Townsend discharge. When a high enough potential is applied, the plasma will be able to travel through the gaps in between the beads from wall to wall, forming a kind of glow discharge. Therefore, the inclusion of a so-called ‘channel of voids’ is indispensable in any type of packed bed modelling.

  5. An Experimental Investigation of Sewage Sludge Gasification in a Fluidized Bed Reactor

    PubMed Central

    Calvo, L. F.; García, A. I.; Otero, M.

    2013-01-01

    The gasification of sewage sludge was carried out in a simple atmospheric fluidized bed gasifier. Flow and fuel feed rate were adjusted for experimentally obtaining an air mass : fuel mass ratio (A/F) of 0.2 < A/F < 0.4. Fuel characterization, mass and power balances, produced gas composition, gas phase alkali and ammonia, tar concentration, agglomeration tendencies, and gas efficiencies were assessed. Although accumulation of material inside the reactor was a main problem, this was avoided by removing and adding bed media along gasification. This allowed improving the process heat transfer and, therefore, gasification efficiency. The heating value of the produced gas was 8.4 MJ/Nm, attaining a hot gas efficiency of 70% and a cold gas efficiency of 57%. PMID:24453863

  6. Conformal nanocoating of zirconia nanoparticles by atomic layer deposition in a fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Hakim, Luis F.; George, Steven M.; Weimer, Alan W.

    2005-07-01

    Primary zirconia nanoparticles were conformally coated with alumina ultrathin films using atomic layer deposition (ALD) in a fluidized bed reactor. Alternating doses of trimethylaluminium and water vapour were performed to deposit Al2O3 nanolayers on the surface of 26 nm zirconia nanoparticles. Transmission Fourier transform infrared spectroscopy was performed ex situ. Bulk Al2O3 vibrational modes were observed for coated particles after 50 and 70 cycles. Coated nanoparticles were also examined with transmission electron microscopy, high-resolution field emission scanning electron microscopy and energy dispersive spectroscopy. Analysis revealed highly conformal and uniform alumina nanofilms throughout the surface of zirconia nanoparticles. The particle size distribution and surface area of the nanoparticles are not affected by the coating process. Primary nanoparticles are coated individually despite their high aggregation tendency during fluidization. The dynamic aggregation behaviour of zirconia nanoparticles in the fluidized bed plays a key role in the individual coating of nanoparticles.

  7. Effect of filling fraction on the performance of sponge-based moving bed biofilm reactor.

    PubMed

    Zhang, Xinbo; Chen, Xun; Zhang, Chunqing; Wen, Haitao; Guo, Wenshan; Ngo, Huu Hao

    2016-11-01

    Cubic-shaped polyurethane sponges (15×15×15mm) in the form of biofilm carriers were used in a moving bed biofilm reactor (MBBR) for treating synthetic domestic wastewater. Results indicated there was no significant difference in total organic carbon (TOC) and ammonia (NH4(+)-N) removal at different filling fractions. Three reactors exhibited high removal efficiencies of over 93% TOC and 95% NH4(+)-N on average at an HRT of 12h and aeration flow of 0.09m(3)/h. However, total nitrogen (TN) removal and simultaneous nitrification and denitrification (SND) increased with increasing the filling fraction. TN removal averaged at 77.2, 85.5% and 86.7% in 10%, 20% and 30% filling fraction reactor, respectively. Correspondingly, SND were 85.5±8.7%, 91.3±9.4% and 93.3±10.2%. Moreover, it was observed that sponge carriers in the 20% filling fraction reactor achieved the maximum biomass amount per gram sponge, followed by the 10% and 30% filling fraction reactors. PMID:27567965

  8. Pebble bed modular reactor safeguards: developing new approaches and implementing safeguards by design

    SciTech Connect

    Beyer, Brian David; Beddingfield, David H; Durst, Philip; Bean, Robert

    2010-01-01

    The design of the Pebble Bed Modular Reactor (PBMR) does not fit or seem appropriate to the IAEA safeguards approach under the categories of light water reactor (LWR), on-load refueled reactor (OLR, i.e. CANDU), or Other (prismatic HTGR) because the fuel is in a bulk form, rather than discrete items. Because the nuclear fuel is a collection of nuclear material inserted in tennis-ball sized spheres containing structural and moderating material and a PBMR core will contain a bulk load on the order of 500,000 spheres, it could be classified as a 'Bulk-Fuel Reactor.' Hence, the IAEA should develop unique safeguards criteria. In a multi-lab DOE study, it was found that an optimized blend of: (i) developing techniques to verify the plutonium content in spent fuel pebbles, (ii) improving burn-up computer codes for PBMR spent fuel to provide better understanding of the core and spent fuel makeup, and (iii) utilizing bulk verification techniques for PBMR spent fuel storage bins should be combined with the historic IAEA and South African approaches of containment and surveillance to verify and maintain continuity of knowledge of PBMR fuel. For all of these techniques to work the design of the reactor will need to accommodate safeguards and material accountancy measures to a far greater extent than has thus far been the case. The implementation of Safeguards-by-Design as the PBMR design progresses provides an approach to meets these safeguards and accountancy needs.

  9. Multistage fluidized bed reactor performance characterization for adsorption of carbon dioxide

    SciTech Connect

    Roy, S.; Mohanty, C.R.; Meikap, B.C.

    2009-12-15

    Carbon dioxide and its different compounds are generated as primary greenhouse gases from the flue gases of coal-fired thermal power plants, boilers, and other stationary combustion processes. This greenhouse gas causes global warming after being emitted to the environment. To deal with this problem, a new dry scrubbing process was tested in this study. A three-stage countercurrent fluidized bed adsorber was developed, designed, and fabricated. It was used as a removal apparatus and operated in a continuous regime for the two-phase system. The height of each stage was 0.30 m, and the inner diameter was 0.10 m. The paper presents the removal of CO{sub 2} from gas mixtures by chemical sorption on porous granular calcium oxide particles in the reactor at ambient temperature. The advantages of a multistage fluidized bed reactor for high mass transfer and high gas-solid contact can enhance the removal of the gas when using a dry method. The effects of the operating parameters such as sorbent, superficial gas velocity, and the Weir height on CO{sub 2} removal efficiency in the multistage fluidized bed were investigated. The results indicate that the removal efficiency of the carbon dioxide was around 71% at a high solid flow rate corresponding to lower gas velocity at room temperature. In comparison with wet scrubbers, this dry process appears to have lower cost, less complicated configuration, and simpler disposal of used sorbent. The results in this study assume importance from the perspective of use of a multistage fluidized bed adsorber for control of gaseous pollutants at high temperature.

  10. Applicability of fluidized bed reactor in recalcitrant compound degradation through advanced oxidation processes: a review.

    PubMed

    Tisa, Farhana; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri

    2014-12-15

    Treatment of industrial waste water (e.g. textile waste water, phenol waste water, pharmaceutical etc) faces limitation in conventional treatment procedures. Advanced oxidation processes (AOPs) do not suffer from the limits of conventional treatment processes and consequently degrade toxic pollutants more efficiently. Complexity is faced in eradicating the restrictions of AOPs such as sludge formation, toxic intermediates formation and high requirement for oxidants. Increased mass-transfer in AOPs is an alternate solution to this problem. AOPs combined with Fluidized bed reactor (FBR) can be a potential choice compared to fixed bed or moving bed reactor, as AOP catalysts life-span last for only maximum of 5-10 cycles. Hence, FBR-AOPs require lesser operational and maintenance cost by reducing material resources. The time required for AOP can be minimized using FBR and also treatable working volume can be increased. FBR-AOP can process from 1 to 10 L of volume which is 10 times more than simple batch reaction. The mass transfer is higher thus the reaction time is lesser. For having increased mass transfer sludge production can be successfully avoided. The review study suggests that, optimum particle size, catalyst to reactor volume ratio, catalyst diameter and liquid or gas velocity is required for efficient FBR-AOP systems. However, FBR-AOPs are still under lab-scale investigation and for industrial application cost study is needed. Cost of FBR-AOPs highly depends on energy density needed and the mechanism of degradation of the pollutant. The cost of waste water treatment containing azo dyes was found to be US$ 50 to US$ 500 per 1000 gallons where, the cost for treating phenol water was US$ 50 to US$ 800 per 1000 gallons. The analysis for FBR-AOP costs has been found to depend on the targeted pollutant, degradation mechanism (zero order, 1st order and 2nd order) and energy consumptions by the AOPs. PMID:25190594

  11. Electrical Capacitance Volume Tomography for the Packed Bed Reactor ISS Flight Experiment

    NASA Technical Reports Server (NTRS)

    Marashdeh, Qussai; Motil, Brian; Wang, Aining; Liang-Shih, Fan

    2013-01-01

    Fixed packed bed reactors are compact, require minimum power and maintenance to operate, and are highly reliable. These features make this technology a highly desirable unit operation for long duration life support systems in space. NASA is developing an ISS experiment to address this technology with particular focus on water reclamation and air revitalization. Earlier research and development efforts funded by NASA have resulted in two hydrodynamic models which require validation with appropriate instrumentation in an extended microgravity environment. To validate these models, the instantaneous distribution of the gas and liquid phases must be measured.Electrical Capacitance Volume Tomography (ECVT) is a non-invasive imaging technology recently developed for multi-phase flow applications. It is based on distributing flexible capacitance plates on the peripheral of a flow column and collecting real-time measurements of inter-electrode capacitances. Capacitance measurements here are directly related to dielectric constant distribution, a physical property that is also related to material distribution in the imaging domain. Reconstruction algorithms are employed to map volume images of dielectric distribution in the imaging domain, which is in turn related to phase distribution. ECVT is suitable for imaging interacting materials of different dielectric constants, typical in multi-phase flow systems. ECVT is being used extensively for measuring flow variables in various gas-liquid and gas-solid flow systems. Recent application of ECVT include flows in risers and exit regions of circulating fluidized beds, gas-liquid and gas-solid bubble columns, trickle beds, and slurry bubble columns. ECVT is also used to validate flow models and CFD simulations. The technology is uniquely qualified for imaging phase concentrations in packed bed reactors for the ISS flight experiments as it exhibits favorable features of compact size, low profile sensors, high imaging speed, and

  12. Studying the fischer tropsch synthesis on alumina support cobalt base catalyst in fixed bed reactor

    NASA Astrophysics Data System (ADS)

    Oues, Adnan Khalil

    A Fischer-Tropsch catalyst composed of cobalt supported on alumina was prepared. This catalyst was cobalt/alumina (Co/AL2O3). The physical characterization of the catalyst was conducted using surface area analysis through the BET method, and particle size analysis. Fischer-Tropsch experiments were conducted in a fixed bed reactor. A flow rate of 100sml/min was selected based experimentally. Two temperatures were 330, and 350°C, and three different pressures as follows 145, 217.6, and 290 psig. The results were evaluated and studied based on conversion of hydrogen and carbon monoxide, in addition to selectivity of products.

  13. Degradation of mix hydrocarbons by immobilized cells of mix culture using a trickle fluidized bed reactor

    SciTech Connect

    Chapatwala, K.D.

    1993-01-01

    The microorganisms, capable of degrading mix hydrocarbons were isolated from the soil samples collected from the hydrocarbon contaminated sites. The mix cultures were immobilized in calcium alginate solution in the form of beads. A trickle fluidized bed air-uplift-type reactor designed to study the degradation of mix hydrocarbons was filled with 0.85% normal saline containing the immobilized cells of mix culture. The immobilized beads were aerated with CO[sub 2]-free air at 200 ml/min. The degradation of different concentrations of hydrocarbons in the presence/absence of commercially available fertilizers by the immobilized cells of mix culture is now in progress.

  14. Modeling and Experimental Studies of Mercury Oxidation and Adsorption in a Fixed-Bed Reactor

    SciTech Connect

    Buitrago, Paula A.; Morrill, Mike; Lighty, JoAnn S.; Silcox, Geoffrey D.

    2009-06-15

    This report presents experimental and modeling mercury oxidation and adsorption data. Fixed-bed and single-particle models of mercury adsorption were developed. The experimental data were obtained with two reactors: a 300-W, methane-fired, tubular, quartz-lined reactor for studying homogeneous oxidation reactions and a fixed-bed reactor, also of quartz, for studying heterogeneous reactions. The latter was attached to the exit of the former to provide realistic combustion gases. The fixed-bed reactor contained one gram of coconut-shell carbon and remained at a temperature of 150°C. All methane, air, SO2, and halogen species were introduced through the burner to produce a radical pool representative of real combustion systems. A Tekran 2537A Analyzer coupled with a wet conditioning system provided speciated mercury concentrations. At 150°C and in the absence of HCl or HBr, the mercury uptake was about 20%. The addition of 50 ppm HCl caused complete capture of all elemental and oxidized mercury species. In the absence of halogens, SO2 increased the mercury adsorption efficiency to up to 30 percent. The extent of adsorption decreased with increasing SO2 concentration when halogens were present. Increasing the HCl concentration to 100 ppm lessened the effect of SO2. The fixed-bed model incorporates Langmuir adsorption kinetics and was developed to predict adsorption of elemental mercury and the effect of multiple flue gas components. This model neglects intraparticle diffusional resistances and is only applicable to pulverized carbon sorbents. It roughly describes experimental data from the literature. The current version includes the ability to account for competitive adsorption between mercury, SO2, and NO2. The single particle model simulates in-flight sorbent capture of elemental mercury. This model was developed to include Langmuir and Freundlich isotherms, rate equations, sorbent feed rate, and

  15. INVESTIGATION OF BOUNDS ON PARTICLE PACKING IN PEBBLE-BED HIGH TEMPERATURE REACTORS

    SciTech Connect

    Nuclear Engineering and Design; Jan Leen Kloosterman; Wilfred F.G. van Rooijen; Hans D. Gougar; William K. Terry

    2006-03-01

    Models and methods are presented for determining practical limits of the packing density of TRISO particles in fuel pebbles for a pebble-bed reactor (PBR). These models are devised for designing and interpreting fuel testing experiments. Two processes for particle failure are accounted for: failure of touching particles at the pressing stage in the pebble manufacturing process, and failure due to inner pressure buildup during irradiation. The second process gains importance with increasing fuel temperature, which limits the particle packing density and the corresponding fuel enrichment. Suggestions for improvements to the models are presented.

  16. Nuclear propulsion systems for orbit transfer based on the particle bed reactor

    SciTech Connect

    Powell, J.R.; Ludewig, H.; Horn, F.L.; Araj, K.; Benenati, R.; Lazareth, O.; Slovik, G.; Solon, M.; Tappe, W.; Belisle, J.

    1987-01-01

    The technology of nuclear direct propulsion orbit transfer systems based on the Particle Bed Reactor (PBR) is described. A 200 megawatt illustrative design is presented for LEO to GEO and other high ..delta..V missions. The PBR-NOTV can be used in a one-way mode with the shuttle or an expendable launch vehicle, e.g., the Titan 34D7, or as a two-way reusable space tug. In the one-way mode, payload capacity is almost three times greater than that of chemical OTV's. PBR technology status is described and development needs outlined.

  17. Continuous thorium biosorption--dynamic study for critical bed depth determination in a fixed-bed reactor.

    PubMed

    Picardo, Marta Cristina; Ferreira, Ana Cristina de Melo; da Costa, Antonio Carlos Augusto

    2009-01-01

    The objective of the work was to evaluate the biosorption of thorium by the seaweed Sargassum filipendula in a dynamic system. Different bed depths were tested with the purpose of evaluating the critical bed depth for total uptake of the radioactive element. Several bed depths were tested, ranging from 5.0 to 40.0 cm. Bed depths tested presented distinct capacities to accumulate thorium. An increase in biosorption efficiency was observed with an increase in bed depth. The 30.0 cm bed produced an effluent still containing detectable levels of thorium. The critical bed depth suitable for a complete removal of thorium by S.filipendula biomass was equal to 40.0 cm. PMID:18614355

  18. Particle bed reactor propulsion vehicle performance and characteristics as an orbital transfer rocket

    SciTech Connect

    Horn, F.L.; Powell, J.R.; Lazareth, O.W.

    1986-01-01

    The particle bed reactor designed for 100 to 300 MW power output using hydrogen as a coolant is capable of specific impulses up to 1000 seconds as a nuclear rocket. A single space shuttle compatible vehicle can perform extensive missions from LEO to 3 times GEO and return with multi-ton payloads. The use of hydrogen to directly cool particulate reactor fuel results in a compact, lightweight rocket vehicle, whose duration of usefulness is dependent only upon hydrogen resupply availability. The LEO to GEO mission had a payload capability of 15.4 metric tons with 3.4 meters of shuttle bay. To increase the volume limitation of the shuttle bay, the use of ammonia in the initial boost phase from LEO is used to give greater payload volume with a small decrease in payload mass, 8.7 meters and 12.7 m-tons. 5 refs., 15 figs.

  19. PEBBLE: a two-dimensional steady-state pebble bed reactor thermal hydraulics code

    SciTech Connect

    Vondy, D.R.

    1981-09-01

    This report documents the local implementation of the PEBBLE code to treat the two-dimensional steady-state pebble bed reactor thermal hydraulics problem. This code is implemented as a module of a computation system used for reactor core history calculations. Given power density data, the geometric description in (RZ), and basic heat removal conditions and thermal properties, the coolant properties, flow conditions, and temperature distributions in the pebble fuel elements are predicted. The calculation is oriented to the continuous fueling, steady state condition with consideration of the effect of the high energy neutron flux exposure and temperature history on the thermal conductivity. The coolant flow conditions are calculated for the same geometry as used in the neutronics calculation, power density and fluence data being used directly, and temperature results are made available for subsequent use.

  20. Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor

    SciTech Connect

    MacLeod, F.A.; Guiot, S.R.; Costerton, J.W. )

    1990-06-01

    The ultrastructure of bacterial granules that were maintained in an upflow anaerobic sludge bed and filter reactor was examined. The reactor was fed a sucrose medium, and it was operated at 35{degrees}C. Scanning and transmission electron microscopy revealed that the granular aggregates were three-layered structures. The exterior layer of the granule contained a very heterogeneous population that included rods, cocci, and filaments of various sizes. The middle layer consisted of a slightly less heterogeneous population than the exterior layer. A more ordered arrangement, made up predominantly of bacterial rods, was evident in this second layer. The third layer formed the internal core of the granules. It consisted of large numbers of Methanothrix-like cells. Large cavities, indicative of vigorous gas production, were evident in the third layer. On the basis of these ultrastructural results, a model that presents a possible explanation of granule development is offered.

  1. Waste characteristics of spent nuclear fuel from a pebble bed reactor

    SciTech Connect

    Owen, P.E.

    1999-06-01

    A preliminary comparative assessment is made of the spent fuel characteristics and disposal aspects between a high temperature, gas cooled, reactor with a pebble bed core (PBR) and a pressurized water reactor (PWR). There are three significant differences which impact the disposal characteristics of PBR spent pebble fuel from PWR spent fuel assemblies. Pebble bed fuel has burnup as high as 100,000 MWD(t)/MTHM and thus, there is significantly less activity and decay heat in the fuel when it is disposed. The large amount of graphite in the waste form leads to a low power density and more waste per unit volume than a typical PWR. Pebble Fuel contains a protective layer of Silicon Carbide. The theoretical spacing of waste packages of spent pebble fuel given its unique characteristics as applied to the conditions of Yucca Mountain is of major concern when determining the cost of disposing of the larger volumes of spent pebble fuel. Graphite is a unique waste form and atypical of waste designated for Yucca Mountain. The interactions of silicon carbide with uranium oxide fuel and its implications to long term storage at the repository are examined. There are three primary conclusions to this thesis. First, the area required to store pebble fuel is less than the area required to store light water reactor spent fuel. Second, graphite has excellent characteristics as a waste form. The waste form of the spent pebble fuel is more robust and will perform better than light water reactor fuel at the United States repository at Yucca Mountain. Third, a secondary phase forms between the layers of silicon carbide and the uranium oxide fuel. The secondary phase retards the release of radionuclides to the environment.

  2. Preliminary Study of Burnup Characteristics for a Simplified Small Pebble Bed Reactor

    SciTech Connect

    Irwanto, Dwi; Kato, Yukikata; Obara, Toru; Yamanaka, Ichiro

    2010-06-22

    Simplification of the pebble bed reactor by removing the unloading device from the system was peformed. For this reactor design, a suitable fuel-loading scheme is the Peu a Peu (little by little) fueling scheme. In the Peu a Peu modus, there is no unloading device; as such, the fuels are never discharged and remain at the bottom of the core during reactor operation. This means that the burnup cycle and reactivity is controlled by the addition of fuel. The objectives of the the present study were to find a means of carrying out the exact calculations needed to analyze the Peu a Peu fuel-loading scheme and to optimize the fuel composition, and fuel-loading scheme to achieve better burnup characteristics. The Monte Carlo method is used to perform calculations with high accuracy. Before the calculation of the whole core, the analysis for the infinite geometry was performed. The power generated per mass consumed for each combination of the uranium enrichment and packing fraction was analyzed from the parametric survey. By using the optimal value obtained, a whole-core calculation for the small 20 MWth reactor was performed and the criticality and burnup of this design was analyzed.

  3. Feasibility of Burning First- and Second-Generation Plutonium in Pebble Bed High-Temperature Reactors

    SciTech Connect

    Haas, J.B.M. de; Kuijper, J.C

    2005-08-15

    The core physics investigations at the Nuclear Research Consultancy Group in the Netherlands, as part of the activities within the HTR-N project of the European Fifth Framework Program, are focused on the incineration of pure (first- and second-generation) Pu fuels in the reference pebble bed high-temperature gas-cooled reactor (HTR) HTR-MODUL with a continuous reload [MEDUL, (MEhrfach DUrchLauf, multipass)] fueling strategy in which the spherical fuel elements, or pebbles, pass through the core a number of times before being permanently discharged. For pebbles fueled with different loadings of plutonium, the feasibility of a sustained fuel cycle under nominal reactor conditions was investigated by means of the reactivity and temperature coefficients of the reactor. The HTR-MODUL was found to be a very effective reactor to reduce the stockpile of first-generation plutonium. It reduces the amount of plutonium to about one-sixth of the original and reduces the risk of proliferation by denaturing the plutonium vector. For second-generation plutonium the incineration is less favorable, as the amount of plutonium is only halved.

  4. Analysis of granular flow in a pebble-bed nuclear reactor

    NASA Astrophysics Data System (ADS)

    Rycroft, Chris H.; Grest, Gary S.; Landry, James W.; Bazant, Martin Z.

    2006-08-01

    Pebble-bed nuclear reactor technology, which is currently being revived around the world, raises fundamental questions about dense granular flow in silos. A typical reactor core is composed of graphite fuel pebbles, which drain very slowly in a continuous refueling process. Pebble flow is poorly understood and not easily accessible to experiments, and yet it has a major impact on reactor physics. To address this problem, we perform full-scale, discrete-element simulations in realistic geometries, with up to 440000 frictional, viscoelastic 6-cm-diam spheres draining in a cylindrical vessel of diameter 3.5m and height 10m with bottom funnels angled at 30° or 60°. We also simulate a bidisperse core with a dynamic central column of smaller graphite moderator pebbles and show that little mixing occurs down to a 1:2 diameter ratio. We analyze the mean velocity, diffusion and mixing, local ordering and porosity (from Voronoi volumes), the residence-time distribution, and the effects of wall friction and discuss implications for reactor design and the basic physics of granular flow.

  5. Preliminary Study of Burnup Characteristics for a Simplified Small Pebble Bed Reactor

    NASA Astrophysics Data System (ADS)

    Irwanto, Dwi; Kato, Yukikata; Yamanaka, Ichiro; Obara, Toru

    2010-06-01

    Simplification of the pebble bed reactor by removing the unloading device from the system was peformed. For this reactor design, a suitable fuel-loading scheme is the Peu à Peu (little by little) fueling scheme. In the Peu à Peu modus, there is no unloading device; as such, the fuels are never discharged and remain at the bottom of the core during reactor operation. This means that the burnup cycle and reactivity is controlled by the addition of fuel. The objectives of the the present study were to find a means of carrying out the exact calculations needed to analyze the Peu à Peu fuel-loading scheme and to optimize the fuel composition, and fuel-loading scheme to achieve better burnup characteristics. The Monte Carlo method is used to perform calculations with high accuracy. Before the calculation of the whole core, the analysis for the infinite geometry was performed. The power generated per mass consumed for each combination of the uranium enrichment and packing fraction was analyzed from the parametric survey. By using the optimal value obtained, a whole-core calculation for the small 20 MWth reactor was performed and the criticality and burnup of this design was analyzed.

  6. Utilization of cobalt catalyst for high temperature Fischer-Tropsch synthesis in a fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Mabry, James C.

    The research determined that the improved heat transfer characteristics of a fluidized bed reactor (FBR) will allow the use of cobalt catalyst for high temperature Fischer-Tropsch synthesis (HTFT). Cobalt was loaded onto a gamma alumina support, the catalyst was characterized using TPR, BET/BJH, XRD, and PSA to track changes in the catalyst morphology. The reactor was characterized to determine the minimum fluidization velocity and the maximum velocity prior to entering lean phase fluidization with pneumatic transport of the catalyst. The highest minimum fluidization velocity was found to be about 2800 sccm, there was no maximum velocity found for the reactor setup. Once characterized, the reactor was operated at pressures of 145, 217.6, and 290.1 psig, a syngas flow rate of 4000 sccm, and at temperatures of 330 and 350 °C. The optimal conditions found in this study were 330 °C and 217 psig. At these conditions CO conversion was 83.53 % for a single pass. Methane, CO2, and light gases (C2 -- C4) selectivities were at low rates of 31.43, 5.80, and 3.48 % respectively. Alcohol selectivity at these conditions was non-existent. The olefin and wax selectivities were the lowest of the data set at 7.05 and 3.18 % respectively. Liquid transportation fuels selectivity was the highest at 56.11 %.

  7. Degradation of TCE using sequential anaerobic biofilm and aerobic immobilized bed reactor

    NASA Technical Reports Server (NTRS)

    Chapatwala, Kirit D.; Babu, G. R. V.; Baresi, Larry; Trunzo, Richard M.

    1995-01-01

    Bacteria capable of degrading trichloroethylene (TCE) were isolated from contaminated wastewaters and soil sites. The aerobic cultures were identified as Pseudomonas aeruginosa (four species) and Pseudomonas fluorescens. The optimal conditions for the growth of aerobic cultures were determined. The minimal inhibitory concentration values of TCE for Pseudomonas sps. were also determined. The aerobic cells were immobilized in calcium alginate in the form of beads. Degradation of TCE by the anaerobic and dichloroethylene (DCE) by aerobic cultures was studied using dual reactors - anaerobic biofilm and aerobic immobilized bed reactor. The minimal mineral salt (MMS) medium saturated with TCE was pumped at the rate of 1 ml per hour into the anaerobic reactor. The MMS medium saturated with DCE and supplemented with xylenes and toluene (3 ppm each) was pumped at the rate of 1 ml per hour into the fluidized air-uplift-type reactor containing the immobilized aerobic cells. The concentrations of TCE and DCE and the metabolites formed during their degradation by the anaerobic and aerobic cultures were monitored by GC. The preliminary study suggests that the anaerobic and aerobic cultures of our isolates can degrade TCE and DCE.

  8. Analysis of granular flow in a pebble-bed nuclear reactor

    SciTech Connect

    Rycroft, C H; Grest, Gary S; Landry, James W; Bazant, Martin Z

    2006-04-17

    Pebble-bed nuclear reactor technology, which is currently being revived around the world, raises fundamental questions about dense granular flow in silos. A typical reactor core is composed of graphite fuel pebbles, which drain very slowly in a continuous refueling process. Pebble flow is poorly understood and not easily accessible to experiments, and yet it has a ma jor impact on reactor physics. To address this problem, we perform full-scale, discrete-element simulations in realistic geometries, with up to 440,000 frictional, viscoelastic 6cm-diameter spheres draining in a cylindrical vessel of diameter 3.5m and height 10m with bottom funnels angled at 30° or 60° . We also simulate a bidisperse core with a dynamic central column of smaller graphite moderator pebbles and show that little mixing occurs down to a 1:2 diameter ratio. We analyze the mean velocity, diffusion and mixing, local ordering and porosity (from Voronoi volumes), the residence-time distribution, and the effects of wall friction and discuss implications for reactor design and the basic physics of granular flow.

  9. Anaerobic biodegradability of mixtures of pesticides in an expanded granular sludge bed reactor.

    PubMed

    Monsalvo, V M; Garcia-Mancha, N; Puyol, D; Mohedano, A F; Rodriguez, J J

    2014-01-01

    The biodegradability and toxicity of three commercial pesticides containing 2-methyl-4-chlorophenoxyacetic acid (MCPA), imidacloprid and dimethoate were evaluated individually, and a complex mixture of these pesticides was treated in an expanded granular sludge bed (EGSB) reactor. MCPA was partially biodegraded, while imidacloprid and dimethoate remained almost unaltered during the individual biodegradability tests. Cyclohexanone was identified as the major solvent in the dimethoate-bearing insecticide, which was completely removed regardless of the presence of other pesticides. The analysis of the inhibition over the acetoclastic methanogenesis showed IC(50) (half maximal inhibitory concentration) values of 474 and 367 mg/L for imidacloprid and dimethoate, respectively. The effect on the methanogenesis was negligible in the case of MCPA and cyclohexanone. Pesticides caused a dramatic decrease of the EGSB reactor performance. After 30 d acclimation, the EGSB reactor achieved a stable chemical oxygen demand (COD) removal efficiency and methane production of around 85% and 0.9 g CH(4)-COD/g COD, respectively, for MCPA, imidacloprid, dimethoate and cyclohexanone feed concentrations of 57, 20, 25 and 27 mg/L, respectively. The presence of complex pesticide mixtures led to synergistic/antagonistic responses, reducing the MCPA biodegradation and improving the removal of the insecticides' active ingredients, which were completely removed in the EGSB reactor. PMID:24552724

  10. Production and optimization of biodiesel using mixed immobilized biocatalysts in packed bed reactor.

    PubMed

    Bakkiyaraj, S; Syed, Mahin Basha; Devanesan, M G; Thangavelu, Viruthagiri

    2016-05-01

    Vegetable oils are used as raw materials for biodiesel production using transesterification reaction. Several methods for the production of biodiesel were developed using chemical (alkali and acidic compounds) and biological catalysts (lipases). Biodiesel production catalyzed by lipases is energy and cost-saving processes and is carried out at normal temperature and pressure. The need for an efficient method for screening larger number of variables has led to the adoption of statistical experimental design. In the present study, packed bed reactor was designed to study with mixed immobilized biocatalysts to have higher productivity under optimum conditions. Contrary to the single-step acyl migration mechanism, a two-step stepwise reaction mechanism involving immobilized Candida rugosa lipase and immobilized Rhizopus oryzae cells was employed for the present work. This method was chosen because enzymatic hydrolysis followed by esterification can tolerate high free fatty acid containing oils. The effects of flow rate and bed height on biodiesel yield were studied using two factors five-level central composite design (CCD) and response surface methodology (RSM). Maximum biodiesel yield of 85 and 81 % was obtained for jatropha oil and karanja oil with the optimum bed height and optimum flow rate of 32.6 cm and 1.35 L/h, and 32.6 cm and 1.36 L/h, respectively. PMID:25940482

  11. Hydrotreating the bitumen-derived hydrocarbon liquid produced in a fluidized-bed pyrolysis reactor

    SciTech Connect

    Longstaff, D.C.; Deo, M.D.; Hanson, F.V.; Oblad, A.G.; Tsai, C.H.

    1991-01-01

    The pyrolysis of bitumen-impregnated sandstone produces three primary product streams: C{sub 1}-C{sub 4} hydrocarbons gases, a C{sub 5}{sup +} total liquid product, and a carbonaceous residue on the spent sand. The bitumen-derived hydrocarbon liquid was significantly upgraded relative to the native bitumen: it had a higher API gravity, lower Conradson carbon residue, asphaltene content, pour point and viscosity and a reduced distillation endpoint relative to the native bitumen. The elemental composition was little different from that of the native bitumen except for the hydrogen content which was lower. The bitumen-derived liquid produced in a 4-inch diameter fluidized-bed reactor from the Whiterocks tar sand deposit has been hydrotreated in a fixed-bed reactor to determine the extent of upgrading as a function of process operating variables. The extent of denitrogenation and desulfurization of the bitumen-derived liquid was used to monitor catalyst activity as a function of process operating variables and to estimate the extent of catalyst deactivation as a function of time on-stream. The apparent kinetics for the nitrogen and sulfur removal reactions were determined. Product distribution and yield data were also obtained.

  12. Hydrotreating the bitumen-derived hydrocarbon liquid produced in a fluidized-bed pyrolysis reactor

    SciTech Connect

    Longstaff, D.C.; Deo, M.D.; Hanson, F.V.; Oblad, A.G.; Tsai, C.H.

    1991-12-31

    The pyrolysis of bitumen-impregnated sandstone produces three primary product streams: C{sub 1}-C{sub 4} hydrocarbons gases, a C{sub 5}{sup +} total liquid product, and a carbonaceous residue on the spent sand. The bitumen-derived hydrocarbon liquid was significantly upgraded relative to the native bitumen: it had a higher API gravity, lower Conradson carbon residue, asphaltene content, pour point and viscosity and a reduced distillation endpoint relative to the native bitumen. The elemental composition was little different from that of the native bitumen except for the hydrogen content which was lower. The bitumen-derived liquid produced in a 4-inch diameter fluidized-bed reactor from the Whiterocks tar sand deposit has been hydrotreated in a fixed-bed reactor to determine the extent of upgrading as a function of process operating variables. The extent of denitrogenation and desulfurization of the bitumen-derived liquid was used to monitor catalyst activity as a function of process operating variables and to estimate the extent of catalyst deactivation as a function of time on-stream. The apparent kinetics for the nitrogen and sulfur removal reactions were determined. Product distribution and yield data were also obtained.

  13. METHODS FOR MODELING THE PACKING OF FUEL ELEMENTS IN PEBBLE BED REACTORS

    SciTech Connect

    Abderrafi M. Ougouag; Joshua J. Cogliati; Jan-Leen Kloosterman

    2005-09-01

    Two methods for the modeling of the packing of pebbles in the pebble bed reactors are presented and compared. The first method is based on random generation of potential centers for the pebbles, followed by rejection of points that are not compatible with the geometric constraint of no (or limited) pebbles overlap. The second method models the actual physical packing process, accounting for the dynamic of pebbles as they are dropped onto the pebble bed and as they settle therein. A simplification in the latter model is the assumption of a starting point with very dilute packing followed by settling. The results from the two models are compared and the properties of the second model and the dependence of its results on many of the modeling parameters are presented. The first model (with no overlap allowed) has been implemented into a code to compute Dancoff factors. The second model will soon be implemented into that same code and will also be used to model flow of pebbles in a reactor and core densification in the simulation of earthquakes. Both methods reproduce experimental values well, with the latter displaying a high level of fidelity.

