Drosophila Circadian Rhythms: Stability Robustness Analysis and Model Reduction
Cambridge, University of
Drosophila Circadian Rhythms: Stability Robustness Analysis and Model Reduction Jorge M. Gonc investigates two models of circadian rhythms in Drosophila: one by Gonze et al. and a more generic model by Vilar et al. that describes the biological clock in Drosophila as well as other organisms. For both
Surrogate models for efficient stability analysis of brake systems
NASA Astrophysics Data System (ADS)
Nechak, Lyes; Gillot, Frédéric; Besset, Sébastien; Sinou, Jean-Jacques
2015-07-01
This study assesses capacities of the global sensitivity analysis combined together with the kriging formalism to be useful in the robust stability analysis of brake systems, which is too costly when performed with the classical complex eigenvalues analysis (CEA) based on finite element models (FEMs). By considering a simplified brake system, the global sensitivity analysis is first shown very helpful for understanding the effects of design parameters on the brake system's stability. This is allowed by the so-called Sobol indices which discriminate design parameters with respect to their influence on the stability. Consequently, only uncertainty of influent parameters is taken into account in the following step, namely, the surrogate modelling based on kriging. The latter is then demonstrated to be an interesting alternative to FEMs since it allowed, with a lower cost, an accurate estimation of the system's proportions of instability corresponding to the influent parameters.
Settlement Prediction, Gas Modeling and Slope Stability Analysis
Politècnica de Catalunya, Universitat
Settlement Prediction, Gas Modeling and Slope Stability Analysis in Coll Cardús Landfill Li Yu UNIVERSIDAD POLITÉCNICA DE CATALUÑA April, 2007 GEOMODELS #12;Introduction to Coll Cardús landfill Prediction of settlement in Coll Cardús landfill 1) Settlement prediction by empirical method 2) Settlement prediction
A Coupled Aeroelastic Model for Launch Vehicle Stability Analysis
NASA Technical Reports Server (NTRS)
Orr, Jeb S.
2010-01-01
A technique for incorporating distributed aerodynamic normal forces and aeroelastic coupling effects into a stability analysis model of a launch vehicle is presented. The formulation augments the linear state-space launch vehicle plant dynamics that are compactly derived as a system of coupled linear differential equations representing small angular and translational perturbations of the rigid body, nozzle, and sloshing propellant coupled with normal vibration of a set of orthogonal modes. The interaction of generalized forces due to aeroelastic coupling and thrust can be expressed as a set of augmenting non-diagonal stiffness and damping matrices in modal coordinates with no penalty on system order. While the eigenvalues of the structural response in the presence of thrust and aeroelastic forcing can be predicted at a given flight condition independent of the remaining degrees of freedom, the coupled model provides confidence in closed-loop stability in the presence of rigid-body, slosh, and actuator dynamics. Simulation results are presented that characterize the coupled dynamic response of the Ares I launch vehicle and the impact of aeroelasticity on control system stability margins.
Stability and Perturbation Analysis on a Model of Cell Chemotaxis
NASA Astrophysics Data System (ADS)
McCann, Colin; Skupsky, Ron; Losert, Wolfgang; Nossal, Ralph
2006-03-01
Many eukaryotic cells respond with directional movement to spatial and/or temporal gradients of small molecules that bind to cell surface receptors. The computational model of a chemotaxing cell developed in [1], which models cells such as neutrophils or Dictyostelium discoideum, is investigated with regard to stability and response to perturbations. A formal stability analysis finds that, when placed in an initial linear gradient, the model is most sensitive to perturbations at a 60-90 degree offset from the direction of the initial gradient. The model also responds most quickly and strongly to external point sources placed in that direction. These responses hold for all four of the model variants developed in [1]. This suggests that the observed `zigzag' behavior of real cell movement in a gradient may be influenced by the nature of the biochemical reactions that control a cell's chemotactic response. This research was funded in by the National Institutes of Health (NIH) and the National Institute of Standards and Technology (NIST). [1] Skupsky, R., W. Losert, and R.J. Nossal. 2005. ``Distinguishing modes of eukaryotic gradient sensing''. Biophys. J. 89:2806--2823
Island Dynamics Models for Molecular Beam Epitaxy: Stability Analysis and Model Reduction
Ferguson, Thomas S.
Island Dynamics Models for Molecular Beam Epitaxy: Stability Analysis and Model Reduction #3; Russel Ca isch y Bo Li z February 28, 2000 Abstract We consider two island dynamics models recently that can be used for analysis and simulation. Keywords: molecular beam epitaxy, island dynamics, di#11
Stability analysis of the Euler discretization for SIR epidemic model
Suryanto, Agus
2014-06-19
In this paper we consider a discrete SIR epidemic model obtained by the Euler method. For that discrete model, existence of disease free equilibrium and endemic equilibrium is established. Sufficient conditions on the local asymptotical stability of both disease free equilibrium and endemic equilibrium are also derived. It is found that the local asymptotical stability of the existing equilibrium is achieved only for a small time step size h. If h is further increased and passes the critical value, then both equilibriums will lose their stability. Our numerical simulations show that a complex dynamical behavior such as bifurcation or chaos phenomenon will appear for relatively large h. Both analytical and numerical results show that the discrete SIR model has a richer dynamical behavior than its continuous counterpart.
Stability analysis of a holographic dark energy model
NASA Astrophysics Data System (ADS)
Banerjee, Narayan; Roy, Nandan
2015-08-01
The stability of interacting holographic dark energy model is discussed. It is found that for some class of the rate of interaction between dark matter and dark energy, the system has a natural solution where the universe had been decelerating in the beginning but finally settles down to an accelerated phase of expansion.
Slope Stability Analysis Using Radial Slices: A Mathematical Model
NASA Astrophysics Data System (ADS)
Kumar, Gyan Prakash; Das, Adarsha; Rai, Rajesh; Jaiswal, Ashok
2015-10-01
In this paper, a mathematical model has been formulated for calculating the factor of safety of a slope. Corresponding computer code has also been developed. Limit equilibrium method (moment equilibrium) has been adopted for calculating the net resulting driving and resisting forces. The probable slip circle region has been divided into radial slices for the simulation process. In this approach, the inter-slice shear forces are zero. Thus, the calculation process becomes simpler as compared to that with vertical slices. The slope stability analyses were done. Validation of the present program was done with existing limit equilibrium based methods. Various models were prepared and analysed with varying geometry and soil strength parameters. These models were also analysed with other limit equilibrium methods like Bishop, Janbu and Spencer method. The results were found to be in agreement with the results of other limit equilibrium methods for the same dump soil properties and slope parameters.
Algebraic Geometrization of the Kuramoto Model: Equilibria and Stability Analysis
Dhagash Mehta; Noah Daleo; Florian Dörfler; Jonathan D. Hauenstein
2015-01-03
Finding equilibria of the finite size Kuramoto model amounts to solving a nonlinear system of equations, which is an important yet challenging problem. We translate this into an algebraic geometry problem and use numerical methods to find all of the equilibria for various choices of coupling constants K, natural frequencies, and on different graphs. We note that for even modest sizes (N ~ 10-20), the number of equilibria is already more than 100,000. We analyze the stability of each computed equilibrium as well as the configuration of angles. Our exploration of the equilibrium landscape leads to unexpected and possibly surprising results including non-monotonicity in the number of equilibria, a predictable pattern in the indices of equilibria, counter-examples to popular conjectures, multi-stable equilibrium landscapes, scenarios with only unstable equilibria, and multiple distinct extrema in the stable equilibrium distribution as a function of the number of cycles in the graph.
Floquet stability analysis of the longitudinal dynamics of two hovering model insects
Wu, Jiang Hao; Sun, Mao
2012-01-01
Because of the periodically varying aerodynamic and inertial forces of the flapping wings, a hovering or constant-speed flying insect is a cyclically forcing system, and, generally, the flight is not in a fixed-point equilibrium, but in a cyclic-motion equilibrium. Current stability theory of insect flight is based on the averaged model and treats the flight as a fixed-point equilibrium. In the present study, we treated the flight as a cyclic-motion equilibrium and used the Floquet theory to analyse the longitudinal stability of insect flight. Two hovering model insects were considered—a dronefly and a hawkmoth. The former had relatively high wingbeat frequency and small wing-mass to body-mass ratio, and hence very small amplitude of body oscillation; while the latter had relatively low wingbeat frequency and large wing-mass to body-mass ratio, and hence relatively large amplitude of body oscillation. For comparison, analysis using the averaged-model theory (fixed-point stability analysis) was also made. Results of both the cyclic-motion stability analysis and the fixed-point stability analysis were tested by numerical simulation using complete equations of motion coupled with the Navier–Stokes equations. The Floquet theory (cyclic-motion stability analysis) agreed well with the simulation for both the model dronefly and the model hawkmoth; but the averaged-model theory gave good results only for the dronefly. Thus, for an insect with relatively large body oscillation at wingbeat frequency, cyclic-motion stability analysis is required, and for their control analysis, the existing well-developed control theories for systems of fixed-point equilibrium are no longer applicable and new methods that take the cyclic variation of the flight dynamics into account are needed. PMID:22491980
Thillainathan, M; Fernandez, G C
2001-01-01
A user-friendly graphical data analysis to perform stability analysis of genotype x environmental interactions, using Tai's stability model and additive main effects and multiplicative interaction (AMMI) biplots, are presented here. This practical approach integrates statistical and graphical analysis tools available in SAS systems and provides user-friendly applications to perform complete stability analyses without writing SAS program statements or using pull-down menu interfaces by running the SAS macros in the background. By using this macro approach, the agronomists and plant breeders can effectively perform stability analysis and spend more time in data exploration, interpretation of graphs, and output, rather than debugging their program errors. The necessary MACRO-CALL files can be downloaded from the author's home page at http://www.ag.unr.edu/gf. The nature and the distinctive features of the graphics produced by these applications are illustrated by using published data. PMID:11535655
Stability analysis of predator-prey model on the case of aerosol-cloud-precipitation interactions
NASA Astrophysics Data System (ADS)
Sulistyowati, Rita; Kurniadi, Rizal; Srigutomo, Wahyu
2015-09-01
A preliminary study has been performed on the analysis of the stability of predator-prey models in the case of aerosol-cloud-precipitation interactions which initiated by Koren-Feingold. The model consists of two coupled non-linear differential equations describing the development of a population of cloud drop concentration and cloud depth for precipitation. Stability analysis of the models was conducted to understand the stability behavior of systems interactions. In this paper, the analysis focused on the model without delay. The first step was done by determining the equilibrium point of the model equations which yielded 1 non-trivial equilibrium point and 4 trivial equilibrium point. Nontrivial equilibrium point (0,0) associated with the steady state or the absence of precipitation while the non-trivial equilibrium point shows the oscillation behavior in the formation of precipitation. The next step is linearizing the equation around the equilibrium point and calculating of eigenvalues of Jacobian matrix. Evaluation of the eigen values of characteristic equation determined the type of stability. There are saddle node, star point, unstable node, stable node and center. The results of numerical computations was simulated in the form of phase portrait to support the theoretical calculation. Phase portraits show the characteristic of populations growth of cloud depth and drop cloud. In the next research, this analysis will compared to delay model to determine the effect of time delay on the equilibrium point of the system.
Stability analysis of predator-prey model on the case of aerosol-cloud-precipitation interactions
NASA Astrophysics Data System (ADS)
Sulistyowati, Rita; Kurniadi, Rizal; Srigutomo, Wahyu
2015-09-01
A preliminary study has been performed on the analysis of the stability of predator-prey models in the case of aerosol-cloud-precipitation interactions which initiated by Koren-Feingold. The model consists of two coupled non- linear differential equations describing the development of a population of cloud drop concentration and cloud depth for precipitation. Stability analysis of the models was conducted to understand the stability behavior of systems interactions. In this paper, the analysis focused on the model without delay. The first step was done by determining the equilibrium point of the model equations which yielded 1 non-trivial equilibrium point and 4 trivial equilibrium point. Nontrivial equilibrium point (0,0) associated with the steady state or the absence of precipitation while the non-trivial equilibrium point shows the oscillation behavior in the formation of precipitation. The next step is linearizing the equation around the equilibrium point and calculating of eigenvalues of Jacobian matrix. Evaluation of the eigen values of characteristic equation determined the type of stability. There are saddle node, star point, unstable node, stable node and center. The results of numerical computations was simulated in the form of phase portrait to support the theoretical calculation. Phase portraits show the characteristic of populations growth of cloud depth and drop cloud. In the next research, this analysis will compared to delay model to determine the effect of time delay on the equilibrium point of the system.
Stability and Bifurcation Analysis of a Three-Species Food Chain Model with Delay
NASA Astrophysics Data System (ADS)
Pal, Nikhil; Samanta, Sudip; Biswas, Santanu; Alquran, Marwan; Al-Khaled, Kamel; Chattopadhyay, Joydev
In the present paper, we study the effect of gestation delay on a tri-trophic food chain model with Holling type-II functional response. The essential mathematical features of the proposed model are analyzed with the help of equilibrium analysis, stability analysis, and bifurcation theory. Considering time-delay as the bifurcation parameter, the Hopf-bifurcation analysis is carried out around the coexisting equilibrium. The direction of Hopf-bifurcation and the stability of the bifurcating periodic solutions are determined by applying the normal form theory and center manifold theorem. We observe that if the magnitude of the delay is increased, the system loses stability and shows limit cycle oscillations through Hopf-bifurcation. The system also shows the chaotic dynamics via period-doubling bifurcation for further enhancement of time-delay. Our analytical findings are illustrated through numerical simulations.
Stability of the Human Respiratory Control System. Part I: Analysis of a twodimensional delay models of the human respiratory control system have been developed since 1940 to study a wide range signals to the respiratory control system has been studied since the work of Grodins et al. in the early
Stability analysis for HIV infection delay model with protease inhibitor.
Pitchaimani, M; Monica, C; Divya, M
2013-11-01
In this article, we considered a model of HIV-1 infection with a protease inhibitor therapy and three delays. The frequency of the bifurcating periodic solution as well as the threshold value is approximated numerically using realistic parameter. The estimated threshold value is realistic and the frequency of the oscillations is consistent with that of the observed viral blips. PMID:23993948
Stability Analysis of a Model of Atherosclerotic Plaque Growth
Reddy, Sushruth; Seshaiyer, Padmanabhan
2015-01-01
Atherosclerosis, the formation of life-threatening plaques in blood vessels, is a form of cardiovascular disease. In this paper, we analyze a simplified model of plaque growth to derive physically meaningful results about the growth of plaques. In particular, the main results of this paper are two conditions, which express that the immune response increases as LDL cholesterol levels increase and that diffusion prevails over inflammation in a healthy artery. PMID:25883675
NASA Astrophysics Data System (ADS)
Andronova, Nataliia G.; Schlesinger, Michael E.
1992-04-01
The 'cause-and-effect analysis' (CEA) technique is applied to investigate the stability of mathematical models of geophysical phenomena. It is shown that the ith coefficient of p(lambda) is equal to -PL sup (i), the ith order loop effect of the graph analog of matrix B - I, where I is the identity matrix. The classical conditions for stability for both discrete process (DP) and continuous process (CP) systems are then reformulated in terms of the PL sup (i) determined from the graph analog of the system. The use of the result graph analog stability conditions is illustrated by application to two CP systems, the Chapman photochemical cycle and an energy balance climate model, and to a DP system, a finite-differenced differential equation. CEA stability analysis elucidates the interactions among a system's internal variables and thus determines the cause of an instability and facilitates modification of the system to make it stable.
Wissa, Aimy; Calogero, Joseph; Wereley, Norman; Hubbard, James E; Frecker, Mary
2015-01-01
This paper presents the stability analysis of the leading edge spar of a flapping wing unmanned air vehicle with a compliant spine inserted in it. The compliant spine is a mechanism that was designed to be flexible during the upstroke and stiff during the downstroke. Inserting a variable stiffness mechanism into the leading edge spar affects its structural stability. The model for the spar-spine system was formulated in terms of the well-known Mathieu's equation, in which the compliant spine was modeled as a torsional spring with a sinusoidal stiffness function. Experimental data was used to validate the model and results show agreement within 11%. The structural stability of the leading edge spar-spine system was determined analytically and graphically using a phase plane plot and Strutt diagrams. Lastly, a torsional viscous damper was added to the leading edge spar-spine model to investigate the effect of damping on stability. Results show that for the un-damped case, the leading edge spar-spine response was stable and bounded; however, there were areas of instability that appear for a range of spine upstroke and downstroke stiffnesses. Results also show that there exist a damping ratio between 0.2 and 0.5, for which the leading edge spar-spine system was stable for all values of spine upstroke and downstroke stiffnesses. PMID:26502210
NASA Technical Reports Server (NTRS)
Bansal, P. N.; Arseneaux, P. J.; Smith, A. F.; Turnberg, J. E.; Brooks, B. M.
1985-01-01
Results of dynamic response and stability wind tunnel tests of three 62.2 cm (24.5 in) diameter models of the Prop-Fan, advanced turboprop, are presented. Measurements of dynamic response were made with the rotors mounted on an isolated nacelle, with varying tilt for nonuniform inflow. One model was also tested using a semi-span wing and fuselage configuration for response to realistic aircraft inflow. Stability tests were performed using tunnel turbulence or a nitrogen jet for excitation. Measurements are compared with predictions made using beam analysis methods for the model with straight blades, and finite element analysis methods for the models with swept blades. Correlations between measured and predicted rotating blade natural frequencies for all the models are very good. The IP dynamic response of the straight blade model is reasonably well predicted. The IP response of the swept blades is underpredicted and the wing induced response of the straight blade is overpredicted. Two models did not flutter, as predicted. One swept blade model encountered an instability at a higher RPM than predicted, showing predictions to be conservative.
NASA Astrophysics Data System (ADS)
Meisina, C.; Scarabelli, S.
2007-06-01
Most of the slopes of the hilly areas of the Apennines are composed of colluvial soils originating from the weathering of the bedrock and down slope transportation. Shallow slides affect this superficial cover, depend largely on the surface topography and are a recurrent problem. SINMAP and SHALSTAB are terrain stability models that combine steady state hydrology assumptions with the infinite slope stability model to quantify shallow slope stability. They have a similar physical basis but they use different indices to quantify instability. The purposes of this study are to test and compare the approaches of SINMAP and SHALSTAB models for slope stability analysis and to compare the results of these analyses with the locations of the shallow landslides that occurred on November 2002 in an area of the Oltrepo Pavese (Northern Apennines). The territory of S. Giuletta, characterized by clayey-silty colluvial soils, represents the test site. The Digital Elevation Model was constructed from a 1:5000 scale contour map and was used to estimate the slope of the terrain as well as the potential soil moisture conditions. In situ and laboratory tests provided the basis for measuring values for soil hydraulic and geotechnical parameters (moisture content, soil suction, Atterberg limits, methylene blue dye adsorption, hydraulic conductivity). Soil thickness was extracted from a soil database. An inventory of landslide from interpretation of aerial photographs and field surveys was used to document sites of instability (mostly soil slips) and to provide a test of model performance by comparing observed landslide locations with model predictions. The study discusses the practical advantages and limitations of the two models in connection with the geological characteristics of the studied area, which could be representative of similar geological contexts in the Apennines.
NASA Technical Reports Server (NTRS)
Venkatesan, C.; Friedmann, P. P.
1984-01-01
Hybrid Heavy Lift Airship (HHLA) is a proposed candidate vehicle aimed at providing heavy lift capability at low cost. This vehicle consists of a buoyant envelope attached to a supporting structure to which four rotor systems, taken from existing helicopters are attached. Nonlinear equations of motion capable of modelling the dynamics of this coupled multi-rotor/support frame/vehicle system have been developed. Using these equations of motion the aeroelastic and aeromechanical stability analysis is performed aimed at identifying potential instabilities which could occur for this type of vehicle. The coupling between various blade, supporting structure and rigid body modes is identified. Furthermore, the effects of changes in buoyancy ratio (Buoyant lift/total weight) on the dynamic characteristics of the vehicle are studied. The dynamic effects found are of considerable importance for the design of such vehicles. The analytical model developed is also useful for studying the aeromechanical stability of single rotor and tandem rotor coupled rotor/fuselage systems.
Stability analysis of an e-SEIAR model with point-to-group worm propagation
NASA Astrophysics Data System (ADS)
Wang, Fangwei; Zhang, Yunkai; Wang, Changguang; Ma, Jianfeng
2015-03-01
Internet worms have drawn significant attention due to their enormous threats to the Internet. The main goal of this paper is to explore the interaction dynamics between a malicious worm and an benign worm, using a mathematical model, namely e-SEIAR. The e-SEIAR model takes two important network environment factors into consideration: point-to-group worm propagation mode and benign worms. Furthermore, some related dynamics properties are studied, along with the analysis of how to combat the worm prevalence based on the stability of equilibria. Simulation results show that the performance of our proposed models is effective in combating such worms, in terms of decreasing the number of hosts infected by the malicious worm and reducing the malicious worm propagation speed. Based on our simulations, we believe there is great potential for an effective method to use benign worms to combat malicious worms in some point-to-group applications.
NASA Astrophysics Data System (ADS)
Georgiou, K.; Tang, J.; Riley, W. J.; Torn, M. S.
2014-12-01
Soil organic matter (SOM) decomposition is regulated by biotic and abiotic processes. Feedback interactions between such processes may act to dampen oscillatory responses to perturbations from equilibrium. Indeed, although biological oscillations have been observed in small-scale laboratory incubations, the overlying behavior at the plot-scale exhibits a relatively stable response to disturbances in input rates and temperature. Recent studies have demonstrated the ability of microbial models to capture nonlinear feedbacks in SOM decomposition that linear Century-type models are unable to reproduce, such as soil priming in response to increased carbon input. However, these microbial models often exhibit strong oscillatory behavior that is deemed unrealistic. The inherently nonlinear dynamics of SOM decomposition have important implications for global climate-carbon and carbon-concentration feedbacks. It is therefore imperative to represent these dynamics in Earth System Models (ESMs) by introducing sub-models that accurately represent microbial and abiotic processes. In the present study we explore, both analytically and numerically, four microbe-enabled model structures of varying levels of complexity. The most complex model combines microbial physiology, a non-linear mineral sorption isotherm, and enzyme dynamics. Based on detailed stability analysis of the nonlinear dynamics, we calculate the system modes as functions of model parameters. This dependence provides insight into the source of state oscillations. We find that feedback mechanisms that emerge from careful representation of enzyme and mineral interactions, with parameter values in a prescribed range, are critical for both maintaining system stability and capturing realistic responses to disturbances. Corroborating and expanding upon the results of recent studies, we explain the emergence of oscillatory responses and discuss the appropriate microbe-enabled model structure for inclusion in ESMs.
Stability analysis of a viscoelastic model for ion-irradiated silicon
Scott A. Norris
2012-01-12
To study the effect of stress within the thin amorphous film generated atop Si irradiated by Ar+, we model the film as a viscoelastic medium into which the ion beam continually injects biaxial compressive stress. We find that at normal incidence, the model predicts a steady compressive stress of a magnitude comparable to experiment. However, linear stability analysis at normal incidence reveals that this mechanism of stress generation is unconditionally stabilizing due to a purely kinematic material flow, depending on none of the material parameters. Thus, despite plausible conjectures in the literature as to its potential role in pattern formation, we conclude that beam stress at normal incidence is unlikely to be a source of instability at any energy, supporting recent theories attributing hexagonal ordered dots to the effects of composition. In addition, we find that the elastic moduli appear in neither the steady film stress nor the leading order smoothening, suggesting that the primary effects of stress can be captured even if elasticity is neglected. This should greatly simplify future analytical studies of highly nonplanar surface evolution, in which the beam-injected stress is considered to be an important effect.
Lyapunov Stability Analysis of a Mosquito-Inspired Swarm Model Daigo Shishika1 and Derek A. Paley2
Shapiro, Benjamin
Lyapunov Stability Analysis of a Mosquito-Inspired Swarm Model Daigo Shishika1 and Derek A. Paley2 swarms of wild mosquitoes. The model generates three different behaviors (swarming, velocity alignment and dampers. Previous studies of mosquito flight data suggest proximity in the velocity space, as well
Linear stability analysis of self-excited vibrations in drilling using an infinite dimensional model
NASA Astrophysics Data System (ADS)
Aarsnes, Ulf Jakob F.; Aamo, Ole Morten
2016-01-01
This paper deals with predicting the occurrence of self-excited vibrations during drilling. Previous work postulates that these are due to the coupling between the distributed drill string system and the regenerative effect in the bit-rock interaction law. We use a previously developed distributed model and the linearized bit-rock interaction law to derive a graphical condition for stability based on the Nyquist stability criterion.
General model of a cascade of reactions with time delays: Global stability analysis
NASA Astrophysics Data System (ADS)
Bodnar, Marek
2015-07-01
The problem considered in this paper consists of a cascade of reactions with discrete as well as distributed delays, which arose in the context of Hes1 gene expression. For the abstract general model sufficient conditions for global stability are presented. Then the abstract result is applied to the Hes1 model.
NASA Technical Reports Server (NTRS)
Tesch, W. A.; Moszee, R. H.; Steenken, W. G.
