Science.gov

Sample records for ssz1 restores endoplasmic

  1. Cch1 Restores Intracellular Ca2+ in Fungal Cells during Endoplasmic Reticulum Stress*

    PubMed Central

    Hong, Min-Pyo; Vu, Kiem; Bautos, Jennifer; Gelli, Angie

    2010-01-01

    Pathogens endure and proliferate during infection by exquisitely coping with the many stresses imposed by the host to prevent pathogen survival. Recent evidence has shown that fungal pathogens and yeast respond to insults to the endoplasmic reticulum (ER) by initiating Ca2+ influx across their plasma membrane. Although the high affinity Ca2+ channel, Cch1, and its subunit Mid1, have been suggested as the protein complex responsible for mediating Ca2+ influx, a direct demonstration of the gating mechanism of the Cch1 channel remains elusive. In this first mechanistic study of Cch1 channel activity we show that the Cch1 channel from the model human fungal pathogen, Cryptococcus neoformans, is directly activated by the depletion of intracellular Ca2+ stores. Electrophysiological analysis revealed that agents that enable ER Ca2+ store depletion promote the development of whole cell inward Ca2+ currents through Cch1 that are effectively blocked by La3+ and dependent on the presence of Mid1. Cch1 is permeable to both Ca2+ and Ba2+; however, unexpectedly, in contrast to Ca2+ currents, Ba2+ currents are steeply voltage-dependent. Cch1 maintains a strong Ca2+ selectivity even in the presence of high concentrations of monovalent ions. Single channel analysis indicated that Cch1 channel conductance is small, similar to that reported for the Ca2+ current ICRAC. This study demonstrates that Cch1 functions as a store-operated Ca2+-selective channel that is gated by intracellular Ca2+ depletion. The inability of cryptococcal cells that lacked the Cch1-Mid1 channel to survive ER stress suggests that Cch1 and its co-regulator, Mid1, are critical players in the restoration of Ca2+ homeostasis. PMID:20123986

  2. Leucine restores murine hepatic triglyceride accumulation induced by a low-protein diet by suppressing autophagy and excessive endoplasmic reticulum stress.

    PubMed

    Yokota, Shin-Ichi; Ando, Midori; Aoyama, Shinya; Nakamura, Kawai; Shibata, Shigenobu

    2016-04-01

    Although it is known that a low-protein diet induces hepatic triglyceride (TG) accumulation in both rodents and humans, little is known about the underlying mechanism. In the present study, we modeled hepatic TG accumulation by inducing dietary protein deficiency in mice and aimed to determine whether certain amino acids could prevent low-protein diet-induced TG accumulation in the mouse liver. Mice fed a diet consisting of 3 % casein (3C diet) for 7 days showed hepatic TG accumulation with up-regulation of TG synthesis for the Acc gene and down-regulation of TG-rich lipoprotein secretion from hepatocytes for Mttp genes. Supplementing the 3 % casein diet with essential amino acids, branched-chain amino acids, or the single amino acid leucine rescued hepatic TG accumulation. In the livers of mice fed the 3 % casein diet, we observed a decrease in the levels of the autophagy substrate p62, an increase in the expression levels of the autophagy marker LC3-II, and an increase in the splicing of the endoplasmic reticulum (ER) stress-dependent Xbp1 gene. Leucine supplementation to the 3 % casein diet did not affect genes related to lipid metabolism, but inhibited the decrease in p62, the increase in LC3-II, and the increase in Xbp1 splicing levels in the liver. Our results suggest that ER stress responses and activated autophagy play critical roles in low-protein diet-induced hepatic TG accumulation in mice, and that leucine suppresses these two major protein degradation systems. This study contributes to understanding the mechanisms of hepatic disorders of lipid metabolism. PMID:26707165

  3. Endoplasmic Reticulum Stress and Cancer

    PubMed Central

    Yadav, Raj Kumar; Chae, Soo-Wan; Kim, Hyung-Ryong; Chae, Han Jung

    2014-01-01

    The endoplasmic reticulum (ER) is the principal organelle responsible for multiple cellular functions including protein folding and maturation and the maintenance of cellular homeostasis. ER stress is activated by a variety of factors and triggers the unfolded protein response (UPR), which restores homeostasis or activates cell death. Multiple studies have clarified the link between ER stress and cancer, and particularly the involvement of the UPR. The UPR seems to adjust the paradoxical microenvironment of cancer and, as such, is one of resistance mechanisms against cancer therapy. This review describes the activity of different UPRs involved in tumorigenesis and resistance to cancer therapy. PMID:25337575

  4. Protein misfolding in the endoplasmic reticulum as a conduit to human disease.

    PubMed

    Wang, Miao; Kaufman, Randal J

    2016-01-21

    In eukaryotic cells, the endoplasmic reticulum is essential for the folding and trafficking of proteins that enter the secretory pathway. Environmental insults or increased protein synthesis often lead to protein misfolding in the organelle, the accumulation of misfolded or unfolded proteins - known as endoplasmic reticulum stress - and the activation of the adaptive unfolded protein response to restore homeostasis. If protein misfolding is not resolved, cells die. Endoplasmic reticulum stress and activation of the unfolded protein response help to determine cell fate and function. Furthermore, endoplasmic reticulum stress contributes to the aetiology of many human diseases. PMID:26791723

  5. Endoplasmic motility spectral characteristics in plasmodium of Physarum polycephalum

    NASA Astrophysics Data System (ADS)

    Avsievich, T. I.; Ghaleb, K. E. S.; Frolov, S. V.; Proskurin, S. G.

    2015-03-01

    Spectral Fourier analysis of experimentally acquired velocity time dependencies, V(t), of shuttle endoplasmic motility in an isolated strand of plasmodium of slime mold Physarum Polycephalum has been realized. V(t) registration was performed in normal conditions and after the treatment by respiration inhibitors, which lead to a complete cessation of endoplasmic motion in the strand. Spectral analysis of the velocity time dependences of the endoplasm allows obtaining two distinct harmonic components in the spectra. Their ratio appeared to be constant in all cases, ν2/ν1=1.97±0.17. After the inhibitors are washed out respiratory system becomes normal, gradually restoring the activity of both harmonic oscillatory sources with time. Simulated velocity time dependences correspond to experimental data with good accuracy.

  6. Calcium binding chaperones of the endoplasmic reticulum.

    PubMed

    Coe, Helen; Michalak, Marek

    2009-01-01

    The endoplasmic reticulum is a major Ca(2+) store of the cell that impacts many cellular processes within the cell. The endoplasmic reticulum has roles in lipid and sterol synthesis, protein folding, post-translational modification and secretion and these functions are affected by intraluminal endoplasmic reticulum Ca(2+). In the endoplasmic reticulum there are several Ca(2+) buffering chaperones including calreticulin, Grp94, BiP and protein disulfide isomerase. Calreticulin is one of the major Ca(2+) binding/buffering chaperones in the endoplasmic reticulum. It has a critical role in Ca(2+) signalling in the endoplasmic reticulum lumen and this has significant impacts on many Ca(2+)-dependent pathways including control of transcription during embryonic development. In addition to Ca(2+) buffering, calreticulin plays important role in the correct folding and quality control of newly synthesized glycoproteins. PMID:20093733

  7. Endoplasmic reticulum stress and atherosclerosis

    PubMed Central

    Hotamisligil, Gökhan S

    2010-01-01

    Atherosclerosis and related cardiovascular diseases represent one of the greatest threats to human health worldwide. Despite important progress in prevention and treatment, these conditions still account for one third of all deaths annually. Often presented together with obesity, insulin resistance and type 2 diabetes, these chronic diseases are strongly influenced by pathways that lie at the interface of chronic inflammation and nutrient metabolism. Here I discuss recent advances in the study of endoplasmic reticulum stress as one mechanism that links immune response with nutrient sensing in the pathogenesis of atherosclerosis and its complications. PMID:20376052

  8. Endoplasmic reticulum stress in liver disease.

    PubMed

    Malhi, Harmeet; Kaufman, Randal J

    2011-04-01

    The unfolded protein response (UPR) is activated upon the accumulation of misfolded proteins in the endoplasmic reticulum (ER) that are sensed by the binding immunoglobulin protein (BiP)/glucose-regulated protein 78 (GRP78). The accumulation of unfolded proteins sequesters BiP so it dissociates from three ER-transmembrane transducers leading to their activation. These transducers are inositol requiring (IRE) 1α, PKR-like ER kinase (PERK), and activating transcription factor (ATF) 6α. PERK phosphorylates eukaryotic initiation factor 2 alpha (eIF2α) resulting in global mRNA translation attenuation, and concurrently selectively increases the translation of several mRNAs, including the transcription factor ATF4, and its downstream target CHOP. IRE1α has kinase and endoribonuclease (RNase) activities. IRE1α autophosphorylation activates the RNase activity to splice XBP1 mRNA, to produce the active transcription factor sXBP1. IRE1α activation also recruits and activates the stress kinase JNK. ATF6α transits to the Golgi compartment where it is cleaved by intramembrane proteolysis to generate a soluble active transcription factor. These UPR pathways act in concert to increase ER content, expand the ER protein folding capacity, degrade misfolded proteins, and reduce the load of new proteins entering the ER. All of these are geared toward adaptation to resolve the protein folding defect. Faced with persistent ER stress, adaptation starts to fail and apoptosis occurs, possibly mediated through calcium perturbations, reactive oxygen species, and the proapoptotic transcription factor CHOP. The UPR is activated in several liver diseases; including obesity associated fatty liver disease, viral hepatitis, and alcohol-induced liver injury, all of which are associated with steatosis, raising the possibility that ER stress-dependent alteration in lipid homeostasis is the mechanism that underlies the steatosis. Hepatocyte apoptosis is a pathogenic event in several liver

  9. Endoplasmic reticulum aminopeptidases: biochemistry, physiology and pathology.

    PubMed

    Hattori, Akira; Tsujimoto, Masafumi

    2013-09-01

    The human endoplasmic reticulum aminopeptidase (ERAP) 1 and 2 proteins were initially identified as homologues of human placental leucine aminopeptidase/insulin-regulated aminopeptidase. They are categorized as a unique class of proteases based on their subcellular localization on the luminal side of the endoplasmic reticulum. ERAPs play an important role in the N-terminal processing of the antigenic precursors that are presented on the major histocompatibility complex (MHC) class I molecules. ERAPs are also implicated in the regulation of a wide variety of physiological phenomena and pathogenic conditions. In this review, the current knowledge on ERAPs is summarized. PMID:23946506

  10. Phoneme Restoration.

    ERIC Educational Resources Information Center

    Samuel, Arthur

    1996-01-01

    Notes that phonemic restoration is a powerful auditory illusion. Points out that when part of an utterance is replaced by another sound, listeners perceptually restore the missing speech. Several paradigms measure this illusion and explore its bottom-up and top-down bases. Findings reveal that acoustic properties of the replacement sound strongly…

  11. Endoplasmic Reticulum Stress and Associated ROS

    PubMed Central

    Zeeshan, Hafiz Maher Ali; Lee, Geum Hwa; Kim, Hyung-Ryong; Chae, Han-Jung

    2016-01-01

    The endoplasmic reticulum (ER) is a fascinating network of tubules through which secretory and transmembrane proteins enter unfolded and exit as either folded or misfolded proteins, after which they are directed either toward other organelles or to degradation, respectively. The ER redox environment dictates the fate of entering proteins, and the level of redox signaling mediators modulates the level of reactive oxygen species (ROS). Accumulating evidence suggests the interrelation of ER stress and ROS with redox signaling mediators such as protein disulfide isomerase (PDI)-endoplasmic reticulum oxidoreductin (ERO)-1, glutathione (GSH)/glutathione disuphide (GSSG), NADPH oxidase 4 (Nox4), NADPH-P450 reductase (NPR), and calcium. Here, we reviewed persistent ER stress and protein misfolding-initiated ROS cascades and their significant roles in the pathogenesis of multiple human disorders, including neurodegenerative diseases, diabetes mellitus, atherosclerosis, inflammation, ischemia, and kidney and liver diseases. PMID:26950115

  12. Endoplasmic reticulum stress: a novel mechanism and therapeutic target for cardiovascular diseases

    PubMed Central

    Liu, Mei-qing; Chen, Zhe; Chen, Lin-xi

    2016-01-01

    Endoplasmic reticulum is a principal organelle responsible for folding, post-translational modifications and transport of secretory, luminal and membrane proteins, thus palys an important rale in maintaining cellular homeostasis. Endoplasmic reticulum stress (ERS) is a condition that is accelerated by accumulation of unfolded/misfolded proteins after endoplasmic reticulum environment disturbance, triggered by a variety of physiological and pathological factors, such as nutrient deprivation, altered glycosylation, calcium depletion, oxidative stress, DNA damage and energy disturbance, etc. ERS may initiate the unfolded protein response (UPR) to restore cellular homeostasis or lead to apoptosis. Numerous studies have clarified the link between ERS and cardiovascular diseases. This review focuses on ERS-associated molecular mechanisms that participate in physiological and pathophysiological processes of heart and blood vessels. In addition, a number of drugs that regulate ERS was introduced, which may be used to treat cardiovascular diseases. This review may open new avenues for studying the pathogenesis of cardiovascular diseases and discovering novel drugs targeting ERS. PMID:26838072

  13. Endoplasmic Reticulum Stress Interacts With Inflammation in Human Diseases

    PubMed Central

    Cao, Stewart Siyan; Luo, Katherine L.; Shi, Lynn

    2015-01-01

    The endoplasmic reticulum is a critical organelle for normal cell function and homeostasis. Disturbed protein folding process in the ER, termed ER stress, leads to the activation of unfolded protein response (UPR) that encompasses a complex network of intracellular signaling pathways. The UPR can either restore ER homeostasis or activate pro-apoptotic pathways depending on specific insults, intensity and duration of the stress, and cell types. ER stress and the UPR have recently been linked to inflammation in a variety of human pathologies including autoimmune diseases, infection, neurodegenerative disease, and metabolic disorders. In the cell, ER stress and inflammatory signaling share extensive regulators and effectors in a broad spectrum of biological processes. In spite of different etiologies, the two signaling pathways were shown to form a vicious cycle in exacerbating cellular dysfunction and causing apoptosis in many cells and tissues. However, the interaction between ER stress and inflammation in many of these diseases remains elusive. Further understanding of those issues may enable the development of novel therapies that spontaneously target these pathogenic pathways. PMID:26201832

  14. Coordination of Endoplasmic Reticulum (ER) Signaling During Maize Seed Development

    SciTech Connect

    Boston, Rebecca S.

    2010-11-20

    Seed storage reserves represent one of the most important sources of renewable fixed carbon and nitrogen found in nature. Seeds are well-adapted for diverting metabolic resources to synthesize storage proteins as well as enzymes and structural proteins needed for their transport and packaging into membrane bound storage protein bodies. Our underlying hypothesis is that the endoplasmic reticulum (ER) stress response provides the critical cellular control of metabolic flux required for optimal accumulation of storage reserves in seeds. This highly conserved response is a cellular mechanism to monitor the protein folding environment of the ER and restore homeostasis in the presence of unfolded or misfolded proteins. In seeds, deposition of storage proteins in protein bodies is a highly specialized process that takes place even in the presence of mutant proteins that no longer fold and package properly. The capacity of the ER to deposit these aberrant proteins in protein bodies during a period that extends several weeks provides an excellent model for deconvoluting the ER stress response of plants. We have focused in this project on the means by which the ER senses and responds to functional perturbations and the underlying intracellular communication that occurs among biosynthetic, trafficking and degradative pathways for proteins during seed development.

  15. Natural restoration

    SciTech Connect

    Kamlet, K.S.

    1993-02-01

    After a company pays millions of dollars to clean up contaminated site, its liability may not be over. It may have to spend tens of millions more to restore damaged natural resources under an oft-overlooked Superfund program. Examples of liability are cited in this report from the Exxon Valdez oil spill and a pcb leak which contaminated a harbor.

  16. Restoring Ancestral Language, Restoring Identity.

    ERIC Educational Resources Information Center

    Bannon, Kay T.

    1999-01-01

    Describes the Cherokee Language Renewal Program that was designed to help Cherokee elementary school children learn to function in the dominant culture without sacrificing their own cultural heritage. Explains how the program got started, and reports on how it helps restore a cultural identify to a people who are at risk of losing their identity.…

  17. Restoration Process

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In the accompanying photos, a laboratory technician is restoring the once-obliterated serial number of a revolver. The four-photo sequence shows the gradual progression from total invisibility to clear readability. The technician is using a new process developed in an applications engineering project conducted by NASA's Lewis Research Center in conjunction with Chicago State University. Serial numbers and other markings are frequently eliminated from metal objects to prevent tracing ownership of guns, motor vehicles, bicycles, cameras, appliances and jewelry. To restore obliterated numbers, crime laboratory investigators most often employ a chemical etching technique. It is effective, but it may cause metal corrosion and it requires extensive preparatory grinding and polishing. The NASA-Chicago State process is advantageous because it can be applied without variation to any kind of metal, it needs no preparatory work and number recovery can be accomplished without corrosive chemicals; the liquid used is water.

  18. Protein Translocation across the Rough Endoplasmic Reticulum

    PubMed Central

    Mandon, Elisabet C.; Trueman, Steven F.; Gilmore, Reid

    2013-01-01

    The rough endoplasmic reticulum is a major site of protein biosynthesis in all eukaryotic cells, serving as the entry point for the secretory pathway and as the initial integration site for the majority of cellular integral membrane proteins. The core components of the protein translocation machinery have been identified, and high-resolution structures of the targeting components and the transport channel have been obtained. Research in this area is now focused on obtaining a better understanding of the molecular mechanism of protein translocation and membrane protein integration. PMID:23251026

  19. Diverse roles of endoplasmic reticulum stress sensors in bacterial infection.

    PubMed

    Pillich, Helena; Loose, Maria; Zimmer, Klaus-Peter; Chakraborty, Trinad

    2016-12-01

    Bacterial infection often leads to cellular damage, primarily marked by loss of cellular integrity and cell death. However, in recent years, it is being increasingly recognized that, in individual cells, there are graded responses collectively termed cell-autonomous defense mechanisms that induce cellular processes designed to limit cell damage, enable repair, and eliminate bacteria. Many of these responses are triggered not by detection of a particular bacterial effector or ligand but rather by their effects on key cellular processes and changes in homeostasis induced by microbial effectors when recognized. These in turn lead to a decrease in essential cellular functions such as protein translation or mitochondrial respiration and the induction of innate immune responses that may be specific to the cellular deficit induced. These processes are often associated with specific cell compartments, e.g., the endoplasmic reticulum (ER). Under non-infection conditions, these systems are generally involved in sensing cellular stress and in inducing and orchestrating the subsequent cellular response. Thus, perturbations of ER homeostasis result in accumulation of unfolded proteins which are detected by ER stress sensors in order to restore the normal condition. The ER is also important during bacterial infection, and bacterial effectors that activate the ER stress sensors have been discovered. Increasing evidence now indicate that bacteria have evolved strategies to differentially activate different arms of ER stress sensors resulting in specific host cell response. In this review, we will describe the mechanisms used by bacteria to activate the ER stress sensors and discuss their role during infection. PMID:26883353

  20. Endoplasmic reticulum aminopeptidase 1 and rheumatic disease: functional variation

    PubMed Central

    Tran, Tri M.; Colbert, Robert A.

    2015-01-01

    Purpose of review To review recent developments in our understanding of endoplasmic reticulum (ER) aminopeptidase-1 (ERAP1) function in relation to its role in MHC class I peptide presentation and HLA class I-associated diseases. Recent findings ERAP1 polymorphisms exhibiting loss-of-function have been associated with protection from ankylosing spondylitis (AS). The aminopeptidase function of ERAP1 optimizes peptides for binding and presentation by MHC class I. Most studies have revealed reduced MHC class I expression in situations of reduced ERAP1 function. Under these circumstances the presented peptides are often N-terminally extended, and cell surface complexes are unstable and fall apart more readily. In contrast, peptides presented by HLA-B*27:05 when ERAP1 is silenced are frequently extended on the C-terminus. Recent work has emphasized the importance of assessing the function of allotypes encoded by ERAP1 haplotypes, rather than effects of single amino acid substitutions. The allotypes found in a series of AS patients were poorer at restoring HLA-B27 expression than allotypes found in unaffected controls, which may seem contrary to the genetic data linking loss-of-function to protection. Summary More work is needed to understand how ERAP1 variants associated with risk and protection influence the quality and quantity of peptides available for binding to HLA class I molecules in the ER. Moreover, we need to determine allele-specific effects of ERAP1 variants in the context of HLA-B*51 and HLA-Cw*6, which are associated with Behçet’s disease and psoriasis, respectively. PMID:26002027

  1. Endoplasmic reticulum: ER stress regulates mitochondrial bioenergetics

    PubMed Central

    Bravo, Roberto; Gutierrez, Tomás; Paredes, Felipe; Gatica, Damián; Rodriguez, Andrea E.; Pedrozo, Zully; Chiong, Mario; Parra, Valentina; Quest, Andrew F.G.; Rothermel, Beverly A.; Lavandero, Sergio

    2014-01-01

    Endoplasmic reticulum (ER) stress activates an adaptive unfolded protein response (UPR) that facilitates cellular repair, however, under prolonged ER stress, the UPR can ultimately trigger apoptosis thereby terminating damaged cells. The molecular mechanisms responsible for execution of the cell death program are relatively well characterized, but the metabolic events taking place during the adaptive phase of ER stress remain largely undefined. Here we discuss emerging evidence regarding the metabolic changes that occur during the onset of ER stress and how ER influences mitochondrial function through mechanisms involving calcium transfer, thereby facilitating cellular adaptation. Finally, we highlight how dysregulation of ER–mitochondrial calcium homeostasis during prolonged ER stress is emerging as a novel mechanism implicated in the onset of metabolic disorders. PMID:22064245

  2. Endoplasmic reticulum: ER stress regulates mitochondrial bioenergetics.

    PubMed

    Bravo, Roberto; Gutierrez, Tomás; Paredes, Felipe; Gatica, Damián; Rodriguez, Andrea E; Pedrozo, Zully; Chiong, Mario; Parra, Valentina; Quest, Andrew F G; Rothermel, Beverly A; Lavandero, Sergio

    2012-01-01

    Endoplasmic reticulum (ER) stress activates an adaptive unfolded protein response (UPR) that facilitates cellular repair, however, under prolonged ER stress, the UPR can ultimately trigger apoptosis thereby terminating damaged cells. The molecular mechanisms responsible for execution of the cell death program are relatively well characterized, but the metabolic events taking place during the adaptive phase of ER stress remain largely undefined. Here we discuss emerging evidence regarding the metabolic changes that occur during the onset of ER stress and how ER influences mitochondrial function through mechanisms involving calcium transfer, thereby facilitating cellular adaptation. Finally, we highlight how dysregulation of ER-mitochondrial calcium homeostasis during prolonged ER stress is emerging as a novel mechanism implicated in the onset of metabolic disorders. PMID:22064245

  3. Membrane Protein Insertion at the Endoplasmic Reticulum

    PubMed Central

    Shao, Sichen; Hegde, Ramanujan S.

    2014-01-01

    Integral membrane proteins of the cell surface and most intracellular compartments of eukaryotic cells are assembled at the endoplasmic reticulum. Two highly conserved and parallel pathways mediate membrane protein targeting to and insertion into this organelle. The classical cotranslational pathway, utilized by most membrane proteins, involves targeting by the signal recognition particle followed by insertion via the Sec61 translocon. A more specialized posttranslational pathway, employed by many tail-anchored membrane proteins, is composed of entirely different factors centered around a cytosolic ATPase termed TRC40 or Get3. Both of these pathways overcome the same biophysical challenges of ferrying hydrophobic cargo through an aqueous milieu, selectively delivering it to one among several intracellular membranes and asymmetrically integrating its transmembrane domain(s) into the lipid bilayer. Here, we review the conceptual and mechanistic themes underlying these core membrane protein insertion pathways, the complexities that challenge our understanding, and future directions to over-come these obstacles. PMID:21801011

  4. Endoplasmic-Reticulum Calcium Depletion and Disease

    PubMed Central

    Mekahli, Djalila; Bultynck, Geert; Parys, Jan B.; De Smedt, Humbert; Missiaen, Ludwig

    2011-01-01

    The endoplasmic reticulum (ER) as an intracellular Ca2+ store not only sets up cytosolic Ca2+ signals, but, among other functions, also assembles and folds newly synthesized proteins. Alterations in ER homeostasis, including severe Ca2+ depletion, are an upstream event in the pathophysiology of many diseases. On the one hand, insufficient release of activator Ca2+ may no longer sustain essential cell functions. On the other hand, loss of luminal Ca2+ causes ER stress and activates an unfolded protein response, which, depending on the duration and severity of the stress, can reestablish normal ER function or lead to cell death. We will review these various diseases by mainly focusing on the mechanisms that cause ER Ca2+ depletion. PMID:21441595

  5. Structural organization of the endoplasmic reticulum.

    PubMed

    Voeltz, Gia K; Rolls, Melissa M; Rapoport, Tom A

    2002-10-01

    The endoplasmic reticulum (ER) is a continuous membrane system but consists of various domains that perform different functions. Structurally distinct domains of this organelle include the nuclear envelope (NE), the rough and smooth ER, and the regions that contact other organelles. The establishment of these domains and the targeting of proteins to them are understood to varying degrees. Despite its complexity, the ER is a dynamic structure. In mitosis it must be divided between daughter cells and domains must be re-established, and even in interphase it is constantly rearranged as tubules extend along the cytoskeleton. Throughout these rearrangements the ER maintains its basic structure. How this is accomplished remains mysterious, but some insight has been gained from in vitro systems. PMID:12370207

  6. Barriers to uniformity within the endoplasmic reticulum.

    PubMed

    Wong, Andrew K O; Chao, Jesse T; Loewen, Christopher J R

    2014-08-01

    Differentiating the endoplasmic reticulum (ER) into different physical domains may help the ER spatially regulate its many functions. For example, ER sheets are highly decorated with ribosomes for protein synthesis, whereas tubules usually correspond to smooth ER. Hence, ER morphology may play direct roles in functional diversification within the ER. The ER also makes direct physical contacts with other organelles, called ER junctions, enabling further functional diversification through input from external sources. In yeast, an ER diffusion barrier has now been discovered at the bud neck that compartmentalizes the ER into bud and mother diffusion domains by restricting the lateral diffusion of ER membrane proteins. Therefore, diffusion barriers also likely contribute to functional diversification within the ER by creating suites of molecular factors within ER diffusion domains. PMID:24732434

  7. [Endoplasmic reticulum stress response in osteogenesis].

    PubMed

    Saito, Atsushi; Imaizumi, Kazunori

    2013-11-01

    Various cellular conditions such as synthesis of abundant proteins, expressions of mutant proteins and oxidative stress lead to accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) lumen. This type of stress is called ER stress. The excessive ER stress causes cellular damages followed by apoptosis. When ER stress occurs, cells are activated ER stress response (unfolded protein response) to avoid cellular damages. Recently, it has been clear that ER stress response plays crucial roles not only in cell survival after ER stress but also in regulating various cellular functions and tissue formations. In particular, ER stress and ER stress response regulate protein quality control, secretory protein production, and smooth secretion of proteins in the cells such as osteoblasts which synthesize and secrete enormous matrix proteins. PMID:24162596

  8. Protein Secretion and the Endoplasmic Reticulum

    PubMed Central

    Benham, Adam M.

    2012-01-01

    In a complex multicellular organism, different cell types engage in specialist functions, and as a result, the secretory output of cells and tissues varies widely. Whereas some quiescent cell types secrete minor amounts of proteins, tissues like the pancreas, producing insulin and other hormones, and mature B cells, producing antibodies, place a great demand on their endoplasmic reticulum (ER). Our understanding of how protein secretion in general is controlled in the ER is now quite sophisticated. However, there remain gaps in our knowledge, particularly when applying insight gained from model systems to the more complex situations found in vivo. This article describes recent advances in our understanding of the ER and its role in preparing proteins for secretion, with an emphasis on glycoprotein quality control and pathways of disulfide bond formation. PMID:22700933

  9. Endoplasmic reticulum stress in brain ischemia.

    PubMed

    Su, Yingchao; Li, Feng

    2016-08-01

    Endoplasmic reticulum (ER) stress is an intricate mechanism that mediates numerous responses during brain ischemia, thus being essential to determine the fate of neurons. In recent years, studies of the mechanisms of brain ischemic injury have centered on ER stress, glutamate excitotoxicity, dysfunction of mitochondria, inflammatory reactions, calcium overload and death receptor pathways. The role of ER stress is highly important. In addition to resulting in neuronal cell death through calcium toxicity and apoptotic pathways, ER stress also triggers a series of adaptive responses including unfolded protein response (UPR), autophagy, the expression of pro-survival proteins and the enhancement of ER self-repair ability, leading to less ischemic brain damage. This paper provides an overview of recent advances in understanding of the relations between ER stress and brain ischemia. PMID:26289799

  10. An endoplasmic reticulum-specific cyclophilin.

    PubMed Central

    Hasel, K W; Glass, J R; Godbout, M; Sutcliffe, J G

    1991-01-01

    Cyclophilin is a ubiquitously expressed cytosolic peptidyl-prolyl cis-trans isomerase that is inhibited by the immunosuppressive drug cyclosporin A. A degenerate oligonucleotide based on a conserved cyclophilin sequence was used to isolate cDNA clones representing a ubiquitously expressed mRNA from mice and humans. This mRNA encodes a novel 20-kDa protein, CPH2, that shares 64% sequence identity with cyclophilin. Bacterially expressed CPH2 binds cyclosporin A and is a cyclosporin A-inhibitable peptidyl-prolyl cis-trans isomerase. Cell fractionation of rat liver followed by Western blot (immunoblot) analysis indicated that CPH2 is not cytosolic but rather is located exclusively in the endoplasmic reticulum. These results suggest that cyclosporin A mediates its effect on cells through more than one cyclophilin and that cyclosporin A-induced misfolding of T-cell membrane proteins normally mediated by CPH2 plays a role in immunosuppression. Images PMID:1710767

  11. Nonvesicular lipid transfer from the endoplasmic reticulum.

    PubMed

    Lev, Sima

    2012-01-01

    The transport of lipids from their synthesis site at the endoplasmic reticulum (ER) to different target membranes could be mediated by both vesicular and nonvesicular transport mechanisms. Nonvesicular lipid transport appears to be the major transport route of certain lipid species, and could be mediated by either spontaneous lipid transport or by lipid-transfer proteins (LTPs). Although nonvesicular lipid transport has been extensively studied for more than four decades, its underlying mechanism, advantage and regulation, have not been fully explored. In particular, the function of LTPs and their involvement in intracellular lipid movement remain largely controversial. In this article, we describe the pathways by which lipids are synthesized at the ER and delivered to different cellular membranes, and discuss the role of LTPs in lipid transport both in vitro and in intact cells. PMID:23028121

  12. Endoplasmic Reticulum Stress and Ethanol Neurotoxicity.

    PubMed

    Yang, Fanmuyi; Luo, Jia

    2015-01-01

    Ethanol abuse affects virtually all organ systems and the central nervous system (CNS) is particularly vulnerable to excessive ethanol exposure. Ethanol exposure causes profound damages to both the adult and developing brain. Prenatal ethanol exposure induces fetal alcohol spectrum disorders (FASD) which is associated with mental retardation and other behavioral deficits. A number of potential mechanisms have been proposed for ethanol-induced brain damage; these include the promotion of neuroinflammation, interference with signaling by neurotrophic factors, induction of oxidative stress, modulation of retinoid acid signaling, and thiamine deficiency. The endoplasmic reticulum (ER) regulates posttranslational protein processing and transport. The accumulation of unfolded or misfolded proteins in the ER lumen triggers ER stress and induces unfolded protein response (UPR) which are mediated by three transmembrane ER signaling proteins: pancreatic endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activating transcription factor 6 (ATF6). UPR is initiated to protect cells from overwhelming ER protein loading. However, sustained ER stress may result in cell death. ER stress has been implied in various CNS injuries, including brain ischemia, traumatic brain injury, and aging-associated neurodegeneration, such as Alzheimer's disease (AD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). However, effects of ethanol on ER stress in the CNS receive less attention. In this review, we discuss recent progress in the study of ER stress in ethanol-induced neurotoxicity. We also examine the potential mechanisms underlying ethanol-mediated ER stress and the interaction among ER stress, oxidative stress and autophagy in the context of ethanol neurotoxicity. PMID:26473940

  13. [The progress of study about endoplasmic reticulum stress in glaucoma].

    PubMed

    Hu, J; Jiang, B

    2016-03-01

    In eukaryotic cells, the most secreted proteins and membrane proteins are compounded, modified and folded into the correct structure in the endoplasmic reticulum. Only correctly folded proteins can be transported to the golgi apparatus for further processing. If the endoplasmic reticulum is insufficient to deal with the accumulation of unfolded or misfolded proteins, balance will be broken, and endoplasmic reticulum stress (ERS) will be started. To eliminate the unfolded proteins, cells will activate unfolded protein response (UPR) immediately for self-protection. If the induced ERS is strong or persistent, the UPR could not maintain the balance of homeostasis in endoplasmic reticulum. Then the ERS will lead to C/EBP homologous protein activation and initiate cell apoptosis. The continuous ERS may participate in the occurrence and development of many diseases, such as neurodegenerative diseases and type 2 diabetes. In this article, the research progress of ERS and its relationship with glaucoma is reviewed. PMID:26979122

  14. Activation of autophagy by unfolded proteins during endoplasmic reticulum stress.

    PubMed

    Yang, Xiaochen; Srivastava, Renu; Howell, Stephen H; Bassham, Diane C

    2016-01-01

    Endoplasmic reticulum stress is defined as the accumulation of unfolded proteins in the endoplasmic reticulum, and is caused by conditions such as heat or agents that cause endoplasmic reticulum stress, including tunicamycin and dithiothreitol. Autophagy, a major pathway for degradation of macromolecules in the vacuole, is activated by these stress agents in a manner dependent on inositol-requiring enzyme 1b (IRE1b), and delivers endoplasmic reticulum fragments to the vacuole for degradation. In this study, we examined the mechanism for activation of autophagy during endoplasmic reticulum stress in Arabidopsis thaliana. The chemical chaperones sodium 4-phenylbutyrate and tauroursodeoxycholic acid were found to reduce tunicamycin- or dithiothreitol-induced autophagy, but not autophagy caused by unrelated stresses. Similarly, over-expression of BINDING IMMUNOGLOBULIN PROTEIN (BIP), encoding a heat shock protein 70 (HSP70) molecular chaperone, reduced autophagy. Autophagy activated by heat stress was also found to be partially dependent on IRE1b and to be inhibited by sodium 4-phenylbutyrate, suggesting that heat-induced autophagy is due to accumulation of unfolded proteins in the endoplasmic reticulum. Expression in Arabidopsis of the misfolded protein mimics zeolin or a mutated form of carboxypeptidase Y (CPY*) also induced autophagy in an IRE1b-dependent manner. Moreover, zeolin and CPY* partially co-localized with the autophagic body marker GFP-ATG8e, indicating delivery to the vacuole by autophagy. We conclude that accumulation of unfolded proteins in the endoplasmic reticulum is a trigger for autophagy under conditions that cause endoplasmic reticulum stress. PMID:26616142

  15. Endoplasmic Reticulum Stress in Endometrial Cancer

    PubMed Central

    Ulianich, Luca; Insabato, Luigi

    2014-01-01

    Endometrial cancer (EC) is a common gynecologic malignancy often diagnosed at early stage. In spite of a huge advance in our understanding of EC biology, therapeutic modalities do not have significantly changed over the past 40 years. A restricted number of genes have been reported to be mutated in EC, mediating cell proliferation and invasiveness. However, besides these alterations, few other groups and ourselves recently identified the activation of the unfolded protein response (UPR) and GRP78 increase following endoplasmic reticulum (ER) stress as mechanisms favoring growth and invasion of EC cells. Here, a concise update on currently available data in the field is presented, analyzing the crosstalk between the UPR and the main signaling pathways regulating EC cell proliferation and survival. It is evident that this is a rapidly expanding and promising issue. However, more data are very likely to yield a better understanding on the mechanisms through which EC cells can survive the low oxygen and glucose tumor microenvironment. In this perspective, the UPR and, particularly, GRP78 might constitute a novel target for the treatment of EC in combination with traditional adjuvant therapy. PMID:25593927

  16. Endoplasmic reticulum dysfunction in Alzheimer's disease.

    PubMed

    Li, Jie-Qiong; Yu, Jin-Tai; Jiang, Teng; Tan, Lan

    2015-02-01

    The endoplasmic reticulum (ER) serves many crucial cellular functions. However, when misfolded or unfolded proteins accumulated in the ER, the stress of ER will be induced. Meanwhile, the intracellular signaling network, which is called unfolded protein response, will also be activated to cope with. Those unfolded proteins can be recognized by three kinds of stress sensors which are IRE1, PERK, and ATF6. Based on lots of medical reports, ER stress in postmortem brains from Alzheimer's disease (AD) patients, animals, and vitro models have indicated that ER dysfunction might work as an important part in causing AD. In this review, we demonstrated that the effect of ER stress contributed to the pathogenesis of AD. ER stress associates almost the whole brain pathology processes which can be observed in AD, such as gene mutation of presenilin1, the abnormal clipped mRNA of presenilin2, β-amyloid production, tau phosphorylation, and cell death. The status of ER stress and unfolded protein response in the pathogenesis of AD also suggests they can be used as potential therapeutic agents. PMID:24715417

  17. Shaping the endoplasmic reticulum in vitro.

    PubMed

    Ferencz, Csilla-Maria; Guigas, Gernot; Veres, Andreas; Neumann, Brigitte; Stemmann, Olaf; Weiss, Matthias

    2016-09-01

    Organelles in eukaryotic cells often have complex shapes that deviate significantly from simple spheres. A prime example is the endoplasmic reticulum (ER) that forms an extensive network of membrane tubules in many mammalian cell types and in reconstitution assays in vitro. Despite the successful hunt for molecular determinants of ER shape we are still far from having a comprehensive understanding of ER network morphogenesis. Here, we have studied the hitherto neglected influence of the host substrate when reconstituting ER networks in vitro as compared to ER networks in vivo. In culture cells we observed cytoplasm-spanning ER networks with tubules being connected almost exclusively by three-way junctions and segment lengths being narrowly distributed around a mean length of about 1μm. In contrast, networks reconstituted from purified ER microsomes on flat glass or gel substrates of varying stiffness showed significantly broader length distributions with an up to fourfold larger mean length. Self-assembly of ER microsomes on small oil droplets, however, yielded networks that resembled more closely the native ER network of mammalian cells. We conclude from these observations that the ER microsomes' inherent self-assembly capacity is sufficient to support network formation with a native geometry if the influence of the host substrate's surface chemistry becomes negligible. We hypothesize that under these conditions the networks' preference for three-way junctions follows from creating 'starfish-shaped' vesicles when ER microsomes with a protein-induced spontaneous curvature undergo fusion. PMID:27287725

  18. Endoplasmic Reticulum Stress, Genome Damage, and Cancer

    PubMed Central

    Dicks, Naomi; Gutierrez, Karina; Michalak, Marek; Bordignon, Vilceu; Agellon, Luis B.

    2015-01-01

    Endoplasmic reticulum (ER) stress has been linked to many diseases, including cancer. A large body of work has focused on the activation of the ER stress response in cancer cells to facilitate their survival and tumor growth; however, there are some studies suggesting that the ER stress response can also mitigate cancer progression. Despite these contradictions, it is clear that the ER stress response is closely associated with cancer biology. The ER stress response classically encompasses activation of three separate pathways, which are collectively categorized the unfolded protein response (UPR). The UPR has been extensively studied in various cancers and appears to confer a selective advantage to tumor cells to facilitate their enhanced growth and resistance to anti-cancer agents. It has also been shown that ER stress induces chromatin changes, which can also facilitate cell survival. Chromatin remodeling has been linked with many cancers through repression of tumor suppressor and apoptosis genes. Interplay between the classic UPR and genome damage repair mechanisms may have important implications in the transformation process of normal cells into cancer cells. PMID:25692096

  19. Endoplasmic reticulum stress contributes to acetylcholine receptor degradation by promoting endocytosis in skeletal muscle cells.

    PubMed

    Du, Ailian; Huang, Shiqian; Zhao, Xiaonan; Zhang, Yun; Zhu, Lixun; Ding, Ji; Xu, Congfeng

    2016-01-15

    After binding by acetylcholine released from a motor neuron, a nicotinic acetylcholine receptor at the neuromuscular junction produces a localized end-plate potential, which leads to muscle contraction. Improper turnover and renewal of acetylcholine receptors contributes to the pathogenesis of myasthenia gravis. In the present study, we demonstrate that endoplasmic reticulum (ER) stress contributes to acetylcholine receptor degradation in C2C12 myocytes. We further show that ER stress promotes acetylcholine receptor endocytosis and lysosomal degradation, which was dampened by blocking endocytosis or treating with lysosome inhibitor. Knockdown of ER stress proteins inhibited acetylcholine receptor endocytosis and degradation, while rescue assay restored its endocytosis and degradation, confirming the effects of ER stress on promoting endocytosis-mediated degradation of junction acetylcholine receptors. Thus, our studies identify ER stress as a factor promoting acetylcholine receptor degradation through accelerating endocytosis in muscle cells. Blocking ER stress and/or endocytosis might provide a novel therapeutic approach for myasthenia gravis. PMID:26711579

  20. Coordination of stress, Ca2+, and immunogenic signaling pathways by PERK at the endoplasmic reticulum.

    PubMed

    van Vliet, Alexander R; Garg, Abhishek D; Agostinis, Patrizia

    2016-07-01

    The endoplasmic reticulum (ER) is the main coordinator of intracellular Ca2+ signaling, protein synthesis, and folding. The ER is also implicated in the formation of contact sites with other organelles and structures, including mitochondria, plasma membrane (PM), and endosomes, thereby orchestrating through interorganelle signaling pathways, a variety of cellular responses including Ca2+ homeostasis, metabolism, and cell death signaling. Upon loss of its folding capacity, incited by a number of stress signals including those elicited by various anticancer therapies, the unfolded protein response (UPR) is launched to restore ER homeostasis. The ER stress sensor protein kinase RNA-like ER kinase (PERK) is a key mediator of the UPR and its role during ER stress has been largely recognized. However, growing evidence suggests that PERK may govern signaling pathways through UPR-independent functions. Here, we discuss emerging noncanonical roles of PERK with particular relevance for the induction of danger or immunogenic signaling and interorganelle communication. PMID:26872313

  1. The unfolded protein response triggers selective mRNA release from the endoplasmic reticulum.

    PubMed

    Reid, David W; Chen, Qiang; Tay, Angeline S-L; Shenolikar, Shirish; Nicchitta, Christopher V

    2014-09-11

    The unfolded protein response (UPR) is a stress response program that reprograms cellular translation and gene expression in response to proteotoxic stress in the endoplasmic reticulum (ER). One of the primary means by which the UPR alleviates this stress is by reducing protein flux into the ER via a general suppression of protein synthesis and ER-specific mRNA degradation. We report here an additional UPR-induced mechanism for the reduction of protein flux into the ER, where mRNAs that encode signal sequences are released from the ER to the cytosol. By removing mRNAs from the site of translocation, this mechanism may serve as a potent means to transiently reduce ER protein folding load and restore proteostasis. These findings identify the dynamic subcellular localization of mRNAs and translation as a selective and rapid regulatory feature of the cellular response to protein folding stress. PMID:25215492

  2. Conditions of endoplasmic reticulum stress stimulate lipid droplet formation in Saccharomyces cerevisiae.

    PubMed

    Fei, Weihua; Wang, Han; Fu, Xin; Bielby, Christopher; Yang, Hongyuan

    2009-11-15

    LDs (lipid droplets) are cellular organelles which can be found in nearly all eukaryotic cells. Despite their importance in cell biology, the mechanism underlying LD biogenesis remains largely unknown. In the present study we report that conditions of ER (endoplasmic reticulum) stress stimulate LD formation in Saccharomyces cerevisiae. We found that LDs accumulated in yeast mutants with compromised protein glycosylation or ER-associated protein degradation. Moreover, tunicamycin and Brefeldin A, agents which induce ER stress, were found to stimulate LD formation. In contrast, the restoration of protein glycosylation reduced LD accumulation. Interestingly, enhanced neutral lipids synthesis and LD formation under conditions of ER stress was not dependent on Ire1p. Lastly, we demonstrated that the absence of LDs did not compromise cell viability under ER stress. Our results suggest that although more LDs are produced, LDs are not essential to cell survival under ER stress. PMID:19708857

  3. Endoplasmic reticulum stress implicated in chronic traumatic encephalopathy.

    PubMed

    Lucke-Wold, Brandon P; Turner, Ryan C; Logsdon, Aric F; Nguyen, Linda; Bailes, Julian E; Lee, John M; Robson, Matthew J; Omalu, Bennet I; Huber, Jason D; Rosen, Charles L

    2016-03-01

    OBJECT Chronic traumatic encephalopathy is a progressive neurodegenerative disease characterized by neurofibrillary tau tangles following repetitive neurotrauma. The underlying mechanism linking traumatic brain injury to chronic traumatic encephalopathy has not been elucidated. The authors investigate the role of endoplasmic reticulum stress as a link between acute neurotrauma and chronic neurodegeneration. METHODS The authors used pharmacological, biochemical, and behavioral tools to assess the role of endoplasmic reticulum stress in linking acute repetitive traumatic brain injury to the development of chronic neurodegeneration. Data from the authors' clinically relevant and validated rodent blast model were compared with those obtained from postmortem human chronic traumatic encephalopathy specimens from a National Football League player and World Wrestling Entertainment wrestler. RESULTS The results demonstrated strong correlation of endoplasmic reticulum stress activation with subsequent tau hyperphosphorylation. Various endoplasmic reticulum stress markers were increased in human chronic traumatic encephalopathy specimens, and the endoplasmic reticulum stress response was associated with an increase in the tau kinase, glycogen synthase kinase-3β. Docosahexaenoic acid, an endoplasmic reticulum stress inhibitor, improved cognitive performance in the rat model 3 weeks after repetitive blast exposure. The data showed that docosahexaenoic acid administration substantially reduced tau hyperphosphorylation (t = 4.111, p < 0.05), improved cognition (t = 6.532, p < 0.001), and inhibited C/EBP homology protein activation (t = 5.631, p < 0.01). Additionally the data showed, for the first time, that endoplasmic reticulum stress is involved in the pathophysiology of chronic traumatic encephalopathy. CONCLUSIONS Docosahexaenoic acid therefore warrants further investigation as a potential therapeutic agent for the prevention of chronic traumatic encephalopathy. PMID

  4. Nox NADPH Oxidases and the Endoplasmic Reticulum

    PubMed Central

    Araujo, Thaís L.S.; Abrahão, Thalita B.

    2014-01-01

    Abstract Significance: Understanding isoform- and context-specific subcellular Nox reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase compartmentalization allows relevant functional inferences. This review addresses the interplay between Nox NADPH oxidases and the endoplasmic reticulum (ER), an increasingly evident player in redox pathophysiology given its role in redox protein folding and stress responses. Recent Advances: Catalytic/regulatory transmembrane subunits are synthesized in the ER and their processing includes folding, N-glycosylation, heme insertion, p22phox heterodimerization, as shown for phagocyte Nox2. Dual oxidase (Duox) maturation also involves the regulation by ER-resident Duoxa2. The ER is the activation site for some isoforms, typically Nox4, but potentially other isoforms. Such location influences redox/Nox-mediated calcium signaling regulation via ER targets, such as sarcoendoplasmic reticulum calcium ATPase (SERCA). Growing evidence suggests that Noxes are integral signaling elements of the unfolded protein response during ER stress, with Nox4 playing a dual prosurvival/proapoptotic role in this setting, whereas Nox2 enhances proapoptotic signaling. ER chaperones such as protein disulfide isomerase (PDI) closely interact with Noxes. PDI supports growth factor-dependent Nox1 activation and mRNA expression, as well as migration in smooth muscle cells, and PDI overexpression induces acute spontaneous Nox activation. Critical Issues: Mechanisms of PDI effects include possible support of complex formation and RhoGTPase activation. In phagocytes, PDI supports phagocytosis, Nox activation, and redox-dependent interactions with p47phox. Together, the results implicate PDI as possible Nox organizer. Future Directions: We propose that convergence between Noxes and ER may have evolutive roots given ER-related functional contexts, which paved Nox evolution, namely calcium signaling and pathogen killing. Overall, the interplay between

  5. Principles of restorative dentistry.

    PubMed

    Banker, T

    1993-08-01

    A great deal of information regarding materials, instrumentation, and techniques used for restorative dentistry can be borrowed from the human dental field. Veterinary restorative dentistry is in its infancy. A thorough knowledge of the commonly used materials and how they can be effectively applied is important. Treatment planning is probably one of the most critical phases of restorative dentistry as is painstaking attention to detail. If the guidelines for restorative dental techniques are followed, failures will be minimal. However, one of the most important points to remember is that the success of a restoration is not determined at the completion of the procedure. A restoration, if properly planned and performed, should last the lifetime of the animal patient. It is very important that veterinary dentists continue to evaluate and assess their restorative work at regular intervals so that restorative failures can be detected early, and so that restorative techniques and materials can be critically evaluated in veterinary patients. PMID:8210800

  6. Endoplasmic Reticulum-Associated Degradation and Lipid Homeostasis.

    PubMed

    Stevenson, Julian; Huang, Edmond Y; Olzmann, James A

    2016-07-17

    The endoplasmic reticulum is the port of entry for proteins into the secretory pathway and the site of synthesis for several important lipids, including cholesterol, triacylglycerol, and phospholipids. Protein production within the endoplasmic reticulum is tightly regulated by a cohort of resident machinery that coordinates the folding, modification, and deployment of secreted and integral membrane proteins. Proteins failing to attain their native conformation are degraded through the endoplasmic reticulum-associated degradation (ERAD) pathway via a series of tightly coupled steps: substrate recognition, dislocation, and ubiquitin-dependent proteasomal destruction. The same ERAD machinery also controls the flux through various metabolic pathways by coupling the turnover of metabolic enzymes to the levels of key metabolites. We review the current understanding and biological significance of ERAD-mediated regulation of lipid metabolism in mammalian cells. PMID:27296502

  7. The protein translocation machinery of the endoplasmic reticulum.

    PubMed

    Walter, P; Gilmore, R; Müller, M; Blobel, G

    1982-12-24

    The rough endoplasmic reticulum (r.e.r.) has been postulated to possess a single translation-coupled translocation system (in multiple copies) that effects signal sequence-mediated translocation of all secretory and lysosomal proteins and integration of all integral membrane proteins whose port of entry is the rough endoplasmic reticulum (G. Blobel 1980 Proc. natn. Acad. Sci. U.S.A. 77, 1496-1500). Two proteins have been isolated that are components of the r.e.r. translocation system. Their properties and function in protein translocation across and integration into membranes are discussed. PMID:6131460

  8. Endoplasmic Reticulum Stress in the Diabetic Kidney, the Good, the Bad and the Ugly

    PubMed Central

    Cunard, Robyn

    2015-01-01

    Diabetic kidney disease is the leading worldwide cause of end stage kidney disease and a growing public health challenge. The diabetic kidney is exposed to many environmental stressors and each cell type has developed intricate signaling systems designed to restore optimal cellular function. The unfolded protein response (UPR) is a homeostatic pathway that regulates endoplasmic reticulum (ER) membrane structure and secretory function. Studies suggest that the UPR is activated in the diabetic kidney to restore normal ER function and viability. However, when the cell is continuously stressed in an environment that lies outside of its normal physiological range, then the UPR is known as the ER stress response. The UPR reduces protein synthesis, augments the ER folding capacity and downregulates mRNA expression of genes by multiple pathways. Aberrant activation of ER stress can also induce inflammation and cellular apoptosis, and modify signaling of protective processes such as autophagy and mTORC activation. The following review will discuss our current understanding of ER stress in the diabetic kidney and explore novel means of modulating ER stress and its interacting signaling cascades with the overall goal of identifying therapeutic strategies that will improve outcomes in diabetic nephropathy. PMID:26239352

  9. Hepatic Xbp1 Gene Deletion Promotes Endoplasmic Reticulum Stress-induced Liver Injury and Apoptosis.

    PubMed

    Olivares, Shantel; Henkel, Anne S

    2015-12-11

    Endoplasmic reticulum (ER) stress activates the unfolded protein response (UPR), a highly conserved signaling cascade that functions to alleviate stress and promote cell survival. If, however, the cell is unable to adapt and restore homeostasis, then the UPR activates pathways that promote apoptotic cell death. The molecular mechanisms governing the critical transition from adaptation and survival to initiation of apoptosis remain poorly understood. We aim to determine the role of hepatic Xbp1, a key mediator of the UPR, in controlling the adaptive response to ER stress in the liver. Liver-specific Xbp1 knockout mice (Xbp1(LKO)) and Xbp1(fl/fl) control mice were subjected to varying levels and durations of pharmacologic ER stress. Xbp1(LKO) and Xbp1(fl/fl) mice showed robust and equal activation of the UPR acutely after induction of ER stress. By 24 h, Xbp1(fl/fl) controls showed complete resolution of UPR activation and no liver injury, indicating successful adaptation to the stress. Conversely, Xbp1(LKO) mice showed ongoing UPR activation associated with progressive liver injury, apoptosis, and, ultimately, fibrosis by day 7 after induction of ER stress. These data indicate that hepatic XBP1 controls the adaptive response of the UPR and is critical to restoring homeostasis in the liver in response to ER stress. PMID:26504083

  10. Linking restoration ecology with coastal dune restoration

    NASA Astrophysics Data System (ADS)

    Lithgow, D.; Martínez, M. L.; Gallego-Fernández, J. B.; Hesp, P. A.; Flores, P.; Gachuz, S.; Rodríguez-Revelo, N.; Jiménez-Orocio, O.; Mendoza-González, G.; Álvarez-Molina, L. L.

    2013-10-01

    Restoration and preservation of coastal dunes is urgently needed because of the increasingly rapid loss and degradation of these ecosystems because of many human activities. These activities alter natural processes and coastal dynamics, eliminate topographic variability, fragment, degrade or eliminate habitats, reduce diversity and threaten endemic species. The actions of coastal dune restoration that are already taking place span contrasting activities that range from revegetating and stabilizing the mobile substrate, to removing plant cover and increasing substrate mobility. Our goal was to review how the relative progress of the actions of coastal dune restoration has been assessed, according to the ecosystem attributes outlined by the Society of Ecological Restoration: namely, integrity, health and sustainability and that are derived from the ecological theory of succession. We reviewed the peer reviewed literature published since 1988 that is listed in the ISI Web of Science journals as well as additional references, such as key books. We exclusively focused on large coastal dune systems (such as transgressive and parabolic dunefields) located on natural or seminatural coasts. We found 150 articles that included "coastal dune", "restoration" and "revegetation" in areas such as title, keywords and abstract. From these, 67 dealt specifically with coastal dune restoration. Most of the studies were performed in the USA, The Netherlands and South Africa, during the last two decades. Restoration success has been assessed directly and indirectly by measuring one or a few ecosystem variables. Some ecosystem attributes have been monitored more frequently (ecosystem integrity) than others (ecosystem health and sustainability). Finally, it is important to consider that ecological succession is a desirable approach in restoration actions. Natural dynamics and disturbances should be considered as part of the restored system, to improve ecosystem integrity, health and

  11. Isolation of Endoplasmic Reticulum Fractions from Mammary Epithelial Tissue.

    PubMed

    Chanat, Eric; Le Parc, Annabelle; Lahouassa, Hichem; Badaoui, Bouabid

    2016-06-01

    In the mammary glands of lactating animals, the mammary epithelial cells that surround the lumen of the acini produce and secrete copious amounts of milk. Functional differentiation of these mammary epithelial cells depends on the development of high-efficiency secretory pathways, notably for protein and lipid secretion. Protein secretion is a fundamental process common to all animal cells that involves a subset of cellular organelles, including the endoplasmic reticulum and the Golgi apparatus. In contrast, en masse secretion of triglycerides and cholesterol esters in the form of milk fat globules is a unique feature of the mammary epithelial cell. Cytoplasmic lipid droplets, the intracellular precursors of milk fat globules, originate from the endoplasmic reticulum, as do most milk-specific proteins. This organelle is therefore pivotal in the biogenesis of milk components. Fractionation of the cell into its subcellular parts is an approach that has proven very powerful for understanding organelle function and for studying the specific role of an organelle in a given cell activity. Here we describe a method for the purification of both smooth and rough microsomes, the membrane-bound endoplasmic reticulum fragments that form from endoplasmic reticulum domains when cells are broken up, from mammary gland tissue at lactation. PMID:27048289

  12. Continuous network of endoplasmic reticulum in cerebellar Purkinje neurons.

    PubMed Central

    Terasaki, M; Slater, N T; Fein, A; Schmidek, A; Reese, T S

    1994-01-01

    Purkinje neurons in rat cerebellar slices injected with an oil drop saturated with 1,1'-dihexadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate [DiIC16(3) or DiI] to label the endoplasmic reticulum were observed by confocal microscopy. DiI spread throughout the cell body and dendrites and into the axon. DiI spreading is due to diffusion in a continuous bilayer and is not due to membrane trafficking because it also spreads in fixed neurons. DiI stained such features of the endoplasmic reticulum as densities at branch points, reticular networks in the cell body and dendrites, nuclear envelope, spines, and aggregates formed during anoxia nuclear envelope, spines, and aggregates formed during anoxia in low extracellular Ca2+. In cultured rat hippocampal neurons, where optical conditions provide more detail, DiI labeled a clearly delineated network of endoplasmic reticulum in the cell body. We conclude that there is a continuous compartment of endoplasmic reticulum extending from the cell body throughout the dendrites. This compartment may coordinate and integrate neuronal functions. Images PMID:7519781

  13. Stressed-Out Endoplasmic Reticulum Inflames the Mitochondria.

    PubMed

    Shin, Sunny; Argon, Yair

    2015-09-15

    Bacterial infection induces inflammasome activation and release of interleukin-1 (IL-1) cytokines. Bronner et al. (2015) show that during Brucella abortus infection, an endoplasmic reticulum stress sensor, IRE1α, initiates NLRP3- and caspase-2-mediated mitochondrial damage that potentiates NLRP3 inflammasome assembly. PMID:26377891

  14. CYP2J2-Derived Epoxyeicosatrienoic Acids Suppress Endoplasmic Reticulum Stress in Heart Failure

    PubMed Central

    Wang, Xingxu; Ni, Li; Yang, Lei; Duan, Quanlu; Chen, Chen; Edin, Matthew L.; Zeldin, Darryl C.

    2014-01-01

    Prolonged endoplasmic reticulum (ER) stress causes apoptosis and is associated with heart failure. Whether CYP2J2 and its arachidonic acid metabolites [epoxyeicosatrienoic acids (EETs)] have a protective influence on ER stress and heart failure has not been studied. Assays of myocardial samples from patients with end-stage heart failure showed evidence of ER stress. Chronic infusion of isoproterenol (ISO) or angiotensin II (AngII) by osmotic mini-pump induced cardiac hypertrophy and heart failure in mice as evaluated by hemodynamic measurements and echocardiography. Interestingly, transgenic (Tr) mice with cardiomyocyte-specific CYP2J2 expression were protected against heart failure compared with wild-type mice. ISO or AngII administration induced ER stress and apoptosis, and increased levels of intracellular Ca2+. These phenotypes were abolished by CYP2J2 overexpression in vivo or exogenous EETs treatment of cardiomyocytes in vitro. ISO or AngII reduced sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA2a) expression in hearts or isolated cardiomyocytes; however, loss of SERCA2a expression was prevented in CYP2J2 Tr hearts in vivo or in cardiomyocytes treated with EETs in vitro. The reduction of SERCA2a activity was concomitant with increased oxidation of SERCA2a. EETs reversed SERCA2a oxidation through increased expression of antioxidant enzymes and reduced reactive oxygen species levels. Tempol, a membrane-permeable radical scavenger, similarly decreased oxidized SERCA2a levels, restored SERCA2a activity, and markedly reduced ER stress response in the mice treated with ISO. In conclusion, CYP2J2-derived EETs suppress ER stress response in the heart and protect against cardiac failure by maintaining intracellular Ca2+ homeostasis and SERCA2a expression and activity. PMID:24145329

  15. CYP2J2-derived epoxyeicosatrienoic acids suppress endoplasmic reticulum stress in heart failure.

    PubMed

    Wang, Xingxu; Ni, Li; Yang, Lei; Duan, Quanlu; Chen, Chen; Edin, Matthew L; Zeldin, Darryl C; Wang, Dao Wen

    2014-01-01

    Prolonged endoplasmic reticulum (ER) stress causes apoptosis and is associated with heart failure. Whether CYP2J2 and its arachidonic acid metabolites [epoxyeicosatrienoic acids (EETs)] have a protective influence on ER stress and heart failure has not been studied. Assays of myocardial samples from patients with end-stage heart failure showed evidence of ER stress. Chronic infusion of isoproterenol (ISO) or angiotensin II (AngII) by osmotic mini-pump induced cardiac hypertrophy and heart failure in mice as evaluated by hemodynamic measurements and echocardiography. Interestingly, transgenic (Tr) mice with cardiomyocyte-specific CYP2J2 expression were protected against heart failure compared with wild-type mice. ISO or AngII administration induced ER stress and apoptosis, and increased levels of intracellular Ca(2+). These phenotypes were abolished by CYP2J2 overexpression in vivo or exogenous EETs treatment of cardiomyocytes in vitro. ISO or AngII reduced sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA2a) expression in hearts or isolated cardiomyocytes; however, loss of SERCA2a expression was prevented in CYP2J2 Tr hearts in vivo or in cardiomyocytes treated with EETs in vitro. The reduction of SERCA2a activity was concomitant with increased oxidation of SERCA2a. EETs reversed SERCA2a oxidation through increased expression of antioxidant enzymes and reduced reactive oxygen species levels. Tempol, a membrane-permeable radical scavenger, similarly decreased oxidized SERCA2a levels, restored SERCA2a activity, and markedly reduced ER stress response in the mice treated with ISO. In conclusion, CYP2J2-derived EETs suppress ER stress response in the heart and protect against cardiac failure by maintaining intracellular Ca(2+) homeostasis and SERCA2a expression and activity. PMID:24145329

  16. Endoplasmic reticulum stress up-regulates Nedd4-2 to induce autophagy.

    PubMed

    Wang, Hao; Sun, Ruo-Qiong; Camera, Daria; Zeng, Xiao-Yi; Jo, Eunjung; Chan, Stanley M H; Herbert, Terence P; Molero, Juan C; Ye, Ji-Ming

    2016-07-01

    The accumulation of unfolded proteins within the endoplasmic reticulum (ER) causes ER stress and activation of unfolded protein response (UPR). This response can trigger ER-associated degradation and autophagy, which clear unfolded proteins and restore protein homeostasis. Recently, it has become clear that ubiquitination plays an important role in the regulation of autophagy. In the present study, we investigated how the E3 ubiquitin ligase neural precursor cell-expressed, developmentally down-regulated protein 4-2 (Nedd4-2) interacts with ER stress and autophagy. In mice, we found that an increase in the expression of Nedd4-2, which was concomitant with the activation of the UPR and autophagy, was caused by a prolonged high-fructose and high-fat diet that induces ER stress in the liver. Pharmacologic induction of ER stress also led to an increase in Nedd4-2 expression in cultured cells, which was coincident with UPR and autophagy activation. The inhibition of inositol-requiring enzyme 1 significantly suppressed Nedd4-2 expression. Moreover, increased Nedd4-2 expression in vivo was closely associated with the activation of inositol-requiring enzyme 1 and increased expression of the spliced form of X-box binding protein 1. Furthermore, knockdown of Nedd4-2 in cultured cells suppressed both basal autophagy and ER stress-induced autophagy, whereas overexpression of Nedd4-2-induced autophagy. Taken together, our findings provide evidence that Nedd4-2 is up-regulated in response to ER stress by the spliced form of X-box binding protein 1 and that this is important in the induction of an appropriate autophagic response.-Wang, H. Sun, R.-Q., Camera, D., Zeng, X.-Y., Jo, E., Chan, S. M. H., Herbert, T. P., Molero, J. C., Ye, J.-M. Endoplasmic reticulum stress up-regulates Nedd4-2 to induce autophagy. PMID:27022162

  17. Rheological properties of living cytoplasm: endoplasm of Physarum plasmodium.

    PubMed

    Sato, M; Wong, T Z; Allen, R D

    1983-10-01

    Magnetic sphere viscoelastometry, video microscopy, and the Kamiya double chamber method (Kamiya, N., 1940, Science [Wash. DC], 92:462-463.) have been combined in an optical and rheological investigation of the living endoplasm of Physarum polycephalum. The rheological properties examined were yield stress, viscosity (as a function of shear), and elasticity. These parameters were evaluated in directions perpendicular; (X) and parallel (Y) to the plasmodial vein. Known magnetic forces were used for measurements in the X direction, while the falling ball technique was used in the Y direction (Cygan, D.A., and B. Caswell, 1971, Trans. Soc. Rheol. 15:663-683; MacLean-Fletcher, S.D., and T.D. Pollard, 1980, J. Cell Biol., 85:414-428). Approximate yield stresses were calculated in the X and Y directions of 0.58 and 1.05 dyn/cm2, respectively. Apparent viscosities measured in the two directions (eta x and eta y) were found to fluctuate with time. The fluctuations in eta x and eta y were shown, statistically, to occur independently of each other. Frequency correlation with dynamoplasmograms indicated that these fluctuations probably occur independently of the streaming cycle. Viscosity was found to be a complex function of shear, indicating that the endoplasm is non-Newtonian. Plots of shear stress vs. rate of shear both parallel and perpendicular to the vein, showed that endoplasm is not a shear thinning material. These experiments have shown that living endoplasm of Physarum is an anisotropic viscoelastic fluid with a yield stress. The endoplasm appears not to be a homogeneous material, but to be composed of heterogeneous domains. PMID:6619187

  18. Periodontal restorative interrelationships: the isolated restoration.

    PubMed

    Fugazzotto, P A

    1985-06-01

    Only by controlling plaque early and consistently, before periodontal and restorative problems require intervention in the form of a full prosthetic and periodontal reconstruction, the continued maintenance of a full dentition is assured. Plaque control is not merely continued prophylaxes, but a striving for a healthy biologic situation with the placement of every restoration. This is attainable only through ensuring a normal attachment apparatus and establishing that all restorative margins be accessible to plaque control measures. Deep, subgingival restorations are not only difficult to place and finish correctly, but, by providing an environment conducive to microbial plaque retention and proliferation, also lead to inflammatory periodontal destruction and recurrent carious lesions. Early detection, although difficult, is essential to avoid excessive destruction of the tooth and its supporting structures. A deterrent to early detection may be the response of the patient's tissue. Paradoxically, if the patient's periodontal tissues respond in a fibrotic manner to early gingival inflammation, rather than in a dramatic, edematous manner, the situation may appear clinically healthy. Waerhaug discussed "submarginal gingivitis," a situation in which the tissue will appear pink and firm, elicit to exudate or bleeding on probing, and mimic healthy to the casual examiner. When this is coupled with the difficulty inherent in detecting early recurrent carious lesions, resulting from the radiographic superimposition of the existing restoration or the deep subgingival extent of the restoration, the situation becomes all the more demanding of the practitioner's efforts. PMID:3860551

  19. Watershed Restoration Project

    SciTech Connect

    Julie Thompson; Betsy Macfarlan

    2007-09-27

    In 2003, the U.S. Department of Energy issued the Eastern Nevada Landscape Coalition (ENLC) funding to implement ecological restoration in Gleason Creek and Smith Valley Watersheds. This project was made possible by congressionally directed funding that was provided through the US Department of Energy, Energy Efficiency and Renewable Energy, Office of the Biomass Program. The Ely District Bureau of Land Management (Ely BLM) manages these watersheds and considers them priority areas within the Ely BLM district. These three entities collaborated to address the issues and concerns of Gleason Creek and Smith Valley and prepared a restoration plan to improve the watersheds’ ecological health and resiliency. The restoration process began with watershed-scale vegetation assessments and state and transition models to focus on restoration sites. Design and implementation of restoration treatments ensued and were completed in January 2007. This report describes the restoration process ENLC undertook from planning to implementation of two watersheds in semi-arid Eastern Nevada.