  14. Removal of CO2 in a multistage fluidized bed reactor by diethanol amine impregnated activated carbon.

    PubMed

    Das, Dipa; Samal, Debi Prasad; Meikap, Bhim C

    2016-07-28

    To mitigate the emission of carbon dioxide (CO2), we have developed and designed a four-stage fluidized bed reactor. There is a counter current exchange between solid adsorbent and gas flow. In this present investigation diethanol amine (DEA) impregnated activated carbon made from green coconut shell was used as adsorbent. This type of adsorbent not only adsorbs CO2 due to the presence of pore but also chemically reacts with CO2 and form secondary zwitterions. Sampling and analysis of CO2 was performed using Orsat apparatus. The effect of initial CO2 concentration, gas velocity, solid rate, weir height etc. on removal efficiency of CO2 have been investigated and presented. The percentage removal of CO2 has been found close to 80% under low gas flow rate (0.188 m/s), high solid flow rate (4.12 kg/h) and weir height of 50 mm. From this result it has been found out that multistage fluidized bed reactor may be a suitable equipment for removal of CO2 from flue gas. PMID:27163861

  15. Immobilized glucose oxidase--catalase and their deactivation in a differential-bed loop reactor.

    PubMed

    Prenosil, J E

    1979-01-01

    Glucose oxidase containing catalase was immobilized with a copolymer of phenylenediamine and glutaraldehyde on pumice and titania carrier to study the enzymatic oxidation of glucose in a differential-bed loop reactor. The reaction rate was found to be first order with respect to the concentration of limiting oxygen substrate, suggesting a strong external mass-transfer resistance for all the flow rates used. The partial pressure of oxygen was varied from 21.3 up to 202.6 kPa. The use of a differential-bed loop reactor for the determination of the active enzyme concentration in the catalyst with negligible internal pore diffusion resistance is shown. Catalyst deactivation was studied, especially with respect to the presence of catalase. It is believed that the hydrogen peroxide formed in the oxidation reaction deactivates catalase first; if an excess of catalase is present, the deactivation of glucose oxidase remains small. The mathematical model subsequently developed adequately describes the experimental results. PMID:427262

  16. Biological treatment of textile dyes by agar-agar immobilized consortium in a packed bed reactor.

    PubMed

    Patel, Yogesh; Gupte, Akshaya

    2015-03-01

    The decolorization of Acid Maroon V was investigated using bacterial consortium EDPA containing Enterobacter dissolvens AGYP1 and Pseudomonas aeruginosa AGYP2 immobilized in different entrapment matrices. The consortium displayed 96% removal of dye (100 mg/l) within 6 h when immobilized in agar-agar. Under optimum concentrations of agar-agar (3.0% w/v) and cell biomass (0.9 g% w/v), the consortium displayed decolorization for 18 successive batches of Acid Maroon V and also decolorized 14 other different textile dyes. A packed bed reactor under batch mode showed 89% decolorization of dye after 56 repetitive cycles. Under continuous flow mode, maximum color removal was achieved with bed length of 36 cm, hydraulic retention time of 2.66 h, and dye concentration of 100 mg/l. Additionally, the reactor decolorized relatively higher concentrations (100-2000 mg/l) of dye. The synthetic dye wastewater containing five textile dyes was decolorized 92% with 62% COD reduction using an immobilized consortium. PMID:25842535

  17. Seawater denitrification in a closed mesocosm by a submerged moving bed biofilm reactor.

    PubMed

    Labelle, Marc-André; Juteau, Pierre; Jolicoeur, Mario; Villemur, Richard; Parent, Serge; Comeau, Yves

    2005-09-01

    The performance of a submerged moving bed biofilm reactor (MBBR) for the denitrification of seawater in a 3.25 million closed circuit mesocosm was investigated at pilot scale, using methanol as a carbon source at various C/N ratios. Nitrate accumulation in closed systems where water changes are expensive and problematic may cause toxicity problems to marine life. Seawater was pretreated in a recirculated fixed bed to remove oxygen prior to the denitrification step. The 110l MBBR was partly filled (25%) with spherical positively buoyant polyethylene carriers with an effective surface area of approximately 100 m2 m(-3), which represents 35% of the total surface area. Carriers were maintained submerged by a conical grid and circulated by the downflow jet of an eductor. The MBBR mixing system was designed to prevent dead mixing zones and carrier fouling to avoid sulfate reduction while treating seawater containing as high as 2150 mg SO4-Sl(-1). NO3-N reduction from 53 to as low as 1.7+/-0.7 mg l(-1) and a maximum denitrification rate of 17.7+/-1.4 g Nm(-2) d(-1) were achieved at 4.2-4.3 applied COD/N (w/w) ratio. Methanol consumption corresponded to denitrification stoichiometric values, indicating the absence of sulfate reduction. Denitrification rates and effluent residual dissolved organic carbon were proportional to the C/N ratio. Such reactors could be scaled up in closed systems where water changes must be minimized. PMID:16023699

  18. High temperature CO2 capture using calcium oxide sorbent in a fixed-bed reactor.

    PubMed

    Dou, Binlin; Song, Yongchen; Liu, Yingguang; Feng, Cong

    2010-11-15

    The gas-solid reaction and breakthrough curve of CO(2) capture using calcium oxide sorbent at high temperature in a fixed-bed reactor are of great importance, and being influenced by a number of factors makes the characterization and prediction of these a difficult problem. In this study, the operating parameters on reaction between solid sorbent and CO(2) gas at high temperature were investigated. The results of the breakthrough curves showed that calcium oxide sorbent in the fixed-bed reactor was capable of reducing the CO(2) level to near zero level with the steam of 10 vol%, and the sorbent in CaO mixed with MgO of 40 wt% had extremely low capacity for CO(2) capture at 550°C. Calcium oxide sorbent after reaction can be easily regenerated at 900°C by pure N(2) flow. The experimental data were analyzed by shrinking core model, and the results showed reaction rates of both fresh and regeneration sorbents with CO(2) were controlled by a combination of the surface chemical reaction and diffusion of product layer. PMID:20724072

  19. Safeguards Challenges for Pebble-Bed Reactors (PBRs):Peoples Republic of China (PRC)

    SciTech Connect

    Forsberg, Charles W.; Moses, David Lewis

    2009-11-01

    The Peoples Republic of China (PRC) is operating the HTR-10 pebble-bed reactor (PBR) and is in the process of building a prototype PBR plant with two modular reactors (250-MW(t) per reactor) feeding steam to a single turbine-generator. It is likely to be the first modular hightemperature reactor to be ready for commercial deployment in the world because it is a highpriority project for the PRC. The plant design features multiple modular reactors feeding steam to a single turbine generator where the number of modules determines the plant output. The design and commercialization strategy are based on PRC strengths: (1) a rapidly growing electric market that will support low-cost mass production of modular reactor units and (2) a balance of plant system based on economics of scale that uses the same mass-produced turbine-generator systems used in PRC coal plants. If successful, in addition to supplying the PRC market, this strategy could enable China to be the leading exporter of nuclear reactors to developing countries. The modular characteristics of the reactor match much of the need elsewhere in the world. PBRs have major safety advantages and a radically different fuel. The fuel, not the plant systems, is the primary safety system to prevent and mitigate the release of radionuclides under accident conditions. The fuel consists of small (6-cm) pebbles (spheres) containing coatedparticle fuel in a graphitized carbon matrix. The fuel loading per pebble is small (~9 grams of low-enriched uranium) and hundreds of thousands of pebbles are required to fuel a nuclear plant. The uranium concentration in the fuel is an order of magnitude less than in traditional nuclear fuels. These characteristics make the fuel significantly less attractive for illicit use (weapons production or dirty bomb); but, its unusual physical form may require changes in the tools used for safeguards. This report describes PBRs, what is different, and the safeguards challenges. A series of

  20. Performance of co-immobilized yeast and glucoamylase in a fluidized bed reactor for fuel ethanol production

    SciTech Connect

    Sun, M.Y.; Bienkowski, P.R.; Davison, B.H. |; Spurrier, M.A.; Webb, O.F.

    1996-07-01

    The performance of co-immobilized Saccharomyces cerevisiae and glucoamylase was evaluated in a fluidized bed reactor. Soluble starch and yeast extract were used as feed stocks. The biocatalyst performed well and demonstrated no significant loss of activity or physical integrity during 10 weeks of continuous operation. The reactor was easily operated and required no pH control. No operational problems were encountered from bacterial contaminants even though the reactor was operated under non-sterile conditions over the entire course of experiments. Productivities ranged between 25 to 44 g ethanol L{sup -1} h{sup -1}. The experiments demonstrated that ethanol inhibition and bed loading had significant effects on bed performance.

  1. Studies of Degraded Smelt Spout Opening Tubes

    SciTech Connect

    Keiser, James R; Kish, Joseph R.; Willoughby, Adam W; Longmire, Hu Foster; Singbeil, Douglas

    2007-01-01

    Co-extruded type 304L stainless steel/SA210 carbon steel tubes have been used on the floors and lower walls of many black liquor recovery boilers to address the wall thinning problem that had been an issue for boiler owners and operators. Use of these tubes greatly reduced the corrosion issue, but corrosion was still sometimes observed and cracking was discovered in some tubes, particularly those that are bent to form the openings for smelt spouts. Because cracks in the opening tubes were sometimes observed to extend a significant distance into the tube wall and because these cracks were found fairly frequently, tubes made from a number of alternate cladding materials were tried in place of the 304L clad opening tubes. This paper describes the results of examinations of spout opening tubes of the standard 304L/carbon steel and of several of the alternate materials that have been tried. In addition to the corrosion and cracking seen in the spout opening tubes, another issue associated with these tubes has been observed. Preferential corrosion of the cap welds is sometimes seen on butt welds attaching the spout opening tubes made with alternate cladding materials to the standard 304L/carbon steel co-extruded wall tubes. Some information on the observations of this corrosion is also included in this paper.

  2. Performance evaluation of cigarette filter rods as a biofilm carrier in an anaerobic moving bed biofilm reactor.

    PubMed

    Sabzali, Ahmad; Nikaeen, Mahnaz; Bina, Bijan

    2012-01-01

    Biocarriers are an important component of anaerobic moving bed biofilm reactors (AMBBRs). In this study, the capability of cigarette filter rods (CFRs) as a biocarrier in an anaerobic moving bed biofilm reactor was evaluated. Two similar lab-scale anaerobic moving bed biofilm reactors were undertaken using Kaldnes-K3 plastic media and cigarette filter rods (wasted filters from tobacco factories) as biofilm attachment media for wastewater treatment. Organic substance and total posphours (TP) removal was investigated over 100 days. Synthetic wastewater was prepared with ordinary water and glucose as the main sources of carbon and energy, plus balanced macro- and micro-nutrients. Process performance was studied by increasing the organic loading rate (OLR) in the range of 1.6-4.5 kg COD/m3 x d. The COD average removal efficiency were 61.3% and 64.5% for AMBBR with cigarette filter rods (Reactor A) and AMBBR with Kaldnes plastic media (Reactor B), respectively. The results demonstrate that the performance of the AMBBR containing 0.25 litres of cigarette filters was comparable with a similar reactor containing 1.5 litres of Kaldnes plastic media. An average phosphorus removal of 67.7% and 72.9% was achieved by Reactors A and B, respectively. PMID:22988642

  3. Biodegradation of pharmaceuticals in hospital wastewater by staged Moving Bed Biofilm Reactors (MBBR).

    PubMed

    Casas, Mònica Escolà; Chhetri, Ravi Kumar; Ooi, Gordon; Hansen, Kamilla M S; Litty, Klaus; Christensson, Magnus; Kragelund, Caroline; Andersen, Henrik R; Bester, Kai

    2015-10-15

    Hospital wastewater represents a significant input of pharmaceuticals into municipal wastewater. As Moving Bed Biofilm Reactors (MBBRs) appear to remove organic micro-pollutants, hospital wastewater was treated with a pilot plant consisting of three MBBRs in series. The removal of pharmaceuticals was studied in two experiments: 1) A batch experiment where pharmaceuticals were spiked to each reactor and 2) a continuous flow experiment at native concentrations. DOC removal, nitrification as well as removal of pharmaceuticals (including X-ray contrast media, β-blockers, analgesics and antibiotics) occurred mainly in the first reactor. In the batch experiment most of the compounds followed a single first-order kinetics degradation function, giving degradation rate constants ranged from 5.77 × 10(-3) to 4.07 h(-1), from -5.53 × 10(-3) to 9.24 × 10(-1) h(-1) and from 1.83 × 10(-3) to 2.42 × 10(-1) h(-1) for first, second and third reactor respectively. Generally, the highest removal rate constants were found in the first reactor while the lowest were found in the third one. This order was inverted for most compounds, when the removal rate constants were normalized to biomass, indicating that the last tank had the most effective biofilms. In the batch experiment, 21 out of 26 compounds were assessed to be degraded with more than 20% within the MBBR train. In the continuous flow experiment the measured removal rates were lower than those estimated from the batch experiments. PMID:26164801

  4. Evaluation of Selected Chemical Processes for Production of Low-cost Silicon, Phase 3. [using a fluidized bed reactor

    NASA Technical Reports Server (NTRS)

    Blocher, J. M., Jr.; Browning, M. F.

    1979-01-01

    The construction and operation of an experimental process system development unit (EPSDU) for the production of granular semiconductor grade silicon by the zinc vapor reduction of silicon tetrachloride in a fluidized bed of seed particles is presented. The construction of the process development unit (PDU) is reported. The PDU consists of four critical units of the EPSDU: the fluidized bed reactor, the reactor by product condenser, the zinc vaporizer, and the electrolytic cell. An experimental wetted wall condenser and its operation are described. Procedures are established for safe handling of SiCl4 leaks and spills from the EPSDU and PDU.

  5. Process development and modeling of fluidized-bed reactor with coimmobilized biocatalyst for fuel ethanol production

    NASA Astrophysics Data System (ADS)

    Sun, May Yongmei

    This research focuses on two steps of commercial fuel ethanol production processes: the hydrolysis starch process and the fermentation process. The goal of this research is to evaluate the performance of co-immobilized biocatalysts in a fluidized bed reactor with emphasis on economic and engineering aspects and to develop a predictive mathematical model for this system. The productivity of an FBR is higher than productivity of a traditional batch reactor or CSTR. Fluidized beds offer great advantages over packed beds for immobilized cells when small particles are used or when the reactant feed contains suspended solids. Plugging problems, excessive pressure drops (and thus attrition), or crushing risks may be avoided. No mechanical stirring is required as mixing occurs due to the natural turbulence in the fluidized process. Both enzyme and microorganism are immobilized in one catalyst bead which is called co-immobilization. Inside this biocatalyst matrix, starch is hydrolyzed by the enzyme glucoamylase to form glucose and then converted to ethanol and carbon dioxide by microorganisms. Two biocatalysts were evaluated: (1) co-immobilized yeast strain Saccharomyces cerevisiae and glucoamylase. (2) co-immobilized Zymomonas mobilis and glucoamylase. A co-immobilized biocatalyst accomplishes the simultaneous saccharification and fermentation (SSF process). When compared to a two-step process involving separate saccharification and fermentation stages, the SSF process has productivity values twice that given by the pre-saccharified process when the time required for pre-saccharification (15--25 h) was taken into account. The SSF process should also save capital cost. The information about productivity, fermentation yield, concentration profiles along the bed, ethanol inhibition, et al., was obtained from the experimental data. For the yeast system, experimental results showed that: no apparent decrease of productivity occurred after two and half months, the productivity

  6. Modeling phosphorus removal and recovery from anaerobic digester supernatant through struvite crystallization in a fluidized bed reactor.

    PubMed

    Rahaman, Md Saifur; Mavinic, Donald S; Meikleham, Alexandra; Ellis, Naoko

    2014-03-15

    The cost associated with the disposal of phosphate-rich sludge, the stringent regulations to limit phosphate discharge into aquatic environments, and resource shortages resulting from limited phosphorus rock reserves, have diverted attention to phosphorus recovery in the form of struvite (MAP: MgNH4PO4·6H2O) crystals, which can essentially be used as a slow release fertilizer. Fluidized-bed crystallization is one of the most efficient unit processes used in struvite crystallization from wastewater. In this study, a comprehensive mathematical model, incorporating solution thermodynamics, struvite precipitation kinetics and reactor hydrodynamics, was developed to illustrate phosphorus depletion through struvite crystal growth in a continuous, fluidized-bed crystallizer. A thermodynamic equilibrium model for struvite precipitation was linked to the fluidized-bed reactor model. While the equilibrium model provided information on supersaturation generation, the reactor model captured the dynamic behavior of the crystal growth processes, as well as the effect of the reactor hydrodynamics on the overall process performance. The model was then used for performance evaluation of the reactor, in terms of removal efficiencies of struvite constituent species (Mg, NH4 and PO4), and the average product crystal sizes. The model also determined the variation of species concentration of struvite within the crystal bed height. The species concentrations at two extreme ends (inlet and outlet) were used to evaluate the reactor performance. The model predictions provided a reasonably good fit with the experimental results for PO4-P, NH4-N and Mg removals. Predicated average crystal sizes also matched fairly well with the experimental observations. Therefore, this model can be used as a tool for performance evaluation and process optimization of struvite crystallization in a fluidized-bed reactor. PMID:24384559

  7. Accumulation of radionuclides in bed sediments of the Columbia River between Hanford reactors and McNary Dam

    USGS Publications Warehouse

    Nelson, Jack L.; Haushild, W.L.

    1970-01-01

    Amounts of radionuclides from the Hanford reactors contained in bed sediments of the Columbia River were estimated by two methods: (1) from data on radionuclide concentration for the bed sediments between the reactors and McNary Dam, and (2) from data on radionuclide discharge for river stations at Pasco, Washington, and Umatilla, Oregon. Umatilla is 3.2 kilometers below McNary Dam. Accumulations of radionuclides in the Pasco to Umatilla reach estimated by the two methods agree within about 8%. In October 1965 approximately 16,000 curies of gamma emitting radionuclides were resident in bed sediments of the river between the Hanford reactors and McNary Dam. Concentrations and accumulations of chromium-51, zinc-65, cobalt-60, manganese-54, and scandium-46 generally are much higher near McNary Dam than they are in the vicinity of the reactors. These changes are caused by an increase downstream from the reactors in the proportion of the bed sediment that is fine grained and the proportions of the transported zinc, cobalt, manganese, and scandium radionuclides associated with sediment particles.

  8. Denitrification of groundwater using PHBV blends in packed bed reactors and the microbial diversity.

    PubMed

    Chu, Libing; Wang, Jianlong

    2016-07-01

    In the present study, three kinds of biopolymers, PHBV, PHBV/starch and PHBV/bamboo powder (BP) blends were used as carbon source and biofilm carriers for denitrification in packed bed reactors to remove nitrate from groundwater. Results showed that a fast start-up was obtained in bioreactors filled with both PHBV/Starch and PHBV/BP blends without external inocula and it took more than 3 month for PHBV reactor to reach the same loading rate. The PHBV/BP packed reactor exhibited a better nitrate removal efficiency (87.4 ± 7.0%) and less adverse effects in nitrite accumulation and DOC release (below 0.5 mg NO2N L(-1) and 10.5 mg DOC L(-1) in the effluent) during stable operation. Pyrosequencing analysis demonstrated that bacteria belonging to genus Clostridium in phylum Firmicus, which play the primary role in degrading the biopolymers, are the most dominant (33-15% of the sequences). The predominant species in all samples is related to Clostridium crotonatovorans. All the identified 11 genera of denitrifying bacteria affiliated with phylum Proteobacteria and constituted 30-55% in the representative sequences. The PHBV/BP blend is economically attractive carbon source with good denitrification performance. PMID:27145420

  9. Simulation and control of water-gas shift packed bed reactor with inter-stage cooling

    NASA Astrophysics Data System (ADS)

    Saw, S. Z.; Nandong, J.

    2016-03-01

    Water-Gas Shift Reaction (WGSR) has become one of the well-known pathways for H2 production in industries. The issue with WGSR is that it is kinetically favored at high temperatures but thermodynamically favored at low temperatures, thus requiring careful consideration in the control design in order to ensure that the temperature used does not deactivate the catalyst. This paper studies the effect of a reactor arrangement with an inter-stage cooling implemented in the packed bed reactor to look at its effect on outlet temperature. A mathematical model is developed based on one-dimensional heat and mass transfers which incorporate the intra-particle effects. It is shown that the placement of the inter-stage cooling and the outlet temperature exiting the inter-stage cooling have strong influence on the reaction conversion. Several control strategies are explored for the process. It is shown that a feedback- feedforward control strategy using Multi-scale Control (MSC) is effective to regulate the reactor temperature profile which is critical to maintaining the catalysts activity.

  10. Fluidized Bed Membrane Reactors for Ultra Pure H₂ Production--A Step forward towards Commercialization.

    PubMed

    Helmi, Arash; Fernandez, Ekain; Melendez, Jon; Pacheco Tanaka, David Alfredo; Gallucci, Fausto; van Sint Annaland, Martin

    2016-01-01

    In this research the performance of a fluidized bed membrane reactor for high temperature water gas shift and its long term stability was investigated to provide a proof-of-concept of the new system at lab scale. A demonstration unit with a capacity of 1 Nm³/h of ultra-pure H₂ was designed, built and operated over 900 h of continuous work. Firstly, the performance of the membranes were investigated at different inlet gas compositions and at different temperatures and H₂ partial pressure differences. The membranes showed very high H₂ fluxes (3.89 × 10(-6) mol·m(-2)·Pa(-1)·s(-1) at 400 °C and 1 atm pressure difference) with a H₂/N₂ ideal perm-selectivity (up to 21,000 when integrating five membranes in the module) beyond the DOE 2015 targets. Monitoring the performance of the membranes and the reactor confirmed a very stable performance of the unit for continuous high temperature water gas shift under bubbling fluidization conditions. Several experiments were carried out at different temperatures, pressures and various inlet compositions to determine the optimum operating window for the reactor. The obtained results showed high hydrogen recovery factors, and very low CO concentrations at the permeate side (in average <10 ppm), so that the produced hydrogen can be directly fed to a low temperature PEM fuel cell. PMID:27007361

  11. Application of a moving bed biofilm reactor for tertiary ammonia treatment in high temperature industrial wastewater.

    PubMed

    Shore, Jennifer L; M'Coy, William S; Gunsch, Claudia K; Deshusses, Marc A

    2012-05-01

    This study examines the use of a moving bed biofilm reactor (MBBR) as a tertiary treatment step for ammonia removal in high temperature (35-45°C) effluents, and quantifies different phenotypes of ammonia and nitrite oxidizing bacteria responsible for nitrification at elevated temperatures. Bench scale reactors operating at 35 and 40°C were able to successfully remove greater than 90% of the influent ammonia (up to 19 mg L(-1) NH(3)-N) in both the synthetic and industrial wastewater. No biotreatment was observed at 45°C, although effective nitrification was rapidly recovered when the temperature was lowered to 30°C. Using qPCR, Nitrosomonas oligotropha was found to be the dominant ammonia oxidizing bacterium in the biofilm for the first phases of reactor operation. In the later phases, Nitrosomonas nitrosa was observed and its increased presence may have been responsible for improved ammonia treatment efficiency. Accumulation of nitrite in some instances appeared to correlate with temporary low presence of Nitrospira spp. PMID:22444639

  12. Simultaneous saccharification and fermentation of starch for ethanol production in a fluidized-bed reactor

    SciTech Connect

    Nghiem, N.P.; Davison, B.H.; Sun, M.Y.; Bienkowski, P.R.

    1997-12-31

    Immobilized Zymomonas mobilis has been used to produce ethanol from glucose in fluidized-bed reactor at volumetric productivity as high as 60 g/L-h and theoretical yield. This research was extended to study the production of ethanol from starch. The bacteria were co-immobilized with an industrial glucoamylase within small uniform beads (2 to 2.5 mm diameter) of k-carrageenan. The reactor was a glass column of 1.2 m in length with a uniform 2.54 cm diameter. The substrate included a commercially available maltodextrin and a soluble starch solution which was produced by hydrolysis of ground corn meals using amylase under the conditions commonly used in an industrial process. Light steep water was used as the complex nutrient source. Statistical experimental design was used to study the effects of substrate concentration and feed rate on ethanol yield and reactor productivity. The experiments were performed at 30{degrees}C and pH 5. The substrate concentration ranged from 93 to 2.7 g/L and the feed rates from 6.6 to 26.7 mL/min. The results of these studies will be discussed.

  13. 60Co as AN On-Line Burnup Indicator for Multi-Pass Pebble Bed Reactors

    NASA Astrophysics Data System (ADS)

    Hawari, Ayman I.; Chen, Jianwei

    2003-06-01

    Multi-pass pebble bed reactor concepts are characterized by circulating fuel systems that cycle the pebbles in and out of the core until the burnup limit is reached. Currently modular designs of such reactors, with nominal powers of approximately 300 MW-thermal, are under consideration for deployment internationally. A concern of the proposed designs is the ability to perform online measurements of the fuel burnup to determine whether a pebble has reached its end-of-life burnup limit (~ 80,000 MWD/MTU). In this work, computational simulations were performed to assess the utilization of a passive gamma ray spectrometric approach to perform this task. However, in addition to using the inherent signatures of the irradiated fuel, the use of the 59Co(n,γ)60Co reaction as a burnup indicator is considered. The results show that the activity ratio of 134Cs/60Co can provide an indicator that is accurate to within 5% at burnup greater than 20,000 MWD/MTU as the power is varied between 50% and 200% of the reactor's thermal power.

  14. Discrete Element Simulations of Granular Flow in a Pebble Bed Nuclear Reactor

    NASA Astrophysics Data System (ADS)

    Grest, Gary S.; Rycroft, Chris H.; Landry, James W.

    2005-03-01

    Pebble-bed reactor technology, which is currently being revived around the world, raises fundamental questions about granular flow in silos. The reactor core is composed of spherical billiard-ball sized (6cm diameter) graphite fuel pebbles containing sand-sized uranium fuel particles. The fuel pebbles drain very slowly through the core as a continuous refueling process. In some designs, a dynamical central column is formed from graphite moderator pebbles, physically identical to the fuel pebbles without any fuel. The total number of pebbles is of order 440,000 in a cell approximately 3.5m in diameter and 8.5m tall. Using discrete element (molecular dynamics) simulations we have studied a full scale model of the system. We find that the interface between the fuel and moderator particles remains sharp, as there is very little horizontal motion of the pebbles as they flow through the reactor. We measure mean velocity profiles and compare to various continuum models. We also investigated the feasibility of a bi-disperse core, containing smaller moderator pebbles, with the same size fuel pebbles, which could improve performance by focusing helium gas flow on the hotter fuel region. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04- 94AL85000.

  15. Phosphorus recovery from wastewater through struvite formation in fluidized bed reactors: a sustainable approach.

    PubMed

    Bhuiyan, M I H; Mavinic, D S; Koch, F A

    2008-01-01

    Recovery of phosphate as struvite (MgNH4PO4.6H2O), before it forms and accumulates on wastewater treatment equipment, solves wastewater treatment problems and also provides environmentally sustainable, renewable nutrient source for the agriculture sector. A pilot-scale fluidized bed reactor was used to recover phosphate through crystallization of struvite, from anaerobic digester centrate at the Lulu Island Wastewater Treatment Plant, Richmond, British Columbia, Canada. The desired degree of phosphate removal was achieved by maintaining operating pH (8.0-8.2), and recycle ratio 5-9, to control the supersaturation conditions inside the reactor. The performance of the system was found to be optimal when in-reactor supersaturation ratio was 2-6. Among several other operating parameters, apparent upflow velocity and magnesium to phosphate molar ratio were also found important to maintain system performance, both in terms of efficiency of phosphate removal and recovery as struvite pellets. A narrow window of upflow velocity (400-410 cm/min) was found to be effective in removing 75-85% phosphate. TOC level inside the rector was found to affect the performance to some extent. The precipitation potential of struvite could be successfully predicted using a thermodynamic solubility product value of 10(-13.36) and its temperature dependence in PHREEQC. PMID:18235168

  16. Performance of autotrophic nitrogen removal in the granular sludge bed reactor.

    PubMed

    Wang, Lan; Zheng, Ping; Chen, Tingting; Chen, Jianwei; Xing, Yajuan; Ji, Qixing; Zhang, Meng; Zhang, Jiqiang

    2012-11-01

    The autotrophic nitrogen removal process in the granular sludge bed reactor (GSB-ANR process) is a new and promising biotechnology for nitrogen removal from wastewater, which requires single reactor, simple operation and inorganic carbon. The results showed that the GSB-ANR process could be successfully started up with nitrifying granular sludge as inoculum. The volumetric nitrogen loading rate and the volumetric nitrogen removal rate reached 5.44 and 2.57kgNm(-3)day(-1), respectively, which were significantly higher than the level reported for the autotrophic nitrogen removal processes in single reactor. The predominant functional microorganisms were from Planctomycetes and Nitrosomonas. The excellent performance of GSB-ANR process was ascribed to: (a) The high activities of aerobic ammonia-oxidizing bacteria (AOB) and anaerobic ammonium oxidation (ANAMMOX) bacteria; (b) the good settlability of the granular sludge; (c) the suitable DO concentration that satisfied the oxygen requirement of AOB and prevented ANAMMOX bacteria from oxygen inhibition. PMID:22940302

  17. Simultaneous Coproduction of Hydrogen and Ethanol in Anaerobic Packed-Bed Reactors

    PubMed Central

    dos Reis, Cristiane Marques; Silva, Edson Luiz

    2014-01-01

    This study evaluated the use of an anaerobic packed-bed reactor for hydrogen production at different hydraulic retention times (HRT) (1–8 h). Two reactors filled with expanded clay and fed with glucose (3136–3875 mg L−1) were operated at different total upflow velocities: 0.30 cm s−1 (R030) and 0.60 cm s−1 (R060). The effluent pH of the reactors was maintained between 4 and 5 by adding NaHCO3 and HCl solutions. It was observed a maximum hydrogen production rate of 0.92 L H2 h−1 L−1 in R030 at HRT of 1 h. Furthermore, the highest hydrogen yield of 2.39 mol H2 mol−1 glucose was obtained in R060. No clear trend was observed by doubling the upflow velocities at this experiment. High ethanol production was also observed, indicating that the ethanol-pathway prevailed throughout the experiment. PMID:25295279

  18. Flash Pyrolysis and Fractional Pyrolysis of Oleaginous Biomass in a Fluidized-bed Reactor

    NASA Astrophysics Data System (ADS)

    Urban, Brook

    Thermochemical conversion methods such as pyrolysis have the potential for converting diverse biomass feedstocks into liquid fuels. In particular, bio-oil yields can be maximized by implementing flash pyrolysis to facilitate rapid heat transfer to the solids along with short vapor residence times to minimize secondary degradation of bio-oils. This study first focused on the design and construction of a fluidized-bed flash pyrolysis reactor with a high-efficiency bio-oil recovery unit. Subsequently, the reactor was used to perform flash pyrolysis of soybean pellets to assess the thermochemical conversion of oleaginous biomass feedstocks. The fluidized bed reactor design included a novel feed input mechanism through suction created by flow of carrier gas through a venturi which prevented plugging problems that occur with a more conventional screw feeders. In addition, the uniquely designed batch pyrolysis unit comprised of two tubes of dissimilar diameters. The bottom section consisted of a 1" tube and was connected to a larger 3" tube placed vertically above. At the carrier gas flow rates used in these studies, the feed particles remained fluidized in the smaller diameter tube, but a reduction in carrier gas velocity in the larger diameter "disengagement chamber" prevented the escape of particles into the condensers. The outlet of the reactor was connected to two Allihn condensers followed by an innovative packed-bed dry ice condenser. Due to the high carrier gas flow rates in fluidized bed reactors, bio-oil vapors form dilute aerosols upon cooling which that are difficult to coalesce and recover by traditional heat exchange condensers. The dry ice condenser provided high surface area for inertial impaction of these aerosols and also allowed easy recovery of bio-oils after natural evaporation of the dry ice at the end of the experiments. Single step pyrolysis was performed between 250-610°C with a vapor residence time between 0.3-0.6s. At 550°C or higher, 70% of

  19. Anaerobic/aerobic treatment of a petrochemical wastewater from two aromatic transformation processes by fluidized bed reactors.

    PubMed

    Estrada-Arriaga, Edson B; Ramirez-Camperos, Esperanza; Moeller-Chavez, Gabriela E; García-Sanchez, Liliana

    2012-01-01

    An integrated fluidized bed reactor (FBR) has been employed as the treatment for petrochemical industry wastewaters with high organic matter and aromatic compounds, under anaerobic and aerobic conditions. The system was operated at hydraulic residence time (HRT) of 2.7 and 2.2 h in the anaerobic and aerobic reactor, respectively. The degree of fluidization in the beds was 30%. This system showed a high performance on the removal of organic matter and aromatic compounds. At different organic loading rates (OLR), the chemical oxygen demand (COD) removal in the anaerobic reactor was close to 85% and removals of the COD up to 94% were obtained in the aerobic reactor. High removals of benzene, toluene, ethylbenzene, xylenes, styrene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene and naphthalene were achieved in this study. PMID:23109595

  20. TINTE Uncertainty Analysis of the Maximum Fuel Temperature During a DLOFC Event for the 400 MW Pebble Bed Modular Reactor

    SciTech Connect

    Strydom, Gerhard

    2004-07-01

    The Pebble Bed Modular Reactor (PBMR) is a high temperature, helium cooled, graphite moderated pebbled bed reactor, using a multi-pass fuelling scheme. The aim of this paper is to quantify the effects of uncertainties inherent to various reactor and material parameters on the maximum fuel temperature during a De-pressurized Loss of Forced Cooling (DLOFC) event. The data is obtained by using the transient computer code TINTE, which was specifically developed to assess the nuclear and thermal-hydraulic transient behavior of pebble bed high temperature reactor designs. TINTE calculates time-dependent neutron fluxes, heat source distributions and heat transfer rates between solids and gasses in a 2- D r-z geometry to obtain the global transient core temperature behavior. This study is based on the 400 MW PBMR core design status as at April 2003, and includes DLOFC calculations over a wide range of reactor and material parameters. Some of the parameters investigated for their effect on the fuel temperature during the DLOFC are: reactor fission power and decay heat, control rod movements and scram scenarios, coolant mass flow rates and helium coolant and graphite reflector properties (conductivity, emissivity and specific heat capacity). The results of this study indicate that the current estimates for the total DLOFC maximum fuel temperature, for a 400 MW PBMR reactor operating at 105% power, are within an uncertainty band of {+-}107 deg. C for a DLOFC with scram. The three most important parameters influencing the maximum fuel temperatures during a DLOFC are (in sequence of importance): the reactor power level, the amount of decay heat generated by the nuclear fuel after shutdown, and the thermal conductivity of the pebble bed fuel spheres. (author)

  1. Novel fluidized bed reactor for integrated NOx adsorption-reduction with hydrocarbons

    SciTech Connect

    Terris T. Yang; Hsiaotao T. Bi

    2009-07-01

    In order to avoid the negative impact of excessive oxygen in the combustion flue gases on the selectivity of most hydrocarbon selective catalytic reduction (HC-SCR) catalysts, an integrated NOx adsorption-reduction process has been proposed in this study for the treatment of flue gases under lean burn conditions by decoupling the adsorption and reduction into two different zones. The hypothesis has been validated in a novel internal circulating fluidized bed (ICFB) reactor using Fe/ZSM-5 as the catalyst and propylene as the reducing agent. Effects of propylene to the NOx molar ratio, flue gas oxygen concentration, and gas velocity on NOx conversion were studied using simulated flue gases. The results showed that increasing the ratio of HC:NO improved the reduction performance of Fe/ZSM-5 in the ICFB reactor. NOx conversion decreased with an increasing flue gas flow velocity in the annulus U{sub A} but increased with an increasing reductant gas flow velocity in the draft tube U{sub D}. The NOx adsorption ratio decreased with increasing U{sub A}. In most cases, NOx conversion was higher than the adsorption ratio due to the relatively poor adsorption performance of the catalyst. Fe/ZSM-5 showed a promising reduction performance and a strong inhibiting ability on the negative impact of excessive O{sub 2} in the ICFB reactor, proving that such an ICFB reactor possessed the ability to overcome the negative impact of excessive O{sub 2} in the flue gas using Fe/ZSM-5 as the deNOx catalyst. 22 refs., 10 figs.