1976-01-01
NASA developed stability and frequency response analysis techniques were applied to a dynamic blade row compression component stability model to provide a more economic approach to surge line and frequency response determination than that provided by time-dependent methods. This blade row model was linearized and the Jacobian matrix was formed. The clean-inlet-flow stability characteristics of the compressors of two J85-13 engines were predicted by applying the alternate Routh-Hurwitz stability criterion to the Jacobian matrix. The predicted surge line agreed with the clean-inlet-flow surge line predicted by the time-dependent method to a high degree except for one engine at 94% corrected speed. No satisfactory explanation of this discrepancy was found. The frequency response of the linearized system was determined by evaluating its Laplace transfer function. The results of the linearized-frequency-response analysis agree with the time-dependent results when the time-dependent inlet total-pressure and exit-flow function amplitude boundary conditions are less than 1 percent and 3 percent, respectively. The stability analysis technique was extended to a two-sector parallel compressor model with and without interstage crossflow and predictions were carried out for total-pressure distortion extents of 180 deg, 90 deg, 60 deg, and 30 deg.
Stability of the Human Respiratory Control System. Part I: Analysis of a two-dimensional delay of the human respiratory control system have been developed since 1940 to study a wide range of features. 1 Introduction and Modeling Considerations The human respiratory system acts to exchange carbon
NASA Astrophysics Data System (ADS)
Zhao, Xiaomei; Orosz, Gábor
2014-05-01
In day-to-day traffic assignment problems travelers’ past experiences have important impact on their cost prediction which influences their route choice and consequently the arising flow patterns in the network. Many travelers execute the same trip in every few days, not daily, which leads to time delays in the system. In this paper, we propose a nonlinear, discrete-time model with driver experience delay. The linear stability of the stochastic user equilibrium is analyzed by studying the eigenvalues of the Jacobian matrix of the system while the nonlinear oscillations arising at the bifurcations are investigated by normal form calculations, numerical continuation and simulation. The methods are demonstrated on a two-route example. By applying rigorous analysis we show that the linearly unstable parameter domain as well as the period of arising oscillations increase with the delay. Moreover, delays and nonlinearities result in an extended domain of bistability where the stochastic user equilibrium coexists with stable and unstable oscillations. This study explains the influence of initial conditions on the dynamics of transportation networks and may provide guidance for network design and management.
The beam delivery modeling and error sources analysis of beam stabilization system for lithography
NASA Astrophysics Data System (ADS)
Wang, Jun; Huang, Lihua; Hou, Liying; He, Guojun; Ren, Bingqiang; Zeng, Aijun; Huang, Huijie
2013-12-01
Beam stabilization system is one of the most important units for lithography, which can accomplish displacement and pointing detection and control and includes beam measurement unit(BMU) and beam steering unit(BSU). Our group has set up a beam stabilization system and verified preliminarily beam stabilization algorithm of precise control beam position and angle. In the article, we establish beam delivery mathematic model and analyze the system inherent error. This shows that the reason why image rotation effect arises at the output plane of beam stabilization is the fast steering mirror (FSM) rotation of BSU in the process of beam stabilization. Two FSMs rotation around 45o axis of FSM make the most contribution to image rotation which rotates 1.414 mrad as two FSMs rotation angle difference changes 1 mrad. It is found that error sources include three key points: FSM accuracy; measurement noise and beam translation by passing through of beam splitters changing as the ambient temperature changing. FSM accuracy leads to the maximum 13.2?m displacement error and 24.49?rad angle error. Measurement inaccuracy as a result of 5?m measurement noise results in the maximum 0.126mm displacement error and 57.2?rad angle error. Beam translation errors can be negligible if temperature is unchanged. We have achieved beam stability of about 15.5?rad for angle and 28?m for displacement (both 1?) after correcting 2mm initial displacement deviation and 5mrad initial angle deviation with regard to the system rebuilt due to practical requirements.
Local and global stability analysis of a two prey one predator model with help
NASA Astrophysics Data System (ADS)
Tripathi, Jai Prakash; Abbas, Syed; Thakur, Manoj
2014-09-01
In this paper we propose and study a three dimensional continuous time dynamical system modelling a three team consists of two preys and one predator with the assumption that during predation the members of both teams of preys help each other and the rate of predation of both teams are different. In this work we establish the local asymptotic stability of various equilibrium points to understand the dynamics of the model system. Different conditions for the coexistence of equilibrium solutions are discussed. Persistence, permanence of the system and global stability of the positive interior equilibrium solution are discussed by constructing suitable Lyapunov functional. At the end, numerical simulations are performed to substantiate our analytical findings.
Fedorov, Alexey V.; Fedorov, Alexey
2015-01-14
The central goal of this research project was to understand the mechanisms of decadal and multi-decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) as related to climate variability and abrupt climate change within a hierarchy of climate models ranging from realistic ocean models to comprehensive Earth system models. Generalized Stability Analysis, a method that quantifies the transient and asymptotic growth of perturbations in the system, is one of the main approaches used throughout this project. The topics we have explored range from physical mechanisms that control AMOC variability to the factors that determine AMOC predictability in the Earth system models, to the stability and variability of the AMOC in past climates.
NASA Astrophysics Data System (ADS)
Markovi?, V. M.; ?upi?, Ž.; Ivanovi?, A.; Kolar-Ani?, Lj.
2011-12-01
Stoichiometric network analysis (SNA) represents a powerful mathematical tool for stability analysis of complex stoichiometric networks. Recently, the important improvement of the method has been made, according to which instability relations can be entirely expressed via reaction rates, instead of thus far used, in general case undefined, current rates. Such an improved SNA methodology was applied to the determination of exact instability conditions of the extended model of the hypothalamic-pituitary-adrenal (HPA) axis, a neuroendocrinological system, whose hormone concentrations exert complex oscillatory evolution. For emergence of oscillations, the Hopf bifurcation condition was utilized. Instability relations predicted by SNA showed good correlation with numerical simulation data of the HPA axis model.
Stability Analysis of a Simplified Yet Complete Model for Chronic Myelegenous Leukemia
Jauffret, Marie Doumic; Perthame, Benoît
2009-01-01
We analyze the asymptotic behavior of a partial differential equation (PDE) model for hematopoiesis. This PDE model is derived from the original agent-based model formulated by (Roeder et al., Nat. Med., 2006), and it describes the progression of blood cell development from the stem cell to the terminally differentiated state. To conduct our analysis, we start with the PDE model of (Kim et al, JTB, 2007), which coincides very well with the simulation results obtained by Roeder et al. We simplify the PDE model to make it amenable to analysis and justify our approximations using numerical simulations. An analysis of the simplified PDE model proves to exhibit very similar properties to those of the original agent-based model, even if for slightly different parameters. Hence, the simplified model is of value in understanding the dynamics of hematopoiesis and of chronic myelogenous leukemia, and it presents the advantage of having fewer parameters, which makes comparison with both experimental data and alternative...
Kogan, Valeria; Molodtsov, Ivan; Menshikov, Leonid I; Shmookler Reis, Robert J; Fedichev, Peter
2015-01-01
Several animal species are considered to exhibit what is called negligible senescence, i.e. they do not show signs of functional decline or any increase of mortality with age. Recent studies in naked mole rat and long-lived sea urchins showed that these species do not alter their gene-expression profiles with age as much as other organisms do. This is consistent with exceptional endurance of naked mole rat tissues to various genotoxic stresses. We conjectured, therefore, that the lifelong transcriptional stability of an organism may be a key determinant of longevity. We analyzed the stability of a simple genetic-network model and found that under most common circumstances, such a gene network is inherently unstable. Over a time it undergoes an exponential accumulation of gene-regulation deviations leading to death. However, should the repair systems be sufficiently effective, the gene network can stabilize so that gene damage remains constrained along with mortality of the organism. We investigate the relationship between stress-resistance and aging and suggest that the unstable regime may provide a mathematical basis for the Gompertz "law" of aging in many species. At the same time, this model accounts for the apparently age-independent mortality observed in some exceptionally long-lived animals. PMID:26316217
Stability analysis of a model gene network links aging, stress resistance, and negligible senescence
Kogan, Valeria; Molodtsov, Ivan; Menshikov, Leonid I.; Reis, Robert J. Shmookler; Fedichev, Peter
2015-01-01
Several animal species are considered to exhibit what is called negligible senescence, i.e. they do not show signs of functional decline or any increase of mortality with age. Recent studies in naked mole rat and long-lived sea urchins showed that these species do not alter their gene-expression profiles with age as much as other organisms do. This is consistent with exceptional endurance of naked mole rat tissues to various genotoxic stresses. We conjectured, therefore, that the lifelong transcriptional stability of an organism may be a key determinant of longevity. We analyzed the stability of a simple genetic-network model and found that under most common circumstances, such a gene network is inherently unstable. Over a time it undergoes an exponential accumulation of gene-regulation deviations leading to death. However, should the repair systems be sufficiently effective, the gene network can stabilize so that gene damage remains constrained along with mortality of the organism. We investigate the relationship between stress-resistance and aging and suggest that the unstable regime may provide a mathematical basis for the Gompertz “law” of aging in many species. At the same time, this model accounts for the apparently age-independent mortality observed in some exceptionally long-lived animals. PMID:26316217
Thermohaline circulation stability : a box model
Lucarini, Valerio
2003-01-01
A thorough analysis of the stability of uncoupled and coupled versions of an inter-hemispheric 3-box model of Thermohaline Circulation (THC) is presented. The model consists of a northern high latitudes box, a tropical ...
A simplified spatial model for BWR stability
Berman, Y.; Lederer, Y.; Meron, E.
2012-07-01
A spatial reduced order model for the study of BWR stability, based on the phenomenological model of March-Leuba et al., is presented. As one dimensional spatial dependence of the neutron flux, fuel temperature and void fraction is introduced, it is possible to describe both global and regional oscillations of the reactor power. Both linear stability analysis and numerical analysis were applied in order to describe the parameters which govern the model stability. The results were found qualitatively similar to past results. Doppler reactivity feedback was found essential for the explanation of the different regions of the flow-power stability map. (authors)
MAP Stability, Design and Analysis
NASA Technical Reports Server (NTRS)
Ericsson -Jackson, A.J.; Andrews, S. F.; ODonnell, J. R., Jr.; Markley, F. L.
1998-01-01
The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The design and analysis of the MAP attitude control system (ACS) have been refined since work previously reported. The full spacecraft and instrument flexible model was developed in NASTRAN, and the resulting flexible modes were plotted and reduced with the Modal Significance Analysis Package (MSAP). The reduced-order model was used to perform the linear stability analysis for each control mode, the results of which are presented in this paper. Although MAP is going to a relatively disturbance-free Lissajous orbit around the Earth-Sun L2 Lagrange point, a detailed disturbance-torque analysis is required because there are only a small number of opportunities for momentum unloading each year. Environmental torques, including solar pressure at L2, and aerodynamic and gravity gradient during phasing-loop orbits, were calculated and simulated. A simple model of fuel slosh was derived to model its effect on the motion of the spacecraft. In addition, a thruster mode linear impulse controller was developed to meet the accuracy requirements of the phasing loop burns. A dynamic attitude error limiter was added to improve the performance of the ACS during large attitude slews. The result of this analysis is a stable ACS subsystem that meets all of the mission's requirements.
PrimeSupplier Cross-Program Impact Analysis and Supplier Stability Indicator Simulation Model
NASA Technical Reports Server (NTRS)
Calluzzi, Michael
2009-01-01
PrimeSupplier, a supplier cross-program and element-impact simulation model, with supplier solvency indicator (SSI), has been developed so that the shuttle program can see early indicators of supplier and product line stability, while identifying the various elements and/or programs that have a particular supplier or product designed into the system. The model calculates two categories of benchmarks to determine the SSI, with one category focusing on agency programmatic data and the other focusing on a supplier's financial liquidity. PrimeSupplier was developed to help NASA smoothly transition design, manufacturing, and repair operations from the Shuttle program to the Constellation program, without disruption in the industrial supply base.
Implementation of a Single-Stage-To-Orbit (SSTO) model for stability and control analysis
NASA Technical Reports Server (NTRS)
Ingalls, Stephen A.
1995-01-01
Three NASA centers: Marshall Space Flight Center (MSFC), Langley Research Center (LaRC), and Johnson Space Center (JSC) are currently involved in studying a family of single-stage- and two-stage-to-orbit (SSTO/TSTO) vehicles to serve as the next generation space transportation system (STS). A rocketed winged-body is the current focus. The configuration (WB001) is a vertically-launched, horizontally-landing system with circular cross-section. Preliminary aerodynamic data was generated by LaRC and is a combination of wind-tunnel data, empirical methods, and Aerodynamic Preliminary Analysis System-(APAS) generated values. JSC's efforts involve descent trajectory design, stability analysis, and flight control system synthesis. Analysis of WB001's static stability indicates instability in 'tuck' (C(sub mu) less than 0: Mach = 0.30, alpha greater than 3.25 deg; Mach = 0.60, alpha greater than 8.04), an unstable dihedral effects (C(sub l(beta)) greater than 0: Mach = 30,alpha less than 12 deg.; Mach = 0.60, alpha less than 10.00 deg.), and, most significantly, an unstable weathercock stability derivative, C(sub n(beta)), at all angles of attack and subsonic Mach numbers. Longitudinal trim solutions for Mach = 0.30 and 0.60 indicate flight path angle possibilities ranging from around 12 (M = 0.30) to slightly over 20 degrees at Mach = 0.60. Trim angles of attack increase from 6.24 at Mach 0.60 and 10,000 feet to 17.7 deg. at Mach 0.30, sea-level. Lateral trim was attempted for a design cross-wind of 25.0 knots. The current vehicle aerodynamic and geometric characteristics will only yield a lateral trim solution at impractical tip-fin deflections (approximately equal to 43 deg.) and bank angles (21 deg.). A study of the lateral control surfaces, tip-fin controllers for WB001, indicate increased surface area would help address these instabilities, particularly the deficiency in C(sub n(beta)), but obviously at the expense of increased vehicle weight. Growth factors of approximately 7 were determined using a design C(sub n(beta)) of 0.100/radian (approximate subsonic values for the orbiter).
Stability analysis of an HIV/AIDS epidemic model with treatment
NASA Astrophysics Data System (ADS)
Cai, Liming; Li, Xuezhi; Ghosh, Mini; Guo, Baozhu
2009-07-01
An HIV/AIDS epidemic model with treatment is investigated. The model allows for some infected individuals to move from the symptomatic phase to the asymptomatic phase by all sorts of treatment methods. We first establish the ODE treatment model with two infective stages. Mathematical analyses establish that the global dynamics of the spread of the HIV infectious disease are completely determined by the basic reproduction number [real]0. If [real]0<=1, the disease-free equilibrium is globally stable, whereas the unique infected equilibrium is globally asymptotically stable if [real]0>1. Then, we introduce a discrete time delay to the model to describe the time from the start of treatment in the symptomatic stage until treatment effects become visible. The effect of the time delay on the stability of the endemically infected equilibrium is investigated. Moreover, the delay model exhibits Hopf bifurcations by using the delay as a bifurcation parameter. Finally, numerical simulations are presented to illustrate the results.
Stability analysis of free piston Stirling engines
NASA Astrophysics Data System (ADS)
Bégot, Sylvie; Layes, Guillaume; Lanzetta, François; Nika, Philippe
2013-03-01
This paper presents a stability analysis of a free piston Stirling engine. The model and the detailed calculation of pressures losses are exposed. Stability of the machine is studied by the observation of the eigenvalues of the model matrix. Model validation based on the comparison with NASA experimental results is described. The influence of operational and construction parameters on performance and stability issues is exposed. The results show that most parameters that are beneficial for machine power seem to induce irregular mechanical characteristics with load, suggesting that self-sustained oscillations could be difficult to maintain and control.
Stability analysis and optimal control of an epidemic model with awareness programs by media.
Misra, A K; Sharma, Anupama; Shukla, J B
2015-12-01
The impact of awareness campaigns and behavioral responses on epidemic outbreaks has been reported at times. However, to what extent does the provision of awareness and behavioral changes affect the epidemic trajectory is unknown, but important from the public health standpoint. To address this question, we formulate a mathematical model to study the effect of awareness campaigns by media on the outbreak of an epidemic. The awareness campaigns are treated as an intervention for the emergent disease. These awareness campaigns divide the whole populations into two subpopulation; aware and unaware, by inducing behavioral changes amongst them. The awareness campaigns are included explicitly as a separate dynamic variable in the modeling process. The model is analyzed qualitatively using stability theory of differential equations. We have also identified an optimal implementation rate of awareness campaigns so that disease can be controlled with minimal possible expenditure on awareness campaigns, using optimal control theory. The control setting is investigated analytically using optimal control theory, and the numerical solutions illustrating the optimal regimens under various assumptions are also shown. PMID:26551557
Rolland, Joran
2015-01-01
This article presents a modelling of the formation of spanwise vorticity in the turbulent streaks of the oblique bands and spots of transitional plane Couette flow. A functional model is designed to mimic the coherent flow in the streaks. The control parameters of the model are extracted from Direct Numerical Simulations (DNS) statistical data. A Reynolds stress is proposed to study the effect on the instability of this additional force maintaining the baseflow. Local (quasi-parallel) temporal stability analysis is performed on that model to investigate the linear development of the spanwise vorticity. Results show that average profiles, even if they have an inflection, are stable: the shear layers inside the velocity streaks are responsible for the vorticity formation. Emphasis is put on the convective or absolute nature of the instability, depending on the location in the band. This shows that a transition from a convective to an absolute instability occurs in the zone in between fully turbulent and laminar...
NASA Technical Reports Server (NTRS)
Smith, Arthur F.
1985-01-01
Results of static stability wind tunnel tests of three 62.2 cm (24.5 in) diameter models of the Prop-Fan are presented. Measurements of blade stresses were made with the Prop-Fans mounted on an isolated nacelle in an open 5.5 m (18 ft) wind tunnel test section with no tunnel flow. The tests were conducted in the United Technology Research Center Large Subsonic Wind Tunnel. Stall flutter was determined by regions of high stress, which were compared with predictions of boundaries of zero total viscous damping. The structural analysis used beam methods for the model with straight blades and finite element methods for the models with swept blades. Increasing blade sweep tends to suppress stall flutter. Comparisons with similar test data acquired at NASA/Lewis are good. Correlations between measured and predicted critical speeds for all the models are good. The trend of increased stability with increased blade sweep is well predicted. Calculated flutter boundaries generaly coincide with tested boundaries. Stall flutter is predicted to occur in the third (torsion) mode. The straight blade test shows third mode response, while the swept blades respond in other modes.
Stability analysis of multi-group deterministic and stochastic epidemic models with vaccination rate
NASA Astrophysics Data System (ADS)
Wang, Zhi-Gang; Gao, Rui-Mei; Fan, Xiao-Ming; Han, Qi-Xing
2014-09-01
We discuss in this paper a deterministic multi-group MSIR epidemic model with a vaccination rate, the basic reproduction number ?0, a key parameter in epidemiology, is a threshold which determines the persistence or extinction of the disease. By using Lyapunov function techniques, we show if ?0 is greater than 1 and the deterministic model obeys some conditions, then the disease will prevail, the infective persists and the endemic state is asymptotically stable in a feasible region. If ?0 is less than or equal to 1, then the infective disappear so the disease dies out. In addition, stochastic noises around the endemic equilibrium will be added to the deterministic MSIR model in order that the deterministic model is extended to a system of stochastic ordinary differential equations. In the stochastic version, we carry out a detailed analysis on the asymptotic behavior of the stochastic model. In addition, regarding the value of ?0, when the stochastic system obeys some conditions and ?0 is greater than 1, we deduce the stochastic system is stochastically asymptotically stable. Finally, the deterministic and stochastic model dynamics are illustrated through computer simulations.
Tailings dams stability analysis using numerical modelling of geotechnical and geophysical data
NASA Astrophysics Data System (ADS)
Mihai, S.; Zlagnean, M.; Oancea, I.; Petrescu, A.
2009-04-01
Methods for monitoring seepage and detecting internal erosion are essential for the safety evaluation of embankment dams. Internal erosion is one of the major reasons for embankment dam failures, and there are thousands of large tailings dams and waste-rock dumps in the world that may pe considered as hotspots for environmental impact. In this research the geophysical survey works were performed on Cetatuia 2 tailings dam. Electrical resistivity imaging (ERI) method was able to detect spatially anomalous zones inside the embankment dam. These anomalies are the results of internal erosion phenomena which may progressing inside the dam and is difficult to detect by conventional methods. Data aquired by geophysical survey together with their interpretations were used in the numerical model for slope stability assessment. The final results show us the structural weakness induced by the presence of internal erosion elements especially for seismic loading case. This research methodology may be also available for tailings dam monitoring purposes. Electrical Rezistivity Imaging (ERI) was performed on Cetatuia 2 dam at the Uranium Milling Plant Feldioara, in order to map areas with lateral and vertical changes in resistivity. The electrodes are connected to an automated computer operated switch box that selects the 4 electrodes to be used. A computer controls the switch box and the measuring device, and runs a program that selects the electrodes, makes the measurement, and stores the measurement. For inversion processing procedures was used Res2Din software. The measured resistivity were plotted by the pseudo section contouring method. There are five resistivity pseudosections obtained from the Cetatuia 2 tailings dam during the october 2007 measurements. Four transversal profiles trans1 to trans4 are perpendicular to the berms and the longitudinal one long1 is placed along dam's crest. The high resistivities near the berms surfaces corresponds to unsaturated fill materials and the low resistivities near the crest correspond to water saturated material. The resistivities values greater then 80 ohm.m may be explained by some error obtained for that inversion model. Profiles trans3 and trans4 were measured on perpendicular directions to berm alignment and show two distinct zones. The upward low resistivities zone correspond to water saturated materials especially from the compacted clay dam's core and the downward high resistivities zone belongs to unsaturated fill materials. The boundary between high and low resistivity at the depth of about 5 to 7 meters shows the groundwater level. The continuation of the high resistivity zones towards the end of the profile trans3, which is different from other profiles is probably due to the presence of dry coarse materials in shallow depth correspondingly to sandy clay. The sand fractions from the clay matrix may be affected by internal erosional phenomena, due to seepage currents that overpassed the material critical gradient. In this case the relative high resistivities values were considered as a presumptive erosional pattern. This profile was considered for the slope stability finite element modelling. The profile long1 which is placed along dam's crest is the longest profiles and extends up to nearly 420 m. The boundary between high and low resistivity at the depth of about 4 to 8 meters shows the groundwater across the dam core. The central part of the profile (about meter 200) shows the same relative high resistivities that occurred on transversal profile trans3. Resistivity data was used for building the 3D electrical resistivity model. The water saturated materials have locations very close to dam's crest (resistivity values usually lower then 10 ohm.m) and on both dam's arms. The groundwater levels were confirmed by the piezometric measurements. Electrical Rezistivity Imaging method had the possibility to show the most important disturbant elements that in certain conditions may weak the dam's state of safety. This study considered the SSR (Shear Strength Reduction) technique for sl
NASA Astrophysics Data System (ADS)
Banshchikov, A. V.; Chaikin, S. V.
2015-09-01
Applying Lyapunov's approach to the investigation of the stability of the motion according to first order approximation equations, the regions are singled out in the space of the inputed parameters where the stability, instability, or gyroscopic stabilization of relative equilibriums of a prolate axisymmetric orbital gyrostat with a constant gyrostatic moment vector are ensured. In particular, the result concerning instability and impossibility of gyroscopic stabilization of one in two existing equilibrium classes of the system have been formulated. The investigation was carried out using the LinModel software package and the symbolic—numerical modeling functions of the Mathematica Computer Algebra System.
NASA Astrophysics Data System (ADS)
Zhang, L.; Liu, Y. R.; Yang, Q.
2015-03-01
Reinforcement measures are often used in high-arch dams with complicated geological foundations. The geomechanical model test is an effective method to study the global stability of arch dams and to evaluate the reinforcement effects of foundation treatments. The block masonry technique was developed to simulate the jointed rock mass, tectonic discontinuities, and reinforcement measures. A tailor-made low-strength binder and small blocks were developed to simulate the strength and deformation of the jointed rock mass and discontinuities, respectively. We applied this technique to geomechanical model tests of the Dagangshan arch dam with and without foundation reinforcements. A rupture test was conducted, and the stress and displacement distribution of the dam and abutments were recorded; the failure mechanisms and processes were explored. The reinforcement effects of the foundation treatment were evaluated by comparing the test results of the models with and without foundation reinforcements. Our analysis indicates that foundation reinforcements can improve the stress distribution, decrease deformation, prevent slides, reduce fault movement, and improve the global stability of high-arch dams.
MATHEMATICAL MODELING OF CHARGED LIQUID DROPLETS: NUMERICAL SIMULATION AND STABILITY ANALYSIS
Betelu, Santiago Ignacio
Results 75 6.1. Neck Thinning 75 6.2. Evolution of a multiply connected droplet. 78 6.3. Singularity the influence of surface tension and electrostatic forces. We are particularly interested in the stability
NASA Technical Reports Server (NTRS)
Sevart, F. D.
1971-01-01
An analytical and mechanization study was conducted for two flutter stability augmentation systems. One concept uses only the wing trailing edge control surface. Another concept uses leading and trailing edge control surfaces operating simultaneously. The combined use of leading and trailing edge control surfaces should improve the surface coupling (controllability) with vertical bending and torsional structural modes and decrease the coupling between bending and torsional modes. The study was directed toward stability augmentation systems characteristics for the supersonic transport aircraft.
Linear stability analysis for an optimum Glauert rotor modelled by an actuator disc
NASA Astrophysics Data System (ADS)
Smith, D. M.; Blackburn, H. M.; Sheridan, J.