  20. [The biological effects of liposome interactions with the endoplasmic reticulum].

    PubMed

    Foia, L; Costuleanu, N; Pavel, M

    1998-01-01

    Liposome research is a thriving field at the confluence of biophysics, cell biology and medicine. The principal medical application of liposomes is based on their potential to act as carriers for a broad spectrum of drugs and other agents, including antigens with or without immunomodulators in vaccination. Treatment of peritoneal macrophages of rats with small unilamellar vesicles of dipalmitoylphosphatidylcholine (DPPC SUV) potentiated their activation for tumor cell lysis by endotoxins. The measurement of the fluorescence anisotropy of diphenylhexatriene showed a phase transition. No phase transition was observed in the rough endoplasmic reticulum membranes of macrophages either treated or not treated with cholesterol/DPPC SUV. The synergistic effect of DPPC SUV on the tumoricidal activity of macrophages induced by endotoxins appears to be correlated with the changes in the properties of the rough endoplasmic reticulum membranes. Both effects were transient; they had the same kinetics of induction and reversion. PMID:10756813

  1. Endoplasmic reticulum stress in mouse decidua during early pregnancy.

    PubMed

    Gu, Xiao-Wei; Yan, Jia-Qi; Dou, Hai-Ting; Liu, Jie; Liu, Li; Zhao, Meng-Long; Liang, Xiao-Huan; Yang, Zeng-Ming

    2016-10-15

    Unfolded or misfolded protein accumulation in the endoplasmic reticulum lumen leads to endoplasmic reticulum stress (ER stress). Although it is known that ER stress is crucial for mammalian reproduction, little is known about its physiological significance and underlying mechanism during decidualization. Here we show that Ire-Xbp1 signal transduction pathway of unfolded protein response (UPR) is activated in decidual cells. The process of decidualization is compromised by ER stress inhibitor tauroursodeoxycholic acid sodium (TUDCA) and Ire specific inhibitor STF-083010 both in vivo and in vitro. A high concentration of ER stress inducer tunicamycin (TM) suppresses stromal cells proliferation and decidualization, while a lower concentration is beneficial. We further show that ER stress induces DNA damage and polyploidization in stromal cells. In conclusion, our data suggest that the GRP78/Ire1/Xbp1 signaling pathway of ER stress-UPR is activated and involved in mouse decidualization. PMID:27283502

  2. Restoring the smile: Inexpensive biologic restorations

    PubMed Central

    Mittal, Neeti P.

    2014-01-01

    Extensive breakdown of primary teeth to the cervical level and their loss in very young children is not uncommon. Owing to increasing concerns over self-appearance, due considerations to esthetic aspects in addition to restoring function are necessary aspects of rehabilitation of mutilated teeth to help children grow into a psychologically balanced personality. The present article describes rehabilitation of grossly decayed teeth with biologic restorations such as dentine posts, dentine post and core and biologic shell crown. This treatment modality provided a cost-effective esthetic solution. PMID:25097656

  3. Endoplasmic reticulum stress: implications for inflammatory bowel disease pathogenesis

    PubMed Central

    Kaser, Arthur; Martínez-Naves, Eduardo; Blumberg, Richard S.

    2015-01-01

    Purpose of review To provide an overview of the emerging role of cellular stress responses in inflammatory bowel disease (IBD). Recent findings The unfolded protein response (UPR) is a primitive cellular pathway that is engaged when responding to endoplasmic reticulum stress and regulates autophagy. Highly secretory cells such as Paneth cells and goblet cells in the intestines are particularly susceptible to endoplasmic reticulum stress and are exceedingly dependent upon a properly functioning UPR to maintain cellular viability and homeostasis. Primary genetic abnormalities within the components of the UPR (e.g. XBP1, ARG2, ORMDL3), genes that encode proteins reliant upon a robust secretory pathway (e.g. MUC2, HLAB27) and environmental factors that create disturbances in the UPR (e.g. microbial products and inflammatory cytokines) are important factors in the primary development and/or perpetuation of intestinal inflammation. Summary Endoplasmic reticulum stress is an important new pathway involved in the development of intestinal inflammation associated with IBD and likely other intestinal inflammatory disorders. PMID:20495455

  4. Endoplasmic reticulum stress in spinal and bulbar muscular atrophy: a potential target for therapy.

    PubMed

    Montague, Karli; Malik, Bilal; Gray, Anna L; La Spada, Albert R; Hanna, Michael G; Szabadkai, Gyorgy; Greensmith, Linda

    2014-07-01

    Spinal and bulbar muscular atrophy is an X-linked degenerative motor neuron disease caused by an abnormal expansion in the polyglutamine encoding CAG repeat of the androgen receptor gene. There is evidence implicating endoplasmic reticulum stress in the development and progression of neurodegenerative disease, including polyglutamine disorders such as Huntington's disease and in motor neuron disease, where cellular stress disrupts functioning of the endoplasmic reticulum, leading to induction of the unfolded protein response. We examined whether endoplasmic reticulum stress is also involved in the pathogenesis of spinal and bulbar muscular atrophy. Spinal and bulbar muscular atrophy mice that carry 100 pathogenic polyglutamine repeats in the androgen receptor, and develop a late-onset neuromuscular phenotype with motor neuron degeneration, were studied. We observed a disturbance in endoplasmic reticulum-associated calcium homeostasis in cultured embryonic motor neurons from spinal and bulbar muscular atrophy mice, which was accompanied by increased endoplasmic reticulum stress. Furthermore, pharmacological inhibition of endoplasmic reticulum stress reduced the endoplasmic reticulum-associated cell death pathway. Examination of spinal cord motor neurons of pathogenic mice at different disease stages revealed elevated expression of markers for endoplasmic reticulum stress, confirming an increase in this stress response in vivo. Importantly, the most significant increase was detected presymptomatically, suggesting that endoplasmic reticulum stress may play an early and possibly causal role in disease pathogenesis. Our results therefore indicate that the endoplasmic reticulum stress pathway could potentially be a therapeutic target for spinal and bulbar muscular atrophy and related polyglutamine diseases. PMID:24898351

  5. Utah Paiute Tribal Restoration.

    ERIC Educational Resources Information Center

    Turner, Allen C.

    The Paiute Indian Tribe of Utah Restoration Act (1980) restored federal recognition of the tribe after a quarter century of ambiguous political status, and resulted in significant improvements of educational status of tribal members and intensification of the political presence of Southern Paiutes. Following the Paiute Indian Termination Act…

  6. Restoration of bearings

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Zaretsky, E. V.; Hanau, H.

    1977-01-01

    Process consisting of grinding raceways to oversize but original quality condition and installing new oversize balls or bearings restores wornout ball and roller bearings to original quality, thereby doubling their operating life. Evaluations reveal process results in restoration of 90% of replaced bearings at less than 50% of new-bearing costs.

  7. Gill's 'History' restored

    NASA Astrophysics Data System (ADS)

    Hurn, Mark

    2009-06-01

    Note about the restoration of the copy of Sir David Gill's 'A History and Description of the Royal Observatory, Cape of Good Hope' in the Library of the Institute of Astronomy, Cambridge. The book was restored with funds provided by the SHA in thanks for facilities for meetings provided to the Institute.

  8. Power system restoration issues

    SciTech Connect

    Adibi, M.M. ); Kafka, R.J. )

    1991-04-01

    This article describes some of the problems encountered in the three phases of power system restoration (PSR). The three phases of PSR are: Planning for restart and reintegration of the bulk power supply; Actions during system degradation for saving and retaining critical sources of power; Restoration when the power system has stabilized at some degraded level.

  9. Retributive and restorative justice.

    PubMed

    Wenzel, Michael; Okimoto, Tyler G; Feather, Norman T; Platow, Michael J

    2008-10-01

    The emergence of restorative justice as an alternative model to Western, court-based criminal justice may have important implications for the psychology of justice. It is proposed that two different notions of justice affect responses to rule-breaking: restorative and retributive justice. Retributive justice essentially refers to the repair of justice through unilateral imposition of punishment, whereas restorative justice means the repair of justice through reaffirming a shared value-consensus in a bilateral process. Among the symbolic implications of transgressions, concerns about status and power are primarily related to retributive justice and concerns about shared values are primarily related to restorative justice. At the core of these processes, however, lies the parties' construal of their identity relation, specifically whether or not respondents perceive to share an identity with the offender. The specific case of intergroup transgressions is discussed, as are implications for future research on restoring a sense of justice after rule-breaking. PMID:17957457

  10. Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in plants.

    PubMed

    Wan, Shucen; Jiang, Liwen

    2016-05-01

    Being a major factory for protein synthesis, assembly, and export, the endoplasmic reticulum (ER) has a precise and robust ER quality control (ERQC) system monitoring its product line. However, when organisms are subjected to environmental stress, whether biotic or abiotic, the levels of misfolded proteins may overwhelm the ERQC system, tilting the balance between the capacity of and demand for ER quality control and resulting in a scenario termed ER stress. Intense or prolonged ER stress may cause damage to the ER as well as to other organelles, or even lead to cell death in extreme cases. To avoid such serious consequences, cells activate self-rescue programs to restore protein homeostasis in the ER, either through the enhancement of protein-folding and degradation competence or by alleviating the demands for such reactions. These are collectively called the unfolded protein response (UPR). Long investigated in mammalian cells and yeasts, the UPR is also of great interest to plant scientists. Among the three branches of UPR discovered in mammals, two have been studied in plants with plant homologs existing of the ER-membrane-associated activating transcription factor 6 (ATF6) and inositol-requiring enzyme 1 (IRE1). This review discusses the molecular mechanisms of these two types of UPR in plants, as well as the consequences of insufficient UPR, with a focus on experiments using model plants. PMID:26060134

  11. Analysis of the endoplasmic reticular Ca2+ requirement for alpha1-antitrypsin processing and transport competence.

    PubMed Central

    Cooper, G R; Brostrom, C O; Brostrom, M A

    1997-01-01

    Depletion of Ca2+ sequestered within the endoplasmic reticulum (ER) of HepG2 hepatoma cells results in the luminal accumulation of immature alpha1-antitrypsin possessing Man8-9 GlcNAc2 oligosaccharide side chains. This study explores the basis for this arrest and describes consequent alterations in the size and rate of secretion of the complex endoglycosidase H-resistant form of the protein. Inhibition of glucosidase I and II with castanospermine or alpha-1,2-mannosidase with 1-deoxymannojirimycin produced altered ER processing intermediates that were rapidly secreted. Subsequent mobilization of ER Ca2+ stores resulted in the appearance and retention of slightly larger related forms of these intermediates. Retention of glycosylated intermediates was not ascribable to an association with alpha1,2-mannosidase or lectin-like chaperones, the intermediates were not degraded and all evidence of ER retention or size alterations produced by Ca2+ depletion was quickly reversed by Ca2+ restoration. Cells that were Ca2+ depleted for 2 h slowly secreted an abnormal slightly smaller complex oligosaccharide form of alpha1-antitrypsin at approximately the same rate as the non-glycosylated protein generated by treatment with tunicamycin. The hypothesis that Ca2+ affects the folding and ER transport competence of glycosylated forms of alpha1-antitrypsin is discussed. PMID:9271078

  12. Calcium Efflux From the Endoplasmic Reticulum Leads to β-Cell Death

    PubMed Central

    Hara, Takashi; Mahadevan, Jana; Kanekura, Kohsuke; Hara, Mariko; Lu, Simin

    2014-01-01

    It has been established that intracellular calcium homeostasis is critical for survival and function of pancreatic β-cells. However, the role of endoplasmic reticulum (ER) calcium homeostasis in β-cell survival and death is not clear. Here we show that ER calcium depletion plays a critical role in β-cell death. Various pathological conditions associated with β-cell death, including ER stress, oxidative stress, palmitate, and chronic high glucose, decreased ER calcium levels and sarcoendoplasmic reticulum Ca2+-ATPase 2b expression, leading to β-cell death. Ectopic expression of mutant insulin and genetic ablation of WFS1, a causative gene for Wolfram syndrome, also decreased ER calcium levels and induced β-cell death. Hyperactivation of calpain-2, a calcium-dependent proapoptotic protease, was detected in β-cells undergoing ER calcium depletion. Ectopic expression of sarcoendoplasmic reticulum Ca2+-ATPase 2b, as well as pioglitazone and rapamycin treatment, could prevent calcium efflux from the ER and mitigate β-cell death under various stress conditions. Our results reveal a critical role of ER calcium depletion in β-cell death and indicate that identification of pathways and chemical compounds restoring ER calcium levels will lead to novel therapeutic modalities and pharmacological interventions for type 1 and type 2 diabetes and other ER-related diseases including Wolfram syndrome. PMID:24424032

  13. A microsomal ATP-binding protein involved in efficient protein transport into the mammalian endoplasmic reticulum.

    PubMed Central

    Dierks, T; Volkmer, J; Schlenstedt, G; Jung, C; Sandholzer, U; Zachmann, K; Schlotterhose, P; Neifer, K; Schmidt, B; Zimmermann, R

    1996-01-01

    Protein transport into the mammalian endoplasmic reticulum depends on nucleoside triphosphates. Photoaffinity labelling of microsomes with azido-ATP prevents protein transport at the level of association of precursor proteins with the components of the transport machinery, Sec61alpha and TRAM proteins. The same phenotype of inactivation was observed after depleting a microsomal detergent extract of ATP-binding proteins by passage through ATP-agarose and subsequent reconstitution of the pass-through into proteoliposomes. Transport was restored by co-reconstitution of the ATP eluate. This eluate showed eight distinct bands in SDS gels. We identified five lumenal proteins (Grp170, Grp94, BiP/Grp78, calreticulin and protein disulfide isomerase), one membrane protein (ribophorin I) and two ribosomal proteins (L4 and L5). In addition to BiP (Grp78), Grp170 was most efficiently retained on ATP-agarose. Purified BiP did not stimulate transport activity. Sequence analysis revealed a striking similarity of Grp170 and the yeast microsomal protein Lhs1p which was recently shown to be involved in protein transport into yeast microsomes. We suggest that Grp170 mediates efficient insertion of polypeptides into the microsomal membrane at the expense of nucleoside triphosphates. Images PMID:9003769

  14. Endoplasmic Reticulum Stress and the Unfolded Protein Responses in Retinal Degeneration

    PubMed Central

    Zhang, Sarah X.; Sanders, Emily; Fliesler, Steven J.; Wang, Joshua J.

    2014-01-01

    The endoplasmic reticulum (ER) is the primary intracellular organelle responsible for protein and lipid biosynthesis, protein folding and trafficking, calcium homeostasis, and several other vital processes in cell physiology. Disturbance in ER function results in ER stress and subsequent activation of the unfolded protein response (UPR). The UPR up-regulates ER chaperones, reduces protein translation, and promotes clearance of cytotoxic misfolded proteins to restore ER homeostasis. If this vital process fails, the cell will be signaled to enter apoptosis, resulting in cell death. Sustained ER stress also can trigger an inflammatory response and exacerbate oxidative stress, both of which contribute synergistically to tissue damage. Studies performed over the past decade have implicated ER stress in a broad range of human diseases, including neurodegenerative diseases, cancer, diabetes, and vascular disorders. Several of these diseases also entail retinal dysfunction and degeneration caused by injury to retinal neurons and/or to the blood vessels that supply retinal cells with nutrients, trophic and homeostatic factors, oxygen, and other essential molecules, as well as serving as a conduit for removal of waste products and potentially toxic substances from the retina. Collectively, such injuries represent the leading cause of blindness world-wide in all age groups. Herein, we summarize recent progress on the study of ER stress and UPR signaling in retinal biology and discuss the molecular mechanisms and the potential clinical applications of targeting ER stress as a new therapeutic approach to prevent and treat neuronal degeneration in the retina. PMID:24792589

  15. Endoplasmic Reticulum Stress and Autophagy in Homocystinuria Patients with Remethylation Defects

    PubMed Central

    Martínez-Pizarro, Ainhoa; Desviat, Lourdes R.; Ugarte, Magdalena; Pérez, Belén; Richard, Eva

    2016-01-01

    Proper function of endoplasmic reticulum (ER) and mitochondria is crucial for cellular homeostasis, and dysfunction at either site as well as perturbation of mitochondria-associated ER membranes (MAMs) have been linked to neurodegenerative and metabolic diseases. Previously, we have observed an increase in ROS and apoptosis levels in patient-derived fibroblasts with remethylation disorders causing homocystinuria. Here we show increased mRNA and protein levels of Herp, Grp78, IP3R1, pPERK, ATF4, CHOP, asparagine synthase and GADD45 in patient-derived fibroblasts suggesting ER stress and calcium perturbations in homocystinuria. In addition, overexpressed MAM-associated proteins (Grp75, σ-1R and Mfn2) were found in these cells that could result in mitochondrial calcium overload and oxidative stress increase. Our results also show an activation of autophagy process and a substantial degradation of altered mitochondria by mitophagy in patient-derived fibroblasts. Moreover, we have observed that autophagy was partially abolished by antioxidants suggesting that ROS participate in this process that may have a protective role. Our findings argue that alterations in Ca2+ homeostasis and autophagy may contribute to the development of this metabolic disorder and suggest a therapeutic potential in homocystinuria for agents that stabilize calcium homeostasis and/or restore the proper function of ER-mitochondria communications. PMID:26959487

  16. Bearing restoration by grinding

    NASA Technical Reports Server (NTRS)

    Hanau, H.; Parker, R. J.; Zaretsky, E. V.; Chen, S. M.; Bull, H. L.

    1976-01-01

    A joint program was undertaken by the NASA Lewis Research Center and the Army Aviation Systems Command to restore by grinding those rolling-element bearings which are currently being discarded at aircraft engine and transmission overhaul. Three bearing types were selected from the UH-1 helicopter engine (T-53) and transmission for the pilot program. No bearing failures occurred related to the restoration by grinding process. The risk and cost of a bearing restoration by grinding programs was analyzed. A microeconomic impact analysis was performed.

  17. Fracture resistance of posterior teeth restored with modern restorative materials

    PubMed Central

    Hamouda, Ibrahim M.; Shehata, Salah H.

    2011-01-01

    We studied the fracture resistance of maxillary premolars restored with recent restorative materials. Fifty maxillary premolars were divided into five groups: Group 1 were unprepared teeth; Group 2 were teeth prepared without restoration; Group 3 were teeth restored with tetric ceram HB; Group 4 were teeth restored with InTen S; and Group 5 were teeth restored with Admira. The samples were tested using a universal testing machine. Peak loads at fracture were recorded. The teeth restored with Admira had the highest fracture resistance followed by those restored with InTen-S and tetric ceram HB. Prepared, unrestored teeth were the weakest group. There was a significant difference between the fracture resistance of intact teeth and the prepared, unrestored teeth. There was also a significant difference among the tested restorative materials. Teeth restored with Admira showed no significant difference when compared with the unprepared teeth. It was concluded that the teeth restored with Admira exhibited the highest fracture resistance. PMID:23554719

  18. Restoration of Ailing Wetlands

    PubMed Central

    Schmitz, Oswald J.

    2012-01-01

    It is widely held that humankind's destructive tendencies when exploiting natural resources leads to irreparable harm to the environment. Yet, this thinking runs counter to evidence that many ecological systems damaged by severe natural environmental disturbances (e.g., hurricanes) can restore themselves via processes of natural recovery. The emerging field of restoration ecology is capitalizing on the natural restorative tendencies of ecological systems to build a science of repairing the harm inflicted by humans on natural environment. Evidence for this, for example, comes from a new meta-analysis of 124 studies that synthesizes recovery of impacted wetlands worldwide. While it may take up to two human generations to see full recovery, there is promise, given human will, to restore many damaged wetlands worldwide. PMID:22291573

  19. Left ventricular restoration devices.

    PubMed

    Oliveira, Guilherme H; Al-Kindi, Sadeer G; Bezerra, Hiram G; Costa, Marco A

    2014-04-01

    Left ventricular (LV) remodeling results in continuous cardiac chamber enlargement and contractile dysfunction, perpetuating the syndrome of heart failure. With current exhaustion of the neurohormonal medical paradigm, surgical and device-based therapies have been increasingly investigated as a way to restore LV chamber architecture and function. Left ventricular restoration has been attempted with surgical procedures, such as partial left ventriculectomy, surgical ventricular restoration with or without revascularization, and devices, such as the Acorn CorCap, the Paracor HeartNet, and the Myocor Myosplint. Whereas all these techniques require surgical access, with or without cardiopulmonary bypass, a newer ventricular partitioning device (VPD) called Parachute, can be delivered percutaneously through the aortic valve. Designed to achieve LV restoration from within the ventricle, this VPD partitions the LV by isolating aneurysmal from normal myocardium thereby diminishing the functioning cavity. This review aims to critically appraise the above methods, with particular attention to device-based therapies. PMID:24574107

  20. Restoring primary anterior teeth.

    PubMed

    Waggoner, William F

    2002-01-01

    A variety of esthetic restorative materials are available for restoring primary incisors. Knowledge of the specific strengths, weakness, and properties of each material will enhance the clinician's ability to make the best choice of selection for each individual situation. Intracoronal restorations of primary teeth may utilize resin composites, glass ionomer cements, resin-modified ionomers, or polyacid-modified resins. Each has distinct advantages and disadvantages and the clinical conditions of placement may be a strong determining factor as to which material is utilized. Full coronal restoration of primary incisors may be indicated for a number of reasons. Crowns available for restoration of primary incisors include those that are directly bonded onto the tooth, which generally are a resin material, and those crowns that are luted onto the tooth and are some type of stainless steel crown. However, due to lack of supporting clinical data, none of the crowns can be said to be superior to the others under all circumstances. Though caries in the mandibular region is rare, restorative solutions for mandibular incisors are needed. Neither stainless steel crowns nor celluloid crown forms are made specifically for mandibular incisors. Many options exist to repair carious primary incisors, but there is insufficient controlled, clinical data to suggest that one type of restoration is superior to another. This does not discount the fact that dentists have been using many of these crowns for years with much success. Operator preferences, esthetic demands by parents, the child's behavior, and moisture and hemorrhage control are all variables which affect the decision and ultimate outcome of whatever restorative treatment is chosen. PMID:12412967

  1. Prodigiosin activates endoplasmic reticulum stress cell death pathway in human breast carcinoma cell lines

    SciTech Connect

    Pan, Mu-Yun; Shen, Yuh-Chiang; Lu, Chien-Hsing; Yang, Shu-Yi; Ho, Tsing-Fen; Peng, Yu-Ta; Chang, Chia-Che

    2012-12-15

    Prodigiosin is a bacterial tripyrrole pigment with potent cytotoxicity against diverse human cancer cell lines. Endoplasmic reticulum (ER) stress is initiated by accumulation of unfolded or misfolded proteins in the ER lumen and may induce cell death when irremediable. In this study, the role of ER stress in prodigiosin-induced cytotoxicity was elucidated for the first time. Comparable to the ER stress inducer thapsigargin, prodigiosin up-regulated signature ER stress markers GRP78 and CHOP in addition to activating the IRE1, PERK and ATF6 branches of the unfolded protein response (UPR) in multiple human breast carcinoma cell lines, confirming prodigiosin as an ER stress inducer. Prodigiosin transcriptionally up-regulated CHOP, as evidenced by its promoting effect on the CHOP promoter activity. Of note, knockdown of CHOP effectively lowered prodigiosin's capacity to evoke PARP cleavage, reduce cell viability and suppress colony formation, highlighting an essential role of CHOP in prodigiosin-induced cytotoxic ER stress response. In addition, prodigiosin down-regulated BCL2 in a CHOP-dependent manner. Importantly, restoration of BCL2 expression blocked prodigiosin-induced PARP cleavage and greatly enhanced the survival of prodigiosin-treated cells, suggesting that CHOP-dependent BCL2 suppression mediates prodigiosin-elicited cell death. Moreover, pharmacological inhibition of JNK by SP600125 or dominant-negative blockade of PERK-mediated eIF2α phosphorylation impaired prodigiosin-induced CHOP up-regulation and PARP cleavage. Collectively, these results identified ER stress-mediated cell death as a mode-of-action of prodigiosin's tumoricidal effect. Mechanistically, prodigiosin engages the IRE1–JNK and PERK–eIF2α branches of the UPR signaling to up-regulate CHOP, which in turn mediates BCL2 suppression to induce cell death. Highlights: ► Prodigiosin is a bacterial tripyrrole pigment with potent anticancer effect. ► Prodigiosin is herein identified as an

  2. Endoplasmic Reticulum Stress and the Inflammatory Basis of Metabolic Disease

    PubMed Central

    Hotamisligil, Gökhan S.

    2010-01-01

    The endoplasmic reticulum (ER) is the major site in the cell for protein folding and trafficking and is central to many cellular functions. Failure of the ER's adaptive capacity results in activation of the unfolded protein response (UPR), which intersects with many different inflammatory and stress signaling pathways. These pathways are also critical in chronic metabolic diseases such as obesity, insulin resistance, and type 2 diabetes. The ER and related signaling networks are emerging as a potential site for the intersection of inflammation and metabolic disease. PMID:20303879

  3. One step at a time: endoplasmic reticulum-associated degradation

    PubMed Central

    Vembar, Shruthi S.; Brodsky, Jeffrey L.

    2009-01-01

    Protein folding in the endoplasmic reticulum (ER) is monitored by ER quality control (ERQC) mechanisms. Proteins that pass ERQC criteria traffic to their final destinations through the secretory pathway, whereas non-native and unassembled subunits of multimeric proteins are degraded by the ER-associated degradation (ERAD) pathway. During ERAD, molecular chaperones and associated factors recognize and target substrates for retrotranslocation to the cytoplasm, where they are degraded by the ubiquitin–proteasome machinery. The discovery of diseases that are associated with ERAD substrates highlights the importance of this pathway. Here, we summarize our current understanding of each step during ERAD, with emphasis on the factors that catalyse distinct activities. PMID:19002207

  4. Endoplasmic reticulum stress: an unrecognized actor in solid organ transplantation.

    PubMed

    Pallet, Nicolas; Fougeray, Sophie; Beaune, Philippe; Legendre, Christophe; Thervet, Eric; Anglicheau, Dany

    2009-09-15

    Endoplasmic reticulum (ER) stress is an adaptive response to the accumulation of misfolded proteins within the ER, which can trigger cell dedifferentiation and cell suicide. Increasing evidences suggest its implication in mediating allograft injury. Herein, we summarize the mechanisms of ER stress and discuss its implication in allograft injury. Increasing our understanding of the cellular and molecular mechanisms of acute and chronic allograft damages could lead to the development of new biomarkers and to the discovery of new therapeutic strategies to prevent the initiation of graft dysfunction or to promote the tissue regeneration after injury. PMID:19741454

  5. Proplatelet formation in megakaryocytes is associated with endoplasmic reticulum stress.

    PubMed

    Morishima, Nobuhiro; Nakanishi, Keiko

    2016-07-01

    Although previous studies suggest that proplatelet formation in megakaryocytes involves caspase-3, the mechanism underlying the activation of caspase-3 is unknown. Here, we analyzed caspase activation in a human megakaryoblastic cell line, MEG-01, which forms proplatelets spontaneously. Specific activation of caspase-3 and caspase-4 was found in proplatelets. Consistent with previous observations of caspase-4 autoactivation in response to endoplasmic reticulum (ER) stress, several ER stress marker proteins were expressed during proplatelet formation. A pharmacological ER stressor enhanced platelet production via proplatelet formation, whereas inhibition of caspase-4 caused suppression. These results suggest that ER stress is a mechanism underlying the maturation of megakaryocytes. PMID:27296088

  6. Molecular Characterization of Endoplasmic Reticulum Oxidoreductin 1 from Bombyx mori

    PubMed Central

    Seo, Minchul; Ryou, Hee-Joo; Yun, Eun-Young; Goo, Tae-Won

    2015-01-01

    We isolated a complementary DNA (cDNA) clone encoding endoplasmic reticulum oxidoreductin 1 (bERO1, a specific oxidant of protein disulfide isomerase (PDI)) from Bombyx mori. This protein has a putative open reading frame (ORF) of 489 amino acids and a predicted size of 57.4 kDa. Although bERO1 protein shares less than 57% amino acid sequence homology with other reported ERO1s, it contains two conserved redox active motifs, a Cys-X-X-X-X-Cys motif of N-terminal and Cys-X-X-Cys-X-X-Cys motif of C-terminal. Both motifs are typically present in ERO1 protein family members. The bEro1 mRNA expression was highest in posterior silk gland on the sixth day of the 5th instar larvae. Expression of bEro1 mRNA also markedly increased during endoplasmic reticulum (ER) stress induced by stimulation with antimycin, calcium ionophore A23187, dithiothreitol, H2O2, monencin, and tunicamycin. In addition, expression levels of bEro1 exactly coincided with that of bPdi. This is the first result suggesting that bERO1 plays an essential role in ER quality control through the combined activities of bERO1 and bPDI as a catalyst of protein folding in the ER and sustaining cellular redox homeostasis. PMID:26556347

  7. The Cdc48 machine in endoplasmic reticulum associated protein degradation.

    PubMed

    Wolf, Dieter H; Stolz, Alexandra

    2012-01-01

    The AAA-type ATPase Cdc48 (named p97/VCP in mammals) is a molecular machine in all eukaryotic cells that transforms ATP hydrolysis into mechanic power to unfold and pull proteins against physical forces, which make up a protein's structure and hold it in place. From the many cellular processes, Cdc48 is involved in, its function in endoplasmic reticulum associated protein degradation (ERAD) is understood best. This quality control process for proteins of the secretory pathway scans protein folding and discovers misfolded proteins in the endoplasmic reticulum (ER), the organelle, destined for folding of these proteins and their further delivery to their site of action. Misfolded lumenal and membrane proteins of the ER are detected by chaperones and lectins and retro-translocated out of the ER for degradation. Here the Cdc48 machinery, recruited to the ER membrane, takes over. After polyubiquitylation of the protein substrate, Cdc48 together with its dimeric co-factor complex Ufd1-Npl4 pulls the misfolded protein out and away from the ER membrane and delivers it to down-stream components for degradation by a cytosolic proteinase machine, the proteasome. The known details of the Cdc48-Ufd1-Npl4 motor complex triggered process are subject of this review article. PMID:21945179

  8. Ricin A chain reaches the endoplasmic reticulum after endocytosis

    SciTech Connect

    Liu Qiong; Zhan Jinbiao . E-mail: jzhan2k@zju.edu.cn; Chen Xinhong; Zheng Shu

    2006-05-12

    Ricin is a potent ribosome inactivating protein and now has been widely used for synthesis of immunotoxins. To target ribosome in the mammalian cytosol, ricin must firstly retrograde transport from the endomembrane system to reach the endoplasmic reticulum (ER) where the ricin A chain (RTA) is recognized by ER components that facilitate its membrane translocation to the cytosol. In the study, the fusion gene of enhanced green fluorescent protein (EGFP)-RTA was expressed with the pET-28a (+) system in Escherichia coli under the control of a T7 promoter. The fusion protein showed a green fluorescence. The recombinant protein can be purified by metal chelated affinity chromatography on a column of NTA. The rabbit anti-GFP antibody can recognize the fusion protein of EGFP-RTA just like the EGFP protein. The cytotoxicity of EGFP-RTA and RTA was evaluated by the MTT assay in HeLa and HEP-G2 cells following fluid-phase endocytosis. The fusion protein had a similar cytotoxicity of RTA. After endocytosis, the subcellular location of the fusion protein can be observed with the laser scanning confocal microscopy and the immuno-gold labeling Electro Microscopy. This study provided important evidence by a visualized way to prove that RTA does reach the endoplasmic reticulum.

  9. Mitochondria and endoplasmic reticulum crosstalk in amyotrophic lateral sclerosis.

    PubMed

    Manfredi, Giovanni; Kawamata, Hibiki

    2016-06-01

    Physical and functional interactions between mitochondria and the endoplasmic reticulum (ER) are crucial for cell life. These two organelles are intimately connected and collaborate to essential processes, such as calcium homeostasis and phospholipid biosynthesis. The connections between mitochondria and endoplasmic reticulum occur through structures named mitochondria associated membranes (MAMs), which contain lipid rafts and a large number of proteins, many of which serve multiple functions at different cellular sites. Growing evidence strongly suggests that alterations of ER-mitochondria interactions are involved in neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), a devastating and rapidly fatal motor neuron disease. Mutations in proteins that participate in ER-mitochondria interactions and MAM functions are increasingly being associated with genetic forms of ALS and other neurodegenerative diseases. This evidence strongly suggests that, rather than considering the two organelles separately, a better understanding of the disease process can derive from studying the alterations in their crosstalk. In this review we discuss normal and pathological ER-mitochondria interactions and the evidence that link them to ALS. PMID:26282323

  10. Molecular Characterization of Endoplasmic Reticulum Oxidoreductin 1 from Bombyx mori.

    PubMed

    Seo, Minchul; Ryou, Hee-Joo; Yun, Eun-Young; Goo, Tae-Won

    2015-01-01

    We isolated a complementary DNA (cDNA) clone encoding endoplasmic reticulum oxidoreductin 1 (bERO1, a specific oxidant of protein disulfide isomerase (PDI)) from Bombyx mori. This protein has a putative open reading frame (ORF) of 489 amino acids and a predicted size of 57.4 kDa. Although bERO1 protein shares less than 57% amino acid sequence homology with other reported ERO1s, it contains two conserved redox active motifs, a Cys-X-X-X-X-Cys motif of N-terminal and Cys-X-X-Cys-X-X-Cys motif of C-terminal. Both motifs are typically present in ERO1 protein family members. The bEro1 mRNA expression was highest in posterior silk gland on the sixth day of the 5th instar larvae. Expression of bEro1 mRNA also markedly increased during endoplasmic reticulum (ER) stress induced by stimulation with antimycin, calcium ionophore A23187, dithiothreitol, H₂O₂, monencin, and tunicamycin. In addition, expression levels of bEro1 exactly coincided with that of bPdi. This is the first result suggesting that bERO1 plays an essential role in ER quality control through the combined activities of bERO1 and bPDI as a catalyst of protein folding in the ER and sustaining cellular redox homeostasis. PMID:26556347

  11. Molecular Characterization of the Endoplasmic Reticulum: insights from proteomic studies

    PubMed Central

    Chen, Xuequn; Karnovsky, Alla; Sans, Maria Dolors; Andrews, Philip C.; Williams, John A.

    2012-01-01

    The endoplasmic reticulum (ER) is a multifunctional intracellular organelle responsible for the synthesis, processing and trafficking of a wide variety of proteins essential for cell growth and survival. Thesefore, comprehensive characterization of the ER proteome is of great importance to the understanding of its functions and has been actively pursued in the past decade by scientists in the proteomics field. This review summarizes major proteomic studies published in the past decade that focused on the ER proteome. We evaluate the data sets obtained from two different organs, liver and pancreas each of which contains a primary cell type (hepatocyte and acinar cell) with specialized functions. We also discuss how the nature of the proteins uncovered is related to the methods of organelle purification, organelle purity and the techniques used for protein separation prior to mass spectrometry. In addition, this review also puts emphasis on the biological insights gained from these studies regarding to the molecular functions of the endoplasmic reticulum including protein synthesis and translocation, protein folding and quality control, ER-associated degradation and ER stress, ER export and membrane trafficking, calcium homeostasis, and detoxification and drug metabolism. PMID:21080494

  12. [Involvement of endoplasmic reticulum stress in solid organ transplantation].

    PubMed

    Pallet, Nicolas; Bouvier, Nicolas; Beaune, Philippe; Legendre, Christophe; Anglicheau, Dany; Thervet, Eric

    2010-04-01

    Endoplasmic reticulum (ER) stress is a situation caused by the accumulation of unfolded proteins in the endoplasmic reticulum, triggering an evolutionary conserved adaptive response termed the unfolded protein response. When adaptation fails, excessive and prolonged ER stress triggers cell suicide. Important roles for ER-initiated cell death pathways have been recognized for several diseases, including diabetes, hypoxia, ischemia/reperfusion injury, neurodegenerative and heart diseases. The implication of the ER stress is not well recognized in solid organ transplantation, but increasing evidence suggests its implication in mediating allograft injury. The purpose of this review is to summarize the mechanisms of ER stress and to discuss its implication during tissue injury in solid organ transplantation. The possible implications of the ER stress in the modifications of cell functional properties and phenotypic changes are also discussed beyond the scope of adaptation and cell death. Increasing the understanding of the cellular and molecular mechanisms of acute and chronic allograft damages could lead to the development of new biomarkers and to the discovery of new therapeutic strategies to prevent the initiation of graft dysfunction or to promote the tissue regeneration after injury. PMID:20412745

  13. [Cyclic structural changes in endoplasmic reticulum and Golgi apparatus in the hippocampal neurons of ground squirrels during hibernation].

    PubMed

    Bocharova, L S; Gordon, R Ia; Rogachevskiĭ, V V; Ignat'ev, D A; Khutsian, S S

    2011-01-01

    Repetitive remodeling and renewal of the cytoplasmic structures realizing synthesis of proteins accompanies the cycling of ground squirrels between torpor and arousal states during hibernation season. Earlier we have shown partial loss of ribosomes and nucleolus inactivation in CA3 hippocampal pyramidal neurons in each bout of torpor with rapid and full recovery after warming up. Here we describe reversible structural changes in endoplasmic reticulum (ER) and Golgi complex (G) in these neurons. Transformation of ER from mainly cysternal to tubular form and from mainly granular to smooth type occurs at every entrance in torpor, while the opposite change occurs at arousal. Torpor state is also associated with G fragmentation and loss of its flattened cisternae. Appearance in torpor of the autophagosomal vacuoles containing fragments of membrane structures and ribosomes is a sign of their partial destruction. Granular ER restoration, perhaps through assembly from the multilamellar membrane structures, whorls or bags, begins as early as in the middle of the torpor bout, while G flattened cisternae reappear only at warming. ER and G completely restore their structure 2-3 hours after the provoked arousal. Thus, hibernation represents and example of nerve cell structural adaptation to alterations in functional and metabolic activity through both active destruction and renewal of ribosomes, ER, and G. Perhaps, it is the incomplete ER autophagosomal degradation at torpor provides its rapid renewal at arousal by reassembly from the preserved fragments. PMID:21598689

  14. Fatigue of restorative materials.

    PubMed

    Baran, G; Boberick, K; McCool, J

    2001-01-01

    Failure due to fatigue manifests itself in dental prostheses and restorations as wear, fractured margins, delaminated coatings, and bulk fracture. Mechanisms responsible for fatigue-induced failure depend on material ductility: Brittle materials are susceptible to catastrophic failure, while ductile materials utilize their plasticity to reduce stress concentrations at the crack tip. Because of the expense associated with the replacement of failed restorations, there is a strong desire on the part of basic scientists and clinicians to evaluate the resistance of materials to fatigue in laboratory tests. Test variables include fatigue-loading mode and test environment, such as soaking in water. The outcome variable is typically fracture strength, and these data typically fit the Weibull distribution. Analysis of fatigue data permits predictive inferences to be made concerning the survival of structures fabricated from restorative materials under specified loading conditions. Although many dental-restorative materials are routinely evaluated, only limited use has been made of fatigue data collected in vitro: Wear of materials and the survival of porcelain restorations has been modeled by both fracture mechanics and probabilistic approaches. A need still exists for a clinical failure database and for the development of valid test methods for the evaluation of composite materials. PMID:11603506

  15. Technical framework for groundwater restoration

    SciTech Connect

    Not Available

    1991-04-01

    This document provides the technical framework for groundwater restoration under Phase II of the Uranium Mill Tailings Remedial Action (UMTRA) Project. A preliminary management plan for Phase II has been set forth in a companion document titled ``Preplanning Guidance Document for Groundwater Restoration``. General principles of site characterization for groundwater restoration, restoration methods, and treatment are discussed in this document to provide an overview of standard technical approaches to groundwater restoration.

  16. Cell Death and Survival Through the Endoplasmic Reticulum-Mitochondrial Axis

    PubMed Central

    Bravo-Sagua, R.; Rodriguez, A.E.; Kuzmicic, J.; Gutierrez, T.; Lopez-Crisosto, C.; Quiroga, C.; Díaz-Elizondo, J.; Chiong, M.; Gillette, T.G.; Rothermel, B.A.; Lavandero, S.

    2014-01-01

    The endoplasmic reticulum has a central role in biosynthesis of a variety of proteins and lipids. Mitochondria generate ATP, synthesize and process numerous metabolites, and are key regulators of cell death. The architectures of endoplasmic reticulum and mitochondria change continually via the process of membrane fusion, fission, elongation, degradation, and renewal. These structural changes correlate with important changes in organellar function. Both organelles are capable of moving along the cytoskeleton, thus changing their cellular distribution. Numerous studies have demonstrated coordination and communication between mitochondria and endoplasmic reticulum. A focal point for these interactions is a zone of close contact between them known as the mitochondrial–associated endoplasmic reticulum membrane (MAM), which serves as a signaling juncture that facilitates calcium and lipid transfer between organelles. Here we review the emerging data on how communication between endoplasmic reticulum and mitochondria can modulate organelle function and determine cellular fate. PMID:23228132

  17. Cell death and survival through the endoplasmic reticulum-mitochondrial axis.

    PubMed

    Bravo-Sagua, R; Rodriguez, A E; Kuzmicic, J; Gutierrez, T; Lopez-Crisosto, C; Quiroga, C; Díaz-Elizondo, J; Chiong, M; Gillette, T G; Rothermel, B A; Lavandero, S

    2013-02-01

    The endoplasmic reticulum has a central role in biosynthesis of a variety of proteins and lipids. Mitochondria generate ATP, synthesize and process numerous metabolites, and are key regulators of cell death. The architectures of endoplasmic reticulum and mitochondria change continually via the process of membrane fusion, fission, elongation, degradation, and renewal. These structural changes correlate with important changes in organellar function. Both organelles are capable of moving along the cytoskeleton, thus changing their cellular distribution. Numerous studies have demonstrated coordination and communication between mitochondria and endoplasmic reticulum. A focal point for these interactions is a zone of close contact between them known as the mitochondrial-associated endoplasmic reticulum membrane (MAM), which serves as a signaling juncture that facilitates calcium and lipid transfer between organelles. Here we review the emerging data on how communication between endoplasmic reticulum and mitochondria can modulate organelle function and determine cellular fate. PMID:23228132

  18. Restoring the prairie

    SciTech Connect

    Mlot, C.

    1990-12-01

    The US DOE at the Fermi National Accelerator Laboratory in Batavia, Illinois, prairie restoration is taking place in order to conserve the rich topsoil. This is the largest of many prairie restoration experiments. Big bluestem grass (Andropogon gerardi), blue grama (Bouteloua gracilis), and buffalo grass (Buchloe dactyloides) are the main initial grasses grown. After their growth reaches enough biomass to sustain a fire, other prairie plants such as purple prairie clover and dropseed grass appear. The goal of this is to provide a generous refuge for disappearing native plants and animals, a site for scientific research, and a storehouse of genes adapted to a region that produces much of the worlds food. Plans for restoring the marsh and oak savanna, also native to the Fermilab site are also in the works.

  19. Earthquake funding restored

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    Funding levels for the U.S. Geological Survey's part of the National Earthquake Hazards Reduction Program for FY92 have been restored by the House and a Senate subcommittee. The president's budget request for FY92 was only $37.3 million, lower than the $54.5 million authorized by Congress for FY91. Earlier this year the House agreed on restoring $10 million to the program. Some AGU members have been trying to see the full $17.2 million difference restored. It is reported that the Senate will agree to give $15 million to the program.When Congress reconvenes in September the full Senate will vote on the Department of Interior and Related Agencies appropriations bill (HR2686). After that, the bill will go to a joint conference committee, where differences between the House and Senate will be resolved before the bill is passed along to the president.

  20. Dysferlin-peptides reallocate mutated dysferlin thereby restoring function.

    PubMed

    Schoewel, Verena; Marg, Andreas; Kunz, Severine; Overkamp, Tim; Carrazedo, Romy Siegert; Zacharias, Ute; Daniel, Peter T; Spuler, Simone

    2012-01-01

    Mutations in the dysferlin gene cause the most frequent adult-onset limb girdle muscular dystrophy, LGMD2B. There is no therapy. Dysferlin is a membrane protein comprised of seven, beta-sheet enriched, C2 domains and is involved in Ca(2+)dependent sarcolemmal repair after minute wounding. On the protein level, point mutations in DYSF lead to misfolding, aggregation within the endoplasmic reticulum, and amyloidogenesis. We aimed to restore functionality by relocating mutant dysferlin. Therefore, we designed short peptides derived from dysferlin itself and labeled them to the cell penetrating peptide TAT. By tracking fluorescently labeled short peptides we show that these dysferlin-peptides localize in the endoplasmic reticulum. There, they are capable of reducing unfolded protein response stress. We demonstrate that the mutant dysferlin regains function in membrane repair in primary human myotubes derived from patients' myoblasts by the laser wounding assay and a novel technique to investigate membrane repair: the interventional atomic force microscopy. Mutant dysferlin abuts to the sarcolemma after peptide treatment. The peptide-mediated approach has not been taken before in the field of muscular dystrophies. Our results could redirect treatment efforts for this condition. PMID:23185377

  1. Restoration of Shoulder Function.

    PubMed

    Boe, Chelsea C; Elhassan, Bassem T

    2016-08-01

    Restoration of shoulder function in patients with brachial plexus injury can be challenging. Initial reported efforts were focused on stabilizing the shoulder, improving inferior subluxation and restoring abduction and flexion of the joint. Recent advancements and improved understanding of coordinated shoulder motion and the biomechanical properties of the muscles around the shoulder applicable to tendon transfer have expanded available surgical options to improve shoulder function, specifically external rotation. Despite the advances in reconstructive options, brachial plexus injury remains a serious problem that requires complex surgical solutions, prolonged recovery, and acceptance of functional loss. PMID:27387074

  2. Birbeck granule-like "organized smooth endoplasmic reticulum" resulting from the expression of a cytoplasmic YFP-tagged langerin.

    PubMed

    Lenormand, Cédric; Spiegelhalter, Coralie; Cinquin, Bertrand; Bardin, Sabine; Bausinger, Huguette; Angénieux, Catherine; Eckly, Anita; Proamer, Fabienne; Wall, David; Lich, Ben; Tourne, Sylvie; Hanau, Daniel; Schwab, Yannick; Salamero, Jean; de la Salle, Henri

    2013-01-01

    Langerin is required for the biogenesis of Birbeck granules (BGs), the characteristic organelles of Langerhans cells. We previously used a Langerin-YFP fusion protein having a C-terminal luminal YFP tag to dynamically decipher the molecular and cellular processes which accompany the traffic of Langerin. In order to elucidate the interactions of Langerin with its trafficking effectors and their structural impact on the biogenesis of BGs, we generated a YFP-Langerin chimera with an N-terminal, cytosolic YFP tag. This latter fusion protein induced the formation of YFP-positive large puncta. Live cell imaging coupled to a fluorescence recovery after photobleaching approach showed that this coalescence of proteins in newly formed compartments was static. In contrast, the YFP-positive structures present in the pericentriolar region of cells expressing Langerin-YFP chimera, displayed fluorescent recovery characteristics compatible with active membrane exchanges. Using correlative light-electron microscopy we showed that the coalescent structures represented highly organized stacks of membranes with a pentalaminar architecture typical of BGs. Continuities between these organelles and the rough endoplasmic reticulum allowed us to identify the stacks of membranes as a form of "Organized Smooth Endoplasmic Reticulum" (OSER), with distinct molecular and physiological properties. The involvement of homotypic interactions between cytoplasmic YFP molecules was demonstrated using an A206K variant of YFP, which restored most of the Langerin traffic and BG characteristics observed in Langerhans cells. Mutation of the carbohydrate recognition domain also blocked the formation of OSER. Hence, a "double-lock" mechanism governs the behavior of YFP-Langerin, where asymmetric homodimerization of the YFP tag and homotypic interactions between the lectin domains of Langerin molecules participate in its retention and the subsequent formation of BG-like OSER. These observations confirm that

  3. Ursodeoxycholic acid and 4-phenylbutyrate prevent endoplasmic reticulum stress-induced podocyte apoptosis in diabetic nephropathy.

    PubMed

    Cao, Ai-Li; Wang, Li; Chen, Xia; Wang, Yun-Man; Guo, Heng-Jiang; Chu, Shuang; Liu, Cheng; Zhang, Xue-Mei; Peng, Wen

    2016-06-01

    Endoplasmic reticulum (ER) stress, resulting from the accumulation of misfolded and/or unfolded proteins in ER membranes, is involved in the pathogenesis of diabetic nephropathy (DN). The aim of this study was to investigate the role of ER stress inhibitors ursodeoxycholic acid (UDCA) and 4-phenylbutyrate (4-PBA) in the treatment of DN in db/db mice. Findings have revealed that diabetic db/db mice were more hyperglycemic than their non-diabetic controls, and exhibited a marked increase in body weight, water intake, urine volume, fasting plasma glucose, systolic blood pressure, glucose and insulin tolerance. UDCA (40 mg/kg/day) or 4-PBA (100 mg/kg/day) treatment for 12 weeks resulted in an improvement in these biochemical and physical parameters. Moreover, UDCA or 4-PBA intervention markedly decreased urinary albuminuria and attenuated mesangial expansion in diabetic db/db mice, compared with db/db mice treated with vehicle. These beneficial effects of UDCA or 4-PBA on DN were associated with the inhibition of ER stress, as evidenced by the decreased expression of BiP, phospho-IRE1α, phospho-eIF2α, CHOP, ATF-6 and spliced X-box binding protein-1 in vitro and in vivo. UDCA or 4-PBA prevented hyperglycemia-induced or high glucose (HG)-induced apoptosis in podocytes in vivo and in vitro via the inhibition of caspase-3 and caspase-12 activation. Autophagy deficiency was also seen in glomeruli in diabetic mice and HG-incubated podocytes, exhibiting decreased expression of LC3B and Beclin-1, which could be restored by UDCA or 4-PBA treatment. Taken together, our results have revealed an important role of ER stress in the development of DN, and UDCA or 4-PBA treatment may be a potential novel therapeutic approach for the treatment of DN. PMID:26999661

  4. Paeonol protects against endoplasmic reticulum stress-induced endothelial dysfunction via AMPK/PPARδ signaling pathway.

    PubMed

    Choy, Ker-Woon; Mustafa, Mohd Rais; Lau, Yeh Siang; Liu, Jian; Murugan, Dharmani; Lau, Chi Wai; Wang, Li; Zhao, Lei; Huang, Yu

    2016-09-15

    Endoplasmic reticulum (ER) stress in endothelial cells often leads to endothelial dysfunction which underlies the pathogenesis of cardiovascular diseases. Paeonol, a major phenolic component extracted from Moutan Cortex, possesses various medicinal benefits which have been used extensively in traditional Chinese medicine. The present study investigated the protective mechanism of paeonol against tunicamycin-induced ER stress in isolated mouse aortas and human umbilical vein endothelial cells (HUVECs). Vascular reactivity in aorta was measured using a wire myograph. The effects of paeonol on protein expression of ER stress markers, reactive oxygen species (ROS) production, nitric oxide (NO) bioavailability and peroxisome proliferator-activated receptor δ (PPARδ) activity in the vascular wall were assessed by Western blot, dihydroethidium fluorescence (DHE) or lucigenin enhanced-chemiluminescence, 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM DA) and dual luciferase reporter assay, respectively. Ex vivo treatment with paeonol (0.1μM) for 16h reversed the impaired endothelium-dependent relaxations in C57BJ/6J and PPARδ wild type (WT) mouse aortas following incubation with tunicamycin (0.5μg/mL). Elevated ER stress markers, oxidative stress and reduction of NO bioavailability induced by tunicamycin in HUVECs, C57BJ/6J and PPARδ WT mouse aortas were reversed by paeonol treatment. These beneficial effects of paeonol were diminished in PPARδ knockout (KO) mouse aortas. Paeonol increased the expression of 5' adenosine monophosphate-activated protein kinase (AMPK) and PPARδ expression and activity while restoring the decreased phosphorylation of eNOS. The present study delineates that paeonol protects against tunicamycin-induced vascular endothelial dysfunction by inhibition of ER stress and oxidative stress, thus elevating NO bioavailability via the AMPK/PPARδ signaling pathway. PMID:27449753

  5. High-Density Lipoprotein Prevents Endoplasmic Reticulum Stress-Induced Downregulation of Liver LOX-1 Expression.

    PubMed

    Hong, Dan; Li, Ling-Fang; Gao, Hai-Chao; Wang, Xiang; Li, Chuan-Chang; Luo, Ying; Bai, Yong-Ping; Zhang, Guo-Gang

    2015-01-01

    Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a specific cell-surface receptor for oxidized-low-density lipoprotein (ox-LDL). The impact of high-density lipoprotein (HDL) on endoplasmic reticulum (ER) stress-mediated alteration of the LOX-1 level in hepatocytes remains unclear. We aimed to investigate the impact on LOX-1 expression by tunicamycin (TM)-induced ER stress and to determine the effect of HDL on TM-affected LOX-1 expression in hepatic L02 cells. Overexpression or silencing of related cellular genes was conducted in TM-treated cells. mRNA expression was evaluated using real-time polymerase chain reaction (PCR). Protein expression was analyzed by western blot and immunocytochemistry. Lipid uptake was examined by DiI-ox-LDL, followed by flow cytometric analysis. The results showed that TM induced the upregulation of ER chaperone GRP78, downregulation of LOX-1 expression, and lipid uptake. Knock down of IRE1 or XBP-1 effectively restored LOX-1 expression and improved lipid uptake in TM-treated cells. HDL treatment prevented the negative impact on LOX-1 expression and lipid uptake induced by TM. Additionally, 1-10 μg/mL HDL significantly reduced the GRP78, IRE1, and XBP-1 expression levels in TM-treated cells. Our findings reveal that HDL could prevent the TM-induced reduction of LOX-1 expression via inhibiting the IRE1/XBP-1 pathway, suggesting a new mechanism for beneficial roles of HDL in improving lipid metabolism. PMID:25923692

  6. The Dichotomy of Endoplasmic Reticulum Stress Response in Liver Ischemia-Reperfusion Injury.

    PubMed

    Zhou, Haomming; Zhu, Jianjun; Yue, Shi; Lu, Ling; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W; Wang, Xuehao; Zhai, Yuan

    2016-02-01

    Endoplasmic reticulum (ER) stress plays critical roles in the pathogenesis of liver ischemia-reperfusion injury (IRI). As ER stress triggers an adaptive cellular response, the question of what determines its functional outcome in liver IRI remains to be defined. In a murine liver partial warm ischemia model, we studied how transient (30 minutes) or prolonged (90 minutes) liver ischemia regulated local ER stress response and autophagy activities and their relationship with liver IRI. Effects of chemical chaperon 4-phenylbutyrate (4-PBA) or autophagy inhibitor 3-methyladenine (3-MA) were evaluated. Our results showed that although the activating transcription factor 6 branch of ER stress response was induced in livers by both types of ischemia, liver autophagy was activated by transient, but inhibited by prolonged, ischemia. Although 3-MA had no effects on liver IRI after prolonged ischemia, it significantly increased liver IRI after transient ischemia. The 4-PBA treatment protected livers from IRI after prolonged ischemia by restoring autophagy flux, and the adjunctive 3-MA treatment abrogated its liver protective effect. The same 4-PBA treatment, however, increased liver IRI and disrupted autophagy flux after transient ischemia. Although both types of ischemia activated 5' adenosine monophosphate-activated protein kinase and inactivated protein kinase B (Akt), prolonged ischemia also resulted in downregulations of autophagy-related gene 3 and autophagy-related gene 5 in ischemic livers. These results indicate a functional dichotomy of ER stress response in liver IRI via its regulation of autophagy. Transient ischemia activates autophagy to protect livers from IRI, whereas prolonged ischemia inhibits autophagy to promote the development of liver IRI. PMID:26683513

  7. Calcium transport in tonoplast and endoplasmic reticulum vesicles isolated from cultured carrot cells. [Daucus carota Danvers

    SciTech Connect

    Bush, D.R.; Sze, H.

    1986-02-01

    Two active calcium (Ca/sup 2 +/) transport systems have been identified and partially characterized in membrane vesicles isolated from cultured carrot cells (Daucus carota Danvers). Both transport systems required MgATP for activity and were enhanced by 10 millimolar oxalate. Ca/sup 2 +/ transport in membrane vesicles derived from isolated vacuoles equilibrated at 1.10 grams per cubic centimeter and comigrated with Cl/sup -/-stimulated, NO/sub 3//sup -/-inhibited ATPase activity on sucrose density gradients. Ca/sup 2 +/ transport in this system was insensitive to vanadate, but was inhibited by nitrate, carbonyl cyanide-m-chlorophenylhydrazone (CCCP), N,N'-dicyclohexylcarbodiimide (DCCD), and 4,4-diisothiocyano-2,2'-stilbene disulfonic acid (DIDS). The K/sub m/ for MgATP and Ca/sup 2 +/ were 0.1 mM and 21 micromolar, respectively. The predominant Ca/sup 2 +/ transport system detectable in microsomal membrane preparations equilibrated at a density of 1.13 grams per cubic centimeter and comigrated with the endoplasmic reticulum (ER) marker, antimycin A-insensitive NADH-dependent cytochrome c reductase. Ca/sup 2 +/ transport activity and the ER marker also shifted in parallel in ER shifting experiments. This transport system was inhibited by vanadate (I/sub 50/ = 12 micromolar) and was insensitive to nitrate, CCCP, DCCD, and DIDS. Transport exhibited cooperative MgATP dependent kinetics. Ca/sup 2 +/ dependent kinetics were complex with an apparent K/sub m/ ranging from 0.7 to 2 micromolar. We conclude that the vacuolar-derived system is a Ca/sup 2 +//H/sup +/ antiport located on the tonoplast and that the microsomal transport system is a Ca,Mg-ATPase enriched on the ER. These two Ca/sup 2 +/ transport systems are proposed to restore and maintain cytoplasmic Ca/sup 2 +/ homeostasis under changing cellular and environmental conditions.

  8. Attenuating the Endoplasmic Reticulum Stress Response Improves Functional Recovery After Spinal Cord Injury

    PubMed Central

    OHRI, SUJATA SARASWAT; MADDIE, MELISSA A.; ZHAO, YONGMEI; QIU, MENGSHENG S.; HETMAN, MICHAL; WHITTEMORE, SCOTT R.

    2012-01-01

    Activation of the unfolded protein response (UPR) is involved in the pathogenesis of numerous CNS myelin abnormalities; yet, its direct role in traumatic spinal cord injury (SCI)-induced demyelination is not known. The UPR is an evolutionarily conserved cell defense mechanism initiated to restore endoplasmic reticulum homeostasis in response to various cellular stresses including infection, trauma, and oxidative damage. However, if uncompensated, the UPR triggers apoptotic cell death. We demonstrate that the three signaling branches of UPR including the PERK, ATF6, and IRE1α are rapidly initiated in a mouse model of contusive SCI specifically at the injury epicenter. Immunohistochemical analyses of the various UPR markers revealed that in neurons, the UPR appeared at 6 and 24-h post-SCI. In contrast, in oligodendrocytes and astroglia, UPR persisted at least for up to 3 days post-SCI. The UPR-associated proapoptotic transcriptional regulator CHOP was among the UPR markers upregulated in neurons and oligodendrocytes, but not in astrocytes, of traumatized mouse spinal cords. To directly analyze its role in SCI, WT and CHOP null mice received a moderate T9 contusive injury. Deletion of CHOP led to an overall attenuation of the UPR after contusive SCI. Furthermore, analyses of hindlimb locomotion demonstrated a significant functional recovery that correlated with an increase in white-matter sparing, transcript levels of myelin basic protein, and Claudin 11 and decreased oligodendrocyte apoptosis in CHOP null mice in contrast to WT animals. Thus, our study provides evidence that the UPR contributes to oligodendrocyte loss after traumatic SCI. PMID:21638341

  9. The Monoterpene Carvacrol Generates Endoplasmic Reticulum Stress in the Pathogenic Fungus Candida albicans.

    PubMed

    Chaillot, Julien; Tebbji, Faiza; Remmal, Adnane; Boone, Charlie; Brown, Grant W; Bellaoui, Mohammed; Sellam, Adnane

    2015-08-01

    The monoterpene carvacrol, the major component of oregano and thyme oils, is known to exert potent antifungal activity against the pathogenic yeast Candida albicans. This monoterpene has been the subject of a considerable number of investigations that uncovered extensive pharmacological properties, including antifungal and antibacterial effects. However, its mechanism of action remains elusive. Here, we used integrative chemogenomic approaches, including genome-scale chemical-genetic and transcriptional profiling, to uncover the mechanism of action of carvacrol associated with its antifungal property. Our results clearly demonstrated that fungal cells require the unfolded protein response (UPR) signaling pathway to resist carvacrol. The mutants most sensitive to carvacrol in our genome-wide competitive fitness assay in the yeast Saccharomyces cerevisiae expressed mutations of the transcription factor Hac1 and the endonuclease Ire1, which is required for Hac1 activation by removing a nonconventional intron from the 3' region of HAC1 mRNA. Confocal fluorescence live-cell imaging revealed that carvacrol affects the morphology and the integrity of the endoplasmic reticulum (ER). Transcriptional profiling of pathogenic yeast C. albicans cells treated with carvacrol demonstrated a bona fide UPR transcriptional signature. Ire1 activity detected by the splicing of HAC1 mRNA in C. albicans was activated by carvacrol. Furthermore, carvacrol was found to potentiate antifungal activity of the echinocandin antifungal caspofungin and UPR inducers dithiothreitol and tunicamycin against C. albicans. This comprehensive chemogenomic investigation demonstrated that carvacrol exerts its antifungal activity by altering ER integrity, leading to ER stress and the activation of the UPR to restore protein-folding homeostasis. PMID:26014932

  10. Endoplasmic reticulum stress signal impairs erythropoietin production: a role for ATF4.

    PubMed

    Chiang, Chih-Kang; Nangaku, Masaomi; Tanaka, Tetsuhiro; Iwawaki, Takao; Inagi, Reiko

    2013-02-15

    Hypoxia upregulates the hypoxia-inducible factor (HIF) pathway and the endoplasmic reticulum (ER) stress signal, unfolded protein response (UPR). The cross talk of both signals affects the pathogenic alteration by hypoxia. Here we showed that ER stress induced by tunicamycin or thapsigargin suppressed inducible (CoCl(2) or hypoxia) transcription of erythropoietin (EPO), a representative HIF target gene, in HepG2. This suppression was inversely correlated with UPR activation, as estimated by expression of the UPR regulator glucose-regulated protein 78, and restored by an ER stress inhibitor, salubrinal, in association with normalization of the UPR state. Importantly, the decreased EPO expression was also observed in HepG2 overexpressing UPR activating transcription factor (ATF)4. Overexpression of mutated ATF4 that lacks the transcriptional activity did not alter EPO transcriptional regulation. Transcriptional activity of the EPO 3'-enhancer, which is mainly regulated by HIF, was abolished by both ER stressors and ATF4 overexpression, while nuclear HIF accumulation or expression of other HIF target genes was not suppressed by ER stress. Chromatin immunoprecipitation analysis identified a novel ATF4 binding site (TGACCTCT) within the EPO 3'-enhancer region, suggesting a distinct role for ATF4 in UPR-dependent suppression of the enhancer. Induction of ER stress in rat liver and kidney by tunicamycin decreased the hepatic and renal mRNA and plasma level of EPO. Collectively, ER stress selectively impairs the transcriptional activity of EPO but not of other HIF target genes. This effect is mediated by suppression of EPO 3'-enhancer activity via ATF4 without any direct effect on HIF, indicating that UPR contributes to oxygen-sensing regulation of EPO. PMID:23242184

  11. Inevitability of Balance Restoration

    PubMed Central

    2010-01-01

    Prolonged imbalance between input and output of any element in a living organism is incompatible with life. The duration of imbalance varies, but eventually balance is achieved. This rule applies to any quantifiable element in a compartment of finite capacity. Transient discrepancies occur regularly, but given sufficient time, balance is always achieved, because permanent imbalance is impossible, and the mechanism for eventual restoration of balance is foolproof. The kidney is a central player for balance restoration of fluid and electrolytes, but the smartness of the kidney is not the reason for perfect balance. The kidney merely accelerates the process. The most crucial element of the control system is that discrepancy between intake and output inevitably leads to a change in total content of the element in the system, and uncorrected balance has a cumulative effect on the overall content of the element. In a living organism, the speed of restoration of balance depends on the permissible duration of imbalance without death or severe disability. The three main factors that influence the speed of balance restoration are: magnitude of flux, basal store, and capacity for additional storage. For most electrolytes, total capacity is such that a substantial discrepancy is not possible for more than a week or two. Most control mechanisms correct abnormality partially. The infinite gain control mechanism is unique in that abnormality is completely corrected upon completion of compensation. PMID:21468193

  12. BALTIMORE STREAM RESTORATION PROJECT

    EPA Science Inventory

    26 Feb 2003



    Approach - We will employ a 4-tiered research approach to investigate restoration effects on hydrology and stream water quality: 1) monitoring ground water and surface water, 2) quantifying denitrification activity, 3) measuring carbon supply and rete...

