Science.gov

Sample records for spray experimental device

  1. Experimental study of elementary collection efficiency of aerosols by spray: Design of the experimental device

    SciTech Connect

    Ducret, D.; Vendel, J.; Garrec. S.L.

    1995-02-01

    The safety of a nuclear power plant containment building, in which pressure and temperature could increase because of a overheating reactor accident, can be achieved by spraying water drops. The spray reduces the pressure and the temperature levels by condensation of steam on cold water drops. The more stringent thermodynamic conditions are a pressure of 5.10{sup 5} Pa (due to steam emission) and a temperature of 413 K. Moreover its energy dissipation function, the spray leads to the washout of fission product particles emitted in the reactor building atmosphere. The present study includes a large program devoted to the evaluation of realistic washout rates. The aim of this work is to develop experiments in order to determine the collection efficiency of aerosols by a single drop. To do this, the experimental device has to be designed with fundamental criteria:-Thermodynamic conditions have to be representative of post-accident atmosphere. Thermodynamic equilibrium has to be attained between the water drops and the gaseous phase. Thermophoretic, diffusiophoretic and mechanical effects have to be studied independently. Operating conditions have to be homogenous and constant during each experiment. This paper presents the design of the experimental device. In practice, the consequences on the design of each of the criteria given previously and the necessity of being representative of the real conditions will be described.

  2. Study on collection efficiency of fission products by spray: Experimental device and modelling

    SciTech Connect

    Ducret, D.; Roblot, D.; Vendel, J.; Billarand, Y.

    1997-08-01

    Consequences of an hypothetical overheating reactor accident in nuclear power plants can be limited by spraying cold water drops into containment building. The spray reduces the pressure and the temperature levels by condensation of steam and leads to the washout of fission products (aerosols and gaseous iodine). The present study includes a large program devoted to the evaluation of realistic washout rates. An experimental device (named CARAIDAS) was designed and built in order to determine the collection efficiency of aerosols and iodine absorption by drops with representative conditions of post-accident atmosphere. This experimental device is presented in the paper and more particularly: (1) the experimental enclosure in which representative thermodynamic conditions can be achieved, (2) the monosized drops generator, the drops diameter measurement and the drops collector, (3) the cesium iodide aerosols generator and the aerosols measurements. Modelling of steam condensation on drops aerosols collection and iodine absorption are described. First experimental and code results on drops and aerosols behaviour are compared. 8 refs., 18 figs.

  3. External characteristics of unsteady spray atomization from a nasal spray device.

    PubMed

    Fung, Man Chiu; Inthavong, Kiao; Yang, William; Lappas, Petros; Tu, Jiyuan

    2013-03-01

    The nasal route presents an enormous opportunity to exploit the highly vascularized respiratory airway for systemic drug delivery to provide more rapid onset of therapy and reduced drug degradation compared with conventional oral routes. The dynamics of atomization at low injection pressure is less known as typical spray atomization studies have focused on industrial applications such as fuel injection that are performed at much higher pressure. An experimental test station was designed in house and an alternative method to characterize the external spray is presented. This involved the use of high-speed camera to capture the temporal development of the spray as it is atomized through actuation of the spray device. An image-processing technique based on edge detection was developed to automate processing through the large number of images captured. The results showed that there are three main phases of spray development (prestable, stable, and poststable) that can be correlated by examining the spray width. A comparison with a human nasal cavity is made to put into perspective the dimensions and geometry that the spray atomization produces. This study aimed to extend the current existing set of data to contribute toward a better understanding in nasal spray drug delivery. PMID:23303644

  4. Thermoelectric Device Fabrication Using Thermal Spray and Laser Micromachining

    NASA Astrophysics Data System (ADS)

    Tewolde, Mahder; Fu, Gaosheng; Hwang, David J.; Zuo, Lei; Sampath, Sanjay; Longtin, Jon P.

    2016-02-01

    Thermoelectric generators (TEGs) are solid-state devices that convert heat directly into electricity. They are used in many engineering applications such as vehicle and industrial waste-heat recovery systems to provide electrical power, improve operating efficiency and reduce costs. State-of-art TEG manufacturing is based on prefabricated materials and a labor-intensive process involving soldering, epoxy bonding, and mechanical clamping for assembly. This reduces their durability and raises costs. Additive manufacturing technologies, such as thermal spray, present opportunities to overcome these challenges. In this work, TEGs have been fabricated for the first time using thermal spray technology and laser micromachining. The TEGs are fabricated directly onto engineering component surfaces. First, current fabrication techniques of TEGs are presented. Next, the steps required to fabricate a thermal spray-based TEG module, including the formation of the metallic interconnect layers and the thermoelectric legs are presented. A technique for bridging the air gap between two adjacent thermoelectric elements for the top layer using a sacrificial filler material is also demonstrated. A flat 50.8 mm × 50.8 mm TEG module is fabricated using this method and its performance is experimentally characterized and found to be in agreement with expected values of open-circuit voltage based on the materials used.

  5. Inert gas spraying device aids in repair of hazardous systems

    NASA Technical Reports Server (NTRS)

    Teleha, S.

    1965-01-01

    Inert gas spraying device aids in safely making mechanical repairs to a cryogenic fluid system without prior emptying of the system. This method can be applied to any natural or bottled gas system and with modifications to gasoline transports.

  6. EXPERIMENTAL ANIMAL WATERING DEVICE

    DOEpatents

    Finkel, M.P.

    1964-04-01

    A device for watering experimental animals confined in a battery of individual plastic enclosures is described. It consists of a rectangular plastic enclosure having a plurality of fluid-tight compartments, each with a drinking hole near the bottom and a filling hole on the top. The enclosure is immersed in water until filled, its drinking holes sealed with a strip of tape, and it is then placed in the battery. The tape sealing prevents the flow of water from the device, but permits animals to drink by licking the drinking holes. (AEC)

  7. Towards fully spray coated organic light emitting devices

    NASA Astrophysics Data System (ADS)

    Gilissen, Koen; Stryckers, Jeroen; Manca, Jean; Deferme, Wim

    2014-10-01

    Pi-conjugated polymer light emitting devices have the potential to be the next generation of solid state lighting. In order to achieve this goal, a low cost, efficient and large area production process is essential. Polymer based light emitting devices are generally deposited using techniques based on solution processing e.g.: spin coating, ink jet printing. These techniques are not well suited for cost-effective, high throughput, large area mass production of these organic devices. Ultrasonic spray deposition however, is a deposition technique that is fast, efficient and roll to roll compatible which can be easily scaled up for the production of large area polymer light emitting devices (PLEDs). This deposition technique has already successfully been employed to produce organic photovoltaic devices (OPV)1. Recently the electron blocking layer PEDOT:PSS2 and metal top contact3 have been successfully spray coated as part of the organic photovoltaic device stack. In this study, the effects of ultrasonic spray deposition of polymer light emitting devices are investigated. For the first time - to our knowledge -, spray coating of the active layer in PLED is demonstrated. Different solvents are tested to achieve the best possible spray-able dispersion. The active layer morphology is characterized and optimized to produce uniform films with optimal thickness. Furthermore these ultrasonic spray coated films are incorporated in the polymer light emitting device stack to investigate the device characteristics and efficiency. Our results show that after careful optimization of the active layer, ultrasonic spray coating is prime candidate as deposition technique for mass production of PLEDs.

  8. 30 CFR 75.1107-7 - Water spray devices; capacity; water supply; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Water spray devices; capacity; water supply... Water spray devices; capacity; water supply; minimum requirements. (a) Where water spray devices are... square foot over the top surface area of the equipment and the supply of water shall be adequate...

  9. 30 CFR 75.1107-7 - Water spray devices; capacity; water supply; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... not be less than the following: Type of equipment Water in gallons (1) Cutting machines 36 (2... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Water spray devices; capacity; water supply... Water spray devices; capacity; water supply; minimum requirements. (a) Where water spray devices...

  10. Thermal Spray Coating of Tungsten for Tokamak Device

    NASA Astrophysics Data System (ADS)

    Jiang, Xianliang; F, Gitzhofer; M, I. Boulos

    2006-03-01

    Thermal spray, such as direct current (d.c.) plasma spray or radio frequency induced plasma spray, was used to deposit tungsten coatings on the copper electrodes of a tokamak device. The tungsten coating on the outer surface of one copper electrode was formed directly through d.c. plasma spraying of fine tungsten powder. The tungsten coating/lining on the inner surface of another copper electrode could be formed indirectly through induced plasma spraying of coarse tungsten powder. Scanning electron microscopy (SEM) was used to examine the cross section and the interface of the tungsten coating. Energy Dispersive Analysis of X-ray (EDAX) was used to analyze the metallic elements attached to a separated interface. The influence of the particle size of the tungsten powder on the density, cracking behavior and adhesion of the coating is discussed. It is found that the coarse tungsten powder with the particle size of 45 ~ 75 μm can be melted and the coating can be formed only by using induced plasma. The coating deposited from the coarse powder has much higher cohesive strength, adhesive strength and crack resistance than the coating made from the fine powder with a particle size of 5 μm.

  11. dc-plasma-sprayed electronic-tube device

    DOEpatents

    Meek, T.T.

    1982-01-29

    An electronic tube and associated circuitry which is produced by dc plasma arc spraying techniques is described. The process is carried out in a single step automated process whereby both active and passive devices are produced at very low cost. The circuitry is extremely reliable and is capable of functioning in both high radiation and high temperature environments. The size of the electronic tubes produced are more than an order of magnitude smaller than conventional electronic tubes.

  12. Experimental studies on effervescent atomizers with wide spray angles

    NASA Astrophysics Data System (ADS)

    Whitlow, J. D.; Lefebvre, A. H.; Rollbuhler, R. J.

    1993-09-01

    An experimental investigation was conducted to examine the operating and spray characteristics of two internal-mixing twin-fluid atomizers that were designed to produce effervescent atomization at low air/liquid mass ratios (ALR's). These two experimental atomizers ejected the two phase flow so as to produce a wide spray angle. One atomizer was a plain orifice design that used a four-hole exit orifice which divided and turned the two phase flow just prior to ejection. The other atomizer, called the conical sheet atomizer, ejected the two phase flow through an annular passage in such a way as to form a hollow cone spray. The atomizer operating parameters varied during this investigation were the air/liquid mass ratio, atomizer operating pressure, and, in the case of the conical sheet atomizer, the exit gap width. Studies of spray characteristics included measurements of the spray Sauter mean diameter (SMD), drop size distribution, and, for the conical sheet atomizer, circumferential distribution of the liquid mass within the spray. For both atomizers it was found that SMD decreases with an increase in either ALR or operating pressure. The effect of ALR on SMD diminishes as the value of ALR increases. For the conical sheet atomizer, when operating at low values of pressure and ALR, SMD increases with increase in gap width, but the influence of gap width on SMD diminishes with an increase in either pressure or ALR. At the highest operating pressure of the conical sheet atomizer (552 kPa), SMD is independent of gap width at all ALR's. For both atomizers, changes in operating pressure and ALR have little effect on the distribution of drop sizes in the spray.

  13. Bio-sample detection on paper-based devices with inkjet printer-sprayed reagents.

    PubMed

    Liang, Wun-Hong; Chu, Chien-Hung; Yang, Ruey-Jen

    2015-12-01

    The reagent required for bio-sample detection on paper-based analytical devices is generally introduced manually using a pipette. Such an approach is time-consuming; particularly if a large number of devices are required. Automated methods provide a far more convenient solution for large-scale production, but incur a substantial cost. Accordingly, the present study proposes a low-cost method for the paper-based analytical devices in which the biochemical reagents are sprayed onto the device directly using a modified commercial inkjet printer. The feasibility of the proposed method is demonstrated by performing aspartate aminotransferase (AST) and alanine aminotransferase (ALT) tests using simple two-dimensional (2D) paper-based devices. In both cases, the reaction process is analyzed using an image-processing-based colorimetric method. The experimental results show that for AST detection within the 0-105 U/l concentration range, the optimal observation time is around four minutes, while for ALT detection in the 0-125 U/l concentration range, the optimal observation time is approximately one minute. Finally, for both samples, the detection performance of the sprayed-reagent analytical devices is insensitive to the glucose concentration. PMID:26459437

  14. Detailed investigation of a vaporising fuel spray. Part 1: Experimental investigation of time averaged spray

    NASA Technical Reports Server (NTRS)

    Yule, A. J.; Seng, C. A.; Boulderstone, R.; Ungut, A.; Felton, P. G.; Chigier, N. A.

    1980-01-01

    A laser tomographic light scattering technique provides rapid and accurate high resolution measurements of droplet sizes, concentrations, and vaporization. Measurements using a computer interfaced thermocouple are presented and it is found that the potential exists for separating gas and liquid temperature measurements and diagnosing local spray density by in situ analysis of the response characteristics of the thermocouple. The thermocouple technique provides a convenient means for measuring mean gas velocity in both hot and cold two phase flows. The experimental spray is axisymmetric and has carefully controlled initial and boundary conditions. The flow is designed to give relatively insignificant transfer of momentum and mass from spray to air flow. The effects of (1) size-dependent droplet dispersion by the turbulence, (2) the initial spatial segregation of droplet sizes during atomization, and (3) the interaction between droplets and coherent large eddies are diagnosed.

  15. Experimental testing of spray dryer for control of incineration emissions.

    PubMed

    Wey, M Y; Wu, H Y; Tseng, H H; Chen, J C

    2003-05-01

    The research investigated the absorption/adsorption efficiency of sulfur dioxide (SO2), heavy metals, and polycyclic aromatic hydrocarbons (PAHs) with different Ca-based sorbents in a spray dryer during incineration process. For further improving the adsorption capacity of Ca-based sorbents, different spraying pressure and additives were carried out in this study. Experimental results showed that CaO could be used as an alternative sorbent in the spray dryer at an optimal initial particle size distribution of spraying droplet. In the spray dryer, Ca-based sorbents provided a lot of sites for heavy metals and PAHs condensing and calcium and alkalinity to react with metals to form merged species. As a result, heavy metals and PAHs could be removed from the flue gas simultaneously by condensation and adsorption. The additions of additives NaHCO3, SiO2, and KMnO4 were also found to be effective in improving the removal efficiency of these air pollutants. PMID:12744446

  16. 30 CFR 75.1107-7 - Water spray devices; capacity; water supply; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; minimum requirements. 75.1107-7 Section 75.1107-7 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Water spray devices; capacity; water supply; minimum requirements. (a) Where water spray devices are... square foot over the top surface area of the equipment and the supply of water shall be adequate...

  17. An Experimental Investigation and Numerical Analysis of Multi-Component Fuel Spray

    NASA Astrophysics Data System (ADS)

    Myong, Kwang-Jae; Arai, Motoyuki; Tanaka, Tomoyuki; Senda, Jiro; Fujimoto, Hajime

    In this study, droplet atomization and vaporization characteristics with multi-component fuel were investigated by experimental and numerical simulation methods. Spray characteristics of multi-component fuel including spray cone angle, spray angle and spray tip penetration were analyzed from shadowgraph imaging. Numerical simulation to investigate spatial distribution of fuel-vapor concentration of each component within multi-component fuel was implemented in KIVA code. Vaporization process was calculated by a simple two-phase region which was approximated by modified saturated liquid-vapor line. Experimental results show that spray cone angle and spray angle become larger increasing in mass fraction of low boiling point component. And spray tip penetration becomes shorter with increasing in mass fraction of low boiling point component in vaporizing spray during that is same on every mixed fuel in non-vaporizing spray. From numerical simulation results, temporal and spatial distribution of each fuel vapor concentration was found to be stratification.

  18. Spray cooling characteristics of nanofluids for electronic power devices.

    PubMed

    Hsieh, Shou-Shing; Leu, Hsin-Yuan; Liu, Hao-Hsiang

    2015-01-01

    The performance of a single spray for electronic power devices using deionized (DI) water and pure silver (Ag) particles as well as multi-walled carbon nanotube (MCNT) particles, respectively, is studied herein. The tests are performed with a flat horizontal heated surface using a nozzle diameter of 0.5 mm with a definite nozzle-to-target surface distance of 25 mm. The effects of nanoparticle volume fraction and mass flow rate of the liquid on the surface heat flux, including critical heat flux (CHF), are explored. Both steady state and transient data are collected for the two-phase heat transfer coefficient, boiling curve/ cooling history, and the corresponding CHF. The heat transfer removal rate can reach up to 274 W/cm(2) with the corresponding CHF enhancement ratio of 2.4 for the Ag/water nanofluids present at a volume fraction of 0.0075% with a low mass flux of 11.9 × 10(-4) kg/cm(2)s. PMID:25852429

  19. Spray cooling characteristics of nanofluids for electronic power devices

    NASA Astrophysics Data System (ADS)

    Hsieh, Shou-Shing; Leu, Hsin-Yuan; Liu, Hao-Hsiang

    2015-03-01

    The performance of a single spray for electronic power devices using deionized (DI) water and pure silver (Ag) particles as well as multi-walled carbon nanotube (MCNT) particles, respectively, is studied herein. The tests are performed with a flat horizontal heated surface using a nozzle diameter of 0.5 mm with a definite nozzle-to-target surface distance of 25 mm. The effects of nanoparticle volume fraction and mass flow rate of the liquid on the surface heat flux, including critical heat flux (CHF), are explored. Both steady state and transient data are collected for the two-phase heat transfer coefficient, boiling curve/ cooling history, and the corresponding CHF. The heat transfer removal rate can reach up to 274 W/cm2 with the corresponding CHF enhancement ratio of 2.4 for the Ag/water nanofluids present at a volume fraction of 0.0075% with a low mass flux of 11.9 × 10-4 kg/cm2s.

  20. Experimental Analysis of Spray Dryer Used in Hydroxyapatite Thermal Spray Powder

    NASA Astrophysics Data System (ADS)

    Murtaza, Q.; Stokes, J.; Ardhaoui, M.

    2012-09-01

    The spray drying process of hydroxyapatite (HA) powder used as a plasma spray powder on human hip implants was examined. The Niro-Minor mixed spray dryer was studied because it incorporates both co-current and counter-current air mixing systems. The process parameters of the spray drying were investigated: temperature, flow rate of the inlet hot air in the spray dryer, viscosity of feed/HA slurry, and responses (chamber and cyclone powder size, deposition of powder on the wall of spray dryer, and overall thermal efficiency). The statistical analysis (ANOVA test) showed that for the chamber particle size, viscosity was the most significant parameter, while for the cyclone particle size, the main effects were temperature, viscosity, and flow rate, but also their interaction effects were significant. The spray dried HA powder showed the two main shapes were a doughnut and solid sphere shape as a result of the different input.

  1. 30 CFR 75.1107-7 - Water spray devices; capacity; water supply; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Water spray devices; capacity; water supply; minimum requirements. 75.1107-7 Section 75.1107-7 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection Fire Suppression Devices...

  2. Experimental and Numerical Analysis of the Cooling Performance of Water Spraying Systems during a Fire

    PubMed Central

    Chen, YaoHan; Su, ChungHwei; Tseng, JoMing; Li, WunJie

    2015-01-01

    The water spray systems are effective protection systems in the confined or unconfined spaces to avoid the damage to building structures since the high temperature when fires occur. NFPA 15 and 502 have suggested respectively that the factories or vehicle tunnels install water spray systems to protect the machinery and structures. This study discussed the cooling effect of water spray systems in experimental and numerical analyses. The actual combustion of woods were compared with the numerical simulations. The results showed that although the flame continued, the cooling effects by water spraying process within 120 seconds were obvious. The results also indicated that the simulation results of the fifth version Fire Dynamics Simulator (FDS) overestimated the space temperature before water spraying in the case of the same water spray system. PMID:25723519

  3. Experimental and numerical analysis of the cooling performance of water spraying systems during a fire.

    PubMed

    Chen, YaoHan; Su, ChungHwei; Tseng, JoMing; Li, WunJie

    2015-01-01

    The water spray systems are effective protection systems in the confined or unconfined spaces to avoid the damage to building structures since the high temperature when fires occur. NFPA 15 and 502 have suggested respectively that the factories or vehicle tunnels install water spray systems to protect the machinery and structures. This study discussed the cooling effect of water spray systems in experimental and numerical analyses. The actual combustion of woods were compared with the numerical simulations. The results showed that although the flame continued, the cooling effects by water spraying process within 120 seconds were obvious. The results also indicated that the simulation results of the fifth version Fire Dynamics Simulator (FDS) overestimated the space temperature before water spraying in the case of the same water spray system. PMID:25723519

  4. Fabricating thin-film photovoltaic devices using ultra-sonic spray-coating (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Lidzey, David G.

    2015-10-01

    The scale-up of thin-film electronic devices requires a manufacture tool set that is capable of fabricating thin films at high speed over large areas. One such technique capable of such a task is ultra-sonic spray coating. Here, a target solution is fed onto a vibrating tip that breaks the solution up into very fine droplets, with such droplets being carried to a surface by a gas stream. Such ultra-sonic coating processes are already widely used in Electronics, Medical and Displays industries to create films having excellent smoothness and homogeneity. In this talk, I describe the use of ultra-sonic spray-coating to deposit a range of materials for thin-film optoelectronics. As our spray-coating system operates in air, it was first necessary to explore the relative sensitivity of various conjugated polymer / fullerene blends to an air-based process route. It is found that carbazole based co-polymers are particularly stable, and can be processed in air (by spin-coating) into organic photovoltaic devices (OPV) without any apparent loss in device efficiency. I then show that spray-coating can be used to deposit a range of semiconductor materials into smooth, thin-films, including PEDOT:PSS, MoOx (from a precursor) and a series of polymer:fullerene blends. Using such a technique, we are able to scale up an array of devices having an area of 7 cm2, and using a PBDTTT-EFT:PC70BM blend, obtain OPVs having a power conversion efficiency (PCE) of 8.7%. I then discuss spray-coating as a method to fabricate photovoltaic devices based on CH3NH3PbI(3-x)Clx perovskite films. Here, by optimization of deposition parameters, devices are created having a PCE of 11.1%.

  5. Experimental Measurement-Device-Independent Entanglement Detection

    PubMed Central

    Nawareg, Mohamed; Muhammad, Sadiq; Amselem, Elias; Bourennane, Mohamed

    2015-01-01

    Entanglement is one of the most puzzling features of quantum theory and of great importance for the new field of quantum information. The determination whether a given state is entangled or not is one of the most challenging open problems of the field. Here we report on the experimental demonstration of measurement-device-independent (MDI) entanglement detection using witness method for general two qubits photon polarization systems. In the MDI settings, there is no requirement to assume perfect implementations or neither to trust the measurement devices. This experimental demonstration can be generalized for the investigation of properties of quantum systems and for the realization of cryptography and communication protocols. PMID:25649664

  6. Experimental measurement-device-independent entanglement detection.

    PubMed

    Nawareg, Mohamed; Muhammad, Sadiq; Amselem, Elias; Bourennane, Mohamed

    2015-01-01

    Entanglement is one of the most puzzling features of quantum theory and of great importance for the new field of quantum information. The determination whether a given state is entangled or not is one of the most challenging open problems of the field. Here we report on the experimental demonstration of measurement-device-independent (MDI) entanglement detection using witness method for general two qubits photon polarization systems. In the MDI settings, there is no requirement to assume perfect implementations or neither to trust the measurement devices. This experimental demonstration can be generalized for the investigation of properties of quantum systems and for the realization of cryptography and communication protocols. PMID:25649664

  7. An experimental study of air-assist atomizer spray flames

    NASA Technical Reports Server (NTRS)

    Mao, Chien-Pei; Wang, Geng; Chigier, Norman

    1988-01-01

    It is noted that air-assisted atomizer spray flames encountered in furnaces, boilers, and gas turbine combustors possess a more complex structure than homogeneous turbulent diffusion flames, due to the swirling motion introduced into the fuel and air flows for the control of flame stability, length, combustion intensity, and efficiency. Detailed comparisons are presented between burning and nonburning condition measurements of these flames obtained by nonintrusive light scattering phase/Doppler detection. Spray structure is found to be drastically changed within the flame reaction zone, with changes in the magnitude and shape of drop number density, liquid flux, mean drop size diameter, and drop mean axial velocity radial distributions.

  8. A theoretical and experimental study of turbulent nonevaporating sprays

    NASA Technical Reports Server (NTRS)

    Solomon, A. S. P.; Shuen, J. S.; Zhang, Q. F.; Faeth, G. M.

    1984-01-01

    Measurements and analysis limited to the dilute portions of turbulent nonevaporating sprays injected into a still air environment were completed. Mean and fluctuating velocities and Reynolds stress were measured in the continuous phase. Liquid phase measurements included liquid mass fluxes, drop sizes and drop size and velocity correlation. Initial conditions needed for model evaluation were measured at a location as close to the injector exit as possible. The test sprays showed significant effects of slip and turbulent dispersion of the discrete phase. The measurements were used to evaluate three typical models of these processes: (1) a locally homogenous flow (LHF) model, where slip between the phases were neglected; (2) a deterministic separated flow (DSF) model, where slip was considered but effects of drop dispersion by turbulence were ignored; and (3) a stochastic separated flow (SSF) model, where effects of interphase slip and turbulent dispersion were considered using random-walk computations for drop motion. The LHF and DSF models did not provide very satisfactory predictions for the present measurements. In contrast, the SSF model performed reasonably well with no modifications in the prescription of eddy properties from its original calibration. Some effects of drops on turbulence properties were observed near the dense regions of the sprays.

  9. Monolithic Microfluidic Mixing-Spraying Devices for Time-Resolved Cryo-Electron Microscopy

    PubMed Central

    Lu, Zonghuan; Shaikh, Tanvir R.; Barnard, David; Meng, Xing; Mohamed, Hisham; Yassin, Aymen; Mannella, Carmen A.; Agrawal, Rajendra K.; Lu, Toh-Ming

    2009-01-01

    The goal of time-resolved cryo-electron microscopy is to determine structural models for transient functional states of large macromolecular complexes such as ribosomes and viruses. The challenge of time-resolved cryo-electron microscopy is to rapidly mix reactants, and then, following a defined time interval, to rapidly deposit them as a thin film and freeze the sample to the vitreous state. Here we describe a methodology in which reaction components are mixed and allowed to react, and are then sprayed onto an EM grid as it is being plunged into cryogen. All steps are accomplished by a monolithic, microfabricated silicon device that incorporates a mixer, reaction channel, and pneumatic sprayer in a single chip. We have found that microdroplets produced by air atomization spread to sufficiently thin films on a millisecond time scale provided that the carbon supporting film is made suitably hydrophilic. The device incorporates two T-mixers flowing into a single channel of four butterfly-shaped mixing elements that ensure effective mixing, followed by a microfluidic reaction channel whose length can be varied to achieve the desired reaction time. The reaction channel is flanked by two ports connected to compressed humidified nitrogen gas (at 50 psi) to generate the spray. The monolithic mixer-sprayer is incorporated into a computer-controlled plunging apparatus. To test the mixing performance and the suitability of the device for preparation of biological macromolecules for cryo-EM, ribosomes and ferritin were mixed in the device and sprayed onto grids. Three-dimensional reconstructions of the ribosomes demonstrated retention of native structure, and 30S and 50S subunits were shown to be capable of reassociation into ribosomes after passage through the device. PMID:19683579

  10. Experimental study of flash boiling spray vaporization through quantitative vapor concentration and liquid temperature measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Gaoming; Hung, David L. S.; Xu, Min

    2014-08-01

    Flash boiling sprays of liquid injection under superheated conditions provide the novel solutions of fast vaporization and better air-fuel mixture formation for internal combustion engines. However, the physical mechanisms of flash boiling spray vaporization are more complicated than the droplet surface vaporization due to the unique bubble generation and boiling process inside a superheated bulk liquid, which are not well understood. In this study, the vaporization of flash boiling sprays was investigated experimentally through the quantitative measurements of vapor concentration and liquid temperature. Specifically, the laser-induced exciplex fluorescence technique was applied to distinguish the liquid and vapor distributions. Quantitative vapor concentration was obtained by correlating the intensity of vapor-phase fluorescence with vapor concentration through systematic corrections and calibrations. The intensities of two wavelengths were captured simultaneously from the liquid-phase fluorescence spectra, and their intensity ratios were correlated with liquid temperature. The results show that both liquid and vapor phase of multi-hole sprays collapse toward the centerline of the spray with different mass distributions under the flash boiling conditions. Large amount of vapor aggregates along the centerline of the spray to form a "gas jet" structure, whereas the liquid distributes more uniformly with large vortexes formed in the vicinity of the spray tip. The vaporization process under the flash boiling condition is greatly enhanced due to the intense bubble generation and burst. The liquid temperature measurements show strong temperature variations inside the flash boiling sprays with hot zones present in the "gas jet" structure and vortex region. In addition, high vapor concentration and closed vortex motion seem to have inhibited the heat and mass transfer in these regions. In summary, the vapor concentration and liquid temperature provide detailed information

  11. A theoretical and experimental study of turbulent evaporating sprays

    NASA Technical Reports Server (NTRS)

    Solomon, A. S. P.; Shuen, J. S.; Zhang, Q. F.; Faeth, G. M.

    1984-01-01

    Measurements and analysis limited to the dilute portions of turbulent evaporating sprays, injected into a still air environment were completed. Mean and fluctuating velocities and Reynolds stress were measured in the continuous phase. Liquid phase measurements included liquid mass fluxes, drop sizes and drop size and velocity correlation. Initial conditions needed for model evaluation were measured at a location as close to the injector exit as possible. The test sprays showed significant effects of slip and turbulent dispersion of the discrete phase. The measurements were used to evaluate three typical models of these processes: (1) a locally homogeneous flow (LHF) model, where slip between the phases were neglected; (2) a deterministic separated flow (DSF) model, where slip was considered but effects of drop dispersion by turbulence were ignored; and (3) a stochastic separated flow (SSF) model, where effects of interphase slip and turbulent dispersion were considered using random-walk computations for drop motion. For all three models, a k-epsilon model as used to find the properties of the continuous phase. The LHF and DSF models did not provide very satisfactory predictions for the present measurements. In contrast, the SSF model performed reasonably well--with no modifications in the prescription of eddy properties from its original calibration.

  12. Experimental evolution of sprays in a lung model

    NASA Astrophysics Data System (ADS)

    Burguete, Javier; Aliseda, Alberto

    2015-11-01

    We present the first results of an experiment conceived to observe the evolution of sprays inside the lungs. We have built a model that covers the first 6 generations (from the trachea to segmental bronchi of 5th generation). This setup is placed on a wind tunnel, and the flow inside the model is induced by a vacuum pump that emulates the breathing process using a valve. We inject a previously determined distribution of particles (water droplets), whose average diameter can be modified. Then, we measure the droplet distribution in different branches and compare how the droplet distribution is modified at each generation. The parameters that control the behavior are the average diameter of the original distribution, the airflow rate inside the model and the frequency of the breathing cycle.

  13. Numerical Simulation and Experimental Characterization of a Binary Aluminum Alloy Spray - Application to the Spray Rolling Process

    SciTech Connect

    S. B. Johnson; J.-P. Delplanque; Y. Lin; Y. Zhou; E. J. Lavernia; K. M. McHugh

    2005-02-01

    A stochastic, droplet-resolved model has been developed to describe the behavior of a binary aluminum alloy spray during the spray-rolling process. In this process, a molten aluminum alloy is atomized and the resulting spray is depostied on the rolls of a twin-roll caster to produce aluminum strip. The one-way coupled spray model allows the prediction of spray characteristics such as enthalph and solid fraction, and their distribution between the nozzle and the depostion surface. This paper outlines the model development and compares the predicted spray dynamics to PDI measurements performed in a controlled configuration. Predicted and measured droplet velocity and size distributions are presented for two points along the spray centerline along with predicted spray averaged specific enthalph and solid fraction curves.

  14. Mechanised spraying device a novel technology for spraying fire protective coating material in the benches of opencast coal mines for preventing spontaneous combustion

    SciTech Connect

    R.V.K. Singh; V.K. Singh

    2004-10-15

    Spontaneous combustion in coal mines plays a vital role in occurrences of fire. Fire in coal, particularly in opencast mines, not only causes irreparable loss of national wealth but damages the surface structure and pollutes the environment. The problem of spontaneous combustion/fire in opencast coal benches is acute. Presently over 75% of the total production of coal in Indian mines is being carried out by opencast mining. Accordingly a mechanised spraying device has been developed for spraying the fire protective coating material for preventing spontaneous combustion in coal benches of opencast mines jointly by Central Mining Research Institute, Dhanbad and M/s Signum Fire Protection (India) Pvt. Ltd., Nagpur under Science & Technology (S&T) project funded by Ministry of Coal, Govt. of India. The objective of this paper is to describe in detail about the mechanised spraying device and its application for spraying fire protective coating material in the benches of opencast coal mines for preventing spontaneous combustion/fire.

  15. A newly designed ultrasonic spray pyrolysis device to fabricate YBCO tapes

    NASA Astrophysics Data System (ADS)

    Liu, M.; Zhou, M. L.; Zhai, L. H.; Liu, D. M.; Gao, X.; Liu, W.

    2003-04-01

    A newly designed ultrasonic spray pyrolysis device has been manufactured to fabricate YBCO tapes. The apparatus is primarily composed of four zones: the ultrasonic generator, the atomization chamber, the pyrolysis chamber and the rotating equipment. Every part of them is designed and fabricated by us. The whole system costs far less than the ready-made equipment facility in which there is always a vacuum apparatus. This apparatus with processing parameters accurately controlled can fabricate short and long YBCO tapes. In this paper, we mainly focused on how to design and manufacture four parts of the ultrasonic spray pyrolysis. We have deposited c-axis aligned short YBCO tapes on biaxially textured Ag {1 1 0}<1 1 0> substrates with Jc=10 3 A/cm 2 using this method with our device. The method is very promising in terms of its precise control of metal compositions, high deposition rate and low cost non-vacuum approach. Improvements of this technique are being carried out to fabricate long YBCO tapes.

  16. Experimental design and performance analysis of alumina coatings deposited by a detonation spray process

    NASA Astrophysics Data System (ADS)

    Saravanan, P.; Selvarajan, V.; Joshi, S. V.; Sundararajan, G.

    2001-01-01

    The increasing demands for high-quality coatings has made it inevitable that the surface coating industry would put more effort into precisely controlling the coating process. Statistical design of experiments is an effective method for finding the optimum spray parameters to enhance thermal spray coating properties. In the present investigation, an attempt is made to produce high-quality alumina (Al2O3) coatings by optimizing the detonation spray process parameters following a (L16-24) factorial design approach. The process parameters that were varied include the fuel ratio, carrier gas flow rate, frequency of detonations and spray distance. The coating characteristics were quantified with respect to roughness, hardness and porosity. The performance of the coatings was quantitively evaluated using erosion, abrasion and sliding wear testing. Through statistical analysis of the experimental results, performed by the ANOVA method, the significance of each process parameter together with an optimal variable combination was obtained for the desired coating attributes. Confirmation experiments were conducted to verify the optimal spray parameter combination, which clearly showed the possibility of producing high-quality Al2O3 coatings.

  17. An experimental investigation on spray characteristics emanating from liquid-liquid coaxial swirl atomizer

    NASA Astrophysics Data System (ADS)

    Rashid, Mohd Syazwan Firdaus Mat; Hamid, Ahmad Hussein Abdul; Ghaffar, Zulkifli Abdul; Zaki, Khairil Azizi Mohamad

    2012-06-01

    Liquid fuel/oxidizer atomization is extensively used in rocket engines for exploiting their high mixing efficiency. An experimental investigation is performed to explore the characteristics of sprays produced by a liquid-liquid coaxial swirl atomizer in a non-combusting environment. Investigation data will be used to correlate between liquid properties, atomizer geometric dimension, and atomization spray characterization. The idea is design the atomizer, fabricate, cold flow test and analyze the result. This atomizer is divided into two parts which is the inner atomizer and the outer atomizer. There also has two liquid inlet points where one inlet is meant for inner nozzle while the other inlet is meant for the outer nozzle. Two water supplies of the same kind will be supplied into the atomizer. As compared to basic conventional atomizer design, this atomizer sprays two liquid simultaneously at different angles and different swirl directions, but at the same axis. In this paper, it described the characteristics of spray for outer and inner atomizer. As the result, it was found that the outer atomizer have high value of spray cone angle compared to inner atomizer.

  18. Experimental and analytical investigation on the variation of spray characteristics along radial distance downstream of a pressure swirl atomizer

    NASA Astrophysics Data System (ADS)

    Zhao, Y. H.; Li, W. M.; Chin, J. S.

    1986-06-01

    The variation of spray characteristics (Sauter Mean Diameter and Rosin-Rammler drop-size distribution parameter) downstream of a pressure swirl atomizer along radial distance has been measured by laser light scattering technology. An analytical model has been developed that is capable of predicting the variation of spray characteristics along radial distance. A comparison between the prediction and experimental data shows excellent agreement. It shows that the spray model proposed, although relatively simple, is correct and can be used with some expansion and modification to predict more complicated spray systems.

  19. Numerical modeling and experimental measurements of water spray impact and transport over a cylinder.

    SciTech Connect

    Avedisian, C. T.; Presser, Cary; DesJardin, Paul Edward; Hewson, John C.; Yoon, Sam Sukgoo

    2005-03-01

    This study compares experimental measurements and numerical simulations of liquid droplets over heated (to a near surface temperature of 423 K) and unheated cylinders. The numerical model is based on an unsteady Reynolds-averaged Navier-Stokes (RANS) formulation using a stochastic separated flow (SSF) approach for the droplets that includes submodels for droplet dispersion, heat and mass transfer, and impact on a solid surface. The details of the droplet impact model are presented and the model is used to simulate water spray impingement on a cylinder. Computational results are compared with experimental measurements using phase Doppler interferometry (PDI).

  20. Selective Laser Treatment on Cold-Sprayed Titanium Coatings: Numerical Modeling and Experimental Analysis

    NASA Astrophysics Data System (ADS)

    Carlone, Pierpaolo; Astarita, Antonello; Rubino, Felice; Pasquino, Nicola; Aprea, Paolo

    2016-03-01

    In this paper, a selective laser post-deposition on pure grade II titanium coatings, cold-sprayed on AA2024-T3 sheets, was experimentally and numerically investigated. Morphological features, microstructure, and chemical composition of the treated zone were assessed by means of optical microscopy, scanning electron microscopy, and energy dispersive X-ray spectrometry. Microhardness measurements were also carried out to evaluate the mechanical properties of the coating. A numerical model of the laser treatment was implemented and solved to simulate the process and discuss the experimental outcomes. Obtained results highlighted the key role played by heat input and dimensional features on the effectiveness of the treatment.

  1. Fabrication of paper-based devices by lacquer spraying method for the determination of nickel (II) ion in waste water.

    PubMed

    Nurak, Thara; Praphairaksit, Narong; Chailapakul, Orawon

    2013-09-30

    A spraying method with lacquer was developed for the fabrication of paper-based devices. A patterned iron mask was initially placed on a filter paper and held tightly attached by a magnetic plate placed on the opposite side. After that, acrylic lacquer was sprayed on the filter paper to create a hydrophobic area while the hydrophilic area was protected with the iron mask. The optimal conditions for the fabrication of this device were studied including lacquer type and particle retention efficiency of filter paper. Gloss spray lacquer and filter paper No. 4 were chosen as optimal lacquer type and particle retention efficiency of filter paper, respectively. To evaluate its efficiency, the paper-based devices were used to determine nickel using electrochemical detection. Cu-enhancer solution was employed to increase sensitivity of nickel determination with the optimal concentration of 4.5 ppm. Under the optimal conditions, linear range was observed in the range of 1-50 ppm with a coefficient of determination of 0.9971. The limit of detection (LOD) and the limit of quantitation (LOQ) were found to be 0.5 and 1.97 ppm, respectively. Moreover, these paper-based devices coupled with electrochemical detection were applied to determine nickel in waste water of a jewelry factory and compared to those obtained with inductively coupled plasma optical emission spectrometry (ICP-OES). The results indicated that there were no significant variations between this proposed method (4.15±0.043 ppm) and the ICP-OES method (4.06±0.013 ppm). Therefore, this spraying method was found to be an excellent alternative for the fabrication of paper-based devices due to its ease of use, affordability and simplicity. PMID:23953473

  2. Experimental and analytical investigation of the variation of spray characteristics along a radial distance downstream of a pressure-swirl atomizer

    NASA Technical Reports Server (NTRS)

    Chin, J. S.; Li, W. M.; Wang, X. F.

    1986-01-01

    The variation of spray characteristics along a radial distance downstream of a pressure-swirl atomizer was measured by laser light-scattering technology. An analytical model was developed to predict the variation of spray characteristics along the radial distance. A comparison of the predicted and experimental data showed excellent agreement. Therefore, the spray model proposed, although relatively simple, is correct and can be used, with some expansion and modification of the prepared model, to predict more complicated spray systems.

  3. Spray-painted binder-free SnSe electrodes for high-performance energy-storage devices.

    PubMed

    Wang, Xianfu; Liu, Bin; Xiang, Qingyi; Wang, Qiufan; Hou, Xiaojuan; Chen, Di; Shen, Guozhen

    2014-01-01

    SnSe nanocrystal electrodes on three-dimensional (3D) carbon fabric and Au-coated polyethylene terephthalate (PET) wafer have been prepared by a simple spray-painting process and were further investigated as binder-free active-electrodes for Lithium-ion batteries (LIBs) and flexible stacked all-solid-state supercapacitors. The as-painted SnSe nanocrystals/carbon fabric electrodes exhibit an outstanding capacity of 676 mAh g(-1) after 80 cycles at a current density of 200 mA g(-1) and a considerable high-rate capability in lithium storage because of the excellent ion transport from the electrolyte to the active materials and the efficient charge transport between current collector and electrode materials. The binder-free electrodes also provide a larger electrochemical active surface compared with electrodes containing binders, which leads to the enhanced capacities of energy-storage devices. A flexible stacked all-solid-state supercapacitor based on the SnSe nanocrystals on Au-coated PET wafers shows high capacitance reversibility with little performance degradation at different current densities after 2200 charge-discharge cycles and even when bent. This allows for many potential applications in facile, cost-effective, spray-paintable, and flexible energy-storage devices. The results indicate that the fabrication of binder-free electrodes by a spray painting process is an interesting direction for the preparation of high-performance energy-storage devices. PMID:24339208

  4. An Experimental Device to Record Infant Head Movements.

    ERIC Educational Resources Information Center

    Jouen, Francois

    1981-01-01

    Analyzes methods used to record infant head position and the limits of these methods. An experimental device is proposed which records infant head turning and head righting when the vestibular system is stimulated. (Author/DB)

  5. A Taguchi experimental design study of twin-wire electric arc sprayed aluminum coatings

    SciTech Connect

    Steeper, T.J.; Varacalle, D.J. Jr.; Wilson, G.C.; Johnson, R.W.; Irons, G.; Kratochvil, W.R.; Riggs, W.L. II

    1992-08-01

    An experimental study was conducted on the twin-wire electric arc spraying of aluminum coatings. This aluminum wire system is being used to fabricate heater tubes that emulate nuclear fuel tubes for use in thermal-hydraulic experiments. Experiments were conducted using a Taguchi fractional-factorial design parametric study. Operating parameters were varied around the typical process parameters in a systematic design of experiments in order to display the range of processing conditions and their effect on the resultant coating. The coatings were characterized by hardness tests, optical metallography, and image analysis. The paper discusses coating qualities with respect to hardness, roughness, deposition efficiency, and microstructure. The study attempts to correlate the features of the coatings with the changes in operating parameters. A numerical model of the process is presented including gas, droplet, and coating dynamics.

  6. A Taguchi experimental design study of twin-wire electric arc sprayed aluminum coatings

    SciTech Connect

    Steeper, T.J. ); Varacalle, D.J. Jr.; Wilson, G.C.; Johnson, R.W. ); Irons, G.; Kratochvil, W.R. ); Riggs, W.L. II )

    1992-01-01

    An experimental study was conducted on the twin-wire electric arc spraying of aluminum coatings. This aluminum wire system is being used to fabricate heater tubes that emulate nuclear fuel tubes for use in thermal-hydraulic experiments. Experiments were conducted using a Taguchi fractional-factorial design parametric study. Operating parameters were varied around the typical process parameters in a systematic design of experiments in order to display the range of processing conditions and their effect on the resultant coating. The coatings were characterized by hardness tests, optical metallography, and image analysis. The paper discusses coating qualities with respect to hardness, roughness, deposition efficiency, and microstructure. The study attempts to correlate the features of the coatings with the changes in operating parameters. A numerical model of the process is presented including gas, droplet, and coating dynamics.

  7. Characterization of anti-theft devices directly from the surface of banknotes via easy ambient sonic spray ionization mass spectrometry.

    PubMed

    Schmidt, Eduardo Morgado; Franco, Marcos Fernando; Cuelbas, Claudio José; Zacca, Jorge Jardim; de Carvalho Rocha, Werickson Fortunato; Borges, Rodrigo; de Souza, Wanderley; Sawaya, Alexandra Christine Helena Frankland; Eberlin, Marcos Nogueira; Correa, Deleon Nascimento

    2015-09-01

    Using Brazilian banknotes as a test case, forensic examination and identification of Rhodamine B dye anti-theft device (ATD) staining on banknotes were performed. Easy ambient sonic spray ionization mass spectrometry (EASI-MS) was used since it allows fast and simple analysis with no sample preparation providing molecular screening of the surface with direct desorption and ionization of the security dye. For a more accurate molecular characterization of the ATD dye, Q Exactive Orbitrap™ Fourier transform (tandem) mass spectrometry using eletrospray ionization (ESI-HRMS/MS) was also applied. PMID:26385709

  8. Dispersiveness of Liquid Droplets Sprayed with Cocurrent Gas Flow

    NASA Astrophysics Data System (ADS)

    Arkhipov, Vladimir; Antonnikova, Alexandra; Basalayev, Sergey; Zharova, Irina; Orlov, Sergey

    2016-02-01

    Pneumohydraulic stand, equipped with a set of aerosol systems laser diagnostics devices, are presented. The results of experimental measurements of the aerosol liquid-drop size distribution in the ejection nozzle spray pattern are provided.

  9. Experimental device for measuring the momentum of disperse granular materials

    SciTech Connect

    Watling, H.E.; Griffiths, S.K.

    1982-02-10

    An experimental device for measuring the time averaged momentum associated with a steady stream of a disperse granular material has been developed. The mathematical basis for the device is presented including a discussion of using the momentum measurement to compute the local mass or energy fluxes. The analysis considers both nonuniform particle mass and nonuniform velocities for the various constituents of an aggregate material. The results of calibration experiments conducted with a prototype transducer are shown with theoretical predictions of these results.

  10. Experimental study of the effect of spray inclination on ultrafast cooling of a hot steel plate

    NASA Astrophysics Data System (ADS)

    Ravikumar, Satya V.; Jha, Jay M.; Mohapatra, Soumya S.; Sinha, Apurva; Pal, Surjya K.; Chakraborty, Sudipto

    2013-10-01

    The ultrafast cooling that occurs during high mass flux air-atomized spray impingement on a hot 6 mm thick stainless steel plate has been studied experimentally in terms of the nozzle inclination between 0° and 60°. The average mass flux of water used in the study accounts to 510 kg/m2 s. The coolants used in the study are pure water and surfactant water of 600 ppm concentration. The initial temperature of the plate has been maintained at 900 °C, which is the temperature of a hot strip on run-out table in steel industry. The transient surface heat flux and temperature histories have been estimated by an inverse heat solver using measured temperature input data. Heat transfer results demonstrates that optimum cooling efficiency (~2.76 MW/m2, 194 °C/s) for pure water has been achieved at 30° nozzle orientation. The inclined nozzle has not been found beneficial when surfactant water is used as the coolant.

  11. Distributed-Channel Bipolar Device: Experimentation, Analytical Modeling and Applications.

    NASA Astrophysics Data System (ADS)

    Jiang, Fenglai

    Experimental results and theoretical modeling for four terminal distributed channel bipolar devices (DCBD) are presented. The DCBD device is comprised of an interwoven BJT and MOSFET. The device may be characterized as a MOSFET with a bipolar transistor source distributed under the MOSFET channel. Alternatively, the device may be represented as a BJT where a MOSFET channel provides the current collection function. The physical layout of the device is that of a n-channel MOSFET placed above a p-Si epitaxial base region which was grown on an n^+-Si substrate emitter. Distributed electronic behavior exhibits itself through self-biasing influences of the channel-collected current on the channel-base junction bias. For appropriate biasing, the MOSFET channel divides itself into two regions exhibiting forward active and saturation BJT behavior. Both experimental results and theoretical modeling are provided. Experimental results for "large area" rectangular gate, circular gate and trapezoidal gate DCBD are reported. The experimental results exhibit the transconductance threshold voltage, beta fall off and transconductance fall-off features reported previously by others. A "large area" trapezoidal gate structure is incorporated to illustrate the gate area influences on the electrical characteristics and to provide a model sensitive structure for evaluating the validity of the theory developed in the dissertation. An analytical model based on conventional MOSFET and bipolar theories is developed. The analytical model is applied to the large gate area devices (example: 0.127 mm rectangular gate length) and smaller dimensional gate devices down to 0.9 micron rectangular gate length. The theoretical results show good agreement with the large gate area experimental results. Application examples are provided. The use of the base current invariant transconductance threshold voltage as a reference voltage is discussed. Comparison of the transconductance threshold voltage

  12. Parametric Appraisal of Process Parameters for Adhesion of Plasma Sprayed Nanostructured YSZ Coatings Using Taguchi Experimental Design

    PubMed Central

    Mantry, Sisir; Mishra, Barada K.; Chakraborty, Madhusudan

    2013-01-01

    This paper presents the application of the Taguchi experimental design in developing nanostructured yittria stabilized zirconia (YSZ) coatings by plasma spraying process. This paper depicts dependence of adhesion strength of as-sprayed nanostructured YSZ coatings on various process parameters, and effect of those process parameters on performance output has been studied using Taguchi's L16 orthogonal array design. Particle velocities prior to impacting the substrate, stand-off-distance, and particle temperature are found to be the most significant parameter affecting the bond strength. To achieve retention of nanostructure, molten state of nanoagglomerates (temperature and velocity) has been monitored using particle diagnostics tool. Maximum adhesion strength of 40.56 MPa has been experimentally found out by selecting optimum levels of selected factors. The enhanced bond strength of nano-YSZ coating may be attributed to higher interfacial toughness due to cracks being interrupted by adherent nanozones. PMID:24288490

  13. Al2O3/Al Cermets by Plasma Spraying: Optical Response of Experimental and Numerically Represented Materials

    NASA Astrophysics Data System (ADS)

    Toru, D.; Echegut, R.; Quet, A.; De Sousa Meneses, D.; del Campo, L.; Piombini, H.; Echegut, P.; Bianchi, L.

    2016-01-01

    Optical properties of plasma-sprayed coatings and numerically represented samples were studied at wavelengths ranging from visible to mid-infrared. The paper focuses on Al2O3 and Al2O3/Al cermet coatings with different metal concentrations. Microstructure and composition of the samples were characterized in order to explain their optical response that is highly dependent on volume and/or surface scattering as a function of the wavelength range. 2D scanning electron microscopy and 3D x-ray microtomography images were exploited to get statistical data in order to numerically represent simplified samples from the complex microstructure of plasma-sprayed coatings. A Monte Carlo ray-tracing model, based on geometrical optical laws, was then applied to reproduce experimental trends of the acquired optical spectra. Good agreement with the experimental data was obtained.

  14. Numerical and Experimental Research of Temperature of Arc Spray Zn-Al Alloy Droplets

    NASA Astrophysics Data System (ADS)

    Yiqing, Wang; Zhongyun, He; Wanhua, Zhao; Jun, Hong; Bingheng, Lu

    2010-03-01

    In this paper, a model for arc spraying Zn-Al droplets during flight course has been established and developed using theoretical principles of fluid mechanics, heat transfer and phase transition. Mathematical models are set up to describe the interaction between air current and droplets in flight. The calculation results showed that Zn-Al droplet's velocity and temperature are the function of flight distance and droplet's diameter. Percentage of solid droplets in metal spray is a function of droplet's size distribution. Within a flight distance of 600 mm, depending on the size and cooling rate, the droplets in metal spray may be in the states of entirely liquid, partially solidified, or entirely solidified and the percentage of partially solidified and entirely solidified droplets in metal spray is less than 2%.

  15. Experimental Studies of Spray Deposition on a Flat Surface in a Vacuum Environment

    NASA Technical Reports Server (NTRS)

    Golliher, Eric L.; Yao, S. C.

    2015-01-01

    Cooling of spacecraft components in the space environment is an on-going research effort. The electronics used in modern spacecraft are always changing and the heat flux is increasing. New, one-of-a-kind missions require new approaches to thermal control. In this research, under vacuum conditions, a pulsed water spray impinged on a small disc, while a high speed data acquisition system recorded the temperature histories of this copper disc. The water droplets froze quickly and accumulated on the disc as the spray continued. After the spray stopped, the frozen water that remained on the disc then sublimated into the vacuum environment and cooled the disc. This paper examines two important aspects of this process: 1) the difference in spray start up and shutdown in a vacuum environment versus in a standard atmospheric pressure environment, and 2) the water utilization efficiency in a vacuum environment due to the effects of drop trajectories and drop bouncing on the surface. Both phenomena play a role during spray cooling in a vacuum. This knowledge should help spacecraft designers plan for spray cooling as an option to cool spacecraft electronics, human metabolic generated heat, and heat from other sources.

  16. Spray Chemical Vapor Deposition of CulnS2 Thin Films for Application in Solar Cell Devices

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jennifer A.; Buhro, William E.; Hepp, Aloysius F.; Jenkins. Philip P.; Stan, Mark A.

    1998-01-01

    Chalcopyrite CuInS2 is a direct band gap semiconductor (1.5 eV) that has potential applications in photovoltaic thin film and photoelectrochemical devices. We have successfully employed spray chemical vapor deposition using the previously known, single-source, metalorganic precursor, (Ph3P)2CuIn(SEt)4, to deposit CuInS2 thin films. Stoichiometric, polycrystalline films were deposited onto fused silica over a range of temperatures (300-400 C). Morphology was observed to vary with temperature: spheroidal features were obtained at lower temperatures and angular features at 400 C. At even higher temperatures (500 C), a Cu-deficient phase, CuIn5S8, was obtained as a single phase. The CuInS2 films were determined to have a direct band gap of ca. 1.4 eV.

  17. 30 CFR 75.1107-7 - Water spray devices; capacity; water supply; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection Fire Suppression Devices and Fire-Resistant Hydraulic Fluids on Underground Equipment § 75.1107-7.... (f) Liquid chemicals may be used, as approved by the Secretary in self-contained fire...

  18. Experimental measurement-device-independent verification of quantum steering

    NASA Astrophysics Data System (ADS)

    Kocsis, Sacha; Hall, Michael J. W.; Bennet, Adam J.; Saunders, Dylan J.; Pryde, Geoff J.

    2015-01-01

    Bell non-locality between distant quantum systems—that is, joint correlations which violate a Bell inequality—can be verified without trusting the measurement devices used, nor those performing the measurements. This leads to unconditionally secure protocols for quantum information tasks such as cryptographic key distribution. However, complete verification of Bell non-locality requires high detection efficiencies, and is not robust to typical transmission losses over long distances. In contrast, quantum or Einstein-Podolsky-Rosen steering, a weaker form of quantum correlation, can be verified for arbitrarily low detection efficiencies and high losses. The cost is that current steering-verification protocols require complete trust in one of the measurement devices and its operator, allowing only one-sided secure key distribution. Here we present measurement-device-independent steering protocols that remove this need for trust, even when Bell non-locality is not present. We experimentally demonstrate this principle for singlet states and states that do not violate a Bell inequality.

  19. Inverse mirror plasma experimental device (IMPED) - a magnetized linear plasma device for wave studies

    NASA Astrophysics Data System (ADS)

    Bose, Sayak; Chattopadhyay, P. K.; Ghosh, J.; Sengupta, S.; Saxena, Y. C.; Pal, R.

    2015-04-01

    In a quasineutral plasma, electrons undergo collective oscillations, known as plasma oscillations, when perturbed locally. The oscillations propagate due to finite temperature effects. However, the wave can lose the phase coherence between constituting oscillators in an inhomogeneous plasma (phase mixing) because of the dependence of plasma oscillation frequency on plasma density. The longitudinal electric field associated with the wave may be used to accelerate electrons to high energies by exciting large amplitude wave. However when the maximum amplitude of the wave is reached that plasma can sustain, the wave breaks. The phenomena of wave breaking and phase mixing have applications in plasma heating and particle acceleration. For detailed experimental investigation of these phenomena a new device, inverse mirror plasma experimental device (IMPED), has been designed and fabricated. The detailed considerations taken before designing the device, so that different aspects of these phenomena can be studied in a controlled manner, are described. Specifications of different components of the IMPED machine and their flexibility aspects in upgrading, if necessary, are discussed. Initial results meeting the prerequisite condition of the plasma for such study, such as a quiescent, collisionless and uniform plasma, are presented. The machine produces δnnoise/n <= 1%, Luniform ~ 120 cm at argon filling pressure of ~10-4 mbar and axial magnetic field of B = 1090 G.

  20. Direct Numerical Simulation of Liquid Nozzle Spray with Comparison to Shadowgraphy and X-Ray Computed Tomography Experimental Results

    NASA Astrophysics Data System (ADS)

    van Poppel, Bret; Owkes, Mark; Nelson, Thomas; Lee, Zachary; Sowell, Tyler; Benson, Michael; Vasquez Guzman, Pablo; Fahrig, Rebecca; Eaton, John; Kurman, Matthew; Kweon, Chol-Bum; Bravo, Luis

    2014-11-01

    In this work, we present high-fidelity Computational Fluid Dynamics (CFD) results of liquid fuel injection from a pressure-swirl atomizer and compare the simulations to experimental results obtained using both shadowgraphy and phase-averaged X-ray computed tomography (CT) scans. The CFD and experimental results focus on the dense near-nozzle region to identify the dominant mechanisms of breakup during primary atomization. Simulations are performed using the NGA code of Desjardins et al (JCP 227 (2008)) and employ the volume of fluid (VOF) method proposed by Owkes and Desjardins (JCP 270 (2013)), a second order accurate, un-split, conservative, three-dimensional VOF scheme providing second order density fluxes and capable of robust and accurate high density ratio simulations. Qualitative features and quantitative statistics are assessed and compared for the simulation and experimental results, including the onset of atomization, spray cone angle, and drop size and distribution.

  1. Experimental and numerical evaluation of the performance of supersonic two-stage high-velocity oxy-fuel thermal spray (Warm Spray) gun

    NASA Astrophysics Data System (ADS)

    Katanoda, H.; Morita, H.; Komatsu, M.; Kuroda, S.

    2011-03-01

    The water-cooled supersonic two-stage high-velocity oxy-fuel (HVOF) thermal spray gun was developed to make a coating of temperature-sensitive material, such as titanium, on a substrate. The gun has a combustion chamber (CC) followed by a mixing chamber (MC), in which the combustion gas is mixed with the nitrogen gas at room temperature. The mixed gas is accelerated to supersonic speed through a converging-diverging (C-D) nozzle followed by a straight passage called the barrel. This paper proposes an experimental procedure to estimate the cooling rate of CC, MC and barrel separately. Then, the mathematical model is presented to predict the pressure and temperature in the MC for the specific mass flow rates of fuel, oxygen and nitrogen by assuming chemical equilibrium with water-cooling in the CC and MC, and frozen flow with constant specific heat from stagnant condition to the throat in the CC and MC. Finally, the present mathematical model was validated by comparing the calculated and measured stagnant pressures of the CC of the two-stage HVOF gun.

  2. Experimental Flow Characterization of a Flow Diverting Device

    NASA Astrophysics Data System (ADS)

    Sparrow, Eph; Chow, Ricky; Campbell, Gary; Divani, Afshin; Sheng, Jian

    2012-11-01

    Flow diverters, such as the Pipeline Embolization Device, are a new class of endovascular devices for the treatment of intracranial aneurysms. While clinical studies have demonstrated safety and efficacy, their impact on intra-aneurysmal flow is not confirmed experimentally. As such, optimization of the flow diversion behavior is not currently possible. A quasi-3D PIV technique was developed and applied in various glass models at Re = 275 and 550 to determine the changes to flow characteristics due to the deployment of a flow diverter across the aneurysm neck. Outcomes such as mean velocity, wall shear stress, and others metrics will be presented. Glass models with varying radii of curvature and aneurysm locations will be examined. Experiments were performed in a fully index-matched flow facility using ~10 μm diameter polystyrene particles doped with Rhodium 6G dye. The particles were illuminated with a 532nm laser sheet and observed with a CCD camera and a 592nm +/-43 nm bandpass filter. A quasi 3D flow field was reconstructed from multiple orthogonal planes (spaced 0.4mm apart) encompassing the entire glass model. Wall stresses were evaluated from the near-wall flow viscous stresses.