2014-06-01
We approximate a wind turbine using the Actuator Disc methodology with loading for an optimum Glauert rotor, and vary blade length and tip speed ratio, to determine base flows for linear stability computations at a Reynolds number of 100. Results from such computations suggest that the least stable mode is axisymmetric and insensitive to changes in tip speed operation, suggesting that the stability properties in the farfield wake for an optimised rotor are independent of the chosen tip speed optimization point. Higher azimuthal modes promote greater variation in velocities and may be relevant to cases at higher Reynolds numbers.
Jacobi stability analysis of the Lorenz system
Tiberiu Harko; Chor Yin Ho; Chun Sing Leung; Stan Yip
2015-04-11
We perform the study of the stability of the Lorenz system by using the Jacobi stability analysis, or the Kosambi-Cartan-Chern (KCC) theory. The Lorenz model plays an important role for understanding hydrodynamic instabilities and the nature of the turbulence, also representing a non-trivial testing object for studying non-linear effects. The KCC theory represents a powerful mathematical method for the analysis of dynamical systems. In this approach we describe the evolution of the Lorenz system in geometric terms, by considering it as a geodesic in a Finsler space. By associating a non-linear connection and a Berwald type connection, five geometrical invariants are obtained, with the second invariant giving the Jacobi stability of the system. The Jacobi (in)stability is a natural generalization of the (in)stability of the geodesic flow on a differentiable manifold endowed with a metric (Riemannian or Finslerian) to the non-metric setting. In order to apply the KCC theory we reformulate the Lorenz system as a set of two second order non-linear differential equations. The geometric invariants associated to this system (nonlinear and Berwald connections), and the deviation curvature tensor, as well as its eigenvalues, are explicitly obtained. The Jacobi stability of the equilibrium points of the Lorenz system is studied, and the condition of the stability of the equilibrium points is obtained. Finally, we consider the time evolution of the components of the deviation vector near the equilibrium points.
Jacobi stability analysis of the Lorenz system
NASA Astrophysics Data System (ADS)
Harko, Tiberiu; Ho, Chor Yin; Leung, Chun Sing; Yip, Stan
2015-06-01
We perform the study of the stability of the Lorenz system by using the Jacobi stability analysis, or the Kosambi-Cartan-Chern (KCC) theory. The Lorenz model plays an important role for understanding hydrodynamic instabilities and the nature of the turbulence, also representing a nontrivial testing object for studying nonlinear effects. The KCC theory represents a powerful mathematical method for the analysis of dynamical systems. In this approach, we describe the evolution of the Lorenz system in geometric terms, by considering it as a geodesic in a Finsler space. By associating a nonlinear connection and a Berwald type connection, five geometrical invariants are obtained, with the second invariant giving the Jacobi stability of the system. The Jacobi (in)stability is a natural generalization of the (in)stability of the geodesic flow on a differentiable manifold endowed with a metric (Riemannian or Finslerian) to the non-metric setting. In order to apply the KCC theory, we reformulate the Lorenz system as a set of two second-order nonlinear differential equations. The geometric invariants associated to this system (nonlinear and Berwald connections), and the deviation curvature tensor, as well as its eigenvalues, are explicitly obtained. The Jacobi stability of the equilibrium points of the Lorenz system is studied, and the condition of the stability of the equilibrium points is obtained. Finally, we consider the time evolution of the components of the deviation vector near the equilibrium points.
Hernández-Cortés, Pedro; Galindo-Moreno, Pablo; Catena, Andrés; Ortega-Oller, Inmaculada; Salas-Pérez, José; Gómez-Sánchez, Rafael; Aguilar, Mariano; Aguilar, David
2014-01-01
Objective. This study was designed to explore relationships of resonance frequency analysis (RFA)—assessed implant stability (ISQ values) with bone morphometric parameters and bone quality in an ex vivo model of dental implants placed in human femoral heads and to evaluate the usefulness of this model for dental implant studies. Material and Methods. This ex vivo study included femoral heads from 17 patients undergoing surgery for femoral neck fracture due to osteoporosis (OP) (n = 7) or for total prosthesis joint replacement due to severe hip osteoarthrosis (OA) (n = 10). Sixty 4.5 × 13?mm Dentsply Astra implants were placed, followed by RFA. CD44 immunohistochemical analysis for osteocytes was also carried out. Results. As expected, the analysis yielded significant effects of femoral head type (OA versus OA) (P < 0.001), but not of the implants (P = 0.455) or of the interaction of the two factors (P = 0.848). Bonferroni post hoc comparisons showed a lower mean ISQ for implants in decalcified (50.33 ± 2.92) heads than in fresh (66.93 ± 1.10) or fixated (70.77 ± 1.32) heads (both P < 0.001). The ISQ score (fresh) was significantly higher for those in OA (73.52 ± 1.92) versus OP (67.13 ± 1.09) heads. However, mixed linear analysis showed no significant association between ISQ scores and morphologic or histomorphometric results (P > 0.5 in all cases), and no significant differences in ISQ values were found as a function of the length or area of the cortical layer (both P > 0.08). Conclusion. Although RFA-determined ISQ values are not correlated with morphometric parameters, they can discriminate bone quality (OP versus OA). This ex vivo model is useful for dental implant studies. PMID:24995307
Cage stability analysis for SSME HPOTP bearings
NASA Technical Reports Server (NTRS)
Merriman, T. L.; Kannel, J. W.
1988-01-01
A numerical model of cage motion (CAGEDYN) was used to analyze the stability of bearing cages in the Space Shuttle main engine (SSME) high pressure oxygen turbopump (HPOTP). The stability of existing bearing geometries, as well as perturbations of these geometries, was analyzed for various operating conditions. Results of the analyses show that some combinations of operating parameters, exacerbated by the sparse lubrication that exist in the HPOTP bearings, can cause unstable cage oscillations. Frequencies of cage oscillations were predicted by the CAGEDYN numerical model by Fourier analysis of predicted cage motions. Under conditions that cause unstable cage motion, high frequency oscillations were predicted that could cause premature cage failures.
Spectral Stability of Unitary Network Models
Joachim Asch; Olivier Bourget; Alain Joye
2015-02-08
We review various unitary network models used in quantum computing, spectral analysis or condensed matter physics and establish relationships between them. We show that symmetric one dimensional quantum walks are universal, as are CMV matrices. We prove spectral stability and propagation properties for general asymptotically uniform models by means of unitary Mourre theory.
Spectral stability of unitary network models
NASA Astrophysics Data System (ADS)
Asch, Joachim; Bourget, Olivier; Joye, Alain
2015-08-01
We review various unitary network models used in quantum computing, spectral analysis or condensed matter physics and establish relationships between them. We show that symmetric one-dimensional quantum walks are universal, as are CMV matrices. We prove spectral stability and propagation properties for general asymptotically uniform models by means of unitary Mourre theory.
Stability analysis of an acoustically levitated disk.
Hu, Junhui; Nakamura, Kentaro; Ueha, Sadayuki
2003-02-01
In this paper, a model is developed for the stability analysis of an acoustically levitated disk on the basis of analyzing eddy acoustic streaming and acoustic viscous stress. In the model, the effect of the acoustic streaming outside the boundary layer that is on the surface of the levitated disk is properly taken into account. Also, the calculation of sound field and acoustic viscous stress is limited to the range that has a dominant effect on the stability. By this method, we obtain a quite accurate solution of the stability coefficient. For the small horizontal shift of a large levitated disk, the model is verified by the good agreement between the experimental and theoretical results. By means of this model and relevant experiments, some factors that affect the stability of the levitated disk are investigated, and useful guidelines for design and application are obtained. It is found that the range from the edge to the outermost nodal circle of the disk-shaped vibrator has a large effect on the stability of the levitated disk. To stabilize the levitated disk by acoustic viscous force, the distance between the edge and the outermost nodal circle of the vibrator must be larger than a critical value, which is determined by the driving frequency and the sound velocity of the fluid between the levitated disk and the vibrator. When this condition is satisfied, increasing the distance between the edge and the outermost nodal circle leads to a decrease in the stability. It is also found that the property of the fluid between the levitated disk and the vibrator has a large effect on the stability. It is easier to stabilize the levitated disk in steam than in air, but more difficult to do so in carbon dioxide and hydrogen. In addition, theoretical results show that increasing the weight per unit area of the levitated object increases the stability for a given vibrator velocity. The distribution of the acoustic viscous stress and the dependence of the stability coefficient and the holding force on the horizontal shift of the levitated disk, which are obtained by this study, also are useful to a better understanding of the stability of the levitated disk. PMID:12625585
CDC01REG1559 Stability and reachability analysis of a hybrid model
Dang, Thao
sensing system found in uni cellular bacteria that exhibit bioluminescence. The luminescence is governed systems to the quorum sensing system, and demonstrates that bioluminescence can be modeled and understood, certain behavior is efficiently performed by the quorum, such as bioluminescence, the best known model
Pedro, Sansao A.; Abelman, Shirley; Ndjomatchoua, Frank T.; Sang, Rosemary; Tonnang, Henri E. Z.
2014-01-01
This paper investigates a RVF epidemic model by qualitative analysis and numerical simulations. Qualitative analysis have been used to explore the stability dynamics of the equilibrium points while visualization techniques such as bifurcation diagrams, Poincaré maps, maxima return maps and largest Lyapunov exponents are numerically computed to confirm further complexity of these dynamics induced by the seasonal forcing on the mosquitoes oviposition rates. The obtained results show that ordinary differential equation models with external forcing can have rich dynamic behaviour, ranging from bifurcation to strange attractors which may explain the observed fluctuations found in RVF empiric outbreak data, as well as the non deterministic nature of RVF inter-epidemic activities. Furthermore, the coexistence of the endemic equilibrium is subjected to existence of certain number of infected Aedes mosquitoes, suggesting that Aedes have potential to initiate RVF epidemics through transovarial transmission and to sustain low levels of the disease during post epidemic periods. Therefore we argue that locations that may serve as RVF virus reservoirs should be eliminated or kept under control to prevent multi-periodic outbreaks and consequent chains of infections. The epidemiological significance of this study is: (1) low levels of birth rate (in both Aedes and Culex) can trigger unpredictable outbreaks; (2) Aedes mosquitoes are more likely capable of inducing unpredictable behaviour compared to the Culex; (3) higher oviposition rates on mosquitoes do not in general imply manifestation of irregular behaviour on the dynamics of the disease. Finally, our model with external seasonal forcing on vector oviposition rates is able to mimic the linear increase in livestock seroprevalence during inter-epidemic period showing a constant exposure and presence of active transmission foci. This suggests that RVF outbreaks partly build upon RVF inter-epidemic activities. Therefore, active RVF surveillance in livestock is recommended. PMID:25271641
Stability analysis of the Biot/squirt models for wave propagation in saturated porous media
NASA Astrophysics Data System (ADS)
Liu, Jiawei; Yong, Wen-An
2016-01-01
This work is concerned with the Biot/squirt (BISQ) models for wave propagation in saturated porous media. We show that the models allow exponentially exploding solutions, as time goes to infinity, when the characteristic squirt-flow coefficient is negative or has a non-zero imaginary part. We also show that the squirt-flow coefficient does have non-zero imaginary parts for some experimental parameters or for low angular frequencies. Because the models are linear, the existence of such exploding solutions indicates instability of the BISQ models. This result, for the first time, provides a theoretical explanation of the well-known empirical observation that BISQ model is not reliable (not consistent with Gassmann's formula) at low frequencies. It calls on a reconsideration of the widely used BISQ theory. On the other hand, we demonstrate that the 3-D isotropic BISQ model is stable when the squirt-flow coefficient is positive. In particular, the original Biot model is unconditionally stable where the squirt-flow coefficient is 1.
Haldar, Krishnendu 1978-
2012-12-06
Magnetic shape memory alloys (MSMAs) are a class of active materials that de- form under magnetic and mechanical loading conditions. This work is concerned with the modeling of MSMAs constitutive responses. The hysteretic ...
Stability Analysis of the Ribosome Flow Model Michael Margaliot and Tamir Tuller
Margaliot, Michael
trajectory converges to e. Furthermore, convergence in monotone in the sense that the distance to e can never of the RFM is sim- ple. There exists a unique equilibrium point e and every trajectory converges to e Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel. E-mail: tamirtul@post.tau.ac.il robust. Our analysis
Liquid rocket spray combustion stability analysis
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Jeng, San-Mou
1992-01-01
A computational approach to the analysis of spray combustion stability in liquid rocket combustors is proposed which is based on the unsteady quasi-two-dimensional Euler equations with interphase source terms derived from a Lagrangian treatment of the combusting spray. Based on a preliminary evaluation, the computational methodology presented here is a promising research tool and a potential design/development aid for investigating the stability characteristics of liquid rocket engines. The method is characterized by low numerical noise; the Lagrangian treatment of the spray offers improved flexibility for the direct modeling of spray combustion.
The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model
NASA Astrophysics Data System (ADS)
Anggriani, N.; Supriatna, A. K.; Soewono, E.
2015-06-01
In this paper we formulate an SIR (Susceptible - Infective - Recovered) model of Dengue fever transmission with constant recruitment. We found a threshold parameter K0, known as the Basic Reproduction Number (BRN). This model has two equilibria, disease-free equilibrium and endemic equilibrium. By constructing suitable Lyapunov function, we show that the disease- free equilibrium is globally asymptotic stable whenever BRN is less than one and when it is greater than one, the endemic equilibrium is globally asymptotic stable. Numerical result shows the dynamic of each compartment together with effect of multiple bio-agent intervention as a control to the dengue transmission.
Enhanced rotor modeling tailored for rub dynamic stability analysis and simulation
NASA Technical Reports Server (NTRS)
Davis, R. R.
1989-01-01
New methods are presented that allow straightforward application of complex nonlinearities to finite element based rotor dynamic analyses. The key features are: (1) the methods can be implemented with existing finite element or dynamic simulation programs, (2) formulation is general for simple application to a wide range of problems, and (3) implementation is simplified because nonlinear aspects are separated from the linear part of the model. The new techniques are illustrated with examples of inertial nonlinearity and torquewhirl which can be important in rubbing turbomachinery. The sample analyses provide new understanding of these nonlinearities which are discussed.
NASA Astrophysics Data System (ADS)
Anggriani, N.; Putri, L. Nurul; Supriatna, A. K.
2015-03-01
Many plants could not escape from diseases caused by fungi. The use of fungicide can help to reduce the spread of the fungi but if it used continuously with the same dosage, the fungi would be invulnerable to fungicide eventually. Hence, it is critical to know the appropriate level of fungicide application and its impact on the dynamics of the plants. In this paper we use an explicit model of fungal outbreaks of plant by taking into account a curative factor including the dynamic of fungicides itself. Granting of fungicide on crops is useful to control the infected plants as well as protecting the vulnerable plants. Optimal control is used to find out how many doses of the appropriate fungicide should be used to cure infected plants. Optimal control is obtained by applying Pontryagin's Minimum Principle. We found that the presence of appropriate level of fungicide speeds up the reduction of infected plants as well as accelerates the growth of healthy plants.
NASA Technical Reports Server (NTRS)
Jordan, Keith J.
1998-01-01
This report documents results from the NASA-Langley sponsored Euler Technology Assessment Study conducted by Lockheed-Martin Tactical Aircraft Systems (LMTAS). The purpose of the study was to evaluate the ability of the SPLITFLOW code using viscous and inviscid flow models to predict aerodynamic stability and control of an advanced fighter model. The inviscid flow model was found to perform well at incidence angles below approximately 15 deg, but not as well at higher angles of attack. The results using a turbulent, viscous flow model matched the trends of the wind tunnel data, but did not show significant improvement over the Euler solutions. Overall, the predictions were found to be useful for stability and control design purposes.
NASA Astrophysics Data System (ADS)
Sreenivasachar, Kannan
2001-07-01
Unified power flow controller (UPFC) has been the most versatile Flexible AC Transmission System (FACTS) device due to its ability to control real and reactive power flow on transmission lines while controlling the voltage of the bus to which it is connected. UPFC being a multi-variable power system controller it is necessary to analyze its effect on power system operation. To study the performance of the UPFC in damping power oscillations using PSCAD-EMTDC software, a de-coupled control system has been designed for the shunt inverter to control the UPFC bus voltage and the DC link capacitor voltage. The series inverter of a UPFC controls the real power flow in the transmission line. One problem associated with using a high gain PI controller (used to achieve fast control of transmission line real power flow) for the series inverter of a UPFC to control the real power flow in a transmission line is the presence of low damping. This problem is solved in this research by using a fuzzy controller. A method to model a fuzzy controller in PSCAD-EMTDC software has also been described. Further, in order to facilitate proper operation between the series and the shunt inverter control system, a new real power coordination controller has been developed and its performance was evaluated. The other problem concerning the operation of a UPFC is with respect to transmission line reactive power flow control. Step changes to transmission line reactive power references have significant impact on the UPFC bus voltage. To reduce the adverse effect of step changes in transmission line reactive power references on the UPFC bus voltage, a new reactive power coordination controller has been designed. Transient response studies have been conducted using PSCAD-EMTDC software to show the improvement in power oscillation damping with UPFC. These simulations include the real and reactive power coordination controllers. Finally, a new control strategy has been proposed for UPFC. In this proposed control strategy, the shunt inverter controls the DC link capacitor voltage and the transmission line reactive power flow. The series inverter controls the transmission line real power flow and the UPFC bus voltage. PSCAD-EMTDC simulations have been conducted to show the viability of the control strategy in damping power oscillations.
Cosmological Models and Stability
NASA Astrophysics Data System (ADS)
Andersson, Lars
Principles in the form of heuristic guidelines or generally accepted dogma play an important role in the development of physical theories. In particular, philosophical considerations and principles figure prominently in the work of Albert Einstein. As mentioned in the talk by Ji?í Bi?ák at this conference, Einstein formulated the equivalence principle, an essential step on the road to general relativity, during his time in Prague 1911-1912. In this talk, I would like to discuss some aspects of cosmological models. As cosmology is an area of physics where "principles" such as the "cosmological principle" or the "Copernican principle" play a prominent role in motivating the class of models which form part of the current standard model, I will start by comparing the role of the equivalence principle to that of the principles used in cosmology. I will then briefly describe the standard model of cosmology to give a perspective on some mathematical problems and conjectures on cosmological models, which are discussed in the later part of this paper.
NASA Technical Reports Server (NTRS)
Charlton, Eric F.
1998-01-01
Aerodynamic analysis are performed using the Lockheed-Martin Tactical Aircraft Systems (LMTAS) Splitflow computational fluid dynamics code to investigate the computational prediction capabilities for vortex-dominated flow fields of two different tailless aircraft models at large angles of attack and sideslip. These computations are performed with the goal of providing useful stability and control data to designers of high performance aircraft. Appropriate metrics for accuracy, time, and ease of use are determined in consultations with both the LMTAS Advanced Design and Stability and Control groups. Results are obtained and compared to wind-tunnel data for all six components of forces and moments. Moment data is combined to form a "falling leaf" stability analysis. Finally, a handful of viscous simulations were also performed to further investigate nonlinearities and possible viscous effects in the differences between the accumulated inviscid computational and experimental data.
Stability in generic mitochondrial models
Pete Donnell; Murad Banaji; Stephen Baigent
2007-06-25
In this paper, we use a variety of mathematical techniques to explore existence, local stability, and global stability of equilibria in abstract models of mitochondrial metabolism. The class of models constructed is defined by the biological description of the system, with minimal mathematical assumptions. The key features are an electron transport chain coupled to a process of charge translocation across a membrane. In the absence of charge translocation these models have previously been shown to behave in a very simple manner with a single, globally stable equilibrium. We show that with charge translocation the conclusion about a unique equilibrium remains true, but local and global stability do not necessarily follow. In sufficiently low dimensions - i.e. for short electron transport chains - it is possible to make claims about local and global stability of the equilibrium. On the other hand, for longer chains, these general claims are no longer valid. Some particular conditions which ensure stability of the equilibrium for chains of arbitrary length are presented.
Stability analysis of a polymer coating process
NASA Astrophysics Data System (ADS)
Kallel, A.; Hachem, E.; Demay, Y.; Agassant, J. F.
2015-05-01
A new coating process involving a short stretching distance (1 mm) and a high draw ratio (around 200) is considered. The resulting thin molten polymer film (around 10 micrometers) is set down on a solid primary film and then covered by another solid secondary film. In experimental studies, periodical fluctuation in the thickness of the coated layer may be observed. The processing conditions markedly influence the onset and the development of these defects and modeling will help our understanding of their origins. The membrane approach which has been commonly used for cast film modeling is no longer valid and two dimensional time dependent models (within the thickness) are developed in the whole domain (upstream die and stretching path). A boundary-value problem with a free surface for the Stokes equations is considered and stability of the free surface is assessed using two different numerical strategies: a tracking strategy combined with linear stability analysis involving computation of leading eigenvalues, and a Level Set capturing strategy coupled with transient stability analysis.
Lu, Mengxiao; Gantz, Donald L.; Herscovitz, Haya; Gursky, Olga
2012-01-01
Fusion of modified LDL in the arterial wall promotes atherogenesis. Earlier we showed that thermal denaturation mimics LDL remodeling and fusion, and revealed kinetic origin of LDL stability. Here we report the first quantitative analysis of LDL thermal stability. Turbidity data show sigmoidal kinetics of LDL heat denaturation, which is unique among lipoproteins, suggesting that fusion is preceded by other structural changes. High activation energy of denaturation, Ea = 100 ± 8 kcal/mol, indicates disruption of extensive packing interactions in LDL. Size-exclusion chromatography, nondenaturing gel electrophoresis, and negative-stain electron microscopy suggest that LDL dimerization is an early step in thermally induced fusion. Monoclonal antibody binding suggests possible involvement of apoB N-terminal domain in early stages of LDL fusion. LDL fusion accelerates at pH < 7, which may contribute to LDL retention in acidic atherosclerotic lesions. Fusion also accelerates upon increasing LDL concentration in near-physiologic range, which likely contributes to atherogenesis. Thermal stability of LDL decreases with increasing particle size, indicating that the pro-atherogenic properties of small dense LDL do not result from their enhanced fusion. Our work provides the first kinetic approach to measuring LDL stability and suggests that lipid-lowering therapies that reduce LDL concentration but increase the particle size may have opposite effects on LDL fusion. PMID:22855737
Beg, Ilyas; Minton, Allen P; Hassan, Imtaiyaz; Islam, Asimul; Ahmad, Faizan
2015-06-16
The reversible thermal denaturation of apo ?-lactalbumin and lysozyme was monitored via measurement of changes in absorbance and ellipticity in the presence of varying concentrations of seven mono- and oligosaccharides: glucose, galactose, fructose, sucrose, trehalose, raffinose, and stachyose. The temperature dependence of the unfolding curves was quantitatively accounted for by a two-state model, according to which the free energy of unfolding is increased by an amount that is independent of temperature and depends linearly upon the concentration of added saccharide. The increment of added unfolding free energy per mole of added saccharide was found to depend approximately linearly upon the extent of oligomerization of the saccharide. The relative strength of stabilization of different saccharide oligomers could be accounted for by a simplified statistical-thermodynamic model attributing the stabilization effect to volume exclusion deriving from steric repulsion between protein and saccharide molecules. PMID:26000826
NASA Technical Reports Server (NTRS)
Iwens, R. P.; Yu, Y.; Triner, J. E.
1975-01-01
Using state variable representation a nonlinear, discrete-time system is derived that models the converter exactly. This system is linearized about its steady state solution, and converter stability, transient response and audio susceptibility are studied. The steady state solution of the converter is stable if and only if all the roots of the linearized system are absolutely less than unity. Excellent agreement with laboratory test data has been observed.
Performance and stability analysis of a photovoltaic power system
NASA Technical Reports Server (NTRS)
Merrill, W. C.; Blaha, R. J.; Pickrell, R. L.
1978-01-01
The performance and stability characteristics of a 10 kVA photovoltaic power system are studied using linear Bode analysis and a nonlinear analog simulation. Power conversion efficiencies, system stability, and system transient performance results are given for system operation at various levels of solar insolation. Additionally, system operation and the modeling of system components for the purpose of computer simulation are described.
Massively Parallel Linear Stability Analysis with P_ARPACK for 3D Fluid Flow Modeled with MPSalsa
Lehoucq, R.B.; Salinger, A.G.
1998-10-13
We are interested in the stability of three-dimensional fluid flows to small dkturbances. One computational approach is to solve a sequence of large sparse generalized eigenvalue problems for the leading modes that arise from discretizating the differential equations modeling the flow. The modes of interest are the eigenvalues of largest real part and their associated eigenvectors. We discuss our work to develop an effi- cient and reliable eigensolver for use by the massively parallel simulation code MPSalsa. MPSalsa allows simulation of complex 3D fluid flow, heat transfer, and mass transfer with detailed bulk fluid and surface chemical reaction kinetics.
Stability Analysis of ISS Medications
NASA Technical Reports Server (NTRS)
Wotring, V. E.