  13. Restoration of face images

    NASA Astrophysics Data System (ADS)

    Srinivasan, Aparna

    2012-01-01

    Restoration techniques are applied to degraded face samples. The techniques considered are those of Wiener Filtering, Lucy Richardson deconvolution, Blind deconvolution and Constrained least squares filtering (CLSF). Images degraded by low blur, high blur and low blur with noise are experimented with and the results are expounded.

  14. Restoration of face images

    NASA Astrophysics Data System (ADS)

    Srinivasan, Aparna

    2011-12-01

    Restoration techniques are applied to degraded face samples. The techniques considered are those of Wiener Filtering, Lucy Richardson deconvolution, Blind deconvolution and Constrained least squares filtering (CLSF). Images degraded by low blur, high blur and low blur with noise are experimented with and the results are expounded.

  15. ECOLOGICAL PROTECTION AND RESTORATION

    EPA Science Inventory

    To carry out this mission, GLNPO established its Ecological Protection and Restoration Team (the E Team), consisting of a staff plus extended team members from EPA Regions 2, 3, and 5, other federal and state agencies, and non-governmental organizations. GLNPO expect...

  16. Restoring Fossil Creek

    ERIC Educational Resources Information Center

    Flaccus, Kathleen; Vlieg, Julie; Marks, Jane C.; LeRoy, Carri J.

    2004-01-01

    Fossil Creek had been dammed for the past 90 years, and plans were underway to restore the stream. The creek runs through Central Arizona and flows from the high plateaus to the desert, cutting through the same formations that form the Grand Canyon. This article discusses the Fossil Creek monitoring project. In this project, students and teachers…

  17. Model for Coastal Restoration

    SciTech Connect

    Thom, Ronald M.; Judd, Chaeli

    2007-07-27

    Successful restoration of wetland habitats depends on both our understanding of our system and our ability to characterize it. By developing a conceptual model, looking at different spatial scales and integrating diverse data streams: GIS datasets and NASA products, we were able to develop a dynamic model for site prioritization based on both qualitative and quantitative relationships found in the coastal environment.

  18. Pharmacological Modulators of Endoplasmic Reticulum Stress in Metabolic Diseases

    PubMed Central

    Jung, Tae Woo; Choi, Kyung Mook

    2016-01-01

    The endoplasmic reticulum (ER) is the principal organelle responsible for correct protein folding, a step in protein synthesis that is critical for the functional conformation of proteins. ER stress is a primary feature of secretory cells and is involved in the pathogenesis of numerous human diseases, such as certain neurodegenerative and cardiometabolic disorders. The unfolded protein response (UPR) is a defense mechanism to attenuate ER stress and maintain the homeostasis of the organism. Two major degradation systems, including the proteasome and autophagy, are involved in this defense system. If ER stress overwhelms the capacity of the cell’s defense mechanisms, apoptotic death may result. This review is focused on the various pharmacological modulators that can protect cells from damage induced by ER stress. The possible mechanisms for cytoprotection are also discussed. PMID:26840310

  19. Endoplasmic Reticulum Stress Sensing in the Unfolded Protein Response

    PubMed Central

    Gardner, Brooke M.; Pincus, David; Gotthardt, Katja; Gallagher, Ciara M.; Walter, Peter

    2013-01-01

    Secretory and transmembrane proteins enter the endoplasmic reticulum (ER) as unfolded proteins and exit as either folded proteins in transit to their target organelles or as misfolded proteins targeted for degradation. The unfolded protein response (UPR) maintains the protein-folding homeostasis within the ER, ensuring that the protein-folding capacity of the ER meets the load of client proteins. Activation of the UPR depends on three ER stress sensor proteins, Ire1, PERK, and ATF6. Although the consequences of activation are well understood, how these sensors detect ER stress remains unclear. Recent evidence suggests that yeast Ire1 directly binds to unfolded proteins, which induces its oligomerization and activation. BiP dissociation from Ire1 regulates this oligomeric equilibrium, ultimately modulating Ire1’s sensitivity and duration of activation. The mechanistic principles of ER stress sensing are the focus of this review. PMID:23388626

  20. Endoplasmic reticulum aminopeptidases in the pathogenesis of ankylosing spondylitis.

    PubMed

    Kenna, Tony J; Robinson, Philip C; Haroon, Nigil

    2015-09-01

    There has been significant progress in our understanding of the pathogenesis of AS. The advent of genome-wide association studies has increased the known loci associated with AS to more than 40. The endoplasmic reticulum resident aminopeptidases (ERAP) 1 and 2 were identified in this manner and are of particular interest. There appears to be a genetic as well as a functional interaction of ERAP1 and 2 with HLA-B27 based on the known functions of these molecules. Recent studies on the structure, immunological effects and the peptide-trimming properties of ERAP 1 and 2 have helped to provide insight into their pathogenic potential in AS. In this review, we explore the role of ERAP 1 and 2 in the pathogenesis of AS. PMID:26070942

  1. Terasaki Spiral Ramps in the Rough Endoplasmic Reticulum

    NASA Astrophysics Data System (ADS)

    Guven, Jemal; Huber, Greg; Valencia, Dulce María

    2014-10-01

    We present a model describing the morphology as well as the assembly of "Terasaki ramps," the recently discovered helicoidal connections linking adjacent sheets of the rough endoplasmic reticulum (ER). The fundamental unit is a localized symmetric double-ramped "parking garage" formed by two separated gently pitched, approximately helicoidal, ramps of opposite chiralities. This geometry is stabilized by a short-range repulsive interaction between ramps associated with bending energy which opposes the long-range attraction associated with tension. The ramp inner boundaries are themselves stabilized by the condensation of membrane-shaping proteins along their length. A mechanism for parking garage self-assembly is proposed involving the nucleation of dipoles at the center of tubular three-way junctions within the smooth ER. Our predictions are compared with the experimental data.

  2. The Gp78 ubiquitin ligase: probing endoplasmic reticulum complexity.

    PubMed

    St Pierre, Pascal; Nabi, Ivan R

    2012-02-01

    The endoplasmic reticulum (ER) has been classically divided, based on electron microscopy analysis, into parallel ribosome-studded rough ER sheets and a tubular smooth ER network. Recent studies have identified molecular constituents of the ER, the reticulons and DP1, that drive ER tubule formation and whose expression determines expression of ER sheets and tubules and thereby rough and smooth ER. However, segregation of the ER into only two domains remains simplistic and multiple functionally distinct ER domains necessarily exist. In this review, we will discuss the sub-organization of the ER in different domains focusing on the localization and role of the gp78 ubiquitin ligase in the mitochondria-associated smooth ER and on the evidence for a quality control ERAD domain. PMID:22045301

  3. Terasaki spiral ramps in the rough endoplasmic reticulum.

    PubMed

    Guven, Jemal; Huber, Greg; Valencia, Dulce María

    2014-10-31

    We present a model describing the morphology as well as the assembly of "Terasaki ramps," the recently discovered helicoidal connections linking adjacent sheets of the rough endoplasmic reticulum (ER). The fundamental unit is a localized symmetric double-ramped "parking garage" formed by two separated gently pitched, approximately helicoidal, ramps of opposite chiralities. This geometry is stabilized by a short-range repulsive interaction between ramps associated with bending energy which opposes the long-range attraction associated with tension. The ramp inner boundaries are themselves stabilized by the condensation of membrane-shaping proteins along their length. A mechanism for parking garage self-assembly is proposed involving the nucleation of dipoles at the center of tubular three-way junctions within the smooth ER. Our predictions are compared with the experimental data. PMID:25396396

  4. Stress Responses from the Endoplasmic Reticulum in Cancer

    PubMed Central

    Kato, Hironori; Nishitoh, Hideki

    2015-01-01

    The endoplasmic reticulum (ER) is a dynamic organelle that is essential for multiple cellular functions. During cellular stress conditions, including nutrient deprivation and dysregulation of protein synthesis, unfolded/misfolded proteins accumulate in the ER lumen, resulting in activation of the unfolded protein response (UPR). The UPR also contributes to the regulation of various intracellular signaling pathways such as calcium signaling and lipid signaling. More recently, the mitochondria-associated ER membrane (MAM), which is a site of close contact between the ER and mitochondria, has been shown to function as a platform for various intracellular stress responses including apoptotic signaling, inflammatory signaling, the autophagic response, and the UPR. Interestingly, in cancer, these signaling pathways from the ER are often dysregulated, contributing to cancer cell metabolism. Thus, the signaling pathway from the ER may be a novel therapeutic target for various cancers. In this review, we discuss recent research on the roles of stress responses from the ER, including the MAM. PMID:25941664

  5. Cytoprotective small molecule modulators of endoplasmic reticulum stress.

    PubMed

    Munshi, Soumyabrata; Dahl, Russell

    2016-06-01

    Cellular health depends on the normal function of the endoplasmic reticulum (ER) to fold, assemble, and modify critical proteins to maintain viability. When the ER cannot process proteins effectively, a condition known as ER stress ensues. When this stress is excessive or prolonged, cell death via apoptotic pathways is triggered. Interestingly, most major diseases have been shown to be intimately linked to ER stress, including diabetes, stroke, neurodegeneration, and many cancers. Thus, controlling ER stress presents a significant strategy for drug development for these diseases. The goal of this review is to present various small molecules that alleviate ER stress with the intention that they may serve as useful starting points for therapeutic agent development. PMID:27091069

  6. Endoplasmic reticulum stress in myotonic dystrophy type 1 muscle.

    PubMed

    Ikezoe, Koji; Nakamori, Masayuki; Furuya, Hirokazu; Arahata, Hajime; Kanemoto, Soshi; Kimura, Takashi; Imaizumi, Kazunori; Takahashi, Masanori P; Sakoda, Saburo; Fujii, Naoki; Kira, Jun-ichi

    2007-11-01

    In myotonic dystrophy type 1 (DM1), alternative splicing of ryanodine receptor 1 (RyR1) and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) genes has been reported. These proteins are essential for maintaining intracellular Ca2+ in skeletal muscle. To clarify involvement of endoplasmic reticulum (ER) stress in DM1 muscles, we examined the activation of ER stress-related proteins by immunohistochemistry, western blot analysis and RT-PCR. In four of five DM1 muscle biopsies, except for a muscle biopsy from a patient with the shortest CTG expansion and no myotonia, increased expression of GRP78 and calnexin, and phosphorylation of PERK and eIF-2 alpha were revealed in fibers with sarcoplasmic masses and in highly atrophic fibers with pyknotic nuclear clumps. Caspase-3 and -7 were also expressed in these fibers. Increased expression of GRP78 in these DM1 muscles was confirmed by western blot analysis. GRP78 mRNA and spliced isoform of XBP1 mRNA were also increased in DM1 muscle biopsies. Furthermore, we demonstrated increased expression of GRP78 in highly atrophic fibers with pyknotic nuclear clumps in all three muscle biopsies from neurogenic muscular atrophies. However, five muscle biopsies from central core disease presumably with disturbed intracellular Ca2+ homeostasis and a muscle biopsy from paramyotonia congenita with myotonia showed no activation of these proteins. Taken together, ER stress is involved in muscle wasting in DM1. However, it seems to be evoked not only by disrupted intracellular Ca2+ homeostasis. PMID:17661063

  7. Maternal obesity alters endoplasmic reticulum homeostasis in offspring pancreas.

    PubMed

    Soeda, Jumpei; Mouralidarane, Angelina; Cordero, Paul; Li, Jiawei; Nguyen, Vi; Carter, Rebeca; Kapur, Sabrina R; Pombo, Joaquim; Poston, Lucilla; Taylor, Paul D; Vinciguerra, Manlio; Oben, Jude A

    2016-06-01

    The prevalence of non-alcoholic fatty pancreas disease (NAFPD) is increasing in parallel with obesity rates. Stress-related alterations in endoplasmic reticulum (ER), such as the unfolded protein response (UPR), are associated with obesity. The aim of this study was to investigate ER imbalance in the pancreas of a mice model of adult and perinatal diet-induced obesity. Twenty female C57BL/6J mice were assigned to control (Con) or obesogenic (Ob) diets prior to and during pregnancy and lactation. Their offspring were weaned onto Con or Ob diets up to 6 months post-partum. Then, after sacrifice, plasma biochemical analyses, gene expression, and protein concentrations were measured in pancreata. Offspring of Ob-fed mice had significantly increased body weight (p < 0.001) and plasma leptin (p < 0.001) and decreased insulin (p < 0.01) levels. Maternal obesogenic diet decreased the total and phosphorylated Eif2α and increased spliced X-box binding protein 1 (XBP1). Pancreatic gene expression of downstream regulators of UPR (EDEM, homocysteine-responsive endoplasmic reticulum-resident (HERP), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP)) and autophagy-related proteins (LC3BI/LC3BII) were differently disrupted by obesogenic feeding in both mothers and offspring (from p < 0.1 to p < 0.001). Maternal obesity and Ob feeding in their offspring alter UPR in NAFPD, with involvement of proapoptotic and autophagy-related markers. Upstream and downstream regulators of PERK, IRE1α, and ATF6 pathways were affected differently following the obesogenic insults. PMID:26979740

  8. 14. EAST ELEVATION, COTTAGE. EXTERIOR NEARLY RESTORED. INTERIOR UNDERGOING RESTORATION. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. EAST ELEVATION, COTTAGE. EXTERIOR NEARLY RESTORED. INTERIOR UNDERGOING RESTORATION. EUCALYPTUS TREE PLANTED BY GERTRUDE KEIL PLANNED FOR REMOVAL. - Gold Ridge Farm, 7777 Bodega Avenue, Sebastopol, Sonoma County, CA

  9. Spectral characteristics of sign-alternating self-oscillatory endoplasm mobility in a myxomycete plasmodium

    NASA Astrophysics Data System (ADS)

    Avsievich, T. I.; Frolov, S. V.; Proskurin, S. G.

    2016-01-01

    The results of a short time Fourier transform of the time dependences of the self-oscillatory endoplasm velocity in an isolated strand of the Physarum polycephalum plasmodium recorded using a sign-sensitive laser Doppler microscope are described. Unlike the mode recording an absolute velocity, a sign-sensitive mode makes it possible to detect the pairs of equidistant harmonic components in the time dependence spectra of endoplasm movement. The resulting frequency and amplitude values are used to construct a model adequately describing the alternating endoplasm mobility.

  10. Digital restoration of multichannel images

    NASA Technical Reports Server (NTRS)

    Galatsanos, Nikolas P.; Chin, Roland T.

    1989-01-01

    The Wiener solution of a multichannel restoration scheme is presented. Using matrix diagonalization and block-Toeplitz to block-circulant approximation, the inversion of the multichannel, linear space-invariant imaging system becomes feasible by utilizing a fast iterative matrix inversion procedure. The restoration uses both the within-channel (spatial) and between-channel (spectral) correlation; hence, the restored result is a better estimate than that produced by independent channel restoration. Simulations are also presented.

  11. Prairie Restoration for Wisconsin Schools.

    ERIC Educational Resources Information Center

    Murray, Molly Fifield; Greenler, Robin McC.

    This packet is composed of several resources for teachers interested in prairie ecology and restoration. "A Guide to Restoration from Site Analysis to Management" focuses on the Prairie/Oak Savanna communities of Wisconsin and takes teachers through the planning and design process for a restoration project on school grounds including site…

  12. Adaptive wiener image restoration kernel

    DOEpatents

    Yuan, Ding

    2007-06-05

    A method and device for restoration of electro-optical image data using an adaptive Wiener filter begins with constructing imaging system Optical Transfer Function, and the Fourier Transformations of the noise and the image. A spatial representation of the imaged object is restored by spatial convolution of the image using a Wiener restoration kernel.

  13. Engineering approaches to ecosystem restoration

    SciTech Connect

    Hayes, D.F.

    1998-07-01

    This proceedings CD ROM contains 127 papers on developing and evaluating engineering approaches to wetlands and river restoration. The latest engineering developments are discussed, providing valuable insights to successful approaches for river restoration, wetlands restoration, watershed management, and constructed wetlands for stormwater and wastewater treatment. Potential solutions to a wide variety of ecosystem concerns in urban, suburban, and coastal environments are presented.

  14. Restoration of longitudinal images.

    PubMed

    Hu, Y; Frieden, B R

    1988-01-15

    In this paper, a method of restoring longitudinal images is developed. By using the transfer function for longitudinal objects, and inverse filtering, a longitudinal image may be restored. The Fourier theory and sampling theorems for transverse images cannot be used directly in the longitudinal case. A modification and reasonable approximation are introduced. We have numerically established a necessary relationship between just-resolved longitudinal separation (after inverse filtering), noise level, and the taking conditions of object distance and lens diameter. An empirical formula is also found to well-fit the computed results. This formula may be of use for designing optical systems which are to image longitudinal details, such as in robotics or microscopy. PMID:20523607

  15. Relativistic Linear Restoring Force

    ERIC Educational Resources Information Center

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  16. Restoration of Elbow Flexion.

    PubMed

    Loeffler, Bryan J; Lewis, Daniel R

    2016-08-01

    Active elbow flexion is required to position the hand in space, and loss of this function is debilitating. Nerve transfers or nerve grafts to restore elbow flexion may be options when the target muscle is viable, but in delayed reconstruction when the biceps and brachialis are atrophied or damaged, muscle transfer options should be considered. Muscle transfer options are discussed with attention to the advantages and disadvantages of each transfer option. PMID:27387075

  17. Toll-like receptor 4-induced endoplasmic reticulum stress contributes to endothelial dysfunction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Impairment of vasodilator action of insulin is associated with endothelial dysfunction and insulin resistance. Endoplasmic reticulum (ER) stress is implicated as one of the mechanisms for pathophysiology of various cardiometabolic syndromes, including insulin resistance and endothelial dysfunction. ...

  18. Unfolded protein stress in the endoplasmic reticulum and mitochondria: a role in neurodegeneration

    PubMed Central

    Bernales, Sebastián; Soto, Marisol Morales; McCullagh, Emma

    2012-01-01

    Protein-folding occurs in several intracellular locations including the endoplasmic reticulum and mitochondria. In normal conditions there is a balance between the levels of unfolded proteins and protein folding machinery. Disruption of homeostasis and an accumulation of unfolded proteins trigger stress responses, or unfolded protein responses (UPR), in these organelles. These pathways signal to increase the folding capacity, inhibit protein import or expression, increase protein degradation, and potentially trigger cell death. Many aging-related neurodegenerative diseases involve the accumulation of misfolded proteins in both the endoplasmic reticulum and mitochondria. The exact participation of the UPRs in the onset of neurodegeneration is unclear, but there is significant evidence for the alteration of these pathways in the endoplasmic reticulum and mitochondria. Here we will discuss the involvement of endoplasmic reticulum and mitochondrial stress and the possible contributions of the UPR in these organelles to the development of two neurodegenerative diseases, Parkinson's disease (PD) and Alzheimer's disease (AD). PMID:22539924

  19. Filling cavities or restoring teeth?

    PubMed

    Versluis, Antheunis; Versluis-Tantbirojn, Daranee

    2011-01-01

    Teeth seldom fracture under normal functional loading. This indicates that the natural tooth design is optimized for the distribution of regular masticatory forces by means of its properties and structure. When a tooth is restored with an intracoronal restoration, however, the incidence of tooth fracture increases. Since remaining tissues do not change, the restorative actions apparently alter the original stress distributions. In this study, the effect of different restoration types (unbonded amalgam and bonded composite restorations) were compared with the original stress conditions of the intact tooth, using finite element analysis. It was shown that an unbonded amalgam restoration did not restore the original stress conditions but led to much higher stresses in the buccal and lingual enamel and to higher tensile stresses in the cavity floor. The unbonded amalgam thus filled the cavity but did not restore the tooth. In contrast, a bonded composite restoration restored the original stress pattern in the tooth if there was no polymerization shrinkage. Polymerization shrinkage causes residual tensile stresses in the dentin around the cavity and in the buccal and lingual enamel. Residual tensile stresses in the buccal and lingual enamel are momentary compensated by compressive stress components during occlusal loading. It was concluded that bonding and elimination of residual stresses are prerequisites for restoring the original tooth integrity. PMID:21748978

  20. Image restoration, uncertainty, and information.

    PubMed

    Yu, F T

    1969-01-01

    Some of the physical interpretations about image restoration are discussed. From the theory of information the unrealizability of an inverse filter can be explained by degradation of information, which is due to distortion on the recorded image. The image restoration is a time and space problem, which can be recognized from the theory of relativity (the problem of image restoration is related to Heisenberg's uncertainty principle in quantum mechanics). A detailed discussion of the relationship between information and energy is given. Two general results may be stated: (1) the restoration of the image from the distorted signal is possible only if it satisfies the detectability condition. However, the restored image, at the best, can only approach to the maximum allowable time criterion. (2) The restoration of an image by superimposing the distorted signal (due to smearing) is a physically unrealizable method. However, this restoration procedure may be achieved by the expenditure of an infinite amount of energy. PMID:20072171

  1. Partial Restoration of Mutant Enzyme Homeostasis in Three Distinct Lysosomal Storage Disease Cell Lines by Altering Calcium Homeostasis

    PubMed Central

    Mu, Ting-Wei; Fowler, Douglas M; Kelly, Jeffery W

    2008-01-01

    A lysosomal storage disease (LSD) results from deficient lysosomal enzyme activity, thus the substrate of the mutant enzyme accumulates in the lysosome, leading to pathology. In many but not all LSDs, the clinically most important mutations compromise the cellular folding of the enzyme, subjecting it to endoplasmic reticulum–associated degradation instead of proper folding and lysosomal trafficking. A small molecule that restores partial mutant enzyme folding, trafficking, and activity would be highly desirable, particularly if one molecule could ameliorate multiple distinct LSDs by virtue of its mechanism of action. Inhibition of L-type Ca2+ channels, using either diltiazem or verapamil—both US Food and Drug Administration–approved hypertension drugs—partially restores N370S and L444P glucocerebrosidase homeostasis in Gaucher patient–derived fibroblasts; the latter mutation is associated with refractory neuropathic disease. Diltiazem structure-activity studies suggest that it is its Ca2+ channel blocker activity that enhances the capacity of the endoplasmic reticulum to fold misfolding-prone proteins, likely by modest up-regulation of a subset of molecular chaperones, including BiP and Hsp40. Importantly, diltiazem and verapamil also partially restore mutant enzyme homeostasis in two other distinct LSDs involving enzymes essential for glycoprotein and heparan sulfate degradation, namely α-mannosidosis and type IIIA mucopolysaccharidosis, respectively. Manipulation of calcium homeostasis may represent a general strategy to restore protein homeostasis in multiple LSDs. However, further efforts are required to demonstrate clinical utility and safety. PMID:18254660

  2. Restoring proximal caries lesions conservatively with tunnel restorations

    PubMed Central

    Chu, Chun-Hung; Mei, May L; Cheung, Chloe; Nalliah, Romesh P

    2013-01-01

    The tunnel restoration has been suggested as a conservative alternative to the conventional box preparation for treating proximal caries. The main advantage of tunnel restoration over the conventional box or slot preparation includes being more conservative and increasing tooth integrity and strength by preserving the marginal ridge. However, tunnel restoration is technique-sensitive and can be particularly challenging for inexperienced restorative dentists. Recent advances in technology, such as the contemporary design of dental handpieces with advanced light-emitting diode (LED) and handheld comfort, offer operative dentists better vision, illumination, and maneuverability. The use of magnifying loupes also enhances the visibility of the preparation. The advent of digital radiographic imaging has improved dental imaging and reduced radiation. The new generation of restorative materials has improved mechanical properties. Tunnel restoration can be an option to restore proximal caries if the dentist performs proper case selection and pays attention to the details of the restorative procedures. This paper describes the clinical technique of tunnel restoration and reviews the studies of tunnel restorations. PMID:24019754

  3. The antioxidant machinery of the endoplasmic reticulum: Protection and signaling.

    PubMed

    Delaunay-Moisan, Agnès; Appenzeller-Herzog, Christian

    2015-06-01

    Cellular metabolism is inherently linked to the production of oxidizing by-products, including reactive oxygen species (ROS) hydrogen peroxide (H2O2). When present in excess, H2O2 can damage cellular biomolecules, but when produced in coordinated fashion, it typically serves as a mobile signaling messenger. It is therefore not surprising that cell health critically relies on both low-molecular-weight and enzymatic antioxidant components, which protect from ROS-mediated damage and shape the propagation and duration of ROS signals. This review focuses on H2O2-antioxidant cross talk in the endoplasmic reticulum (ER), which is intimately linked to the process of oxidative protein folding. ER-resident or ER-regulated sources of H2O2 and other ROS, which are subgrouped into constitutive and stimulated sources, are discussed and set into context with the diverse antioxidant mechanisms in the organelle. These include two types of peroxide-reducing enzymes, a high concentration of glutathione derived from the cytosol, and feedback-regulated thiol-disulfide switches, which negatively control the major ER oxidase ER oxidoreductin-1. Finally, new evidence highlighting emerging principles of H2O2-based cues at the ER will likely set a basis for establishing ER redox processes as a major line of future signaling research. A fundamental problem that remains to be solved is the specific, quantitative, time resolved, and targeted detection of H2O2 in the ER and in specialized ER subdomains. PMID:25744411

  4. Endoplasmic reticulum: Where nucleotide sugar transport meets cytokinin control mechanisms

    PubMed Central

    Niemann, Michael CE; Werner, Tomáš

    2015-01-01

    The endoplasmic reticulum (ER) is a multifunctional eukaryotic organelle where the vast majority of secretory proteins are folded and assembled to achieve their correct tertiary structures. The lumen of the ER and Golgi apparatus also provides an environment for numerous glycosylation reactions essential for modifications of proteins and lipids, and for cell wall biosynthesis. These glycosylation reactions require a constant supply of cytosolically synthesized substrate precursors, nucleotide sugars, which are transported by a group of dedicated nucleotide sugar transporters (NST). Recently, we have reported on the identification of a novel ER-localized NST protein, ROCK1, which mediates the transport of UDP-linked acetylated hexosamines across the ER membrane in Arabidopsis. Interestingly, it has been demonstrated that the activity of ROCK1 is important for the regulation of cytokinin-degrading enzymes, cytokinin oxidases/dehydrogenases (CKX), in the ER and, thus, for cytokinin responses. In this addendum we will address the biochemical and cellular activity of the ROCK1 transporter and its phylogenetic relation to other NST proteins. PMID:26418963

  5. A Molecular Web: Endoplasmic Reticulum Stress, Inflammation, and Oxidative Stress

    PubMed Central

    Chaudhari, Namrata; Talwar, Priti; Parimisetty, Avinash; Lefebvre d’Hellencourt, Christian; Ravanan, Palaniyandi

    2014-01-01

    Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER) is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded-protein response (UPR) through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS). Toxic accumulation of ROS within ER and mitochondria disturbs fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways have been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease, and others. In this review, we have discussed the UPR signaling pathways, and networking between ER stress-induced inflammatory pathways, oxidative stress, and mitochondrial signaling events, which further induce or exacerbate ER stress. PMID:25120434

  6. Probing Endoplasmic Reticulum Dynamics using Fluorescence Imaging and Photobleaching Techniques

    PubMed Central

    Costantini, Lindsey; Snapp, Erik

    2013-01-01

    This UNIT describes approaches and tools for studying the dynamics and organization of endoplasmic reticulum (ER) membranes and proteins in living cells using commercially available widefield and confocal laser scanning microscopes (CLSM). It has been long appreciated that the ER plays a number of key roles in secretory protein biogenesis, calcium regulation, and lipid synthesis. However, study of these processes has been often restricted to biochemical assays that average the behaviors of millions of lysed cells or to imaging static fixed cells. Now, with new fluorescent protein reporter tools, highly sensitive commercial microscopes, and photobleaching techniques, it is possible to interrogate the behaviors of ER proteins, membranes, and stress pathways in single cells with exquisite spatial and temporal resolution. The ER presents a unique set of imaging challenges including the high mobility of ER membranes, a diverse range of dynamic ER structures, and the influence of post-translational modifications on fluorescent protein reporters. Solutions to these challenges are described and considerations for performing photobleaching assays, especially Fluorescence Recovery after Photobleaching (FRAP) and Fluorescence Loss in Photobleaching (FLIP) for ER proteins will be discussed. In addition, ER reporters and ER-specific pharmacologic compounds are presented with a focus on misfolded secretory protein stress and the Unfolded Protein Response (UPR). PMID:24510787

  7. Protein Bodies in Leaves Exchange Contents through the Endoplasmic Reticulum.

    PubMed

    Saberianfar, Reza; Sattarzadeh, Amirali; Joensuu, Jussi J; Kohalmi, Susanne E; Menassa, Rima

    2016-01-01

    Protein bodies (PBs) are organelles found in seeds whose main function is the storage of proteins that are used during germination for sustaining growth. PBs can also be induced to form in leaves when foreign proteins are produced at high levels in the endoplasmic reticulum (ER) and when fused to one of three tags: Zera®, elastin-like polypeptides (ELP), or hydrophobin-I (HFBI). In this study, we investigate the differences between ELP, HFBI and Zera PB formation, packing, and communication. Our results confirm the ER origin of all three fusion-tag-induced PBs. We show that secretory pathway proteins can be sequestered into all types of PBs but with different patterns, and that different fusion tags can target a specific protein to different PBs. Zera PBs are mobile and dependent on actomyosin motility similar to ELP and HFBI PBs. We show in vivo trafficking of proteins between PBs using GFP photoconversion. We also show that protein trafficking between ELP or HFBI PBs is faster and proteins travel further when compared to Zera PBs. Our results indicate that fusion-tag-induced PBs do not represent terminally stored cytosolic organelles, but that they form in, and remain part of the ER, and dynamically communicate with each other via the ER. We hypothesize that the previously documented PB mobility along the actin cytoskeleton is associated with ER movement rather than independent streaming of detached organelles. PMID:27242885

  8. Proper symmetric and asymmetric endoplasmic reticulum partitioning requires astral microtubules.

    PubMed

    Smyth, Jeremy T; Schoborg, Todd A; Bergman, Zane J; Riggs, Blake; Rusan, Nasser M

    2015-08-01

    Mechanisms that regulate partitioning of the endoplasmic reticulum (ER) during cell division are largely unknown. Previous studies have mostly addressed ER partitioning in cultured cells, which may not recapitulate physiological processes that are critical in developing, intact tissues. We have addressed this by analysing ER partitioning in asymmetrically dividing stem cells, in which precise segregation of cellular components is essential for proper development and tissue architecture. We show that in Drosophila neural stem cells, called neuroblasts, the ER asymmetrically partitioned to centrosomes early in mitosis. This correlated closely with the asymmetric nucleation of astral microtubules (MTs) by centrosomes, suggesting that astral MT association may be required for ER partitioning by centrosomes. Consistent with this, the ER also associated with astral MTs in meiotic Drosophila spermatocytes and during syncytial embryonic divisions. Disruption of centrosomes in each of these cell types led to improper ER partitioning, demonstrating the critical role for centrosomes and associated astral MTs in this process. Importantly, we show that the ER also associated with astral MTs in cultured human cells, suggesting that this centrosome/astral MT-based partitioning mechanism is conserved across animal species. PMID:26289801

  9. Quantitative proteomic survey of endoplasmic reticulum in mouse liver.

    PubMed

    Song, Yanping; Jiang, Ying; Ying, Wantao; Gong, Yan; Yan, Yujuan; Yang, Dong; Ma, Jie; Xue, Xiaofang; Zhong, Fan; Wu, Songfeng; Hao, Yunwei; Sun, Aihua; Li, Tao; Sun, Wei; Wei, Handong; Zhu, Yunping; Qian, Xiaohong; He, Fuchu

    2010-03-01

    To gain a better understanding of the critical function of the endoplasmic reticulum (ER) in liver, we carried out a proteomic survey of mouse liver ER. The ER proteome was profiled with a new three-dimensional, gel-based strategy. From 6152 and 6935 MS spectra, 903 and 1042 proteins were identified with at least two peptides matches at 95% confidence in the rough (r) and smooth (s) ER, respectively. Comparison of the rER and sER proteomes showed that calcium-binding proteins are significantly enriched in the sER suggesting that the ion-binding function of the ER is compartmentalized. Comparison of the rat and mouse ER proteomes showed that 662 proteins were common to both, comprising 53.5% and 49.3% of those proteomes, respectively. We proposed that these proteins were stably expressed proteins that were essential for the maintenance of ER function. GO annotation with a hypergeometric model proved this hypothesis. Unexpectedly, 210 unknown proteins and some proteins previously reported to occur in the cytosol were highly enriched in the ER. This study provides a reference map for the ER proteome of liver. Identification of new ER proteins will enhance our current understanding of the ER and also suggest new functions for this organelle. PMID:20073521

  10. The endoplasmic reticulum: a social network in plant cells.

    PubMed

    Chen, Jun; Doyle, Caitlin; Qi, Xingyun; Zheng, Huanquan

    2012-11-01

    The endoplasmic reticulum (ER) is an interconnected network comprised of ribosome-studded sheets and smooth tubules. The ER plays crucial roles in the biosynthesis and transport of proteins and lipids, and in calcium (Ca(2+) ) regulation in compartmentalized eukaryotic cells including plant cells. To support its well-segregated functions, the shape of the ER undergoes notable changes in response to both developmental cues and outside influences. In this review, we will discuss recent findings on molecular mechanisms underlying the unique morphology and dynamics of the ER, and the importance of the interconnected ER network in cell polarity. In animal and yeast cells, two family proteins, the reticulons and DP1/Yop1, are required for shaping high-curvature ER tubules, while members of the atlastin family of dynamin-like GTPases are involved in the fusion of ER tubules to make an interconnected ER network. In plant cells, recent data also indicate that the reticulons are involved in shaping ER tubules, while RHD3, a plant member of the atlastin GTPases, is required for the generation of an interconnected ER network. We will also summarize the current knowledge on how the ER interacts with other membrane-bound organelles, with a focus on how the ER and Golgi interplay in plant cells. PMID:23046093

  11. N-Linked Protein Glycosylation in the Endoplasmic Reticulum

    PubMed Central

    Breitling, Jörg; Aebi, Markus

    2013-01-01

    The attachment of glycans to asparagine residues of proteins is an abundant and highly conserved essential modification in eukaryotes. The N-glycosylation process includes two principal phases: the assembly of a lipid-linked oligosaccharide (LLO) and the transfer of the oligosaccharide to selected asparagine residues of polypeptide chains. Biosynthesis of the LLO takes place at both sides of the endoplasmic reticulum (ER) membrane and it involves a series of specific glycosyltransferases that catalyze the assembly of the branched oligosaccharide in a highly defined way. Oligosaccharyltransferase (OST) selects the Asn-X-Ser/Thr consensus sequence on polypeptide chains and generates the N-glycosidic linkage between the side-chain amide of asparagine and the oligosaccharide. This ER-localized pathway results in a systemic modification of the proteome, the basis for the Golgi-catalyzed modification of the N-linked glycans, generating the large diversity of N-glycoproteome in eukaryotic cells. This article focuses on the processes in the ER. Based on the highly conserved nature of this pathway we concentrate on the mechanisms in the eukaryotic model organism Saccharomyces cerevisiae. PMID:23751184

  12. Paclitaxel inhibits selenoprotein S expression and attenuates endoplasmic reticulum stress.

    PubMed

    Qin, Hong-Shuang; Yu, Pei-Pei; Sun, Ying; Wang, Dan-Feng; Deng, Xiao-Fen; Bao, Yong-Li; Song, Jun; Sun, Lu-Guo; Song, Zhen-Bo; Li, Yu-Xin

    2016-06-01

    The primary effect of the endoplasmic reticulum (ER) stress response or unfolded protein response (UPR) is to reduce the load of unfolded protein and promote survival. However, prolonged and severe ER stress leads to tissue injury and serious diseases. Thus, it is important to identify drugs that can attenuate ER stress for the treatment of diseases. Natural products continue to provide lead compounds for drug discovery and front‑line pharmacotherapy for people worldwide. Previous studies have indicated that selenoprotein S (SelS) is a sensitive and ideal maker of ER stress. In the present study, a firefly luciferase reporter driven by the SelS gene promoter was used to screen for natural compounds capable of attenuating ER stress. From this, paclitaxel (PTX) was identified to efficiently inhibit the promoter activity of the SelS gene, and further results revealed that PTX significantly inhibited the tunicamycin‑induced upregulation of SelS at the mRNA and protein levels in HepG2 and HEK293T cells. In addition, PTX was able to efficiently inhibit the expression of the ER stress marker, glucose‑regulated protein 78, in ER stress, indicating that PTX may reverse ER stress. Taken together, these results suggest that PTX is able to inhibit SelS expression during ER stress and attenuate ER stress. PMID:27109260

  13. Proper symmetric and asymmetric endoplasmic reticulum partitioning requires astral microtubules

    PubMed Central

    Smyth, Jeremy T.; Schoborg, Todd A.; Bergman, Zane J.; Riggs, Blake; Rusan, Nasser M.

    2015-01-01

    Mechanisms that regulate partitioning of the endoplasmic reticulum (ER) during cell division are largely unknown. Previous studies have mostly addressed ER partitioning in cultured cells, which may not recapitulate physiological processes that are critical in developing, intact tissues. We have addressed this by analysing ER partitioning in asymmetrically dividing stem cells, in which precise segregation of cellular components is essential for proper development and tissue architecture. We show that in Drosophila neural stem cells, called neuroblasts, the ER asymmetrically partitioned to centrosomes early in mitosis. This correlated closely with the asymmetric nucleation of astral microtubules (MTs) by centrosomes, suggesting that astral MT association may be required for ER partitioning by centrosomes. Consistent with this, the ER also associated with astral MTs in meiotic Drosophila spermatocytes and during syncytial embryonic divisions. Disruption of centrosomes in each of these cell types led to improper ER partitioning, demonstrating the critical role for centrosomes and associated astral MTs in this process. Importantly, we show that the ER also associated with astral MTs in cultured human cells, suggesting that this centrosome/astral MT-based partitioning mechanism is conserved across animal species. PMID:26289801

  14. Proteomic analysis of endoplasmic reticulum stress responses in rice seeds.

    PubMed

    Qian, Dandan; Tian, Lihong; Qu, Leqing

    2015-01-01

    The defects in storage proteins secretion in the endosperm of transgenic rice seeds often leads to endoplasmic reticulum (ER) stress, which produces floury and shrunken seeds, but the mechanism of this response remains unclear. We used an iTRAQ-based proteomics analysis of ER-stressed rice seeds due to the endosperm-specific suppression of OsSar1 to identify changes in the protein levels in response to ER stress. ER stress changed the expression of 405 proteins in rice seed by >2.0- fold compared with the wild-type control. Of these proteins, 140 were upregulated and 265 were downregulated. The upregulated proteins were mainly involved in protein modification, transport and degradation, and the downregulated proteins were mainly involved in metabolism and stress/defense responses. A KOBAS analysis revealed that protein-processing in the ER and degradation-related proteasome were the predominant upregulated pathways in the rice endosperm in response to ER stress. Trans-Golgi protein transport was also involved in the ER stress response. Combined with bioinformatic and molecular biology analyses, our proteomic data will facilitate our understanding of the systemic responses to ER stress in rice seeds. PMID:26395408

  15. Supramolecular architecture of endoplasmic reticulum-plasma membrane contact sites.

    PubMed

    Fernández-Busnadiego, Rubén

    2016-04-15

    The endoplasmic reticulum (ER) forms membrane contact sites (MCS) with most other cellular organelles and the plasma membrane (PM). These ER-PM MCS, where the membranes of the ER and PM are closely apposed, were discovered in the early days of electron microscopy (EM), but only recently are we starting to understand their functional and structural diversity. ER-PM MCS are nowadays known to mediate excitation-contraction coupling (ECC) in striated muscle cells and to play crucial roles in Ca(2+)and lipid homoeostasis in all metazoan cells. A common feature across ER-PM MCS specialized in different functions is the preponderance of cooperative phenomena that result in the formation of large supramolecular assemblies. Therefore, characterizing the supramolecular architecture of ER-PM MCS is critical to understand their mechanisms of function. Cryo-electron tomography (cryo-ET) is a powerful EM technique uniquely positioned to address this issue, as it allows 3D imaging of fully hydrated, unstained cellular structures at molecular resolution. In this review I summarize our current structural knowledge on the molecular organization of ER-PM MCS and its functional implications, with special emphasis on the emerging contributions of cryo-ET. PMID:27068966

  16. Endoplasmic reticulum localization and activity of maize auxin biosynthetic enzymes.

    PubMed

    Kriechbaumer, Verena; Seo, Hyesu; Park, Woong June; Hawes, Chris

    2015-09-01

    Auxin is a major growth hormone in plants and the first plant hormone to be discovered and studied. Active research over >60 years has shed light on many of the molecular mechanisms of its action including transport, perception, signal transduction, and a variety of biosynthetic pathways in various species, tissues, and developmental stages. The complexity and redundancy of the auxin biosynthetic network and enzymes involved raises the question of how such a system, producing such a potent agent as auxin, can be appropriately controlled at all. Here it is shown that maize auxin biosynthesis takes place in microsomal as well as cytosolic cellular fractions from maize seedlings. Most interestingly, a set of enzymes shown to be involved in auxin biosynthesis via their activity and/or mutant phenotypes and catalysing adjacent steps in YUCCA-dependent biosynthesis are localized to the endoplasmic reticulum (ER). Positioning of auxin biosynthetic enzymes at the ER could be necessary to bring auxin biosynthesis in closer proximity to ER-localized factors for transport, conjugation, and signalling, and allow for an additional level of regulation by subcellular compartmentation of auxin action. Furthermore, it might provide a link to ethylene action and be a factor in hormonal cross-talk as all five ethylene receptors are ER localized. PMID:26139824

  17. Aging induced endoplasmic reticulum stress alters sleep and sleep homeostasis.

    PubMed

    Brown, Marishka K; Chan, May T; Zimmerman, John E; Pack, Allan I; Jackson, Nicholas E; Naidoo, Nirinjini

    2014-06-01

    Alterations in the quality, quantity, and architecture of baseline and recovery sleep have been shown to occur during aging. Sleep deprivation induces endoplasmic reticular (ER) stress and upregulates a protective signaling pathway termed the unfolded protein response. The effectiveness of the adaptive unfolded protein response is diminished by age. Previously, we showed that endogenous chaperone levels altered recovery sleep in Drosophila melanogaster. We now report that acute administration of the chemical chaperone sodium 4-phenylbutyrate (PBA) reduces ER stress and ameliorates age-associated sleep changes in Drosophila. PBA consolidates both baseline and recovery sleep in aging flies. The behavioral modifications of PBA are linked to its suppression of ER stress. PBA decreased splicing of X-box binding protein 1 and upregulation of phosphorylated elongation initiation factor 2 α, in flies that were subjected to sleep deprivation. We also demonstrate that directly activating ER stress in young flies fragments baseline sleep and alters recovery sleep. Alleviating prolonged or sustained ER stress during aging contributes to sleep consolidation and improves recovery sleep or sleep debt discharge. PMID:24444805

  18. Protein Bodies in Leaves Exchange Contents through the Endoplasmic Reticulum

    PubMed Central

    Saberianfar, Reza; Sattarzadeh, Amirali; Joensuu, Jussi J.; Kohalmi, Susanne E.; Menassa, Rima

    2016-01-01

    Protein bodies (PBs) are organelles found in seeds whose main function is the storage of proteins that are used during germination for sustaining growth. PBs can also be induced to form in leaves when foreign proteins are produced at high levels in the endoplasmic reticulum (ER) and when fused to one of three tags: Zera®, elastin-like polypeptides (ELP), or hydrophobin-I (HFBI). In this study, we investigate the differences between ELP, HFBI and Zera PB formation, packing, and communication. Our results confirm the ER origin of all three fusion-tag-induced PBs. We show that secretory pathway proteins can be sequestered into all types of PBs but with different patterns, and that different fusion tags can target a specific protein to different PBs. Zera PBs are mobile and dependent on actomyosin motility similar to ELP and HFBI PBs. We show in vivo trafficking of proteins between PBs using GFP photoconversion. We also show that protein trafficking between ELP or HFBI PBs is faster and proteins travel further when compared to Zera PBs. Our results indicate that fusion-tag-induced PBs do not represent terminally stored cytosolic organelles, but that they form in, and remain part of the ER, and dynamically communicate with each other via the ER. We hypothesize that the previously documented PB mobility along the actin cytoskeleton is associated with ER movement rather than independent streaming of detached organelles. PMID:27242885

  19. Heme oxygenase-1 comes back to endoplasmic reticulum

    SciTech Connect

    Kim, Hong Pyo; Pae, Hyun-Ock; Back, Sung Hun; Chung, Su Wol; Woo, Je Moon; Son, Yong; Chung, Hun-Taeg

    2011-01-07

    Research highlights: {yields} Although multiple compartmentalization of HO-1 has been documented, the functional implication of this enzyme at these subcellular organelles is only partially elucidated. {yields} HO-1 expression at ER is induced by a diverse set of conditions that cause ER stressors. {yields} CO may induce HO-1 expression in human ECs by activating Nrf2 through PERK phosphorylation in a positive-feedback manner. {yields} ER-residing HO-1 and its cytoprotective activity against ER stress is discussed. -- Abstract: Originally identified as a rate-limiting enzyme for heme catabolism, heme oxygenase-1 (HO-1) has expanded its roles in anti-inflammation, anti-apoptosis and anti-proliferation for the last decade. Regulation of protein activity by location is well appreciated. Even though multiple compartmentalization of HO-1 has been documented, the functional implication of this enzyme at these subcellular organelles is only partially elucidated. In this review we discuss the endoplasmic reticulum (ER)-residing HO-1 and its cytoprotective activity against ER stress.

  20. Endoplasmic reticulum stress regulation in hematopoietic stem cells.

    PubMed

    Miharada, Kenichi

    2016-08-01

    Adult hematopoietic stem cells (HSCs) reside in bone marrow and are maintained in a dormant state within a special microenvironment, their so-called "niche". Detaching from the niche induces cell cycle progression, resulting in a reduction of the reconstitution capacity of HSCs. In contrast, fetal liver HSCs actively divide without losing their stem cell potentials. Thus, it has been unclear what types of cellular responses and metabolic changes occur in growing HSCs. We previously discovered that HSCs express relatively low levels of endoplasmic reticulum (ER) chaperone proteins governing protein folding, making HSCs vulnerable to an elevation of stress signals caused by accumulation of un-/misfolded proteins (ER stress) upon in vitro culture. Interestingly, fetal liver HSCs do not show ER stress elevation despite unchanged levels of chaperone proteins. Our latest studies utilizing multiple mouse models revealed that in the fetal liver bile acids as chemical chaperones play a key role supporting the protein folding which results in the suppression of ER stress induction. These findings highlight the importance of ER stress regulations in hematopoiesis. PMID:27599423

  1. Involvement of Endoplasmic Reticulum Stress Response in Orofacial Inflammatory Pain

    PubMed Central

    Yang, Eun Sun; Bae, Jin Young; Kim, Tae Heon; Kim, Yun Sook; Suk, Kyoungho

    2014-01-01

    Endoplasmic reticulum (ER) stress is involved in many neurological diseases and inflammatory responses. Inflammatory mediators induce neuronal damage and trigger the neuropathic or inflammatory pain. But there is very little data on the role of the ER stress response in pain mechanisms. In this study, we explored whether the ER stress response is involved in orofacial inflammatory pain by using a complete Freund's adjuvant (CFA)-injected rat model. The thermal pain hypersensitivity increased significantly after CFA injection. We found that the protein and mRNA levels of ER stress response genes, GRP78/Bip and p-eIF2α, increased significantly in trigeminal ganglion (TG) of CFA-injected rats compared to control animals. In immunofluorescence analysis, a significant increase of GRP78 and p-eIF2α immunopositive neurons was observed in CFA-injected TG compared to control TG. When we administered an ER stress modulator, salubrinal, CFA-induced thermal pain hypersensitivity was temporally reduced. Thus, our study suggests that ER stress responses in TG neurons contribute to CFA-induced inflammatory pain, and may comprise an important molecular mechanism underlying the orofacial inflammatory pain pathway. PMID:25548537

  2. Role of endoplasmic reticulum stress in drug-induced toxicity.

    PubMed

    Foufelle, Fabienne; Fromenty, Bernard

    2016-02-01

    Drug-induced toxicity is a key issue for public health because some side effects can be severe and life-threatening. These adverse effects can also be a major concern for the pharmaceutical companies since significant toxicity can lead to the interruption of clinical trials, or the withdrawal of the incriminated drugs from the market. Recent studies suggested that endoplasmic reticulum (ER) stress could be an important event involved in drug liability, in addition to other key mechanisms such as mitochondrial dysfunction and oxidative stress. Indeed, drug-induced ER stress could lead to several deleterious effects within cells and tissues including accumulation of lipids, cell death, cytolysis, and inflammation. After recalling important information regarding drug-induced adverse reactions and ER stress in diverse pathophysiological situations, this review summarizes the main data pertaining to drug-induced ER stress and its potential involvement in different adverse effects. Drugs presented in this review are for instance acetaminophen (APAP), arsenic trioxide and other anticancer drugs, diclofenac, and different antiretroviral compounds. We also included data on tunicamycin (an antibiotic not used in human medicine because of its toxicity) and thapsigargin (a toxic compound of the Mediterranean plant Thapsia garganica) since both molecules are commonly used as prototypical toxins to induce ER stress in cellular and animal models. PMID:26977301

  3. LDL–cholesterol transport to the endoplasmic reticulum: current concepts

    PubMed Central

    Pfisterer, Simon G.; Peränen, Johan; Ikonen, Elina

    2016-01-01

    Purpose of review In this article, we summarize the present information related to the export of LDL-derived cholesterol from late endosomes, with a focus on Nieman-Pick disease, type C1 (NPC1) cholesterol delivery toward the endoplasmic reticulum (ER). We review data suggesting that several pathways may operate in parallel, including membrane transport routes and membrane contact sites (MCSs). Recent findings There is increasing appreciation that MCSs provide an important mechanism for intermembrane lipid transfer. In late endosome–ER contacts, three protein bridges involving oxysterol binding protein related protein (ORP)1L-vesicle associated membrane protein-associated protein (VAP), steroidogenic acute regulatory protein (StAR)D3-VAP and ORP5-NPC1 proteins have been reported. How much they contribute to the flux of LDL–cholesterol to the ER is currently open. Studies for lipid transfer via MCSs have been most advanced in Saccharomyces cerevisiae. Recently, a new sterol-binding protein family conserved between yeast and man was identified. Its members localize at MCSs and were named lipid transfer protein anchored at membrane contact sites (Lam) proteins. In yeast, sterol transfer between the ER and the yeast lysosome may be facilitated by a Lam protein. Summary Increasing insights into the role of MCSs in directional sterol delivery between membranes propose that they might provide routes for LDL–cholesterol transfer to the ER. Future work should reveal which specific contacts may operate for this, and how they are controlled by cholesterol homeostatic machineries. PMID:27054443

  4. PERK-opathies: An Endoplasmic Reticulum Stress Mechanism Underlying Neurodegeneration.

    PubMed

    Bell, Michelle C; Meier, Shelby E; Ingram, Alexandria L; Abisambra, Jose F

    2016-01-01

    The unfolded protein response (UPR) plays a vital role in maintaining cell homeostasis as a consequence of endoplasmic reticulum (ER) stress. However, prolonged UPR activity leads to cell death. This time-dependent dual functionality of the UPR represents the adaptive and cytotoxic pathways that result from ER stress. Chronic UPR activation in systemic and neurodegenerative diseases has been identified as an early sign of cellular dyshomeostasis. The Protein Kinase R-like ER Kinase (PERK) pathway is one of three major branches in the UPR, and it is the only one to modulate protein synthesis as an adaptive response. The specific identification of prolonged PERK activity has been correlated with the progression of disorders such as diabetes, Alzheimer's disease, and cancer, suggesting that PERK plays a role in the pathology of these disorders. For the first time, the term "PERK-opathies" is used to group these diseases in which PERK mediates detriment to the cell culminating in chronic disorders. This article reviews the literature documenting links between systemic disorders with the UPR, but with a specific emphasis on the PERK pathway. Then, articles reporting links between the UPR, and more specifically PERK, and neurodegenerative disorders are presented. Finally, a therapeutic perspective is discussed, where PERK interventions could be potential remedies for cellular dysfunction in chronic neurodegenerative disorders. PMID:26679859

  5. STIM Proteins and the Endoplasmic Reticulum-Plasma Membrane Junctions

    PubMed Central

    Carrasco, Silvia; Meyer, Tobias

    2013-01-01

    Eukaryotic organelles can interact with each other through stable junctions where the two membranes are kept in close apposition. The junction that connects the endoplasmic reticulum to the plasma membrane (ER-PM junction) is unique in providing a direct communication link between the ER and the PM. In a recently discovered signaling process, STIM (stromal-interacting molecule) proteins sense a drop in ER Ca2+ levels and directly activate Orai PM Ca2+ channels across the junction space. In an inverse process, a voltage-gated PM Ca2+ channel can directly open ER ryanodine-receptor Ca2+ channels in striated-muscle cells. Although ER-PM junctions were first described 50 years ago, their broad importance in Ca2+ signaling, as well as in the regulation of cholesterol and phosphatidylinositol lipid transfer, has only recently been realized. Here, we discuss research from different fields to provide a broad perspective on the structures and unique roles of ER-PM junctions in controlling signaling and metabolic processes. PMID:21548779

  6. Paclitaxel inhibits selenoprotein S expression and attenuates endoplasmic reticulum stress

    PubMed Central

    QIN, HONG-SHUANG; YU, PEI-PEI; SUN, YING; WANG, DAN-FENG; DENG, XIAO-FEN; BAO, YONG-LI; SONG, JUN; SUN, LU-GUO; SONG, ZHEN-BO; LI, YU-XIN

    2016-01-01

    The primary effect of the endoplasmic reticulum (ER) stress response or unfolded protein response (UPR) is to reduce the load of unfolded protein and promote survival. However, prolonged and severe ER stress leads to tissue injury and serious diseases. Thus, it is important to identify drugs that can attenuate ER stress for the treatment of diseases. Natural products continue to provide lead compounds for drug discovery and front-line pharmacotherapy for people worldwide. Previous studies have indicated that selenoprotein S (SelS) is a sensitive and ideal maker of ER stress. In the present study, a firefly luciferase reporter driven by the SelS gene promoter was used to screen for natural compounds capable of attenuating ER stress. From this, paclitaxel (PTX) was identified to efficiently inhibit the promoter activity of the SelS gene, and further results revealed that PTX significantly inhibited the tunicamycin-induced upregulation of SelS at the mRNA and protein levels in HepG2 and HEK293T cells. In addition, PTX was able to efficiently inhibit the expression of the ER stress marker, glucose-regulated protein 78, in ER stress, indicating that PTX may reverse ER stress. Taken together, these results suggest that PTX is able to inhibit SelS expression during ER stress and attenuate ER stress. PMID:27109260

  7. Terasaki Ramps in the Endoplasmic Reticulum: Structure, Function and Formation

    NASA Astrophysics Data System (ADS)

    Huber, Greg; Guven, Jemal; Valencia, Dulce-Maria

    2015-03-01

    The endoplasmic reticulum (ER) has long been considered an exceedingly important and complex cellular organelle in eukaryotes (like you). It is a membrane structure, part folded lamellae, part tubular network, that both envelopes the nucleus and threads its way outward, all the way to the cell's periphery. Despite the elegant mechanics of bilayer membranes offered by the work of Helfrich and Canham, as far as the ER is concerned, theory has mostly sat on the sidelines. However, refined imaging of the ER has recently revealed beautiful and subtle geometrical forms - simple geometries, from the mathematical point of view - which some have called a ``parking garage for ribosomes.'' I'll review the discovery and physics of Terasaki ramps and discuss their relation to cell-biological questions, such as ER and nuclear-membrane re-organization during mitosis. Rather than being a footnote in a textbook on differential geometry, these structures suggest answers to a number of the ER's structure-function problems.

  8. Autophagy is activated for cell survival after endoplasmic reticulum stress.

    PubMed

    Ogata, Maiko; Hino, Shin-ichiro; Saito, Atsushi; Morikawa, Keisuke; Kondo, Shinichi; Kanemoto, Soshi; Murakami, Tomohiko; Taniguchi, Manabu; Tanii, Ichiro; Yoshinaga, Kazuya; Shiosaka, Sadao; Hammarback, James A; Urano, Fumihiko; Imaizumi, Kazunori

    2006-12-01

    Eukaryotic cells deal with accumulation of unfolded proteins in the endoplasmic reticulum (ER) by the unfolded protein response, involving the induction of molecular chaperones, translational attenuation, and ER-associated degradation, to prevent cell death. Here, we found that the autophagy system is activated as a novel signaling pathway in response to ER stress. Treatment of SK-N-SH neuroblastoma cells with ER stressors markedly induced the formation of autophagosomes, which were recognized at the ultrastructural level. The formation of green fluorescent protein (GFP)-LC3-labeled structures (GFP-LC3 "dots"), representing autophagosomes, was extensively induced in cells exposed to ER stress with conversion from LC3-I to LC3-II. In IRE1-deficient cells or cells treated with c-Jun N-terminal kinase (JNK) inhibitor, the autophagy induced by ER stress was inhibited, indicating that the IRE1-JNK pathway is required for autophagy activation after ER stress. In contrast, PERK-deficient cells and ATF6 knockdown cells showed that autophagy was induced after ER stress in a manner similar to the wild-type cells. Disturbance of autophagy rendered cells vulnerable to ER stress, suggesting that autophagy plays important roles in cell survival after ER stress. PMID:17030611

  9. Autophagy Is Activated for Cell Survival after Endoplasmic Reticulum Stress▿

    PubMed Central

    Ogata, Maiko; Hino, Shin-ichiro; Saito, Atsushi; Morikawa, Keisuke; Kondo, Shinichi; Kanemoto, Soshi; Murakami, Tomohiko; Taniguchi, Manabu; Tanii, Ichiro; Yoshinaga, Kazuya; Shiosaka, Sadao; Hammarback, James A.; Urano, Fumihiko; Imaizumi, Kazunori

    2006-01-01

    Eukaryotic cells deal with accumulation of unfolded proteins in the endoplasmic reticulum (ER) by the unfolded protein response, involving the induction of molecular chaperones, translational attenuation, and ER-associated degradation, to prevent cell death. Here, we found that the autophagy system is activated as a novel signaling pathway in response to ER stress. Treatment of SK-N-SH neuroblastoma cells with ER stressors markedly induced the formation of autophagosomes, which were recognized at the ultrastructural level. The formation of green fluorescent protein (GFP)-LC3-labeled structures (GFP-LC3 “dots”), representing autophagosomes, was extensively induced in cells exposed to ER stress with conversion from LC3-I to LC3-II. In IRE1-deficient cells or cells treated with c-Jun N-terminal kinase (JNK) inhibitor, the autophagy induced by ER stress was inhibited, indicating that the IRE1-JNK pathway is required for autophagy activation after ER stress. In contrast, PERK-deficient cells and ATF6 knockdown cells showed that autophagy was induced after ER stress in a manner similar to the wild-type cells. Disturbance of autophagy rendered cells vulnerable to ER stress, suggesting that autophagy plays important roles in cell survival after ER stress. PMID:17030611

  10. Proteomic analysis of endoplasmic reticulum stress responses in rice seeds

    PubMed Central

    Qian, Dandan; Tian, Lihong; Qu, Leqing

    2015-01-01

    The defects in storage proteins secretion in the endosperm of transgenic rice seeds often leads to endoplasmic reticulum (ER) stress, which produces floury and shrunken seeds, but the mechanism of this response remains unclear. We used an iTRAQ-based proteomics analysis of ER-stressed rice seeds due to the endosperm-specific suppression of OsSar1 to identify changes in the protein levels in response to ER stress. ER stress changed the expression of 405 proteins in rice seed by >2.0- fold compared with the wild-type control. Of these proteins, 140 were upregulated and 265 were downregulated. The upregulated proteins were mainly involved in protein modification, transport and degradation, and the downregulated proteins were mainly involved in metabolism and stress/defense responses. A KOBAS analysis revealed that protein-processing in the ER and degradation-related proteasome were the predominant upregulated pathways in the rice endosperm in response to ER stress. Trans-Golgi protein transport was also involved in the ER stress response. Combined with bioinformatic and molecular biology analyses, our proteomic data will facilitate our understanding of the systemic responses to ER stress in rice seeds. PMID:26395408

  11. Periostin promotes secretion of fibronectin from the endoplasmic reticulum.

    PubMed

    Kii, Isao; Nishiyama, Takashi; Kudo, Akira

    2016-02-19

    Extracellular matrix (ECM) proteins are synthesized in the endoplasmic reticulum (ER), transported to the extracellular milieu through the secretory pathway, and assembled into an extracellular architecture. A previous study of ours showed that periostin, a secretory protein, interacts with fibronectin and is involved in ECM remodeling. Here we show that periostin played a role in fibronectin secretion from the ER. Co-immunoprecipitation and in situ proximity ligation assays revealed an interaction between periostin and fibronectin in the ER. Although accumulation of fibronectin was detected in the ER of fibroblastic C3H10T1/2 cells, forced expression of periostin in those cells decreased the accumulation of fibronectin in the ER, suggesting that periostin promoted the secretion of fibronectin. A substitution mutant of tryptophan at the position 65 to alanine in the EMI domain of periostin, which caused periostin to lose its ability to interact with fibronectin, did not decrease the accumulation. Furthermore, targeted disruption of periostin in mice caused the non-fibrillar and ectopic deposition of fibronectin in the periodontal ligament. Thus, these results demonstrate a subcellular role of periostin in promotion of fibronectin secretion from the ER. PMID:26820539

  12. Nϵ-lysine acetylation in the lumen of the endoplasmic reticulum: A way to regulate autophagy and maintain protein homeostasis in the secretory pathway.

    PubMed

    Peng, Yajing; Puglielli, Luigi

    2016-06-01

    The Nϵ-lysine acetylation of cargo proteins in the lumen of the endoplasmic reticulum (ER) requires a membrane transporter (SLC33A1) and 2 acetyltransferases (NAT8B and NAT8). The ER acetylation machinery regulates the homeostatic balance between quality control/efficiency of the secretory pathway and autophagy-mediated disposal of toxic protein aggregates. We recently reported that the autophagy pathway that acts downstream of the ER acetylation machinery specifically targets protein aggregates that form within the secretory pathway. Genetic and biochemical manipulation of ER acetylation in a mouse model of Alzheimer disease is able to restore normal proteostasis and rescue the disease phenotype. Here we summarize these findings and offer an overview of the ER-acetylation machinery. PMID:27124586

  13. Complications in hair restoration.

    PubMed

    Lam, Samuel M

    2013-11-01

    Hair restoration requires a high level of specialized skill on the part of both the surgeon and the assistant team. Recipient-site problems can manifest from either surgeon or assistant error. The surgeon can create an unnatural hairline due to lack of knowledge of natural hair-loss patterns or badly executed recipient sites. He must also be cognizant of how hairs naturally are angled on the scalp to re-create a pattern that appears natural when making recipient sites. Assistants can also greatly contribute to the success or failure of surgery in their task of graft dissection and graft placement. PMID:24200385

  14. Robotic hair restoration.

    PubMed

    Rose, Paul T; Nusbaum, Bernard

    2014-01-01

    The latest innovation to hair restoration surgery has been the introduction of a robotic system for harvesting grafts. This system uses the follicular unit extraction/follicular isolation technique method for harvesting follicular units, which is particularly well suited to the abilities of a robotic technology. The ARTAS system analyzes images of the donor area and then a dual-chamber needle and blunt dissecting punch are used to harvest the follicular units. The robotic technology is now being used in various locations around the world. This article discusses the use of the robotic system, its capabilities, and the advantages and disadvantages of the system. PMID:24267426

  15. Percutaneous left ventricular restoration.

    PubMed

    Ige, Mobolaji; Al-Kindi, Sadeer G; Attizzani, Guilherme; Costa, Marco; Oliveira, Guilherme H

    2015-04-01

    The ventricular partitioning device known as Parachute is the first and only percutaneously implantable device aimed at restoration of normal left ventricular geometry in humans. Since its conception, this technology has undergone extensive animal and human testing, with proved feasibility and safety, and is currently being studied in a pivotal randomized clinical trial. This article discusses ventricular remodeling and therapies attempted in the past, details the components of the ventricular partitioning device, describes the implanting technique, and reviews the most current experience of this device in humans. PMID:25834974

  16. Intracellular potassium stabilizes human ether-à-go-go-related gene channels for export from endoplasmic reticulum.

    PubMed

    Wang, Lu; Dennis, Adrienne T; Trieu, Phan; Charron, Francois; Ethier, Natalie; Hebert, Terence E; Wan, Xiaoping; Ficker, Eckhard

    2009-04-01

    Several therapeutic compounds have been identified that prolong the QT interval on the electrocardiogram and cause torsade de pointes arrhythmias not by direct block of the cardiac potassium channel human ether-à-go-go-related gene (hERG) but via disruption of hERG trafficking to the cell surface membrane. One example of a clinically important compound class that potently inhibits hERG trafficking are cardiac glycosides. We have shown previously that inhibition of hERG trafficking by cardiac glycosides is initiated via direct block of Na(+)/K(+) pumps and not via off-target interactions with hERG or any other protein. However, it was not known how pump inhibition at the cell surface is coupled to hERG processing in the endoplasmic reticulum. Here, we show that depletion of intracellular K(+)-either indirectly after long-term exposure to cardiac glycosides or directly after exposure to gramicidin in low sodium media-is sufficient to disrupt hERG trafficking. In K(+)-depleted cells, hERG trafficking can be restored by permeating K(+) or Rb(+) ions, incubation at low temperature, exposure to the pharmacological chaperone astemizole, or specific mutations in the selectivity filter of hERG. Our data suggest a novel mechanism for drug-induced trafficking inhibition in which cardiac glycosides produce a [K(+)](i)-mediated conformational defect directly in the hERG channel protein. PMID:19139152

  17. Intracellular Potassium Stabilizes Human Ether-à-go-go-Related Gene Channels for Export from Endoplasmic ReticulumS⃞

    PubMed Central

    Wang, Lu; Dennis, Adrienne T.; Trieu, Phan; Charron, Francois; Ethier, Natalie; Hebert, Terence E.; Wan, Xiaoping; Ficker, Eckhard

    2009-01-01

    Several therapeutic compounds have been identified that prolong the QT interval on the electrocardiogram and cause torsade de pointes arrhythmias not by direct block of the cardiac potassium channel human ether-à-go-go-related gene (hERG) but via disruption of hERG trafficking to the cell surface membrane. One example of a clinically important compound class that potently inhibits hERG trafficking are cardiac glycosides. We have shown previously that inhibition of hERG trafficking by cardiac glycosides is initiated via direct block of Na+/K+ pumps and not via off-target interactions with hERG or any other protein. However, it was not known how pump inhibition at the cell surface is coupled to hERG processing in the endoplasmic reticulum. Here, we show that depletion of intracellular K+—either indirectly after long-term exposure to cardiac glycosides or directly after exposure to gramicidin in low sodium media—is sufficient to disrupt hERG trafficking. In K+-depleted cells, hERG trafficking can be restored by permeating K+ or Rb+ ions, incubation at low temperature, exposure to the pharmacological chaperone astemizole, or specific mutations in the selectivity filter of hERG. Our data suggest a novel mechanism for drug-induced trafficking inhibition in which cardiac glycosides produce a [K+]i-mediated conformational defect directly in the hERG channel protein. PMID:19139152

  18. Chemical chaperon 4-phenylbutyrate protects against the endoplasmic reticulum stress-mediated renal fibrosis in vivo and in vitro.