  3. Numerical and Experimental Investigation of Cold Spray Gas Dynamic Effects for Polymer Coating

    NASA Astrophysics Data System (ADS)

    Alhulaifi, Abdulaziz S.; Buck, Gregory A.; Arbegast, William J.

    2012-09-01

    Low melting temperature materials such as polymers are known to be difficult to deposit using traditional cold spray techniques. Computational fluid dynamics (CFD) models were created for various nozzle geometries and flow conditions. A schlieren optical system was used to visualize the density gradients and flow characteristics in the free jet impingement region. Based on the CFD models, it was determined that a diffuser placed into the carrier gas flow near the nozzle exit not only leads to lower particle impact velocity required for polymer deposition, but also provides for appropriate application of compression heating of the particles to produce the conditions necessary at impact for successful coating adhesion of these materials. Experiments subsequently confirmed the successful deposition of polyethylene powder onto a 7075-T6 aluminum substrate. Using air as the carrier gas, polyethylene particles of 53-75 μm diameter and 0.94 g/cm3 density, were cold spray deposited onto the aluminum substrate, with a critical impact velocity of 191 m/s. No apparent melting of the polymer particles was observed. Refinements to these concepts are currently under investigation and a patent disclosure for the idea is pending.

  4. Modelling and experimental investigations of thin films of Mg phosphorus-doped tungsten bronzes obtained by ultrasonic spray pyrolysis.

    PubMed

    Jokanović, V; Nedić, Z; Colović, B

    2008-12-01

    In this study, the synthesis of thin films of Mg phosphorus doped tungsten bronzes (MgPTB; MgHPW(12)O(40).29H(2)O) by the self-assembly of nano-structured particles of MgPTB obtained using the ultrasonic spray pyrolysis method was investigated. As the precursor, MgPTB, prepared by the ionic exchange method, was used. Nano-structured particles of MgPTB were obtained using the ultrasonic spray pyrolysis method. The nano-structure of the particles used as the building blocks in the MgPTB thin film were investigated experimentally and theoretically, applying the model given in this article. The obtained data for the mean particle size and their size distribution show a high degree of agreement. These previously tailored particles used for the preparation of thin films during the next synthesis step, by their self-assembly over slow deposition on a silica glass substrate, show how it is possible to create thin MgPTB films under advance projected conditions of the applied physical fields with a fully determined nanostructure of their building block particles, with a relatively small roughness and unique physical properties. PMID:19094050

  5. Effects of different spray formulations on the reproductive parameters of engorged Rhipicephalus (Boophilus) microplus females detached from experimentally infested cattle.

    PubMed

    Cruz, Breno Cayeiro; Buzzulini, Carolina; Lopes, Welber Daniel Zanetti; Maciel, Willian Giquelin; Bichuette, Murilo Abud; Felippelli, Gustavo; Teixeira, Weslen Fabricio Pires; Soares, Vando Edésio; Gomes, Lucas Vinicius Costa; Prando, Luciana; Campos, Gabriel Pimentel; da Costa, Alvimar José

    2015-11-01

    This present study aimed to evaluate the deleterious effects of some commercially available spray formulations (15% Cypermethrin+25% Chlorpyriphos+1% Citronellal and 8% Cypermethrin+60% Ethion) on the reproductive parameters of engorged Rhipicephalus (Boophilus) microplus females that detached from experimentally infested cattle. The following reproductive parameters of engorged female ticks were analyzed: female weight, egg mass weight, percentage of hatchability, percentage of reduction in oviposition, percentage of reduction in hatchability, reproductive efficiency and percent control/efficacy of formulations for reproductive parameters. Our findings showed that although the strain R. (B.) microplus used in both experiments was thought to be sensitive to the test compounds because of the acaricidal efficacy observed throughout these trials, it was not possible to observe overall deleterious effects on the reproductive parameters of this tick species with both spray formulations. However, the 8% Cypermethrin+60% Ethion showed short-term significant effects on the weight of female ticks between the 14th and 16th days post-treatment and the weight of female and the egg mass weight between the 20th and 22nd days post-treatment. New studies should be conducted to show if these results regarding the reproductive parameters of fully engorged R. (B.) microplus females, combined with the acaricidal efficacy can be sufficient to reduce the number of chemical treatments administered to cattle. PMID:26427633

  6. High-Velocity Oxygen Fuel Thermal Spray of Fe-Based Amorphous Alloy: a Numerical and Experimental Study

    NASA Astrophysics Data System (ADS)

    Ajdelsztajn, L.; Dannenberg, J.; Lopez, J.; Yang, N.; Farmer, J.; Lavernia, E. J.

    2009-09-01

    The fabrication of dense coatings with appropriate properties using a high velocity oxygen fuel (HVOF) spray process requires an in-depth understanding of the complete gas flow field and particle behavior during the process. A computational fluid dynamics (CFD) model is implemented to investigate the gas flow behavior that occurs during the HVOF process and a simplified one-dimensional decoupled model of the in-flight thermal behavior of the amorphous Fe-based powder particles was developed and applied for three different spray conditions. The numerical results were used to rationalize the different coating microstructures described in the experimental results. Low porosity and amorphous coatings were produced using two different particle size distributions (16 to 25 μm and 25 to 53 μm). The amorphous characteristics of the powder were retained in the coating due to melting and rapid solidification in the case of very fine powder or ligaments (<16 μm) and to the fact that the crystallization temperature was not reached in the case of the large particles (16 to 53 μm).

  7. Specifics of phytomass combustion in small experimental device

    NASA Astrophysics Data System (ADS)

    Lenhard, Richard; Mičieta, Jozef; Jandačka, Jozef; Gavlas, Stanislav

    2015-05-01

    A wood pellet combustion carries out with high efficiency and comfort in modern pellet boilers. These facts help to increase the amount of installed pellet boilers in households. The combustion process quality depends besides the combustion conditions also on the fuel quality. The wood pellets, which don`t contain the bark and branches represent the highest quality. Because of growing pellet demand, an herbal biomass (phytomass), which is usually an agricultural by-product becomes economically attractive for pellet production. Although the phytomass has the net calorific value relatively slightly lower than the wood biomass, it is often significantly worse in view of the combustion process and an emission production. The combustion of phytomass pellets causes various difficulties in small heat sources, mainly due to a sintering of fuel residues. We want to avoid the ash sintering by a lowering of temperature in the combustion chamber below the ash sintering temperature of phytomass via the modification of a burner design. For research of the phytomass combustion process in the small boilers is constructed the experimental combustion device. There will investigate the impact of cooling intensity of the combustion chamber on the combustion process and emissions. Arising specific requirements from the measurement will be the basis for the design of the pellet burner and for the setting of operating parameters to the trouble-free phytomass combustion was guaranteed.

  8. Experimental Study on Electrical Breakdown for Devices with Micrometer Gaps

    NASA Astrophysics Data System (ADS)

    Meng, Guodong; Cheng, Yonghong; Dong, Chengye; Wu, Kai

    2014-12-01

    The understanding of electrical breakdown in atmospheric air across micrometer gaps is critically important for the insulation design of micro & nano electronic devices. In this paper, planar aluminum electrodes with gaps ranging from 2 μm to 40 μm were fabricated by microelectromechanical system technology. The influence factors including gap width and surface dielectric states were experimentally investigated using the home-built test and measurement system. Results showed that for SiO2 layers the current sustained at 2-3 nA during most of the pre-breakdown period, and then rose rapidly to 10-30 nA just before breakdown due to field electron emission, followed by the breakdown. The breakdown voltage curves demonstrated three stages: (1) a constantly decreasing region (the gap width d < 5 μm), where the field emission effect played an important role just near breakdown, supplying enough initial electrons for the breakdown process; (2) a plateau region with a near constant breakdown potential (5 μm < d < 10 μm) (3) a region for large gaps that adhered to Paschen's curve (d > 10 μm). And the surface dielectric states including the surface resistivity and secondary electron yield were verified to be related to the propagation of discharge due to the interaction between initial electrons and dielectrics.

  9. An Experimental Analysis Device for Obtaining Skid Line Limit Diagrams

    NASA Astrophysics Data System (ADS)

    Wanintradul, Chatchai; Gurumurthy, Gopinath T.; Smith, L. M.; Du, Changqing; Geng, Lumin; Zhou, D. J.; Hsiung, Ching-Kuo; Chen, Jizhou; Feng, Chao

    2011-08-01

    A novel design for a machine intended to measure directly various in-plane and contact normal forces acting upon a sheet metal specimen during a stretch-bend-draw process is proposed, in order to gain insight into the formation of skid line defects in sheet metal. The new machine, called a Stretch-Bend-Draw Simulator (SBDS) is designed specifically to be integrated into a typical laboratory tensile testing machine, thereby making it accessible to those researchers lacking the resources to acquire expensive additional tooling. As the strip of sheet metal is pulled over a round tool radius, the SBDS is shown to be capable of collecting pulling force, back force, tool normal force, and the corresponding draw bead clamping force. Analysis of the force data in conjunction with visual observations of the actual pulled specimens allows researchers to ascertain the conditions under which so-called skid lines arise. Experimental results, including a newly unveiled Skid Line Limit Diagram (SLLD), are provided and discussed. The SBDS appears to be a promising new electro-mechanical laboratory device for improving researchers' knowledge of the physical phenomena associated with skid lines in sheet metal products created in stamping dies.

  10. Characterization of sprays

    NASA Astrophysics Data System (ADS)

    Chigier, N.; Mao, C.-P.

    It is pointed out that most practical power generation and propulsion systems involve the burning of different types of fuel sprays, taking into account aircraft propulsion, industrial furnaces, boilers, gas turbines, and diesel engines. There has been a lack of data which can serve as a basis for spray model development and validation. A major aim of the present investigation is to fill this gap. Experimental apparatus and techniques for studying the characteristics of fuel sprays are discussed, taking into account two-dimensional still photography, cinematography, holography, a laser diffraction particle sizer, and a laser anemometer. The considered instruments were used in a number of experiments, taking into account three different types of fuel spray. Attention is given to liquid fuel sprays, high pressure pulsed diesel sprays, and coal-water slurry sprays.

  11. Characterization of sprays

    NASA Technical Reports Server (NTRS)

    Chigier, N.; Mao, C.-P.

    1984-01-01

    It is pointed out that most practical power generation and propulsion systems involve the burning of different types of fuel sprays, taking into account aircraft propulsion, industrial furnaces, boilers, gas turbines, and diesel engines. There has been a lack of data which can serve as a basis for spray model development and validation. A major aim of the present investigation is to fill this gap. Experimental apparatus and techniques for studying the characteristics of fuel sprays are discussed, taking into account two-dimensional still photography, cinematography, holography, a laser diffraction particle sizer, and a laser anemometer. The considered instruments were used in a number of experiments, taking into account three different types of fuel spray. Attention is given to liquid fuel sprays, high pressure pulsed diesel sprays, and coal-water slurry sprays.

  12. Development and validation of AccuTOF-DART™ as a screening method for analysis of bank security device and pepper spray components.

    PubMed

    Pfaff, Allison M; Steiner, Robert R

    2011-03-20

    Analysis of bank security devices, containing 1-methylaminoanthraquinone (MAAQ) and o-chlorobenzylidenemalononitrile (CS), and pepper sprays, containing capsaicin, is a lengthy process with no specific screening technique to aid in identifying samples of interest. Direct Analysis in Real Time (DART™) ionization coupled with an Accurate Time of Flight (AccuTOF) mass detector is a fast, ambient ionization source that could significantly reduce time spent on these cases and increase the specificity of the screening process. A new method for screening clothing for bank dye and pepper spray, using AccuTOF-DART™ analysis, has been developed. Detection of MAAQ, CS, and capsaicin was achieved via extraction of each compound onto cardstock paper, which was then sampled in the AccuTOF-DART™. All results were verified using gas chromatography coupled with electron impact mass spectrometry. PMID:20643521

  13. Experimental evaluation of cooling efficiency of the high performance cooling device

    NASA Astrophysics Data System (ADS)

    Nemec, Patrik; Malcho, Milan

    2016-06-01

    This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heat of electronic components in range from 250 to 740 W.

  14. Observation of diesel spray by pseudo-high-speed photography

    NASA Astrophysics Data System (ADS)

    Umezu, Seiji; Oka, Mohachiro

    2001-04-01

    Pseudo high speed photography has been developed to observe intermittent, periodic and high speed phenomena like diesel spray. Main device of this photography consists of Automatic Variable Retarder (AVR) which delays gradually timing between diesel injection and strobe spark with the micrometer. This technique enables us to observe diesel spray development just like images taken by a high speed video camera. This paper describes a principle of pseudo high speed photography, experimental results of adaptation to diesel spray and analysis of the diesel atomization mechanism.

  15. Experimental investigation of synfuel spray characteristics and combustion dynamics. Quarterly technical progress report, January 1-March 31, 1981

    SciTech Connect

    1981-04-01

    Objective is to study both petroleum-based oils and synthetic fuels in spray combustion, by using advanced optical diagnostic techniques to study the processes of fuel injection and atomization, droplet ignition, and spray flame combustion. During this period, efforts were focused on the completion of the cold spray test facility, the design of the monodisperse droplet combustor, and the construction of an oil burner with the gathering of preliminary holography data. (DLC)

  16. Experimental Measurement-Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Chen, Teng-Yun; Wang, Liu-Jun; Liang, Hao; Shentu, Guo-Liang; Wang, Jian; Cui, Ke; Yin, Hua-Lei; Liu, Nai-Le; Li, Li; Ma, Xiongfeng; Pelc, Jason S.; Fejer, M. M.; Peng, Cheng-Zhi; Zhang, Qiang; Pan, Jian-Wei

    2013-09-01

    Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices.

  17. Experimental measurement-device-independent quantum key distribution.

    PubMed

    Liu, Yang; Chen, Teng-Yun; Wang, Liu-Jun; Liang, Hao; Shentu, Guo-Liang; Wang, Jian; Cui, Ke; Yin, Hua-Lei; Liu, Nai-Le; Li, Li; Ma, Xiongfeng; Pelc, Jason S; Fejer, M M; Peng, Cheng-Zhi; Zhang, Qiang; Pan, Jian-Wei

    2013-09-27

    Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices. PMID:24116758

  18. Survey and Experimental Testing of Nongravimetric Mass Measurement Devices

    NASA Technical Reports Server (NTRS)

    Oakey, W. E.; Lorenz, R.

    1977-01-01

    Documentation presented describes the design, testing, and evaluation of an accelerated gravimetric balance, a low mass air bearing oscillator of the spring-mass type, and a centrifugal device for liquid mass measurement. A direct mass readout method was developed to replace the oscillation period readout method which required manual calculations to determine mass. A protoype 25 gram capacity micro mass measurement device was developed and tested.

  19. Experimental investigations of quantum confined silicon nanoparticle light emitting devices

    NASA Astrophysics Data System (ADS)

    Ligman, Rebekah Kristine

    2007-12-01

    As the demands on our world's energy resources continue to grow, alternative high efficiency materials such as quantum confined silicon nanoparticles (Si nps) are desirable for their potential low cost application in white light illumination, in optical displays, and in on-chip optical interconnects. Many fabrication and passivation techniques exist that produce Si nps with high photogenerated quantum yield. However, high electrically generated Si np quantum efficiency has eluded our society. Predominantly due to the lack of a stable surface passivation and a device fabrication technique that preserves the Si np optical properties. To amend these deficiencies, the passivation of nonthermal plasma fabricated Si nps with a surface oxide grown under UV exposure was first investigated. Control over the surface oxidized Si np (Si/SiO2) passivation growth was demonstrated and the optical stability of Si/SiO2 nps was suitable for demonstrating Si np electroluminescence (EL). Two approaches for constructing hybrid organic light emitting diode (OLED) devices around nonthermal plasma fabricated Si nps were then investigated. Multilayer devices, composed of a nonthermal plasma fabricated Si np layer embedded within an OLED, were first studied. However, no EL from Si nps was obtained using the multilayer device architecture due to poor control over the Si np film thickness. Single layer polymer(Si/SiO2) hybrid devices, composed of nps randomly dispersed within an extrinsic conductive polymer, were then studied and EL from Si/SiO2 nps was obtained. The hybrid device optical and electrical response was enhanced over the control devices, possibly due to morphology changes induced by the Si/SiO2 nps. The energy transfer (ET) processes in single layer polymer(Si/SiO 2) hybrid devices were then investigated by imposing known spatial separations between the intrinsic conductive polymers and Si/SiO2 nps. No measurable Si/SiO2 np emission was observed from the intrinsic hybrid devices

  20. Dispersion of heavy ion deposited energy in nanometric electronic devices: Experimental measurements and simulation possibilities

    NASA Astrophysics Data System (ADS)

    Raine, M.; Gaillardin, M.; Paillet, P.; Duhamel, O.; Martinez, M.; Bernard, H.

    2015-12-01

    The dispersion of heavy ion deposited energy is explored in nanometric electronic devices. Experimental data are reported, in a large thin SOI diode and in a SOI FinFET device, showing larger distributions of collected charge in the nanometric volume device. Geant4 simulations are then presented, using two different modeling approaches. Both of them seem suitable to evaluate the dispersion of deposited energy induced by heavy ion beams in advanced electronic devices with nanometric dimensions.

  1. Experimental and simulated control of lift using trailing edge devices

    NASA Astrophysics Data System (ADS)

    Cooperman, A.; Blaylock, M.; van Dam, C. P.

    2014-12-01

    Two active aerodynamic load control (AALC) devices coupled with a control algorithm are shown to decrease the change in lift force experienced by an airfoil during a change in freestream velocity. Microtabs are small (1% chord) surfaces deployed perpendicular to an airfoil, while microjets are pneumatic jets with flow perpendicular to the surface of the airfoil near the trailing edge. Both devices are capable of producing a rapid change in an airfoil's lift coefficient. A control algorithm for microtabs has been tested in a wind tunnel using a modified S819 airfoil, and a microjet control algorithm has been simulated for a NACA 0012 airfoil using OVERFLOW. In both cases, the AALC devices have shown the ability to mitigate the changes in lift during a gust.

  2. Measured effects of retrofits -- a refrigerant oil additive and a condenser spray device -- on the cooling performance of a heat pump

    SciTech Connect

    Levins, W.P.; Sand, J.R.; Baxter, V.D.; Linkous, R.L.

    1996-05-01

    A 15-year old, 3-ton single package air-to-air heat pump was tested in laboratory environmental chambers simulating indoor and outdoor conditions. After documenting initial performance, the unit was retrofitted with a prototype condenser water-spray device and retested. Results at standard ARI cooling rating conditions (95 F outdoor dry bulb and 80/67 F indoor dry bulb/wet bulb temperatures) showed the capacity increased by about 7%, and the electric power demand dropped by about 8%, resulting in a steady-state EER increase of 17%. Suction and discharge pressures were reduced by 7 and 37 psi, respectively. A refrigerant oil additive formulated to enhance refrigerant-side heat transfer was added at a dose of one ounce per ton of rated capacity, and the unit was tested for several days at the same 95 F outdoor conditions and showed essentially no increase in capacity, and a slight 3% increase in steady-state EER. Adding more additive lowered the EER slightly. Suction and discharge pressures were essentially unchanged. The short-term testing showed that the condenser-spray device was effective in increasing the cooling capacity and lowering the electrical demand on an old and relatively inefficient heat pump, but the refrigerant additive had little effect on the cooling performance of the unit. Sprayer issues to be resolved include the effect of a sprayer on a new, high-efficiency air conditioner/heat pump, reliable long-term operation, and economics.

  3. Preparation and characterization of spray deposited n-type WO{sub 3} thin films for electrochromic devices

    SciTech Connect

    Sivakumar, R.; Moses Ezhil Raj, A.; Subramanian, B.; Jayachandran, M.; Trivedi, D.C.; Sanjeeviraja, C

    2004-08-03

    The n-type tungsten oxide (WO{sub 3}) polycrystalline thin films have been prepared at an optimized substrate temperature of 250 deg. C by spray pyrolysis technique. Precursor solution of ammonium tungstate ((NH{sub 4}){sub 2}WO{sub 4}) was sprayed onto the well cleaned, pre-heated fluorine doped tin oxide coated (FTO) and glass substrates with a spray rate of 15 ml/min. The structural, surface morphological and optical properties of the as-deposited WO{sub 3} thin films were studied. Mott-Schottky (M-S) studies of WO{sub 3}/FTO electrodes were conducted in Na{sub 2}SO{sub 4} solution to identify their nature and extract semiconductor parameters. The electrochromic properties of the as-deposited and lithiated WO{sub 3}/FTO thin films were analyzed by employing them as working electrodes in three electrode electrochemical cell using an electrolyte containing LiClO{sub 4} in propylene carbonate (PC) solution.

  4. Sprayed coatings

    NASA Astrophysics Data System (ADS)

    Steffens, H. D.

    1980-03-01

    Thermal spraying is shown to be an efficient means for the protection of surface areas against elevated temperature, wear, corrosion, hot gas corrosion, and erosion in structural aircraft components. Particularly in jet engines, numerous parts are coated by flame, detonation, or plasma spraying techniques. The applied methods of flame, detonation, and plasma spraying are explained, as well as electric arc spraying. Possibilities for spray coatings which meet aircraft service requirements are discussed, as well as methods for quality control, especially nondestructive test methods. In particular, coating characteristics and properties obtained by different spray methods are described, and special attention is paid to low pressure plasma spraying.

  5. Tactile device utilizing a single magnetorheological sponge: experimental investigation

    NASA Astrophysics Data System (ADS)

    Kim, Soomin; Kim, Pyunghwa; Choi, Seung-Hyun; Oh, Jong-Seok; Choi, Seung-Bok

    2015-04-01

    In the field of medicine, several new areas have been currently introduced such as robot-assisted surgery. However, the major drawback of these systems is that there is no tactile communication between doctors and surgical sites. When the tactile system is brought up, telemedicine including telerobotic surgery can be enhanced much more than now. In this study, a new tactile device is designed using a single magnetorhological (MR) sponge cell to realize the sensation of human organs. MR fluids and an open celled polyurethane foam are used to propose the MR sponge cell. The viscous and elastic sensational behaviors of human organs are realized by the MR sponge cell. Before developing the tactile device, tactile sensation according to touch of human fingers are quantified in advance. The finger is then treated as a reduced beam bundle model (BBM) in which the fingertip is comprised of an elastic beam virtually. Under the reduced BBM, when people want to sense an object, the fingertip is investigated by pushing and sliding. Accordingly, while several magnitudes of magnetic fields are applied to the tactile device, normal and tangential reaction forces and bending moment are measured by 6-axis force/torque sensor instead of the fingertip. These measured data are used to compare with soft tissues. It is demonstrated that the proposed MR sponge cell can realize any part of the organ based on the obtained data.

  6. Experimental investigation on the effect of injection conditions on spray and atomization of a centrifugal nozzle

    NASA Astrophysics Data System (ADS)

    Fan, Wei; Song, Haoyi; Fan, Zhencen; Zhao, Lin

    2013-05-01

    The effects of injection parameters on atomization of aviation kerosene (RP-3) were studied using a laser diffraction particle size analyzing system. The test results indicated that Sauter mean diameter (SMD) decreased with the increase of injection temperature. There was a critical temperature for flash evaporation, at which SMD had a sharp decrease. The critical temperature fell at first and then rose with the increase of injection pressure; however, the diameter of a centrifugal nozzle had little influence on the critical temperature. Sauter mean diameter didn't follow the conventional law after flash evaporation. A simple and empirical correlation between critical temperature for flash evaporation and injection parameters was developed from the experimental data, which can be used to evaluate critical temperature for flash evaporation.

  7. Modified Spinning Top Homogeneous Spray Apparatus for Use in Experimental Respiratory Disease Studies

    PubMed Central

    Young, Harold W.; Larson, Edgar W.; Dominik, Joseph W.

    1974-01-01

    The May spinning top generator was adapted to a modified Henderson tube for producing large aerosol particles (>4 μm) to obtain almost exclusive upper respiratory tract deposition of infectious aerosols in exposed mice. The system was installed in a biological safety cabinet to permit experimentation with pathogens. A novel mechanism utilizing parts from a machinists micrometer and the mechanical stage from a light microscope was developed for the spinning top generator as a means for precisely positioning the liquid feed needle. Aerosol light-scatter properties were continuously analyzed to provide relative measures of particle size distribution and aerosol concentration. When mice were exposed to influenza virus aerosols in which none of the virus was contained in particles with aerodynamic diameters <4 μm, essentially all of the virus was deposited in the upper respiratory tract tissues. PMID:4451375

  8. Spray irrigation effects on surface-layer stability in an experimental citrus orchard during winter freezes

    SciTech Connect

    Cooper, H.J.; Smith, E.A.; Martsolf, J.D.

    1997-02-01

    Observations taken by two surface radiation and energy budget stations deployed in the University of Florida/Institute for Food and Agricultural Service experimental citrus orchard in Ginesville, Florida, have been analyzed to identify the effects of sprayer irrigation on thermal stability and circulation processes within the orchard during three 1992 winter freeze episodes. Lapse rates of temperature observed from a micrometeorological tower near the center of the orchard were also recorded during periods of irrigation for incorporation into the analysis. Comparisons of the near-surface temperature lapse rates observed with the two energy budget stations show consistency between the two sites and with the tower-based lapse rates taken over a vertical layer from 1.5 to 15 m above ground level. A theoretical framework was developed that demonstrates that turbulent-scale processes originating within the canopy, driven by latent heat release associated with condensation and freezing processes from water vapor and liquid water released from sprayer nozzles, can destabilize lapse rates and promote warm air mixing above the orchard canopy. The orchard data were then analyzed in the context of the theory for evidence of local overturning and displacement of surface layer air, with warmer air from aloft driven by locally buoyant plumes generated by water vapor injected into the orchard during the irrigation periods. 14 refs., 6 figs.

  9. Comparing Spray Characteristics from Reynolds Averaged Navier-Stokes (RANS) National Combustion Code (NCC) Calculations Against Experimental Data for a Turbulent Reacting Flow

    NASA Technical Reports Server (NTRS)

    Iannetti, Anthony C.; Moder, Jeffery P.

    2010-01-01

    Developing physics-based tools to aid in reducing harmful combustion emissions, like Nitrogen Oxides (NOx), Carbon Monoxide (CO), Unburnt Hydrocarbons (UHC s), and Sulfur Dioxides (SOx), is an important goal of aeronautics research at NASA. As part of that effort, NASA Glenn Research Center is performing a detailed assessment and validation of an in-house combustion CFD code known as the National Combustion Code (NCC) for turbulent reacting flows. To assess the current capabilities of NCC for simulating turbulent reacting flows with liquid jet fuel injection, a set of Single Swirler Lean Direct Injection (LDI) experiments performed at the University of Cincinnati was chosen as an initial validation data set. This Jet-A/air combustion experiment operates at a lean equivalence ratio of 0.75 at atmospheric pressure and has a 4 percent static pressure drop across the swirler. Detailed comparisons of NCC predictions for gas temperature and gaseous emissions (CO and NOx) against this experiment are considered in a previous work. The current paper is focused on detailed comparisons of the spray characteristics (radial profiles of drop size distribution and at several radial rakes) from NCC simulations against the experimental data. Comparisons against experimental data show that the use of the correlation for primary spray break-up implemented by Raju in the NCC produces most realistic results, but this result needs to be improved. Given the single or ten step chemical kinetics models, use of a spray size correlation gives similar, acceptable results

  10. Experimental Confirmation of Water Column Natural Resonance Migration in a BBDB Device.

    SciTech Connect

    Bull, Diana L; Gunawan, Budi; Holmes, Brian

    2014-09-01

    Experiments were conducted with a Backward Bent Duct Buoy (BBDB) oscillating water column wave energy conversion device with a scaling factor of 50 at HMRC at University College Cork, Ireland. Results were compared to numerical performance models. This work experimentally verified the migration of the natural resonance location of the water column due to hydrodynamic coupling for a floating non- axisymmetric device without a power conversion chain PCC present. In addition, the experimental results verified the performance model with a PCC of the same non- axisymmetric device when both floating and grounded.

  11. An experimental nonlinear low dynamic stiffness device for shock isolation

    NASA Astrophysics Data System (ADS)

    Francisco Ledezma-Ramirez, Diego; Ferguson, Neil S.; Brennan, Michael J.; Tang, Bin

    2015-07-01

    The problem of shock generated vibration is very common in practice and difficult to isolate due to the high levels of excitation involved and its transient nature. If not properly isolated it could lead to large transmitted forces and displacements. Typically, classical shock isolation relies on the use of passive stiffness elements to absorb energy by deformation and some damping mechanism to dissipate residual vibration. The approach of using nonlinear stiffness elements is explored in this paper, focusing in providing an isolation system with low dynamic stiffness. The possibilities of using such a configuration for a shock mount are studied experimentally following previous theoretical models. The model studied considers electromagnets and permanent magnets in order to obtain nonlinear stiffness forces using different voltage configurations. It is found that the stiffness nonlinearities could be advantageous in improving shock isolation in terms of absolute displacement and acceleration response when compared with linear elastic elements.

  12. Antistatic sprays

    NASA Technical Reports Server (NTRS)

    Ming, James E.

    1989-01-01

    Antistatic sprays from several different manufacturers are examined. The sprays are examined for contamination potential (i.e., outgassing and nonvolatile residue), corrosiveness on an aluminum mirror surface, and electrostatic effectiveness. In addition, the chemical composition of the antistatic sprays is determined by infrared spectrophotometry, mass spectrometry, and ultraviolet spectrophotometry. The results show that 12 of the 17 antistatic sprays examined have a low contamination potential. Of these sprays, 7 are also noncorrosive to an aluminum surface. And of these, only 2 demonstrate good electrostatic properties with respect to reducing voltage accumulation; these sprays did not show a fast voltage dissipation rate however. The results indicate that antistatic sprays can be used on a limited basis where contamination potential, corrosiveness, and electrostatic effectiveness is not critical. Each application is different and proper evaluation of the situation is necessary. Information on some of the properties of some antistatic sprays is presented in this document to aid in the evaluation process.

  13. Thermal Arc Spray Overview

    NASA Astrophysics Data System (ADS)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  14. Experimental and Theoretical Measurements of Concentration Distributions in Acoustic Focusing Devices

    SciTech Connect

    Rose, K A; Fisher, K; Jung, B; Ness, K; Mariella Jr., R P

    2008-06-16

    We describe a modeling approach to capture the particle motion within an acoustic focusing microfluidic device. Our approach combines finite element models for the acoustic forces with analytical models for the fluid motion and uses these force fields to calculate the particle motion in a Brownian dynamics simulation. We compare results for the model with experimental measurements of the focusing efficiency within a microfabricated device. The results show good qualitative agreement over a range of acoustic driving voltages and particle sizes.

  15. Experimental Research on the Performance of Exhaust Steam Reclaim Device With a Swirling Flow Vane

    NASA Astrophysics Data System (ADS)

    Li, X. L.; Yan, J. J.; Zhang, P. F.; Yang, J. J.; Liu, J. P.

    2010-03-01

    This paper experimentally studied the performance of exhaust steam reclaim device with a swirling flow vane at different inlet water pressures, temperatures, different inlet steam pressures and different distances between the throat and spout. The results indicated that the injection coefficient decreased as the inlet water pressure and temperature increased, respectively. There is a best distance between the throat and spout which makes the injection coefficient reached to its maximal value at the same experimental pressure and temperature, and the value equals to 130 mm in our experimental system. The resistance coefficient has a minimum value which makes the device have the highest outlet water pressure. Compared with the device without a swirling flow vane, it improves the heating performance for higher injection coefficient and exergy efficiency.

  16. Experimental investigation of aerodynamic devices for wind turbine rotational speed control: Phase II

    SciTech Connect

    Miller, S L

    1996-02-01

    An experimental investigation was undertaken to further evaluate and enhance the performance of an aerodynamic device for wind turbine overspeed protection and power modulation applications. The trailing-edge device, known as the Spoiler-Flap, was examined in detail during wind tunnel tests. The impact of hp length, vent angle, pivot point and chord variations on aerodynamic and hinge moment characteristics were evaluated and a best overall configuration was identified. Based on this effort, a 40% chord device with a 1% hp length and 40 degree vent angle offers improved performance potential for wind turbine applications. This specific configuration appears to offer good suction coefficient performance for both turbine power modulation and overspeed (i.e., aerodynamic braking) applications. Device hinge moment loads improved (compared to other devices investigated) in magnitude and the impact of surface roughness was found to be minimal.

  17. "Teaching" an Industrial Robot To Spray

    NASA Technical Reports Server (NTRS)

    Evans, A. R.; Sweet, G. K.

    1982-01-01

    Teaching device, consisting of spacer rod or tube with three-pointed tip and line level, is used during pattern "teach-in" to make sure that robot manipulator holds spray gun perpendicular to surface to be sprayed and at right distance from it. For slanted surfaces angle adapter is added between spacer rod and line-level indicator. Angle is determined by slope of surface to be sprayed, thus allowing a perpendicular spray pattern against even slanted surfaces.

  18. Experimental model of the device for detection of nuclear cycle materials by photoneutron technology

    NASA Astrophysics Data System (ADS)

    Bakalyarov, A. M.; Karetnikov, M. D.; Kozlov, K. N.; Lebedev, V. I.; Meleshko, E. A.; Obinyakov, B. A.; Ostashev, I. E.; Tupikin, N. A.; Yakovlev, G. V.

    2007-08-01

    The inherent complexity of sea container control makes them potentially dangerous for smuggling nuclear materials. The experts believe that only active technologies based on recording the products of induced radiation from sensitive materials might solve the problem. The paper reports on the experimental model of the device on the basis of the electron LINAC U-28 for detection of nuclear materials by photonuclear technology. The preliminary numerical optimization of output units (converter, filter, collimator) for shaping the bremsstrahlung was carried out. The setup of experimental device and initial results of recording the prompt and delayed fission products are discussed.

  19. Electrokinetically pumped high pressure sprays

    DOEpatents

    Schoeniger, Joseph S.; Paul, Phillip H.; Schoeniger, Luke

    2005-11-01

    An electrokinetic pump capable of producing high pressure is combined with a nozzle having a submicron orifice to provide a high pressure spray device. Because of its small size, the device can be contained within medical devices such as an endoscope for delivering biological materials such as DNA, chemo therapeutic agents, or vaccines to tissues and cells.

  20. Electrokinetically pumped high pressure sprays

    DOEpatents

    Schoeniger, Joseph S.; Paul, Phillip H.; Schoeniger, Luke

    2002-01-01

    An electrokinetic pump capable of producing high pressure is combined with a nozzle having a submicron orifice to provide a high pressure spray device. Because of its small size, the device can be contained within medical devices such as an endoscope for delivering biological materials such as DNA, chemo therapeutic agents, or vaccines to tissues and cells.

  1. Experimental and numerical studies of a microfluidic device with compliant chambers for flow stabilization

    NASA Astrophysics Data System (ADS)

    Iyer, V.; Raj, A.; Annabattula, R. K.; Sen, A. K.

    2015-07-01

    This paper reports experimental and numerical studies of a passive microfluidic device that stabilizes a pulsating incoming flow and delivers a steady flow at the outlet. The device employs a series of chambers along the flow direction with a thin polymeric membrane (of thickness 75-250 µm) serving as the compliant boundary. The deformation of the membrane allows accumulation of fluid during an overflow and discharge of fluid during an underflow for flow stabilization. Coupled fluid-structure simulations are performed using Mooney-Rivlin formulations to account for a thin hyperelastic membrane material undergoing large deformations to accurately predict the device performance. The device was fabricated with PDMS as the substrate material and thin PDMS membrane as the compliant boundary. The performance of the device is defined in terms of a parameter called ‘Attenuation Factor (AF)’. The effect of various design parameters including membrane thickness, elastic modulus, chamber size and number of chambers in series as well as operating conditions including the outlet pressure, mean input flow rate, fluctuation amplitude and frequency on the device performance were studied using experiments and simulations. The simulation results successfully confront the experimental data (within 10%) which validates the numerical simulations. The device was used at the exit of a PZT actuated valveless micropump to take pulsating flow at the upstream and deliver steady flow downstream. The amplitude of the pulsating flow delivered by the micropump was significantly reduced (AF = 0.05 for a device with three 4 mm chambers) but at the expense of a reduction in the pressure capability (<20%). The proposed device could potentially be used for reducing flow pulsations in practical microfluidic circuits.

  2. A new device-independent dimension witness and its experimental implementation

    NASA Astrophysics Data System (ADS)

    Cai, Yu; Bancal, Jean-Daniel; Romero, Jacquiline; Scarani, Valerio

    2016-07-01

    A dimension witness is a criterion that sets a lower bound on the dimension needed to reproduce the observed data. Three types of dimension witnesses can be found in the literature: device-dependent ones, in which the bound is obtained assuming some knowledge on the state and the measurements; device-independent prepare-and-measure ones, that can be applied to any system including classical ones; and device-independent Bell-based ones, that certify the minimal dimension of some entangled systems. Here we consider the Collins–Gisin–Linden–Massar–Popescu Bell-type inequality for four outcomes. We show that a sufficiently high violation of this inequality witnesses d≥slant 4 and present a proof-of-principle experimental observation of such a violation. This presents a first experimental violation of the third type of dimension witness beyond qutrits.

  3. 42 CFR 405.209 - Payment for a non-experimental/investigational (Category B) device.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false Payment for a non-experimental/investigational (Category B) device. 405.209 Section 405.209 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM FEDERAL HEALTH INSURANCE FOR THE AGED AND DISABLED Medical Services Coverage Decisions...

  4. 42 CFR 405.205 - Coverage of a non-experimental/investigational (Category B) device.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false Coverage of a non-experimental/investigational (Category B) device. 405.205 Section 405.205 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM FEDERAL HEALTH INSURANCE FOR THE AGED AND DISABLED Medical Services Coverage Decisions...

  5. 42 CFR 405.205 - Coverage of a non-experimental/investigational (Category B) device.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 2 2013-10-01 2013-10-01 false Coverage of a non-experimental/investigational (Category B) device. 405.205 Section 405.205 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM FEDERAL HEALTH INSURANCE FOR THE AGED AND DISABLED Medical Services Coverage Decisions...

  6. Oxymetazoline Nasal Spray

    MedlinePlus

    Afrin® Nasal Spray ... Anefrin® Nasal Spray ... Dristan® Nasal Spray ... Mucinex® Nasal Spray ... Nostrilla® Nasal Spray ... Vicks Sinex® Nasal Spray ... Zicam® Nasal Spray ... Oxymetazoline nasal spray is used to relieve nasal discomfort caused by colds, allergies, and hay fever. It is also used to ...

  7. Defect detection in multi-layered, plasma sprayed zirconia by time resolved infrared radiometry: A comparison between analytical and experimental methods

    SciTech Connect

    Happoldt, P.G.; Ellingson, W.A.; Gardiner, T.; Krueger, J.

    1994-04-01

    Analytical and experimental methods were used to study a series of test specimens consisting of plasma sprayed layers of NiCrA1Y/ZrO{sub 2} of various compositions.The coatings were seeded with artificial defects and were sprayed on steel disks. Two types of defects were used: flat bottomed holes drilled in the steel substrate and patches of room temperature vulcanizing silicone within the coatings. Defect sizes ranged from 0.1 to 10 mm and were at depths below the coating surface from 0.6 to 3.6 min. The method of time resolved infrared radiometry was used with two different heat sources, an acetylene torch and a high intensity lamp, to inspect the coatings. The torch allowed excellent sensitivity at depths of less than 2 mm and the lamp revealed flaws through the full coating thickness. Two analytical models were developed to study beat flow in the test specimens: a finite element model and an electrical analog model. Results from the two models were compared to check consistency and the finite element model results were compared with experimental results. The finite element code was chosen for further development due to its greater flexibility and ease of use.

  8. Sea spray geoengineering experiments in the geoengineering model intercomparison project (GeoMIP): Experimental design and preliminary results

    NASA Astrophysics Data System (ADS)

    Kravitz, Ben; Forster, Piers M.; Jones, Andy; Robock, Alan; Alterskjær, Kari; Boucher, Olivier; Jenkins, Annabel K. L.; Korhonen, Hannele; Kristjánsson, Jón Egill; Muri, Helene; Niemeier, Ulrike; Partanen, Antti-Ilari; Rasch, Philip J.; Wang, Hailong; Watanabe, Shingo

    2013-10-01

    cloud brightening through sea spray injection has been proposed as a method of temporarily alleviating some of the impacts of anthropogenic climate change, as part of a set of technologies called geoengineering. We outline here a proposal for three coordinated climate modeling experiments to test aspects of sea spray geoengineering, to be conducted under the auspices of the Geoengineering Model Intercomparison Project (GeoMIP). The first, highly idealized, experiment (G1ocean-albedo) involves a uniform increase in ocean albedo to offset an instantaneous quadrupling of CO2 concentrations from preindustrial levels. Results from a single climate model show an increased land-sea temperature contrast, Arctic warming, and large shifts in annual mean precipitation patterns. The second experiment (G4cdnc) involves increasing cloud droplet number concentration in all low-level marine clouds to offset some of the radiative forcing of an RCP4.5 scenario. This experiment will test the robustness of models in simulating geographically heterogeneous radiative flux changes and their effects on climate. The third experiment (G4sea-salt) involves injection of sea spray aerosols into the marine boundary layer between 30°S and 30°N to offset 2 W m-2 of the effective radiative forcing of an RCP4.5 scenario. A single model study shows that the induced effective radiative forcing is largely confined to the latitudes in which injection occurs. In this single model simulation, the forcing due to aerosol-radiation interactions is stronger than the forcing due to aerosol-cloud interactions.

  9. Experimental investigation of effect of surface gravity waves and spray on heat and momentum flux at strong wind conditions

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Sergeev, Daniil; Vdovin, Maxim; Kandaurov, Alexander; Ermakova, Olga; Kazakov, Vassily

    2015-04-01

    The most important characteristics that determine the interaction between atmosphere and ocean are fluxes of momentum, heat and moisture. For their parameterization the dimensionless exchange coefficients (the surface drag coefficient CD and the heat transfer coefficient or the Stanton number CT) are used. Numerous field and laboratory experiments show that CD increases with increasing wind speed at moderate and strong wind, and as it was shows recently CD decreases at hurricane wind speed. Waves are known to increase the sea surface resistance due to enhanced form drag, the sea spray is considered as a possible mechanism of the 'drag reduction' at hurricane conditions. The dependence of heat transfer coefficient CD on the wind speed is not so certain and the role of the mechanism associated with the wave disturbances in the mass transfer is not completely understood. Observations and laboratory data show that this dependence is weaker than for the CD, and there are differences in the character of the dependence in different data sets. The purpose of this paper is investigation of the effect of surface waves on the turbulent exchange of momentum and heat within the laboratory experiment, when wind and wave parameters are maintained and controlled. The effect of spray on turbulent exchange at strong winds is also estimated. A series of experiments to study the processes of turbulent exchange of momentum and heat in a stably stratified temperature turbulent boundary layer air flow over waved water surface were carried out at the Wind - wave stratified flume of IAP RAS, the peculiarity of this experiment was the option to change the surface wave parameters regardless of the speed of the wind flow in the channel. For this purpose a polyethylene net with the variable depth (0.25 mm thick and a cell of 1.6 mm × 1.6mm) has been stretched along the channel. The waves were absent when the net was located at the level of the undisturbed water surface, and had maximum

  10. Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices

    NASA Astrophysics Data System (ADS)

    Liang, Lin-Mei; Sun, Shi-Hai; Jiang, Mu-Sheng; Li, Chun-Yan

    2014-10-01

    In general, quantum key distribution (QKD) has been proved unconditionally secure for perfect devices due to quantum uncertainty principle, quantum noncloning theorem and quantum nondividing principle which means that a quantum cannot be divided further. However, the practical optical and electrical devices used in the system are imperfect, which can be exploited by the eavesdropper to partially or totally spy the secret key between the legitimate parties. In this article, we first briefly review the recent work on quantum hacking on some experimental QKD systems with respect to imperfect devices carried out internationally, then we will present our recent hacking works in details, including passive faraday mirror attack, partially random phase attack, wavelength-selected photon-number-splitting attack, frequency shift attack, and single-photon-detector attack. Those quantum attack reminds people to improve the security existed in practical QKD systems due to imperfect devices by simply adding countermeasure or adopting a totally different protocol such as measurement-device independent protocol to avoid quantum hacking on the imperfection of measurement devices [Lo, et al., Phys. Rev. Lett., 2012, 108: 130503].

  11. An Experimental Device for Generating High Frequency Perturbations in Supersonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.; Ibrahim, Mounir B.

    1996-01-01

    This paper describes the analytical study of a device that has been proposed as a mechanism for generating gust-like perturbations in supersonic wind tunnels. The device is envisioned as a means to experimentally validate dynamic models and control systems designed for high-speed inlets. The proposed gust generator is composed of two flat trapezoidal plates that modify the properties of the flow ingested by the inlet. One plate may be oscillated to generate small perturbations in the flow. The other plate is held stationary to maintain a constant angle-of-attack. Using an idealized approach, design equations and performance maps for the new device were developed from the compressible flow relations. A two-dimensional CFD code was used to confirm the correctness of these results. The idealized approach was then used to design and evaluate a new gust generator for a 3.05-meter by 3.05-meter (10-foot by 10-foot) supersonic wind tunnel.

  12. An experimental device for investigating the force and power requirements of a powered gait orthosis.

    PubMed

    Ruthenberg, B J; Wasylewski, N A; Beard, J E

    1997-04-01

    The Powered Gait Orthosis (PGO) is a powered exoskeleton developed as an experimental device to provide bipedal locomotion to individuals with physical impairment. The current prototype consists of a single degree of freedom (DOF) system for each leg, providing power and proper displacement required for bipedal locomotion. It is the goal of this research to obtain the forces that are present in the device while it is in normal operation. In addition, the time ratio of the hip function generator has been varied to determine the effect that different time ratios have on system forces and required user energy. The time ratio is the relationship between the time period that the thigh is in swing phase and when it is in support phase. Knowing the forces in the system and the optimal time ratio will allow for the design and construction of a feasible device for the rehabilitation and assistance of individuals who have lost the ability to walk. PMID:9108347

  13. Experimentally validated quantitative linear model for the device physics of elastomeric microfluidic valves

    NASA Astrophysics Data System (ADS)

    Kartalov, Emil P.; Scherer, Axel; Quake, Stephen R.; Taylor, Clive R.; Anderson, W. French

    2007-03-01

    A systematic experimental study and theoretical modeling of the device physics of polydimethylsiloxane "pushdown" microfluidic valves are presented. The phase space is charted by 1587 dimension combinations and encompasses 45-295μm lateral dimensions, 16-39μm membrane thickness, and 1-28psi closing pressure. Three linear models are developed and tested against the empirical data, and then combined into a fourth-power-polynomial superposition. The experimentally validated final model offers a useful quantitative prediction for a valve's properties as a function of its dimensions. Typical valves (80-150μm width) are shown to behave like thin springs.

  14. An experimental investigation on the spray flow exhausted from a co-swirling air-blast nozzle

    NASA Astrophysics Data System (ADS)

    Dvorak, Daniel Dean

    The velocity field for a spray produced by an air-blast atomizer is measured using Particle Image Velocimetry (PIV). These measurements are conducted at a variety of input liquid and air mass flow rates producing many different air to liquid mass flow ratios (ALR). The experiment is repeated with two different liquids, water and a hydrocarbon based fuel substitute. It is found that the velocity field depends heavily on the type of fluid used as opposed to the ALR. The experiments are repeated using a Stereoscopic Particle Image Velocimetry (SPIV) measurement technique. These results are compared to the 2D PIV results, and the differences are discussed. Finally, the 2D PIV and SPIV results are compared to existing Laser Doppler Velocimetry (LDV) results. It is seen that the results from the two different techniques are not well correlated.

  15. Design, characterization, and experimental use of the second generation MEMS acoustic emission device

    NASA Astrophysics Data System (ADS)

    Ozevin, Didem; Greve, David W.; Oppenheim, Irving J.; Pessiki, Stephen

    2005-05-01

    We describe the design, fabrication, testing and application (in structural experiments) of our 2004 (second generation) MEMS device, designed for acoustic emission sensing based upon experiments with our 2002 (first generation) device. Both devices feature a suite of resonant-type transducers in the frequency range between 100 kHz and 1 MHz. The 2002 device was designed to operate in an evacuated housing because of high squeeze film damping, as confirmed in our earlier experiments. In additional studies involving the 2002 device, experimental simulation of acoustic emissions in a steel plate, using pencil lead break or ball impact loading, showed that the transducers in the frequency range of 100 kHz-500 kHz presented clearer output signals than the transducers with frequencies higher than 500 kHz. Using the knowledge gained from the 2002 device, we designed and fabricated our second generation device in 2004 using the multi-user polysilicon surface micromachining (MUMPs) process. The 2004 device has 7 independent capacitive type transducers, compared to 18 independent transducers in the 2002 device, including 6 piston type transducers in the frequency range of 100 kHz to 500 kHz and 1 piston type transducer at 1 MHz to capture high frequency information. Piston type transducers developed in our research have two uncoupled modes so that twofold information can be acquired from a single transducer. In addition, the piston shape helps to reduce residual stress effect of surface micromachining process. The center to center distance between etch holes in the vibrating plate was reduced from 30 μm to 13 μm, in order to reduce squeeze film damping. As a result, the Q factor under atmospheric pressure for the 100 kHz transducer was increased to 2.37 from 0.18, and therefore the vacuum housing has been eliminated from the 2004 device. Sensitivities of transducers were also increased, by enlarging transducer area, in order to capture significant small amplitude acoustic

  16. Dusty Plasma Experimental (DPEx) device for complex plasma experiments with flow

    NASA Astrophysics Data System (ADS)

    Jaiswal, S.; Bandyopadhyay, P.; Sen, A.

    2015-11-01

    A versatile table-top dusty plasma experimental device to study flow induced excitations of linear and nonlinear waves/structures in a complex plasma is presented. In this Π-shaped apparatus, a DC glow discharge plasma is produced between a disc shaped anode and a grounded long cathode tray by applying a high voltage DC in the background of a neutral gas (argon) and subsequently a dusty plasma is created by introducing micron sized dust particles that get charged and levitated in the sheath region. A flow of the dust particles is induced in a controlled manner by adjusting the pumping speed and the gas flow rate into the device. A full characterisation of the plasma, using Langmuir and emissive probe data, and that of the dusty plasma using particle tracking data with the help of an idl based (super) Particle Identification and Tracking (sPIT) code is reported. Experimental results on the variation of the dust flow velocity as a function of the neutral pressure and the gas flow rate are given. The neutral drag force acting on the particles and the Epstein coefficient are estimated from the initial acceleration of the particles. The potential experimental capabilities of the device for conducting fundamental studies of flow induced instabilities are discussed.

  17. Dusty Plasma Experimental (DPEx) device for complex plasma experiments with flow.

    PubMed

    Jaiswal, S; Bandyopadhyay, P; Sen, A

    2015-11-01

    A versatile table-top dusty plasma experimental device to study flow induced excitations of linear and nonlinear waves/structures in a complex plasma is presented. In this Π-shaped apparatus, a DC glow discharge plasma is produced between a disc shaped anode and a grounded long cathode tray by applying a high voltage DC in the background of a neutral gas (argon) and subsequently a dusty plasma is created by introducing micron sized dust particles that get charged and levitated in the sheath region. A flow of the dust particles is induced in a controlled manner by adjusting the pumping speed and the gas flow rate into the device. A full characterisation of the plasma, using Langmuir and emissive probe data, and that of the dusty plasma using particle tracking data with the help of an idl based (super) Particle Identification and Tracking (sPIT) code is reported. Experimental results on the variation of the dust flow velocity as a function of the neutral pressure and the gas flow rate are given. The neutral drag force acting on the particles and the Epstein coefficient are estimated from the initial acceleration of the particles. The potential experimental capabilities of the device for conducting fundamental studies of flow induced instabilities are discussed. PMID:26628131

  18. Measuring water ingestion from spray exposures.

    PubMed

    Sinclair, Martha; Roddick, Felicity; Nguyen, Thang; O'Toole, Joanne; Leder, Karin

    2016-08-01

    Characterisation of exposure levels is an essential requirement of health risk assessment; however for water exposures other than drinking, few quantitative exposure data exist. Thus, regulatory agencies must use estimates to formulate policy on treatment requirements for non-potable recycled water. We adapted the use of the swimming pool chemical cyanuric acid as a tracer of recreational water ingestion to permit detection of small water volumes inadvertently ingested from spray exposures. By using solutions of 700-1000 mg/L cyanuric acid in an experimental spray exposure scenario, we were able to quantify inadvertent water ingestion in almost 70% of participants undertaking a 10 min car wash activity using a high pressure spray device. Skin absorption was demonstrated to be negligible under the experimental conditions, and the measured ingestion volumes ranged from 0.06 to 3.79 mL. This method could be applied to a range of non-potable water use activities to generate exposure data for risk assessment processes. The availability of such empirical measurements will provide greater assurance to regulatory agencies and industry that potential health risks from exposure to non-potable water supplies are well understood and adequately managed to protect public health. PMID:27130966

  19. Highly precise experimental device for determining the heat capacity of liquids under pressure.

    PubMed

    González-Salgado, D; Valencia, J L; Troncoso, J; Carballo, E; Peleteiro, J; Romaní, L; Bessières, D

    2007-05-01

    An experimental device for making isobaric heat capacity measurements of liquids under pressure is presented. The device is an adaptation of the Setaram micro-DSC II atmospheric-pressure microcalorimeter, including modifications of vessels and a pressure line allowing the pressure in the measurement system to be set, controlled, and stabilized. The high sensitivity of the apparatus combined with a suitable calibration procedure allows very accurate heat capacity measurements under pressure to be made. The relative uncertainty in the isobaric molar heat capacity measurements provided by the new device is estimated to be 0.08% at atmospheric pressure and 0.2% at higher levels. The device was validated from isobaric molar heat capacity measurements for hexane, nonane, decane, undecane, dodecane, and tridecane, all of which were highly consistent with reported data. It also possesses a high sensitivity as reflected in its response to changes in excess isobaric molar heat capacity with pressure, which were examined in this work for the first time by making heat capacity measurements throughout the composition range of the 1-hexanol+n-hexane system. Finally, preliminary measurements at several pressures near the critical conditions for the nitromethane+2-butanol binary system were made that testify to the usefulness of the proposed device for studying critical phenomena in liquids under pressure. PMID:17552856

  20. Nitroglycerin Spray

    MedlinePlus

    ... attacks. Your doctor will probably tell you to sit down and use one dose of nitroglycerin when ... dose.To use the spray, follow these steps: Sit down if possible, and hold the container without ...

  1. Comparison of fluid dynamic numerical models for a clinical ventricular assist device and experimental validation

    PubMed Central

    Zhang, Jiafeng; Zhang, Pei; Fraser, Katharine H.; Griffith, Bartley P.; Wu, Zhongjun J.

    2012-01-01

    With the recent advances in computer technology, computational fluid dynamics (CFD) has become an important tool to design and improve blood contacting artificial organs, and to study the device-induced blood damage. Commercial CFD software packages are readily available, and multiple CFD models are provided by CFD software developers. However, the best approach of using CFD effectively to characterize fluid flow and to predict blood damage in these medical devices remains debatable. This study aimed to compare these CFD models and provide useful information on the accuracy of each model in modeling blood flow in circulatory assist devices. The laminar and five turbulence models (Spalart-Allmaras, k-ε (k-epsilon), k-ω (k-omega), SST (Menter’s Shear Stress Transport), and Reynolds Stress) were implemented to predict blood flow in a clinically used circulatory assist device, CentriMag® centrifugal blood pump (Thoratec, MA). In parallel, a transparent replica of the CentriMag® pump was constructed and selected views of the flow fields were measured with digital particle image velocimetry (DPIV). CFD results were compared with the DPIV experimental results. Compared with the experiment, all the selected CFD models predicted the flow pattern fairly well except the area of the outlet. However, quantitatively, the laminar model results were the most deviated from the experimental data. On the other hand, k-ε RNG models and Reynolds Stress model are the most accurate. In conclusion, for the circulatory assist devices, turbulence models provide more accurate results than laminar model. Among the selected turbulence models, k-ε and Reynolds Stress Method models are recommended. PMID:23441681

  2. Comparison and experimental validation of fluid dynamic numerical models for a clinical ventricular assist device.

    PubMed

    Zhang, Jiafeng; Zhang, Pei; Fraser, Katharine H; Griffith, Bartley P; Wu, Zhongjun J

    2013-04-01

    With the recent advances in computer technology, computational fluid dynamics (CFDs) has become an important tool to design and improve blood-contacting artificial organs, and to study the device-induced blood damage. Commercial CFD software packages are readily available, and multiple CFD models are provided by CFD software developers. However, the best approach of using CFD effectively to characterize fluid flow and to predict blood damage in these medical devices remains debatable. This study aimed to compare these CFD models and provide useful information on the accuracy of each model in modeling blood flow in circulatory assist devices. The laminar and five turbulence models (Spalart-Allmaras, k-ε (k-epsilon), k-ω (k-omega), SST [Menter's Shear Stress Transport], and Reynolds Stress) were implemented to predict blood flow in a clinically used circulatory assist device, the CentriMag centrifugal blood pump. In parallel, a transparent replica of the CentriMag pump was constructed and selected views of the flow fields were measured with digital particle image velocimetry (DPIV). CFD results were compared with the DPIV experimental results. Compared with the experiment, all the selected CFD models predicted the flow pattern fairly well except the area of the outlet. However, quantitatively, the laminar model results were the most deviated from the experimental data. On the other hand, k-ε renormalization group theory models and Reynolds Stress model are the most accurate. In conclusion, for the circulatory assist devices, turbulence models provide more accurate results than the laminar model. Among the selected turbulence models, k-ε and Reynolds Stress Method models are recommended. PMID:23441681

  3. An experimental and theoretical evaluation of increased thermal diffusivity phase change devices

    NASA Technical Reports Server (NTRS)

    White, S. P.; Golden, J. O.; Stermole, F. J.

    1972-01-01

    This study was to experimentally evaluate and mathematically model the performance of phase change thermal control devices containing high thermal conductivity metal matrices. Three aluminum honeycomb filters were evaluated at five different heat flux levels using n-oct-adecane as the test material. The system was mathematically modeled by approximating the partial differential equations with a three-dimensional implicit alternating direction technique. The mathematical model predicts the system quite well. All of the phase change times are predicted. The heating of solid phase is predicted exactly while there is some variation between theoretical and experimental results in the liquid phase. This variation in the liquid phase could be accounted for by the fact that there are some heat losses in the cell and there could be some convection in the experimental system.

  4. Theoretical and Experimental Exploration of Breakdown Phenomena in an Argon-Filled GaP Device

    NASA Astrophysics Data System (ADS)

    Kurt, H. Hilal; Tanrıverdi, Evrim; Kurt, Erol

    2016-08-01

    A plasma device with large diameter and short interelectrode distance has been designed and implemented. Theoretical modeling and simulations have been carried out for different interelectrode distances, and experimental results obtained under different pressures p, both with argon atmosphere. The device produces direct-current (dc) discharges in the parallel-plate electrode configuration, with gallium phosphide (GaP) semiconductor at one side and SnO2-coated glass conducting material at the other side, separated by gas medium with width of 50 μm to 500 μm. The device can be operated under different values of interelectrode distance d, applied voltage U, and gas pressure p. Current-voltage characteristics and breakdown voltages have been found experimentally and theoretically. In addition, theoretical breakdown curves have been derived from simulations. The theory can also identify the space-charge density, thermal electron velocity, reduced electric field strength ( E/ N), electron density ne, and secondary-electron emission ( γ). Comparison between experiment and theory shows that the theory can estimate the breakdown very well for low pressure and small interelectrode gap.