  2. Novel fluidized bed reactor for integrated NO(x) adsorption-reduction with hydrocarbons.

    PubMed

    Yang, Terris T; Bi, Hsiaotao T

    2009-07-01

    In order to avoid the negative impact of excessive oxygen in the combustion flue gases on the selectivity of most hydrocarbon selective catalytic reduction (HC-SCR) catalysts, an integrated NO(x) adsorption-reduction process has been proposed in this study for the treatment of flue gases under lean burn conditions by decoupling the adsorption and reduction into two different zones. The hypothesis has been validated in a novel internal circulating fluidized bed (ICFB) reactor using Fe/ZSM-5 as the catalyst and propylene as the reducing agent. Effects of propylene to the NO(x) molar ratio, flue gas oxygen concentration, and gas velocity on NO(x) conversion were studied using simulated flue gases. The results showed that increasing the ratio of HC:NO improved the reduction performance of Fe/ZSM-5 in the ICFB reactor. NO(x) conversion decreased with an increasing flue gas flow velocity in the annulus U(A) but increased with an increasing reductant gas flow velocity in the draft tube U(D). The NO(x) adsorption ratio decreased with increasing U(A). In most cases, NO(x) conversion was higher than the adsorption ratio due to the relatively poor adsorption performance of the catalyst. Fe/ZSM-5 showed a promising reduction performance and a strong inhibiting ability on the negative impact of excessive O2 in the ICFB reactor, proving that such an ICFB reactor possessed the ability to overcome the negative impact of excessive O2 in the flue gas using Fe/ZSM-5 as the deNO(x) catalyst. PMID:19673305

  3. Mathematical modelling and simulation of variable-density fluidized bed reactors with generalised nonlinear kinetics

    NASA Astrophysics Data System (ADS)

    Moradi Tafreshi, Zahra

    1999-10-01

    Fluidized bed reactor is widely used in the chemical, petroleum and biological processing industries for a variety of operations. Due to the complex fluidodynamics, conventional designs are often based on the assumption of constant reaction volume and first order kinetics. Most industrial catalytic reactions, however, occur in a variable-density environment and undergo nonmonotone kinetics. This thesis deals with those complexities. Two complex models, namely 2-phase and 3-phase models, were employed for the prediction of reactor performance. Four general types of reversible reactions with nonlinear power rate law kinetics were considered and the influence of density parameter, ɛ, and reaction orders on reactor behaviour were explored for each type. Computer programs, written in Matlab, were provided for each type of reaction. The simulation results of both models showed that the reaction density parameter has a significant effect on both fluidodynamic characteristics and reaction conversion. Generally, in all types higher values of fluidodynamic variables were obtained when ɛ >= 0. Reaction conversion, however, dropped as the expansion factor increased. This trend, which was more pronounced for reaction orders higher than unity, has been attributed to the ``membranous effect'' of the bubble-emulsion interface that permits a continuous supply of fresh reactants from bubble phase into the emulsion phase in contracting gas systems. In expanding reaction systems, however, the extra moles caused an increase in the bubble size and velocity which reduced the chances of good contact between the two phases. This suggests that fluidized operations are probably not optimal and applicable for certain types of reactions. Moreover, the results showed that simple first order reactions exhibit higher conversions than complex reactions with nonlinear kinetics. 3-phase model, on the other hand, predicted the possibility of multiple steady states for reactions with a decrease in

  4. Conversion of Xylose to Furfuryl Alcohol and 2-Methylfuran in a Continuous Fixed-Bed Reactor.

    PubMed

    Cui, Jinglei; Tan, Jingjing; Cui, Xiaojing; Zhu, Yulei; Deng, Tiansheng; Ding, Guoqiang; Li, Yongwang

    2016-06-01

    An efficient process was designed for the synthesis of furfuryl alcohol and 2-methylfuran from xylose using a continuous fixed-bed reactor over a catalyst combining Hβ zeolite and Cu/ZnO/Al2 O3 in γ-butyrolactone (GBL)/water as solvent. The cooperative effect of Hβ zeolite and GBL facilitated the dehydration of xylose and enhanced largely the furfural yield. The production of furfuryl alcohol and 2-methylfuran can be simply tuned by changing the hydrogenation temperature for furfural over the Cu/ZnO/Al2 O3 catalyst. The yield for furfuryl alcohol reached 87.2 % at 150 °C whereas a yield of 86.8 % was achieved for 2-methylfuran at 190 °C. PMID:27120138

  5. Photocatalytic reduction of Cr(VI) in a fully illuminated fluidized bed reactor.

    PubMed

    Pozzo, R L; Conte, L O; Giombi, J L; Baltanás, M A

    2011-01-01

    The potential of a fluidized bed reactor for the UV-A photocatalytic reduction of Cr(VI), a priority water pollutant, by utilizing a TiO(2)/quartz sand composite, was explored. The effects of oxalic acid (OA) as a sacrificial agent in the heterogeneous system was also investigated and compared with the homogeneous photoreduction by the same dicarboxylic acid under both oxygenated or anoxic conditions of the reacting media. The performance of the 'preconditioned' photocatalyst, either by pretreating it with the OA solution (at dark or under UV-A illumination) or by letting the catalyst stand wet with the OA solution, during designated time intervals (1-5 weeks) prior to its reuse, was assessed. Then, up to 95% reduction of Cr(VI) to Cr(III) was achieved in less than 100 min. PMID:22170829

  6. Apparatus, components and operating methods for circulating fluidized bed transport gasifiers and reactors

    DOEpatents

    Vimalchand, Pannalal; Liu, Guohai; Peng, Wan Wang

    2015-02-24

    The improvements proposed in this invention provide a reliable apparatus and method to gasify low rank coals in a class of pressurized circulating fluidized bed reactors termed "transport gasifier." The embodiments overcome a number of operability and reliability problems with existing gasifiers. The systems and methods address issues related to distribution of gasification agent without the use of internals, management of heat release to avoid any agglomeration and clinker formation, specific design of bends to withstand the highly erosive environment due to high solid particles circulation rates, design of a standpipe cyclone to withstand high temperature gasification environment, compact design of seal-leg that can handle high mass solids flux, design of nozzles that eliminate plugging, uniform aeration of large diameter Standpipe, oxidant injection at the cyclone exits to effectively modulate gasifier exit temperature and reduction in overall height of the gasifier with a modified non-mechanical valve.

  7. Sulfidation of mixed metal oxides in a fluidized-bed reactor

    SciTech Connect

    Christoforou, S.C.; Efthimiadis, E.A.; Vasalos, I.A. )

    1995-01-01

    Mixed metal oxides were used for the removal of hydrogen sulfide from a hot gas stream. Sorbents were prepared according to the dry and wet impregnation techniques. The desulfurization performance of the metal oxide sorbents was experimentally tested in a fluidized-bed reactor system. Sulfidation experiments performed under reaction conditions similar to those at the exit of a coal gasifier showed that the preparation procedure and technique, the type and the amount of the impregnated metal oxide, the type of the solid carrier, and the size of the solid reactant affect the H[sub 2]S removal capacity of the sorbents. The pore structure of fresh and sulfided sorbents was analyzed using mercury porosimetry, nitrogen adsorption, and scanning electron microscopy.

  8. A unique nuclear thermal rocket engine using a particle bed reactor

    NASA Astrophysics Data System (ADS)

    Culver, Donald W.; Dahl, Wayne B.; McIlwain, Melvin C.

    1992-01-01

    Aerojet Propulsion Division (APD) studied 75-klb thrust Nuclear Thermal Rocket Engines (NTRE) with particle bed reactors (PBR) for application to NASA's manned Mars mission and prepared a conceptual design description of a unique engine that best satisfied mission-defined propulsion requirements and customer criteria. This paper describes the selection of a sprint-type Mars transfer mission and its impact on propulsion system design and operation. It shows how our NTRE concept was developed from this information. The resulting, unusual engine design is short, lightweight, and capable of high specific impulse operation, all factors that decrease Earth to orbit launch costs. Many unusual features of the NTRE are discussed, including nozzle area ratio variation and nozzle closure for closed loop after cooling. Mission performance calculations reveal that other well known engine options do not support this mission.

  9. A fluidized bed membrane bioelectrochemical reactor for energy-efficient wastewater treatment.

    PubMed

    Li, Jian; Ge, Zheng; He, Zhen

    2014-09-01

    A fluidized bed membrane bioelectrochemical reactor (MBER) was investigated using fluidized granular activated carbon (GAC) as a mean of membrane fouling control. During the 150-day operation, the MBER generated electricity with contaminant removal from either synthetic solution or actual wastewater, as a standalone or a coupled system. It was found that fluidized GAC could significantly reduce transmembrane pressure (TMP), although its function as a part of the anode electrode was minor. When the MBER was linked to a regular microbial fuel cell (MFC) for treating a wastewater from a cheese factory, the MFC acted as a major process for energy recovery and contaminant removal, and the coupled system removed more than 90% of chemical oxygen demand and >80% of suspended solids. The analysis showed that the ratio of energy recovery and consumption was slightly larger than one, indicating that the coupled system could be theoretically energy neutral. PMID:24997373

  10. Study of moving bed biofilm reactor in diethyl phthalate and diallyl phthalate removal from synthetic wastewater.

    PubMed

    Ahmadi, Ehsan; Gholami, Mitra; Farzadkia, Mahdi; Nabizadeh, Ramin; Azari, Ali

    2015-05-01

    Phthalic acid esters have received significant attention over the last few years since they are considered as priority pollutants. In this study, effects of different operation conditions including hydraulic retention time, phthalates loading rates and aeration rate on process performance of moving bed biofilm reactor (MBBR) for removing diethyl phthalate (DEP) and diallyl phthalate (DAP) from synthetic wastewater was evaluated. In optimum conditions, 94.96% and 93.85% removal efficiency were achieved for DEP and DAP, respectively. Moreover, MBBR achieved to remove more than 92% of COD for both phthalates. The results showed that DEP had a higher biodegradation rate compared to DAP, according to the selected parameters such as half saturation constant, overall reaction rate and maximum specific growth rate. The Grau second order model found as the best model for predicting MBBR performance due to its high correlation coefficients and more conformity of its kinetic coefficients to the results. PMID:25727760

  11. Two-dimensional thermal-hydraulics analyses of the Pellet Bed Reactor for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Morley, Nicholas J.; El-Genk, Mohamed S.

    1993-01-01

    Thermal-hydraulics design and analyses of the Pellet Bed Reactor for nuclear thermal propulsion are performed using the nuclear propulsion thermal-hydraulic analysis model to determine the 2D steady-state temperature, pressure, and flow fields in the core and optimize the orificing in the hot-frit to avoid hot spots in the core at full power operation. Results show that by properly adjusting the axial porosity profile in the hot frit, hot spots in the core can be essentially eliminated during full power operation. This important accomplishment is achieved at the expense of slightly larger pressure losses in the core because of flow restriction at the hot frit. However, the overall pressure losses is only about 11 percent of the propellant inlet pressure.

  12. A long life zinc oxide-titanium oxide sorbent for moving bed reactors

    SciTech Connect

    Copeland, R.; Cesario, M.; Dubovik, M.; Feinberg, D.; Windecker, B.; Yang, J.

    1996-12-31

    Coal Fired Gasifier Combined Cycles (GCCs) have both high efficiency and very low emissions. GCCs are in critical need of a method to remove the H{sub 2}S produced from the sulfur in the coal from the hot gases. There has been extensive research on hot gas clean-up systems, focused on the use of a zinc oxide based sorbent (e.g., zinc titanate). However, the previous sorbents show significant losses in sulfur capacity with cycling. TDA Research, Inc. recently increased the zinc oxide content and sulfur loadings while simultaneously improving the attrition resistance. The improved fabrication method produces long life, low cost sorbent containing zinc oxide. The authors are currently testing sorbents at conditions simulating a moving bed reactor for GCC [i.e., 20 atm, 482 C (900 F) to 538 C (1,000 F), and 1% H{sub 2}S].

  13. Local liquid velocity measurement of Trickle Bed Reactor using Digital Industrial X-ray Radiography

    NASA Astrophysics Data System (ADS)

    Mohd Salleh, Khairul Anuar

    Trickle Bed Reactors (TBRs) are fixed beds of particles in which both liquid and gas flow concurrently downward. They are widely used to produce not only fuels but also lubrication products. The measurement and the knowledge of local liquid velocities (VLL) in TBRs is less which is essential for advancing the understanding of its hydrodynamics and for validation computational fluid dynamics (CFD). Therefore, this work focused on developing a new, non-invasive, statistically reliable technique that can be used to measure local liquid velocity (VLL) in two-dimensions (2-D). This is performed by combining Digital Industrial X-ray Radiography (DIR) and Particle Tracking Velocimetry (PTV) techniques. This work also make possible the development of three-dimensional (3-D) VLL measurements that can be taken in TBRs. Measurements taken through both the combined and the novel technique, once validated, were found to be comparable to another technique (a two-point fiber optical probe) currently being developed at Missouri University of Science and Technology. The results from this study indicate that, for a gas-liquid-solid type bed, the measured VLL can have a maximum range that is between 35 and 51 times that of its superficial liquid velocity (VSL). Without the existence of gas, the measured VLL can have a maximum range that is between 4 and 4.7 times that of its VSL. At a higher V SL, the particle tracer was greatly distributed and became carried away by a high liquid flow rate. Neither the variance nor the range of measured VLL varied for any of the replications, confirming the reproducibility of the experimental measurements used, regardless of the VSL . The liquid's movement inside the pore was consistent with findings from previous studies that used various techniques.

  14. Impact of free ammonia on anammox rates (anoxic ammonium oxidation) in a moving bed biofilm reactor.

    PubMed

    Jaroszynski, L W; Cicek, N; Sparling, R; Oleszkiewicz, J A

    2012-06-01

    Using a bench scale moving bed bioreactor (MBBR), the effect of free ammonia (FA, NH(3), the un-ionized form of ammonium NH(4)(+)) concentration on anoxic ammonium oxidation (anammox) was evaluated based on the volumetric nitrogen removal rate (NRR). Although, a detailed microbial analysis was not conducted, the major NRR observed was assumed to be by anammox, based on the nitrogen conversion ratios of nitrite to ammonium and nitrate to ammonium. Since the concentration of free ammonia as a proportion of the total ammonia concentration is pH-dependent, the impact of changing the operating pH from 6.9 to 8.2, was investigated under constant nitrogen loading conditions during continuous reactor operation. Furthermore, the effect of sudden nitrogen load changes was investigated under constant pH conditions. Batch tests were conducted to determine the immediate response of the anammox consortium to shifts in pH and FA concentrations. It was found that FA was inhibiting NRR at concentrations exceeding 2 mg N L(-1). In the pH range 7-8, the decrease in anammox activity was independent of pH and related only to the concentration of FA. Nitrite concentrations of up to 120 mg N L(-1) did not negatively affect NRR for up to 3.5 h. It was concluded that a stable NRR in a moving bed biofilm reactor depended on maintaining FA concentrations below 2 mg N L(-1) when the pH was maintained between 7 and 8. PMID:22483855

  15. Stress Analysis of Coated Particle Fuel in the Deep-Burn Pebble Bed Reactor Design

    SciTech Connect

    B. Boer; A. M. Ougouag

    2010-05-01

    High fuel temperatures and resulting fuel particle coating stresses can be expected in a Pu and minor actinide fueled Pebble Bed Modular Reactor (400 MWth) design as compared to the ’standard’ UO2 fueled core. The high discharge burnup aimed for in this Deep-Burn design results in increased power and temperature peaking in the pebble bed near the inner and outer reflector. Furthermore, the pebble power in a multi-pass in-core pebble recycling scheme is relatively high for pebbles that make their first core pass. This might result in an increase of the mechanical failure of the coatings, which serve as the containment of radioactive fission products in the PBMR design. To investigate the integrity of the particle fuel coatings as a function of the irradiation time (i.e. burnup), core position and during a Loss Of Forced Cooling (LOFC) incident the PArticle STress Analysis code (PASTA) has been coupled to the PEBBED code for neutronics, thermal-hydraulics and depletion analysis of the core. Two deep burn fuel types (Pu with or without initial MA fuel content) have been investigated with the new code system for normal and transient conditions including the effect of the statistical variation of thickness of the coating layers.

  16. Impact of worm predation on pseudo-steady-state of the circulating fluidized bed biofilm reactor.

    PubMed

    Li, Ming; Nakhla, George; Zhu, Jesse

    2013-01-01

    This paper studies integrated simultaneous carbon and nitrogen removal as well as worm predation, in a circulating fluidized bed biofilm reactor (CFBBR) operated with an anoxic-aerobic bioparticle recirculation. A lab-scale CFBBR with a 8.5-liter reaction zone comprising 2L anoxic and 6.5L aerobic compartments was designed to evaluate the aquatic Oligochaete worm effect. Long-term (200 days) performance showed that stable and high-rate chemical oxygen demand (COD) with sodium acetate as the carbon source and total nitrogen (NH(4)Cl as nitrogen source) conversions were achieved simultaneously, with low sludge production of 0.082 g VSS (volatile suspended solids) g COD(-1) at pseudo-steady-state. Worm predation, which causes considerable sludge reduction of the bioparticle process, was studied. The results proved that the worm predation has a significant impact on the pseudo-steady-state performance of the CFBBR, decreasing biomass yield, decreasing oxygen concentration and increasing expanded bed height. PMID:23201510

  17. Biodegradation of toluene vapor in coir based upflow packed bed reactor by Trichoderma asperellum isolate.

    PubMed

    Gopinath, M; Mohanapriya, C; Sivakumar, K; Baskar, G; Muthukumaran, C; Dhanasekar, R

    2016-03-01

    In the present study, a new biofiltration system involving a selective microbial strain isolated from aerated municipal sewage water attached with coir as packing material was developed for toluene degradation. The selected fungal isolate was identified as Trichoderma asperellum by 16S ribosomal RNA (16S rRNA) sequencing method, and pylogenetic tree was constructed using BLASTn search. Effect of various factors on growth and toluene degradation by newly isolated T. asperellum was studied in batch studies, and the optimum conditions were found to be pH 7.0, temperature 30 °C, and initial toluene concentration 1.5 (v/v)%. Continuous removal of gaseous toluene was monitored in upflow packed bed reactor (UFPBR) using T. asperellum. Effect of various parameters like column height, flow rate, and the inlet toluene concentration were studied to evaluate the performance of the biofilter. The maximum elimination capacity (257 g m(-3) h(-1)) was obtained with the packing height of 100 cm with the empty bed residence time of 5 min. Under these optimum conditions, the T. asperellum showed better toluene removal efficiency. Kinetic models have been developed for toluene degradation by T. asperellum using macrokinetic approach of the plug flow model incorporated with Monod model. PMID:25903193

  18. Heat-transfer characteristics of flowing and stationary particle-bed-type fusion-reactor blankets

    SciTech Connect

    Nietert, R.E.

    1983-02-01

    The following five appendices are included: (1) physical properties of materials, (2) thermal entrance length Nusselt number variations, (3) stationary particle bed temperature variations, (4) falling bed experimental data and calculations, and (5) stationary bed experimental data and calculations. (MOW)

  19. Bubbling bed catalytic hydropyrolysis process utilizing larger catalyst particles and smaller biomass particles featuring an anti-slugging reactor

    SciTech Connect

    Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J

    2014-09-23

    This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.

  20. Mathematical modelization of a packed-bed reactor performance with immobilized yeast for ethanol fermentation. [Saccharomyces cerevisiae

    SciTech Connect

    Godia, F.; Casas, C.; Sola, C.

    1987-01-01

    The performance of a continuous vertical packed-bed reactor with yeast immobilized in carrageenan gel beads is reported. The study focuses on the mathematical modeling of the steady-state fermentor behavior by means of a tanks-in-series model which includes the intrinsic kinetic model and the external mass transfer and internal diffusion-reaction conditions in the beads.

  1. Simulation for supporting scale-up of a fluidized bed reactor for advanced water oxidation.

    PubMed

    Tisa, Farhana; Raman, Abdul Aziz Abdul; Daud, Wan Mohd Ashri Wan

    2014-01-01

    Simulation of fluidized bed reactor (FBR) was accomplished for treating wastewater using Fenton reaction, which is an advanced oxidation process (AOP). The simulation was performed to determine characteristics of FBR performance, concentration profile of the contaminants, and various prominent hydrodynamic properties (e.g., Reynolds number, velocity, and pressure) in the reactor. Simulation was implemented for 2.8 L working volume using hydrodynamic correlations, continuous equation, and simplified kinetic information for phenols degradation as a model. The simulation shows that, by using Fe(3+) and Fe(2+) mixtures as catalyst, TOC degradation up to 45% was achieved for contaminant range of 40-90 mg/L within 60 min. The concentration profiles and hydrodynamic characteristics were also generated. A subsequent scale-up study was also conducted using similitude method. The analysis shows that up to 10 L working volume, the models developed are applicable. The study proves that, using appropriate modeling and simulation, data can be predicted for designing and operating FBR for wastewater treatment. PMID:25309949

  2. Valorisation of waste tyre by pyrolysis in a moving bed reactor

    SciTech Connect

    Aylon, E.; Fernandez-Colino, A.; Murillo, R.; Navarro, M.V.; Garcia, T.; Mastral, A.M.

    2010-07-15

    The aim of this work is to assess the behaviour of a moving bed reactor, based on a screw transporter design, in waste tyre pyrolysis under several experimental conditions. Waste tyre represents a significant problem in developed countries and it is necessary to develop new technology that could easily process big amounts of this potentially raw material. In this work, the influence of the main pyrolysis process variables (temperature, solid residence time, mass flow rate and inert gas flow) has been studied by a thorough analysis of product yields and properties. It has been found that regardless the process operational parameters, a total waste tyre devolatilisation is achieved, producing a pyrolytic carbon black with a volatile matter content under 5 wt.%. In addition, it has been proven that, in the range studied, the most influencing process variables are temperature and solid mass flow rate, mainly because both variables modify the gas residence time inside the reactor. In addition, it has been found that the modification of these variables affects to the chemical properties of the products. This fact is mainly associated to the different cracking reaction of the primary pyrolysis products.

  3. Catalytic ozonation of phenolic wastewater with activated carbon fiber in a fluid bed reactor.

    PubMed

    Qu, Xianfeng; Zheng, Jingtang; Zhang, Yanzong

    2007-05-15

    The effect of activated carbon fiber (ACF) on the ozonation of phenol in water in a fluid bed reactor was investigated. It was observed that this combined process could increase the yield of the oxidation process significantly for phenol and COD (chemical oxygen demand) removal, especially for the phenol removal. The efficiency of ozonation increased with an increase in the dose of ACF. Higher initial phenol concentration only caused a slight decrease of phenol and COD removal. The results of repeated use found that ozonation could efficiently regenerate ACF in situ in the reactor, which was considered easy to handle without the costly ex situ regeneration of the industrial treatment process. The Boehm titrations and FTIR studies indicate that the ozonation process in water can significantly change the composition of acidic surface oxygen-containing groups of ACF, leading to the increase of carboxylic, hydroxylic, and carbonylic groups and the slight decrease of the lactonic groups. Furthermore, this process can also increase the surface area and total pore volume of ACF. Due to the new micropore formation and some pore enlargement, the micropores became smaller, and the mesopores and macropores got bigger. PMID:17336995

  4. Aerobic moving bed biofilm reactor treating thermomechanical pulping whitewater under thermophilic conditions.

    PubMed

    Jahren, Sigrun J; Rintala, Jukka A; Odegaard, Hallvard

    2002-02-01

    The continuously operated laboratory scale Kaldnes moving bed biofilm reactor (MBBR) was used for thermophilic (55 degrees C) aerobic treatment of TMP whitewater. In the MBBR, the biomass is grown on carrier elements that move along with the water in the reactor. Inoculation with mesophilic activated sludge gave 60-65% SCOD removal from the first day onwards. During the 107 days of experiment, the 60-65% SCOD removals were achieved at organic loading rates of 2.5-3.5 kg SCODm(-3) d(-1), the highest loading rates applied during the run and HRT of 13-22h. Carbohydrates, which contributed to 50-60% of the influent SCOD. were removed by 90-95%, while less than 15% of the lignin-like material (30-35% of SCODin) was removed. The sludge yield was 0.23g VSSg SCOD(-1)removed. The results show that the aerobic biofilm process can be successfully operated under thermophilic conditions. PMID:11848344

  5. Evaluation of Heavy Metal Removal from Wastewater in a Modified Packed Bed Biofilm Reactor

    PubMed Central

    Azizi, Shohreh; Kamika, Ilunga; Tekere, Memory

    2016-01-01

    For the effective application of a modified packed bed biofilm reactor (PBBR) in wastewater industrial practice, it is essential to distinguish the tolerance of the system for heavy metals removal. The industrial contamination of wastewater from various sources (e.g. Zn, Cu, Cd and Ni) was studied to assess the impacts on a PBBR. This biological system was examined by evaluating the tolerance of different strengths of composite heavy metals at the optimum hydraulic retention time (HRT) of 2 hours. The heavy metal content of the wastewater outlet stream was then compared to the source material. Different biomass concentrations in the reactor were assessed. The results show that the system can efficiently treat 20 (mg/l) concentrations of combined heavy metals at an optimum HRT condition (2 hours), while above this strength there should be a substantially negative impact on treatment efficiency. Average organic reduction, in terms of the chemical oxygen demand (COD) of the system, is reduced above the tolerance limits for heavy metals as mentioned above. The PBBR biological system, in the presence of high surface area carrier media and a high microbial population to the tune of 10 000 (mg/l), is capable of removing the industrial contamination in wastewater. PMID:27186636

  6. Fluidized-bed design for ICF reactor blankets using solid-lithium compounds

    SciTech Connect

    Sucov, E.W.; Malick, F.S.; Green, L.; Hall, B.O.

    1983-01-01

    A fluidized-bed concept for blankets of dry or wetted first-wall ICF reactors using solid-lithium compounds is described. The reaction chamber is a right cylinder, 32 m high and 20 m in diameter; the blanket is composed of 36 steel tanks, 32 m high, which carry the sintered Li/sub 2/O particles in the fluidizing helium gas. Each tank has a radial thickness of 2 m which generates a tritium breeding ration (TBR) of 1.27 and absorbs over 98% of the neutron energy; reducing the thickness to 1.2 m produces a TBR of 1.2 and energy absorption of 97% which satisfy the design goals. Calculations of tritium diffusion through the grains and heat removal from the grains showed that neither could be removed by the carrier gas; tritium and heat are therefore removed by removing the grains themselves by varying the helium flow rate. The particles are continuously fed into the bottom of the tanks at 300/sup 0/C and removed at the top at 475/sup 0/C. Tritium and heat extraction are easily and conveniently done outside the reactor.

  7. Simultaneous biological removal of phenol, sulfide, and nitrate using expanded granular sludge bed reactor.

    PubMed

    Liu, Chunshuang; Han, Kang; Lee, Duu-Jong; Wang, Qilin

    2016-05-01

    Biological removal of sulfide, nitrate, and phenol at loading rates of 600 g S/(m(3) day), 900 g N/(m(3) day), and 450 g C/(m(3) day), respectively, from synthetic wastewaters was achieved in an expanded granular sludge bed (EGSB) reactor, whose rates are much higher than literature works and are considered feasible for handling high-strength petrochemical wastewaters without dilution. Effects of C/S ratio (2-2.5:1) on EGSB performance were noted insignificantly. The strains Bacillus sp., Thauera sp., and Pseudomonas sp. were the heterotrophic denitrifiers and the strains Thiobacillus sp., Azoarcus sp., and Sulfurovum sp. were the autotrophic denitrifiers in the EGSB granules. The EGSB reactor experienced biological breakdown at loadings higher than 1200 g S/(m(3) day), 1800 g N/(m(3) day), and 900 g C/(m(3) day) by the following mechanism: high sulfide first inhibits heterotrophic denitrifies (Bacillus sp. and Pseudomonas sp.), thereby accumulating nitrite in the system; then, the accumulated nitrite inhibits autotrophic denitrifiers (Thiobacillus sp., Azoarcus sp., and Sulfurovum sp.) to complete breakdown of the system. PMID:26762389

  8. [Enrichment of anaerobic ammonium oxidation bacteria by expanded-granular sludge bed reactor].

    PubMed

    Huang, Xiaoli; Gao, Dawen; Cong, Yan; Wang, Xiaolong

    2014-12-01

    An expanded-granular sludge bed (EGSB) reactor was set-up with artificial water by seeding a 60 d stored ANAMMOX sludge. The nitrogen removal efficiency of ANAMMOX enrichment culture in the reactor was determined. In addition, the main microbial populations and the relative abundance of ANAMMOX bacteria were investigated by molecular approaches. Results show that the maximum nitrogen removal rate was 3.0 kg-N·m(-3)·d(-1) after 185 d, and the ammonium and nitrite removal efficiencies were all over 85%. Analysis of 16S rRNA gene-cloning indicates that the main microbial population in the ANAMMOX enrichment culture was changed from Candidatus Brocadiafulgid and Candidatus Brocadia brasiliensis (0 day) to Candidatus Jettenia asiatica (185 day). Fluorescence in situ hybridization analysis shows that the relative abundance of ANAMMOX bacteria was increased from (57.69 ± 4.79)% to (83.32 ± 4.40)%. The results of qPCR further indicate that the gene copies of ANAMMOX bacteria in the granules were increased from 1.14 x 10(11) copies/g wet weight to 3.69 x 10(11) copies/g wet weight. PMID:26016374

  9. Valorisation of waste tyre by pyrolysis in a moving bed reactor.

    PubMed

    Aylón, E; Fernández-Colino, A; Murillo, R; Navarro, M V; García, T; Mastral, A M

    2010-07-01

    The aim of this work is to assess the behaviour of a moving bed reactor, based on a screw transporter design, in waste tyre pyrolysis under several experimental conditions. Waste tyre represents a significant problem in developed countries and it is necessary to develop new technology that could easily process big amounts of this potentially raw material. In this work, the influence of the main pyrolysis process variables (temperature, solid residence time, mass flow rate and inert gas flow) has been studied by a thorough analysis of product yields and properties. It has been found that regardless the process operational parameters, a total waste tyre devolatilisation is achieved, producing a pyrolytic carbon black with a volatile matter content under 5 wt.%. In addition, it has been proven that, in the range studied, the most influencing process variables are temperature and solid mass flow rate, mainly because both variables modify the gas residence time inside the reactor. In addition, it has been found that the modification of these variables affects to the chemical properties of the products. This fact is mainly associated to the different cracking reaction of the primary pyrolysis products. PMID:19896820

  10. Biodegradation of linear alkylbenzene sulfonate in commercial laundry wastewater by an anaerobic fluidized bed reactor.

    PubMed

    Braga, Juliana K; Motteran, Fabrício; Macedo, Thaís Z; Sakamoto, Isabel K; Delforno, Tiago P; Okada, Dagoberto Y; Silva, Edson L; Varesche, Maria Bernadete A

    2015-01-01

    The biodegradation of linear alkylbenzene sulfonate (LAS) from commercial laundry wastewater was evaluated in an anaerobic fluidized bed reactor (FBR) fed with synthetic substrate (598 mg L(-1) to 723 mg L(-1) of organic matter) supplemented with 9.5±3.1 mg L(-1) to 27.9±9.6 mg L(-1) of LAS. The average chemical oxygen demand (COD) removal efficiency was 89% and the biodegradation of LAS was 57% during the 489 days of anaerobic FBR. Higher levels of volatile fatty acids (VFA) were observed in the effluent at the stage with the best LAS removal performance. Increasing the surfactant concentration did not increase the VFA production in the effluent. The predominant VFAs after the addition of LAS were as follows: isovaleric acid and valeric acid, followed by propionic acid, caproic acid and formic acid. The similarities of 64% and 45% to Archaea and Bacteria domains were observed in the samples taken in the operating period of anaerobic FBR fed with 23.6±10 mg L(-1) and 27.9±10 mg L(-1) of LAS. During the operation stages in the reactor, Gemmatimonas, Desulfobulbus and Zoogloea were determined as the most abundant genera related to surfactant degradation using 454-Pyrosequencing. PMID:26061208

  11. Simulation for Supporting Scale-Up of a Fluidized Bed Reactor for Advanced Water Oxidation

    PubMed Central

    Abdul Raman, Abdul Aziz; Daud, Wan Mohd Ashri Wan

    2014-01-01

    Simulation of fluidized bed reactor (FBR) was accomplished for treating wastewater using Fenton reaction, which is an advanced oxidation process (AOP). The simulation was performed to determine characteristics of FBR performance, concentration profile of the contaminants, and various prominent hydrodynamic properties (e.g., Reynolds number, velocity, and pressure) in the reactor. Simulation was implemented for 2.8 L working volume using hydrodynamic correlations, continuous equation, and simplified kinetic information for phenols degradation as a model. The simulation shows that, by using Fe3+ and Fe2+ mixtures as catalyst, TOC degradation up to 45% was achieved for contaminant range of 40–90 mg/L within 60 min. The concentration profiles and hydrodynamic characteristics were also generated. A subsequent scale-up study was also conducted using similitude method. The analysis shows that up to 10 L working volume, the models developed are applicable. The study proves that, using appropriate modeling and simulation, data can be predicted for designing and operating FBR for wastewater treatment. PMID:25309949

  12. Fluidized-bed reactor modeling for production of silicon by silane pyrolysis

    NASA Technical Reports Server (NTRS)

    Dudukovic, M. P.; Ramachandran, P. A.; Lai, S.

    1986-01-01

    An ideal backmixed reactor model (CSTR) and a fluidized bed bubbling reactor model (FBBR) were developed for silane pyrolysis. Silane decomposition is assumed to occur via two pathways: homogeneous decomposition and heterogeneous chemical vapor deposition (CVD). Both models account for homogeneous and heterogeneous silane decomposition, homogeneous nucleation, coagulation and growth by diffusion of fines, scavenging of fines by large particles, elutriation of fines and CVD growth of large seed particles. At present the models do not account for attrition. The preliminary comparison of the model predictions with experimental results shows reasonable agreement. The CSTR model with no adjustable parameter yields a lower bound on fines formed and upper estimate on production rates. The FBBR model overpredicts the formation of fines but could be matched to experimental data by adjusting the unkown jet emulsion exchange efficients. The models clearly indicate that in order to suppress the formation of fines (smoke) good gas-solid contacting in the grid region must be achieved and the formation of the bubbles suppressed.

  13. Evaluation of Heavy Metal Removal from Wastewater in a Modified Packed Bed Biofilm Reactor.

    PubMed

    Azizi, Shohreh; Kamika, Ilunga; Tekere, Memory

    2016-01-01

    For the effective application of a modified packed bed biofilm reactor (PBBR) in wastewater industrial practice, it is essential to distinguish the tolerance of the system for heavy metals removal. The industrial contamination of wastewater from various sources (e.g. Zn, Cu, Cd and Ni) was studied to assess the impacts on a PBBR. This biological system was examined by evaluating the tolerance of different strengths of composite heavy metals at the optimum hydraulic retention time (HRT) of 2 hours. The heavy metal content of the wastewater outlet stream was then compared to the source material. Different biomass concentrations in the reactor were assessed. The results show that the system can efficiently treat 20 (mg/l) concentrations of combined heavy metals at an optimum HRT condition (2 hours), while above this strength there should be a substantially negative impact on treatment efficiency. Average organic reduction, in terms of the chemical oxygen demand (COD) of the system, is reduced above the tolerance limits for heavy metals as mentioned above. The PBBR biological system, in the presence of high surface area carrier media and a high microbial population to the tune of 10 000 (mg/l), is capable of removing the industrial contamination in wastewater. PMID:27186636

  14. Molecular mobility in fixed-bed reactors investigated by multiscale NMR techniques.

    PubMed

    Ren, Xiaohong; Stapf, Siegfried; Kühn, Holger; Demco, Dan E; Blümich, Bernhard

    2003-01-01

    The complex problem of a fixed-bed reactor consisting of catalytically active particles provides an exceptional opportunity of combining a wide range of NMR methods which have become available over time as tools to probe porous media. This work demonstrates the feasibility of different NMR techniques for the investigation of the intra- and interparticle pore space over length scales from nanometers up to centimeters. Many industrially relevant cracking reactions leave a coke residue on the inner surface of the porous catalyst particles so that the active sites become inaccessible to the reactants. Moreover, the pore space shrinks due to the formation of coke, thereby hindering molecular transport. The presence of the coke residue and its influence on the mobility of adsorbed fluid molecules are probed by 129Xe spectroscopy, NMR cryoporometry, relaxation dispersion measurements, and investigations of the reduced diffusivity in the intraporous space. The voids surrounding the random arrangement of catalyst pellets represent another pore space of much larger dimensions, the properties of which can be more directly investigated by mapping the fluid density and the velocity distribution from velocity-encoded imaging. Propagator representations averaged over large sample volumes are discussed and compared to velocity images obtained in selected axial slices of the reactor. PMID:12850717

  15. CO{sub 2} capture from flue gases using three Ca-based sorbents in a fluidized bed reactor

    SciTech Connect

    Li, Z.S.; Fang, F.; Cai, N.S.

    2009-06-15

    Abstract: Experiments of CO{sub 2} capture and sorbent regeneration characteristics of limestone, dolomite, and CaO/Ca{sub 1}2Al{sub 14}O{sub 3}3 at high temperature were investigated in a thermogravimetric analyzer (TGA) and a fluidized bed reactor. The effect of reactivity decay of limestone, dolomite, and CaO/Ca{sub 12}Al{sub 14}O{sub 3}3 sorbents on CO{sub 2} capture and sorbent regeneration processes was studied. The experimental results indicated that the operation time of high efficient CO{sub 2} capture stage declined continuously with increasing of the cyclic number due to the loss of the sorbent activity, and the final CO{sub 2} capture efficiency would remain nearly constant, due to the sorbent already reaching the final residual capture capacity. After the CO{sub 2} capture step, the Ca-based sorbents need to be regenerated to be used for a subsequent cycle, and the multiple calcination processes of Ca-based sorbent under different calcination conditions are studied and discussed. Reactivity loss of limestone, dolomite and CaO/Ca{sub 12}Al{sub 14}O{sub 3}3 sorbents from a fluidized bed reactor at both mild and severe calcination conditions was compared with the TGA data. At mild calcination conditions, TGA results of sorbent reactivity loss were similar to the experimental results of fluidized bed reactor for three sorbents at 850 degrees C calcination temperature, and this indicated that TGA experimental results can be used as a reference to predict sorbent reactivity loss behavior in fluidized bed reactor. At severe calcination condition, sorbent reactivity loss behavior for limestone and dolomite from TGA compare well with the result from a fluidized bed reactor.