    PubMed

    Liu, Shing-Hwa; Yang, Ching-Chin; Chan, Ding-Cheng; Wu, Cheng-Tien; Chen, Li-Ping; Huang, Jenq-Wen; Hung, Kuan-Yu; Chiang, Chih-Kang

    2016-04-19

    Renal tubulointerstitial fibrosis is the common and final pathologic change of kidney in end-stage renal disease. Interesting, endoplasmic reticulum (ER) stress is known to contribute to the pathophysiological mechanisms during the development of renal fibrosis. Here, we investigated the effects of chemical chaperon sodium 4-phenylbutyrate (4-PBA) on renal fibrosis in vivo and in vitro. In a rat unilateral ureteral obstruction (UUO) model, 4-PBA mimicked endogenous ER chaperon in the kidneys and significantly reduced glucose regulated protein 78 (GRP78), CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP), activating transcription factor 4 (ATF4), and phosphorylated JNK protein expressions as well as restored spliced X-box-binding protein 1 (XBP1) expressions in the kidneys of UUO rats. 4-PBA also attenuated the increases of α-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF) protein expressions, tubulointerstitial fibrosis, and apoptosis in the kidneys of UUO rats. Moreover, transforming growth factor (TGF)-β markedly increased ER stress-associated molecules, profibrotic factors, and apoptotic markers in the renal tubular cells (NRK-52E), all of which could be significantly counteracted by 4-PBA treatment. 4-PBA also diminished TGF-β-increased CTGF promoter activity and CTGF mRNA expression in NRK-52E cells. Taken together, our results indicated that 4-PBA acts as an ER chaperone to ameliorate ER stress-induced renal tubular cell apoptosis and renal fibrosis. PMID:26959118

  19. Chemical chaperon 4-phenylbutyrate protects against the endoplasmic reticulum stress-mediated renal fibrosis in vivo and in vitro

    PubMed Central

    Wu, Cheng-Tien; Chen, Li-Ping; Huang, Jenq-Wen; Hung, Kuan-Yu; Chiang, Chih-Kang

    2016-01-01

    Renal tubulointerstitial fibrosis is the common and final pathologic change of kidney in end-stage renal disease. Interesting, endoplasmic reticulum (ER) stress is known to contribute to the pathophysiological mechanisms during the development of renal fibrosis. Here, we investigated the effects of chemical chaperon sodium 4-phenylbutyrate (4-PBA) on renal fibrosis in vivo and in vitro. In a rat unilateral ureteral obstruction (UUO) model, 4-PBA mimicked endogenous ER chaperon in the kidneys and significantly reduced glucose regulated protein 78 (GRP78), CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP), activating transcription factor 4 (ATF4), and phosphorylated JNK protein expressions as well as restored spliced X-box-binding protein 1 (XBP1) expressions in the kidneys of UUO rats. 4-PBA also attenuated the increases of α-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF) protein expressions, tubulointerstitial fibrosis, and apoptosis in the kidneys of UUO rats. Moreover, transforming growth factor (TGF)-β markedly increased ER stress-associated molecules, profibrotic factors, and apoptotic markers in the renal tubular cells (NRK-52E), all of which could be significantly counteracted by 4-PBA treatment. 4-PBA also diminished TGF-β-increased CTGF promoter activity and CTGF mRNA expression in NRK-52E cells. Taken together, our results indicated that 4-PBA acts as an ER chaperone to ameliorate ER stress-induced renal tubular cell apoptosis and renal fibrosis. PMID:26959118

  20. Identification of Small Molecules That Protect Pancreatic β Cells against Endoplasmic Reticulum Stress-Induced Cell Death

    PubMed Central

    2015-01-01

    Endoplasmic reticulum (ER) stress plays an important role in the decline in pancreatic β cell function and mass observed in type 2 diabetes. Here, we developed a novel β cell-based high-throughput screening assay to identify small molecules that protect β cells against ER stress-induced cell death. Mouse βTC6 cells were treated with the ER stressor tunicamycin to induce ER stress, and cell death was measured as a reduction in cellular ATP. A collection of 17600 compounds was screened for molecules that promote β cell survival. Of the approximately 80 positive hits, two selected compounds were able to increase the survival of human primary β cells and rodent β cell lines subjected to ER stressors including palmitate, a free fatty acid of pathological relevance to diabetes. These compounds also restored ER stress-impaired glucose-stimulated insulin secretion responses. We show that the compounds promote β cell survival by reducing the expression of key genes of the unfolded protein response and apoptosis, thus alleviating ER stress. Identification of small molecules that prevent ER stress-induced β cell dysfunction and death may provide a new modality for the treatment of diabetes. PMID:25279668

  1. Endoplasmic Reticulum Stress-Activated Transcription Factor ATF6α Requires the Disulfide Isomerase PDIA5 To Modulate Chemoresistance

    PubMed Central

    Higa, Arisa; Taouji, Said; Lhomond, Stéphanie; Jensen, Devon; Fernandez-Zapico, Martin E.; Simpson, Jeremy C.; Pasquet, Jean-Max; Schekman, Randy

    2014-01-01

    ATF6α, a membrane-anchored transcription factor from the endoplasmic reticulum (ER) that modulates the cellular response to stress as an effector of the unfolded-protein response (UPR), is a key player in the development of tumors of different origin. ATF6α activation has been linked to oncogenic transformation and tumor maintenance; however, the mechanism(s) underlying this phenomenon remains elusive. Here, using a phenotypic small interfering RNA (siRNA) screening, we identified a novel role for ATF6α in chemoresistance and defined the protein disulfide isomerase A5 (PDIA5) as necessary for ATF6α activation upon ER stress. PDIA5 contributed to disulfide bond rearrangement in ATF6α under stress conditions, thereby leading to ATF6α export from the ER and activation of its target genes. Further analysis of the mechanism demonstrated that PDIA5 promotes ATF6α packaging into coat protein complex II (COPII) vesicles and that the PDIA5/ATF6α activation loop is essential to confer chemoresistance on cancer cells. Genetic and pharmacological inhibition of the PDIA5/ATF6α axis restored sensitivity to the drug treatment. This work defines the mechanisms underlying the role of ATF6α activation in carcinogenesis and chemoresistance; furthermore, it identifies PDIA5 as a key regulator ATF6α-mediated cellular functions in cancer. PMID:24636989

  2. Loss of Oca2 disrupts the unfolded protein response and increases resistance to endoplasmic reticulum stress in melanocytes.

    PubMed

    Cheng, Tsing; Orlow, Seth J; Manga, Prashiela

    2013-11-01

    Accumulation of proteins in the endoplasmic reticulum (ER) typically induces stress and initiates the unfolded protein response (UPR) to facilitate recovery. If homeostasis is not restored, apoptosis is induced. However, adaptation to chronic UPR activation can increase resistance to subsequent acute ER stress. We therefore investigated adaptive mechanisms in Oculocutaneous albinism type 2 (Oca2)-null melanocytes where UPR signaling is arrested despite continued tyrosinase accumulation leading to resistance to the chemical ER stressor thapsigargin. Although thapsigargin triggers UPR activation, instead of Perk-mediated phosphorylation of eIF2α, in Oca2-null melanocytes, eIF2α was rapidly dephosphorylated upon treatment. Dephosphorylation was mediated by the Gadd34-PP1α phosphatase complex. Gadd34-complex inhibition blocked eIF2α dephosphorylation and significantly increased Oca2-null melanocyte sensitivity to thapsigargin. Thus, Oca2-null melanocytes adapt to acute ER stress by disruption of pro-apoptotic Perk signaling, which promotes cell survival. This is the first study to demonstrate rapid eIF2α dephosphorylation as an adaptive mechanism to ER stress. PMID:23962237

  3. Reparative dentistry or restorative dentistry?

    PubMed

    Small, Bruce W

    2008-01-01

    The real definition of restorative dentistry is found in the heart and hands of each individual restorative dentist. His or her training, continuing dental education, mentors, needs (financial and emotional), and style of practice all help to develop a philosophy of dental practice that affects daily restorative decisions. Depending on the factors described above, the decision to repair a tooth or change the environment and restore the tooth to a different shape, size, or color also may change. In recent years, patients' esthetic desires have become more of a factor than they were in previous decades. There are no exact written-tn-stone definitions of restorative dentistry, since the answers are operator-dependent and can vary. This column is meant to be food for thought and perhaps inspire discussion when dentists assemble for meetings or study clubs with the goal of delivering longer-lasting dentistry through a restorative dental practice. PMID:18348367

  4. Longevity of Posterior Composite Restorations

    PubMed Central

    Opdam, N.J.M.; van de Sande, F.H.; Bronkhorst, E.; Cenci, M.S.; Bottenberg, P.; Pallesen, U.; Gaengler, P.; Lindberg, A.; Huysmans, M.C.D.N.J.M.; van Dijken, J.W.

    2014-01-01

    The aim of this meta-analysis, based on individual participant data from several studies, was to investigate the influence of patient-, materials-, and tooth-related variables on the survival of posterior resin composite restorations. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we conducted a search resulting in 12 longitudinal studies of direct posterior resin composite restorations with at least 5 years’ follow-up. Original datasets were still available, including placement/failure/censoring of restorations, restored surfaces, materials used, reasons for clinical failure, and caries-risk status. A database including all restorations was constructed, and a multivariate Cox regression method was used to analyze variables of interest [patient (age; gender; caries-risk status), jaw (upper; lower), number of restored surfaces, resin composite and adhesive materials, and use of glass-ionomer cement as base/liner (present or absent)]. The hazard ratios with respective 95% confidence intervals were determined, and annual failure rates were calculated for subgroups. Of all restorations, 2,816 (2,585 Class II and 231 Class I) were included in the analysis, of which 569 failed during the observation period. Main reasons for failure were caries and fracture. The regression analyses showed a significantly higher risk of failure for restorations in high-caries-risk individuals and those with a higher number of restored surfaces. PMID:25048250

  5. Regulation of endoplasmic reticulum Ca2+ oscillations in mammalian eggs

    PubMed Central

    Wakai, Takuya; Zhang, Nan; Vangheluwe, Peter; Fissore, Rafael A.

    2013-01-01

    Summary Changes in the intracellular concentration of free calcium ([Ca2+]i) regulate diverse cellular processes including fertilization. In mammalian eggs, the [Ca2+]i changes induced by the sperm unfold in a pattern of periodical rises, also known as [Ca2+]i oscillations. The source of Ca2+ during oscillations is the endoplasmic reticulum ([Ca2+]ER), but it is presently unknown how [Ca2+]ER is regulated. Here, we show using mouse eggs that [Ca2+]i oscillations induced by a variety of agonists, including PLCζ, SrCl2 and thimerosal, provoke simultaneous but opposite changes in [Ca2+]ER and cause differential effects on the refilling and overall load of [Ca2+]ER. We also found that Ca2+ influx is required to refill [Ca2+]ER, because the loss of [Ca2+]ER was accelerated in medium devoid of Ca2+. Pharmacological inactivation of the function of the mitochondria and of the Ca2+-ATPase pumps PMCA and SERCA altered the pattern of oscillations and abruptly reduced [Ca2+]ER, especially after inactivation of mitochondria and SERCA functions. We also examined the expression of SERCA2b protein and found that it was expressed throughout oocyte maturation and attained a conspicuous cortical cluster organization in mature eggs. We show that its overexpression reduces the duration of inositol-1,4,5-trisphosphate-induced [Ca2+]i rises, promotes initiation of oscillations and enhances refilling of [Ca2+]ER. Collectively, our results provide novel insights on the regulation of [Ca2+]ER oscillations, which underlie the unique Ca2+-signalling system that activates the developmental program in mammalian eggs. PMID:24101727

  6. Endoplasmic reticulum stress activates transglutaminase 2 leading to protein aggregation

    PubMed Central

    LEE, JIN-HAENG; JEONG, JAEHO; JEONG, EUI MAN; CHO, SUNG-YUP; KANG, JEONG WOOK; LIM, JISUN; HEO, JINBEOM; KANG, HYUNSOOK; KIM, IN-GYU; SHIN, DONG-MYUNG

    2014-01-01

    Aberrant activation of transglutaminase 2 (TGase2) contributes to a variety of protein conformational disorders such as neurodegenerative diseases and age-related cataracts. The accumulation of improperly folded proteins in the endoplasmic reticulum (ER) triggers the unfolded protein response (UPR), which promotes either repair or degradation of the damaged proteins. Inadequate UPR results in protein aggregation that may contribute to the development of age-related degenerative diseases. TGase2 is a calcium-dependent enzyme that irreversibly modifies proteins by forming cross-linked protein aggregates. Intracellular TGase2 is activated by oxidative stress which generates large quantities of unfolded proteins. However, the relationship between TGase2 activity and UPR has not yet been established. In the present study, we demonstrated that ER stress activated TGase2 in various cell types. TGase2 activation was dependent on the ER stress-induced increase in the intracellular calcium ion concentration but not on the TGase2 protein expression level. Enzyme substrate analysis revealed that TGase2-mediated protein modification promoted protein aggregation concurrently with decreasing water solubility. Moreover, treatment with KCC009, a TGase2 inhibitor, abrogated ER stress-induced TGase2 activation and subsequent protein aggregation. However, TGase2 activation had no effect on ER stress-induced cell death. These results demonstrate that the accumulation of misfolded proteins activates TGase2, which further accelerates the formation of protein aggregates. Therefore, we suggest that inhibition of TGase2 may be a novel strategy by which to prevent the protein aggregation in age-related degenerative diseases. PMID:24481335

  7. Disulfide Mispairing During Proinsulin Folding in the Endoplasmic Reticulum.

    PubMed

    Haataja, Leena; Manickam, Nandini; Soliman, Ann; Tsai, Billy; Liu, Ming; Arvan, Peter

    2016-04-01

    Proinsulin folding within the endoplasmic reticulum (ER) remains incompletely understood, but it is clear that in mutant INS gene-induced diabetes of youth (MIDY), progression of the (three) native disulfide bonds of proinsulin becomes derailed, causing insulin deficiency, β-cell ER stress, and onset of diabetes. Herein, we have undertaken a molecular dissection of proinsulin disulfide bond formation, using bioengineered proinsulins that can form only two (or even only one) of the native proinsulin disulfide bonds. In the absence of preexisting proinsulin disulfide pairing, Cys(B19)-Cys(A20) (a major determinant of ER stress response activation and proinsulin stability) preferentially initiates B-A chain disulfide bond formation, whereas Cys(B7)-Cys(A7) can initiate only under oxidizing conditions beyond that existing within the ER of β-cells. Interestingly, formation of these two "interchain" disulfide bonds demonstrates cooperativity, and together, they are sufficient to confer intracellular transport competence to proinsulin. The three most common proinsulin disulfide mispairings in the ER appear to involve Cys(A11)-Cys(A20), Cys(A7)-Cys(A20), and Cys(B19)-Cys(A11), each disrupting the critical Cys(B19)-Cys(A20) pairing. MIDY mutations inhibit Cys(B19)-Cys(A20) formation, but treatment to force oxidation of this disulfide bond improves folding and results in a small but detectable increase of proinsulin export. These data suggest possible therapeutic avenues to ameliorate ER stress and diabetes. PMID:26822090

  8. Topography of glycosylation reactions in the rough endoplasmic reticulum membrane

    SciTech Connect

    Perez, M.; Hirschberg, C.B.

    1986-05-25

    The translocation of UDP-glucose and GDP-mannose from an external to a luminal compartment has been examined in rat liver vesicles derived from the rough endoplasmic reticulum (RER). RER vesicles with the same topographical orientation as in vivo were incubated with a mixture of (/sup 3/H)UDP-glucose and UDP-(/sup 14/C)glucose to demonstrate that the intact sugar nucleotide was translocated into the lumen of the vesicles. The translocation of UDP-glucose was dependent on temperature and was saturable at high concentrations of the sugar nucleotide. The transfer of glucose to endogenous acceptors was dependent on the translocation of UDP-glucose into the lumen of the RER since leaky vesicles resulted in both a decrease in transport and transfer of glucose to endogenous acceptors. Preliminary results suggest that the mechanism of UDP-glucose transport into RER-derived vesicles is via a coupled exchange with luminal UMP. Using the same experimental approach to detect translocation of UDP-glucose into the lumen of RER vesicles, we were unable to detect transport of GDP-mannose. Incubation of leaky vesicles with GDP-mannose resulted in stimulation of the amount of mannose transferred to endogenous acceptors, in marked contrast to that observed for UDP-glucose and UDP-N-acetylglucosamine. These results suggest that whereas UDP-glucose is translocated across the RER membrane in vitro, GDP-mannose is not transported. In addition, these results tentatively suggest that there is asymmetric synthesis of the lipid-linked oligosaccharides within the membrane of the RER.

  9. Endoplasmic reticulum stress: key promoter of rosacea pathogenesis.

    PubMed

    Melnik, Bodo C

    2014-12-01

    Recent scientific interest in the pathogenesis of rosacea focuses on abnormally high facial skin levels of cathelicidin and the trypsin-like serine protease kallikrein 5 (KLK5) that cleaves the cathelicidin precursor protein into the bioactive fragment LL-37, which exerts crucial proinflammatory, angiogenic and antimicrobial activities. Furthermore, increased expression of toll-like receptor 2 (TLR2) has been identified in rosacea skin supporting the participation of the innate immune system. Notably, TLRs are expressed on sensory neurons and increase neuronal excitability linking TLR signalling to the transmission of neuroinflammatory responses. It is the intention of this viewpoint to present a unifying concept that links all known clinical trigger factors of rosacea such as UV irradiation, heat, skin irritants and special foods to one converging point: enhanced endoplasmic reticulum (ER) stress that activates the unfolded protein response (UPR). ER stress via upregulation of transcription factor ATF4 increases TLR2 expression, resulting in enhanced production of cathelicidin and KLK5 mediating downstream proinflammatory, angiogenic and antimicrobial signalling. The presented concept identifies rosacea trigger factors as environmental stressors that enhance the skin's ER stress response. Exaggerated cutaneous ER stress that stimulates the TLR2-driven inflammatory response may involve sebocytes, keratinocytes, monocyte-macrophages and sensory cutaneous neurons. Finally, all antirosacea drugs are proposed to attenuate the ER stress signalling cascade at some point. Overstimulated ER stress signalling may have evolutionarily evolved as a compensatory mechanism to balance impaired vitamin D-driven LL-37-mediated antimicrobial defenses due to lower exposure of UV-B irradiation of the northern Celtic population. PMID:25047092

  10. The role of endoplasmic reticulum stress in hippocampal insulin resistance.

    PubMed

    Sims-Robinson, Catrina; Bakeman, Anna; Glasser, Rebecca; Boggs, Janet; Pacut, Crystal; Feldman, Eva L

    2016-03-01

    Metabolic syndrome, which includes hypertension, hyperglycemia, obesity, insulin resistance, and dyslipidemia, has a negative impact on cognitive health. Endoplasmic reticulum (ER) stress is activated during metabolic syndrome, however it is not known which factor associated with metabolic syndrome contributes to this stress. ER stress has been reported to play a role in the development of insulin resistance in peripheral tissues. The role of ER stress in the development of insulin resistance in hippocampal neurons is not known. In the current study, we investigated ER stress in the hippocampus of 3 different mouse models of metabolic syndrome: the C57BL6 mouse on a high fat (HF) diet; apolipoprotein E, leptin, and apolipoprotein B-48 deficient (ApoE 3KO) mice; and the low density lipoprotein receptor, leptin, and apolipoprotein B-48 deficient (LDLR 3KO) mice. We demonstrate that ER stress is activated in the hippocampus of HF mice, and for the first time, in ApoE 3KO mice, but not LDLR 3KO mice. The HF and ApoE 3KO mice are hyperglycemic; however, the LDLR 3KO mice have normal glycemia. This suggests that hyperglycemia may play a role in the activation of ER stress in the hippocampus. Similarly, we also demonstrate that impaired insulin signaling is only present in the HF and ApoE 3KO mice, which suggests that ER stress may play a role in insulin resistance in the hippocampus. To confirm this we pharmacologically induced ER stress with thapsigargin in human hippocampal neurons. We demonstrate for the first time that thapsigargin leads to ER stress and impaired insulin signaling in human hippocampal neurons. Our results may provide a potential mechanism that links metabolic syndrome and cognitive health. PMID:26775176

  11. Ethanol Induces Endoplasmic Reticulum Stress in the Developing Brain

    PubMed Central

    Ke, Zunji; Wang, Xin; Liu, Ying; Fan, Zhiqin; Chen, Gang; Xu, Mei; Bower, Kimberley A.; Frank, Jacqueline A.; Li, Mingtao; Fang, Shengyun; Shi, Xianglin; Luo, Jia

    2016-01-01

    Background Ethanol exposure during brain development causes profound damages to the central nervous system (CNS). The underlying cellular/molecular mechanisms remain unclear. The endoplasmic reticulum (ER) is involved in posttranslational protein processing and transport. The accumulation of unfolded or misfolded proteins in the ER lumen triggers ER stress, which is characterized by translational attenuation, synthesis of ER chaperone proteins, and activation of transcription factors. Sustained ER stress ultimately leads to cell death. ER stress is implicated in various neurodegenerative processes. Methods Using a third trimester equivalent mouse model of ethanol exposure, we tested the hypothesis that ethanol induces ER stress in the developing brain. Seven-day-old C57BL/6 mice were acutely exposed to ethanol by subcutaneous injection and the expression of ER stress-inducible proteins (ERSIPs) and signaling pathways associated with ER stress were examined. Results Ethanol exposure significantly increased the expression of ERSIPs and activated signaling pathways associated with ER stress; these include ATF6, CHOP/GADD153, GRP78, and mesencephalic astrocyte-derived neurotrophic factor as well as the phosphorylation of IRE1α, eIF2α, PERK, and PKR. The ethanol-induced increase in ERSIPs occurred within 4 hours of ethanol injection, and levels of some ERSIPs remained elevated after 24 hours of ethanol exposure. Ethanol-induced increase in phosphorylated eIF2α, caspase-12, and CHOP was distributed in neurons of specific areas of the cerebral cortex, hippocampus, and thalamus. Conclusions Our finding indicates that ethanol induces ER stress in immature neurons, providing novel insight into ethanol’s detrimental effect on the developing CNS. PMID:21599712

  12. Targeted induction of endoplasmic reticulum stress induces cartilage pathology.

    PubMed

    Rajpar, M Helen; McDermott, Ben; Kung, Louise; Eardley, Rachel; Knowles, Lynette; Heeran, Mel; Thornton, David J; Wilson, Richard; Bateman, John F; Poulsom, Richard; Arvan, Peter; Kadler, Karl E; Briggs, Michael D; Boot-Handford, Raymond P

    2009-10-01

    Pathologies caused by mutations in extracellular matrix proteins are generally considered to result from the synthesis of extracellular matrices that are defective. Mutations in type X collagen cause metaphyseal chondrodysplasia type Schmid (MCDS), a disorder characterised by dwarfism and an expanded growth plate hypertrophic zone. We generated a knock-in mouse model of an MCDS-causing mutation (COL10A1 p.Asn617Lys) to investigate pathogenic mechanisms linking genotype and phenotype. Mice expressing the collagen X mutation had shortened limbs and an expanded hypertrophic zone. Chondrocytes in the hypertrophic zone exhibited endoplasmic reticulum (ER) stress and a robust unfolded protein response (UPR) due to intracellular retention of mutant protein. Hypertrophic chondrocyte differentiation and osteoclast recruitment were significantly reduced indicating that the hypertrophic zone was expanded due to a decreased rate of VEGF-mediated vascular invasion of the growth plate. To test directly the role of ER stress and UPR in generating the MCDS phenotype, we produced transgenic mouse lines that used the collagen X promoter to drive expression of an ER stress-inducing protein (the cog mutant of thyroglobulin) in hypertrophic chondrocytes. The hypertrophic chondrocytes in this mouse exhibited ER stress with a characteristic UPR response. In addition, the hypertrophic zone was expanded, gene expression patterns were disrupted, osteoclast recruitment to the vascular invasion front was reduced, and long bone growth decreased. Our data demonstrate that triggering ER stress per se in hypertrophic chondrocytes is sufficient to induce the essential features of the cartilage pathology associated with MCDS and confirm that ER stress is a central pathogenic factor in the disease mechanism. These findings support the contention that ER stress may play a direct role in the pathogenesis of many connective tissue disorders associated with the expression of mutant extracellular matrix

  13. Pael receptor, endoplasmic reticulum stress, and Parkinson's disease.

    PubMed

    Takahashi, Ryosuke; Imai, Yuzuru

    2003-10-01

    Autosomal recessive juvenile parkinsonism (AR-JP) is caused by mutations of the parkin gene. Parkin is an E3 ubiquitin ligase that specifically recognizes its substrate protein, promoting its ubiquitination and subsequent degradation. Accordingly, we hypothesized that AR-JP may be caused by accumulation of an unidentified neurotoxic protein, which is a substrate of parkin. Based on this hypothesis, we cloned parkin-binding protein using a yeast two-hybrid system and identified a putative G protein-coupled receptor protein,which we named the Pael receptor (Pael-R). When overexpressed in cells, this receptor became unfolded, insoluble, and ubiquitinated. Accumulation of the insoluble Pael-R subsequently led to endoplasmic reticulum (ER) stress-induced cell death. Parkin specifically ubiquitinates the unfolded Pael-R and promotes its degradation, resulting in suppression of cell death induced by the accumulation of unfolded Pael-R. Moreover, insoluble Pael-R accumulates in the brains of AR-JP patients. It is highly expressed by the dopaminergic neurons of the substantia nigra, strongly suggesting that accumulation of unfolded Pael-R may lead to selective death of dopaminergic neurons in AR-JP.Recently, we identified Hsp70 and its co-chaperone CHIP as novel parkin-binding partners. We found that CHIP enhanced parkinmediated ubiquitination of Pael-R. In concert with Hsp70, CHIP also enhanced the ability of parkin to inhibit cell death induced by Pael-R, indicating that CHIP and Hsp70 are both co-factors of parkin. PMID:14579121

  14. Cortisol promotes endoplasmic glucose production via pyridine nucleotide redox.

    PubMed

    Wang, Zengmin; Mick, Gail J; Xie, Rongrong; Wang, Xudong; Xie, Xuemei; Li, Guimei; McCormick, Kenneth L

    2016-04-01

    Both increased adrenal and peripheral cortisol production, the latter governed by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), contribute to the maintenance of fasting blood glucose. In the endoplasmic reticulum (ER), the pyridine nucleotide redox state (NADP/NADPH) is dictated by the concentration of glucose-6-phosphate (G6P) and the coordinated activities of two enzymes, hexose-6-phosphate dehydrogenase (H6PDH) and 11β-HSD1. However, luminal G6P may similarly serve as a substrate for hepatic glucose-6-phophatase (G6Pase). A tacit belief is that the G6P pool in the ER is equally accessible to both H6PDH and G6Pase. Based on our inhibition studies and kinetic analysis in isolated rat liver microsomes, these two aforesaid luminal enzymes do share the G6P pool in the ER, but not equally. Based on the kinetic modeling of G6P flux, the ER transporter for G6P (T1) preferentially delivers this substrate to G6Pase; hence, the luminal enzymes do not share G6P equally. Moreover, cortisol, acting through 11β-HSD1, begets a more reduced pyridine redox ratio. By altering this luminal redox ratio, G6P flux through H6PDH is restrained, allowing more G6P for the competing enzyme G6Pase. And, at low G6P concentrations in the ER lumen, which occur during fasting, this acute cortisol-induced redox adjustment promotes glucose production. This reproducible cortisol-driven mechanism has been heretofore unrecognized. PMID:26860459

  15. Restoring medical professionalism.

    PubMed

    Bernat, James L

    2012-08-21

    The essence of medical professionalism is placing dedication to the welfare of patients above physicians' personal or proprietary interests. Medicine has become deprofessionalized as a consequence of socioeconomic factors leading to increasing commercialization and perverse financial incentives converting it into a business, the presence of unmanaged conflicts of interest, challenges to medical authority by insurance companies and the consumerism movement, and by gradual changes in the attitudes of physicians. Organized medicine has responded by making explicit its standards of professionalism and its dedication to preserving them. Medical educators have studied the means to develop professional attitudes and behaviors among medical students and residents. Modeling the characteristics of professional behavior by virtuous physicians remains the most effective method to instill professional behaviors in trainees. Restoring professionalism may be abetted by changes in physicians' financial incentives through innovative models of health care delivery, by physicians reducing their conflicts of interest, and by medical societies rejecting a guild identity. PMID:22915177

  16. Restorative Justice in Children.

    PubMed

    Riedl, Katrin; Jensen, Keith; Call, Josep; Tomasello, Michael

    2015-06-29

    An important, and perhaps uniquely human, mechanism for maintaining cooperation against free riders is third-party punishment. Our closest living relatives, chimpanzees, will not punish third parties even though they will do so when personally affected. Until recently, little attention has been paid to how punishment and a sense of justice develop in children. Children respond to norm violations. They are more likely to share with a puppet that helped another individual as opposed to one who behaved harmfully, and they show a preference for seeing a harmful doll rather than a victim punished. By 6 years of age, children will pay a cost to punish fictional and real peers, and the threat of punishment will lead preschoolers to behave more generously. However, little is known about what motivates a sense of justice in children. We gave 3- and 5-year-old children--the youngest ages yet tested--the opportunity to remove items and prevent a puppet from gaining a reward for second- and third-party violations (experiment 1), and we gave 3-year-olds the opportunity to restore items (experiment 2). Children were as likely to engage in third-party interventions as they were when personally affected, yet they did not discriminate among the different sources of harm for the victim. When given a range of options, 3-year-olds chose restoration over removal. It appears that a sense of justice centered on harm caused to victims emerges early in childhood and highlights the value of third-party interventions for human cooperation. PMID:26096976

  17. 15 CFR 990.56 - Restoration selection-use of a Regional Restoration Plan or existing restoration project.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Restoration selection-use of a..., DEPARTMENT OF COMMERCE OIL POLLUTION ACT REGULATIONS NATURAL RESOURCE DAMAGE ASSESSMENTS Restoration Planning Phase § 990.56 Restoration selection—use of a Regional Restoration Plan or existing restoration...

  18. 15 CFR 990.56 - Restoration selection-use of a Regional Restoration Plan or existing restoration project.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Restoration selection-use of a..., DEPARTMENT OF COMMERCE OIL POLLUTION ACT REGULATIONS NATURAL RESOURCE DAMAGE ASSESSMENTS Restoration Planning Phase § 990.56 Restoration selection—use of a Regional Restoration Plan or existing restoration...

  19. 15 CFR 990.56 - Restoration selection-use of a Regional Restoration Plan or existing restoration project.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Restoration selection-use of a..., DEPARTMENT OF COMMERCE OIL POLLUTION ACT REGULATIONS NATURAL RESOURCE DAMAGE ASSESSMENTS Restoration Planning Phase § 990.56 Restoration selection—use of a Regional Restoration Plan or existing restoration...

  20. 15 CFR 990.56 - Restoration selection-use of a Regional Restoration Plan or existing restoration project.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Restoration selection-use of a..., DEPARTMENT OF COMMERCE OIL POLLUTION ACT REGULATIONS NATURAL RESOURCE DAMAGE ASSESSMENTS Restoration Planning Phase § 990.56 Restoration selection—use of a Regional Restoration Plan or existing restoration...

  1. 15 CFR 990.56 - Restoration selection-use of a Regional Restoration Plan or existing restoration project.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Restoration selection-use of a..., DEPARTMENT OF COMMERCE OIL POLLUTION ACT REGULATIONS NATURAL RESOURCE DAMAGE ASSESSMENTS Restoration Planning Phase § 990.56 Restoration selection—use of a Regional Restoration Plan or existing restoration...

  2. Nodal endoplasmic reticulum, a specialized form of endoplasmic reticulum found in gravity-sensing root tip columella cells

    NASA Technical Reports Server (NTRS)

    Zheng, H. Q.; Staehelin, L. A.

    2001-01-01

    The endoplasmic reticulum (ER) of columella root cap cells has been postulated to play a role in gravity sensing. We have re-examined the ultrastructure of columella cells in tobacco (Nicotiana tabacum) root tips preserved by high-pressure freezing/freeze-substitution techniques to gain more precise information about the organization of the ER in such cells. The most notable findings are: the identification of a specialized form of ER, termed "nodal ER," which is found exclusively in columella cells; the demonstration that the bulk of the ER is organized in the form of a tubular network that is confined to a peripheral layer under the plasma membrane; and the discovery that this ER-rich peripheral region excludes Golgi stacks, vacuoles, and amyloplasts but not mitochondria. Nodal ER domains consist of an approximately 100-nm-diameter central rod composed of oblong subunits to which usually seven sheets of rough ER are attached along their margins. These domains form patches at the interface between the peripheral ER network and the ER-free central region of the cells, and they occupy defined positions within central and flanking columella cells. Over one-half of the nodal ER domains are located along the outer tangential walls of the flanking cells. Cytochalasin D and latrunculin A cause an increase in size and a decrease in numbers of nodal ER domains. We postulate that the nodal ER membranes locally modulate the gravisensing signals produced by the sedimenting amyloplasts, and that the confinement of all ER membranes to the cell periphery serves to enhance the sedimentability of the amyloplasts in the central region of columella cells.

  3. The deadly connection between endoplasmic reticulum, Ca2+, protein synthesis, and the endoplasmic reticulum stress response in malignant glioma cells

    PubMed Central

    Johnson, Guyla G.; White, Misti C.; Wu, Jian-He; Vallejo, Matthew; Grimaldi, Maurizio

    2014-01-01

    Background The endoplasmic reticulum (ER) is involved in Ca2+ signaling and protein processing. Accumulation of unfolded proteins following ER Ca2+ depletion triggers the ER stress response (ERSR), which facilitates protein folding and removal of damaged proteins and can induce cell death. Unfolded proteins bind to chaperones, such as the glucose-regulated protein (GRP)78 and cause the release of GRP78-repressed proteins executing ERSR. Methods Several glioma cell lines and primary astrocytes were used to analyze ERSR using standard western blots, reverse transcription–PCR, viability assays, and single cell Ca2+ imaging. Results ERSR induction with thapsigargin results in a more intense ERSR associated with a larger loss of ER Ca2+, activation of ER-associated caspases (4/12) and caspase 3, and a higher rate of malignant glioma cell death than in normal glial cells. Malignant glioma cells have higher levels of protein synthesis and expression of the translocon (a component of the ribosomal complex, guiding protein entry in the ER), the activity of which is associated with the loss of ER Ca2+. Our experiments confirm increased expression of the translocon in malignant glioma cells. In addition, blockade of the ribosome-translocon complex with agents differently affecting translocon Ca2+ permeability causes opposite effects on ERSR deployment and death of malignant glioma cells. Conclusions Excessive ER Ca2+ loss due to translocon activity appears to be responsible for the enhancement of ERSR, leading to the death of glioma cells. The results reveal a characteristic of malignant glioma cells that could be exploited to develop new therapeutic strategies to treat incurable glial malignancies. PMID:24569545

  4. PARM-1 Is an Endoplasmic Reticulum Molecule Involved in Endoplasmic Reticulum Stress-Induced Apoptosis in Rat Cardiac Myocytes

    PubMed Central

    Isodono, Koji; Takahashi, Tomosaburo; Imoto, Hiroko; Nakanishi, Naohiko; Ogata, Takehiro; Asada, Satoshi; Adachi, Atsuo; Ueyama, Tomomi; Oh, Hidemasa; Matsubara, Hiroaki

    2010-01-01

    To identify novel transmembrane and secretory molecules expressed in cardiac myocytes, signal sequence trap screening was performed in rat neonatal cardiac myocytes. One of the molecules identified was a transmembrane protein, prostatic androgen repressed message-1 (PARM-1). While PARM-1 has been identified as a gene induced in prostate in response to castration, its function is largely unknown. Our expression analysis revealed that PARM-1 was specifically expressed in hearts and skeletal muscles, and in the heart, cardiac myocytes, but not non-myocytes expressed PARM-1. Immunofluorescent staining showed that PARM-1 was predominantly localized in endoplasmic reticulum (ER). In Dahl salt-sensitive rats, high-salt diet resulted in hypertension, cardiac hypertrophy and subsequent heart failure, and significantly stimulated PARM-1 expression in the hearts, with a concomitant increase in ER stress markers such as GRP78 and CHOP. In cultured cardiac myocytes, PARM-1 expression was stimulated by proinflammatory cytokines, but not by hypertrophic stimuli. A marked increase in PARM-1 expression was observed in response to ER stress inducers such as thapsigargin and tunicamycin, which also induced apoptotic cell death. Silencing PARM-1 expression by siRNAs enhanced apoptotic response in cardiac myocytes to ER stresses. PARM-1 silencing also repressed expression of PERK and ATF6, and augmented expression of CHOP without affecting IRE-1 expression and JNK and Caspase-12 activation. Thus, PARM-1 expression is induced by ER stress, which plays a protective role in cardiac myocytes through regulating PERK, ATF6 and CHOP expression. These results suggested that PARM-1 is a novel ER transmembrane molecule involved in cardiac remodeling in hypertensive heart disease. PMID:20305782

  5. Filamin depletion blocks endoplasmic spreading and destabilizes force-bearing adhesions.

    PubMed

    Lynch, Christopher D; Gauthier, Nils C; Biais, Nicolas; Lazar, Andre M; Roca-Cusachs, Pere; Yu, Cheng-Han; Sheetz, Michael P

    2011-04-15

    Cell motility is an essential process that depends on a coherent, cross-linked actin cytoskeleton that physically coordinates the actions of numerous structural and signaling molecules. The actin cross-linking protein, filamin (Fln), has been implicated in the support of three-dimensional cortical actin networks capable of both maintaining cellular integrity and withstanding large forces. Although numerous studies have examined cells lacking one of the multiple Fln isoforms, compensatory mechanisms can mask novel phenotypes only observable by further Fln depletion. Indeed, shRNA-mediated knockdown of FlnA in FlnB(-/-) mouse embryonic fibroblasts (MEFs) causes a novel endoplasmic spreading deficiency as detected by endoplasmic reticulum markers. Microtubule (MT) extension rates are also decreased but not by peripheral actin flow, because this is also decreased in the Fln-depleted system. Additionally, Fln-depleted MEFs exhibit decreased adhesion stability that appears in increased ruffling of the cell edge, reduced adhesion size, transient traction forces, and decreased stress fibers. FlnA(-/-) MEFs, but not FlnB(-/-) MEFs, also show a moderate defect in endoplasm spreading, characterized by initial extension followed by abrupt retractions and stress fiber fracture. FlnA localizes to actin linkages surrounding the endoplasm, adhesions, and stress fibers. Thus we suggest that Flns have a major role in the maintenance of actin-based mechanical linkages that enable endoplasmic spreading and MT extension as well as sustained traction forces and mature focal adhesions. PMID:21325628

  6. Restorative Justice in School Communities.

    ERIC Educational Resources Information Center

    Karp, David R.; Breslin, Beau

    2001-01-01

    Explores the recent implementation of restorative justice practices in Minnesota, Colorado, and Pennsylvania school communities, examining how their approaches can address substance abuse problems and offer alternatives to zero-tolerance policies. The three programs are committed to the idea that restoration is a more appropriate educational tool…

  7. Restorative Nurse Assistant. Instructor Guide.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This curriculum material covers the basic orientation and necessary skills which would enable the practicing Certified Nurse Assistant to be trained as a Restorative Nurse Assistant. The shift in emphasis from maintenance care to restorative care in the long-term care setting has created a need for trained paraprofessionals who are competent in…

  8. Restorative biological processes and health

    PubMed Central

    Robles, Theodore F.; Carroll, Judith E.

    2011-01-01

    Research on psychological influences on physiology primarily focuses on biological responses during stressful challenges, and how those responses can become dysregulated with prolonged or repeated exposure to stressful circumstances. At the same time, humans spend considerable time recovering from those challenges, and a host of biological processes involved in restoration and repair take place during normal, non-stressed activities. We review restorative biological processes and evidence for links between psychosocial factors and several restorative processes including sleep, wound healing, antioxidant production, DNA repair, and telomerase function. Across these biological processes, a growing body of evidence suggests that experiencing negative emotional states, including acute and chronic stress, depressive symptoms, and individual differences in negative affectivity and hostility, can influence these restorative processes. This review calls attention to restorative processes as fruitful mechanisms and outcomes for future biobehavioral research. PMID:21927619

  9. The Role of Endoplasmic Reticulum Stress and Unfolded Protein Response in Atherosclerosis

    PubMed Central

    Ivanova, Ekaterina A.; Orekhov, Alexander N.

    2016-01-01

    Pathogenesis of atherosclerosis is a complex process involving several metabolic and signalling pathways. Accumulating evidence demonstrates that endoplasmic reticulum stress and associated apoptosis can be induced in the pathological conditions of atherosclerotic lesions and contribute to the disease progression. Notably, they may play a role in the development of vulnerable plaques that induce thrombosis and are therefore especially dangerous. Endoplasmic reticulum stress response is regulated by several signaling mechanisms that involve protein kinases and transcription factors. Some of these molecules can be regarded as potential therapeutic targets to improve treatment of atherosclerosis. In this review we will discuss the role of endoplasmic reticulum stress and apoptosis in atherosclerosis development in different cell types and summarize the current knowledge on potential therapeutic agents targeting molecules regulating these pathways and their possible use for anti-atherosclerotic therapy. PMID:26840309

  10. [Role of endoplasmic reticulum-plasma membrane junctions in intracellular calcium homeostasis and cardiovascular disease].

    PubMed

    Zhao, Ming; Jia, Hang-Huan; Xu, Man; Yu, Xiao-Jiang; Liu, Long-Zhu; Zang, Wei-Jin

    2016-08-25

    Calcium overload is one of the important mechanisms of cardiovascular disease. Endoplasmic reticulum is an important organelle which regulates intracellular calcium homeostasis by uptake, storage and mobilization of calcium. So it plays a critical role in regulation of intracellular calcium homeostasis. Endoplasmic reticulum, which is widely distributed in cytoplasm, has a large number of membrane junction sites. Recent studies have reported that these junction sites are distributed on plasma membrane and organelle membranes (mitochondria, lysosomes, Golgi apparatus, etc.), separately. They could form complexes to regulate calcium transport. In this review, we briefly outlined the recent research progresses of endoplasmic reticulum-plasma membrane junctions in intracellular calcium homeostasis and cardiovascular disease, which may offer a new strategy for prevention and treatment of cardiovascular disease. PMID:27546511

  11. "I Was Dead Restorative Today": From Restorative Justice to Restorative Approaches in School

    ERIC Educational Resources Information Center

    McCluskey, G.; Lloyd, G.; Stead, J.; Kane, J.; Riddell, S.; Weedon, E.

    2008-01-01

    This paper explores definitions and understandings of restorative practices in education. It offers a critique of current theoretical models of restorative justice originally derived from the criminal justice system and now becoming popular in educational settings. It questions the appropriateness of these concepts as they are being introduced to…

  12. Pins for direct restorations.

    PubMed

    Papa, J; Wilson, P R; Tyas, M J

    1993-10-01

    Self-threading dentine pins permit the retention of large complex direct restorations but there are problems associated with their placement. Strain and crazing of dentine following pin insertion and pulpal and lateral perforations are common. Perforations can be avoided by operator awareness of tooth morphology. Strain and crazing has been found to be minimized by unscrewing the pin slightly after insertion, by using pins with a tap thread, and by using the smallest pin possible. Twist drill form and dulling affects the pin channel shape which in turn influences pin seating. A lack of standardization of pin and twist drill diameter and length has been implicated as the cause of poor pin retention. Manufacturers, in an attempt to standardize the depth of penetration of pins, have incorporated shoulders at the midpoint of the pin, which has met with varying success. More research in the area of limiting pin penetration is necessary, as well as attempts to improve the quality control of pin and twist drill manufacture. PMID:8227686

  13. Sequential NO production by mitochondria and endoplasmic reticulum during induced apoptosis.

    PubMed

    Bustamante, Juanita; Bersier, Geraldine; Badin, Romina Aron; Cymeryng, Cora; Parodi, Armando; Boveris, Alberto

    2002-05-01

    Early stages of rat thymocyte apoptosis measured as annexin-V positive events and induced by methylprednisolone (MPS), etoposide, and thapsigargin, showed a sequential increase in nitric oxide (NO) production by mitochondrial and endoplasmic reticulum membranes. Thapsigargin induced the highest NO production, a sevenfold increase as compared with untreated thymocytes, in mitochondrial and microsomal membranes. MPS and etoposide were equally effective in increasing NO production by mitochondrial membranes by a factor of 4-5, with only a slight increase in NO production by endoplasmic reticulum membranes. Western blot analysis of both types of membrane indicated that a nitric oxide synthase (NOS) isoenzyme is present in mitochondrial membranes and reacts with antibodies to i-NOS (type II), while reactivity to antibodies to e-NOS (type III) was restricted to endoplasmic reticulum. The participation of endoplasmic reticulum during apoptosis was further determined by alterations in UDP-Glucosyltransferase (UDP-GT) and NADPH cytochrome P450 reductase. Increased UDP-GT activity was observed after thapsigargin treatment, and no changes were found after treatment with etoposide or MPS. NADPH cytochrome P450 reductase activity markedly decreased during apoptosis, being stronger after thapsigargin treatment. The latest stage of the apoptotic process was measured by caspase activities. Caspase 3 activity was markedly increased by the three apoptosis inducers; caspase 6 was only activated by MPS and etoposide, while caspase 8 was not activated by any of these inducers. It is clear that mitochondria and endoplasmic reticulum are involved in thapsigargin induced thymocyte apoptosis. Meanwhile, other thymocyte apoptotic pathways, such as those induced by MPS or etoposide, seem to centrally involve mitochondria but not endoplasmic reticulum. PMID:12009851

  14. CRITERIA FOR PRIORITIZATION OF ECOSYSTEM RESTORATION

    EPA Science Inventory

    Prioritization of ecosystem restoration measures is important for state and federal agencies, watershed coalitions, science advisory boards and other groups responsible for decision-making regarding restoration activities. Although widely utilized, the term "restoration prioriti...

  15. The density of the cell sap and endoplasm of Nitellopsis and Chara

    NASA Technical Reports Server (NTRS)

    Wayne, R.; Staves, M. P.

    1991-01-01

    We measured the densities of the cell sap, endoplasm and cell wall of Nitellopsis obtusa and Chara corallina using interference microscopy, refractometry, immersion refractometry, equilibrium sedimentation and chemical microanalysis techniques. These values are important for the determination of many rheological properties of the cytoplasm as well as for understanding buoyancy regulation, dispersal mechanisms and how cells respond to gravity. The average densities of the cell sap, endoplasm and cell wall are 1,006.9, 1,016.7 and 1,371 kg m-3 for Nitellopsis and 1,005.0, 1,013.9, and 1,355.3 kg m-3 for Chara.

  16. Fernald restoration: ecologists and engineers integrate restoration and cleanup

    SciTech Connect

    Woods, Eric; Homer, John

    2002-07-15

    As cleanup workers excavate pits and tear down buildings at the Fernald site in southwest Ohio, site ecologists are working side-by-side to create thriving wetlands and develop the early stages of forest, prairie, and savanna ecosystems to restore natural resources that were impacted by years of site operations. In 1998, the U.S. Department of Energy-Fernald Office (DOE-FN) and its cleanup contractor, Fluor Fernald, Inc., initiated several ecological restoration projects in perimeter areas of the site (e.g., areas not used for or impacted by uranium processing or waste management). The projects are part of Fernald's final land use plan to restore natural resources over 904 acres of the 1,050-acre site. Pete Yerace, the DOE-FN Natural Resource Trustee representative is working with the Fernald Natural Resource Trustees in an oversight role to resolve the state of Ohio's 1986 claim against DOE for injuries to natural resources. Fluor Fernald, Inc., and DOE-FN developed the ''Natural Resource Restoration Plan'', which outlines 15 major restoration projects for the site and will restore injured natural resources at the site. In general, Fernald's plan includes grading to maximize the formation of wetlands or expanded floodplain, amending soil where topsoil has been removed during excavation, and establishing native vegetation throughout the site. Today, with cleanup over 35 percent complete and site closure targeted for 2006, Fernald is entering a new phase of restoration that involves heavily remediated areas. By working closely with engineers and cleanup crews, site ecologists can take advantage of remediation fieldwork (e.g., convert an excavated depression into a wetland) and avoid unnecessary costs and duplication. This collaboration has also created opportunities for relatively simple and inexpensive restoration of areas that were discovered during ongoing remediation. To ensure the survival of the plant material in heavily disturbed soils, Fernald will use

  17. Biological restorations using tooth fragments.

    PubMed

    Busato, A L; Loguercio, A D; Barbosa, A N; Sanseverino, M do C; Macedo, R P; Baldissera, R A

    1998-02-01

    A "biological" restoration technique using dental fragments and adhesive materials is described. These fragments were obtained from extracted human teeth which had been previously sterilized and stored in a tooth bank. The advantages are: the use of extracted teeth as restorative material, esthetics, and treatment cost. The positive sensation of having back the missing tooth was the most mentioned comment among patients. The disadvantages are: the difficulty of obtaining teeth with the needed characteristics, problems of making an indirect restoration, matching the original color, and the non-acceptance by some patients who consider it strange to have other people's teeth placed in their mouths. PMID:9823086

  18. Before and After (Dental Restorations)

    MedlinePlus

    FAQs | Common Questions Why see a prosthodontist? Dentures Dental Implants Board Certification Improving Your Smile Conditions & Symptoms | ... of Care in the Restoration and Replacement of Teeth This site brought to you by: American College ...

  19. [Combined orthodontic and restorative treatment].

    PubMed

    Kuijpers, M A R; Loomans, B

    2015-11-01

    In patients with agenesis or enamel anomalies in anterior teeth combined orthodontic and restorative treatment is often necessary to achieve an optimal aesthetic result. How both can best be achieved, but also how to maintain the result, requires communication between the dentist and the orthodontist. The orthodontic treatment plan needs to be established in cooperation with the dentist who will carry out the restorative treatment while the patient is at a young age. Since with these young patients, who are still growing craniofacially and whose teeth are still developing, possible future restorative and/or orthodontic treatment, as well as the means of orthodontic retention, need to be included in the treatment plan. In cleft palate patients, it is also important that methods of orthodontic retention of maxillary arch width are given timely attention in the restorative treatment plan because it is especially vulnerable to relapse. PMID:26568998

  20. Kondolf Diagram for River Restoration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rehabilitation, protection, and management of riverine backwaters (floodplain aquatic habitats that are seasonally or periodically connected to the main channel) are becoming increasingly common. General criteria for selecting restoration goals and evaluating alternative designs are lacking. An app...

  1. Esthetic restoration of primary incisors.

    PubMed

    Carranza, F; García-Godoy, F

    1999-04-01

    A simple and esthetic technique for restoring cariously involved primary maxillary incisors is described. The technique includes mini-pins, a preformed celluloid crown and resin-based composite. PMID:10477982

  2. Basic research for environmental restoration

    SciTech Connect

    Not Available

    1990-12-01

    The Department of Energy (DOE) is in the midst of a major environmental restoration effort to reduce the health and environmental risks resulting from past waste management and disposal practices at DOE sites. This report describes research needs in environmental restoration and complements a previously published document, DOE/ER-0419, Evaluation of Mid-to-Long Term Basic Research for Environmental Restoration. Basic research needs have been grouped into five major categories patterned after those identified in DOE/ER-0419: (1) environmental transport and transformations; (2) advanced sampling, characterization, and monitoring methods; (3) new remediation technologies; (4) performance assessment; and (5) health and environmental effects. In addition to basic research, this document deals with education and training needs for environmental restoration. 2 figs., 6 tabs.

  3. Optimum constrained image restoration filters

    NASA Technical Reports Server (NTRS)

    Riemer, T. E.; Mcgillem, C. D.

    1974-01-01

    The filter was developed in Hilbert space by minimizing the radius of gyration of the overall or composite system point-spread function subject to constraints on the radius of gyration of the restoration filter point-spread function, the total noise power in the restored image, and the shape of the composite system frequency spectrum. An iterative technique is introduced which alters the shape of the optimum composite system point-spread function, producing a suboptimal restoration filter which suppresses undesirable secondary oscillations. Finally this technique is applied to multispectral scanner data obtained from the Earth Resources Technology Satellite to provide resolution enhancement. An experimental approach to the problems involving estimation of the effective scanner aperture and matching the ERTS data to available restoration functions is presented.

  4. Temperature-compensating dc restorer

    NASA Technical Reports Server (NTRS)

    Thomas, H. M.

    1980-01-01

    Circuit provides stable references restoration in addition to temperature compensation. Possible TV monitor applications include traffic and security surveillance systems, where cameras are subject to environmental extremes, as in unheated warehouses or outdoors.

  5. Intraoral repair of cosmetic restorations.

    PubMed

    Denehy, G; Bouschlicher, M; Vargas, M

    1998-10-01

    The longevity of porcelain and composite resin restorations can often be prolonged by using sound principles, up-to-date materials, and judicious attention to repair when fracture problems arise. Careful case selection and correct usage of surface treatment agents, followed by the use of a quality bonding system and restorative materials, can result in a repair that exhibits excellent retention and natural color blending. This article outlines procedures and materials to repair both resin composite and porcelain intraorally. PMID:9891653

  6. ALUMINUM ALTERS CALCIUM TRANSPORT IN PLASMA MEMBRANE AND ENDOPLASMIC RETICULUM FROM RAT BRAIN

    EPA Science Inventory

    Calcium is actively transported into intracellular organelles and out of the cytoplasm by Ca2+/Mg2+-ATPases located in the endoplasmic reticulum and plasma membranes. he effects of aluminum on calcium transport were examined in the adult rat brain. 5Ca-uptake was examined in micr...

  7. Bright fluorogenic squaraines with tuned cell entry for selective imaging of plasma membrane vs. endoplasmic reticulum.

    PubMed

    Collot, Mayeul; Kreder, Rémy; Tatarets, Anatoliy L; Patsenker, Leonid D; Mely, Yves; Klymchenko, Andrey S

    2015-12-14

    A rational design of squaraine dyes with lipophilic and zwitterionic groups tunes cell entry, allowing for selective far-red/near-infrared imaging of plasma membrane vs. endoplasmic reticulum. They exhibit up to 110-fold fluorescence enhancement in biomembranes and enable cellular imaging at 1 nM concentration, which make them the brightest membrane probes to date. PMID:26455447

  8. Chlorhexidine-induced apoptosis or necrosis in L929 fibroblasts: A role for endoplasmic reticulum stress

    SciTech Connect

    Faria, Gisele; Cardoso, Cristina R.B.; Larson, Roy E.; Silva, Joao S.; Rossi, Marcos A.

    2009-01-15

    Chlorhexidine (CHX), widely used as antiseptic and therapeutic agent in medicine and dentistry, has a toxic effect both in vivo and in vitro. The intrinsic mechanism underlying CHX-induced cytotoxicity in eukaryotic cells is, however, still unknown. A recent study from our laboratory has suggested that CHX may induce death in cultured L929 fibroblasts via endoplasmic reticulum (ER) stress. This hypothesis was further tested by means of light and electron microscopy, quantification of apoptosis and necrosis by flow cytometry, fluorescence visualization of the cytoskeleton and endoplasmic reticulum, and evaluation of the expression of 78-kDa glucose-regulated protein 78 (Grp78), a marker of activation of the unfolded protein response (UPR) in cultured L929 fibroblasts. Our finding showing increased Grp 78 expression in CHX-treated cells and the results of flow cytometry, cytoskeleton and endoplasmic reticulum fluorescence visualization, and scanning and transmission electron microscopy allowed us to suggest that CHX elicits accumulation of proteins in the endoplasmic reticulum, which causes ER overload, resulting in ER stress and cell death either by necrosis or apoptosis. It must be pointed out, however, that this does not necessarily mean that ER stress is the only way that CHX kills L929 fibroblasts, but rather that ER stress is an important target or indicator of cell death induced by this drug.

  9. Probing nucleotide-binding effects on backbone dynamics and folding of the nucleotide-binding domain of the sarcoplasmic/endoplasmic-reticulum Ca2+-ATPase.

    PubMed Central

    Abu-Abed, Mona; Millet, Oscar; MacLennan, David H; Ikura, Mitsuhiko

    2004-01-01

    In muscle cells, SERCA (sarcoplasmic/endoplasmic-reticulum Ca2+-ATPase) plays a key role in restoring cytoplasmic Ca2+ levels to resting concentrations after transient surges caused by excitation-coupling cycles. The mechanism by which Ca2+ is translocated to the lumen of the ER (endoplasmic reticulum) involves major conformational rearrangements among the three cytoplasmic domains: actuator (A), nucleotide-binding (N) and phosphorylation (P) domains; and within the transmembrane Ca2+-binding domain of SERCA. CD, fluorescence spectroscopy and NMR spectroscopy were used in the present study to probe the conformation and stability of the isolated N domain of SERCA (SERCA-N), in the presence and absence of AMP-PNP (adenosine 5'-[beta,gamma-imido]triphosphate). CD and tryptophan fluorescence spectroscopy results established that the effects of nucleotide binding were not readily manifested on the global fold and structural stability of SERCA-N. 15N-backbone-relaxation experiments revealed site-specific changes in backbone dynamics that converge on the central beta-sheet domain. Nucleotide binding produced diverse effects on dynamics, with enhanced mobility observed for Ile369, Cys420, Arg467, Asp568, Phe593 and Gly598, whereas rigidifying effects were found for Ser383, Leu419, Thr484 and Thr532. These results demonstrate that the overall fold and backbone motional properties of SERCA-N remained essentially the same in the presence of AMP-PNP, yet revealing evidence for internal counter-balancing effects on backbone dynamics upon binding the nucleotide, which propagate through the central beta-sheet. PMID:14987197

  10. Attenuation of PKR-like ER Kinase (PERK) Signaling Selectively Controls Endoplasmic Reticulum Stress-induced Inflammation Without Compromising Immunological Responses.

    PubMed

    Guthrie, Lauren N; Abiraman, Kavitha; Plyler, Emily S; Sprenkle, Neil T; Gibson, Sara A; McFarland, Braden C; Rajbhandari, Rajani; Rowse, Amber L; Benveniste, Etty N; Meares, Gordon P

    2016-07-22

    Inflammation and endoplasmic reticulum (ER) stress are associated with many neurological diseases. ER stress is brought on by the accumulation of misfolded proteins in the ER, which leads to activation of the unfolded protein response (UPR), a conserved pathway that transmits signals to restore homeostasis or eliminate the irreparably damaged cell. We provide evidence that inhibition or genetic haploinsufficiency of protein kinase R-like endoplasmic reticulum kinase (PERK) can selectively control inflammation brought on by ER stress without impinging on UPR-dependent survival and adaptive responses or normal immune responses. Using astrocytes lacking one or both alleles of PERK or the PERK inhibitor GSK2606414, we demonstrate that PERK haploinsufficiency or partial inhibition led to reduced ER stress-induced inflammation (IL-6, CCL2, and CCL20 expression) without compromising prosurvival responses. In contrast, complete loss of PERK blocked canonical PERK-dependent UPR genes and promoted apoptosis. Reversal of eIF2α-mediated translational repression using ISRIB potently suppressed PERK-dependent inflammatory gene expression, indicating that the selective modulation of inflammatory gene expression by PERK inhibition may be linked to attenuation of eIF2α phosphorylation and reveals a previously unknown link between translational repression and transcription of inflammatory genes. Additionally, ER-stressed astrocytes can drive an inflammatory M1-like phenotype in microglia, and this can be attenuated with inhibition of PERK. Importantly, targeting PERK neither disrupted normal cytokine signaling in astrocytes or microglia nor impaired macrophage phagocytosis or T cell polarization. Collectively, this work suggests that targeting PERK may provide a means for selective immunoregulation in the context of ER stress without disrupting normal immune function. PMID:27226638

  11. Alteration of the proteostasis network of plant cells promotes the post-endoplasmic reticulum trafficking of recombinant mutant (L444P) human β-glucocerebrosidase

    PubMed Central

    Babajani, Gholamreza; Kermode, Allison R

    2014-01-01

    Gaucher disease is a prevalent lysosomal storage disease characterized by a deficiency in the activity of lysosomal acid β-glucosidase (glucocerebrosidase, GCase, EC 3.2.1.45). One of the most prevalent disease-causing mutations in humans is a L444P missense mutation in the GCase protein, which results in its disrupted folding in the endoplasmic reticulum (ER) and impaired post-ER trafficking. To determine whether the post-ER trafficking of this severely malfolded protein can be restored, we expressed the mutant L444P GCase as a recombinant protein in transgenic tobacco (Nicotiana tabacum L. cv Bright Yellow 2 [BY2]) cells, in which the GCase variant was equipped with a plant signal peptide to allow for secretion upon rescued trafficking out of the ER. The recombinant L444P mutant GCase was retained in the plant endoplasmic reticulum (ER). Kifunensine and Eeyarestatin I, both inhibitors of ER-associated degradation (ERAD), and the proteostasis regulators, celastrol and MG-132, increased the steady-state levels of the mutant protein inside the plant cells and further promoted the post-ER trafficking of L444P GCase, as indicated by endoglycosidase-H sensitivity- and secretion- analyses. Transcript profiling of genes encoding ER-molecular chaperones, ER stress responsive proteins, and cytoplasmic heat shock response proteins, revealed insignificant or only very modest changes in response to the ERAD inhibitors and proteostasis regulators. An exception was the marked response to celastrol which reduced the steady-state levels of cytoplasmic HSP90 transcripts and protein. As HSP90 participates in the targeting of misfolded proteins to the proteasome pathway, its down-modulation in response to celastrol may partly account for the mechanism of improved homeostasis of L444P GCase mediated by this triterpene. PMID:24713615

  12. Acetylcholine ameliorates endoplasmic reticulum stress in endothelial cells after hypoxia/reoxygenation via M3 AChR-AMPK signaling.