  5. Theoretical and Experimental Exploration of Breakdown Phenomena in an Argon-Filled GaP Device

    NASA Astrophysics Data System (ADS)

    Kurt, H. Hilal; Tanrıverdi, Evrim; Kurt, Erol

    2016-05-01

    A plasma device with large diameter and short interelectrode distance has been designed and implemented. Theoretical modeling and simulations have been carried out for different interelectrode distances, and experimental results obtained under different pressures p, both with argon atmosphere. The device produces direct-current (dc) discharges in the parallel-plate electrode configuration, with gallium phosphide (GaP) semiconductor at one side and SnO2-coated glass conducting material at the other side, separated by gas medium with width of 50 μm to 500 μm. The device can be operated under different values of interelectrode distance d, applied voltage U, and gas pressure p. Current-voltage characteristics and breakdown voltages have been found experimentally and theoretically. In addition, theoretical breakdown curves have been derived from simulations. The theory can also identify the space-charge density, thermal electron velocity, reduced electric field strength (E/N), electron density ne, and secondary-electron emission (γ). Comparison between experiment and theory shows that the theory can estimate the breakdown very well for low pressure and small interelectrode gap.

  6. Experimental and Numerical Analysis of the Effects of Curing Time on Tensile Mechanical Properties of Thin Spray-on Liners

    NASA Astrophysics Data System (ADS)

    Guner, D.; Ozturk, H.

    2016-08-01

    The effects of curing time on tensile elastic material properties of thin spray-on liners (TSLs) were investigated in this study. Two different TSL products supplied by two manufacturers were tested comparatively. The "dogbone" tensile test samples that were prepared in laboratory conditions with different curing times (1, 7, 14, 21, and 28 days) were tested based on ASTM standards. It was concluded that longer curing times improves the tensile strength and the Young's Modulus of the TSLs but decreases their elongation at break. Moreover, as an additional conclusion of the testing procedure, it was observed that during the tensile tests, the common malpractice of measuring sample displacement from the grips of the loading machine with a linear variable displacement transducer versus the sample's gauge length had a major impact on modulus and deformation determination of TSLs. To our knowledge, true stress-strain curves were generated for the first time in TSL literature within this study. Numerical analyses of the laboratory tests were also conducted using Particle Flow Code in 2 Dimensions (PFC2D) in an attempt to guide TSL researchers throughout the rigorous PFC simulation process to model support behaviour of TSLs. A scaling coefficient between macro- and micro-properties of PFC was calculated which will help future TSL PFC modellers mimic their TSL behaviours for various tensile loading support scenarios.

  7. An experimental spinal cord injury rat model using customized impact device: A cost-effective approach

    PubMed Central

    Vijayaprakash, K.M.; Sridharan, N.

    2013-01-01

    Till date, NYU MASCIS (New York University, Multicenter Animal Spinal Cord Injury Study) impactor and Ohio State University electromagnetic spinal cord injury device impactor were under use for simulating an experimental spinal cord injury in rodents; functional recovery being assessed through Basso, Beattie and Bresnahan (BBB) scoring method which is an open field behavior based scoring system. Although, the cited impactors are state-of-art devices, affordability to scientists in developing and under developed countries is questionable. Since the acquisition of these impact devices are expensive, we designed a customized impact device based on the requirement, satisfying all the parameters to withstand a standard animal model for contusion type of spinal cord injury at the thoracic level without compromising the lesion reproducibility. Here, a spinal cord contusion is created using a blunt-force impactor in male Wistar rats. Our method gave consistent lesion effects as evaluated by behavior scoring methods. All the animals showed equal degree of performance in tests like narrow beam, inclined plane and horizontal ladder and in BBB scores (open field locomotor test). The aim of presenting our experience is to reinstate the fact that lack of affordability to get sophisticated instrumentation need not be a hurdle in the pursuit of science. PMID:23960429

  8. Theoretical and experimental study of nanoporous silicon photonic microcavity optical sensor devices

    NASA Astrophysics Data System (ADS)

    Patel, P. N.; Mishra, Vivekanand; Panchal, A. K.

    2012-09-01

    This paper reports the theoretical and experimental study of one-dimensional (1D) multilayer nanoporous silicon (NPS) photonic band gap (PBG) microcavity (MC) structures for optical sensor device applications. A theoretical framework to model the reflectance spectra relying on the Bruggeman's effective medium approximation (BEMA) and the transfer matrix method (TMM) was established for the 1D nanoporous silicon microcavity (1D-NPSMC) optical sensor device structures. Based on the theoretical background, 1D-NPSMC sensor device structures were fabricated using electrochemical dissolution of silicon wafer in hydrofluoric (HF) acid. The refractive index of the 1D-NPSMC structures was tuned by changing current density and the thickness was tuned by changing the etching time. Wavelength shifts (Δλ) in the measured reflectance spectra were analyzed for the detection of the analyte in the porous structure. The sensing device performance was tested by different organic solvents, which showed good linear relation between the refractive index of analyte inside the pores and the wavelength shift. The application of proposed structures can be extended for the optical sensing of chemicals, gas, environmental pollutants, pathogens etc.

  9. Hair spray poisoning

    MedlinePlus

    Hair spray poisoning occurs when someone breathes in (inhales) hair spray or sprays it down their throat or ... The harmful ingredients in hair spray are: Carboxymethylcellulose ... Polyvinyl alcohol Propylene glycol Polyvinylpyrrolidone

  10. Combustion of LOX with H2(sub g) under subcritical, critical, and supercritical conditions and experimental observation of dense spray and mixing of impinging jets

    NASA Technical Reports Server (NTRS)

    Kuo, Kenneth K.; Hsieh, W. H.; Yang, A. S.; Brown, J. J.; Cheung, F. B.; Woodward, R. D.; Kline, M. C.

    1992-01-01

    Progress made during the period of February 1 to October 15, 1992 is reported. The overall objective of Task 1 of the investigation is to achieve a better understanding of the combustion processes of liquid oxygen and gaseous hydrogen under subcritical, critical, and supercritical conditions. Specific objectives of the research program are: (1) to determine the evaporation- and burning-rate characteristics of LOX in hydrogen/helium environments under broad ranges of operating conditions; (2) to measure species concentration profile and surface temperature of LOX employing the gas chromatography and fine-wire thermocouples under non-reacting flow situations; (3) to perform a fugacity-based multicomponent thermodynamic phase equilibrium analysis for examining the high-pressure vapor-liquid equilibrium behavior at the liquid surface of LOX; (4) to formulate and solve a theoretical model for simulating the evaporation and combustion processes in a LOX/H2/He system; and (5) to validate the theoretical model with the measured experimental data. Task 2 of the investigation is described. Observation of a like-on-like injector element in the near-injector region performed in the previous phase of this project has identified the existence of a high Reynolds number regime in which the pre-impingement jets are fully turbulent and undergoing surface breakup. The new spray regime, which has not been observed by previous investigators, is characterized by the presence of many fine droplets and the disappearance of the well-defined liquid breakup wave pattern in the post-impingement region. It is speculated that a cavitating region may be present within the orifice so that it could induce strong turbulence, leading to an onset of atomization of the jets prior to impingement. To further investigate the dense spray behavior of the impinging jets in the high Reynolds number region, experiments were conducted using Plexiglas injector components for direct internal flow observation

  11. Liquid spray cooling of a heated surface

    NASA Technical Reports Server (NTRS)

    Grissom, W. M.; Wierum, F. A.

    1981-01-01

    The lowest surface temperature possible for the existance of spray evaporative cooling is determined experimentally to be a linear function of the impinging spray mass flux. A conduction-controlled analytical model of droplet evaporation gives fairly good agreement with experimental measurements at atmospheric pressure. At reduced pressures droplet evaporation rates are decreased significantly such that an optimum operating pressure exists for each desired surface heat flux. The initiation of the 'Leidenfrost state' provides the upper surface temperature bound for spray evaporative cooling.

  12. Influence of Cold-Sprayed, Warm-Sprayed, and Plasma-Sprayed Layers Deposition on Fatigue Properties of Steel Specimens

    NASA Astrophysics Data System (ADS)

    Cizek, J.; Matejkova, M.; Dlouhy, I.; Siska, F.; Kay, C. M.; Karthikeyan, J.; Kuroda, S.; Kovarik, O.; Siegl, J.; Loke, K.; Khor, Khiam Aik

    2015-06-01

    Titanium powder was deposited onto steel specimens using four thermal spray technologies: plasma spray, low-pressure cold spray, portable cold spray, and warm spray. The specimens were then subjected to strain-controlled cyclic bending test in a dedicated in-house built device. The crack propagation was monitored by observing the changes in the resonance frequency of the samples. For each series, the number of cycles corresponding to a pre-defined specimen cross-section damage was used as a performance indicator. It was found that the grit-blasting procedure did not alter the fatigue properties of the steel specimens (1% increase as compared to as-received set), while the deposition of coatings via all four thermal spray technologies significantly increased the measured fatigue lives. The three high-velocity technologies led to an increase of relative lives to 234% (low-pressure cold spray), 210% (portable cold spray), and 355% (warm spray) and the deposition using plasma spray led to an increase of relative lives to 303%. The observed increase of high-velocity technologies (cold and warm spray) could be attributed to a combination of homogeneous fatigue-resistant coatings and induction of peening stresses into the substrates via the impingement of the high-kinetic energy particles. Given the intrinsic character of the plasma jet (low-velocity impact of semi/molten particles) and the mostly ceramic character of the coating (oxides, nitrides), a hypothesis based on non-linear coatings behavior is provided in the paper.

  13. Junction and Back Contact Properties of Spray-Deposited M/SnS/In2S3/SnO2:F/Glass (M = Cu, Graphite) Devices: Considerations to Improve Photovoltaic Performance

    NASA Astrophysics Data System (ADS)

    Patel, Malkeshkumar; Ray, Abhijit

    2015-01-01

    SnS/In2S3 heterojunction devices were fabricated entirely by chemical spray pyrolysis in a superstrate configuration on SnO2:F/glass. The SnS/In2S3 junction was found to exhibit strong rectification behavior, and the Mott-Schottky characteristics showed it was abrupt. The photovoltaic behavior of the junction was investigated under air mass 1.5G illumination, showing a short-circuit current of 4.8 mA/cm2 and an open-circuit voltage of 0.29 V, reportedly the highest to date among similar devices with a Cd-free buffer layer and processed by a nonvacuum technique. However, the device suffers from low fill factor due to high series resistance originating from interface inhomogeneities. A Cu back contact was associated with a low level of inhomogeneities at the interface, as demonstrated by impedance analysis.

  14. Experimental control of a fast chaotic time-delay opto-electronic device

    NASA Astrophysics Data System (ADS)

    Blakely, Jonathan Neal

    2003-10-01

    The focus of this thesis is the experimental investigation of the dynamics and control of a new type of fast chaotic opto-electronic device: an active interferometer with electronic bandpass filtered delayed feedback displaying chaotic oscillations with a fundamental frequency as high as 100 MHz. To stabilize the system, I introduce a new form of delayed feedback control suitable for fast time-delay systems. The method provides a new tool for the fundamental study of fast dynamical systems as well as for technological exploitation of chaos. The new opto-electronic device consists of a semiconductor laser, a Mach-Zehnder interferometer, and an electronic feedback loop. The device offers a high degree of design flexibility at a much lower cost than other known sources of fast optical chaos. Both the nonlinearity and the timescale of the oscillations are easily manipulated experimentally. To characterize the dynamics of the system, I observe experimentally its behavior in the time and frequency domains as the feedback-loop gain is varied. The system displays a route to chaos that begins with a Hopf bifurcation from a steady state to a periodic oscillation at the so-called fundamental frequency. Further bifurcations give rise to a chaotic regime with a broad, flattened power spectrum. I develop a mathematical model of the device that shows very good agreement with the observed dynamics. To control chaos in the device, I introduce a new control method suitable for fast time-delay systems, in particular. The method is a modification of a well known control approach called time-delay autosynchronization (TDAS) in which the control perturbation is formed by comparing the current value of a system variable to its value at a time in the past equal to the period of the orbit to be stabilized. The current state of a time-delay dynamical system retains a memory of the state of the system one feedback delay time in the past. As a result, the past state of the system can be used

  15. Experimental Observation of a Periodically Oscillating Plasma Sphere in a Gridded Inertial Electrostatic Confinement Device

    SciTech Connect

    Park, J.; Nebel, R.A.; Stange, S.; Murali, S. Krupakar

    2005-07-01

    The periodically oscillating plasma sphere (POPS) [D. C. Barnes and R. A. Nebel, Phys. Plasmas 5, 2498 (1998).] oscillation has been observed in a gridded inertial electrostatic confinement device. In these experiments, ions in the virtual cathode exhibit resonant behavior when driven at the POPS frequency. Excellent agreement between the observed POPS resonance frequency and theoretical predictions has been observed for a wide range of potential well depths and for three different ion species. The results provide the first experimental validation of the POPS concept proposed by Barnes and Nebel [R. A. Nebel and D. C. Barnes, Fusion Technol. 34, 28 (1998).].

  16. Experimental analysis of the surface roughness evolution of etched glass for micro/nanofluidic devices

    NASA Astrophysics Data System (ADS)

    Ren, J.; Ganapathysubramanian, B.; Sundararajan, S.

    2011-02-01

    Roughness of channel surfaces, both deterministic and random, is known to affect the fluid flow behavior in micro/nanoscale fluidic devices. This has relevance particularly for applications involving non-Newtonian fluids, such as in biomedical lab-on-chip devices. While several studies have investigated effects of relative large, deterministic surface structures on fluid flow, the effect of random roughness on microfluidic flow remains relatively unexplored. In this study, the effects of processing conditions for wet etching of glass including etching time and etching orientation on centre-line average (Ra) and the autocorrelation length (ACL) were investigated. Statistical distribution of the roughness was also studied. Results indicated that ACL can be tailored in the range of 1-4 µm by changing etching time in horizontal etching while Ra was found to increase weakly with etching time in all three etching orientations. Analysis of the experimental data using the Kolmogorov-Smirnov goodness-of-fit hypothesis test shows that the glass surface roughness does not follow a Gaussian distribution, as is typically assumed in the literature. Instead, the T location-scale distribution fits the roughness data with 1.11% error. These results provide promising insights into tailoring surface roughness for improving microfluidic devices.

  17. Experimental validation of a novel smart electromechanical tuned mass damper beam device

    NASA Astrophysics Data System (ADS)

    Rafique, S.; Bonello, P.; Shuttleworth, R.

    2013-09-01

    This paper validates the novel concept of utilising piezoelectric vibration energy harvesting (PVEH) beams as a tuned mass damper (TMD)—which suppresses a particular vibration mode of a generic host structure over a broad band of excitation frequencies. The proposed device comprises a pair of bimorphs shunted by a resistor, capacitor and inductor connected in various alternative circuit configurations. A benchmark for the performance is established through Den Hartog's theory for the optimal damping of a classical TMD. Experimental results demonstrate that such optimal damping is equivalently generated by the PVEH effect for appropriately tuned circuitry. These results correlate reasonably well with the results of a theoretical analysis introduced in a previous paper. The proposed TMD beam device combines the relative advantages of the classical ('mechanical') TMD and the shunted piezoelectric patch ('electrical' vibration absorber), presenting the prospect of a functionally more readily-adaptable class of 'electromechanical' tuned vibration absorbers. Moreover, with further development, this dual PVEH/TMD beam device holds the potential of simultaneous energy storage.

  18. Design and experimental investigation about a simulation device for particle impact rock breaking

    NASA Astrophysics Data System (ADS)

    Ren, Fushen; Wang, Baojin; Cheng, Xiaoze; Chen, Suli; Ma, Ruoxu; Li, Yang; Liu, Jianhua

    2015-03-01

    Particle impact drilling (PID) using high-speed spherical carbide steel particles to impact rock and mechanical breaking of rock as a supplement, it is a new drilling method of breaking rock. Effects of rock fragmentation were studied by different injection speed of particles, injection angle and particle diameter based on ANSYS simulation platform. The two basic types of nozzles were studied, straight-taper nozzle model and streamline nozzle model, the mathematical model of nozzle were established based on the acceleration mechanism of solid-liquid two-phase flow, and an optimized nozzle structure is designed. A rock breaking experiment device used to simulate particle impact drilling was developed. The experimental investigations were carried out by controlling the drilling parameters such as particles injection speed, injection angle, the ratio of metal particles, drilling speed and weight on bit(WOB), etc. to study the effects of rock breaking based on this experiment device. The results show that the device can simulate the rock fragmentation process of particle impact drilling completely, it proves that technological requirements of high efficiency of breaking rock can be achieve well with particle whose diameter is 1mm, shot speed 120 m/s, it also verified the theoretical analysis of fragmentation efficiency of rock for different volume fraction and jetting angle. The test provide technical support for the popularization and application of the technology.

  19. Quantum Hall resistance standard in graphene devices under relaxed experimental conditions.

    PubMed

    Ribeiro-Palau, R; Lafont, F; Brun-Picard, J; Kazazis, D; Michon, A; Cheynis, F; Couturaud, O; Consejo, C; Jouault, B; Poirier, W; Schopfer, F

    2015-11-01

    The quantum Hall effect provides a universal standard for electrical resistance that is theoretically based on only the Planck constant h and the electron charge e. Currently, this standard is implemented in GaAs/AlGaAs, but graphene's electronic properties have given hope for a more practical device. Here, we demonstrate that the experimental conditions necessary for the operation of devices made of high-quality graphene grown by chemical vapour deposition on silicon carbide can be extended and significantly relaxed compared with those for state-of-the-art GaAs/AlGaAs devices. In particular, the Hall resistance can be accurately quantized to within 1 × 10(-9) over a 10 T wide range of magnetic flux density, down to 3.5 T, at a temperature of up to 10 K or with a current of up to 0.5 mA. This experimental simplification highlights the great potential of graphene in the development of user-friendly and versatile quantum standards that are compatible with broader industrial uses beyond those in national metrology institutes. Furthermore, the measured agreement of the quantized Hall resistance in graphene and GaAs/AlGaAs, with an ultimate uncertainty of 8.2 × 10(-11), supports the universality of the quantum Hall effect. This also provides evidence of the relation of the quantized Hall resistance with h and e, which is crucial for the new Système International d'unités to be based on fixing such fundamental constants of nature. PMID:26344181

  20. Quantum Hall resistance standard in graphene devices under relaxed experimental conditions

    NASA Astrophysics Data System (ADS)

    Ribeiro-Palau, R.; Lafont, F.; Brun-Picard, J.; Kazazis, D.; Michon, A.; Cheynis, F.; Couturaud, O.; Consejo, C.; Jouault, B.; Poirier, W.; Schopfer, F.

    2015-11-01

    The quantum Hall effect provides a universal standard for electrical resistance that is theoretically based on only the Planck constant h and the electron charge e. Currently, this standard is implemented in GaAs/AlGaAs, but graphene's electronic properties have given hope for a more practical device. Here, we demonstrate that the experimental conditions necessary for the operation of devices made of high-quality graphene grown by chemical vapour deposition on silicon carbide can be extended and significantly relaxed compared with those for state-of-the-art GaAs/AlGaAs devices. In particular, the Hall resistance can be accurately quantized to within 1 × 10-9 over a 10 T wide range of magnetic flux density, down to 3.5 T, at a temperature of up to 10 K or with a current of up to 0.5 mA. This experimental simplification highlights the great potential of graphene in the development of user-friendly and versatile quantum standards that are compatible with broader industrial uses beyond those in national metrology institutes. Furthermore, the measured agreement of the quantized Hall resistance in graphene and GaAs/AlGaAs, with an ultimate uncertainty of 8.2 × 10-11, supports the universality of the quantum Hall effect. This also provides evidence of the relation of the quantized Hall resistance with h and e, which is crucial for the new Système International d'unités to be based on fixing such fundamental constants of nature.

  1. Heavy-Workpiece Handler For Vacuum Plasma Spraying

    NASA Technical Reports Server (NTRS)

    Myers, William N.

    1991-01-01

    Handling device manipulates heavy, hollow workpiece for plasma spraying in vacuum chamber. Rotates and tilts workpiece, keeping it approximately perpendicular to plasma-spray nozzle, so nozzle deposits uniform layer on interior surface of workpiece. Accommodates workpieces as heavy as 1,000 pounds and compatible with heat and vacuum of spraying process.

  2. Electromagnetic Controlled Cortical Impact Device for Precise, Graded Experimental Traumatic Brain Injury

    PubMed Central

    BRODY, DAVID L.; DONALD, CHRISTINE Mac; KESSENS, CHAD C.; YUEDE, CARLA; PARSADANIAN, MAIA; SPINNER, MIKE; KIM, EDDIE; SCHWETYE, KATHERINE E.; HOLTZMAN, DAVID M.; BAYLY, PHILIP V.

    2008-01-01

    Genetically modified mice represent useful tools for traumatic brain injury (TBI) research and attractive preclinical models for the development of novel therapeutics. Experimental methods that minimize the number of mice needed may increase the pace of discovery. With this in mind, we developed and characterized a prototype electromagnetic (EM) controlled cortical impact device along with refined surgical and behavioral testing techniques. By varying the depth of impact between 1.0 and 3.0 mm, we found that the EM device was capable of producing a broad range of injury severities. Histologically, 2.0-mm impact depth injuries produced by the EM device were similar to 1.0-mm impact depth injuries produced by a commercially available pneumatic device. Behaviorally, 2.0-, 2.5-, and 3.0-mm impacts impaired hidden platform and probe trial water maze performance, whereas 1.5-mm impacts did not. Rotorod and visible platform water maze deficits were also found following 2.5- and 3.0-mm impacts. No impairment of conditioned fear performance was detected. No differences were found between sexes of mice. Inter-operator reliability was very good. Behaviorally, we found that we could statistically distinguish between injury depths differing by 0.5 mm using 12 mice per group and between injury depths differing by 1.0 mm with 7-8 mice per group. Thus, the EM impactor and refined surgical and behavioral testing techniques may offer a reliable and convenient framework for preclinical TBI research involving mice. PMID:17439349

  3. Nitroglycerin Spray

    MedlinePlus

    ... of the hole, the container will no longer dispense full doses of medication. Do not try to open the container of nitroglycerin spray. This product may catch fire, so do not use near an open flame, and do not allow the container to be burned after use.

  4. An Improvised “Blow Glove” Device Produces Similar PEP Values to a Commercial PEP Device: An Experimental Study

    PubMed Central

    Dagan, Yaakov; Wiser, Itay; Farber, Nimrod; Hundeshagen, Gabriel; Winkler, Eyal; Kazula-Halabi, Tamar; Haik, Josef

    2014-01-01

    ABSTRACT Background: Postoperative positive expiratory pressure (PEP) therapy promotes increased lung volume, secretion clearance, and improved oxygenation. Several commercial devices exist that produce recommended PEP values (10–20 cmH2O) when the patient breathes through a fixed orifice resistor. It was hypothesized that an inexpensive, improvised “blow glove” device would produce similar PEP values over a wider range of expiration volumes and flow rates. Methods: PEP for different expiration volumes (400–2000 mL) and expiratory flow rates (10–80 L/min) was compared between a commercial PEP device (Resistex, Mercury Medical, Clearwater, FL) and an improvised “blow glove” device, recorded by a Vela ventilator (CareFusion, San Diego, CA). Dynamics in positive end expiratory pressure (PEEP) values were evaluated following five consecutive expirations. The “blow glove” device was evaluated using various glove compositions and sizes. Results: The improvised “blow glove” device produced a significantly higher rate of PEP values in the recommended range than the Resistex device (88.9% vs. 20%, p<0.0001). No significant difference was observed between small and large glove sizes (88.9% vs. 82.9%, p>0.05), but the powdered latex glove showed a significantly higher rate of PEP values in the recommended range than the powder-free latex glove (88.9% vs. 44.4%, p<0.001). Conclusions: A “blow glove” PEP device using a powdered latex glove produces PEP values in the recommended range over a wider spectrum of expiratory flow rates and expiration volumes than a commercial PEP device. PMID:25125786

  5. Magma Mixing by Chaotic Dynamics: Results from a New Experimental Device

    NASA Astrophysics Data System (ADS)

    de Campos, C. P.; Perugini, D.; Ingrisch, W. E.; Dingwell, D. B.; Poli, G.

    2009-12-01

    In this work we present a new experimental device, based on the Journal Bearing System (JBS), to perform chaotic mixing of high viscosity melts under controlled fluid-dynamics and temperature conditions. The system consists of an outer cylinder, hosting the melts of interest and, an inner cylinder, eccentrically located, whose motions are independent. This way the development of chaotic streamlines in the mixing system is induced. An experiment was performed, using as end-members a peralkaline haplogranite (HPG8) and a mafic melt, corresponding to the 1 atm eutectic composition in the An-Di binary system. The two melts were stirred together in the JBS for ca. two hours at 1,400°C under laminar fluid dynamic condition (Re of the order of 10-7). Viscosity ratio between the two melts, at the beginning of the experiment, was of the order of 1,000. Analyses of experimental samples revealed, at short length scale (of the order of μm), a complex pattern of mixing structures. These consisted of an intimate distribution of filaments of the two melts, a typical feature in rocks produced by magma mixing processes. Stretching and folding dynamics between both melts induced chaotic flow fields and generated wide compositional interfaces. This way, chemical diffusion processes acted efficiently, producing melts with highly heterogeneous compositions. Despite a short running time, very low Re and a high viscosity ratio, a clear modulation of compositional fields has been obtained (fig.1). This indicates that chaotic mixing can be a very efficient process in enhancing the compositional variability in igneous systems, even under extreme rheological conditions and laminar fluid-dynamics. The excellence of our experimental device to replicate natural magma mixing features may open new frontiers in the study of this important petrological and volcanological process. Figure 1

  6. Mixing Silicate Melts with High Viscosity Contrast by Chaotic Dynamics: Results from a New Experimental Device

    NASA Astrophysics Data System (ADS)

    de Campos, Cristina; Perugini, Diego; Ertel-Ingrisch, Werner; Dingwell, Donald B.; Poli, Giampiero

    2010-05-01

    A new experimental device has been developed to perform chaotic mixing between high viscosity melts under controlled fluid-dynamic conditions. The apparatus is based on the Journal Bearing System (JBS). It consists of an outer cylinder hosting the melts of interest and an inner cylinder, which is eccentrically located. Both cylinders can be independently moved to generate chaotic streamlines in the mixing system. Two experiments were performed using as end-members different proportions of a peralkaline haplogranite and a mafic melt, corresponding to the 1 atm eutectic composition in the An-Di binary system. The two melts were stirred together in the JBS for ca. two hours, at 1,400° C and under laminar fluid dynamic condition (Re of the order of 10-7). The viscosity ratio between the two melts, at the beginning of the experiment, was of the order of 103. Optical analyses of experimental samples revealed, at short length scale (of the order of μm), a complex pattern of mixed structures. These consisted of an intimate distribution of filaments; a complex inter-fingering of the two melts. Such features are typically observed in rocks thought to be produced by magma mixing processes. Stretching and folding dynamics between the melts induced chaotic flow fields and generated wide compositional interfaces. In this way, chemical diffusion processes become more efficient, producing melts with highly heterogeneous compositions. A remarkable modulation of compositional fields has been obtained by performing short time-scale experiments and using melts with a high viscosity ratio. This indicates that chaotic mixing of magmas can be a very efficient process in modulating compositional variability in igneous systems, especially under high viscosity ratios and laminar fluid-dynamic regimes. Our experimental device may replicate magma mixing features, observed in natural rocks, and therefore open new frontiers in the study of this important petrologic and volcanological process.

  7. Experimental Challenges and Successes in Measuring Aerosol Concentrations at Prototypic Spray Conditions Encountered at the Hanford Waste Treatment and Immobilization Plant - 13327

    SciTech Connect

    Bontha, J.R.; Gauglitz, P.A.; Kurath, D.E.; Adkins, H.E.; Enderlin, C.W.; Blanchard, J.; Daniel, R.C.; Song, C.; Schonewill, P.P.; Mahoney, L.A.; Buchmiller, W.C.; Boeringa, G.; Jenks, J.

    2013-07-01

    To date, majority of the work done on measuring aerosol releases from failure of process piping was done using simple Newtonian fluids and small engineered-nozzles that do not accurately represent the fluids and breaches postulated during accident analysis at the Hanford Waste Treatment and Immobilization Plant (WTP). In addition, the majority of the work conducted in this area relies on in-spray measurements that neglect the effect of splatter and do not yield any information regarding aerosol generation rates from this additional mechanism. In order to estimate aerosol generation rates as well as reduce the uncertainties in estimating the aerosol release fractions over a broad range of breaches, fluid properties and operating conditions encountered at the WTP, the Pacific Northwest National Laboratory (PNNL) has designed, commissioned, and tested two experimental test stands. The first test stand, referred to as the large-scale test stand, was designed specifically to measure aerosol concentrations and release fractions under prototypic conditions of flow and pressure for a range of breaches postulated in the hazard analysis for 0.076 m (3-inch) process pipes. However, the size of the large-scale test stand, anticipated fluid loss during a breach, experimental risks, and costs associated with hazardous chemical simulant testing limited the large-scale test stand utility to water and a few non-hazardous physical simulants that did not fully span the particle size and rheological properties of the fluids encountered at the WTP. Overcoming these limitations and extending the range of simulants used, required designing and building a smaller test stand, which was installed and operated in a fume hood. This paper presents some of the features of both test stands, the experimental challenges encountered, and successes in measuring aerosol concentration in both test stands over a range of test conditions. (authors)

  8. Numerical and experimental studies of coupling-induced phase shift in resonator and interferometric integrated optics devices.

    PubMed

    Tobing, L Y M; Tjahjana, L; Darmawan, S; Zhang, D H

    2012-02-27

    Coupling induced effects are higher order effects inherent in waveguide evanescent coupling that are known to spectrally distort optical performances of integrated optics devices formed by coupled resonators. We present both numerical and experimental studies of coupling-induced phase shift in various basic integrated optics devices. Rigorous finite difference time domain simulations and systematic experimental characterizations of different basic structures were conducted for more accurate parameter extraction, where it can be observed that coupling induced wave vector may change sign at the increasing gap separation. The devices characterized in this work were fabricated by CMOS-process 193 nm Deep UV (DUV) lithography in silicon-on-insulator (SOI) technology. PMID:22418385

  9. The experimental study on heat rejection equipment

    NASA Astrophysics Data System (ADS)

    Nakagawa, Toshihiko; Atsumi, Masahiro; Tokue, Rinzo

    1992-07-01

    This paper describes the concept study and the experimental work for development of the advanced style expendable heat rejection device. Emphasis is laid on minimizing the hardware weight and using innocuous coolant. Empirical heat transfer characteristics of water spray cooling were obtained and applied to the mathematical model to evaluate the performance. Besides the development of spray nozzle, prototype model of 4 kW class evaporator was fabricated and tested. Heat rejection rate of 3.2-4.5 kW was attained at both (high/low altitude) modes of operation, and feasibility of this heat rejection device was assured.

  10. Variable Gravity Effects on the Cooling Performance of a Single Phase Confined Spray

    NASA Technical Reports Server (NTRS)

    Michalak, Travis; Yerkes, Kirk; Baysinger, Karri; McQuillen, John

    2005-01-01

    The objective of this paper is to discuss the testing of a spray cooling experiment designed to be flown on NASA's KC-135 Reduced Gravity Testing Platform. Spray cooling is an example of a thermal management technique that may be utilized in high flux heat acquisition and high thermal energy transport concepts. Many researchers have investigated the utility of spray cooling for the thermal management of devices generating high heat fluxes. However, there has been little research addressing the physics and ultimate performance of spray cooling in a variable gravity environment. An experimental package, consisting of a spray chamber coupled to a fluid delivery loop system, was fabricated for variable gravity flight tests. The spray chamber contains two opposing nozzles spraying on target Indium Tin Oxide (ITO) heaters. These heaters are mounted on glass pedestals, which are part of a sump system to remove unconstrained liquid from the test chamber. Liquid is collected in the sumps and returned to the fluid delivery loop. Thermocouples mounted in and around the pedestals are used to determine both the heat loss through the underside of the IT0 heater and the heat extracted by the spray. A series of flight tests were carried out aboard the KC-135, utilizing the ability of the aircraft to produce various gravity conditions. During the flight tests, for a fixed flow rate, heat input was varied at 20, 30, 50, and 80W with variable gravities of 0.01, 0.16, 0.36, and 1.8g. Flight test data was compared to terrestrial baseline data in addition to analytical and numerical solutions to evaluate the heat transfer in the heater and support structure . There were significant differences observed in the spray cooling performance as a result of variable gravity conditions and heat inputs. In general, the Nussult number at the heater surface was found to increase with decreasing gravity conditions for heat loads greater than 30W.

  11. Analytical ballistic theory of carbon nanotube transistors: Experimental validation, device physics, parameter extraction, and performance projection

    NASA Astrophysics Data System (ADS)

    Akinwande, Deji; Liang, Jiale; Chong, Soogine; Nishi, Yoshio; Wong, H.-S. Philip

    2008-12-01

    We developed a fully analytical ballistic theory of carbon nanotube field effect transistors enabled by the development of an analytical surface potential capturing the temperature dependence and gate and quantum capacitance electrostatics. The analytical ballistic theory is compared to the experimental results of a ballistic transistor with good agreement. The validated analytical theory enables intuitive circuit design, provides techniques for parameter extraction of the bandgap and surface potential, and elucidates on the device physics of drain optical phonon scattering and its role in reducing the linear conductance and intrinsic gain of the transistor. Furthermore, a threshold voltage definition is proposed reflecting the bandgap-diameter dependence. Projections for key analog and digital performances are discussed.

  12. Engineering at SLAC: Designing and constructing experimental devices for the Stanford Synchrotron Radiation Lightsource - Final Paper

    SciTech Connect

    Djang, Austin

    2015-08-22

    Thanks to the versatility of the beam lines at SSRL, research there is varied and benefits multiple fields. Each experiment requires a particular set of experiment equipment, which in turns requires its own particular assembly. As such, new engineering challenges arise from each new experiment. My role as an engineering intern has been to help solve these challenges, by designing and assembling experimental devices. My first project was to design a heated sample holder, which will be used to investigate the effect of temperature on a sample's x-ray diffraction pattern. My second project was to help set up an imaging test, which involved designing a cooled grating holder and assembling multiple positioning stages. My third project was designing a 3D-printed pencil holder for the SSRL workstations.

  13. Successful Reconstruction of Nerve Defects Using Distraction Neurogenesis with a New Experimental Device

    PubMed Central

    Yousef, Mohamed Abdelhamid Ali; Dionigi, Paolo; Marconi, Stefania; Calligaro, Alberto; Cornaglia, Antonia Icaro; Alfonsi, Enrico; Auricchio, Ferdinando

    2015-01-01

    Introduction: Repair of peripheral nerve injuries is an intensive area of challenge and research in modern reconstructive microsurgery. Intensive research is being carried out to develop effective alternatives to the standard nerve autografting, avoiding its drawbacks. The aim of the study was to evaluate the effectiveness of a newly designed mechanical device for the reconstruction of the sciatic nerve in rats in comparison to nerve autografting and to assess the pain during the period of distraction neurogenesis. Methods: Fourteen Sprague Dawley rats were used and randomly assigned into 2 groups with 7 rats in each group; group A (Nerve Autografting group) in which a 10-mm segment of the sciatic nerve was resected and rotated 180 degrees, then primary end-to-end neurorrhaphy was performed in the reverse direction; group B (Nerve Lengthening group) in which the mechanical device was inserted after surgical resection of 10 mm of the sciatic nerve, then secondary end-to-end neurorrhaphy was performed after completing the nerve lengthening. Thirteen weeks later, assessment of the functional sciatic nerve recovery using static sciatic index (SSI) was performed. Furthermore, fourteen weeks after the nerve resection, assessment of the nerve regeneration with electrophysiological study and histological analysis were performed. Also, gastrocnemius wet weight was measured. For pain assessment in group B, Rat Grimace Scale (RGS) score was used. Results: Significantly better functional recovery rate (using the SSI) was reported in the nerve lengthening group in comparison to autografting group. Also, a statistically significant higher nerve conduction velocity was detected in the nerve lengthening group. On histological analysis of the distal nerve section at 3 mm distal to the nerve repair site, significant myelin sheath thickness was detected in the nerve lengthening group. Discussion: Distraction neurogenesis with the new experimental device is a reliable therapeutic

  14. Quantum Hall resistance standard in graphene devices under relaxed experimental conditions

    NASA Astrophysics Data System (ADS)

    Schopfer, F.; Ribeiro-Palau, R.; Lafont, F.; Brun-Picard, J.; Kazazis, D.; Michon, A.; Cheynis, F.; Couturaud, O.; Consejo, C.; Jouault, B.; Poirier, W.

    Large-area and high-quality graphene devices synthesized by CVD on SiC are used to develop reliable electrical resistance standards, based on the quantum Hall effect (QHE), with state-of-the-art accuracy of 1x10-9 and under an extended range of experimental conditions of magnetic field (down to 3.5 T), temperature (up to 10 K) or current (up to 0.5 mA). These conditions are much relaxed as compared to what is required by GaAs/AlGaAs standards and will enable to broaden the use of the primary quantum electrical standards to the benefit of Science and Industry for electrical measurements. Furthermore, by comparison of these graphene devices with GaAs/AlGaAs standards, we demonstrate the universality of the QHE within an ultimate uncertainty of 8.2x10-11. This suggests the exact relation of the quantized Hall resistance with the Planck constant and the electron charge, which is crucial for the new SI to be based on fixing such fundamental constants. These results show that graphene realizes its promises and demonstrates its superiority over other materials for a demanding application. Nature Nanotech. 10, 965-971, 2015, Nature Commun. 6, 6806, 2015

  15. Modelling and experimental validation of Textile Pockets based active inflatable device.

    PubMed

    Mehmood, A; Basset, M; Orjuela, R; Dupuis, R; Drean, J Y

    2014-11-01

    This paper aims with the mathematical modelling of an active inflatable device. This device is composed of a compressor, an Electro-pneumatic Pressure Converter (EPC) and an Inflatable Textile fabric Pocket (ITP). The later has interesting mechanical properties and is fabricated using Jacquard knitting technique which allows automatic production of unlimited varieties of pattern weaving without any mould. Thanks to these features, these ITPs have provided a better alternative to the classical airbags made by stretchable polymer material. The proposed mathematical model is obtained by combining sub-models of two main parts of the whole system. In this way, a generalised and flexible model is obtained which can easily take into consideration the ITPs of different shapes. The pressure dynamics inside the ITP are considered by taking into account the air flow rate, variation of the volume of ITP and the length of pneumatic lines joining ITP with compressed air source. The parameters of the whole mathematical model are obtained via identification techniques. The effectiveness of the model is assessed through several experimental tests with the help of a servo hydraulic fatigue testing machine. PMID:25200116

  16. Experimental measurement-device-independent quantum key distribution with imperfect sources

    NASA Astrophysics Data System (ADS)

    Tang, Zhiyuan; Wei, Kejin; Bedroya, Olinka; Qian, Li; Lo, Hoi-Kwong

    2016-04-01

    Measurement-device-independent quantum key distribution (MDI-QKD), which is immune to all detector side-channel attacks, is the most promising solution to the security issues in practical quantum key distribution systems. Although several experimental demonstrations of MDI-QKD have been reported, they all make one crucial but not yet verified assumption, that is, there are no flaws in state preparation. Such an assumption is unrealistic and security loopholes remain in the source. Here we present a MDI-QKD experiment with the modulation error taken into consideration. By applying the loss-tolerant security proof by Tamaki et al. [Phys. Rev. A 90, 052314 (2014)], 10.1103/PhysRevA.90.052314, we distribute secure keys over fiber links up to 40 km with imperfect sources, which would not have been possible under previous security proofs. By simultaneously closing loopholes at the detectors and a critical loophole—modulation error in the source, our work shows the feasibility of secure QKD with practical imperfect devices.

  17. Smart impact management devices: experimental validation of impact triggered rapid expansion of aluminum honeycomb

    NASA Astrophysics Data System (ADS)

    Browne, Alan L.; Johnson, Nancy L.; Webb, Scott R.

    2006-03-01

    A major limitation of current dedicated impact energy management structures and passive devices used in the transportation industry is that their starting volume is their maximum volume, i.e. they dissipate energy by crushing or stroking from a larger to a smaller volume. This space so occupied is not available for other uses, including such necessary/desirable functions as vehicle serviceability and repair, operational clearances, and interior spaciousness. This limitation has led to the proposal of a class of "smart" impact energy management devices, based on unexpanded aluminum honeycomb (HOBE), that initially occupy a small volume and based on sensor input are rapidly expanded to a much larger crushable volume (nominally 75 times greater) just prior to or in response to an impact. This paper documents the first portion of an experimental exploration of the viability of this technology. Specific goals of the herein documented test program were the demonstration, starting from blocks of unexpanded aluminum honeycomb, a) of the feasibility (and robustness) of sensor triggered rapid expansion both in terms of the integrity and uniformity of the resulting expanded honeycomb, and b) that expansion mechanisms that were required could be simple and have low energy/force requirements. The test program documented here was successful in both respects, demonstrating and thus validating the feasibility and robustness of low energy rapid expansion of aluminum honeycomb.

  18. Aqueous-Spray Cleaning System

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E.; Hoult, William S.; Simpson, Gareth L.

    1996-01-01

    Simple aqueous-spray cleaning system with overall dimensions comparable to large kitchen refrigerator constructed for use in cleaning hardware in shop. Made of commercially available parts and materials. Incorporates economical cleaner-and-rinse-recycling subsystem, as well as programmable logic-controller device for either manual or automatic operation.

  19. Agricultural Spraying

    NASA Technical Reports Server (NTRS)

    1986-01-01

    AGDISP, a computer code written for Langley by Continuum Dynamics, Inc., aids crop dusting airplanes in targeting pesticides. The code is commercially available and can be run on a personal computer by an inexperienced operator. Called SWA+H, it is used by the Forest Service, FAA, DuPont, etc. DuPont uses the code to "test" equipment on the computer using a laser system to measure particle characteristics of various spray compounds.

  20. Comparison between the ASSET EZ4 NCO and Impinger Sampling Devices for Aerosol Sampling of 4,4'-Methylene Diphenyl Diisocyanate in Spray Foam Application.

    PubMed

    Puscasu, Silvia; Aubin, Simon; Cloutier, Yves; Sarazin, Philippe; Van Tra, Huu; Gagné, Sébastien

    2015-08-01

    4,4'-methylene diphenyl diisocyanate (MDI) aerosol exposure evaluation in spray foam insulation application is known to be a challenge. Current available techniques are either not user-friendly or are inaccurate or are not validated for this application. A new sampler has recently been developed to address the user-friendliness issues with other samplers: the ASSET EZ4-NCO, but the use of this sampler in spray foam insulation applications has not been demonstrated or validated. Because of this, the current work was undertaken to provide a comparison of the ASSET sampler with an impinger method, considered to be the best available method in the context of spray foam insulation, and hence the pertinence of comparing this sampler to an impinger method, considered to be the best available method for measuring MDI monomer and oligomers for this particular application. Liquid chromatography coupled with tandem mass spectrometry method for MDI monomer and oligomer analysis was implemented based on the Supelco literature. It allows the analysis of MDI-dibutylamine (DBA) and MDI 3-ring-DBA with a minimum reported value of 5ng ml(-1), a dynamic range of 5-140ng ml(-1), precision <15% and accuracy >80%. This method was used to quantify MDI aerosols collected with the ASSET sampler in an MDI spray foam environment in parallel with the toluene/MOPIP impinger reference method. The ASSET sampler significantly underestimated the levels of MDI monomer and oligomers when compared to the reference method. The estimated bias was 72% (95% confidence interval [CI] 54-89%) for the monomer and 96% (95% CI 76-115%) for the oligomers. These results demonstrate the importance of evaluating each new sampler for each isocyanate application prior to a formal worker exposure evaluation. PMID:25851310

  1. Modeling of Plasma Spray Processes

    NASA Astrophysics Data System (ADS)

    Chang, Chong H.

    1996-10-01

    A comprehensive computational model for thermal plasma processes is being developed with sufficient generality and flexibility to apply to a wide variety of present and proposed plasma processing concepts and devices. In our model for gas-particle flows, the gas is represented as a continuous multicomponent chemically reacting gas with temperature-dependent thermodynamic and transport properties. Ions and electrons are considered as separate components or species of the mixture, while ionization and dissociation reactions are treated as chemical reactions. Entrained particles interacting with the plasma are represented by a stochastic particle model in which the velocities, temperatures, sizes, and other characteristics of typical particles are computed simultaneously with the plasma flow. The model in its present form can simulate particle injection, heating, and melting, but not evaporation and condensation. This model is embodied in the LAVA computer code, which has previously been applied to simulate plasma spraying, mixing and demixing of plasma gases, and departures from chemical (ionization/dissociation), thermal, and excitation equilibrium in plasmas. A transient simulation has been performed of stainless steel particles injected into a swirling high-velocity nitrogen-hydrogen plasma jet in air under typical operating conditions for a newly developed high-velocity high-power (HVHP) torch, which produces plasma jets with peak velocities in excess of 3000 m/s. The calculational results show that strong departures from ionization and dissociation equilibrium develop in the downstream region as the chemical reactions freeze out at lower temperatures. The calculational results also show good agreement with experimental data on particle temperature, velocity, and spray pattern, together with important statistical effects associated with distributions in particle properties and injection conditions. This work was performed under the auspices of the U. S

  2. Olopatadine Nasal Spray

    MedlinePlus

    ... relieve sneezing and a stuffy, runny or itchy nose caused by allergic rhinitis (hay fever). Olopatadine is ... comes as a liquid to spray in the nose. Olopatadine nasal spray is usually sprayed in each ...

  3. A laser tomographic investigation of liquid fuel sprays

    NASA Technical Reports Server (NTRS)

    Yule, A. J.; Ahseng, C.; Felton, P.; Ungut, A.; Chigier, N. A.

    1980-01-01

    A light scattering technique is combined with a tomographic transformation to convert line of sight integrated data, measured in sprays, to measurements of droplet size and concentration in volume elements within the spray. The technique is developed and assessed by systematic experiments in axisymmetric sprays generated by twin-fluid atomisers. The good agreement found shows that, provided certain conditions are satisfied by the local spray structure, the technique provides information on spray structure, similar in detail and extent to that derived by photography, but with reduced experimental time. The technique is applied to an investigation of a kerosene spray vaporizing in a hot gas stream.

  4. Experimental investigation of vapor shielding effects induced by ELM-like pulsed plasma loads using the double plasma gun device

    NASA Astrophysics Data System (ADS)

    Sakuma, I.; Kikuchi, Y.; Kitagawa, Y.; Asai, Y.; Onishi, K.; Fukumoto, N.; Nagata, M.

    2015-08-01

    We have developed a unique experimental device of so-called double plasma gun, which consists of two magnetized coaxial plasma gun (MCPG) devices, in order to clarify effects of vapor shielding on material erosion due to transient events in magnetically confined fusion devices. Two ELM-like pulsed plasmas produced by the two MCPG devices were injected into a target chamber with a variable time difference. For generating ablated plasmas in front of a target material, an aluminum foil sample in the target chamber was exposed to a pulsed plasma produced by the 1st MCPG device. The 2nd pulsed plasma was produced with a time delay of 70 μs. It was found that a surface absorbed energy measured by a calorimeter was reduced to ∼66% of that without the Al foil sample. Thus, the reduction of the incoming plasma energy by the vapor shielding effect was successfully demonstrated in the present experiment.

  5. Properties of ``Sonarc`` sprayed coatings

    SciTech Connect

    Steffens, H.D.; Wilden, J.; Nassenstein, K.

    1995-12-31

    The combination of electric arc and HVOF-spraying offers a lot of opportunities to enlarge the field of application for thermal spray technology. If hard material powders are processed by HVOF and simultaneously metal wires by arc spraying, metal matrix composites (MMC) can be formed out. NiCr8020 and aluminum coatings were reinforced by applying various contents of SiC and tested by a taber abraser device. Beside the investigations of the microstructure and the determination of the volume percentage of the hard particle content bond strength tests according European standard EN 582 were carried out. Furthermore, the coatings were tested by corrosion tests. The results are compared to other coating systems and discussed in relation to the obtained microstructure.

  6. An experimental double relaxation oscillation superconducting quantum interference device with on-chip feedback

    NASA Astrophysics Data System (ADS)

    Podt, M.; Flokstra, J.; Rogalla, H.

    2004-04-01

    A wide-band double relaxation oscillation superconducting quantum interference device (DROS) with on-chip digital flux locked loop (FLL) circuitry, a Smart DROS, has been realized and experimentally investigated. The key element of the FLL circuitry is a superconducting up-down counter. In order to maximize the flux slew rate, the Smart DROS has been optimized with respect to the coupling between the DROS and the up-down counter, and the quantization unit of the feedback flux. For the Smart DROS with an inductance of 280 pH the flux quantization unit was 5 × 10-2 PHgr0. The experiments showed proper operation of the superconducting up-down counter. The full functionality of the complete Smart DROS in a closed loop was demonstrated. For operation at a clock frequency of 100 MHz, a maximum flux slew rate of 5 × 106 PHgr0 s-1 was calculated from the measured parameters. Numerical simulations showed that the Smart DROS allows a maximum flux slew rate up to 108 PHgr0 s-1 by reducing the area of the Josephson junctions.

  7. Experimental approaches to assessing the impact of a cesium chloride radiological dispersal device

    USGS Publications Warehouse

    Lee, S.; Gibb, Snyder E.; Barzyk, J.; McGee, J.; Koenig, A.

    2008-01-01

    The US EPA, as a part of the Chemical, Biological, Radiological-Nuclear, and Explosives (CBRNE) Research and Technology Initiative (CRTI) project team, is currently working to assess the impacts of an urban radiological dispersion device (RDD) and to develop containment and decontamination strategies. Three efforts in this area are currently underway: development of a laboratory-scale cesium chloride deposition method to mimic a RDD; assessment of cesium (Cs) penetration depth and pathways in urban materials using two dimensional (2-D) mapping laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS); and experimental determination of distribution coefficients (kd) for Cs in water-building material systems. It is critical that, when performing laboratory-scale experiments to assess the fate of Cs from an RDD, the Cs particle deposition method mimics the RDD deposition. Once Cs particles are deposited onto urban surfaces, 2-D mapping of Cs concentrations using LA-ICP-MS is a critical tool for determining Cs transport pathways through these materials. Lastly, distribution coefficients are critical for understanding the transport of Cs in urban settings when direct measurements of its penetration depth are unavailable. An assessment of the newly developed deposition method along with preliminary results from the penetration experiments are presented in this paper.

  8. Reactive spraying of nickel-aluminide coatings

    NASA Astrophysics Data System (ADS)

    Deevi, S. C.; Sikka, V. K.; Swindeman, C. J.; Seals, R. D.

    1997-09-01

    Reactive spraying of nickel aluminides was accomplished via reaction synthesis techniques in which nickel and aluminum powders were fed through a direct- current plasma torch onto carbon steel substrates. The as- sprayed coatings obtained by reactive spraying were characterized by x- ray diffraction and microscopic techniques. Reactive spraying of nickel and aluminum resulted in coatings consisting of Ni, Al, Ni 3Al, NiAl3, Ni5Al3, NiAl, and Al2O3, depending on the experimental conditions. Nickel aluminide phases observed in plasma spray depositions were compared with the phases obtained by combustion synthesis techniques, and the formation of phases in reactive spraying was attributed to the exothermic reaction between splats of aluminum and nickel. Primary and secondary reactions leading to the formation of nickel aluminides were also examined. The splat thickness and the reaction layer suppressed the formation of desired equilibrium phases such as Ni3Al and NiAl. As- sprayed coatings were annealed to enhance the diffusional reactions between the product phases and aluminum and nickel. Coatings obtained by reactive spraying of elemental powders were compared with as- sprayed and annealed coatings obtained with a bond coat material in which nickel was deposited onto aluminum particles.

  9. Laser Doppler velocimeter aerial spray measurements

    NASA Technical Reports Server (NTRS)

    Zalay, A. D.; Eberle, W. R.; Howle, R. E.; Shrider, K. R.

    1978-01-01

    An experimental research program for measuring the location, spatial extent, and relative concentration of airborne spray clouds generated by agricultural aircraft is described. The measurements were conducted with a ground-based laser Doppler velocimeter. The remote sensing instrumentation, experimental tests, and the results of the flight tests are discussed. The cross section of the aerial spray cloud and the observed location, extent, and relative concentration of the airborne particulates are presented. It is feasible to use a mobile laser Doppler velocimeter to track and monitor the transport and dispersion of aerial spray generated by an agricultural aircraft.

  10. Spray combustion models - A review

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1979-01-01

    Due to recent theoretical and experimental advances, modeling spray combustion can be contemplated as a means of supplementing traditional cut and try combustor development methods. This review describes spray models that are currently being developed and their validation. The review is limited to steady, turbulent two- and three-dimensional systems typified by furnaces and gas turbine combustors. Both locally homogeneous flow models, where the phases are assumed to be in kinematic and thermodynamic equilibrium at each point in the flow, and more complete two-phase flow models, which allow for finite rate processes between the phases, are considered.

  11. Measurements in liquid fuel sprays

    NASA Technical Reports Server (NTRS)

    Chigier, N.; Mao, C. P.

    1985-01-01

    A ground test facility is being established at NASA Lewis Research Center to simulate the environmental and flight conditions needed to study adverse weather effects. One of the most important components is the water spray system which consists of many nozzles fitted on spray bars. Water is injected through air-assisted atomizers to generate uniform size drops to simulate icing in clouds. The primary objective is to provide experimental data on drop size distribution over a wide range of operating conditions. Correlation equations for mean drop size and initial injection parameters are being determined to assist in the design and modification of the Altitude Wind Tunnel. Special emphasis is being placed on the study of the aerodynamic structure of the air-assisted atomizer sprays. Detailed measurements of the variation of drop size distribution and velocity as a function of time and space are being made. Accurate initial and boundary conditions are being provided for computer model evaluation.

  12. Experimental investigation of a new device to control the asymmetric flowfield on forebodies at large angles of attack

    NASA Technical Reports Server (NTRS)

    Moskovitz, Cary A.; Hall, Robert M.; Dejarnette, F. R.

    1990-01-01

    An exploratory experimental investigation of a new device to control the asymmetric flowfield on forebodies at large angles of attack has been conducted. The device is a rotatable forebody tip, which varies in cross section from circular at its base to elliptic at its tip. The device itself extends over a small portion of the aircraft or missile forebody. The device provides two important improvements. First, it replaced the normally random behavior of the nose side force as a function of nose tip orientation with a predictable and generally sinusoidal distribution and, second, the device showed promise for use as part of a vehicle control system, to be deflected in a prescribed manner to provide additional directional control for the vehicle. The device was tested on a cone/cylinder model having a 10 deg semiapex angle and on a 3.0 caliber tangent ogive model, each with a base diameter of 3.5 in, for angles of attack from 30 to 60 deg. Data were taken from 3 circumferential rows of pressure taps on each model at a Reynolds number of 84,000 based on cylinder diameter and by a helium-bubble flow visualization technique at a Reynolds number of 24,000.

  13. Experimental test of MR fluid based tactile device for minimally invasive surgery

    NASA Astrophysics Data System (ADS)

    Oh, Jong-Seok; Kim, Jin-Kyu; Choi, Seung-Bok

    2013-04-01

    Recently, it is very popular in modern medical industry to adopt robotic technology such as robotic minimally invasive surgery (RMIS). Compared with open surgery, the RMIS needs the robot to perform surgery through the usage of long surgical instruments that are inserted through incision points. This causes the surgeon not to feel viscosity and stiffness of the tissue or organ. So, for the tactile recognition of human organ in RMIS, this work proposes a novel tactile device that incorporates with magnetorheological (MR) fluid. The MR fluid is fully contained by diaphragm and several pins. By applying different magnetic field, the operator can feel different force from the proposed tactile device. In order to generate required force from the device, the repulsive force of human body is firstly measured as reference data and an appropriate size of tactile device is designed. Pins attached with the diaphragm are controlled by shape-memory-alloy (SMA). Thus, the proposed tactile device can realize repulsive force and shape of organ. It has been demonstrated via experiment whether the measured force can be achieved by applying proper control input current. In addition, psychophysical experiments are conducted to evaluate performance on the tactile rendering of the proposed tactile device. From these results, the practical feasibility of the tactile device is verified.

  14. Experimental study of delta wing leading-edge devices for drag reduction at high lift

    NASA Technical Reports Server (NTRS)

    Johnson, T. D., Jr.; Rao, D. M.

    1982-01-01

    The drag reduction devices selected for evaluation were the fence, slot, pylon-type vortex generator, and sharp leading-edge extension. These devices were tested on a 60 degree flatplate delta (with blunt leading edges) in the Langley Research Center 7- by 10-foot high-speed tunnel at low speed and to angles of attack of 28 degrees. Balance and static pressure measurements were taken. The results indicate that all the devices had significant drag reduction capability and improved longitudinal stability while a slight loss of lift and increased cruise drag occurred.

  15. Dicopper(II) metallacyclophanes as multifunctional magnetic devices: a joint experimental and computational study.

    PubMed

    Castellano, María; Ruiz-García, Rafael; Cano, Joan; Ferrando-Soria, Jesús; Pardo, Emilio; Fortea-Pérez, Francisco R; Stiriba, Salah-Eddine; Julve, Miguel; Lloret, Francesc

    2015-03-17

    nature of these metallosupramolecular complexes. This new class of oxamato-based dicopper(II) metallacyclophanes affords an excellent synthetic and theoretical set of models for both chemical and physical fundamental studies on redox- and photo-triggered, long-distance electron exchange phenomena, which are two major topics in molecular magnetism and molecular electronics. Apart from their use as ground tests for the fundamental research on the relative importance of the spin delocalization and spin polarization mechanisms of the electron exchange interaction through extended π-conjugated aromatic ligands in polymetallic complexes, oxamato-based dicopper(II) metallacyclophanes possessing spin-containing electro- and chromophores at the metal and/or the ligand counterparts emerge as potentially active (magnetic and electronic) molecular components to build a metal-based spintronic circuit. They are thus unique examples of multifunctional magnetic complexes to get single-molecule spintronic devices by controlling and allowing the spin communication, when serving as molecular magnetic couplers and wires, or by exhibiting bistable spin behavior, when acting as molecular magnetic rectifiers and switches. Oxamato-based dicopper(II) metallacyclophanes also emerge as potential candidates for the study of coherent electron transport through single molecules, both experimentally and theoretically. The results presented herein, which are a first step in the metallosupramolecular approach to molecular spintronics, intend to attract the attention of physicists and materials scientists with a large expertice in the manipulation and measurement of single-molecule electron transport properties, as well as in the processing and addressing of molecules on different supports. PMID:25697758

  16. 42 CFR 405.209 - Payment for a non-experimental/investigational (Category B) device.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Medical Services Coverage Decisions That Relate to Health Care Technology § 405.209 Payment for a non... used device serving the same medical purpose that has been approved or cleared for marketing by the FDA....

  17. 42 CFR 405.209 - Payment for a non-experimental/investigational (Category B) device.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Medical Services Coverage Decisions That Relate to Health Care Technology § 405.209 Payment for a non... used device serving the same medical purpose that has been approved or cleared for marketing by the FDA....

  18. 42 CFR 405.209 - Payment for a non-experimental/investigational (Category B) device.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Medical Services Coverage Decisions That Relate to Health Care Technology § 405.209 Payment for a non... used device serving the same medical purpose that has been approved or cleared for marketing by the FDA....