  16. Use of activated carbon and natural zeolite as support materials, in an anaerobic fluidised bed reactor, for vinasse treatment.

    PubMed

    Fernández, N; Fdz-Polanco, F; Montalvo, S J; Toledano, D

    2001-01-01

    In Cuba, the alcohol distillation process from cane sugar molasses, produces a final waste (vinasse), with an enormous polluting potential and a high sulfate content. Applying the anaerobic technology, most of the biodegradable organic matter can turn into biogas, rich in methane but with concentrations of sulfide above 1%. The present work develops two experiences with anaerobic fluidized bed reactors (AFBR) using both Cuban raw material, activated carbon and natural zeolite, as support media, with the purpose of obtaining high organic matter removal rates and keeping sulfide and ammonium concentrations in the permissible ranges. The reactors were operated during 120 days, achieving an organic loading rate of 10 kg COD/m3 day, with COD removal above 70%, and a methane production of 2 L/d. The activated carbon and natural zeolite used support materials in anaerobic fluidized bed reactors, and showed good results of distillery waste removal. PMID:11575071

  17. Zirconia promotion of Fischer-Tropsch cobalt catalysts: Behavior in fixed bed and slurry bubble column reactors

    SciTech Connect

    Oukaci, R.; Goodwin, J.G. Jr.; Marcelin, G.; Singleton, A.

    1995-12-01

    A series of cobalt-based F-T catalysts supported on alumina and silica were prepared with different loadings of Zr and with different sequences of impregnation of Co and Zr. All catalysts were extensively characterized by different methods. The catalysts were evaluated in terms of their activity and selectivity both in fixed bed and slurry bubble column reactors. Addition of ZrO{sub 2} to both Co/SiO{sub 2} and Co/Al{sub 2}O{sub 3} catalysts resulted in at least a two-to-threefold increase in the catalyst activity for F-T synthesis in the fixed bed reactor, depending on the sequence of impregnation of Co and Zr. In the slurry bubble column reactor the promotion effect was observed only for the SiO{sub 2}-supported catalyst.

  18. Zirconia promotion of Fischer-Tropsch cobalt catalysts: Behavior in fixed-bed and slurry bubble column reactors

    SciTech Connect

    Oukaci, R.; Goodwin, J.G. Jr.; Marcelin, G.; Singleton, A.

    1995-12-31

    A series of cobalt-based F-T catalysts supported on alumina and silica were prepared with different loadings of Zr and different sequence of impregnation of Co and Zr. All catalysts were extensively characterized by different methods. The catalysts were evaluated in terms of their activity and selectivity both in fixed bed and slurry bubble column reactors. Addition of ZrO{sub 2} to both CO/SO{sub 2} and Co/Al{sub 2}O{sub 3} catalysts resulted in at least a twofold increase in the catalyst activity for F-T synthesis in the fixed bed reactor. In the slurry bubble column reactor, a similar promotion effect was observed for the SO{sub 2}-supported catalysts, while the addition of Zr to a cobalt/alumina catalyst had a less significant effect.

  19. Biodiesel production in a magnetically-stabilized, fluidized bed reactor with an immobilized lipase in magnetic chitosan microspheres.

    PubMed

    Zhou, Gui-Xiong; Chen, Guan-Yi; Yan, Bei-Bei

    2014-01-01

    Biodiesel production by immobilized Rhizopus oryzae lipase in magnetic chitosan microspheres (MCMs) was carried out using soybean oil and methanol in a magnetically-stabilized, fluidized bed reactor (MSFBR). The maximum content of methyl ester in the reaction mixture reached 91.3 (w/v) at a fluid flow rate of 25 ml/min and a magnetic field intensity of 150 Oe. In addition, the MCMs-immobilized lipase in the reactor showed excellent reusability, retaining 82 % productivity even after six batches, which was much better than that in a conventional fluidized bed reactor. These results suggested that a MSFRB using MCMs-immobilized lipase is a promising method for biodiesel production. PMID:24062133

  20. Tertiary nitrification using moving-bed biofilm reactor: a case study in Tunisia.

    PubMed

    Houda, Nasr; Abdelwaheb, Chatti; Asma, Ben Rajeb; Ines, Mehri; Ahmed, Landoulsi; Abdennaceur, Hassen

    2015-04-01

    In this study, the effect of operational conditions on biofilm development and nitrification in moving-bed biofilm reactor (MBBR) was investigated. The reactor was operated in a continuously fed regime during 170 days and with theoretical hydraulic retention time of 7 h, respectively. The presence of chemical oxygen demand (COD) increased the time required to form stable nitrifying. Subsequent stepwise increase of influent COD caused an increment in total polysaccharide (PS) and protein (PN) content, which was accompanied by an attachment of the biofilm, as shown by atomic force microscope (AFM). PS and PN concentrations proved to be good indicators of biomass development and attachment in MBBR system. Reactor was operated and water quality was characterized before and after treatment. Parameters including pH, 5-day biochemical oxygen demand (BOD5), total suspended solids (TSS) (COD), PN, PS, and fecal bacteria in both raw and treated wastewater were monitored during the treatment. The removal rates of ammonium-nitrogen (NH4 (+)-N), BOD5, COD, and TSS are 95, 67.5, 69.2, and 73.33 %, respectively. The average bacterial reduction between the inlet and the outlet was of the order of 5 ± 1 logarithmic units for fecal coliforms. AFM showed that distinct biofilm and extracellular polymeric substances were formed in biofilm was thicker in the 70 days than in the 30 days. These results showed that the consumption rate for each substrate increased parabolically with biofilm thickness due to the increased amount of biomass Thus, MBBR can serve as a promising technology for wastewater treatment and can be scaled up for small communities in the developing countries. PMID:25561403

  1. Advanced start-up of anaerobic attached film expanded bed reactor by pre-aeration of biofilm carrier.

    PubMed

    Ye, Fen-xia; Chen, Ying-xu; Feng, Xiao-shan

    2005-01-01

    The start-up and performance of the anaerobic attached film expanded bed (AAFEB) reactor with pre-aeration of carrier were investigated. The carriers of the reactors had been aerated for 10 days before they were put into the AAFEB reactors. The results indicated that the reactors advance the start-up by 15 days, and maintain higher efficiency when they were subjected to organic and hydraulic loading shock, but during steady-state operation, the reactors did not show better performance than the control reactors without pre-aeration of carrier. The thicker biofilm and higher biomass concentration of the reactors with pre-aeration were observed during the start-up period, but the difference between two types of reactors tapered with the time course, and at the steady-state operation, the difference between two types of reactors on these two parameters was not obvious. Maximum specific methane or acids production rates, dehydrogenase activity and coenzyme F(420) content were continuously higher than those of the control reactors. After running 30 days, filamentous bacteria dominated in the reactors with pre-aeration, whereas the cocci were predominant species in the control reactors. It was suggested that the action of the biofilm is strongly dependent on the biofilm thickness or the biomass concentration in normal circumstances, but under adverse circumstances, such as organic or hydraulic loading shock, the characteristics and activity of the anaerobic granular sludge play key roles on the reactor performance. These results clearly indicated that pre-aeration of carrier favor to enhance the start-up and performance of AAFEB reactor. PMID:15364089

  2. A combined upflow anaerobic sludge bed, aerobic, and anoxic fixed-bed reactor system for removing tetramethylammonium hydroxide and nitrogen from light-emitting diode wastewater.

    PubMed

    Lin, Han-Lin; Chen, Sheng-Kun; Huang, Yu-Wen; Chen, Wei-Cheng; Chien, Wei-Cheng; Cheng, Sheng-Shung

    2016-06-01

    A laboratory study using a combined upflow anaerobic sludge bed (UASB) and aerobic and anoxic fixed-bed reactor system was undertaken to explore its capability for removing tetramethylammonium hydroxide (TMAH) and nitrogen from light-emitting diode wastewater. When the organic loading rate was maintained at 0.26-0.65 kg TMAH m(-3 )d(-1), the UASB reactor removed 70-100% of TMAH through methanogenesis. When the [Formula: see text] -N loading rate was maintained at 0.73-1.4 kg [Formula: see text]-N m(-3 )d(-1), the aerobic reactor oxidized 31-59% of [Formula: see text]-N to [Formula: see text]-N through nitritation. When the nitrogen loading rate was maintained at 0.42-0.75 kg N m(-3 )d(-1), the anoxic reactor removed 27-63% of nitrogen through anammox. The performance data of the combined reactor system agreed well with the stoichiometric relationships of methanogenesis, nitritation, and anammox. The batch studies showed that a higher initial TMAH concentration of up to 2520 mg L(-1) gave a higher methanogenic activity of up to 16 mL CH4 g(-1) VSS d(-1). An increase in the initial TMAH concentration of up to 500 mg L(-1) gradually decreased the activity of ammonia-oxidizing bacteria; whereas an increase in the initial TMAH concentration of up to 47 mg L(-1) imposed a marked inhibiting effect on the activity of anammox bacteria. PMID:26583577

  3. CARBON COATED (CARBONOUS) CATALYST IN EBULLATED BED REACTOR FOR PRODUCTION OF OXYGENATED CHEMICALS FROM SYNGAS/CO2

    SciTech Connect

    Peizheng Zhou

    2001-10-26

    There are a number of exothermic chemical reactions which might benefit from the temperature control and freedom from catalyst fouling provided by the ebullated bed reactor technology. A particularly promising area is production of oxygenated chemicals, such as alcohols and ethers, from synthesis gas, which can be economically produced from coal or biomass. The ebullated bed operation requires that the small-diameter ({approx}1/32 inch) catalyst particles have enough mechanical strength to avoid loss by attrition. However, all of the State Of The Art (SOTA) catalysts and advanced catalysts for the purpose are low in mechanical strength. The patented carbon-coated catalyst technology developed in our laboratory converts catalyst particles with low mechanical strength to strong catalysts suitable for ebullated bed application. This R&D program is concerned with the modification on the mechanical strength of the SOTA and advanced catalysts so that the ebullated bed technology can be utilized to produce valuable oxygenated chemicals from syngas/CO{sub 2} efficiently and economically. The objective of this R&D program is to study the technical and economic feasibility of selective production of high-value oxygenated chemicals from synthesis gas and CO{sub 2} mixed feed in an ebullated bed reactor using carbon-coated catalyst particles.

  4. CARBON COATED (CARBONOUS) CATALYST IN EBULLATED BED REACTOR FOR PRODUCTION OF OXYGENATED CHEMICALS FROM SYNGAS/CO2

    SciTech Connect

    Peizheng Zhou

    2000-11-17

    There are a number of exothermic chemical reactions which might benefit from the temperature control and freedom from catalyst fouling provided by the ebullated bed reactor technology. A particularly promising area is production of oxygenated chemicals, such as alcohols and ethers, from synthesis gas, which can be economically produced from coal or biomass. The ebullated bed operation requires that the small-diameter ({approx} 1/32 inch) catalyst particles have enough mechanical strength to avoid loss by attrition. However, all of the State Of The Art (SOTA) catalysts and advanced catalysts for the purpose are low in mechanical strength. The patented carbon-coated catalyst technology developed in our laboratory converts catalyst particles with low mechanical strength to strong catalysts suitable for ebullated bed application. This R&D program is concerned with the modification on the mechanical strength of the SOTA and advanced catalysts so that the ebullated bed technology can be utilized to produce valuable oxygenated chemicals from syngas/CO{sub 2} efficiently and economically. The objective of this R&D program is to study the technical and economic feasibility of selective production of high-value oxygenated chemicals from synthesis gas and CO{sub 2} mixed feed in an ebullated bed reactor using carbon-coated catalyst particles.

  5. ANAEROBIC/AEROBIC BIODEGRADATION OF PENTACHLOROPHENOL USING GAC FLUIDIXED BED REACTORS: OPTIMIZATION OF THE EMPTY BED CONTACT TIME

    EPA Science Inventory

    An integrated reactor system has been developed to remediate pentachlorophenol (PCP) containing wastes using sequential anaerobic and aerobic biodegradation. Anaerobically, PCP was degraded to approximately equimolar concentrations (>99%) of chlorophenol (CP) in a granular activa...

  6. Study of the electrowinning of copper using a fluidized-bed electrochemical reactor

    SciTech Connect

    Felker, D.L.

    1982-12-01

    A study was done on the use of a fluidized bed electrochemical reactor for the recovery of copper from aqueous solutions. Electrolyte solutions containing 0 to 8 g/l copper, 0 to 8 g/l iron and 200 g/l sulfuric acid were used. Porous diaphragms were used to separate the cathode and anode regions. The current efficiency, energy consumption rate and volumetric reaction rate were calculated for the experimental conditions. When the catholyte and anolyte are circulated from a common reservoir and iron(II) is present in the electrolyte, the energy consumption rate exhibits a minimum value of about 1.5 kWh/lb a volumetric reaction rate (VRR) of about 100 lb Cu/m/sup 3/ h. When the anolyte and catholyte are separated, the energy consumption rate rises linearly with VRR, being about 1 kWh/lb Cu at 100 lb Cu/m/sup 3/ h (this is roughly 2x the VRR of a conventional electrowinning cell). The optimum bed width in the direction of current flow was about 2 cm. A mathematical model which takes into account the dissolution of copper by ferric ion and oxygen is shown to explain the changes in the current efficiency and the VRR with current density seen in most of the experiments. Results indicate that separation of the catholyte and anolyte is imperative. Experiments showed that this can be accomplished using a porous Vycor glass diaphragm, which also eliminated the problem with copper dendrites growing through the diaphragm.

  7. Supplemental Report on Nuclear Safeguards Considerations for the Pebble Bed Modular Reactor (PBMR)

    SciTech Connect

    Moses, David Lewis; Ehinger, Michael H

    2010-05-01

    Recent reports by Department of Energy National Laboratories have discussed safeguards considerations for the low enriched uranium (LEU) fueled Pebble Bed Modular Reactor (PBMR) and the need for bulk accountancy of the plutonium in used fuel. These reports fail to account effectively for the degree of plutonium dilution in the graphitized-carbon pebbles that is sufficient to meet the International Atomic Energy Agency's (IAEA's) 'provisional' guidelines for termination of safeguards on 'measured discards.' The thrust of this finding is not to terminate safeguards but to limit the need for specific accountancy of plutonium in stored used fuel. While the residual uranium in the used fuel may not be judged sufficiently diluted to meet the IAEA provisional guidelines for termination of safeguards, the estimated quantities of {sup 232}U and {sup 236}U in the used fuel at the target burn-up of {approx}91 GWD/MT exceed specification limits for reprocessed uranium (ASTM C787) and will require extensive blending with either natural uranium or uranium enrichment tails to dilute the {sup 236}U content to fall within specification thus making the PBMR used fuel less desirable for commercial reprocessing and reuse than that from light water reactors. Also the PBMR specific activity of reprocessed uranium isotopic mixture and its A{sub 2} values for effective dose limit if released in a dispersible form during a transportation accident are more limiting than the equivalent values for light water reactor spent fuel at 55 GWD/MT without accounting for the presence of the principal carry-over fission product ({sup 99}Tc) and any possible plutonium contamination that may be present from attempted covert reprocessing. Thus, the potentially recoverable uranium from PBMR used fuel carries reactivity penalties and radiological penalties likely greater than those for reprocessed uranium from light water reactors. These factors impact the economics of reprocessing, but a more significant

  8. On the evaluation of pebble bed reactor critical experiments using the PEBBED code

    SciTech Connect

    Hans D. Gougar; R. Sonat Sen

    2001-10-01

    The PEBBED pebble bed reactor fuel management code under development at the Idaho National Laboratory is designed for rapid design and analysis of pebble bed high temperature reactors (PBRs). Embedded within the code are the THERMIX-KONVEK thermal fluid solver and the COMBINE-7 spectrum generation code for inline cross section homogenization. Because 1D symmetry can be found at each stage of core heterogeneity; spherical at TRISO and pebble levels, and cylindrical at the control rod and core levels, the 1-D transport capability of ANISN is assumed to be sufficient in most cases for generating flux solutions for cross section homogenization. Furthermore, it is fast enough to be executed during the analysis or the equilibrium core. Multi-group diffusion-based design codes such as PEBBED and VSOP are not expected to yield the accuracy and resolution of continuous energy Monte Carlo codes for evaluation of critical experiments. Nonetheless, if the preparation of multigroup cross sections can adequately capture the physics of the mixing of PBR fuel elements and leakage from the core, reasonable results may be obtained. In this paper, results of the application of PEBBED to two critical experiments (HTR Proteus and HTR-10) and associated computational models are presented. The embedded 1-D transport solver is shown to capture the double heterogeneity of the pebble fuel in unit cell calculations. Eigenvalue calculations of a whole core are more challenging, particularly if the boron concentration is uncertain. The sensitivity of major safety parameters to variations in modeling assumptions, however, is shown to be minimal. The embedded transport solver can also be used to obtain control rod worths but only with adjustment of the local spectrum. Results are compared to those of other codes as well as Core 4 of the HTR-Proteus experiment which contains partially inserted rods. They indicate the need for a reference solution to adjust the radius of the graphite in the

  9. Feasibility of expanded granular sludge bed reactors for the anaerobic treatment of low-strength soluble wastewaters

    SciTech Connect

    Kato, M.T.; Field, J.A.; Versteeg, P.; Lettinga, G. . Dept. of Environmental Technology)

    1994-08-05

    The application of the expanded granular sludge bed (EGSB) reactor for the anaerobic treatment of low-strength soluble wastewaters using ethanol as a model substrate was investigated in laboratory-scale reactors at 30 C. Chemical oxygen demand (COD) removal efficiency was above 80% at organic loading rates up to 12 g COD/L [center dot] d with influent concentrations as low as 100 to 200 mg COD/L. These results demonstrate the suitability of the EGSB reactor for the anaerobic treatment of low-strength wastewaters. The high treatment performance can be attributed to the intense mixing regime obtained by high hydraulic and organic loads. Good mixing of the bulk liquid phase for the substrate-biomass contact and adequate expansion of the sludge bed for the degassing were obtained when the liquid upflow velocity (V[sub up]) was greater than 2.5 m/h. Under such conditions, an extremely low apparent K[sub s] value for acetoclastic methanogenesis of 9.8 mg COD/L was observed. The presence of dissolved oxygen in the wastewater had no detrimental effect on the treatment performance. Sludge piston flotation from pockets of biogas accumulating under the sludge bed occurred at V[sub up] lower than 2.5 m/h due to poor bed expansion. This problem is expected only in small diameter laboratory-scale reactors. A more important restriction of the EGSB reactor was the sludge washout occurring at V[sub up] higher than 5.5 m/h and which was intensified at organic loads higher than 7 g COD/L [center dot] d due to buoyancy forces from the gas production.

  10. Enhanced struvite recovery from wastewater using a novel cone-inserted fluidized bed reactor.

    PubMed

    Guadie, Awoke; Xia, Siqing; Jiang, Wei; Zhou, Lijie; Zhang, Zhiqiang; Hermanowicz, Slawomir W; Xu, Xiaoyin; Shen, Shuang

    2014-04-01

    The feasibility of struvite recovery at low (12.5 mg/L) and high (120 mg/L) phosphorus concentrations was studied by constructing a novel fluidized bed reactor with cones (FBRwc) and without cones (FBRwoc). The crystallization process was continuously operated for 133 days under different hydraulic retention times (HRT = 1-10 hr), pH (7.5-10), and molar ratios of Mg/P (0.75-1.75), N/P (1-10) and Ca/Mg (0-2). The optimum operating conditions of HRT, pH, Mg/P and N/P molar ratios were found to be 2 hr, 9, 1.25, and 7.5, respectively. Under these optimum conditions, the phosphorus precipitation efficiencies of FBRwc were 93% for low and 98% for high phosphorus influent; however, the efficiencies were 78% and 81% for FBRwoc, respectively. Due to crystal losses at each junction (17%-31%), the crystal recovery efficiency of FBRwoc was relatively low (47%-65%) for both influent concentrations. However, the losses were minimal in FBRwc, which showed 75% and 92% crystal recovery for low and high phosphorus concentrations, respectively. At low calcium concentration, crystal chemical analysis showed the product to be pure struvite (> 99%). The scanning electron microscope and X-ray diffraction results further confirmed that the crystal recovered from FBRwc contained pure struvite, which could be considered a high quality fertilizer. Except HRT, all parameters (pH, Mg/P, N/P and Ca/Mg) were found to be influencing factors for FBRwc performance. Overall, inserting cones in each part of the reactor played a significant role in enhancing struvite recovery from a wide range of phosphorus-containing wastewater. PMID:25079406

  11. On-line interrogation of pebble bed reactor fuel using passive gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Chen, Jianwei

    The Pebble Bed Reactor (PBR) is a helium-cooled, graphite-moderated high temperature nuclear power reactor. In addition to its inherently safe design, a unique feature of this reactor is its multipass fuel cycle in which graphite fuel pebbles (of varying enrichment) are randomly loaded and continuously circulated through the core until they reach their prescribed end-of-life burnup limit (˜80,000--100,000 MWD/MTU). Unlike the situation with conventional light water reactors (LWRs), depending solely on computational methods to perform in-core fuel management will be highly inaccurate. As a result, an on-line measurement approach becomes the only accurate method to assess whether a particular pebble has reached its end-of-life burnup limit. In this work, an investigation was performed to assess the feasibility of passive gamma-ray spectrometry assay as an approach for on-line interrogation of PBR fuel for the simultaneous determination of burnup and enrichment on a pebble-by-pebble basis. Due to the unavailability of irradiated or fresh pebbles, Monte Carlo simulations were used to study the gamma-ray spectra of the PBR fuel at various levels of burnup. A pebble depletion calculation was performed using the ORIGEN code, which yielded the gamma-ray source term that was introduced into the input of an MCNP simulation. The MCNP simulation assumed the use of a high-purity coaxial germanium detector. Due to the lack of one-group high temperature reactor cross sections for ORIGEN, a heterogeneous MCNP model was developed to describe a typical PBR core. Subsequently, the code MONTEBURNS was used to couple the MCNP model and ORIGEN. This approach allowed the development of the burnup-dependent, one-group spectral-averaged PBR cross sections to be used in the ORIGEN pebble depletion calculation. Based on the above studies, a relative approach for performing the measurements was established. The approach is based on using the relative activities of Np-239/I-132 in combination

  12. Effect of small-scale biomass gasification at the state of refractory lining the fixed bed reactor

    NASA Astrophysics Data System (ADS)

    Janša, Jan; Peer, Vaclav; Pavloková, Petra

    2016-06-01

    The article deals with the influence of biomass gasification on the condition of the refractory lining of a fixed bed reactor. The refractory lining of the gasifier is one part of the device, which significantly affects the operational reliability and durability. After removing the refractory lining of the gasifier from the experimental reactor, there was done an assessment how gasification of different kinds of biomass reflected on its condition in terms of the main factors affecting its life. Gasification of biomass is reflected on the lining, especially through sticking at the bottom of the reactor. Measures for prolonging the life of lining consist in the reduction of temperature in the reactor, in this case, in order to avoid ash fusion biomass which it is difficult for this type of gasifier.

  13. Packed-bed reactor/silent-discharge plasma design data report

    SciTech Connect

    1996-05-01

    In 1992, Congress passed the Federal Facility Compliance Act requiring the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with Resource Conservation and Recovery Act (RCRA) land disposal restrictions (LDRs). The DOE Albuquerque Operations Office (AL) currently does not have adequate systems to treat the mixed wastes generated and stored at the nine DOE-AL sites. In response to the need for mixed-waste treatment capacity, DOE-AL organized a Treatment Selection Team under the Mixed-Waste Treatment Program (MWTP) to match mixed wastes with treatment options and develop a strategy for treatment of its mixed waste. The strategy developed by the Treatment Selection Team, as described in the AL Mixed-Waste Treatment Plan (DOE 1994), is to use available off-site commercial treatment facilities for all wastes that can be successfully and cost-effectively treated by such facilities. Where no appropriate commercial treatment facilities exist, mobile treatment units (MTUs) would be developed to treat wastes at the sites where the wastes are generated. Treatment processes used for mixed waste must not only address the hazardous component (i.e., meet LDRs) but also must contain the radioactive component in a form that allows final disposal while protecting workers, the public, and the environment. The packed-bed reactor/silent discharge plasma was chosen as a potential candidate for the treatment of the mixed wastes. The process is described.

  14. Gasification of refuse derived fuel in a fixed bed reactor for syngas production

    SciTech Connect

    Dalai, Ajay K. Batta, Nishant; Eswaramoorthi, I.; Schoenau, Greg J.

    2009-01-15

    Steam gasification of two different refuse derived fuels (RDFs), differing slightly in composition as well as thermal stability, was carried out in a fixed-bed reactor at atmospheric pressure. The proximate and ultimate analyses reveal that carbon and hydrogen are the major components in RDFs. The thermal analysis indicates the presence of cellulose and plastic based materials in RDFs. H{sub 2} and CO are found to be the major products, along with CO{sub 2} and hydrocarbons resulting from gasification of RDFs. The effect of gasification temperature on H{sub 2} and CO selectivities was studied, and the optimum temperature for better H{sub 2} and CO selectivity was determined to be 725 deg. C. The calorific value of product gas produced at lower gasification temperature is significantly higher than that of gas produced at higher process temperature. Also, the composition of RDF plays an important role in distribution of products gas. The RDF with more C and H content is found to produce more amounts of CO and H{sub 2} under similar experimental conditions. The steam/waste ratio showed a notable effect on the selectivity of syngas as well as calorific value of the resulting product gas. The flow rate of carrier gas did not show any significant effect on products yield or their distribution.

  15. Gasification of refuse derived fuel in a fixed bed reactor for syngas production.

    PubMed

    Dalai, Ajay K; Batta, Nishant; Eswaramoorthi, I; Schoenau, Greg J

    2009-01-01

    Steam gasification of two different refuse derived fuels (RDFs), differing slightly in composition as well as thermal stability, was carried out in a fixed-bed reactor at atmospheric pressure. The proximate and ultimate analyses reveal that carbon and hydrogen are the major components in RDFs. The thermal analysis indicates the presence of cellulose and plastic based materials in RDFs. H2 and CO are found to be the major products, along with CO2 and hydrocarbons resulting from gasification of RDFs. The effect of gasification temperature on H2 and CO selectivities was studied, and the optimum temperature for better H2 and CO selectivity was determined to be 725 degrees C. The calorific value of product gas produced at lower gasification temperature is significantly higher than that of gas produced at higher process temperature. Also, the composition of RDF plays an important role in distribution of products gas. The RDF with more C and H content is found to produce more amounts of CO and H2 under similar experimental conditions. The steam/waste ratio showed a notable effect on the selectivity of syngas as well as calorific value of the resulting product gas. The flow rate of carrier gas did not show any significant effect on products yield or their distribution. PMID:18434127

  16. [Influence of Temperature on the Anaerobic Packed Bed Reactor Performance and Methanogenic Community].

    PubMed

    Xie, Hai-ying; Wang, Xin; Li, Mu-yuan; Yan, Xu-you; Igarashi, Yasuo; Luo, Feng

    2015-11-01

    This study aimed to analyze the effect of temperature on performance and microbial community structure of an anaerobic packed bed reactor (APBR). The temperature was increased step-wise from room temperature (22 degrees C ± 1 degrees C) to psychrophilic (15 degrees C ± 1 degrees C), mesophilic (37 degrees C ± 1 degrees C) and thermophilic (55 degrees C ± 1 degrees C). The results showed that, in the temperature changing process, the higher the temperature of APBR was, the higher COD removal rate and daily gas production were. After temperature changed to psychrophilic, mesophilic and thermophilic, COD removal rate and daily gas production were 25%, 45%, 60% and 2.3 L x d(-1), 4.0 L x d(-1), 8.5 L x d(-1) respectively. However, there was no significant change in biogas composition (-60%). A sudden temperature change caused a simultaneous increase in the concentration of volatile fatty acids (VFA), which had been fluctuating. Using 16S rRNA gene clone library screening, Euryarchaeota was commonly found, including important methanogens: MBT (Methanobacteriales), Mst (Methanosaetaceae) , Msc (Methanosarcinaceae) and MMB (Methanomicrobiales), as well as thermophilic bacteria and few spring Archaea. However, the diversity of methanogenic groups was reduced, especially at mesophilic. The results of quantitative PCR showed that the 16S rRNA gene concentrations of Mst, MMB and Msc were reduced by temperature changes. Although the relative proportion of every kind of methanogen was significantly affected, Mst was the dominant methanogen. PMID:26911011

  17. Characterization of immobilized enzymes in polyurethane foams in a dynamic bed reactor.

    PubMed

    Hu, Z C; Korus, R A; Stormo, K E

    1993-06-01

    beta-D-Galactosidase (E 3.2.1.23) from Aspergillus oryzae was immobilized with polyurethane foam (PUF). Among several immobilization methods attempted in this work, the immobilized enzyme preparation by in-situ co-polymerization between enzyme and prepolymer HYPOL 3000 showed the highest activity. The intrinsic kinetics of PUF-immobilized enzyme was determined in a dynamic bed reactor, used to increase transport rates. The immobilization mechanism in PUF was studied by measurements of immobilized enzyme kinetics and by using scanning electron microscopy combined with immuno-gold labeling techniques. The results showed that immobilization was predominantly by covalent bonding between primary amino groups of beta-D-galactosidase and isocyanate groups of the prepolymers. Entrapment in the PUF micropores assisted the immobilization of enzymes, and adsorption on the surface of macropores was not important for immobilization. The bicinchoninic acid method was applied for the determination of PUF loading capacity and specific enzyme activity and used to determine enzyme deactivation during immobilization. PMID:7763711

  18. A novel semidry flue gas desulfurization process with the magnetically fluidized bed reactor.

    PubMed

    Zhang, Qi; Gui, Keting

    2009-09-15

    The magnetically fluidized bed (MFB) was used as the reactor in a novel semidry flue gas desulfurization (FGD) process to achieve high desulfurization efficiency. Experiments in a laboratory-scale apparatus were conducted to reveal the effects of approach to adiabatic saturation temperature, Ca/S molar ratio and applied magnetic field intensity on SO(2) removal. Results showed that SO(2) removal efficiency can be obviously enhanced by decreasing approach to adiabatic saturation temperature, increasing Ca/S molar ratio, or increasing applied magnetic field intensity. At a magnetic field intensity of 300Oe and a Ca/S molar ratio of 1.0, the desulfurization efficiency (excluding desulfurization efficiency in the fabric filter) was over 80%, while spent sorbent appeared in the form of dry powder. With the SEM, XRD and EDX research, it can be found that the increase of DC magnetic field intensity can make the surface morphology on the surface of the ferromagnetic particles loose and enhance the oxidation of S(IV), hence reducing the liquid phase mass transfer resistance of the slurry droplets and increasing desulfurization reaction rate, respectively. Therefore, the desulfurization efficiency increased obviously with the increase of DC field intensity. PMID:19369002

  19. Lewis Research Center's coal-fired, pressurized, fluidized-bed reactor test facility

    NASA Technical Reports Server (NTRS)

    Kobak, J. A.; Rollbuhler, R. J.

    1981-01-01

    A 200-kilowatt-thermal, pressurized, fluidized-bed (PFB) reactor, research test facility was designed, constructed, and operated as part of a NASA-funded project to assess and evaluate the effect of PFB hot-gas effluent on aircraft turbine engine materials that might have applications in stationary-power-plant turbogenerators. Some of the techniques and components developed for this PFB system are described. One of the more important items was the development of a two-in-one, gas-solids separator that removed 95+ percent of the solids in 1600 F to 1900 F gases. Another was a coal and sorbent feed and mixing system for injecting the fuel into the pressurized combustor. Also important were the controls and data-acquisition systems that enabled one person to operate the entire facility. The solid, liquid, and gas sub-systems all had problems that were solved over the 2-year operating time of the facility, which culminated in a 400-hour, hot-gas, turbine test.

  20. Gamma-ray spectrometry analysis of pebble bed reactor fuel using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Chen, Jianwei; Hawari, Ayman I.; Zhao, Zhongxiang; Su, Bingjing

    2003-06-01

    Monte Carlo simulations were used to study the gamma-ray spectra of pebble bed reactor fuel at various levels of burnup. A fuel depletion calculation was performed using the ORIGEN2.1 code, which yielded the gamma-ray source term that was introduced into the input of an MCNP4C simulation. The simulation assumed the use of a 100% efficient high-purity coaxial germanium (HPGe) detector, a pebble placed at a distance of 100 cm from the detector, and accounted for Gaussian broadening of the gamma-ray peaks. Previously, it was shown that 137Cs, 60Co (introduced as a dopant), and 134Cs are the relevant burnup indicators. The results show that the 662 keV line of 137Cs lies in close proximity to the intense 658 keV of 197Nb, which results in spectral interference between the lines. However, the 1333 keV line of 60Co, and selected 134Cs lines (e.g., at 605 keV) are free from spectral interference, which enhances the possibility of their utilization as relative burnup indicators.

  1. Organic matter removal from saline agricultural drainage wastewater using a moving bed biofilm reactor.

    PubMed

    Ateia, Mohamed; Nasr, Mahmoud; Yoshimura, Chihiro; Fujii, Manabu

    2015-01-01

    We investigated the effect of salinity on the removal of organics and ammonium from agricultural drainage wastewater (ADW) using moving bed biofilm reactors (MBBRs). Under the typical salinity level of ADW (total dissolved solids (TDS) concentration up to 2.5 g·L(-1)), microorganisms were acclimated for 40 days on plastic carriers and a stable slime layer of attached biofilm was formed. Next, six batch mode MBBRs were set up and run under different salinity conditions (0.2-20 g-TDS·L(-1)). The removal efficiency of chemical oxygen demand (COD) and ammonium-nitrogen (NH4-N) in 6 hours decreased from 98 and 68% to 64 and 21% with increasing salt concentrations from 2.5 to 20 g-TDS·L(-1), respectively. In addition, at decreasing salt levels of 0.2 g-TDS·L(-1), both COD removal and nitrification were slightly lowered. Kinetic analysis indicated that the first-order reaction rate constant (k1) and specific substrate utilization rate (U) with respect to the COD removal remained relatively constant (10.9-11.0 d(-1) and 13.1-16.1 g-COD-removed.g-biomass(-1)·d(-1), respectively) at the salinity range of 2.5-5.0 g-TDS·L(-1). In this study, the treated wastewater met the standard criteria of organic concentration for reuse in agricultural purposes, and the system performance remained relatively constant at the salinity range of typical ADW. PMID:26465302

  2. Aging biofilm from a full-scale moving bed biofilm reactor: characterization and enzymatic treatment study.

    PubMed

    Huang, Hui; Ren, Hongqiang; Ding, Lili; Geng, Jinju; Xu, Ke; Zhang, Yan

    2014-02-01

    Effective removal of aging biofilm deserves to receive more attention. This study aimed to characterized aging biofilm from a full-scale moving bed biofilm reactor treating pharmaceutical wastewater and evaluate the hydrolysis effects of biofilm by different enzymatic treatments. Results from FTIR and biochemical composition analyses showed that it was a predominately organic-based biofilm with the ratio of total protein (PN) to polysaccharide (PS) of 20.17. A reticular structure of extracellular polymeric matrix (EPM) with filamentous bacteria as the skeleton was observed on the basal layer through SEM-EDS test. Among the four commercial proteases and amylases from Genencor®, proteases were shown to have better performances than amylases either on the removal of MLSS and PN/MLSS or on DOC (i.e., dissolved organic carbon)/MLSS raising of biofilm pellets. Difference of dynamic fluorescence characteristics of dissolved organic matters after treated by the two proteases indicated distinguishing mechanisms of the treating process. PMID:24384319

  3. High-rate wastewater treatment combining a moving bed biofilm reactor and enhanced particle separation.

    PubMed

    Helness, H; Melin, E; Ulgenes, Y; Järvinen, P; Rasmussen, V; Odegaard, H

    2005-01-01

    Many cities around the world are looking for compact wastewater treatment alternatives since space for treatment plants is becoming scarce. In this paper development of a new compact, high-rate treatment concept with results from experiments in lab-scale and pilot-scale are presented. The idea behind the treatment concept is that coagulation/floc separation may be used to separate suspended and colloidal matter (resulting in > 70% organic matter removal in normal wastewater) while a high-rate biofilm process (based on Moving Bed biofilm reactors) may be used for removing low molecular weight, easily biodegradable, soluble organic matter. By using flotation for floc/biomass separation, the total residence time for a plant according to this concept will normally be < 1 hour. A cationic polymer combined with iron is used as coagulant at low dosages (i.e. 1-2 mg polymer/l, 5-10 mg Fe/l) resulting in low sludge production (compared to conventional chemical treatment) and sufficient P-removal. PMID:16459783

  4. Removal of VOCs by hybrid electron beam reactor with catalyst bed

    NASA Astrophysics Data System (ADS)

    Kim, Jinkyu; Han, Bumsoo; Kim, Yuri; Lee, Jae-Hyung; Park, Chong-Rae; Kim, Jong-Chul; Kim, Jo-Chun; Kim, Ki-Joon

    2004-09-01

    Electron beam decomposition of volatile organic compounds (VOCs) was studied in order to obtain information for developing effective treatment method of off-gases from industries. We have examined the combination of electron beam and catalyst honeycomb which is either 1% platinum based or ceramic honeycomb- based aluminum oxide, using a hybrid reactor in order to improve removal efficiency and CO 2 formation; and to suppress undesirable by-product formation e.g. O 3, aerosol, H xC y. , and tar. The experiments were conducted using a pilot-scale treatment system (maximum capacity; 1800 N m 3/h) that fitted the field size to scale up from the traditional laboratory scale system for VOC removal with electron beam irradiation. Toluene was selected as a typical VOC that was irradiated to investigate product formation, effect of ceramic and catalyst, and factors effecting overall efficiency of degradation. Styrene was selected as the most odorous compound among the VOCs of interest. It was found that VOCs could be destroyed more effectively using a hybrid system with catalyst bed than with electron beam irradiation only.