2014-01-01
It is known that medications degrade over time, and that extreme storage conditions will hasten their degradation. The temperature and humidity conditions of the ISS have been shown to be within the ideal ranges for medication storage, but the effects of other environmental factors, like elevated exposure to radiation, have not yet been evaluated. Current operational procedures ensure that ISS medications are re-stocked before expiration, but this may not be possible on long duration exploration missions. For this reason, medications that have experienced long duration storage on the ISS were returned to JSC for analysis to determine any unusual effects of aging in the low- Earth orbit environment. METHODS Medications were obtained by the JSC Pharmacy from commercial distributors and were re-packaged by JSC pharmacists to conserve up mass and volume. All medication doses were part of the ISS crew medical kit and were transported to the International Space Station (ISS) via NASA's Shuttle Transportation System (Space Shuttle). After 568 days of storage, the medications were removed from the supply chain and returned to Earth on a Dragon (SpaceX) capsule. Upon return to Earth, medications were transferred to temperature and humidity controlled environmental chambers until analysis. Nine medications were chosen on the basis of their availability for study. The medications included several of the most heavily used by US crewmembers: 2 sleep aids, 2 antihistamines/decongestants, 3 pain relievers, an antidiarrheal and an alertness medication. Each medication was available at a single time point; analysis of the same medication at multiple time points was not possible. Because the samples examined in this study were obtained opportunistically from medical supplies, there were no control samples available (i.e. samples aged for a similar period of time on the ground); a significant limitation of this study. Medications were analyzed using the HPLC/MS methods described in the United States Pharmacopeia (USP) to measure the amount of intact active ingredient, identify degradation products and measure their amounts. Some analyses were conducted by an independent analytical laboratory, but certain (Schedule) medications could not be shipped to their facility and were analyzed at JSC. RESULTS Nine medications were analyzed with respect to active pharmaceutical ingredient (API) and degradant amounts. Results were compared to the USP requirements for API and degradants/impurities content for every FDA-approved medication. One medication met USP requirements at 5 months after its expiration date. Four of the nine (44% of those tested) medications tested met USP requirements up to 8 months post-expiration. Another 3 medications (33% of those tested) met USP guidelines 2-3 months before expiration. One medication, a compound classed by the FDA as a dietary supplement and sometimes used as a sleep aid, failed to meet USP requirements at 11 months post-expiration. CONCLUSION Analysis of each medication at a single time point provides limited information on the stability of a medication stored in particular conditions; it is not possible to predict how long a medication may be safe and effective from these data. Notwithstanding, five of the nine medications tested (56%) met USP requirements for API and degradants/impurities at least 5 months past expiration dates. The single compound that failed to meet USP requirements is not regulated as strictly as prescription medications are during manufacture; it is unknown if this medication would have met the requirements prior to flight. Notably, it was the furthest beyond its expiration date. Only more comprehensive analysis of flight-aged samples compared to appropriate ground controls will permit determination of spaceflight effects on medication stability.
The stability of colorectal cancer mathematical models
NASA Astrophysics Data System (ADS)
Khairudin, Nur Izzati; Abdullah, Farah Aini
2013-04-01
Colorectal cancer is one of the most common types of cancer. To better understand about the kinetics of cancer growth, mathematical models are used to provide insight into the progression of this natural process which enables physicians and oncologists to determine optimal radiation and chemotherapy schedules and develop a prognosis, both of which are indispensable for treating cancer. This thesis investigates the stability of colorectal cancer mathematical models. We found that continuous saturating feedback is the best available model of colorectal cancer growth. We also performed stability analysis. The result shows that cancer progress in sequence of genetic mutations or epigenetic which lead to a very large number of cells population until become unbounded. The cell population growth initiate and its saturating feedback is overcome when mutation changes causing the net per-capita growth rate of stem or transit cells exceed critical threshold.
Power System Transient Stability Analysis through a Homotopy Analysis Method
Wang, Shaobu; Du, Pengwei; Zhou, Ning
2014-04-01
As an important function of energy management systems (EMSs), online contingency analysis plays an important role in providing power system security warnings of instability. At present, N-1 contingency analysis still relies on time-consuming numerical integration. To save computational cost, the paper proposes a quasi-analytical method to evaluate transient stability through time domain periodic solutions’ frequency sensitivities against initial values. First, dynamic systems described in classical models are modified into damping free systems whose solutions are either periodic or expanded (non-convergent). Second, because the sensitivities experience sharp changes when periodic solutions vanish and turn into expanded solutions, transient stability is assessed using the sensitivity. Third, homotopy analysis is introduced to extract frequency information and evaluate the sensitivities only from initial values so that time consuming numerical integration is avoided. Finally, a simple case is presented to demonstrate application of the proposed method, and simulation results show that the proposed method is promising.
NASA Astrophysics Data System (ADS)
Wang, Jinliang; Liu, Shengqiang
2015-01-01
We investigate an in-host model with general incidence and removal rate, as well as distributed delays in virus infections and in productions. By employing Lyapunov functionals and LaSalle's invariance principle, we define and prove the basic reproductive number R0 as a threshold quantity for stability of equilibria. It is shown that if R0 > 1 , then the infected equilibrium is globally asymptotically stable, while if R0 ? 1 , then the infection free equilibrium is globally asymptotically stable under some reasonable assumptions. Moreover, n + 1 distributed delays describe (i) the time between viral entry and the transcription of viral RNA, (ii) the n - 1 -stage time needed for activated infected cells between viral RNA transcription and viral release, and (iii) the time necessary for the newly produced viruses to be infectious (maturation), respectively. The model can describe the viral infection dynamics of many viruses such as HIV-1, HCV and HBV.
Monte Carlo stability analysis of strained layer superlattice interfaces
Dodson, B.W.
1985-01-01
We have developed a procedure, based on conventional Monte Carlo methods, to investigate the limits of stability of a strained layer superlattice (SLS) system as a function of lattice mismatch and layer thickness. The method is demonstrated by the analysis of two-dimensional Lennard-Jones SLS systems, for which the regime of absolute SLS stability is mapped out. Extension of the technique to three-dimensional silicon-like model systems is discussed, and appropriate model potentials for stability analysis of the Si/SiGe system are introduced.
Veres, István A
2010-03-01
The stability of the finite-difference approximation of elastic wave propagation in orthotropic homogeneous media in the three-dimensional case is discussed. The model applies second- and fourth-order finite-difference approaches with staggered grid and stress-free boundary conditions in the space domain and second-order finite-difference approach in the time domain. The numerical integration of the wave equation by central differences is conditionally stable and the corresponding stability criterion for the time domain discretisation has been deduced as a function of the material properties and the geometrical discretization. The problem is discussed by applying the method of VonNeumann. Solutions and the calculation of the critical time steps is presented for orthotropic material in both the second- and fourth-order case. The criterion is verified for the special case of isotropy and results in the well-known formula from the literature. In the case of orthotropy the method was verified by long time simulations and by calculating the total energy of the system. PMID:19913266
Concrete gravity dam stability analysis
Morris, D.
1992-09-01
Under Federal Energy Regulatory Commission (FERC) guidelines, dam owners must evaluate the stability of their structures every five years. Because traditional approaches typically yield overly conservative stability estimates, EPRI sponsored the development of a computer code, CG-DAMS, to provide more-realistic assessments that reflect site-specific conditions. This finite-element code-which is available in mainframe, workstation, and personal computer versions-can be used to predict crack growth, shear, and stress under a variety of loads.
NASA Technical Reports Server (NTRS)
Smith, Arthur F.
1985-01-01
Results of wind tunnel tests at low forward speed for blade dynamic response and stability of three 62.2 cm (24.5 in) diameter models of the Prop-Fan, advanced turboprop, are presented. Measurements of dynamic response were made with the rotors mounted on an isolated nacelle, with varying tilt for nonuniform inflow. Low speed stall flutter tests were conducted at Mach numbers from 0.0 to 0.35. Measurements are compared to Eigen-solution flutter boundaries. Calculated 1P stress response agrees favorably with experiment. Predicted stall flutter boundaries correlate well with measured high stress regions. Stall flutter is significantly reduced by increased blade sweep. Susceptibility to stall flutter decreases rapidly with forward speed.
On the predictive capability and stability of rubber material models
Zheng, Haining
2008-01-01
Due to the high non-linearity and incompressibility constraint of rubber materials, the predictive capability and stability of rubber material models require specific attention for practical engineering analysis. In this ...
Analysis of cavern and well stability at the West Hackberry SPR site using a full-dome model.
Sobolik, Steven R.
2015-08-01
This report presents computational analyses that simulate the structural response of caverns at the Strategic Petroleum Reserve (SPR) West Hackberry site. The cavern field comprises 22 caverns. Five caverns (6, 7, 8, 9, 11) were acquired from industry and have unusual shapes and a history dating back to 1946. The other 17 caverns (101-117) were leached according to SPR standards in the mid-1980s and have tall cylindrical shapes. The history of the caverns and their shapes are simulated in a three-dimensional geomechanics model of the site that predicts deformations, strains, and stresses. Future leaching scenarios corresponding to oil drawdowns using fresh water are also simulated by increasing the volume of the caverns. Cavern pressures are varied in the model to capture operational practices in the field. The results of the finite element model are interpreted to provide information on the current and future status of subsidence, well integrity, and cavern stability. The most significant results in this report are relevant to Cavern 6. The cavern is shaped like a bowl with a large ceiling span and is in close proximity to Cavern 9. The analyses predict tensile stresses at the edge of the ceiling during repressurization of Cavern 6 following workover conditions. During a workover the cavern is at low pressure to service a well. The wellhead pressures are atmospheric. When the workover is complete, the cavern is repressurized. The resulting elastic stresses are sufficient to cause tension around the edge of the large ceiling span. With time, these stresses relax to a compressive state because of salt creep. However, the potential for salt fracture and propagation exists, particularly towards Cavern 9. With only 200 feet of salt between the caverns, the operational consequences must be examined if the two caverns become connected. A critical time may be during a workover of Cavern 9 in part because of the operational vulnerabilities, but also because dilatant damage is predicted under the ledge that forms the lower lobe in the cavern. The remaining caverns have no significant issues regarding cavern stability and may be safely enlarged during subsequent oil drawdowns. Predicted well strains and subsidence are significant and consequently future remedial actions may be necessary. These predicted well strains certainly suggest appropriate monitoring through a well-logging program. Subsidence is currently being monitored.
Solar Dynamic Power System Stability Analysis and Control
NASA Technical Reports Server (NTRS)
Momoh, James A.; Wang, Yanchun
1996-01-01
The objective of this research is to conduct dynamic analysis, control design, and control performance test of solar power system. Solar power system consists of generation system and distribution network system. A bench mark system is used in this research, which includes a generator with excitation system and governor, an ac/dc converter, six DDCU's and forty-eight loads. A detailed model is used for modeling generator. Excitation system is represented by a third order model. DDCU is represented by a seventh order system. The load is modeled by the combination of constant power and constant impedance. Eigen-analysis and eigen-sensitivity analysis are used for system dynamic analysis. The effects of excitation system, governor, ac/dc converter control, and the type of load on system stability are discussed. In order to improve system transient stability, nonlinear ac/dc converter control is introduced. The direct linearization method is used for control design. The dynamic analysis results show that these controls affect system stability in different ways. The parameter coordination of controllers are recommended based on the dynamic analysis. It is concluded from the present studies that system stability is improved by the coordination of control parameters and the nonlinear ac/dc converter control stabilize system oscillation caused by the load change and system fault efficiently.
NASA Technical Reports Server (NTRS)
Wong, R. C.; Owen, H. A., Jr.; Wilson, T. G.; Rodriguez, G. E.
1980-01-01
Small-signal modeling techniques are used in a system stability analysis of a breadboard version of a complete functional electrical power system. The system consists of a regulated switching dc-to-dc converter, a solar-cell-array simulator, a solar-array EMI filter, battery chargers and linear shunt regulators. Loss mechanisms in the converter power stage, including switching-time effects in the semiconductor elements, are incorporated into the modeling procedure to provide an accurate representation of the system without requiring frequency-domain measurements to determine the damping factor. The small-signal system model is validated by the use of special measurement techniques which are adapted to the poor signal-to-noise ratio encountered in switching-mode systems. The complete electrical power system with the solar-array EMI filter is shown to be stable over the intended range of operation.
The stability of input structures in a supply-driven input-output model: A regional analysis
Allison, T.
1994-06-01
Disruptions in the supply of strategic resources or other crucial factor inputs often present significant problems for planners and policymakers. The problem may be particularly significant at the regional level where higher levels of product specialization mean supply restrictions are more likely to affect leading regional industries. To maintain economic stability in the event of a supply restriction, regional planners may therefore need to evaluate the importance of market versus non-market systems for allocating the remaining supply of the disrupted resource to the region`s leading consuming industries. This paper reports on research that has attempted to show that large short term changes on the supply side do not lead to substantial changes in input coefficients and do not therefore mean the abandonment of the concept of the production function as has been suggested (Oosterhaven, 1988). The supply-driven model was tested for six sectors of the economy of Washington State and found to yield new input coefficients whose values were in most cases close approximations of their original values, even with substantial changes in supply. Average coefficient changes from a 50% output reduction in these six sectors were in the vast majority of cases (297 from a total of 315) less than +2.0% of their original values, excluding coefficient changes for the restricted input. Given these small changes, the most important issue for the validity of the supply-driven input-output model may therefore be the empirical question of the extent to which these coefficient changes are acceptable as being within the limits of approximation.
Stability analysis of graphite crystal lattice with moment interactions
Krivtsov, Anton M.
Stability analysis of graphite crystal lattice with moment interactions Igor E. Berinskiy A. M a math- ematical model for interaction between carbon atoms in hexagonal graphite lattice. The 2D layer of graphite lattice is considered. The model is based on usage of moment interactions. Carbon atom
Developments in Cylindrical Shell Stability Analysis
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Starnes, James H., Jr.
1998-01-01
Today high-performance computing systems and new analytical and numerical techniques enable engineers to explore the use of advanced materials for shell design. This paper reviews some of the historical developments of shell buckling analysis and design. The paper concludes by identifying key research directions for reliable and robust methods development in shell stability analysis and design.
Stability analysis of unsteady ablation fronts
Betti, R.; McCrory, R.L.; Verdon, C.P.
1993-08-01
The linear stability analysis of unsteady ablation fronts, is carried out for a semi-infinite uniform medium. For a laser accelerated target, it is shown that a properly selected modulation of the laser intensity can lead to the dynamic stabilization or growth-rate reduction of a large portion of the unstable spectrum. The theory is in qualitative agreement with the numerical results obtained by using the two-dimensional hydrodynamic code ORCHID.
Stability analysis of unsteady ablation fronts
NASA Astrophysics Data System (ADS)
Betti, R.; McCrory, R. L.; Verdon, C. P.
1993-11-01
The linear stability analysis of unsteady ablation fronts is carried out for a semi-infinite uniform medium. For a laser accelerated target, it is shown that a properly selected modulation of the laser intensity can lead to the dynamic stabilization or growth-rate reduction of a large portion of the unstable spectrum. The theory is in qualitative agreement with the numerical results obtained by using the two-dimensional hydrodynamic code orchid.
Stability analysis of unsteady ablation fronts
NASA Astrophysics Data System (ADS)
Betti, R.; McCrory, R. L.; Verdon, C. P.
1993-08-01
The linear stability analysis of unsteady ablation fronts is carried out for a semi-infinite uniform medium. For a laser accelerated target, it is shown that a properly selected modulation of the laser intensity can lead to the dynamic stabilization or growth-rate reduction of a large portion of the unstable spectrum. The theory is in qualitative agreement with the numerical results obtained by using the two-dimensional hydrodynamic code ORCHID.
Stability analysis of unsteady ablation fronts
Betti, R.; McCrory, R.L.; Verdon, C.P. )
1993-11-08
The linear stability analysis of unsteady ablation fronts is carried out for a semi-infinite uniform medium. For a laser accelerated target, it is shown that a properly selected modulation of the laser intensity can lead to the dynamic stabilization or growth-rate reduction of a large portion of the unstable spectrum. The theory is in qualitative agreement with the numerical results obtained by using the two-dimensional hydrodynamic code ORCHID.
Bonner, Tara F; Colbrunn, Robb W; Bottros, John J; Mutnal, Amar B; Greeson, Clay B; Klika, Alison K; van den Bogert, Antonie J; Barsoum, Wael K
2015-06-01
The acetabular labrum provides mechanical stability to the hip joint in extreme positions where the femoral head is disposed to subluxation. We aimed to quantify the isolated labrum's stabilizing value. Five human cadaveric hips were mounted to a robotic manipulator, and subluxation potential tests were run with and without labrum. Three-dimensional (3D) kinematic data were quantified using the stability index (Colbrunn et al., 2013, "Impingement and Stability of Total Hip Arthroplasty Versus Femoral Head Resurfacing Using a Cadaveric Robotics Model," J. Orthop. Res., 31(7), pp. 1108-1115). Global and regional stability indices were significantly greater with labrum intact than after total labrectomy for both anterior and posterior provocative positions. In extreme positions, the labrum imparts significant overall mechanical resistance to hip subluxation. Regional stability contributions vary with joint orientation. PMID:25759977
Advanced stability analysis for laminar flow control
NASA Technical Reports Server (NTRS)
Orszag, S. A.
1981-01-01
Five classes of problems are addressed: (1) the extension of the SALLY stability analysis code to the full eighth order compressible stability equations for three dimensional boundary layer; (2) a comparison of methods for prediction of transition using SALLY for incompressible flows; (3) a study of instability and transition in rotating disk flows in which the effects of Coriolis forces and streamline curvature are included; (4) a new linear three dimensional instability mechanism that predicts Reynolds numbers for transition to turbulence in planar shear flows in good agreement with experiment; and (5) a study of the stability of finite amplitude disturbances in axisymmetric pipe flow showing the stability of this flow to all nonlinear axisymmetric disturbances.
Performance and Stability Analysis of a Shrouded-Fan UAV
de Divitiis, Nicola
2009-01-01
This paper deals with the estimation of the performance and stability for a shrouded-fan unmanned rotorcraft whose mission profile also prescribes the flight in ground effect. The not so simple estimation of the aerodynamic coefficients and of the thrust in the various situations makes the performance calculation and the stability analysis difficult tasks. This is due to the strong interaction between the fan flow and shroud that causes quite different flow structures about the airframe depending on flight conditions. A further difficulty is related to the ground effect which produces substantial modifications in the rotor thrust and aerodynamic coefficients. To evaluate performance and stability, two models have been developed. One determines the aerodynamic coefficients of the shroud, whereas the other one calculates thrust and moment of the rotors system. Both models take into account the mutual interference between fan flow and fuselage and ground effect. Performance and stability are then discussed with ...
Stability analysis of spacecraft power systems
NASA Technical Reports Server (NTRS)
Halpin, S. M.; Grigsby, L. L.; Sheble, G. B.; Nelms, R. M.
1990-01-01
The problems in applying standard electric utility models, analyses, and algorithms to the study of the stability of spacecraft power conditioning and distribution systems are discussed. Both single-phase and three-phase systems are considered. Of particular concern are the load and generator models that are used in terrestrial power system studies, as well as the standard assumptions of load and topological balance that lead to the use of the positive sequence network. The standard assumptions regarding relative speeds of subsystem dynamic responses that are made in the classical transient stability algorithm, which forms the backbone of utility-based studies, are examined. The applicability of these assumptions to a spacecraft power system stability study is discussed in detail. In addition to the classical indirect method, the applicability of Liapunov's direct methods to the stability determination of spacecraft power systems is discussed. It is pointed out that while the proposed method uses a solution process similar to the classical algorithm, the models used for the sources, loads, and networks are, in general, more accurate. Some preliminary results are given for a linear-graph, state-variable-based modeling approach to the study of the stability of space-based power distribution networks.
STABILITY ANALYSIS OF ADAPTIVE BLIND SOURCE SEPARATION
Cichocki, Andrzej
STABILITY ANALYSIS OF ADAPTIVE BLIND SOURCE SEPARATION Shun-ichi AMARI 3 , Tian-Ping CHEN, Andrzej of adaptive learning algorithms have been proposed for blind source separation. Although the underlying condi- tion for the separating solution to be a stable equilibrium of a general learning algorithm
Aeroelastic stability analysis of flexible overexpanded rocket nozzle
NASA Astrophysics Data System (ADS)
Bekka, N.; Sellam, M.; Chpoun, A.
2015-05-01
The aim of this paper is to present a new aeroelastic stability model taking into account the viscous effects for a supersonic nozzle flow in overexpanded regimes. This model is inspired by the Pekkari model which was developed initially for perfect fluid flow. The new model called the "Modified Pekkari Model" (MPM) considers a more realistic wall pressure profile for the case of a free shock separation inside the supersonic nozzle using the free interaction theory of Chapman. To reach this objective, a code for structure computation coupled with aerodynamic excitation effects is developed that allows the analysis of aeroelastic stability for the overexpanded nozzles. The main results are presented in a comparative manner using existing models (Pekkari model and its extended version) and the modified Pekkari model developed in this work.
Nonlinear Systems: Analysis, Stability and Control Spring 2007
Sastry, S. Shankar
. Supplementary Reading Matter 1. M. Vidyasagar, Nonlinear Systems Analysis, Prentice Hall, 2nd Edition 1992. 2. A. 2. Simple Nonlinear Models Planar Dynamical Systems Chapter 2 of textbook. 1. Phase Plane Techniques Dynamics 4. Inversion, tracking, stabilization 5. MIMO systems: linearization by static state feedback 6
Stability Analysis in Tachyonic Potential Chameleon cosmology
H. Farajollahi; A. Salehi; F. Tayebi; A. Ravanpak
2011-06-09
We study general properties of attractors for tachyonic potential chameleon scalar-field model which possess cosmological scaling solutions. An analytic formulation is given to obtain fixed points with a discussion on their stability. The model predicts a dynamical equation of state parameter with phantom crossing behavior for an accelerating universe. We constrain the parameters of the model by best fitting with the recent data-sets from supernovae and simulated data points for redshift drift experiment generated by Monte Carlo simulations.
Stability analysis in tachyonic potential chameleon cosmology
Farajollahi, H.; Salehi, A.; Tayebi, F.; Ravanpak, A. E-mail: a.salehi@guilan.ac.ir E-mail: aravanpak@guilan.ac.ir
2011-05-01
We study general properties of attractors for tachyonic potential chameleon scalar-field model which possess cosmological scaling solutions. An analytic formulation is given to obtain fixed points with a discussion on their stability. The model predicts a dynamical equation of state parameter with phantom crossing behavior for an accelerating universe. We constrain the parameters of the model by best fitting with the recent data-sets from supernovae and simulated data points for redshift drift experiment generated by Monte Carlo simulations.
Stability Analysis of a Uniformly Heated Channel with Supercritical Water
Ortega Gomez, T.; Class, A.; Schulenberg, T.; Lahey, R.T. Jr.
2006-07-01
The thermal-hydraulic stability of a uniformly heated channel at supercritical water pressure has been investigated to help understand the system instability phenomena which may occur in Supercritical Water Nuclear Reactors (SCWR). We have extended the modeling approach often used for Boiling Water Nuclear Reactor (BWR) stability analysis to supercritical pressure operation conditions. We have shown that Ledinegg excursive instabilities and pressure-drop oscillations (PDO) will not occur in supercritical water systems. The linear stability characteristics of a typical uniformly heated channel were computed by evaluating the eigenvalues of the model. An analysis of non-linear instability phenomena was also performed in the time domain and the dynamic bifurcations were evaluated. (authors)
Stability Analysis of the Slowed-Rotor Compound Helicopter Configuration
NASA Technical Reports Server (NTRS)
Floros, Matthew W.; Johnson, Wayne
2007-01-01
The stability and control of rotors at high advance ratio are considered. Teetering, articulated, gimbaled, and rigid hub types are considered for a compound helicopter (rotor and fixed wing). Stability predictions obtained using an analytical rigid flapping blade analysis, a rigid blade CAMRAD II model, and an elastic blade CAMRAD II model are compared. For the flapping blade analysis, the teetering rotor is the most stable, showing no instabilities up to an advance ratio of 3 and a Lock number of 18. A notional elastic blade model of a teetering rotor is unstable at an advance ratio of 1.5, independent of pitch frequency. Analysis of the trim controls and blade flapping shows that for small positive collective pitch, trim can be maintained without excessive control input or flapping angles.
Stability Analysis of the Slowed-Rotor Compound Helicopter Configuration
NASA Technical Reports Server (NTRS)
Johnson, Wayne; Floros, Matthew W.
2004-01-01
The stability and control of rotors at high advance ratio are considered. Teetering, articulated, gimbaled, and rigid hub types are considered for a compound helicopter (rotor and fixed wing). Stability predictions obtained using an analytical rigid flapping blade analysis, a rigid blade CAMRAD II model, and an elastic blade CAMRAD II model are compared. For the flapping blade analysis, the teetering rotor is the most stable, 5howing no instabilities up to an advance ratio of 3 and a Lock number of 18. With an elastic blade model, the teetering rotor is unstable at an advance ratio of 1.5. Analysis of the trim controls and blade flapping shows that for small positive collective pitch, trim can be maintained without excessive control input or flapping angles.
Automating stability analysis for concrete gravity dams
Barrett, P.R. ); Morris, D.I.