  19. Influence of fish aggregating devices (FADs) on anti-predator behaviour within experimental mesocosms.

    PubMed

    Sinopoli, Mauro; Cattano, Carlo; Andaloro, Franco; Sarà, Gianluca; Butler, Christopher M; Gristina, Michele

    2015-12-01

    Commercial fishers have used fish aggregating devices throughout the Mediterranean Sea for over 40 years. These devices attract numerous predatory and forage species in both coastal and offshore environments. This study examined the influence of fish aggregating devices on schooling and aggregating behaviour by small forage fish in quasi-natural mesocosms. Anti-predator behaviour was evaluated for juvenile Caranx crysos under a variety of treatment conditions. Results suggest that, in the absence of physical structure, C. crysos first respond to a predatory threat by forming a school. When a physical structure is present, however, C. crysos show an occasional tendency to aggregate near the structure. These results suggest that a threatened prey species can change their defensive strategy against predatory behaviour. Further examination is required to explain if fish aggregating devices can increase survival rates of post-larval and juvenile prey species in the southern Mediterranean Sea. Management agencies should consider the relationship between the use of fish aggregating devices by commercial fisheries and the potential influence such devices possess on population dynamics of aggregating fish species. PMID:26525872

  20. Development of a New Intravascular Low-Profile Device for Exclusion of Aortic Aneurysm: An Experimental Pilot Study

    SciTech Connect

    Strecker, Ernst-Peter; Haberstroh, Joerg; Boos, Irene; Metz, Stephan; Langer, Mathias; Moliner, Manuel Maynar

    2004-09-15

    Purpose: To present a new intravascular device for the treatment of aorto-iliac aneurysms. Methods: This new device was tested in five dogs with abdominal aortic aneurysm created experimentally by overdilation of a balloon-expandable stent with a 16 or 18 mm wide PTA balloon catheter. The design of the device is based on a self-expanding aortic stent which consists of two stretchable circular frames filled with a textile Dacron mesh membrane that is suspended horizontally into the infrarenal abdominal aorta proximally to the aneurysm. The frames are part of a preshaped double helical structure that is introduced longitudinally through a catheter in a parallel fashion and forming the desired shape at the vessel site to be occluded. Two iliac stent-grafts are introduced in a low-profile status through the membrane sealing the aneurysm sac and holding the stent-grafts in place. After stent-graft expansion, a new bifurcation located more proximally than the natural one is created. The follow-up of the dogs was performed clinically and angiographically, and specimens were evaluated histomorphologically. Results: The membrane device can be introduced through a 9 Fr vascular sheath. Technical success was achieved in four of five dogs. Nine of ten stent-grafts could be fixed securely within the membrane, thus preventing dislocation. Aneurysms were excluded immediately, and blood flow to the external iliac arteries was restored by the stent-grafts. At 6-9 months follow-up of technically successful implanted devices, there were no endoleaks, no migration, no stenoses at contact sites between the implant material and vascular wall, and no stenosis or occlusion of the stent-grafts. At microscopic evaluation, the interspace between the membranes was filled with thrombotic material, thus ensuring exclusion of the aneurysm. Conclusion: This new device was found to be flexible, low profile and useful in excluding abdominal aortic aneurysm in the experimental setting.

  1. Magnetic shield for turbomolecular pump of the Magnetized Plasma Linear Experimental device at Saha Institute of Nuclear Physics.

    PubMed

    Biswas, Subir; Chattopadhyay, Monobir; Pal, Rabindranath

    2011-01-01

    The turbo molecular pump of the Magnetized Plasma Linear Experimental device is protected from damage by a magnetic shield. As the pump runs continuously in a magnetic field environment during a plasma physics experiment, it may get damaged owing to eddy current effect. For design and testing of the shield, first we simulate in details various aspects of magnetic shield layouts using a readily available field design code. The performance of the shield made from two half cylinders of soft iron material, is experimentally observed to agree very well with the simulation results. PMID:21280830

  2. High mass throughput particle generation using multiple nozzle spraying

    DOEpatents

    Pui, David Y. H.; Chen, Da-Ren

    2015-06-09

    Spraying apparatus and methods that employ multiple nozzle structures for producing multiple sprays of particles, e.g., nanoparticles, for various applications, e.g., pharmaceuticals, are provided. For example, an electrospray dispensing device may include a plurality of nozzle structures, wherein each nozzle structure is separated from adjacent nozzle structures by an internozzle distance. Sprays of particles are established from the nozzle structures by creating a nonuniform electrical field between the nozzle structures and an electrode electrically isolated therefrom.

  3. High mass throughput particle generation using multiple nozzle spraying

    DOEpatents

    Pui, David Y.H.; Chen, Da-Ren

    2004-07-20

    Spraying apparatus and methods that employ multiple nozzle structures for producing multiple sprays of particles, e.g., nanoparticles, for various applications, e.g., pharmaceuticals, are provided. For example, an electrospray dispensing device may include a plurality of nozzle structures, wherein each nozzle structure is separated from adjacent nozzle structures by an internozzle distance. Sprays of particles are established from the nozzle structures by creating a nonuniform electrical field between the nozzle structures and an electrode electrically isolated therefrom.

  4. High mass throughput particle generation using multiple nozzle spraying

    DOEpatents

    Pui, David Y. H.; Chen, Da-Ren

    2009-03-03

    Spraying apparatus and methods that employ multiple nozzle structures for producing multiple sprays of particles, e.g., nanoparticles, for various applications, e.g., pharmaceuticals, are provided. For example, an electrospray dispensing device may include a plurality of nozzle structures, wherein each nozzle structure is separated from adjacent nozzle structures by an internozzle distance. Sprays of particles are established from the nozzle structures by creating a nonuniform electrical field between the nozzle structures and an electrode electrically isolated therefrom.

  5. High power density spray cooling

    NASA Astrophysics Data System (ADS)

    Tilton, Donald E.; Pais, Martin R.; Chow, Louis C.

    1989-07-01

    The research reported describes experimental and theoretical investigations of high power density evaporative spray cooling. Preliminary experiments demonstrating heat fluxes greater than 1,000 W/sq cm were conducted. Extensive laser phase Doppler measurements of spray characteristics were also taken. These measurements provided valuable insight into the heat transfer process. An in-depth analysis was conducted to determine the mechanisms responsible for critical heat flux. Theoretical modeling was also conducted to determine the most desirable heat transfer conditions. After analysis of these results, an improved experimental apparatus was designed and fabricated. The new apparatus provided greater experimental control and improve accuracy. New tests were conducted in which the critical heat flux was increased, and the heat transfer efficiency was greatly improved. These results are compared to those of previous researchers, and indicated substantial improvement.

  6. Mechanical and in vitro evaluation of an experimental canine patent ductus arteriosus occlusion device.

    PubMed

    Wierzbicki, Mark A; Bryant, Jesse; Miller, Matthew W; Keller, Brandis; Maitland, Duncan J

    2016-06-01

    Patent ductus arteriosus (PDA) is a congenital cardiovascular malformation in which a fetal connection between the aorta and pulmonary artery remains patent after birth. This defect commonly results in clinical complications, even death, necessitating closure. Surgical ligation is the most common treatment but requires a thoracotomy and is therefore invasive. A minimally invasive option is preferable. A prototype device for PDA occlusion which utilizes shape memory polymer foams has been developed and evaluated using mechanical and in vitro experiments. Removal force and radial pressure measurements show that the prototype device exhibited a lower removal force and radial pressure than a commercially available device. The in vitro experiments conducted within simplified and physiological PDA models showed that the prototype does not migrate out of position into the pulmonary artery at either physiological or elevated pressures in multiple model configurations. While the radial pressure and removal force were lower than commercial devices, the device performed acceptably in the in vitro benchtop experiments warranting further prototype development. PMID:26766327

  7. An Experimental Study of Drag Reduction Devices for a Trailer Underbody and Base

    SciTech Connect

    Ortega, J M; Salari, K

    2004-05-07

    Low speed wind tunnel measurements are made on a 1/16th scale generic tractor-trailer model at a width-based Reynolds number of 325,000. The model is fixed to a turntable, allowing the yaw angle to be varied between {+-}14 degrees in 2 degree increments. Various add-on drag reduction devices are mounted to the model underbody and base. The wind-averaged drag coefficient at 65 mph is computed for each configuration, allowing the effectiveness of the add-on devices to be assessed. The most effective add-on drag reduction device for the trailer underbody is a wedge-shaped skirt, which reduces the wind-averaged drag coefficient by 2.0%. For the trailer base, the most effective add-on drag reduction device is a set of curved base flaps having a radius of curvature of 0.91 times the trailer width. These curved base flaps reduce the wind-averaged drag coefficient by 18.8%, providing the greatest drag reduction of any of the devices tested. When the wedge-shaped skirt and curved base flaps are used in conjunction with one another, the wind-averaged drag coefficient is reduced by 20%.

  8. Development and experimental verification of a finite element method for accurate analysis of a surface acoustic wave device

    NASA Astrophysics Data System (ADS)

    Mohibul Kabir, K. M.; Matthews, Glenn I.; Sabri, Ylias M.; Russo, Salvy P.; Ippolito, Samuel J.; Bhargava, Suresh K.

    2016-03-01

    Accurate analysis of surface acoustic wave (SAW) devices is highly important due to their use in ever-growing applications in electronics, telecommunication and chemical sensing. In this study, a novel approach for analyzing the SAW devices was developed based on a series of two-dimensional finite element method (FEM) simulations, which has been experimentally verified. It was found that the frequency response of the two SAW device structures, each having slightly different bandwidth and center lobe characteristics, can be successfully obtained utilizing the current density of the electrodes via FEM simulations. The two SAW structures were based on XY Lithium Niobate (LiNbO3) substrates and had two and four electrode finger pairs in both of their interdigital transducers, respectively. Later, SAW devices were fabricated in accordance with the simulated models and their measured frequency responses were found to correlate well with the obtained simulations results. The results indicated that better match between calculated and measured frequency response can be obtained when one of the input electrode finger pairs was set at zero volts and all the current density components were taken into account when calculating the frequency response of the simulated SAW device structures.

  9. Expandable device type III for easy and reliable approximation of dissection layers in sutureless aortic anastomosis. Ex vivo experimental study.

    PubMed

    Nazari, Stefano

    2010-02-01

    In past years, we developed expandable devices (type I and II) for sutureless aortic anastomosis. We have now further modified the device (type III) incorporating a second expandable ring, external to the main one, which can be operated contrariwise in such a way that the aortic wall (i.e. the dissection layers) is compressed between the two expandable rings, providing full control on both the layers compression pressure and the anastomosis final diameter. The device was evaluated in ex vivo experimental models of swine aortic arch fresh samples; air-tight sealing at increasing endovascular pressures was also evaluated and compared with sealing achieved by standard suturing. Ex vivo data suggest that the present version of the device can be used easily and quickly also in elliptical, asymmetric 'oblique' anastomosis as when concavity arch is involved. Perfect air-tight sealing of the anastomosis was verified at endovascular pressures up to 150 mmHg, while standard suture cannot withstand even minimal endovascular air pressure. Compared to the previous versions, the present device is less bulky and softer, can be used also for concavity arch resection and provides full and standardizable control on dissection layers stable and sealed approximation. PMID:19933306

  10. Experimental determination of micromachined discrete and continuous device spring constants using nanoindentation method

    NASA Astrophysics Data System (ADS)

    Chan, M. L.; Tay, Francis E.; Logeeswaran, V. J.; Zeng, Kaiyang; Shen, Lu; Chau, Fook S.

    2002-04-01

    A rapid and accurate static and quasi-static method for determining the out-of-plane spring constraints of cantilevers and a micromachined vibratory sensor is presented. In the past, much of the effort in nanoindentation application was to investigate the thin-film mechanical properties. In this paper, we have utilized the nanoindentation method to measure directly some micromachined device (e.g. microgyroscope) spring constants. The cantilevers and devices tested were fabricated using the MUMPS process and an SOI process (patent pending). Spring constants are determined using a commercial nanoindentation apparatus UMIS-2000 configured with both Berkovich and spherical indenter tip that can be placed onto the device with high accuracy. Typical load resolution is 20micrometers N to 0.5N and a displacement resolution of 0.05nm. Information was deduced from the penetration depth versus load curves during both loading and unloading.

  11. The design and performance of an experimental external fixation device with load transducers.

    PubMed

    Draper, E R; Wallace, A L; Strachan, R K; Hughes, S P; Nicol, A C; Paul, J P

    1995-12-01

    It is becoming increasingly common that fracture healing is modelled in the laboratory with an osteotomy in the diaphysis of the ovine tibia. External fixation is often used to hold the bones in these models, presenting the problem that the loads on such devices are poorly understood. To help investigate this, a unilateral device has been developed which is capable of measuring the two components of load considered to be the most important, that of axial compression and bending in the plane of the fixator. The device was found to be a rigid system and easy to apply, with the in-vivo measurements being straightforward. The estimated limits of error of the compression transducer are +37.9 N and -21.4 N and those of the bending transducer are +3.6 Nm and -4.2 Nm. Preliminary measurements showed the maximum load during normal walking to 345 N compression and 28 Nm in-plane bending. PMID:8564157

  12. Ciclesonide Nasal Spray

    MedlinePlus

    Ciclesonide nasal spray is used to treat the symptoms of seasonal (occurs only at certain times of the year), and perennial ( ... Ciclesonide comes as a solution (liquid) to spray in the nose. It is usually sprayed in each nostril once daily. Use ciclesonide at around the same time every day. Follow the ...

  13. Remotely controlled spray gun

    NASA Technical Reports Server (NTRS)

    Cunningham, William C. (Inventor)

    1987-01-01

    A remotely controlled spray gun is described in which a nozzle and orifice plate are held in precise axial alignment by an alignment member, which in turn is held in alignment with the general outlet of the spray gun by insert. By this arrangement, the precise repeatability of spray patterns is insured.

  14. 42 CFR 405.209 - Payment for a non-experimental/investigational (Category B) device.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Medical Services Coverage Decisions That Relate to Health Care Technology § 405.209 Payment for a non... used device serving the same medical purpose that has been approved or cleared for marketing by the FDA... serving the same medical purpose that has been approved or cleared for marketing by the FDA....

  15. 42 CFR 405.205 - Coverage of a non-experimental/investigational (Category B) device.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Medical Services Coverage Decisions That Relate to Health Care Technology § 405.205 Coverage of a non...). (2) CMS uses the categorization of the device as a factor in making Medicare coverage decisions. (b... 42 Public Health 2 2010-10-01 2010-10-01 false Coverage of a...

  16. Non-superconducting magnet structures for near-term, large fusion experimental devices

    SciTech Connect

    File, J.; Knutson, D.S.; Marino, R.E.; Rappe, G.H.

    1980-10-01

    This paper describes the magnet and structural design in the following American tokamak devices: the Princeton Large Torus (PLT), the Princeton Divertor Experiment (PDX), and the Tokamak Fusion Test Reactor (TFTR). The Joint European Torus (JET), also presented herein, has a magnet structure evolved from several European programs and, like TFTR, represents state of the art magnet and structure design.

  17. An experimental study of dry particle coating: Devices, operating parameters and applications

    NASA Astrophysics Data System (ADS)

    Ramlakhan Mohan, Michelle

    Dry particle coating, which mechanically coats fine guest particles onto the surfaces of larger host particles, without binders or solvents, is investigated. Several systems of host and guest particles are coated in different devices to study various aspects of dry particle coating. The devices used are Magnetically Assisted Impaction Coating (MAIL) device, Mechanofusion, and the Hybridizer. MAIC is used to coat fine SiO2 guest particles onto the surface of larger cornstarch and cellulose host particles. This is done to simultaneously improve the flowability of the host particles, as well as reduce their hydrophilicity. Dry particle coating is used to increase the sintering temperatures of particulate materials (host), by application of a monolayer of a highly refractory material (guest), promoting deactivated sintering. This phenomenon has not previously been reported, although activated sintering (decreasing the sintering temperatures of metallic and ceramic particles) is well established in the literature. The products analyzed in the deactivated sintering studies are coated in MAIC, Mechanofusion and the Hybridizer. The key parameters affecting the coating performance of the dry coating devices are examined. The key parameters of MAIL are magnetic particle size, magnetic particle to powder mass ratio, frequency, current and processing time. The effects of the rotation and translation motion of the magnetic particles are also investigated. In Mechanofusion and the Hybridizer, the key parameters examined are rotation speed and processing time. The coating performance of the three devices is compared by examining contamination and adhesion of the coated products. Quantification of the contaminants on the products is achieved by measuring the amount of iron, nickel, and chromium in the sample. Adhesion of the guest to the host particles is conducted by subjecting the products to ultrasonic vibrations, to examine the amount of material that becomes detached from the

  18. Investigation on the Clogging Behavior and Additional Wall Cooling for the Axial-Injection Cold Spray Nozzle

    NASA Astrophysics Data System (ADS)

    Wang, Xudong; Zhang, Bo; Lv, Jinsheng; Yin, Shuo

    2015-04-01

    During the cold spray process, nozzle clogging always happens when spraying low-melting point materials, e.g., aluminum, significantly decreasing the working efficiency. In this paper, a comprehensive investigation was carried out to clarify the reason for inducing nozzle clogging and then to evaluate a home-made nozzle cooling device for preventing nozzle clogging. Computational fluid dynamics technique was employed as the main method with some necessary experiment validation. It is found that the particle dispersion and the high-temperature nozzle wall at the near-throat region are two dominant factors that cause nozzle clogging. The numerical results also reveal that the home-made cooling device can significantly reduce the nozzle wall temperature, which was validated by the experimental measurement. Besides, the aluminum coating build-up experiment further indicates that the additional cooling device can truly prevent the nozzle clogging.

  19. Simulation of preburner sprays, volume 1

    NASA Technical Reports Server (NTRS)

    1993-01-01

    nozzles were compared with that of three identical nozzles with their axis at a small distance from each other. This study simulates the sprays in the preburner of the SSME, where there are around 260 elements on the faceplate of the combustion chamber. And lastly, design an experimental facility to study the characteristics of sprays at high pressure conditions and at supercritical pressure and temperature for the gas but supercritical pressure and subcritical temperature for the liquid.

  20. Simulation of preburner sprays, volume 1

    NASA Astrophysics Data System (ADS)

    1993-05-01

    nozzles were compared with that of three identical nozzles with their axis at a small distance from each other. This study simulates the sprays in the preburner of the SSME, where there are around 260 elements on the faceplate of the combustion chamber. And lastly, design an experimental facility to study the characteristics of sprays at high pressure conditions and at supercritical pressure and temperature for the gas but supercritical pressure and subcritical temperature for the liquid.

  1. Method of producing thermally sprayed metallic coating

    DOEpatents

    Byrnes, Larry Edward; Kramer, Martin Stephen; Neiser, Richard A.

    2003-08-26

    The cylinder walls of light metal engine blocks are thermally spray coated with a ferrous-based coating using an HVOF device. A ferrous-based wire is fed to the HVOF device to locate a tip end of the wire in a high temperature zone of the device. Jet flows of oxygen and gaseous fuel are fed to the high temperature zone and are combusted to generate heat to melt the tip end. The oxygen is oversupplied in relation to the gaseous fuel. The excess oxygen reacts with and burns a fraction of the ferrous-based feed wire in an exothermic reaction to generate substantial supplemental heat to the HVOF device. The molten/combusted metal is sprayed by the device onto the walls of the cylinder by the jet flow of gases.

  2. Laser modification of thermally sprayed coatings

    NASA Astrophysics Data System (ADS)

    Uglov, A. A.; Fomin, A. D.; Naumkin, A. O.; Pekshev, P. Iu.; Smurov, I. Iu.

    1987-08-01

    Experimental results are reported on the modification of thermally sprayed coatings on steels and aluminum alloys using pulsed YAG and CW CO2 lasers. In particular, results obtained for self-fluxing Ni9CrBSi powders, ZRO2 ceramic, and titanium are examined. It is shown that the laser treatment of thermally sprayed coatings significantly improves their physicomechanical properties; it also makes it possible to obtain refractory coatings on low-melting substrates with good coating-substrate adhesion.

  3. Experiments and modeling of discharge characteristics in water-mist sprays generated by pressure-swirl atomizers

    NASA Astrophysics Data System (ADS)

    Santangelo, Paolo E.

    2012-12-01

    Pressure-swirl atomizers are often employed to generate a water-mist spray, typically employed in fire suppression. In the present study, an experimental characterization of dispersion (velocity and cone angle) and atomization (drop-size axial evolution) was carried out following a previously developed methodology, with specific reference to the initial region of the spray. Laser-based techniques were used to quantitatively evaluate the considered phenomena: velocity field was reconstructed through a Particle Image Velocimetry analysis; drop-size distribution was measured by a Malvern Spraytec device, highlighting secondary atomization and subsequent coalescence along the spray axis. Moreover, a comprehensive set of relations was validated as predictive of the involved parameters, following an inviscid-fluid approach. The proposed model pertains to early studies on pressure-swirl atomizers and primarily yields to determine both initial velocity and cone angle. The spray thickness is also predicted and a classic correlation for Sauter Mean Diameter is shown to provide good agreement with experimental results. The analysis was carried out at the operative pressure of 80 bar; two injectors were employed featuring different orifice diameters and flow numbers, as a sort of parametric approach to this spray typology.

  4. Power transient analyses of experimental in-reflector devices during safety shutdown in Jules Horowitz Reactor (JHR)

    SciTech Connect

    Camprini, P. C.; Sumini, M.; Artioli, C.; Gonnier, C.; Pouchin, B.; Bourdon, S.

    2012-07-01

    The Jules Horowitz Reactor (JHR) is designed to be a 100 MW material testing reactor (MTR) and it is expected to become the reference facility in the framework of European nuclear research activity. As the core neutron spectrum is quite fast, several experimental devices concerning fuel studies have been conceived to be placed in the reflector in order to exploit a proper thermal neutron flux irradiation. Since the core power is relatively high, the neutronic coupling between the reactor core and the reflector devices has to be taken into account for different rod insertions. In fact the thermal power produced within the fuel samples is considerable. Heat removal during shutdown is a main topic in nuclear safety and it is worth to analyse thermal power transients in fuel samples as well. Here a thermal hydraulic model for JHR core is proposed aiming at a simple and representative description as far as reactivity feedbacks are concerned. Then it is coupled with a neutronic pointwise kinetics analysis by means of the DULCINEE code to compute core power transient calculations. Moreover, some reflector-core coupling evaluations are performed through Monte Carlo method using the TRIPOLI 4.7 code. The JHR equilibrium cycle is considered with respect to four fuel compositions namely Beginning of Cycle (BOC), Xenon Saturation Point (XSP), Middle of Cycle (MOC) and End of Cycle (EOC). Then thermal power transients in the experimental reflector devices are evaluated during safety shutdowns and they are verified for all these cycle steps. (authors)

  5. Detection of airborne Salmonella enteritidis in the environment of experimentally infected laying hens by an electrostatic sampling device.

    PubMed

    Gast, Richard K; Mitchell, Bailey W; Holt, Peter S

    2004-01-01

    Bacteriologic culturing of environmental samples taken from sources such as manure pits and egg belts has been the principal screening tool in programs for identifying commercial laying flocks that have been exposed to Salmonella enteritidis and are thus at risk to produce contaminated eggs. Because airborne dust and aerosols can carry bacteria, air sampling offers a potentially efficient and inexpensive alternative for detecting S. enteritidis in poultry house environments. In the present study, an electrostatic air sampling device was applied to detect S. enteritidis in a room containing experimentally infected, caged laying hens. After oral inoculation of hens with a phage type 13a S. enteritidis strain, air samples were collected onto agar plates with the electrostatic sampling device, an impaction air sampler, and by passive exposure to the settling of aerosols and dust. Even though the floor of the room was cleaned once per week (removing most manure, dust, and feathers), air samples were positive for S. enteritidis for up to 4 wk postinoculation. On the basis of both the number of S. enteritidis colonies observed on incubated agar plates and the frequency of positive results, the efficiency of the electrostatic device was significantly greater than that of the passive exposure plates (especially at short collection intervals) and was similar to that of the far more expensive impaction sampler. The electrostatic device, used for a 3-hr sampling interval, detected airborne S. enteritidis on 75% of agar plates over the 4 wk of the study. PMID:15077808

  6. Physiological responses of adult rainbow trout experimentally released through a unique fish conveyance device

    USGS Publications Warehouse

    Mesa, Matthew G.; Gee, Lisa P.; Weiland, Lisa K.; Christiansen, Helena E.

    2013-01-01

    We assessed the physiological stress responses (i.e., plasma levels of cortisol, glucose, and lactate) of adult Rainbow Trout Oncorhynchus mykiss at selected time intervals after they had passed a distance of 15 m through a unique fish conveyance device (treatment fish) or not (controls). This device differs from traditional fish pumps in two important ways: (1) it transports objects in air, rather than pumping them from and with water; and (2) it uses a unique tube for transport that has a series of soft, deformable baffles spaced evenly apart and situated perpendicular within a rigid, but flexible outer shell. Mean concentrations of the plasma constituents never differed (P > 0.05) between control and treatment fish at 0, 1, 4, 8, or 24 h after passage, and only minor differences were apparent between the different time intervals within a group. We observed no obvious injuries on any of our fish. Our results indicate that passage through this device did not severely stress or injure fish and it may allow for the rapid and safe movement of fish at hatcheries, sorting or handling facilities, or passage obstacles.

  7. Experimental methods in aquatic respirometry: the importance of mixing devices and accounting for background respiration.

    PubMed

    Rodgers, G G; Tenzing, P; Clark, T D

    2016-01-01

    In light of an increasing trend in fish biology towards using static respirometry techniques without the inclusion of a mixing mechanism and without accurately accounting for the influence of microbial (background) respiration, this paper quantifies the effect of these approaches on the oxygen consumption rates (ṀO2 ) measured from juvenile barramundi Lates calcarifer (mean ± s.e. mass = 20·31 ± 0·81 g) and adult spiny chromis damselfish Acanthochromis polyacanthus (22·03 ± 2·53 g). Background respiration changed consistently and in a sigmoidal manner over time in the treatment with a mixing device (inline recirculation pump), whereas attempts to measure background respiration in the non-mixed treatment yielded highly variable estimates of ṀO2 that were probably artefacts due to the lack of water movement over the oxygen sensor during measurement periods. This had clear consequences when accounting for background respiration in the calculations of fish ṀO2 . Exclusion of a mixing device caused a significantly lower estimate of ṀO2 in both species and reduced the capacity to detect differences between individuals as well as differences within an individual over time. There was evidence to suggest that the magnitude of these effects was dependent on the spontaneous activity levels of the fish, as the difference between mixed and non-mixed treatments was more pronounced for L. calcarifer (sedentary) than for A. polyacanthus (more spontaneously active). It is clear that respirometry set-ups for sedentary species must contain a mixing device to prevent oxygen stratification inside the respirometer. While more active species may provide a higher level of water mixing during respirometry measurements and theoretically reduce the need for a mixing device, the level of mixing cannot be quantified and may change with diurnal cycles in activity. To ensure consistency across studies without relying on fish activity levels, and to enable accurate assessments of

  8. An oxygen pressure sensor using surface acoustic wave devices

    NASA Technical Reports Server (NTRS)

    Leighty, Bradley D.; Upchurch, Billy T.; Oglesby, Donald M.

    1993-01-01

    Surface acoustic wave (SAW) piezoelectric devices are finding widespread applications in many arenas, particularly in the area of chemical sensing. We have developed an oxygen pressure sensor based on coating a SAW device with an oxygen binding agent which can be tailored to provide variable sensitivity. The coating is prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer which is then sprayed onto the surface of the SAW device. Experimental data shows the feasibility of tailoring sensors to measure the partial pressure of oxygen from 2.6 to 67 KPa (20 to 500 torr). Potential applications of this technology are discussed.

  9. The Pharmaceutical Aerosol Deposition Device on Cell Cultures (PADDOCC) in vitro system: design and experimental protocol.

    PubMed

    Hein, Stephanie; Bur, Michael; Kolb, Tobias; Muellinger, Bernhard; Schaefer, Ulrich F; Lehr, Claus-Michael

    2010-08-01

    The development of aerosol medicines typically involves numerous tests on animals, due to the lack of adequate in vitro models. A new in vitro method for testing pharmaceutical aerosol formulations on cell cultures was developed, consisting of an aerosolisation unit fitting a commercial dry powder inhaler (HandiHaler(c), Boehringer Ingelheim, Germany), an air-flow control unit (Akita(c), Activaero, Germany) and a custom-made sedimentation chamber. This chamber holds three Snapwell(c) inserts with monolayers of pulmonary epithelial cells. The whole set-up, referred to as the Pharmaceutical Aerosol Deposition Device On Cell Cultures (PADDOCC) system, aims to mimic the complete process of aerosol drug delivery, encompassing aerosol generation, aerosol deposition onto pulmonary epithelial cells and subsequent drug transport across this biological barrier, to facilitate the investigation of new aerosol formulations in the early stages of development. We describe here, the development of the design and the protocol for this device. By testing aerosol formulations of budesonide and salbutamol sulphate, respectively, reproducible deposition of aerosol particles on, and the integrity of, the pulmonary cell monolayer could be demonstrated. PMID:20822321

  10. An Experimental Study of Radiation-Induced Demagnetization of Insertion Device Permanent Magnets

    SciTech Connect

    Simos,N.; Job, P.K.; Mokhov, N.

    2008-06-23

    High brilliance in the 3GeV new light source NSLS II is obtained from the high magnetic fields in insertion devices (ID). The beam lifetime is limited to 3h by single Coulomb scattering in the Bunch (Touschek effect). This effect occurs everywhere around the circumference and there is unavoidable beam loss in the adjacent low aperture insertion devices. This raises the issue of degradation and damage of the permanent magnetic material by irradiation with high energy electrons and corresponding shower particles. It is expected that IDs, especially those in-vacuum, would experience changes resulting from exposure to gamma rays, x-rays, electrons and neutrons. By expanding an on-going material radiation damage study at BNL the demagnetization effect of irradiation consisting primarily of neutrons, gamma rays and electrons on a set of NdFeB magnets is studied. Integrated doses ranging from several Mrad to a few Grad were achieved at the BNL Isotope Facility with a 112 MeV, 90 {micro}A proton beam. Detailed information on dose distributions as well as on particle energy spectra on the NdFeB magnets was obtained in realistic simulations with the MARS15 Monte-Carlo code. This paper summarizes the results of this study.

  11. Field emission device driven by self-powered contact-electrification: Simulation and experimental analysis

    SciTech Connect

    Chen, Xiangyu E-mail: ouyangwei@phy.ecnu.edu.cn; Jiang, Tao; Sun, Zhuo; Ou-Yang, Wei E-mail: ouyangwei@phy.ecnu.edu.cn

    2015-09-14

    A self-powered field emission device (FED) driven by a single-electrode tribo-electric nanogenerator (TENG) is demonstrated. The mechanical motion works as both a power supply to drive the FED and a control unit to regulate the amount of emitted electrons. By using the Fowler-Nordheim equation and Kirchhoff laws, a theoretical model of this self-powered FED is proposed, and accordingly the real-time output characteristics of the device are systematically investigated. It is found that the motion distance of the TENG controls switch-on of the FED and determines the charge amount for emission, while the motion velocity regulates the amplitude of emission current. The minimum contact area for the TENG to generate field emission is about 9 cm{sup 2}, which can be improved by optimizing FED structure and the tribo-materials of TENG. The demonstrated concept of this self-powered FED as well as the proposed physical analysis can serve as guidance for further applications of FED in such fields of self-powered electronics and soft electronics.

  12. Optimization of the bake-on siliconization of cartridges. Part I: Optimization of the spray-on parameters.

    PubMed

    Funke, Stefanie; Matilainen, Julia; Nalenz, Heiko; Bechtold-Peters, Karoline; Mahler, Hanns-Christian; Friess, Wolfgang

    2016-07-01

    Biopharmaceutical products are increasingly commercialized as drug/device combinations to enable self-administration. Siliconization of the inner syringe/cartridge glass barrel for adequate functionality is either performed at the supplier or drug product manufacturing site. Yet, siliconization processes are often insufficiently investigated. In this study, an optimized bake-on siliconization process for cartridges using a pilot-scale siliconization unit was developed. The following process parameters were investigated: spray quantity, nozzle position, spray pressure, time for pump dosing and the silicone emulsion concentration. A spray quantity of 4mg emulsion showed best, immediate atomization into a fine spray. 16 and 29mg of emulsion, hence 4-7-times the spray volume, first generated an emulsion jet before atomization was achieved. Poor atomization of higher quantities correlated with an increased spray loss and inhomogeneous silicone distribution, e.g., due to runlets forming build-ups at the cartridge lower edge and depositing on the star wheel. A prolonged time for pump dosing of 175ms led to a more intensive, long-lasting spray compared to 60ms as anticipated from a higher air-to-liquid ratio. A higher spray pressure of 2.5bar did not improve atomization but led to an increased spray loss. At a 20mm nozzle-to-flange distance the spray cone exactly reached the cartridge flange, which was optimal for thicker silicone layers at the flange to ease piston break-loose. Initially, 10μg silicone was sufficient for adequate extrusion in filled cartridges. However, both maximum break-loose and gliding forces in filled cartridges gradually increased from 5-8N to 21-22N upon 80weeks storage at room temperature. The increase for a 30μg silicone level from 3-6N to 10-12N was moderate. Overall, the study provides a comprehensive insight into critical process parameters during the initial spray-on process and the impact of these parameters on the characteristics of the

  13. Experimental study on hydrodynamic characteristics of vertical-axis floating tidal current energy power generation device

    NASA Astrophysics Data System (ADS)

    Ma, Yong; Li, Teng-fei; Zhang, Liang; Sheng, Qi-hu; Zhang, Xue-wei; Jiang, Jin

    2016-01-01

    To study the characteristics of attenuation, hydrostatic towage and wave response of the vertical-axis floating tidal current energy power generation device (VAFTCEPGD), a prototype is designed and experiment is carried out in the towing tank. Free decay is conducted to obtain attenuation characteristics of the VAFTCEPGD, and characteristics of mooring forces and motion response, floating condition, especially the lateral displacement of the VAFTCEPGD are obtained from the towing in still water. Tension response of the #1 mooring line and vibration characteristics of the VAFTCEPGD in regular waves as well as in level 4 irregular wave sea state with the current velocity of 0.6 m/s. The results can be reference for theoretical study and engineering applications related to VAFTCEPGD.

  14. Experimental investigation of aerodynamic devices for wind turbine rotational speed control. Phase 1

    SciTech Connect

    Miller, L.S.

    1995-02-01

    An investigation was undertaken to identify the aerodynamic performance of five separate trailing-edge control devices, and to evaluate their potential for wind turbine overspeed and power modulation applications. A modular two-dimensional wind tunnel model was constructed and evaluated during extensive wind tunnel testing. Aerodynamic lift, drag, suction, and pressure coefficient data were acquired and analyzed for various control configurations and angles of attack. To further interpret their potential performance, the controls were evaluated numerically using a generic wind turbine geometry and a performance analysis computer program. Results indicated that the Spoiler-Flap control configuration was best softed for turbine braking applications. It exhibited a large negative suction coefficient over a broad angle-of-attack range, and good turbine braking capabilities, especially at low tip-speed ratio.

  15. Experimental validation of superconducting quantum interference device sensors for electromagnetic scattering in geologic structures

    SciTech Connect

    Krauss, R.H. Jr.; Flynn, E.; Ruminer, P.

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). This project has supported the collaborative development with Sandia National Laboratories (SNL) and the University of New Mexico (UNM) of two critical components for a hand-held low-field magnetic sensor based on superconducting quantum interference device (SQUID) sensor technology. The two components are a digital signal processing (DSP) algorithm for background noise rejection and a small hand-held dewar cooled by a cryocooler. A hand-held sensor has been designed and fabricated for detection of extremely weak magnetic fields in unshielded environments. The sensor is capable of measuring weak magnetic fields in unshielded environments and has multiple applications. We have chosen to pursue battlefield medicine as the highest probability near-term application because of stated needs of several agencies.

  16. Fuel thermal stability effects on spray characteristics

    NASA Technical Reports Server (NTRS)

    Lefebvre, A. H.; Nickolaus, D.

    1987-01-01

    The propensity of a heated hydrocarbon fuel toward solids deposition within a fuel injector is investigated experimentally. Fuel is arranged to flow through the injector at constant temperature, pressure, and flow rate and the pressure drop across the nozzle is monitored to provide an indication of the amount of deposition. After deposits have formed, the nozzle is removed from the test rig and its spray performance is compared with its performance before deposition. The spray characteristics measured include mean drop size, drop-size distribution, and radial and circumferential fuel distribution. It is found that small amounts of deposition can produce severe distortion of the fuel spray pattern. More extensive deposition restores spray uniformity, but the nozzle flow rate is seriously curtailed.

  17. Testing devices or experimental systems? Cancer clinical trials take the genomic turn.

    PubMed

    Nelson, Nicole C; Keating, Peter; Cambrosio, Alberto; Aguilar-Mahecha, Adriana; Basik, Mark

    2014-06-01

    Clinical trials are often described as machine-like systems for generating specific information concerning drug safety and efficacy, and are understood as a component of the industrial drug development processes. This paper argues that contemporary clinical trials in oncology are not reducible to mere drug testing. Drawing on ethnographic fieldwork and interviews with researchers in the field of oncology from 2010 to 2013, we introduce a conceptual contrast between trials as testing machines and trials as clinical experimental systems to draw attention to the ways trials are increasingly being used to ask open-ended scientific questions. When viewed as testing machines, clinical trials are seen as a means to produce answers to straightforward questions and deviations from the protocol are seen as bugs in the system; but practitioners can also treat trials as clinical experimental systems to investigate as yet undefined problems and where heterogeneity becomes a means to produce novel biological or clinical insights. The rise of "biomarker-driven" clinical trials in oncology, which link measurable biological characteristics such as genetic mutations to clinical features such as a patient's response to a particular drug, exemplifies a trend towards more experimental styles of clinical work. These transformations are congruent with changes in the institutional structure of clinical research in oncology, including a movement towards more flexible, networked research arrangements, and towards using individual patients as model systems for asking biological questions. PMID:24768778

  18. Experimental study on the optimization of general conditions for a free-flow electrophoresis device with a thermoelectric cooler.

    PubMed

    Yan, Jian; Yang, Cheng-Zhang; Zhang, Qiang; Liu, Xiao-Ping; Kong, Fan-Zhi; Cao, Cheng-Xi; Jin, Xin-Qiao

    2014-12-01

    With a given free-flow electrophoresis device, reasonable conditions (electric field strength, carrier buffer conductivity, and flow rate) are crucial for an optimized separation. However, there has been no experimental study on how to choose reasonable general conditions for a free-flow electrophoresis device with a thermoelectric cooler in view of Joule heat generation. Herein, comparative experiments were carried out to propose the selection procedure of general conditions in this study. The experimental results demonstrated that appropriate conditions were (i) <67 V/cm electric field strength; (ii) lower than 1.3 mS/cm carrier buffer conductivity (Tris-HCl: 20 mM Tris was titrated by HCl to pH 8.0); and (iii) higher than 3.6 mL/min carrier buffer flow rate. Furthermore, under inappropriate conditions (e.g. 400 V voltage and 40 mM Tris-HCl carrier buffer), the free-flow electrophoresis separation would be destroyed by bubbles caused by more Joule heating. Additionally, a series of applications under the appropriate conditions were performed with samples of model dyes, proteins (bovine serum albumin, myoglobin, and cytochrome c), and cells (Escherichia coli, Streptococcus thermophilus, and Saccharomyces cerevisiae). The separation results showed that under the appropriate conditions, separation efficiency was obviously better than that in the previous experiments with randomly or empirically selected conditions. PMID:25216109

  19. Chromium coatings by HVOF thermal spraying: Simulation and practical results

    SciTech Connect

    Knotek, O.; Lugscheider, E.; Jokiel, P.; Schnaut, U.; Wiemers, A.

    1994-12-31

    Within recent years High Velocity Oxygen-Fuel (HVOF) thermal spraying has been considered an asset to the family of thermal spraying processes. Especially for spray materials with melting points below 3,000 K it has proven successful, since it shows advantages when compared to coating processes that produce similar qualities. In order to enlarge the fields of thermal spraying applications into regions with rather low thickness, e.g. about 50--100 {micro}m, especially HVOF thermally sprayed coatings seem to be advantageous. The usual evaluation of optimized spraying parameters, including spray distance, traverse speed, gas flow rates etc. is, however, based on numerous and extensive experiments laid out by trial-and-error or statistical experimental design and thus being expensive: man-power and material is required, spray systems are occupied for experimental works and the optimal solution is questioned, for instance, when a new powder fraction or nozzle is used. In this paper the possibility of reducing such experimental efforts by using modeling and simulation is exemplified for producing thin chromium coatings with a CDS{trademark}-HVOF system. The aim is the production of thermally sprayed chromium coatings competing with galvanic hard chromium platings, which are applied to reduce friction and corrosion but are environmentally disadvantageous during their production.

  20. Development of a biaxial compression device for biological samples: preliminary experimental results for a closed cell foam.

    PubMed

    Little, J P; Tevelen, G; Adam, C J; Evans, J H; Pearcy, M J

    2009-07-01

    Biological tissues are subjected to complex loading states in vivo and in order to define constitutive equations that effectively simulate their mechanical behaviour under these loads, it is necessary to obtain data on the tissue's response to multiaxial loading. Single axis and shear testing of biological tissues is often carried out, but biaxial testing is less common. We sought to design and commission a biaxial compression testing device, capable of obtaining repeatable data for biological samples. The apparatus comprised a sealed stainless steel pressure vessel specifically designed such that a state of hydrostatic compression could be created on the test specimen while simultaneously unloading the sample along one axis with an equilibrating tensile pressure. Thus a state of equibiaxial compression was created perpendicular to the long axis of a rectangular sample. For the purpose of calibration and commissioning of the vessel, rectangular samples of closed cell ethylene vinyl acetate (EVA) foam were tested. Each sample was subjected to repeated loading, and nine separate biaxial experiments were carried out to a maximum pressure of 204 kPa (30 psi), with a relaxation time of two hours between them. Calibration testing demonstrated the force applied to the samples had a maximum error of 0.026 N (0.423% of maximum applied force). Under repeated loading, the foam sample demonstrated lower stiffness during the first load cycle. Following this cycle, an increased stiffness, repeatable response was observed with successive loading. While the experimental protocol was developed for EVA foam, preliminary results on this material suggest that this device may be capable of providing test data for biological tissue samples. The load response of the foam was characteristic of closed cell foams, with consolidation during the early loading cycles, then a repeatable load-displacement response upon repeated loading. The repeatability of the test results demonstrated the

  1. Suspension flow in microfluidic devices--a review of experimental techniques focussing on concentration and velocity gradients.

    PubMed

    van Dinther, A M C; Schroën, C G P H; Vergeldt, F J; van der Sman, R G M; Boom, R M

    2012-05-15

    Microfluidic devices are an emerging technology for processing suspensions in e.g. medical applications, pharmaceutics and food. Compared to larger scales, particles will be more influenced by migration in microfluidic devices, and this may even be used to facilitate segregation and separation. In order to get most out of these completely new technologies, methods to experimentally measure (or compute) particle migration are needed to gain sufficient insights for rational design. However, the currently available methods only allow limited access to particle behaviour. In this review we compare experimental methods to investigate migration phenomena that can occur in microfluidic systems when operated with natural suspensions, having typical particle diameters of 0.1 to 10 μm. The methods are used to monitor concentration and velocity profiles of bidisperse and polydisperse suspensions, which are notoriously difficult to measure due to the small dimensions of channels and particles. Various methods have been proposed in literature: tomography, ultrasound, and optical analysis, and here we review and evaluate them on general dimensionless numbers related to process conditions and channel dimensions. Besides, eleven practical criteria chosen such that they can also be used for various applications, are used to evaluate the performance of the methods. We found that NMR and CSLM, although expensive, are the most promising techniques to investigate flowing suspensions in microfluidic devices, where one may be preferred over the other depending on the size, concentration and nature of the suspension, the dimensions of the channel, and the information that has to be obtained. The paper concludes with an outlook on future developments of measurement techniques. PMID:22405541

  2. Variable friction device for structural control based on duo-servo vehicle brake: Modeling and experimental validation

    NASA Astrophysics Data System (ADS)

    Cao, Liang; Downey, Austin; Laflamme, Simon; Taylor, Douglas; Ricles, James

    2015-07-01

    Supplemental damping can be used as a cost-effective method to reduce structural vibrations. In particular, passive systems are now widely accepted and have numerous applications in the field. However, they are typically tuned to specific excitations and their performances are bandwidth-limited. A solution is to use semi-active devices, which have shown to be capable of substantially enhanced mitigation performance. The authors have recently proposed a new type of semi-active device, which consists of a variable friction mechanism based on a vehicle duo-servo drum brake, a mechanically robust and reliable technology. The theoretical performance of the proposed device has been previously demonstrated via numerical simulations. In this paper, we further the understanding of the device, termed Modified Friction Device (MFD) by fabricating a small scale prototype and characterizing its dynamic behavior. While the dynamics of friction is well understood for automotive braking technology, we investigate for the first time the dynamic behavior of this friction mechanism at low displacements and velocities, in both forward and backward directions, under various hydraulic pressures. A modified 3-stage dynamic model is introduced. A LuGre friction model is used to characterize the friction zone (Stage 1), and two pure stiffness regions to characterize the dynamics of the MFD once the rotation is reversed and the braking shoes are sticking to the drum (Stage 2) and the rapid build up of forces once the shoes are held by the anchor pin (Stage 3). The proposed model is identified experimentally by subjecting the prototype to harmonic excitations. It is found that the proposed model can be used to characterize the dynamics of the MFD, and that the largest fitting error arises at low velocity under low pressure input. The model is then verified by subjecting the MFD to two different earthquake excitations under different pressure inputs. The model is capable of tracking the

  3. Bear Spray Safety Program

    USGS Publications Warehouse

    Blome, C.D.; Kuzniar, R.L.

    2009-01-01

    A bear spray safety program for the U.S. Geological Survey (USGS) was officially initiated by the Firearms Safety Committee to address accident prevention and to promote personnel training in bear spray and its transportation, storage, and use for defense against wild animals. Used as part of a system including firearms, or used alone for those who choose not to carry a firearm, bear spray is recognized as an effective tool that can prevent injury in a wild animal attack.

  4. Analytical and experimental evaluation of techniques for the fabrication of thermoplastic hologram storage devices

    NASA Technical Reports Server (NTRS)

    Rogers, J. W.

    1975-01-01

    The results of an experimental investigation on recording information on thermoplastic are given. A description was given of a typical fabrication configuration, the recording sequence, and the samples which were examined. There are basically three configurations which can be used for the recording of information on thermoplastic. The most popular technique uses corona which furnishes free charge. The necessary energy for deformation is derived from a charge layer atop the thermoplastic. The other two techniques simply use a dc potential in place of the corona for deformation energy.

  5. Theoretical and experimental study of flow-control devices for inlets of indraft wind tunnels

    NASA Technical Reports Server (NTRS)

    Ross, James C.

    1989-01-01

    The design of closed circuit wind tunnels has historically been performed using rule of thumb which have evolved over the years into a body of useful guidelines. The development of indraft wind tunnels, however, has not been as well documented. The design of indraft wind tunnels is therefore generally performed using a more intuitive approach, often resulting in a facility with disappointing flow quality. The primary problem is a lack of understanding of the flow in the inlet as it passes through the required antiturbulence treatment. For wind tunnels which employ large contraction ratio inlets, this lack of understanding is not serious since the relatively low velocity of the flow through the inlet treatment reduces the sensitivity to improper inlet design. When designing a small contraction ratio inlet, much more careful design is needed in order to reduce the flow distortions generated by the inlet treatment. As part of the National Full Scale Aerodynamics Complex Modification Project, 2-D computational methods were developed which account for the effect of both inlet screens and guide vanes on the test section velocity distribution. Comparisons with experimental data are presented which indicate that the methods accurately compute the flow distortions generated by a screen in a nonuniform velocity field. The use of inlet guide vanes to eliminate the screen induced distortion is also demonstrated both computationally and experimentally. Extensions of the results to 3-D is demonstrated and a successful wind tunnel design is presented.

  6. Design and Experimental Investigation of a Compact Circularly Polarized Integrated Filtering Antenna for Wearable Biotelemetric Devices.

    PubMed

    Jiang, Zhi Hao; Gregory, Micah D; Werner, Douglas H

    2016-04-01

    A compact circularly polarized (CP) integrated filtering antenna is reported for wearable biotelemetric devices in the 2.4 GHz ISM band. The design is based on a mutual synthesis of a CP patch antenna connected to a bandpass filter composed of coupled stripline open-loop resonators, which provides an integrated low-profile radiating and filtering module with a compact form factor of 0.44λ(0)×0.44λ(0)×0.04λ(0). The optimized filtering antenna is fabricated and measured, achieving an S11 < -14 dB, an axial ratio of less than 3 dB and gain higher than 3.5 dBi in the targeted ISM band. With the integrated filtering functionality, the antenna exhibits good out-of-band rejection over an ultra-wide frequency range of 1-6 GHz. Further full-wave simulations and experiments were carried out, verifying that the proposed filtering antenna maintains these desirable properties even when mounted in close proximity to the human body at different positions. The stable impedance performance and the simultaneous wide axial ratio and radiated power beam widths make it an ideal candidate as a wearable antenna for off-body communications. The additional integrated filtering functionality further improves utility by greatly reducing interference and crosstalk with other existing wireless systems. PMID:26186795

  7. An experimental study of Newtonian and non-Newtonian flow dynamics in a ventricular assist device.

    PubMed

    Mann, K A; Deutsch, S; Tarbell, J M; Geselowitz, D B; Rosenberg, G; Pierce, W S

    1987-05-01

    The fluid dynamic behavior of a Newtonian water/glycerol solution, a non-Newtonian polymer (separan) solution, and bovine blood were compared in the Penn State Electrical Ventricular Assist Device (EVAD). Pulsed doppler ultrasound velocimetry was used to measure velocities in the near wall region (0.95-2.7 mm) along the perimeter of the pump. Mean velocity, turbulence intensity, local and convective acceleration, and shear rate were calculated from the PDU velocity measurements. Flow visualization provided qualitative information about the general flow patterns in the EVAD. Results indicate that water/glycerol does not accurately model the flow characteristics of bovine blood in the EVAD. The non-Newtonian separan solution produced results closer to those of the bovine blood than did the water/glycerol solution. Near wall velocity magnitudes for the separan were similar to those of the bovine blood, but the profile shapes differed for portions of the pump cycle. All three fluids exhibited periods of stagnation. Bovine blood results indicated the presence of a desired rotational washout pattern at midsystole, while results with the other fluids did not show this feature. PMID:3599939

  8. Biologic Response to Carbonated Hydroxyapatite Associated with Orthopedic Device: Experimental Study in a Rabbit Model

    PubMed Central

    Saoudi, Mongi; Badraoui, Riadh; Rebai, Tarek; Oudadesse, Hassane; Ellouz, Zoubaier; Keskese, Hassib; El Feki, Abdelfattah; El Feki, Hafed

    2012-01-01

    Background Carbonated hydroxyapatite (CHA) and related calcium phosphates have been studied for many years as implant materials due to their similarity with the mineral phase of bone. The main limitation of CHA ceramics as well as other bioactive materials is that they have poor mechanical proprieties. It is thought that the mechanical device can cause an increase in metabolic activity and bone healing. In this study we investigated the reactivity and tissue behaviour of implanted CHA biomaterial reinforced by mini external fixator. Methods The evaluation of biomaterial biocompatibility and osteogenesis was performed on a rabbit model over a period of 6 weeks by radiological, histological and scanning electron microscopy (SEM) coupled with energy dispersive X-ray SEM-energy-dispersive X-ray (EDX) analysis. Results While rabbits treated with CHA exhibited more bone formation, and fibrous tissue was observed when empty bone defects were observed. EDX analysis detected little calcium and phosphorus on the surface of the bone that was not implanted, while high content of calcium (62.7%) and phosphorus (38%) was found on the interface bone cement. Conclusions Bone repairing showed that the mini external fixator stimulated the ossification which was pushed when grafted by CHA. This effect may play an important role in the prevention of implant loosening. PMID:23109978

  9. Experimental study of plasmon in a grating coupled graphene device with a resonant cavity

    NASA Astrophysics Data System (ADS)

    Yan, Bo; Fang, Jingyue; Qin, Shiqiao; Liu, Yongtao; Zhou, Yingqiu; Li, Renbing; Zhang, Xue-Ao

    2015-11-01

    Plasmon was probed from graphene which was grown by chemical vapor deposition using terahertz time-domain spectroscopy at room temperature. Graphene was laid on a resonant cavity, and metal grating was then deposited on top of them. For the THz light polarized along the grid fingers, the optical conductivity of graphene changed from Drude response into strongly Lorentz behavior with a peak formed in the THz-region. These experimental results are highly consistent with the theoretical prediction of a single layer graphene. It confirms that the graphene plasmon frequency can be tuned by the length of grating. Moreover, the extinction in the transmission of single-layer graphene can also be increased beyond 60%.

  10. Numerical and experimental evaluation of a compact sensor antenna for healthcare devices.

    PubMed

    Alomainy, A; Yang Hao; Pasveer, F

    2007-12-01

    The paper presents a compact planar antenna designed for wireless sensors intended for healthcare applications. Antenna performance is investigated with regards to various parameters governing the overall sensor operation. The study illustrates the importance of including full sensor details in determining and analysing the antenna performance. A globally optimized sensor antenna shows an increase in antenna gain by 2.8 dB and 29% higher radiation efficiency in comparison to a conventional printed strip antenna. The wearable sensor performance is demonstrated and effects on antenna radiated power, efficiency and front to back ratio of radiated energy are investigated both numerically and experimentally. Propagation characteristics of the body-worn sensor to on-body and off-body base units are also studied. It is demonstrated that the improved sensor antenna has an increase in transmitted and received power, consequently sensor coverage range is extended by approximately 25%. PMID:23852005

  11. An efficient device to experimentally model compression injury of mammalian spinal cord.

    PubMed

    Ropper, Alexander E; Zeng, Xiang; Anderson, Jamie E; Yu, Dou; Han, InBo; Haragopal, Hariprakash; Teng, Yang D

    2015-09-01

    We report an efficient and effective device to reproducibly model clinically relevant spinal cord injury (SCI) via controlled mechanical compression. In the present study, following skin incision, dorsal laminectomy was performed to expose T10 spinal cord of adult female Sprague-Dawley rats (230-250 g). The vertebral column was suspended and stabilized by Allis clamps at T8 and 12 spinous processes. A metal impounder was then gently loaded onto T10 dura (20, 35 or 50 g × 5 min; n=7/group), resulting in acute mild, moderate, or severe standing weight compression, respectively. Neurobehavioral outcomes were evaluated using the BBB locomotor scale and inclined plane test for coordinated hindlimb function, and a battery of spinal reflex tests for sensorimotor functions, at 1 day following SCI and weekly thereafter for 7 weeks. Quantitative histopathology was used to assess injury-triggered loss of white matter, gray matter and ventral horn motor neurons. Immunocytochemical levels of glial fibrillary acidic protein (GFAP) and β-amyloid precursor protein (APP) at the cervical and lumbar regions were measured to determine the distal segment impact of T10 compression. The data demonstrates that the standardized protocol generates weight-dependent hindlimb motosensory deficits and neurodegeneration primarily at and near the lesion epicenter. Importantly, there are significantly increased GFAP and APP expressions in spinal cord segments involved in eliciting post-SCI allodynia. Therefore, the described system reliably produces compression trauma in manners partially emulating clinical quasi-static insults to the spinal cord, providing a pragmatic model to investigate pathophysiological events and potential therapeutics for compression SCI. PMID:26210871

  12. Influence of drop size distribution and fuel vapor fraction on premixed spray combustion

    NASA Astrophysics Data System (ADS)

    Machiroutu, Sridhar Venkatabojji

    Premixed spray combustion is affected by fuel and oxidizer properties, mixture equivalence ratio and spray quality. The spray quality is characterized by a mean droplet diameter (SMD) and a droplet size distribution (DSD). Prior experimental studies have considered only the influence of SMD, in part due to the difficulty in controlling the DSD independently. The present work provides experimental evidence demonstrating the effect of the fuel droplet size distribution and fuel vapor fraction on premixed spray combustion. Combustion experiments were performed in a pilot-ignited, continuous flow, tubular, vertical test rig wherein fuel sprays were injected into an air stream. A novel twin-atomizer technique that allowed control over overall equivalence ratio, SMD, DSD, and fuel vapor fraction of the premixed spray was used to generate test sprays. A line-of-sight, infrared (IR) extinction technique was developed to quantify the fuel vapor fraction in premixed sprays. Radial distributions of fuel vapor were evaluated using an 'onion peeling' deconvolution technique. Combustion of test sprays indicated flame propagation among regions of high fuel vapor fraction to generate a high rate of combustion. In lean premixed sprays, the presence of a low fuel vapor concentration does not impact the combustion process. Experimental evidence demonstrating the enhancement of flame propagation velocity for optimal SMDs of ethanol sprays has been found. It was observed that test sprays with narrower DSDs have faster burning rates and more complete combustion. The DSD of the sprays were characterized with a droplet surface-area-based standard deviation of the DSD.

  13. The role of drop velocity in statistical spray description

    NASA Technical Reports Server (NTRS)

    Groeneweg, J. F.; El-Wakil, M. M.; Myers, P. S.; Uyehara, O. A.

    1978-01-01

    The justification for describing a spray by treating drop velocity as a random variable on an equal statistical basis with drop size was studied experimentally. A double exposure technique using fluorescent drop photography was used to make size and velocity measurements at selected locations in a steady ethanol spray formed by a swirl atomizer. The size velocity data were categorized to construct bivariate spray density functions to describe the spray immediately after formation and during downstream propagation. Bimodal density functions were formed by environmental interaction during downstream propagation. Large differences were also found between spatial mass density and mass flux size distribution at the same location.

  14. SPRAY CHARGING AND TRAPPING SCRUBBER FOR FUGITIVE PARTICLE EMISSION CONTROL

    EPA Science Inventory

    The report gives results of a theoretical and experimental evaluation of the control of fugitive particle emissions (FPE) with a Spray Charging and Trapping (SCAT) Scrubber that uses an air curtain and/or jets to contain, convey, and divert the FPE into a charged spray scrubber. ...

  15. Statistical modeling of ammonia absorption in an acid spray scrubber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of acid spray wet scrubbers for recovering ammonia (NH3) emissions is promising due to its high NH3 removal efficiency, simplicity in design, and minimal pressure drop contribution on fans. An experimental study was conducted to evaluate the performance of a lab-optimised acid spray scrubber...

  16. Spark Ignition of Monodisperse Fuel Sprays. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Danis, Allen M.; Cernansky, Nicholas P.; Namer, Izak

    1987-01-01

    A study of spark ignition energy requirements was conducted with a monodisperse spray system allowing independent control of droplet size, equivalent ratio, and fuel type. Minimum ignition energies were measured for n-heptane and methanol sprays characterized at the spark gap in terms of droplet diameter, equivalence ratio (number density) and extent of prevaporization. In addition to sprays, minimum ignition energies were measured for completely prevaporized mixtures of the same fuels over a range of equivalence ratios to provide data at the lower limit of droplet size. Results showed that spray ignition was enhanced with decreasing droplet size and increasing equivalence ratio over the ranges of the parameters studied. By comparing spray and prevaporized ignition results, the existence of an optimum droplet size for ignition was indicated for both fuels. Fuel volatility was seen to be a critical factor in spray ignition. The spray ignition results were analyzed using two different empirical ignition models for quiescent mixtures. Both models accurately predicted the experimental ignition energies for the majority of the spray conditions. Spray ignition was observed to be probabilistic in nature, and ignition was quantified in terms of an ignition frequency for a given spark energy. A model was developed to predict ignition frequencies based on the variation in spark energy and equivalence ratio in the spark gap. The resulting ignition frequency simulations were nearly identical to the experimentally observed values.

  17. An experimental device for accurate ultrasounds measurements in liquid foods at high pressure

    NASA Astrophysics Data System (ADS)

    Hidalgo-Baltasar, E.; Taravillo, M.; Baonza, V. G.; Sanz, P. D.; Guignon, B.

    2012-12-01

    The use of high hydrostatic pressure to ensure safe and high-quality product has markedly increased in the food industry during the last decade. Ultrasonic sensors can be employed to control such processes in an equivalent way as they are currently used in processes carried out at room pressure. However, their installation, calibration and use are particularly challenging in the context of a high pressure environment. Besides, data about acoustic properties of food under pressure and even for water are quite scarce in the pressure range of interest for food treatment (namely, above 200 MPa). The objective of this work was to establish a methodology to determine the speed of sound in foods under pressure. An ultrasonic sensor using the multiple reflections method was adapted to a lab-scale HHP equipment to determine the speed of sound in water between 253.15 and 348.15 K, and at pressures up to 700 MPa. The experimental speed-of-sound data were compared to the data calculated from the equation of state of water (IAPWS-95 formulation). From this analysis, the way to calibrate cell path was validated. After this calibration procedure, the speed of sound could be determined in liquid foods by using this sensor with a relative uncertainty between (0.22 and 0.32) % at a confidence level of 95 % over the whole pressure domain.

  18. First Experimental Results with a New Type of Stent: The Double-Coil Device

    SciTech Connect

    Strecker, Ernst-Peter Song, Ho-Young; Kang, Sung-Gwon; Hou Dongming; Schumacher, M.