  5. Combined production and purification of hydrogen from methanol using steam iron process in fixed bed reactor

    NASA Astrophysics Data System (ADS)

    Campo, R.; Durán, P.; Plou, J.; Herguido, J.; Peña, J. A.

    2013-11-01

    A research work is being conducted to study the combined production and purification of hydrogen by means of redox processes departing from biomass fast pyrolysis oils (bio-oils). To achieve that goal, methanol has been used as featured material because it is the most representative compound of the alcoholic fraction of bio-oils. The study has been carried out in a fixed bed reactor where methanol decomposes in H2 and CO when gets in contact with a reactive solid based in an iron oxide at temperatures above 600 °C. During the first stage of the “steam-iron” process, reactive gases reduce the iron oxide to metallic iron. Afterward, in a following step, the previously reduced iron is reoxidized by steam producing a high purity hydrogen stream. Although coke deposition does exist during the reducing stage, this behaves as inert during the reoxidation process. Coke inert role has been corroborated by GC, SEM and TEM techniques, showing that carbon deposits were constituted by ordered structures (carbon nanotubes). The determination of the hydrogen production along successive cycles allowed the evaluation of the effect of temperature and alternating reactive atmospheres on the stability of the solid, as well as the optimum conditions for such purpose.

  6. Recovery of energy and iron from oily sludge pyrolysis in a fluidized bed reactor.

    PubMed

    Qin, Linbo; Han, Jun; He, Xiang; Zhan, Yiqiu; Yu, Fei

    2015-05-01

    In the steel industry, about 0.86 ton of oily sludge is produced for every 1000 tons of rolling steel. Due to the adverse impact on human health and the environment, oily sludge is designated as a hazardous waste in the Resource Conservation and Recovery Act (RCRT). In this paper, the pyrolysis treatment of oily sludge is studied in a fluidized bed reactor at a temperature range of 400-600 °C. During oily sludge pyrolysis, a maximum oil yield of 59.2% and a minimum energy loss of 19.0% are achieved at 500 °C. The energy consumption of treating 1 kg oily sludge is only 2.4-2.9 MJ. At the same time, the energy of produced oil, gas and solid residue are 20.8, 6.32, and 0.83 MJ, respectively. In particular, it is found that the solid residue contains more than 42% iron oxide, which can be used as the raw material for iron production. Thus, the simultaneous recovery of energy and iron from oil sludge by pyrolysis is feasible. PMID:25728916

  7. Microalgal growth in municipal wastewater treated in an anaerobic moving bed biofilm reactor.

    PubMed

    Hultberg, Malin; Olsson, Lars-Erik; Birgersson, Göran; Gustafsson, Susanne; Sievertsson, Bertil

    2016-05-01

    Nutrient removal from the effluent of an anaerobic moving bed biofilm reactor (AnMBBR) treated with microalgae was evaluated. Algal treatment was highly efficient in removal of nutrients and discharge limits were met after 3days. Extending the cultivation time from 3 to 5days resulted in a large increase in biomass, from 233.3±49.3 to 530.0±72.1mgL(-1), despite nutrients in the water being exhausted after 3days (ammonium 0.04mgL(-1), orthophosphate <0.05mgL(-1)). Biomass productivity, lipid content and quality did not differ in microalgal biomass produced in wastewater sampled before the AnMBBR. The longer cultivation time resulted in a slight increase in total lipid concentration and a significant decrease in linolenic acid concentration in all treatments. Differences were observed in chemical oxygen demand, which decreased after algal treatment in wastewater sampled before the AnMBBR whereas it increased after algal treatment in the effluent from the AnMBBR. PMID:26868151

  8. A simplified DEM-CFD approach for pebble bed reactor simulations

    SciTech Connect

    Li, Y.; Ji, W.

    2012-07-01

    In pebble bed reactors (PBR's), the pebble flow and the coolant flow are coupled with each other through coolant-pebble interactions. Approaches with different fidelities have been proposed to simulate similar phenomena. Coupled Discrete Element Method-Computational Fluid Dynamics (DEM-CFD) approaches are widely studied and applied in these problems due to its good balance between efficiency and accuracy. In this work, based on the symmetry of the PBR geometry, a simplified 3D-DEM/2D-CFD approach is proposed to speed up the DEM-CFD simulation without significant loss of accuracy. Pebble flow is simulated by a full 3-D DEM, while the coolant flow field is calculated with a 2-D CFD simulation by averaging variables along the annular direction in the cylindrical geometry. Results show that this simplification can greatly enhance the efficiency for cylindrical core, which enables further inclusion of other physics such as thermal and neutronic effect in the multi-physics simulations for PBR's. (authors)

  9. Continuous xylanase production with Aspergillus nidulans under pyridoxine limitation using a trickle bed reactor.

    PubMed

    Müller, Michael; Prade, Rolf A; Segato, Fernando; Atiyeh, Hasan K; Wilkins, Mark R

    2015-01-01

    A trickle bed reactor (TBR) with recycle was designed and tested using Aspergillus nidulans with a pyridoxine marker and over-expressing/secreting recombinant client xylanase B (XynB). The pyridoxine marker prevented the fungus from synthesizing its own pyridoxine and fungus was unable to grow when no pyridoxine was present in the medium; however, enzyme production was unaffected. Uncontrolled mycelia growth that led to clogging of the TBR was observed when fungus without a pyridoxine marker was used for XynB production. Using the fungus with pyridoxine marker, the TBR was operated continuously for 18 days and achieved a XynB output of 41 U/ml with an influent and effluent flow rate of 0.5 ml/min and a recycle flow rate of 56 ml/min. Production yields in the TBR were 1.4 times greater than a static tray culture and between 1.1 and 67 times greater than yields for SSF enzyme production stated in the literature. PMID:25683507

  10. Impact of fine mesh sieve primary treatment on nitrogen removal in moving bed biofilm reactors.

    PubMed

    Rusten, B; Razafimanantsoa, V A; Andriamiarinjaka, M A; Otis, C L; Sahu, A K; Bilstad, T

    2016-01-01

    The purpose of this project was to investigate the effect of selective particle removal during primary treatment on nitrogen removal in moving bed biofilm reactors (MBBRs). Two small MBBR pilot plants were operated in parallel, where one train treated 2 mm screened municipal wastewater and the other train treated wastewater that had passed through a Salsnes Filter SF1000 rotating belt sieve (RBS) with a 33 µs sieve cloth. The SF1000 was operated without a filter mat on the belt. The tests confirmed that, for the wastewater characteristics at the test plant, Salsnes Filter primary treatment with a 33 µs RBS and no filter mat produced a primary effluent that was close to optimum. Removal of organic matter with the 33 µs sieve had no negative effect on the denitrification process. Nitrification rates improved by 10-15% in the train with 33 µs RBS primary treatment. Mass balance calculations showed that without RBS primary treatment, the oxygen demand in the biological system was 36% higher. Other studies have shown that the sludge produced by RBS primary treatment is beneficial for biogas production and will also significantly improve sludge dewatering of the combined primary and biological sludge. PMID:26819389

  11. Assessing the treatment of acetaminophen-contaminated brewery wastewater by an anaerobic packed-bed reactor.

    PubMed

    Abdullah, Norhayati; Fulazzaky, Mohamad Ali; Yong, Ee Ling; Yuzir, Ali; Sallis, Paul

    2016-03-01

    The treatment of high-strength organic brewery wastewater with added acetaminophen (AAP) by an anaerobic digester was investigated. An anaerobic packed-bed reactor (APBR) was operated as a continuous process with an organic loading rate of 1.5-g COD per litre per day and a hydraulic retention time of three days. The results of steady-state analysis showed that the greatest APBR performances for removing COD and TOC were as high as 98 and 93%, respectively, even though the anaerobic digestibility after adding the different AAP concentrations of 5, 10 and 15 mg L(-1) into brewery wastewater can affect the efficiency of organic matter removal. The average CH4 production decreased from 81 to 72% is counterbalanced by the increased CO2 production from 11 to 20% before and after the injection of AAP, respectively. The empirical kinetic models for substrate utilisation and CH4 production were used to predict that, under unfavourable conditions, the performance of the APBR treatment process is able to remove COD with an efficiency of only 6.8%. PMID:26760229

  12. Tar Production from Biomass Pyrolysis in a Fluidized Bed Reactor: A Novel Turbulent Multiphase Flow Formulation

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Lathouwers, D.

    2000-01-01

    A novel multiphase flow model is presented for describing the pyrolysis of biomass in a 'bubbling' fluidized bed reactor. The mixture of biomass and sand in a gaseous flow is conceptualized as a particulate phase composed of two classes interacting with the carrier gaseous flow. The solid biomass is composed of three initial species: cellulose, hemicellulose and lignin. From each of these initial species, two new solid species originate during pyrolysis: an 'active' species and a char, thus totaling seven solid-biomass species. The gas phase is composed of the original carrier gas (steam), tar and gas; the last two species originate from the volumetric pyrolysis reaction. The conservation equations are derived from the Boltzmann equations through ensemble averaging. Stresses in the gaseous phase are the sum of the Newtonian and Reynolds (turbulent) contributions. The particulate phase stresses are the sum of collisional and Reynolds contributions. Heat transfer between phases, and heat transfer between classes in the particulate phase is modeled, the last resulting from collisions between sand and biomass. Closure of the equations must be performed by modeling the Reynolds stresses for both phases. The results of a simplified version (first step) of the model are presented.

  13. Lipase-catalyzed interesterification in packed bed reactor using 2 different temperatures.

    PubMed

    Chae, Mi-Hwa; Park, Hye-Kyung; Kwon, Kwang-Il; Kim, Jong-Wook; Hong, Seung In; Kim, Yangha; Kim, Byung Hee; Kim, In-Hwan

    2011-05-01

    Lipase-catalyzed interesterification of high oleic sunflower oil and fully hydrogenated soybean oil (70 : 30, wt/ wt) was carried out in a packed bed reactor using an immobilized lipase from Thermomyces lanuginosus (Lipozyme TL IM) and the effect of a stepwise temperature protocol involving the 2 different temperatures, 60 and 70 °C, was investigated. The melting point of a fat that was incubated at 70 °C for 9 min was 57 °C, which suggested that it should be to employ a lower reaction temperature of 60 °C, after the first 9 min of the reaction. There were no significant differences (P < 0.05) in the conversion degree, triacylglycerol profile, and solid fat content between a constant temperature protocol (70 °C) and a stepwise temperature protocol (a combination of 70 and 60 °C). After 50 cycles, the overall residual activities of enzymes employed in stepwise temperature protocol were significantly (P < 0.05) higher than those of enzymes employed in constant temperature protocol. PMID:22417335

  14. Immobilised native plant cysteine proteases: packed-bed reactor for white wine protein stabilisation.

    PubMed

    Benucci, Ilaria; Lombardelli, Claudio; Liburdi, Katia; Acciaro, Giuseppe; Zappino, Matteo; Esti, Marco

    2016-02-01

    This research presents a feasibility study of using a continuous packed-bed reactor (PBR), containing immobilised native plant cysteine proteases, as a specific and mild alternative technique relative to the usual bentonite fining for white wine protein stabilisation. The operational parameters for a PBR containing immobilised bromelain (PBR-br) or immobilised papain (PBR-pa) were optimised using model wine fortified with synthetic substrate (Bz-Phe-Val-Arg-pNA). The effectiveness of PBR-br, both in terms of hazing potential and total protein decrease, was significantly higher than PBR-pa, in all the seven unfined, white wines used. Among the wines tested, Sauvignon Blanc, given its total protein content as well as its very high intrinsic instability, was selected as a control wine to evaluate the effect of the treatment on wine as to its soluble protein profile, phenolic composition, mineral component, and sensory properties. The treatment in a PBR containing immobilised bromelain appeared effective in decreasing both wine hazing potential and total protein amount, while it did not significantly affect the phenol compounds, the mineral component nor the sensory quality of wine. The enzymatic treatment in PBR was shown to be a specific and mild technique for use as an alternative to bentonite fining for white wine protein stabilisation. PMID:27162393

  15. Contact detection acceleration in pebble flow simulation for pebble bed reactor systems

    SciTech Connect

    Li, Y.; Ji, W.

    2013-07-01

    Pebble flow simulation plays an important role in the steady state and transient analysis of thermal-hydraulics and neutronics for Pebble Bed Reactors (PBR). The Discrete Element Method (DEM) and the modified Molecular Dynamics (MD) method are widely used to simulate the pebble motion to obtain the distribution of pebble concentration, velocity, and maximum contact stress. Although DEM and MD present high accuracy in the pebble flow simulation, they are quite computationally expensive due to the large quantity of pebbles to be simulated in a typical PBR and the ubiquitous contacts and collisions between neighboring pebbles that need to be detected frequently in the simulation, which greatly restricted their applicability for large scale PBR designs such as PBMR400. Since the contact detection accounts for more than 60% of the overall CPU time in the pebble flow simulation, the acceleration of the contact detection can greatly enhance the overall efficiency. In the present work, based on the design features of PBRs, two contact detection algorithms, the basic cell search algorithm and the bounding box search algorithm are investigated and applied to pebble contact detection. The influence from the PBR system size, core geometry and the searching cell size on the contact detection efficiency is presented. Our results suggest that for present PBR applications, the bounding box algorithm is less sensitive to the aforementioned effects and has superior performance in pebble contact detection compared with basic cell search algorithm. (authors)

  16. Chemical looping reforming of waste cooking oil in packed bed reactor.

    PubMed

    Pimenidou, P; Rickett, G; Dupont, V; Twigg, M V

    2010-08-01

    Chemical looping steam reforming for hydrogen production from waste cooking oil was investigated using a packed bed reactor. The steam to carbon ratio of 4 and temperatures between 600 and 700 degrees C yielded the best results of the range of conditions tested. Six cycles at two weighted hourly space velocities (WHSV of 2.64 and 5.28 h(-1)) yielded high (>0.74) and low (<0.2) oil conversion fractions, respectively, representing low and high coking conditions. The WHSV of 2.64 h(-1) yielded product concentrations closest to equilibrium values calculated assuming a fresh rapeseed oil composition. Repeated cycling revealed some output oscillations in reactant conversion and in the extent of Ni-NiO conversion, but did not exhibit deterioration by the 6th cycle. The selectivity of CO, CO(2) and CH(4) were remarkably constant over the performed cycles, resulting in a repeatable syngas composition with H(2) selectivity very close to the optimum. PMID:20359888

  17. Post-treatment of fly ash by ozone in a fixed bed reactor

    SciTech Connect

    Kim Hougaard Pedersen; Merc Casanovas Meli; Anker Degn Jensen; Kim Dam-Johansen

    2009-01-15

    The residual carbon in fly ash produced from pulverized coal combustion can adsorb the air-entraining admixtures (AEAs) added to enhance air entrainment in concrete. This behavior of the ash can be suppressed by exposing the fly ash to oxidizing species, which oxidizes the carbon surface and thus prevents the AEA to be adsorbed. In the present work, two fly ashes have been ozonated in a fixed bed reactor and the results showed that ozonation is a potential post-treatment method that can lower the AEA requirements of a fly ash up to 6 times. The kinetics of the carbon oxidation by ozone was found to be fast. A kinetic model has been formulated, describing the passivation of carbon, and it includes the stoichiometry of the ozone consumption (0.8 mol of O{sub 3}/kg of C) and an ineffective ozone loss caused by catalytic decomposition. The simulated results correlated well with the experimental data. 28 refs., 7 figs., 3 tabs.

  18. Ethanol production during semi-continuous syngas fermentation in a trickle bed reactor using Clostridium ragsdalei.

    PubMed

    Devarapalli, Mamatha; Atiyeh, Hasan K; Phillips, John R; Lewis, Randy S; Huhnke, Raymond L

    2016-06-01

    An efficient syngas fermentation bioreactor provides a mass transfer capability that matches the intrinsic kinetics of the microorganism to obtain high gas conversion efficiency and productivity. In this study, mass transfer and gas utilization efficiencies of a trickle bed reactor during syngas fermentation by Clostridium ragsdalei were evaluated at various gas and liquid flow rates. Fermentations were performed using a syngas mixture of 38% CO, 28.5% CO2, 28.5% H2 and 5% N2, by volume. Results showed that increasing the gas flow rate from 2.3 to 4.6sccm increased the CO uptake rate by 76% and decreased the H2 uptake rate by 51% up to Run R6. Biofilm formation after R6 increased cells activity with over threefold increase in H2 uptake rate. At 1662h, the final ethanol and acetic acid concentrations were 5.7 and 12.3g/L, respectively, at 200ml/min of liquid flow rate and 4.6sccm gas flow rate. PMID:26950756

  19. The mineralization of 5-amino-2,4,6-triiodoisophthalic acid by a two-stage fixed-bed reactor.

    PubMed

    Lecouturier, D; Rochex, A; Lebeault, J-M

    2008-05-01

    Iodinated X-ray contrast media have been detected in hospital effluent, sewage treatment plant effluent, rivers and groundwater aquifers. No process has been developed to remove triiodinated aromatic molecules. In this paper, we present a biological sequential process using an anaerobic fixed-bed reactor coupled in series with an aerobic fixed-bed reactor for degrading 5-amino-2,4,6-triiodoisophthalic acid (ATIA), the core structure of a X-ray contrast media family. The results obtained showed that the coupled reactor eliminated up to 870+/-44 mg of carbon L(-1) day(-1), with a molar ethanol/ATIA ratio of 4 in the feeding medium. The anaerobic reactor (ANR) undertook the majority of the deiodination of the aromatic nucleus and had a maximum deiodination rate of 23.4+/-0.06 mM day(-1). The aerobic reactor (AER) mineralized ATIA and was also able to eliminate its metabolites. This study suggests that the mineralization of ATIA can be achieved efficiently in a coupled anaerobic-aerobic bioreactor. PMID:18342906

  20. CARBON COATED (CARBONOUS) CATALYST IN EBULLATED BED REACTOR FOR PRODUCTION OF OXYGENATED CHEMICALS FROM SYNGAS/CO2

    SciTech Connect

    Peizheng Zhou

    2002-12-30

    This report summarizes the work completed under DOE's Support of Advanced Fuel Research program, Contract No. DE-FG26-99FT40681. The contract period was October 2000 through September 2002. This R&D program investigated the modification of the mechanical strength of catalyst extrudates using Hydrocarbon Technologies, Inc. (HTI) carbon-coated catalyst technology so that the ebullated bed technology can be utilized to produce valuable oxygenated chemicals from syngas/CO{sub 2} efficiently and economically. Exothermic chemical reactions benefit from the temperature control and freedom from catalyst fouling provided by the ebullated bed reactor technology. The carbon-coated extrudates prepared using these procedures had sufficient attrition resistance and surface area for use in ebullated bed operation. The low cost of carbon coating makes the carbon-coated catalysts highly competitive in the market of catalyst extrudates.

  1. Electrical conductivity as a state indicator for the start-up period of anaerobic fixed-bed reactors.

    PubMed

    Robles, A; Latrille, E; Ribes, J; Bernet, N; Steyer, J P

    2016-01-01

    The aim of this work was to analyse the applicability of electrical conductivity sensors for on-line monitoring the start-up period of an anaerobic fixed-bed reactor. The evolution of bicarbonate concentration and methane production rate was analysed. Strong linear relationships between electrical conductivity and both bicarbonate concentration and methane production rate were observed. On-line estimations of the studied parameters were carried out in a new start-up period by applying simple linear regression models, which resulted in a good concordance between both observed and predicted values. Electrical conductivity sensors were therefore identified as an interesting method for monitoring the start-up period of anaerobic fixed-bed reactors due to its reliability, robustness, easy operation, low cost, and minimum maintenance compared with the currently used sensors. PMID:27148733

  2. Particle-bed gas-cooled fast reactor (PB-GCFR) design. Project final technical report (Sept 2001 - Aug 2003).

    SciTech Connect

    Taiwo, T. A.; Wei, T. Y. C.; Feldman, E. E.; Hoffman, E. A.; Fatone, M.; Holland, J. W.; Prokofiev, I. G.; Yang, W. S.; Palmiotti, G.; Hill, R. N.; Todosow, M.; Salvatores, M.; Gandini, A.

    2003-10-27

    The objective of this project is to develop a conceptual design of a particle-bed, gas-cooled fast reactor (PB-GCFR) core that meets the advanced reactor concept and enhanced proliferation-resistant goals of the US Department of Energy's NERI program. The key innovation of this project is the application of a fast neutron spectrum environment to enhance both the passive safety and transmutation characteristics of the advanced particle-bed and pebble-bed reactor designs. The PB-GCFR design is expected to produce a high-efficiency system with a low unit cost. It is anticipated that the fast neutron spectrum would permit small-sized units ({approx} 150 MWe) that can be built quickly and packaged into modular units, and whose production can be readily expanded as the demand grows. Such a system could be deployed globally. The goals of this two-year project are as follows: (1) design a reactor core that meets the future needs of the nuclear industry, by being passively safe with reduced need for engineered safety systems. This will entail an innovative core design incorporating new fuel form and type; (2) employ a proliferation-resistant fuel design and fuel cycle. This will be supported by a long-life core design that is refueled infrequently, and hence, reduces the potential for fuel diversion; (3) incorporate design features that permit use of the system as an efficient transmuter that could be employed for burning separated plutonium fuel or recycled LWR transuranic fuel, should the need arise; and (4) evaluate the fuel cycle for waste minimization and for the possibility of direct fuel disposal. The application of particle-bed fuel provides the promise of extremely high burnup and fission-product protection barriers that may permit direct disposal.

  3. The effects of temperatures on the pebble flow in a pebble bed high temperature reactor

    SciTech Connect

    Sen, R. S.; Cogliati, J. J.; Gougar, H. D.

    2012-07-01

    The core of a pebble bed high temperature reactor (PBHTR) moves during operation, a feature which leads to better fuel economy (online refueling with no burnable poisons) and lower fuel stress. The pebbles are loaded at the top and trickle to the bottom of the core after which the burnup of each is measured. The pebbles that are not fully burned are recirculated through the core until the target burnup is achieved. The flow pattern of the pebbles through the core is of importance for core simulations because it couples the burnup distribution to the core temperature and power profiles, especially in cores with two or more radial burnup 'zones '. The pebble velocity profile is a strong function of the core geometry and the friction between the pebbles and the surrounding structures (other pebbles or graphite reflector blocks). The friction coefficient for graphite in a helium environment is inversely related to the temperature. The Thorium High Temperature Reactor (THTR) operated in Germany between 1983 and 1989. It featured a two-zone core, an inner core (IC) and outer core (OC), with different fuel mixtures loaded in each zone. The rate at which the IC was refueled relative to the OC in THTR was designed to be 0.56. During its operation, however, this ratio was measured to be 0.76, suggesting the pebbles in the inner core traveled faster than expected. It has been postulated that the positive feedback effect between inner core temperature, burnup, and pebble flow was underestimated in THTR. Because of the power shape, the center of the core in a typical cylindrical PBHTR operates at a higher temperature than the region next to the side reflector. The friction between pebbles in the IC is lower than that in the OC, perhaps causing a higher relative flow rate and lower average burnup, which in turn yield a higher local power density. Furthermore, the pebbles in the center region have higher velocities than the pebbles next to the side reflector due to the

  4. Integrated detoxification methodology of hazardous phenolic wastewaters in environmentally based trickle-bed reactors: Experimental investigation and CFD simulation.

    PubMed

    Lopes, Rodrigo J G; Almeida, Teresa S A; Quinta-Ferreira, Rosa M

    2011-05-15

    Centralized environmental regulations require the use of efficient detoxification technologies for the secure disposal of hazardous wastewaters. Guided by federal directives, existing plants need reengineering activities and careful analysis to improve their overall effectiveness and to become environmentally friendly. Here, we illustrate the application of an integrated methodology which encompasses the experimental investigation of catalytic wet air oxidation and CFD simulation of trickle-bed reactors. As long as trickle-bed reactors are determined by the flow environment coupled with chemical kinetics, first, on the optimization of prominent numerical solution parameters, the CFD model was validated with experimental data taken from a trickle bed pilot plant specifically designed for the catalytic wet oxidation of phenolic wastewaters. Second, several experimental and computational runs were carried out under unsteady-state operation to evaluate the dynamic performance addressing the TOC concentration and temperature profiles. CFD computations of total organic carbon conversion were found to agree better with experimental data at lower temperatures. Finally, the comparison of test data with simulation results demonstrated that this integrated framework was able to describe the mineralization of organic matter in trickle beds and the validated consequence model can be exploited to promote cleaner remediation technologies of contaminated waters. PMID:21377790

  5. Effect of various sources of organic carbon and high nitrite and nitrate concentrations on the selection of denitrifying bacteria. II. Continuous cultures in packed bed reactors.

    PubMed

    Błaszczyk, M

    1983-01-01

    The effect of different organic compounds, nitrites and nitrates at the concentration of 1,000 mg N/l on the quantitative and strain-specific selection of denitrifying bacteria was determined in anaerobic packed bed reactors. Both the source of carbon and nitrogen form influenced strain specificity and the frequency of occurrence of denitrifying bacteria. The frequency of denitrifying bacteria within packed bed reactor ranged in different media from 11% (glucose and nitrates) to 100% (methanol and ethanol with nitrates). A single species selection was observed in the presence of nitrites within packed bed reactor: Pseudomonas aeruginosa in medium with acetate. Pseudomonas stutzeri in medium with ethanol, Pseudomonas mendocina in medium with methanol and Pseudomonas fluorescens in medium with glucose. When nitrates were present in packed bed reactor, the dominating bacteria were: P. stutzeri in medium with acetate, P. fluorescens in medium with ethanol, Paracoccus denitrificans in medium with methanol and Alcaligenes faecalis in medium with glucose. PMID:6194668

  6. Transesterification of rapeseed oil for biodiesel production in trickle-bed reactors packed with heterogeneous Ca/Al composite oxide-based alkaline catalyst.

    PubMed

    Meng, Yong-Lu; Tian, Song-Jiang; Li, Shu-Fen; Wang, Bo-Yang; Zhang, Min-Hua

    2013-05-01

    A conventional trickle bed reactor and its modified type both packed with Ca/Al composite oxide-based alkaline catalysts were studied for biodiesel production by transesterification of rapeseed oil and methanol. The effects of the methanol usage and oil flow rate on the FAME yield were investigated under the normal pressure and methanol boiling state. The oil flow rate had a significant effect on the FAME yield for the both reactors. The modified trickle bed reactor kept over 94.5% FAME yield under 0.6 mL/min oil flow rate and 91 mL catalyst bed volume, showing a much higher conversion and operational stability than the conventional type. With the modified trickle bed reactor, both transesterification and methanol separation could be performed simultaneously, and glycerin and methyl esters were separated additionally by gravity separation. PMID:23558183

  7. Performance of a pilot-scale packed bed reactor for perchlorate reduction using a sulfur oxidizing bacterial consortium.

    PubMed

    Boles, Amber R; Conneely, Teresa; McKeever, Robert; Nixon, Paul; Nüsslein, Klaus R; Ergas, Sarina J

    2012-03-01

    A novel sulfur-utilizing perchlorate reducing bacterial consortium successfully treated perchlorate (ClO₄⁻) in prior batch and bench-scale packed bed reactor (PBR) studies. This study examined the scale up of this process for treatment of water from a ClO ₄⁻ and RDX contaminated aquifer in Cape Cod Massachusetts. A pilot-scale upflow PBR (∼250-L) was constructed with elemental sulfur and crushed oyster shell packing media. The reactor was inoculated with sulfur oxidizing ClO₄⁻ reducing cultures enriched from a wastewater seed. Sodium sulfite provided a good method of dissolved oxygen removal in batch cultures, but was found to promote the growth of bacteria that carry out sulfur disproportionation and sulfate reduction, which inhibited ClO₄⁻ reduction in the pilot system. After terminating sulfite addition, the PBR successfully removed 96% of the influent ClO₄⁻ in the groundwater at an empty bed contact time (EBCT) of 12 h (effluent ClO₄⁻ of 4.2 µg L(-1)). Simultaneous ClO₄⁻ and NO₃⁻ reduction was observed in the lower half of the reactor before reactions shifted to sulfur disproportionation and sulfate reduction. Analyses of water quality profiles were supported by molecular analysis, which showed distinct groupings of ClO₄⁻ and NO₃⁻ degrading organisms at the inlet of the PBR, while sulfur disproportionation was the primary biological process occurring in the top potion of the reactor. PMID:22015922

  8. Automated spectral zones selection methodology for diffusion theory data preparation for pebble bed reactor analysis

    NASA Astrophysics Data System (ADS)

    Mphahlele, Ramatsemela

    A methodology is developed for the determination of the optimum spectral zones in Pebble Bed Reactors (PBR). In this work a spectral zone is defined as a zone made up of a number of nodes whose characteristics are collectively similar and that are assigned the same few-group diffusion constants. In other words the spectral zones are the regions over which the few-group diffusion parameters are generated. The identification of spectral boundaries is treated as an optimization problem. It is solved by systematically and simultaneously repositioning all zone boundaries to achieve the global minimum error between the reference transport solution (MCNP) and the diffusion code solution (NEM). The objective function for the optimization algorithm is the total reaction rate error, which is defined as the sum of the leakage, absorption and fission reaction rates error in each zone. An iterative determination of group-dependent bucklings is incorporated into the methodology to properly account for spectral effects of neighboring zones. A preferred energy group structure has also been chosen. This optimization approach with the reference transport solution has proved to be accurate and consistent, however the computational effort required to complete the optimization process is significant. Thus a more practical methodology is also developed for the determination of the spectral zones in PBRs. The reactor physics characteristics of the spectral zones have been studied to understand the nature of the spectral zone boundaries. The practical tool involves the use of spectral indices based on few-group diffusion theory whole core calculations. With this methodology, there is no need to first have a reference transport solution. It is shown that the diffusion-theory coarse group fluxes and the effective multiplication factor computed using zones based on the practical index agrees within a narrow tolerance with those of the reference approach. Therefore the "practical" index

  9. Operational stability of naringinase PVA lens-shaped microparticles in batch stirred reactors and mini packed bed reactors-one step closer to industry.

    PubMed

    Nunes, Mário A P; Rosa, M Emilia; Fernandes, Pedro C B; Ribeiro, Maria H L

    2014-07-01

    The immobilization of naringinase in PVA lens-shaped particles, a cheap and biocompatible hydrogel was shown to provide an effective biocatalyst for naringin hydrolysis, an appealing reaction in the food and pharmaceutical industries. The present work addresses the operational stability and scale-up of the bioconversion system, in various types of reactors, namely shaken microtiter plates (volume ⩽ 2 mL), batch stirred tank reactors (volume <400 mL) and a packed-bed reactor (PBR, 6.8 mL). Consecutive batch runs were performed with the shaken/stirred vessels, with reproducible and encouraging results, related to operational stability. The PBR was used to establish the feasibility for continuous operation, running continuously for 54 days at 45°C. The biocatalyst activity remained constant for 40 days of continuous operation. The averaged specific productivity was 9.07 mmol h(-1) g enzyme(-1) and the half-life of 48 days. PMID:24874877

  10. Nitrogen and carbon removal efficiency of a polyvinyl alcohol gel based moving bed biofilm reactor system.

    PubMed

    Gani, Khalid Muzamil; Singh, Jasdeep; Singh, Nitin Kumar; Ali, Muntjeer; Rose, Vipin; Kazmi, A A

    2016-01-01

    In this study, the effectiveness of polyvinyl alcohol (PVA) gel beads in treating domestic wastewater was investigated: a moving bed biofilm reactor (MBBR) configuration (oxic-anoxic and oxic) with 10% filling fraction of biomass carriers was operated in a continuously fed regime at temperatures of 25, 20, 15 and 6 °C with hydraulic retention times (HRTs) of 32 h, 18 h, 12 h and 9 h, respectively. Influent loadings were in the range of 0.22-1.22 kg N m(-3) d(-1) (total nitrogen (TN)), 1.48-7.82 kg chemical oxygen demand (COD) m(-3) d(-1) (organic) and 0.12-0.89 kg NH4(+)-N m(-3)d(-1) (ammonia nitrogen). MBBR performance resulted in the maximum TN removal rate of 1.22 kg N m(-3) d(-1) when the temperature and HRT were 6 °C and 9 h, respectively. The carbon removal rate at this temperature and HRT was 6.82 kg COD m(-3) d(-1). Ammonium removal rates ranged from 0.13 to 0.75 kg NH4(+)-N m(-3) d(-1) during the study. Total phosphorus and suspended solid removal efficiency ranged from 84 to 98% and 85 to 94% at an influent concentration of 3.3-7.1 mg/L and 74-356 mg/L, respectively. The sludge wasted from the MBBR exhibited light weight features characterized by sludge volume index value of 185 mL/g. Experimental data obtained can be useful in further developing the concept of PVA gel based wastewater treatment systems. PMID:27054722

  11. Polyhydroxyalkanoate biosynthesis from paper mill wastewater treated by a moving bed biofilm reactor.

    PubMed

    Jarpa, Mayra; Pozo, Guillermo; Baeza, Rocío; Martínez, Miguel; Vidal, Gladys

    2012-01-01

    Polyhydroxyalkanoate (PHA) biosynthesis in paper mill wastewater treated by a Moving Bed Biofilm Reactor (MBBR) was evaluated. A MBBR was operated during 300 d. The increasing effect of the Organic Load Rate (OLR) from 0.13 kg BOD(5)/m(3)·d to 2.99 kg BOD(5)/m(3)·d and the influence of two relationship of BOD(5:) N: P (100: 5: 1 and 100: 1: 0.3) on the PHA biosynthesis were evaluated. With an OLR of 0.13 kg BOD(5)/m(3)·d, the maximum organic matter removal measure as Biochemical Oxygen Demand (BOD(5)) was 98.7% for a BOD(5:) N: P relationship of 100: 5: 1. Meanwhile for BOD(5): N: P relationship of 100: 1: 0.3, the maximum efficiency was 87.2% (OLR: 2.99 kg BOD(5)/m(3)·d). The behaviour of the Chemical Oxygen Demand (COD) and total phenolic compound removal efficiencies were below 65.0% and 41.0%, respectively. PHA biosynthesis was measured as a percentage of cells that accumulate PHA, where the maximum percentage was 85.1% and 78.7% when MBBR was operated under a BOD(5): N: P relationship of 100: 5: 1 and 100: 1: 0.3, respectively. Finally, the PHA yields in this study were estimated to range between 0.11 to 0.72 mg PHA/mg VSS and 0.06 to 0.15 mg PHA/mg COD. PMID:22871002

  12. Microbial community composition and dynamics of moving bed biofilm reactor systems treating municipal sewage.

    PubMed

    Biswas, Kristi; Turner, Susan J

    2012-02-01

    Moving bed biofilm reactor (MBBR) systems are increasingly used for municipal and industrial wastewater treatment, yet in contrast to activated sludge (AS) systems, little is known about their constituent microbial communities. This study investigated the community composition of two municipal MBBR wastewater treatment plants (WWTPs) in Wellington, New Zealand. Monthly samples comprising biofilm and suspended biomass were collected over a 12-month period. Bacterial and archaeal community composition was determined using a full-cycle community approach, including analysis of 16S rRNA gene libraries, fluorescence in situ hybridization (FISH) and automated ribosomal intergenic spacer analysis (ARISA). Differences in microbial community structure and abundance were observed between the two WWTPs and between biofilm and suspended biomass. Biofilms from both plants were dominated by Clostridia and sulfate-reducing members of the Deltaproteobacteria (SRBs). FISH analyses indicated morphological differences in the Deltaproteobacteria detected at the two plants and also revealed distinctive clustering between SRBs and members of the Methanosarcinales, which were the only Archaea detected and were present in low abundance (<5%). Biovolume estimates of the SRBs were higher in biofilm samples from one of the WWTPs which receives both domestic and industrial waste and is influenced by seawater infiltration. The suspended communities from both plants were diverse and dominated by aerobic members of the Gammaproteobacteria and Betaproteobacteria. This study represents the first detailed analysis of microbial communities in full-scale MBBR systems and indicates that this process selects for distinctive biofilm and planktonic communities, both of which differ from those found in conventional AS systems. PMID:22138984

  13. Microbial Community Composition and Dynamics of Moving Bed Biofilm Reactor Systems Treating Municipal Sewage

    PubMed Central

    Turner, Susan J.