    PubMed

    Bi, Xueyuan; He, Xi; Xu, Man; Zhao, Ming; Yu, Xiaojiang; Lu, Xingzhu; Zang, Weijin

    2015-08-01

    Endoplasmic reticulum (ER) stress is associated with various cardiovascular diseases. However, its pathophysiological relevance and the underlying mechanisms in the context of hypoxia/reoxygenation (H/R) in endothelial cells are not fully understood. Previous findings have suggested that acetylcholine (ACh), the major vagal nerve neurotransmitter, protected against cardiomyocyte injury by activating AMP-activated protein kinase (AMPK). This study investigated the role of ER stress in endothelial cells during H/R and explored the beneficial effects of ACh. Our results showed that H/R triggered ER stress and apoptosis in endothelial cells, evidenced by the elevation of glucose-regulated protein 78, cleaved caspase-12 and C/EBP homologous protein expression. ACh significantly decreased ER stress and terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling positive cells and restored ER ultrastructural changes induced by H/R, possibly via protein kinase-like ER kinase and inositol-requiring kinase 1 pathways. Additionally, 4-diphenylacetoxy-N-methylpiperidine methiodide, a type-3 muscarinic ACh receptor (M3 AChR) inhibitor, abolished ACh-mediated increase in AMPK phosphorylation during H/R. Furthermore, M3 AChR or AMPK siRNA abrogated the ACh-elicited the attenuation of ER stress in endothelial cells, indicating that the salutary effects of ACh were likely mediated by M3 AChR-AMPK signaling. Overall, ACh activated AMPK through M3 AChR, thereby inhibited H/R-induced ER stress and apoptosis in endothelial cells. We have suggested for the first time that AMPK may function as an essential intermediate step between M3 AChR stimulation and inhibition of ER stress-associated apoptotic pathway during H/R, which may help to develop novel therapeutic approaches targeting ER stress to prevent or alleviate ischemia/reperfusion injury. PMID:26066647

  13. Anti-diabetic effect of 3-hydroxy-2-naphthoic acid, an endoplasmic reticulum stress-reducing chemical chaperone.

    PubMed

    Park, Sun-Mi; Choi, Jungsook; Nam, Tae-Gyu; Ku, Jin-Mo; Jeong, Kwiwan

    2016-05-15

    Lots of experimental and clinical evidences indicate that chronic exposure to saturated fatty acids and high level of glucose is implicated in insulin resistance, beta cell failure and ultimately type 2 diabetes. In this study, we set up cell-based experimental conditions to induce endoplasmic reticulum (ER) stress and insulin resistance using high concentration of palmitate (PA). Hydroxynaphthoic acids (HNAs) were formerly identified as novel chemical chaperones to resolve ER stress induced by tunicamycin. In this study, we found the compounds have the same suppressive effect on PA-induced ER stress in HepG2 cells. The representing compound, 3-HNA reduced PA-induced phosphorylation of JNK, IKKβ and IRS1 (S307) and restored insulin signaling cascade which involves insulin receptor β, IRS1 and Akt. The insulin sensitizing effect of 3-HNA was confirmed in 3T3-L1 adipocytes, where the compound augmented insulin signaling and glucose transporter 4 (GLUT4) membrane translocation. 3-HNA also protected the pancreatic beta cells from PA-induced apoptosis by reducing ER stress. Upon 3-HNA treatment to ob/ob mice at 150mg/kg/day dosage, the diabetic parameters including glucose tolerance and systemic insulin sensitivity were significantly improved. Postmortem examination showed that 3-HNA markedly reduced ER stress and insulin resistance in the liver tissues and it sensitized insulin signaling in the liver and the skeletal muscle. Our results demonstrated that 3-HNA can sensitize insulin signaling by coping with lipotoxicity-induced ER stress as a chemical chaperone and suggested it holds therapeutic potential for insulin resistance and type 2 diabetes. PMID:26983645

  14. Acetylcholine ameliorates endoplasmic reticulum stress in endothelial cells after hypoxia/reoxygenation via M3 AChR-AMPK signaling

    PubMed Central

    Bi, Xueyuan; He, Xi; Xu, Man; Zhao, Ming; Yu, Xiaojiang; Lu, Xingzhu; Zang, Weijin

    2015-01-01

    Endoplasmic reticulum (ER) stress is associated with various cardiovascular diseases. However, its pathophysiological relevance and the underlying mechanisms in the context of hypoxia/reoxygenation (H/R) in endothelial cells are not fully understood. Previous findings have suggested that acetylcholine (ACh), the major vagal nerve neurotransmitter, protected against cardiomyocyte injury by activating AMP-activated protein kinase (AMPK). This study investigated the role of ER stress in endothelial cells during H/R and explored the beneficial effects of ACh. Our results showed that H/R triggered ER stress and apoptosis in endothelial cells, evidenced by the elevation of glucose-regulated protein 78, cleaved caspase-12 and C/EBP homologous protein expression. ACh significantly decreased ER stress and terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling positive cells and restored ER ultrastructural changes induced by H/R, possibly via protein kinase-like ER kinase and inositol-requiring kinase 1 pathways. Additionally, 4-diphenylacetoxy-N-methylpiperidine methiodide, a type-3 muscarinic ACh receptor (M3 AChR) inhibitor, abolished ACh-mediated increase in AMPK phosphorylation during H/R. Furthermore, M3 AChR or AMPK siRNA abrogated the ACh-elicited the attenuation of ER stress in endothelial cells, indicating that the salutary effects of ACh were likely mediated by M3 AChR-AMPK signaling. Overall, ACh activated AMPK through M3 AChR, thereby inhibited H/R-induced ER stress and apoptosis in endothelial cells. We have suggested for the first time that AMPK may function as an essential intermediate step between M3 AChR stimulation and inhibition of ER stress-associated apoptotic pathway during H/R, which may help to develop novel therapeutic approaches targeting ER stress to prevent or alleviate ischemia/reperfusion injury. PMID:26066647

  15. EBS7 is a plant-specific component of a highly conserved endoplasmic reticulum-associated degradation system in Arabidopsis

    PubMed Central

    Liu, Yidan; Zhang, Congcong; Wang, Dinghe; Su, Wei; Liu, Linchuan; Wang, Muyang; Li, Jianming

    2015-01-01

    Endoplasmic reticulum (ER)-associated degradation (ERAD) is an essential part of an ER-localized protein quality-control system for eliminating terminally misfolded proteins. Recent studies have demonstrated that the ERAD machinery is conserved among yeast, animals, and plants; however, it remains unknown if the plant ERAD system involves plant-specific components. Here we report that the Arabidopsis ethyl methanesulfonate-mutagenized brassinosteroid-insensitive 1 suppressor 7 (EBS7) gene encodes an ER membrane-localized ERAD component that is highly conserved in land plants. Loss-of-function ebs7 mutations prevent ERAD of brassinosteroid insensitive 1-9 (bri1-9) and bri1-5, two ER-retained mutant variants of the cell-surface receptor for brassinosteroids (BRs). As a result, the two mutant receptors accumulate in the ER and consequently leak to the plasma membrane, resulting in the restoration of BR sensitivity and phenotypic suppression of the bri1-9 and bri1-5 mutants. EBS7 accumulates under ER stress, and its mutations lead to hypersensitivity to ER and salt stresses. EBS7 interacts with the ER membrane-anchored ubiquitin ligase Arabidopsis thaliana HMG-CoA reductase degradation 1a (AtHrd1a), one of the central components of the Arabidopsis ERAD machinery, and an ebs7 mutation destabilizes AtHrd1a to reduce polyubiquitination of bri1-9. Taken together, our results uncover a plant-specific component of a plant ERAD pathway and also suggest its likely biochemical function. PMID:26371323

  16. EBS7 is a plant-specific component of a highly conserved endoplasmic reticulum-associated degradation system in Arabidopsis.

    PubMed

    Liu, Yidan; Zhang, Congcong; Wang, Dinghe; Su, Wei; Liu, Linchuan; Wang, Muyang; Li, Jianming

    2015-09-29

    Endoplasmic reticulum (ER)-associated degradation (ERAD) is an essential part of an ER-localized protein quality-control system for eliminating terminally misfolded proteins. Recent studies have demonstrated that the ERAD machinery is conserved among yeast, animals, and plants; however, it remains unknown if the plant ERAD system involves plant-specific components. Here we report that the Arabidopsis ethyl methanesulfonate-mutagenized brassinosteroid-insensitive 1 suppressor 7 (EBS7) gene encodes an ER membrane-localized ERAD component that is highly conserved in land plants. Loss-of-function ebs7 mutations prevent ERAD of brassinosteroid insensitive 1-9 (bri1-9) and bri1-5, two ER-retained mutant variants of the cell-surface receptor for brassinosteroids (BRs). As a result, the two mutant receptors accumulate in the ER and consequently leak to the plasma membrane, resulting in the restoration of BR sensitivity and phenotypic suppression of the bri1-9 and bri1-5 mutants. EBS7 accumulates under ER stress, and its mutations lead to hypersensitivity to ER and salt stresses. EBS7 interacts with the ER membrane-anchored ubiquitin ligase Arabidopsis thaliana HMG-CoA reductase degradation 1a (AtHrd1a), one of the central components of the Arabidopsis ERAD machinery, and an ebs7 mutation destabilizes AtHrd1a to reduce polyubiquitination of bri1-9. Taken together, our results uncover a plant-specific component of a plant ERAD pathway and also suggest its likely biochemical function. PMID:26371323

  17. Environmental Restoration Quality Program Plan. Environmental Restoration Program

    SciTech Connect

    Colley, J.S.

    1992-08-01

    The Martin Marietta Energy Systems, Inc., Environmental Restoration (ER) Program was initially chartered on October 1, 1989, as a ``entral Environmental Restoration Division`` to manage the investigation and remediation of inactive sites and facilities that have been declared surplus and have no further programmatic use. The Energy Systems ER Division was established to support the DOE Oak Ridge Field Office (DOE-OR) consolidated ER Program. The DOE-OR Assistant Manager for Environmental Restoration and Waste Management provides program and budget direction to the Energy Systems ER Program for environmental restoration activities at the sites operated by Energy Systems (Oak Ridge K-25 Site, Oak Ridge National Laboratory, Oak Ridge Y-12 Plant, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant) and at the off-site locations. The Energy Systems ER Division is specifically charged with assessing these sites for potential contamination and managing the cleanup processes. The Energy Systems Environmental Restoration Division was chartered on October 1, 1989, as a central organization to manage the Remedial Action (RA) Program. The purpose of this document is to ensure that: senior ER management provides planning, organization, direction, control, and support to achieve the organization`s objectives; the line organization achieves quality; and overall performance is reviewed and evaluated using a rigorous assessment process.

  18. Tributyltin induces apoptotic signaling in hepatocytes through pathways involving the endoplasmic reticulum and mitochondria

    SciTech Connect

    Grondin, Melanie; Marion, Michel; Denizeau, Francine; Averill-Bates, Diana A. . E-mail: averill.diana@uqam.ca

    2007-07-01

    Tri-n-butyltin is a widespread environmental toxicant, which accumulates in the liver. This study investigates whether tri-n-butyltin induces pro-apoptotic signaling in rat liver hepatocytes through pathways involving the endoplasmic reticulum and mitochondria. Tri-n-butyltin activated the endoplasmic reticulum pathway of apoptosis, which was demonstrated by the activation of the protease calpain, its translocation to the plasma membrane, followed by cleavage of the calpain substrates, cytoskeletal protein vinculin, and caspase-12. Caspase-12 is localized to the cytoplasmic side of the endoplasmic reticulum and is involved in apoptosis mediated by the endoplasmic reticulum. Tri-n-butyltin also caused translocation of the pro-apoptotic proteins Bax and Bad from the cytosol to mitochondria, as well as changes in mitochondrial membrane permeability, events which can activate the mitochondrial death pathway. Tri-n-butyltin induced downstream apoptotic events in rat hepatocytes at the nuclear level, detected by chromatin condensation and by confocal microscopy using acridine orange. We investigated whether the tri-n-butyltin-induced pro-apoptotic events in hepatocytes could be linked to perturbation of intracellular calcium homeostasis, using confocal microscopy. Tri-n-butyltin caused changes in intracellular calcium distribution, which were similar to those induced by thapsigargin. Calcium was released from a subcellular compartment, which is likely to be the endoplasmic reticulum, into the cytosol. Cytosolic acidification, which is known to trigger apoptosis, also occurred and involved the Cl{sup -}/HCO{sub 3} {sup -} exchanger. Pro-apoptotic events in hepatocytes were inhibited by the calcium chelator, Bapta-AM, and by a calpain inhibitor, which suggests that changes in intracellular calcium homeostasis are involved in tri-n-butyltin-induced apoptotic signaling in rat hepatocytes.

  19. Identification of the endoplasmic reticulum targeting signal in vesicle-associated membrane proteins.

    PubMed

    Kim, P K; Hollerbach, C; Trimble, W S; Leber, B; Andrews, D W

    1999-12-24

    The vesicle-associated membrane proteins (Vamp(s)) function as soluble N-ethylmaleimide-sensitive factor attachment receptor proteins in the intracellular trafficking of vesicles. The membrane attachment of Vamps requires a carboxyl-terminal hydrophobic sequence termed an insertion sequence. Unlike other insertion sequence-containing proteins, targeting of the highly homologous Vamp1 and Vamp2 to the endoplasmic reticulum requires ATP and a membrane-bound receptor. To determine if this mechanism of targeting to the endoplasmic reticulum extends to other Vamps, we compared the membrane binding of Vamp1 and Vamp2 with the distantly related Vamp8. Similar to the other Vamps, Vamp8 requires both ATP and a membrane component to target to the endoplasmic reticulum. Furthermore, binding curves for the three Vamps overlap, suggesting a common receptor-mediated process. We identified a minimal endoplasmic reticulum targeting domain that is both necessary and sufficient to confer receptor-mediated, ATP-dependent, binding of a heterologous protein to microsomes. Surprisingly, this conserved sequence includes four positively charged amino acids spaced along an amphipathic sequence, which unlike the carboxyl-terminal targeting sequence in mitochondrial Vamp isoforms, is amino-terminal to the insertion sequence. Because Vamps do not bind to phospholipid vesicles, it is likely that these residues mediate an interaction with a protein, rather than bind to acidic phospholipids. Therefore, we suggest that a bipartite motif is required for the specific targeting and integration of Vamps into the endoplasmic reticulum with receptor-mediated recognition of specifically configured positive residues leading to the insertion of the hydrophobic tail into the membrane. PMID:10601239

  20. 7 CFR 1415.11 - Restoration agreements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... required, NRCS will set the terms of the restoration agreement. The restoration plan component of the... to determine the terms of the restoration plan. The conservation district may assist NRCS with... specifications. (j) Conservation practices and activities identified in the restoration plan may be...

  1. 7 CFR 1415.11 - Restoration agreements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... required, NRCS will set the terms of the restoration agreement. The restoration plan component of the... to determine the terms of the restoration plan. The conservation district may assist NRCS with... specifications. (j) Conservation practices and activities identified in the restoration plan may be...

  2. 7 CFR 1415.11 - Restoration agreements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... required, NRCS will set the terms of the restoration agreement. The restoration plan component of the... to determine the terms of the restoration plan. The conservation district may assist NRCS with... restoration plan may be implemented by the participant or other designee. (j) Cost-share payments will not...

  3. 7 CFR 1415.11 - Restoration agreements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... required, NRCS will set the terms of the restoration agreement. The restoration plan component of the... to determine the terms of the restoration plan. The conservation district may assist NRCS with... specifications. (j) Conservation practices and activities identified in the restoration plan may be...

  4. Monitoring Ecological Processes for Restoration Projects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Restoration of ecological processes is key to restoring the capacity of ecosystems to support social, economic, cultural and aesthetic values. The sustainability of the restored system also depends on processes associated with carbon, nutrient and hydrologic cycles, yet most restoration monitoring i...

  5. Environmental Restoration Quality Program Plan

    SciTech Connect

    Colley, J.S.

    1992-08-01

    The Martin Marietta Energy Systems, Inc., Environmental Restoration (ER) Program was initially chartered on October 1, 1989, as a entral Environmental Restoration Division'' to manage the investigation and remediation of inactive sites and facilities that have been declared surplus and have no further programmatic use. The Energy Systems ER Division was established to support the DOE Oak Ridge Field Office (DOE-OR) consolidated ER Program. The DOE-OR Assistant Manager for Environmental Restoration and Waste Management provides program and budget direction to the Energy Systems ER Program for environmental restoration activities at the sites operated by Energy Systems (Oak Ridge K-25 Site, Oak Ridge National Laboratory, Oak Ridge Y-12 Plant, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant) and at the off-site locations. The Energy Systems ER Division is specifically charged with assessing these sites for potential contamination and managing the cleanup processes. The Energy Systems Environmental Restoration Division was chartered on October 1, 1989, as a central organization to manage the Remedial Action (RA) Program. The purpose of this document is to ensure that: senior ER management provides planning, organization, direction, control, and support to achieve the organization's objectives; the line organization achieves quality; and overall performance is reviewed and evaluated using a rigorous assessment process.

  6. Sound strategies for hearing restoration.

    PubMed

    Géléoc, Gwenaëlle S G; Holt, Jeffrey R

    2014-05-01

    Hearing loss is the most common sensory deficit in humans, with some estimates suggesting up to 300 million affected individuals worldwide. Both environmental and genetic factors contribute to hearing loss and can cause death of sensory cells and neurons. Because these cells do not regenerate, the damage tends to accumulate, leading to profound deafness. Several biological strategies to restore auditory function are currently under investigation. Owing to the success of cochlear implants, which offer partial recovery of auditory function for some profoundly deaf patients, potential biological therapies must extend hearing restoration to include greater auditory acuity and larger patient populations. Here, we review the latest gene, stem-cell, and molecular strategies for restoring auditory function in animal models and the prospects for translating these approaches into viable clinical therapies. PMID:24812404

  7. Sound Strategies for Hearing Restoration

    PubMed Central

    Géléoc, Gwenaëlle S.G.; Holt, Jeffrey R.

    2014-01-01

    Hearing loss is the most common sensory deficit in humans with some estimates suggesting up to 300 million affected individuals worldwide. Both environmental and genetic factors contribute to hearing loss and can cause death of sensory cells and neurons. Since these cells do not regenerate, the damage tends to accumulate leading to profound deafness. Several biological strategies to restore auditory function are currently under investigation. Due to the success of cochlear implants, which offer partial recovery of auditory function for some profoundly deaf patients, potential biological therapies must extend hearing restoration to include greater auditory acuity and larger patient populations. Here we review the latest gene, stem-cell, and molecular strategies for restoring auditory function in animal models and the prospects for translating these approaches into viable clinical therapies. PMID:24812404

  8. Phonemic restoration in developmental dyslexia.

    PubMed

    Del Tufo, Stephanie N; Myers, Emily B

    2014-01-01

    The comprehension of fluent speech in one's native language requires that listeners integrate the detailed acoustic-phonetic information available in the sound signal with linguistic knowledge. This interplay is especially apparent in the phoneme restoration effect, a phenomenon in which a missing phoneme is "restored" via the influence of top-down information from the lexicon and through bottom-up acoustic processing. Developmental dyslexia is a disorder characterized by an inability to read at the level of one's peers without any clear failure due to environmental influences. In the current study we utilized the phonemic restoration illusion paradigm to examine individual differences in phonemic restoration across a range of reading ability, from very good to dyslexic readers. Results demonstrate that restoration occurs less in those who have high scores on measures of phonological processing. Based on these results, we suggest that the processing or representation of acoustic detail may not be as reliable in poor and dyslexic readers, with the result that lexical information is more likely to override acoustic properties of the stimuli. This pattern of increased restoration could result from a failure of perceptual tuning, in which unstable representations of speech sounds result in the acceptance of non-speech sounds as speech. An additional or alternative theory is that degraded or impaired phonological processing at the speech sound level may reflect architecture that is overly plastic and consequently fails to stabilize appropriately for speech sound representations. Therefore, the inability to separate speech and noise may result as a deficit in separating noise from the acoustic signal. PMID:24926230

  9. Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for Apoptosis

    PubMed Central

    Zhang, Jintao; Yi, Man; Zha, Longying; Chen, Siqiang; Li, Zhijia; Li, Cheng; Gong, Mingxing; Deng, Hong; Chu, Xinwei; Chen, Jiehua; Zhang, Zheqing; Mao, Limei; Sun, Suxia

    2016-01-01

    Purpose Butyrate, a short-chain fatty acid derived from dietary fiber, inhibits proliferation and induces cell death in colorectal cancer cells. However, clinical trials have shown mixed results regarding the anti-tumor activities of butyrate. We have previously shown that sodium butyrate increases endoplasmic reticulum stress by altering intracellular calcium levels, a well-known autophagy trigger. Here, we investigated whether sodium butyrate-induced endoplasmic reticulum stress mediated autophagy, and whether there was crosstalk between autophagy and the sodium butyrate-induced apoptotic response in human colorectal cancer cells. Methods Human colorectal cancer cell lines (HCT-116 and HT-29) were treated with sodium butyrate at concentrations ranging from 0.5–5mM. Cell proliferation was assessed using MTT tetrazolium salt formation. Autophagy induction was confirmed through a combination of Western blotting for associated proteins, acridine orange staining for acidic vesicles, detection of autolysosomes (MDC staining), and electron microscopy. Apoptosis was quantified by flow cytometry using standard annexinV/propidium iodide staining and by assessing PARP-1 cleavage by Western blot. Results Sodium butyrate suppressed colorectal cancer cell proliferation, induced autophagy, and resulted in apoptotic cell death. The induction of autophagy was supported by the accumulation of acidic vesicular organelles and autolysosomes, and the expression of autophagy-associated proteins, including microtubule-associated protein II light chain 3 (LC3-II), beclin-1, and autophagocytosis-associated protein (Atg)3. The autophagy inhibitors 3-methyladenine (3-MA) and chloroquine inhibited sodium butyrate induced autophagy. Furthermore, sodium butyrate treatment markedly enhanced the expression of endoplasmic reticulum stress-associated proteins, including BIP, CHOP, PDI, and IRE-1a. When endoplasmic reticulum stress was inhibited by pharmacological (cycloheximide and mithramycin

  10. Minimizing waste in environmental restoration

    SciTech Connect

    Moos, L.; Thuot, J.R.

    1996-07-01

    Environmental restoration, decontamination and decommissioning and facility dismantelment projects are not typically known for their waste minimization and pollution prevention efforts. Typical projects are driven by schedules and milestones with little attention given to cost or waste minimization. Conventional wisdom in these projects is that the waste already exists and cannot be reduced or minimized. In fact, however, there are three significant areas where waste and cost can be reduced. Waste reduction can occur in three ways: beneficial reuse or recycling; segregation of waste types; and reducing generation of secondary waste. This paper will discuss several examples of reuse, recycle, segregation, and secondary waste reduction at ANL restoration programs.

  11. Restoring Detroit's Street Lighting System

    SciTech Connect

    Kinzey, Bruce R.

    2015-10-21

    The City of Detroit is undertaking a comprehensive restoration of its street lighting system that includes transitioning the existing high-pressure sodium (HPS) sources to light-emitting diode (LED). Detroit’s well-publicized financial troubles over the last several years have added many hurdles and constraints to this process. Strategies to overcome these issues have largely been successful, but have also brought some mixed results. This document provides an objective review of the circumstances surrounding the system restoration, the processes undertaken and decisions made, and the results so far.

  12. Treatment planning for restorative implantology.

    PubMed

    Boyce, Ricardo A; Klemons, Gary

    2015-04-01

    In this article, current literature on fixed and removable prosthodontics is reviewed along with evidence-based systematic reviews, including advice from those in the dental profession with years of experience, which help restorative dentists manage and treat their cases successfully. Treatment planning for restorative implantology should be looked at in 4 sections: (1) review of past medical history, (2) oral examination and occlusion, (3) dental imaging (ie, cone-beam computed tomography), and (4) fixed versus removable prosthodontics. These 4 concepts of treatment planning, along with proper surgical placements of the implant(s), result in successful cases. PMID:25835794

  13. Call to Restore Mesopotamian Marshlands

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Call to restore Mesopotamian marshlands When the current military conflict in Iraq has concluded, a rehabilitation of that country should include a full assessment and action plan for restoring the marshlands of Mesopotamia, the United Nations Environment Programme said on 22 March. The marshlands, also known as the Fertile Crescent, could disappear within three to five years, according to UNEP. UNEP Executive Director Klaus Toepfer said the loss of the marshlands ``is an environmental catastrophe for this region and underscores the huge pressures facing wetlands and freshwater ecosystems across the world.''

  14. PERFORMANCE CRITERIA FOR WETLAND RESTORATION

    EPA Science Inventory

    A new publication from EPA Wetland Research Program called An Approach to Improving Decision Making in Wetland Restoration and Creation is a synthesis of five years of research done under the program. ach book chapter takes an aspect of the approach and develops it. undamentally,...

  15. Service Lives Of Restored Bearings

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1988-01-01

    Rebuilt units last almost as long as new ones. Report describes theoretical and experiemental studies of lifetimes of restored ball and cylindrical-roller bearings. Results of this and related studies have implications of economy and safety in modern high-speed machinery, especially in aircraft industry, where inspection and rejection or replacing of bearings are new standard practice.

  16. The restorative management of microdontia.

    PubMed

    Laverty, D P; Thomas, M B M

    2016-08-26

    Microdontia is a dental abnormality that will often present to the dental practitioner due to the aesthetic concerns of the patient. Treatment is therefore aimed at addressing the aesthetics issue of the patient and this can present a number of challenges which may require a multidisciplinary approach in its management. This article presents the restorative management of localised and generalised microdontia. PMID:27561572

  17. Recent advances in hearing restoration.

    PubMed

    Kulkarni, Kunal; Hartley, Douglas Eh

    2008-03-01

    This review is based on Pubmed, Medline and Internet literature searches, supplemented by knowledge from textbooks, conference presentations, and personal communications with experts in the field of hearing restoration and patients. We have not specifically selected a time limit for our literature searches; however, the majority are articles from the past 5 years. PMID:18344468

  18. Weed Biocontrol in Landscape Restoration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed biological control programs in natural areas are often undertaken with the goal of restoring native plant communities and/or ecosystem services to a pre-invasion level. These objectives may be achieved in some areas with biological control alone; however, in other sites integration of biologica...

  19. Speech Restoration: An Interactive Process

    ERIC Educational Resources Information Center

    Grataloup, Claire; Hoen, Michael; Veuillet, Evelyne; Collet, Lionel; Pellegrino, Francois; Meunier, Fanny

    2009-01-01

    Purpose: This study investigates the ability to understand degraded speech signals and explores the correlation between this capacity and the functional characteristics of the peripheral auditory system. Method: The authors evaluated the capability of 50 normal-hearing native French speakers to restore time-reversed speech. The task required them…

  20. Origins of the Restoration Playhouse.

    ERIC Educational Resources Information Center

    Wilson, Dennis D.

    Contrary to the popular theory that the proscenium type of playhouse was imported from France by the Court of Charles II in 1660, the Restoration playhouse in fact developed from Elizabethan theatres and court masques. These Elizabethan theatres were the private theatres, and were generally small, rectangular, roofed structures where aristocratic…

  1. Weed biocontrol in landscape restoration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed biological control programs in natural areas are often undertaken with the goal of restoring native plant communities and/or ecosystem services to a pre-invasion level. These objectives may be achieved in some areas with biological control alone; however, in other sites integration of biologica...

  2. Immunodominant, protective response to the parasite Toxoplasma gondii requires antigen processing in the endoplasmic reticulum

    PubMed Central

    Blanchard, Nicolas; Gonzalez, Federico; Schaeffer, Marie; Joncker, Nathalie T; Cheng, Tiffany; Shastri, Anjali J; Robey, Ellen A; Shastri, Nilabh

    2016-01-01

    The parasite Toxoplasma gondii replicates in a specialized intracellular vacuole and causes disease in many species. Protection from toxoplasmosis is mediated by CD8+ T cells, but the T. gondii antigens and host genes required for eliciting protective immunity are poorly defined. Here we identified GRA6, a polymorphic protein secreted in the parasitophorous vacuole, as the source of the immunodominant and protective decapeptide HF10 presented by the H-2Ld major histocompatibility complex class I molecule. Presentation of the HF10–H-2Ld ligand required proteolysis by ERAAP, the endoplasmic reticulum aminopeptidase associated with antigen processing. Consequently, expansion of protective CD8+ T cell populations was impaired in T. gondii–infected ERAAP-deficient mice, which were more susceptible to toxoplasmosis. Thus, endoplasmic reticulum proteolysis is critical for eliciting protective immunity to a vacuolar parasite. PMID:18587399

  3. Protein accumulation in the endoplasmic reticulum as a non-equilibrium phase transition.

    PubMed

    Budrikis, Zoe; Costantini, Giulio; La Porta, Caterina A M; Zapperi, Stefano

    2014-01-01

    Several neurological disorders are associated with the aggregation of aberrant proteins, often localized in intracellular organelles such as the endoplasmic reticulum. Here we study protein aggregation kinetics by mean-field reactions and three dimensional Monte carlo simulations of diffusion-limited aggregation of linear polymers in a confined space, representing the endoplasmic reticulum. By tuning the rates of protein production and degradation, we show that the system undergoes a non-equilibrium phase transition from a physiological phase with little or no polymer accumulation to a pathological phase characterized by persistent polymerization. A combination of external factors accumulating during the lifetime of a patient can thus slightly modify the phase transition control parameters, tipping the balance from a long symptomless lag phase to an accelerated pathological development. The model can be successfully used to interpret experimental data on amyloid-β clearance from the central nervous system. PMID:24722051

  4. Protein accumulation in the endoplasmic reticulum as a non-equilibrium phase transition

    PubMed Central

    Budrikis, Zoe; Costantini, Giulio; La Porta, Caterina A. M.; Zapperi, Stefano

    2014-01-01

    Several neurological disorders are associated with the aggregation of aberrant proteins, often localized in intracellular organelles such as the endoplasmic reticulum. Here we study protein aggregation kinetics by mean-field reactions and three dimensional Monte carlo simulations of diffusion-limited aggregation of linear polymers in a confined space, representing the endoplasmic reticulum. By tuning the rates of protein production and degradation, we show that the system undergoes a non-equilibrium phase transition from a physiological phase with little or no polymer accumulation to a pathological phase characterized by persistent polymerization. A combination of external factors accumulating during the lifetime of a patient can thus slightly modify the phase transition control parameters, tipping the balance from a long symptomless lag phase to an accelerated pathological development. The model can be successfully used to interpret experimental data on amyloid-β clearance from the central nervous system. PMID:24722051

  5. The Host Targeting motif in exported Plasmodium proteins is cleaved in the parasite endoplasmic reticulum

    PubMed Central

    Osborne, Andrew R.; Speicher, Kaye D.; Tamez, Pamela A.; Bhattacharjee, Souvik; Speicher, David W.; Haldar, Kasturi

    2010-01-01

    During the blood stage of its lifecycle, the malaria parasite resides and replicates inside a membrane vacuole within its host cell, the human erythrocyte. The parasite exports many proteins across the vacuole membrane and into the host cell cytoplasm. Most exported proteins are characterized by the presence of a Host Targeting (HT) motif, also referred to as a Plasmodium Export Element (PEXEL), which corresponds to the consensus sequence RxLxE/D/Q. During export the HT motif is cleaved by an unknown protease. Here, we generate parasite lines expressing HT motif containing proteins that are localized to different compartments within the parasite or host cell. We find that the HT motif in a protein that is retained in the parasite endoplasmic reticulum, is cleaved and N-acetylated as efficiently as a protein that is exported. This shows that cleavage of the HT motif occurs early in the secretory pathway, in the parasite endoplasmic reticulum. PMID:20117149

  6. Titanium Dioxide Nanoparticles Induce Endoplasmic Reticulum Stress-Mediated Autophagic Cell Death via Mitochondria-Associated Endoplasmic Reticulum Membrane Disruption in Normal Lung Cells.

    PubMed

    Yu, Kyeong-Nam; Chang, Seung-Hee; Park, Soo Jin; Lim, Joohyun; Lee, Jinkyu; Yoon, Tae-Jong; Kim, Jun-Sung; Cho, Myung-Haing

    2015-01-01

    Nanomaterials are used in diverse fields including food, cosmetic, and medical industries. Titanium dioxide nanoparticles (TiO2-NP) are widely used, but their effects on biological systems and mechanism of toxicity have not been elucidated fully. Here, we report the toxicological mechanism of TiO2-NP in cell organelles. Human bronchial epithelial cells (16HBE14o-) were exposed to 50 and 100 μg/mL TiO2-NP for 24 and 48 h. Our results showed that TiO2-NP induced endoplasmic reticulum (ER) stress in the cells and disrupted the mitochondria-associated endoplasmic reticulum membranes (MAMs) and calcium ion balance, thereby increasing autophagy. In contrast, an inhibitor of ER stress, tauroursodeoxycholic acid (TUDCA), mitigated the cellular toxic response, suggesting that TiO2-NP promoted toxicity via ER stress. This novel mechanism of TiO2-NP toxicity in human bronchial epithelial cells suggests that further exhaustive research on the harmful effects of these nanoparticles in relevant organisms is needed for their safe application. PMID:26121477

  7. Caveolin-1 binding to endoplasmic reticulum membranes and entry into the regulated secretory pathway are regulated by serine phosphorylation. Protein sorting at the level of the endoplasmic reticulum.

    PubMed

    Schlegel, A; Arvan, P; Lisanti, M P

    2001-02-01

    Caveolin-1 serves as the main coat protein of caveolae membranes, as an intracellular cholesterol shuttle, and as a regulator of diverse signaling molecules. Of the 12 residues conserved across all caveolin isoforms from all species examined to date, only Ser(80) and Ser(168) could serve as phosphorylation sites. We show here that mimicking chronic phosphorylation of Ser(80) by mutation to Glu (i.e. Cav-1(S80E)), blocks phosphate incorporation. However, Cav-1(S168E) is phosphorylated to the same extent as wild-type caveolin-1. Cav-1(S80E) targets to the endoplasmic reticulum membrane, remains oligomeric, and maintains normal membrane topology. In contrast, Cav-1(S80A), which cannot be phosphorylated, targets to caveolae membranes. Some exocrine cells secrete caveolin-1 in a regulated manner. Cav-1(S80A) is not secreted by AR42J pancreatic adenocarcinoma cells even in the presence of dexamethasone, an agent that induces the secretory phenotype. Conversely, Cav-1(S80E) is secreted to a greater extent than wild-type caveolin-1 following dexamethasone treatment. We conclude that caveolin-1 phosphorylation on invariant serine residue 80 is required for endoplasmic reticulum retention and entry into the regulated secretory pathway. PMID:11078729

  8. Titanium Dioxide Nanoparticles Induce Endoplasmic Reticulum Stress-Mediated Autophagic Cell Death via Mitochondria-Associated Endoplasmic Reticulum Membrane Disruption in Normal Lung Cells

    PubMed Central

    Yu, Kyeong-Nam; Chang, Seung-Hee; Park, Soo Jin; Lim, Joohyun; Lee, Jinkyu; Yoon, Tae-Jong; Kim, Jun-Sung; Cho, Myung-Haing

    2015-01-01

    Nanomaterials are used in diverse fields including food, cosmetic, and medical industries. Titanium dioxide nanoparticles (TiO2-NP) are widely used, but their effects on biological systems and mechanism of toxicity have not been elucidated fully. Here, we report the toxicological mechanism of TiO2-NP in cell organelles. Human bronchial epithelial cells (16HBE14o-) were exposed to 50 and 100 μg/mL TiO2-NP for 24 and 48 h. Our results showed that TiO2-NP induced endoplasmic reticulum (ER) stress in the cells and disrupted the mitochondria-associated endoplasmic reticulum membranes (MAMs) and calcium ion balance, thereby increasing autophagy. In contrast, an inhibitor of ER stress, tauroursodeoxycholic acid (TUDCA), mitigated the cellular toxic response, suggesting that TiO2-NP promoted toxicity via ER stress. This novel mechanism of TiO2-NP toxicity in human bronchial epithelial cells suggests that further exhaustive research on the harmful effects of these nanoparticles in relevant organisms is needed for their safe application. PMID:26121477

  9. Phonemic restoration in developmental dyslexia

    PubMed Central

    Del Tufo, Stephanie N.; Myers, Emily B.

    2014-01-01

    The comprehension of fluent speech in one's native language requires that listeners integrate the detailed acoustic-phonetic information available in the sound signal with linguistic knowledge. This interplay is especially apparent in the phoneme restoration effect, a phenomenon in which a missing phoneme is “restored” via the influence of top-down information from the lexicon and through bottom-up acoustic processing. Developmental dyslexia is a disorder characterized by an inability to read at the level of one's peers without any clear failure due to environmental influences. In the current study we utilized the phonemic restoration illusion paradigm to examine individual differences in phonemic restoration across a range of reading ability, from very good to dyslexic readers. Results demonstrate that restoration occurs less in those who have high scores on measures of phonological processing. Based on these results, we suggest that the processing or representation of acoustic detail may not be as reliable in poor and dyslexic readers, with the result that lexical information is more likely to override acoustic properties of the stimuli. This pattern of increased restoration could result from a failure of perceptual tuning, in which unstable representations of speech sounds result in the acceptance of non-speech sounds as speech. An additional or alternative theory is that degraded or impaired phonological processing at the speech sound level may reflect architecture that is overly plastic and consequently fails to stabilize appropriately for speech sound representations. Therefore, the inability to separate speech and noise may result as a deficit in separating noise from the acoustic signal. PMID:24926230

  10. Environmental Restoration Quality Program Implementation Plan. Environmental Restoration Program

    SciTech Connect

    Not Available

    1992-08-01

    The Environmental Restoration (ER) Program requirements for implementation of DOE Order 5700.6C are identified in the Environmental Restoration Quality Program Plan, (QPP). Management systems necessary to implement the ER QPP consist of the necessary standards and procedures required to be developed to adequately control ER processes. To the extent possible, Martin Marietta Energy Systems, Inc., standards and procedures will be utilized at the ER Program level, and requirements will not be repeated. The quality management systems identified for enhancement or development are identified in the section on Procedure Development Strategy and directly relate to unique ER Program activities. Procedures and standards that currently exist in the ER Program will be validated for compliance with ER QPP requirements.

  11. Technology needs for environmental restoration remedial action. Environmental Restoration Program

    SciTech Connect

    Watson, J.S.

    1992-11-01

    This report summarizes the current view of the most important technology needs for the US Department of Energy (DOE) facilities operated by Martin Marietta Energy Systems, Inc. These facilities are the Oak Ridge National Laboratory, the Oak Ridge K-25 Site, the Oak Ridge Y-12 Plant, the Paducah Gaseous Diffusion Plant, and the Portsmouth Gaseous Diffusion Plant. The sources of information used in this assessment were a survey of selected representatives of the Environmental Restoration (ER) programs at each facility, results from a questionnaire distributed by Geotech CWM, Inc., for DOE, and associated discussions with individuals from each facility. This is not a final assessment, but a brief look at an ongoing assessment; the needs will change as the plans for restoration change and, it is hoped, as some technical problems are solved through successful development programs.

  12. Delta Revival: Restoring a California Ecosystem

    USGS Publications Warehouse

    U.S. Geological Survey; California Bay Delta Authority

    2003-01-01

    'Delta Revival: Restoring a California Ecosystem' shows scientists from many disciplines working together to guide the unprecendented restoration of the Sacramento- San Joaquin Delta east of San Francisco Bay.

  13. The plant pathology of native plant restoration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Restoration of ecologically degraded sites will benefit from the convergence of knowledge drawn from such disparate and often compartmentalized (and heretofore not widely considered) areas of research as soil microbial ecology, plant pathology and agronomy. Restoration following biological control w...

  14. Exxon Valdez oil spill restoration plan

    SciTech Connect

    1994-11-01

    In 1989, the Exxon Valdez oil spill contaminated about 1,500 miles of Alaska`s coastline. It killed birds, mammals, and fish, and disrupted the ecosystem in the path of the oil. The Exxon Valdez Restoration Plan provides long-term guidance for restoring the resources and services injured by the oil spill. It contains policies for making restoration decisions and describes how restoration activities will be implemented.

  15. The non-catalytic N-terminal extension of formylglycine-generating enzyme is required for its biological activity and retention in the endoplasmic reticulum.

    PubMed

    Mariappan, Malaiyalam; Gande, Santosh Lakshmi; Radhakrishnan, Karthikeyan; Schmidt, Bernhard; Dierks, Thomas; von Figura, Kurt

    2008-04-25

    Formylglycine-generating enzyme (FGE) catalyzes the oxidation of a specific cysteine residue in nascent sulfatase polypeptides to formylglycine (FGly). This FGly is part of the active site of all sulfatases and is required for their catalytic activity. Here we demonstrate that residues 34-68 constitute an N-terminal extension of the FGE catalytic core that is dispensable for in vitro enzymatic activity of FGE but is required for its in vivo activity in the endoplasmic reticulum (ER), i.e. for generation of FGly residues in nascent sulfatases. In addition, this extension is needed for the retention of FGE in the ER. Fusing a KDEL retention signal to the C terminus of FGE is sufficient to mediate retention of an N-terminally truncated FGE but not sufficient to restore its biological activity. Fusion of FGE residues 1-88 to secretory proteins resulted in ER retention of the fusion protein. Moreover, when fused to the paralog of FGE (pFGE), which itself lacks FGly-generating activity, the FGE extension (residues 34-88) of this hybrid construct led to partial restoration of the biological activity of co-expressed N-terminally truncated FGE. Within the FGE N-terminal extension cysteine 52 is critical for the biological activity. We postulate that this N-terminal region of FGE mediates the interaction with an ER component to be identified and that this interaction is required for both the generation of FGly residues in nascent sulfatase polypeptides and for retention of FGE in the ER. PMID:18305113

  16. β-aminoisobutyric acid attenuates hepatic endoplasmic reticulum stress and glucose/lipid metabolic disturbance in mice with type 2 diabetes

    PubMed Central

    Shi, Chang-Xiang; Zhao, Ming-Xia; Shu, Xiao-Dong; Xiong, Xiao-Qing; Wang, Jue-Jin; Gao, Xing-Ya; Chen, Qi; Li, Yue-Hua; Kang, Yu-Ming; Zhu, Guo-Qing

    2016-01-01

    β-aminoisobutyric acid (BAIBA) is a nature thymine catabolite, and contributes to exercise-induced protection from metabolic diseases. Here we show the therapeutical effects of BAIBA on hepatic endoplasmic reticulum (ER) stress and glucose/lipid metabolic disturbance in diabetes. Type 2 diabetes was induced by combined streptozotocin (STZ) and high-fat diet (HFD) in mice. Oral administration of BAIBA for 4 weeks reduced blood glucose and lipids levels, hepatic key enzymes of gluconeogenesis and lipogenesis expressions, attenuated hepatic insulin resistance and lipid accumulation, and improved insulin signaling in type 2 diabetic mice. BAIBA reduced hepatic ER stress and apoptosis in type 2 diabetic mice. Furthermore, BAIBA alleviated ER stress in human hepatocellular carcinoma (HepG2) cells with glucosamine-induced insulin resistance. Hepatic AMPK phosphorylation was reduced in STZ/HFD mice and glucosamine-treated HepG2 cells, which were restored by BAIBA treatment. The suppressive effects of BAIBA on glucosamine-induced ER stress were reversed by knockdown of AMPK with siRNA. In addition, BAIBA prevented thapsigargin- or tunicamycin-induced ER stress, and tunicamycin–induced apoptosis in HepG2 cells. These results indicate that BAIBA attenuates hepatic ER stress, apoptosis and glucose/lipid metabolic disturbance in mice with type 2 diabetes. AMPK signaling is involved to the role of BAIBA in attenuating ER stress. PMID:26907958

  17. The unfolded protein response and cellular senescence. A review in the theme: cellular mechanisms of endoplasmic reticulum stress signaling in health and disease.

    PubMed

    Pluquet, Olivier; Pourtier, Albin; Abbadie, Corinne

    2015-03-15

    The endoplasmic reticulum (ER) is a multifunctional organelle critical for the proper folding and assembly of secreted and transmembrane proteins. Perturbations of ER functions cause ER stress, which activates a coordinated system of transcriptional and translational controls called the unfolded protein response (UPR), to cope with accumulation of misfolded proteins and proteotoxicity. It results in ER homeostasis restoration or in cell death. Senescence is a complex cell phenotype induced by several stresses such as telomere attrition, DNA damage, oxidative stress, and activation of some oncogenes. It is mainly characterized by a cell enlargement, a permanent cell-cycle arrest, and the production of a secretome enriched in proinflammatory cytokines and components of the extracellular matrix. Senescent cells accumulate with age in tissues and are suspected to play a role in age-associated diseases. Since senescence is a stress response, the question arises of whether an ER stress could occur concomitantly with senescence and participate in the onset or maintenance of the senescent features. Here, we described the interconnections between the UPR signaling and the different aspects of the cellular senescence programs and discuss the implication of UPR modulations in this context. PMID:25540175

  18. A LAPF/phafin1-like protein regulates TORC1 and lysosomal membrane permeabilization in response to endoplasmic reticulum membrane stress

    PubMed Central

    Kim, Adam; Cunningham, Kyle W.

    2015-01-01

    Lysosomal membrane permeabilization (LMP) is a poorly understood regulator of programmed cell death that involves leakage of luminal lysosomal or vacuolar hydrolases into the cytoplasm. In Saccharomyces cerevisiae, LMP can be induced by antifungals and endoplasmic reticulum stressors when calcineurin also has been inactivated. A genome-wide screen revealed Pib2, a relative of LAPF/phafin1 that regulates LMP in mammals, as a pro-LMP protein in yeast. Pib2 associated with vacuolar and endosomal limiting membranes in unstressed cells in a manner that depended on its FYVE domain and on phosphatidylinositol 3-phosphate (PI(3)P) biosynthesis. Genetic experiments suggest that Pib2 stimulates the activity of TORC1, a vacuole-associated protein kinase that is sensitive to rapamycin, in a pathway parallel to the Ragulator/EGO complex containing the GTPases Gtr1 and Gtr2. A hyperactivating mutation in the catalytic subunit of TORC1 restored LMP to the gtr1∆ and pib2∆ mutants and also prevented the synthetic lethality of the double mutants. These findings show novel roles of PI(3)P and Pib2 in the regulation of TORC1, which in turn promoted LMP and nonapoptotic death of stressed cells. Rapamycin prevented the death of the pathogenic yeast Candida albicans during exposure to fluconazole plus a calcineurin inhibitor, suggesting that TORC1 broadly promotes sensitivity to fungistats in yeasts. PMID:26510498

  19. Alpha-lipoic acid attenuates endoplasmic reticulum stress-induced insulin resistance by improving mitochondrial function in HepG2 cells.

    PubMed

    Lei, Lin; Zhu, Yiwei; Gao, Wenwen; Du, Xiliang; Zhang, Min; Peng, Zhicheng; Fu, Shoupeng; Li, Xiaobing; Zhe, Wang; Li, Xinwei; Liu, Guowen

    2016-10-01

    Alpha-lipoic acid (ALA) has been reported to have beneficial effects for improving insulin sensitivity. However, the underlying molecular mechanism of the beneficial effects remains poorly understood. Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are considered causal factors that induce insulin resistance. In this study, we investigated the effect of ALA on the modulation of insulin resistance in ER-stressed HepG2 cells, and we explored the potential mechanism of this effect. HepG2 cells were incubated with tunicamycin (Tun) for 6h to establish an ER stress cell model. Tun treatment induced ER stress, mitochondrial dysfunction and insulin resistance. Interestingly, ALA had no significant effect on ER stress signals. Pretreatment of the ER stress cell model with ALA for 24h improved insulin sensitivity, restored the expression levels of mitochondrial oxidative phosphorylation (OXPHOS) complexes and increased intracellular ATP production. Moreover, ALA augmented the β-oxidation capacity of the mitochondria. Importantly, ALA treatment could decrease oligomycin-induced mitochondrial dysfunction and then improved insulin resistance. Taken together, our data suggest that ALA prevents ER stress-induced insulin resistance by enhancing mitochondrial function. PMID:27377964

  20. Osteocalcin reverses endoplasmic reticulum stress and improves impaired insulin sensitivity secondary to diet-induced obesity through nuclear factor-κB signaling pathway.

    PubMed

    Zhou, Bo; Li, Huixia; Xu, Lin; Zang, Weijin; Wu, Shufang; Sun, Hongzhi

    2013-03-01

    Osteocalcin, a synthetic osteoblast-specific protein, has recently emerged as an important regulator of energy metabolism, but the underlying mechanisms are not fully understood. In the present study, mice fed a high-fat diet and receiving osteocalcin showed reduced body weight gain, less fat pad gain, and improved insulin sensitivity as well as increased energy expenditure compared with mice fed a high-fat diet and receiving vehicle. Meanwhile, increased endoplasmic reticulum (ER) stress, defective insulin signaling, and mitochondrial dysfunction induced by obesity were also effectively alleviated by treatment with osteocalcin. Consistent with these findings, the addition of osteocalcin to the culture medium of 3T3-L1 adipocytes, Fao liver cells, and L6 muscle cells markedly reduced ER stress and restored insulin sensitivity. These effects were nullified by blockade of nuclear factor-κB (NF-κB) or phosphatidylinositol 3-kinase but not by U0126, a mitogen-activated protein kinase inhibitor, indicating the causative role of phosphatidylinositol 3-kinase/NF-κB in action of osteocalcin. In addition, the reversal effects of osteocalcin in cells deficient in X-box-binding protein-1, a transcription factor that modulates ER stress response, further confirmed its protective role against ER stress and insulin resistance. Our findings suggest that osteocalcin attenuates ER stress and rescues impaired insulin sensitivity in insulin resistance via the NF-κB signaling pathway, which may offer novel opportunities for treatment of obesity and diabetes. PMID:23407450

  1. ECOSYSTEM EFFECTS OF URBAN STREAM RESTORATION

    EPA Science Inventory

    In general, the ecosystem function of a restored site will depend upon how degraded the site was prior to restoration and to what extent this was addressed in the restoration design. A stream whose primary impairment is severe water quality problems due to non-point source po...

  2. "Re-story-ing" Our Restorative Practices

    ERIC Educational Resources Information Center

    Rundell, Frida

    2007-01-01

    A metaphor for crossing a frontier into a new territory is explored. The restorative justice principles as used by the United Nations and the International Institute for Restorative Practices (IIRP) help to translate into restorative practice principles. An action research project in South Africa provides the background to an evaluation process.…

  3. 15 CFR 990.26 - Emergency restoration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Emergency restoration. 990.26 Section... NATURAL RESOURCE DAMAGE ASSESSMENTS Authorities § 990.26 Emergency restoration. (a) Trustees may take emergency restoration action before completing the process established under this part, provided that:...

  4. 15 CFR 990.26 - Emergency restoration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Emergency restoration. 990.26 Section... NATURAL RESOURCE DAMAGE ASSESSMENTS Authorities § 990.26 Emergency restoration. (a) Trustees may take emergency restoration action before completing the process established under this part, provided that:...

  5. 15 CFR 990.26 - Emergency restoration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Emergency restoration. 990.26 Section... NATURAL RESOURCE DAMAGE ASSESSMENTS Authorities § 990.26 Emergency restoration. (a) Trustees may take emergency restoration action before completing the process established under this part, provided that:...

  6. 15 CFR 990.26 - Emergency restoration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Emergency restoration. 990.26 Section... NATURAL RESOURCE DAMAGE ASSESSMENTS Authorities § 990.26 Emergency restoration. (a) Trustees may take emergency restoration action before completing the process established under this part, provided that:...

  7. 5 CFR 353.301 - Restoration rights.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Restoration rights. 353.301 Section 353.301 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS RESTORATION TO DUTY FROM UNIFORMED SERVICE OR COMPENSABLE INJURY Compensable Injury § 353.301 Restoration rights....

  8. 43 CFR 11.21 - Emergency restorations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Emergency restorations. 11.21 Section 11... Preassessment Phase § 11.21 Emergency restorations. (a) Reporting requirements and definition. (1) In the event... limited off-site restoration action consistent with its existing authority to the extent necessary...

  9. 5 CFR 353.301 - Restoration rights.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Restoration rights. 353.301 Section 353.301 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS RESTORATION TO DUTY FROM UNIFORMED SERVICE OR COMPENSABLE INJURY Compensable Injury § 353.301 Restoration rights....

  10. 43 CFR 11.21 - Emergency restorations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Emergency restorations. 11.21 Section 11.21... Preassessment Phase § 11.21 Emergency restorations. (a) Reporting requirements and definition. (1) In the event... limited off-site restoration action consistent with its existing authority to the extent necessary...

  11. 5 CFR 353.301 - Restoration rights.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Restoration rights. 353.301 Section 353.301 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS RESTORATION TO DUTY FROM UNIFORMED SERVICE OR COMPENSABLE INJURY Compensable Injury § 353.301 Restoration rights....

  12. 15 CFR 990.26 - Emergency restoration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Emergency restoration. 990.26 Section... NATURAL RESOURCE DAMAGE ASSESSMENTS Authorities § 990.26 Emergency restoration. (a) Trustees may take emergency restoration action before completing the process established under this part, provided that:...

  13. 43 CFR 11.21 - Emergency restorations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Emergency restorations. 11.21 Section 11... Preassessment Phase § 11.21 Emergency restorations. (a) Reporting requirements and definition. (1) In the event... limited off-site restoration action consistent with its existing authority to the extent necessary...

  14. 43 CFR 11.21 - Emergency restorations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Emergency restorations. 11.21 Section 11... Preassessment Phase § 11.21 Emergency restorations. (a) Reporting requirements and definition. (1) In the event... limited off-site restoration action consistent with its existing authority to the extent necessary...

  15. 43 CFR 11.21 - Emergency restorations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Emergency restorations. 11.21 Section 11... Preassessment Phase § 11.21 Emergency restorations. (a) Reporting requirements and definition. (1) In the event... limited off-site restoration action consistent with its existing authority to the extent necessary...

  16. 5 CFR 353.301 - Restoration rights.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Restoration rights. 353.301 Section 353... DUTY FROM UNIFORMED SERVICE OR COMPENSABLE INJURY Compensable Injury § 353.301 Restoration rights. (a.... Although these restoration rights are agencywide, the employee's basic entitlement is to the...

  17. RESEARCH NEEDS IN RIPARIAN BUFFER RESTORATION

    EPA Science Inventory

    Riparian buffer restorations are used as management tools to produce favorable water quality impacts; moreover, the basis for riparian buffers as an instrument of water quality restoration rests on a relatively firm foundation. However, the extent to which buffers can restore rip...

  18. Restorative Justice as Strength-Based Accountability

    ERIC Educational Resources Information Center

    Ball, Robert

    2003-01-01

    This article compares strength-based and restorative justice philosophies for young people and their families. Restorative justice provides ways to respond to crime and harm that establish accountability while seeking to reconcile members of a community. Restorative approaches are an important subset of strength-based interventions.

  19. Ultraviolet completion without symmetry restoration

    NASA Astrophysics Data System (ADS)

    Endlich, Solomon; Nicolis, Alberto; Penco, Riccardo

    2014-03-01

    We show that it is not possible to UV complete certain low-energy effective theories with spontaneously broken spacetime symmetries by embedding them into linear sigma models, that is, by adding "radial" modes and restoring the broken symmetries. When such a UV completion is not possible, one can still raise the cutoff up to arbitrarily higher energies by adding fields that transform nonlinearly under the broken symmetries, that is, new Goldstone bosons. However, this (partial) UV completion does not necessarily restore any of the broken symmetries. We illustrate this point by considering a concrete example in which a combination of spacetime and internal symmetries is broken down to a diagonal subgroup. Along the way, we clarify a recently proposed interpretation of inverse Higgs constraints as gauge-fixing conditions.

  20. Lake restoration technology transfer assessment

    SciTech Connect

    Daschbach, M.H.; Roe, E.M.; Sharpe, W.E.

    1982-06-01

    Based upon a review of the eutrophication problem and its impact on lake restoration (LR) programs, treatment of the relatively new problem of acid deposition and its impact on LR activities, consideration of the LR programs of the Environmental Protection Agency and several states, and a review of individual LR technology transfer publications, it is recommended that new LR technology transfer programs be given a low priority until more new information is available on the restoration of acidified lakes. Both primary and secondary users of LR research, technology transfer documents, and public awareness documents were considered in this assessment. Primary users included the general public and recreationists, lakeshore property owners, lake/homeowner associations, lake/sanitary districts, and research and environmental organizations; secondary users included state/county/local officials who administer/manage water-related regulations/activities. 4 tables.

  1. Optimal focal-plane restoration

    NASA Technical Reports Server (NTRS)

    Reichenbach, Stephen E.; Park, Stephen K.

    1989-01-01

    Image restoration can be implemented efficiently by calculating the convolution of the digital image and a small kernel during image acquisition. Processing the image in the focal-plane in this way requires less computation than traditional Fourier-transform-based techniques such as the Wiener filter and constrained least-squares filter. Here, the values of the convolution kernel that yield the restoration with minimum expected mean-square error are determined using a frequency analysis of the end-to-end imaging system. This development accounts for constraints on the size and shape of the spatial kernel and all the components of the imaging system. Simulation results indicate the technique is effective and efficient.

  2. [Conservative restoration of pulpectomized teeth].

    PubMed

    Lasfargues, J J

    1990-04-01

    In endodontic treatment of teeth, partial or "conservative" crown reconstructions are clinically acceptable where loss of substance is limited and recourse to radicular pivots is contraindicated. Such reconstructions bring into play a variety of currently available biomaterials, including those inserted in the plastic phase. They make it possible to delay a prosthetic solution (full crown restoration) without impinging on the conservation of the devitalized tooth. PMID:2135781

  3. 32 CFR 644.453 - Major restoration cases-determining extent of restoration required.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Major restoration cases-determining extent of restoration required. 644.453 Section 644.453 National Defense Department of Defense (Continued) DEPARTMENT OF... Improvements § 644.453 Major restoration cases—determining extent of restoration required. (a)...

  4. 32 CFR 644.452 - Minor restoration cases-determining extent of restoration required.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Minor restoration cases-determining extent of restoration required. 644.452 Section 644.452 National Defense Department of Defense (Continued) DEPARTMENT OF... Improvements § 644.452 Minor restoration cases—determining extent of restoration required. (a) In...

  5. 32 CFR 644.453 - Major restoration cases-determining extent of restoration required.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Major restoration cases-determining extent of restoration required. 644.453 Section 644.453 National Defense Department of Defense (Continued) DEPARTMENT OF... Improvements § 644.453 Major restoration cases—determining extent of restoration required. (a)...

  6. 32 CFR 644.453 - Major restoration cases-determining extent of restoration required.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Major restoration cases-determining extent of restoration required. 644.453 Section 644.453 National Defense Department of Defense (Continued) DEPARTMENT OF... Improvements § 644.453 Major restoration cases—determining extent of restoration required. (a)...

  7. 32 CFR 644.461 - Payment for restoration or settlement in lieu of restoration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Payment for restoration or settlement in lieu of restoration. 644.461 Section 644.461 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... § 644.461 Payment for restoration or settlement in lieu of restoration. Voucher forms, appropriate...

  8. 32 CFR 644.461 - Payment for restoration or settlement in lieu of restoration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Payment for restoration or settlement in lieu of restoration. 644.461 Section 644.461 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... § 644.461 Payment for restoration or settlement in lieu of restoration. Voucher forms, appropriate...

  9. 32 CFR 644.452 - Minor restoration cases-determining extent of restoration required.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Minor restoration cases-determining extent of restoration required. 644.452 Section 644.452 National Defense Department of Defense (Continued) DEPARTMENT OF... Improvements § 644.452 Minor restoration cases—determining extent of restoration required. (a) In...

  10. 32 CFR 644.461 - Payment for restoration or settlement in lieu of restoration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Payment for restoration or settlement in lieu of restoration. 644.461 Section 644.461 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... § 644.461 Payment for restoration or settlement in lieu of restoration. Voucher forms, appropriate...

  11. 32 CFR 644.453 - Major restoration cases-determining extent of restoration required.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Major restoration cases-determining extent of restoration required. 644.453 Section 644.453 National Defense Department of Defense (Continued) DEPARTMENT OF... Improvements § 644.453 Major restoration cases—determining extent of restoration required. (a)...

  12. 32 CFR 644.461 - Payment for restoration or settlement in lieu of restoration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Payment for restoration or settlement in lieu of restoration. 644.461 Section 644.461 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... § 644.461 Payment for restoration or settlement in lieu of restoration. Voucher forms, appropriate...

  13. 32 CFR 644.452 - Minor restoration cases-determining extent of restoration required.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Minor restoration cases-determining extent of restoration required. 644.452 Section 644.452 National Defense Department of Defense (Continued) DEPARTMENT OF... Improvements § 644.452 Minor restoration cases—determining extent of restoration required. (a) In...

  14. 32 CFR 644.452 - Minor restoration cases-determining extent of restoration required.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Minor restoration cases-determining extent of restoration required. 644.452 Section 644.452 National Defense Department of Defense (Continued) DEPARTMENT OF... Improvements § 644.452 Minor restoration cases—determining extent of restoration required. (a) In...

  15. 32 CFR 644.453 - Major restoration cases-determining extent of restoration required.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Major restoration cases-determining extent of restoration required. 644.453 Section 644.453 National Defense Department of Defense (Continued) DEPARTMENT OF... Improvements § 644.453 Major restoration cases—determining extent of restoration required. (a)...

  16. 32 CFR 644.452 - Minor restoration cases-determining extent of restoration required.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Minor restoration cases-determining extent of restoration required. 644.452 Section 644.452 National Defense Department of Defense (Continued) DEPARTMENT OF... Improvements § 644.452 Minor restoration cases—determining extent of restoration required. (a) In...

  17. 32 CFR 644.461 - Payment for restoration or settlement in lieu of restoration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Payment for restoration or settlement in lieu of restoration. 644.461 Section 644.461 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... § 644.461 Payment for restoration or settlement in lieu of restoration. Voucher forms, appropriate...

  18. 15 CFR 990.53 - Restoration selection-developing restoration alternatives.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Restoration selection-developing... OIL POLLUTION ACT REGULATIONS NATURAL RESOURCE DAMAGE ASSESSMENTS Restoration Planning Phase § 990.53 Restoration selection—developing restoration alternatives. (a) General. (1) If the information on...

  19. 15 CFR 990.55 - Restoration selection-developing restoration plans.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Restoration selection-developing... POLLUTION ACT REGULATIONS NATURAL RESOURCE DAMAGE ASSESSMENTS Restoration Planning Phase § 990.55 Restoration selection—developing restoration plans. (a) General. OPA requires that damages be based upon...

  20. 15 CFR 990.53 - Restoration selection-developing restoration alternatives.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Restoration selection-developing... OIL POLLUTION ACT REGULATIONS NATURAL RESOURCE DAMAGE ASSESSMENTS Restoration Planning Phase § 990.53 Restoration selection—developing restoration alternatives. (a) General. (1) If the information on...

  1. 15 CFR 990.53 - Restoration selection-developing restoration alternatives.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Restoration selection-developing... OIL POLLUTION ACT REGULATIONS NATURAL RESOURCE DAMAGE ASSESSMENTS Restoration Planning Phase § 990.53 Restoration selection—developing restoration alternatives. (a) General. (1) If the information on...

  2. 15 CFR 990.53 - Restoration selection-developing restoration alternatives.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Restoration selection-developing... OIL POLLUTION ACT REGULATIONS NATURAL RESOURCE DAMAGE ASSESSMENTS Restoration Planning Phase § 990.53 Restoration selection—developing restoration alternatives. (a) General. (1) If the information on...

  3. 15 CFR 990.55 - Restoration selection-developing restoration plans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Restoration selection-developing... POLLUTION ACT REGULATIONS NATURAL RESOURCE DAMAGE ASSESSMENTS Restoration Planning Phase § 990.55 Restoration selection—developing restoration plans. (a) General. OPA requires that damages be based upon...

  4. 15 CFR 990.55 - Restoration selection-developing restoration plans.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Restoration selection-developing... POLLUTION ACT REGULATIONS NATURAL RESOURCE DAMAGE ASSESSMENTS Restoration Planning Phase § 990.55 Restoration selection—developing restoration plans. (a) General. OPA requires that damages be based upon...

  5. 15 CFR 990.55 - Restoration selection-developing restoration plans.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Restoration selection-developing... POLLUTION ACT REGULATIONS NATURAL RESOURCE DAMAGE ASSESSMENTS Restoration Planning Phase § 990.55 Restoration selection—developing restoration plans. (a) General. OPA requires that damages be based upon...

  6. 15 CFR 990.55 - Restoration selection-developing restoration plans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Restoration selection-developing... POLLUTION ACT REGULATIONS NATURAL RESOURCE DAMAGE ASSESSMENTS Restoration Planning Phase § 990.55 Restoration selection—developing restoration plans. (a) General. OPA requires that damages be based upon...

  7. 15 CFR 990.53 - Restoration selection-developing restoration alternatives.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Restoration selection-developing... OIL POLLUTION ACT REGULATIONS NATURAL RESOURCE DAMAGE ASSESSMENTS Restoration Planning Phase § 990.53 Restoration selection—developing restoration alternatives. (a) General. (1) If the information on...

  8. Environmental Restoration 1997 annual report

    SciTech Connect

    Cosper, M.B.

    1997-11-01

    During 1997, the Environmental Restoration Program at the Savannah River Site achieved all of the ``Breakthrough Goals`` that were established with the regulatory agencies in 1995 to advance their cleanup efforts. Effective focus on field remediation was demonstrated by the allocation of 75% of program funding to remediation activities. The Remediation Phase is complete or has begun on sixty-nine waste sites that represent approximately 80% of the known environmental and health risk. The average time required for the assessment phase of active projects was reduced by 50%, from 49 to less than 24 months, which allows cleanup actions to start twice as fast as before. Breakthrough performance has tangible results. During 1997, all of the funding allocation was used effectively to accomplish environmental restoration scope worth over $123 million. That represents a validated cost efficiency of over 20% for the third straight year. Over half of the 500 contaminated acres at SRS have been cleaned up or are currently in the remediation phase. Almost 3 billion gallons of groundwater have been restored by removing over half a million pounds of organic solvents.

  9. Class II Resin Composites: Restorative Options.

    PubMed

    Patel, Minesh; Mehta, Shamir B; Banerji, Subir

    2015-10-01

    Tooth-coloured, resin composite restorations are amongst the most frequently prescribed forms of dental restoration to manage defects in posterior teeth. The attainment of a desirable outcome when placing posterior resin composite restorations requires the clinician to have a good understanding of the benefits (as well as the limitations) posed by this material, together with a sound knowledge of placement technique. Numerous protocols and materials have evolved to assist the dental operator with this type of demanding posterior restoration. With the use of case examples, four techniques available are reported here. CPD/Clinical Relevance: This article explores varying techniques for the restoration of Class II cavities using resin composite. PMID:26685471

  10. Partial restoration of protein synthesis rates by the small molecule ISRIB prevents neurodegeneration without pancreatic toxicity

    PubMed Central

    Halliday, M; Radford, H; Sekine, Y; Moreno, J; Verity, N; le Quesne, J; Ortori, C A; Barrett, D A; Fromont, C; Fischer, P M; Harding, H P; Ron, D; Mallucci, G R

    2015-01-01

    Activation of the PERK branch of the unfolded protein response (UPR) in response to protein misfolding within the endoplasmic reticulum (ER) results in the transient repression of protein synthesis, mediated by the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2α). This is part of a wider integrated physiological response to maintain proteostasis in the face of ER stress, the dysregulation of which is increasingly associated with a wide range of diseases, particularly neurodegenerative disorders. In prion-diseased mice, persistently high levels of eIF2α cause sustained translational repression leading to catastrophic reduction of critical proteins, resulting in synaptic failure and neuronal loss. We previously showed that restoration of global protein synthesis using the PERK inhibitor GSK2606414 was profoundly neuroprotective, preventing clinical disease in prion-infected mice. However, this occured at the cost of toxicity to secretory tissue, where UPR activation is essential to healthy functioning. Here we show that pharmacological modulation of eIF2α-P-mediated translational inhibition can be achieved to produce neuroprotection without pancreatic toxicity. We found that treatment with the small molecule ISRIB, which restores translation downstream of eIF2α, conferred neuroprotection in prion-diseased mice without adverse effects on the pancreas. Critically, ISRIB treatment resulted in only partial restoration of global translation rates, as compared with the complete restoration of protein synthesis seen with GSK2606414. ISRIB likely provides sufficient rates of protein synthesis for neuronal survival, while allowing some residual protective UPR function in secretory tissue. Thus, fine-tuning the extent of UPR inhibition and subsequent translational de-repression uncouples neuroprotective effects from pancreatic toxicity. The data support the pursuit of this approach to develop new treatments for a range of neurodegenerative

  11. Partial restoration of protein synthesis rates by the small molecule ISRIB prevents neurodegeneration without pancreatic toxicity.