1993-06-01
In an effort to get more realistic stability results, dam owners-with FERC's encouragement-began using actual data collected at their structures in dam safety analyses in the mid-1980s. However, making use of the data was not always easy. The conventional cracked-base analysis method cannot take into account the effects of the dam and foundation stiffnesses. General finite-element software programs for determining dam stability using site-specific data were available, but required a great deal of manipulation, expertise, and time. In early 1987, representatives of utilities, consulting firms, FERC, and federal hydropower producers serving on an Electric Power Research Institute (EPRI) dam safety advisory committee agreed that a special computer code was needed to bridge the gap between traditional analytical practices and finite-element methods. Consequently, EPRI funded ANATECH Research Corp., a consulting engineer firm in San Diego, California, to develop CG-DAMS. This two-dimensional, finite-element computer code automates the stability analysis process. The menu-driven software prompts the user for input of a specific structure's geometry, loading (using input commands such as reservoir and tailwater elevations), and site-specific material properties in the dam and foundation. The results of the analysis are illustrated in easy-to-use graphical and tabular formats, and can be used to predict crack growth, shear, and normal stresses under normal loading, flood loading, and seismic loading. Although CG-DAMS was designed to respond to FERC's dam stability analysis requirements, it can be useful to any dam owner wanting to make more realistic stability assessments than the conventional cracked-base method that reflect site-specific conditions.
The nu Andromedae System: Models and Stability
NASA Technical Reports Server (NTRS)
Stepinski, Tomasz F.; Malhotra, Renu; Black, David C.
2000-01-01
Radial velocity observations of the F8 V star nu Andromedae taken at Lick and at Whipple Observatories have revealed evidence of three periodicities in the line-of-sight velocity of the star. These periodicities have been interpreted as evidence for at least three low-mass companions (LMCs) revolving around nu Andromedae. The mass and orbital parameters inferred for these companions raise questions about the dynamical stability of the system. We report here results from our independent analysis of the published radial velocity data, as well as new unpublished data taken at Lick Observatory. Our results confirm the finding of three periods in the data. Our best fits to the data, on the assumption that these periods arise from the gravitational perturbations of companions in Keplerian orbits, are also generally in agreement but with some differences from the earlier findings. We find that the available data do not constrain well the orbital eccentricity of the middle companion in a three-companion model of the data. We also find that in order for our best-fit model to the Lick data to be dynamically stable over the lifetime of the star (approximately 2 billion years), the system must have a mean inclination to the plane of the sky greater than 13 deg. The corresponding minimum inclination for the best fit to the Whipple data set is 19 deg. These values imply that the maximum mass for the outer companion can be no greater than about 20 Jupiter masses. Our analysis of the stability of the putative systems also places constraints on the relative inclinations of the orbital planes of the companions. We comment on global versus local (i.e., method of steepest descent) means of finding best-fit orbits from radial velocity data sets.
Aeroelastic stability analysis of a Darrieus wind turbine
Popelka, D.
1982-02-01
An aeroelastic stability analysis has been developed for predicting flutter instabilities on vertical axis wind turbines. The analytical model and mathematical formulation of the problem are described as well as the physical mechanism that creates flutter in Darrieus turbines. Theoretical results are compared with measured experimental data from flutter tests of the Sandia 2 Meter turbine. Based on this comparison, the analysis appears to be an adequate design evaluation tool.
Elementary Applications of a Rotorcraft Dynamic Stability Analysis
NASA Technical Reports Server (NTRS)
Johnson, W.
1976-01-01
A number of applications of a rotorcraft aeroelastic analysis are presented to verify that the analysis encompasses the classical solutions of rotor dynamics, and to examine the influence of certain features of the model. Results are given for the following topics: flapping frequency response to pitch control; forward flight flapping stability; pitch/flap flutter and divergence; ground resonance instability; and the flight dynamics of several representative helicopters.
Wang, Zhiyuan; Sun, Z. Z.
2014-02-14
The stationary-state solutions of magnetization dynamics under a spin-polarized current that was polarized in an arbitrary direction were investigated by solving the Landau-Lifshitz-Gilbert-Slonczewski equation for a single-domain magnet. Taking into consideration the uniaxial magnetic anisotropy, the equilibrium directions of the magnetization vectors were analytically obtained by solving an algebraic cubic equation. It was found that one to three pairs of magnetization equilibrium states existed, depending on the current intensity and the direction of the spin polarization. By numerically analyzing the stabilities of these equilibrium states, the threshold switching current for the reversing the magnetic vector was obtained under different current polarization configurations, which may be useful for use in future spintronics devices.
The Dark Energy Star and Stability analysis
Piyali Bhar; Farook Rahaman
2015-01-12
We have proposed a new model of dark energy star consisting of five zones namely, solid core of constant energy density, the thin shell between core and interior, an inhomogeneous interior region with anisotropic pressures, thin shell and the exterior vacuum region. We have discussed various physical properties. The model satisfies all the physical requirements. The stability condition under small linear perturbation has also been discussed.
Stability analysis of automobile driver steering control
NASA Technical Reports Server (NTRS)
Allen, R. W.
1981-01-01
In steering an automobile, the driver must basically control the direction of the car's trajectory (heading angle) and the lateral deviation of the car relative to a delineated pathway. A previously published linear control model of driver steering behavior which is analyzed from a stability point of view is considered. A simple approximate expression for a stability parameter, phase margin, is derived in terms of various driver and vehicle control parameters, and boundaries for stability are discussed. A field test study is reviewed that includes the measurement of driver steering control parameters. Phase margins derived for a range of vehicle characteristics are found to be generally consistent with known adaptive properties of the human operator. The implications of these results are discussed in terms of driver adaptive behavior.
Stability analysis and \\mu-synthesis control of brake systems
Lignon, Sylvain; Jezequel, Louis
2008-01-01
The concept of friction-induced brake vibrations, commonly known as judder, is investigated. Judder vibration is based on the class of geometrically induced or kinematic constraint instability. After presenting the modal coupling mechanism and the associated dynamic model, a stability analysis as well as a sensitivity analysis have been conducted in order to identify physical parameters for a brake design avoiding friction-induced judder instability. Next, in order to reduce the size of the instability regions in relation to possible system parameter combinations, robust stability via \\mu-synthesis is applied. By comparing the unstable regions between the initial and controlled brake system, some general indications emerge and it appears that robust stability via \\mu-synthesis has some effect on the instability of the brake system.
Analysis of Stabilization Mechanisms in Lifted Flames
NASA Astrophysics Data System (ADS)
Navarro-Martinez, S.; Kronenburg, A.
2009-12-01
Flame stabilization and the mechanisms that govern the dynamics at the flame base have been subject to numerous studies in recent years. Recent results using a combined Large Eddy Simulation-Conditional Moment Closure (LES-CMC) approach to model the turbulent flow field and the turbulence-chemistry interactions has been successful in predicting flame ignition and stabilization by auto-ignition, but LES-CMCs capability of the accurate modelling of the competition between turbulent quenching and laminar and turbulent flame propagation at the anchor point has not been resolved. This paper will consolidate LES-CMC results by analysing a wide range of lifted flame geometries with different prevailing stabilization mechanisms. The simulations allow a clear distinction of the prevailing stabilization mechanisms for the different flames, LES-CMC accurately predicts the competition between turbulence and chemistry during the auto-ignition process, however, the dynamics of the extinction process and turbulent flame propagation are not well captured. The averaging process inherent in the CMC methods does not allow for an instant response of the transported conditionally averaged reactive species to the changes in the flow conditions and any response of the scalars will therefore be delayed. Stationary or quasi-stationary conditions, however, can be well predicted for all flame configurations.
NASA Astrophysics Data System (ADS)
Borlace, S.; Cai, W.; Santoso, A.
2012-12-01
The Bjerknes (BJ) stability index is an approximate formula that may be used to analyse the stability of the coupled El Nino/Southern Oscillation (ENSO) mode. The BJ stability index depends on the basic mean state, the atmosphere's sensitivity to sea surface temperature and the ocean's sensitivity to wind forcing. A positive BJ stability index indicates a growth of ENSO stability while a negative BJ stability index signifies the rate of decay with negative contributions coming from damping by mean advection and air-sea heat fluxes while positive contributions from the zonal advective, Ekman pumping and thermocline feedback. Here we employ the BJ stability index to investigate ENSO variability over multi-decadal time scales in the Commonwealth Scientific and Industrial Research Organisation Mark version 3.0L (CSIRO Mk3L) coupled general circulation model and assess the sensitivity of ENSO to changes in tropical climate conditions. Model simulations are forced with atmospheric concentrations fixed at pre-industrial levels and integrated over 1000-years to allow a variety of ENSO events to be simulated. The BJ index points to a simulated ENSO that is damped with the negative contribution from thermal damping by air-sea heat fluxes dominating over the feedback processes. There also exists a significant positive correlation between the ENSO amplitude and ENSO stability such that the BJ index becomes less damped with increasing ENSO variability. We find that significant variations in the ENSO amplitude exist on decadal and centennial time scales. These variations are mainly governed by variations in the strength of the thermocline feedback, which is in turn a function of the coherence between fluctuations of the atmosphere and the ocean in the equatorial Pacific, reflecting the response of winds to temperature gradients and the response of the thermocline to winds. Surprisingly, such decadal and centennial variations are only weakly control by the mean state differences. The implications for interpreting observed ENSO variability will be discussed.
Wang, Jinliang; Zhang, Ran; Kuniya, Toshikazu
2015-12-01
In this paper, an Susceptible-Vaccines-Exposed-Infectious-Recovered model with continuous age-structure in the exposed and infectious classes is investigated. These two ages are assumed to have arbitrary distributions that are represented by age-specific rates leaving the exposed and the infectious classes. We investigate the global dynamics of this model in the sense of basic reproduction number via constructing Lyapunov functions. The asymptotic smoothness of solutions and uniform persistence of the system is shown from reformulating the system as a system of Volterra integral equations. PMID:25689314
Stability Analysis for HIFiRE Experiments
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan; White, Jeffery A.; Kimmel, Roger; Adamczak, David; Borg, Matthew; Stanfield, Scott; Smith, Mark S.
2012-01-01
The HIFiRE-1 flight experiment provided a valuable database pertaining to boundary layer transition over a 7-degree half-angle, circular cone model from supersonic to hypersonic Mach numbers, and a range of Reynolds numbers and angles of attack. This paper reports selected findings from the ongoing computational analysis of the measured in-flight transition behavior. Transition during the ascent phase at nearly zero degree angle of attack is dominated by second mode instabilities except in the vicinity of the cone meridian where a roughness element was placed midway along the length of the cone. The growth of first mode instabilities is found to be weak at all trajectory points analyzed from the ascent phase. For times less than approximately 18.5 seconds into the flight, the peak amplification ratio for second mode disturbances is sufficiently small because of the lower Mach numbers at earlier times, so that the transition behavior inferred from the measurements is attributed to an unknown physical mechanism, potentially related to step discontinuities in surface height near the locations of a change in the surface material. Based on the time histories of temperature and/or heat flux at transducer locations within the aft portion of the cone, the onset of transition correlated with a linear N-factor, based on parabolized stability equations, of approximately 13.5. Due to the large angles of attack during the re-entry phase, crossflow instability may play a significant role in transition. Computations also indicate the presence of pronounced crossflow separation over a significant portion of the trajectory segment that is relevant to transition analysis. The transition behavior during this re-entry segment of HIFiRE-1 flight shares some common features with the predicted transition front along the elliptic cone shaped HIFiRE-5 flight article, which was designed to provide hypersonic transition data for a fully 3D geometric configuration. To compare and contrast the crossflow dominated transition over the HIFiRE-1 and HIFiRE-5 configurations, this paper also analyzes boundary layer instabilities over a subscale model of the HIFiRE-5 flight configuration that was tested in the Mach 6 quiet tunnel facility at Purdue University.
Stability analysis of White Oak Dam
1995-04-11
White Oak Dam is located in the White Oak Creek watershed which provides the primary surface drainage for Oak Ridge National Laboratory. A stability analysis was made on the dam by Syed Ahmed in January 1994 which included an evaluation of the liquefaction potential of the embankment and foundation. This report evaluates the stability of the dam and includes comments on the report prepared by Ahmed. Slope stability analyses were performed on the dam and included cases for sudden drawdown, steady seepage, partial pool and earthquake. Results of the stability analyses indicate that the dam is stable and failure of the structure would not occur for the cases considered. The report prepared by Ahmed leads to the same conclusions as stated above. Review of the report finds that it is complete, well documented and conservative in its selection of soil parameters. The evaluation of the liquefaction potential is also complete and this report is in agreement with the findings that the dam and foundation are not susceptible to liquefaction.
NASA Astrophysics Data System (ADS)
Godey, Cyril; Balakireva, Irina V.; Coillet, Aurélien; Chembo, Yanne K.
2014-06-01
We propose a detailed stability analysis of the Lugiato-Lefever model for Kerr optical frequency combs in whispering-gallery-mode resonators when they are pumped in either the anomalous- or normal-dispersion regime. We analyze the spatial bifurcation structure of the stationary states depending on two parameters that are experimentally tunable; namely, the pump power and the cavity detuning. Our study demonstrates that, in both the anomalous- and normal-dispersion cases, nontrivial equilibria play an important role in this bifurcation map because their associated eigenvalues undergo critical bifurcations that are actually foreshadowing the existence of localized and extended spatial dissipative structures. The corresponding bifurcation maps are evidence of a considerable richness from a dynamical standpoint. The case of anomalous dispersion is indeed the most interesting from the theoretical point of view because of the considerable variety of dynamical behavior that can be observed. For this case we study the emergence of super- and subcritical Turing patterns (or primary combs) in the system via modulational instability. We determine the areas where bright isolated cavity solitons emerge, and we show that soliton molecules can emerge as well. Very complex temporal patterns can actually be observed in the system, where solitons (or soliton complexes) coexist with or without mutual interactions. Our investigations also unveil the mechanism leading to the phenomenon of breathing solitons. Two routes to chaos in the system are identified; namely, a route via the destabilization of a primary comb, and another via the destabilization of solitons. For the case of normal dispersion, we unveil the mechanism leading to the emergence of weakly stable Turing patterns. We demonstrate that this weak stability is justified by the distribution of stable and unstable fixed points in the parameter space (flat states). We show that dark cavity solitons can emerge in the system, and also show how these solitons can coexist in the resonator as long as they do not interact with each other. We find evidence of breather solitons in this normal dispersion regime as well. The Kerr frequency combs corresponding to all these spatial dissipative structures are analyzed in detail, along with their stability properties. A discussion is led about the possibility to gain unifying comprehension of the observed spectra from the dynamical complexity of the system.
Improved analysis method for rotor stability
Matsumoto, Iwao; Furukawa, Toyoaki; Wani, Masafumi
1995-12-31
In the rotary machine field, the lack of accuracy in the analysis for rotor stability is unacceptable and must be improved. This lack of accuracy is mainly caused by discrepancies between the calculated and measured oil film coefficients. Therefore, the conventional analysis method, in which the Reynolds equation is solved by treating the rotor vibration as a slight whirl and by employing the fixed boundary condition for oil film formation, is flawed. The authors, therefore, re-evaluate the boundary condition for oil film formation, and propose a new analysis method of oil film analysis by considering the real shaft vibration amplitudes. They also compare the oil film coefficients by the proposed method with that by the conventional method.
A consistent orbital stability analysis for the GJ 581 system
Joiner, David A.; Sul, Cesar; Kress, Monika E.; Dragomir, Diana; Kane, Stephen R.
2014-06-20
We apply a combination of N-body modeling techniques and automated data fitting with Monte Carlo Markov Chain uncertainty analysis of Keplerian orbital models to RV data to determine long-term stability of the planetary system GJ 581. We find that while there are stability concerns with the four-planet model as published by Forveille et al., when uncertainties in the system are accounted for, particularly stellar jitter, the hypothesis that the four-planet model is gravitationally unstable is not statistically significant. Additionally, the system including proposed planet g by Vogt et al. also shows some stability concerns when eccentricities are allowed to float in the orbital fit, yet when uncertainties are included in the analysis, the system including planet g also cannot be proven to be unstable. We present revised reduced ?{sup 2} values for Keplerian astrocentric orbital fits assuming four-planet and five-planet models for GJ 581 under the condition that best fits must be stable, and we find no distinguishable difference by including planet g in the model. Additionally, we present revised orbital element estimates for each, assuming uncertainties due to stellar jitter under the constraint of the system being gravitationally stable.
LOCAL STABILITY ANALYSIS OF FLEXIBLE INDEPENDENT COMPONENT ANALYSIS ALGORITHM
Cichocki, Andrzej
Institute, RIKEN, JAPAN fcia,amarig@brain.riken.go.jp ABSTRACT This paper addresses local stability analysis to be generated by x = As (1) where A 2 IRm n is called the mixing matrix ( m n) and s is an n-dimensional vector: y = P s (2) where P is some permutation matrix and is some non- singular diagonal matrix. Typical
Thermodynamic modeling of natural zeolite stability
Chipera, S.J.; Bish, D.L.
1997-06-01
Zeolites occur in a variety of geologic environments and are used in numerous agricultural, commercial, and environmental applications. It is desirable to understand their stability both to predict future stability and to evaluate the geochemical conditions resulting in their formation. The use of estimated thermodynamic data for measured zeolite compositions allows thermodynamic modeling of stability relationships among zeolites in different geologic environments (diagenetic, saline and alkaline lakes, acid rock hydrothermal, basic rock, deep sea sediments). This modeling shows that the relative cation abundances in both the aqueous and solid phases, the aqueous silica activity, and temperature are important factors in determining the stable zeolite species. Siliceous zeolites (e.g., clinoptilolite, mordenite, erionite) present in saline and alkaline lakes or diagenetic deposits formed at elevated silica activities. Aluminous zeolites (e.g., natrolite, mesolite/scolecite, thomsonite) formed in basic rocks in association with reduced silica activities. Likewise, phillipsite formation is favored by reduced aqueous silica activities. The presence of erionite, chabazite, and phillipsite are indicative of environments with elevated potassium concentrations. Elevated temperature, calcic water conditions, and reduced silica activity help to enhance the laumontite and wairakite stability fields. Analcime stability increases with increased temperature and aqueous Na concentration, and/or with decreased silica activity.
DYNAMIC LANDSCAPES, STABILITY AND ECOLOGICAL MODELING
The image of a ball rolling along a series of hills and valleys is an effective heuristic by which to communicate stability concepts in ecology. However, the dynamics of this landscape model have little to do with ecological systems. Other landscape representations, however, are ...
Long term voltage stability analysis for small disturbances
Men, Kun
2009-05-15
stability margin accurately and efficiently at a reasonable cost, especially for large system. Considering the first challenge, this dissertation applied eigenvalue based bifurcation analysis to allocate the contribution of voltage stability. We investigate...
Stability analysis for systems of nonlinear Hill's equations
NASA Astrophysics Data System (ADS)
Mahmoud, Gamal M.; Bountis, Tassos; Ahmed, Sayed A.
2000-10-01
Systems of nonlinear differential equations with periodic coefficients, which include Hill's and Mathieu's equations as examples in the linear limit, are important from a practical point of view. Nonlinear Hill's equations model a variety of dynamical systems of interest to physics and engineering, in which perturbations enter as periodic modulations of their linear frequencies. As is well known, the stability properties of some fundamental periodic solutions of these systems is often an essential problem. The main purpose of this paper is to concentrate on one such class of nonlinear Hill's equations and study the stability properties of some of their simplest periodic solutions analytically as well as numerically. To accomplish this task, we first use an extension of the generalized averaging method to approximate these solutions and then apply the technique of multiple scaling to perform the stability analysis. A three-particle system with free-free boundary conditions is studied as an example. The accuracy of our results is tested, within the limits of first-order perturbation theory, and is found to be well confirmed by numerical experiments. The stability analysis of these simple periodic solutions, though local in itself, can yield considerable information about more global properties of the dynamics, since it is in the vicinity of such solutions that the largest regions of regular or chaotic motion are usually observed, depending on whether the periodic solution is, respectively, stable or unstable.
Linear stability analysis of transverse dunes
Hygor P. M. Melo; Eric J. R. Parteli; José S. Andrade Jr; Hans J. Herrmann
2012-02-16
Sand-moving winds blowing from a constant direction in an area of high sand availability form transverse dunes, which have a fixed profile in the direction orthogonal to the wind. Here we show, by means of a linear stability analysis, that transverse dunes are intrinsically unstable. Any along-axis perturbation on a transverse dune amplify in the course of dune migration due to the combined effect of two main factors, namely: the lateral transport through avalanches along the dune's slip-face, and the scaling of dune migration velocity with the inverse of the dune height. Our calculations provide a quantitative explanation for recent observations from experiments and numerical simulations, which showed that transverse dunes moving on the bedrock cannot exist in a stable form and decay into a chain of crescent-shaped barchans.
Linear stability analysis of transverse dunes
Melo, Hygor P M; Andrade, José S; Herrmann, Hans J
2012-01-01
Sand-moving winds blowing from a constant direction in an area of high sand availability form transverse dunes, which have a fixed profile in the direction orthogonal to the wind. Here we show, by means of a linear stability analysis, that transverse dunes are intrinsically unstable. Any along-axis perturbation on a transverse dune amplify in the course of dune migration due to the combined effect of two main factors, namely: the lateral transport through avalanches along the dune's slip-face, and the scaling of dune migration velocity with the inverse of the dune height. Our calculations provide a quantitative explanation for recent observations from experiments and numerical simulations, which showed that transverse dunes moving on the bedrock cannot exist in a stable form and decay into a chain of crescent-shaped barchans.
Stability analysis and future singularity of the m{sup 2} R ?{sup -2} R model of non-local gravity
Dirian, Yves; Mitsou, Ermis E-mail: ermis.mitsou@unige.ch
2014-10-01
We analyse the classical stability of the model proposed by Maggiore and Mancarella, where gravity is modified by a term ? m{sup 2} R ?{sup -2} R to produce the late-time acceleration of the expansion of the universe. Our study takes into account all excitations of the metric that can potentially drive an instability. There are some subtleties in identifying these modes, as a non-local field theory contains dynamical fields which yet do not correspond to degrees of freedom. Since some of them are ghost-like, we clarify the impact of such modes on the stability of the solutions of interest that are the flat space-time and cosmological solutions. We then find that flat space-time is unstable under scalar perturbations, but the instability manifests itself only at cosmological scales, i.e. out of the region of validity of this solution. It is therefore the stability of the FLRW solution which is relevant there, in which case the scalar perturbations are known to be well-behaved by numerical studies. By finding the analytic solution for the late-time behaviour of the scale factor, which leads to a big rip singularity, we argue that the linear perturbations are bounded in the future because of the domination of Hubble friction. In particular, this effect damps the scalar ghost perturbations which were responsible for destabilizing Minkowski space-time. Thus, the model remains phenomenologically viable.
Physics-based stability analysis of MOS transistors
NASA Astrophysics Data System (ADS)
Ferrara, A.; Steeneken, P. G.; Boksteen, B. K.; Heringa, A.; Scholten, A. J.; Schmitz, J.; Hueting, R. J. E.
2015-11-01
In this work, a physics-based model is derived based on a linearization procedure for investigating the electrical, thermal and electro-thermal instability of power metal-oxide-semiconductor (MOS) transistors. The proposed model can be easily interfaced with a circuit or device simulator to perform a failure analysis, making it particularly useful for power transistors. Furthermore, it allows mapping the failure points on a three-dimensional (3D) space defined by the gate-width normalized drain current, drain voltage and junction temperature. This leads to the definition of the Safe Operating Volume (SOV), a powerful frame work for making failure predictions and determining the main root of instability (electrical, thermal or electro-thermal) in different bias and operating conditions. A comparison between the modeled and the measured SOV of silicon-on-insulator (SOI) LDMOS transistors is reported to support the validity of the proposed stability analysis.
Aggregation in ecosystem models and model stability
NASA Astrophysics Data System (ADS)
Giricheva, Evgeniya
2015-05-01
Using a multimodal approach to research ecosystems improves usage of available information on an object. This study presents several models of the Bering Sea ecosystem. The ecosystem is considered as a closed object, that is, the influence of the environment is not provided. We then add the links with the external medium in the models. The models differ in terms of the degree and method of grouping components. Our method is based on the differences in habitat and food source of groups, which allows us to determine the grouping of species with a greater effect on system dynamics. In particular, we determine whether benthic fish aggregation or pelagic fish aggregation can change the consumption structure of some groups of species, and consequently, the behavior of the entire model system.
Stability Analysis of Non-Newtonian Rimming Flow
Fomin, Sergei; Haine, Peter
2015-01-01
The rimming flow of a viscoelastic thin film inside a rotating horizontal cylinder is studied theoretically. Attention is given to the onset of non-Newtonian free-surface instability in creeping flow. This non-inertial instability has been observed in experiments, but current theoretical models of Newtonian fluids can neither describe its origin nor explain its onset. This study examines two models of non Newtonian fluids to see if the experimentally observed instability can be predicted analytically. The non-Newtonian viscosity and elastic properties of the fluid are described by the Generalized Newtonian Fluid (GNF) and Second Order Viscoelastic Fluid (SOVF) constitutive models, respectively. With linear stability analysis, it is found that, analogously to the Newtonian fluid, rimming flow of viscous non-Newtonian fluids (modeled by GNF) is neutrally stable. However, the viscoelastic properties of the fluid (modeled by SOVF) are found to contribute to the flow destabilization. The instability is shown to in...
Shapes and stability of algebraic nuclear models
NASA Technical Reports Server (NTRS)
Lopez-Moreno, Enrique; Castanos, Octavio
1995-01-01
A generalization of the procedure to study shapes and stability of algebraic nuclear models introduced by Gilmore is presented. One calculates the expectation value of the Hamiltonian with respect to the coherent states of the algebraic structure of the system. Then equilibrium configurations of the resulting energy surface, which depends in general on state variables and a set of parameters, are classified through the Catastrophe theory. For one- and two-body interactions in the Hamiltonian of the interacting Boson model-1, the critical points are organized through the Cusp catastrophe. As an example, we apply this Separatrix to describe the energy surfaces associated to the Rutenium and Samarium isotopes.