    2012-01-01

    Moving bed biofilm reactor (MBBR) systems are increasingly used for municipal and industrial wastewater treatment, yet in contrast to activated sludge (AS) systems, little is known about their constituent microbial communities. This study investigated the community composition of two municipal MBBR wastewater treatment plants (WWTPs) in Wellington, New Zealand. Monthly samples comprising biofilm and suspended biomass were collected over a 12-month period. Bacterial and archaeal community composition was determined using a full-cycle community approach, including analysis of 16S rRNA gene libraries, fluorescence in situ hybridization (FISH) and automated ribosomal intergenic spacer analysis (ARISA). Differences in microbial community structure and abundance were observed between the two WWTPs and between biofilm and suspended biomass. Biofilms from both plants were dominated by Clostridia and sulfate-reducing members of the Deltaproteobacteria (SRBs). FISH analyses indicated morphological differences in the Deltaproteobacteria detected at the two plants and also revealed distinctive clustering between SRBs and members of the Methanosarcinales, which were the only Archaea detected and were present in low abundance (<5%). Biovolume estimates of the SRBs were higher in biofilm samples from one of the WWTPs which receives both domestic and industrial waste and is influenced by seawater infiltration. The suspended communities from both plants were diverse and dominated by aerobic members of the Gammaproteobacteria and Betaproteobacteria. This study represents the first detailed analysis of microbial communities in full-scale MBBR systems and indicates that this process selects for distinctive biofilm and planktonic communities, both of which differ from those found in conventional AS systems. PMID:22138984

  14. Enzymatic interesterification of butterfat with rapeseed oil in a continuous packed bed reactor.

    PubMed

    Rønne, Torben H; Yang, Tiankui; Mu, Huiling; Jacobsen, Charlotte; Xu, Xuebing

    2005-07-13

    Lipase-catalyzed interesterification of butterfat blended with rapeseed oil (70/30, w/w) was investigated both in batch and in continuous reactions. Six commercially available immobilized lipases were screened in batch experiments, and the lipases, Lipozyme TL IM and Lipozyme RM IM, were chosen for further studies in a continuous packed bed reactor. TL IM gave a fast reaction and had almost reached equilibrium with a residence time of 30 min, whereas RM IM required 60 min. The effect of reaction temperature was more pronounced for RM IM. TL IM showed little effect on the interesterification degree when the temperature was raised from 60 degrees C to 90 degrees C, whereas RM IM had a positive effect when the temperature was increased from 40 degrees C to 80 degrees C. Even though TL IM is an sn-1,3 specific lipase, small changes in the sn-2 position of the triacylglycerol could be seen. The tendency was toward a reduction of the saturated fatty acid C14:0 and C16:0 and an increase of the long-chain saturated and unsaturated fatty acids (C18:0 and C18:1), especially at longer residence times (90 min). In prolonged continuous operation the activity of TL IM was high for the first 5 days, whereafter it dramatically decreased over the next 10 days to an activity level of 40%. In general, the study shows no significant difference for butterfat interesterification in terms of enzyme behavior from normal vegetable oils and fats even though it contains short-chain fatty acids and cholesterol. However, the release of short-chain fatty acids from enzymatic reactions makes the sensory quality unacceptable for direct edible applications. PMID:15998124

  15. Final Report on Utilization of TRU TRISO Fuel as Applied to HTR Systems Part I: Pebble Bed Reactors

    SciTech Connect

    Brian Boer; Abderrafi M. Ougouag

    2011-03-01

    The Deep-Burn (DB) concept [ ] focuses on the destruction of transuranic nuclides from used light water reactor (LWR) fuel. These transuranic nuclides are incorporated into tri-isotopic (TRISO) coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400) [ ]. Although it has been shown in the previous Fiscal Year (FY) (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking, and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239Pu, 240Pu, and 241Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a standard, UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. Regarding the coated particle performance, the FY 2009 investigations showed that no

  16. Prediction of moving bed biofilm reactor (MBBR) performance for the treatment of aniline using artificial neural networks (ANN).

    PubMed

    Delnavaz, M; Ayati, B; Ganjidoust, H

    2010-07-15

    In this study, the results of 1-year efficiency forecasting using artificial neural networks (ANN) models of a moving bed biofilm reactor (MBBR) for a toxic and hard biodegradable aniline removal were investigated. The reactor was operated in an aerobic batch and continuous condition with 50% by volume which was filled with light expanded clay aggregate (LECA) as carrier. Efficiency evaluation of the reactors was obtained at different retention time (RT) of 8, 24, 48 and 72 h with an influent COD from 100 to 4000 mg/L. Exploratory data analysis was used to detect relationships between the data and dependent evaluated one. The appropriate architecture of the neural network models was determined using several steps of training and testing of the models. The ANN-based models were found to provide an efficient and a robust tool in predicting MBBR performance for treating aromatic amine compounds. PMID:20399558

  17. Closed Brayton Cycle power system with a high temperature pellet bed reactor heat source for NEP applications

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; El-Genk, Mohamed S.; Harper, William B., Jr.

    1992-01-01

    Capitalizing on past and future development of high temperature gas reactor (HTGR) technology, a low mass 15 MWe closed gas turbine cycle power system using a pellet bed reactor heating helium working fluid is proposed for Nuclear Electric Propulsion (NEP) applications. Although the design of this directly coupled system architecture, comprising the reactor/power system/space radiator subsystems, is presented in conceptual form, sufficient detail is included to permit an assessment of overall system performance and mass. Furthermore, an attempt is made to show how tailoring of the main subsystem design characteristics can be utilized to achieve synergistic system level advantages that can lead to improved reliability and enhanced system life while reducing the number of parasitic load driven peripheral subsystems.

  18. Nitrate reduction by organotrophic Anammox bacteria in a nitritation/anammox granular sludge and a moving bed biofilm reactor.

    PubMed

    Winkler, Mari K H; Yang, Jingjing; Kleerebezem, Robbert; Plaza, Elzbieta; Trela, Jozef; Hultman, Bengt; van Loosdrecht, Mark C M

    2012-06-01

    The effects of volatile fatty acids (VFAs) on nitrogen removal and microbial community structure in nitritation/anammox process were compared within a granular sludge reactor and a moving bed biofilm reactor. Nitrate productions in both systems were lower by 40-68% in comparison with expected nitrate production. Expected sludge production on VFAs was estimated to be 67-77% higher if heterotrophs were the main acetate degraders suggesting that Anammox bacteria used its organotrophic capability and successfully competed with general heterotrophs for organic carbon, which led to a reduced sludge production. FISH measurements showed a population consisting of mainly Anammox and AOB in both reactors and oxygen uptake rate (OUR) tests also confirmed that flocculent biomass consisted of a minor proportion of heterotrophs with a large proportion of AOBs. The dominant Anammox bacterium was Candidatus "Brocadia fulgida" with a minor fraction of Candidatus "Anammoxoglobus propionicus", both known to be capable of oxidizing VFAs. PMID:22520220

  19. Cold test with a benchtop set-up for fluidized bed reactor using quartz sand to simulate gasification of coal cokes by concentrated solar radiation

    NASA Astrophysics Data System (ADS)

    Gokon, Nobuyuki; Tanabe, Tomoaki; Shimizu, Tadaaki; Kodama, Tatsuya

    2016-05-01

    The impacts of internal circulation of a mixture of coal-coke particles and quartz sand on the fluidization state in a fluidized bed reactor are investigated by a cold test with a benchtop set-up in order to design 10-30 kWth scale prototype windowed fluidized-bed reactor. Firstly, a basic relationship between pressure loss of inlet gas and gas velocity was experimentally examined using quartz sand with different particle sizes by a small-scale quartz tube with a distributor at ambient pressure and temperature. Based on the results, an appropriate particle range of quartz sand and layer height/layer diameter ratio (L/D ratio) was determined for a design of the fluidized bed reactor. Secondly, a windowed reactor mock-up was designed and fabricated for solar coke gasification using quartz sand as a bed material. The pressure loss between the inlet and outlet gases was examined, and descending cokes and sand particles on the sidewall of the reactor was observed in the reactor mock-up. The moving velocity and distance of descending particles/sands from the top to bottom of fluidized bed were measured by the visual observation of the colored tracer particles on outside wall of the reactor.

  20. Simultaneous measurement of x-ray absorption spectra and kinetics : a fixed-bed, plug-flow operando reactor.

    SciTech Connect

    Fingland, B. R.; Ribeiro, F. H.; Miller, J. T.; Purdue Univ.

    2009-08-01

    An inexpensive fixed-bed, plug-flow operando reactor is described in which X-ray absorbance and kinetic data can be measured simultaneously. Pt L3 (11.56 keV) XANES and EXAFS data were obtained on a 1.5% Pt/silica catalyst in borosilicate glass reactors of different diameters, 3-6 mm, and thicknesses, 0.3-1.2 mm, some of which are capable of operation at pressures up to about 40 atm. Additionally, polyimide tubular reactors with low absorbance can be used for lower energy edges of the 3d transition metals, or fluorescence detection for low concentration or highly absorbing supports. With the polyimide reactor, however, the pressure is limited to {approx}3.5 atm and the reaction temperature to about 300 C. To validate the reactor, the rate and activation energies for the water-gas shift reaction on 2% Pd, 13.7% Zn on Al2O3 catalyst were within 15% of those obtained in a standard laboratory reactor, which is within laboratory reproducibility. In addition, the Pd K edge (24.35 keV) XANES and EXAFS data on pre-reduced catalyst were identical to that previously determined on a regular cell. The EXAFS data show that the degree of Pd-Zn alloy formation changes with reaction temperature demonstrating the importance of characterizing the catalyst under reaction conditions.

  1. Microbial community structural analysis of an expanded granular sludge bed (EGSB) reactor for beet sugar industrial wastewater (BSIW) treatment.

    PubMed

    Ambuchi, John Justo; Liu, Junfeng; Wang, Haiman; Shan, Lili; Zhou, Xiangtong; Mohammed, Mohammed O A; Feng, Yujie

    2016-05-01

    A looming global energy crisis has directly increased biomethanation processes using anaerobic digestion technology. However, much knowledge on the microbial community structure, their distribution within the digester and related functions remains extremely scanty and unavailable in some cases, yet very valuable in the improvement of the anaerobic bioprocesses. Using pyrosequencing technique based on Miseq PE 3000, microbial community population profiles were determined in an operated mesophilic expanded granular sludge bed (EGSB) reactor treating beet sugar industrial wastewater (BSIW) in the laboratory scale. Further, the distribution of the organisms in the lower, middle and upper sections within the reactor was examined. To our knowledge, this kind of analysis of the microbial community in a reactor treating BSIW is the first of its kind. A total of 44,204 non-chimeric reads with average length beyond 450 bp were yielded. Both bacterial and archaeal communities were identified with archaea predominance (60 %) observed in the middle section. Bayesian classifier yielded 164 families with only 0.73 % sequences which could not be classified to any taxa at family level. The overall phylum predominance in the reactor showed Firmicutes, Euryarchaeota, Chloroflexi, Proteobacteria and Bacteroidetes in the descending order. Our results clearly demonstrate a highly diverse microbial community population of an anaerobic reactor treating BSIW, with distinct distribution levels within the reactor. PMID:26795960

  2. Modeling of the simulated countercurrent moving-bed chromatographic reactor used for the oxidative coupling of methane

    SciTech Connect

    Tonkovich, A.L.Y.; Carr, R.W.

    1994-09-01

    The oxidative coupling reaction of methane (OCM) is a potential industrial reaction for the efficient production of ethylene. Replacement of current technologies requires significant product yield improvements. An experimental novel reactor design, the modified simulated countercurrent moving-bed chromatographic reactor (SCMCR), has reported improved ethane and ethylene product yields over other reported values. An understanding of the reactor operation is aided by concurrent mathematical modeling. The model mimics the exact experimental reactor configuration. Four sections are used; each section contains a reaction column and two separation columns connected in series. The feed is switched from section to section at discrete intervals. Reaction occurs in the first column and is followed by product and reactant separation in the ensuing section columns. Langmuir adsorption isotherms are used. The model does not incorporate the realistic and complex kinetics rising, from the OCM, rather a simplified reaction term is used to qualitatively gain insight into the operation of the modified SCMCR. A unimolecular reaction network is used in the model. The rate constants are set to permit a small fractional conversion, 5% per pass, at the concentrations during the first cycle. Similarly to the experimental reactor, the model adds a make-up feed (defined as percentage of the original feed, where excess methane is fed during the first cycle of the experimental reactor) to augment lost reactants.

  3. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    NASA Astrophysics Data System (ADS)

    Scarlat, Raluca Olga

    This dissertation treats system design, modeling of transient system response, and characterization of individual phenomena and demonstrates a framework for integration of these three activities early in the design process of a complex engineered system. A system analysis framework for prioritization of experiments, modeling, and development of detailed design is proposed. Two fundamental topics in thermal-hydraulics are discussed, which illustrate the integration of modeling and experimentation with nuclear reactor design and safety analysis: thermal-hydraulic modeling of heat generating pebble bed cores, and scaled experiments for natural circulation heat removal with Boussinesq liquids. The case studies used in this dissertation are derived from the design and safety analysis of a pebble bed fluoride salt cooled high temperature nuclear reactor (PB-FHR), currently under development in the United States at the university and national laboratories level. In the context of the phenomena identification and ranking table (PIRT) methodology, new tools and approaches are proposed and demonstrated here, which are specifically relevant to technology in the early stages of development, and to analysis of passive safety features. A system decomposition approach is proposed. Definition of system functional requirements complements identification and compilation of the current knowledge base for the behavior of the system. Two new graphical tools are developed for ranking of phenomena importance: a phenomena ranking map, and a phenomena identification and ranking matrix (PIRM). The functional requirements established through this methodology were used for the design and optimization of the reactor core, and for the transient analysis and design of the passive natural circulation driven decay heat removal system for the PB-FHR. A numerical modeling approach for heat-generating porous media, with multi-dimensional fluid flow is presented. The application of this modeling

  4. Optimization of coupled multiphysics methodology for safety analysis of pebble bed modular reactor

    NASA Astrophysics Data System (ADS)

    Mkhabela, Peter Tshepo

    The research conducted within the framework of this PhD thesis is devoted to the high-fidelity multi-physics (based on neutronics/thermal-hydraulics coupling) analysis of Pebble Bed Modular Reactor (PBMR), which is a High Temperature Reactor (HTR). The Next Generation Nuclear Plant (NGNP) will be a HTR design. The core design and safety analysis methods are considerably less developed and mature for HTR analysis than those currently used for Light Water Reactors (LWRs). Compared to LWRs, the HTR transient analysis is more demanding since it requires proper treatment of both slower and much longer transients (of time scale in hours and days) and fast and short transients (of time scale in minutes and seconds). There is limited operation and experimental data available for HTRs for validation of coupled multi-physics methodologies. This PhD work developed and verified reliable high fidelity coupled multi-physics models subsequently implemented in robust, efficient, and accurate computational tools to analyse the neutronics and thermal-hydraulic behaviour for design optimization and safety evaluation of PBMR concept The study provided a contribution to a greater accuracy of neutronics calculations by including the feedback from thermal hydraulics driven temperature calculation and various multi-physics effects that can influence it. Consideration of the feedback due to the influence of leakage was taken into account by development and implementation of improved buckling feedback models. Modifications were made in the calculation procedure to ensure that the xenon depletion models were accurate for proper interpolation from cross section tables. To achieve this, the NEM/THERMIX coupled code system was developed to create the system that is efficient and stable over the duration of transient calculations that last over several tens of hours. Another achievement of the PhD thesis was development and demonstration of full-physics, three-dimensional safety analysis

  5. Drag conveyors in 1913 head house, Spouts in background feed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Drag conveyors in 1913 head house, Spouts in background feed hopper scales and convey grain from hopper scales to storage bins. - Stewart Company Grain Elevator, 16 West Carson Street, Pittsburgh, Allegheny County, PA

  6. Continuous biodiesel production in a fixed bed reactor packed with anion-exchange resin as heterogeneous catalyst.

    PubMed

    Ren, Yanbiao; He, Benqiao; Yan, Feng; Wang, Hong; Cheng, Yu; Lin, Ligang; Feng, Yaohui; Li, Jianxin

    2012-06-01

    A continuous biodiesel production from the transesterification of soybean oil with methanol was investigated in a fixed bed reactor packed with D261 anion-exchange resin as a heterogeneous catalyst. The conversion to biodiesel achieved 95.2% within a residence time 56 min under the conditions: reaction temperature of 323.15K, n-hexane/soybean oil weight rate of 0.5, methanol/soybean oil molar ratio of 9:1 and feed flow rate of 1.2 ml/min. The resin can be regenerated in-situ and restored to the original activity to achieve continuous production after the resin deactivation. The product obtained was mainly composed of methyl esters. No glycerol in the product was detected due to the resin adsorbing glycerol in the fixed bed, which solved the issue of glycerol separation from biodiesel. It is believed that the fixed bed reactor with D261 has a potential commercial application in the transesterification of triglyceride. PMID:22138595

  7. Magnetic resonance imaging (MRI) study of jet height hysteresis in packed beds

    NASA Astrophysics Data System (ADS)

    Köhl, Maximilian H.; Lu, Guang; Third, James R.; Prüssmann, Klaas P.; Müller, Christoph R.

    2013-06-01

    The jet-spout transition in fluidized beds can show hysteretic behavior. In this study the jet-spout transition was studied as a function of orifice velocity for particles of different size and shape using Magnetic Resonance Imaging (MRI). The measurements showed that the particle shape primarily affect to the width of the hysteresis loop whereas particle size governs the position of the hysteresis loop with regards to the orifice velocity.

  8. Feasibility of expanded granular sludge bed reactors for the anaerobic treatment of low-strength soluble wastewaters.

    PubMed

    Kato, M T; Field, J A; Versteeg, P; Lettinga, G

    1994-08-01

    The application of the expanded granular sludge bed (EGSB) reactor for the anaerobic treatment of low-strength soluble wastewaters using ethanol as a model substrate was investigated in laboratory-scale reactors at 30oC. Chemical oxygen demand (COD) removal efficiency was above 80% at organic loading rates up to12 g COD/L . d with influent concentrations as low as 100 to 200 mg COD/L. These results demonstrate the suitability of the EGBS reactor for the anaerobic treatment of low-strength wastewaters. The high treatment performance can be attributed to the intense mixing regime obtained by high hydraulic and organic loads. Good mixing of the bulk liquid phase for the substrate-biomass contact and adequate expansion of the substrate-biomass contact and adequate expansion of the sludge bed for the degassing were obtained when the liquid upflow velocity (V(up)) was greater than 2.5 m/h. Under such conditions, an extremely low apparent K(s) value for acetoclastic methanogenesis of 9.8 mg COD/L was observed. The presence of dissolved oxygen in the wastewater had no detrimental effect on the treatment performance. Sludge piston flotation from pockets of biogas accumulating under the sludge bed occurred at V(up) lower than 2.5 m/h due to poor bed expansion. This problem is expected only in small diameter laboratory-scale reactors. A. more important restriction of the EGSB reactor was the sludge washout occurring at V(up) higher than 5.5 m/h and which was intensified at organic loads higher than 7 g COD/L. d due to buoyancy forces from the gas production. To achieve an equilibrium between the mixing intensity and the sludge hold-up, the operation should be limited to an organic loading rate of 7 g COD/L d. and to a liquid up-flow velocity between 2.5 and 5.5 m/h (c) 1994 John Wiley & Sons, Inc. PMID:18618781

  9. Two-stage anaerobic digestion of tomato, cucumber, common reed and grass silage in leach-bed reactors and upflow anaerobic sludge blanket reactors.

    PubMed

    Jagadabhi, Padma Shanthi; Kaparaju, Prasad; Rintala, Jukka

    2011-04-01

    Anaerobic digestion of tomato, cucumber, common reed and grass silage was studied in four separate two-stage reactor configuration consisting of leach bed reactor (LBR) and upflow anaerobic sludge blanket reactor (UASB). LBR studies showed that COD solubilization for cucumber and grass silage was higher (50%) than tomato (35%) and common reed (15%). Results also showed that 31-39% of initial TKN present in tomato and cucumber was solubilized in the leachates and 47-54% of the solubilized TKN was converted to NH(4)-N. The corresponding values for common reed and grass silage were 38-50% and 18-36%, respectively. Biomethanation of the leachates in UASB reactors resulted in methane yields of 0.03-0.14 m(3) CH(4) kg(-1)VS(fed) for the studied crop materials. Thus, high COD solubilization, high nitrogen mineralization and solubilization rates were feasible during anaerobic digestion of lignocellulosic materials in a two-stage LBR-UASB reactor system. PMID:21316953

  10. The use of microporous divinyl benzene copolymer for yeast cell immobilization and ethanol production in packed-bed reactor.

    PubMed

    Karagöz, Pinar; Erhan, Elif; Keskinler, Bülent; Ozkan, Melek

    2009-01-01

    Microporous divinyl benzene copolymer (MDBP) was used for the first time as immobilization material for Saccharomyces cerevisiae ATCC 26602 cells in a bed reactor and ethanol production from glucose was studied as a model system. A very homogenous thick layer of yeast cells were seen from the scanning electron micrographs on the outer walls of biopolymer. The dried weight of the cells was found to be approximately 2 g per gram of cell supporting material. Hydrophobic nature of polymer is an important factor increasing cell adhesion on polymer pieces. The dynamic flow conditions through the biomaterial due to its microporous architecture prevented exopolysaccharide matrix formation around cells and continuous washing out of toxic metabolites and dead and degraded cells from the reactor provided less diffusional limitations and dynamic living environment to the cells. In order to see the ethanol production performance of immobilized yeast cells, a large initial concentration range of glucose between 6.7 and 300 g/l was studied at 1 ml/min in continuous packed-bed reactor. The inhibition effect of glucose with increasing initial concentration was observed at above 150 g/l, a relatively high substrate concentration. The continuous fluid flow around the microenvironment of the attached cells and mass transferring ability of cell immobilized on MDBP can help in decreasing the inhibition effect of ethanol accumulation and high substrate concentration in the vicinity of the cells. PMID:18712507

  11. The integration of methanogenesis with denitrification and anaerobic ammonium oxidation in an expanded granular sludge bed reactor.

    PubMed

    Zang, Dai-Jun

    2003-05-01

    The integration of methanogenesis with denitrification and anaerobic ammonium oxidation (ANAMMOX) was studied in an expanded granular sludge bed (EGSB) reactor in this work. Experimental results from the continuous treatment of wastewater with nitrite and ammonium, which lasted for 107 days, demonstrated that wastewater with high nitrite and ammonium could be anaerobically treated in an expanded granular sludge bed reactor. More than 91% to 97% of COD were removed at up to about 3.9 g COD/(L x d) of COD volumetric loading rate. More than 97% to 100% of nitrite was denitrified at up to about 0.8 g NO2(-) -N/(L x d), which is 16 times higher than that in a conventional activated sludge system with nitrification/denitrification (0.05 gN/(L x d)). No dissimilatory reduction of nitrite to ammonium occurred in the process. However, maximum of about 40% ammonium was found to be lost. Batch tests of 15 days with sludge from the reactor showed that 100% of nitrite was denitrified completely, and about 3% of ammonium was removed when only ammonium (34.3 mg/L) and nitrite (34.3 mg/ L) were added into the sludge suspension medium. Furthermore, about 15% of ammonium amounts were lost with organic COD addition. It suggested that the methanogenesis in the system could enhance ANAMMOX because of intermediate hydrogen produced during methanogenesis. PMID:12938997

  12. Simultaneous fermentation and separation in an immobilized cell trickle bed reactor: Acetone-butanol-ethane (ABE) and ethanol fermentation

    SciTech Connect

    Park, C.H.

    1989-01-01

    A novel process employing immobilized cells and in-situ product removal was studied for acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum and ethanol fermentation by Saccharomyces cerevisiae. Experimental studies of ABE fermentation in a trickle bed reactor without product separation showed that solvent production could be improved by one order of magnitude compared to conventional batch fermentation. Control of effluent pH near 4.3 and feed glucose concentrations higher than 10 g/L were the necessary conditions for cell growth and solvent production. A mathematical model using an equilibrium staged model predicted efficient separation of butanol from the fermentation broth. Activity coefficients of multicomponent system were estimated by Wilson's equation or the ASOG method. Inhibition by butanol and organic acids was incorporated into the kinetic expression. Experimental performance of simultaneous fermentation and separation in an immobilized cell trickle bed reactor showed that glucose conversion was improved as predicted by mathematical modeling and analysis. The effect of pH and temperature on ethanol fermentation by Saccharomyces cerevisiae was studied in free and immobilized cell reactors. Conditions for the highest glucose conversion, cell viability and least glycerol yield were determined.

  13. Experimental and Computational Study of the Hydrodynamics of Trickle Bed Flow Reactor Operating Under Different Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Rabbani, S.; Ben Salem, I.; Nadeem, H.; Kurnia, J. C.; Shamim, T.; Sassi, M.

    2014-12-01

    Pressure drop estimation and prediction of liquid holdup play a crucial role in design and operation of trickle bed reactors. Experiments are performed for Light Gas Oil (LGO)-nitrogen system in ambient temperature conditions in an industrial pilot plant with reactor height 0.79 m and diameter of 0.0183 m and pressure ranging from atmospheric to 10 bars. It was found that pressure drop increased with increase in system pressure, superficial gas velocity and superficial liquid velocity. It was demonstrated in the experiments that liquid holdup of the system increases with the increase in superficial liquid velocity and tends to decrease with increase in superficial gas velocity which is in good agreement with existing literature. Similar conditions were also simulated using CFD-software FLUENT. The Volume of Fluid (VoF) technique was employed in combination with "discrete particle approach" and results were compared with that of experiments. The overall pressure drop results were compared with the different available models and a new comprehensive model was proposed to predict the pressure drop in Trickle Bed Flow Reactor.

  14. Co-pyrolysis of pine sawdust and lignite in a thermogravimetric analyzer and a fixed-bed reactor.

    PubMed

    Song, Yuyao; Tahmasebi, Arash; Yu, Jianglong

    2014-12-01

    Co-pyrolysis characteristics of lignite and pine sawdust were studied in a TGA and a fixed-bed reactor. The effects of pyrolysis temperature and blending ratio on the yield and composition of pyrolysis products (gas, tar, and char) were investigated. TGA experiments showed that pine sawdust decomposition took place at lower temperatures compared to lignite. With increasing the pine sawdust content in the blend, the DTG peaks shifted towards lower temperatures due to synergetic effect. In fixed-bed experiments, the synergetic effect increased the yield of volatile matter compared to the calculated values. The major gases released at low temperatures were CO2 and CO. However, hydrogen was the primary gaseous product at higher temperatures. During co-pyrolysis, concentrations of benzene, naphthalene, and hydrocarbons in the tar decreased, accompanied by an increase in phenols and guaiacol concentrations. With increasing pyrolysis temperature, the OH, aliphatic CH, CO, and CO functional groups in char decomposed substantially. PMID:25463801

  15. Treatment of wastewater from coffee bean processing in anaerobic fixed bed reactors with different support materials: performance and kinetic modeling.

    PubMed

    Fia, Fátima R L; Matos, Antonio T; Borges, Alisson C; Fia, Ronaldo; Cecon, Paulo R

    2012-10-15

    An evaluation was performed of three upflow anaerobic fixed bed reactors for the treatment of wastewater from coffee bean processing (WCP). The supports used were: blast furnace cinders, polyurethane foam and crushed stone with porosities of 53, 95 and 48%, respectively. The testing of these 139.5 L reactors consisted of increasing the COD of the influent (978; 2401 and 4545 mg L(-1)), while maintaining the retention time of 1.3 days. For the maximum COD applied, the reactor filled with foam presented removals of 80% (non-filtered samples) and 83% (filtered samples). The greater performance of the reactor filled with foam is attributed to its porosity, which promoted greater collection of biomass. From the results, it could be concluded that the reactors presented satisfactory performance, especially when using the foam as a support. Furthermore, the modified Stover-Kincannon and second order for multicomponent substrate degradation models were successfully used to develop a model of the experimental data. PMID:22609965

  16. Development and applications of methodologies for the neutronic design of the Pebble Bed Advanced High Temperature Reactor (PB-AHTR)

    NASA Astrophysics Data System (ADS)

    Fratoni, Massimiliano

    This study investigated the neutronic characteristics of the Pebble Bed Advanced High Temperature Reactor (PB-AHTR), a novel nuclear reactor concept that combines liquid salt (7LiF-BeF2---flibe) cooling and TRISO coated-particle fuel technology. The use of flibe enables operation at high power density and atmospheric pressure and improves passive decay-heat removal capabilities, but flibe, unlike conventional helium coolant, is not transparent to neutrons. The flibe occupies 40% of the PB-AHTR core volume and absorbs ˜8% of the neutrons, but also acts as an effective neutron moderator. Two novel methodologies were developed for calculating the time dependent and equilibrium core composition: (1) a simplified single pebble model that is relatively fast; (2) a full 3D core model that is accurate and flexible but computationally intensive. A parametric analysis was performed spanning a wide range of fuel kernel diameters and graphite-to-heavy metal atom ratios to determine the attainable burnup and reactivity coefficients. Using 10% enriched uranium ˜130 GWd/tHM burnup was found to be attainable, when the graphite-to-heavy metal atom ratio (C/HM) is in the range of 300 to 400. At this or smaller C/HM ratio all reactivity coefficients examined---coolant temperature, coolant small and full void, fuel temperature, and moderator temperature, were found to be negative. The PB-AHTR performance was compared to that of alternative options for HTRs, including the helium-cooled pebble-bed reactor and prismatic fuel reactors, both gas-cooled and flibe-cooled. The attainable burnup of all designs was found to be similar. The PB-AHTR generates at least 30% more energy per pebble than the He-cooled pebble-bed reactor. Compared to LWRs the PB-AHTR requires 30% less natural uranium and 20% less separative work per unit of electricity generated. For deep burn TRU fuel made from recycled LWR spent fuel, it was found that in a single pass through the core ˜66% of the TRU can be

  17. Stabilization of fine fraction from landfill mining in anaerobic and aerobic laboratory leach bed reactors.

    PubMed

    Mönkäre, Tiina J; Palmroth, Marja R T; Rintala, Jukka A

    2015-11-01

    Fine fraction (FF, <20 mm) from mined landfill was stabilized in four laboratory-scale leach bed reactors (LBR) over 180 days. The aim was to study feasibility of biotechnological methods to treat FF and if further stabilization of FF is possible. Four different stabilization methods were compared and their effects upon quality of FF were evaluated. Also during the stabilization experiment, leachate quality as well as gas composition and quantity were analyzed. The methods studied included three anaerobic LBRs (one without water addition, one with water addition, and one with leachate recirculation) and one aerobic LBR (with water addition). During the experiment, the most methane was produced in anaerobic LBR without water addition (18.0 L CH4/kg VS), while water addition and leachate recirculation depressed methane production slightly, to 16.1 and 16.4 L CH4/kg VS, respectively. Organic matter was also removed via the leachate and was measured as chemical oxygen demand (COD). Calculated removal of organic matter in gas and leachate was highest in LBR with water addition (59 g COD/kg VS), compared with LBR without water addition or with leachate recirculation (51 g COD/kg VS). Concentrations of COD, ammonium nitrogen and anions in leachate decreased during the experiment, indicating washout mechanism caused by water additions. Aeration increased sulfate and nitrate concentrations in leachate due to oxidized sulfide and ammonium. Molecular weight distributions of leachates showed that all the size categories decreased, especially low molecular weight compounds, which were reduced the most. Aerobic stabilization resulted in the lowest final VS/TS (13.1%), lowest respiration activity (0.9-1.2 mg O2/g TS), and lowest methane production after treatment (0.0-0.8 L CH4/kg VS), with 29% of VS being removed from FF. Anaerobic stabilization methods also reduced organic matter by 9-20% compared with the initial amount. Stabilization reduced the quantity of soluble nitrogen

  18. State-of-the-art review and report on critical aspects and scale-up considerations in the design of fluidized-bed reactors. Final report on Phase 1

    SciTech Connect

    Not Available

    1980-01-01

    Information is given on the design of distributor plates and opening geometry to provide uniform flow over the reactor area. The design of granular bed filters is also considered. Pressure drops and particle size in the bed are discussed. (LTN)

  19. Investigation on using neutron counting techniques for online burnup monitoring of pebble bed reactor fuels

    NASA Astrophysics Data System (ADS)

    Zhao, Zhongxiang

    Modular Pebble Bed Reactor (MPBR) is a high temperature gas-cooled nuclear power reactor. This project investigated the feasibility of using the passive neutron counting and active neutron/gamma counting for the on line fuel burnup measurement for MPBR. To investigate whether there is a correlation between neutron emission and fuel burnup, the MPBR fuel depletion was simulated under different irradiation conditions by ORIGEN2. It was found that the neutron emission from an irradiated pebble increases with burnup super-linearly and reaches to 104 neutron/sec/pebble at the discharge burnup. The photon emission from an irradiated pebble was found to be in the order of 1013 photon/sec/pebble at all burnup levels. Analysis shows that the neutron emission rate of an irradiated pebble is sensitive to its burnup history and the spectral-averaged one-group cross sections used in the depletion calculations, which consequently leads to large uncertainty in the correlation between neutron emission and burnup. At low burnup levels, the uncertainty in the neutron emission/burnup correlation is too high and the neutron emission rate is too low so that it is impossible to determine a pebble's burnup by on-line neutron counting at low burnup levels. At high burnup levels, the uncertainty in the neutron emission rate becomes less but is still large in quantity. However, considering the super-linear feature of the correlation, the uncertainty in burnup determination was found to be ˜7% at the discharge burnup, which is acceptable. Therefore, total neutron emission rate of a pebble can be used as a burnup indicator to determine whether a pebble should be discharged or not. The feasibility of using passive neutron counting methods for the on-line burnup measurement was investigated by using a general Monte Carlo code, MCNP, to assess the detectability of the neutron emission and the capability to discriminate gamma noise by commonly used neutron detectors. It was found that both He-3

  20. Cynod: A Neutronics Code for Pebble Bed Modular Reactor Coupled Transient Analysis

    SciTech Connect

    Hikaru Hiruta; Abderrafi M. Ougouag; Hans D. Gougar; Javier Ortensi

    2008-09-01

    The Pebble Bed Reactor (PBR) is one of the two concepts currently considered for development into the Next Generation Nuclear Plant (NGNP). This interest is due, in particular, to the concept’s inherent safety characteristics. In order to verify and confirm the design safety characteristics of the PBR computational tools must be developed that treat the range of phenomena that are expected to be important for this type of reactors. This paper presents a recently developed 2D R-Z cylindrical nodal kinetics code and shows some of its capabilities by applying it to a set of known and relevant benchmarks. The new code has been coupled to the thermal hydraulics code THERMIX/KONVEK[1] for application to the simulation of very fast transients in PBRs. The new code, CYNOD, has been written starting with a fixed source solver extracted from the nodal cylindrical geometry solver contained within the PEBBED code. The fixed source solver was then incorporated into a kinetic solver.. The new code inherits the spatial solver characteristics of the nodal solver within PEBBED. Thus, the time-dependent neutron diffusion equation expressed analytically in each node of the R-Z cylindrical geometry sub-domain (or node) is transformed into one-dimensional equations by means of the usual transverse integration procedure. The one-dimensional diffusion equations in each of the directions are then solved using the analytic Green’s function method. The resulting equations for the entire domain are then re-cast in the form of the Direct Coarse Mesh Finite Difference (D-CMFD) for convenience of solution. The implicit Euler method is used for the time variable discretization. In order to correctly treat the cusping effect for nodes that contain a partially inserted control rod a method is used that takes advantage of the Green’s function solution available in the intrinsic method. In this corrected treatment, the nodes are re-homogenized using axial flux shapes reconstructed based on the

  1. Functionalization of polymers using an atmospheric plasma jet in a fluidized bed reactor and the impact on SLM-processes

    SciTech Connect

    Sachs, M. Schmitt, A. Schmidt, J. Peukert, W. Wirth, K-E

    2014-05-15

    In order to improve thermoplastics (e.g. Polyamide, Polypropylene and Polyethylene) for Selective Laser Beam Melting (SLM) processes a new approach to functionalize temperature sensitive polymer powders in a large scale is investigated. This is achieved by combining an atmospheric pressure plasma jet and a fluidized bed reactor. Using pressurized air as the plasma gas, radicals like OH* are created. The functionalization leads to an increase of the hydrophilicity of the treated polymer powder without changing the bulk properties. Using the polymers in a SLM process to build single layers of melted material leads to an improvement of the melted layers.