    PubMed

    Halliday, M; Radford, H; Sekine, Y; Moreno, J; Verity, N; le Quesne, J; Ortori, C A; Barrett, D A; Fromont, C; Fischer, P M; Harding, H P; Ron, D; Mallucci, G R

    2015-01-01

    Activation of the PERK branch of the unfolded protein response (UPR) in response to protein misfolding within the endoplasmic reticulum (ER) results in the transient repression of protein synthesis, mediated by the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2α). This is part of a wider integrated physiological response to maintain proteostasis in the face of ER stress, the dysregulation of which is increasingly associated with a wide range of diseases, particularly neurodegenerative disorders. In prion-diseased mice, persistently high levels of eIF2α cause sustained translational repression leading to catastrophic reduction of critical proteins, resulting in synaptic failure and neuronal loss. We previously showed that restoration of global protein synthesis using the PERK inhibitor GSK2606414 was profoundly neuroprotective, preventing clinical disease in prion-infected mice. However, this occured at the cost of toxicity to secretory tissue, where UPR activation is essential to healthy functioning. Here we show that pharmacological modulation of eIF2α-P-mediated translational inhibition can be achieved to produce neuroprotection without pancreatic toxicity. We found that treatment with the small molecule ISRIB, which restores translation downstream of eIF2α, conferred neuroprotection in prion-diseased mice without adverse effects on the pancreas. Critically, ISRIB treatment resulted in only partial restoration of global translation rates, as compared with the complete restoration of protein synthesis seen with GSK2606414. ISRIB likely provides sufficient rates of protein synthesis for neuronal survival, while allowing some residual protective UPR function in secretory tissue. Thus, fine-tuning the extent of UPR inhibition and subsequent translational de-repression uncouples neuroprotective effects from pancreatic toxicity. The data support the pursuit of this approach to develop new treatments for a range of neurodegenerative

  12. Protein kinase RNA- like endoplasmic reticulum kinase (PERK) signaling pathway plays a major role in reactive oxygen species (ROS)- mediated endoplasmic reticulum stress- induced apoptosis in diabetic cardiomyopathy

    PubMed Central

    2013-01-01

    Background Endoplasmic reticulum (ER) stress is considered one of the mechanisms contributing to reactive oxygen species (ROS)- mediated cell apoptosis. In diabetic cardiomyopathy (DCM), cell apoptosis is generally accepted as the etiological factor and closely related to cardiac ROS generation. ER stress is proposed the link between ROS and cell apoptosis; however, the signaling pathways and their roles in participating ER stress- induced apoptosis in DCM are still unclear. Methods In this study, we investigated the signaling transductions in ROS- dependent ER stress- induced cardiomocyte apoptosis in animal model of DCM. Moreover, in order to clarify the roles of IRE1 (inositol - requiring enzyme-1), PERK (protein kinase RNA (PKR)- like ER kinase) and ATF6 (activating transcription factor-6) in conducting apoptotic signal in ROS- dependent ER stress- induced cardiomocyte apoptosis, we further investigated apoptosis in high- glucose incubated cardiomyocytes with IRE1, ATF6 and PERK- knocked down respectively. Results we demonstrated that the ER stress sensors, referred as PERK, IRE1 and ATF6, were activated in ROS- mediated ER stress- induced cell apoptosis in rat model of DCM which was characterized by cardiac pump and electrical dysfunctions. The deletion of PERK in myocytes exhibited stronger protective effect against apoptosis induced by high- glucose incubation than deletion of ATF6 or IRE in the same myocytes. By subcellular fractionation, rather than ATF6 and IRE1, in primary cardiomyocytes, PERK was found a component of MAMs (mitochondria-associated endoplasmic reticulum membranes) which was the functional and physical contact site between ER and mitochondria. Conclusions ROS- stimulated activation of PERK signaling pathway takes the major responsibility rather than IRE1 or ATF6 signaling pathways in ROS- medicated ER stress- induced myocyte apoptosis in DCM. PMID:24180212

  13. The science and practice of river restoration

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen; Lane, Stuart N.; Wilcox, Andrew C.

    2015-08-01

    River restoration is one of the most prominent areas of applied water-resources science. From an initial focus on enhancing fish habitat or river appearance, primarily through structural modification of channel form, restoration has expanded to incorporate a wide variety of management activities designed to enhance river process and form. Restoration is conducted on headwater streams, large lowland rivers, and entire river networks in urban, agricultural, and less intensively human-altered environments. We critically examine how contemporary practitioners approach river restoration and challenges for implementing restoration, which include clearly identified objectives, holistic understanding of rivers as ecosystems, and the role of restoration as a social process. We also examine challenges for scientific understanding in river restoration. These include: how physical complexity supports biogeochemical function, stream metabolism, and stream ecosystem productivity; characterizing response curves of different river components; understanding sediment dynamics; and increasing appreciation of the importance of incorporating climate change considerations and resiliency into restoration planning. Finally, we examine changes in river restoration within the past decade, such as increasing use of stream mitigation banking; development of new tools and technologies; different types of process-based restoration; growing recognition of the importance of biological-physical feedbacks in rivers; increasing expectations of water quality improvements from restoration; and more effective communication between practitioners and river scientists.

  14. Phosphoregulatory protein 14-3-3 facilitates SAC1 transport from the endoplasmic reticulum

    PubMed Central

    Bajaj Pahuja, Kanika; Wang, Jinzhi; Blagoveshchenskaya, Anastasia; Lim, Lillian; Madhusudhan, M. S.; Mayinger, Peter; Schekman, Randy

    2015-01-01

    Most secretory cargo proteins in eukaryotes are synthesized in the endoplasmic reticulum and actively exported in membrane-bound vesicles that are formed by the cytosolic coat protein complex II (COPII). COPII proteins are assisted by a variety of cargo-specific adaptor proteins required for the concentration and export of secretory proteins from the endoplasmic reticulum (ER). Adaptor proteins are key regulators of cargo export, and defects in their function may result in disease phenotypes in mammals. Here we report the role of 14-3-3 proteins as a cytosolic adaptor in mediating SAC1 transport in COPII-coated vesicles. Sac1 is a phosphatidyl inositol-4 phosphate (PI4P) lipid phosphatase that undergoes serum dependent translocation between the endoplasmic reticulum and Golgi complex and controls cellular PI4P lipid levels. We developed a cell-free COPII vesicle budding reaction to examine SAC1 exit from the ER that requires COPII and at least one additional cytosolic factor, the 14-3-3 protein. Recombinant 14-3-3 protein stimulates the packaging of SAC1 into COPII vesicles and the sorting subunit of COPII, Sec24, interacts with 14-3-3. We identified a minimal sorting motif of SAC1 that is important for 14-3-3 binding and which controls SAC1 export from the ER. This LS motif is part of a 7-aa stretch, RLSNTSP, which is similar to the consensus 14-3-3 binding sequence. Homology models, based on the SAC1 structure from yeast, predict this region to be in the exposed exterior of the protein. Our data suggest a model in which the 14-3-3 protein mediates SAC1 traffic from the ER through direct interaction with a sorting signal and COPII. PMID:26056309

  15. Quality control in the endoplasmic reticulum: lessons from hereditary myeloperoxidase deficiency.

    PubMed

    Nauseef, W M

    1999-09-01

    The optimal level of oxygen-dependent microbicidal activity in human neutrophils depends on the generation of highly toxic products, including hypochlorous acid, by hydrogen peroxide in the presence of chloride anion and the neutrophil granule protein myeloperoxidase (MPO). The biosynthesis of MPO is normally restricted to the promyelocytic stage of myeloid development and includes N-linked glycosylation, heme insertion, proteolytic processing, subunit dimerization, and eventual targeting to the azurophilic granule. In the endoplasmic reticulum, MPO precursors interact transiently with calreticulin and calnexin, presumably in their capacity as molecular chaperones. In light of the important role of the MPO-H2O2-chloride system in human host defense, the relatively high prevalence of inherited MPO deficiency was an unanticipated insight provided by the widespread use of automated flow cytometry for the enumeration of leukocytes in clinical specimens. In many cases of inherited MPO deficiency, affected neutrophils have immunochemical evidence of precursor protein but lack the subunits of mature MPO, peroxidase activity, or the ability to chlorinate target proteins. To date, four genotypes have been reported to cause inherited MPO deficiency, each of which results in missense mutations. In the genotype Y173C, the mutant precursor is retained in the endoplasmic reticulum by virtue of its prolonged interaction with calnexin, and it eventually undergoes degradation in the 20S proteasome. In this way, the quality control system operating in the endoplasmic reticulum retrieves malfolded MPO precursors from the biosynthetic pathway and creates the biochemical phenotype of MPO deficiency. Thus MPO deficiency caused by Y173C joins the ranks of cystic fibrosis, protein C deficiency, and other genetic disorders that reflect abnormalities in protein folding. PMID:10482305

  16. The Involvement of SMILE/TMTC3 in Endoplasmic Reticulum Stress Response

    PubMed Central

    Racapé, Maud; Duong Van Huyen, Jean-Paul; Danger, Richard; Giral, Magali; Bleicher, Françoise; Foucher, Yohann; Pallier, Annaïck; Pilet, Paul; Tafelmeyer, Petra; Ashton-Chess, Joanna; Dugast, Emilie; Pettré, Ségolène; Charreau, Béatrice; Soulillou, Jean-Paul; Brouard, Sophie

    2011-01-01

    Background Thestate of operational tolerance has been detected sporadically in some renal transplanted patients that stopped immunosuppressive drugs, demonstrating that allograft tolerance might exist in humans. Several years ago, a study by Brouard et al. identified a molecular signature of several genes that were significantly differentially expressed in the blood of such patients compared with patients with other clinical situations. The aim of the present study is to analyze the role of one of these molecules over-expressed in the blood of operationally tolerant patients, SMILE or TMTC3, a protein whose function is still unknown. Methodology/Principal Findings We first confirmed that SMILE mRNA is differentially expressed in the blood of operationally tolerant patients with drug-free long term graft function compared to stable and rejecting patients. Using a yeast two-hybrid approach and a colocalization study by confocal microscopy we furthermore report an interaction of SMILE with PDIA3, a molecule resident in the endoplasmic reticulum (ER). In accordance with this observation, SMILE silencing in HeLa cells correlated with the modulation of several transcripts involved in proteolysis and a decrease in proteasome activity. Finally, SMILE silencing increased HeLa cell sensitivity to the proteasome inhibitor Bortezomib, a drug that induces ER stress via protein overload, and increased transcript expression of a stress response protein, XBP-1, in HeLa cells and keratinocytes. Conclusion/Significance In this study we showed that SMILE is involved in the endoplasmic reticulum stress response, by modulating proteasome activity and XBP-1 transcript expression. This function of SMILE may influence immune cell behavior in the context of transplantation, and the analysis of endoplasmic reticulum stress in transplantation may reveal new pathways of regulation in long-term graft acceptance thereby increasing our understanding of tolerance. PMID:21603654

  17. Peptidyl prolyl cis-trans-isomerase activity associated with the lumen of the endoplasmic reticulum.

    PubMed Central

    Bose, S; Freedman, R B

    1994-01-01

    Peptidyl prolyl cis-trans-isomerase (PPI) activity was detected in microsomal fractions from bovine and rat liver. Extensive washing, proteinase and sonication treatments indicated that although some of this activity was due to adsorbed cytosolic enzymes, there was also an active but latent microsomal PPI activity. Density-gradient subfractionation indicated that activity was associated with vesicles derived from both the rough and the smooth endoplasmic reticulum (ER), suggesting that the activity was located within the ER lumen. The luminal PPI activity was inhibited by cyclosporin A and was active towards an unfolded protein substrate as well as towards the standard peptide substrate. PMID:8010971

  18. Calcium Flux between the Endoplasmic Reticulum and Mitochondrion Contributes to Poliovirus-Induced Apoptosis▿

    PubMed Central

    Brisac, Cynthia; Téoulé, François; Autret, Arnaud; Pelletier, Isabelle; Colbère-Garapin, Florence; Brenner, Catherine; Lemaire, Christophe; Blondel, Bruno

    2010-01-01

    We show that poliovirus (PV) infection induces an increase in cytosolic calcium (Ca2+) concentration in neuroblastoma IMR5 cells, at least partly through Ca2+ release from the endoplasmic reticulum lumen via the inositol 1,4,5-triphosphate receptor (IP3R) and ryanodine receptor (RyR) channels. This leads to Ca2+ accumulation in mitochondria through the mitochondrial Ca2+ uniporter and the voltage-dependent anion channel (VDAC). This increase in mitochondrial Ca2+ concentration in PV-infected cells leads to mitochondrial dysfunction and apoptosis. PMID:20861253

  19. N-Myristoyltransferase 1 interacts with calnexin at the endoplasmic reticulum.

    PubMed

    Dudek, Elzbieta; Millott, Robyn; Liu, Wen-Xin; Beauchamp, Erwan; Berthiaume, Luc G; Michalak, Marek

    2015-12-25

    Calnexin is a type 1 integral endoplasmic reticulum (ER) membrane molecular chaperone with a highly conserved C-terminal domain oriented to the cytoplasm. Protein N-myristoylation plays an important role in a wide variety of cellular signal transduction pathways and it is catalyzed by N-myristoyltransferase (NMT), a cytoplasmic and ER associated enzyme. Here using yeast two-hybrid screen, Western blot analysis, immunoprecipitation, immunolocalization and cellular fractionation we discovered that N-myristoyltransferase 1 interacts with calnexin at the ER. These observations point at a previously unrecognized contribution of calnexin to the retention of NMT1 at the ER membrane. PMID:26603938

  20. Oncogenic and oncosuppressive signal transduction at mitochondria-associated endoplasmic reticulum membranes

    PubMed Central

    Marchi, Saverio; Giorgi, Carlotta; Oparka, Monika; Duszynski, Jerzy; Wieckowski, Mariusz R; Pinton, Paolo

    2014-01-01

    The different mechanisms employed by proto-oncogenes and tumor suppressors to regulate cell death pathways are strictly linked to their localization. In addition to the canonical control of apoptosis at a transcriptional/nuclear level, intracellular zones are emerging as pivotal sites for the activities of several proapoptotic and antiapoptotic factors. Here, we review the function of the endoplasmic reticulum-mitochondria interface as a primary platform for decoding danger signals as well as a structural accommodation for several regulator or effector proteins. PMID:27308328

  1. Monitoring peptide processing for MHC class I molecules in the endoplasmic reticulum.

    PubMed

    Shastri, Nilabh; Nagarajan, Niranjana; Lind, Kristin C; Kanaseki, Takayuki

    2014-02-01

    Classical MHC class I molecules open a window into the cell by presenting intracellular peptides (pMHC I) on the surface. The peptides are used for immune surveillance by circulating CD8+ T and NK cells to detect and eliminate infected or tumor cells. Not surprisingly, viruses and tumor cells have evolved immune evasion mechanisms to keep the window shades down and the cytotoxic cells oblivious to their presence. Here, we review counter mechanisms that nevertheless allow the immune system to detect and eliminate cells unable to properly process antigenic peptides in the endoplasmic reticulum. PMID:24556408

  2. The Yin-Yang Principle of Endoplasmic Reticulum Stress and oral cancer.

    PubMed

    Sarode, Gargi S; Sarode, Sachin C; Patil, Shankargouda

    2016-01-01

    The endoplasmic reticulum (ER) is an organelle, which performs several cellular functions and is thus an important site for maintaining cellular homeostasis. Sometimes pathways within the ER are disturbed, especially those regulating the protein folding, gene expression, cellular metabolism, and calcium signaling, and is called an "ER stress."(1) The accumulation of unfolded, misfolded, or damaged proteins can irreparably damage cellular functions and can pose a severe threat to the existence of the cell. Under such circumstances, ER functions become overwhelmed triggering the homeostatic "ER stress response" or "unfolded protein response" (UPR).(2). PMID:27595714

  3. Multiresolution image gathering and restoration

    NASA Technical Reports Server (NTRS)

    Fales, Carl L.; Huck, Friedrich O.; Alter-Gartenberg, Rachel; Rahman, Zia-Ur

    1992-01-01

    In this paper we integrate multiresolution decomposition with image gathering and restoration. This integration leads to a Wiener-matrix filter that accounts for the aliasing, blurring, and noise in image gathering, together with the digital filtering and decimation in signal decomposition. Moreover, as implemented here, the Wiener-matrix filter completely suppresses the blurring and raster effects of the image-display device. We demonstrate that this filter can significantly improve the fidelity and visual quality produced by conventional image reconstruction. The extent of this improvement, in turn, depends on the design of the image-gathering device.

  4. Call to restore Mesopotamian marshlands

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    When the current military conflict in Iraq has concluded, a rehabilitation of that country should include a full assessment and action plan for restoring the marshlands of Mesopotamia, the United Nations Environment Programme said on 22 March.The marshlands, also known as the Fertile Crescent, could disappear within three to five years, according to UNEP.UNEP Executive Director Klaus Toepfer said the loss of the marshlands “is an environmental catastrophe for this region and underscores the huge pressures facing wetlands and freshwater ecosystems across the world.”

  5. Current status of zirconia restoration.

    PubMed

    Miyazaki, Takashi; Nakamura, Takashi; Matsumura, Hideo; Ban, Seiji; Kobayashi, Taira

    2013-10-01

    During the past decade, zirconia-based ceramics have been successfully introduced into the clinic to fabricate fixed dental prostheses (FDPs), along with a dental computer-aided/computer-aided manufacturing (CAD/CAM) system. In this article (1) development of dental ceramics, (2) the current status of dental CAD/CAM systems, (3) CAD/CAM and zirconia restoration, (4) bond between zirconia and veneering ceramics, (5) bond of zirconia with resin-based luting agents, (6) surface finish of zirconia restoration and antagonist enamel wear, and (7) clinical evaluation of zirconia restoration are reviewed. Yttria partially stabilized tetragonal zirconia polycrystalline (Y-TZP) showed better mechanical properties and superior resistance to fracture than other conventional dental ceramics. Furthermore, ceria-stabilized tetragonal zirconia polycrystalline and alumina nanocomposites (Ce-TZP/A) had the highest fracture toughness and had resistance to low-temperature aging degradation. Both zirconia-based ceramics have been clinically available as an alternative to the metal framework for fixed dental prostheses (FDPs). Marginal adaptation of zirconia-based FDPs is acceptable for clinical application. The most frequent clinical complication with zirconia-based FDPs was chipping of the veneering porcelain that was affected by many factors. The mechanism for the bonding between zirconia and veneering ceramics remains unknown. There was no clear evidence of chemical bonding and the bond strength between zirconia and porcelain was lower than that between metal and porcelain. There were two alternatives proposed that might avoid chipping of veneering porcelains. One was hybrid-structured FDPs comprising CAD/CAM-fabricated porcelain parts adhering to a CAD/CAM fabricated zirconia framework. Another option was full-contour zirconia FDPs using high translucent zirconia. Combined application of silica coating and/or silane coupler, and 10-methacryloyloxydecyl dihydrogen phosphate is

  6. Complications in hair restoration surgery.

    PubMed

    Perez-Meza, David; Niedbalski, Robert

    2009-02-01

    Hair loss affects more than 1.2 billion people worldwide. As the technology and artistry of hair restoration surgery has improved including natural results, so too has the popularity of this procedure. As with any other surgical procedure, complications may occur and this presents a major challenge for the surgeon and the patient. This article provides an overview of the complications most likely to occur during the pre, intra, and postoperative periods with modern hair transplant surgery (single follicular unit or multifollicular unit) including scalp surgery, and discusses their treatment and most importantly their prevention. PMID:19185800

  7. Fish Community Responses to Stream Restoration

    NASA Astrophysics Data System (ADS)

    Daniel, W.; Jack, J.; Kelley, R.

    2005-05-01

    Stream restoration projects are often justified based on expected improvements in habitat and ecosystem services, but few of these restorations have been systematically studied to assess their "success." A channelized section of Wilson Creek (Kentucky, USA) was relocated to a new, meandering channel using a natural channel design approach. Fish communities were sampled before and after the restoration and compared to an upstream site in Wilson and two control streams that were not restored. There were no consistent taxa changes among sites at Wilson Creek between the pre- and post restoration samples. Wilson Creek fish communities were always more diverse than either of the control streams. Kentucky Fish Index of Biotic Integrity (IBI) scores in Wilson were Excellent for the pre-restoration fish community and 4 out of 5 reaches sampled after the restoration retained that classification. The reference streams' IBIs were classified as Good and remained unchanged throughout the study period. We are also conducting a stable isotope analysis of representative trophic groups in Wilson to assess if there have been any changes in food web dynamics post- restoration. More pre- and post restoration studies are needed to help develop success criteria and incorporate "lessons learned" in stream restorations.

  8. Predicting restorability of incompetent criminal defendants.

    PubMed

    Mossman, Douglas

    2007-01-01

    U.S. courts frequently require forensic examiners to offer opinions concerning the likelihood that criminal defendants found incompetent to stand trial can have their competence "restored" through treatment. Yet no jurisdiction has established legal guidelines for testimony concerning restorability, and several authors have suggested that mental health professionals cannot accurately predict whether treatment to restore competence will succeed. This study asked whether reliable information that is consistently available at the time of examination might support empirically grounded opinions about the likelihood of restoration. Using records from all 351 inpatient pretrial defendants who underwent competence restoration at a state psychiatric hospital from 1995 through 1999, I evaluated whether several types of information that are reliable and that could consistently be made available to forensic examiners--including evaluees' demographic characteristics, diagnoses, symptom patterns, criminal charges, number of prior public sector hospitalizations, and cumulative prior length of stay (LOS)--would predict outcome of restoration efforts. I modeled the probability of successful restoration using logistic regression equations, and evaluated the equations' predictive accuracy using k-fold cross-validation and receiver operating characteristic (ROC) analysis. Lower probability of restoration was associated with having a misdemeanor charge, longer cumulative LOS, older age, and diagnoses of mental retardation, schizophrenia, and schizoaffective disorder. Although the overall rate of successful restoration for felony defendants was 75 percent, logistic equations allowed selection of subgroups with high predicted probabilities of restoration (>90%) and low probabilities of restoration (<35%). In cross-validation simulations, predictive equations had ROC areas of 0.727 for all defendants, and 0.735 for felony defendants. These findings provide scientific support for testimony

  9. Mitochondrial DNA, restoring Beethovens music.

    PubMed

    Merheb, Maxime; Vaiedelich, Stéphane; Maniguet, Thiérry; Hänni, Catherine

    2016-01-01

    Great ancient composers have endured many obstacles and constraints which are very difficult to understand unless we perform the restoration process of ancient music. Species identification in leather used during manufacturing is the key step to start such a restoration process in order to produce a facsimile of a museum piano. Our study reveals the species identification in the leather covering the hammer head in a piano created by Erard in 1802. This is the last existing piano similar to the piano that Beethoven used with its leather preserved in its original state. The leather sample was not present in a homogeneous piece, yet combined with glue. Using a DNA extraction method that avoids PCR inhibitors; we discovered that sheep and cattle are the origin of the combination. To identify the species in the leather, we focused on the amounts of mitochondrial DNA in both leather and glue and results have led us to the conclusion that the leather used to cover the hammer head in this piano was made of cattle hide. PMID:24617463

  10. Evaluation of resins for provisional restorations.

    PubMed

    Burgess, J O; Haveman, C W; Butzin, C

    1992-06-01

    An in vivo study of two resin materials (Barricaid and Caulk Temporary Crown and Bridge Resin) was done to determine the retention, post-operative sensitivity, and fabrication time of provisional restorations made from these materials. Following the placement of these resins in 67 intracoronal cavity preparations of 19 adult patients, a baseline evaluation was made which included a clinical examination and color slides. Twenty-four hours after the temporary restorations were placed, the patients completed evaluations of the post-operative sensitivity experienced. There was no difference in post-operative sensitivity between the teeth restored with Barricaid or Caulk Temporary Crown and Bridge Resin. At the insertion appointment of the final restoration, the interim restoration's success rate was determined. There was no difference between the retention of the two provisional materials. Fabrication time was significantly different with Barricaid restorations requiring less than one-half the fabrication time of the Caulk Temporary Crown and Bridge Resin material. PMID:1388950

  11. River restoration success: a question of perception.

    PubMed

    Jähnig, S C; Lorenz, A W; Hering, D; Antons, C; Sundermann, A; Jedicke, E; Haase, P

    2011-09-01

    What defines success and failure of river restoration measures is a strongly debated topic in restoration science, but standardized approaches to evaluate either are still not available. The debate is usually centered on measurable parameters, which adhere to scientific objectivity. More subjective aspects, such as landscape aesthetics or recreational value, are usually left out, although they play an important role in the perception and communication of restoration success. In this paper, we show that different perceptions of restoration success exist by analyzing data from 26 river restoration measures in Germany. We addressed both objective parameters, such as hydromorphological changes and changes in fish and benthic invertebrate assemblages, from field investigations, and subjective parameters, such as opinions and perceptions, from water managers via an online survey. With regard to the objective hydromorphological and biotic parameters, our results agree with many studies that have reported improvements in the hydromorphology following restoration; however, there is no similar agreement between results concerning changes in the benthic invertebrate and fish assemblages. The objective results do not correspond to the subjective parameters because self-evaluation of the restoration projects by water managers was overly positive. Indeed, 40% of the respondents admitted that their evaluation was based on gut feeling, and only 45% of the restoration measures were monitored or occasionally checked. This lack of objectively recorded data meant that the water managers were not able to reasonably evaluate restoration success. In contrast, some self-evaluation responses reflected a different perception of the restoration success that was based on landscape aesthetic values or on benefit for the public; others adopted a general "condemned to success" attitude. Based on our data, we argue (1) that goals should be thoughtfully formulated prior to restoration

  12. Can Viral Videos Help Beaver Restore Streams?

    NASA Astrophysics Data System (ADS)

    Castro, J. M.; Pollock, M. M.; Lewallen, G.; Jordan, C.; Woodruff, K.

    2015-12-01

    Have you watched YouTube lately? Did you notice the plethora of cute animal videos? Researchers, including members of our Beaver Restoration Research team, have been studying the restoration potential of beaver for decades, yet in the past few years, beaver have gained broad acclaim and some much deserved credit for restoration of aquatic systems in North America. Is it because people can now see these charismatic critters in action from the comfort of their laptops? While the newly released Beaver Restoration Guidebook attempts to answer many questions, sadly, this is not one of them. We do, however, address the use of beaver (Castor canadensis) in stream, wetland, and floodplain restoration and discuss the many positive effects of beaver on fluvial ecosystems. Our team, composed of researchers from NOAA National Marine Fisheries Service, US Fish and Wildlife Service, US Forest Service, and Portland State University, has developed a scientifically rigorous, yet accessible, practitioner's guide that provides a synthesis of the best available science for using beaver to improve ecosystem functions. Divided into two broad sections -- Beaver Ecology and Beaver Restoration and Management -- the guidebook focuses on the many ways in which beaver improve habitat, primarily through the construction of dams that impound water and retain sediment. In Beaver Ecology, we open with a discussion of the general effects that beaver dams have on physical and biological processes, and we close with "Frequently Asked Questions" and "Myth Busters". In Restoration and Management, we discuss common emerging restoration techniques and methods for mitigating unwanted beaver effects, followed by case studies from pioneering practitioners who have used many of these beaver restoration techniques in the field. The lessons they have learned will help guide future restoration efforts. We have also included a comprehensive beaver ecology library of over 1400 references from scientific journals

  13. Lipid homeostasis is involved in plasma membrane and endoplasmic reticulum stress in Pichia pastoris.

    PubMed

    Zhang, Meng; Yu, Qilin; Liang, Chen; Zhang, Biao; Li, Mingchun

    2016-09-16

    Maintaining cellular lipid composition is essential for many cell processes. Our previous study has demonstrated that Spt23 is an important transcription factor within the cell and responsible for the regulation of fatty acid desaturase genes. Disruption of SPT23 results in increased lipid saturation. In the present study, we found that lipid saturation caused by SPT23 deletion exhibited a growth defect under ethanol stress and increased chitin contents. Ergosterol synthesis-related genes were up-regulated to protect cells from plasma membrane damage in the presence of ethanol. The cell wall stress caused by increased chitin contents could not be attenuated by up-regulation of phospholipids synthesis-related genes in spt23Δ. Besides, lipid saturation induced expression of unfolded protein response (UPR) genes and reactive oxygen species (ROS) accumulation followed by activation of the cellular antioxidant system, which is associated with endoplasmic reticulum functions. Taken together, our data suggested that lipid homeostasis has a close connection with cell responses to both plasma membrane stress and endoplasmic reticulum stress. PMID:27524240

  14. The protective effect of the earthworm active ingredients on hepatocellular injury induced by endoplasmic reticulum stress.

    PubMed

    Wang, Qi; Duan, Leng-Xin; Xu, Zheng-Shun; Wang, Jian-Gang; Xi, Shou-Min

    2016-08-01

    The earthworm is a widely used Chinese herbal medicine. There are more than 40 prescriptions including earthworms in the "Compendium of Materia Medica". TCM theory holds that earthworms exert antispasmodic and antipyretic effects through the liver meridian to calm the liver. However, the clinical effect of earthworms on liver injury has not been clearly demonstrated. We have previously established a method to extract the active ingredients from earthworms (hereinafter referred to as EWAs) [1]. In the present study, we observed protective effect of the EWAs on tunicamycin-induced ERS (endoplasmic reticulum stress) model in human hepatic L02 cells. The results showed that the EWAs promote proliferation and reduced apoptosis of ERS model in L02 cells (P<0.01). The up-regulation of ERS-related proteins, including PERK (protein kinase RNA-like endoplasmic reticulum kinase), eIF2a (eukaryotic translation initiation factor 2a), ATF4 (activating transcription factor 4) and CHOP (CCAAT/enhancer binding protein homologous protein), in L02 cell under ERS was inhibited by treatment of the EWAs (P<0.01). In summary, our data suggest the EWAs can significant attenuate ERS-induced hepatocyte injury via PERK-eIF2a-ATF4 pathway. PMID:27470367

  15. Overlapping signal sequences control nuclear localization and endoplasmic reticulum retention of GRP58

    SciTech Connect

    Adikesavan, Anbu Karani; Unni, Emmanual; Jaiswal, Anil K.

    2008-12-12

    Glucose-regulated GRP58 has shown clinical applications to endoplasmic reticulum (ER) stress and cancer. GRP58 is localized in the cytosol, endoplasmic reticulum (ER) and nucleus. Twenty-four amino acids at the N-terminal hydrophobic region are known to target GRP58 to ER for synthesis at the ER membrane and translocation into the ER lumen. In addition, GRP58 contains putative nuclear localization (494KPKKKKK500) and ER retention (502QEDL505) signals. However, the role of these signals in nuclear import and ER retention of GRP58 remains unknown. Present studies investigated the signals that control nuclear localization and ER retention of GRP58. Deletion/mutation of nuclear localization signal (NLS) abrogated nuclear import of GRP58. NLS attached to EGFP localized EGFP in the nucleus. However, deletion/mutation of putative ER retention signal alone did not alter ER retention of GRP58. Interestingly, a combined deletion/mutation of NLS and ER retention signals blocked the GRP58 retention in the ER. These results concluded that overlapping NLS and ER retention signal sequences regulate nuclear localization and ER retention of GRP58.

  16. Intrinsic membrane glycoproteins with cytosol-oriented sugars in the endoplasmic reticulum

    SciTech Connect

    Abeijon, C.; Hirschberg, C.B.

    1988-02-01

    The authors have examined the topography of N-acetylglucosamine-terminating glycoproteins in membranes from rat liver smooth and rough endoplasmic reticulum (SER and RER). It was found that some of these glycoproteins are intrinsic membrane proteins with their sugars facing the cytosolic rather than the luminal side. This conclusion was reached by using vesicles from the SER and RER that were sealed and of the same topographical orientation as in vivo. These vesicles were incubated with UDP-(/sup 14/C)galactose (which does not enter the vesicles) and saturating amounts of soluble galactosyltransferase from milk, an enzyme that does not penetrate the lumen of the vesicles and that specifically adds galactose to terminal N-acetylglucosamine in a ..beta..1-4 linkage. Radioactive galactose was mainly transferred to SER proteins of apparent molecular mass 56 and 110 kDa and to a lesser extent RER and SER proteins of apparent molecular mass 46 and 72 kDa. These proteins are intrinsic membrane proteins, based on the inability of sodium carbonate at pH 11.5 to remove them from the membranes. Studies with peptide N-glycosidase F and chemical ..beta..-elimination showed that the 56-kDa protein of the SER vesicles contained terminal N-acetylglucosamine in an O-linkage to the protein. The above results suggest that some sugars of glycoproteins in the endoplasmic reticulum may attain their final orientation in the membrane by mechanisms yet to be determined.

  17. Agonist-activated Ca2+ influx occurs at stable plasma membrane and endoplasmic reticulum junctions

    PubMed Central

    Treves, Susan; Vukcevic, Mirko; Griesser, Johanna; Armstrong, Clara-Franzini; Zhu, Michael X.; Zorzato, Fancesco

    2010-01-01

    Junctate is a 33 kDa integral protein of sarco(endo)plasmic reticulum membranes that forms a macromolecular complex with inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] receptors and TRPC3 channels. TIRF microscopy shows that junctate enhances the number of fluorescent puncta on the plasma membrane. The size and distribution of these puncta are not affected by the addition of agonists that mobilize Ca2+ from Ins(1,4,5)P3-sensitive stores. Puncta are associated with a significantly larger number of peripheral junctions between endoplasmic reticulum and plasma membrane, which are further enhanced upon stable co-expression of junctate and TRPC3. The gap between the membranes of peripheral junctions is bridged by regularly spaced electron-dense structures of 10 nm. Ins(1,4,5)P3 inhibits the interaction of the cytoplasmic N-terminus of junctate with the ligand-binding domain of the Ins(1,4,5)P3 receptor. Furthermore, Ca2+ influx evoked by activation of Ins(1,4,5)P3 receptors is increased where puncta are located. We conclude that stable peripheral junctions between the plasma membrane and endoplasmic reticulum are the anatomical sites of agonist-activated Ca2+ entry. PMID:21062895

  18. Respiratory metabolism and calorie restriction relieve persistent endoplasmic reticulum stress induced by calcium shortage in yeast.

    PubMed

    Busti, Stefano; Mapelli, Valeria; Tripodi, Farida; Sanvito, Rossella; Magni, Fulvio; Coccetti, Paola; Rocchetti, Marcella; Nielsen, Jens; Alberghina, Lilia; Vanoni, Marco

    2016-01-01

    Calcium homeostasis is crucial to eukaryotic cell survival. By acting as an enzyme cofactor and a second messenger in several signal transduction pathways, the calcium ion controls many essential biological processes. Inside the endoplasmic reticulum (ER) calcium concentration is carefully regulated to safeguard the correct folding and processing of secretory proteins. By using the model organism Saccharomyces cerevisiae we show that calcium shortage leads to a slowdown of cell growth and metabolism. Accumulation of unfolded proteins within the calcium-depleted lumen of the endoplasmic reticulum (ER stress) triggers the unfolded protein response (UPR) and generates a state of oxidative stress that decreases cell viability. These effects are severe during growth on rapidly fermentable carbon sources and can be mitigated by decreasing the protein synthesis rate or by inducing cellular respiration. Calcium homeostasis, protein biosynthesis and the unfolded protein response are tightly intertwined and the consequences of facing calcium starvation are determined by whether cellular energy production is balanced with demands for anabolic functions. Our findings confirm that the connections linking disturbance of ER calcium equilibrium to ER stress and UPR signaling are evolutionary conserved and highlight the crucial role of metabolism in modulating the effects induced by calcium shortage. PMID:27305947

  19. THE DELICATE BALANCE BETWEEN SECRETED PROTEIN FOLDING AND ENDOPLASMIC RETICULUM-ASSOCIATED DEGRADATION IN HUMAN PHYSIOLOGY

    PubMed Central

    Guerriero, Christopher J.; Brodsky, Jeffrey L.

    2014-01-01

    Protein folding is a complex, error-prone process that often results in an irreparable protein by-product. These by-products can be recognized by cellular quality control machineries and targeted for proteasome-dependent degradation. The folding of proteins in the secretory pathway adds another layer to the protein folding “problem,” as the endoplasmic reticulum maintains a unique chemical environment within the cell. In fact, a growing number of diseases are attributed to defects in secretory protein folding, and many of these by-products are targeted for a process known as endoplasmic reticulum-associated degradation (ERAD). Since its discovery, research on the mechanisms underlying the ERAD pathway has provided new insights into how ERAD contributes to human health during both normal and diseases states. Links between ERAD and disease are evidenced from the loss of protein function as a result of degradation, chronic cellular stress when ERAD fails to keep up with misfolded protein production, and the ability of some pathogens to coopt the ERAD pathway. The growing number of ERAD substrates has also illuminated the differences in the machineries used to recognize and degrade a vast array of potential clients for this pathway. Despite all that is known about ERAD, many questions remain, and new paradigms will likely emerge. Clearly, the key to successful disease treatment lies within defining the molecular details of the ERAD pathway and in understanding how this conserved pathway selects and degrades an innumerable cast of substrates. PMID:22535891

  20. Oxidative stress contributes to autophagy induction in response to endoplasmic reticulum stress in Chlamydomonas reinhardtii.

    PubMed

    Pérez-Martín, Marta; Pérez-Pérez, María Esther; Lemaire, Stéphane D; Crespo, José L

    2014-10-01

    The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) results in the activation of stress responses, such as the unfolded protein response or the catabolic process of autophagy to ultimately recover cellular homeostasis. ER stress also promotes the production of reactive oxygen species, which play an important role in autophagy regulation. However, it remains unknown whether reactive oxygen species are involved in ER stress-induced autophagy. In this study, we provide evidence connecting redox imbalance caused by ER stress and autophagy activation in the model unicellular green alga Chlamydomonas reinhardtii. Treatment of C. reinhardtii cells with the ER stressors tunicamycin or dithiothreitol resulted in up-regulation of the expression of genes encoding ER resident endoplasmic reticulum oxidoreductin1 oxidoreductase and protein disulfide isomerases. ER stress also triggered autophagy in C. reinhardtii based on the protein abundance, lipidation, cellular distribution, and mRNA levels of the autophagy marker ATG8. Moreover, increases in the oxidation of the glutathione pool and the expression of oxidative stress-related genes were detected in tunicamycin-treated cells. Our results revealed that the antioxidant glutathione partially suppressed ER stress-induced autophagy and decreased the toxicity of tunicamycin, suggesting that oxidative stress participates in the control of autophagy in response to ER stress in C. reinhardtii In close agreement, we also found that autophagy activation by tunicamycin was more pronounced in the C. reinhardtii sor1 mutant, which shows increased expression of oxidative stress-related genes. PMID:25143584

  1. Role of p97 and Syntaxin 5 in the Assembly of Transitional Endoplasmic Reticulum

    PubMed Central

    Roy, Line; Bergeron, John J.M.; Lavoie, Christine; Hendriks, Rob; Gushue, Jennifer; Fazel, Ali; Pelletier, Amélie; Morré, D. James; Subramaniam, V. Nathan; Hong, Wanjin; Paiement, Jacques

    2000-01-01

    Transitional endoplasmic reticulum (tER) consists of confluent rough and smooth endoplasmic reticulum (ER) domains. In a cell-free incubation system, low-density microsomes (1.17 g cc−1) isolated from rat liver homogenates reconstitute tER by Mg2+GTP- and Mg2+ATP-hydrolysis–dependent membrane fusion. The ATPases associated with different cellular activities protein p97 has been identified as the relevant ATPase. The ATP depletion by hexokinase or treatment with either N-ethylmaleimide or anti-p97 prevented assembly of the smooth ER domain of tER. High-salt washing of low-density microsomes inhibited assembly of the smooth ER domain of tER, whereas the readdition of purified p97 with associated p47 promoted reconstitution. The t-SNARE syntaxin 5 was observed within the smooth ER domain of tER, and antisyntaxin 5 abrogated formation of this same membrane compartment. Thus, p97 and syntaxin 5 regulate assembly of the smooth ER domain of tER and hence one of the earliest membrane differentiated components of the secretory pathway. PMID:10930451

  2. A few positively charged residues slow movement of a polypeptide chain across the endoplasmic reticulum membrane.

    PubMed

    Yamagishi, Marifu; Onishi, Yukiko; Yoshimura, Shotaro; Fujita, Hidenobu; Imai, Kenta; Kida, Yuichiro; Sakaguchi, Masao

    2014-08-26

    Many polypeptide chains are translocated across and integrated into the endoplasmic reticulum membrane through protein-conducting channels. During the process, amino acid sequences of translocating polypeptide chains are scanned by the channels and classified to be retained in the membrane or translocated into the lumen. We established an experimental system with which the kinetic effect of each amino acid residue on the polypeptide chain movement can be analyzed with a time resolution of tens of seconds. Positive charges greatly slow movement; only two lysine residues caused a remarkable slow down, and their effects were additive. The lysine residue was more effective than arginine. In contrast, clusters comprising three residues of each of the other 18 amino acids had little effect on chain movement. We also demonstrated that a four lysine cluster can exert the effect after being fully exposed from the ribosome. We concluded that as few as two to three residues of positively charged amino acids can slow the movement of the nascent polypeptide chain across the endoplasmic reticulum membrane. This effect provides a fundamental basis of the topogenic function of positively charged amino acids. PMID:25093244

  3. Respiratory metabolism and calorie restriction relieve persistent endoplasmic reticulum stress induced by calcium shortage in yeast

    PubMed Central

    Busti, Stefano; Mapelli, Valeria; Tripodi, Farida; Sanvito, Rossella; Magni, Fulvio; Coccetti, Paola; Rocchetti, Marcella; Nielsen, Jens; Alberghina, Lilia; Vanoni, Marco

    2016-01-01

    Calcium homeostasis is crucial to eukaryotic cell survival. By acting as an enzyme cofactor and a second messenger in several signal transduction pathways, the calcium ion controls many essential biological processes. Inside the endoplasmic reticulum (ER) calcium concentration is carefully regulated to safeguard the correct folding and processing of secretory proteins. By using the model organism Saccharomyces cerevisiae we show that calcium shortage leads to a slowdown of cell growth and metabolism. Accumulation of unfolded proteins within the calcium-depleted lumen of the endoplasmic reticulum (ER stress) triggers the unfolded protein response (UPR) and generates a state of oxidative stress that decreases cell viability. These effects are severe during growth on rapidly fermentable carbon sources and can be mitigated by decreasing the protein synthesis rate or by inducing cellular respiration. Calcium homeostasis, protein biosynthesis and the unfolded protein response are tightly intertwined and the consequences of facing calcium starvation are determined by whether cellular energy production is balanced with demands for anabolic functions. Our findings confirm that the connections linking disturbance of ER calcium equilibrium to ER stress and UPR signaling are evolutionary conserved and highlight the crucial role of metabolism in modulating the effects induced by calcium shortage. PMID:27305947

  4. The Endoplasmic Reticulum Chaperone Calnexin Is a NADPH Oxidase NOX4 Interacting Protein*

    PubMed Central

    Prior, Kim-Kristin; Wittig, Ilka; Leisegang, Matthias S.; Groenendyk, Jody; Weissmann, Norbert; Michalak, Marek; Jansen-Dürr, Pidder; Shah, Ajay M.; Brandes, Ralf P.

    2016-01-01

    Within the family of NADPH oxidases, NOX4 is unique as it is predominantly localized in the endoplasmic reticulum, has constitutive activity, and generates hydrogen peroxide (H2O2). We hypothesize that these features are consequences of a so far unidentified NOX4-interacting protein. Two-dimensional blue native (BN) electrophorese combined with SDS-PAGE yielded NOX4 to reside in macromolecular complexes. Interacting proteins were screened by quantitative SILAC (stable isotope labeling of amino acids in cell culture) co-immunoprecipitation (Co-IP) in HEK293 cells stably overexpressing NOX4. By this technique, several interacting proteins were identified with calnexin showing the most robust interaction. Calnexin also resided in NOX4-containing complexes as demonstrated by complexome profiling from BN-PAGE. The calnexin NOX4 interaction could be confirmed by reverse Co-IP and proximity ligation assay, whereas NOX1, NOX2, or NOX5 did not interact with calnexin. Calnexin deficiency as studied in mouse embryonic fibroblasts from calnexin−/− mice or in response to calnexin shRNA reduced cellular NOX4 protein expression and reactive oxygen species formation. Our results suggest that endogenous NOX4 forms macromolecular complexes with calnexin, which are needed for the proper maturation, processing, and function of NOX4 in the endoplasmic reticulum. PMID:26861875

  5. Evidence of endoplasmic reticulum-related Ca sup 2+ ATPase in human microvascular endothelial cells

    SciTech Connect

    Bikfalvi, A.; Enouf, J.; Bredoux, R.; Dupuy, E.; Bourdeau, N.; Levy-Toledano, S.; Tobelem, G. ); Lompre, A. )

    1989-09-01

    The authors demonstrated by immunological and molecular methods the presence of a reticulum endoplasmic-related Ca{sup 2+}-ATPase in human omental microvascular endothelial cells (HOME cells). HOME cells reacted positively with a previously characterized sarcoplasmic reticulum Ca{sup 2+}-ATPase antibody as demonstrated by indirect immunofluorescence. Western blotting revealed that the antibody recognized a 95-100 kDa protein. {sup 35}S-Metabolic labeling led to the detection of a similar protein with which the purified sarcoplasmic reticulum Ca{sup 2+}-ATPase compete. Dot-blotting experiments indicated that a substantial amount of Ca{sup 2+}-ATPase was present in HOME cell membranes. In addition, Northern blot analysis using a cDNA probe from cardiac sarcoplasmic reticulum showed the presence of mRNA species of 4 kb. As these experiments were conducted in comparison with cell types with well-defined Ca{sup 2+}-ATPases, the results suggest the presence of a endoplasmic reticulum-related Ca{sup 2+}-ATPase in HOME cells.

  6. Sphingosine-1-phosphate Phosphatase 2 Regulates Pancreatic Islet β-Cell Endoplasmic Reticulum Stress and Proliferation.

    PubMed

    Taguchi, Yoshimitsu; Allende, Maria L; Mizukami, Hiroki; Cook, Emily K; Gavrilova, Oksana; Tuymetova, Galina; Clarke, Benjamin A; Chen, Weiping; Olivera, Ana; Proia, Richard L

    2016-06-01

    Sphingosine-1-phosphate (S1P) is a sphingolipid metabolite that regulates basic cell functions through metabolic and signaling pathways. Intracellular metabolism of S1P is controlled, in part, by two homologous S1P phosphatases (SPPases), 1 and 2, which are encoded by the Sgpp1 and Sgpp2 genes, respectively. SPPase activity is needed for efficient recycling of sphingosine into the sphingolipid synthesis pathway. SPPase 1 is important for skin homeostasis, but little is known about the functional role of SPPase 2. To identify the functions of SPPase 2 in vivo, we studied mice with the Sgpp2 gene deleted. In contrast to Sgpp1(-/-) mice, Sgpp2(-/-) mice had normal skin and were viable into adulthood. Unexpectedly, WT mice expressed Sgpp2 mRNA at high levels in pancreatic islets when compared with other tissues. Sgpp2(-/-) mice had normal pancreatic islet size; however, they exhibited defective adaptive β-cell proliferation that was demonstrated after treatment with either a high-fat diet or the β-cell-specific toxin, streptozotocin. Importantly, β-cells from untreated Sgpp2(-/-) mice showed significantly increased expression of proteins characteristic of the endoplasmic reticulum stress response compared with β-cells from WT mice, indicating a basal islet defect. Our results show that Sgpp2 deletion causes β-cell endoplasmic reticulum stress, which is a known cause of β-cell dysfunction, and reveal a juncture in the sphingolipid recycling pathway that could impact the development of diabetes. PMID:27059959

  7. Endoplasmic Reticulum Stress Is a Determinant of Retrovirus-Induced Spongiform Neurodegeneration

    PubMed Central

    Dimcheff, Derek E.; Askovic, Srdjan; Baker, Audrey H.; Johnson-Fowler, Cedar; Portis, John L.

    2003-01-01

    FrCasE is a mouse retrovirus that causes a fatal noninflammatory spongiform neurodegenerative disease with pathological features strikingly similar to those induced by transmissible spongiform encephalopathy (TSE) agents. Neurovirulence is determined by the sequence of the viral envelope protein, though the specific role of this protein in disease pathogenesis is not known. In the present study, we compared host gene expression in the brain stems of mice infected with either FrCasE or the avirulent virus F43, differing from FrCasE in the sequence of the envelope gene. Four of the 12 disease-specific transcripts up-regulated during the preclinical period represent responses linked to the accumulation of unfolded proteins in the endoplasmic reticulum (ER). Among these genes was CHOP/GADD153, which is induced in response to conditions that perturb endoplasmic reticulum function. In vitro studies with NIH 3T3 cells revealed up-regulation of CHOP as well as BiP, calreticulin, and Grp58/ERp57 in cells infected with FrCasE but not with F43. Immunoblot analysis of infected NIH 3T3 cells demonstrated the accumulation of uncleaved envelope precursor protein in FrCasE- but not F43-infected cells, consistent with ER retention. These results suggest that retrovirus-induced spongiform neurodegeneration represents a protein-folding disease and thus may provide a useful tool for exploring the causal link between protein misfolding and the cytopathology that it causes. PMID:14610184

  8. Endoplasmic Reticulum-associated Degradation (ERAD) and Autophagy Cooperate to Degrade Polymerogenic Mutant Serpins*

    PubMed Central

    Kroeger, Heike; Miranda, Elena; MacLeod, Ian; Pérez, Juan; Crowther, Damian C.; Marciniak, Stefan J.; Lomas, David A.

    2009-01-01

    The serpinopathies are a family of diseases characterized by the accumulation of ordered polymers of mutant protein within the endoplasmic reticulum. They are a diverse group including α1-antitrypsin deficiency and the inherited dementia familial encephalopathy with neuroserpin inclusion bodies or FENIB. We have used transient transfection of COS7 cells and mouse embryonic fibroblasts, PC12 cell lines that conditionally express wild type and mutant neuroserpin and fly models of FENIB to assess the cellular handling of wild type and mutant serpins. By using a polymer-specific monoclonal antibody, we show that mutant neuroserpin forms polymers after a delay of at least 30 min and that polymers can be cleared in PC12 cell lines and from the brain in a fly model of FENIB. At steady state, the fractions of intracellular polymerogenic G392E mutant neuroserpin in the monomeric and polymeric states are comparable. Inhibition of the proteasome with MG132 reveals that both mutant neuroserpin and α1-antitrypsin are degraded predominantly by endoplasmic reticulum-associated degradation (ERAD). Pharmacological and genetic inhibitions demonstrate that autophagy is responsible for bulk turnover of wild type and mutant serpins, but can be stimulated by rapamycin to compensate for proteasome inhibition. The significance of these findings to the treatment of serpinopathies is discussed. PMID:19549782

  9. New insights in the role of Bcl-2 Bcl-2 and the endoplasmic reticulum.

    PubMed

    Rudner, J; Jendrossek, V; Belka, C

    2002-10-01

    The oncogenic protein Bcl-2 which is expressed in membranes of different subcellular organelles protects cells from apoptosis induced by endogenic stimuli. Most of the results published so far emphasise the importance of Bcl-2 at the mitochondria. Several recent observations suggest a role of Bcl-2 at the endoplasmic reticulum (ER). Bcl-2 located at the ER was shown to interfere with apoptosis induction by Bax, ceramides, ionising radiation, serum withdrawal and c-myc expression. Although the detailed functions of Bcl-2 at the ER remain elusive, several speculative mechanisms may be supposed. For instance, Bcl-2 at the ER may regulate calcium fluxes between the ER and the mitochondria. In addition, Bcl-2 is able to interact with the endoplasmic protein Bap31 thus avoiding caspase activation at the ER. Bcl-2 may also abrogate the function of ER located pro-apoptotic Bcl-2 like proteins by heterodimerization. Current data on the function of Bcl-2 at the ER, its role for the modulation of calcium fluxes and its influence on caspase activation at the ER are reviewed. PMID:12207177

  10. Relevance of Endoplasmic Reticulum Stress Cell Signaling in Liver Cold Ischemia Reperfusion Injury

    PubMed Central

    Folch-Puy, Emma; Panisello, Arnau; Oliva, Joan; Lopez, Alexandre; Castro Benítez, Carlos; Adam, René; Roselló-Catafau, Joan

    2016-01-01

    The endoplasmic reticulum (ER) is involved in calcium homeostasis, protein folding and lipid biosynthesis. Perturbations in its normal functions lead to a condition called endoplasmic reticulum stress (ERS). This can be triggered by many physiopathological conditions such as alcoholic steatohepatitis, insulin resistance or ischemia-reperfusion injury. The cell reacts to ERS by initiating a defensive process known as the unfolded protein response (UPR), which comprises cellular mechanisms for adaptation and the safeguarding of cell survival or, in cases of excessively severe stress, for the initiation of the cell death program. Recent experimental data suggest the involvement of ERS in ischemia/reperfusion injury (IRI) of the liver graft, which has been considered as one of major problems influencing outcome after liver transplantation. The purpose of this review is to summarize updated data on the molecular mechanisms of ERS/UPR and the consequences of this pathology, focusing specifically on solid organ preservation and liver transplantation models. We will also discuss the potential role of ERS, beyond the simple adaptive response and the regulation of cell death, in the modification of cell functional properties and phenotypic changes. PMID:27231901

  11. Relevance of Endoplasmic Reticulum Stress Cell Signaling in Liver Cold Ischemia Reperfusion Injury.

    PubMed

    Folch-Puy, Emma; Panisello, Arnau; Oliva, Joan; Lopez, Alexandre; Castro Benítez, Carlos; Adam, René; Roselló-Catafau, Joan

    2016-01-01

    The endoplasmic reticulum (ER) is involved in calcium homeostasis, protein folding and lipid biosynthesis. Perturbations in its normal functions lead to a condition called endoplasmic reticulum stress (ERS). This can be triggered by many physiopathological conditions such as alcoholic steatohepatitis, insulin resistance or ischemia-reperfusion injury. The cell reacts to ERS by initiating a defensive process known as the unfolded protein response (UPR), which comprises cellular mechanisms for adaptation and the safeguarding of cell survival or, in cases of excessively severe stress, for the initiation of the cell death program. Recent experimental data suggest the involvement of ERS in ischemia/reperfusion injury (IRI) of the liver graft, which has been considered as one of major problems influencing outcome after liver transplantation. The purpose of this review is to summarize updated data on the molecular mechanisms of ERS/UPR and the consequences of this pathology, focusing specifically on solid organ preservation and liver transplantation models. We will also discuss the potential role of ERS, beyond the simple adaptive response and the regulation of cell death, in the modification of cell functional properties and phenotypic changes. PMID:27231901

  12. Cloning, expression, and functional characterization of a Ca(2+)-dependent endoplasmic reticulum nucleoside diphosphatase.

    PubMed

    Failer, Bernd U; Braun, Norbert; Zimmermann, Herbert

    2002-10-01

    We have isolated and characterized the cDNA encoding a Ca(2+)-dependent nucleoside diphosphatase (EC ) related to two secreted ATP- and ADP-hydrolyzing apyrases of the bloodsucking insects, Cimex lectularius and Phlebotomus papatasi. The rat brain-derived cDNA has an open reading frame of 1209 bp encoding a protein of 403 amino acids and a calculated molecular mass of 45.7 kDa. The mRNA was expressed in all tissues investigated, revealing two major transcripts with varying preponderance. The immunohistochemical analysis of the Myc-His-tagged enzyme expressed in Chinese hamster ovary cells revealed its association with the endoplasmic reticulum and also with pre-Golgi intermediates. Ca(2+)-dependent nucleoside diphosphatase is a membrane protein with its catalytic site facing the organelle lumen. It hydrolyzes nucleoside 5'-diphosphates in the order UDP >GDP = IDP >CDP but not ADP. Nucleoside 5'-triphosphates were hydrolyzed to a minor extent, and no hydrolysis of nucleoside 5'-monophosphates was observed. The enzyme was strongly activated by Ca(2+), insensitive to Mg(2+), and had a K(m) for UDP of 216 microm. Ca(2+)-dependent nucleoside diphosphatase may support glycosylation reactions related to quality control in the endoplasmic reticulum. PMID:12167635

  13. The Dictyostelium discoideum GPHR Ortholog Is an Endoplasmic Reticulum and Golgi Protein with Roles during Development

    PubMed Central

    Deckstein, Jaqueline; van Appeldorn, Jennifer; Tsangarides, Marios; Yiannakou, Kyriacos; Müller, Rolf; Stumpf, Maria; Sukumaran, Salil K.; Eichinger, Ludwig

    2014-01-01

    Dictyostelium discoideum GPHR (Golgi pH regulator)/Gpr89 is a developmentally regulated transmembrane protein present on the endoplasmic reticulum (ER) and the Golgi apparatus. Transcript levels are low during growth and vary during development, reaching high levels during the aggregation and late developmental stages. The Arabidopsis ortholog was described as a G protein-coupled receptor (GPCR) for abscisic acid present at the plasma membrane, whereas the mammalian ortholog is a Golgi apparatus-associated anion channel functioning as a Golgi apparatus pH regulator. To probe its role in D. discoideum, we generated a strain lacking GPHR. The mutant had different growth characteristics than the AX2 parent strain, exhibited changes during late development, and formed abnormally shaped small slugs and fruiting bodies. An analysis of development-specific markers revealed that their expression was disturbed. The distributions of the endoplasmic reticulum and the Golgi apparatus were unaltered at the immunofluorescence level. Likewise, their functions did not appear to be impaired, since membrane proteins were properly processed and glycosylated. Also, changes in the external pH were sensed by the ER, as indicated by a pH-sensitive ER probe, as in the wild type. PMID:25380752

  14. Effects of a Sublethal and Transient Stress of the Endoplasmic Reticulum on the Mitochondrial Population.

    PubMed

    Vannuvel, Kayleen; Van Steenbrugge, Martine; Demazy, Catherine; Ninane, Noëlle; Fattaccioli, Antoine; Fransolet, Maude; Renard, Patricia; Raes, Martine; Arnould, Thierry

    2016-09-01

    Endoplasmic reticulum (ER) and mitochondria are not discrete intracellular organelles but establish close physical and functional interactions involved in several biological processes including mitochondrial bioenergetics, calcium homeostasis, lipid synthesis, and the regulation of apoptotic cell death pathways. As many cell types might face a transient and sublethal ER stress during their lifetime, it is thus likely that the adaptive UPR response might affect the mitochondrial population. The aim of this work was to study the putative effects of a non-lethal and transient endoplasmic reticulum stress on the mitochondrial population in HepG2 cells. The results show that thapsigargin and brefeldin A, used to induce a transient and sublethal ER stress, rapidly lead to the fragmentation of the mitochondrial network associated with a decrease in mitochondrial membrane potential, O2 (•-) production and less efficient respiration. These changes in mitochondrial function are transient and preceded by the phosphorylation of JNK. Inhibition of JNK activation by SP600125 prevents the decrease in O2 (•-) production and the mitochondrial network fragmentation observed in cells exposed to the ER stress but has no impact on the reduction of the mitochondrial membrane potential. In conclusion, our data show that a non-lethal and transient ER stress triggers a rapid activation of JNK without inducing apoptosis, leading to the fragmentation of the mitochondrial network and a reduction of O2 (•-) production. J. Cell. Physiol. 231: 1913-1931, 2016. © 2015 Wiley Periodicals, Inc. PMID:26680008

  15. Unveiling the Role of the Integrated Endoplasmic Reticulum Stress Response in Leishmania Infection – Future Perspectives

    PubMed Central

    Dias-Teixeira, K. L.; Pereira, R. M.; Silva, J. S.; Fasel, N.; Aktas, B. H.; Lopes, U. G.

    2016-01-01

    The integrated endoplasmic reticulum stress response (IERSR) is an evolutionarily conserved adaptive mechanism that ensures endoplasmic reticulum (ER) homeostasis and cellular survival in the presence of stress including nutrient deprivation, hypoxia, and imbalance of Ca+ homeostasis, toxins, and microbial infection. Three transmembrane proteins regulate integrated signaling pathways that comprise the IERSR, namely, IRE-1 that activates XBP-1, the pancreatic ER kinase (PERK) that phosphorylates the eukaryotic translation initiation factor 2 and transcription factor 6 (ATF6). The roles of IRE-1, PERK, and ATF4 in viral and some bacterial infections are well characterized. The role of IERSR in infections by intracellular parasites is still poorly understood, although one could anticipate that IERSR may play an important role on the host’s cell response. Recently, our group reported the important aspects of XBP-1 activation in Leishmania amazonensis infection. It is, however, necessary to address the relevance of the other IERSR branches, together with the possible role of IERSR in infections by other Leishmania species, and furthermore, to pursue the possible implications in the pathogenesis and control of parasite replication in macrophages. PMID:27499755

  16. River Restoration for a Changing Climate

    NASA Astrophysics Data System (ADS)

    Beechie, T. J.; Pollock, M. M.; Pess, G. R.; Roni, P.

    2012-12-01

    Future climate scenarios suggest that riverine habitats will be significantly altered in the next few decades, forcing managers to ask whether and how river restoration activities should be altered to accommodate climate change. Obvious questions include: Will climate change alter river flow and temperature enough to reduce action effectiveness? What types of restoration actions are more likely to remain effective in a climate altered future? To help address these questions, we reviewed literature on habitat restoration actions and river processes to determine the degree to which different restoration actions are likely to either ameliorate a climate effect or increase habitat diversity and resilience. Key findings are that restoring floodplain connectivity and re-aggrading incised channels ameliorate both stream flow and temperature changes and increase lateral connectivity, whereas restoring in-stream flows can ameliorate decreases in low flows as well as stream temperature increases. Other restoration actions (e.g., reducing sediment supply, in-stream rehabilitation) are much less likely to ameliorate climate change effects. In general, actions that restore watershed and ecosystem processes are most likely to be robust to climate change effects because they allow river channels and riverine ecosystems to evolve in response to shifting stream flow and temperature regimes. We offer a decision support process to illustrate how to evaluate whether a project design should be altered to accommodate climate change effects, and show examples of restoration actions that are likely to be resilient to a changing climate.

  17. Ecological feasibility studies in restoration decision making.

    PubMed

    Hopfensperger, Kristine N; Engelhardt, Katharina A M; Seagle, Steven W

    2007-06-01

    The restoration of degraded systems is essential for maintaining the provision of valuable ecosystem services, including the maintenance of aesthetic values. However, restoration projects often fail to reach desired goals for a variety of ecologic, financial, and social reasons. Feasibility studies that evaluate whether a restoration effort should even be attempted can enhance restoration success by highlighting potential pitfalls and gaps in knowledge before the design phase of a restoration. Feasibility studies also can bring stakeholders together before a restoration project is designed to discuss potential disagreements. For these reasons, a feasibility study was conducted to evaluate the efficacy of restoring a tidal freshwater marsh in the Potomac River near Alexandria, Virginia. The study focused on science rather than engineering questions, and thus differed in approach from other feasibility studies that are mostly engineering driven. The authors report the framework they used to conduct a feasibility study to inform other potential restoration projects with similar goals. The seven steps of the framework encompass (1) initiation of a feasibility study, (2) compilation of existing data, (3) collection of current site information, (4) examination of case studies, (5) synthesis of information in a handbook, (6) meeting with selected stakeholders, and (7) evaluation of meeting outcomes. By conducting a feasibility study using the seven-step framework, the authors set the stage for conducting future compliance studies and enhancing the chance of a successful restoration. PMID:17453281

  18. Expediting environmental restoration at a reduced cost

    SciTech Connect

    Johnson, G.R.; Plack, D.A.

    1994-12-31

    With Congress appropriating approximately $1.0--1.5 Billion each year for Department of Defense (DOD) Environmental Restoration Program (DERP), every effort must be made to find ways to use these funds efficiently and effectively to nations hazardous waste sites. Each federal agency involved in environmental restoration is striving to find smarter, faster ways to accomplish this service. The Omaha District Corps of Engineers, Hazardous and Toxic Waste Branch (Omaha) and the Air Combat Command Installation Restoration Branch (ACC) have teamed up to develop and implement an innovative Accelerated Clean-up Program which with the President`s edict for expedited installation environmental restoration.

  19. Ecological Feasibility Studies in Restoration Decision Making

    NASA Astrophysics Data System (ADS)

    Hopfensperger, Kristine N.; Engelhardt, Katharina A. M.; Seagle, Steven W.

    2007-06-01

    The restoration of degraded systems is essential for maintaining the provision of valuable ecosystem services, including the maintenance of aesthetic values. However, restoration projects often fail to reach desired goals for a variety of ecologic, financial, and social reasons. Feasibility studies that evaluate whether a restoration effort should even be attempted can enhance restoration success by highlighting potential pitfalls and gaps in knowledge before the design phase of a restoration. Feasibility studies also can bring stakeholders together before a restoration project is designed to discuss potential disagreements. For these reasons, a feasibility study was conducted to evaluate the efficacy of restoring a tidal freshwater marsh in the Potomac River near Alexandria, Virginia. The study focused on science rather than engineering questions, and thus differed in approach from other feasibility studies that are mostly engineering driven. The authors report the framework they used to conduct a feasibility study to inform other potential restoration projects with similar goals. The seven steps of the framework encompass (1) initiation of a feasibility study, (2) compilation of existing data, (3) collection of current site information, (4) examination of case studies, (5) synthesis of information in a handbook, (6) meeting with selected stakeholders, and (7) evaluation of meeting outcomes. By conducting a feasibility study using the seven-step framework, the authors set the stage for conducting future compliance studies and enhancing the chance of a successful restoration.