    2003-06-15

    Purpose: To introduce a new stent design and evaluate its technical properties. Methods: This stent consists of two nitinol wires partially connected to each other.After delivery through a catheter a tube-like helical stent forms within the artery. After experimental tests in flow models regarding mechanical properties, introduction and delivery technique, 15 stents were implanted into iliac, femoral, and carotid arteries of seven dogs.After 3-12 weeks angiographic follow-up stents were explanted for microscopic examination. Results: Stents with expanded diameters of 5-10 mm can be introduced through a 5 Fr catheter with 0.038 inch luminal diameter. Thrombotic vessel occlusion was observed in one iliac artery after incorrect stent placement with diameter mismatch. Fourteen of 15 stents remained patent and revealed minor intimal hyperplasia in the areas of the stent strut connection points as well as some reduction in medial thickness. Conclusion: This new stent design has a small introduction diameter which is independent of the expanded diameter. The stent's principal characteristics may serve as a basis for further special developments.

  19. A new experimental device to evaluate eye ulcers using a multispectral electrical impedance technique

    NASA Astrophysics Data System (ADS)

    Bellotti, Mariela I.; Bast, Walter; Berra, Alejandro; Bonetto, Fabián J.

    2011-07-01

    We present a novel experimental technique to determine eye ulcers in animals using a spectral electrical impedance technique. We expect that this technique will be useful in dry eye syndrome. We used a sensor that is basically a platinum (Pt) microelectrode electrically insulated by glass from a cylindrical stainless steel counter-electrode. This sensor was applied to the naked eye of New Zealand rabbits (2.0-3.5 kg in weight). Whereas half of the eyes were normal (control), we applied to the remainder a few drops of 20% (v/v) alcohol to produce an ulcer in the eye. Using a multispectral electrical impedance system we measured ulcerated and control eyes and observed significant difference between normal and pathological samples. We also investigated the effects of different applied pressures and natural degradation of initially normal eyes as a function of time. We believe that this technique could be sufficiently sensitive and repetitive to help diagnose ocular surface diseases such as dry eye syndrome.

  20. Numerical modeling for dilute and dense sprays

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Kim, Y. M.; Shang, H. M.; Ziebarth, J. P.; Wang, T. S.

    1992-01-01

    We have successfully implemented a numerical model for spray-combustion calculations. In this model, the governing gas-phase equations in Eulerian coordinate are solved by a time-marching multiple pressure correction procedure based on the operator-splitting technique. The droplet-phase equations in Lagrangian coordinate are solved by a stochastic discrete particle technique. In order to simplify the calculation procedure for the circulating droplets, the effective conductivity model is utilized. The k-epsilon models are utilized to characterize the time and length scales of the gas phase in conjunction with turbulent modulation by droplets and droplet dispersion by turbulence. This method entails random sampling of instantaneous gas flow properties and the stochastic process requires a large number of computational parcels to produce the satisfactory dispersion distributions even for rather dilute sprays. Two major improvements in spray combustion modelings were made. Firstly, we have developed a probability density function approach in multidimensional space to represent a specific computational particle. Secondly, we incorporate the Taylor Analogy Breakup (TAB) model for handling the dense spray effects. This breakup model is based on the reasonable assumption that atomization and drop breakup are indistinguishable processes within a dense spray near the nozzle exit. Accordingly, atomization is prescribed by injecting drops which have a characteristic size equal to the nozzle exit diameter. Example problems include the nearly homogeneous and inhomogeneous turbulent particle dispersion, and the non-evaporating, evaporating, and burning dense sprays. Comparison with experimental data will be discussed in detail.

  1. Simulation of preburner sprays, volumes 1 and 2

    NASA Technical Reports Server (NTRS)

    Hardalupas, Y.; Whitelaw, J. H.

    1993-01-01

    The present study considered characteristics of sprays under a variety of conditions. Control of these sprays is important as the spray details can control both rocket combustion stability and efficiency. Under the present study Imperial College considered the following: (1) Measurement of the size and rate of spread of the sprays produced by single coaxial airblast nozzles with axial gaseous stream. The local size, velocity, and flux characteristics for a wide range of gas and liquid flowrates were measured, and the results were correlated with the conditions of the spray at the nozzle exit. (2) Examination of the effect of the geometry of single coaxial airblast atomizers on spray characteristics. The gas and liquid tube diameters were varied over a range of values, the liquid tube recess was varied, and the shape of the exit of the gaseous jet was varied from straight to converging. (3) Quantification of the effect of swirl in the gaseous stream on the spray characteristics produced by single coaxial airblast nozzles. (4) Quantification of the effect of reatomization by impingement of the spray on a flat disc positioned around 200 mm from the nozzle exit. This models spray impingement on the turbopump dome during the startup process of the preburner of the SSME. (5) Study of the interaction between multiple sprays without and with swirl in their gaseous stream. The spray characteristics of single nozzles were compared with that of three identical nozzles with their axis at a small distance from each other. This study simulates the sprays in the preburner of the SSME, where there are around 260 elements on the faceplate of the combustion chamber. (6) Design an experimental facility to study the characteristics of sprays at high pressure conditions and at supercritical pressure and temperature for the gas but supercritical pressure and subcritical temperature for the liquid.

  2. Cold spray nozzle design

    DOEpatents

    Haynes, Jeffrey D.; Sanders, Stuart A.

    2009-06-09

    A nozzle for use in a cold spray technique is described. The nozzle has a passageway for spraying a powder material, the passageway having a converging section and a diverging section, and at least the diverging section being formed from polybenzimidazole. In one embodiment of the nozzle, the converging section is also formed from polybenzimidazole.

  3. SPRAY ATOMIZATION MODELS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop protection product labels are now being written with spray droplet spectra classification terms that have specific definitions. Some of these terms are the same as previously used for generic descriptions such as fine or coarse sprays, but these terms used on new product labels have very speci...

  4. Spray momentum measuring system

    NASA Technical Reports Server (NTRS)

    Sheffield, E. W.

    1971-01-01

    Technique enables accurate prediction of erosion and cavitation produced by fluid spray. Method measures high velocity sprays produced by small orifices. Originally designed to determine oxidizer-injection patterns of liquid fueled rocket engines, technique is used with other liquids, or, with appropriate modification, with gases.

  5. Experimental demonstration and devices optimization of NRZ-DPSK amplitude regeneration scheme based on SOAs.

    PubMed

    Cao, Tong; Chen, Liao; Yu, Yu; Zhang, Xinliang

    2014-12-29

    We propose and experimentally demonstrate a novel scheme which can simultaneously realize wavelength-preserving and phase-preserving amplitude noise compression of a 40 Gb/s distorted non-return-to-zero differential-phase-shift keying (NRZ-DPSK) signal. In the scheme, two semiconductor optical amplifiers (SOAs) are exploited. The first one (SOA1) is used to generate the inverted signal based on SOA's transient cross-phase modulation (T-XPM) effect and the second one (SOA2) to regenerate the distorted NRZ-DPSK signal using SOA's cross-gain compression (XGC) effect. In the experiment, the bit error ratio (BER) measurements show that power penalties of constructive and destructive demodulation at BER of 10-9 are -1.75 and -1.01 dB, respectively. As the nonlinear effects and the requirements of the two SOAs are completely different, quantum-well (QW) structures has been separately optimized. A complicated theoretical model by combining QW band structure calculation with SOA's dynamic model is exploited to optimize the SOAs, in which both interband effect (carrier density variation) and intraband effect (carrier temperature variation) are taken into account. Regarding SOA1, we choose the tensile strained QW structure and large optical confinement factor to enhance the T-XPM effect. Regarding SOA2, the compressively strained QW structure is selected to reduce the impact of excess phase noise induced by amplitude fluctuations. Exploiting the optimized QW SOAs, better amplitude regeneration performance is demonstrated successfully through numerical simulation. The proposed scheme is intrinsically stable comparing with the interferometer structure and can be integrated on a chip, making it a practical candidate for all-optical amplitude regeneration of high-speed NRZ-DPSK signal. PMID:25607178

  6. Fabrication of single-electron devices using dispersed nanoparticles and fitting experimental results to values calculated based on percolation model

    NASA Astrophysics Data System (ADS)

    Moriya, Masataka; Huong, Tran Thi Thu; Matsumoto, Kazuhiko; Shimada, Hiroshi; Kimura, Yasuo; Hirano-Iwata, Ayumi; Mizugaki, Yoshinao

    2016-08-01

    We calculated the connection probability, P C, between electrodes on the basis of the triangular lattice percolation model for investigating the effect of distance variation between electrodes and the electrode width on fabricated capacitively coupled single-electron transistors. Single-electron devices were fabricated via the dispersion of gold nanoparticles (NPs). The NPs were dispersed via the repeated dropping of an NP solution onto a chip. The experimental results were fitted to the calculated values, and the fitting parameters were compared with the occupation probability, P O, which was estimated for one drop of the NP solution. On the basis of curves of the drain current versus the drain-source voltage ( I D- V DS) measured at 77 K, the current was suppressed at approximately 0 V.

  7. Experimental Evaluation of a Device Prototype Based on Shape Memory Alloys for the Retrofit of Historical Buildings

    NASA Astrophysics Data System (ADS)

    Cardone, Donatello; Sofia, Salvatore

    2012-12-01

    Metallic tie-rods are currently used in many historical buildings for absorbing the out-of-plane horizontal forces of arches, vaults and roof trusses, despite they exhibit several limitations under service and seismic conditions. In this paper, a post-tensioned system based on the superelastic properties of Ni-Ti shape memory alloys is proposed for improving the structural performances of traditional metallic tie-rods. First, the thermal behavior under service conditions is investigated based on the results of numerical and experimental studies. Subsequently, the seismic performances under strong earthquakes are verified trough a number of shaking table tests on a 1:4-scale timber roof truss model. The outcomes of these studies fully confirm the achievement of the design objectives of the proposed prototype device.

  8. Experimental evaluation of the optical quality of DMD SLM for its application as Fourier holograms displaying device

    NASA Astrophysics Data System (ADS)

    Molodtsov, D. Y.; Cheremkhin, P. A.; Krasnov, V. V.; Rodin, V. G.

    2016-04-01

    In this paper, the optical quality of micromirror DMD spatial light modulator (SLM) is evaluated and its applicability as an output device for holographic filters in dispersive correlators is analyzed. The possibility of using of DMD SLM extracted from consumer DLP-projector was experimentally evaluated by displaying of Fourier holograms. Software for displaying of holograms was developed. Experiments on holograms reconstruction was conducted with a different number of holograms pixels (and different placement on SLM). Reduction of number of pixels of output hologram (i.e. size of minimum resolvable element) led to improvement of reconstructed image quality. The evaluation shows that not every DMD-chip has acceptable optical quality for its application as display device for Fourier holograms. It was determined that major factor of reconstructed image quality degradation is a curvature of surface of SLM or its safety glass. Ranging hologram size allowed to estimate approximate size of sufficiently flat area of SLM matrix. For tested SLM it was about 1.5 mm. Further hologram size increase led to significant reconstructed image quality degradation. Developed and applied a technique allows to quickly estimate maximum size of holograms that can be displayed with specific SLM without significant degradation of reconstructed image. Additionally it allows to identify areas on the SLM with increased curvature of the surface.

  9. Experimental study on using electromagnetic devices on bridge stay cables for simultaneous energy harvesting and vibration damping

    NASA Astrophysics Data System (ADS)

    Shen, Wenai; Zhu, Songye; Zhu, Hongping

    2016-06-01

    Flexible bridge stay cables are often vulnerable to problematic vibrations under dynamic excitations. However, from an energy perspective, such excessive vibrations denote a green and sustainable energy source to some electronic devices (such as semi-active dampers or wireless sensors) installed on the same cables. This paper presents an experimental study on a novel dual-function system called electromagnetic damper cum energy harvester (EMDEH). The proposed EMDEH, consisting of an electromagnetic device connected to an energy-harvesting circuit (EHC), simultaneously harvests cable vibration energy and provides sufficient damping to the cables. A fixed-duty-cycle buck–boost converter is employed as the EHC, which emulates a resistive load and provides approximately optimal damping and optimal energy harvesting efficiency when operating in discontinuous conduction mode. A 5.85 m long scaled stay cable installed with a prototype EMDEH is tested in the laboratory under a series of harmonic and random excitations. The EMDEH can achieve a control performance comparable to passive viscous dampers. An average electrical power of 31.6 and 21.51 mW is harvested under harmonic and random vibrations, respectively, corresponding to the efficiency of 16.9% and 13.8%, respectively. Moreover, this experimental study proves that optimal damping and energy harvesting can be achieved simultaneously, which answers a pending question regarding such a dual-objective optimization problem. Self-powered semi-active control systems or wireless sensor networks may be developed for bridge stay cables in the future based on the proposed concept in this study.

  10. Environmentally compatible spray cement

    SciTech Connect

    Loeschnig, P.

    1995-12-31

    Within the framework of a European research project, Heidelberger Zement developed a quickly setting and hardening binder for shotcrete, called Chronolith S, which avoids the application of setting accelerators. Density and strength of the shotcrete produced with this spray cement correspond to those of an unaccelerated shotcrete. An increased hazard for the heading team and for the environment, which may occur when applying setting accelerators, can be excluded here. Owing to the special setting properties of a spray cement, the process engineering for its manufacturing is of great importance. The treatment of a spray cement as a dry concrete with kiln-dried aggregates is possible without any problems. The use of a naturally damp pre-batched mixture is possible with Chronolith S but requires special process engineering; spray cement and damp aggregate are mixed with one another immediately before entering the spraying machinery.

  11. Quality risk management of top spray fluidized bed process for antihypertensive drug formulation with control strategy engendered by Box-behnken experimental design space

    PubMed Central

    Mukharya, Amit; Patel, Paresh U; Shenoy, Dinesh; Chaudhary, Shivang

    2013-01-01

    Introduction: Lacidipine (LCDP) is a very low soluble and highly biovariable calcium channel blocker used in the treatment of hypertension. To increase its apparent solubility and to reduce its biovariability, solid dispersion fluid bed processing technology was explored, as it produces highly dispersible granules with a characteristic porous structure that enhances dispersibility, wettability, blend uniformity (by dissolving and spraying a solution of actives), flow ability and compressibility of granules for tableting and reducing variability by uniform drug-binder solution distribution on carrier molecules. Materials and Methods: Main object of this quality risk management (QRM) study is to provide a sophisticated “robust and rugged” Fluidized Bed Process (FBP) for the preparation of LCDP tablets with desired quality (stability) and performance (dissolution) by quality by design (QbD) concept. Results and Conclusion: This study is principally focusing on thorough mechanistic understanding of the FBP by which it is developed and scaled up with a knowledge of the critical risks involved in manufacturing process analyzed by risk assessment tools like: Qualitative Initial Risk-based Matrix Analysis (IRMA) and Quantitative Failure Mode Effective Analysis (FMEA) to identify and rank parameters with potential to have an impact on In Process/Finished Product Critical Quality Attributes (IP/FP CQAs). These Critical Process Parameters (CPPs) were further refined by DoE and MVDA to develop design space with Real Time Release Testing (RTRT) that leads to implementation of a control strategy to achieve consistent finished product quality at lab scale itself to prevent possible product failure at larger manufacturing scale. PMID:23799202

  12. Design of a Microgravity Spray Cooling Experiment

    NASA Technical Reports Server (NTRS)

    Baysinger, Kerri M.; Yerkes, Kirk L.; Michalak, Travis E.; Harris, Richard J.; McQuillen, John

    2004-01-01

    An analytical and experimental study was conducted for the application of spray cooling in a microgravity and high-g environment. Experiments were carried out aboard the NASA KC-135 reduced gravity aircraft, which provided the microgravity and high-g environments. In reduced gravity, surface tension flow was observed around the spray nozzle, due to unconstrained liquid in the test chamber and flow reversal at the heat source. A transient analytical model was developed to predict the temperature and the spray heat transfer coefficient within the heated region. Comparison of the experimental transient temperature variation with analytical results showed good agreement for low heat input values. The transient analysis also verified that thermal equilibrium within the heated region could be reached during the 20-25s reduced gravity portion of the flight profile.

  13. A new HVOF thermal spray concept

    SciTech Connect

    Browning, J.A.; Matus, R.J.; Richter, H.J.

    1995-12-31

    HVOF plays an important role in the commercial production of thermal spray coatings from powder. Initially, both the chamber and duct modes were used. Today, the best coatings are produced by high-pressure chamber guns with some manufacturers having switched their designs from the duct to the chamber mode. There has been little or no spraying of wire with HVOF equipment. A new HVOF process -- the shock-stabilized mode -- compliments chamber powder spraying by offering the user a very simple device for wire use. Calculations show that the much higher jet velocities of the chamber mode make that design the better suited for use with powder. Conversely, the greatly increased jet temperatures offered by shock-stabilized combustion give extremely high wire melt-off rates.

  14. Spray Rolling Aluminum Strip

    SciTech Connect

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  15. Evaluation of the efficacy of DDT indoor residual spraying and long-lasting insecticidal nets against insecticide resistant populations of Anopheles arabiensis Patton (Diptera: Culicidae) from Ethiopia using experimental huts

    PubMed Central

    2014-01-01

    Background Indoor Residual Spraying (IRS) and Long-Lasting Insecticidal nets (LLINs) are major malaria vector control tools in Ethiopia. However, recent reports from different parts of the country showed that populations of Anopheles arabiensis, the principal malaria vector, have developed resistance to most families of insecticides recommended for public health use which may compromise the efficacy of both of these key vector control interventions. Thus, this study evaluated the efficacy of DDT IRS and LLINs against resistant populations of An. arabiensis using experimental huts in Asendabo area, southwestern Ethiopia. Methods The susceptibility status of populations of An. arabiensis was assessed using WHO test kits to DDT, deltamethrin, malathion, lambda-cyhalothrin, fenitrothion and bendiocarb. The efficacy of LLIN (PermaNet® 2.0), was evaluated using the WHO cone bioassay. Moreover, the effect of the observed resistance against malaria vector control interventions (DDT IRS and LLINs) were assessed using experimental huts. Results The findings of this study revealed that populations of An. arabiensis were resistant to DDT, deltamethrin, lambda-cyhalothrin and malathion with mortality rates of 1.3%, 18.8%, 36.3% and 72.5%, respectively but susceptible to fenitrothion and bendiocarb with mortality rates of 98.81% and 97.5%, respectively. The bio-efficacy test of LLIN (PermaNet® 2.0) against An. arabiensis revealed that the mosquito population showed moderate knockdown (64%) and mortality (78%). Moreover, mosquito mortalities in DDT sprayed huts and in huts with LLINs were not significantly different (p > 0.05) from their respective controls. Conclusion The evaluation of the efficacy of DDT IRS and LLINs using experimental huts showed that both vector control tools had only low to moderate efficacy against An. arabiensis populations from Ethiopia. Despite DDT being replaced by carbamates for IRS, the low efficacy of LLINs against the resistant population of An

  16. An overview of spray drift reduction testing of spray nozzles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The importance of the development and testing of drift reduction technologies (DRTs) is increasing. Common spray drift reduction technologies include spray nozzles and spray adjuvants. Following draft procedures developed for a DRT program, three spray nozzles were tested under high air speed cond...

  17. Spray drift mitigation with spray mix adjuvants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous drift reduction adjuvants and spray deposition aids are available to applicators of crop production and protection chemicals. Performance of many of the newly introduced drift control adjuvants has not been well documented for aerial application. Four new drift control adjuvants were sele...

  18. Cleaning of ITO glass with carbon dioxide snow jet spray

    NASA Astrophysics Data System (ADS)

    Li, Jun-jian; Qi, Tong; Li, Shu-lin; Zhao, Guang

    2007-12-01

    ITO glass cleaning is LCD, OLED and other flat panel display industry's key technologies. At present, the usual wet cleaning technology consumes large amount of water and chemicals, and produces a large amount of contaminant venting. CO II snow jet spray cleaning has been successfully applied to cleaning the surface of semiconductor chip, vacuum devices and space telescopes. Surface cleaning of indium tin oxide (ITO) film was carried out with carbon dioxide snow jet treatment .Based on the measurements of the contact angles, X-ray photoelectron spectroscopy and scanning electron microscopy (SEM) ,the influence of carbon dioxide snow jet treatment on surface cleaning of indium tin Oxide film was investigated and compared with the samples of low frequency immersion ultrasonic cleaning. Experimental data show that the carbon dioxide snow jet treatment effectively removes particulate and hydrocarbon on ITO surface.

  19. Plasma Spray System

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Computer aided, fully-automatic TRW system sprays very hot plasma onto a turbine blade. Composed of gas into which metallic and ceramic powders have been injected, the plasma forms a two-layer coating which insulates the blade. Critical part of operation is controlling the thickness of the deposit which is measured in thousandths of an inch. This is accomplished by an optical detector which illuminates spots at various locations on the blade and determines thickness by measuring the light reflections. Optical sensor monitors spraying process until precise thickness is attained, then computer halts the spraying.

  20. High velocity pulsed plasma thermal spray

    NASA Astrophysics Data System (ADS)

    Witherspoon, F. D.; Massey, D. W.; Kincaid, R. W.; Whichard, G. C.; Mozhi, T. A.

    2002-03-01

    The quality and durability of coatings produced by many thermal spray techniques could be improved by increasing the velocity with which coating particles impact the substrate. Additionally, better control of the chemical and thermal environment seen by the particles during flight is crucial to the quality of the coating. A high velocity thermal spray device is under development through a Ballistic Missile Defense Organization Small Business Innovation Research (SBIR) project, which provides significantly higher impact velocity for accelerated particles than is currently available with existing thermal spray devices. This device utilizes a pulsed plasma as the accelerative medium for powders introduced into the barrel. Recent experiments using a particle imaging diagnostic system showed that the device can accelerate stainless steel and WC-Co powders to velocities ranging from 1500 to 2200 m/s. These high velocities are accomplished without the use of combustible gases and without the need of a vacuum chamber, while maintaining an inert atmosphere for the particles during acceleration. The high velocities corresponded well to modeling predictions, and these same models suggest that velocities as high as 3000 m/s or higher are possible.

  1. Measurement Of Water Sprays Generated By Airplane Tires

    NASA Technical Reports Server (NTRS)

    Daugherty, Robert H.; Stubbs, Sandy M.

    1990-01-01

    Experimental investigation conducted at NASA Langley Research Center to measure rate of flow and trajectory of water spray generated by tire operating on flooded runway. Potential application to both aircraft and automotive industries, with particular application to manufacturers of tires.

  2. Measurement of spray combustion processes

    NASA Technical Reports Server (NTRS)

    Peters, C. E.; Arman, E. F.; Hornkohl, J. O.; Farmer, W. M.

    1984-01-01

    A free jet configuration was chosen for measuring noncombusting spray fields and hydrocarbon-air spray flames in an effort to develop computational models of the dynamic interaction between droplets and the gas phase and to verify and refine numerical models of the entire spray combustion process. The development of a spray combustion facility is described including techniques for laser measurements in spray combustion environments and methods for data acquisition, processing, displaying, and interpretation.

  3. Spray Rolling Aluminum Strip for Transportation Applications

    SciTech Connect

    Kevin M. McHugh; Y. Lin; Y. Zhou; E. J. Lavernia; J.-P. Delplanque; S. B. Johnson

    2005-02-01

    Spray rolling is a novel strip casting technology in which molten aluminum alloy is atomized and deposited into the roll gap of mill rolls to produce aluminum strip. A combined experimental/modeling approach has been followed in developing this technology with active participation from industry. The feasibility of this technology has been demonstrated at the laboratory scale and it is currently being scaled-up. This paper provides an overview of the process and compares the microstructure and properties of spray-rolled 2124 aluminum alloy with commercial ingot-processed material

  4. Supersonic-Spray Cleaner

    NASA Technical Reports Server (NTRS)

    Caimi, Raoul E. B.; Lin, Feng-Nan; Thaxton, Eric A.

    1995-01-01

    Spraying system for cleaning mechanical components uses less liquid and operates at pressures significantly lower. Liquid currently used is water. Designed to replace chlorofluorocarbon (CFC) solvent-based cleaning and cleanliness verification methods. Consists of spray head containing supersonic converging/diverging nozzles, source of gas at regulated pressure, pressurized liquid tank, and various hoses, fittings, valves, and gauges. Parameters of nozzles set so any of large variety of liquids and gases combined in desired ratio and rate of flow. Size and number of nozzles varied so system built in configurations ranging from small hand-held spray heads to large multinozzle cleaners. Also used to verify part adequately cleaned. Runoff liquid from spray directed at part collected. Liquid analyzed for presence of contaminants, and part recleaned if necessary.

  5. Bug spray poisoning

    MedlinePlus

    ... effective bug sprays contain pyrethrins. Pyrethrins are a pesticide made from the chrysanthemum flower. It is generally ... death. References Borron SW. Pyrethrins, repellants, and other pesticides. In: Shannon MW, Borron SW, Burns MJ, eds. ...

  6. Mometasone Nasal Spray

    MedlinePlus

    ... sneezing, stuffy, runny, itchy nose) caused by the common cold. Mometasone nasal spray is in a class of ... taking, as well as any products such as vitamins, minerals, or other dietary supplements. You should bring ...

  7. Beclomethasone Nasal Spray

    MedlinePlus

    ... relieve symptoms of sneezing, runny, stuffy, or itchy nose (rhinitis) caused by hay fever, other allergies, or ... nasal polyps (swelling of the lining of the nose) after nasal polyp removal surgery. Beclomethasone nasal spray ...

  8. Budesonide Nasal Spray

    MedlinePlus

    ... used to relieve sneezing, runny, stuffy, or itchy nose caused by hay fever or other allergies (caused ... treat symptoms (e.g., sneezing, stuffy, runny, itchy nose) caused by the common cold. Budesonide nasal spray ...

  9. Mometasone Nasal Spray

    MedlinePlus

    ... relieve symptoms of sneezing, runny, stuffy, or itchy nose caused by hay fever or other allergies. It ... nasal polyps (swelling of the lining of the nose). Mometasone nasal spray should not be used to ...

  10. Bug spray poisoning

    MedlinePlus

    ... effective bug sprays contain pyrethrins. Pyrethrins are a pesticide made from the chrysanthemum flower. It is generally ... Borron SW. Pyrethrins, repellants, and other pesticides. In: Shannon ... of Poisoning and Drug Overdose . 4th ed. Philadelphia, PA: ...

  11. Olopatadine Nasal Spray

    MedlinePlus

    ... a stuffy, runny or itchy nose caused by allergic rhinitis (hay fever). Olopatadine is in a class of ... Olopatadine nasal spray controls the symptoms of seasonal allergic rhinitis, but does not cure these condition. Continue to ...

  12. Nasal corticosteroid sprays

    MedlinePlus

    ... Allergic rhinitis symptoms , such as congestion, runny nose, sneezing, itching, or swelling of the nasal passageway Nasal ... Repeat these steps for the other nostril. Avoid sneezing or blowing your nose right after spraying.

  13. Nicotine Nasal Spray

    MedlinePlus

    ... the bottle in front of a tissue or paper towel. Pump the spray bottle six to eight times ... up the spill immediately with a cloth or paper towel. Avoid touching the liquid. Throw away the used ...

  14. Beclomethasone Nasal Spray

    MedlinePlus

    ... the lining of the nose) after nasal polyp removal surgery. Beclomethasone nasal spray should not be used ... as well as any products such as vitamins, minerals, or other dietary supplements. You should bring this ...

  15. Ciclesonide Nasal Spray

    MedlinePlus

    ... used to treat the symptoms of seasonal (occurs only at certain times of the year), and perennial ( ... prescribed by your doctor.Ciclesonide nasal spray is only for use in the nose. Do not swallow ...

  16. Fentanyl Sublingual Spray

    MedlinePlus

    Fentanyl sublingual spray is used to treat breakthrough pain (sudden episodes of pain that occur despite round ... effects of the medication) to narcotic pain medications. Fentanyl is in a class of medications called narcotic ( ...

  17. Fentanyl Nasal Spray

    MedlinePlus

    Fentanyl nasal spray is used to treat breakthrough pain (sudden episodes of pain that occur despite round ... effects of the medication) to narcotic pain medications. Fentanyl is in a class of medications called narcotic ( ...

  18. Spray applicator for spraying coatings and other fluids in space

    NASA Technical Reports Server (NTRS)

    Kuminecz, J. F.; Lausten, M. F. (Inventor)

    1985-01-01

    A self contained spray application is developed for one handed operation in a zero gravity vacuum environment by a free flying astronaut not attached to any spacecraft. This spray applicator eliminates contamination of the operator by back spray. This applicator includes a rigid accumulator containment of a fluid within a flexible bladder the fluid being urged out of the accumulator under pressure through a spray gun. The spray gun includes a spring loaded lockable trigger which controls a valve. When in an open position, the fluid passes through the valve into the ambient environment in the form of a spray. A spray shield is provided which directs the flow of the spray from the applicator by trapping errant particles of spray yet allowing the passage of escaping gases through its material.

  19. Some Effects of Air and Fuel Oil Temperatures on Spray Penetration and Dispersion

    NASA Technical Reports Server (NTRS)

    Gelalles, A G

    1930-01-01

    Presented here are experimental results obtained from a brief investigation of the appearance, penetration, and dispersion of oil sprays injected into a chamber of highly heated air at atmospheric pressure. The development of single sprays injected into a chamber containing air at room temperature and at high temperature was recorded by spray photography equipment. A comparison of spray records showed that with the air at the higher temperature, the spray assumed the appearance of thin, transparent cloud, the greatest part of which rapidly disappeared from view. With the chamber air at room temperature, a compact spray with an opaque core was obtained. Measurements of the records showed a decrease in penetration and an increase in the dispersion of the spray injected into the heated air. No ignition of the fuel injected was observed or recorded until the spray particles came in contact with the much hotter walls of the chamber about 0.3 second after the start of injection.

  20. Metal atomization spray nozzle

    DOEpatents

    Huxford, Theodore J.

    1993-01-01

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal.

  1. Metal atomization spray nozzle

    DOEpatents

    Huxford, T.J.

    1993-11-16

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.

  2. Directed spray mast

    DOEpatents

    Nance, Thomas A.; Siddall, Alvin A.; Cheng, William Y.; Counts, Kevin T.

    2005-05-10

    Disclosed is an elongated, tubular, compact high pressure sprayer apparatus for insertion into an access port of vessels having contaminated interior areas that require cleaning by high pressure water spray. The invention includes a spray nozzle and a camera adjacent thereto with means for rotating and raising and lowering the nozzle so that areas identified through the camera may be cleaned with a minimum production of waste water to be removed.

  3. Portable Spray Booth

    NASA Technical Reports Server (NTRS)

    Hansen, Timothy D.; Bardwell, Micheal J.

    1996-01-01

    Portable spray booth provides for controlled application of coating materials with high solvent contents. Includes contoured shroud and carbon filter bed limiting concentration of fumes in vicinity. Designed to substitute spraying for brush application of solvent-based adhesive prior to installing rubber waterproof seals over joints between segments of solid-fuel rocket motor. With minor adjustments and modifications, used to apply other solvent-based adhesives, paints, and like.

  4. Thermally sprayed coatings

    SciTech Connect

    Diaz, D.J.; Blann, G.A. )

    1991-05-01

    Standardization of specimen preparation for microstructural evaluation of thermally sprayed coatings is considered. Metallographic specimen preparation procedures including sectioning, encapsulation, planar grinding, and power lapping of thermally sprayed coatings are described. A Co-Ni-Cr-W coating on an AISI 410 stainless steel substrate is used as a control sample. Specimen-preparation techniques have been evaluated through scanning electron microscopy for determining the percentage of apparent porosity and energy dispersive spectroscopy for determining elemental composition.

  5. Analysis of polydisperse fuel spray flame

    NASA Astrophysics Data System (ADS)

    Nave, Ophir; Lehavi, Yaron; Ajadi, Suraju; Gol'dshtein, Vladimir

    2016-06-01

    In this paper we analyzed the model of polydisperse fuel spray flame by using the sectional approach to describe the droplet-droplet interaction within the spray. The radii of the droplets are described by a probability density function. Our numerical simulations include a comparative analysis between three empirical droplet size distributions: the Rosin-Rammler distribution, the log-normal distribution and the Nakiyama-Tanasawa distribution. The log-normal distribution was found to produce a reasonable approximation to both the number and volume size distribution function. In addition our comparative analysis includes the application of the homotopy analysis method which yields convergent solutions for all values of the relevant parameters. We compared the above results to experimental fuel spray data such as {{Tetralin}} , n-{{Decane}} , and n-{{Heptane}} .

  6. Tomographical transformation of Malvern spray measurements

    NASA Technical Reports Server (NTRS)

    Zhu, H. M.; Sun, T. Y.; Chigier, N.

    1987-01-01

    A new method is described which directly transforms Malvern line-integral data into point measurements of the radial drop mean size distribution and liquid volume concentration distribution. The transformed results have been compared with experimental point measurements by photography and the phase/Doppler spray analyzer. The comparison reveals the relation between point measurements and line-of-sight measurements. Three kinds of nozzles were investigated. After tomographical transformation of the Malvern results the different structures of the spray are revealed. A newly derived formula simplifies the transformation procedure. This method provides a direct means to extend the applicability of the Malvern particle sizer and has the potential to be developed for use in unsymmetric sprays.

  7. Theoretical and experimental study of the role of cell-cell dipole interaction in dielectrophoretic devices: application to polynomial electrodes

    PubMed Central

    2014-01-01

    Background We aimed to investigate the effect of cell-cell dipole interactions in the equilibrium distributions in dielectrophoretic devices. Methods We used a three dimensional coupled Monte Carlo-Poisson method to theoretically study the final distribution of a system of uncharged polarizable particles suspended in a static liquid medium under the action of an oscillating non-uniform electric field generated by polynomial electrodes. The simulated distributions have been compared with experimental ones observed in the case of MDA-MB-231 cells in the same operating conditions. Results The real and simulated distributions are consistent. In both cases the cells distribution near the electrodes is dominated by cell-cell dipole interactions which generate long chains. Conclusions The agreement between real and simulated cells’ distributions demonstrate the method’s reliability. The distribution are dominated by cell-cell dipole interactions even at low density regimes (105 cell/ml). An improved estimate for the density threshold governing the interaction free regime is suggested. PMID:24903282

  8. NATURAL GAS VARIABILITY IN CALIFORNIA: ENVIRONMENTAL IMPACTS AND DEVICE PERFORMANCE EXPERIMENTAL EVALUATION OF POLLUTANT EMISSIONS FROM RESIDENTIAL APPLIANCES

    SciTech Connect

    Singer, Brett C.; Apte, Michael G.; Black, Douglas R.; Hotchi, Toshifumi; Lucas, Donald; Lunden, Melissa M.; Mirer, Anna G.; Spears, Michael; Sullivan, Douglas P.

    2009-12-01

    The effect of liquefied natural gas on pollutant emissions was evaluated experimentally with used and new appliances in the laboratory and with appliances installed in residences, targeting information gaps from previous studies. Burner selection targeted available technologies that are projected to comprise the majority of installed appliances over the next decade. Experiments were conducted on 13 cooktop sets, 12 ovens, 5 broiler burners, 5 storage water heaters, 4 forced air furnaces, 1 wall furnace, and 6 tankless water heaters. Air-free concentrations and fuel-based emission factors were determined for carbon monoxide, nitrogen oxides, nitrogen dioxide, and the number of (predominantly ultrafine) particles over complete burns?including transient effects (device warm-up and intermittent firing of burners) following ignition--and during more stable end-of-burn conditions. Formaldehyde was measured over multi-burn cycles. The baseline fuel was Northern California line gas with Wobbe number (a measure of fuel energy delivery rate) of 1320-1340; test fuels had Wobbe numbers of roughly 1390 and 1420, and in some cases 1360. No ignition or operational problems were observed during test fuel use. Baseline emissions varied widely across and within burner groups and with burner operational mode. Statistically significant emissions changes were observed for some pollutants on some burners.

  9. Experimental and Numerical Investigations of Effects of Flow Control Devices Upon Flat-Plate Film Cooling Performance.

    PubMed

    Kawabata, Hirokazu; Funazaki, Ken-Ichi; Nakata, Ryota; Takahashi, Daichi

    2014-06-01

    This study deals with the experimental and numerical studies of the effect of flow control devices (FCDs) on the film cooling performance of a circular cooling hole on a flat plate. Two types of FCDs with different heights are examined in this study, where each of them is mounted to the flat plate upstream of the cooling hole by changing its lateral position with respect to the hole centerline. In order to measure the film effectiveness as well as heat transfer downstream of the cooling hole with upstream FCD, a transient method using a high-resolution infrared camera is adopted. The velocity field downstream of the cooling hole is captured by 3D laser Doppler velocimeter (LDV). Furthermore, the aerodynamic loss associated with the cooling hole with/without FCD is measured by a total pressure probe rake. The experiments are carried out at blowing ratios ranging from 0.5 to 1.0. In addition, numerical simulations are also made to have a better understanding of the flow field. LES approach is employed to solve the flow field and visualize the vortex structure around the cooling hole with FCD. When a taller FCD is mounted to the plate, the film effectiveness tends to increase due to the vortex structure generated by the FCD. As FCD is laterally shifted from the centerline, the film effectiveness increases, while the lift-off of cooling air is also promoted when FCD is put on the center line. PMID:25278646

  10. Hydroxide absorption heat pumps with spray absorber

    SciTech Connect

    Summerer, F.; Alefeld, G.; Zeigler, F.; Riesch, P.

    1996-11-01

    The absorber is one of the most expensive components of an absorption heat pump or chiller, respectively. In order to reduce the cost of a heat exchanger, much effort is invested into searching for additives for heat transfer enhancement. Another way to reduce heat exchanger cost, especially for machines with low capacities, is to use an adiabatic spray absorber. The basic principles of the spray absorber is to perform heat and mass transfer separated from each other in two different components. In this way the heat can be rejected effectively in a liquid-liquid heat exchanger, whereas the mass transfer occurs subsequently in a simple vessel. The spray technique can not only save heat exchanger cost in conventional absorption systems working with water and lithium bromide, it also allows the use of quite different working fluids such as hydroxides, which have lower heat transfer coefficients in falling films. Moreover, the separated heat transfer can easily be performed in a liquid-to-air heat exchanger. Hence it is obvious to use hydroxides that allow for a high temperature lift for building an air-cooled chiller with spray absorber. In this presentation theoretical and experimental investigations of the spray absorber as well as the setup will be described. Finally, possible applications will be outlined.

  11. Containment atmosphere response to external sprays

    SciTech Connect

    Green, J.; Almenas, K.

    1995-09-01

    The application of external sprays to a containment steel shell can be an effective energy removal method and has been proposed in the passive AP-600 design. Reduction of the steel shell temperature in contact with the containment atmosphere enhances both heat and mass transfer driving forces. Large scale experimental data in this area is scarce, therefore the measurements obtained from the E series tests conducted at the German HDR facility deserve special attention. These long term tests simulated various severe accident conditions, including external spraying of the hemispherical steel shell. This investigation focuses upon the integral response of the HDR containment atmosphere during spray periods and upon methods by which lumped parameter system codes, like CONTAIN, model the underlying condensation phenomena. Increases in spray water flowrates above a minimum value were ineffective at improving containment pressure reduction since the limiting resistance for energy transfer lies in the noncondensable-vapor boundary layer at the inner condensing surface. The spray created an unstable condition by cooling the upper layers of a heated atmosphere and thus inducing global natural circulation flows in the facility and subsequently, abrupt changes in lighter-than-air noncondensable (J{sub 2}/He) concentrations. Modeling results using the CONTAIN code are outlined and code limitations are delineated.

  12. Research on HOPE heat sink device

    NASA Astrophysics Data System (ADS)

    Itagaki, Haruaki; Yamamoto, Takanobu; Iida, Tooru; Ishii, Yasuo

    1992-08-01

    An overview of the research on H-2 Orbiting Plane (HOPE) Heat Sink Device (HSD) is presented. A spray nozzle was trial produced and tested to improve spray distribution, and data for assessing spray distribution under presumed heating surface temperature distribution were obtained. Fundamental tests on evaporation and cooling (cooled fluid was freon) were conducted simulating dome flushing evaporation system for high vacuum HSD with the spray nozzle and the dome configuration were conducted to assess its cooling characteristics and frosting phenomena. Sprayed water flow rate via spray cooling efficiency and sprayed water flow rate via freon inlet temperature at the frosting limit relationships were obtained. HSD systems for low-altitude use and oil cooling were traded off.

  13. Optimal feature extraction for segmentation of Diesel spray images.

    PubMed

    Payri, Francisco; Pastor, José V; Palomares, Alberto; Juliá, J Enrique

    2004-04-01

    A one-dimensional simplification, based on optimal feature extraction, of the algorithm based on the likelihood-ratio test method (LRT) for segmentation in colored Diesel spray images is presented. If the pixel values of the Diesel spray and the combustion images are represented in RGB space, in most cases they are distributed in an area with a given so-called privileged direction. It is demonstrated that this direction permits optimal feature extraction for one-dimensional segmentation in the Diesel spray images, and some of its advantages compared with more-conventional one-dimensional simplification methods, including considerably reduced computational cost while accuracy is maintained within more than reasonable limits, are presented. The method has been successfully applied to images of Diesel sprays injected at room temperature as well as to images of sprays with evaporation and combustion. It has proved to be valid for several cameras and experimental arrangements. PMID:15074419

  14. Numerical and experimental study on the flow distribution in a water manifold

    NASA Astrophysics Data System (ADS)

    Min, Gwansik; Jong Lee, Pil; Kang, Jong Hoon

    2016-03-01

    This study presents water distribution analysis of the device for spraying cooling water through specific nozzles numerically and experimentally. Numerical analysis was performed using the 3-D incompressible, multi-phase flow model, for different Reynolds numbers of 4 × 105, 8 × 105. Experimental analysis was performed at real-size, under the same conditions. The calculated results and the measured results for the distribution of flow were matched relatively well. The distribution of the nozzle flow depends on the Reynolds number.

  15. Measurements in liquid fuel sprays

    NASA Technical Reports Server (NTRS)

    Chigier, N.

    1984-01-01

    Techniques for studying the events directly preceding combustion in the liquid fuel sprays are being used to provide information as a function of space and time on droplet size, shape, number density, position, angle of flight and velocity. Spray chambers were designed and constructed for: (1) air-assist liquid fuel research sprays; (2) high pressure and temperature chamber for pulsed diesel fuel sprays; and (3) coal-water slurry sprays. Recent results utilizing photography, cinematography, and calibration of the Malvern particle sizer are reported. Systems for simultaneous measurement of velocity and particle size distributions using laser Doppler anemometry interferometry and the application of holography in liquid fuel sprays are being calibrated.

  16. Hydrolysis of CuCl{sub 2} in the Cu-Cl thermochemical cycle for hydrogen production : experimental studies using a spray reactor with an ultrasonic atomizer.

    SciTech Connect

    Ferrandon, M. S.; Lewis, M. A.; Alvarez, F.; Shafirovich, E.; Chemical Sciences and Engineering Division; Univ. of Texas at El Paso

    2010-03-01

    The Cu-Cl thermochemical cycle is being developed as a hydrogen production method. Prior proof-of-concept experimental work has shown that the chemistry is viable while preliminary modeling has shown that the efficiency and cost of hydrogen production have the potential to meet DOE's targets. However, the mechanisms of CuCl{sub 2} hydrolysis, an important step in the Cu-Cl cycle, are not fully understood. Although the stoichiometry of the hydrolysis reaction, 2CuCl{sub 2} + H{sub 2}O {leftrightarrow} Cu{sub 2}OCl{sub 2} + 2HCl, indicates a necessary steam-to-CuCl{sub 2} molar ratio of 0.5, a ratio as high as 23 has been typically required to obtain near 100% conversion of the CuCl{sub 2} to the desired products at atmospheric pressure. It is highly desirable to conduct this reaction with less excess steam to improve the process efficiency. Per Le Chatelier's Principle and according to the available equilibrium-based model, the needed amount of steam can be decreased by conducting the hydrolysis reaction at a reduced pressure. In the present work, the experimental setup was modified to allow CuCl{sub 2} hydrolysis in the pressure range of 0.4-1 atm. Chemical and XRD analyses of the product compositions revealed the optimal steam-to-CuCl{sub 2} molar ratio to be 20-23 at 1 atm pressure. The experiments at 0.4 atm and 0.7 atm showed that it is possible to lower the steam-to-CuCl{sub 2} molar ratio to 15, while still obtaining good yields of the desired products. An important effect of running the reaction at reduced pressure is the significant decrease of CuCl concentration in the solid products, which was not predicted by prior modeling. Possible explanations based on kinetics and residence times are suggested.

  17. Control of High-Speed Spray Flows Using a Steady, Parallel Control Flow Under the Influence of the Coanda Effect

    NASA Astrophysics Data System (ADS)

    Allen, Dustin; Smith, Barton

    2007-11-01

    An experimental demonstration of a jet vectoring technique used in our novel spray device called a Coanda-assisted Spray Manipulation (CSM) nozzle is presented. The CSM makes use of a Coanda-like effect on axisymmetric geometries through the interaction of a high volume-flow primary jet flowing through the center of a collar and a secondary high-momentum jet parallel to the first and adjacent to a convex collar. The control jet attaches to the convex wall and vectors due to the Coanda effect, entraining and vectoring the primary jet, resulting in controllable r-theta directional spraying. Various annular secondary exit holes and curved wall radii were tested over a range of momentum flux ratios to study the effects of these variables on the vectored jet angle. Particle Image Velocimetry (PIV) was used to determine the vectoring angle and the profile of the primary jet in each experiment. The experiments show that the secondary exit hole size and curve wall radius, along with the momentum ratios of the two jets predominantly affect the vectoring angle of the primary jet. Also, the jet profile is largely unchanged with vectoring for high velocity flows, which is important for the thermal spray applications for which CSM will be used.

  18. Thermal spray processing

    SciTech Connect

    Herman, H.; Berndt, C.C.

    1995-03-01

    Thermal spray processing has been used for a number of years to cost-effecticely apply TBC`s for a wide range of heat engine applications. In particular, bond coats are applied by plasma spray and HVOF techniques and partially-stabilized zirconia top coats are applied by plasma spray methods. Thermal spray involves melting and rapid transport of the molten particles to the substrate, where high-rate solidification and coating build-up occur. It is the very nature of this melt processing that leads to the unique layered microstructure, as well as the apparent imperfections, so readily identified with thermal spray. Modeling the process, process-induced residual stresses, and thermal conductivity will be discussed in light of a new understanding of porosity and its anisotropy. Microcracking can be understood using new approaches, allowing a fuller view of the processing-performance connection. Detailed electron microscopic, novel neutron diffraction and fracture analysis of the deposits can lead to a better understanding of how overall microstructure can be controlled to influence critical properties of the deposited TBC system.

  19. Thermal spray processing

    NASA Technical Reports Server (NTRS)

    Herman, H.; Berndt, C. C.

    1995-01-01

    Thermal spray processing has been used for a number of years to cost-effecticely apply TBC's for a wide range of heat engine applications. In particular, bond coats are applied by plasma spray and HVOF techniques and partially-stabilized zirconia top coats are applied by plasma spray methods. Thermal spray involves melting and rapid transport of the molten particles to the substrate, where high-rate solidification and coating build-up occur. It is the very nature of this melt processing that leads to the unique layered microstructure, as well as the apparent imperfections, so readily identified with thermal spray. Modeling the process, process-induced residual stresses, and thermal conductivity will be discussed in light of a new understanding of porosity and its anisotropy. Microcracking can be understood using new approaches, allowing a fuller view of the processing-performance connection. Detailed electron microscopic, novel neutron diffraction and fracture analysis of the deposits can lead to a better understanding of how overall microstructure can be controlled to influence critical properties of the deposited TBC system.

  20. Miniature spray-painting booth

    NASA Technical Reports Server (NTRS)

    Fee, K. W.

    1970-01-01

    Transparent spray booth provides method for quality painting and repair of surfaces in clean room or other specialized environments. Overspray and virtually all contaminating vapor and odor can be eliminated. Touch-up painting is achieved with spray gun.

  1. SPRAY CALCINATION REACTOR

    DOEpatents

    Johnson, B.M.

    1963-08-20

    A spray calcination reactor for calcining reprocessin- g waste solutions is described. Coaxial within the outer shell of the reactor is a shorter inner shell having heated walls and with open regions above and below. When the solution is sprayed into the irner shell droplets are entrained by a current of gas that moves downwardly within the inner shell and upwardly between it and the outer shell, and while thus being circulated the droplets are calcined to solids, whlch drop to the bottom without being deposited on the walls. (AEC) H03 H0233412 The average molecular weights of four diallyl phthalate polymer samples extruded from the experimental rheometer were redetermined using the vapor phase osmometer. An amine curing agent is required for obtaining suitable silver- filled epoxy-bonded conductive adhesives. When the curing agent was modified with a 47% polyurethane resin, its effectiveness was hampered. Neither silver nor nickel filler impart a high electrical conductivity to Adiprenebased adhesives. Silver filler was found to perform well in Dow-Corning A-4000 adhesive. Two cascaded hot-wire columns are being used to remove heavy gaseous impurities from methane. This purified gas is being enriched in the concentric tube unit to approximately 20% carbon-13. Studies to count low-level krypton-85 in xenon are continuing. The parameters of the counting technique are being determined. The bismuth isotopes produced in bismuth irradiated for polonium production are being determined. Preliminary data indicate the presence of bismuth207 and bismuth-210m. The light bismuth isotopes are probably produced by (n,xn) reactions bismuth-209. The separation of uranium-234 from plutonium-238 solutions was demonstrated. The bulk of the plutonium is removed by anion exchange, and the remainder is extracted from the uranium by solvent extraction techniques. About 99% of the plutonium can be removed in each thenoyltrifluoroacetone extraction. The viscosity, liquid density, and

  2. Acoustic effects of sprays

    NASA Technical Reports Server (NTRS)

    Pindera, Maciej Z.; Przekwas, Andrzej J.

    1994-01-01

    Since the early 1960's, it has been known that realistic combustion models for liquid fuel rocket engines should contain at least a rudimentary treatment of atomization and spray physics. This is of particular importance in transient operations. It has long been recognized that spray characteristics and droplet vaporization physics play a fundamental role in determining the stability behavior of liquid fuel rocket motors. This paper gives an overview of work in progress on design of a numerical algorithm for practical studies of combustion instabilities in liquid rocket motors. For flexibility, the algorithm is composed of semi-independent solution modules, accounting for different physical processes. Current findings are report and future work is indicated. The main emphasis of this research is the development of an efficient treatment to interactions between acoustic fields and liquid fuel/oxidizer sprays.

  3. A user-friendly model for spray drying to aid pharmaceutical product development.

    PubMed

    Grasmeijer, Niels; de Waard, Hans; Hinrichs, Wouter L J; Frijlink, Henderik W

    2013-01-01

    The aim of this study was to develop a user-friendly model for spray drying that can aid in the development of a pharmaceutical product, by shifting from a trial-and-error towards a quality-by-design approach. To achieve this, a spray dryer model was developed in commercial and open source spreadsheet software. The output of the model was first fitted to the experimental output of a Büchi B-290 spray dryer and subsequently validated. The predicted outlet temperatures of the spray dryer model matched the experimental values very well over the entire range of spray dryer settings that were tested. Finally, the model was applied to produce glassy sugars by spray drying, an often used excipient in formulations of biopharmaceuticals. For the production of glassy sugars, the model was extended to predict the relative humidity at the outlet, which is not measured in the spray dryer by default. This extended model was then successfully used to predict whether specific settings were suitable for producing glassy trehalose and inulin by spray drying. In conclusion, a spray dryer model was developed that is able to predict the output parameters of the spray drying process. The model can aid the development of spray dried pharmaceutical products by shifting from a trial-and-error towards a quality-by-design approach. PMID:24040240

  4. A User-Friendly Model for Spray Drying to Aid Pharmaceutical Product Development

    PubMed Central

    Grasmeijer, Niels; de Waard, Hans; Hinrichs, Wouter L. J.; Frijlink, Henderik W.

    2013-01-01

    The aim of this study was to develop a user-friendly model for spray drying that can aid in the development of a pharmaceutical product, by shifting from a trial-and-error towards a quality-by-design approach. To achieve this, a spray dryer model was developed in commercial and open source spreadsheet software. The output of the model was first fitted to the experimental output of a Büchi B-290 spray dryer and subsequently validated. The predicted outlet temperatures of the spray dryer model matched the experimental values very well over the entire range of spray dryer settings that were tested. Finally, the model was applied to produce glassy sugars by spray drying, an often used excipient in formulations of biopharmaceuticals. For the production of glassy sugars, the model was extended to predict the relative humidity at the outlet, which is not measured in the spray dryer by default. This extended model was then successfully used to predict whether specific settings were suitable for producing glassy trehalose and inulin by spray drying. In conclusion, a spray dryer model was developed that is able to predict the output parameters of the spray drying process. The model can aid the development of spray dried pharmaceutical products by shifting from a trial-and-error towards a quality-by-design approach. PMID:24040240

  5. Analysis and study of zero displacement quantities of low-level light sight device based on shooting experimental condition

    NASA Astrophysics Data System (ADS)

    Gao, Youtang; Xu, Yuan; Tian, Si; Chang, Benkang

    2009-05-01

    In order to solve the problem of zero displacement momentum of Low-level-light (LLL) sight device, it requitres to provide regulating structure of LLL sight device reticle. Through force analysis of the adjusting screw thread mechanism of reticle under load conditions in shoot test, especially through the calculation of the accumulating value of the circumference torque Tz when the equivalent frictional angle ρ changes, it reveals the zero displacement momentum mechanism of the LLL sight device under the load functions in the shoot test. Applying CMETS005 computer-controlled mulit-environment test of LLL sight device detection systems of this study for practical test, error precision is less than 0.05 mil and the measuring range is greater than 40 mil, which presents that the testing data are reliable and provide theoretical analysis basis for the production of other direct vision sight devices.

  6. Controlled overspray spray nozzle

    NASA Technical Reports Server (NTRS)

    Prasthofer, W. P. (Inventor)

    1981-01-01

    A spray system for a multi-ingredient ablative material wherein a nozzle A is utilized for suppressing overspray is described. The nozzle includes a cyclindrical inlet which converges to a restricted throat. A curved juncture between the cylindrical inlet and the convergent portion affords unrestricted and uninterrupted flow of the ablative material. A divergent bell-shaped chamber and adjustable nozzle exit B is utilized which provides a highly effective spray pattern in suppressing overspray to an acceptable level and producing a homogeneous jet of material that adheres well to the substrate.

  7. Spray combustion stability

    NASA Technical Reports Server (NTRS)

    Liang, Pak-Yan; Jeng, San-Mou; Litchford, Ronald

    1989-01-01

    The central purpose of this project is the improvement of liquid-fueled rocket motor design technology in order to assist the establishment of economical commercial access to space through the development of engines with enhanced performance and reliability. Specific research effort is focused on spray physics and associated combustion instability phenomena. Results concerning high pressure droplet gasification model, droplet turbulent dispersion model, and spray atomization model will contribute to the development of new computational tools for design of stable liquid propellant rocket engines.

  8. New techniques for spraying dust

    SciTech Connect

    Mukherjee, S.K.

    1984-06-01

    Two recent developments for reducing airborne dust on longwall faces are described. One flushes foam through the drums of a shearer and also sprays foam onto the cutting drum. The other modifies the spray-head to produce different water spray patterns on continuous miners.

  9. Programable Plasma-Spray System

    NASA Technical Reports Server (NTRS)

    Fetheroff, C. W.; Derkacs, T.; Matay, I. M.; Toth, I.

    1982-01-01

    NASA-funded research led to development of automated plasma-spray system programable and reproducible. System utilizes standard plasma-spray equipment with noncoherent light-measuring system and microprocessor. System monitors and controls surface contours and coating thickness. Other advantages of system are consistant coating reproducibility, exact blending and feathering operations, ability to handle complex shapes and ease of changing spray parameters.

  10. Sprayed Coating Renews Butyl Rubber

    NASA Technical Reports Server (NTRS)

    Martin, R. B.

    1982-01-01

    Damaged butyl rubber products are renewed by spray technique originally developed for protective suits worn by NASA workers. A commercial two-part adhesive is mixed with Freon-113 (or equivalent) trichlorotrifluoroethane to obtain optimum viscosity for spraying. Mix is applied with an external-air-mix spray gun.

  11. Use and characterization of linear nozzles for spray forming

    SciTech Connect

    Leon, D.D.; Kozarek, R.L.

    1995-11-01

    Commercial production of aluminum sheet and plate by spray atomization and deposition is a potentially attractive manufacturing alternative to conventional ingot metallurgy/hot-milling, and to continuous casting processes because of reduced energy requirements and reduced cost. To realize the full potential of this technology the Aluminum Company of America (Alcoa), under a cooperative agreement with the U.S. Department of Energy, has investigated currently available state-of-the-art atomization devices to develop nozzle design concepts whose spray characteristics are tailored for continuous sheet production. This paper will discuss Alcoa`s research and development work on three linear nozzle designs. The effect of geometry and process parameters on spray pattern and particle size distribution will be presented. The discussion will focus on the final spray formed deposit produced by these deposition systems.

  12. Oleoresin capsicum (pepper) spray and "in-custody deaths".

    PubMed

    Steffee, C H; Lantz, P E; Flannagan, L M; Thompson, R L; Jason, D R

    1995-09-01

    Increasing use of oleoresin capsicum (OC) spray devices (i.e., pepper spray, pepper mace, OC, capsaicin) by law enforcement agencies as a means of sublethal force to control suspects has brought into question whether exposure to this noxious irritant (capsaicin) can cause or contribute to unexpected in-custody deaths. Capsaicin stimulates nociceptors in exposed mucous membranes to produce intense pain, particularly involving the conjunctiva, and generates systemic physiologic and behavioral responses consonant with such extreme discomfort. We describe two cases of in-custody death, both associated temporally with the use of pepper spray, to illustrate salient investigative considerations. As with any other in-custody death, a thorough autopsy and toxicologic analysis, coupled with evaluation of the premortem chain of events, postexposure symptomatology, and the extent of natural disease processes, will help to reveal the role of oleoresin capsicum spray as unrelated, contributory, or causative. PMID:7495257

  13. Understanding the sprayed boric acid method for bulk doping of silicon ribbons

    NASA Astrophysics Data System (ADS)

    Silva, J. A.; Pêra, David; Brito, Miguel C.; Alves, Jorge Maia; Serra, João; Vallêra, A. M.

    2011-07-01

    The sprayed boric acid (SBA) method for bulk doping of silicon ribbons is investigated. Experimental procedures and main results are reviewed. Computational fluid dynamics and experimental tests using partial spraying suggest the role of gas transported evaporated boron oxide to explain the boron incorporation profiles along the sample. The industrial applicability of the SBA method is discussed.

  14. Samplers for evaluation and quantification of ultra-low volume space sprays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field study was conducted to investigate the suitability of sampling devices for quantification of spray deposition from ULV space sprays. Five different samplers were included in an experiment conducted in an open grassy field. Samplers included horizontally stretched stationary cotton ribbon at ...