  2. Functionalization of polymers using an atmospheric plasma jet in a fluidized bed reactor and the impact on SLM-processes

    NASA Astrophysics Data System (ADS)

    Sachs, M.; Schmitt, A.; Schmidt, J.; Peukert, W.; Wirth, K.-E.

    2014-05-01

    In order to improve thermoplastics (e.g. Polyamide, Polypropylene and Polyethylene) for Selective Laser Beam Melting (SLM) processes a new approach to functionalize temperature sensitive polymer powders in a large scale is investigated. This is achieved by combining an atmospheric pressure plasma jet and a fluidized bed reactor. Using pressurized air as the plasma gas, radicals like OH* are created. The functionalization leads to an increase of the hydrophilicity of the treated polymer powder without changing the bulk properties. Using the polymers in a SLM process to build single layers of melted material leads to an improvement of the melted layers.

  3. Modeling and Experimental Studies of Mercury Oxidation and Adsorption in a Fixed-Bed and Entrained-Flow Reactor

    SciTech Connect

    Buitrago, Paula A.; Morrill, Mike; Lighty, JoAnn S.; Silcox, Geoffrey D.

    2009-06-01

    This report presents experimental and modeling mercury oxidation and adsorption data. Fixed-bed and single-particle models of mercury adsorption were developed. The experimental data were obtained with two reactors: a 300-W, methane-fired, tubular, quartz-lined reactor for studying homogeneous oxidation reactions and a fixed-bed reactor, also of quartz, for studying heterogeneous reactions. The latter was attached to the exit of the former to provide realistic combustion gases. The fixed-bed reactor contained one gram of coconut-shell carbon and remained at a temperature of 150°C. All methane, air, SO2, and halogen species were introduced through the burner to produce a radical pool representative of real combustion systems. A Tekran 2537A Analyzer coupled with a wet conditioning system provided speciated mercury concentrations. At 150°C and in the absence of HCl or HBr, the mercury uptake was about 20%. The addition of 50 ppm HCl caused complete capture of all elemental and oxidized mercury species. In the absence of halogens, SO2 increased the mercury adsorption efficiency to up to 30 percent. The extent of adsorption decreased with increasing SO2 concentration when halogens were present. Increasing the HCl concentration to 100 ppm lessened the effect of SO2. The fixed-bed model incorporates Langmuir adsorption kinetics and was developed to predict adsorption of elemental mercury and the effect of multiple flue gas components. This model neglects intraparticle diffusional resistances and is only applicable to pulverized carbon sorbents. It roughly describes experimental data from the literature. The current version includes the ability to account for competitive adsorption between mercury, SO2, and NO2. The single particle model simulates in-flight sorbent capture of elemental mercury. This model was developed to include Langmuir and Freundlich isotherms, rate equations, sorbent feed rate, and

  4. Bisphenol A removal by a Pseudomonas aeruginosa immobilized on granular activated carbon and operating in a fluidized bed reactor.

    PubMed

    Mita, Luigi; Grumiro, Laura; Rossi, Sergio; Bianco, Carmen; Defez, Roberto; Gallo, Pasquale; Mita, Damiano Gustavo; Diano, Nadia

    2015-06-30

    Serratia rubidiae, Pseudomonas aeruginosa and Escherichia coli K12 have been studied for their ability of Bisphenol A removal from aqueous systems and biofilm formation on activated granule carbon. Mathematical equations for biodegradation process have been elaborated and discussed. P. aeruginosa was found the best strain to be employed in the process of Bisphenol A removal. The yield in BPA removal of a P. aeruginosa biofilm grown on GAC and operating in a fluidized bed reactor has been evaluated. The results confirm the usefulness in using biological activated carbon (BAC process) to remove phenol compounds from aqueous systems. PMID:25781217

  5. Application of k- and q-space encoding NMR techniques on granular media in a 3D model fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Harms, Silke; Stapf, Siegfried; Blümich, Bernhard

    2006-02-01

    A combination of PFG-NMR imaging and velocity encoding methods was applied to investigate the dynamic behavior of a bed of poppy seeds subjected to air flow, representing a model setup for fluidized bed reactors. The particle motion is described both from a statistical point of view, by determining propagators and dispersion coefficients representing an average over the whole bed volume, as well as combined with spatial resolution by generating velocity maps. Velocity images of different horizontal slices in the bed confirm the notion of a toroidal particle flow pattern inside the shallow granular bed. Despite the need of considerable averaging due to the random motion of the relatively few particles in the bed, quantitative velocity images and statistical information about the random particle motion can be obtained from monitoring the fluid component in the seeds by conventional spin-echo techniques.

  6. Combination of upflow anaerobic sludge blanket (UASB) reactor and partial nitritation/anammox moving bed biofilm reactor (MBBR) for municipal wastewater treatment.

    PubMed

    Malovanyy, Andriy; Yang, Jingjing; Trela, Jozef; Plaza, Elzbieta

    2015-03-01

    In this study the combination of an upflow anaerobic sludge blanket (UASB) reactor and a deammonification moving bed biofilm reactor (MBBR) for mainstream wastewater treatment was tested. The competition between aerobic ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) was studied during a 5months period of transition from reject water to mainstream wastewater followed by a 16months period of mainstream wastewater treatment. The decrease of influent ammonium concentration led to a wash-out of suspended biomass which had a major contribution to nitrite production. Influence of a dissolved oxygen concentration and a transient anoxia mechanism of NOB suppression were studied. It was shown that anoxic phase duration has no effect on NOB metabolism recovery and oxygen diffusion rather than affinities of AOB and NOB to oxygen determine the rate of nitrogen conversion in a biofilm system. Anammox activity remained on the level comparable to reject water treatment systems. PMID:25600011

  7. Attrition of coal ash particles in a fluidized-bed reactor

    SciTech Connect

    Tomeczek, J.; Mocek, P.

    2007-05-15

    Experimental data of ash-particles attrition in a fluidized bed is presented, and also the results of modeling. Five sizes of ash particles (1.02-1.25; 1.25-1.6; 1.6-2.0; 2.0-5.0; 5.0-10.0 mm) produced in an industrial CFB boiler were examined. A new model of mechanical attrition has been proposed which incorporates new parameters: the shape factor of particles and the ratio of the bed height to bed diameter, strongly influencing the rate of bed mass loss. The model describes very well experimental data for coal-ash particles attrition. The attrition-rate coefficient for ash particles was evaluated.

  8. Performances and microbial features of an aerobic packed-bed biofilm reactor developed to post-treat an olive mill effluent from an anaerobic GAC reactor

    PubMed Central

    Bertin, Lorenzo; Colao, Maria Chiara; Ruzzi, Maurizio; Marchetti, Leonardo; Fava, Fabio

    2006-01-01

    Background Olive mill wastewater (OMW) is the aqueous effluent of olive oil producing processes. Given its high COD and content of phenols, it has to be decontaminated before being discharged. Anaerobic digestion is one of the most promising treatment process for such an effluent, as it combines high decontamination efficiency with methane production. The large scale anaerobic digestion of OMWs is normally conducted in dispersed-growth reactors, where however are generally achieved unsatisfactory COD removal and methane production yields. The possibility of intensifying the performance of the process using a packed bed biofilm reactor, as anaerobic treatment alternative, was demonstrated. Even in this case, however, a post-treatment step is required to further reduce the COD. In this work, a biological post-treatment, consisting of an aerobic biological "Manville" silica bead-packed bed aerobic reactor, was developed, tested for its ability to complete COD removal from the anaerobic digestion effluents, and characterized biologically through molecular tools. Results The aerobic post-treatment was assessed through a 2 month-continuous feeding with the digested effluent at 50.42 and 2.04 gl-1day-1 of COD and phenol loading rates, respectively. It was found to be a stable process, able to remove 24 and 39% of such organic loads, respectively, and to account for 1/4 of the overall decontamination efficiency displayed by the anaerobic-aerobic integrated system when fed with an amended OMW at 31.74 and 1.70 gl-1day-1 of COD and phenol loading rates, respectively. Analysis of 16S rRNA gene sequences of biomass samples from the aerobic reactor biofilm revealed that it was colonized by Rhodobacterales, Bacteroidales, Pseudomonadales, Enterobacteriales, Rhodocyclales and genera incertae sedis TM7. Some taxons occurring in the influent were not detected in the biofilm, whereas others, such as Paracoccus, Pseudomonas, Acinetobacter and Enterobacter, enriched significantly in

  9. Nitrogen removal from on-site treated anaerobic effluents using intermittently aerated moving bed biofilm reactors at low temperature.

    PubMed

    Luostarinen, Sari; Luste, Sami; Valentín, Lara; Rintala, Jukka

    2006-05-01

    On-site post-treatment of anaerobically pre-treated dairy parlour wastewater (DPWWe; 10 degrees C) and mixture of kitchen waste and black water (BWKWe; 20 degrees C) was studied in moving bed biofilm reactors (MBBR). The focus was on removal of nitrogen and of residual chemical oxygen demand (COD). Moreover, the effect of intermittent aeration and continuous vs. sequencing batch operation was studied. All MBBRs removed 50-60% of nitrogen and 40-70% of total COD (CODt). Complete nitrification was achieved, but denitrification was restricted by lack of carbon. Nitrogen removal was achieved in a single reactor by applying intermittent aeration. Continuous and sequencing batch operation provided similar nitrogen and COD removal, wherefore simpler continuous feeding may be preferred for on-site applications. Combination of pre-treating upflow anaerobic sludge blanket (UASB) -septic tank and MBBR removed over 92% of CODt, 99% of biological oxygen demand (BOD7), and 65-70% of nitrogen. PMID:16647521

  10. Utilization of moving bed biofilm reactor for industrial wastewater treatment containing ethylene glycol: kinetic and performance study.

    PubMed

    Hassani, Amir Hessam; Borghei, Seyed Mehdi; Samadyar, Hassan; Ghanbari, Bastam

    2014-01-01

    One of the requirements for environmental engineering, which is currently being considered, is the removal of ethylene glycol (EG) as a hazardous environmental pollutant from industrial wastewater. Therefore, in a recent study, a moving bed biofilm reactor (MBBR) was applied at pilot scale to treat industrial effluents containing different concentrations of EG (600, 800, 1200, and 1800 mg L-1 ). The removal efficiency and kinetic analysis of the system were examined at different hydraulic retention times of 6, 8, 10, and 12 h as well as influent chemical oxygen demand (COD) ranged between values of 1000 and 3000mg L-1. In minimum and maximum COD Loadings, the MBBR showed 95.1% and 60.7% removal efficiencies, while 95.9% and 66.2% EG removal efficiencies were achieved in the lowest and highest EG concentrations. The results of the reactor modelling suggested compliance of the well-known modified Stover-Kincannon model with the system. PMID:24600890

  11. Application of a combined process of moving-bed biofilm reactor (MBBR) and chemical coagulation for dyeing wastewater treatment.

    PubMed

    Shin, D H; Shin, W S; Kim, Y H; Han, Myung Ho; Choi, S J

    2006-01-01

    A combined process consisted of a Moving-Bed Biofilm Reactor (MBBR) and chemical coagulation was investigated for textile wastewater treatment. The pilot scale MBBR system is composed of three MBBRs (anaerobic, aerobic-1 and aerobic-2 in series), each reactor was filled with 20% (v/v) of polyurethane-activated carbon (PU-AC) carrier for biological treatment followed by chemical coagulation with FeCl2. ln the MBBR process, 85% of COD and 70% of color (influent COD = 807.5 mg/L and color = 3,400 PtCo unit) were removed using relatively low MLSS concentration and short hydraulic retention time (HRT = 44 hr). The biologically treated dyeing wastewater was subjected to chemical coagulation. After coagulation with FeCl2, 95% of COD and 97% of color were removed overall. The combined process of MBBR and chemical coagulation has promising potential for dyeing wastewater treatment. PMID:17163056

  12. Biodegradation of benzotriazoles and hydroxy-benzothiazole in wastewater by activated sludge and moving bed biofilm reactor systems.

    PubMed

    Mazioti, Aikaterini A; Stasinakis, Athanasios S; Pantazi, Ypapanti; Andersen, Henrik R

    2015-09-01

    Two laboratory scale fully aerated continuous flow wastewater treatment systems were used to compare the removal of five benzotriazoles and one benzothiazole by suspended and attached growth biomass. The activated sludge system was operated under low organic loading conditions. The moving bed biofilm reactor (MBBR) system consisted of two serially connected reactors filled with K3-biocarriers. It was either operated under low or high organic loading conditions. Target compounds were removed partially and with different rates in tested systems. For MBBR, increased loading resulted in significantly lower biodegradation for 4 out of 6 examined compounds. Calculation of specific removal rates (normalized to biomass) revealed that attached biomass had higher biodegradation potential for target compounds comparing to suspended biomass. Clear differences in the biodegradation ability of attached biomass grown in different bioreactors of MBBR systems were also observed. Batch experiments showed that micropollutants biodegradation by both types of biomass is co-metabolic. PMID:26093257

  13. Immobilized lysozyme for the continuous lysis of lactic bacteria in wine: Bench-scale fluidized-bed reactor study.

    PubMed

    Cappannella, Elena; Benucci, Ilaria; Lombardelli, Claudio; Liburdi, Katia; Bavaro, Teodora; Esti, Marco

    2016-11-01

    Lysozyme from hen egg white (HEWL) was covalently immobilized on spherical supports based on microbial chitosan in order to develop a system for the continuous, efficient and food-grade enzymatic lysis of lactic bacteria (Oenococcus oeni) in white and red wine. The objective is to limit the sulfur dioxide dosage required to control malolactic fermentation, via a cell concentration typical during this process. The immobilization procedure was optimized in batch mode, evaluating the enzyme loading, the specific activity, and the kinetic parameters in model wine. Subsequently, a bench-scale fluidized-bed reactor was developed, applying the optimized process conditions. HEWL appeared more effective in the immobilized form than in the free one, when the reactor was applied in real white and red wine. This preliminary study suggests that covalent immobilization renders the enzyme less sensitive to the inhibitory effect of wine flavans. PMID:27211619

  14. Laundry greywater treatment using a fluidized bed reactor: a proposed model based on greywater biodegradation and residence time distribution approach.

    PubMed

    David, Pierre-luc; Bulteau, Gaëlle; Humeau, Philippe; Gérente, Claire; Andrès, Yves

    2013-01-01

    The increasing demand for water and the decrease in global water resources require research into alternative solutions to preserve them. The present study deals with the optimization of a treatment process, i.e. an aerobic fluidized bed reactor and the modelling of the degradation that takes place within it. The methodology employed is based on the hydrodynamics of the treatment process linked to the biodegradation kinetics of greywater coming from a washing machine. The residence time distribution (RTD) approach is selected for the hydrodynamic study. Biodegradation kinetics are quantified by respirometry and dissolved organic carbon (DOC) analysis on several mass quantities of colonized particles. RTD determinations show that there are no dysfunctions in the fluidized bed. Its hydrodynamic behaviour is similar to the one of a continuous stirred-tank reactor. A first-order reaction is obtained from the DOC biodegradation study. A model describing the degradation that takes place into the reactor is proposed, and from a sensitive study, the influence of the operating conditions on DOC biodegradation is defined. The theoretical results calculated from the first-order equation C(t) = 0.593 x C(0) x e(-kt) are compared with the experimental results and validated by a Student test. The value of the kinetic constant k is 0.011 h(-1) in the presence of a biomass carrier. The results highlight that it is possible to design a reactor in order to obtain a carbon content lower than 15 mg C L(-1) when the characteristics of raw greywater are known. PMID:24617067

  15. Performance of intermittently aerated up-flow sludge bed reactor and sequencing batch reactor treating industrial estate wastewater: a comparative study.

    PubMed

    Asadi, A; Zinatizadeh, A A L; Hasnain Isa, M

    2012-11-01

    In this study, an innovative aerobic/anoxic sludge bed bioreactor with two feeding regimes, continuous-fed (an up-flow sludge bed reactor (USBR)) and batch fed (sequencing batch reactor (SBR)), was evaluated for the treatment of an industrial estate wastewater with low BOD(5)/COD ratio. The process performance in the two regimes was compared. Two numerical independent variables (retention/react time and aeration time) were selected to analyze, model and optimize the process. Response surface methodology with central composite design (CCD) was used with five levels of hydraulic retention time (HRT)/react time (12-36h) and aeration time (40-60min/h). In order to analyze the process, ten dependent parameters as the process responses were studied. As a result, HRT/react time showed a decreasing impact on the responses measured in both hydraulic regimes, USBR and SBR. The USBR showed better performance than the SBR in removal of total COD, slowly biodegradable COD, total nitrogen and total Kjeldahl nitrogen. PMID:22940360

  16. Pebble Bed Reactor Power Systems for Lunar Outposts: Long Operation Life and End-of Life Storage

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Schriener, Timothy M.

    2010-09-01

    The Pellet Bed Reactor(PeBR) and power system for supporting future lunar outposts offer many desirable design, operation and safety features and address post operation storage of spent nuclear fuel. In addition to its long, full power operation life of 66 year, the PeBR is launched without fuel and loaded after placement below grade on the lunar surface with spherical fuel pellets, designed to fully contain fission products. The fuel pellets(~1.0 cm dia.) are launched separately in subcritical canisters. The post-operation PeBR is stored below grade for > 300 year to allow the radioactivity in the spent fuel to decay to a sufficiently low level. The PeBR power system, designed for avoidance of single point failures in reactor cooling and energy conversion, nominally generates ~100 kWe at a thermal efficiency of ~ 21%. In addition to the sectored reactor core, it uses three Closed Brayton Cycle loops with centrifugal flow turbo-machines for energy conversion and He-Xe(40 g/mol) binary gas mixture working fluid and reactor coolant.

  17. Continuous methane fermentation and the production of vitamin B12 in a fixed-bed reactor packed with loofah.

    PubMed

    Yang, Yingnan; Zhang, Zhenya; Lu, Jun; Maekawa, Takaaki

    2004-05-01

    A fixed-bed reactor with acclimated methanogens immobilized on a loofah support was studied on a laboratory scale to evaluate the system producing methane from the mixture of CO(2) and H(2) gas, with the production of vitamin B(12) as a by-product. Fermentation using CO(2)/H(2) acclimated methanogens was conducted in a jar fermentor with hydraulic retention times (HRTs) of three and six days. The performance of the reactor was mainly dependent on the HRT. With an HRT of three days, the methane production rate and the vitamin B(12) concentration in the culture broth were 6.18 l/l-reactor/h and 2.88 mg/l-culture liquid; these values were 11.96 l/l-reactor/h and 37.54 mg/l-culture liquid for an HRT of six days. A higher total cell mass of methanogens retained 42.5 g dry cell/l-culture liquid was achieved in the HRT of six days. The loofah carrier immobilized almost 95% of the methanogens, which led to a more effective bio-reaction. It was also observed that the fermentation system had a better ability to buffer pH, especially for an HRT of six days. PMID:14766162

  18. Long-term operation performance and variation of substrate tolerance ability in an anammox attached film expanded bed (AAFEB) reactor.

    PubMed

    Zhang, Yanlong; Niu, Qigui; Ma, Haiyuan; He, Shilong; Kubota, Kengo; Li, Yu-You

    2016-07-01

    An anammox attached film expanded bed (AAFEB) reactor was operated to study the long-term performance and the variation of substrate tolerance ability. The results indicated that the nitrogen loading potential (NLP) was significantly enhanced from 13.56gN·(L·d)(-)(1) to 20.95gN·(L·d)(-)(1) during the stable operation period. The inhibitory concentration of 10% (IC10) for free ammonia (FA), free nitrous acid (FNA) and SNinf (diluted substrate concentration) increased from 18mg/L, 12μgL(-1) and 370mgNL(-)(1) to 31mg/L, 19μgL(-1) and 670mgNL(-)(1), respectively. However, the substrate shock of 2500mgNL(-)(1) for 24h terribly weakened the treatment performance and substrate tolerance ability of the reactor. The results of batch tests indicated that the existence of lag phase made the AAFEB reactor more vulnerable to substrate variation. The SNinf was accurate to be used to monitor the reactor performance and should be maintained below 320mgNL(-)(1) to ensure the absolute stable operation. PMID:26995619

  19. Effects of octahedral molecular sieve on treatment performance, microbial metabolism, and microbial community in expanded granular sludge bed reactor.

    PubMed

    Pan, Fei; Xu, Aihua; Xia, Dongsheng; Yu, Yang; Chen, Guo; Meyer, Melissa; Zhao, Dongye; Huang, Ching-Hua; Wu, Qihang; Fu, Jie

    2015-12-15

    This study evaluated the effects of synthesized octahedral molecular sieve (OMS-2) nanoparticles on the anaerobic microbial community in a model digester, expanded granular sludge bed (EGSB) reactor. The addition of OMS-2 (0.025 g/L) in the EGSB reactors resulted in an enhanced operational performance, i.e., COD removal and biogas production increased by 4% and 11% respectively, and effluent volatile fatty acid (VFA) decreased by 11% relative to the control group. The Biolog EcoPlate™ test was employed to investigate microbial metabolism in the EGSB reactors. Results showed that OMS-2 not only increased the microbial metabolic level but also significantly changed the community level physiological profiling of the microorganisms. The Illumina MiSeq high-throughput sequencing of 16S rRNA gene indicated OMS-2 enhanced the microbial diversity and altered the community structure. The largest bacterial genus Lactococcus, a lactic acid bacterium, reduced from 29.3% to 20.4% by abundance in the presence of 0.25 g/L OMS-2, which may be conducive to decreasing the VFA production and increasing the microbial diversity. OMS-2 also increased the quantities of acetogenic bacteria and Archaea, and promoted the acetogenesis and methanogenesis. The X-ray photoelectron spectroscopy illustrated that Mn(IV)/Mn(III) with high redox potential in OMS-2 were reduced to Mn(II) in the EGSB reactors; this in turn affected the microbial community. PMID:26397455

  20. A continuous process for biodiesel production in a fixed bed reactor packed with cation-exchange resin as heterogeneous catalyst.

    PubMed

    Feng, Yaohui; Zhang, Aiqing; Li, Jianxin; He, Benqiao

    2011-02-01

    Continuous esterification of free fatty acids (FFA) from acidified oil with methanol was carried out with NKC-9 cation-exchange resin in a fixed bed reactor with an internal diameter of 25 mm and a height of 450 mm to produce biodiesel. The results showed that the FFA conversion increased with increases in methanol/oil mass ratio, reaction temperature and catalyst bed height, whereas decreased with increases in initial water content in feedstock and feed flow rate. The FFA conversion kept over 98.0% during 500 h of continuous esterification processes under 2.8:1 methanol to oleic acid mass ratio, 44.0 cm catalyst bed height, 0.62 ml/min feed flow rate and 65°C reaction temperature, showing a much high conversion and operational stability. Furthermore, the loss of sulfonic acid groups from NKC-9 resin into the production was not found during continuous esterification. In sum, NKC-9 resin shows the potential commercial applications to esterification of FFA. PMID:21078550

  1. Biodegradation of Phenol in Synthetic Wastewater Using a Fixed Bed Reactor With up Flow Sludge Blanket Filtration (FUSBF)

    PubMed Central

    Ghannadzadeh, Mohammad-Javad; Jonidi-Jafari, Ahmad; Rezaee, Abbas; Soltani, Reza Darvishi Cheshmeh

    2015-01-01

    In the present study, the removal of phenol from synthetic wastewater was evaluated in a fixed bed reactor with up flow sludge blanket filtration (FUSBF) in comparison with a typical USBF system. At hydraulic retention time (HRT) of 24 hours and solid retention time (SRT) of 20 day, the effect of initial concentration of phenol (260-1020 mg/L) on phenol and chemical oxygen demand (COD) removal efficiency (%) was investigated in both systems. The effect of the presence of fixed bed was determined throughout the operational period. The results showed that the FUSBF system had a better ability than the typical USBF system in terms of phenol and COD removal. The average phenol and COD removal at phenol concentration of 312 mg/L was 97.52% and 92.82% for the FUSBF system and 92.80% and 82.18% for the typical USBF system, respectively. At HRT of 24 h and organic loading rate (OLR) of 30 g/m-3.h-1, the amount of phenol removal was 82.1%. At OLR of 30 g/m-3.h-1, role of fixed bed in phenol and COD removal was 25.01% and 29.3%, respectively, overall, the FUSBF system has a higher efficiency and ability than that of typical USBF and can be used for the purification of industrial wastewater containing refractory organic compounds such as phenol. PMID:26153212

  2. Influence of particle size on pyrolysis and gasification performance of municipal solid waste in a fixed bed reactor.

    PubMed

    Luo, Siyi; Xiao, Bo; Hu, Zhiquan; Liu, Shiming; Guan, Yanwen; Cai, Lei

    2010-08-01

    Pyrolysis and gasification of municipal solid waste (MSW) were carried out in a lab-scale fixed bed reactor in order to evaluate the effects of particle size at different bed temperatures on product yield and composition. The bed temperature was varied from 600 to 900 degrees C and the MSW was separated into three different size fractions (below 5 mm, 50-10 mm and above 10 mm). Particle size and temperature had integrated effects on product yield and composition: higher temperature resulted in higher gas yield with less tar and char, and, at the same temperature, dry gas yield increased with a decrease in particle size, and char and tar yield decreased. The differences due to particle sizes in pyrolysis and gasification performance practically disappeared at the highest temperatures tested. Smaller particle sizes resulted in higher H(2) and CO contents for both pyrolysis and gasification of MSW. Minimizing the size of raw materials is an alternative method to improve the gas quality of MSW pyrolysis and gasification. PMID:20363619

  3. Mass-transfer limitations for immobilized enzyme-catalyzed kinetic resolution of racemate in a fixed-bed reactor.

    PubMed

    Xiu, G H; Jiang, L; Li, P

    2001-07-01

    A mathematical model has been developed for immobilized enzyme-catalyzed kinetic resolution of racemate in a fixed-bed reactor in which the enzyme-catalyzed reaction (the irreversible uni-uni competitive Michaelis-Menten kinetics is chosen as an example) was coupled with intraparticle diffusion, external mass transfer, and axial dispersion. The effects of mass-transfer limitations, competitive inhibition of substrates, deactivation on the enzyme effective enantioselectivity, and the optical purity and yield of the desired product are examined quantitatively over a wide range of parameters using the orthogonal collocation method. For a first-order reaction, an analytical solution is derived from the mathematical model for slab-, cylindrical-, and spherical-enzyme supports. Based on the analytical solution for the steady-state resolution process, a new concise formulation is presented to predict quantitatively the mass-transfer limitations on enzyme effective enantioselectivity and optical purity and yield of the desired product for a continuous steady-state kinetic resolution process in a fixed-bed reactor. PMID:11353408

  4. A COMPARISON OF PEBBLE MIXING AND DEPLETION ALGORITHMS USED IN PEBBLE-BED REACTOR EQUILIBRIUM CYCLE SIMULATION

    SciTech Connect

    Hans D. Gougar; Frederik Reitsma; Wessel Joubert

    2009-05-01

    Recirculating pebble-bed reactors are distinguished from all other reactor types by the downward movement through and reinsertion of fuel into the core during operation. Core simulators must account for this movement and mixing in order to capture the physics of the equilibrium cycle core. VSOP and PEBBED are two codes used to perform such simulations, but they do so using different methods. In this study, a simplified pebble-bed core with a specified flux profile and cross sections is used as the model for conducting analyses of two types of burnup schemes. The differences between the codes are described and related to the differences observed in the nuclide densities in pebbles discharged from the core. Differences in the methods for computing fission product buildup and average number densities lead to significant differences in the computed core power and eigenvalue. These test models provide a key component of an overall equilibrium cycle benchmark involving neutron transport, cross section generation, and fuel circulation.

  5. Removal of sulfur dioxide from a continuously operated binary fluidized bed reactor using inert solids and hydrated lime.

    PubMed

    Pisani, R; de Moraes, D

    2004-06-18

    Sulfur dioxide pollutant was treated in the laboratory with hydrated lime particles having a mean diameter of 9.1 microm in a continuously operating binary fluidized bed reactor also containing inert sand particles with sizes varying from 500 to 590 microm. The influence of temperature (500, 600, 700 and 800 degrees C) on the reaction medium, of the superficial velocity of the gas (0.8, 1.0 and 1.2 m/s), and of the Ca/S molar ratio (1, 2 and 3) on the SO2 removal efficiency were investigated for an inflow gas concentration of 1000 ppm and an initially static bed height of 10.0 cm. The pollutant removal efficiency proved to depend on the temperature and the velocity of the gaseous flow and was strongly influenced by the Ca/S molar ratio. The maximum efficiency of 97.7% was achieved at a temperature of 700 degrees C, a Ca/S ratio of 3 and a velocity of 0.8 m/s. The lime particles' mean residence time was determined by an indirect method, which consisted of integrating the gas concentration curves normalized with respect to time. Based on a calculation of the critical transition velocities, it was concluded that the reactor operated in a bubbling regime under each condition investigated here. PMID:15177758

  6. Microbial population in the biomass adhering to supporting material in a packed-bed reactor degrading organic solid waste.

    PubMed

    Sasaki, Kengo; Haruta, Shin; Ueno, Yoshiyuki; Ishii, Masaharu; Igarashi, Yasuo

    2007-06-01

    An anaerobic packed-bed reactor using carbon fiber textiles (CFT) as the supporting material was continuously operated using an artificial garbage slurry. 16S rRNA gene analysis showed that many bacteria in the biomass adhering to CFT were closely related to those observed from other anaerobic environments, although a wide variety of unidentified bacteria were also found. Dot blot hybridization results clarified that 16S rRNA levels of methanogens in the adhering biomass were higher than those in the effluent. Based on microscopic observation, the adhering biomass consisted of microorganisms, organic material, and void areas. Bacteria and Archaea detected by fluorescence in situ hybridization were distributed from the surface to the inner regions of the adhering biomass. Methanosarcina sp. tended to be more abundant in the inner part of the adhering biomass than at the surface. This is the first report to elucidate the structure of the microbial community on CFT in a packed-bed reactor. PMID:17334757

  7. Long-term testing of the zinc titanate for desulfurization of hot coal gas in a fluidized-bed reactor

    SciTech Connect

    Jain, S.C.; Gupta, R.; Gangwal, S.K.

    1993-12-31

    Research Triangle Institute (RTI) under contract to the US Department of Energy (DOE), Morgantown energy Technology Center has recently completed a long-term test consisting of 100 sulfidation-regeneration cycles on a zinc titanate material intended for use as a high-temperature, regenerable sorbent to desulfurize coal-derived gas. The primary motivation for this development is to generate a more economical, environmentally superior, and reliable process to purify the product gas of coal gasifiers for use in gas turbines and fuel cells. This zinc titanate formulation (designated as ZT-4 and containing Zn-to-Ti in a molar ratio of 1.5) exhibited the best overall performance in terms of chemical reactivity, sulfur capacity, regenerability, structural properties and, most importantly, the attrition resistance based on multicycle testing of a number of sorbent formulations in a bench scale fluidized-bed reactor. The conditions in the test were -- desulfurization temperature: 750C (1382F); pressure: 1.52 MPa (220 psia); coal gas: simulated Texaco entrained-bed oxygen-blown gasifier gas containing 12,000 ppmv of H{sub 2}S; superficial gas velocity: 15 cm/s (0.49 ft/s). The ZT-4 sorbent used in this test was prepared using a granulation technique and 500 g of the sorbent in the 100 to 300 microns particle diameter range were used in a 5.1-cm (2-inch) i.d. stainless steel reactor.

  8. Autothermal gasification of low-grade fuels in fluidized bed

    NASA Astrophysics Data System (ADS)

    Belyaev, A. A.

    2009-01-01

    Autothermal gasification of high-ash floatation wastes of Grade Zh Kuzbass coal and low-ash fuel in a suspended-spouted (fluidized) bed at atmospheric pressure is investigated, and a comparison is presented of experimental results that indicate that the ash content of fuels has only slight influence on the generator gas heating value.

  9. Particles fluidized bed receiver/reactor with a beam-down solar concentrating optics: 30-kWth performance test using a big sun-simulator

    NASA Astrophysics Data System (ADS)

    Kodama, Tatsuya; Gokon, Nobuyuki; Cho, Hyun Seok; Matsubara, Koji; Etori, Tetsuro; Takeuchi, Akane; Yokota, Shin-nosuke; Ito, Sumie

    2016-05-01

    A novel concept of particles fluidized bed receiver/reactor with a beam-down solar concentrating optics was performed using a 30-kWth window type receiver by a big sun-simulator. A fluidized bed of quartz sand particles was created by passing air from the bottom distributor of the receiver, and about 30 kWth of high flux visible light from 19 xenon-arc lamps of the sun-simulator was directly irradiated on the top of the fluidized bed in the receiver through a quartz window. The particle bed temperature at the center position of the fluidized bed went up to a temperature range from 1050 to 1200°C by the visible light irradiation with the average heat flux of about 950 kW/m2, depending on the air flow rate. The output air temperature from the receiver reached 1000 - 1060°C.

  10. Fluidized-bed combustion

    SciTech Connect

    Botros, P E

    1990-04-01

    This report describes the activities of the Morgantown Energy Technology Center's research and development program in fluidized-bed combustion from October 1, 1987, to September 30, 1989. The Department of Energy program involves atmospheric and pressurized systems. Demonstrations of industrial-scale atmospheric systems are being completed, and smaller boilers are being explored. These systems include vortex, multi-solid, spouted, dual-sided, air-cooled, pulsed, and waste-fired fluidized-beds. Combustion of low-rank coal, components, and erosion are being studied. In pressurized combustion, first-generation, combined-cycle power plants are being tested, and second-generation, advanced-cycle systems are being designed and cost evaluated. Research in coal devolatilization, metal wastage, tube corrosion, and fluidization also supports this area. 52 refs., 24 figs., 3 tabs.

  11. Bioenergy production from diluted poultry manure and microbial consortium inside Anaerobic Sludge Bed Reactor at sub-mesophilic conditions.

    PubMed

    Jaxybayeva, Aigerim; Yangin-Gomec, Cigdem; Cetecioglu, Zeynep; Ozbayram, E Gozde; Yilmaz, Fatih; Ince, Orhan

    2014-01-01

    In this study, anaerobic treatability of diluted chicken manure (with an influent feed ratio of 1 kg of fresh chicken manure to 6 L of tap water) was investigated in a lab-scale anaerobic sludge bed (ASB) reactor inoculated with granular seed sludge. The ASB reactor was operated at ambient temperature (17-25°C) in order to avoid the need of external heating up to higher operating temperatures (e.g., up to 35°C for mesophilic digestion). Since heat requirement for raising the temperature of incoming feed for digestion is eliminated, energy recovery from anaerobic treatment of chicken manure could be realized with less operating costs. Average biogas production rates were calculated ca. 210 and 242 L per kg of organic matter removed from the ASB reactor at average hydraulic retention times (HRTs) of 13 and 8.6 days, respectively. Moreover, average chemical oxygen demand (COD) removal of ca. 89% was observed with suspended solids removal more than 97% from the effluent of the ASB reactor. Influent ammonia, on the other hand, did not indicate any free ammonia inhibition due to dilution of the raw manure while pH and alkalinity results showed stability during the study. Microbial quantification results indicated that as the number of bacterial community decreased, the amount of Archaea increased through the effective digestion volume of the ASB reactor. Moreover, the number of methanogens displayed an uptrend like archaeal community and a strong correlation (-0.645) was found between methanogenic community and volatile fatty acid (VFA) concentration especially acetate. PMID:25065830

  12. Mesophilic hydrogen production in acidogenic packed-bed reactors (APBR) using raw sugarcane vinasse as substrate: Influence of support materials.