  20. Fast image restoration without boundary artifacts.

    PubMed

    Reeves, Stanley J

    2005-10-01

    Fast Fourier transform (FFT)-based restorations are fast, but at the expense of assuming that the blurring and deblurring are based on circular convolution. Unfortunately, when the opposite sides of the image do not match up well in intensity, this assumption can create significant artifacts across the image. If the pixels outside the measured image window are modeled as unknown values in the restored image, boundary artifacts are avoided. However, this approach destroys the structure that makes the use of the FFT directly applicable, since the unknown image is no longer the same size as the measured image. Thus, the restoration methods available for this problem no longer have the computational efficiency of the FFT. We propose a new restoration method for the unknown boundary approach that can be implemented in a fast and flexible manner. We decompose the restoration into a sum of two independent restorations. One restoration yields an image that comes directly from a modified FFT-based approach. The other restoration involves a set of unknowns whose number equals that of the unknown boundary values. By summing the two, the artifacts are canceled. Because the second restoration has a significantly reduced set of unknowns, it can be calculated very efficiently even though no circular convolution structure exists. PMID:16238051

  1. Surgical procedures for voice restoration

    PubMed Central

    Nawka, Tadeus; Hosemann, Werner

    2005-01-01

    Surgical procedures for voice restoration serve to improve oral communication by better vocal function. They comprise of phonomicrosurgery, with direct and indirect access to the larynx; laryngoplasty; laryngeal injections; and surgical laryngeal reinnervation. The basis for modern surgical techniques for voice disorders is the knowledge about the ultrastructure of the vocal folds and the increasing experience of surgeons in voice surgery, while facing high social and professional demands on the voice. Vocal activity limitation and participation restriction has become more important in the artistic and social areas. A number of surgical methods that have been developed worldwide for this reason, are presented in this article. Functional oriented surgery has to meet high standards. The diagnostics of vocal function has to be multi-dimensional in order to determine the indication and the appropriate surgical intervention. PMID:22073062

  2. Photochemical approaches to vision restoration.

    PubMed

    Van Gelder, Russell N

    2015-06-01

    Photoswitches are traditional pharmacologic agonists, antagonists, or channel blockers that are covalently modified with an azobenzene derivative. Azobenzene undergoes wavelength-dependent isomerization between cis and trans conformation. For some photoswitches, only one of these configurations is biologically active, resulting in light-dependent activation or inhibition of function. Photoswitches that feature a quaternary ammonium coupled to the azobenzene moiety cause light-dependent neuronal depolarization due to blockage of voltage-gated potassium channels. Two photoswitch strategies have been pursued. In the one-component strategy, the photoswitch is applied to native receptors; in the two-component strategy, the photoswitch is combined with virally-mediated expression of a genetically modified receptor, to which the photoswitch may covalently bind. The former approach is simpler but the latter allows precise anatomic targeting of photoswitch activity. Acrylamide-azobenzene-quaternary ammonium (AAQ) is the prototypical first-generation one-component photoswitch. When applied to retinas with outer retinal degeneration, ganglion cell firing occurs in response to blue light, and is abrogated by green light. In vivo, AAQ restored pupillary light responses and behavioral light responses in blind animals. DENAQ is a prototypical second generation one-component photoswitch. It features spontaneous thermal relaxation so cell firing ceases in dark, and features a red-shifted activation spectrum. Interestingly, DENAQ only photoswitches in retinas with outer retinal degeneration. MAG is a photoswitched glutamate analog which covalently binds to a modified ionotropic glutamate receptor, LiGluR. When applied together, MAG and LiGluR also rescue physiologic and behavioral light responses in blind mice. Together, photoswitch compounds offer a potentially useful approach to restoration of vision in outer retinal degeneration. PMID:25680758

  3. Photochemical approaches to vision restoration

    PubMed Central

    Van Gelder, Russell N.

    2015-01-01

    Photoswitches are traditional pharmacologic agonists, antagonists, or channel blockers that are covalently modified with an azobenzene derivative. Azobenzene undergoes wavelength-dependent isomerization between cis and trans conformation. For some photoswitches, only one of these configurations is biologically active, resulting in light-dependent activation or inhibition of function. Photoswitches that feature a quaternary ammonium coupled to the azobenzene moiety cause light-dependent neuronal depolarization due to blockage of voltage-gated potassium channels. Two photoswitch strategies have been pursued. In the one-component strategy, the photoswitch is applied to native receptors; in the two-component strategy, the photoswitch is combined with virally-mediated expression of a genetically modified receptor, to which the photoswitch may covalently bind. The former approach is simpler but the latter allows precise anatomic targeting of photoswitch activity. Acrylamide-azobenzene-quaternary ammonium (AAQ) is the prototypical first-generation one-component photoswitch. When applied to retinas with outer retinal degeneration, ganglion cell firing occurs in response to blue light, and is abrogated by green light. In vivo, AAQ restored pupillary light responses and behavioral light responses in blind animals. DENAQ is a prototypical second generation one-component photoswitch. It features spontaneous thermal relaxation so cell firing ceases in dark, and features a red-shifted activation spectrum. Interestingly, DENAQ only photoswitches in retinas with outer retinal degeneration. MAG is a photoswitched glutamate analog which covalently binds to a modified ionotropic glutamate receptor, LiGluR. When applied together, MAG and LiGluR also rescue physiologic and behavioral light responses in blind mice. Together, photoswitch compounds offer a potentially useful approach to restoration of vision in outer retinal degeneration. PMID:25680758

  4. The Cytosolic Nucleoprotein of the Plant-Infecting Bunyavirus Tomato Spotted Wilt Recruits Endoplasmic Reticulum–Resident Proteins to Endoplasmic Reticulum Export Sites[C][W

    PubMed Central

    Ribeiro, Daniela; Jung, Maartje; Moling, Sjef; Borst, Jan Willem; Goldbach, Rob; Kormelink, Richard

    2013-01-01

    In contrast with animal-infecting viruses, few known plant viruses contain a lipid envelope, and the processes leading to their membrane envelopment remain largely unknown. Plant viruses with lipid envelopes include viruses of the Bunyaviridae, which obtain their envelope from the Golgi complex. The envelopment process is predominantly dictated by two viral glycoproteins (Gn and Gc) and the viral nucleoprotein (N). During maturation of the plant-infecting bunyavirus Tomato spotted wilt, Gc localizes at endoplasmic reticulum (ER) membranes and becomes ER export competent only upon coexpression with Gn. In the presence of cytosolic N, Gc remains arrested in the ER but changes its distribution from reticular into punctate spots. Here, we show that these areas correspond to ER export sites (ERESs), distinct ER domains where glycoprotein cargo concentrates prior to coat protein II vesicle–mediated transport to the Golgi. Gc concentration at ERES is mediated by an interaction between its cytoplasmic tail (CT) and N. Interestingly, an ER-resident calnexin provided with Gc-CT was similarly recruited to ERES when coexpressed with N. Furthermore, disruption of actin filaments caused the appearance of a larger amount of smaller ERES loaded with N-Gc complexes, suggesting that glycoprotein cargo concentration acts as a trigger for de novo synthesis of ERES. PMID:24045023

  5. Endoplasmic Reticulum Oxidoreductin-1-Like β (ERO1lβ) Regulates Susceptibility to Endoplasmic Reticulum Stress and Is Induced by Insulin Flux in β-Cells

    PubMed Central

    Khoo, Cynthia; Yang, Juxiang; Rajpal, Gautam; Wang, You; Liu, Jiangying; Arvan, Peter

    2011-01-01

    Hyperglycemia increases insulin flux through the endoplasmic reticulum (ER) of pancreatic β-cells, and the unfolded protein response pathway is required to enhance insulin processing. Pancreatic and duodenal homeobox 1 (PDX1), a key pancreatic transcription factor, regulates insulin along with targets involved in insulin processing and secretion. Here we find that PDX1 is a direct transcriptional regulator of ER oxidoreductin-1-like β (Ero1lβ), which maintains the oxidative environment of the ER to facilitate disulfide bond formation. PDX1 deficiency reduced Ero1lβ transcript levels in mouse islets and mouse insulinoma (MIN6) cells; moreover, PDX1 occupied the Ero1lβ promoter in β-cells. ERO1lβ levels were induced by high glucose concentrations and by the reducing agent dithiothreitol, indicating potential roles in adaptation to increased oxidative protein folding load in the β-cell ER. In MIN6 cells, small interfering RNA-mediated silencing of Ero1lβ decreased insulin content and increased susceptibility to ER stress-induced apoptosis. These findings demonstrate roles for the PDX1 target ERO1lβ in maintaining insulin content and regulating cell survival during ER stress. PMID:21540283

  6. 75 FR 34975 - Notice of Estuary Habitat Restoration Council's Intent to Revise its Estuary Habitat Restoration...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... the Final Estuary Habitat Restoration Strategy (67 FR 71942). Section 106(f) of the Act authorizes the... National Oceanic and Atmospheric Administration RIN 0648-XX00 Notice of Estuary Habitat Restoration Council's Intent to Revise its Estuary Habitat Restoration Strategy; Request for Public Comment...

  7. Restorative Mediation: The Application of Restorative Justice Practice and Philosophy to Clergy Sexual Abuse Cases

    ERIC Educational Resources Information Center

    Noll, Douglas E.; Harvey, Linda

    2008-01-01

    This article will present the restorative justice model and examine how the restorative justice philosophy and process can be applied to clergy-perpetrated sexual abuse and religious sexual misconduct to resolve legal claims and allow the process of healing to begin. Restorative justice is a holistic approach to criminal, civil, and church law…

  8. Chemical Chaperones Reduce ER Stress and Restore Glucose Homeostasis in a Mouse Model of Type 2 Diabetes

    NASA Astrophysics Data System (ADS)

    Özcan, Umut; Yilmaz, Erkan; Özcan, Lale; Furuhashi, Masato; Vaillancourt, Eric; Smith, Ross O.; Görgün, Cem Z.; Hotamisligil, Gökhan S.

    2006-08-01

    Endoplasmic reticulum (ER) stress is a key link between obesity, insulin resistance, and type 2 diabetes. Here, we provide evidence that this mechanistic link can be exploited for therapeutic purposes with orally active chemical chaperones. 4-Phenyl butyric acid and taurine-conjugated ursodeoxycholic acid alleviated ER stress in cells and whole animals. Treatment of obese and diabetic mice with these compounds resulted in normalization of hyperglycemia, restoration of systemic insulin sensitivity, resolution of fatty liver disease, and enhancement of insulin action in liver, muscle, and adipose tissues. Our results demonstrate that chemical chaperones enhance the adaptive capacity of the ER and act as potent antidiabetic modalities with potential application in the treatment of type 2 diabetes.

  9. Chemical Chaperones Reduce ER Stress and Restore Glucose Homeostasis in a Mouse Model of Type 2 Diabetes

    PubMed Central

    Özcan, Umut; Yilmaz, Erkan; Özcan, Lale; Furuhashi, Masato; Vaillancourt, Eric; Smith, Ross O.; Görgün, Cem Z.; Hotamisligil, Gökhan S.

    2015-01-01

    Endoplasmic reticulum (ER) stress is a key link between obesity, insulin resistance, and type 2 diabetes. Here, we provide evidence that this mechanistic link can be exploited for therapeutic purposes with orally active chemical chaperones. 4-Phenyl butyric acid and taurine-conjugated ursodeoxycholic acid alleviated ER stress in cells and whole animals. Treatment of obese and diabetic mice with these compounds resulted in normalization of hyperglycemia, restoration of systemic insulin sensitivity, resolution of fatty liver disease, and enhancement of insulin action in liver, muscle, and adipose tissues. Our results demonstrate that chemical chaperones enhance the adaptive capacity of the ER and act as potent antidiabetic modalities with potential application in the treatment of type 2 diabetes. PMID:16931765

  10. Hearing Restoration in Neurofibromatosis Type II Patients

    PubMed Central

    Lee, Jeon Mi; Chang, Jin Woo; Choi, Jae Young

    2016-01-01

    Patients with neurofibromatosis type II will eventually succumb to bilateral deafness. For patients with hearing loss, modern medical science technology can provide efficient hearing restoration through a number of various methods. In this article, several hearing restoration methods for patients with neurofibromatosis type II are introduced. PMID:27189272

  11. Ecological Restoration: Bringing Back the Prairie.

    ERIC Educational Resources Information Center

    Murray, Molly Fifield

    1997-01-01

    Defines ecological restoration and offers a plan for prairie restoration as a schoolyard project. Steps include researching and planning the site, preparation and planting, and continuing management of the site. Ecological concepts in this activity also relate to science, language arts, math, social studies, art, and music for K-12 students. (AIM)

  12. Amalgam Restorations: To Bond or Not.

    PubMed

    Larson, Thomas D

    2015-01-01

    This article will review the use of various liners used to eliminate microleakage in amalgam restorations. It will review the literature about whether amalgam restorations are improved by using a bonding process and if so specifically how it improves the patient outcome. PMID:26596104

  13. The Teacher's Guide to Restorative Classroom Discipline

    ERIC Educational Resources Information Center

    Meyer, Luanna H.; Evans, Ian M.

    2012-01-01

    With restorative discipline, schools move beyond punitive approaches to shared expectations for learning and behavior. Used together with "The School Leader's Guide to Restorative Discipline," this teacher's guide shows how to create a welcoming and responsible community within your classroom, contributing to a consistent, schoolwide approach to…

  14. Soil inoculation steers restoration of terrestrial ecosystems.

    PubMed

    Wubs, E R Jasper; van der Putten, Wim H; Bosch, Machiel; Bezemer, T Martijn

    2016-01-01

    Many natural ecosystems have been degraded because of human activities(1,2) and need to be restored so that biodiversity is protected. However, restoration can take decades and restoration activities are often unsuccessful(3) because of abiotic constraints (for example, eutrophication, acidification) and unfavourable biotic conditions (for example, competition or adverse soil community composition). A key question is what manageable factors prevent transition from degraded to restored ecosystems and what interventions are required for successful restoration(2,4). Experiments have shown that the soil community is an important driver of plant community development(5-8), suggesting that manipulation of the soil community is key to successful restoration of terrestrial ecosystems(3,9). Here we examine a large-scale, six-year-old field experiment on ex-arable land and show that application of soil inocula not only promotes ecosystem restoration, but that different origins of soil inocula can steer the plant community development towards different target communities, varying from grassland to heathland vegetation. The impact of soil inoculation on plant and soil community composition was most pronounced when the topsoil layer was removed, whereas effects were less strong, but still significant, when the soil inocula were introduced into intact topsoil. Therefore, soil inoculation is a powerful tool to both restore disturbed terrestrial ecosystems and steer plant community development. PMID:27398907

  15. WoonyBird Restoration Plant Selector Manual

    EPA Science Inventory

    Modifying greenspaces to enhance habitat value has been proposed as a means towards protecting or restoring biodiversity in urban landscapes. As part of a framework for developing low-cost, low-impact enhancements that can be incorporated during the restoration of greenspaces to ...

  16. ASSESSING THE EFFECTIVENESS OF RESTORATION TECHNOLOGIES

    EPA Science Inventory

    Numerous stream and riparian restoration projects are being undertaken across the nation at a variety of scales and for disparate reasons. Unfortunately, there are very few studies associated with these restoration efforts which provide a consistent and practical methodology to e...

  17. Hearing Restoration in Neurofibromatosis Type II Patients.

    PubMed

    Lee, Jeon Mi; Chang, Jin Woo; Choi, Jae Young; Chang, Won Seok; Moon, In Seok

    2016-07-01

    Patients with neurofibromatosis type II will eventually succumb to bilateral deafness. For patients with hearing loss, modern medical science technology can provide efficient hearing restoration through a number of various methods. In this article, several hearing restoration methods for patients with neurofibromatosis type II are introduced. PMID:27189272

  18. 76 FR 47055 - Emergency Restoration Plan (ERP)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ... 7 CFR Part 1730 RIN 0572-AC16 Emergency Restoration Plan (ERP) AGENCY: Rural Utilities Service, USDA... for Emergency Restoration Plans (ERPs), currently mandated for all borrowers, to include a plan to.... Background The Agency published a final rule on October 12, 2004, at 69 FR 60541 requiring all borrowers...

  19. Restorative Justice: A Changing Community Response

    ERIC Educational Resources Information Center

    Ryan, Thomas G.; Ruddy, Sean

    2015-01-01

    Our purpose herein is to demonstrate how restorative justice continues to unfold globally and we explain how the use of a restorative justice ideology and intervention leads to a common alternative, not only in criminal justice institutions, but also within social agencies, such as elementary schools, and the related social support systems. We…

  20. Maintaining professional resilience through group restorative supervision.

    PubMed

    Wallbank, Sonya

    2013-08-01

    Restorative clinical supervision has been delivered to over 2,500 professionals and has shown to be highly effective in reducing burnout, stress and increasing compassion satisfaction. Demand for the programme has shown that a sustainable model of implementation is needed for organisations who may not be able to invest in continued individual sessions. Following the initial six sessions, group restorative supervision has been developed and this paper reports on the programme's success in maintaining and continuing to improve compassion satisfaction, stress and burnout through the process of restorative group supervision. This means that organisations can continue to maintain the programme once the initial training has been completed and have confidence within the restorative group supervision to support professionals in managing the emotional demands of their role. The restorative groups have also had inadvertent positive benefits in workplace functioning. The paper outlines how professionals have been able to use this learning to support them in being more effective. PMID:23986988

  1. Nuclear receptor LRH-1/NR5A2 is required and targetable for liver endoplasmic reticulum stress resolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic endoplasmic reticulum (ER) stress results in toxicity that contributes to multiple human disorders. We report a stress resolution pathway initiated by the nuclear receptor LRH-1 that is independent of known unfolded protein response (UPR) pathways. Like mice lacking primary UPR components, h...

  2. Cis-element of the rice PDIL2-3 promoter is responsible for inducing the endoplasmic reticulum stress response.

    PubMed

    Takahashi, Hideyuki; Wang, Shuyi; Hayashi, Shimpei; Wakasa, Yuhya; Takaiwa, Fumio

    2014-05-01

    A protein disulfide isomerase (PDI) family oxidoreductase, PDIL2-3, is involved in endoplasmic reticulum (ER) stress responses in rice. We identified a critical cis-element required for induction of the ER stress response. The activation of PDIL2-3 in response to ER stress strongly depends on the IRE1-OsbZIP50 signaling pathway. PMID:24315532

  3. Electro-optical imaging of F-actin and endoplasmic reticulum in living and fixed plant cells.

    PubMed

    Allen, N S; Bennett, M N

    1996-01-01

    Confocal and video micrographs of living and fixed alfalfa roots, onion epithelial and pear pollen cells illustrate the architecture of the cytoskeleton and endoplasmic reticulum in plant cells. Fixation of plant tissues to preserve cytoplasmic structure poses special problems. When possible, emphasis should be placed on the imaging of structures in stained living cells over time. The early events that occur when Nod factors or bacteria elicit nodule formation in alfalfa roots will illustrate several approaches to plant cell fixation, staining and imaging. The first observable events after Nod factor stimulation occur in root hairs and are changes in rates of cytoplasmic streaming, nuclear movements, and changes in the shape of the vacuole. Within ten minutes, the endoplasmic reticulum shifts position towards the tip of the root hair. For comparison, the endoplasmic reticulum localization in pollen tubes and onion epithelial cells will be illustrated. The actin cytoskeleton undergoes a series of changes over a twelve hour period. These changes in the cytoskeleton are spatially and temporally correlated with the observed growth changes of the root hairs. This dynamic change of the actin filament and endoplasmic reticulum and associated secretory vesicles in these root hairs suggests a mechanism for the observed root hair growth changes. PMID:9601538

  4. The carboxyl-terminus of cytochrome b5 confers endoplasmic reticulum specificity by preventing spontaneous insertion into membranes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The molecular mechanisms that determine the correct subcellular localization of proteins targeted to membranes by tail-anchor sequences are poorly defined. Previously, we showed that two isoforms of tung tree (Vernicia fordii) tail-anchored cytochrome b5 (Cb5) target specifically to endoplasmic reti...

  5. Uterine Endoplasmic Reticulum Stress and Its Unfolded Protein Response May Regulate Caspase 3 Activation in the Pregnant Mouse Uterus

    PubMed Central

    Suresh, Arvind; Subedi, Kalpana; Kyathanahalli, Chandrashekara; Jeyasuria, Pancharatnam; Condon, Jennifer C.

    2013-01-01

    We have previously proposed that uterine caspase-3 may modulate uterine contractility in a gestationally regulated fashion. The objective of this study was to determine the mechanism by which uterine caspase-3 is activated and consequently controlled in the pregnant uterus across gestation. Utilizing the mouse uterus as our gestational model we examined the intrinsic and extrinsic apoptotic signaling pathways and the endoplasmic reticulum stress response as potential activators of uterine caspase-3 at the transcriptional and translational level. Our study revealed robust activation of the uterine myocyte endoplasmic reticulum stress response and its adaptive unfolded protein response during pregnancy coinciding respectively with increased uterine caspase-3 activity and its withdrawal to term. In contrast the intrinsic and extrinsic apoptotic signaling pathways remained inactive across gestation. We speculate that physiological stimuli experienced by the pregnant uterus likely potentiates the uterine myocyte endoplasmic reticulum stress response resulting in elevated caspase-3 activation, which is isolated to the pregnant mouse myometrium. However as term approaches, activation of an elevated adaptive unfolded protein response acts to limit the endoplasmic reticulum stress response inhibiting caspase-3 resulting in its decline towards term. We speculate that these events have the capacity to regulate gestational length in a caspase-3 dependent manner. PMID:24058658

  6. Proliferation of smooth endoplasmic reticulum and induction of microsomal drug-metabolizing enzymes after ether or halothane.

    PubMed

    Ross, W T; Cardell, R R

    1978-05-01

    Hepatic drug-metabolizing enzymes and hepatic ultrastructure were studied in rats after two hours of anesthesia with 1 MAC halothane or diethyl ether. Twelve hours after cessation of either anesthetic smooth endoplasmic reticulum was increased in centrilobular but not in periportal hepatocytes. This change persisted at 24- and 36-hour sampling times. Microsomal cytochrome P450 and cytochrome b5 decreased after halothane anesthesia (by 7 to 20 per cent of control). Diethyl ether caused increased cytochrome P450 and cytochrome b5 (27 and 18 per cent, respectively) at the 36-hour sampling time. NADPH cytochrome c reductase did not change significantly after either agent. The authors interpret these results to mean that both agents promote conversion of rough endoplasmic reticulum to smooth endoplasmic reticulum or, alternatively, that the anesthetics decrease degradation of smooth endoplasmic membranes. Since only ether caused an increase in the microsomal content of enzymes of the drug-metabolizing enzyme system, it is concluded that these two anesthetics act on hepatic cells by dissimilar mechanisms. PMID:646150

  7. 32 CFR 644.454 - Negotiating restoration settlements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Negotiating restoration settlements. 644.454... Negotiating restoration settlements. Negotiated settlements in lieu of performance of actual restoration work... restoration. In view of the limitations of the Government's restoration obligations to amounts not in...

  8. 32 CFR 644.454 - Negotiating restoration settlements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Negotiating restoration settlements. 644.454... Negotiating restoration settlements. Negotiated settlements in lieu of performance of actual restoration work... restoration. In view of the limitations of the Government's restoration obligations to amounts not in...

  9. 32 CFR 644.454 - Negotiating restoration settlements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Negotiating restoration settlements. 644.454... Negotiating restoration settlements. Negotiated settlements in lieu of performance of actual restoration work... restoration. In view of the limitations of the Government's restoration obligations to amounts not in...

  10. 32 CFR 644.454 - Negotiating restoration settlements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Negotiating restoration settlements. 644.454... Negotiating restoration settlements. Negotiated settlements in lieu of performance of actual restoration work... restoration. In view of the limitations of the Government's restoration obligations to amounts not in...

  11. 32 CFR 644.454 - Negotiating restoration settlements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Negotiating restoration settlements. 644.454... Negotiating restoration settlements. Negotiated settlements in lieu of performance of actual restoration work... restoration. In view of the limitations of the Government's restoration obligations to amounts not in...

  12. 12 CFR 1229.11 - Capital restoration plans.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... capital restoration plan submitted by a Bank shall set forth a plan to restore its permanent and total... restoration plan, including setting forth a schedule for it to restore its permanent and total capital to... submission. A Bank must submit a proposed capital restoration plan no later than 15 business-days after...

  13. 12 CFR 1229.11 - Capital restoration plans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... capital restoration plan submitted by a Bank shall set forth a plan to restore its permanent and total... restoration plan, including setting forth a schedule for it to restore its permanent and total capital to... submission. A Bank must submit a proposed capital restoration plan no later than 15 business-days after...

  14. 12 CFR 1229.11 - Capital restoration plans.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... capital restoration plan submitted by a Bank shall set forth a plan to restore its permanent and total... restoration plan, including setting forth a schedule for it to restore its permanent and total capital to... submission. A Bank must submit a proposed capital restoration plan no later than 15 business-days after...

  15. Paradoxical effects of sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) activator gingerol on NG115-401L neuronal cells: failure to augment ER Ca(2+) uptake and protect against ER stress-induced cell death.

    PubMed

    Zhang, Changfeng; Bose, Diptiman D; Thomas, David W

    2015-09-01

    Perturbation of endoplasmic reticulum (ER) Ca(2+) homeostasis and ER stress are thought to underlie a spectrum of defects encompassing major societal diseases such as diabetes and neurodegeneration. In this report we used the NG115-401L neuronal cell line to test the hypothesis that neuroprotection against ER stress may be conferred by pharmacological stimulation of the sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) pumps. We report that the SERCA activator gingerol stimulates SR microsomal Ca(2+)-ATPase activity and restores enzymatic function in the presence of potent SERCA blockers. Yet, enzyme protection in isolated membranes does not extend to protection from ER stress in intact NG115-401L cells. Surprisingly, gingerol not only failed to protect cells from SERCA blocker-induced ER stress and cell death, the compound itself potently induced cell death. Also, we report that gingerol failed to augment ER Ca(2+) uptake, a result contradictory to what has been observed in muscle. Unexpectedly, gingerol discharged ER Ca(2+) stores and coupled robustly to Ca(2+) influx pathways. These observations suggest that gingerol is not acting as a traditional SERCA blocker as thapsigargin mediated ER Ca(2+) store depletion fails to stimulate Ca(2+) influx in the NG115-401L cell phenotype. Moreover, cell death induced by gingerol, in contrast to the classic SERCA inhibitors, is not accompanied by increases in reactive oxygen species production or enzymatic caspase activity. These results argue for a finer regulatory control on SERCA function with gingerol's actions revealing potentially novel routes of coupling altered pump regulation to the assembly of functional Ca(2+) influx units and activation of cell death pathways. PMID:26033206

  16. The land value impacts of wetland restoration.

    PubMed

    Kaza, Nikhil; BenDor, Todd K

    2013-09-30

    U.S. regulations require offsets for aquatic ecosystems damaged during land development, often through restoration of alternative resources. What effect does large-scale wetland and stream restoration have on surrounding land values? Restoration effects on real estate values have substantial implications for protecting resources, increasing tax base, and improving environmental policies. Our analysis focuses on the three-county Raleigh-Durham-Chapel Hill, North Carolina region, which has experienced rapid development and extensive aquatic ecological restoration (through the state's Ecosystem Enhancement Program [EEP]). Since restoration sites are not randomly distributed across space, we used a genetic algorithm to match parcels near restoration sites with comparable control parcels. Similar to propensity score analysis, this technique facilitates statistical comparison and isolates the effects of restoration sites on surrounding real estate values. Compared to parcels not proximate to any aquatic resources, we find that, 1) natural aquatic systems steadily and significantly increase parcel values up to 0.75 mi away, and 2) parcels <0.5 mi from EEP restoration sites have significantly lower sale prices, while 3) parcels >0.5 mi from EEP sites gain substantial amenity value. When we control for intervening water bodies (e.g. un-restored streams and wetlands), we find a similar inflection point whereby parcels <0.5 mi from EEP sites exhibit lower values, and sites 0.5-0.75 mi away exhibit increased values. Our work points to the need for higher public visibility of aquatic ecosystem restoration programs and increased public information about their value. PMID:23792789

  17. Loss of a Clueless-dGRASP complex results in ER stress and blocks Integrin exit from the perinuclear endoplasmic reticulum in Drosophila larval muscle

    PubMed Central

    Wang, Zong-Heng; Rabouille, Catherine; Geisbrecht, Erika R.

    2015-01-01

    Drosophila Clueless (Clu) and its conserved orthologs are known for their role in the prevention of mitochondrial clustering. Here, we uncover a new role for Clu in the delivery of integrin subunits in muscle tissue. In clu mutants, αPS2 integrin, but not βPS integrin, abnormally accumulates in a perinuclear endoplasmic reticulum (ER) subdomain, a site that mirrors the endogenous localization of Clu. Loss of components essential for mitochondrial distribution do not phenocopy the clu mutant αPS2 phenotype. Conversely, RNAi knockdown of the Drosophila Golgi reassembly and stacking protein GRASP55/65 (dGRASP) recapitulates clu defects, including the abnormal accumulation of αPS2 and larval locomotor activity. Both Clu and dGRASP proteins physically interact and loss of Clu displaces dGRASP from ER exit sites, suggesting that Clu cooperates with dGRASP for the exit of αPS2 from a perinuclear subdomain in the ER. We also found that Clu and dGRASP loss of function leads to ER stress and that the stability of the ER exit site protein Sec16 is severely compromised in the clu mutants, thus explaining the ER accumulation of αPS2. Remarkably, exposure of clu RNAi larvae to chemical chaperones restores both αPS2 delivery and functional ER exit sites. We propose that Clu together with dGRASP prevents ER stress and therefore maintains Sec16 stability essential for the functional organization of perinuclear early secretory pathway. This, in turn, is essential for integrin subunit αPS2 ER exit in Drosophila larval myofibers. PMID:25862246

  18. Endoplasmic reticulum-associated degradation of Niemann-Pick C1: evidence for the role of heat shock proteins and identification of lysine residues that accept ubiquitin.

    PubMed

    Nakasone, Naoe; Nakamura, Yuko S; Higaki, Katsumi; Oumi, Nao; Ohno, Kousaku; Ninomiya, Haruaki

    2014-07-11

    Most cases with Niemann-Pick disease type C carry mutations in NPC1. Some of the mutations, including the most frequent I1061T, give rise to unstable proteins selected for endoplasmic reticulum-associated degradation. The purpose of the current study was to shed mechanistic insights into the degradation process. A proteasome inhibitor MG132 prolonged the life span of the wild-type NPC1 expressed in COS cells. The expressed protein associated with multiple chaperones including heat shock protein 90 (Hsp90), Hsp70, heat shock cognate protein 70 (Hsc70), and calnexin. Accordingly, expression of an E3 ligase CHIP (carboxyl terminus of Hsp70-interacting protein) enhanced MG132-induced accumulation of ubiquitylated NPC1. Co-expression and RNAi knockdown experiments in HEK cells indicated that Hsp70/Hsp90 stabilized NPC1, whereas Hsc70 destabilized it. In human fibroblasts carrying the I1061T mutation, adenovirus-mediated expression of Hsp70 or treatment with an HSP-inducer geranylgeranylacetone (GGA) increased the level of the mutant protein. In GGA-treated cells, the rescued protein was localized in the late endosome and ameliorated cholesterol accumulation. MALDI-TOF mass spectrometry revealed three lysine residues at amino acids 318, 792, and 1180 as potential ubiquitin-conjugation sites. Substitutions of the three residues with alanine yielded a mutant protein with a steady-state level more than three times higher than that of the wild-type. Introduction of the same substitutions to the I1061T mutant resulted in an increase in its protein level and functional restoration. These findings indicated the role of HSPs in quality control of NPC1 and revealed the role of three lysine residues as ubiquitin-conjugation sites. PMID:24891511

  19. Hepatoprotective Effect of Quercetin on Endoplasmic Reticulum Stress and Inflammation after Intense Exercise in Mice through Phosphoinositide 3-Kinase and Nuclear Factor-Kappa B

    PubMed Central

    Tang, Yuhan; Li, Juan; Gao, Chao; Xu, Yanyan; Li, Yanyan; Yu, Xiao; Wang, Jing; Liu, Liegang

    2016-01-01

    The mechanisms underlying intense exercise-induced liver damage and its potential treatments remain unclear. We explored the hepatoprotection and mechanisms of quercetin, a naturally occurring flavonoid, in strenuous exercise-derived endoplasmic reticulum stress (ERS) and inflammation. Intense exercise (28 m/min at a 5° slope for 90 min) resulted in the leakage of aminotransferases in the BALB/C mice. The hepatic ultrastructural malformations and oxidative stress levels were attenuated by quercetin (100 mg/kg·bw). Intense exercise and thapsigargin- (Tg-) induced ERS (glucose-regulated protein 78, GRP78) and inflammatory cytokines levels (IL-6 and TNF-α) were decreased with quercetin. Furthermore, quercetin resulted in phosphoinositide 3-kinase (PI3K) induction, Ca2+ restoration, and blockade of the activities of Jun N-terminal kinase (JNK), activating transcription factor 6 (ATF6) and especially NF-κB (p65 and p50 nuclear translocation). A PI3K inhibitor abrogated the protection of quercetin on ERS and inflammation of mouse hepatocytes. SP600125 (JNK inhibitor), AEBSF (ATF6 inhibitor), and especially PDTC (NF-κB inhibitor) enhanced the quercetin-induced protection against Tg stimulation. Collectively, intense exercise-induced ERS and inflammation were attenuated by quercetin. PI3K/Akt activation and JNK, ATF6, and especially NF-κB suppression were involved in the protection. Our results highlight a novel preventive strategy for treating ERS and inflammation-mediated liver damage induced by intense exercise using natural phytochemicals. PMID:27504150

  20. Regulation of Pancreatic β Cell Mass by Cross-Interaction between CCAAT Enhancer Binding Protein β Induced by Endoplasmic Reticulum Stress and AMP-Activated Protein Kinase Activity

    PubMed Central

    Matsuda, Tomokazu; Takahashi, Hiroaki; Mieda, Yusuke; Shimizu, Shinobu; Kawamoto, Takeshi; Matsuura, Yuki; Takai, Tomoko; Suzuki, Emi; Kanno, Ayumi; Koyanagi-Kimura, Maki; Asahara, Shun-ichiro; Bartolome, Alberto; Yokoi, Norihide; Inoue, Hiroshi; Ogawa, Wataru; Seino, Susumu; Kido, Yoshiaki

    2015-01-01

    During the development of type 2 diabetes, endoplasmic reticulum (ER) stress leads to not only insulin resistance but also to pancreatic beta cell failure. Conversely, cell function under various stressed conditions can be restored by reducing ER stress by activating AMP-activated protein kinase (AMPK). However, the details of this mechanism are still obscure. Therefore, the current study aims to elucidate the role of AMPK activity during ER stress-associated pancreatic beta cell failure. MIN6 cells were loaded with 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR) and metformin to assess the relationship between AMPK activity and CCAAT enhancer binding protein β (C/EBPβ) expression levels. The effect of C/EBPβ phosphorylation on expression levels was also investigated. Vildagliptin and metformin were administered to pancreatic beta cell-specific C/EBPβ transgenic mice to investigate the relationship between C/EBPβ expression levels and AMPK activity in the pancreatic islets. When pancreatic beta cells are exposed to ER stress, the accumulation of the transcription factor C/EBPβ lowers the AMP/ATP ratio, thereby decreasing AMPK activity. In an opposite manner, incubation of MIN6 cells with AICAR or metformin activated AMPK, which suppressed C/EBPβ expression. In addition, administration of the dipeptidyl peptidase-4 inhibitor vildagliptin and metformin to pancreatic beta cell-specific C/EBPβ transgenic mice decreased C/EBPβ expression levels and enhanced pancreatic beta cell mass in proportion to the recovery of AMPK activity. Enhanced C/EBPβ expression and decreased AMPK activity act synergistically to induce ER stress-associated pancreatic beta cell failure. PMID:26091000

  1. The molecular mechanism of endoplasmic reticulum stress-induced apoptosis in PC-12 neuronal cells: the protective effect of insulin-like growth factor I.

    PubMed

    Zou, Cheng-Gang; Cao, Xiu-Zhen; Zhao, Yue-Shui; Gao, Shun-Yu; Li, Shu-De; Liu, Xian-Yong; Zhang, Yan; Zhang, Ke-Qin

    2009-01-01

    Endoplasmic reticulum (ER) stress has been implicated in several neurodegenerative diseases. Although CCAAT/enhancer-binding protein homologous protein (CHOP) has been shown to play a critical role in ER stress, the precise apoptosis cascade downstream of CHOP is unknown. In this report, we investigated the mechanism of ER stress-mediated apoptosis as well as the action of IGF-I in PC-12 neuronal cells. Our results demonstrated that tribbles-related protein 3 (TRB3), which is a target gene of CHOP, was responsible for tunicamycin (an ER stress inducer)-induced apoptosis. TRB3 could promote dephosphorylation of Akt in PC-12 cells. IGF-I inhibited ER stress-induced apoptosis by restoring the phosphorylation level of Akt. Both wortmannin (a phosphatidylinositide 3-kinase inhibitor) and SB 212090 (a p38 MAPK inhibitor) suppressed the protective effect of IGF-I on ER stress-induced apoptosis. Interestingly, IGF-I attenuated ER stress-mediated expression of TRB3 but not CHOP. This action of IGF-I was abolished by SB 212090 but not by wortmannin. Immunoprecipitation analysis revealed that IGF-I promoted the phosphorylation of CHOP by activating p38 MAPK, probably leading to a decrease in the transcriptional activity of CHOP. The dephosphorylation of Akt resulted in increased expression of a proapoptotic protein, p53 up-regulated modulator of apoptosis (PUMA), in a forkhead box O3a-dependent manner. Knockdown of PUMA by short hairpin RNA attenuated ER stress-mediated apoptosis. Thus, our current study indicates that both TRB3 and PUMA are critical molecules in ER stress-induced apoptosis. IGF-I effectively protects PC-12 neuronal cells against ER stress-induced apoptosis through the phosphatidylinositide 3-kinase/Akt and p38 MAPK pathways. PMID:18801901

  2. Protective effect of S-allyl-L-cysteine against endoplasmic reticulum stress-induced neuronal death is mediated by inhibition of calpain.

    PubMed

    Imai, Toru; Kosuge, Yasuhiro; Endo-Umeda, Kaori; Miyagishi, Hiroko; Ishige, Kumiko; Makishima, Makoto; Ito, Yoshihisa

    2014-02-01

    Endoplasmic reticulum (ER) stress, implicated in various neurodegenerative processes, increases the level of intracellular Ca(2+) and leads to activation of calpain, a Ca(2+)-dependent cysteine protease. We have shown previously that S-allyl-L-cysteine (SAC) in aged garlic extracts significantly protects cultured rat hippocampal neurons (HPNs) against ER stress-induced neurotoxicity. The neuroprotective effect of SAC was compared with those of the related antioxidant compounds, L-cysteine (CYS) and N-acetylcysteine (NAC), on calpain activity in HPNs and also in vitro. SAC, but not CYS or NAC, reversibly restored the survival of HPNs and increased the degradation of α-spectrin, a substrate for calpain, induced by tunicamycin, a typical ER stress inducer. Activities of μ- and m-calpains in vitro were also concentration dependently suppressed by SAC, but not by CYS or NAC. At submaximal concentration, although ALLN (5 pM), which blocks the active site of calpain, and calpastatin (100 pM), an endogenous calpain-inhibitor protein, additively inhibited μ-calpain activity in vitro in combination with SAC, the effect of PD150606 (25 μM), which prevents interaction of Ca(2+) with the Ca(2+)-binding site of calpain, was unaffected by SAC. In contrast, SAC (1 mM) significantly reversed the effect of PD150606 at a concentration that elicited supramaximal inhibition (100 μM), but did not affect ALLN (1 nM)- and calpastatin (100 nM)-induced inhibition of μ-calpain activity. These results suggest that the protective effects of SAC against ER stress-induced neuronal cell death are not attributable to antioxidant activity, but to suppression of calpain through interaction with its Ca(2+)-binding site. PMID:24287800

  3. Combined NADPH Oxidase 1 and Interleukin 10 Deficiency Induces Chronic Endoplasmic Reticulum Stress and Causes Ulcerative Colitis-Like Disease in Mice

    PubMed Central

    Tréton, Xavier; Pedruzzi, Eric; Guichard, Cécile; Ladeiro, Yannick; Sedghi, Shirin; Vallée, Mélissa; Fernandez, Neike; Bruyère, Emilie; Woerther, Paul-Louis; Ducroc, Robert; Montcuquet, Nicolas; Freund, Jean-Noel; Van Seuningen, Isabelle; Barreau, Frédérick; Marah, Assiya; Hugot, Jean-Pierre; Cazals-Hatem, Dominique; Bouhnik, Yoram; Daniel, Fanny; Ogier-Denis, Eric

    2014-01-01

    Ulcerative colitis (UC) is a chronic inflammatory bowel disease affecting the rectum which progressively extents. Its etiology remains unknown and the number of treatments available is limited. Studies of UC patients have identified an unbalanced endoplasmic reticulum (ER) stress in the non-inflamed colonic mucosa. Animal models with impaired ER stress are sensitive to intestinal inflammation, suggesting that an unbalanced ER stress could cause inflammation. However, there are no ER stress-regulating strategies proposed in the management of UC partly because of the lack of relevant preclinical model mimicking the disease. Here we generated the IL10/Nox1dKO mouse model which combines immune dysfunction (IL-10 deficiency) and abnormal epithelium (NADPH oxidase 1 (Nox1) deficiency) and spontaneously develops a UC-like phenotype with similar complications (colorectal cancer) than UC. Our data identified an unanticipated combined role of IL10 and Nox1 in the fine-tuning of ER stress responses in goblet cells. As in humans, the ER stress was unbalanced in mice with decreased eIF2α phosphorylation preceding inflammation. In IL10/Nox1dKO mice, salubrinal preserved eIF2α phosphorylation through inhibition of the regulatory subunit of the protein phosphatase 1 PP1R15A/GADD34 and prevented colitis. Thus, this new experimental model highlighted the central role of epithelial ER stress abnormalities in the development of colitis and defined the defective eIF2α pathway as a key pathophysiological target for UC. Therefore, specific regulators able to restore the defective eIF2α pathway could lead to the molecular remission needed to treat UC. PMID:25014110

  4. Hepatoprotective Effect of Quercetin on Endoplasmic Reticulum Stress and Inflammation after Intense Exercise in Mice through Phosphoinositide 3-Kinase and Nuclear Factor-Kappa B.

    PubMed

    Tang, Yuhan; Li, Juan; Gao, Chao; Xu, Yanyan; Li, Yanyan; Yu, Xiao; Wang, Jing; Liu, Liegang; Yao, Ping

    2016-01-01

    The mechanisms underlying intense exercise-induced liver damage and its potential treatments remain unclear. We explored the hepatoprotection and mechanisms of quercetin, a naturally occurring flavonoid, in strenuous exercise-derived endoplasmic reticulum stress (ERS) and inflammation. Intense exercise (28 m/min at a 5° slope for 90 min) resulted in the leakage of aminotransferases in the BALB/C mice. The hepatic ultrastructural malformations and oxidative stress levels were attenuated by quercetin (100 mg/kg·bw). Intense exercise and thapsigargin- (Tg-) induced ERS (glucose-regulated protein 78, GRP78) and inflammatory cytokines levels (IL-6 and TNF-α) were decreased with quercetin. Furthermore, quercetin resulted in phosphoinositide 3-kinase (PI3K) induction, Ca(2+) restoration, and blockade of the activities of Jun N-terminal kinase (JNK), activating transcription factor 6 (ATF6) and especially NF-κB (p65 and p50 nuclear translocation). A PI3K inhibitor abrogated the protection of quercetin on ERS and inflammation of mouse hepatocytes. SP600125 (JNK inhibitor), AEBSF (ATF6 inhibitor), and especially PDTC (NF-κB inhibitor) enhanced the quercetin-induced protection against Tg stimulation. Collectively, intense exercise-induced ERS and inflammation were attenuated by quercetin. PI3K/Akt activation and JNK, ATF6, and especially NF-κB suppression were involved in the protection. Our results highlight a novel preventive strategy for treating ERS and inflammation-mediated liver damage induced by intense exercise using natural phytochemicals. PMID:27504150

  5. A functional equivalent of endoplasmic reticulum and Golgi in axons for secretion of locally synthesized proteins

    PubMed Central

    Merianda, Tanuja T.; Lin, Andrew C.; Lam, Joyce S.Y.; Vuppalanchi, Deepika; Willis, Dianna E.; Karin, Norman; Holt, Christine E.; Twiss, Jeffery L.

    2013-01-01

    Subcellular localization of protein synthesis provides a means to regulate the protein composition in far reaches of a cell. This localized protein synthesis gives neuronal processes autonomy to rapidly respond to extracellular stimuli. Locally synthesized axonal proteins enable neurons to respond to guidance cues and can help to initiate regeneration after injury. Most studies of axonal mRNA translation have concentrated on cytoplasmic proteins. While ultrastructural studies suggest that axons do not have rough endoplasmic reticulum or Golgi apparatus, mRNAs for transmembrane and secreted proteins localize to axons. Here, we show that growing axons with protein synthetic activity contain ER and Golgi components needed for classical protein synthesis and secretion. Isolated axons have the capacity to traffic locally synthesized proteins into secretory pathways and inhibition of Golgi function attenuates translation-dependent axonal growth responses. Finally, the capacity for secreting locally synthesized proteins in axons appears to be increased by injury. PMID:19022387

  6. Hydrogen Sulfide Improves Vascular Calcification in Rats by Inhibiting Endoplasmic Reticulum Stress

    PubMed Central

    Yang, Rui; Teng, Xu; Li, Hui; Xue, Hong-Mei; Guo, Qi; Xiao, Lin; Wu, Yu-Ming

    2016-01-01

    In this study, the vitamin D3 plus nicotine (VDN) model of rats was used to prove that H2S alleviates vascular calcification (VC) and phenotype transformation of vascular smooth muscle cells (VSMC). Besides, H2S can also inhibit endoplasmic reticulum stress (ERS) of calcified aortic tissues. The effect of H2S on alleviating VC and phenotype transformation of VSMC can be blocked by TM, while PBA also alleviated VC and phenotype transformation of VSMC that was similar to the effect of H2S. These results suggest that H2S may alleviate rat aorta VC by inhibiting ERS, providing new target and perspective for prevention and treatment of VC. PMID:27022436

  7. Regulation of calcium and phosphoinositides at endoplasmic reticulum-membrane junctions.

    PubMed

    Dickson, Eamonn J; Jensen, Jill B; Hille, Bertil

    2016-04-15

    Effective cellular function requires both compartmentalization of tasks in space and time, and coordination of those efforts. The endoplasmic reticulum's (ER) expansive and ramifying structure makes it ideally suited to serve as a regulatory platform for organelle-organelle communication through membrane contacts. These contact sites consist of two membranes juxtaposed at a distance less than 30 nm that mediate the exchange of lipids and ions without the need for membrane fission or fusion, a process distinct from classical vesicular transport. Membrane contact sites are positioned by organelle-specific membrane-membrane tethering proteins and contain a growing number of additional proteins that organize information transfer to shape membrane identity. Here we briefly review the role of ER-containing membrane junctions in two important cellular functions: calcium signalling and phosphoinositide processing. PMID:27068956

  8. Dysfunctional tubular endoplasmic reticulum constitutes a pathological feature of Alzheimer’s disease

    PubMed Central

    Sharoar, Md. Golam; Shi, Qi; Ge, Yingying; He, Wanxia; Hu, Xiangyou; Perry, George; Zhu, Xiongwei; Yan, Riqiang

    2015-01-01

    Pathological features in Alzheimer’s brains include mitochondrial dysfunction and dystrophic neurites (DNs) in areas surrounding amyloid plaques. Using a mouse model that overexpresses reticulon 3 (RTN3) and spontaneously develops age-dependent hippocampal DNs, here we report that DNs contain both RTN3 and REEPs, topologically similar proteins that can shape tubular endoplasmic reticulum (ER). Importantly, ultrastructural examinations of such DNs revealed gradual accumulation of tubular ER in axonal termini, and such abnormal tubular ER inclusion is found in areas surrounding amyloid plaques in biopsy samples from AD brains. Functionally, abnormally clustered tubular ER induces enhanced mitochondrial fission in the early stages of DN formation and eventual mitochondrial degeneration at later stages. Furthermore, such DNs are abrogated when RTN3 is ablated in aging and AD mouse models. Hence, abnormally clustered tubular ER can be pathogenic in brain regions: disrupting mitochondrial integrity, inducing DNs formation and impairing cognitive function in AD and aging brains PMID:26619807

  9. Protein folding in the endoplasmic reticulum: lessons from the human chorionic gonadotropin beta subunit.

    PubMed Central

    Ruddon, R. W.; Sherman, S. A.; Bedows, E.

    1996-01-01

    There have been few studies of protein folding in the endoplasmic reticulum of intact mammalian cells. In the one case where the in vivo and in vitro folding pathways of a mammalian secretory protein have been compared, the folding of the human chorionic gonadotropin beta subunit (hCG-beta), the order of formation of the detected folding intermediates is the same. The rate and efficiency with which multidomain proteins such as hCG-beta fold to native structure in intact cells is higher than in vitro, although intracellular rates of folding of the beta subunit can be approached in vitro in the presence of an optimal redox potential and protein disulfide isomerase. Understanding how proteins fold in vivo may provide a new way to diagnose and treat human illnesses that occur due to folding defects. PMID:8844836

  10. Electron probe microanalysis of calcium release and magnesium uptake by endoplasmic reticulum in bee photoreceptors

    SciTech Connect

    Baumann, O.; Walz, B. ); Somlyo, A.V.; Somlyo, A.P. )

    1991-02-01

    Honey bee photoreceptors contain large sacs of endoplasmic reticulum (ER) that can be located unequivocally in freeze-dried cryosections. The elemental compositon of the ER was determined by electron probe x-ray microanalysis and was visualized in high-resolution x-ray maps. In the ER of dark-adapted photoreceptors, the Ca concentration was 47.5 {plus minus} 1.1 mmol/kg (dry weight). During a 3-sec nonsaturating light stimulus, {approximately}50% of the Ca content was released from the ER. Light stimulation also caused a highly significant increase in the Mg content of the ER; the ratio of Mg uptake to Ca released was {approximately}0.7. Our results show unambiguously that the ER is the source of Ca{sup 2+} release during cell stimulation and suggest the Mg{sup 2+} can nearly balance the charge movement of Ca{sup 2+}.

  11. Real-time Redox Measurements during Endoplasmic Reticulum Stress Reveal Interlinked Protein Folding Functions

    PubMed Central

    Merksamer, Philip I.; Trusina, Ala; Papa, Feroz R.

    2008-01-01

    SUMMARY Disruption of protein folding in the endoplasmic reticulum (ER) causes unfolded proteins to accumulate, triggering the unfolded protein response (UPR). UPR outputs in turn decrease ER unfolded proteins to close a negative feedback loop. However, because it is infeasible to directly measure the concentration of unfolded proteins in vivo, cells are generically described as experiencing “ER stress” whenever the UPR is active. Because ER redox potential is optimized for oxidative protein folding, we reasoned that measureable redox changes should accompany unfolded protein accumulation. To test this concept, we employed fluorescent protein reporters to dynamically measure ER redox status and UPR activity in single cells. Using these tools, we show that diverse stressors, both experimental and physiological, compromise ER protein oxidation when UPR-imposed homeostatic control is lost. Using genetic analysis we uncovered redox heterogeneities in isogenic cell populations, and revealed functional interlinks between ER protein folding, modification, and quality control systems. PMID:19026441

  12. Endoplasmic reticulum stress-induced autophagy determines the susceptibility of melanoma cells to dabrafenib

    PubMed Central

    Ji, Chao; Zhang, Ziping; Chen, Lihong; Zhou, Kunli; Li, Dongjun; Wang, Ping; Huang, Shuying; Gong, Ting; Cheng, Bo

    2016-01-01

    Melanoma is one of the deadliest skin cancers and accounts for most skin-related deaths due to strong resistance to chemotherapy drugs. In the present study, we investigated the mechanisms of dabrafenib-induced drug resistance in human melanoma cell lines A375 and MEL624. Our studies support that both endoplasmic reticulum (ER) stress and autophagy were induced in the melanoma cells after the treatment with dabrafenib. In addition, ER stress-induced autophagy protects melanoma cells from the toxicity of dabrafenib. Moreover, inhibition of both ER stress and autophagy promote the sensitivity of melanoma cells to dabrafenib. Taken together, the data suggest that ER stress-induced autophagy determines the sensitivity of melanoma cells to dabrafenib. These results provide us with promising evidence that the inhibition of autophagy and ER stress could serve a therapeutic effect for the conventional dabrafenib chemotherapy. PMID:27536070

  13. Soluble forms of polyQ-expanded huntingtin rather than large aggregates cause endoplasmic reticulum stress

    NASA Astrophysics Data System (ADS)

    Leitman, Julia; Ulrich Hartl, F.; Lederkremer, Gerardo Z.

    2013-11-01

    In Huntington’s disease, as in other neurodegenerative diseases, it was initially thought that insoluble protein aggregates are the toxic species. However, growing evidence implicates soluble oligomeric polyglutamine-expanded huntingtin in cytotoxicity. Here we show that pathogenic huntingtin inhibits endoplasmic reticulum (ER)-associated degradation and induces ER stress before its aggregation into visible inclusions. All three branches of the unfolded protein response are activated. ER stress can be compensated by overexpression of p97/VCP, suggesting its sequestration by pathogenic huntingtin as a main cause. Stress correlates with the presence of huntingtin oligomers and is independent of continual huntingtin synthesis. Stress levels, measured in striatal neurons, are stabilized but only slowly subside on huntingtin aggregation into inclusions. Our results can be explained by the constant conversion of huntingtin monomers to toxic oligomers; large aggregates sequester the former, precluding further conversion, whereas pre-existing toxic oligomers are only gradually depleted.

  14. Taking organelles apart, putting them back together and creating new ones: lessons from the endoplasmic reticulum.

    PubMed

    Lavoie, Christine; Roy, Line; Lanoix, Joël; Taheri, Mariam; Young, Robin; Thibault, Geneviève; Farah, Carol Abi; Leclerc, Nicole; Paiement, Jacques

    2011-06-01

    The endoplasmic reticulum (ER) is a highly dynamic organelle. It is composed of four subcompartments including nuclear envelope (NE), rough ER (rER), smooth ER (sER) and transitional ER (tER). The subcompartments are interconnected, can fragment and dissociate and are able to reassemble again. They coordinate with cell function by way of protein regulators in the surrounding cytosol. The activity of the many associated molecular machines of the ER as well as the fluid nature of the limiting membrane of the ER contribute extensively to the dynamics of the ER. This review examines the properties of the ER that permit its isolation and purification and the physiological conditions that permit reconstitution both in vitro and in vivo in normal and in disease conditions. PMID:21536318

  15. Hydrogen Sulfide Improves Vascular Calcification in Rats by Inhibiting Endoplasmic Reticulum Stress.

    PubMed

    Yang, Rui; Teng, Xu; Li, Hui; Xue, Hong-Mei; Guo, Qi; Xiao, Lin; Wu, Yu-Ming

    2016-01-01

    In this study, the vitamin D3 plus nicotine (VDN) model of rats was used to prove that H2S alleviates vascular calcification (VC) and phenotype transformation of vascular smooth muscle cells (VSMC). Besides, H2S can also inhibit endoplasmic reticulum stress (ERS) of calcified aortic tissues. The effect of H2S on alleviating VC and phenotype transformation of VSMC can be blocked by TM, while PBA also alleviated VC and phenotype transformation of VSMC that was similar to the effect of H2S. These results suggest that H2S may alleviate rat aorta VC by inhibiting ERS, providing new target and perspective for prevention and treatment of VC. PMID:27022436

  16. The roles of endoplasmic reticulum stress response in female mammalian reproduction.

    PubMed

    Yang, Yanzhou; Pei, Xiuying; Jin, Yaping; Wang, Yanrong; Zhang, Cheng

    2016-03-01

    Endoplasmic reticulum stress (ERS) activates a protective pathway, called the unfold protein response, for maintaining cellular homeostasis, but cellular apoptosis is triggered by excessive or persistent ERS. Several recent studies imply that the ERS response might have broader physiological roles in the various reproductive processes of female mammals, including embryo implantation, decidualization, preimplantation embryonic development, follicle atresia, and the development of the placenta. This review summarizes the existing data concerning the molecular and biological roles of the ERS response. The study of the functions of the ERS response in mammalian reproduction might provide novel insights into and an understanding of reproductive cell survival and apoptosis under physiological and pathological conditions. The ERS response is a novel signaling pathway for reproductive cell survival and apoptosis. Infertility might be a result of disturbing the ERS response during the process of female reproduction. PMID:26022337

  17. Establishment of a system for monitoring endoplasmic reticulum redox state in mammalian cells

    PubMed Central

    Kanekura, Kohsuke; Ishigaki, Shinsuke; Merksamer, Philip I.; Papa, Feroz R.; Urano, Fumihiko

    2014-01-01

    The endoplasmic reticulum (ER) performs a critical role in the oxidative folding of nascent proteins such that perturbations to ER homeostasis may lead to protein misfolding and subsequent pathological processes. Among the mechanisms for maintaining ER homeostasis is a redox regulation, which is a critical determinant of the fate of ER stressed cells. Here we report the establishment of a system for monitoring ER redox state in mammalian cells. The new ER redox sensing system was developed based on the previously described monitoring system in yeast. Our system could successfully monitor the dynamic ER redox state in mammalian cells. Using this system, we find that manipulation of ER oxidases changes ER redox state. The mammalian ER redox sensing system could be used to study the mechanisms of ER redox regulation and provide a foundation for an approach to develop novel therapeutic modalities for human diseases related to dysregulated ER homeostasis including diabetes, neurodegeneration and Wolfram syndrome. PMID:24042438

  18. Transit of H2O2 across the endoplasmic reticulum membrane is not sluggish.

    PubMed

    Appenzeller-Herzog, Christian; Bánhegyi, Gabor; Bogeski, Ivan; Davies, Kelvin J A; Delaunay-Moisan, Agnès; Forman, Henry Jay; Görlach, Agnes; Kietzmann, Thomas; Laurindo, Francisco; Margittai, Eva; Meyer, Andreas J; Riemer, Jan; Rützler, Michael; Simmen, Thomas; Sitia, Roberto; Toledano, Michel B; Touw, Ivo P

    2016-05-01

    Cellular metabolism provides various sources of hydrogen peroxide (H2O2) in different organelles and compartments. The suitability of H2O2 as an intracellular signaling molecule therefore also depends on its ability to pass cellular membranes. The propensity of the membranous boundary of the endoplasmic reticulum (ER) to let pass H2O2 has been discussed controversially. In this essay, we challenge the recent proposal that the ER membrane constitutes a simple barrier for H2O2 diffusion and support earlier data showing that (i) ample H2O2 permeability of the ER membrane is a prerequisite for signal transduction, (ii) aquaporin channels are crucially involved in the facilitation of H2O2 permeation, and (iii) a proper experimental framework not prone to artifacts is necessary to further unravel the role of H2O2 permeation in signal transduction and organelle biology. PMID:26928585

  19. Endoplasmic reticulum stress-mediated pathways to both apoptosis and autophagy: Significance for melanoma treatment

    PubMed Central

    Hassan, Mohamed; Selimovic, Denis; Hannig, Matthias; Haikel, Youssef; Brodell, Robert T; Megahed, Mossaad

    2015-01-01

    Melanoma is the most aggressive form of skin cancer. Disrupted intracellular signaling pathways are responsible for melanoma's extraordinary resistance to current chemotherapeutic modalities. The pathophysiologic basis for resistance to both chemo- and radiation therapy is rooted in altered genetic and epigenetic mechanisms that, in turn, result in the impairing of cell death machinery and/or excessive activation of cell growth and survival-dependent pathways. Although most current melanoma therapies target mitochondrial dysregulation, there is increasing evidence that endoplasmic reticulum (ER) stress-associated pathways play a role in the potentiation, initiation and maintenance of cell death machinery and autophagy. This review focuses on the reliability of ER-associated pathways as therapeutic targets for melanoma treatment. PMID:26618107

  20. Transcription Factor ATF4 Induces NLRP1 Inflammasome Expression during Endoplasmic Reticulum Stress

    PubMed Central

    D’Osualdo, Andrea; Anania, Veronica G.; Yu, Kebing; Lill, Jennie R.; Kaufman, Randal J.; Matsuzawa, Shu-ichi; Reed, John C.

    2015-01-01

    Perturbation of endoplasmic reticulum (ER) homeostasis triggers the ER stress response (also known as Unfolded Protein Response), a hallmark of many pathological disorders. However the connection between ER stress and inflammation remains largely unexplored. Recent data suggest that ER stress controls the activity of inflammasomes, key signaling platforms that mediate innate immune responses. Here we report that expression of NLRP1, a core inflammasome component, is specifically up-regulated during severe ER stress conditions in human cell lines. Both IRE1α and PERK, but not the ATF6 pathway, modulate NLRP1 gene expression. Furthermore, using mutagenesis, chromatin immunoprecipitation and CRISPR-Cas9-mediated genome editing technology, we demonstrate that ATF4 transcription factor directly binds to NLRP1 promoter during ER stress. Although involved in different types of inflammatory responses, XBP-1 splicing was not required for NLRP1 induction. This study provides further evidence that links ER stress with innate PMID:26086088

  1. ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery

    PubMed Central

    Schuck, Sebastian; Gallagher, Ciara M.; Walter, Peter

    2014-01-01

    ABSTRACT Selective autophagy of damaged or redundant organelles is an important mechanism for maintaining cell homeostasis. We found previously that endoplasmic reticulum (ER) stress in the yeast Saccharomyces cerevisiae causes massive ER expansion and triggers the formation of large ER whorls. Here, we show that stress-induced ER whorls are selectively taken up into the vacuole, the yeast lysosome, by a process termed ER-phagy. Import into the vacuole does not involve autophagosomes but occurs through invagination of the vacuolar membrane, indicating that ER-phagy is topologically equivalent to microautophagy. Even so, ER-phagy requires neither the core autophagy machinery nor several other proteins specifically implicated in microautophagy. Thus, autophagy of ER whorls represents a distinct type of organelle-selective autophagy. Finally, we provide evidence that ER-phagy degrades excess ER membrane, suggesting that it contributes to cell homeostasis by controlling organelle size. PMID:25052096

  2. Endoplasmic reticulum stress-mediated pathways to both apoptosis and autophagy: Significance for melanoma treatment.

    PubMed

    Hassan, Mohamed; Selimovic, Denis; Hannig, Matthias; Haikel, Youssef; Brodell, Robert T; Megahed, Mossaad

    2015-11-20

    Melanoma is the most aggressive form of skin cancer. Disrupted intracellular signaling pathways are responsible for melanoma's extraordinary resistance to current chemotherapeutic modalities. The pathophysiologic basis for resistance to both chemo- and radiation therapy is rooted in altered genetic and epigenetic mechanisms that, in turn, result in the impairing of cell death machinery and/or excessive activation of cell growth and survival-dependent pathways. Although most current melanoma therapies target mitochondrial dysregulation, there is increasing evidence that endoplasmic reticulum (ER) stress-associated pathways play a role in the potentiation, initiation and maintenance of cell death machinery and autophagy. This review focuses on the reliability of ER-associated pathways as therapeutic targets for melanoma treatment. PMID:26618107

  3. Possible Pharmacological Approach Targeting Endoplasmic Reticulum Stress to Ameliorate Leptin Resistance in Obesity

    PubMed Central

    Hosoi, Toru; Ozawa, Koichiro

    2016-01-01

    Obesity is associated with metabolic syndrome, such as diabetes, hypertension, and hyperlipidemia. Therefore, drug development for the treatment of obesity is needed. Leptin is an anti-obesity hormone that inhibits food intake and increases energy metabolism, and, as such, treatments involving leptin were expected to be beneficial for obesity; however, since most obese patients are in a state of leptin resistance, these treatments may not be useful. Therefore, the amelioration of leptin resistance has recently been attracting interest as a treatment for obesity. The mechanisms underlying the development of leptin resistance need to be elucidated in more detail. Endoplasmic reticulum (ER) stress was recently suggested to be involved in the pathogenesis of leptin resistance. The molecular mechanisms responsible for leptin resistance and possible pharmacological treatments for obesity have been discussed herein, with a focus on ER stress. PMID:27375555

  4. Alterations in Mitochondrial and Endoplasmic Reticulum Signaling by p53 Mutants

    PubMed Central

    Giorgi, Carlotta; Bonora, Massimo; Missiroli, Sonia; Morganti, Claudia; Morciano, Giampaolo; Wieckowski, Mariusz R.; Pinton, Paolo

    2016-01-01

    The p53 protein is probably the most important tumor suppressor, acting as a nuclear transcription factor primarily through the modulation of cell death. However, currently, it is well accepted that p53 can also exert important transcription-independent pro-cell death actions. Indeed, cytosolic localization of endogenous wild-type or transactivation-deficient p53 is necessary and sufficient for the induction of apoptosis and autophagy. Here, we present the extra-nuclear activities of p53 associated with the mitochondria and the endoplasmic reticulum, highlighting the activities of the p53 mutants on these compartments. These two intracellular organelles play crucial roles in the regulation of cell death, and it is now well established that they also represent sites where p53 can accumulate. PMID:26942128

  5. Presenilin 2 Modulates Endoplasmic Reticulum-Mitochondria Coupling by Tuning the Antagonistic Effect of Mitofusin 2.

    PubMed

    Filadi, Riccardo; Greotti, Elisa; Turacchio, Gabriele; Luini, Alberto; Pozzan, Tullio; Pizzo, Paola

    2016-06-01

    Communication between organelles plays key roles in cell biology. In particular, physical and functional coupling of the endoplasmic reticulum (ER) and mitochondria is crucial for regulation of various physiological and pathophysiological processes. Here, we demonstrate that Presenilin 2 (PS2), mutations in which underlie familial Alzheimer's disease (FAD), promotes ER-mitochondria coupling only in the presence of mitofusin 2 (Mfn2). PS2 is not necessary for the antagonistic effect of Mfn2 on organelle coupling, although its abundance can tune it. The two proteins physically interact, whereas their homologues Mfn1 and PS1 are dispensable for this interplay. Moreover, PS2 mutants associated with FAD are more effective than the wild-type form in modulating ER-mitochondria tethering because their binding to Mfn2 in mitochondria-associated membranes is favored. We propose a revised model for ER-mitochondria interaction to account for these findings and discuss possible implications for FAD pathogenesis. PMID:27239030

  6. The essential functions of endoplasmic reticulum chaperones in hepatic lipid metabolism.

    PubMed

    Zhang, LiChun; Wang, Hong-Hui

    2016-07-01

    The endoplasmic reticulum (ER) is an essential organelle for protein and lipid synthesis in hepatocytes. ER homeostasis is vital to maintain normal hepatocyte physiology. Perturbed ER functions causes ER stress associated with accumulation of unfolded protein in the ER that activates a series of adaptive signalling pathways, termed unfolded protein response (UPR). The UPR regulates ER chaperone levels to preserve ER protein-folding environment to protect the cell from ER stress. Recent findings reveal an array of ER chaperones that alter the protein-folding environment in the ER of hepatocytes and contribute to dysregulation of hepatocyte lipid metabolism and liver disease. In this review, we will discuss the specific functions of these chaperones in regulation of lipid metabolism, especially de novo lipogenesis and lipid transport and demonstrate their homeostatic role not only for ER-protein synthesis but also for lipid metabolism in hepatocyte. PMID:27133206

  7. Targeting the hallmarks of cancer with therapy-induced endoplasmic reticulum (ER) stress

    PubMed Central

    Garg, Abhishek D; Maes, Hannelore; van Vliet, Alexander R; Agostinis, Patrizia

    2015-01-01

    The endoplasmic reticulum (ER) is at the center of a number of vital cellular processes such as cell growth, death, and differentiation, crosstalk with immune or stromal cells, and maintenance of proteostasis or homeostasis, and ER functions have implications for various pathologies including cancer. Recently, a number of major hallmarks of cancer have been delineated that are expected to facilitate the development of anticancer therapies. However, therapeutic induction of ER stress as a strategy to broadly target multiple hallmarks of cancer has been seldom discussed despite the fact that several primary or secondary ER stress-inducing therapies have been found to exhibit positive clinical activity in cancer patients. In the present review we provide a brief historical overview of the major discoveries and milestones in the field of ER stress biology with important implications for anticancer therapy. Furthermore, we comprehensively discuss possible strategies enabling the targeting of multiple hallmarks of cancer with therapy-induced ER stress. PMID:27308392

  8. VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation

    PubMed Central

    Shih, Yu-Tzu; Hsueh, Yi-Ping

    2016-01-01

    Imbalanced protein homeostasis, such as excessive protein synthesis and protein aggregation, is a pathogenic hallmark of a range of neurological disorders. Here, using expression of mutant proteins, a knockdown approach and disease mutation knockin mice, we show that VCP (valosin-containing protein), together with its cofactor P47 and the endoplasmic reticulum (ER) morphology regulator ATL1 (Atlastin-1), regulates tubular ER formation and influences the efficiency of protein synthesis to control dendritic spine formation in neurons. Strengthening the significance of protein synthesis in dendritic spinogenesis, the translation blocker cyclohexamide and the mTOR inhibitor rapamycin reduce dendritic spine density, while a leucine supplement that increases protein synthesis ameliorates the dendritic spine defects caused by Vcp and Atl1 deficiencies. Because VCP and ATL1 are the causative genes of several neurodegenerative and neurodevelopmental disorders, we suggest that impaired ER formation and inefficient protein synthesis are significant in the pathogenesis of multiple neurological disorders. PMID:26984393

  9. Expanded polyglutamine embedded in the endoplasmic reticulum causes membrane distortion and coincides with Bax insertion.