Linear Stability for Models of Active Suspensions
NASA Astrophysics Data System (ADS)
Hohenegger, Christel; Shelley, Michael
2009-11-01
Recent work by Saintillan & Shelley has modeled the dynamics of active suspensions, such as swirling bacterial baths, through a modification of Doi rod theory. However, the sign of the dipolar extra stress can be of the opposite sign of Doi theory, and this leads to large-scale flow instability. We investigate the structure of this system linearized near a state of isotropy and uniformity. We show that concentration fluctuations generally decay, and that while long-wave instability depends upon the particular swimming mechanism, short-wave stability does not. This suggests that the model is well-posed, even in the absence of translational and rotational diffusion effects.
Stability of a Distributed Generation Network Using the Kuramoto Models
NASA Astrophysics Data System (ADS)
Fioriti, Vincenzo; Ruzzante, Silvia; Castorini, Elisa; Marchei, Elena; Rosato, Vittorio
We derive a Kuramoto-like equation from the Cardell-Ilic distributed electrical generation network and use the resulting model to simulate the phase stability and the synchronization of a small electrical grid. It is well-known that a major problem for distributed generation is the frequency stability. This is a non linear problem and proper models for analysis are sorely lacking. In our model nodes are arranged in a regular lattice; the strength of their couplings are randomly chosen and allowed to vary as square waves. Although the system undergoes several synchronization losses, nevertheless it is able to quickly resynchronize. Moreover, we show that the synchronization rising-time follows a power-law.
Theory and modelling of nanocarbon phase stability.
Barnard, A. S.
2006-01-01
The transformation of nanodiamonds into carbon-onions (and vice versa) has been observed experimentally and has been modeled computationally at various levels of sophistication. Also, several analytical theories have been derived to describe the size, temperature and pressure dependence of this phase transition. However, in most cases a pure carbon-onion or nanodiamond is not the final product. More often than not an intermediary is formed, known as a bucky-diamond, with a diamond-like core encased in an onion-like shell. This has prompted a number of studies investigating the relative stability of nanodiamonds, bucky-diamonds, carbon-onions and fullerenes, in various size regimes. Presented here is a review outlining results of numerous theoretical studies examining the phase diagrams and phase stability of carbon nanoparticles, to clarify the complicated relationship between fullerenic and diamond structures at the nanoscale.
Stability of earthquake clustering models: Criticality and branching ratios
NASA Astrophysics Data System (ADS)
Zhuang, Jiancang; Werner, Maximilian J.; Harte, David S.
2013-12-01
We study the stability conditions of a class of branching processes prominent in the analysis and modeling of seismicity. This class includes the epidemic-type aftershock sequence (ETAS) model as a special case, but more generally comprises models in which the magnitude distribution of direct offspring depends on the magnitude of the progenitor, such as the branching aftershock sequence (BASS) model and another recently proposed branching model based on a dynamic scaling hypothesis. These stability conditions are closely related to the concepts of the criticality parameter and the branching ratio. The criticality parameter summarizes the asymptotic behavior of the population after sufficiently many generations, determined by the maximum eigenvalue of the transition equations. The branching ratio is defined by the proportion of triggered events in all the events. Based on the results for the generalized case, we show that the branching ratio of the ETAS model is identical to its criticality parameter because its magnitude density is separable from the full intensity. More generally, however, these two values differ and thus place separate conditions on model stability. As an illustration of the difference and of the importance of the stability conditions, we employ a version of the BASS model, reformulated to ensure the possibility of stationarity. In addition, we analyze the magnitude distributions of successive generations of the BASS model via analytical and numerical methods, and find that the compound density differs substantially from a Gutenberg-Richter distribution, unless the process is essentially subcritical (branching ratio less than 1) or the magnitude dependence between the parent event and the direct offspring is weak.
Wellbore stability analysis during the production of a carbonate reservoir
NASA Astrophysics Data System (ADS)
Alves, J.-L.; Coehlo, L.; Baud, P.; Guevara Junior, N.
2009-04-01
Carbonate reservoirs represent a major part of the world oil and gas reserves. During production, the extraction of hydrocarbons reduces pore pressure and thus causes an increase in the effective stress and mechanical compaction in the reservoir. The compactive deformation and failure may be spatially extensive or localized to the vicinity of the wellbore, but in either case the consequences can be economically severe involving surface subsidence, well failure and various production problems. The analysis of wellbore stability and more generally of deformation and failure in carbonate environments hinges upon a relevant constitutive modeling of carbonate rocks over a wide range of porosities. In this study, we performed a wellbore stability analysis for a lateral wellbore junction in three dimensions. The complex geometry for the wellbore junction was modeled with tetrahedral finite elements considering a rate independent elastic-plastic isotropic material that presented linear behavior during elastic strain and associated flow rule. A finite element model simulating drilling and production phases were done for field conditions from a deep water reservoir in Campos basin, offshore Brazil. In this context, several scenarios were studied considering true 3D orientation for both in situ stresses and geometry of the wellbore junction itself. We discussed the impact of constitutive modeling on the wellbore stability, based on new experimental data on two micritic porous carbonates. Series of conventional triaxial experiments were performed at room temperature in dry and wet conditions on samples of Comiso and Tavel limestones of respective porosity 17 and 16%. The wet samples were deformed in drained conditions with 10 MPa pore pressure. The initial yield stresses were identified as the critical stresses at the onset of shear-enhanced compaction, subsequent yield stresses were considered to depend on hardening given by the plastic volumetric strain. For both limestones, we found that water had a moderate effect on the yield stresses but influenced significantly the hardening behavior of the rocks.
Stability and Hopf Bifurcation Analysis of the Delay Logistic Equation
Milind M. Rao; K. L. Preetish
2012-11-29
Logistic functions are good models of biological population growth. They are also popular in marketing in modelling demand-supply curves and in a different context, to chart the sales of new products over time. Delays being inherent in any biological system, we seek to analyse the effect of delays on the growth of populations governed by the logistic equation. In this paper, the local stability analysis, rate of convergence and local bifurcation analysis of the logistic equation with one and two delays is carried out and it can be extended to a system with multiple delays. Since fluctuating populations are susceptible to extinction due to sudden and unforeseen environmental disturbances, a knowledge of the conditions in which the population density is fluctuating or stable is of great interest in planning and designing control as well as management strategies.
NASA Astrophysics Data System (ADS)
Dasgupta, Sambarta
Transient stability and sensitivity analysis of power systems are problems of enormous academic and practical interest. These classical problems have received renewed interest, because of the advancement in sensor technology in the form of phasor measurement units (PMUs). The advancement in sensor technology has provided unique opportunity for the development of real-time stability monitoring and sensitivity analysis tools. Transient stability problem in power system is inherently a problem of stability analysis of the non-equilibrium dynamics, because for a short time period following a fault or disturbance the system trajectory moves away from the equilibrium point. The real-time stability decision has to be made over this short time period. However, the existing stability definitions and hence analysis tools for transient stability are asymptotic in nature. In this thesis, we discover theoretical foundations for the short-term transient stability analysis of power systems, based on the theory of normally hyperbolic invariant manifolds and finite time Lyapunov exponents, adopted from geometric theory of dynamical systems. The theory of normally hyperbolic surfaces allows us to characterize the rate of expansion and contraction of co-dimension one material surfaces in the phase space. The expansion and contraction rates of these material surfaces can be computed in finite time. We prove that the expansion and contraction rates can be used as finite time transient stability certificates. Furthermore, material surfaces with maximum expansion and contraction rate are identified with the stability boundaries. These stability boundaries are used for computation of stability margin. We have used the theoretical framework for the development of model-based and model-free real-time stability monitoring methods. Both the model-based and model-free approaches rely on the availability of high resolution time series data from the PMUs for stability prediction. The problem of sensitivity analysis of power system, subjected to changes or uncertainty in load parameters and network topology, is also studied using the theory of normally hyperbolic manifolds. The sensitivity analysis is used for the identification and rank ordering of the critical interactions and parameters in the power network. The sensitivity analysis is carried out both in finite time and in asymptotic. One of the distinguishing features of the asymptotic sensitivity analysis is that the asymptotic dynamics of the system is assumed to be a periodic orbit. For asymptotic sensitivity analysis we employ combination of tools from ergodic theory and geometric theory of dynamical systems.
CG-DAMS: Concrete gravity dam stability analysis software
Not Available
1993-01-01
CG-DAMS is a finite element based program written specifically for the stability analysis of concrete gravity dams. The code automates the prediction and evaluation of cracking in the dam, along the dam-rock interface, and in the foundation using incremental nonlinear analysis techniques based on the smeared crack'' approach. Its primary application is in the computation of dam-rock interface sliding stability factors of safety. The automated procedure for crack propagation analysis replaces the trial-and-error cracked-base analysis method commonly used in gravity dam safety analyses. This Application manual of CG-DAMS illustrates, through sample problems, the many features of the software. Example problems illustrate the capabilities of both CG-DAMS-PC and CG-DAMS-ABAQUS. CG-DAMS-PC is a menu driven program that runs on 386/486 PCs under the DOS operating system (4 Megabytes RAM, 25 Megabytes of hard disk space). CG-DAMS-ABAQUS is a pre- and post-processor along with a concrete constitutive model and distributed load module that interfaces with the ABAQUS general purpose finite element program. The PC program contains thermal analysis capabilities, a rough crack constitutive model, and an interface to the CRFLOOD software not available with the ABAQUS version. The CG-DAMS-ABAQUS program contains time marching dynamic analysis capabilities not available with the PC program. Example analyses presented include static, pseudo dynamic, and time marching dynamic analyses. The manual also presents sensitivity evaluations on mesh size and foundation material strength. Comparisons are presented between CG-DAMS and gravity method calculations. Comparisons with other finite element software are included for the dynamic time history analyses.
Landslide stability analysis on basis of LIDAR data extraction
NASA Astrophysics Data System (ADS)
Hu, Hui; Fernandez-Steeger, Tomas M.; Dong, Mei; Azzam, Rafig
2010-05-01
Currently, existing contradictory between remediation and acquisition from natural resource induces a series of divergences. With regard to open pit mining, legal regulation requires human to fill back the open pit area with water or recreate new landscape by other materials; on the other hand, human can not help excavating the mining area due to the shortage of power resource. However, to engineering geologists, one coincident problem which takes place not only in filling but also in mining operation should be paid more attention to, i.e. the slope stability analysis within these areas. There are a number of construction activities during remediation or mining process which can directly or indirectly cause slope failure. Lives can be endangered since local failure either while or after remediation; for mining process, slope failure in a bench, which carries a main haul road or is adjacent to human activity area, would be significant catastrophe to the whole mining program. The stability of an individual bench or slope is controlled by several factors, which are geological condition, morphology, climate, excavation techniques and transportation approach. The task which takes the longest time is to collect the morphological data. Consequently, it is one of the most dangerous tasks due to the time consuming in mining field. LIDAR scanning for morphological data collecting can help to skip this obstacle since advantages of LIDAR techniques as follows: • Dynamic range available on the market: from 3 m to beyond 1 km, • Ruggedly designed for demanding field applications, • Compact, easily hand-carried and deployed by a single operator. In 2009, scanning campaigns for 2 open pit quarry have been carried out. The aim for these LIDAR detections is to construct a detailed 3D quarry model and analyze the bench stability to support the filling planning. The 3D quarry surface was built up by using PolyWorks 10.1 on basis of LIDAR data. LIDAR data refining takes an important role during surface construction for further more precise analysis purpose. 3D geological model can be built based on the connection between surface model and geological data like borehole data in GOCAD. Regarding the bench stability analysis, LEM (Limit Equilibrium Method) analysis using Janbu and FEM (Finite Element Method) have been adopted during this analyzing task. A program was developed to convert GOCAD 2D section data directly into the FEM software. The meshed model is then used for stability analysis. In one quarry, 3 cross sections have been extracted on basis of LIDAR original data (original 3 cross sections). To evaluate the advantages of LIDAR data for slope analysis, the results of safety factor (SF) were compared to simplified slope models as they are used normally. The comparison showed that variations of the SF reach up to 9%. Additionally, conservative evaluation demonstrated by SF results based on simplified model is not adaptive for decision making of filling.
Kahler stabilized, modular invariant heterotic string models
Gaillard, Mary K.; Gaillard, Mary K.; Nelson, Brent D.
2007-03-19
We review the theory and phenomenology of effective supergravity theories based on orbifold compactifications of the weakly-coupled heterotic string. In particular, we consider theories in which the four-dimensional theory displays target space modular invariance and where the dilatonic mode undergoes Kahler stabilization. A self-contained exposition of effective Lagrangian approaches to gaugino condensation and heterotic string theory is presented, leading to the development of the models of Binétruy, Gaillard and Wu. Various aspects of the phenomenology of this class of models are considered. These include issues of supersymmetry breaking and superpartner spectra, the role of anomalous U(1) factors, issues of flavor and R-parity conservation, collider signatures, axion physics, and early universe cosmology. For the vast majority of phenomenological considerations the theories reviewed here compare quite favorably to other string-derived models in the literature. Theoretical objections to the framework and directions for further research are identified and discussed.
On the vacuum stability of SUSY models
J. E Camargo-Molina; B. O'Leary; W. Porod; F. Staub
2013-10-04
The existence of multiple non-equivalent minima of the scalar potential in SUSY models both raises technical challenges and introduces interesting physics. The technical challenges are now that one has to find several minima and evaluate which is the deepest, as well as calculate the tunneling time from a false vacuum to the true vacuum. We present here studies on the vacuum stability and color/charge breaking minima in the CMSSM and R parity violating minima in a B-L extended MSSM.
Analysis of slope stabilization by soil bioengineering method
NASA Astrophysics Data System (ADS)
Switala, Barbara Maria; Wu, Wei
2013-04-01
The aim of the project is to create a numerical model which will include the impact of vegetation on the slope stability analysis, considering both mechanical and hydrological factors. This will enrich the current knowledge about how roots reinforce the soil layers on the slope and how it influences the increase of shear strength of the soil. This has to be combined together with hydrological effects caused by evapotranspiration: modified soil moisture regime, dissipation of excess pore pressure and established matric suction. Coupled analyses (mechanical and hydrological) are rarely conducted, or only outdated models are used, which leads to overestimation of the additional shear strength of soil. That is why there is a need to support this branch of landslide hazard assessment and develop a new model. This research will help to raise awareness, that soil bioengineering methods of slope stabilization can in some cases be more appropriate and less expensive than traditional methods. As an input to the model, the appropriate slope geometry and soil properties have to be chosen. It is also important to consider different plant types and root properties, as well as different levels of groundwater table. To assess the effect of evapotranspiration it is necessary to know the geographical location of the slope and the weather conditions in the chosen region. The final output of the model, which will help to quantitatively assess the impact of vegetation on the slope stability, is the factor of safety (FOS) for vegetated slope for different types of soil and degrees of saturation. Results may then be compared with different conditions and factors of safety, calculated for the corresponding non-vegetated slope. It will be possible to specify the most favorable and unfavorable conditions. Moreover, the calculations provide also information on changes of cohesion, caused by mechanical and hydrological effects, as well as the change in the friction angle of soil.
Global Stability for a Heroin Model with Two Distributed Delays
Martcheva, Maia
Global Stability for a Heroin Model with Two Distributed Delays Bin Fang1,2 , Xue-Zhi Li1 , Maia, we consider global stability for a heroin model with two distributed de- lays. The basic reproduction number of the heroin spread is obtained, which completely determine the stability of equilibria. Using
Analysis Meets Modeling Analysis Meets Modeling
Peterson, James K
on directed graphs of computational objects (DGs) Simple sigmoidal neurons Integrate and fire neurons Hodgkin Of Computational Nodes Implementation: Abstract Neuron Circuits 5 West Nile Virus Models Model Setup Model DynamicsAnalysis Meets Modeling Analysis Meets Modeling The Intersection of Mathematics, Computing
Stability analysis of large electric power systems
Elwood, D.M.
1993-01-01
Modern electric power systems are large and complicated, and, in many regions of the world, the generation and transmission systems are operating near their limits. Ensuring the reliable operation of the power system requires engineers to study the response of the system to various disturbances. The responses to large disturbances are examined by numerically solving the nonlinear differential-algebraic equations describing the power system. The response to small disturbances is typically studied via eigenanalysis. The Electric Power Research Institute (EPRI) recently developed the Extended Transient/Mid-term Stability Program (ETMSP) to study large disturbance stability and the Small Signal Stability Program Package (SSSP) to study small signal stability. The primary objectives of the work described in this report were to (1) explore ways of speeding up ETMSP, especially on mid-term voltage stability problems, (2) explore ways of speeding up the Multi-Area Small-Signal Stability program (MASS), one of the codes in SSSP, and (3) explore ways of increasing the size of problem that can be solved by the Cray version of MASS.
Borehole stability analysis at the Coporo-1 well, Colombia
Arias, Henry
2000-01-01
Coporo-1 is an 18,000-ft dry hole located in the tectonically active foothills of the Eastern Cordillera of Colombia. A mechanical stability analysis allowed explaining most of the drilling stability-related problems and elaborating an optimal mud-density...
NASA Technical Reports Server (NTRS)
Fitzjerrell, D. G.
1974-01-01
A general study of the stability of nonlinear as compared to linear control systems is presented. The analysis is general and, therefore, applies to other types of nonlinear biological control systems as well as the cardiovascular control system models. Both inherent and numerical stability are discussed for corresponding analytical and graphic methods and numerical methods.
GE simplified boiling water reactor stability analysis in time domain
NASA Astrophysics Data System (ADS)
Lu, Shanlai
1997-12-01
General Electric Simplified Boiling Water Reactor (SBWR) was designed as a next generation light water reactor. It uses natural circulation to remove the heat from the reactor core. Because of this unique in-vessel circulation feature, SBWR is expected to exhibit different stability behaviors. The main emphasis of this thesis is to study the SBWR stability behavior in the time domain. The best-estimate BWR accident/transient analysis computer code, TRAC-BF1, is employed to analyze the SBWR stability behavior. A detailed TRAC-BF1 SBWR model has been developed, which has the capability to model the in-vessel natural circulation and the reactor core kinetics. The model is used to simulate three slow depressurization processes. The simulation results show that the reactor is stable under low pressure and nominal downcomer water level conditions. However, when the downcomer water level is raised to about 19.2 m above the bottom of the reactor vessel, an unstable power oscillation is observed. The identified power oscillation is further analyzed using TRAC-BF1 1-D kinetics and the new TRAC-BF1 3-D kinetics code developed in this thesis. The effects of different time step sizes and vessel model nodalizations are examined. It is found that the power oscillation is in-phase and has a frequency of 0.3 HZ. In order to further explore the physical instabilty initiation mechanisms, a simplified dynamic model consisting of six simple differential equations is developed. The simplified model is able to predict the dominant physical phenomenon identified by the TRAC-BF1 analysis. The results indicate that the system instability is possibly caused by the steam separator hydro-static head oscillation under the high water level condition. In order to explore the higher order spacial effect of power oscillation, a 3-D reactor core kinetics code is coupled with the TRAC-BF1 computer code in the PVM parallel processing environment. A new coupling scheme and a multiple time step marching technique are developed. The new TRAC-BF1 3-D code package is examined using LMW standard benchmark problem. It is then successfully used to study the possible SBWR power oscillation.
Wellbore stability analysis in carbonate reservoir considering anisotropic behaviour
NASA Astrophysics Data System (ADS)
Alves, José; Guevara, Nestor; Coelho, Lucia; Baud, Patrick
2010-05-01
Carbonate reservoirs represent a major part of the world oil and gas reserves. In particular, recent discoveries in the pre-salt offshore Brazil place big challenges to exploration and production under high temperatures and pressures (HTHP). During production, the extraction of hydrocarbons reduces pore pressure and thus causes an increase in the effective stress and mechanical compaction in the reservoir. The compactive deformation and failure may be spatially extensive or localized to the vicinity of the wellbore, but in either case the consequences can be economically severe involving surface subsidence, well failure and various production problems. The analysis of wellbore stability and more generally of deformation and failure in carbonate environments hinges upon a relevant constitutive modeling of carbonate rocks over a wide range of porosities, in particular, observed microstructure of samples suggests anisotropic behaviour. In this study, we performed a wellbore stability analysis for a lateral wellbore junction in three dimensions. The complex geometry for the wellbore junction was modeled with tetrahedral finite elements considering a rate independent elastic-plastic isotropic material that presented linear behavior during elastic strain and associated flow rule. A finite element model simulating drilling and production phases were done for field conditions from a deep water reservoir in Campos basin, offshore Brazil. In this context, several scenarios were studied considering true 3D orientation for both in situ stresses and geometry of the wellbore junction itself. We discussed the impact of constitutive modeling, considering anisotropic ductile damage and pressure sensitiveness on the wellbore stability. Parameter values for the analysis were based based on experimental data on two micritic porous carbonates. Series of conventional triaxial experiments were performed at room temperature in dry and wet conditions on samples of Comiso and Tavel limestones of respective porosity 17 and 16%. The wet samples were deformed in drained conditions with 10 MPa pore pressure. The initial yield stresses were identified as the critical stresses at the onset of shear-enhanced compaction, subsequent yield stresses were considered to depend on hardening given by the plastic volumetric strain. For both limestones, we found that water had a moderate effect on the yield stresses but influenced significantly the hardening behavior of the rocks.
Systematic Analysis of Stability Patterns in Plant Primary Metabolism
Girbig, Dorothee; Grimbs, Sergio; Selbig, Joachim
2012-01-01
Metabolic networks are characterized by complex interactions and regulatory mechanisms between many individual components. These interactions determine whether a steady state is stable to perturbations. Structural kinetic modeling (SKM) is a framework to analyze the stability of metabolic steady states that allows the study of the system Jacobian without requiring detailed knowledge about individual rate equations. Stability criteria can be derived by generating a large number of structural kinetic models (SK-models) with randomly sampled parameter sets and evaluating the resulting Jacobian matrices. Until now, SKM experiments applied univariate tests to detect the network components with the largest influence on stability. In this work, we present an extended SKM approach relying on supervised machine learning to detect patterns of enzyme-metabolite interactions that act together in an orchestrated manner to ensure stability. We demonstrate its application on a detailed SK-model of the Calvin-Benson cycle and connected pathways. The identified stability patterns are highly complex reflecting that changes in dynamic properties depend on concerted interactions between several network components. In total, we find more patterns that reliably ensure stability than patterns ensuring instability. This shows that the design of this system is strongly targeted towards maintaining stability. We also investigate the effect of allosteric regulators revealing that the tendency to stability is significantly increased by including experimentally determined regulatory mechanisms that have not yet been integrated into existing kinetic models. PMID:22514655
STABILITY ANALYSIS OF TRANSPORTATION NETWORKS WITH MULTISCALE DRIVER DECISIONS
Como, Giacomo
STABILITY ANALYSIS OF TRANSPORTATION NETWORKS WITH MULTISCALE DRIVER DECISIONS GIACOMO COMO equilibria is analyzed for dynamical transportation networks in which the drivers' route choices of indistinguishable drivers commuting between a common origin/destination pair in an acyclic transportation network
White Oak Dam stability analysis. Volume I
Ahmed, S.B.
1994-01-01
A parametric study was conducted to evaluate the stability of the White Oak Dam (WOD) embankment and foundation. Slope stability analyses were performed for the upper and lower bound soil properties at three sections of the dam using the PCSTABL4 computer program. Minimum safety factors were calculated for the applicable seismic and static loading conditions. Liquefaction potential of the dam embankment and foundation solid during the seismic event was assessed by using simplified procedures. The WOD is classified as a low hazard facility and the Evaluation Basis Earthquake (EBE) is defined as an earthquake with a magnitude of m{sub b} = 5.6 and a Peak Ground Accelerator (PGA) of 0.13 g. This event is approximately equivalent to a Modified Mercalli Intensity of VI-VIII. The EBE is used to perform the seismic evaluation for slope stability and liquefaction potential. Results of the stability analyses and the liquefaction assessment lead to the conclusion that the White Oak Dam is safe and stable for the static and the seismic events defined in this study. Ogden Environmental, at the request of MMES, has checked and verified the calculations for the critical loading conditions and performed a peer review of this report. Ogden has determined that the WOD is stable under the defined static and seismic loading conditions and the embankment materials are in general not susceptible to liquefaction.
Perturbative stability of SFT-based cosmological models
Federico Galli; Alexey S. Koshelev
2011-06-14
We review the appearance of multiple scalar fields in linearized SFT based cosmological models with a single non-local scalar field. Some of these local fields are canonical real scalar fields and some are complex fields with unusual coupling. These systems only admit numerical or approximate analysis. We introduce a modified potential for multiple scalar fields that makes the system exactly solvable in the cosmological context of Friedmann equations and at the same time preserves the asymptotic behavior expected from SFT. The main part of the paper consists of the analysis of inhomogeneous cosmological perturbations in this system. We show numerically that perturbations corresponding to the new type of complex fields always vanish. As an example of application of this model we consider an explicit construction of the phantom divide crossing and prove the perturbative stability of this process at the linear order. The issue of ghosts and ways to resolve it are briefly discussed.