    PubMed

    Nunes Ferraz Júnior, Antônio Djalma; Etchebehere, Claudia; Zaiat, Marcelo

    2015-08-01

    Bio-hydrogen production from sugarcane vinasse in anaerobic up-flow packed-bed reactors (APBR) was evaluated. Four types of support materials, expanded clay (EC), charcoal (Ch), porous ceramic (PC), and low-density polyethylene (LDP) were tested as support for biomass attachment. APBR (working volume - 2.3 L) were operated in parallel at a hydraulic retention time of 24 h, an organic loading rate of 36.2 kg-COD m(-3) d(-1), at 25 °C. Maximum volumetric hydrogen production values of 509.5, 404, 81.4 and 10.3 mL-H2 d(-1) L(-1)reactor and maximum yields of 3.2, 2.6, 0.4 and 0.05 mol-H2 mol(-1) carbohydrates total, were observed during the monitoring of the reactors filled with LDP, EC, Ch and PC, respectively. Thus, indicating the strong influence of the support material on H2 production. LDP was the most appropriate material for hydrogen production among the materials evaluated. 16S rRNA gene by Terminal Restriction Fragment Length Polymorphism (T-RFLP) analysis and scanning electron microscopy confirmed the selection of different microbial populations. 454-pyrosequencing performed on samples from APBR filled with LDP revealed the presence of hydrogen-producing organisms (Clostridium and Pectinatus), lactic acid bacteria and non-fermentative organisms. PMID:25891935

  13. Molecular analysis of the biomass of a fluidized bed reactor treating synthetic vinasse at anaerobic and micro-aerobic conditions.

    PubMed

    Rodríguez, Elisa; Lopes, Alexandre; Fdz-Polanco, María; Stams, Alfons J M; García-Encina, Pedro A

    2012-03-01

    The microbial communities (Bacteria and Archaea) established in an anaerobic fluidized bed reactor used to treat synthetic vinasse (betaine, glucose, acetate, propionate, and butyrate) were characterized by denaturing gradient gel electrophoresis (DGGE) and phylogenetic analysis. This study was focused on the competitive and syntrophic interactions between the different microbial groups at varying influent substrate to sulfate ratios of 8, 4, and 2 and anaerobic or micro-aerobic conditions. Acetogens detected along the anaerobic phases at substrate to sulfate ratios of 8 and 4 seemed to be mainly involved in the fermentation of glucose and betaine, but they were substituted by other sugar or betaine degraders after oxygen application. Typical fatty acid degraders that grow in syntrophy with methanogens were not detected during the entire reactor run. Likely, sugar and betaine degraders outnumbered them in the DGGE analysis. The detected sulfate-reducing bacteria (SRB) belonged to the hydrogen-utilizing Desulfovibrio. The introduction of oxygen led to the formation of elemental sulfur (S(0)) and probably other sulfur compounds by sulfide-oxidizing bacteria (γ-Proteobacteria). It is likely that the sulfur intermediates produced from sulfide oxidation were used by SRB and other microorganisms as electron acceptors, as was supported by the detection of the sulfur respiring Wolinella succinogenes. Within the Archaea population, members of Methanomethylovorans and Methanosaeta were detected throughout the entire reactor operation. Hydrogenotrophic methanogens mainly belonging to the genus Methanobacterium were detected at the highest substrate to sulfate ratio but rapidly disappeared by increasing the sulfate concentration. PMID:21861082

  14. Microbial community of granules in expanded granular sludge bed reactor for simultaneous biological removal of sulfate, nitrate and lactate.

    PubMed

    Chen, Chuan; Ren, Nanqi; Wang, Aijie; Yu, Zhenguo; Lee, Duu-Jong

    2008-07-01

    This study studied the cultivation of granules from an expanded granular sludge bed reactor that simultaneously transforms sulfates, nitrates, and oxygen to elementary sulfur, nitrogen gas, and carbon dioxides, respectively. The living cells accumulate at the granule outer layers, as revealed by the multicolor staining and confocal laser scanning microscope technique. The microbial community comprises sulfate-reducing bacteria (SRB, Desulfomicrobium sp.), heterotrophic (Pseudomonas aeruginosa and Sulfurospirillum sp.), and autotrophic denitrifiers (Sulfurovum sp. and Paracoccus denitrificans) whose population dynamics at different sulfate and nitrate loading rates are monitored with the single-strand conformation polymorphism and denaturing gradient gel electrophoresis technique. The Desulfomicrobium sp. presents one of the dominating strains following reactor startup. At high sulfate and nitrate loading rates, the heterotrophic denitrifiers overcompete autotrophic denitrifiers to reduce SRB activities. Conversely, suddenly reducing nitrate loading rates completely removes the heterotrophic denitrifier Sulfurospirillum sp. from the granules and activates the autotrophic denitrifiers. The physical fixation of different groups of functional strains in granules fine-tunes the strains' activities, and hence the reactor performance. PMID:18483736

  15. Evaluation of 4-bromophenol biodegradation in mixed pollutants system by Arthrobacter chlorophenolicus A6 in an upflow packed bed reactor.

    PubMed

    Sahoo, Naresh Kumar; Pakshirajan, Kannan; Ghosh, Pranab Kumar

    2014-09-01

    Bromophenol is listed as priority pollutant by U.S. EPA, however, there is no report so far on its removal in mixed pollutants system by any biological reactor operated in continuous mode. Furthermore, bromophenol along with chlorophenol and nitrophenol are usually the major constituents of paper pulp and pesticide industrial effluent. The present study investigated simultaneous biodegradation of these three pollutants with specially emphasis on substrate competition and crossed inhibition by Arthrobacter chlorophenolicus A6 in an upflow packed bed reactor (UPBR). A 2(3) full factorial design was employed with these pollutants at two different levels by varying their influent concentration in the range of 250-450 mg l(-1). Almost complete removal of all these pollutants and 97 % effluent toxicity removal were achieved in the UPBR at a pollutant loading rate of 1707 mg l(-1) day(-1) or lesser. However, at higher loading rates, the reactor performance deteriorated due to transient accumulation of toxic intermediates. Statistical analysis of the results revealed a strong negative interaction of 4-CP on 4-NP biodegradation. On the other hand, interaction effect between 4-CP and 4-BP was found to be insignificant. Among these three pollutants 4-NP preferentially degraded, however, 4-CP exerted more inhibitory effect on 4-NP biodegradation. This study demonstrated the potential of A. chlorophenolicus A6 for biodegradation of 4-BP in mixed pollutants system by a flow through UPBR system. PMID:24934870

  16. Steady-state thermal-hydraulic analysis of the pellet-bed reactor for nuclear thermal propulsion

    SciTech Connect

    El-Genk, M.S.; Morley, N.J.; Yang, J.Y. )

    1992-01-01

    The pellet-bed reactor (PBR) for nuclear thermal propulsion is a hydrogen-cooled, BeO-reflected, fast reactor, consisting of an annular core region filled with randomly packed, spherical fuel pellets. The fuel pellets in the PBR are self-supported, eliminating the need for internal core structure, which simplifies the core design and reduces the size and mass of the reactor. Each spherical fuel pellet is composed of hundreds of fuel microspheres embedded in a zirconium carbide (ZrC) matrix. Each fuel microsphere is composed of a UC-NbC fuel kernel surrounded by two consecutive layers of the NbC and ZrC. Gaseous hydrogen serves both as core coolant and as the propellant for the PBR rocket engine. The cold hydrogen flows axially down the inlet channel situated between the core and the external BeO reflector and radially through the orifices in the cold frit, the core, and the orifices in the hot frit. Finally, the hot hydrogen flows axially out the central channel and exits through converging-diverging nozzle. A thermal-hydraulic analysis of the PBR core was performed with an emphasis on optimizing the size and axial distribution of the orifices in the hot and cold frits to ensure that hot spots would not develop in the core during full-power operation. Also investigated was the validity of the assumptions of neglecting the axial conduction and axial cross flow in the core.

  17. Effect of acidity and elevated PCO2 on acid. Neutralization within pulsed limestone bed reactors receiving coal mine drainage

    USGS Publications Warehouse

    Watten, B.J.; Sibrell, P.L.; Schwartz, M.F.

    2004-01-01

    Limestone has potential for reducing reagent costs and sludge volume associated with the treatment of acid mine drainage (AMD), but its use has been restricted by slow dissolution rates and sensitivity to scale forming reactions that retard transport of H+ at the solid-liquid interface. We evaluated a pulsed limestone bed (PLB) remediation process designed to circumvent these problems through use of intermittently fluidized beds of granular limestone and elevated carbon dioxide pressure. PLB limestone dissolution (LD, mg/L), and effluent alkalinity (Alk, mg/L) were correlated with reactor pressure (PCO2, kPa), influent acidity (Acy, mg/L) and reactor bed height (H, cm) using a prototype capable of processing 10 L/min. The PLB process effectively neutralized sulfuric acid acidity over the range of 6-1033 mg/L (as CaCO3) while generating high concentrations of alkalinity (36-1086 mg/L) despite a hydraulic residence time of just 4.2-5.0 min. Alk and LD (mg/L CaCO3) rose with increases in influent acidity and PCO2 (p < 0.001) according to the models: Alk = 58 + 38.4 (PCO2)0.5 + 0.080 (Acy) - 0.0059(PCO2) 0.5 (Acy); LD = 55 + 38.3 (PCO2)0.5 + 1.08 (Acy) - 0.0059 (PCO2)0.5 (Acy). Alkalinity decreased at an increasing rate with reductions in H over the range of 27.3-77.5 cm (p < 0.001). Carbon dioxide requirements (Q(avg)CO2, L/min) increased with PCO2 (p < 0.001) following the model Q(avg)CO2 = 0.858 (PCO2)0.620, resulting in a greater degree of pH buffering (depression) within the reactors, a rise in limestone solubility and an increase in limestone dissolution related to carbonic acid attack. Corresponding elevated concentrations of effluent alkalinity allow for sidestream treatment with blending. Numerical modeling demonstrated that carbon dioxide requirements are reduced as influent acidity rises and when carbon dioxide is recovered from system effluent and recycled. Field trials demonstrated that the PLB process is capable of raising the pH of AMD above that

  18. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    NASA Astrophysics Data System (ADS)

    Scarlat, Raluca Olga

    This dissertation treats system design, modeling of transient system response, and characterization of individual phenomena and demonstrates a framework for integration of these three activities early in the design process of a complex engineered system. A system analysis framework for prioritization of experiments, modeling, and development of detailed design is proposed. Two fundamental topics in thermal-hydraulics are discussed, which illustrate the integration of modeling and experimentation with nuclear reactor design and safety analysis: thermal-hydraulic modeling of heat generating pebble bed cores, and scaled experiments for natural circulation heat removal with Boussinesq liquids. The case studies used in this dissertation are derived from the design and safety analysis of a pebble bed fluoride salt cooled high temperature nuclear reactor (PB-FHR), currently under development in the United States at the university and national laboratories level. In the context of the phenomena identification and ranking table (PIRT) methodology, new tools and approaches are proposed and demonstrated here, which are specifically relevant to technology in the early stages of development, and to analysis of passive safety features. A system decomposition approach is proposed. Definition of system functional requirements complements identification and compilation of the current knowledge base for the behavior of the system. Two new graphical tools are developed for ranking of phenomena importance: a phenomena ranking map, and a phenomena identification and ranking matrix (PIRM). The functional requirements established through this methodology were used for the design and optimization of the reactor core, and for the transient analysis and design of the passive natural circulation driven decay heat removal system for the PB-FHR. A numerical modeling approach for heat-generating porous media, with multi-dimensional fluid flow is presented. The application of this modeling

  19. A model of coal particle drying in fluidized bed combustion reactor

    SciTech Connect

    Komatina, M.; Manovic, V.; Saljnikov, A.

    2007-02-15

    Experimental and theoretical investigation on drying of a single coal particle in fluidized bed combustor is presented. Coal particle drying was considered via the moist shrinking core mechanism. The results of the drying test runs of low-rank Serbian coals were used for experimental verification of the model. The temperature of the coal particle center was measured, assuming that drying was completed when the temperature equalled 100{sup o}C. The influence of different parameters (thermal conductivity and specific heat capacity of coal, fluidized bed temperature, moisture content and superheating of steam) on drying time and temperature profile within the coal particle was analyzed by a parametric analysis. The experimentally obtained results confirmed that the moist shrinking core mechanism can be applied for the mathematical description of a coal particle drying, while dependence between drying time and coal particle radius, a square law relationship, implicates heat transfer control of the process and confirms the validity of assumptions used in modeling.

  20. Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor.

    PubMed

    Zhang, Huiyan; Xiao, Rui; Huang, He; Xiao, Gang

    2009-02-01

    Fast pyrolysis of corncob with and without catalyst was investigated in a fluidized bed to determine the effects of pyrolysis parameters (temperature, gas flow rate, static bed height and particle size) and a HZSM-5 zeolite catalyst on the product yields and the qualities of the liquid products. The result showed that the optimal conditions for liquid yield (56.8%) were a pyrolysis temperature of 550 degrees C, gas flow rate of 3.4 L/min, static bed height of 10 cm and particle size of 1.0-2.0mm. The presence of the catalyst increased the yields of non-condensable gas, water and coke, while decreased the liquid and char yields. The elemental analysis showed that more than 25% decrease in oxygen content of the collected liquid in the second condenser with HZSM-5 was observed compared with that without catalyst. The H/C, O/C molar ratios and the higher heating value of the oil fraction in the collected liquid with the catalyst were 1.511, 0.149 and 34.6 MJ/kg, respectively. It was indicated that the collected liquid in the second condenser had high qualities and might be used as transport oil. PMID:18829306

  1. Development of a fixed-bed anammox reactor with high treatment potential.

    PubMed

    Okamoto, Hiroyuki; Kawamura, Kimito; Nishiyama, Takashi; Fujii, Takao; Furukawa, Kenji

    2013-02-01

    A plug-flow type anaerobic ammonium oxidation (anammox) reactor was developed using malt ceramics (MC) produced from carbonized spent grains as the biomass carriers for anammox sludge. Partial nitrified effluent of the filtrate from the sludge dehydrator of a brewery company was used as influent to a 20 L anammox reactor using MC. An average volumetric nitrogen removal rate (VNR) of 8.78 kg-N/m(3)/day was maintained stably for 76 days with 1 h of HRT. In a larger anammox reactor (400 L), an average VNR of 4.84 kg-N/m(3)/day could be maintained for 86 days during the treatment of low strength synthetic inorganic wastewater. As a result of bacterial community analysis for the 20 L anammox reactor, Asahi BRW1, probably originating from the wastewater collected at Asahi Breweries, was detected as the dominant anammox bacterium. These anammox reactors were characterized by a high NH(4)-N removal capacity for low strength wastewater with a short hydraulic retention time. PMID:22684212

  2. Pd-Ag Membrane Coupled to a Two-Zone Fluidized Bed Reactor (TZFBR) for Propane Dehydrogenation on a Pt-Sn/MgAl2O4 Catalyst.

    PubMed

    Medrano, José-Antonio; Julián, Ignacio; Herguido, Javier; Menéndez, Miguel

    2013-01-01

    Several reactor configurations have been tested for catalytic propane dehydrogenation employing Pt-Sn/MgAl2O4 as a catalyst. Pd-Ag alloy membranes coupled to the multifunctional Two-Zone Fluidized Bed Reactor (TZFBR) provide an improvement in propane conversion by hydrogen removal from the reaction bed through the inorganic membrane in addition to in situ catalyst regeneration. Twofold process intensification is thereby achieved when compared to the use of traditional fluidized bed reactors (FBR), where coke formation and thermodynamic equilibrium represent important process limitations. Experiments were carried out at 500-575 °C and with catalyst mass to molar flow of fed propane ratios between 15.1 and 35.2 g min mmol-1, employing three different reactor configurations: FBR, TZFBR and TZFBR + Membrane (TZFBR + MB). The results in the FBR showed catalyst deactivation, which was faster at high temperatures. In contrast, by employing the TZFBR with the optimum regenerative agent flow (diluted oxygen), the process activity was sustained throughout the time on stream. The TZFBR + MB showed promising results in catalytic propane dehydrogenation, displacing the reaction towards higher propylene production and giving the best results among the different reactor configurations studied. Furthermore, the results obtained in this study were better than those reported on conventional reactors. PMID:24958620

  3. Pd-Ag Membrane Coupled to a Two-Zone Fluidized Bed Reactor (TZFBR) for Propane Dehydrogenation on a Pt-Sn/MgAl2O4 Catalyst

    PubMed Central

    Medrano, José-Antonio; Julián, Ignacio; Herguido, Javier; Menéndez, Miguel

    2013-01-01

    Several reactor configurations have been tested for catalytic propane dehydrogenation employing Pt-Sn/MgAl2O4 as a catalyst. Pd-Ag alloy membranes coupled to the multifunctional Two-Zone Fluidized Bed Reactor (TZFBR) provide an improvement in propane conversion by hydrogen removal from the reaction bed through the inorganic membrane in addition to in situ catalyst regeneration. Twofold process intensification is thereby achieved when compared to the use of traditional fluidized bed reactors (FBR), where coke formation and thermodynamic equilibrium represent important process limitations. Experiments were carried out at 500–575 °C and with catalyst mass to molar flow of fed propane ratios between 15.1 and 35.2 g min mmol−1, employing three different reactor configurations: FBR, TZFBR and TZFBR + Membrane (TZFBR + MB). The results in the FBR showed catalyst deactivation, which was faster at high temperatures. In contrast, by employing the TZFBR with the optimum regenerative agent flow (diluted oxygen), the process activity was sustained throughout the time on stream. The TZFBR + MB showed promising results in catalytic propane dehydrogenation, displacing the reaction towards higher propylene production and giving the best results among the different reactor configurations studied. Furthermore, the results obtained in this study were better than those reported on conventional reactors. PMID:24958620

  4. Nitrogen removal performance and microbial community analysis of an anaerobic up-flow granular bed anammox reactor.

    PubMed

    Cho, Sunja; Takahashi, Yoshitaka; Fujii, Naoki; Yamada, Yohei; Satoh, Hisashi; Okabe, Satoshi

    2010-02-01

    We investigated nitrogen removal performance and responsible microbial community in an anaerobic up-flow granular bed anammox reactor. The anammox reactor was operated more than 1 year. Biomass in the reactor formed granules after about 2 months of operation, and a sufficient amount of the granules was retained in the reactor with a metallic net to avoid biomass washout during the entire operation. The average diameter of the granules was 3.6mm at day 310. After 8 months of operation, stable nitrogen removal (60%) was achieved at an average total inorganic nitrogen removal rate of 14 kg-N m(-3)d(-1). The phylogenetic analysis and fluorescence in situ hybridization results revealed that the anammox granules consisted of mono species of anammox bacteria, "Candidatus Brocadia-like species", affiliated with "Candidatus Brocadia anammoxidans" with 16S rRNA gene sequence similarity of 95.7%. The relative abundance of the anammox bacteria in the granules was more than 80% of the total bacteria stained with 4',6-diamidino-2-phenylindole. The anammox bacteria were present throughout the granules whereas the other bacterial groups, Chloroflexi-like filamentous bacteria and betaproteobacterial ammonia-oxidizing bacteria, were mainly present on the surface of the anammox granules and around the anammox bacterial clusters. The in situ anammox activity was detected mainly from near the surface of granules to the upper 800 microm of the granules with microsensors. The granular anammox biomass tolerated higher concentrations of nitrite (400 mg-NL(-1)) than did the homogenized biomass (200 mg-NL(-1)) probably due to substrate diffusion limitation. PMID:20079515

  5. Design and demonstration of an immobilized-cell fluidized-bed reactor for the efficient production of ethanol

    SciTech Connect

    Webb, O.F.; Scott, T.C.; Davison, B.H.; Scott, C.D.

    1994-06-01

    Initial studies have been carried out using a 4 inch ID fluidized bed reactor (FBR). This medium scale FBR was designed for scale-up. Present performance was compared with results from experiments using smaller FBRs. On-line and off-line measurement systems are also described. Zymomonas mobilis was immobilized in {kappa}-carrageenan at cell loadings of 15--50 g (dry weight) L{sup {minus}1}. The system is designed for determining optimal operation with high conversion and productivity for a variety of conditions including feedstocks, temperature, flow rate, and column sizes (from 2 to 5 meters tall). The demonstration used non-sterile feedstocks containing either industrial (light steep water) or synthetic nutrients and dextrose.

  6. Study on co-pyrolysis characteristics of rice straw and Shenfu bituminous coal blends in a fixed bed reactor.

    PubMed

    Li, Shuaidan; Chen, Xueli; Liu, Aibin; Wang, Li; Yu, Guangsuo

    2014-03-01

    Co-pyrolysis behaviors of rice straw and Shenfu bituminous coal were studied in a fixed bed reactor under nitrogen atmosphere. The pyrolysis temperatures were 700°C, 800°C and 900°C, respectively. Six different biomass ratios were used. Gas, tar components were analyzed by a gas chromatograph and a gas chromatography-mass spectrometry respectively. Under co-pyrolysis conditions, the gas volume yields are higher than the calculated values. Co-pyrolysis tar contains more phenolics, less oxygenate compounds than calculated values. The addition of biomass changes the atmosphere during the pyrolysis process and promotes tar decomposition. The SEM results show that the differences between the blended char and their parents char are not significant. The results of char yields and ultimate analysis also show that no significant interactions exist between the two kinds of particles. The changes of gas yield and components are caused by the secondary reactions and tar decomposition. PMID:24457309

  7. Studies on the Role of Nitrogen in the Feed for Fischer-Tropsch Synthesis Under Fixed-Bed Reactor System.

    PubMed

    Hong, Gi Hoon; Jung, Jae-Sun; Kim, Na-Young; Lee, Sang Yong; Moon, Dong Ju

    2016-02-01

    In this study, Co/Al203 catalyst for Fischer-Tropsch synthesis was prepared via slurry impregnation method and the catalyst was characterized by various techniques such as TPR, XRD, TGA and N2 physisorption. To dissolve the wax, after-reaction catalyst was dewaxed using n-Hexane at 60 *C. The experiments were performed in a bench-scale fixed-bed reactor, under the reaction condition of 230 degrees C, 20 bar and feed volume ratio of H2:CO:N2 = 2:1:0.5-1.5. The methane selectivity and the ratio of olefin to paraffin among C2-C4 hydrocarbons were increased with higher contents of nitrogen in feed gas which result in higher partial pressure ratio of H2 to CO, and also affect methane selectivity which has a significant role in increased CO conversion. PMID:27433695

  8. Bio-oil production via fast pyrolysis of biomass residues from cassava plants in a fluidised-bed reactor.

    PubMed

    Pattiya, Adisak

    2011-01-01

    Biomass residues from cassava plants, namely cassava stalk and cassava rhizome, were pyrolysed in a fluidised-bed reactor for production of bio-oil. The aims of this work were to investigate the yields and properties of pyrolysis products produced from both feedstocks as well as to identify the optimum pyrolysis temperature for obtaining the highest organic bio-oil yields. Results showed that the maximum yields of the liquid bio-oils derived from the stalk and rhizome were 62 wt.% and 65 wt.% on dry basis, respectively. The pyrolysis temperatures that gave highest bio-oil yields for both feedstocks were in the range of 475-510 °C. According to the analysis of the bio-oils properties, the bio-oil derived from cassava rhizome showed better quality than that derived from cassava stalk as the former had lower oxygen content, higher heating value and better storage stability. PMID:20864338

  9. Functionalization of polymer powders for SLS-processes using an atmospheric plasma jet in a fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Sachs, Marius; Schmitt, Adeliene; Schmidt, Jochen; Peukert, Wolfgang; Wirth, Karl-Ernst

    2015-05-01

    Recently additive manufacturing processes such as selective laser sintering (SLS) of polymers have gained more importance for industrial applications [1]. Tailor-made modification of polymers is essential in order to make these processes more efficient and to cover the industrial demands. The so far used polymer materials show weak performance regarding the mechanical stability of processed parts. To overcome this limitation, a new route to functionalize the surface of commercially available polymer particles (PA12; PE-HD; PP) using an atmospheric plasma jet in combination with a fluidized bed reactor has been investigated. Consequently, an improvement of adhesion and wettability [2] of the polymer surface without restraining the bulk properties of the powder is achieved. The atmospheric plasma jet process can provide reactive species at moderate temperatures which are suitable for polymer material. The functionalization of the polymer powders improves the quality of the devices build in a SLS-process.

  10. Functionalization of polymer powders for SLS-processes using an atmospheric plasma jet in a fluidized bed reactor

    SciTech Connect

    Sachs, Marius; Schmitt, Adeliene; Schmidt, Jochen; Peukert, Wolfgang; Wirth, Karl-Ernst

    2015-05-22

    Recently additive manufacturing processes such as selective laser sintering (SLS) of polymers have gained more importance for industrial applications [1]. Tailor-made modification of polymers is essential in order to make these processes more efficient and to cover the industrial demands. The so far used polymer materials show weak performance regarding the mechanical stability of processed parts. To overcome this limitation, a new route to functionalize the surface of commercially available polymer particles (PA12; PE-HD; PP) using an atmospheric plasma jet in combination with a fluidized bed reactor has been investigated. Consequently, an improvement of adhesion and wettability [2] of the polymer surface without restraining the bulk properties of the powder is achieved. The atmospheric plasma jet process can provide reactive species at moderate temperatures which are suitable for polymer material. The functionalization of the polymer powders improves the quality of the devices build in a SLS-process.

  11. High-nitrate wastewater treatment in an expanded granular sludge bed reactor and microbial diversity using 454 pyrosequencing analysis.

    PubMed

    Liao, Runhua; Shen, Ke; Li, Ai-Min; Shi, Peng; Li, Yan; Shi, Qianqian; Wang, Zhu

    2013-04-01

    Denitrification of high concentration of nitrate wastewater was investigated in expanded granular sludge bed (EGSB) reactor with sodium acetate as the carbon source. The optimal parameters were achieved with C/N mole ratio of 2.0, liquid up-flow velocity (Vup) of 3.0 m/h and pH of 6.2-8.2. Complete denitrification can be achieved even with nitrate nitrogen concentration as high as 14000 mg/L. Furthermore, 454-pyrosequencing technology was used to analyze bacterial diversity. Results showed that a total of 5573 sequences were obtained which could be affiliated to 6 phylogenetic groups, including Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, Chloroflexi and unclassified phylum. Proteobacteria (84.53%) was the dominant microbial population, followed by Firmicutes (13.24%) and Actinobacteria (0.38%). The dominate phylum was different from that in other anaerobic system. PMID:23500551

  12. Essential factors of an integrated moving bed biofilm reactor-membrane bioreactor: Adhesion characteristics and microbial community of the biofilm.

    PubMed

    Tang, Bing; Yu, Chunfei; Bin, Liying; Zhao, Yiliang; Feng, Xianfeng; Huang, Shaosong; Fu, Fenglian; Ding, Jiewei; Chen, Cuiqun; Li, Ping; Chen, Qianyu

    2016-07-01

    This work aims at revealing the adhesion characteristics and microbial community of the biofilm in an integrated moving bed biofilm reactor-membrane bioreactor, and further evaluating their variations over time. With multiple methods, the adhesion characteristics and microbial community of the biofilm on the carriers were comprehensively illuminated, which showed their dynamic variation along with the operational time. Results indicated that: (1) the roughness of biofilm on the carriers increased very quickly to a maximum value at the start-up stage, then, decreased to become a flat curve, which indicated a layer of smooth biofilm formed on the surface; (2) the tightly-bound protein and polysaccharide was the most important factor influencing the stability of biofilm; (3) the development of biofilm could be divided into three stages, and Gammaproteobacteria were the most dominant microbial species in class level at the last stage, which occupied the largest ratio (51.48%) among all microbes. PMID:27038266

  13. KUGEL: a thermal, hydraulic, fuel performance, and gaseous fission product release code for pebble bed reactor core analysis

    SciTech Connect

    Shamasundar, B.I.; Fehrenbach, M.E.

    1981-05-01

    The KUGEL computer code is designed to perform thermal/hydraulic analysis and coated-fuel particle performance calculations for axisymmetric pebble bed reactor (PBR) cores. This computer code was developed as part of a Department of Energy (DOE)-funded study designed to verify the published core performance data on PBRs. The KUGEL code is designed to interface directly with the 2DB code, a two-dimensional neutron diffusion code, to obtain distributions of thermal power, fission rate, fuel burnup, and fast neutron fluence, which are needed for thermal/hydraulic and fuel performance calculations. The code is variably dimensioned so that problem size can be easily varied. An interpolation routine allows variable mesh size to be used between the 2DB output and the two-dimensional thermal/hydraulic calculations.

  14. Corn stalks char from fast pyrolysis as precursor material for preparation of activated carbon in fluidized bed reactor.

    PubMed

    Wang, Zhiqi; Wu, Jingli; He, Tao; Wu, Jinhu

    2014-09-01

    Corn stalks char from fast pyrolysis was activated by physical and chemical activation process in a fluidized bed reactor. The structure and morphology of the carbons were characterized by N2 adsorption and SEM. Effects of activation time and activation agents on the structure of activation carbon were investigated. The physically activated carbons with CO2 have BET specific surface area up to 880 m(2)/g, and exhibit microporous structure. The chemically activated carbons with H3PO4 have BET specific surface area up to 600 m(2)/g, and exhibit mesoporous structure. The surface morphology shows that physically activated carbons exhibit fibrous like structure in nature with long ridges, resembling parallel lines. Whereas chemically activated carbons have cross-interconnected smooth open pores without the fibrous like structure. PMID:24974241

  15. Modeling the operation of a three-stage fluidized bed reactor for removing CO2 from flue gases.

    PubMed

    Mohanty, C R; Meikap, B C

    2011-03-15

    A bubbling counter-current multistage fluidized bed reactor for the sorption of carbon dioxide (CO(2)) by hydrated lime particles was simulated employing a two-phase model, with the bubble phase assumed to be in plug flow, and the emulsion phase in plug flow and perfectly mixed flow conditions. To meet prescribed permissible limit to emit carbon dioxide from industrial flue gases, dry scrubbing of CO(2) was realized. For the evaluation, a pilot plant was built, on which also the removal efficiency of CO(2) was verified at different solids flow rates. The model results were compared with experimental data in terms of percentage removal efficiency of carbon dioxide. The comparison showed that the EGPF model agreed well with the experimental data satisfactorily. The removal efficiency was observed to be mainly influenced by flow rates of adsorbent and CO(2) concentration. PMID:21255918

  16. Fast pyrolysis of microalgae remnants in a fluidized bed reactor for bio-oil and biochar production.

    PubMed

    Wang, Kaige; Brown, Robert C; Homsy, Sally; Martinez, Liliana; Sidhu, Sukh S

    2013-01-01

    In this study, pyrolysis of microalgal remnants was investigated for recovery of energy and nutrients. Chlorella vulgaris biomass was first solvent-extracted for lipid recovery then the remnants were used as the feedstock for fast pyrolysis experiments using a fluidized bed reactor at 500 °C. Yields of bio-oil, biochar, and gas were 53, 31, and 10 wt.%, respectively. Bio-oil from C. vulgaris remnants was a complex mixture of aromatics and straight-chain hydrocarbons, amides, amines, carboxylic acids, phenols, and other compounds with molecular weights ranging from 70 to 1200 Da. Structure and surface topography of the biochar were analyzed. The high inorganic content (potassium, phosphorous, and nitrogen) of the biochar suggests it may be suitable to provide nutrients for crop production. The bio-oil and biochar represented 57% and 36% of the energy content of the microalgae remnant feedstock, respectively. PMID:23069615

  17. Analysis of the impact of random summing on passive assay of pebble bed reactor fuel using gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Chen, J.; Hawari, A. I.

    2007-08-01

    Pebble bed reactors (PBR) are characterized by multi-pass fuel systems in which spherical fuel pebbles are circulated through the core until they reach a proposed burnup limit. The fuel is assayed on-line to ensure that the burnup limit is not breached. However, random summing effects can impact the response of the burnup measurement system and result in distortions that degrade the accuracy of the assay results. Monte Carlo analysis was performed to estimate the magnitude and effect of random summing on the absolute and relative indicators that have been identified as usable in on-line assay. For a throughput rate of 10 5 counts/s and trapezoidal pulse shaping of the signals, the results show that absolute indicators suffer from severe distortions due to this effect. Relative indicators are found to be resistant to random summing with the deviation in the ratio of peak areas remaining less than 5-15% depending on pulse width.

  18. High purity H2 by sorption-enhanced chemical looping reforming of waste cooking oil in a packed bed reactor.

    PubMed

    Pimenidou, P; Rickett, G; Dupont, V; Twigg, M V

    2010-12-01

    High purity hydrogen (>95%) was produced at 600 degrees C and 1 atm by steam reforming of waste cooking oil at a molar steam to carbon ratio of 4 using chemical looping, a process that features redox cycles of a Ni catalyst with the in-situ carbonation/calcination of a CO(2) sorbent (dolomite) in a packed bed reactor under alternated feedstreams of fuel-steam and air. The fuel and steam conversion were higher with the sorbent present than without it. Initially, the dolomite carbonation was very efficient (100%), and 98% purity hydrogen was produced, but the carbonation decreased to around 56% with a purity of 95% respectively in the following cycles. Reduction of the nickel catalyst occurred alongside steam reforming, water gas shift and carbonation, with H(2) produced continuously under fuel-steam feeds. Catalyst and CO(2)-sorbent regeneration was observed, and long periods of autothermal operation within each cycle were demonstrated. PMID:20655199

  19. Microbial community distribution and extracellular enzyme activities in leach bed reactor treating food waste: effect of different leachate recirculation practices.

    PubMed

    Xu, Su Yun; Karthikeyan, Obuli P; Selvam, Ammaiyappan; Wong, Jonathan W C

    2014-09-01

    This study aimed at understanding the relationship between microbial community and extracellular enzyme activities of leach bed reactor (LBR) treating food waste under different leachate recirculation practices (once per day and continuous) and liquid to solid (L/S) ratios (1:1 and 0.5:1). Microbial community analysis using PCR-DGGE revealed that Lactobacillus sp., Bifidobacter sp., and Proteobacteria were the most abundant species. Number of phylotypes was higher in LBRs with intermittent recirculation; whereas, lower number of phylotypes dominated by the key players of degradation was observed with continuous recirculation. The L/S ratio of 1:1 significantly enhanced the volatile solids removal compared with 0.5:1; however, this effect was insignificant under once a day leachate recirculation. Continuous leachate recirculation with 1:1 L/S ratio significantly improved the organic leaching (240 g COD/kgvolatile solid) and showed distinct extracellular enzyme activities suitable for food waste acidogenesis. PMID:24972915

  20. New functional biocarriers for enhancing the performance of a hybrid moving bed biofilm reactor-membrane bioreactor system.

    PubMed

    Deng, Lijuan; Guo, Wenshan; Ngo, Huu Hao; Zhang, Xinbo; Wang, Xiaochang C; Zhang, Qionghua; Chen, Rong

    2016-05-01

    In this study, new sponge modified plastic carriers for moving bed biofilm reactor (MBBR) was developed. The performance and membrane fouling behavior of a hybrid MBBR-membrane bioreactor (MBBR-MBR) system were also evaluated. Comparing to the MBBR with plastic carriers (MBBR), the MBBR with sponge modified biocarriers (S-MBBR) showed better effluent quality and enhanced nutrient removal at HRTs of 12h and 6h. Regarding fouling issue of the hybrid systems, soluble microbial products (SMP) of the MBR unit greatly influenced membrane fouling. The sponge modified biocarriers could lower the levels of SMP in mixed liquor and extracellular polymeric substances in activated sludge, thereby mitigating cake layer and pore blocking resistances of the membrane. The reduced SMP and biopolymer clusters in membrane cake layer were also observed. The results demonstrated that the sponge modified biocarriers were capable of improving overall MBBR performance and substantially alleviated membrane fouling of the subsequent MBR unit. PMID:26926200