    PubMed

    Ueda, Masashi; Li, Shimo; Itoh, Masanori; Wang, Miao-Xing; Hayakawa, Miki; Islam, Saiful; Tana; Nakagawa, Kiyomi; Chen, Huayue; Nakagawa, Toshiyuki

    2016-05-27

    The endoplasmic reticulum (ER) is important in various cellular functions, such as secretary and membrane protein biosynthesis, lipid synthesis, and calcium storage. ER stress, including membrane distortion, is associated with many diseases such as Huntington's disease. In particular, nuclear envelope distortion is related to neuronal cell death associated with polyglutamine. However, the mechanism by which polyglutamine causes ER membrane distortion remains unclear. We used electron microscopy, fluorescence protease protection assay, and alkaline treatment to analyze the localization of polyglutamine in cells. We characterized polyglutamine embedded in the ER membrane and noted an effect on morphology, including the dilation of ER luminal space and elongation of ER-mitochondria contact sites, in addition to the distortion of the nuclear envelope. The polyglutamine embedded in the ER membrane was observed at the same time as Bax insertion. These results demonstrated that the ER membrane may be a target of polyglutamine, which triggers cell death through Bax. PMID:27079237

  10. Endoplasmic Reticulum: The Favorite Intracellular Niche for Viral Replication and Assembly

    PubMed Central

    Romero-Brey, Inés; Bartenschlager, Ralf

    2016-01-01

    The endoplasmic reticulum (ER) is the largest intracellular organelle. It forms a complex network of continuous sheets and tubules, extending from the nuclear envelope (NE) to the plasma membrane. This network is frequently perturbed by positive-strand RNA viruses utilizing the ER to create membranous replication factories (RFs), where amplification of their genomes occurs. In addition, many enveloped viruses assemble progeny virions in association with ER membranes, and viruses replicating in the nucleus need to overcome the NE barrier, requiring transient changes of the NE morphology. This review first summarizes some key aspects of ER morphology and then focuses on the exploitation of the ER by viruses for the sake of promoting the different steps of their replication cycles. PMID:27338443

  11. Cell Biology of the Endoplasmic Reticulum and the Golgi Apparatus through Proteomics

    PubMed Central

    Smirle, Jeffrey; Au, Catherine E.; Jain, Michael; Dejgaard, Kurt; Nilsson, Tommy; Bergeron, John

    2013-01-01

    Enriched endoplasmic reticulum (ER) and Golgi membranes subjected to mass spectrometry have uncovered over a thousand different proteins assigned to the ER and Golgi apparatus of rat liver. This, in turn, led to the uncovering of several hundred proteins of poorly understood function and, through hierarchical clustering, showed that proteins distributed in patterns suggestive of microdomains in cognate organelles. This has led to new insights with respect to their intracellular localization and function. Another outcome has been the critical testing of the cisternal maturation hypothesis showing overwhelming support for a predominant role of COPI vesicles in the transport of resident proteins of the ER and Golgi apparatus (as opposed to biosynthetic cargo). Here we will discuss new insights gained and also highlight new avenues undertaken to further explore the cell biology of the ER and the Golgi apparatus through tandem mass spectrometry. PMID:23284051

  12. Endoplasmic reticulum stress-mediated induction of SESTRIN 2 potentiates cell survival

    PubMed Central

    Ayo, Abiodun; Pakos-Zebrucka, Karolina; Patterson, John B

    2016-01-01

    Upregulation of SESTRIN 2 (SESN2) has been reported in response to diverse cellular stresses. In this study we demonstrate SESTRIN 2 induction following endoplasmic reticulum (ER) stress. ER stress-induced increases in SESTRIN 2 expression were dependent on both PERK and IRE1/XBP1 arms of the unfolded protein response (UPR). SESTRIN 2 induction, post ER stress, was responsible for mTORC1 inactivation and contributed to autophagy induction. Conversely, knockdown of SESTRIN 2 prolonged mTORC1 signaling, repressed autophagy and increased ER stress-induced cell death. Unexpectedly, the increase in ER stress-induced cell death was not linked to autophagy inhibition. Analysis of UPR pathways identified prolonged eIF2α, ATF4 and CHOP signaling in SESTRIN 2 knockdown cells following ER stress. SESTRIN 2 regulation enables UPR derived signals to indirectly control mTORC1 activity shutting down protein translation thus preventing further exacerbation of ER stress. PMID:26930721

  13. Dysfunctional tubular endoplasmic reticulum constitutes a pathological feature of Alzheimer's disease.

    PubMed

    Sharoar, M G; Shi, Q; Ge, Y; He, W; Hu, X; Perry, G; Zhu, X; Yan, R

    2016-09-01

    Pathological features in Alzheimer's brains include mitochondrial dysfunction and dystrophic neurites (DNs) in areas surrounding amyloid plaques. Using a mouse model that overexpresses reticulon 3 (RTN3) and spontaneously develops age-dependent hippocampal DNs, here we report that DNs contain both RTN3 and REEPs, topologically similar proteins that can shape tubular endoplasmic reticulum (ER). Importantly, ultrastructural examinations of such DNs revealed gradual accumulation of tubular ER in axonal termini, and such abnormal tubular ER inclusion is found in areas surrounding amyloid plaques in biopsy samples from Alzheimer's disease (AD) brains. Functionally, abnormally clustered tubular ER induces enhanced mitochondrial fission in the early stages of DN formation and eventual mitochondrial degeneration at later stages. Furthermore, such DNs are abrogated when RTN3 is ablated in aging and AD mouse models. Hence, abnormally clustered tubular ER can be pathogenic in brain regions: disrupting mitochondrial integrity, inducing DNs formation and impairing cognitive function in AD and aging brains. PMID:26619807

  14. Endoplasmic reticulum stress and the on site function of resident PTP1B.

    PubMed

    Popov, Doina

    2012-06-15

    Growing evidence links the stress at the endoplasmic reticulum (ER) to pathologies such as diabetes mellitus, obesity, liver, heart, renal and neurodegenerative diseases, endothelial dysfunction, atherosclerosis, and cancer. Therefore, identification of molecular pathways beyond ER stress and their appropriate modulation might alleviate the stress, and direct toward novel tools to fight this disturbance. An interesting resident of the ER membrane is protein tyrosine phosphatase 1B (PTP1B), an enzyme that negatively regulates insulin and leptin signaling, contributing to insulin and leptin resistance. Recently, new functions of PTP1B have been established linked to ER stress response. This review evaluates the novel data on ER stressors, discusses the mechanisms beyond PTP1B function in the ER stress response, and emphasizes the potential therapeutic exploitation of PTP1B to relieve ER stress. PMID:22609202

  15. Electron probe microanalysis of calcium release and magnesium uptake by endoplasmic reticulum in bee photoreceptors.

    PubMed Central

    Baumann, O; Walz, B; Somlyo, A V; Somlyo, A P

    1991-01-01

    Honey bee photoreceptors contain large sacs of endoplasmic reticulum (ER) that can be located unequivocally in freeze-dried cryosections. The elemental composition of the ER was determined by electron probe x-ray microanalysis and was visualized in high-resolution x-ray maps. In the ER of dark-adapted photoreceptors, the Ca concentration was 47.5 +/- 1.1 mmol/kg (dry weight) (mean +/- SEM). During a 3-sec nonsaturating light stimulus, approximately 50% of the Ca content was released from the ER. Light stimulation also caused a highly significant increase in the Mg content of the ER; the ratio of Mg uptake to Ca released was approximately 0.7. Our results show unambiguously that the ER is the source of Ca2+ release during cell stimulation and suggest that Mg2+ can nearly balance the charge movement of Ca2+. Images PMID:1992466

  16. Crystal structures reveal transient PERK luminal domain tetramerization in endoplasmic reticulum stress signaling

    PubMed Central

    Carrara, Marta; Prischi, Filippo; Nowak, Piotr R; Ali, Maruf MU

    2015-01-01

    Stress caused by accumulation of misfolded proteins within the endoplasmic reticulum (ER) elicits a cellular unfolded protein response (UPR) aimed at maintaining protein-folding capacity. PERK, a key upstream component, recognizes ER stress via its luminal sensor/transducer domain, but the molecular events that lead to UPR activation remain unclear. Here, we describe the crystal structures of mammalian PERK luminal domains captured in dimeric state as well as in a novel tetrameric state. Small angle X-ray scattering analysis (SAXS) supports the existence of both crystal structures also in solution. The salient feature of the tetramer interface, a helix swapped between dimers, implies transient association. Moreover, interface mutations that disrupt tetramer formation in vitro reduce phosphorylation of PERK and its target eIF2α in cells. These results suggest that transient conversion from dimeric to tetrameric state may be a key regulatory step in UPR activation. PMID:25925385

  17. Endoplasmic Reticulum Stress Signaling in Mammalian Oocytes and Embryos: Life in the Balance

    PubMed Central

    Latham, Keith E.

    2015-01-01

    Mammalian oocytes and embryos are exquisitely sensitive to a wide range of insults related to physical stress, chemical exposure, and exposures to adverse maternal nutrition or health status. Although cells manifest specific responses to various stressors, many of these stressors intersect at the endoplasmic reticulum, where disruptions in protein folding and production of reactive oxygen species initiate downstream signaling events. These signals modulate mRNA translation and gene transcription, leading to recovery, activation of autophagy, or with severe and prolonged stress, apoptosis. ER stress signaling has recently come to the fore as a major contributor to embryo demise. Accordingly, agents that modulate or inhibit ER stress signaling have yielded beneficial effects on embryo survival and long-term developmental potential. We review here the mechanisms of ER stress signaling, their connections to mammalian oocytes and embryos, and the promising indications that interventions in this pathway may provide new opportunities for improving mammalian reproduction and health. PMID:25805126

  18. Transcription Factor ATF4 Induces NLRP1 Inflammasome Expression during Endoplasmic Reticulum Stress.

    PubMed

    D'Osualdo, Andrea; Anania, Veronica G; Yu, Kebing; Lill, Jennie R; Kaufman, Randal J; Matsuzawa, Shu-ichi; Reed, John C

    2015-01-01

    Perturbation of endoplasmic reticulum (ER) homeostasis triggers the ER stress response (also known as Unfolded Protein Response), a hallmark of many pathological disorders. However the connection between ER stress and inflammation remains largely unexplored. Recent data suggest that ER stress controls the activity of inflammasomes, key signaling platforms that mediate innate immune responses. Here we report that expression of NLRP1, a core inflammasome component, is specifically up-regulated during severe ER stress conditions in human cell lines. Both IRE1α and PERK, but not the ATF6 pathway, modulate NLRP1 gene expression. Furthermore, using mutagenesis, chromatin immunoprecipitation and CRISPR-Cas9-mediated genome editing technology, we demonstrate that ATF4 transcription factor directly binds to NLRP1 promoter during ER stress. Although involved in different types of inflammatory responses, XBP-1 splicing was not required for NLRP1 induction. This study provides further evidence that links ER stress with innate. PMID:26086088

  19. High osmotic pressure increases reactive oxygen species generation in rabbit corneal epithelial cells by endoplasmic reticulum

    PubMed Central

    Wang, Peng; Sheng, Minjie; Li, Bing; Jiang, Yaping; Chen, Yihui

    2016-01-01

    Tear high osmotic pressure (HOP) has been recognized as the core mechanism underlying ocular surface inflammation, injury and symptoms and is closely associated with many ocular surface diseases, especially dry eye. The endoplasmic reticulum (ER) is a multi-functional organelle responsible for protein synthesis, folding and transport, biological synthesis of lipids, vesicle transport and intracellular calcium storage. Accumulation of unfolded proteins and imbalance of calcium ion in the ER would induce ER stress and protective unfolded protein response (UPR). Many studies have demonstrated that ER stress can induce cell apoptosis. However, the association between tear HOP and ER stress has not been studied systematically. In the present study, rabbit corneal epithelial cells were treated with HOP and results showed that the production of reactive oxygen species increased markedly, which further activated the ER signaling pathway and ultimately induced cell apoptosis. These findings shed new lights on the pathogenesis and clinical treatment of dry eye and other ocular surface diseases. PMID:27158374

  20. Rheumatoid arthritis as a hyper-endoplasmic-reticulum-associated degradation disease.

    PubMed

    Yamasaki, Satoshi; Yagishita, Naoko; Tsuchimochi, Kaneyuki; Nishioka, Kusuki; Nakajima, Toshihiro

    2005-01-01

    We introduce Synoviolin as a novel pathogenic factor in rheumatoid arthritis (RA). Experimental studies indicate that this endoplasmic reticulum (ER)-resident E3 ubiquitin ligase has important functions in the ER-associated degradation (ERAD) system, an essential system for ER homeostasis. Overexpression of Synoviolin in mice causes arthropathy with synovial hyperplasia, whereas heterozygous knockdown results in increased apoptosis of synovial cells and resistance to collagen-induced arthritis in mice. On the basis of these experimental data, we propose that excess elimination of unfolded proteins (that is, 'hyper-ERAD') by overexpression of Synoviolin triggers synovial cell overgrowth and hence a worsening of RA. Further analysis of the hyper-ERAD system may permit the complex pathomechanisms of RA to be uncovered. PMID:16207344

  1. Flurbiprofen ameliorated obesity by attenuating leptin resistance induced by endoplasmic reticulum stress

    PubMed Central

    Hosoi, Toru; Yamaguchi, Rie; Noji, Kikuko; Matsuo, Suguru; Baba, Sachiko; Toyoda, Keisuke; Suezawa, Takahiro; Kayano, Takaaki; Tanaka, Shinpei; Ozawa, Koichiro

    2014-01-01

    Endoplasmic reticulum (ER) stress, caused by the accumulation of unfolded proteins, is involved in the development of obesity. We demonstrated that flurbiprofen, a nonsteroidal anti-inflammatory drug (NSAID), exhibited chaperone activity, which reduced protein aggregation and alleviated ER stress-induced leptin resistance, characterized by insensitivity to the actions of the anti-obesity hormone leptin. This result was further supported by flurbiprofen attenuating high-fat diet-induced obesity in mice. The other NSAIDs tested did not exhibit such effects, which suggested that this anti-obesity action is mediated independent of NSAIDs. Using ferriteglycidyl methacrylate beads, we identified aldehyde dehydrogenase as the target of flurbiprofen, but not of the other NSAIDs. These results suggest that flurbiprofen may have unique pharmacological properties that reduce the accumulation of unfolded proteins and may represent a new class of drug for the fundamental treatment of obesity. Subject Categories Metabolism; Pharmacology & Drug Discovery PMID:24421337

  2. Facilitation of DNA damage-induced apoptosis by endoplasmic reticulum protein mitsugumin23

    SciTech Connect

    Yamazaki, Tetsuo; Sasaki, Nozomi; Nishi, Miyuki; Takeshima, Hiroshi

    2010-02-05

    The endoplasmic reticulum (ER) emanates context-dependent signals, thereby mediating cellular response to a variety of stresses. However, the underlying molecular mechanisms have been enigmatic. To better understand the signaling capacity of the ER, we focused on roles played by mitsugumin23 (MG23), a protein residing predominantly in this organelle. Overexpression of MG23 in human embryonic kidney 293T cells specifically enhanced apoptosis triggered by etoposide, a DNA-damaging anti-cancer drug. Conversely, genetic deletion of MG23 reduced susceptibility of thymocytes to DNA damage-induced apoptosis, which was demonstrated by whole-body irradiation experiments. In this setting, induction of the tumor-suppressor gene p53 was attenuated in MG23-knockout thymocytes as compared with their wild-type counterparts, consistent with the elevated radioresistance. It is therefore suggested that MG23 is an essential component of ER-generated lethal signals provoked upon DNA damage, specifying cell fate under pathophysiological conditions.

  3. A Molecular Fluorescent Probe for Targeted Visualization of Temperature at the Endoplasmic Reticulum

    NASA Astrophysics Data System (ADS)

    Arai, Satoshi; Lee, Sung-Chan; Zhai, Duanting; Suzuki, Madoka; Chang, Young Tae

    2014-10-01

    The dynamics of cellular heat production and propagation remains elusive at a subcellular level. Here we report the first small molecule fluorescent thermometer selectively targeting the endoplasmic reticulum (ER thermo yellow), with the highest sensitivity reported so far (3.9%/°C). Unlike nanoparticle thermometers, ER thermo yellow stains the target organelle evenly without the commonly encountered problem of aggregation, and successfully demonstrates the ability to monitor intracellular temperature gradients generated by external heat sources in various cell types. We further confirm the ability of ER thermo yellow to monitor heat production by intracellular Ca2+ changes in HeLa cells. Our thermometer anchored at nearly-zero distance from the ER, i.e. the heat source, allowed the detection of the heat as it readily dissipated, and revealed the dynamics of heat production in real time at a subcellular level.

  4. Endoplasmic Reticulum: The Favorite Intracellular Niche for Viral Replication and Assembly.

    PubMed

    Romero-Brey, Inés; Bartenschlager, Ralf

    2016-01-01

    The endoplasmic reticulum (ER) is the largest intracellular organelle. It forms a complex network of continuous sheets and tubules, extending from the nuclear envelope (NE) to the plasma membrane. This network is frequently perturbed by positive-strand RNA viruses utilizing the ER to create membranous replication factories (RFs), where amplification of their genomes occurs. In addition, many enveloped viruses assemble progeny virions in association with ER membranes, and viruses replicating in the nucleus need to overcome the NE barrier, requiring transient changes of the NE morphology. This review first summarizes some key aspects of ER morphology and then focuses on the exploitation of the ER by viruses for the sake of promoting the different steps of their replication cycles. PMID:27338443

  5. Targeting of Rough Endoplasmic Reticulum Membrane Proteins and Ribosomes in Invertebrate Neurons

    PubMed Central

    Rolls, Melissa M.; Hall, David H.; Victor, Martin; Stelzer, Ernst H. K.; Rapoport, Tom A.

    2002-01-01

    The endoplasmic reticulum (ER) is divided into rough and smooth domains (RER and SER). The two domains share most proteins, but RER is enriched in some membrane proteins by an unknown mechanism. We studied RER protein targeting by expressing fluorescent protein fusions to ER membrane proteins in Caenorhabditis elegans. In several cell types RER and general ER proteins colocalized, but in neurons RER proteins were concentrated in the cell body, whereas general ER proteins were also found in neurites. Surprisingly RER membrane proteins diffused rapidly within the cell body, indicating they are not localized by immobilization. Ribosomes were also concentrated in the cell body, suggesting they may be in part responsible for targeting RER membrane proteins. PMID:12006669

  6. Sc65-Null Mice Provide Evidence for a Novel Endoplasmic Reticulum Complex Regulating Collagen Lysyl Hydroxylation

    PubMed Central

    Weis, MaryAnn; Rai, Jyoti; Hudson, David M.; Dimori, Milena; Zimmerman, Sarah M.; Hogue, William R.; Swain, Frances L.; Burdine, Marie S.; Mackintosh, Samuel G.; Tackett, Alan J.; Suva, Larry J.; Eyre, David R.

    2016-01-01

    Collagen is a major component of the extracellular matrix and its integrity is essential for connective tissue and organ function. The importance of proteins involved in intracellular collagen post-translational modification, folding and transport was recently highlighted from studies on recessive forms of osteogenesis imperfecta (OI). Here we describe the critical role of SC65 (Synaptonemal Complex 65, P3H4), a leprecan-family member, as part of an endoplasmic reticulum (ER) complex with prolyl 3-hydroxylase 3. This complex affects the activity of lysyl-hydroxylase 1 potentially through interactions with the enzyme and/or cyclophilin B. Loss of Sc65 in the mouse results in instability of this complex, altered collagen lysine hydroxylation and cross-linking leading to connective tissue defects that include low bone mass and skin fragility. This is the first indication of a prolyl-hydroxylase complex in the ER controlling lysyl-hydroxylase activity during collagen synthesis. PMID:27119146

  7. Lidocaine Induces Endoplasmic Reticulum Stress-Associated Apoptosis in Vitro and in Vivo

    PubMed Central

    Hong, Dae Young; Kwon, Kisang; Lee, Kyeong Ryong; Choi, Young Jin; Goo, Tae-Won; Yu, Kweon; Kim, Seung-Whan; Kwon, O-Yu

    2011-01-01

    We demonstrated that upregulation of both gene expression of endoplasmic reticulum (ER) stress chaperones (BiP, calnexin, calreticulin, and PDI) and ER stress sensors (ATF6, IRE1 and PERK) was induced by lidocaine, a local anesthetic, in PC12 cells. In addition to gene regulation, lidocaine also induced typical ER stress phenomena such as ART6 proteolytic cleavage, eIF2 alpha phosphorylation, and XBP1 mRNA splicing. In in vivo experiments, while lidocaine downregulated gene expression of antiapoptotic factors (Bcl-2 and Bcl-xl), pro-apoptotic factor (Bak and Bax) gene expression was upregulated. Furthermore, lidocaine induced apoptosis, as measured histochemically, and upregulated PARP1, a DNA damage repair enzyme. These results are the first to show that lidocaine induces apoptosis through ER stress in vitro and in vivo. PMID:22174623

  8. Calcium Release from Intra-Axonal Endoplasmic Reticulum Leads to Axon Degeneration through Mitochondrial Dysfunction

    PubMed Central

    Villegas, Rosario; Martinez, Nicolas W.; Lillo, Jorge; Pihan, Phillipe; Hernandez, Diego; Twiss, Jeffery L.

    2014-01-01

    Axonal degeneration represents an early pathological event in neurodegeneration, constituting an important target for neuroprotection. Regardless of the initial injury, which could be toxic, mechanical, metabolic, or genetic, degeneration of axons shares a common mechanism involving mitochondrial dysfunction and production of reactive oxygen species. Critical steps in this degenerative process are still unknown. Here we show that calcium release from the axonal endoplasmic reticulum (ER) through ryanodine and IP3 channels activates the mitochondrial permeability transition pore and contributes to axonal degeneration triggered by both mechanical and toxic insults in ex vivo and in vitro mouse and rat model systems. These data reveal a critical and early ER-dependent step during axonal degeneration, providing novel targets for axonal protection in neurodegenerative conditions. PMID:24849352

  9. Role of Endoplasmic Reticulum Stress in Atherosclerosis and Diabetic Macrovascular Complications

    PubMed Central

    Chistiakov, Dmitry A.; Sobenin, Igor A.; Orekhov, Alexander N.; Bobryshev, Yuri V.

    2014-01-01

    Age-related changes in endoplasmic reticulum (ER) are associated with stress of this cell organelle. Unfolded protein response (UPR) is a normal physiological reaction of a cell in order to prevent accumulation of unfolded and misfolded proteins in the ER and improve the normal ER function. However, in pathologic conditions such as atherosclerosis, obesity, and diabetes, ER function becomes impaired, leading to the development of ER stress. In chronic ER stress, defective posttranslational protein folding results in deposits of aberrantly folded proteins in the ER and the induction of cell apoptosis mediated by UPR sensors C/EBPα-homologous protein (CHOP) and inositol requiring protein-1 (IRE1). Since ER stress and ER-induced cell death play a nonredundant role in the pathogenesis of atherosclerosis and diabetic macrovascular complications, pharmaceutical targeting of ER stress components and pathways may be beneficial in the treatment and prevention of cardiovascular pathology. PMID:25061609

  10. Protein 600 is a microtubule/endoplasmic reticulum-associated protein in CNS neurons.

    PubMed

    Shim, Su Yeon; Wang, Jian; Asada, Naoyuki; Neumayer, Gernot; Tran, Hong Chi; Ishiguro, Kei-ichiro; Sanada, Kamon; Nakatani, Yoshihiro; Nguyen, Minh Dang

    2008-04-01

    There is an increasing body of literature pointing to cytoskeletal proteins as spatial organizers and interactors of organelles. In this study, we identified protein 600 (p600) as a novel microtubule-associated protein (MAP) developmentally regulated in neurons. p600 exhibits the unique feature to interact with the endoplasmic reticulum (ER). Silencing of p600 by RNA interference (RNAi) destabilizes neuronal processes in young primary neurons undergoing neurite extension and containing scarce staining of the ER marker Bip. Furthermore, in utero electroporation of p600 RNAi alters neuronal migration, a process that depends on synergistic actions of microtubule dynamics and ER functions. p600-depleted migrating neurons display thin, crooked, and "zigzag" leading process with very few ER membranes. Thus, p600 constitutes the only known MAP to associate with the ER in neurons, and this interaction may impact on multiple cellular processes ranging from neuronal development to neuronal maturation and plasticity. PMID:18385319

  11. Endoplasmic Reticulum Stress in Intestinal Epithelial Cell Function and Inflammatory Bowel Disease

    PubMed Central

    Luo, Katherine; Cao, Stewart Siyan

    2015-01-01

    In eukaryotic cells, perturbation of protein folding homeostasis in the endoplasmic reticulum (ER) causes accumulation of unfolded and misfolded proteins in the ER lumen, which activates intracellular signaling pathways termed the unfolded protein response (UPR). Recent studies have linked ER stress and the UPR to inflammatory bowel disease (IBD). The microenvironment of the ER is affected by a myriad of intestinal luminal molecules, implicating ER stress and the UPR in proper maintenance of intestinal homeostasis. Several intestinal cell populations, including Paneth and goblet cells, require robust ER function for protein folding, maturation, and secretion. Prolonged ER stress and impaired UPR signaling may cause IBD through: (1) induction of intestinal epithelial cell apoptosis, (2) disruption of mucosal barrier function, and (3) induction of the proinflammatory response in the gut. Based on our increased understanding of ER stress in IBD, new pharmacological approaches can be developed to improve intestinal homeostasis by targeting ER protein-folding in the intestinal epithelial cells (IECs). PMID:25755668

  12. HMGB1 induces an inflammatory response in endothelial cells via the RAGE-dependent endoplasmic reticulum stress pathway

    SciTech Connect

    Luo, Ying; Li, Shu-Jun; Yang, Jian; Qiu, Yuan-Zhen; Chen, Fang-Ping

    2013-09-06

    Highlights: •Mechanisms of inflammatory response induced by HMGB1 are incompletely understood. •We found that endoplasmic reticulum stress mediate the inflammatory response induced by HMGB1. •RAGE-mediated ERS pathways are involved in those processes. •We reported a new mechanism for HMGB1 induced inflammatory response. -- Abstract: The high mobility group 1B protein (HMGB1) mediates chronic inflammatory responses in endothelial cells, which play a critical role in atherosclerosis. However, the underlying mechanism is unknown. The goal of our study was to identify the effects of HMGB1 on the RAGE-induced inflammatory response in endothelial cells and test the possible involvement of the endoplasmic reticulum stress pathway. Our results showed that incubation of endothelial cells with HMGB1 (0.01–1 μg/ml) for 24 h induced a dose-dependent activation of endoplasmic reticulum stress transducers, as assessed by PERK and IRE1 protein expression. Moreover, HMGB1 also promoted nuclear translocation of ATF6. HMGB1-mediated ICAM-1 and P-selectin production was dramatically suppressed by PERK siRNA or IRE1 siRNA. However, non-targeting siRNA had no such effects. HMGB1-induced increases in ICAM-1 and P-selectin expression were also inhibited by a specific eIF2α inhibitor (salubrinal) and a specific JNK inhibitor (SP600125). Importantly, a blocking antibody specifically targeted against RAGE (anti-RAGE antibody) decreased ICAM-1, P-selectin and endoplasmic reticulum stress molecule (PERK, eIF2α, IRE1 and JNK) protein expression levels. Collectively, these novel findings suggest that HMGB1 promotes an inflammatory response by inducing the expression of ICAM-1 and P-selectin via RAGE-mediated stimulation of the endoplasmic reticulum stress pathway.

  13. Inhibin beta E is upregulated by drug-induced endoplasmic reticulum stress as a transcriptional target gene of ATF4

    SciTech Connect

    Brüning, Ansgar Matsingou, Christina; Brem, German Johannes; Rahmeh, Martina; Mylonas, Ioannis

    2012-10-15

    Inhibins and activins are gonadal peptide hormones of the transforming growth factor-β super family with important functions in the reproductive system. By contrast, the recently identified inhibin βE subunit, primarily expressed in liver cells, appears to exert functions unrelated to the reproductive system. Previously shown downregulation of inhibin βE in hepatoma cells and anti-proliferative effects of ectopic inhibin βE overexpression indicated growth-regulatory effects of inhibin βE. We observed a selective re-expression of the inhibin βE subunit in HepG2 hepatoblastoma cells, MCF7 breast cancer cells, and HeLa cervical cancer cells under endoplasmic reticulum stress conditions induced by tunicamycin, thapsigargin, and nelfinavir. Analysis of XPB1 splicing and ATF4 activation revealed that inhibin βE re-expression was associated with induction of the endoplasmic reticulum stress reaction by these drugs. Transfection of an ATF4 expression plasmid specifically induced inhibin βE expression in HeLa cells and indicates inhibin βE as a hitherto unidentified target gene of ATF4, a key transcription factor of the endoplasmic reticulum stress response. Therefore, the inhibin βE subunit defines not only a new player but also a possible new marker for drug-induced endoplasmic reticulum stress. -- Highlights: ► Endoplasmic reticulum stress induces inhibin beta E expression. ► Inhibin beta E is regulated by the transcription factor ATF4. ► Inhibin beta E expression can be used as a marker for drug-induced ER stress.

  14. Inflammation and epithelial cell injury in AIDS enteropathy: involvement of endoplasmic reticulum stress

    PubMed Central

    Maingat, Ferdinand; Halloran, Brendan; Acharjee, Shaona; van Marle, Guido; Church, Deirdre; Gill, M. John; Uwiera, Richard R. E.; Cohen, Eric A.; Meddings, Jon; Madsen, Karen; Power, Christopher

    2011-01-01

    Immunosuppressive lentivirus infections, including human, simian, and feline immunodeficiency viruses (HIV, SIV, and FIV, respectively), cause the acquired immunodeficiency syndrome (AIDS), frequently associated with AIDS enteropathy. Herein, we investigated the extent to which lentivirus infections affected mucosal integrity and intestinal permeability in conjunction with immune responses and activation of endoplasmic reticulum (ER) stress pathways. Duodenal biopsies from individuals with HIV/AIDS exhibited induction of IL-1β, CD3ε, HLA-DRA, spliced XBP-1(Xbp-1s), and CHOP expression compared to uninfected persons (P<0.05). Gut epithelial cells exposed to HIV-1 Vpr demonstrated elevated TNF-α, IL-1β, spliced Xbp-1s, and CHOP expression (P<0.05) together with calcium activation and disruption of epithelial cell monolayer permeability. In addition to reduced blood CD4+ T lymphocyte levels, viral loads in the gut and plasma were high in FIV-infected animals (P<0.05). FIV-infected animals also exhibited a failure to gain weight and increased lactulose/mannitol ratios compared with uninfected animals (P<0.05). Proinflammatory and ER stress gene expression were activated in the ileum of FIV-infected animals (P<0.05), accompanied by intestinal epithelial damage with loss of epithelial cells and leukocyte infiltration of the lamina propria. Lentivirus infections cause gut inflammation and ensuing damage to intestinal epithelial cells, likely through induction of ER stress pathways, resulting in disruption of gut functional integrity.—Maingat, F., Halloran, B., Acharjee, S., van Marle, G., Church, D., Gill, M. J., Uwiera, R. R. E., Cohen, E. A., Meddings, J., Madsen, K., Power, C. Inflammation and epithelial cell injury in AIDS enteropathy: involvement of endoplasmic reticulum stress. PMID:21427211

  15. Intermittent selective clamping improves rat liver regeneration by attenuating oxidative and endoplasmic reticulum stress

    PubMed Central

    Ben Mosbah, I; Duval, H; Mbatchi, S-F; Ribault, C; Grandadam, S; Pajaud, J; Morel, F; Boudjema, K; Compagnon, P; Corlu, A

    2014-01-01

    Intermittent clamping of the portal trial is an effective method to avoid excessive blood loss during hepatic resection, but this procedure may cause ischemic damage to liver. Intermittent selective clamping of the lobes to be resected may represent a good alternative as it exposes the remnant liver only to the reperfusion stress. We compared the effect of intermittent total or selective clamping on hepatocellular injury and liver regeneration. Entire hepatic lobes or only lobes to be resected were subjected twice to 10 min of ischemia followed by 5 min of reperfusion before hepatectomy. We provided evidence that the effect of intermittent clamping can be damaging or beneficial depending to its mode of application. Although transaminase levels were similar in all groups, intermittent total clamping impaired liver regeneration and increased apoptosis. In contrast, intermittent selective clamping improved liver protein secretion and hepatocyte proliferation when compared with standard hepatectomy. This beneficial effect was linked to better adenosine-5′-triphosphate (ATP) recovery, nitric oxide production, antioxidant activities and endoplasmic reticulum adaptation leading to limit mitochondrial damage and apoptosis. Interestingly, transient and early chaperone inductions resulted in a controlled activation of the unfolded protein response concomitantly to endothelial nitric oxide synthase, extracellular signal-regulated kinase-1/2 (ERK1/2) and p38 MAPK activation that favors liver regeneration. Endoplasmic reticulum stress is a central target through which intermittent selective clamping exerts its cytoprotective effect and improves liver regeneration. This procedure could be applied as a powerful protective modality in the field of living donor liver transplantation and liver surgery. PMID:24603335

  16. Ca2+-Dependent Endoplasmic Reticulum Stress Regulates Mechanical Stress-Mediated Cartilage Thinning.

    PubMed

    Zhu, M; Zhou, S; Huang, Z; Wen, J; Li, H

    2016-07-01

    Our previous study identified that endoplasmic reticulum stress (ERS) plays a critical role in chondrocyte apoptosis and mandibular cartilage thinning in response to compressive mechanical force, although the underlying mechanisms remain elusive. Because the endoplasmic reticulum (ER) is a primary site of intracellular Ca(2+) storage, we hypothesized that Ca(2+)-dependent ERS might be involved in mechanical stress-mediated mandibular cartilage thinning. In this study, we used in vitro and in vivo models to determine Ca(2+) concentrations, histological changes, subcellular changes, apoptosis, and the expression of ERS markers in mandibular cartilage and chondrocytes. The results showed that in chondrocytes, cytosolic Ca(2+) ([Ca(2+)]i) was dramatically increased by compressive mechanical force. Interestingly, the inhibition of Ca(2+) channels by ryanodine and 2-aminoethoxydiphenyl borate, inhibitors of ryanodine receptors and inositol trisphosphate receptors, respectively, partially rescued mechanical force-mediated mandibular cartilage thinning. Furthermore, chondrocyte apoptosis was also compromised by inhibiting the increase in [Ca(2+)]i that occurred in response to compressive mechanical force. Mechanistically, the ERS induced by compressive mechanical force was also repressed by [Ca(2+)]i inhibition, as demonstrated by a decrease in the expression of the ER stress markers 78 kDa glucose-regulated protein (GRP78) and 94 kDa glucose-regulated protein (GRP94) at both the mRNA and protein levels. Collectively, these data identified [Ca(2+)]i as a critical mediator of the pathological changes that occur in mandibular cartilage under compressive mechanical force and shed light on the treatment of mechanical stress-mediated cartilage degradation. PMID:27053115

  17. Severe Burn–Induced Endoplasmic Reticulum Stress and Hepatic Damage in Mice

    PubMed Central

    Song, Juquan; Finnerty, Celeste C; Herndon, David N; Boehning, Darren; Jeschke, Marc G

    2009-01-01

    Severe burn injury results in liver dysfunction and damage, with subsequent metabolic derangements contributing to patient morbidity and mortality. On a cellular level, significant postburn hepatocyte apoptosis occurs and likely contributes to liver dysfunction. However, the underlying mechanisms of hepatocyte apoptosis are poorly understood. The endoplasmic reticulum (ER) stress response/unfolded protein response (UPR) pathway can lead to hepatocyte apoptosis under conditions of liver dysfunction. Thus, we hypothesized that ER stress/UPR may mediate hepatic dysfunction in response to burn injury. We investigated the temporal activation of hepatic ER stress in mice after a severe burn injury. Mice received a scald burn over 35% of their body surface and were killed at 1, 7, 14, and 21 d postburn. We found that severe burn induces hepatocyte apoptosis as indicated by increased caspase-3 activity (P < 0.05). Serum albumin levels decreased postburn and remained lowered for up to 21 d, indicating that constitutive secretory protein synthesis was reduced. Significantly, upregulation of the ER stress markers glucose-related protein 78 (GRP78)/BIP, protein disulfide isomerase (PDI), p–protein kinase R–like endoplasmic reticulum kinase (p-PERK), and inositol-requiring enzyme 1α (IRE-1α) were found beginning 1 d postburn (P < 0.05) and persisted up to 21 d postburn (P < 0.05). Hepatic ER stress induced by burn injury was associated with compensatory upregulation of the calcium chaperone/storage proteins calnexin and calreticulin (P < 0.05), suggesting that ER calcium store depletion was the primary trigger for induction of the ER stress response. In summary, thermal injury in mice causes long-term adaptive and deleterious hepatic function alterations characterized by significant upregulation of the ER stress response. PMID:19603103

  18. Induction of apurinic endonuclease 1 overexpression by endoplasmic reticulum stress in hepatoma cells.

    PubMed

    Cheng, Tsung-Lin; Chen, Pin-Shern; Li, Ren-Hao; Yuan, Shyng-Shiou; Su, Ih-Jen; Hung, Jui-Hsiang

    2014-01-01

    Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide with poor prognosis due to resistance to conventional chemotherapy and limited efficacy of radiotherapy. Previous studies have noted the induction of endoplasmic reticulum stress or apurinic endonuclease 1 (APE1) expression in many tumors. Therefore, the aim of this study was to investigate the relationship between endoplasmic reticulum (ER stress) and APE1 in hepatocellular carcinoma. Here we investigate the expression of APE1 during ER stress in HepG2 and Huh-7 cell lines. Tunicamycin or brefeldin A, two ER stress inducers, increased APE1 and GRP78, an ER stress marker, expression in HepG2 and Huh-7 cells. Induction of APE1 expression was observed through transcription level in response to ER stress. APE1 nuclear localization during ER stress was determined using immunofluorescence assays in HepG2 cells. Furthermore, expression of Hepatitis B virus pre-S2∆ large mutant surface protein (pre-S2∆), an ER stress-induced protein, also increased GRP78 and APE1 expression in the normal hepatocyte NeHepLxHT cell line. Similarly, tumor samples showed higher expression of APE1 in ER stress-correlated liver cancer tissue in vivo. Our results demonstrate that ER stress and HBV pre-S2∆ increased APE1 expression, which may play an important role in resistance to chemotherapeutic agents or tumor development. Therefore, these data provide an important chemotherapeutic strategy in ER stress and HBV pre-S2∆-associated tumors. PMID:25026174

  19. Severe burn-induced endoplasmic reticulum stress and hepatic damage in mice.

    PubMed

    Song, Juquan; Finnerty, Celeste C; Herndon, David N; Boehning, Darren; Jeschke, Marc G

    2009-01-01

    Severe burn injury results in liver dysfunction and damage, with subsequent metabolic derangements contributing to patient morbidity and mortality. On a cellular level, significant postburn hepatocyte apoptosis occurs and likely contributes to liver dysfunction. However, the underlying mechanisms of hepatocyte apoptosis are poorly understood. The endoplasmic reticulum (ER) stress response/unfolded protein response (UPR) pathway can lead to hepatocyte apoptosis under conditions of liver dysfunction. Thus, we hypothesized that ER stress/UPR may mediate hepatic dysfunction in response to burn injury. We investigated the temporal activation of hepatic ER stress in mice after a severe burn injury. Mice received a scald burn over 35% of their body surface and were killed at 1, 7, 14, and 21 d postburn. We found that severe burn induces hepatocyte apoptosis as indicated by increased caspase-3 activity (P < 0.05). Serum albumin levels decreased postburn and remained lowered for up to 21 d, indicating that constitutive secretory protein synthesis was reduced. Significantly, upregulation of the ER stress markers glucose-related protein 78 (GRP78)/BIP, protein disulfide isomerase (PDI), p-protein kinase R-like endoplasmic reticulum kinase (p-PERK), and inositol-requiring enzyme 1alpha (IRE-1alpha) were found beginning 1 d postburn (P < 0.05) and persisted up to 21 d postburn (P < 0.05). Hepatic ER stress induced by burn injury was associated with compensatory upregulation of the calcium chaperone/storage proteins calnexin and calreticulin (P < 0.05), suggesting that ER calcium store depletion was the primary trigger for induction of the ER stress response. In summary, thermal injury in mice causes long-term adaptive and deleterious hepatic function alterations characterized by significant upregulation of the ER stress response. PMID:19603103

  20. Endoplasmic reticulum membrane potassium channel dysfunction in high fat diet induced stress in rat hepatocytes

    PubMed Central

    Khodaee, Naser; Ghasemi, Maedeh; Saghiri, Reza; Eliassi, Afsaneh

    2014-01-01

    In a previous study we reported the presence of a large conductance K+ channel in the membrane of endoplasmic reticulum (ER) from rat hepatocytes. The channel open probability (Po) appeared voltage dependent and reached to a minimum 0.2 at +50 mV. Channel activity in this case was found to be totally inhibited at ATP concentration 2.5 mM, glibenclamide 100 µM and tolbutamide 400 µM. Existing evidence indicates an impairment of endoplasmic reticulum functions in ER stress condition. Because ER potassium channels have been involved in several ER functions including cytoprotection, apoptosis and calcium homeostasis, a study was carried out to consider whether the ER potassium channel function is altered in a high fat diet model of ER stress. Male Wistar rats were made ER stress for 2 weeks with a high fat diet. Ion channel incorporation of ER stress model into the bilayer lipid membrane allowed the characterization of K+ channel. Our results indicate that the channel Po was significantly increased at voltages above +30 mV. Interestingly, addition of ATP 7.5 mM, glibenclamide 400 µM and tolbutamide 2400 µM totally inhibited the channel activities, 3-fold, 4-fold and 6-fold higher than that in the control groups, respectively. Our results thus demonstrate a modification in the ER K+ channel gating properties and decreased sensitivity to drugs in membrane preparations coming from ER high fat model of ER stress, an effect potentially linked to a change in ER K+ channel subunits in ER stress condition. Our results may provide new insights into the cellular mechanisms underlying ER dysfunctions in ER stress. PMID:26417322

  1. Tributyltin-induced endoplasmic reticulum stress and its Ca{sup 2+}-mediated mechanism

    SciTech Connect

    Isomura, Midori; Kotake, Yaichiro Masuda, Kyoichi; Miyara, Masatsugu; Okuda, Katsuhiro; Samizo, Shigeyoshi; Sanoh, Seigo; Hosoi, Toru; Ozawa, Koichiro; Ohta, Shigeru

    2013-10-01

    Organotin compounds, especially tributyltin chloride (TBT), have been widely used in antifouling paints for marine vessels, but exhibit various toxicities in mammals. The endoplasmic reticulum (ER) is a multifunctional organelle that controls post-translational modification and intracellular Ca{sup 2+} signaling. When the capacity of the quality control system of ER is exceeded under stress including ER Ca{sup 2+} homeostasis disruption, ER functions are impaired and unfolded proteins are accumulated in ER lumen, which is called ER stress. Here, we examined whether TBT causes ER stress in human neuroblastoma SH-SY5Y cells. We found that 700 nM TBT induced ER stress markers such as CHOP, GRP78, spliced XBP1 mRNA and phosphorylated eIF2α. TBT also decreased the cell viability both concentration- and time-dependently. Dibutyltin and monobutyltin did not induce ER stress markers. We hypothesized that TBT induces ER stress via Ca{sup 2+} depletion, and to test this idea, we examined the effect of TBT on intracellular Ca{sup 2+} concentration using fura-2 AM, a Ca{sup 2+} fluorescent probe. TBT increased intracellular Ca{sup 2+} concentration in a TBT-concentration-dependent manner, and Ca{sup 2+} increase in 700 nM TBT was mainly blocked by 50 μM dantrolene, a ryanodine receptor antagonist (about 70% inhibition). Dantrolene also partially but significantly inhibited TBT-induced GRP78 expression and cell death. These results suggest that TBT increases intracellular Ca{sup 2+} concentration by releasing Ca{sup 2+} from ER, thereby causing ER stress. - Highlights: • We established that tributyltin induces endoplasmic reticulum (ER) stress. • Tributyltin induces ER stress markers in a concentration-dependent manner. • Tributyltin increases Ca{sup 2+} release from ER, thereby causing ER stress. • Dibutyltin and monobutyltin did not increase GRP78 or intracellular Ca{sup 2+}.

  2. Intermittent selective clamping improves rat liver regeneration by attenuating oxidative and endoplasmic reticulum stress.

    PubMed

    Ben Mosbah, I; Duval, H; Mbatchi, S-F; Ribault, C; Grandadam, S; Pajaud, J; Morel, F; Boudjema, K; Compagnon, P; Corlu, A

    2014-01-01

    Intermittent clamping of the portal trial is an effective method to avoid excessive blood loss during hepatic resection, but this procedure may cause ischemic damage to liver. Intermittent selective clamping of the lobes to be resected may represent a good alternative as it exposes the remnant liver only to the reperfusion stress. We compared the effect of intermittent total or selective clamping on hepatocellular injury and liver regeneration. Entire hepatic lobes or only lobes to be resected were subjected twice to 10 min of ischemia followed by 5 min of reperfusion before hepatectomy. We provided evidence that the effect of intermittent clamping can be damaging or beneficial depending to its mode of application. Although transaminase levels were similar in all groups, intermittent total clamping impaired liver regeneration and increased apoptosis. In contrast, intermittent selective clamping improved liver protein secretion and hepatocyte proliferation when compared with standard hepatectomy. This beneficial effect was linked to better adenosine-5'-triphosphate (ATP) recovery, nitric oxide production, antioxidant activities and endoplasmic reticulum adaptation leading to limit mitochondrial damage and apoptosis. Interestingly, transient and early chaperone inductions resulted in a controlled activation of the unfolded protein response concomitantly to endothelial nitric oxide synthase, extracellular signal-regulated kinase-1/2 (ERK1/2) and p38 MAPK activation that favors liver regeneration. Endoplasmic reticulum stress is a central target through which intermittent selective clamping exerts its cytoprotective effect and improves liver regeneration. This procedure could be applied as a powerful protective modality in the field of living donor liver transplantation and liver surgery. PMID:24603335

  3. Outpatient competence restoration: A model and outcomes

    PubMed Central

    Johnson, Nicole R; Candilis, Philip J

    2015-01-01

    AIM: To describe a model outpatient competence restoration program (OCRP) and provide data on time to restoration of adjudicative competence. METHODS: The authors tracked the process by which individuals are referred for outpatient competence restoration (OCR) by courts in the United States capital, describing the unique requirements of American law, and the avenues available for compelling adherence. Competence to stand trial is a critical gate-keeping function of the judicial and forensic communities and assures that defendants understand courtroom procedures. OCR is therefore an effort to assure fairness and protection of important legal rights. Multi-media efforts are described that educate patients and restore competence to stand trial. These include resources such as group training, use of licensed clinicians, visual aids, structured instruments, and cinema. Aggregate data from the OCRP’s previous 4 years of OCR efforts were reviewed for demographic characteristics, restoration rate, and time to restoration. Poisson regression modeling identified the differences in restoration between sequential 45-d periods after entrance into the program. RESULTS: In the past 4 years, the DC OCRP has been successful in restoring 55 of 170 participants (32%), with an average referral rate of 35 persons per year. 76% are restored after the initial 45 d in the program. Demographics of the group indicate a predominance of African-American men with a mean age of 42. Thought disorders predominate and individuals in care face misdemeanor charges 78% of the time. Poisson regression modeling of the number attaining competence during four successive 45-d periods showed a substantial difference among the time periods for the rate of attaining competence (P = 0.0011). The three time periods after 45 d each showed a significant decrease in the restoration rate when compared to the initial 0 to 45 d period - their relative rates were only 22% to 33% as high as the rate for 0-45 d (all

  4. Multichannel blind iterative image restoration.

    PubMed

    Sroubek, Filip; Flusser, Jan

    2003-01-01

    Blind image deconvolution is required in many applications of microscopy imaging, remote sensing, and astronomical imaging. Unfortunately in a single-channel framework, serious conceptual and numerical problems are often encountered. Very recently, an eigenvector-based method (EVAM) was proposed for a multichannel framework which determines perfectly convolution masks in a noise-free environment if channel disparity, called co-primeness, is satisfied. We propose a novel iterative algorithm based on recent anisotropic denoising techniques of total variation and a Mumford-Shah functional with the EVAM restoration condition included. A linearization scheme of half-quadratic regularization together with a cell-centered finite difference discretization scheme is used in the algorithm and provides a unified approach to the solution of total variation or Mumford-Shah. The algorithm performs well even on very noisy images and does not require an exact estimation of mask orders. We demonstrate capabilities of the algorithm on synthetic data. Finally, the algorithm is applied to defocused images taken with a digital camera and to data from astronomical ground-based observations of the Sun. PMID:18237981

  5. Error image aware content restoration

    NASA Astrophysics Data System (ADS)

    Choi, Sungwoo; Lee, Moonsik; Jung, Byunghee

    2015-12-01

    As the resolution of TV significantly increased, content consumers have become increasingly sensitive to the subtlest defect in TV contents. This rising standard in quality demanded by consumers has posed a new challenge in today's context where the tape-based process has transitioned to the file-based process: the transition necessitated digitalizing old archives, a process which inevitably produces errors such as disordered pixel blocks, scattered white noise, or totally missing pixels. Unsurprisingly, detecting and fixing such errors require a substantial amount of time and human labor to meet the standard demanded by today's consumers. In this paper, we introduce a novel, automated error restoration algorithm which can be applied to different types of classic errors by utilizing adjacent images while preserving the undamaged parts of an error image as much as possible. We tested our method to error images detected from our quality check system in KBS(Korean Broadcasting System) video archive. We are also implementing the algorithm as a plugin of well-known NLE(Non-linear editing system), which is a familiar tool for quality control agent.

  6. Ecosystem restoration on the California Channel Islands

    USGS Publications Warehouse

    Halvorson, W.L.

    2004-01-01

    Restoration of natural habitat has become increasingly important over the last three decades in the United States, first as mitigation for development (especially in wetlands), and more recently in natural areas. This latter restoration has come about as land managing agencies have seen the need to reverse the impact of past land uses and agencies like the National Park Service have taken on the responsibility for less-than-pristine lands. Restorations have typically been carried out with little prior study and with no follow-up monitoring. On the Channel Islands, the need for restoration is great, but the desire is to base this restoration on sound ecological understanding. By conducting surveys, implementing long-term research and monitoring, and by conducting population and community dynamics research, the necessary data is obtained to arrive at such an understanding. Once management actions have been taken to effect restoration, monitoring is used to determine the success of those actions. The intention is to gain enough of an understanding of the islands' ecosystems that we can manage to restore, not just populations of native plants and animals, but also the processes of a naturally functioning ecosystem. ?? International Scientific Publications, New Delhi.

  7. Cold testing through full-coverage restorations.

    PubMed

    Miller, Stuart O; Johnson, James D; Allemang, John D; Strother, James M

    2004-10-01

    Endodontic diagnosis often requires thermal testing through porcelain fused-to-metal (PFM) and all-ceramic restorations. The purpose of this study was to measure and compare the temperature change during thermal testing by three commonly used methods occurring at the pulp-dentin junction (PDJ) of nonrestored teeth and teeth restored with full coverage restorations made of PFM, all-porcelain, or gold. The methods used to produce a thermal change were (a) an ice stick, (b) 1,1,1,2-tetrafluoroethane (TFE), and (c) carbon dioxide snow. A thermocouple measured temperature changes occurring at the PDJ in 10 extracted premolars when thermal tested by each method over a period of 30 seconds. Temperature reduction was also measured for the same samples restored with full gold crowns, PFM, and Empress crowns. Results showed intact premolars and those restored with PFM or all-ceramic restorations to respond similarly to thermal testing. In these teeth, TFE produced a significantly greater temperature decrease than carbon dioxide snow between 10 and 25 seconds (p < 0.05). In conclusion, application of TFE on a saturated #2 cotton pellet was the most effective method for producing a temperature reduction at the PDJ of intact teeth and those restored with gold, PFM, and all-porcelain when testing for less than 15 seconds. PMID:15448461

  8. Acceleration of tomographic hyperspectral restoration algorithms

    NASA Astrophysics Data System (ADS)

    Schau, Harvey C.

    2006-05-01

    Hyperspectral imaging spectrometers have proven to be both versatile and powerful instruments with applications in diverse areas such as medical diagnosis, land usage, military target detection, and art forgery. In many applications scanning systems cannot be effectively employed and true "flash" operation is necessary. Multiplex systems have been developed which can gather information in multispectral bands simultaneously, and then produce a datacube after mathematical restoration. Such system enjoy compact size, robust construction, inexpensive costs and zero moving parts at the cost of highly complex mathematical restoration operations. Currently the limiting feature of such tomographic hyperspectral imagers such as the FMDIS [1,2] is the speed of restoration. Due to the large sizes of the restoration kernel, restorations are typically recursive and require many iterations to achieve satisfactory results. Little can be done to make the systems smaller since the size is determined by the number of colors and pixel size of the focal plane arrays (FPA) employed. Thus, techniques must be investigated to speed up the restoration either by reducing the number of iterations or reducing the number of operations within an iteration. It is assumed that little can be done to reduce the number of operations in an iteration since the operations are done in sparse format, we therefore investigate reducing the number of iterations through mathematical accelerations. We assume this acceleration will work to advantage regardless of the mechanism (PC-based or dedicated processor such as a gate array) by which the restoration is implemented.

  9. Restoring Forest Landscapes: Important Lessons Learnt

    NASA Astrophysics Data System (ADS)

    Mansourian, Stephanie; Vallauri, Daniel

    2014-02-01

    Forest restoration at large scales, or landscapes, is an approach that is increasingly relevant to the practice of environmental conservation. However, implementation remains a challenge; poor monitoring and lesson learning lead to similar mistakes being repeated. The World Wildlife Fund (WWF), the global conservation organization, recently took stock of its 10 years of implementation of forest landscape restoration. A significant body of knowledge has emerged from the work of the WWF and its partners in the different countries, which can be of use to the wider conservation community, but for this to happen, lessons need to be systematically collected and disseminated in a coherent manner to the broader conservation and development communities and, importantly, to policy makers. We use this review of the WWF's experiences and compare and contrast it with other relevant and recent literature to highlight 11 important lessons for future large-scale forest restoration interventions. These lessons are presented using a stepwise approach to the restoration of forested landscapes. We identify the need for long-term commitment and funding, and a concerted and collaborative effort for successful forest landscape restoration. Our review highlights that monitoring impact within landscape-scale forest restoration remains inadequate. We conclude that forest restoration within landscapes is a challenging yet important proposition that has a real but undervalued place in environmental conservation in the twenty-first century.

  10. A Guide to Bottomland Hardwood Restoration

    USGS Publications Warehouse

    Allen, J.A.; Keeland, B.D.; Stanturf, J.A.; Clewell, A.F.; Kennedy, H.E., Jr.

    2001-01-01

    During the last century, a large amount of the original bottomland hardwood forest area in the United States has been lost, with losses greatest in the Lower Mississippi Alluvial Valley and East Texas. With a holistic approach in mind, this manual describes methods to restore bottomland hardwoods in the lower Midwest, including the Lower Mississippi Alluvial Valley and the southeastern United States. Bottomland hardwoods in this guide include not only the hardwood species that predominate in most forested floodplains of the area but also the softwood species such as baldcypress that often co-occur. General restoration planning considerations are discussed as well as more specific elements of bottomland hardwood restoration such as species selection, site preparation, direct seeding, planting of seedlings, and alternative options for revegetation. We recognize that most projects will probably fall more within the realm of reforestation or afforestation rather than a restoration, as some site preparation and the planting of seeds or trees may be the only actions taken. Practical information needed to restore an area is provided in the guide, and it is left up to the restorationist to decide how complete the restoration will be. Postplanting and monitoring considerations are also addressed. Restoration and management of existing forests are included because of the extensive areas of degraded natural forests in need of rehabilitation.

  11. Image restoration in cryo-electron microscopy.

    PubMed

    Penczek, Pawel A

    2010-01-01

    Image restoration techniques are used to obtain, given experimental measurements, the best possible approximation of the original object within the limits imposed by instrumental conditions and noise level in the data. In molecular electron microscopy (EM), we are mainly interested in linear methods that preserve the respective relationships between mass densities within the restored map. Here, we describe the methodology of image restoration in structural EM, and more specifically, we will focus on the problem of the optimum recovery of Fourier amplitudes given electron microscope data collected under various defocus settings. We discuss in detail two classes of commonly used linear methods, the first of which consists of methods based on pseudoinverse restoration, and which is further subdivided into mean-square error, chi-square error, and constrained based restorations, where the methods in the latter two subclasses explicitly incorporates non-white distribution of noise in the data. The second class of methods is based on the Wiener filtration approach. We show that the Wiener filter-based methodology can be used to obtain a solution to the problem of amplitude correction (or "sharpening") of the EM map that makes it visually comparable to maps determined by X-ray crystallography, and thus amenable to comparative interpretation. Finally, we present a semiheuristic Wiener filter-based solution to the problem of image restoration given sets of heterogeneous solutions. We conclude the chapter with a discussion of image restoration protocols implemented in commonly used single particle software packages. PMID:20888957

  12. Hyporheic Restoration in Streams and Rivers

    NASA Astrophysics Data System (ADS)

    Hester, E. T.; Gooseff, M. N.

    2008-12-01

    The hyporheic zone is the area of mixing of surface and groundwater beneath and adjacent to streams and rivers. The unique physical, chemical, and biological properties of the hyporheic zone, often different from both surface water and groundwater, create unique habitat for organisms. Exchange of water between surface water and the hyporheic zone additionally creates hyporheic functions such as nutrient processing, toxic mineralization, and thermal buffering, which benefit surface water ecosystems and humans downstream. Human activities have reduced hyporheic exchange through impacts like channel simplification and introduction of fines which clog the bed. Efforts to improve ecological conditions in impaired streams and rivers have increased dramatically in recent decades. Nevertheless, the value of hyporheic restoration as a component of stream and river restoration is only beginning to be acknowledged. Further, guidance for accomplishing hyporheic restoration is scarce. Nevertheless, due to considerable recent interest in the hyporheic zone and its functions, data that could inform hyporheic restoration efforts are already fairly common. Here we lay out possible goals for hyporheic restoration and summarize design data that already exist in the scientific literature. We also lay out the hyporheic restoration process, and set that within the largest context of stream and river restoration and watershed planning. Finally, we present our future vision for future research, creating design guidance, and government leadership.

  13. 75 FR 10204 - Collaborative Forest Landscape Restoration Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-05

    ... Collaborative Forest landscape Restoration project proposals with special consideration given to: a. The...; ] DEPARTMENT OF AGRICULTURE Office of the Secretary Collaborative Forest Landscape Restoration Advisory... Forest Landscape Restoration Advisory Committee and call for nominations. SUMMARY: The Secretary...

  14. 75 FR 57820 - National Credit Union Administration Restoration Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... ADMINISTRATION National Credit Union Administration Restoration Plan AGENCY: National Credit Union Administration (NCUA). ACTION: Approval of National Credit Union Administration restoration plan. On September 16, 2010, the National Credit Union Administration (NCUA) implemented a Restoration Plan for the National...

  15. TEXAS DICKINSON BAY ISLANDS RESTORATION PROJECT MX964016

    EPA Science Inventory

    The Dickinson Bay Islands Restoration Project will restore approximately ten acres of intertidal marsh, three acres of oyster reef, and 18 acres of bird rookery habitat. The total acreage of restored habitat will be close to 30 acres.

  16. Enhanced aesthetics with all ceramics restoration

    PubMed Central

    Nayar, Sanjna; Aruna, U.; Bhat, Wasim Manzoor

    2015-01-01

    The demand for the dentist to achieve excellence in esthetics and function has driven modern advances in materials and restoration fabrication. The development of various casting alloys and precise casting systems has contributed to the successful use of metal-based restorations. However, patient requests for more aesthetic and biologically “safe” materials that have led to an increased demand for metal-free restorations. The following case presentation illustrates a successful aesthetic and functional application of this exciting computer-aided design/computer-aided manufacturing-digital zirconia-based system for a natural smile. PMID:26015733

  17. Atomic Oxygen Used to Restore Artworks

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Miller, Sharon K.

    2004-01-01

    Techniques developed at the NASA Glenn Research Center to produce atomic oxygen in order to simulate the low-Earth-orbit environment for spacecraft materials testing can also be applied in the field of art restoration. Defaced or fire-damaged artwork can be treated with atomic oxygen to remove the damage and enable restoration that could not be accomplished with conventional methods. The process has been patented (U.S. Patents 5,560,781 and 5,693,241) and has been used to restore several works of art.

  18. Enhanced aesthetics with all ceramics restoration.

    PubMed

    Nayar, Sanjna; Aruna, U; Bhat, Wasim Manzoor

    2015-04-01

    The demand for the dentist to achieve excellence in esthetics and function has driven modern advances in materials and restoration fabrication. The development of various casting alloys and precise casting systems has contributed to the successful use of metal-based restorations. However, patient requests for more aesthetic and biologically "safe" materials that have led to an increased demand for metal-free restorations. The following case presentation illustrates a successful aesthetic and functional application of this exciting computer-aided design/computer-aided manufacturing-digital zirconia-based system for a natural smile. PMID:26015733

  19. Water Awareness Through Environmental Restoration

    NASA Astrophysics Data System (ADS)

    Davis-Caldwell, K.

    2012-04-01

    and negative effects of human presence on the local and global water supply. Student research scientifically tested ways to slow down the effects of run-off contaminants. Students also revisit water analysis and plant trees as buffers as part of their stream preservation efforts in a culminating activity. Oyster Reef Restoration Project: As a result of changes in climate, pollution and human consumption, the oyster population in the Chesapeake Bay had previously been on a rapid decline. The Oyster Reef Restoration Project allows students to understand the creatures of the bay and the cause of this decline. They explore the domino effect this has had on the quality of the water in the bay and future implications on the environment when the oyster population fluctuates significantly. Students construct concrete reefs and study the components of its contents and the reef's impact on the bay. Students are responsible for mixing, pouring and preparing the reef for its eventual drop in the bay. Wetlands Recovery: Following the elimination of a substantial amount of the natural wetlands behind the elementary and middle schools, a wetlands area was erected on the school grounds. This pond has been used to learn about habitats and the role humans, plants and organisms play in the preservation of the earth soil and water supply. This wetland is used by both the elementary and middle schools as a place for hands-on inquiry based learning. Students maintain the upkeep of the pond and teach other students at lower grades.

  20. Procedures for restoring vestibular disorders

    PubMed Central

    Walther, Leif Erik

    2005-01-01

    This paper will discuss therapeutic possibilities for disorders of the vestibular organs and the neurons involved, which confront ENT clinicians in everyday practice. Treatment of such disorders can be tackled either symptomatically or causally. The possible strategies for restoring the body's vestibular sense, visual function and co-ordination include medication, as well as physical and surgical procedures. Prophylactic or preventive measures are possible in some disorders which involve vertigo (bilateral vestibulopathy, kinetosis, height vertigo, vestibular disorders when diving (Tables 1 (Tab. 1) and 2 (Tab. 2)). Glucocorticoid and training therapy encourage the compensation of unilateral vestibular loss. In the case of a bilateral vestibular loss, it is important to treat the underlying disease (e.g. Cogan's disease). Although balance training does improve the patient's sense of balance, it will not restore it completely. In the case of Meniere's disease, there are a number of medications available to either treat bouts or to act as a prophylactic (e.g. dimenhydrinate or betahistine). In addition, there are non-ablative (sacculotomy) as well as ablative surgical procedures (e.g. labyrinthectomy, neurectomy of the vestibular nerve). In everyday practice, it has become common to proceed with low risk therapies initially. The physical treatment of mild postural vertigo can be carried out quickly and easily in outpatients (repositioning or liberatory maneuvers). In very rare cases it may be necessary to carry out a semicircular canal occlusion. Isolated disturbances of the otolith function or an involvement of the otolith can be found in roughly 50% of labyrinth disturbances. A specific surgical procedure to selectively block the otolith organs is currently being studied. When an external perilymph fistula involving loss of perilymph is suspected, an exploratory tympanotomy involving also the round and oval window niches must be carried out. A traumatic rupture of