  15. Current implications of past DDT indoor spraying in Oman.

    PubMed

    Booij, Petra; Holoubek, Ivan; Klánová, Jana; Kohoutek, Jiří; Dvorská, Alice; Magulová, Katarína; Al-Zadjali, Said; Čupr, Pavel

    2016-04-15

    In Oman, DDT was sprayed indoors during an intensive malaria eradication program between 1976 and 1992. DDT can remain for years after spraying and is associated with potential health risk. This raises the concern for human exposure in areas where DDT was used for indoor spraying. Twelve houses in three regions with a different history of DDT indoor spraying were chosen for a sampling campaign in 2005 to determine p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT), p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) and p,p'-dichlorodiphenyldichloroethane (p,p'-DDD) levels in indoor air, dust, and outdoor soil. Although DDT was only sprayed indoor, p,p'-DDT, p,p'-DDE and p,p'-DDD were also found in outdoor soil. The results indicate that release and exposure continue for years after cessation of spraying. The predicted cancer risk based on concentrations determined in 2005, indicate that there was still a significant cancer risk up to 13 to 16years after indoor DDT spraying. A novel approach, based on region-specific half-lives, was used to predict concentrations in 2015 and showed that more than 21years after spraying, cancer risk for exposure to indoor air, dust, and outdoor soil are acceptable in Oman for adults and young children. The model can be used for other locations and countries to predict prospective exposure of contaminants based on indoor experimental measurements and knowledge about the spraying time-schedule to extrapolate region-specific half-lives and predict effects on the human population years after spraying. PMID:26820926

  16. Simulation of a turbulent spray flame using coupled PDF gas phase and spray flamelet modeling

    SciTech Connect

    Ge, Hai-Wen; Gutheil, Eva

    2008-04-15

    A joint mixture fraction-enthalpy probability density function (PDF) is proposed for the simulation of turbulent spray flames. The PDF transport equation is deduced and modeled. The interaction-by-exchange-with-the-mean (IEM) model that has been developed for gas-phase flows is extended to describe molecular mixing in nonreactive and reactive spray flows. The joint PDF transport equation is solved by a hybrid finite-volume and Lagrangian Monte Carlo method. Standard spray and turbulence models are used to describe the gas phase and the liquid phase. A turbulent methanol/air spray flame is simulated using the present method. Detailed chemistry is implemented through the spray flamelet model. The precalculated spray flamelet library for methanol/air combustion comprises 23 species and 168 elementary reactions. Thus, the model is capable of predicting the formation of radicals and of pollutants. Different values for the model constant C{sub {phi}} in the IEM model are tested. The numerical results for the gas velocity, the gas temperature, and the mass fraction of methanol vapor are compared with experimental data in the literature. Good agreement with experiment is obtained when C{sub {phi}}=2.0. Marginal PDFs of mixture fraction, enthalpy, and gas temperature are presented. The computed PDFs of mixture fraction are compared with the presumed standard {beta} function and modified {beta} function. The results show that the standard {beta} function fails to reproduce bimodal shapes observed in transported PDF computation, while the modified {beta} function, fits the computed PDFs very well. Moreover, joint PDFs of mixture fraction and enthalpy are presented and analyzed. The enthalpy and mixture fraction are strongly correlated. The samples that deviate from the linear correlation are due to the energy consumption of local spray evaporation. (author)

  17. Evaluation of spray application of postmilking teat sanitizer.

    PubMed

    Pankey, J W; Watts, J L

    1983-02-01

    Application of postmilking teat sanitizer by spraying was evaluated in two experimental challenge trials with Streptococcus agalactiae (ATCC 27956) (McDonald 44). A .5% quaternary ammonium teat sanitizer was used in both studies. By direct comparison, teat spraying and dipping did not differ in effectiveness. Efficacy for the .5% quaternary ammonium compound was 58.6%, similar to results on the product applied as a dip (13). PMID:6339578

  18. Experimental evaluation of individual protection devices against different types of nanoaerosols: Graphite, TiO2 and Pt

    NASA Astrophysics Data System (ADS)

    Golanski, Luana; Guiot, Arnaud; Tardif, François

    2009-05-01

    In this study different conventional individual protection devices, well-qualified for submicron particles were tested for different types of polydispersed nanoaerosols of TiO2, Pt and graphite ranging from 10 to 75 nm (electrical mobility diameter). For that purpose two specific test benches were used: one for the filter-based devices which are tested under a controlled air flow and the other one for protective clothing and gloves under diffusion and without air flow.

  19. Semi-spherical Radiofrequency Bipolar Device - A New Technique for Liver Resection: Experimental In Vivo Study on the Porcine Model.

    PubMed

    Vavra, P; Penhaker, M; Jurcikova, J; Skrobankova, M; Crha, M; Ostruszka, P; Ihnat, P; Grepl, J; Delongova, P; Dvorackova, J; Prochazka, V; Salounova, D; Skoric, M; Rauser, P; Habib, N; Zonca, P

    2015-10-01

    The incidence of colorectal carcinoma is still growing in the Czech Republic and also all around the world. With success of oncological treatment is also growing a number of potential patients with liver metastases, who can profit from surgical therapy. The aim of this study was to confirm on porcine models that this method by using new surgical device is effective and safe for patients who have to undergo liver resection. The primary hypothesis of the study was to evaluate whether this new device is able to consistently produce homogeneous and predictable areas of coagulation necrosis without the Pringle maneuver of vascular inflow occlusion. The secondary hypothesis of the study was to compare the standard linear radiofrequency device and a new semi-spherical bipolar device for liver ablation and resection in a hepatic porcine model. Twelve pigs were randomly divided into two groups. Each pig underwent liver resection from both liver lobes in the marginal, thinner part of liver parenchyma. The pigs in first group were operated with standard using device and in the second group we used new developed semi-spherical device. We followed blood count in 0(th), 14(th) and 30(th) day from operation. 14(th) day from resection pigs underwent diagnostic laparoscopy to evaluate of their state, and 30(th) day after operation were all pigs euthanized and subjected to histopathological examination. Histopathological evaluation of thermal changes at the resection margin showed strong thermal alteration in both groups. Statistical analysis of collected dates did not prove any significant (p < 0.05) differences between standard using device and our new surgical tool. We proved safety of new designed semi-spherical surgical. This device can offer the possibility of shortening the ablation time and operating time, which is benefit for patients undergoing the liver resection. PMID:24945372

  20. Spray combustion stability project

    NASA Technical Reports Server (NTRS)

    Jeng, San-Mou; Litchford, Ron J.

    1992-01-01

    This report summarizes research activity on the Spray Combustion Stability Project, characterizes accomplishments and current status, and discusses projected future work. The purpose is to provide a concise conceptual overview of the research effort to date so the reader can quickly assimilate the gist of the research results and place them within the context of their potential impact on liquid rocket engine design technology.

  1. Ocean Spray Lubricates Winds

    ERIC Educational Resources Information Center

    Journal of College Science Teaching, 2005

    2005-01-01

    According to a new study by two University of California, Berkeley, mathematicians and their Russian colleague, the water droplets kicked up by rough seas serve to lubricate the swirling winds of hurricanes and cyclones, letting them build to speeds approaching 200 miles per hour. Without the lubricating effect of the spray, the mathematicians…

  2. Oxymetazoline Nasal Spray

    MedlinePlus

    ... is recommended by a doctor. Children 6 to 12 years of age should use oxymetazoline nasal spray carefully and under adult supervision. Oxymetazoline is in a class of medications called nasal decongestants. It works by narrowing the blood vessels in the nasal passages.

  3. Fluticasone Nasal Spray

    MedlinePlus

    ... improve. Follow the directions on your prescription or product label carefully, and ask your doctor or pharmacist to ... ingredients in fluticasone nasal spray. Check the package label for a list of the ... and herbal products you are taking, or have recently taken, or ...

  4. Titanium Cold Spray Coatings

    NASA Astrophysics Data System (ADS)

    Ajaja, Jihane; Goldbaum, Dina; Chromik, Richard; Yue, Stephen; Rezaeian, Ahmad; Wong, Wilson; Irissou, Eric; Legoux, Jean-Gabriel

    Titanium Cold Spray Coatings Cold Spray is an emerging technology used for the deposition of coatings for many industries including aerospace. This technique allows the deposition of metallic materials at low temper-atures below their melting point. The aim of this research was to develop a test technique that can measure the degree to which a cold spray coating achieves mechanical properties similar to a traditional bulk material. Vickers hardness testing and nanoindentation were used as micro-and nano-scale measurement techniques to characterize the mechanical properties of titanium coatings, deposited at different deposition conditions, and bulk Ti. The mechanical properties of bulk titanium and titanium coatings were measured over a range of length scales, with the indentation size effect examined with Meyer's law. Hardness measurements are shown to be affected by material porosity, microstructure and coating particle bonding mechanism. Hard-ness measurements showed that Ti coatings deposited at higher gas pressures and temperatures demonstrate an indentation load response similar to bulk Ti. Key words: titanium, cold spray, Vickers hardness, nanoindentation, indentation size effect, microstructure, mechanical properties

  5. Picosecond imaging of sprays

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin; Liou, Larry; Wang, L.; Liang, X.; Galland, P.; Ho, P. P.; Alfano, R. R.

    1994-01-01

    Preliminary results from applying a Kerr-Fourier imaging system to a water/air spray produced by a shear coaxial element are presented. The physics behind ultrafast time-gated optical techniques is discussed briefly. A typical setup of a Kerr-Fourier time gating system is presented.

  6. Zolmitriptan Nasal Spray

    MedlinePlus

    ... diarrhea and stomach pain caused by decreased blood flow to the intestines). Your doctor may tell you not to use zolmitriptan nasal spray.tell your doctor if you smoke or are overweight; if you have or have ever had high blood pressure, high cholesterol, diabetes, or liver or ...

  7. Naloxone Nasal Spray

    MedlinePlus

    ... symptoms, he or she should give you your first naloxone dose and then call 911 immediately. After receiving the naloxone nasal spray, ... the person on their side (recovery position) and call for emergency medical ... after giving the first naloxone dose. If the person does not respond ...

  8. Modeling of the vacuum plasma spray process

    SciTech Connect

    Varacalle, D.J. Jr. ); Neiser, R.A.; Smith, M.F. )

    1992-01-01

    Experimental and analytical studies have been conducted to investigate gas, particle, and coating dynamics in the vacuum plasma spray (VPS) process for a tungsten powder. VPS coatings were examined metallographically and the results compared with the model's predictions. The plasma was numerically modeled from the cathode tip to the spray distance in the free plume for the experimental conditions of this study. This information was then used as boundary conditions to solve the particle dynamics. The predicted temperature and velocity of the powder particles at standoff were then used as initial conditions for a coating dynamics code. The code predicts the coating morphology for the specific process parameters. The predicted characteristics exhibit good correlation with the observed coating properties.

  9. Modeling of the vacuum plasma spray process

    SciTech Connect

    Varacalle, D.J. Jr.; Neiser, R.A.; Smith, M.F.

    1992-10-01

    Experimental and analytical studies have been conducted to investigate gas, particle, and coating dynamics in the vacuum plasma spray (VPS) process for a tungsten powder. VPS coatings were examined metallographically and the results compared with the model`s predictions. The plasma was numerically modeled from the cathode tip to the spray distance in the free plume for the experimental conditions of this study. This information was then used as boundary conditions to solve the particle dynamics. The predicted temperature and velocity of the powder particles at standoff were then used as initial conditions for a coating dynamics code. The code predicts the coating morphology for the specific process parameters. The predicted characteristics exhibit good correlation with the observed coating properties.

  10. Thermal Spray Formation of Polymer Coatings

    NASA Technical Reports Server (NTRS)

    Coquill, Scott; Galbraith, Stephen L.; Tuss. Darren L.; Ivosevic, Milan

    2008-01-01

    This innovation forms a sprayable polymer film using powdered precursor materials and an in-process heating method. This device directly applies a powdered polymer onto a substrate to form an adherent, mechanically-sound, and thickness-regulated film. The process can be used to lay down both fully dense and porous, e.g., foam, coatings. This system is field-deployable and includes power distribution, heater controls, polymer constituent material bins, flow controls, material transportation functions, and a thermal spray apparatus. The only thing required for operation in the field is a power source. Because this method does not require solvents, it does not release the toxic, volatile organic compounds of previous methods. Also, the sprayed polymer material is not degraded because this method does not use hot combustion gas or hot plasma gas. This keeps the polymer from becoming rough, porous, or poorly bonded.

  11. Spray combustion experiments and numerical predictions

    NASA Technical Reports Server (NTRS)

    Mularz, Edward J.; Bulzan, Daniel L.; Chen, Kuo-Huey

    1993-01-01

    The next generation of commercial aircraft will include turbofan engines with performance significantly better than those in the current fleet. Control of particulate and gaseous emissions will also be an integral part of the engine design criteria. These performance and emission requirements present a technical challenge for the combustor: control of the fuel and air mixing and control of the local stoichiometry will have to be maintained much more rigorously than with combustors in current production. A better understanding of the flow physics of liquid fuel spray combustion is necessary. This paper describes recent experiments on spray combustion where detailed measurements of the spray characteristics were made, including local drop-size distributions and velocities. Also, an advanced combustor CFD code has been under development and predictions from this code are compared with experimental results. Studies such as these will provide information to the advanced combustor designer on fuel spray quality and mixing effectiveness. Validation of new fast, robust, and efficient CFD codes will also enable the combustor designer to use them as additional design tools for optimization of combustor concepts for the next generation of aircraft engines.

  12. Improved Orifice Plate for Spray Gun

    NASA Technical Reports Server (NTRS)

    Cunningham, W.

    1986-01-01

    Erratic spray pattern of commercial spray gun changed to repeatable one by simple redesign of two parts. In modified spray gun orifice plate and polytetrafluoroethylene bushing redesigned to assure centering and alignment with nozzle. Such improvement useful in many industrial applications requiring repeatable spray patterns. Might include spraying of foam insulation, paint, other protective coatings, detergents, abrasives, adhesives, process chemicals, or fuels. Unmodified spray gun produces erratic spray because lateral misalignment between orifice plate and nozzle.

  13. Optimisation of a vertical spray boom for greenhouse spraying applications.

    PubMed

    Nuyttens, D; Windey, S; Braekman, P; De Moor, A; Sonck, B

    2003-01-01

    The European Crop Protection Association (ECPA) and CLO-DVL joined forces in a project to stimulate a safe use of pesticides in Southern European countries. CLO-DVL optimised a method with mineral chelates to evaluate deposition tests. This quantitative method to evaluate spray deposits and to check spray distributions is used to assess two novel spraying techniques. Deposition tests with water-sensitive paper and mainly with the manganese and molybdenum chelates as tracer elements were performed with a manually pulled trolley and a motorised vehicle both equipped with vertical spray booms. Filter papers were attached to the tomato and pepper plants at several heights to obtain an indication of the spray distribution in the crop. Particular attention was paid to the effect on the spray distribution of the vertical nozzle distance (35 cm vs. 50 cm) and the spray distance to the crop. The tests proved that a nozzle spacing of 35 cm delivers a much better spray distribution than one of 50 cm. The optimal spray distance for flat fan nozzles with a spray angle of 80 degrees and a nozzle spacing of 35 cm is about 30 cm. PMID:15151329

  14. Cold Spraying of Amorphous Cu50Zr50 Alloys

    NASA Astrophysics Data System (ADS)

    List, A.; Gärtner, F.; Mori, T.; Schulze, M.; Assadi, H.; Kuroda, S.; Klassen, T.

    2015-01-01

    A new range of applications in cold spraying is expected for bulk metallic glass (BMG) coatings. For retaining amorphous structures in cast multi-component BMG parts, typically high purity raw material must be used. The present investigation explores an alternative approach, where cold spraying is used to deposit a technical-grade binary amorphous alloy. This approach is shown to be potentially cost-effective and suitable for rapid manufacturing. For this purpose, amorphous Cu50Zr50 was chosen as a model alloy system, and cold spraying was performed using nitrogen as process gas. By a systematic variation of the spray parameter sets, the critical velocities for coating formation were determined experimentally. Based on the current models of bonding of amorphous Cu50Zr50 powder in cold spraying, a new, more comprehensive concept of bonding and rebound is presented, which also considers the presence of liquefied interfaces and quenching rates for resolidification. Results concerning impact morphologies and coating formation demonstrate that under suitable choice of spray conditions, well-adhering coatings with amorphous structure of the Cu50Zr50 powders can be obtained by cold spraying.

  15. "Clickers" and Metacognition: A Quasi-Experimental Comparative Study about Metacognitive Self-Regulation and Use of Electronic Feedback Devices

    ERIC Educational Resources Information Center

    Brady, Melanie; Seli, Helena; Rosenthal, Jane

    2013-01-01

    The purpose of this study was to establish whether electronic response systems (clickers) influence student metacognition in large lecture settings more than low-technology polling devices. In this first part of a two part mixed methods study inquiry was made into whether student metacognition was influenced and how metacognition was influenced.…

  16. ENTRAINMENT BY LIGAMENT-CONTROLLED EFFERVESCENT ATOMIZER-PRODUCED SPRAYS

    EPA Science Inventory

    Entrainment of ambient air into sprays produced by a new type of effervescent atomizer is reported. Entrainment data were obtained using a device similar to that described by Ricou & Spalding (1961). Entrainment data were analyzed using the model of Bush & Sojka (1994), in concer...

  17. A spray-suppression model for turbulent combustion

    SciTech Connect

    DESJARDIN,PAUL E.; TIESZEN,SHELDON R.; GRITZO,LOUIS A.

    2000-02-14

    A spray-suppression model that captures the effects of liquid suppressant on a turbulent combusting flow is developed and applied to a turbulent diffusion flame with water spray suppression. The spray submodel is based on a stochastic separated flow approach that accounts for the transport and evaporation of liquid droplets. Flame extinguishment is accounted for by using a perfectly stirred reactor (PSR) submodel of turbulent combustion. PSR pre-calculations of flame extinction times are determined using CHEMKIN and are compared to local turbulent time scales of the flow to determine if local flame extinguishment has occurred. The PSR flame extinguishment and spray submodels are incorporated into Sandia's flow fire simulation code, VULCAN, and cases are run for the water spray suppression studies of McCaffrey for turbulent hydrogen-air jet diffusion flames. Predictions of flame temperature decrease and suppression efficiency are compared to experimental data as a function of water mass loading using three assumed values of drop sizes. The results show that the suppression efficiency is highly dependent on the initial droplet size for a given mass loading. A predicted optimal suppression efficiency was observed for the smallest class of droplets while the larger drops show increasing suppression efficiency with increasing mass loading for the range of mass loadings considered. Qualitative agreement to the experiment of suppression efficiency is encouraging, however quantitative agreement is limited due to the uncertainties in the boundary conditions of the experimental data for the water spray.

  18. Flame spraying of polymers

    SciTech Connect

    Varacalle, D.J. Jr.; Zeek, D.P.; Couch, K.W.; Benson, D.M.; Kirk, S.M.

    1997-08-01

    Statistical design-of-experiment studies of the thermal spraying of polymer powders are presented. Studies of the subsonic combustion (i.e., Flame) process were conducted in order to determine the quality and economics of polyester and urethane coatings. Thermally sprayed polymer coatings are of interest to several industries for anticorrosion applications, including the chemical, automotive, and aircraft industries. In this study, the coating design has been optimized for a site-specific application using Taguchi-type fractional-factorial experiments. Optimized coating designs are presented for the two powder systems. A substantial range of thermal processing conditions and their effect on the resultant polymer coatings is presented. The coatings were characterized by optical metallography, hardness testing, tensile testing, and compositional analysis. Characterization of the coatings yielded the thickness, bond strength, Knoop microhardness, roughness, deposition efficiency, and porosity. Confirmation testing was accomplished to verify the coating designs.

  19. High-quality quantum-dot-based full-color display technology by pulsed spray method

    NASA Astrophysics Data System (ADS)

    Chen, Kuo-Ju; Chen, Hsin-Chu; Tsai, Kai-An; Lin, Chien-Chung; Tsai, Hsin-Han; Chien, Shih-Hsuan; Cheng, Bo-Siao; Hsu, Yung-Jung; Shih, Min-Hsiung; Kuo, Hao-Chung

    2013-03-01

    We fabricated the colloidal quantum-dot light-emitting diodes (QDLEDs) with the HfO2/SiO2-distributed Bragg reflector (DBR) structure using a pulsed spray coating method. Moreover, pixelated RGB arrays, 2-in. wafer-scale white light emission, and an integrated small footprint white light device were demonstrated. The experimental results showed that the intensity of red, blue, and green (RGB) emissions exhibited considerable enhancement because of the high reflectivity in the UV region by the DBR structure, which subsequently increased the use in the UV optical pumping of RGB QDs. In this experiment, a pulsed spray coating method was crucial in providing uniform RGB layers, and the polydimethylsiloxane (PDMS) film was used as the interface layer between each RGB color to avoid crosscontamination and self-assembly of QDs. Furthermore, the chromaticity coordinates of QDLEDs with the DBR structure remained constant under various pumping powers in the large area sample, whereas a larger shift toward high color temperatures was observed in the integrated device. The resulting color gamut of the proposed QDLEDs covered an area 1.2 times larger than that of the NTSC standard, which is favorable for the next generation of high-quality display technology.

  20. Spray combustion stability project

    NASA Technical Reports Server (NTRS)

    Jeng, San-Mou; Litchford, Ron J.

    1990-01-01

    This report summarizes research activity on the Spray Combustion Stability Project, characterizes accomplishments and current status, and discusses projected future work. The purpose is to provide a concise conceptual overview of the research effort so the reader can quickly assimilate the gist of the research results and place them within the context of their potential impact on liquid rocket engine design technology. Therefore, this report does not elaborate on many of the detailed technical aspects of the research program.

  1. Spray combustion stability

    NASA Technical Reports Server (NTRS)

    Liang, Pak-Yan; Jeng, S. M.; Litchford, Ronald

    1995-01-01

    The central purpose of this project is the improvement of liquid-fueled rocket motor design technology in order to assist the establishment of economical commercial access to space through the development of engines with enhanced performance and reliability. Specific research effort in the project is focused on spray physics and associated combustion instability phenomena. Results garnered from this work will contribute to the development of new computational tools for design of stable liquid propellant rocket engines. The specific objectives of the research effort include identifying and evaluating physical submodels which pertain to spray combustion stability with the idea of enhancing or refining existing submodels with a more comprehensive approach. In particular, any refinements to the spray combustion physical submodels which are achieved during the project will be channeled back to Rocketdyne for incorporation in their ARICC liquid rocket combustor code as second generation improvements. Also, as the ARICC code forms the basis or future CFD development, some effort is devoted to an evaluation of the code's capability for modeling oscillating pressure waves within the combustor.

  2. Vacuum plasma spray coating

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Mckechnie, Timothy N.

    1989-01-01

    Currently, protective plasma spray coatings are applied to space shuttle main engine turbine blades of high-performance nickel alloys by an air plasma spray process. Originally, a ceramic coating of yttria-stabilized zirconia (ZrO2.12Y2O3) was applied for thermal protection, but was removed because of severe spalling. In vacuum plasma spray coating, plasma coatings of nickel-chromium-aluminum-yttrium (NiCrAlY) are applied in a reduced atmosphere of argon/helium. These enhanced coatings showed no spalling after 40 MSFC burner rig thermal shock cycles between 927 C (1700 F) and -253 C (-423 F), while current coatings spalled during 5 to 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2.8Y2O3 to the turbine blades of first-stage high-pressure fuel turbopumps utilizing the enhanced NiCrAlY bond-coating process. NiCrAlY bond coating is applied first, with ZrO2.8Y2O3 added sequentially in increasing amounts until a thermal barrier coating is obtained. The enchanced thermal barrier coating has successfully passed 40 burner rig thermal shock cycles.

  3. Fundamental studies of spray combustion

    SciTech Connect

    Li, S.C.; Libby, P.A.; Williams, F.A.

    1997-12-31

    Our research on spray combustion involves both experiment and theory and addresses the characteristics of individual droplets and of sprays in a variety of flows: laminar and turbulent, opposed and impinging. Currently our focus concerns water and fuel sprays in two stage laminar flames, i.e., flames arising, for example from a stream of fuel and oxidizer flowing opposite to an air stream carrying a water spray. Our interest in these flames is motivated by the goals of reducing pollutant emissions and extending the range of stable spray combustion. There remains considerable research to be carried out in order to achieve these goals. Thus far our research on the characteristics of sprays in turbulent flows has been limited to nonreacting jets impinging on a plate but this work will be extended to opposed flows with and without a flame. In the following we discuss details of these studies and our plans for future work.

  4. The influence of spray properties on intranasal deposition.

    PubMed

    Foo, Mow Yee; Cheng, Yung-Sung; Su, Wei-Chung; Donovan, Maureen D

    2007-01-01

    While numerous devices, formulations, and spray characteristics have been shown to influence nasal deposition efficiency, few studies have attempted to identify which of these interacting factors plays the greatest role in nasal spray deposition. The deposition patterns of solutions with a wide range of surface tensions and viscosities were measured using an MRI-derived nasal cavity replica. The resulting spray plumes had angles between 29 degrees and 80 degrees and contained droplet sizes (D(v50)) from 37-157 microm. Each formulation contained rhodamine 590 as a fluorescent marker for detection. Administration angles of 30 degrees , 40 degrees , or 50 degrees above horizontal were tested to investigate the role of user technique on nasal deposition. The amount of spray deposited within specific regions of the nasal cavity was determined by disassembling the replica and measuring the amount of rhodamine retained in each section. Most of the spray droplets were deposited onto the anterior region of the model, but sprays with small plume angles were capable of reaching the turbinate region with deposition efficiencies approaching 90%. Minimal dependence on droplet size, viscosity, or device was observed. Changes in inspiratory flow rate (0-60 L/min) had no significant effect on turbinate deposition efficiency. Both plume angle and administration angle were found to be important factors in determining deposition efficiency. For administration angles of 40 degrees or 50 degrees , maximal turbinate deposition efficiency (30-50%) occurred with plume angles of 55-65 degrees , whereas a 30 degrees administration angle gave an approximately 75% deposition efficiency for similar plume angles. Deposition efficiencies of approximately 90% could be achieved with plume angles <30 degrees using 30 degrees administration angles. Both the plume angle and administration angle are critical factors in determining deposition efficiency, while many other spray parameters, including

  5. Experimental study of a mechanically ventilated double-skin facade with venetian sun-shading device: A full-scale investigation in controlled environment

    SciTech Connect

    Gavan, Valentin; Woloszyn, Monika; Kuznik, Frederic; Roux, Jean-Jacques

    2010-02-15

    The aim of this article is to present results of an experimental campaign performed on a full-scale facility provided with a double-skin facade. The behaviour of this architectural concept is tested under controlled climatic conditions. A summer case is scrutinised under different configurations: variation of the airflow through the double-skin facade and different angle of the solar shading device. This paper describes the experimental conditions, as well the test facility and the tested facade element. The results show the temperatures of the test cell and the facade and how they depend on the climatic conditions and the sun-shading device blade angles. One objective of this research was to measure and provide extensive data set detailing air and surface temperatures on the double-skin facade, together with airflow rates and air velocities. The experiments are fully described so that the results can be used for the validation of numerical models dealing with ventilated double-skin facades with venetian sun-shading device. (author)

  6. Lessons learned from a double-blind randomised placebo-controlled study with a iota-carrageenan nasal spray as medical device in children with acute symptoms of common cold

    PubMed Central

    2012-01-01

    Background Common cold is caused by a variety of respiratory viruses. The prevalence in children is high, and it potentially contributes to significant morbidity. Iota-carragenan, a polymer derived from red seaweed, has reduced viral load in nasal secretions and alleviated symptoms in adults with common cold. Methods We have assessed the antiviral and therapeutic activity of a nasal spray containing iota-carrageenan in children with acute symptoms of common cold. A cohort of 153 children between 1–18 years (mean age 5 years), displaying acute symptoms of common cold were randomly assigned to treatment with a nasal spray containing iota-carrageenan (0.12%) as verum or 0.9% sodium chloride solution as placebo for seven days. Symptoms of common cold were recorded and the viral load of respiratory viruses in nasal secretions was determined at two consecutive visits. Results The results of the present study showed no significant difference between the iota carrageenan and the placebo group on the mean of TSS between study days 2–7. Secondary endpoints, such as reduced time to clearance of disease (7.6 vs 9.4 days; p = 0.038), reduction of viral load (p = 0.026), and lower incidence of secondary infections with other respiratory viruses (p = 0.046) indicated beneficial effects of iota-carrageenan in this population. The treatment was safe and well tolerated, with less side effects observed in the verum group compared to placebo. Conclusion In this study iota-carrageenan did not alleviate symptoms in children with acute symptoms of common cold, but significantly reduced viral load in nasal secretions that may have important implications for future studies. Trial registration ISRCTN52519535, http://www.controlled-trials.com/ISRCTN52519535/ PMID:22950667

  7. Developing a reproducible non-line-of-sight experimental setup for testing wireless medical device coexistence utilizing ZigBee.

    PubMed

    LaSorte, Nickolas J; Rajab, Samer A; Refai, Hazem H

    2012-11-01

    The integration of heterogeneous wireless technologies is believed to aid revolutionary healthcare delivery in hospitals and residential care. Wireless medical device coexistence is a growing concern given the ubiquity of wireless technology. In spite of this, a consensus standard that addresses risks associated with wireless heterogeneous networks has not been adopted. This paper serves as a starting point by recommending a practice for assessing the coexistence of a wireless medical device in a non-line-of-sight environment utilizing 802.15.4 in a practical, versatile, and reproducible test setup. This paper provides an extensive survey of other coexistence studies concerning 802.15.4 and 802.11 and reports on the authors' coexistence testing inside and outside an anechoic chamber. Results are compared against a non-line-of-sight test setup. Findings relative to co-channel and adjacent channel interference were consistent with results reported in the literature. PMID:22907957

  8. Experimental method of in-vivo dosimetry without build-up device on the skin for external beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Jeon, Hosang; Nam, Jiho; Lee, Jayoung; Park, Dahl; Baek, Cheol-Ha; Kim, Wontaek; Ki, Yongkan; Kim, Dongwon

    2015-06-01

    Accurate dose delivery is crucial to the success of modern radiotherapy. To evaluate the dose actually delivered to patients, in-vivo dosimetry (IVD) is generally performed during radiotherapy to measure the entrance doses. In IVD, a build-up device should be placed on top of an in-vivo dosimeter to satisfy the electron equilibrium condition. However, a build-up device made of tissue-equivalent material or metal may perturb dose delivery to a patient, and requires an additional laborious and time-consuming process. We developed a novel IVD method using a look-up table of conversion ratios instead of a build-up device. We validated this method through a monte-carlo simulation and 31 clinical trials. The mean error of clinical IVD is 3.17% (standard deviation: 2.58%), which is comparable to that of conventional IVD methods. Moreover, the required time was greatly reduced so that the efficiency of IVD could be improved for both patients and therapists.

  9. Vacuum Plasma Spraying Replaces Electrodeposition

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Power, Chris; Burns, David H.; Daniel, Ron; Mckechnie, Timothy N.

    1992-01-01

    Vacuum plasma spraying used to fabricate large parts with complicated contours and inner structures, without uninspectable welds. Reduces time, and expense of fabrication. Wall of combustion chamber built up inside of outer nickel-alloy jacket by plasma spraying. Particles of metal sprayed partially melted in plasma gun and thrown at supersonic speed toward deposition surface. Vacuum plasma-spray produces stronger bond between the grooves and covering layer completing channels and wall of combustion chamber. In tests, bond withstood pressure of 20 kpsi, three times allowable limit by old method.

  10. Photomicrographic Studies of Fuel Sprays

    NASA Technical Reports Server (NTRS)

    Lee, Dana W; Spencer, Robert C

    1934-01-01

    A large number of photomicrographs of fuel sprays were taken for the purpose of studying the spray structure and the process of spray formation. They were taken at magnifying powers of 2.5, 3.25, and 10, using a spark discharge of very short duration for illumination. Several types and sizes of nozzles were investigated, different liquids were used, and a wide range of injection pressures was employed. The sprays were photographed as they were injected into a glass-walled chamber in which the air density was varied from 14 atmospheres to 0.0013 atmosphere.

  11. Impact of nanocrystal spray deposition on inorganic solar cells.

    PubMed

    Townsend, Troy K; Yoon, Woojun; Foos, Edward E; Tischler, Joseph G

    2014-05-28

    Solution-synthesized inorganic cadmium telluride nanocrystals (∼4 nm; 1.45 eV band gap) are attractive elements for the fabrication of thin-film-based low-cost photovoltaic (PV) devices. Their encapsulating organic ligand shell enables them to be easily dissolved in organic solvents, and the resulting solutions can be spray-cast onto indium-tin oxide (ITO)-coated glass under ambient conditions to produce photoactive thin films of CdTe. Following annealing at 380 °C in the presence of CdCl2(s) and evaporation of metal electrode contacts (glass/ITO/CdTe/Ca/Al), Schottky-junction PV devices were tested under simulated 1 sun conditions. An improved PV performance was found to be directly tied to control over the film morphology obtained by the adjustment of spray parameters such as the solution concentration, delivery pressure, substrate distance, and surface temperature. Higher spray pressures produced thinner layers (<60 nm) with lower surface roughness (<200 nm), leading to devices with improved open-circuit voltages (Voc) due to decreased surface roughness and higher short-circuit current (Jsc) as a result of enhanced annealing conditions. After process optimization, spray-cast Schottky devices rivaled those prepared by conventional spin-coating, showing Jsc = 14.6 ± 2.7 mA cm(-2), Voc = 428 ± 11 mV, FF = 42.8 ± 1.4%, and Eff. = 2.7 ± 0.5% under 1 sun illumination. This optimized condition of CdTe spray deposition was then applied to heterojunction devices (ITO/CdTe/ZnO/Al) to reach 3.0% efficiency after light soaking under forward bias. The film thickness, surface morphology, and light absorption were examined with scanning electron microscopy, optical profilometry, and UV/vis spectroscopy. PMID:24755091

  12. Pharmaceutical Particle Engineering via Spray Drying

    PubMed Central

    2007-01-01

    This review covers recent developments in the area of particle engineering via spray drying. The last decade has seen a shift from empirical formulation efforts to an engineering approach based on a better understanding of particle formation in the spray drying process. Microparticles with nanoscale substructures can now be designed and their functionality has contributed significantly to stability and efficacy of the particulate dosage form. The review provides concepts and a theoretical framework for particle design calculations. It reviews experimental research into parameters that influence particle formation. A classification based on dimensionless numbers is presented that can be used to estimate how excipient properties in combination with process parameters influence the morphology of the engineered particles. A wide range of pharmaceutical application examples—low density particles, composite particles, microencapsulation, and glass stabilization—is discussed, with specific emphasis on the underlying particle formation mechanisms and design concepts. PMID:18040761

  13. An experimental wind-tunnel investigation of a ram-air-spoiler roll-control device on a forward-control missile at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.

    1978-01-01

    A parametric experimental wind-tunnel investigation was made at supersonic Mach numbers to provide design data on a ram-air-spoiler roll-control device that is to be used on forward-control cruciform missile configurations. The results indicate that the ram-air-spoiler tail fin is an effective roll-control device and that roll control is generally constant with vehicle attitude and Mach number unless direct canard and/or forebody shock impingement occurs. The addition of the ram-air-spoiler tail fins resulted in only small changes in aerodynamic-center location. For the ram-air-spoiler configuration tested, there are large axial force coefficient effects associated with the increased fin thickness and ram-air momentum loss.

  14. Innovative bi-fluid atomizer inner flow characterization and outer spray diffusion analysis

    NASA Astrophysics Data System (ADS)

    Elzo, D.; Mazin, C.

    2012-11-01

    We developed an atomizer nozzle equipping a medical device used for airborne disinfection of medical rooms. The diffusion technology of the equipment is based on the spraying of fine liquid droplets of disinfectant into the volume to be treated. The liquid phase is expulsed thanks to an air assist atomizer we designed, which originality comes from the geometry we give to the throat of the micro-venturi, inner part of the atomizer nozzle. The micro-venturi throat is deviated of angle of 4° and will permit a homogeneous diffusion. We computed three dimensional numerical calculations of the inner compressible turbulent air flow through the atomizer we designed and compared the results obtained with the ones computed for a symmetrical atomizer. The modeling was done with the CFD codes STARCCM+ and Fluent, choosing the k-omega turbulent model. The modeling has been validated especially by one dimensional analytical calculations and experimental measurements of the mean axial velocity and mass flow rate circulating through the atomizer. Three dimensional numerical calculations show the vertical deviation of the flow at throat level and swirl effect generated by the deviated inner throat of the micro-venturi. These calculations allowed understanding the nature of the spray observed in experimental conditions, and the advantages to use a deviated micro-venturi throat. Indeed, micro bacteriological tests showed that the quality and the effectiveness of the diffusion are enhanced in comparison to equipments with a symmetrical micro-venturi.

  15. Computational fluid dynamic analysis of a High-Velocity Oxygen-Fuel (HVOF) thermal spray torch

    SciTech Connect

    Hassan, B.; Oberkampf, W.L.; Neiser, R.A.; Roemer, T.J.

    1995-09-01

    The gas dynamics of a High-Velocity Oxygen-Fuel (HVOF) torch are analyzed using computational fluid dynamics (CFD) techniques. The thermal spray device analyzed is similar to a Metco Diamond Jet torch with powder feed. The injection nozzle is assumed to be axisymmetric with premixed fuel and oxygen fed from an annulus, and air cooling injected along the interior surface of the aircap. The aircap, a cronically converging nozzle, achieves choked flow conditions at the exit and a supersonic, under-expanded jet develops externally. Finite difference equations for mass, momentum, and energy conservation are solved for the gas dynamics. The combustion process is modeled using a single-step and a 12-step quasi-global finite-rate chemistry model with dissociation of the gas and a total of nine species. Turbulent flow inside the aircap and in the free-jet decay is modeled using a two-equation k-{epsilon} model. An iterative, implicit, finite volume numerical method is used to solve the gas dynamic equations inside and outside the torch . The CFD results are compared with recent experimental measurements of pressure inside the HVOF aircap. Comparisons are made for two flow rates of premixed fuel and oxygen and air cooling. This paper presents the first published comparisons of CFD predictions and experimental measurements for HVOF tbermal spraying.

  16. Evaporative cooling by a pulsed jet spray of binary ethanol-water mixture

    NASA Astrophysics Data System (ADS)

    Karpov, P. N.; Nazarov, A. D.; Serov, A. F.; Terekhov, V. I.

    2015-07-01

    We have experimentally studied the heat transfer under conditions of pulsed multinozzle jet spray impact onto a vertical surface. The working coolant fluid was aqueous ethanol solution in a range of concentrations K 1 = 0-96%. The duration of spray pulses was τ = 2, 4, and 10 ms at a repetition frequency of 10 Hz. The maximum heat transfer coefficient was achieved at an ethanol solution concentration within 50-60%. The thermal efficiency of pulsed spray cooling grows with increasing ethanol concentration and decreasing jet spray pulse duration.

  17. Smartphones as Experimental Tools: Different Methods to Determine the Gravitational Acceleration in Classroom Physics by Using Everyday Devices

    ERIC Educational Resources Information Center

    Kuhn, Jochen; Vogt, Patrik

    2013-01-01

    New media technology becomes more and more important for our daily life as well as for teaching physics. Within the scope of our N.E.T. research project we develop experiments using New Media Experimental Tools (N.E.T.) in physics education and study their influence on students learning abilities. We want to present the possibilities e.g. of…

  18. Spray-formed tooling

    NASA Astrophysics Data System (ADS)

    McHugh, K. M.; Key, J. F.

    The United States Council for Automotive Research (USCAR) has formed a partnership with the Idaho National Engineering Laboratory (INEL) to develop a process for the rapid production of low-cost tooling based on spray forming technology developed at the INEL. Phase 1 of the program will involve bench-scale system development, materials characterization, and process optimization. In Phase 2, prototype systems will be designed, constructed, evaluated, and optimized. Process control and other issues that influence commercialization will be addressed during this phase of the project. Technology transfer to USCAR, or a tooling vendor selected by USCAR, will be accomplished during Phase 3. The approach INEL is using to produce tooling, such as plastic injection molds and stamping dies, combines rapid solidification processing and net-shape materials processing into a single step. A bulk liquid metal is pressure-fed into a de Laval spray nozzle transporting a high velocity, high temperature inert gas. The gas jet disintegrates the metal into fine droplets and deposits them onto a tool pattern made from materials such as plastic, wax, clay, ceramics, and metals. The approach is compatible with solid freeform fabrication techniques such as stereolithography, selective laser sintering, and laminated object manufacturing. Heat is extracted rapidly, in-flight, by convection as the spray jet entrains cool inert gas to produce undercooled and semi-solid droplets. At the pattern, the droplets weld together while replicating the shape and surface features of the pattern. Tool formation is rapid; deposition rates in excess of 1 ton/h have been demonstrated for bench-scale nozzles.

  19. Spray-formed tooling

    SciTech Connect

    McHugh, K.M.; Key, J.F.

    1994-12-31

    The United States Council for Automotive Research (USCAR) has formed a partnership with the Idaho National Engineering Laboratory (INEL) to develop a process for the rapid production of low-cost tooling based on spray forming technology developed at the INEL. Phase 1 of the program will involve bench-scale system development, materials characterization, and process optimization. In Phase 2, prototype systems will be de signed, constructed, evaluated, and optimized. Process control and other issues that influence commercialization will be addressed during this phase of the project. Technology transfer to USCAR, or a tooling vendor selected by USCAR, will be accomplished during Phase 3. The approach INEL is using to produce tooling, such as plastic injection molds and stamping dies, combines rapid solidification processing and net-shape materials processing into a single step. A bulk liquid metal is pressure-fed into a de Laval spray nozzle transporting a high velocity, high temperature inert gas. The gas jet disintegrates the metal into fine droplets and deposits them onto a tool pattern made from materials such as plastic, wax, clay, ceramics, and metals. The approach is compatible with solid freeform fabrication techniques such as stereolithography, selective laser sintering, and laminated object manufacturing. Heat is extracted rapidly, in-flight, by convection as the spray jet entrains cool inert gas to produce undercooled and semi-solid droplets. At the pattern, the droplets weld together while replicating the shape and surface features of the pattern. Tool formation is rapid; deposition rates in excess of 1 ton/h have been demonstrated for bench-scale nozzles.

  20. Coaxial injector spray characterization using water/air as simulants

    NASA Technical Reports Server (NTRS)

    Zaller, Michelle M.; Klem, Mark D.

    1991-01-01

    Quantitative information about the atomization of injector sprays is required to improve the accuracy of computational models that predict the performance and stability of liquid propellant rocket engines. An experimental program is being conducted at NASA-Lewis to measure the drop size and velocity distributions in shear coaxial injector sprays. A phase/Doppler interferometer is used to obtain drop size data in water air shear coaxial injector sprays. Droplet sizes and axial component of droplet velocities are measured at different radii for various combinations of water flow rate, air flow rate, injector liquid jet diameter, injector annular gap, and liquid post recess. Sauter mean diameters measured in the spray center 51 mm downstream of the liquid post tip range from 28 to 68 microns, and mean axial drop velocities at the same location range from 37 to 120 m/s. The shear coaxial injector sprays show a high degree of symmetry; the mean drop size and velocity profiles vary with liquid flow rate, post recess, and distance from the injector face. The drop size data can be used to estimate liquid oxygen/hydrogen spray drop sizes by correcting property differences between water-air and liquid oxygen/hydrogen.

  1. A New Way to Spray

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A NASA SBIR contract provided the funding for a new nozzle shape to be used in plasma spray techniques. The new design, a bell shape, reduces overspray. The result is a significant decrease in the cost of plasma spraying and a higher quality, more pure coating.

  2. Substrate system for spray forming

    DOEpatents

    Chu, Men G.; Chernicoff, William P.

    2002-01-01

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  3. Substrate system for spray forming

    DOEpatents

    Chu, Men G.; Chernicoff, William P.

    2000-01-01

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  4. An overview of Experimental Condensed Matter Physics in Argentina by 2014, and Oxides for Non Volatile Memory Devices: The MeMOSat Project

    NASA Astrophysics Data System (ADS)

    Levy, Pablo

    2015-03-01

    In the first part of my talk, I will describe the status of the experimental research in Condensed Matter Physics in Argentina, biased towards developments related to micro and nanotechnology. In the second part, I will describe the MeMOSat Project, a consortium aimed at producing non-volatile memory devices to work in aggressive environments, like those found in the aerospace and nuclear industries. Our devices rely on the Resistive Switching mechanism, which produces a permanent but reversible change in the electrical resistance across a metal-insulator-metal structure by means of a pulsed protocol of electrical stimuli. Our project is devoted to the study of Memory Mechanisms in Oxides (MeMO) in order to establish a technological platform that tests the Resistive RAM (ReRAM) technology for aerospace applications. A review of MeMOSat's activities is presented, covering the initial Proof of Concept in ceramic millimeter sized samples; the study of different oxide-metal couples including (LaPr)2/3Ca1/3MnO, La2/3Ca1/3MnO3, YBa2Cu3O7, TiO2, HfO2, MgO and CuO; and recent miniaturized arrays of micrometer sized devices controlled by in-house designed electronics, which were launched with the BugSat01 satellite in June2014 by the argentinian company Satellogic.

  5. Nozzleless Spray Cooling Using Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Ang, Kar Man; Yeo, Leslie; Friend, James; Hung, Yew Mun; Tan, Ming Kwang

    2015-11-01

    Due to its reliability and portability, surface acoustic wave (SAW) atomization is an attractive approach for the generation of monodispersed microdroplets in microfluidics devices. Here, we present a nozzleless spray cooling technique via SAW atomization with key advantage of downward scalability by simply increasing the excitation frequency. With generation of micron size droplets through surface destabilization using SAW, the clogging issues commonly encountered by spraying nozzle can be neutralized. Using deionised water, cooling is improved when the atomization rate is increased and the position of the device is optimized such that the atomized droplets can be easily seeded into the upstream of the flow circulation. Cooling is further improved with the use of nanofluids; a suspension of nanoparticles in water. By increasing nanoparticle mass concentration from 1% to 3%, cooling is enhanced due to the deposition and formation of nanoparticle clusters on heated surface and eventually increase the surface area. However, further increase the concentration to 10% reduces the cooling efficiency due to drastic increase in viscosity μ that leads to lower atomization rate which scales as ṁ ~μ - 1 / 2 .

  6. Oxidation in HVOF-sprayed steel

    SciTech Connect

    Smith, M.F.; Neiser, R.A.; Dykhuizen, R.C.

    1997-08-01

    It is widely held that most of the oxidation in thermally sprayed coatings occurs on the surface of the droplet after it has flattened. The evidence in this paper suggests that, for the conditions studied here, oxidation of the top surface of flattened droplets is not the dominant oxidation mechanism. In this study, a mild steel wire (AISI 1025) was sprayed using a high-velocity oxy-fuel (HVOF) torch onto copper and aluminum substrates. Ion milling and Auger spectroscopy were used to examine the distribution of oxides within individual splats. Conventional metallographic analysis was also used to study oxide distributions within coatings that were sprayed under the same conditions. An analytical model for oxidation of the exposed surface of a splat is presented. Based on literature data, the model assumes that diffusion of iron through a solid FeO layer is the rate limiting factor in forming the oxide on the top surface of a splat. An FeO layer only a few thousandths of a micron thick is predicted to form on the splat surface as it cools. However, the experimental evidence shows that the oxide layers are typically 100x thicker than the predicted value. These thick, oxide layers are not always observed on the top surface of a splat. Indeed, in some instances the oxide layer is on the bottom, and the metal is on the top. The observed oxide distributions are more consistently explained if most of the oxide formed before the droplets impact the substrate.

  7. Experimental investigation of active adaptability of the SMArt (SMA reseTtable) dual-chamber pneumatic lift device for pedestrian protection

    NASA Astrophysics Data System (ADS)

    Otten, James; Luntz, Jonathan; Brei, Diann; Strom, Kenneth A.; Browne, Alan L.; Johnson, Nancy L.

    2008-03-01

    The rapid urbanization of the world has led to an increase in pedestrian involvement in automotive crashes, prompting some countries to establish pedestrian regulations. A promising approach to address pedestrian safety is the use of active lift devices to raise the hood upon detection of a pedestrian impact, thereby increasing the crush distance between the hood and vehicle hard points (i.e. engine). Current systems are generally not reusable or resettable and lack extrinsic effect compensation. The dual chamber SMArt (SMA ReseTtable) lift system presented in this paper is a fully automatically resettable system utilizing a stored energy approach with a pneumatic cylinder and a two stage ultrafast shape memory alloy (SMA) actuated valve. This active lift possesses the unique functionality to tailor lift performance and compensate for extrinsic effects such as changes in temperature, mass, and platform using cylinder pressure and exhaust valve opening timing profile as operating parameters. As a proof of concept, a dual chamber SMArt lift system was designed, fabricated, and installed in a vehicle hood bay testbed. Full cycle tests demonstrated the functions of lift, lower and reset within the proper timing. The effect of additional mass, was experimentally characterized and two insitu device parameters, pressure and valve profile, were investigated as means to mitigate these extrinsic effects. This experimental study indicates that the dual chamber SMArt lift device may be a feasible alternative for pedestrian protection with automatic reset/reusability along with capability to adapt in-situ to maintain performance within a narrow timing window by compensating for extrinsic effects.

  8. Experimental testing of the dual-layer Woven EndoBridge device using an elastase-induced aneurysm model in rabbits.

    PubMed

    Ding, Yong-Hong; Dai, Daying; Schroeder, Dana; Kadirvel, Ramanathan; Kallmes, David F

    2016-06-01

    The dual-layer Woven EndoBridge (WEB) device (WEB II) is designed to improve the performance of the first-generation WEB device. This study was performed to evaluate the acute and chronic performance of WEB II for aneurysm occlusion in an elastase-induced aneurysm model in rabbits. We implanted WEB II devices in 36 elastase-induced aneurysms and followed up for one, three, six, and 12 months. Degree of aneurysm occlusion at follow-up was graded on the Web Occlusion Scale (WOS): Grade A, complete aneurysm occlusion; Grade B, complete occlusion with recess filling; Grade C, residual neck filling; and Grade D, residual aneurysm filling. Hematoxylin and eosin staining was performed for histological assessment of aneurysm healing. Grades A, B, C, and D aneurysm occlusion at one-month follow-up were noted in three (17%), three (17%), eight (44%), and four (22%) of 18 cases, respectively. At the three-month time point Grades A, B, C, and D were shown in two (33%), two (33%), one (17%), and one (17%) aneurysms. Six months after treatment, one (17%), two (33%), two (33%), and one (17%) cases demonstrated Grades A, B, C, and D occlusion. At the 12-month time point, Grades B, C, and D were shown in three (50%), two (33%), and one (17%) aneurysms. Histologic evaluation showed progressive thrombus organization within aneurysm lumen from one to 12 months. These results indicated that the WEB II device can achieve high rates of aneurysm occlusion over time in experimental aneurysms. PMID:26847799

  9. Advanced Diagnostics for High Pressure Spray Combustion.

    SciTech Connect

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  10. AMPS data management requirements study, appendix 1. [user manuals (computer programs)/display devices - computerized simulation/experimentation/ionosphere

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Flow charts and display formats for the simulation of five experiments are given. The experiments are: (1) electromagnetic wave transmission; (2) passive observations of ambient plasma; (3) ionospheric measurements with subsatellite; (4) electron accelerator beam measurements; and (5) measurement of acoustical gravity waves in the sodium layer using lasers. A detailed explanation of the simulation procedure, definition of variables, and an explanation of how the experimenter makes display choices is also presented. A functional description is included on each flow chart and the assumptions and definitions of terms and scope of the flow charts and displays are presented.

  11. Development of TRIGA-based experimental device for fiber optics in-core instrumentation testing for VHTRs

    SciTech Connect

    Johns, J. M.; Tsvetkov, P. V.

    2012-07-01

    Given the harsh environments of high temperature reactors, new in-core instrumentation has to be developed, since existing approaches may fail prematurely in VHTRs. The paper discusses ongoing efforts to support progress of suitable advanced in-core instrumentation technologies and develop an experimental approach for evaluation of their performance within VHTRs via emulation of VHTR in-core conditions in TRIGA reactors. Successful completion of the presented computational analysis concludes the first phase of the project. As demonstrated, it is proposed to use a high temperature furnace with fluence equivalency in operating TRIGA reactors. (authors)

  12. Experimental results on the irradiation of nuclear fusion relevant materials at the dense plasma focus ‘Bora’ device

    NASA Astrophysics Data System (ADS)

    Cicuttin, A.; Crespo, M. L.; Gribkov, V. A.; Niemela, J.; Tuniz, C.; Zanolli, C.; Chernyshova, M.; Demina, E. V.; Latyshev, S. V.; Pimenov, V. N.; Talab, A. A.

    2015-06-01

    Samples of materials counted as perspective ones for use in the first-wall and construction elements in nuclear fusion reactors (FRs) with magnetic and inertial plasma confinement (W, Ti, Al, low-activated ferritic steel ‘Eurofer’ and some alloys) were irradiated in the dense plasma focus (DPF) device ‘Bora’ having a bank energy of ⩽5 kJ. The device generates hot dense (T ˜ 1 keV, n ˜ 1019 cm-3) deuterium plasma, powerful plasma streams (v ˜ 3 × 107 cm s-1) and fast (E ˜ 0.1 … 1.0 MeV) deuterons of power flux densities q up to 1010 and 1012 W cm-2 correspondingly. ‘Damage factor’ F = q × τ0.5 ensures an opportunity to simulate radiation loads (predictable for both reactors types) by the plasma/ion streams, which have the same nature and namely those parameters as expected in the FR modules. Before and after irradiation we provided investigations of our samples by means of a number of analytical techniques. Among them we used optical and scanning electron microscopy to understand character and parameters of damageability of the surface layers of the samples. Atomic force microscopy was applied to measure roughness of the surface after irradiation. These characteristics are quite important for understanding mechanisms and values of dust production in FR that may relate to tritium retention and emergency situations in FR facilities. We also applied two new techniques. For the surface we elaborated the portable x-ray diffractometer that combines x-ray single photon detection with high spectroscopic and angular resolutions. For bulk damageability investigations we applied an x-ray microCT system where x-rays were produced by a Hamamatsu microfocus source (150 kV, 500 µA, 5 µm minimum focal spot size). The detector was a Hamamatsu CMOS flat panel coupled to a fibre optic plate under the GOS scintillator. The reconstruction of three-dimensional data was run with Cobra 7.4 and DIGIX CT software while VG Studio Max 2.1, and Amira 5.3 were used for

  13. A statistical approach to optimize the spray drying of starch particles: application to dry powder coating.

    PubMed

    Bilancetti, Luca; Poncelet, Denis; Loisel, Catherine; Mazzitelli, Stefania; Nastruzzi, Claudio

    2010-09-01

    This article describes the preparation of starch particles, by spray drying, for possible application to a dry powder coating process. Dry powder coating consists of spraying a fine powder and a plasticizer on particles. The efficiency of the coating is linked to the powder morphological and dimensional characteristics. Different experimental parameters of the spray-drying process were analyzed, including type of solvent, starch concentration, rate of polymer feeding, pressure of the atomizing air, drying air flow, and temperature of drying air. An optimization and screening of the experimental parameters by a design of the experiment (DOE) approach have been done. Finally, the produced spray-dried starch particles were conveniently tested in a dry coating process, in comparison to the commercial initial starch. The obtained results, in terms of coating efficiency, demonstrated that the spray-dried particles led to a sharp increase of coating efficiency value. PMID:20706878

  14. Modeling sulfur dioxide absorption by fine water spray

    SciTech Connect

    Cheng-Hsiung Huang

    2005-07-01

    A novel theoretical model was developed to determine the removal efficiency of sulfur dioxide using fine water spray. The droplet pH, diameter, S(IV) concentration, sulfur dioxide concentration, and liquid-to-gas ratio are found to influence the absorption of sulfur dioxide by the fine water spray. The results demonstrate that the absorption of sulfur dioxide by the fine water spray increases as the droplet diameter falls. The concentration gradient between the interface of the gaseous and liquid phases causes the absorption of sulfur dioxide by the droplets to increase as the initial S(IV) concentration decreases or the sulfur dioxide concentration increases. The results indicate that the performance of the fine water spray in removing sulfur dioxide is generally improved by reducing the droplet diameter or the initial S(IV) concentration, or by increasing the sulfur dioxide concentration, the droplet pH or the liquid-to-gas ratio. The proposed model reveals the parameters that should be controlled in using a fine water spray device and a method for improving its performance in removing sulfur dioxide.

  15. Experimental setup for the coating of chlorosilane based self assembling monolayers to reduce stiction in MEMS devices

    NASA Astrophysics Data System (ADS)

    Steiner, H.; Sachse, M.; Schalko, J.; Hortschitz, W.; Kohl, F.; Jachimowicz, A.

    2011-06-01

    An often reported problem during production and operation of silicon MEMS is stiction. It describes the sticking of movable MEMS parts to surrounding structures. The probability of the occurrence of stiction is linked to the surface energy of the MEMS. Self assembling monolayers can be used to reduce the surface energy and therefore the probability of stiction. These monolayers have to resist high temperatures up to 400°C to be compatible with various micro-production processes, e.g., eutectic bonding. Several groups tried to coat such monolayers with different success and results. One problem is the instability of the coating method due to water contaminations of the coating solution. To circumvent this error source, an experimental setup was designed and built up to minimize the water content of the monolayer solvent and ensures reproducible conditions during the coating process. The required set of liquids is piped through a system of valves and tubes to rinse a trench with a silicon die. To avoid contamination of the liquids with water, the setup is partly placed in a box flushed with nitrogen. With this experimental setup, the surface energy γs of the MEMS structures had been reduced from 18.1 mJ/m2 to 33.1 μJ/m2 and 36.6 μJ/m2 for FDTS and DDMS, respectively.

  16. The effects of beliefs regarding drug assignment in experimental and field studies of nicotine delivery devices: a review.

    PubMed

    Dar, Reuven; Barrett, Sean P

    2014-11-01

    The placebo effect of a psychoactive drug can be defined as the effect of expecting the drug in the absence of its pharmacological actions. As nicotine is widely believed to be the primary factor driving cigarette smoking, smokers are likely to expect nicotine to alleviate craving and withdrawal. The present review examines the extent to which any observed effects of nicotine, and especially its craving- and withdrawal-reducing effects, can be attributed to placebo. We begin by reviewing studies that examined the placebo effects of nicotine in the laboratory and follow with a review of potential placebo effects that are typically not controlled in placebo-controlled studies of nicotine replacement therapy (NRT). In laboratory studies, nicotine instructions decrease tobacco smoking, craving and/or withdrawal, while nicotine-specific effects have not been consistently reported. In field trials of NRT, there is a general failure to assess smokers' beliefs regarding their drug assignment. This omission makes it difficult to unequivocally attribute findings of placebo-controlled NRT studies to the physiological effects of nicotine. In sum, our review indicates that the placebo effects of nicotine, and specifically nicotine content expectations, may account for many of the benefits associated with nicotine delivery devices in both laboratory and field studies. PMID:25253274

  17. The relationship between R-wave magnitude and ventricular volume during continuous left ventricular assist device assistance: experimental study.

    PubMed

    Fresiello, Libera; Trivella, Maria Giovanna; Di Molfetta, Arianna; Ferrari, Gianfranco; Bernini, Fabio; Meste, Olivier

    2015-05-01

    The current use of left ventricular assist devices (LVADs) as destination therapy is associated with the clinical need of monitoring patient-pump interaction. To this aim, the present work investigated the possibility of getting useful information about the status of the assisted left ventricle using electrocardiographic (ECG) data. A total of six animals, undergoing Gyro Centrifugal Pump 2 implantation (a new version of Gyro Centrifugal Pump C1E3 [Kyocera Corporation, Kyoto, Japan]) and CircuLite Synergy Micropump (CircuLite, Inc., Saddlebrooke, NJ, USA) in atrio-aortic connection, were analyzed. Data refer to different LVAD speeds with consequently different levels of ventricular unloading. From ECG signal, the R wave peak was individuated together with the corresponding left ventricular volume. Then on both signals, a moving average analysis was performed to reduce the effect of the ventilation. A regression and correlation analysis performed on the two resulting signals evidenced that the R wave peak and the ventricular volume are strictly related. Specifically, any change of LVAD speed, inducing a change in ventricular volume, is associated with a change in R wave peak value. The present work is a first step in investigating the usefulness of the ECG signal during LVAD therapy, for the monitoring of mechanical parameters of the heart such as the ventricular volumes. The correlation found between the ECG and the ventricular volume can be a promising starting point for possible future noninvasive LVAD patient monitoring. PMID:25377695

  18. Flow behavior within the 12-cc Penn State pulsatile pediatric ventricular assist device: an experimental study of the initial design.

    PubMed

    Manning, Keefe B; Wivholm, Brandon D; Yang, Ning; Fontaine, Arnold A; Deutsch, Steven

    2008-06-01

    Planar particle image velocimetry was used to explore the flow behavior of the newly designed 12-cc Penn State pneumatic pediatric assist pump. Wall shear maps complemented the velocity data. Bjork-Shiley Monostrut 17-mm mechanical heart valves were used in the inlet and outlet ports. In comparison with larger Penn State pumps, the 12-cc device is not only smaller but has reduced valve effective orifice areas and more highly angled valve ports. In contrast to results from the larger pumps, the flow field was highly three dimensional during early diastole with poorer penetration by the valve inlet jet. This led to a later start to a "wall washing" rotational pattern. A significant separation region, never before observed, was created upstream of the outlet valve leaflet during late diastole--effectively reducing the area and increasing the pressure drop through the valve. Wall shear maps suggest that regions of low shear might persist throughout the cycle at the bottom of the pump on the outlet side. An attempt to improve the flow field characteristics by exploring different valves, valve orientations and inlet valve angles, systolic/diastolic flow timing, and perhaps a larger outlet valve was planned. PMID:18422800

  19. A fluorescent tracer method for evaluating spray transport and fate of field and laboratory spray applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field and laboratory testing spray nozzles and application systems use spray collectors to assess where the spray deposits once it leaves the spray system. Tracer materials, such as oil and water soluble fluorescent dyes, can be mixed into spray solutions in small amounts with minimal impact on the...