Perturbative stability of SFT-based cosmological models
Galli, Federico; Koshelev, Alexey S. E-mail: alexey.koshelev@vub.ac.be
2011-05-01
We review the appearance of multiple scalar fields in linearized SFT based cosmological models with a single non-local scalar field. Some of these local fields are canonical real scalar fields and some are complex fields with unusual coupling. These systems only admit numerical or approximate analysis. We introduce a modified potential for multiple scalar fields that makes the system exactly solvable in the cosmological context of Friedmann equations and at the same time preserves the asymptotic behavior expected from SFT. The main part of the paper consists of the analysis of inhomogeneous cosmological perturbations in this system. We show numerically that perturbations corresponding to the new type of complex fields always vanish. As an example of application of this model we consider an explicit construction of the phantom divide crossing and prove the perturbative stability of this process at the linear order. The issue of ghosts and ways to resolve it are briefly discussed.
Perturbative stability of SFT-based cosmological models
Galli, Federico
2010-01-01
We review the appearance of multiple scalar fields in linearized SFT based cosmological models with a single non-local scalar field. Some of these local fields are canonical real scalar fields and some are complex fields with unusual coupling. These systems only admit numerical or approximate analysis. We introduce a modified potential for multiple scalar fields that makes the system exactly solvable in the cosmological context of Friedmann equations and at the same time preserves the asymptotic behavior expected from SFT. The main part of the paper consists of the analysis of inhomogeneous cosmological perturbations in this system. We demonstrate numerically that perturbations corresponding to the new type of complex fields always vanish. As an example of application of this model we consider an explicit construction of the phantom divide crossing and prove the perturbative stability of this process.
Stability Analysis of ITER Side Correction Coils
NASA Astrophysics Data System (ADS)
Jin, Fang; Xiaoyu, Chen; Wei, Zhou; Liangfeng, Liu; Yuntao, Song; Weiyue, Wu
The stability of the Side Correction Coils (SCC) cable-in-conduit conductors (CICC) for the International Thermonuclear Experimental Reactor (ITER) has been analyzed by the formulas and the code Gandalf. This paper describes the 1-dimensional mathematical code Gandalf, uses the code to simulate the quench and the recovery status of ITER SCC CICC, discusses the dependence of the stability margin on various operating parameters including operating current, operating temperature and mass flow rate, and analyzes the differences between the simulated values and the calculated values. The ITER SCC's quenching is also simulated to investigate its temperature distribution and temperature margin. Dependence of temperature margin on magnetic fields and operating temperature has been researched. The studies of ITER SCC provide a basis for the stable operation and optimization design of SCC CICC.
Stability Analysis of Magnetised Neutron Stars - A Semi-analytic Approach
Herbrik, Marlene
2015-01-01
We implement a semi-analytic approach for stability analysis, addressing the ongoing uncertainty about stability and structure of neutron star magnetic fields. Applying the energy variational principle, a model system is displaced from its equilibrium state. The related energy density variation is set up analytically, whereas its volume integration is carried out numerically. This facilitates the consideration of more realistic neutron star characteristics within the model compared to analytical treatments. At the same time, our method retains the possibility to yield general information about neutron star magnetic field and composition structures that are likely to be stable. In contrast to numerical studies, classes of parametrized systems can be studied at once, finally constraining realistic configurations for interior neutron star magnetic fields. We apply the stability analysis scheme on polytropic and non-barotropic neutron stars with toroidal, poloidal and mixed fields testing their stability in a New...
Sensitivity analysis of hydrodynamic stability operators
NASA Technical Reports Server (NTRS)
Schmid, Peter J.; Henningson, Dan S.; Khorrami, Mehdi R.; Malik, Mujeeb R.
1992-01-01
The eigenvalue sensitivity for hydrodynamic stability operators is investigated. Classical matrix perturbation techniques as well as the concept of epsilon-pseudoeigenvalues are applied to show that parts of the spectrum are highly sensitive to small perturbations. Applications are drawn from incompressible plane Couette, trailing line vortex flow and compressible Blasius boundary layer flow. Parametric studies indicate a monotonically increasing effect of the Reynolds number on the sensitivity. The phenomenon of eigenvalue sensitivity is due to the non-normality of the operators and their discrete matrix analogs and may be associated with large transient growth of the corresponding initial value problem.
Aeroelastic stability analysis of wind turbines using an eigenvalue approach
NASA Astrophysics Data System (ADS)
Hansen, M. H.
2004-04-01
A design tool for performing aeroelastic stability analysis of wind turbines is presented in this paper. The method behind this tool is described in a general form, as independent of the particular aeroelastic modelling as possible. Here, the structure is modelled by a Finite beam Element Method, and the aerodynamic loads are modelled by the Blade Element Momentum method coupled with a Beddoes-Leishman type dynamic stall model in a state-space formulation. The linearization of the equations of motion is performed about a steady-state equilibrium, where the deterministic forcing of the turbine is neglected. To eliminate the periodic coefficients and avoid using the Floquet Theory, the multi-blade transformation is utilized. From the corresponding eigenvalue problem, the eigenvalues and eigenvectors can be computed at any operation condition to give the aeroelastic modal properties: Natural frequencies, damping and mode shapes. An example shows a good agreement between predicted and measured aeroelastic damping of a stall-regulated 600 kW turbine. Copyright
Shin, Jinho; Nam, Jusun
2007-03-01
Long-term stability is an essential requirement for biological measurement standards and it has been evaluated by applying the Arrhenius model to the data obtained from accelerated thermostability studies. A computer program DEGTEST suited to a mainframe computer has been used for evaluating the stability of biological standards for more than a decade. This paper describes the validation of a computer program executable in a personal computer Microsoft Windows XP environment for the analysis of accelerated thermostability study data. PMID:16580228
GLOBAL STABILITY IN CHEMOSTAT-TYPE COMPETITION MODELS WITH NUTRIENT RECYCLING
Ruan, Shigui
GLOBAL STABILITY IN CHEMOSTAT-TYPE COMPETITION MODELS WITH NUTRIENT RECYCLING SHIGUI RUAN AND XUE- type competition models with nutrient recycling. In the first model the recycling is instantaneous, whereas in the second, the recycling is delayed. They carried out the equilibrium analysis and obtained
Gravitational Stability for a Vacuum Cosmic Space Crystalline Model
NASA Astrophysics Data System (ADS)
Montemayor-Aldrete, J. A.; Morones-Ibarra, J. R.; Morales-Mori, A.
2012-03-01
Using a generalization of the Heisenberg?s uncertainty principle it is shown that the local gravitational stability condition for an infinite tridimensional crystalline model of the quantum vacuum cosmic space (which is existing from an infinite time before the occurrence of our local actual big bang event) implies to obtain an equation formally equivalent to the relation first used by Gamow to predict the present temperature of the microwave background from the matter density. The compatibility condition between the quantum and the relativistic approaches has been obtained without infinities arising from the quantum analysis or singularities arising from the relativistic theory. The action, which leads to our theory, is the least action possible in a quantum scheme. The energy fluctuation involved in the gravitational stabilization of vacuum space, inside the actual volume of our universe, is times the energy of the crystalline structure of vacuum space inside the present Universe volume. The same process of quantum gravitational stabilization of such crystalline structure occurs everywhere (by pairs of cells of similar sizes under the action of tension-compression gravitational stresses very near to mechanic-gravitational equilibrium) in the infinite cosmic vacuum space.
Stability analysis of offshore wind farm and marine current farm
NASA Astrophysics Data System (ADS)
Shawon, Mohammad Hasanuzzaman
Renewable energy has been playing an important role to meet power demand and 'Green Energy' market is getting bigger platform all over the world in the last few years. Due to massive increase in the prices of fossil fuels along with global warming issues, energy harvesting from renewable energy sources has received considerable interest, nowadays, where extensive researches are going on to ensure optimum use of renewable sources. In order to meet the increasing demand of electricity and power, integration of renewable energy is getting highest priorities around the world. Wind is one of the most top growing renewable energy resources and wind power market penetration is expected to reach 3.35 percent by 2013 from its present market of about 240 GW. A wind energy system is the most environmental friendly, cost effective and safe among all renewable energy resources available. Another promising form of renewable energy is ocean energy which covers 70 % of the earth. Ocean energy can be tapped from waves, tides and thermal elements. Offshore Wind farm (OWF) has already become very popular for large scale wind power integration with the onshore grid. Recently, marine current farm (MCF) is also showing good potential to become mainstream energy sources and already successfully commissioned in United Kingdom. However, squirrel cage induction generator (SCIG) has the stability problem similar to synchronous generator especially during fault location to restore the electromagnetic torque. Series dynamic braking resistor (SDBR) has been known as a useful mean to stabilize fixed speed wind generator system. On the other hand, doubly fed induction generator (DFIG) has the capability of coupling the control of active and reactive power and to provide necessary reactive power demand during grid fault conditions. Series dynamic braking resistor (SDBR) can also be employed with DFIG to limit the rotor over current. An integration of wind and tidal energy represents a new-trend for large electric energy production using offshore wind generators and marine current generators, respectively. Thus DFIG based offshore wind farm can be an economic solution to stabilize squirrel cage induction generator based marine current farm without installing any addition FACTS devices. This thesis first focuses on the stabilization of fixed speed IG based marine current farm using SDBR. Also stabilization of DFIG based variable speed wind farm utilizing SDBR is studied in this work. Finally a co-operative control strategy is proposed where DFIG is controlled in such a way that it can even provide necessary reactive power demand of induction generator, so that additional cost of FACTS devices can be avoided. In that way, the DFIGs of the offshore wind farm (OWF) will actively compensate the reactive power demand of adjacent IGs of the marine current farm (MCF) during grid fault. Detailed modeling and control scheme for the proposed system are demonstrated considering some realistic scenarios. The power system small signal stability analysis is also carried out by eigenvalue analysis for marine current generator topology, wind turbine generator topology and integrated topology. The relation between the modes and state variables are discussed in light of modal and sensitivity analyses. The results of theoretical analyses are verified by MATLAB/SIMULINK and laboratory standard power system simulator PSCAD/EMTDC.
NASA Astrophysics Data System (ADS)
Kukillaya, R.; Proctor, J.; Holmes, P.
2009-06-01
We describe a hierarchy of models for legged locomotion, emphasizing relationships among feedforward (preflexive) stability, maneuverability, and reflexive feedback. We focus on a hexapedal geometry representative of insect locomotion in the ground plane that includes a neural central pattern generator circuit, nonlinear muscles, and a representative proprioceptive sensory pathway. Although these components of the model are rather complex, neglect of leg mass yields a neuromechanical system with only three degrees of freedom, and numerical simulations coupled with a Poincaré map analysis shows that the feedforward dynamics is strongly stable, apart from one relatively slow mode and a neutral mode in body yaw angle. These modes moderate high frequency perturbations, producing slow heading changes that can be corrected by a stride-to-stride steering strategy. We show that the model's response to a lateral impulsive perturbation closely matches that of a cockroach subject to a similar impulse. We also describe preliminary studies of proprioceptive leg force feedback, showing how a reflexive pathway can reinforce the preflexive stability inherent in the system.
Analysis of emulsion stability in acrylic dispersions
NASA Astrophysics Data System (ADS)
Ahuja, Suresh
2012-02-01
Emulsions either micro or nano permit transport or solubilization of hydrophobic substances within a water-based phase. Different methods have been introduced at laboratory and industrial scales: mechanical stirring, high-pressure homogenization, or ultrasonics. In digital imaging, toners may be formed by aggregating a colorant with a latex polymer formed by batch or semi-continuous emulsion polymerization. Latex emulsions are prepared by making a monomer emulsion with monomer like Beta-carboxy ethyl acrylate (?-CEA) and stirring at high speed with an anionic surfactant like branched sodium dodecyl benzene sulfonates , aqueous solution until an emulsion is formed. Initiator for emulsion polymerization is 2-2'- azobis isobutyramide dehydrate with chain transfer agent are used to make the latex. If the latex emulsion is unstable, the resulting latexes produce a toner with larger particle size, broader particle size distribution with relatively higher latex sedimentation, and broader molecular weight distribution. Oswald ripening and coalescence cause droplet size to increase and can result in destabilization of emulsions. Shear thinning and elasticity of emulsions are applied to determine emulsion stability.
Kinematic analysis of rope skipper's stability
NASA Astrophysics Data System (ADS)
Ab Ghani, Nor Atikah; Rambely, Azmin Sham
2014-06-01
There are various kinds of jumping that can be done while performing rope skipping activity. This activity was always associated with injury. But, if the rope skipper can perform the activity in a right way, it is believed that the injury might be reduced. The main purpose of this paper is to observe the stability of rope skipper from a biomechanics perspective, which are the centre of mass, angle at the ankle, knee and hip joints and also the trajectory for the ipsilateral leg between the two types of skip which is one leg and two legs. Six healthy, physically active subject, two males and four females (age: 8.00±1.25 years, weight: 17.90±6.85 kg and height: 1.22±0.08 m) participated in this study. Kinematic data of repeated five cycles of rope skipping activity was captured by using Vicon Nexus system. Based on the data collected, skipping with two legs shows more stable behavior during preparation, flight and landing phases. It is concluded that landing on the balls of the feet, lowering the trajectory positions of the feet from the ground as well as flexion of each joint which would reduce the injury while landing.
Finite Element Stability Analysis for Coupled Rotor and Support Systems
NASA Technical Reports Server (NTRS)
Hohenemser, K. H.; Yin, S. K.
1977-01-01
The effects of fuselage motions on stability and random response were analytically assessed. The feasibility of adequate perturbation models from non-linear trim conditions was studied by computer and hardware experiments. Rotor wake-blade interactions were assessed by using a 4-bladed rotor model with the capability of progressing and regressing blade pitch excitation (cyclic pitch stirring), by using a 4-bladed rotor model with hub tilt stirring, and by testing rotor models in sinusoidal up or side flow.
Mathematical Modeling and Stability of Predator-Prey Systems
Sobrinho, Altair Santos de Oliveira; Kita, Carolina Massae; Natti, Érica Regina Takano; Natti, Paulo Laerte
2015-01-01
This work investigated the stability of some Lotka-Volterra type models. We used the Liapunov method, which consists in analyzing the stability of systems of ordinary differential equations (ODE's), around the equilibrium, when submitted to perturbations in the initial conditions.
Mathematical Modeling and Stability of Predator-Prey Systems
Altair Santos de Oliveira Sobrinho; Camila Fogaça de Oliveira; Carolina Massae Kita; Érica Regina Takano Natti; Paulo Laerte Natti
2015-04-23
This work investigated the stability of some Lotka-Volterra type models. We used the Liapunov method, which consists in analyzing the stability of systems of ordinary differential equations (ODE's), around the equilibrium, when submitted to perturbations in the initial conditions.
Automated 3-D analysis of Gravity Dam stability
Barrett, P.R.; Boggs, H.
1995-12-31
The safety and stability of nonfederal hydroelectric project dams in the U.S. is a responsibility of the Federal Energy Regulatory Commission (FERC). FERC requires dam owners to reevaluate their structure`s stability every five years. In spite of the fact that FERC guidelines allow owners to use a variety of analytical approaches, millions of dollars are spent each year on safety modifications based on sometimes very conservative analysis methods. Analysis methods are often limited to hand calculations that assume a 2-D rigid body bending response of the dam or automated 2-D finite element analyses which can sometimes predict smaller safety factors than the rigid body analyses. Evaluation of dam stability using 3-D finite element analyses can sometimes reduce the conservatism in evaluating a dam`s stability even when conventional wisdom suggests that a 2-D analysis is sufficient. Significant increases in stability obtained from the 3-D analyses come primarily from the confining stresses from the dam abutments and the redistribution of load along the dam`s length. Even when the confining stresses are relatively small, large changes in sliding safety factors can be seen, since most dams, stability is extremely sensitive to variations in dam-rock interface cracks. The confining stresses reduce the propagation of cracks. The length of crack controls the magnitude of uplift loads applied to the bottom of the dam which in turn potentially leads to longer crack lengths. Both crack length and magnitude of uplift load directly effect the sliding stability factor of safety.
Stability Analysis of Axial Reflection Symmetric Spacetime
M. Sharif; M. Zaeem Ul Haq Bhatti
2015-12-08
In this paper, we explore instability regions of non-static axial reflection symmetric spacetime with anisotropic source in the interior. We impose linear perturbation on the Einstein field equations and dynamical equations to establish the collapse equation. The effects of different physical factors like energy density and anisotropic stresses on the instability regions are studied under Newtonian and post-Newtonian limits. We conclude that stiffness parameter has a significant role in this analysis while the reflection terms increase instability ranges of non-static axial collapse.
Stability analysis of axial reflection symmetric spacetime
NASA Astrophysics Data System (ADS)
Sharif, M.; Bhatti, M. Zaeem Ul Haq
2016-01-01
In this paper, we explore instability regions of non-static axial reflection symmetric spacetime with anisotropic source in the interior. We impose linear perturbation on the Einstein field equations and dynamical equations to establish the collapse equation. The effects of different physical factors like energy density and anisotropic stresses on the instability regions are studied under Newtonian and post-Newtonian limits. We conclude that stiffness parameter has a significant role in this analysis while the reflection terms increase instability ranges of non-static axial collapse.
Linear stability analysis of Richter rolls Jun Korenaga1
Linear stability analysis of Richter rolls Jun Korenaga1 Department of Earth and Planetary Science to inherently time-dependent convection. When applied to small-scale convection in the upper mantle, our results is relatively high ($1020 Pa s); Richter rolls may be expected only beneath fast-moving plates
STABILITY ANALYSIS OF INTERCONNECTED POWER SYSTEMS COUPLED WITH MARKET DYNAMICS
STABILITY ANALYSIS OF INTERCONNECTED POWER SYSTEMS COUPLED WITH MARKET DYNAMICS F.L. Alvarado1 J/turbine/governor dynamics, in the New England 39 bus test system. The re- sults presented highlight the nature of potential-based dispatch. Keywords: market dynamics, power system dynamics, dy- namic coupling, eigenvalues 1 Introduction
GEOTECHNICAL ANALYSIS FOR REVIEW OF DIKE STABILITY (GARDS). TECHNICAL MANUAL
The structure and capabilities of a user-friendly, interactive computer program developed for the stability analysis of dikes (GARDS) are described. The program was developed under the sponsorship of the U.S. Environmental Protection Agency and therefore emphasizes Hazardous Wast...
university-logo Numerical stability analysis for thin film flow
Marzuola, Jeremy
university-logo Numerical stability analysis for thin film flow: toward rigorous verification Blake Barker Indiana University October 2, 2013 B. Rigorous verification #12;university-logo Viscous roll waves (Picture courtesy Neil Balmforth, UBC.) B. Rigorous verification #12;university-logo Viscous roll waves 0 2
Stability analysis of a reinforced carbon carbon shell
NASA Technical Reports Server (NTRS)
Agan, W. E.; Jordan, B. M.
1977-01-01
This paper presents the development of a stability analysis for the nose cap of the NASA Space Shuttle Orbiter. Stability is evaluated by the differential stiffness analysis of the NASTRAN finite-element computer code, addressing those nonstandard characteristics in the nose cap such as nonuniform curvature, asymmetrical and nonuniform loads, support fixity, and various combinations of membrane and bending stresses. A full-sized nose cap, thinner than production, was statically tested and stability analyzed. The failing load level correlated to within 30%. The region and mode of buckling that occurred during test was accurately predicted by analysis. The criterion for predicting instability is based on the behavior of the nonlinear deflections. The deflections are nonlinear elastic in that the stresses are well within the elastic range of the material, but the geometry-load relationship produces nonlinear deflections. The load-deflection relationship is well defined by differential stiffness analysis up to the zero-slope portion of the curve, the point of neutral stability or where the shell 'snaps through' just prior to general instability.
Stability analysis of stationary light transmission in nonlinear photonic structures
Scheel, Arnd
Stability analysis of stationary light transmission in nonlinear photonic structures Dmitry E transmission is generally intensity-dependent in nonlinear photonic gratings, such that transmission of light.E., Minneapolis, MN 55455, USA February 24, 2003 Abstract We study optical bistability of stationary light
Weakly dispersive hydraulic flows in a contraction --Nonlinear stability analysis
Ee, Bernard Kuowei
Weakly dispersive hydraulic flows in a contraction -- Nonlinear stability analysis Bernard K. Ee hydraulic solutions of the forced Korteweg de-Vries equation is investigated here. For numerical convenience is destabilized by a hydraulic instability in which superexponential growth occurs prior to satura- tion
Bank stability analysis for fluvial erosion and mass failure
Technology Transfer Automated Retrieval System (TEKTRAN)
The central objective of this study was to highlight the differences in magnitude between mechanical and fluvial streambank erosional strength with the purpose of developing a more comprehensive bank stability analysis. Mechanical erosion and ultimately failure signifies the general movement or coll...
Prediction of the biochar carbon stability by thermal analysis
NASA Astrophysics Data System (ADS)
Méndez, Ana; Cely, Paola; Plaza, César; Paz-Ferreiro, Jorge; Gascó, Gabriel
2015-04-01
Thermal analysis (DTA, DSC, TG and dTG) has been used for decades to characterize carbonaceous materials used as fuels (oil, coal). Our research group has used these techniques for the characterisation of different biochars in order to assess proportions of labile and recalcitrant organic matter and to study the evolution of soil organic matter in soils amended with biochar. Thermal analysis could be used to determine the proximate analysis, i.e., the percentage of humidity, volatile matter and fixed carbon or to calculate the thermostability index, previously identified as a reliable parameter for evaluating the level of stability of organic matter in organic wastes and biochar. Relationship between the stability of biochar, the raw material and the pyrolysis conditions could be established by thermal analysis techniques.
Kinematics and tip-over stability analysis for the mobile modular manipulator
Li, Yangmin
Kinematics and tip-over stability analysis for the mobile modular manipulator Y LiÃ and Y Liu a practical method to establish the kinematics model for the mobile modular manipulator. A tough issue is resolved by decomposing a given task into motions performed by both the manipulator and the mobile platform
Stability of the Human Respiratory Control System. Part II: Analysis of a threedimensional delay models of the human respiratory control system have been developed since 1940 to study a wide range signals to the respiratory control system has been studied since the work of Grodins et al. in the early
The beauty of simple adaptive control and new developments in nonlinear systems stability analysis
Barkana, Itzhak
2014-12-10
Although various adaptive control techniques have been around for a long time and in spite of successful proofs of stability and even successful demonstrations of performance, the eventual use of adaptive control methodologies in practical real world systems has met a rather strong resistance from practitioners and has remained limited. Apparently, it is difficult to guarantee or even understand the conditions that can guarantee stable operations of adaptive control systems under realistic operational environments. Besides, it is difficult to measure the robustness of adaptive control system stability and allow it to be compared with the common and widely used measure of phase margin and gain margin that is utilized by present, mainly LTI, controllers. Furthermore, customary stability analysis methods seem to imply that the mere stability of adaptive systems may be adversely affected by any tiny deviation from the pretty idealistic and assumably required stability conditions. This paper first revisits the fundamental qualities of customary direct adaptive control methodologies, in particular the classical Model Reference Adaptive Control, and shows that some of their basic drawbacks have been addressed and eliminated within the so-called Simple Adaptive Control methodology. Moreover, recent developments in the stability analysis methods of nonlinear systems show that prior conditions that were customarily assumed to be needed for stability are only apparent and can be eliminated. As a result, sufficient conditions that guarantee stability are clearly stated and lead to similarly clear proofs of stability. As many real-world applications show, once robust stability of the adaptive systems can be guaranteed, the added value of using Add-On Adaptive Control along with classical Control design techniques is pushing the desired performance beyond any previous limits.
Analysis of the stability of hemoglobin S double strands.
Mu, X Q; Makowski, L; Magdoff-Fairchild, B
1998-01-01
The deoxyhemoglobin S (deoxy-HbS) double strand is the fundamental building block of both the crystals of deoxy-HbS and the physiologically relevant fibers present within sickle cells. To use the atomic-resolution detail of the hemoglobin-hemoglobin interaction known from the crystallography of HbS as a basis for understanding the interactions in the fibers, it is necessary to define precisely the relationship between the straight double strands in the crystal and the twisted, helical double strands in the fibers. The intermolecular contact conferring the stability of the double strand in both crystal and fiber is between the beta6 valine on one HbS molecule and residues near the EF corner of an adjacent molecule. Models for the helical double strands were constructed by a geometric transformation from crystal to fiber that preserves this critical interaction, minimizes distortion, and makes the transformation as smooth as possible. From these models, the energy of association was calculated over the range of all possible helical twists of the double strands and all possible distances of the double strands from the fiber axis. The calculated association energies reflect the fact that the axial interactions decrease as the distance between the double strand and the fiber axis increases, because of the increased length of the helical path taken by the double strand. The lateral interactions between HbS molecules in a double strand change relatively little between the crystal and possible helical double strands. If the twist of the fiber or the distance between the double strand and the fiber axis is too great, the lateral interaction is broken by intermolecular contacts in the region around the beta6 valine. Consequently, the geometry of the beta6 valine interaction and the residues surrounding it severely restricts the possible helical twist, radius, and handedness of helical aggregates constructed from the double strands. The limitations defined by this analysis establish the structural basis for the right-handed twist observed in HbS fibers and demonstrates that for a subunit twist of 8 degrees, the fiber diameter cannot be more than approximately 300 A, consistent with electron microscope observations. The energy of interaction among HbS molecules in a double strand is very slowly varying with helical pitch, explaining the variable pitch observed in HbS fibers. The analysis results in a model for the HbS double strand, for use in the analysis of interactions between double strands and for refinement of models of the HbS fibers against x-ray diffraction data. PMID:9449367
Black tea: chemical analysis and stability.