  20. Development of Ag/WO3/ITO thin film memristor using spray pyrolysis method

    NASA Astrophysics Data System (ADS)

    Dongale, T. D.; Mohite, S. V.; Bagade, A. A.; Gaikwad, P. K.; Patil, P. S.; Kamat, R. K.; Rajpure, K. Y.

    2015-11-01

    The unique nonlinear relationship between charge and magnetic flux along with the pinched hysteresis loop in I- V plane provide memory with resistance combinations of attribute to Memristor which lead to their novel applications in non volatile memory, nonlinear dynamics, analog computations and neuromorphic biological systems etc. The present paper reports development of Ag/WO3/ITO thin film memristor device using spray pyrolysis method. The structural, morphological and electrical properties of the thin film memristor device are further characterized using x-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and semiconductor device analyzer. The memristor is simulated using linear dopent drift model to ascertain the theoretical and experimental conformations. For the simulation purpose, the width of doped region (w) limited to the interval [0, D] is considered as a state variable along with the window function characterized by the equation f ( x) = w (1 - w). The reported memristor device exhibits the symmetric pinched hysteresis loop in I- V plane within the low operating voltage (±1 V). [Figure not available: see fulltext.

  1. INEL spray-forming research

    SciTech Connect

    McHugh, K.M.; Key, J.F.

    1992-12-31

    Spray forming is a near-net-shape fabrication technology in which a spray of finely atomized liquid droplets is deposited onto a suitably shaped substrate or mold to produce a coherent solid. The technology offers unique opportunities for simplifying materials processing without sacrificing, and oftentimes substantially improving, product quality. Spray forming can be performed with a wide range of metals and nonmetals, and offers property improvements resulting from rapid solidification (e.g. refined microstructures, extended solid solubilities and reduced segregation). Economic benefits result from process simplification and the elimination of unit operations. Researchers at the Idaho National Engineering Laboratory (INEL) are developing spray-forming technology for producing near-net-shape solids and coatings of a variety of metals, polymers, and composite materials. Results from several spray-forming programs are presented to illustrate the range of capabilities of the technique as well as the accompanying technical and economic benefits. Low-carbon steel strip >0.75 mm thick and polymer membranes for gas/gas and liquid/liquid separations that were spray formed are discussed; recent advances in spray forming molds, dies, and other tooling using low-melting-point metals are described.

  2. INEL Spray-forming Research

    NASA Technical Reports Server (NTRS)

    Mchugh, Kevin M.; Key, James F.

    1993-01-01

    Spray forming is a near-net-shape fabrication technology in which a spray of finely atomized liquid droplets is deposited onto a suitably shaped substrate or mold to produce a coherent solid. The technology offers unique opportunities for simplifying materials processing without sacrificing, and oftentimes substantially improving, product quality. Spray forming can be performed with a wide range of metals and nonmetals, and offers property improvements resulting from rapid solidification (e.g., refined microstructures, extended solid solubilities and reduced segregation). Economic benefits result from process simplification and the elimination of unit operations. Researchers at the Idaho National Engineering Laboratory (INEL) are developing spray-forming technology for producing near-net-shape solids and coatings of a variety of metals, polymers, and composite materials. Results from several spray forming programs are presented to illustrate the range of capabilities of the technique as well as the accompanying technical and economic benefits. Low-carbon steel strip greater than 0.75 mm thick and polymer membranes for gas/gas and liquid/liquid separations that were spray formed are discussed; recent advances in spray forming molds, dies, and other tooling using low-melting-point metals are described.

  3. Simulation of surface roughness during the formation of thermal spray coatings

    SciTech Connect

    Kanouff, M.P.

    1996-07-01

    The formation of a thermal spray coating was analyzed to identify methods to reduce the surface roughness of the coating. A new methodology was developed which uses a string of equally spaced node points to define the shape of the coating surface and to track the shape change as the thermal spray mass is deposited. This allows the calculation of arbitrary shapes for the coating surface which may be very complex. The model simulates the stochastic deposition of a large number of thermal spray droplets, where experimental data is used for the mass flux distribution on the target surface. This data shows that when the thermal spray mass impinges on the target surface, a large fraction of it (over-spray) splashes off the target and is re-deposited with a small spray angle, resulting in a large coating roughness. This analysis was used in a parameter study to identify methods for reducing the coating roughness. Effect of the shape of the profile for the pre-roughened substrate was found to be small. Decreasing the droplet size by a factor of 2 decreased the roughness by 13%. Increasing the spray angle for the over-spray by a factor of 2 decreased the roughness by 50%, and decreasing the amount of over- spray by a factor of 2 decreased the roughness by 51%.

  4. Fuel spray diagnostics

    NASA Technical Reports Server (NTRS)

    Bosque, M. A.

    1984-01-01

    Several laser measurement methods are being studied to provide the capability to make droplet size and velocity measurements under a variety of spray conditions. The droplet sizing interferometer (DSI) promises to be a successful technique because of its capability for rapid data acquisition, compilation and analysis. Its main advantage is the ability to obtain size and velocity measurements in air-fuel mixing studies and hot flows. The existing DSI at NASA Lewis is a two-color, two-component system. Two independent orthogonal measurements of size and velocity components can be made simultaneously. It also uses an off-axis large-angle light scatter detection. The fundamental features of the system are optics, signal processing and data management system. The major component includes a transmitter unit, two receiver units, two signal processors, two data management systems, two Bragg cell systems, two printer/plotters, a laser, power supply and color monitor.

  5. Gas Dynamic Spray Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Burford, Pattie Lewis

    2011-01-01

    Zinc primer systems are currently used across NASA and AFSPC for corrosion protection of steel. AFSPC and NASA have approved the use of Thermal Spray Coatings (TSCs) as an environmentally preferable alternative. TSCs are approved in NASA-STD-5008 and AFSPC and KSC is currently looking for additional applications in which TSC can be used. Gas Dynamic Spray (GDS, also known as Cold Spray) is being evaluated as a means of repairing TSCs and for areas such as corners and edges where TSCs do not work as well. Other applications could include spot repair/maintenance of steel on structures, facilities, and ground support equipment.

  6. Spray dryer capacity stretched 50%

    SciTech Connect

    Paraskevas, J.

    1983-01-01

    This article describes plant equipment modifications which has resulted in a 50% increase in spray drying capacity. The installation of a new atomizer and screening system in NL Chemicals' Newberry Springs plant which produces natural clays for use as rheological additives in industrial coatings, cosmetics and other products, resulted in a 50% increase in spray drying capacity. Energy consumption per pound of product was reduced by 7%, and product quality improved. This was achieved in less than three months at an investment of less than 10% of what an additional spray dryer would have cost.

  7. A study of diamond laminated surfaces in evaporative spray cooling

    NASA Astrophysics Data System (ADS)

    Sehmbey, M. S.; Pais, M. R.; Chow, L. C.

    This effort is directed towards studying the performance of diamond laminated surfaces under conditions of evaporative spray cooling of high-heat-flux electronic components. The experimental results presented illustrate the robustness of the surface, as well as its heat transfer characteristics, wettability and roughness. Exceptional heat flux rates of over 1100 W/sq cm were obtained within superheats of 40 C.

  8. Tensile adhesion test measurements on plasma-sprayed coatings

    NASA Technical Reports Server (NTRS)

    Berndt, C. C.

    1986-01-01

    Adhesion measurements on plasma-sprayed coatings are briefly studied, including a critical analysis of the experimental scatter for duplicate tests. The application of a simple method which presents adhesion strength data in a fracture mechanics perspective is demonstrated. Available data are analyzed in a way which suggests an approach to finding the overall defect contribution to reducing the apparent strength of coatings.

  9. Field experiment on spray drift: deposition and airborne drift during application to a winter wheat crop.

    PubMed

    Wolters, André; Linnemann, Volker; van de Zande, Jan C; Vereecken, Harry

    2008-11-01

    A field experiment was performed to evaluate various techniques for measuring spray deposition and airborne drift during spray application to a winter wheat crop. The application of a spraying agent containing the fluorescent dye Brilliant Sulfo Flavine by a conventional boom sprayer was done according to good agricultural practice. Deposition was measured by horizontal collectors in various arrangements in and outside the treated area. Airborne spray drift was measured both with a passive and an active air collecting system. Spray deposits on top of the treated canopy ranged between 68 and 71% of the applied dose and showed only small differences for various arrangements of the collectors. Furthermore, only small variations were measured within the various groups of collectors used for these arrangements. Generally, the highest spray deposition outside the treated area was measured close to the sprayed plot and was accompanied by a high variability of values, while a rapid decline of deposits was detected in more remote areas. Estimations of spray deposits with the IMAG Drift Calculator were in accordance with experimental findings only for areas located at a distance of 0.5-4.5 m from the last nozzle, while there was an overestimation of a factor of 4 at a distance of 2.0-3.0 m, thus revealing a high level of uncertainty of the estimation of deposition for short distances. Airborne spray drift measured by passive and active air collecting systems was approximately at the same level, when taking into consideration the collector efficiency of the woven nylon wire used as sampling material for the passive collecting system. The maximum value of total airborne spray drift for both spray applications (0.79% of the applied dose) was determined by the active collecting system. However, the comparatively high variability of measurements at various heights above the soil by active and passive collecting systems revealed need for further studies to elucidate the spatial

  10. Modifications Of A Commercial Spray Gun

    NASA Technical Reports Server (NTRS)

    Allen, Peter B.

    1993-01-01

    Commercial spray gun modified to increase spray rate and make sprayed coats more nearly uniform. Consists of gun head and pneumatic actuator. Actuator opens valves for two chemical components, called "A" and "B," that react to produce foam. Components flow through orifices, into mixing chamber in head. Mixture then flows through control orifice to spray tip. New spray tip tapered to reduce area available for accumulation of foam and makes tip easier to clean.

  11. Correlation Between Material Properties of Ferroelectric Thin Films and Design Parameters for Microwave Device Applications: Modeling Examples and Experimental Verification

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; VanKeuls, Fred W.; Subramanyam, Guru; Mueller, Carl H.; Romanofsky, Robert R.; Rosado, Gerardo

    2000-01-01

    The application of thin ferroelectric films for frequency and phase agile components is the topic of interest of many research groups worldwide. Consequently, proof-of-concepts (POC) of different tunable microwave components using either (HTS, metal)/ferroelectric thin film/dielectric heterostructures or (thick, thin) film "flip-chip" technology have been reported. Either as ferroelectric thin film characterization tools or from the point of view of circuit implementation approach, both configurations have their respective advantages and limitations. However, we believe that because of the progress made so far using the heterostructure (i.e., multilayer) approach, and due to its intrinsic features such as planar configuration and monolithic integration, a study on the correlation of circuit geometry aspects and ferroelectric material properties could accelerate the insertion of this technology into working systems. In this paper, we will discuss our study performed on circuits based on microstrip lines at frequencies above 10 GHz, where the multilayer configuration offers greater ease of insertion due to circuit's size reduction. Modeled results of relevant circuit parameters such as the characteristic impedance, effective dielectric constant, and attenuation as a function of ferroelectric film's dielectric constant, tans, and thickness, will be presented for SrTiO3 and Ba(x)Sr(1-x)TiO3 ferroelectric films. A comparison between the modeled and experimental data for some of these parameters will be presented.

  12. Experimental Validation of a Novel MRI-Compatible HIFU Device for the Treatment of Superficial Venous Insufficiency

    NASA Astrophysics Data System (ADS)

    Salomir, Rares; Pichardo, Samuel; Petrusca, Lorena; Angel, Yves; Lacoste, François; Chapelon, Jean-Yves

    2007-05-01

    A novel High Intensity Focused Ultrasound (HIFU) probe has been designed for minimally-invasive treatment of valvular dysfunction in the saphenous vein, which is known to be the cause of superficial venous insufficiency (SVI) and varicose veins. Treating SVI with HIFU is possible, since venous tissue undergoes localized partial shrinkage when subjected to high temperature elevation. In a previous study in vitro we demonstrated that diameter shrinkage should be sufficient to restore valvular function, as this is done in the more aggressive approach known as external valvuloplasty. Numerical optimization using fast simulations of pressure field have led to a non-spherically shaped probe design with two HIFU elements that focus ultrasound uniformly over a line of length 7 mm, at a depth of 15 mm from the skin. A MR-compatible prototype of the probe has been constructed and this was characterized 1). by electroacustical mapping of the pressure field in water, and 2). by fast, high resolution MR thermal mapping ex vivo on fresh meat samples. Results were in good agreement with those predicted by an analytical approach and numerical simulations. Available experimental data suggest that a short sonication (less than 10 sec duration) should permit sufficient temperature elevation to obtain vein shrinkage. Further studies will be performed on surgically excised samples of human veins under MR thermal mapping in order to determine the optimal sonication parameters (duration and power level).

  13. Exposure of spray-men to dieldrin in residual spraying

    PubMed Central

    Fletcher, T. E.; Press, J. M.; Wilson, D. Bagster

    1959-01-01

    A study of the exposure of spray-men to dieldrin was made in a pilot scheme of residual spraying in the Taveta-Pare area of East Africa. A detailed work study was completed on the operators, and sources of contamination were enumerated. Filter paper pads were placed on the skin and outside clothing and the pick-up was estimated chemically. A spray-man, while using the daily average of 2.12 kg (4.7 pounds) of dieldrin and observing the protective measures laid down, received a dermal exposure of 1.8 mg of dieldrin per kg of body-weight per day. This was possibly reduced somewhat by washing with soap and water upon completion of each day's work. The sixteen spray-men and assistants were exposed for 180 days per year and there was an interim period of 2 months between spray cycles. No clinical symptoms of poisoning were observed. Comparison is made with certain programmes where dieldrin poisoning has occurred. Attention is drawn to the reduced time of exposure in the Taveta-Pare scheme, personal washing, the great value of protective clothing and of its daily washing in soap and water and the need to use a dilute suspension of wettable powder for spraying. Imagesp16-a PMID:13638786

  14. Comparison of different hard, metal-like coatings sprayed by plasma and detonation gun processes

    SciTech Connect

    Vuoristo, P.; Niemi, K.; Maentylae, T.; Berger, L.M.; Nebelung, M.

    1995-12-31

    Structure and wear properties of atmospheric plasma sprayed and detonation gun sprayed coatings prepared from an experimental (Ti,Mo)C-28.4%NiCo powder were compared to coatings sprayed from commercially available WC-12%Co and Cr{sub 3}C{sub 2}-25%NiCr powders. All powders had an agglomerated (spray dried) and sintered structure and nearly the same content of the metallic binder of approximately 20 vol.-%. The powders were characterized by SEM (morphology and cross-sections) and X-ray diffraction (phase composition). The coatings were studied by optical microscope, microhardness measurements, X-ray diffraction analysis and by abrasion and erosion wear tests. The X-ray diffraction patterns of the coatings show that the (Ti,Mo)C-28.4%NiCo powder is characterized by high phase stability in both spray processes, whereas the WC-12%Co powder is prone to significant phase transformations during spraying. The results clearly show the high potential of the experimental (Ti,Mo)C-28.4%NiCo coatings in substituting the conventional systems in wear applications. For instance, it was found that plasma spraying of the (Ti,Mo)C-28.4%NiCo powder with an Ar-H{sub 2} plasma gas resulted in coatings with wear resistance comparable to WC-12%Co coatings. However, detonation gun sprayed WC-12%Co coatings showed somewhat better abrasion wear resistance.

  15. Efficient transmission calculations for polydisperse water sprays using spectral scaling

    NASA Astrophysics Data System (ADS)

    Godoy, William F.; Desjardin, Paul E.

    2007-12-01

    Analytical expressions are developed to scale the extinction, scattering and absorption coefficients as a function of the Sauter mean diameter for polydisperse water sprays in fire suppression systems. A scaling procedure is introduced to avoid prohibitive exact integration of the functions obtained from Mie theory resulting in several orders in magnitude of computational savings. Spectral-based and total transmission of real spray distributions using the scaling procedure are compared to exact results and experimental data. Results show the proposed scaling procedure yields significant computational savings with little loss in accuracy for predictions of spectral and total transmission.

  16. Characteristics of Vaporizing Cryogenic Sprays for Rocket Combustion Modeling

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1994-01-01

    Experimental measurements of the volume-median drop diameter, Dv.5e, of vaporizing cryogenic sprays were obtained with a drop size measuring instrument developed at NASA Lewis Research Center. To demonstrate the effect of atomizing-gas properties on characteristic drop size, a two-fluid fuel nozzle was used to break up liquid-nitrogen, LN2, jets in high-velocity gasflows of helium argon and gaseous nitrogen, GN2. Also, in order to determine the effect of atomizing-gas temperature on specific surface-areas of LN2 sprays, drop size measurements were made at gas temperatures of 111 and 293 K.

  17. A novel gas-droplet numerical method for spray combustion

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Shang, H. M.; Jiang, Y.

    1991-01-01

    This paper presents a non-iterative numerical technique for computing time-dependent gas-droplet flows. The method is a fully-interacting combination of Eulerian fluid and Lagrangian particle calculation. The interaction calculations between the two phases are formulated on a pressure-velocity coupling procedure based on the operator-splitting technique. This procedure eliminates the global iterations required in the conventional particle-source-in-cell (PSIC) procedure. Turbulent dispersion calculations are treated by a stochastic procedure. Numerical calculations and comparisons with available experimental data, as well as efficiency assessments are given for some sprays typical of spray combustion applications.

  18. Convective Evaporation Of Sprayed Liquid

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth G.

    1987-01-01

    Theoretical model developed to analyze behavior of both dense and dilute clusters of evaporating liquid drops in gas flows. Particularly useful in search for methods of controlling evaporation, ignition, and combustion of fuel sprays.

  19. Spray nozzle for fire control

    NASA Astrophysics Data System (ADS)

    Papavergos, Panayiotis G.

    1990-09-01

    The design of a spray nozzle for fire control is described. It produces a spray of gas and liquid having an oval transverse cross section and it comprises a mixing chamber with an oval transverse cross section adapted to induce a toroidal mixing pattern in pressurized gas and liquid introduced to the mixing chamber through a plurality of inlets. In a preferred embodiment the mixing chamber is toroidal. The spray nozzle produces an oval spray pattern for more efficient wetting of narrow passages and is suitable for fire control systems in vehicles or other confined spaces. Vehicles to which this invention may be applied include trains, armoured vehicles, ships, hovercraft, submarines, oil rigs, and most preferably, aircraft.

  20. Process Sprays Uniforms Plasma Coatings

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.; Jacobson, T. P.; Walther, G. C.; Nakamura, H. H.

    1983-01-01

    Composite-powder processing procedure developed along with plasma-spray parameters to achieve homogeneous, well-bonded, low-porosity, self-lubricating coatings. Multicomponent plasma coatings are applied without segretation of components.

  1. Removal of carbon dioxide by a spray dryer.

    PubMed

    Chen, Jyh-Cherng; Fang, Guor-Cheng; Tang, Jun-Tian; Liu, Li-Ping

    2005-03-01

    With the global warming due to greenhouse effects becoming serious, many efforts are carried out to decrease the emissions of CO2 from the combustion of carbonaceous materials. In Taiwan, there are 19 large-scale municipal solid waste incinerators running and their total emission of CO2 is about 16,950 kton y-1. Spray dryer is the most prevailing air pollution control devise for removing acid gas in waste incineration; however, the performance of spray dryer on the removal of CO2 is seldom studied. This study employs a laboratory-scale spray dryer to investigate the removal efficiency of CO2 under different operating conditions. The evaluated parameters include different absorbents mixed with CaOH2, operating temperature, the concentration of absorbent, and the inlet concentration of CO2. Experimental results show that the best removal efficiency of CO2 by a spray dryer is 48% as the absorbent is 10%NaOH+5%CaOH2 and the operating temperature is 150 degrees C. Comparing this result with previous study shows that the performance of spray dryer is better than traditional NaOH wet scrubber. For NaOH+CaOH2 spray dryer, the removal efficiency of CO2 is decreased with the inlet concentration of CO2 increased and the optimum operating temperature is 150 degrees C. Except NaOH+CaOH2, absorbents DEA+CaOH2, TEA+CaOH2, and single CaOH2 are not effective in removing CO2 by a spray dryer. PMID:15698650

  2. Experimental device for chemical osmosis measurement on natural clay-rock samples maintained at in situ conditions: implications for formation pressure interpretations.

    PubMed

    Rousseau-Gueutin, Pauline; de Greef, Vincent; Gonçalvès, Julio; Violette, Sophie; Chanchole, Serge

    2009-09-01

    In order to characterize the so-called coupled processes occurring in compacted clay rocks, the coupling coefficients must be identified. For this purpose, an original device which allows such measurement for undisturbed (natural) samples in their in situ conditions was developed. The present experimental device minimizes the fluid leaks improving the accuracy of the coupling parameter determination. Three chemical osmotic tests were performed on a cylindrical sample of Callovo-Oxfordian argilite. Room temperature variations during the chemical osmosis experiments required the implementation of temperature effects in the numerical model used for the interpretations. These variations offered the opportunity of an alternative method to estimate the compressibility of the fluid in the circuit connected to a measurement chamber located in the center of the sample. An osmotic efficiency of almost 0.2 for a concentration of 0.094 mol L(-1) is obtained for the Callovo-Oxfordian argilite. This value would explain only some part (approximately 0.10-0.15 MPa) of the overpressures (0.5-0.6 MPa) relative to the surrounding reservoirs measured in this formation. Others processes, such as thermo-osmosis, hydrodynamic boundary condition changes due to climate variations or creep behavior of the shale, could explain the remainder of the overpressures. PMID:19527907

  3. Coupled Monte Carlo Probability Density Function/ SPRAY/CFD Code Developed for Modeling Gas-Turbine Combustor Flows

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The success of any solution methodology for studying gas-turbine combustor flows depends a great deal on how well it can model various complex, rate-controlling processes associated with turbulent transport, mixing, chemical kinetics, evaporation and spreading rates of the spray, convective and radiative heat transfer, and other phenomena. These phenomena often strongly interact with each other at disparate time and length scales. In particular, turbulence plays an important role in determining the rates of mass and heat transfer, chemical reactions, and evaporation in many practical combustion devices. Turbulence manifests its influence in a diffusion flame in several forms depending on how turbulence interacts with various flame scales. These forms range from the so-called wrinkled, or stretched, flamelets regime, to the distributed combustion regime. Conventional turbulence closure models have difficulty in treating highly nonlinear reaction rates. A solution procedure based on the joint composition probability density function (PDF) approach holds the promise of modeling various important combustion phenomena relevant to practical combustion devices such as extinction, blowoff limits, and emissions predictions because it can handle the nonlinear chemical reaction rates without any approximation. In this approach, mean and turbulence gas-phase velocity fields are determined from a standard turbulence model; the joint composition field of species and enthalpy are determined from the solution of a modeled PDF transport equation; and a Lagrangian-based dilute spray model is used for the liquid-phase representation with appropriate consideration of the exchanges of mass, momentum, and energy between the two phases. The PDF transport equation is solved by a Monte Carlo method, and existing state-of-the-art numerical representations are used to solve the mean gasphase velocity and turbulence fields together with the liquid-phase equations. The joint composition PDF

  4. CFD Modeling of Superheated Fuel Sprays

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    2008-01-01

    An understanding of fuel atomization and vaporization behavior at superheat conditions is identified to be a topic of importance in the design of modern supersonic engines. As a part of the NASA aeronautics initiative, we have undertaken an assessment study to establish baseline accuracy of existing CFD models used in the evaluation of a ashing jet. In a first attempt towards attaining this goal, we have incorporated an existing superheat vaporization model into our spray solution procedure but made some improvements to combine the existing models valid at superheated conditions with the models valid at stable (non-superheat) evaporating conditions. Also, the paper reports some validation results based on the experimental data obtained from the literature for a superheated spray generated by the sudden release of pressurized R134A from a cylindrical nozzle. The predicted profiles for both gas and droplet velocities show a reasonable agreement with the measured data and exhibit a self-similar pattern similar to the correlation reported in the literature. Because of the uncertainty involved in the specification of the initial conditions, we have investigated the effect of initial droplet size distribution on the validation results. The predicted results were found to be sensitive to the initial conditions used for the droplet size specification. However, it was shown that decent droplet size comparisons could be achieved with properly selected initial conditions, For the case considered, it is reasonable to assume that the present vaporization models are capable of providing a reasonable qualitative description for the two-phase jet characteristics generated by a ashing jet. However, there remains some uncertainty with regard to the specification of certain initial spray conditions and there is a need for experimental data on separate gas and liquid temperatures in order to validate the vaporization models based on the Adachi correlation for a liquid involving R134A.

  5. Experiments on spray from a rolling tire

    NASA Astrophysics Data System (ADS)

    Radovich, Charles Anthony

    A novel laboratory apparatus has been built to understand the key mechanisms behind spray emerging from a rolling tire. Several researchers have assessed the performance of spray suppression devices; however, there are no known efforts that address the question "what needs to be suppressed?" This investigation into how water in a tire groove evolves into a droplet field will ultimately contribute to driver safety. Using high-speed imaging, water passing through a single circumferential groove was observed to leave the tire patch in the form of a thin liquid sheet, connecting the roadway and the tire. The sheet disintegrates into a droplet field and the breakup modes associated with this decay were identified with respect to Weber number. Weber numbers based on the properties of water, tire speed and tire groove width were tested at 2700, 10900 and 24400. Measurements for the breakup length of the liquid sheet showed a dependence on Weber number proportional to We-1/6. The lateral displacement of the water exiting the tire patch was also measured. These tests showed the overall size of the spray field grows with We; however, the maximum water volume for all We's was delivered to the same distance from the road. Downstream from the tire patch, a determination of the droplet field was performed. From this study, the distribution of droplet sizes was determined as a function of Weber number. At We = 2,700, droplet sizes between 80 and 9000 microm were detected, with a mean diameter near 800 microm. Both the range of droplet sizes and the mean diameter were found to decrease with Weber number by approximately We-1/2. Based on these size distributions, Correlation Image Velocimetry (CIV) was used to estimate the distribution of droplet velocities as function of their size. These results reveal a strong correlation between droplet diameter and velocity which is comparable to that predicted for a simple sphere.

  6. Characterization of thermal spray coatings

    SciTech Connect

    Schorr, B.S.; Stein, K.J.; Marder, A.R.

    1999-02-01

    The ability to characterize fully the microstructure of a coating is paramount for understanding the in-service properties and eventual optimization of the coating. This article discusses sample preparation and subsequent analytical techniques (LOM, SEM, XRD, WDS, and QIA) for several cermet thermal spray coatings and provides a detailed analysis of as-sprayed microstructures in addition to processing trends for several FeCrAIY-carbide coatings. It was found that the splats produced in these high velocity oxy-fuel (HVOF) coatings tended to exhibit a predominantly dendritic structure most likely retained from the gas atomization process that produced the original powder. Chemical analysis showed that the carbides tend to break down during spraying producing a complex mixture of oxides and various carbides. Finally, image analysis revealed that as the carbides in the pre-sprayed powder were increased, more carbides and oxides with less FeCrAIY and thinner coatings were found. These techniques allow the thorough characterization of thermal spray cermet coatings, which in turn should further the understanding of the thermal spray processes and help provide superior coatings in the future.

  7. Rolling contact fatigue testing of thermally sprayed coatings

    SciTech Connect

    Maekelae, A.; Vuoristo, P.; Lahdensuo, M.; Niemi, K.; Maentylae, T.

    1994-12-31

    Two Rolling Contact Fatigue (RCF) test systems have been developed in order to compare coatings according to their service lives under high-load rolling contact. Experimental testing facilities of the three-roller and the two-roller type RCF test equipment are presented and problems involved with testing of thermally sprayed coatings are discussed. The aim of this three-year-project is to study reasons for development of coating micropitting and delamination of high-velocity oxyfuel (HVOF) and detonation gun sprayed coatings. Some observations of rolling contact fatigue behavior of detonation gun sprayed WC+12% Co coating subjected to a nearly pure rolling line contact at cyclic Hertzian stress level of approximately 410 MPa are made, but interpreting the results requires still more work.

  8. High-pressure combustion of binary fuel sprays

    NASA Technical Reports Server (NTRS)

    Mikami, Masato; Kono, Michikata; Sato, Jun'ichi; Dietrich, Daniel L.; Williams, Forman A.

    1995-01-01

    The ultimate objective of this study is to obtain fundamental information relevant to combustion processes that occur in fuel sprays of practical interest at high pressures in internal combustion engines. Since practical fuels are multicomponent and derived from petroleum, the present work involves the model alkane mixture of n-heptane and n-hexadecane. Since burning droplets in sprays can interact with each other, the present work involves investigation of the effects of this interaction on flame shapes and droplet burning times. The small droplets in practical combustion chambers are not significantly influenced by buoyancy. Since such small droplets are difficult to study experimentally, the present work takes advantage of microgravity to lessen buoyancy and enable information about droplet interactions to be obtained by studying larger droplets. The results are intended to provide fundamental understanding that can be used in improving descriptions of practical spray combustion.

  9. The structure of evaporating and combusting sprays: Measurements and predictions

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Solomon, A. S. P.; Faeth, G. M.

    1982-01-01

    An apparatus was constructed to provide measurements in open sprays with no zones of recirculation, in order to provide well-defined conditions for use in evaluating spray models. Measurements were completed in a gas jet, in order to test experimental methods, and are currently in progress for nonevaporating sprays. A locally homogeneous flow (LHF) model where interphase transport rates are assumed to be infinitely fast; a separated flow (SF) model which allows for finite interphase transport rates but neglects effects of turbulent fluctuations on drop motion; and a stochastic SF model which considers effects of turbulent fluctuations on drop motion were evaluated using existing data on particle-laden jets. The LHF model generally overestimates rates of particle dispersion while the SF model underestimates dispersion rates. The stochastic SF flow yield satisfactory predictions except at high particle mass loadings where effects of turbulence modulation may have caused the model to overestimate turbulence levels.

  10. Influence of cavitation on near nozzle exit spray

    NASA Astrophysics Data System (ADS)

    Mirshahi, M.; Yan, Y.; Nouri, J. M.

    2015-12-01

    The importance of cavitation inside multi-hole injectors for direct injection internal combustion (IC) engineshas been addressed in many previous investigations. Still, the effect of cavitation on jet spray, its stability and liquid breakup and atomisation is not yet fully understood. The current experimental work aims to address some of these issues. It focuses on the initiation and development of cavitation inside a 7× enlarged transparent model of a symmetric 6-hole spark ignition direct injection (SIDI) injector and quantifies the effect of cavitation on near-nozzle spray cone angle and stability utilising high speed Mie scattering visualisation. The regions studied include the full length of the nozzle and its exitjet spray wherethe primary breakup takes place.

  11. Spray Characterization of Gas-to-Liquid Synthetic Jet Fuels

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza

    2011-11-01

    In the recent years, development of alternative jet fuels is gaining importance owing to the demand for cleaner combustion. In addition to having energy density that matches those of conventional fuels, alternate jet fuels need to possess vital qualities such as rapid atomization and vaporization, quick re-ignition at high altitude, less emission, and poses ease of handling. The fuel preparatory steps (atomization and vaporization) and mixing in a combustion chamber play a crucial role on the subsequent combustion and emission characteristics. Gas-to-Liquid (GTL) synthetic jet fuel obtained from Fischer-Tropsch synthesis has grabbed the global attention due to its cleaner combustion characteristics as a result of the absence of aromatics and sulphur. As a part of an on-going joint effort between Texas A&M at Qatar (TAMUQ), Rolls-Royce (UK), and German Aerospace Laboratory (DLR), a spray characterization experimental facility is set up at TAMUQ to study the spray characteristics of GTL fuel and highlights the influence of change in fuel composition on the spray characteristics. In this work, spray characteristics such as droplet size, velocity, and distribution of different GTL fuel blends is investigated and compared with the spray characteristics of conventional JetA1 fuel. Supported by Qatar Science and Technology Park, QSTP.

  12. Accurate analysis of multicomponent fuel spray evaporation in turbulent flow

    NASA Astrophysics Data System (ADS)

    Rauch, Bastian; Calabria, Raffaela; Chiariello, Fabio; Le Clercq, Patrick; Massoli, Patrizio; Rachner, Michael

    2012-04-01

    The aim of this paper is to perform an accurate analysis of the evaporation of single component and binary mixture fuels sprays in a hot weakly turbulent pipe flow by means of experimental measurement and numerical simulation. This gives a deeper insight into the relationship between fuel composition and spray evaporation. The turbulence intensity in the test section is equal to 10%, and the integral length scale is three orders of magnitude larger than the droplet size while the turbulence microscale (Kolmogorov scales) is of same order as the droplet diameter. The spray produced by means of a calibrated droplet generator was injected in a gas flow electrically preheated. N-nonane, isopropanol, and their mixtures were used in the tests. The generalized scattering imaging technique was applied to simultaneously determine size, velocity, and spatial location of the droplets carried by the turbulent flow in the quartz tube. The spray evaporation was computed using a Lagrangian particle solver coupled to a gas-phase solver. Computations of spray mean diameter and droplet size distributions at different locations along the pipe compare very favorably with the measurement results. This combined research tool enabled further investigation concerning the influencing parameters upon the evaporation process such as the turbulence, droplet internal mixing, and liquid-phase thermophysical properties.

  13. Evaluation of a locally homogeneous flow model of spray combustion

    NASA Technical Reports Server (NTRS)

    Mao, C. P.; Szekely, G. A., Jr.; Faeth, G. M.

    1980-01-01

    A model of spray combustion which employs a second-order turbulence model was developed. The assumption of locally homogeneous flow is made, implying infinitely fast transport rates between the phase. Measurements to test the model were completed for a gaseous n-propane flame and an air atomized n-pentane spray flame, burning in stagnant air at atmospheric pressure. Profiles of mean velocity and temperature, as well as velocity fluctuations and Reynolds stress, were measured in the flames. The predictions for the gas flame were in excellent agreement with the measurements. The predictions for the spray were qualitatively correct, but effects of finite rate interphase transport were evident, resulting in a overstimation of the rate development of the flow. Predictions of spray penetration length at high pressures, including supercritical combustion conditions, were also completed for comparison with earlier measurements. Test conditions involved a pressure atomized n-pentane spray, burning in stagnant air at pressures of 3, 5, and 9 MPa. The comparison between predictions and measurements was fair. This is not a very sensitive test of the model, however, and further high pressure experimental and theoretical results are needed before a satisfactory assessment of the locally homogeneous flow approximation can be made.

  14. Structure of confined laminar spray diffusion flames: Numerical investigation

    NASA Technical Reports Server (NTRS)

    Mawid, M. A.; Bulzan, D. L.; Aggarwal, S. K.

    1993-01-01

    The structure of confined laminar spray diffusion flames is investigated numerically by solving the gas-phase conservation equations for mass species, continuity, momentum, and energy and the liquid-phase equations for droplet position, velocity, size, and temperature. A one-step global reaction scheme along with six equilibrium reactions are employed to model the flame chemistry. Monodisperse as well as polydisperse sprays are considered. The numerical results demonstrate that liquid spray flames substantially differ from gaseous flames in their structure, i.e., temperature, concentration, and velocity fields, shape, and dimensions under the same conditions. Spray flames are predicted to be taller and narrower than their counterpart gaseous ones and their shapes are almost cylindrical. This is in agreement with experimental observations. The numerical computations also show that the use of the equilibrium reactions with the one-step reaction scheme decreases the flame temperature compared to the one-step reaction scheme without the equilibrium reactions and more importantly increases the surface area of the flame zone due to a phenomenon termed 'equilibrium broadening.' The spray flames also possess a finite thickness with minimal overlap of the fuel and oxygen species. A case for which a fuel-mixture consisting of 20 to 80 percent gas-liquid by mass is introduced into the combustor is also investigated and compared with predictions using only gaseous or liquid fuel.

  15. Crystallization Evolution of Cold-Sprayed Pure Ni Coatings

    NASA Astrophysics Data System (ADS)

    Cavaliere, P.; Perrone, A.; Silvello, A.

    2016-08-01

    Cold spraying is a coating technology on the basis of aerodynamics and high-speed impact dynamics. Spray particles (usually 1-50 μm in diameter) are accelerated to high velocity (typically 300-1200 m/s) by a high-speed gas (preheated air, nitrogen, or helium) flow that is generated through a convergent-divergent de Laval type nozzle. The coating forms through the intensive plastic deformation of particles impacting on the substrate at temperatures well below the melting point of the spray material. In the present paper, the main processing parameters affecting the crystallization behavior of pure Ni cold spray deposits on IN718 alloy are described. Various experimental conditions have been analyzed: gas temperature and pressure, nozzle to substrate distance. In particular, the study deals with those conditions leading to a strong grain refinement, with an acceptable level of the deposits mechanical properties. In precise spray conditions, a shift toward amorphous phases has been observed and studied. A systematic analysis of microstructural evolution, performed through TEM observations, as a function of processing parameters is presented.

  16. Crystallization Evolution of Cold-Sprayed Pure Ni Coatings

    NASA Astrophysics Data System (ADS)

    Cavaliere, P.; Perrone, A.; Silvello, A.

    2016-07-01

    Cold spraying is a coating technology on the basis of aerodynamics and high-speed impact dynamics. Spray particles (usually 1-50 μm in diameter) are accelerated to high velocity (typically 300-1200 m/s) by a high-speed gas (preheated air, nitrogen, or helium) flow that is generated through a convergent-divergent de Laval type nozzle. The coating forms through the intensive plastic deformation of particles impacting on the substrate at temperatures well below the melting point of the spray material. In the present paper, the main processing parameters affecting the crystallization behavior of pure Ni cold spray deposits on IN718 alloy are described. Various experimental conditions have been analyzed: gas temperature and pressure, nozzle to substrate distance. In particular, the study deals with those conditions leading to a strong grain refinement, with an acceptable level of the deposits mechanical properties. In precise spray conditions, a shift toward amorphous phases has been observed and studied. A systematic analysis of microstructural evolution, performed through TEM observations, as a function of processing parameters is presented.

  17. Measurement of Spray Drift with a Specifically Designed Lidar System.

    PubMed

    Gregorio, Eduard; Torrent, Xavier; Planas de Martí, Santiago; Solanelles, Francesc; Sanz, Ricardo; Rocadenbosch, Francesc; Masip, Joan; Ribes-Dasi, Manel; Rosell-Polo, Joan R

    2016-01-01

    Field measurements of spray drift are usually carried out by passive collectors and tracers. However, these methods are labour- and time-intensive and only provide point- and time-integrated measurements. Unlike these methods, the light detection and ranging (lidar) technique allows real-time measurements, obtaining information with temporal and spatial resolution. Recently, the authors have developed the first eye-safe lidar system specifically designed for spray drift monitoring. This prototype is based on a 1534 nm erbium-doped glass laser and an 80 mm diameter telescope, has scanning capability, and is easily transportable. This paper presents the results of the first experimental campaign carried out with this instrument. High coefficients of determination (R² > 0.85) were observed by comparing lidar measurements of the spray drift with those obtained by horizontal collectors. Furthermore, the lidar system allowed an assessment of the drift reduction potential (DRP) when comparing low-drift nozzles with standard ones, resulting in a DRP of 57% (preliminary result) for the tested nozzles. The lidar system was also used for monitoring the evolution of the spray flux over the canopy and to generate 2-D images of these plumes. The developed instrument is an advantageous alternative to passive collectors and opens the possibility of new methods for field measurement of spray drift. PMID:27070613

  18. Modelling the Plasma Jet in Multi-Arc Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Schein, J.; Zimmermann, S.; Möhwald, K.; Lummer, C.

    2016-08-01

    Particle in-flight characteristics in atmospheric plasma spraying process are determined by impulse and heat energy transferred between the plasma jet and injected powder particles. One of the important factors for the quality of the plasma-sprayed coatings is thus the distribution of plasma gas temperatures and velocities in plasma jet. Plasma jets generated by conventional single-arc plasma spraying systems and their interaction with powder particles were subject matter of intensive research. However, this does not apply to plasma jets generated by means of multi-arc plasma spraying systems yet. In this study, a numerical model has been developed which is designated to dealing with the flow characteristics of the plasma jet generated by means of a three-cathode spraying system. The upstream flow conditions, which were calculated using a priori conducted plasma generator simulations, have been coupled to the plasma jet simulations. The significances of the relevant numerical assumptions and aspects of the models are analyzed. The focus is placed on to the turbulence and diffusion/demixing modelling. A critical evaluation of the prediction power of the models is conducted by comparing the numerical results to the experimental results determined by means of emission spectroscopic computed tomography. It is evident that the numerical models exhibit a good accuracy for their intended use.

  19. Numerical Simulation of Spray Atomization in Supersonic Flows

    NASA Astrophysics Data System (ADS)

    Wang, Jiangfeng; Liu, Chen; Wu, Yizhao

    With the rapid development of the air-breathing hypersonic vehicle design, an accurate description of the combustion properties becomes more and more important, where one of the key techniques is the procedure of the liquid fuel mixing, atomizing and burning coupled with the supersonic crossflow in the combustion chamber. The movement and distribution of the liquid fuel droplets in the combustion chamber will influence greatly the combustion properties, as well as the propulsion performance of the ramjet/scramjet engine. In this paper, numerical simulation methods on unstructured hybrid meshes were carried out for liquid spray atomization in supersonic crossflows. The Kelvin-Helmholtz/Rayleigh-Taylor hybrid model was used to simulate the breakup process of the liquid spray in a supersonic crossflow with Mach number 1.94. Various spray properties, including spray penetration height, droplet size distribution, were quantitatively compared with experimental results. In addition, numerical results of the complex shock wave structure induced by the presence of liquid spray were illustrated and discussed.

  20. Measurement of Spray Drift with a Specifically Designed Lidar System

    PubMed Central

    Gregorio, Eduard; Torrent, Xavier; Planas de Martí, Santiago; Solanelles, Francesc; Sanz, Ricardo; Rocadenbosch, Francesc; Masip, Joan; Ribes-Dasi, Manel; Rosell-Polo, Joan R.

    2016-01-01

    Field measurements of spray drift are usually carried out by passive collectors and tracers. However, these methods are labour- and time-intensive and only provide point- and time-integrated measurements. Unlike these methods, the light detection and ranging (lidar) technique allows real-time measurements, obtaining information with temporal and spatial resolution. Recently, the authors have developed the first eye-safe lidar system specifically designed for spray drift monitoring. This prototype is based on a 1534 nm erbium-doped glass laser and an 80 mm diameter telescope, has scanning capability, and is easily transportable. This paper presents the results of the first experimental campaign carried out with this instrument. High coefficients of determination (R2 > 0.85) were observed by comparing lidar measurements of the spray drift with those obtained by horizontal collectors. Furthermore, the lidar system allowed an assessment of the drift reduction potential (DRP) when comparing low-drift nozzles with standard ones, resulting in a DRP of 57% (preliminary result) for the tested nozzles. The lidar system was also used for monitoring the evolution of the spray flux over the canopy and to generate 2-D images of these plumes. The developed instrument is an advantageous alternative to passive collectors and opens the possibility of new methods for field measurement of spray drift. PMID:27070613

  1. Volatilization of metal powders in plasma sprays

    NASA Astrophysics Data System (ADS)

    Vardelle, A.; Vardelle, M.; Zhang, H.; Themelis, N. J.; Gross, K.

    2002-06-01

    Ideally, plasma spraying of metal powders must take place within a narrow processing “window” where the particles become fully molten before they hit the substrate, but are not overheated to the point that substantial volatilization occurs. Metal evaporation in flight results in a decrease in the deposition efficiency. In addiiton, the emission of vapors leads to the formation of metal and oxide fumes that are undesirable from the viewpoints of both resource conservation and environmental control. This study examines the vaporization and fume formation in the plasma spraying of iron powders of different size ranges. The experimental part involves the determination of the population (number density) of metal atoms at different cross sections along the trajectory of the plasma jet, and the collection of the submicronic particles resulting from vapor condensation. The experimental results are compared with the projections of a mathematical model that computes the gas/particle velocity and temperature fields within the jet envelope, projects the rate of heat/mass transfer at the surface of individual particles, and determines the rate of volatilization that results in the formation of metal and metal oxide fumes.

  2. Simulation and Experimental Study on Anti-reflection Characteristics of Nano-patterned Si Structures for Si Quantum Dot-Based Light-Emitting Devices

    NASA Astrophysics Data System (ADS)

    Shao, Wenyi; Lu, Peng; Li, Wei; Xu, Jun; Xu, Ling; Chen, Kunji

    2016-06-01

    Surface-textured structure is currently an interesting topic since it can efficiently reduce the optical losses in advanced optoelectronic devices via light management. In this work, we built a model in finite-difference time-domain (FDTD) solutions by setting the simulation parameters based on the morphology of the Si nanostructures and compared with the experimental results in order to study the anti-reflection behaviors of the present nano-patterned structures. It is found that the reflectance is gradually reduced by increasing the depth of Si nanostructures which is in well agreement with the experimental observations. The reflectance can be lower than 10 % in the light range from 400 to 850 nm for Si nano-patterned structures with a depth of 150 nm despite the quite low aspect ratio, which can be understood as the formation of gradually changed index layer and the scattering effect of Si nano-patterned structures. By depositing the Si quantum dots/SiO2 multilayers on nano-patterned Si substrate, the reflectance can be further suppressed and the luminescence intensity centered at 820 nm from Si quantum dots is enhanced by 6.6-fold compared with that of flat one, which can be attributed to the improved light extraction efficiency. However, the further etch time causes the reduction of luminescence intensity from Si quantum dots which may ascribe to the serious surface recombination of carriers.

  3. Simulation and Experimental Study on Anti-reflection Characteristics of Nano-patterned Si Structures for Si Quantum Dot-Based Light-Emitting Devices.

    PubMed

    Shao, Wenyi; Lu, Peng; Li, Wei; Xu, Jun; Xu, Ling; Chen, Kunji

    2016-12-01

    Surface-textured structure is currently an interesting topic since it can efficiently reduce the optical losses in advanced optoelectronic devices via light management. In this work, we built a model in finite-difference time-domain (FDTD) solutions by setting the simulation parameters based on the morphology of the Si nanostructures and compared with the experimental results in order to study the anti-reflection behaviors of the present nano-patterned structures. It is found that the reflectance is gradually reduced by increasing the depth of Si nanostructures which is in well agreement with the experimental observations. The reflectance can be lower than 10 % in the light range from 400 to 850 nm for Si nano-patterned structures with a depth of 150 nm despite the quite low aspect ratio, which can be understood as the formation of gradually changed index layer and the scattering effect of Si nano-patterned structures. By depositing the Si quantum dots/SiO2 multilayers on nano-patterned Si substrate, the reflectance can be further suppressed and the luminescence intensity centered at 820 nm from Si quantum dots is enhanced by 6.6-fold compared with that of flat one, which can be attributed to the improved light extraction efficiency. However, the further etch time causes the reduction of luminescence intensity from Si quantum dots which may ascribe to the serious surface recombination of carriers. PMID:27356564

  4. Characterization of coal-water slurry fuel sprays from diesel engine injectors

    SciTech Connect

    Caton, J.A.; Kihm, K.D.

    1993-06-01

    Experiments were conducted to characterize coal-water slurry fuel sprays from diesel engine injectors. Since the combustion event is a strong function of the fuel spray, full characterization of the spray is a necessity for successful engine design and for modeling of the combustion process. Two experimental facilities were used at TAMU to study the injection of coal slurry fuels. The first experimental facility incorporates General Electric locomotive engine components (injection pump, fuel line, and nozzle) and a specially designed diaphragm to separate the abrasive coal slurry fuel from the moving parts of the pump. The second experimental facility is based on an accumulator injector from General Electric. Instrumentation includes instantaneous needle lift and fuel line pressure. A pressurized visualization chamber was used to provide a spray environment which simulated the engine gas density and permitted the use of spray diagnostic techniques. The study was divided into two phases: (1) overall characterization of the spray, and (2) detailed droplet size and size distribution characterization. In addition to this overall characterization of the spray, the second phase of this study characterized the details of the atomization quality.

  5. Microstructure and Mechanical Properties of Spray-Formed H13 Steel Tooling

    SciTech Connect

    Yaojun Lin; Kevin M. McHugh; Young-Soo Park; Yizhang Zhou; Enrique J. Lavernia

    2005-02-01

    This paper presents results on the microstructure and hardness of spray-formed H13 (Fe-0.40C-5.00Cr-1.10V-1.30Mo (wt%)) tooling. There is very low porosity in both as-spray formed samples and aged samples. The microstructure in the as-spray-formed sample is characterized by primary carbides, acicular lower bainite, and a small amount of martensite and of retained austenite. Spray formed and aged tooling H13 has higher hardness values than those of H13 in conventional tooling. The experimental results of microstructures and hardness are rationalized on the basis of numerical analysis of cooling during processing of spray-formed tooling.

  6. Flow rate and trajectory of water spray produced by an aircraft tire

    NASA Technical Reports Server (NTRS)

    Daugherty, Robert H.; Stubbs, Sandy M.

    1986-01-01

    One of the risks associated with wet runway aircraft operation is the ingestion of water spray produced by an aircraft's tires into its engines. This problem can be especially dangerous at or near rotation speed on the takeoff roll. An experimental investigation was conducted in the NASA Langley Research Center Hydrodynamics Research Facility to measure the flow rate and trajectory of water spray produced by an aircraft nose tire operating on a flooded runway. The effects of various parameters on the spray patterns including distance aft of nosewheel, speed, load, and water depth were evaluated. Variations in the spray pattern caused by the airflow about primary structure such as the fuselage and wing are discussed. A discussion of events in and near the tire footprint concerning spray generation is included.

  7. Effects of Feedstock Decomposition and Evaporation on the Composition of Suspension Plasma-Sprayed Coatings

    NASA Astrophysics Data System (ADS)

    Mauer, G.; Schlegel, N.; Guignard, A.; Vaßen, R.; Guillon, O.

    2015-10-01

    Emerging new applications and growing demands of plasma-sprayed coatings have initiated the development of new plasma spray processes. One of them is suspension plasma spraying (SPS). The use of liquid feedstock such as suspensions yields higher flexibility compared to the conventional atmospheric plasma spray processes as even submicron-to nano-sized particles can be processed. This allows achieving particular microstructural features, e.g., porous segmented or columnar-structured thermal barrier coatings. To exploit the potentials of such novel plasma spray processes, the plasma-feedstock interaction must be understood better. In this study, decomposition and evaporation of feedstock material during SPS were investigated, since particular difficulties can occur with respect to stoichiometry and phase composition of the deposits. Plasma conditions were analyzed by optical emission spectroscopy (OES). Experimental results are given, namely for gadolinium zirconate and for lanthanum strontium cobalt ferrite deposition. Moreover, the applied OES approach is validated by comparison with the simpler actinometry method.

  8. Plasma Sprayed Hydroxyapatite Coatings: Influence of Spraying Power on Microstructure

    SciTech Connect

    Mohd, S. M.; Abd, M. Z.; Abd, A. N.

    2010-03-11

    The plasma sprayed hydroxyapatite (HA) coatings are used on metallic implants to enhance the bonding between the implant and bone in human body. The coating process was implemented at different spraying power for each spraying condition. The coatings formed from a rapid solidification of molten and partly molten particles that impact on the surface of substrate at high velocity and high temperature. The study was concentrated on different spraying power that is between 23 to 31 kW. The effect of different power on the coatings microstructure was investigated using scanning electron microscope (SEM) and phase composition was evaluated using X-ray diffraction (XRD) analysis. The coatings surface morphology showed distribution of molten, partially melted particles and some micro-cracks. The produced coatings were found to be porous as observed from the cross-sectional morphology. The coatings XRD results indicated the presence of crystalline phase of HA and each of the patterns was similar to the initial powder. Regardless of different spraying power, all the coatings were having similar XRD patterns.

  9. Thermal spraying of nanocrystalline materials

    NASA Astrophysics Data System (ADS)

    Lau, Maggy L.

    The present research addresses the fundamental synergism between thermal spray synthesis, microstructural evolution and mechanical behavior of Ni, Inconel 718 and Fe based 316-stainless steel nanocrystalline materials. Nanocrystalline Ni powders produced by mechanical milling in liquid nitrogen were investigated under isothermal and non-isothermal conditions. Significant grain growth occurred in the case of cryomilled Ni powders even when annealing at lower temperatures (equivalent to about 0.17 Tm), indicating the poor thermal stability of these powders. The activation energy for grain growth was calculated to be 146.2 kJ/mol. The values of the time exponent, n, were very close to 4.0, implying that grain growth was controlled by grain boundary diffusion mechanism. The grain growth behavior of the nanocrystalline Ni powders under non-isothermal annealing conditions showed good correspondence between the experimental results and the theoretical simulation. The grain growth behavior of the milled Inconel 718 powders and coatings, under isothermal annealing indicated that the nanocrystalline powders and coatings exhibited thermal stability against grain growth up to 1073 K (0.67Tm). The average grain sizes of methanol milled powders after annealing at 1273 K for 1 hr, cryomilled powders, HVOF coating of the methanol milled powders and HVOF coatings of the cryomilled Inconel 718 powders were 91, 84, 137 and 102 nm, respectively. In the present study, Zener pinning of nanoscale oxides of (Cr,Fe) contributed to the stability against grain growth during thermal annealing of the nanocrystalline Inconel 718 powders and coatings. (Abstract shortened by UMI.)

  10. Miniature paint-spray gun for recessed areas

    NASA Technical Reports Server (NTRS)

    Vanasse, M. A.

    1968-01-01

    Miniature spray gun regulates paints and other liquids to spray at close range, facilitating spraying of remote or recessed areas. Individual valves for regulating air pressure and paint maximizes atomization for low pressure spraying.

  11. Properties of Spray Dried Food and Spray Drying Characteristics

    NASA Astrophysics Data System (ADS)

    Katoh, Fumio

    The following conclusions are obtained, studying properties of spray dried food and drying characteristics. (a) Dried particles are similar to spray droplets in size distribution (y=2.5), and particle count distribution is arranged as (dn/dx = ae-bx). (b) The ratio of the particle diameters before and after drying is calculated with moisture before and after drying, and porosity is given as (εp = ww4). (c) The standard drying method is presented to evaluate accurately drying problems at a certain standard. (d) Equilibrium moisture at 20 up to 100°C are summarized in terms of adsorption potential. (e) It makes clear that calulation based on the theory of residence time and drying time represents well complex spray drying characteristics.

  12. Combustion characteristics in the transition region of liquid fuel sprays

    NASA Technical Reports Server (NTRS)

    Cernansky, N. P.; Namer, I.; Tidona, R. J.

    1984-01-01

    A number of important effects were observed in the droplet size transition region in spray combustion systems. In this region, where the mechanism of flame propagation is transformed from diffusive to premixed dominated combustion, the following effects have been observed: (1) maxima in burning velocity; (2) extension of flammability limits; (3) minima in ignition energy; and (4) minima in NO(x) formation. Unfortunately, because of differences in experimental facilities and limitations in the ranges of experimental data, a unified description of these transition region effects is not available at this time. Consequently, a fundamental experimental investigation was initiated to study the effect of droplet size, size distribution, and operating parameters on these transition region phenomena in a single well controlled spray combustion facility.

  13. Method and apparatus for atomization and spraying of molten metals

    DOEpatents

    Hobson, David O.; Alexeff, Igor; Sikka, Vinod K.

    1990-01-01

    A method and device for dispersing molten metal into fine particulate spray, the method comprises applying an electric current through the molten metal and simultaneously applying a magnetic field to the molten metal in a plane perpendicular to the electric current, whereby the molten metal is caused to form into droplets at an angle perpendicular to both the electric current and the magnetic field. The device comprises a structure for providing a molten metal, appropriately arranged electrodes for applying an electric current through the molten metal, and a magnet for providing a magnetic field in a plane perpendicular to the electric current.

  14. Method and apparatus for atomization and spraying of molten metals

    DOEpatents

    Hobson, D.O.; Alexeff, I.; Sikka, V.K.

    1988-07-19

    A method and device for dispersing molten metal into fine particulate spray, the method comprises applying an electric current through the molten metal and simultaneously applying a magnetic field to the molten metal in a plane perpendicular to the electric current, whereby the molten metal is caused to form into droplets at an angle perpendicular to both the electric current and the magnetic field. The device comprises a structure for providing a molten metal, appropriately arranged electrodes for applying an electric current through the molten metal, and a magnet for providing a magnetic field in a plane perpendicular to the electric current. 11 figs.

  15. Development of variable-rate sprayer with laser scanning sensor to synchronize spray outputs to tree structures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efficient and effective precision spray equipment and strategies have been constantly demanded to reduce pesticide use in tree crop productions. An experimental variable-rate air-assisted sprayer implemented with a high-speed laser scanning sensor was developed to control the spray output of individ...

  16. Electrostatic spray deposition based lithium ion capacitor

    NASA Astrophysics Data System (ADS)

    Agrawal, Richa; Chen, Chunhui; Wang, Chunlei

    2016-05-01

    Conventional Electrochemical double-layer capacitors (EDLCs) are well suited as power devices that can provide large bursts of energy in short time periods. However, their relatively inferior energy densities as compared to their secondary battery counterparts limit their application in devices that require simultaneous supply of both high energy and high power. In the wake of addressing this shortcoming of EDLCs, the concept of hybridization of lithium-ion batteries (LIBs) and EDLCs has attracted significant scientific interest in recent years. Such a device, generally referred to as the "lithium-ion capacitor" typically utilizes a lithium intercalating electrode along with a fast charging capacitor electrode. Herein we have constructed a lithium hybrid electrochemical capacitor comprising a Li4Ti5O12-TiO2 (LTO-TiO2) anode and a reduced graphene oxide and carbon nanotube (rGO-CNT) composite cathode using electrostatic spray deposition (ESD). The electrodes were characterized using scanning electron microscopy and X-ray diffraction studies. Cyclic voltammetry and galvanostatic charge-discharge measurements were carried out to evaluate the electrochemical performance of the individual electrodes and the full hybrid cells.

  17. Heat removal characteristics of a primary containment vessel external spray

    SciTech Connect

    Kataoka, Yoshiyuki; Fujii, Tadashi; Murase, Michio

    1996-10-01

    To evaluate the heat release characteristics of a primary containment vessel (PCV) external spray (one of the PCV cooling systems utilizing the steel PCV wall as the heat transfer medium), the thermal-hydraulic characteristics of the falling liquid film on the PCV surface have been investigated experimentally. Then, the performance of the PCV external spray cooling system was evaluated using the experimental findings. The following results were obtained: (1) Heat transfer coefficients of the falling liquid film under steady-state conditions were increased as the film flow rate per unit length of the liquid film width increased, and they agreed with Wilke`s correlation within about {+-}15%. (2) The PCV surface temperature, when preheated up to 150 C, which is the supposed PCV temperature under a severe accident, decreased below 100 C within a few seconds when the PCV external spray was initiated, and boiling on the PCV surface could not be maintained. (3) Heat transfer coefficients of the falling liquid film under transient conditions were higher initially due to the boiling effect; however, they decreased rapidly and approached those under steady-state conditions. (4) The PCV external spray for the conceptually designed PCV could suppress the PCV pressure below the design goal under a severe accident.

  18. QUANTIFICATION OF HEAT FLUX FROM A REACTING THERMITE SPRAY

    SciTech Connect

    Eric Nixon; Michelle Pantoya

    2009-07-01

    Characterizing the combustion behaviors of energetic materials requires diagnostic tools that are often not readily or commercially available. For example, a jet of thermite spray provides a high temperature and pressure reaction that can also be highly corrosive and promote undesirable conditions for the survivability of any sensor. Developing a diagnostic to quantify heat flux from a thermite spray is the objective of this study. Quick response sensors such as thin film heat flux sensors can not survive the harsh conditions of the spray, but more rugged sensors lack the response time for the resolution desired. A sensor that will allow for adequate response time while surviving the entire test duration was constructed. The sensor outputs interior temperatures of the probes at known locations and utilizes an inverse heat conduction code to calculate heat flux values. The details of this device are discussed and illustrated. Temperature and heat flux measurements of various thermite spray conditions are reported. Results indicate that this newly developed energetic material heat flux sensor provides quantitative data with good repeatability.

  19. A diagnostic for quantifying heat flux from a thermite spray

    NASA Astrophysics Data System (ADS)

    Nixon, E. P.; Pantoya, M. L.; Prentice, D. J.; Steffler, E. D.; Daniels, M. A.; D'Arche, S. P.

    2010-02-01

    Characterizing the combustion behaviors of energetic materials requires diagnostic tools that are often not readily or commercially available. For example, a jet of thermite spray provides a high temperature and pressure reaction that can also be highly corrosive and promote undesirable conditions for the survivability of any sensor. Developing a diagnostic to quantify heat flux from a thermite spray is the objective of this study. Quick response sensors such as thin film heat flux sensors cannot survive the harsh conditions of the spray, but more rugged sensors lack the response time for the resolution desired. A sensor that will allow for adequate response time while surviving the entire test duration was constructed. The sensor outputs interior temperatures of the probes at known locations and utilizes an inverse heat conduction code to calculate heat flux values. The details of this device are discussed and illustrated. Temperature and heat flux measurements of various thermite sprays are reported. Results indicate that this newly designed heat flux sensor provides quantitative data with good repeatability suitable for characterizing energetic material combustion.

  20. Simulation of spray dispersion in a simplified heavy vehicle wake

    SciTech Connect

    Paschkewitz, J S

    2006-01-13

    Simulations of spray dispersion in a simplified tractor-trailer wake have been completed with the goal of obtaining a better understanding of how to mitigate this safety hazard. The Generic Conventional Model (GCM) for the tractor-trailer was used. The impact of aerodynamic drag reduction devices, specifically trailer-mounted base flaps, on the transport of spray in the vehicle wake was considered using the GCM. This analysis demonstrated that base flaps including a bottom plate may actually worsen motorist visibility because of the interaction of fine spray with large vortex flows in the wake. This work suggests that to use computational fluid dynamics (CFD) to design and evaluate spray mitigation strategies the jet or sheet breakup processes can be modeled using an array of injectors of small (< 0.1 mm) water droplets; however the choice of size distribution, injection locations, directions and velocities is largely unknown and requires further study. Possible containment strategies would include using flow structures to 'focus' particles into regions away from passing cars or surface treatments to capture small drops.

  1. Numerical and experimental analysis of an axial flow left ventricular assist device: the influence of the diffuser on overall pump performance.

    PubMed

    Untaroiu, Alexandrina; Throckmorton, Amy L; Patel, Sonna M; Wood, Houston G; Allaire, Paul E; Olsen, Don B

    2005-07-01

    Thousands of adult cardiac failure patients may benefit from the availability of an effective, long-term ventricular assist device (VAD). We have developed a fully implantable, axial flow VAD (LEV-VAD) with a magnetically levitated impeller as a viable option for these patients. This pump's streamlined and unobstructed blood flow path provides its unique design and facilitates continuous washing of all surfaces contacting blood. One internal fluid contacting region, the diffuser, is extremely important to the pump's ability to produce adequate pressure but is challenging to manufacture, depending on the complex blade geometries. This study examines the influence of the diffuser on the overall LEV-VAD performance. A combination of theoretical analyses, computational fluid (CFD) simulations, and experimental testing was performed for three different diffuser models: six-bladed, three-bladed, and no-blade configuration. The diffuser configurations were computationally and experimentally investigated for flow rates of 2-10 L/min at rotational speeds of 5000-8000 rpm. For these operating conditions, CFD simulations predicted the LEV-VAD to deliver physiologic pressures with hydraulic efficiencies of 15-32%. These numerical performance results generally agreed within 10% of the experimental measurements over the entire range of rotational speeds tested. Maximum scalar stress levels were estimated to be 450 Pa for 6 L/min at 8000 rpm along the blade tip surface of the impeller. Streakline analysis demonstrated maximum fluid residence times of 200 ms with a majority of particles exiting the pump in 80 ms. Axial fluid forces remained well within counter force generation capabilities of the magnetic suspension design. The no-bladed configuration generated an unacceptable hydraulic performance. The six-diffuser-blade model produced a flow rate of 6 L/min against 100 mm Hg for 6000 rpm rotational speed, while the three-diffuser-blade model produced the same flow rate and

  2. MR guided thermal therapy of pancreatic tumors with endoluminal, intraluminal and interstitial catheter-based ultrasound devices: preliminary theoretical and experimental investigations

    NASA Astrophysics Data System (ADS)

    Prakash, Punit; Salgaonkar, Vasant A.; Scott, Serena J.; Jones, Peter; Hensley, Daniel; Holbrook, Andrew; Plata, Juan; Sommer, Graham; Diederich, Chris J.

    2013-02-01

    Image-guided thermal interventions have been proposed for potential palliative and curative treatments of pancreatic tumors. Catheter-based ultrasound devices offer the potential for temporal and 3D spatial control of the energy deposition profile. The objective of this study was to apply theoretical and experimental techniques to investigate the feasibility of endogastric, intraluminal and transgastric catheter-based ultrasound for MR guided thermal therapy of pancreatic tumors. The transgastric approach involves insertion of a catheter-based ultrasound applicator (array of 1.5 mm OD x 10 mm transducers, 360° or sectored 180°, ~7 MHz frequency, 13-14G cooling catheter) directly into the pancreas, either endoscopically or via image-guided percutaneous placement. An intraluminal applicator, of a more flexible but similar construct, was considered for endoscopic insertion directly into the pancreatic or biliary duct. An endoluminal approach was devised based on an ultrasound transducer assembly (tubular, planar, curvilinear) enclosed in a cooling balloon which is endoscopically positioned within the stomach or duodenum, adjacent to pancreatic targets from within the GI tract. A 3D acoustic bio-thermal model was implemented to calculate acoustic energy distributions and used a FEM solver to determine the transient temperature and thermal dose profiles in tissue during heating. These models were used to determine transducer parameters and delivery strategies and to study the feasibility of ablating 1-3 cm diameter tumors located 2-10 mm deep in the pancreas, while thermally sparing the stomach wall. Heterogeneous acoustic and thermal properties were incorporated, including approximations for tumor desmoplasia and dynamic changes during heating. A series of anatomic models based on imaging scans of representative patients were used to investigate the three approaches. Proof of concept (POC) endogastric and transgastric applicators were fabricated and experimentally

  3. Air and spray mixture temperature effects on atomization of agricultural sprays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spray drift associated with agrochemical operations is highly dependent upon the physical properties of the spray solution with respect to how they influence atomization. This study examined effects on spray atomization with two spray solutions across a wide range of solution temperatures for two n...

  4. Effects of Spray Adjuvants on Spray Droplet Size from a Rotary Atomizer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rotary atomizers are used in a number of aerial applications, such as forest pest spraying and mosquito control sprays. These types of atomizers have a rotating cage at speeds of 2,000 to 10,000 rpm through which a spray is emitted and atomized. Many applicators routinely add spray adjuvants to ch...

  5. The development and application of an automatic boundary segmentation methodology to evaluate the vaporizing characteristics of diesel spray under engine-like conditions

    NASA Astrophysics Data System (ADS)

    Ma, Y. J.; Huang, R. H.; Deng, P.; Huang, S.

    2015-04-01

    Studying the vaporizing characteristics of diesel spray could greatly help to reduce engine emission and improve performance. The high-speed schlieren imaging method is an important optical technique for investigating the macroscopic vaporizing morphological evolution of liquid fuel, and pre-combustion constant volume combustion bombs are often used to simulate the high pressure and high temperature conditions occurring in diesel engines. Complicated background schlieren noises make it difficult to segment the spray region in schlieren spray images. To tackle this problem, this paper develops a vaporizing spray boundary segmentation methodology based on an automatic threshold determination algorithm. The methodology was also used to quantify the macroscopic characteristics of vaporizing sprays including tip penetration, near-field and far-field angles, and projected spray area and spray volume. The spray boundary segmentation methodology was realized in a MATLAB-based program. Comparisons were made between the spray characteristics obtained using the program method and those acquired using a manual method and the Hiroyasu prediction model. It is demonstrated that the methodology can segment and measure vaporizing sprays precisely and efficiently. Furthermore, the experimental results show that the spray angles were slightly affected by the injection pressure at high temperature and high pressure and under inert conditions. A higher injection pressure leads to longer spray tip penetration and a larger projected area and volume, while elevating the temperature of the environment can significantly promote the evaporation of cold fuel.

  6. [Spray for self-defense against subjects with aggressive behavior: review of the scientific literature on the use of oleoresin capsicum].

    PubMed

    Clerici, Carlo Alfredo; Pelettii, Gianfranco; Veneroni, Laura; de Micheli, Angelo

    2012-01-01

    ABSTRACT. In several countries oleoresin capsicum (OC) spray is being used as non lethal weapon in recent years. In 2009 in Italy a Security Act has established that self-defence spray devices can lawfully be purchased and possessed by citizens; at the same time corps of local police started to adopt these devices for self defence and aid in arresting aggressive individuals. This article analizes the multidisciplinar literature about the efficacy and possible acute and long-term health risks of pepper spray for exposed individuals and police or civilians users. The paper also reports updated considerations about correct use of this devices. PMID:22888725

  7. Detailed fuel spray analysis techniques

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.; Bosque, M. A.; Humenik, F. M.

    1983-01-01

    Detailed fuel spray analyses are a necessary input to the analytical modeling of the complex mixing and combustion processes which occur in advanced combustor systems. It is anticipated that by controlling fuel-air reaction conditions, combustor temperatures can be better controlled, leading to improved combustion system durability. Thus, a research program is underway to demonstrate the capability to measure liquid droplet size, velocity, and number density throughout a fuel spray and to utilize this measurement technique in laboratory benchmark experiments. The research activities from two contracts and one grant are described with results to data. The experiment to characterize fuel sprays is also described. These experiments and data should be useful for application to and validation of turbulent flow modeling to improve the design systems of future advanced technology engines.

  8. Flow characteristic of in-flight particles in supersonic plasma spraying process

    NASA Astrophysics Data System (ADS)

    Wei, Pei; Wei, Zhengying; Zhao, Guangxi; Du, Jun; Bai, Y.

    2015-10-01

    In this paper, a computational model based on supersonic plasma spraying (SAPS) is developed to describe the plasma jet coupled with the injection of carrier gas and particles for SAPS. Based on a high-efficiency supersonic spraying gun, the 3D computational model of spraying gun was built to study the features of plasma jet and its interactions with the sprayed particles. Further the velocity and temperature of in-flight particles were measured by Spray Watch 2i, the shape of in-flight particles was observed by scanning electron microscope. Numerical results were compared with the experimental measurements and a good agreement has been achieved. The flight process of particles in plasma jet consists of three stages: accelerated stage, constant speed stage and decelerated stage. Numerical and experimental indicates that the H2 volume fraction in mixture gas of Ar + H2 should keep in the range of 23-26 %, and the distance of 100 mm is the optimal spraying distance in Supersonic atmosphere plasma spraying. Particles were melted and broken into small child particles by plasma jet and the diameters of most child particles were less than 30 μm. In general, increasing the particles impacting velocity and surface temperature can decrease the coating porosity.

  9. Characterization of Liquid Fuel Evaporation of a Lifted Methanol Spray Flame in a Vitiated Coflow Burner

    NASA Technical Reports Server (NTRS)

    Cabra, Ricardo; Dibble, Robert W.; Chen, Jyh-Yuan

    2002-01-01

    An experimental investigation of lifted spray flames in a coflow of hot, vitiated gases is presented. The vitiated coflow burner is a spray flame that issues into a coaxial flow of hot combustion products from a lean, premixed H2/Air flame. The spray flame in a vitiated coflow emulates the combustion that occurs in many advanced combustors without the detailed fluid mechanics. Two commercially available laser diagnostic systems are used to characterize the spray flame and to demonstrate the vitiated coflow burner's amenability to optical investigation. The Ensemble Particle Concentration and Size (EPCS) system is used to measure the path-average droplet size distribution and liquid volume fraction at several axial locations while an extractive probe instrument named the Real-time Fuel-air Analyzer (RFA) is used to measure the air to fuel ratio downstream of the spray nozzle with high temporal and spatial resolution. The effect of coflow conditions (stoichiometry) and dilution of the fuel with water was studied with the EPCS optical system. As expected, results show that water retards the evaporation and combustion of fuels. Measurements obtained by the RFA extractive probe show that while the Delavan manufactured nozzle does distribute the fuel over the manufacturer specified spray angle, it unfortunately does not distribute the fuel uniformly, providing conditions that may result in the production of unwanted NOx. Despite some limitations due to the inherent nature of the experimental techniques, the two diagnostics can be readily applied to spray flames in the vitiated coflow environment.

  10. Application of linear response theory to experimental data of simultaneous radiation and annealing response of a CMOS device. Quarterly report No. 3, 8 June-8 September 1988

    SciTech Connect

    Litovchenko, V.

    1988-01-01

    Results from the application of linear response theory are compared to experimental data from simultaneous radiation and annealing response of a CMOS device. In particular, a method is applied which was developed earlier to determine the characteristic time, t(0), as well as the parameters A and C in the 1n(t) dependence of the linear response function R(t) = -C + A1n(1-t/t(0)). The method is based on a study of the linear response for t being much less than t(0), when R(t) can be expanded in a power series of t: R(t) = R(0) + R'(0)t + 1/2R''(0)t-squared + 1/3R'''(0)t-cubed + ..., where R'(0) and R''(0) are, respectively, the first and second derivatives of R with respect to t. To find the linear response, R(t-t') is substituted in the form of this power series equation into a general equation for the shift of the threshold potential. To test the method, irradiation experiments were conducted on RCA 10(6) rad-hard CMOS IC's. A dose rate of approximately 130 rads/min was used. An IC was irradiated with Co-60 gamma rays for several hours, taking measurements of the threshold potential for one n-channel and one p-channel transistor every ten minutes. For the p-channel transistor, t(0) was found to be approximately 110 min and for the n-channel, t(0) was approximately 70 min. For the p-channel, the theoretical curve deviates from the experimental points only after 70 min; for the n-channel, the deviation takes place after 45 min. Additional findings are discussed and the application of the method to pure annealing is described.

  11. Flow characteristics of spray impingement in PFI injection systems

    NASA Astrophysics Data System (ADS)

    Panão, M. R. O.; Moreira, A. L. N.

    2005-08-01

    The present paper addresses an experimental study of the dynamic exchanges between the impact of an intermittent spray and the liquid film formed over the target, based on detailed phase Doppler anemometry (PDA) measurements of droplet size, velocity and volume flux in the vicinity of the impact. The flow configuration is that of a pulsed injector spraying gasoline onto a flat disc to simulate the port fuel injection (PFI) of an internal combustion engine operating at cold-start conditions. The measurements evidence that the outcome of impact cannot be accurately predicted based on the characteristics of the free spray, but requires precise knowledge of the flow structure, induced by the target. The implications for spray wall interaction modelling are then discussed based on the application of conservation equations to the mass, momentum and energy exchanged between the impinging droplets and the liquid film. The results show that the liquid film starts to form in the vicinity of the stagnation region at early stages of injection and a non-negligible proportion of droplets impinging at outer regions splash after interaction with the film. Film disruption is mainly driven by the intermittent axial momentum of impinging droplets, which enhances the vertical oscillations. The radial momentum imparted to the liquid film at the stagnation region is fed back onto secondary droplets emerging later during the injection cycle at outwards locations, where momentum of impacting droplets is much smaller. As a consequence, although the number of splashed droplets is enhanced by normal momentum, their size and ejection velocity depends more on the radial spread induced onto the liquid film and, hence, on the radial momentum at impact. The analysis further shows that existing spray wall interaction models can be improved if the dynamic exchanges between the impacting spray and the liquid film are accounted.

  12. Thermal Spray Coatings for Coastal Infrastructure

    SciTech Connect

    Holcomb, G.R.; Covino, BernardS. Jr.; Cramer, S.D.; Bullard, S.J.

    1997-11-01

    Several protection strategies for coastal infrastructure using thermal-spray technology are presented from research at the Albany Research Center. Thermal-sprayed zinc coatings for anodes in impressed current cathodic protection systems are used to extend the service lives of reinforced concrete bridges along the Oregon coast. Thermal-sprayed Ti is examined as an alternative to the consumable zinc anode. Sealed thermal-sprayed Al is examined as an alternative coating to zinc dust filled polyurethane paint for steel structures.

  13. Nanoparticles by spray drying using innovative new technology: the Büchi nano spray dryer B-90.

    PubMed

    Li, Xiang; Anton, Nicolas; Arpagaus, Cordin; Belleteix, Fabrice; Vandamme, Thierry F

    2010-10-15

    Spray drying technology is widely known and used to transform liquids (solutions, emulsions, suspension, slurries, pastes or even melts) into solid powders. Its main applications are found in the food, chemical and materials industries to enhance ingredient conservation, particle properties, powder handling and storage etc. However, spray drying can also be used for specific applications in the formulation of pharmaceuticals for drug delivery (e.g. particles for pulmonary delivery). Büchi is a reference in the development of spray drying technology, notably for laboratory scale devices. This study presents the Nano Spray Dryer B-90, a revolutionary new sprayer developed by Büchi, use of which can lower the size of the produced dried particles by an order of magnitude attaining submicron sizes. In this paper, results are presented with a panel of five representative polymeric wall materials (arabic gum, whey protein, polyvinyl alcohol, modified starch, and maltodextrin) and the potentials to encapsulate nano-emulsions, or to formulate nano-crystals (e.g. from furosemide) are also shown. PMID:20659510

  14. Spray casting project final report

    SciTech Connect

    Churnetski, S.R.; Thompson, J.E.

    1996-08-01

    Lockheed Martin Energy Systems, Inc. (Energy Systems), along with other participating organizations, has been exploring the feasibility of spray casting depleted uranium (DU) to near-net shape as a waste minimization effort. Although this technology would be useful in a variety of applications where DU was the material of choice, this effort was aimed primarily at gamma-shielding components for use in storage and transportation canisters for high-level radioactive waste, particularly in the Multipurpose Canister (MPC) application. In addition to the waste-minimization benefits, spray casting would simplify the manufacturing process by allowing the shielding components for MPC to be produced as a single component, as opposed to multiple components with many fabrication and assembly steps. In earlier experiments, surrogate materials were used to simulate the properties (specifically reactivity and density) of DU. Based on the positive results from those studies, the project participants decided that further evaluation of the issues and concerns that would accompany spraying DU was warranted. That evaluation occupied substantially all of Fiscal Year 1995, yielding conceptual designs for both an intermediate facility and a production facility and their associated engineering estimates. An intermediate facility was included in this study to allow further technology development in spraying DU. Although spraying DU to near-net shape seems to be feasible, a number of technical, engineering, and safety issues would need to be evaluated before proceeding with a production facility. This report is intended to document the results from the spray-casting project and to provide information needed by anyone interested in proceeding to the next step.

  15. Fabrication of flexible ultraviolet photodetectors using an all-spray-coating process

    NASA Astrophysics Data System (ADS)

    Han, Junebeom; Lee, Jonghun; Ju, Sanghyun

    2016-04-01

    We report on a flexible ultraviolet (UV) photodetector fabricated using an all-spray-coating process. Two spray coating units were utilized to deposit semiconducting tin oxide nanowires as an active channel layer and metallic silver nanowires as an electrode layer. The device was mounted on the back of a human hand, and the UV intensities in sunlight were monitored over time. The fabricated flexible UV photodetector showed highly sensitive, stable, and reproducible detection properties. The main advantage of the proposed fabrication method is the extension of the integration environment by allowing direct application on various substrates, such as clothes and human skin, with varying device size and shape.

  16. Numerical Modeling of Suspension HVOF Spray

    NASA Astrophysics Data System (ADS)

    Jadidi, M.; Moghtadernejad, S.; Dolatabadi, A.

    2016-02-01

    A three-dimensional two-way coupled Eulerian-Lagrangian scheme is used to simulate suspension high-velocity oxy-fuel spraying process. The mass, momentum, energy, and species equations are solved together with the realizable k-ɛ turbulence model to simulate the gas phase. Suspension is assumed to be a mixture of solid particles [mullite powder (3Al2O3·2SiO2)], ethanol, and ethylene glycol. The process involves premixed combustion of oxygen-propylene, and non-premixed combustion of oxygen-ethanol and oxygen-ethylene glycol. One-step global reaction is used for each mentioned reaction together with eddy dissipation model to compute the reaction rate. To simulate the droplet breakup, Taylor Analogy Breakup model is applied. After the completion of droplet breakup, and solvent evaporation/combustion, the solid suspended particles are tracked through the domain to determine the characteristics of the coating particles. Numerical simulations are validated against the experimental results in the literature for the same operating conditions. Seven or possibly eight shock diamonds are captured outside the nozzle. In addition, a good agreement between the predicted particle temperature, velocity, and diameter, and the experiment is obtained. It is shown that as the standoff distance increases, the particle temperature and velocity reduce. Furthermore, a correlation is proposed to determine the spray cross-sectional diameter and estimate the particle trajectories as a function of standoff distance.

  17. Feedback enhanced plasma spray tool

    DOEpatents

    Gevelber, Michael Alan; Wroblewski, Donald Edward; Fincke, James Russell; Swank, William David; Haggard, Delon C.; Bewley, Randy Lee

    2005-11-22

    An improved automatic feedback control scheme enhances plasma spraying of powdered material through reduction of process variability and providing better ability to engineer coating structure. The present inventors discovered that controlling centroid position of the spatial distribution along with other output parameters, such as particle temperature, particle velocity, and molten mass flux rate, vastly increases control over the sprayed coating structure, including vertical and horizontal cracks, voids, and porosity. It also allows improved control over graded layers or compositionally varying layers of material, reduces variations, including variation in coating thickness, and allows increasing deposition rate. Various measurement and system control schemes are provided.

  18. The Effect of Spray Initial Conditions on Heat Release and Emissions in LDI CFD Calculations

    NASA Technical Reports Server (NTRS)

    Iannetti, Anthony C.; Liu, Nan-Suey; Davoudzadeh, Farhad

    2008-01-01

    The mass and velocity distribution of liquid spray has a primary effect on the combustion heat release process. This heat release process then affects emissions like nitrogen oxides (NOx) and carbon monoxide (CO). Computational Fluid Dynamics gives the engineer insight into these processes, but various setup options exist (number of droplet groups, and initial droplet temperature) for spray initial conditions. This paper studies these spray initial condition options using the National Combustion Code (NCC) on a single swirler lean direct injection (LDI) flame tube. Using laminar finite rate chemistry, comparisons are made against experimental data for velocity measurements, temperature, and emissions (NOx, CO).

  19. Water sprays in space retrieval operations. [for disabled spacecraft detumbling and despinning

    NASA Technical Reports Server (NTRS)

    Freesland, D. C.

    1978-01-01

    The water spray technique (WST) for nullifying the angular momentum of a disabled spacecraft is examined. Such a despinning operation is necessary before a disabled spacecraft can be retrieved by the Space Shuttle. The WST involving the use of liquid sprays appears to be less complex and costly than other techniques proposed to despin a disabled vehicle. A series of experiments have been conducted to determine physical properties of water sprays exhausting into a vacuum. A computer model is built which together with the experimental results yields satellite despin performance parameters. The selection and retrieval of an actual disabled spacecraft is considered to demonstrate an application of the WST.

  20. An experimental investigation of using carbon foam-PCM-MWCNTs composite materials for thermal management of electronic devices under pulsed power modes

    NASA Astrophysics Data System (ADS)

    Alshaer, W. G.; Rady, M. A.; Nada, S. A.; Palomo Del Barrio, Elena; Sommier, Alain

    2016-05-01

    The present article reports on a detailed experimental investigation of using carbon foam-PCM-MWCNTs composite materials for thermal management (TM) of electronic devices subjected to pulsed power. The TM module was fabricated by infiltrating paraffin wax (RT65) as a phase change material (PCM) and multi walled carbon nanotubes (MWCNTs) as a thermal conductivity enhancer in a carbon foam as a base structure. Two carbon foam materials of low and high values of thermal conductivities, CF20 and KL1-250 (3.1 and 40 W/m K), were tested as a base structure for the TM modules. Tests were conducted at different power intensities and power cycling/loading modes. Results showed that for all power varying modes and all carbon foams, the infiltration of RT65 into carbon foam reduces the temperature of TM module and results in damping the temperature spikes height. Infiltration of MWCNTS into RT65 further improves the effectiveness of TM module. Temperature damping was more pronounced in stand-alone pulsed power cycles as compared to pulsed power spikes modes. The effectiveness of inclusion of RT65 and RT65/MWCNTs in damping the temperature spikes height is remarkable in TM modules based on KL1-250 as compared to CF-20.

  1. 14 CFR 23.239 - Spray characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Spray characteristics. 23.239 Section 23.239 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Handling Characteristics § 23.239 Spray characteristics. Spray may not dangerously obscure the vision...

  2. 14 CFR 27.239 - Spray characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Spray characteristics. 27.239 Section 27.239 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Spray characteristics. If certification for water operation is requested, no spray...

  3. 14 CFR 29.239 - Spray characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Spray characteristics. 29.239 Section 29.239 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Spray characteristics. If certification for water operation is requested, no spray...

  4. How to Use Nasal Pump Sprays

    MedlinePlus

    ... Pump SpraysBlow your nose gently before using the spray. Prime the pump bottle by spraying it into the air a few times. Hold the bottle with your thumb at the bottom and the first two fingers at the top on either side of the nozzle. Tilt your head slightly forward. Gently insert the ...

  5. 14 CFR 29.239 - Spray characteristics.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Spray characteristics. 29.239 Section 29.239 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Spray characteristics. If certification for water operation is requested, no spray...

  6. 14 CFR 27.239 - Spray characteristics.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Spray characteristics. 27.239 Section 27.239 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Spray characteristics. If certification for water operation is requested, no spray...

  7. 21 CFR 524.2482 - Triamcinolone spray.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Triamcinolone spray. 524.2482 Section 524.2482... Triamcinolone spray. (a) Specifications. Each milliliter of solution contains 0.15 milligrams triamcinolone...) Amount. Apply sufficient pump sprays to uniformly and thoroughly wet the affected areas while...

  8. 14 CFR 23.239 - Spray characteristics.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Spray characteristics. 23.239 Section 23.239 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Handling Characteristics § 23.239 Spray characteristics. Spray may not dangerously obscure the vision...

  9. How to Use Nasal Pump Sprays

    MedlinePlus

    Using Nasal Pump SpraysBlow your nose gently before using the spray. Prime the pump bottle by spraying it into the air a ... Breathe in quickly while squeezing down on the pump bottle one time. Repeat in other nostril. Do ...

  10. Thermophysical properties of thermal sprayed coatings on carbon steel substrates by photothermal radiometry

    SciTech Connect

    Garcia, J.A.; Mandelis, A.; Farahbakhsh, B.; Lebowitz, C.; Harris, I.

    1999-09-01

    Laser infrared photothermal radiometry (PTR) was used to measure the thermophysical properties (thermal diffusivity and conductivity) of various thermal sprayed coatings on carbon steel. A one-dimensional photothermal model of a three-layered system in the backscattered mode was introduced and compared with experimental measurements. The uppermost layer was used to represent a roughness-equivalent layer, a second layer represented the substrate. The thermophysical parameters of thermal sprayed coatings examined in this work were obtained when a multiparameter-fit optimization algorithm was used with the backscattered PTR experimental results. The results also suggested a good method to determine the thickness of tungsten carbide and stainless-steel thermal spray coatings once the thermal physical properties are known. The ability of PTR to measure the thermophysical properties and the coating thickness has a strong potential as a method for in situ characterization of thermal spray coatings.

  11. Arc-Plasma Wire Spraying: An Optical Study of Process Phenomenology

    NASA Astrophysics Data System (ADS)

    Gulyaev, I. P.; Dolmatov, A. V.; Kharlamov, M. Yu.; Gulyaev, P. Yu.; Jordan, V. I.; Krivtsun, I. V.; Korzhyk, V. M.; Demyanov, O. I.

    2015-12-01

    In the present paper, we report on the results of an experimental study of heat- and mass-transfer processes in a Plazer 30-PL-W plasma-jet facility used for arc-plasma wire spraying. Using an original optical diagnostic system, we have studied melting behavior of the metal wire, break up and atomization of liquid metal. For the first time, experimental data on the in-flight velocity and temperature of spray particles in arc-plasma wire spraying were obtained. In spite of moderate particle velocities (about 50 m/s), the obtained steel coatings proved to have a low porosity of 1.5%. While studying the spraying process of tungsten wire, we observed the occurrence of anomalous high-velocity (over 4000 m/s) outbursts ejected from the surface of liquid metal droplets. The nature of such outbursts calls for further study.

  12. Effectiveness of spray adjuvants on reduction of spray drift

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous drift reduction adjuvants and spray deposition aids are available to applicators of crop production and protection chemicals. Performance of many of the newly introduced drift control adjuvants has not been well documented for aerial application. Five new drift control adjuvants were sele...

  13. Tailoring the Spray Conditions for Suspension Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Joulia, A.; Duarte, W.; Goutier, S.; Vardelle, M.; Vardelle, A.; Rossignol, S.

    2015-01-01

    The plasma spray process using suspensions as liquid feedstock allows the deposition of finely structured coatings with improved properties compared to that of coatings deposited by the conventional plasma spray techniques. The evaporation of the solvent, acceleration, heating, and melting of the fine solid particles within the plasma jet take place in a shorter time, as the substrate is located closer to the plasma torch when a mono-cathode mono-anode plasma torch is used, while the liquid material processing globally consumes more energy than a powder material. Therefore, achieving a coating with the expected properties requires a broad understanding of the process. In this study, a large range of plasma spray conditions have been used to achieve yttria-stabilized zirconia coatings by suspension plasma spraying. The properties of the plasma jet (velocity, enthalpy, and stability) as well as those of droplets (trajectories, number, and size) and particles (velocity) were measured and correlated to the coating microstructure. The operating conditions necessary for obtaining disk-shape splats and achieving homogeneous coatings are described including the plasma jet properties and substrate parameters.

  14. Development of Universal Portable Spray Stand for Touch-Up Process in The Automotive Paintshop

    NASA Astrophysics Data System (ADS)

    Fatah Muhamed Mukhtar, Muhamed Abdul; Mohideen Shahul Hameed, Rasool

    2016-02-01

    A spray stand is a custom-made tool used to hold the automotive body parts as well as the devices used to facilitate the operator during the Touch Up process in Paint shop production. This paper discusses about the development of Universal Portable Spray Stand (UPSS) as a tool to hold various types of automotive body parts and model of car during the painting process. The main objective of this study is to determine the effective application of UPSS at the International College of Automotive (ICAM) and also in the automotive industry. This will be helpful to add features to the current spray stand in ICAM and to add value to the spray stand based on selected criteria which are universal, portable and cost saving. In addition, study in the UPSS is also expected to bring reduction in cycle time during the touch up process, in the paint defects and in the ergonomics issues among the operators.

  15. Investigations of some aspects of the spray process in a single wire arc plasma spray system using high speed camera.

    PubMed

    Tiwari, N; Sahasrabudhe, S N; Tak, A K; Barve, D N; Das, A K

    2012-02-01

    A high speed camera has been used to record and analyze the evolution as well as particle behavior in a single wire arc plasma spray torch. Commercially available systems (spray watch, DPV 2000, etc.) focus onto a small area in the spray jet. They are not designed for tracking a single particle from the torch to the substrate. Using high speed camera, individual particles were tracked and their velocities were measured at various distances from the spray torch. Particle velocity information at different distances from the nozzle of the torch is very important to decide correct substrate position for the good quality of coating. The analysis of the images has revealed the details of the process of arc attachment to wire, melting of the wire, and detachment of the molten mass from the tip. Images of the wire and the arc have been recorded for different wire feed rates, gas flow rates, and torch powers, to determine compatible wire feed rates. High speed imaging of particle trajectories has been used for particle velocity determination using time of flight method. It was observed that the ripple in the power supply of the torch leads to large variation of instantaneous power fed to the torch. This affects the velocity of the spray particles generated at different times within one cycle of the ripple. It is shown that the velocity of a spray particle depends on the instantaneous torch power at the time of its generation. This correlation was established by experimental evidence in this paper. Once the particles leave the plasma jet, their forward speeds were found to be more or less invariant beyond 40 mm up to 500 mm from the nozzle exit. PMID:22380128

  16. SURFACTANT SPRAY: A NOVEL TECHNOLOGY TO IMPROVE FLOTATION DEINKING PERFORMANCE

    SciTech Connect

    Yulin Deng; Junyong Zhu

    2004-01-31

    Based on the fundamental understanding of ink removal and fiber loss mechanism in flotation deinking process, we developed this innovative technology using surfactant spray to improve the ink removal efficiency, reduce the water and fiber loss, reduce the chemical consumption and carry over in the flotation deinking. The innovative flotation deinking process uses a spray to deliver the frothing agent during flotation deinking to control several key process variables. The spray can control the foam stability and structure and modify the fluid dynamics to reduce the fibers entrapped in the froth layer. The froth formed at the top part of the flotation column will act as a physical filter to prevent the penetration of frothing agent into the pulp suspension to eliminate fiber contamination and unfavorable deinking surface chemistry modification due to surfactant adsorption on the fiber surface. Because of the filter effect, frothing agents will be better utilized. Under the sponsorships of the US Dept. of Energy (DOE) and the member companies of the Institute of Paper Science and Technology, we studied the chem-mechanical mechanism of surfactant spray for flotation deinking using different furnishes, chemicals, and flotation devices in the past four years. In the final year of the project, we successfully conducted mill trials at Abitibi-Consolidated, Inc., Snowflake paper recycling operation of 100% mixture of ONP/OMG. Results from laboratory, pilot-plant and mill trials indicated that surfactant spray technology can significantly reduce fiber loss in flotation deinking. It can be concluded that paper industry can profit greatly when this technology is commercialized in flotation deinking mills.

  17. Structural, Mechanical and Erosion Properties of Yttrium Oxide Coatings by Axial Suspension Plasma Spraying for Electronics Applications

    NASA Astrophysics Data System (ADS)

    Kitamura, Junya; Tang, Zhaolin; Mizuno, Hiroaki; Sato, Kazuto; Burgess, Alan

    2011-01-01

    Yttrium oxide (Y2O3) coatings have been prepared by axial suspension plasma spraying with fine powders. It is clarified that the coatings have high hardness, low porosity, high erosion resistance against CF4 -containing plasma and retention of smooth eroded surface. This suggests that the axial suspension plasma spraying of Y2O3 is applicable to fabricating equipment for electronic devices, such as dry etching. Surface morphologies of the slurry coatings with splats are similar to conventional plasma-sprayed Y2O3 coatings, identified from microstructural analysis. Dense coating structures with no lamellar boundaries have been seen, which is apparently different from the conventional coatings. It has also been found that crystal structure of the suspension coatings mainly composed of metastable monoclinic phase, whereas the powders and the conventional plasma spray coatings have stable cubic phase. Mechanism of coating formation by plasma spraying with fine powder slurries is discussed based on the results.

  18. A Validation Summary of the NCC Turbulent Reacting/non-reacting Spray Computations

    NASA Technical Reports Server (NTRS)

    Raju, M. S.; Liu, N.-S. (Technical Monitor)

    2000-01-01

    This pper provides a validation summary of the spray computations performed as a part of the NCC (National Combustion Code) development activity. NCC is being developed with the aim of advancing the current prediction tools used in the design of advanced technology combustors based on the multidimensional computational methods. The solution procedure combines the novelty of the application of the scalar Monte Carlo PDF (Probability Density Function) method to the modeling of turbulent spray flames with the ability to perform the computations on unstructured grids with parallel computing. The calculation procedure was applied to predict the flow properties of three different spray cases. One is a nonswirling unconfined reacting spray, the second is a nonswirling unconfined nonreacting spray, and the third is a confined swirl-stabilized spray flame. The comparisons involving both gas-phase and droplet velocities, droplet size distributions, and gas-phase temperatures show reasonable agreement with the available experimental data. The comparisons involve both the results obtained from the use of the Monte Carlo PDF method as well as those obtained from the conventional computational fluid dynamics (CFD) solution. Detailed comparisons in the case of a reacting nonswirling spray clearly highlight the importance of chemistry/turbulence interactions in the modeling of reacting sprays. The results from the PDF and non-PDF methods were found to be markedly different and the PDF solution is closer to the reported experimental data. The PDF computations predict that most of the combustion occurs in a predominantly diffusion-flame environment. However, the non-PDF solution predicts incorrectly that the combustion occurs in a predominantly vaporization-controlled regime. The Monte Carlo temperature distribution shows that the functional form of the PDF for the temperature fluctuations varies substantially from point to point. The results also bring to the fore some of the

  19. Sprayer technology: reduce spray drift

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enhancing environmental quality and sustaining the economic viability of food production are keys to sustainable agriculture. Modern vegetable production uses a variety of materials to manage pest problems. Selecting the proper spray nozzle for the application of liquid products is critical to red...

  20. Spray pyrolysis of CZTS nanoplatelets.

    PubMed

    Exarhos, S; Bozhilov, K N; Mangolini, L

    2014-10-01

    We demonstrate that copper-zinc-tin-sulphide nanoplatelets can be directly grown onto a molybdenum-coated substrate using spray pyrolysis starting from a mixture of metal thiocarbamates precursors. The structure and phase purity of the nanoplatelets is discussed in detail. PMID:25119262

  1. Plasma Spraying Reclaims Compressor Housings

    NASA Technical Reports Server (NTRS)

    Leissler, George W.; Yuhas, John S.

    1991-01-01

    Plasma-spraying process used to build up material in worn and pitted areas. Newly applied material remachined to specified surface contours. Effective technique for addition of metal to out-of-tolerance magnesium-alloy turbine-engine compressor housings.

  2. Hierarchical Formation of Intrasplat Cracks in Thermal Spray Ceramic Coatings

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2016-06-01

    Intrasplat cracks, an essential feature of thermally sprayed ceramic coatings, play important roles in determining coating properties. However, final intrasplat crack patterns are always considered to be disordered and irregular, resulting from random cracking during splat cooling, since the detailed formation process of intrasplat cracks has scarcely been considered. In the present study, the primary formation mechanism for intrasplat cracking was explored based on both experimental observations and mechanical analysis. The results show that the intrasplat crack pattern in thermally sprayed ceramic splats presents a hierarchical structure with four sides and six neighbors, indicating that intrasplat crack patterns arise from successive domain divisions due to sequential cracking during splat cooling. The driving forces for intrasplat cracking are discussed, and the experimental data quantitatively agree well with theoretical results. This will provide insight for further coating structure designs and tailoring by tuning of intrasplat cracks.

  3. Atmospheric pressure plasma jet for liquid spray treatment

    NASA Astrophysics Data System (ADS)

    Mitić, S.; Philipps, J.; Hofmann, D.

    2016-05-01

    Atmospheric pressure plasma jets have been intensively studied in recent years due to growing interest in their use for biomedical applications and surface treatments. Either surfaces can be treated by a plasma jet afterglow for cleaning or activation or a material can be deposited by a reactive gas component activated by plasma. Effects of plasma on liquid have been reported several times where the electron spin trapping method was used for radical detection. Here we propose another method of liquid treatment using the atmospheric pressure plasma jet. In the device presented here, liquid was sprayed in droplets from an inner electrode directly into a plasma jet where it was treated and sprayed out by gas flow. Optical end electrical measurements were done for diagnostics of the plasma while electron paramagnetic resonance measurements were used for detection of radicals (\\text{OH},\\text{OOH},\\text{CH} ) produced by plasma treatment of liquids.

  4. The future of thermal spray technology

    SciTech Connect

    Smith, R.W. ); Fast, R.D. )

    1994-07-01

    Thermal spray technology is emerging as an important processing tool for both surface protection and advanced materials forming. Despite the technology having been in use for over 100 years, much of its advancement, driven by aerospace applications, has occurred in the past 15 years. Increased understanding of process/structure/property relationships has resulted in the growing application of thermal spray coating technology resulting in new processes; for example, low-pressure plasma spray, high-velocity oxyfuel (HVOF) spray and reactive plasma spray. New equipment, automation and materials have been introduced. This article reviews many of the commercial thermal spray processes, borrowing from educational programs at ASM International and the Hobart Institute of Welding Technology, and reviews the applications and growth potential for emerging thermal spray processing technologies. A review of the needs in education and standardization and comparisons to programs on other countries is also presented.

  5. High Fidelity Simulation of Primary Atomization in Diesel Engine Sprays

    NASA Astrophysics Data System (ADS)

    Ivey, Christopher; Bravo, Luis; Kim, Dokyun

    2014-11-01

    A high-fidelity numerical simulation of jet breakup and spray formation from a complex diesel fuel injector at ambient conditions has been performed. A full understanding of the primary atomization process in fuel injection of diesel has not been achieved for several reasons including the difficulties accessing the optically dense region. Due to the recent advances in numerical methods and computing resources, high fidelity simulations of atomizing flows are becoming available to provide new insights of the process. In the present study, an unstructured un-split Volume-of-Fluid (VoF) method coupled to a stochastic Lagrangian spray model is employed to simulate the atomization process. A common rail fuel injector is simulated by using a nozzle geometry available through the Engine Combustion Network. The working conditions correspond to a single orifice (90 μm) JP-8 fueled injector operating at an injection pressure of 90 bar, ambient condition at 29 bar, 300 K filled with 100% nitrogen with Rel = 16,071, Wel = 75,334 setting the spray in the full atomization mode. The experimental dataset from Army Research Lab is used for validation in terms of spray global parameters and local droplet distributions. The quantitative comparison will be presented and discussed. Supported by Oak Ridge Associated Universities and the Army Research Laboratory.

  6. Bioequivalence for locally acting nasal spray and nasal aerosol products: standard development and generic approval.

    PubMed

    Li, Bing V; Jin, Feiyan; Lee, Sau L; Bai, Tao; Chowdhury, Badrul; Caramenico, Hoainhon T; Conner, Dale P

    2013-07-01

    Demonstrating bioequivalence (BE) for nasal spray/aerosol products for local action has been very challenging because the relationship between the drug in systemic circulation and the drug reaching the nasal site of action has not been well established. Thus, the current BE standard for these drug/device combination products is based on a weight-of-evidence approach, which contains three major elements: equivalent in vitro performance, equivalent systemic exposure, and equivalent local delivery. In addition, formulation sameness and device similarity are evidences to support BE. This paper presents a comprehensive review of the scientific rationale of the current BE standard and their development history for nasal spray/aerosol products, as well as the Food and Drug Administration's review and approval status of generic nasal sprays/aerosols with the application of these BE standard. PMID:23686396

  7. NACOM code for analysis of postulated sodium spray fires in LMFBRs

    SciTech Connect

    Tsai, S.S.

    1980-03-01

    An analysis of potential sodium spills and fires in liquid metal fast breeder reactors has been made to assess the maximum equipment cell loading conditions. A computer code called NACOM (sodium combustion) has been developed at Brookhaven National Laobratory (BNL) to analyze sodium spray fires. This report contains a detailed description of physical models used in this code as well as programming aspects. The single droplet combustion model and the model describing the droplets' motion are verified. Comparisons between NACOM predictions and SPRAY-3A predictions of the Atomics International (AI) LTV Jet Tests are made. Good agreement is found between the NACOM predictions and the experimental data. NACOM predictions of the pressure rise are more accurate than SPRAY-3A predictions for most of the cases studied. The code has been verified for oxygen concentrations ranging from 0 to 21%. NACOM utilizes more realistic single droplet and spray combustion models than SPRAY-3A. Moreover, NACOM does not utilize adjustable parameters for the burning rate equations, contrary to the approach taken with SPRAY-3A. Thus, the NACOM code is a more reliable code for use in the analysis of large-scale sodium spray fires in LMFBR containment cells. 24 refs., 32 figs.

  8. Spatial characterization of droplet size and droplet velocity in a liquid atomized spray

    SciTech Connect

    Jackson, T.A.

    1985-01-01

    Liquid fuel injection devices are critical components of many power generation systems. The importance of such systems has necessitated developing a detailed understanding of the interaction between the liquid and gaseous phases, common to liquid fueled power generation equipment. This research addresses the development and application of experimental tools to characterize the liquid phase. Three laser-based droplet sizing techniques are employed in the research: Visibility/Intensity Validation, Phase Doppler, and Malvern. The first two methods are interferometric. They provide a measurement of both droplet size and velocity. They offer the potential for making the required measurements of the liquid phase, but have not been rigorously evaluated. The Malvern device is diffraction based. It has a well established history of performance but does not offer the measurement detail required. The interferometric measurement techniques were evaluated against each other. Simultaneous measurements and separate spray characterizations were performed with the two instruments. The interferometric units were evaluated against the performance of the Malvern. Two weight distribution algorithms of the Malvern were used: Rosin-Rammler and Model Independent.

  9. Spray combustion at normal and reduced gravity in counterflow and co-flow configurations

    NASA Technical Reports Server (NTRS)

    Gomez, Alessandro; Chen, Gung

    1995-01-01

    Liquid fuel dispersion in practical systems is typically achieved by spraying the fuel into a polydisperse distribution of droplets evaporating and burning in a turbulent gaseous environment In view of the nearly insurmountable difficulties of this two-phase flow, a systematic study of spray evaporation and burning in configurations of gradually increasing levels of complexity, starting from laminar sprays to fully turbulent ones, would be useful. A few years ago we proposed to use an electrostatic spray of charged droplets for this type of combustion experiments under well-defined conditions. In the simplest configuration, a liquid is fed into a small metal tube maintained at several kilovolts relative to a ground electrode few centimeters away. Under the action of the electric field, the liquid meniscus at the outlet of the capillary takes a conical shape, with a thin jet emerging from the cone tip (cone-jet mode). This jet breaks up farther downstream into a spray of charged droplets - the so-called ElectroSpray (ES). Several advantages distinguish the electrospray from alternative atomization techniques: (1) it can produce quasi-monodisperse droplets over a phenomenal size range; (2) the atomization, that is strictly electrostatic, is decoupled from gas flow processes, which provides some flexibility in the selection and control of the experimental conditions; (3) the Coulombic repulsion of homopolarly charged droplets induces spray self-dispersion and prevents droplet coalescence; (4) the ES provides the opportunity of studying regimes of slip between droplets and host gas without compromising the control of the spray properties; and (5) the compactness and potential controllability of this spray generation system makes it appealing for studies in reduced-gravity environments aimed at isolating the spray behavior from natural convection complications. With these premises, in March 1991 we initiated a series of experiments under NASA sponsorship (NAG3-1259 and

  10. Combustion of LOX with H2(sub g) under subcritical, critical, and supercritical conditions (Task 1) and experimental observation of dense spray and mixing of impinging jets (Task 2)

    NASA Technical Reports Server (NTRS)

    Kuo, K. K.; Hsieh, W. H.; Cheung, F. B.; Yang, A. S.; Brown, J. J.; Woodward, R. D.; Kline, M. C.; Burch, R. L.

    1992-01-01

    The objective was to achieve a better understanding of the combustion processes of liquid oxygen and gaseous hydrogen under broad range of pressure covering subcritical, critical, and supercritical conditions. The scope of the experimental work falls into the following areas: (1) design of the overall experimental setup; (2) modification of an existing windowed high pressure chamber; (3) design of the LOX feeding system; (4) provision of the safety features in the test rig design; (5) LOX cleanliness requirements; (6) cold shock testing; (7) implementation of data acquisition systems; (8) preliminary tests for system checkout; (9) modification of LOX feeding system; and (10) evaporation tests. Progress in each area is discussed.

  11. Flexible Endoscopic Spray Application of Respiratory Epithelial Cells as Platform Technology to Apply Cells in Tubular Organs

    PubMed Central

    Thiebes, Anja Lena; Reddemann, Manuel Armin; Palmer, Johannes; Kneer, Reinhold; Cornelissen, Christian Gabriel

    2016-01-01

    Introduction: Inoperable airway stenoses are currently treated by placing stents. A major problem of covered stents is missing mucociliary clearance, which is caused by covering the native respiratory epithelium. By coating a stent with respiratory epithelium, this problem can be overcome. However, no methods are available for efficient endoscopic cell seeding. Methods: We designed a flexible endoscopic spraying device based on a bronchoscope and tested it with respiratory epithelial cells. With this device cells can also be applied in a thin layer of fibrin glue. We evaluated the survival rate directly after spray application with a live-dead staining and the long-term differentiation capacity with histology and electron microscopy. Furthermore, the random distribution of cells when applied in a tube was analyzed and the macroscopic and microscopic characteristics of the endoscopic spray were investigated using high-speed visualization. Results: Spray visualization revealed a polydisperse character of the spray with the majority of droplets larger than epithelial cells. Spray application does not influence the survival rate and differentiation of respiratory epithelial cells. After 4 weeks, cells built up a pseudostratified epithelial layer with cilia and goblet cells. When cells are applied in a thin layer of fibrin gel into a tube, a nearest neighbor index of 1.2 is obtained, which suggests a random distribution of the cells. Conclusions: This spraying device is a promising tool for application of various cell types onto stents or implants with high survival rates and homogeneous distribution as shown in this study for ovine respiratory epithelial cells. The system could also be used for cell therapy to locally apply cells to the diseased parts of hollow organs. For the first time, the fluid dynamics of a spray device for cells were examined to validate in vitro results. PMID:26739252

  12. Effect of vaporization on cryogenic spray dropsize measurement

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1993-01-01

    The fluid mechanics of multi-phase flow breakup of liquid nitrogen, LN2, jets injected into sonic velocity nitrogen gasflow, was experimentally investigated. A scattered-light scanning instrument was used to measure the characteristic dropsize, D(sub v.5), of LN2 sprays and to determine the effect of droplet vaporization on experimental dropsize measurements. Under sonic gas-velocity conditions, liquid-jet breakup occurred in the regime of aerodynamic stripping. As a result, the following correlation of volume-median drop diameter, D(sub v.5), with atomizing gas flowrate, W(sub g), was derived for two-fluid atomizers: (D(sub v.5)) (exp -1) = k(sub c) (W(sub g)) (sup n), where proportionally constant k(sub c) and exponent n are functions of droplet vaporization rate. Partially vaporized sprays were investigated and it was found that n = 1.11, which is considerably less than the value of 1.33 that is predicted by atomization theory. This was attributed to the evaporative loss of very small droplets. As a result, the following expression was obtained experimentally: (D(sub v.5e)) (exp -1) = 301 (W(sub g)) (sub 1.11). Values of D(sub v.5), that existed prior to partial vaporization of the LN2 sprays, were calculated and the following expression was derived for originally unvaporized LN2 sprays: (D(sub v.5)) (exp -1) = 285 (W(sub g)) (sub 1.33). This expression agrees well with atomization theory that predicts n = 1.33, for liquid jet breakup in high-velocity gasflow.

  13. Effect of vaporization on cryogenic spray dropsize measurement

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1992-01-01

    The fluid mechanics of multi-phase flow breakup of liquid nitrogen, LN2, jets injected into sonic velocity nitrogen gasflow, was experimentally investigated. A scattered-light scanning instrument was used to measure the characteristic dropsize, D(sub v.5), of LN2 sprays and to determine the effect of droplet vaporization on experimental dropsize measurements. Under sonic gas-velocity conditions, liquid-jet breakup occurred in the regime of aerodynamic stripping. As a result, the following correlation of volume-median drop diameter, D(sub v.5), with atomizing gas flowrate, W(sub g), was derived for two-fluid atomizers; with atomizing gas flowrate, W(sub g), was derived for two-fluid atomizers; (D(sub v.5))(exp -1) = k(sub c)(W(sub g))(sup n), where proportionally constant k(sub c) and exponent n are functions of droplet vaporization rate. Partially vaporized sprays were investigated and it was found that n = 1.11, which is considerably less than the value of 1.33 that is predicted by atomization theory. This was attributed to the evaporative loss of very small droplets. As a result, the following expression was obtained experimentally: (D(sub v.5e))(exp -1) = 301(W(sub g))(sup 1.11). Values of D(sub v.5), that existed prior to partial vaporization of the LN2 sprays, were calculated and the following expression was derived for originally unvaporized LN2 sprays: (D(sub v.5))(exp -1) = 285(W(sub g))(sup 1.33). This expression agrees well with atomization theory that predicts n = 1.33, for liquid jet breakup in high-velocity gasflow.

  14. Evaluation of aerial spray technologies for adult mosquito control applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spray droplet size has long been recognized as an important variable that applicators of vector control sprays must be aware of to make the most effective spray applications. Researchers and applicators have several different techniques available to assess spray droplet size from spray nozzles. The...

  15. The Gas Dynamics of High-Velocity Oxy-Fuel Thermal Sprays

    NASA Astrophysics Data System (ADS)

    Hackett, Charles Marcou

    An experimental study of the gas dynamics of the High-Velocity Oxy-Fuel (HVOF) thermal spray process has been performed. With this process, a hot, combustion-driven, supersonic jet is used to propel particles onto a surface, thus forming metal coatings that provide wear, temperature, and corrosion resistance. The fundamental physics of the spray process were studied and several key areas of interest were identified for in-depth study. Optical diagnostic techniques, including microsecond -exposure schlieren and shadowgraph imaging, were used to visualize the hot supersonic jet produced during the spray process. Energetic turbulent mixing of the jet with the surrounding atmosphere was observed. Measurements of oxide levels in aluminum and mild steel coatings sprayed for a range of conditions indicated that the turbulent mixing influences coating oxidation. However, experiments conducted with a low-speed coaxial shroud of inert gas demonstrated that coating oxide formation can be effectively controlled during the spray process. A simple numerical model was developed to predict the behavior of a spray particle in the HVOF jet. The results of computations indicated that independent control of spray particle velocity and temperature was possible through systematic variations in combustion chamber pressure and particle injection location within the nozzle. This hypothesis was confirmed through a series of experiments in which stainless steel particle velocity and temperature were measured using trace velocimetry and two-color radiative pyrometry, respectively. Combustion chamber pressure had a strong effect on particle velocity. Injection location was used to control the residence time of a particle within the flow, thus allowing manipulation of particle temperature without a measurable effect on velocity. Thus, the results of these experiments revealed that the gas dynamics--the behavior of the compressible gas flow--of the HVOF spray process strongly influenced spray

  16. Modeling the effects of drop drag and breakup on fuel sprays

    NASA Astrophysics Data System (ADS)

    Liu, Alex B.; Mather, Daniel; Reitz, Rolf D.

    1993-03-01

    Spray models were evaluated using experimentally measured trajectories and drop sizes of single drops injected into a high relative velocity gas flow. The computations were made using a modified version of the KIVA-2 code. It was found that the drop drag coefficient and the drop breakup time model constant had to be adjusted in order to match the measurements. Based on these findings, a new drop drag submodel is proposed in which the drop drag coefficient changes dynamically with the flow conditions. The model accounts for the effects of drop distortion and oscillation due to the relative motion between the drop and the gas. The value of the drag coefficient varies between the two limits of that of a rigid sphere (no distortion) and that of a disk (maximum distortion). The modified model was also applied to diesel sprays. The results show that the spray tip penetration is relatively insensitive to the value used for the drop drag coefficient. However, the distribution of drop sizes within sprays is influenced by drop drag. This is due to the fact that changes in drop drag produce changes in the drop-gas relative velocity. This, in turn, causes changes in the spray drop size through the drop breakup and coalescence processes. The changes occur in such a way that the net effect on the spray penetration is small over the tested ranges of conditions. These results emphasize that measurements of spray penetration are not sufficient to test and produce improved spray models. Instead, local measurements of drop size and velocity are needed to develop accurate spray models.

  17. Gas Flow, Particle Acceleration, and Heat Transfer in Cold Spray: A review

    NASA Astrophysics Data System (ADS)

    Yin, Shuo; Meyer, Morten; Li, Wenya; Liao, Hanlin; Lupoi, Rocco

    2016-06-01

    Cold spraying is increasingly attracting attentions from both scientific and industrial communities due to its unique `low-temperature' coating build-up process and its potential applications in the additive manufacturing across a variety of industries. The existing studies mainly focused on the following subjects: particle acceleration and heating, coating build-up, coating formation mechanism, coating properties, and coating applications, among which particle acceleration and heating can be regarded as the premise of the other subjects because it directly determines whether particles have sufficient energy to deposit and form the coating. Investigations on particle acceleration and heating behavior in cold spraying have been widely conducted both numerically and experimentally over decades, where many valuable conclusions were drawn. However, existing literature on this topic is vast; a systematical summery and review work is still lack so far. Besides, some curtail issues involved in modeling and experiments are still not quite clear, which needs to be further clarified. Hence, a comprehensive summary and review of the literature are very necessary. In this paper, the gas flow, particle acceleration, and heat transfer behavior in the cold spray process are systematically reviewed. Firstly, a brief introduction is given to introduce the early analytical models for predicting the gas flow and particle velocity in cold spraying. Subsequently, special attention is directed towards the application of computational fluid dynamics technique for cold spray modeling. Finally, the experimental observations and measurements in cold spraying are summarized.

  18. Spray Characteristics of a Hybrid Twin-Fluid Pressure-Swirl Atomizer

    NASA Technical Reports Server (NTRS)

    Durham, M. J.; Sojka, P. E.; Ashmore, C. B.

    2004-01-01

    The spray performance of a fuel injection system applicable for use in main combustion chamber of an oxidizer-rich staged combustion (ORSC) cycles is presented. The experimental data reported here include mean drop size and drop size distribution, spray cone half-angle, and momentum rate (directly related to spray penetration). The maximum entropy formalism, MEF, method to predict drop size distribution is applied and compared to the experimental data. Geometric variables considered include the radius of the injector inlet orifice plate through which oxidizer flows (&) and the exposed length from the fuel inlet to the injector exit plane (L2). Operating conditions that were varied include the liquid mass flow rate and air mass flow rate. For orifices B and C there is a significant dependence of D3Z on both the air and liquid mass flow rates, as well as on L2. For the A orifice, the momentum rate of the air flow appears to exceed a threshold value above which a constant D32 is obtained. Using the MEF method, a semi-analytical process was developed to model the spray distribution using two input parameters (q = 0.4 and Dso). The momentum rate of the spray is directly related to the air and liquid mass flow rates. The cone half angle of the spray ranges from 25 to 17 degrees. The data resulting from this project will eventually be used to develop advanced rocket systems.

  19. Gas Flow, Particle Acceleration, and Heat Transfer in Cold Spray: A review

    NASA Astrophysics Data System (ADS)

    Yin, Shuo; Meyer, Morten; Li, Wenya; Liao, Hanlin; Lupoi, Rocco

    2016-04-01

    Cold spraying is increasingly attracting attentions from both scientific and industrial communities due to its unique `low-temperature' coating build-up process and its potential applications in the additive manufacturing across a variety of industries. The existing studies mainly focused on the following subjects: particle acceleration and heating, coating build-up, coating formation mechanism, coating properties, and coating applications, among which particle acceleration and heating can be regarded as the premise of the other subjects because it directly determines whether particles have sufficient energy to deposit and form the coating. Investigations on particle acceleration and heating behavior in cold spraying have been widely conducted both numerically and experimentally over decades, where many valuable conclusions were drawn. However, existing literature on this topic is vast; a systematical summery and review work is still lack so far. Besides, some curtail issues involved in modeling and experiments are still not quite clear, which needs to be further clarified. Hence, a comprehensive summary and review of the literature are very necessary. In this paper, the gas flow, particle acceleration, and heat transfer behavior in the cold spray process are systematically reviewed. Firstly, a brief introduction is given to introduce the early analytical models for predicting the gas flow and particle velocity in cold spraying. Subsequently, special attention is directed towards the application of computational fluid dynamics technique for cold spray modeling. Finally, the experimental observations and measurements in cold spraying are summarized.

  20. Effects of sea spray geoengineering

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-03-01

    Anthropogenic climate warming is leading to consideration of options for geoengineering to offset rising carbon dioxide levels. One potential technique involves injecting artificial sea spray into the atmosphere. The sea salt particles would affect Earth's radiation budget directly, by scattering incoming solar radiation, and indirectly, by acting as cloud condensation nuclei, which could lead to whiter clouds that reflect more radiation. However, the potential effects of this method, especially the direct effects, are not fully known. Partanen et al. studied the effects of artificial sea spray using climate model simulations. They found that outside of the most heavily clouded regions the direct effect of scattering of radiation was an important part of the total effect. They also examined the effect of particle size and found that decreasing the size of injected particles could improve the efficiency of the geoengineering technique.