Li, Shiming; Lo, Chih-Yu; Pan, Min-Hsiung; Lai, Ching-Shu; Ho, Chi-Tang
2013-01-01
Tea is the most popular flavored and functional drink worldwide. The nutritional value of tea is mostly from the tea polyphenols that are reported to possess a broad spectrum of biological activities, including anti-oxidant properties, reduction of various cancers, inhibition of inflammation, and protective effects against diabetes, hyperlipidemia and obesity. Tea polyphenols include catechins and gallic acid in green and white teas, and theaflavins and thearubigins as well as other catechin polymers in black and oolong teas. Accurate analysis of black tea polyphenols plays a significant role in the identification of black tea contents, quality control of commercial tea beverages and extracts, differentiation of various contents of theaflavins and catechins and correlations of black tea identity and quality with biological activity, and most importantly, the establishment of the relationship between quantitative tea polyphenol content and its efficacy in animal or human studies. Global research in tea polyphenols has generated much in vitro and in vivo data rationally correlating tea polyphenols with their preventive and therapeutic properties in human diseases such as cancer, and metabolic and cardiovascular diseases etc. Based on these scientific findings, numerous tea products have been developed including flavored tea drinks, tea-based functional drinks, tea extracts and concentrates, and dietary supplements and food ingredients, demonstrating the broad applications of tea and its extracts, particularly in the field of functional food. PMID:23037977
Fluid Dynamic and Stability Analysis of a Thin Liquid Sheet
NASA Technical Reports Server (NTRS)
McMaster, Matthew S.
1992-01-01
Interest in thin sheet flows has recently been renewed due to their potential application in space radiators. Theoretical and experimental studies of the fluid dynamics and stability of thin liquid sheet flows have been carried out in this thesis. A computer program was developed to determine the cross-sectional shape of the edge cylinder given the cross-sectional area of the edge cylinder. A stability analysis was performed on a non-planer liquid sheet. A study was conducted to determine the effects of air resistance on the sheet.
Climate stability for a Sellers-type model. [atmospheric diffusive energy balance model
NASA Technical Reports Server (NTRS)
Ghil, M.
1976-01-01
We study a diffusive energy-balance climate model governed by a nonlinear parabolic partial differential equation. Three positive steady-state solutions of this equation are found; they correspond to three possible climates of our planet: an interglacial (nearly identical to the present climate), a glacial, and a completely ice-covered earth. We consider also models similar to the main one studied, and determine the number of their steady states. All the models have albedo continuously varying with latitude and temperature, and entirely diffusive horizontal heat transfer. The diffusion is taken to be nonlinear as well as linear. We investigate the stability under small perturbations of the main model's climates. A stability criterion is derived, and its application shows that the 'present climate' and the 'deep freeze' are stable, whereas the model's glacial is unstable. A variational principle is introduced to confirm the results of this stability analysis. For a sufficient decrease in solar radiation (about 2%) the glacial and interglacial solutions disappear, leaving the ice-covered earth as the only possible climate.
Stability of Ghost Dark Energy in CBD Model of Gravity
Khaled Saaidi
2012-02-18
We study the stability of the ghost dark energy model versus perturbation. Since this kind of dark energy is instable in Einsteinian general relativity theory, then we study a new type of Brans-Dicke theory which has non-minimal coupling with matter which is called chameleon Brans-Dicke (CBD) model of gravity. Due to this coupling the equation of conservation energy is modified. For considering the stability of the model we use the adiabatic squared sound speed, $c_s^2$, whose sign of it determines the stability of the model in which for $c_s^2 >0 $ the model is stable and for $c_s^2 ghost dark energy (CBDGDE) with cold dark matter in non flat FLRW metric. We show that in all cases of investigation the model is stable with a suitable choice of parameters.
Geotechnical analysis for dike stability (GARDS) (for microcomputers). Software
Ammon, D.C.; McCandless, R.; Cluxton, P.
1986-12-01
The structure and capabilities of a user-friendly, interactive computer program developed for the stability analysis of dikes (GARDS) are described. The GARDS program is designed to guide a geotechnical non-specialist (EPA regulatory personnel) through the customary steps of earth dike analysis considering slope stability, settlement, liquefaction, hydraulic flow and pressure conditions, and piping. The GARDS package is designed for use on the IBM-PC/XT microcomputer. User documentation consists of a combined Handbook/User's Manual (under development) which presents basic theory, program operational procedures, and example long hand and computer solutions for each analysis...Software Description: The program is written in the FORTRAN program language for implementation on an IBM-PC AT, XT or compatible microcomputer using a DOS 2.1 or higher operating system. 512K bytes of core storage are required. Note: A hard disk is required; a color monitor is recommended.
Aeroelastic stability analyses of two counter rotating propfan designs for a cruise missile model
NASA Technical Reports Server (NTRS)
Mahajan, Aparajit J.; Lucero, John M.; Mehmed, Oral; Stefko, George L.
1992-01-01
A modal aeroelastic analysis combining structural and aerodynamic models is applied to counterrotating propfans to evaluate their structural integrity for wind-tunnel testing. The aeroelastic analysis code is an extension of the 2D analysis code called the Aeroelastic Stability and Response of Propulsion Systems. Rotational speed and freestream Mach number are the parameters for calculating the stability of the two blade designs with a modal method combining a finite-element structural model with 2D steady and unsteady cascade aerodynamic models. The model demonstrates convergence to the least stable aeroelastic mode, describes the effects of a nonuniform inflow, and permits the modification of geometry and rotation. The analysis shows that the propfan designs are suitable for the wind-tunnel test and confirms that the propfans should be flutter-free under the range of conditions of the testing.
Sensitivity Analysis of Dynamic Stability Indicators in Power Systems
Nguyen, Tony B.; Pai, M. A.
2006-01-01
Real time stability evaluation and preventive scheduling in power systems offers many challenges in a stressed power system. Through fast simulation of contingencies in real time it is possible to extract suitable information from the data and develop reliable metrics or indices to evaluate proximity of the system to an unstable condition. In this chapter we review the recent applications of the trajectory sensitivity analysis (TSA) technique in developing such indicators. Trajectory sensitivities can be used to compute critical parameters such as clearing time of circuit breakers, tie line flow, etc. in a power system by developing suitable norms for ease of interpretation. Alternatively it can be used along with the notion of Principal Singular Surfaces (PSS) to detect mode of instability (MOI). The TSA technique has the advantage that model complexity is not a limitation and the sensitivities are computed numerically. Suitable metrics are developed from these sensitivities. In addition to computing critical parameters, the TSA technique can be extended to do preventive rescheduling. A brief discussion of other applications of TSA is included as well as future areas of research.
Stability Analysis of Interconnected Nonlinear Systems Under Matrix Feedback
Murray, Richard M.
or design of some type of communication or sensing strategy. This strategy is often represented as a network. Systems are often modeled in this manner in the study of decentralized control because many communication the communication topology of the system. 1 Introduction Stability of interconnected systems is an important area
Review of computer-aided models for predicting collagen stability.
Concu, Riccardo; Podda, Gianni; Gonzalez-Diaz, Humberto; Shen, Bairong
2011-12-01
Collagen is the most abundant protein in the whole human body and its instability is involved in many important diseases, such as Osteogenesis imperfecta, Ehlers-Danlos syndrome, and collagenopathy. The stability of the collagen triple helix is strictly related to its amino acid sequence, especially the main Gly-X-Y motif. Many groups have used computational methods to investigate collagen's structure and the relationship between its stability and structure. In this study, we initially reviewed the most important computational methods that have been applied in this field. We then assembled data on a large number of collagen-like peptides to build the first Markov chain model for predicting the stability of the collagen at different temperatures, simply by analyzing the amino acid sequence. We used the literature to assemble a set of 102 peptides and their relative melting temperatures were determined experimentally, indicating a great variance with the main motif of the collagen. This dataset was then split in two classes, stable and unstable, according to their melting temperatures and the dataset was then used to build artificial neural network (ANN) models to predict collagen stability. We built models to predict stability at temperatures of 38°C, 35°C, 30°C, and 25°C degrees, and all models had an accuracy between 82% and 92%. Several cross-validation procedures were performed to validate the model. This method facilitates fast and accurate predictions of collagen stability at different temperatures. PMID:22050685
Bounded Linear Stability Analysis - A Time Delay Margin Estimation Approach for Adaptive Control
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Ishihara, Abraham K.; Krishnakumar, Kalmanje Srinlvas; Bakhtiari-Nejad, Maryam
2009-01-01
This paper presents a method for estimating time delay margin for model-reference adaptive control of systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent the conventional model-reference adaptive law by a locally bounded linear approximation within a small time window using the comparison lemma. The locally bounded linear approximation of the combined adaptive system is cast in a form of an input-time-delay differential equation over a small time window. The time delay margin of this system represents a local stability measure and is computed analytically by a matrix measure method, which provides a simple analytical technique for estimating an upper bound of time delay margin. Based on simulation results for a scalar model-reference adaptive control system, both the bounded linear stability method and the matrix measure method are seen to provide a reasonably accurate and yet not too conservative time delay margin estimation.
Stochastic modeling and stability of suspension bridges
NASA Astrophysics Data System (ADS)
Ahmed, Nasiruddin U.; Harbi, H.
2000-04-01
In this paper we consider the problem of stability of suspension bridges in the presence of random wind forces acting on the deck and the suspension cables. Total mechanical energy given by the sum of all kinetic and elastic potential energies of the structure, is used as a Lyapunov functional. Assuming negligible mechanical friction and viscous damping, it is seen that the system is conservative and that random wind forces can destabilize the system. In the presence of structural damping, provided by piezo ceramic layers or other smart materials, it is seen that the system is asymptotically stable. This is clearly illustrated by numerical results presented in the final section of the paper.
Stability analysis of agegraphic dark energy in Brans-Dicke cosmology
NASA Astrophysics Data System (ADS)
Farajollahi, H.; Sadeghi, J.; Pourali, M.; Salehi, A.
2012-05-01
Stability analysis of agegraphic dark energy in Brans-Dicke theory is presented in this paper. We constrain the model parameters with the observational data and thus the results become broadly consistent with those expected from experiment. Stability analysis of the model without best fitting shows that universe may begin from an unstable state passing a saddle point and finally become stable in future. However, with the best fitted model, There is no saddle intermediate state. The agegraphic dark energy in the model by itself exhibits a phantom behavior. However, contribution of cold dark matter on the effective energy density modifies the state of the universe from phantom phase to quintessence one. The statefinder diagnosis also indicates that the universe leaves an unstable state in the past, passes the LCDM state and finally approaches the sable state in future.
The Stability of Radiatively Cooling Jets I. Linear Analysis
NASA Technical Reports Server (NTRS)
Hardee, Philip E.; Stone, James M.
1997-01-01
The results of a spatial stability analysis of a two-dimensional slab jet, in which optically thin radiative cooling is dynamically important, are presented. We study both magnetized and unmagnetized jets at external Mach numbers of 5 and 20. We model the cooling rate by using two different cooling curves: one appropriate to interstellar gas, and the other to photoionized gas of reduced metallicity. Thus, our results will be applicable to both protostellar (Herbig-Haro) jets and optical jets from active galactic nuclei. We present analytical solutions to the dispersion relations in useful limits and solve the dispersion relations numerically over a broad range of perturbation frequencies. We find that the growth rates and wavelengths of the unstable Kelvin-Helmholtz (K-H) modes are significantly different from the adiabatic limit, and that the form of the cooling function strongly affects the results. In particular, if the cooling curve is a steep function of temperature in the neighborhood of the equilibrium state, then the growth of K-H modes is reduced relative to the adiabatic jet. On the other hand, if the cooling curve is a shallow function of temperature, then the growth of K-H modes can be enhanced relative to the adiabatic jet by the increase in cooling relative to heating in overdense regions. Inclusion of a dynamically important magnetic field does not strongly modify the important differences between an adiabatic jet and a cooling jet, provided the jet is highly supermagnetosonic and not magnetic pressure-dominated. In the latter case, the unstable modes behave more like the transmagnetosonic magnetic pressure-dominated adiabatic limit. We also plot fluid displacement surfaces associated with the various waves in a cooling jet in order to predict the structures that might arise in the nonlinear regime. This analysis predicts that low-frequency surface waves and the lowest order body modes will be the most effective at producing observable features in the jet.
Stability of the scalar potential and symmetry breaking in the economical 3-3-1 model
NASA Astrophysics Data System (ADS)
Giraldo, Yithsbey; Ponce, William A.; Sánchez, Luis A.
2009-10-01
A detailed study of the criteria for stability of the scalar potential and the proper electroweak symmetry breaking pattern in the economical 3-3-1 model, is presented. For the analysis we use and improve a method previously developed to study the scalar potential in the two-Higgs-doublet extension of the standard model. A new theorem related to the stability of the potential is stated. As a consequence of this study, the consistency of the economical 3-3-1 model emerges.
Preliminary hazards analysis of thermal scrap stabilization system. Revision 1
Lewis, W.S.
1994-08-23
This preliminary analysis examined the HA-21I glovebox and its supporting systems for potential process hazards. Upon further analysis, the thermal stabilization system has been installed in gloveboxes HC-21A and HC-21C. The use of HC-21C and HC-21A simplified the initial safety analysis. In addition, these gloveboxes were cleaner and required less modification for operation than glovebox HA-21I. While this document refers to glovebox HA-21I for the hazards analysis performed, glovebox HC-21C is sufficiently similar that the following analysis is also valid for HC-21C. This hazards analysis document is being re-released as revision 1 to include the updated flowsheet document (Appendix C) and the updated design basis (Appendix D). The revised Process Flow Schematic has also been included (Appendix E). This Current revision incorporates the recommendations provided from the original hazards analysis as well. The System Design Description (SDD) has also been appended (Appendix H) to document the bases for Safety Classification of thermal stabilization equipment.
Stability of finite difference models containing two boundaries or interfaces
NASA Technical Reports Server (NTRS)
Trefethen, L. N.
1984-01-01
The stability of finite difference models of hyperbolic initial boundary value problems is connected with the propagation and reflection of parasitic waves. Wave propagation ideas are applied to models containing two boundaires or interfaces, where repeated reflection of trapped wave packets is a potential new source of instability. Various known instability phenomena are accounted for in a unified way. Results show: (1) dissipativity does not ensure stability when three or more formulas are concatenated at a boundary or internal interface; (2) algebraic GKS instabilities can be converted by a second boundary to exponential instabilities only when an infinite numerical reflection coefficient is present; and (3) GKS-stability and P-stability can be established in certain problems by showing that all numerical reflection coefficients have modulus less than 1.
Foerdedal, H.; Midttun, O.; Sjoeblom, J.; Kvalheim, O.M.; Schildberg, Y.; Volle, J.L.
1996-09-01
The electrically induced coalescence of water-in-oil emulsions stabilized by interfacially active fractions from crude oils has been studied by means of time domain dielectric spectroscopy at high electric fields. The experiments were designed with a 2{sup 7-3} reduced factorial design. Regression analysis clearly shows that the choice of organic solvent and the amount of asphaltenes, as well as the interplay between these variables, are the most significant parameters for determining the stability of these emulsions. It should be pointed out that the asphaltenes were the only surface active fraction tested. No interplay between, for instance, asphaltenes and resins was investigated. The nonlinearity found in the regression analysis is explained by different aggregation states of asphaltenes in aliphatic and aromatic solvents. The influence of the variables upon the emulsion stability is discussed.
Entropically-Stabilized Self-Compactification in Model Colloidal Systems
Juyong Park; Alexei V. Tkachenko
2003-04-15
We discuss the phenomenon of spontaneous self-compactification in a model colloidal system, proposed in a recent work on DNA-mediated self-assembly. We focus on the effect of thermal fluctuations on the stability of membrane-like self-assembled phase with in-plane square order. Surprisingly, the fluctuations are shown to enhance the stability of this quasi-2D phase with respect to transition to alternative 3D structures.
Stability analysis of exponential solutions in Lovelock cosmologies
NASA Astrophysics Data System (ADS)
Pavluchenko, Sergey A.
2015-11-01
In this paper we perform stability analysis for exponential solutions in Einstein-Gauss-Bonnet and cubic Einstein-Lovelock gravity. We report our findings, provide areas on parameter space, and discuss similarities and differences between cases. Analysis suggests that only several cases out of numerous found solutions have stable specific perturbation. Overall, all solutions fall into three groups—the above mentioned group with at least one stable specific perturbation; another group with at least one unstable perturbation, which makes these solutions unstable; and the largest group with marginal or neutral stability. In particular, for the cases with three-dimensional isotropic subspace which could give rise to successful compactification, only one general case and one additional partial solution in the cubic Lovelock case could have stable perturbation.
Jacobi stability analysis of dynamical systems -- applications in gravitation and cosmology
C. G. Boehmer; T. Harko; S. V. Sabau
2010-10-26
The Kosambi-Cartan-Chern (KCC) theory represents a powerful mathematical method for the analysis of dynamical systems. In this approach one describes the evolution of a dynamical system in geometric terms, by considering it as a geodesic in a Finsler space. By associating a non-linear connection and a Berwald type connection to the dynamical system, five geometrical invariants are obtained, with the second invariant giving the Jacobi stability of the system. The Jacobi (in)stability is a natural generalization of the (in)stability of the geodesic flow on a differentiable manifold endowed with a metric (Riemannian or Finslerian) to the non-metric setting. In the present paper we review the basic mathematical formalism of the KCC theory, and present some specific applications of this method in general relativity, cosmology and astrophysics. In particular we investigate the Jacobi stability of the general relativistic static fluid sphere with a linear barotropic equation of state, of the vacuum in the brane world models, of a dynamical dark energy model, and of the Lane-Emden equation, respectively. It is shown that the Jacobi stability analysis offers a powerful and simple method for constraining the physical properties of different systems, described by second order differential equations.
GLOBAL STABILITY IN CYCLIC EPIDEMIC MODELS WITH DISEASE FATALITIES
Thieme, Horst R.
1 2 GLOBAL STABILITY IN CYCLIC EPIDEMIC MODELS WITH DISEASE FATALITIES HORST R. THIEME AND P. VAN. Thieme and P. van den Driessche 3 Abstract A general disease transmission model of SIRS type, and stage age in the removed class. Disease fatalities occur in the infective class and the removed stages
On the Stability of a Model of Testosterone German Enciso
Enciso, Germán
On the Stability of a Model of Testosterone Dynamics German Enciso Eduardo D. Sontag Department of a well-known delayed negative- feedback model of testosterone dynamics, which has been proposed in the presence of delays of arbitrary length. Keywords: testosterone dynamics, monotone systems, negative
orbital stability of Dirac solitons in the massive Thirring model
Pelinovsky, Dmitry
because the massive Thirring model is integrable via the inverse scattering transform method. Keywords integrability via the inverse scattering transform method [19, 22]. The nonlin- ear Dirac system arisesL2 orbital stability of Dirac solitons in the massive Thirring model Andres Contreras, Dmitry E
NASA Astrophysics Data System (ADS)
Grandy, Stuart; Wieder, Will; Kallenbach, Cynthia; Tiemann, Lisa
2014-05-01
If soil organic matter is predominantly microbial biomass, plant inputs that build biomass should also increase SOM. This seems obvious, but the implications fundamentally change how we think about the relationships between plants, microbes and SOM. Plant residues that build microbial biomass are typically characterized by low C/N ratios and high lignin contents. However, plants with high lignin contents and high C/N ratios are believed to increase SOM, an entrenched idea that still strongly motivates agricultural soil management practices. Here we use a combination of meta-analysis with a new microbial-explicit soil biogeochemistry model to explore the relationships between plant litter chemistry, microbial communities, and SOM stabilization in different soil types. We use the MIcrobial-MIneral Carbon Stabilization (MIMICS) model, newly built upon the Community Land Model (CLM) platform, to enhance our understanding of biology in earth system processes. The turnover of litter and SOM in MIMICS are governed by the activity of r- and k-selected microbial groups and temperature sensitive Michaelis-Menten kinetics. Plant and microbial residues are stabilized short-term by chemical recalcitrance or long-term by physical protection. Fast-turnover litter inputs increase SOM by >10% depending on temperature in clay soils, and it's only in sandy soils devoid of physical protection mechanisms that recalcitrant inputs build SOM. These results challenge centuries of lay knowledge as well as conventional ideas of SOM formation, but are they realistic? To test this, we conducted a meta-analysis of the relationships between the chemistry of plant liter inputs and SOM concentrations. We find globally that the highest SOM concentrations are associated with plant inputs containing low C/N ratios. These results are confirmed by individual tracer studies pointing to greater stabilization of low C/N ratio inputs, particularly in clay soils. Our model and meta-analysis results suggest that current ideas about plant-microbe-SOM relationships are unraveling. If so, our reconsideration of the mechanisms stabilizing SOM will also challenge long-held views about how to optimize plant community management to increase SOM.
Stability analysis of position and force control problems for robot arms
NASA Technical Reports Server (NTRS)
Wen, John T.; Murphy, Steve
1990-01-01
A stability analysis for robot manipulators under the influence of external forces is presented. Several control objectives are considered: rejecting the external force as a source of disturbance, complying to the external force as a generalized mass-spring-damper system, and actively controlling the external force when a dynamic model for the environment is available. An explanation of instability is given for the case in which the environment has flexibility and the gains are inappropriately chosen. When the environment is stiff in the force control subspace, robust stability can be achieved via the integral force feedback.
Enumeration and stability analysis of simple periodic orbits in ?-Fermi Pasta Ulam lattice
Sonone, Rupali L. Jain, Sudhir R.
2014-04-24
We study the well-known one-dimensional problem of N particles with a nonlinear interaction. The special case of quadratic and quartic interaction potential among nearest neighbours is the ?-Fermi-Pasta-Ulam model. We enumerate and classify the simple periodic orbits for this system and find the stability zones, employing Floquet theory. Such stability analysis is crucial to understand the transition of FPU lattice from recurrences to globally chaotic behavior, energy transport in lower dimensional system, dynamics of optical lattices and also its impact on shape parameter of bio-polymers such as DNA and RNA.
NASA Technical Reports Server (NTRS)
Oberg, C. L.
1974-01-01
The combustion stability characteristics of engines applicable to the Space Shuttle Orbit Maneuvering System and the adequacy of acoustic cavities as a means of assuring stability in these engines were investigated. The study comprised full-scale stability rating tests, bench-scale acoustic model tests and analysis. Two series of stability rating tests were made. Acoustic model tests were made to determine the resonance characteristics and effects of acoustic cavities. Analytical studies were done to aid design of the cavity configurations to be tested and, also, to aid evaluation of the effectiveness of acoustic cavities from available test results.
Mechanical models for insect locomotion: stability and parameter studies
NASA Astrophysics Data System (ADS)
Schmitt, John; Holmes, Philip
2001-08-01
We extend the analysis of simple models for the dynamics of insect locomotion in the horizontal plane, developed in [Biol. Cybern. 83 (6) (2000) 501] and applied to cockroach running in [Biol. Cybern. 83 (6) (2000) 517]. The models consist of a rigid body with a pair of effective legs (each representing the insect’s support tripod) placed intermittently in ground contact. The forces generated may be prescribed as functions of time, or developed by compression of a passive leg spring. We find periodic gaits in both cases, and show that prescribed (sinusoidal) forces always produce unstable gaits, unless they are allowed to rotate with the body during stride, in which case a (small) range of physically unrealistic stable gaits does exist. Stability is much more robust in the passive spring case, in which angular momentum transfer at touchdown/liftoff can result in convergence to asymptotically straight motions with bounded yaw, fore-aft and lateral velocity oscillations. Using a non-dimensional formulation of the equations of motion, we also develop exact and approximate scaling relations that permit derivation of gait characteristics for a range of leg stiffnesses, lengths, touchdown angles, body masses and inertias, from a single gait family computed at ‘standard’ parameter values.
Game Theoretical Analysis on Cooperation Stability and Incentive Effectiveness in Community Networks
Liu, Yi; Qian, Depei; Zhang, Han; Cai, Jihong
2015-01-01
Community networks, the distinguishing feature of which is membership admittance, appear on P2P networks, social networks, and conventional Web networks. Joining the network costs money, time or network bandwidth, but the individuals get access to special resources owned by the community in return. The prosperity and stability of the community are determined by both the policy of admittance and the attraction of the privileges gained by joining. However, some misbehaving users can get the dedicated resources with some illicit and low-cost approaches, which introduce instability into the community, a phenomenon that will destroy the membership policy. In this paper, we analyze on the stability using game theory on such a phenomenon. We propose a game-theoretical model of stability analysis in community networks and provide conditions for a stable community. We then extend the model to analyze the effectiveness of different incentive policies, which could be used when the community cannot maintain its members in certain situations. Then we verify those models through a simulation. Finally, we discuss several ways to promote community network’s stability by adjusting the network’s properties and give some proposal on the designs of these types of networks from the points of game theory and stability. PMID:26551649
Song, Kaida; Wang, Rui; Liu, Yi; Qian, Depei; Zhang, Han; Cai, Jihong
2015-01-01
Community networks, the distinguishing feature of which is membership admittance, appear on P2P networks, social networks, and conventional Web networks. Joining the network costs money, time or network bandwidth, but the individuals get access to special resources owned by the community in return. The prosperity and stability of the community are determined by both the policy of admittance and the attraction of the privileges gained by joining. However, some misbehaving users can get the dedicated resources with some illicit and low-cost approaches, which introduce instability into the community, a phenomenon that will destroy the membership policy. In this paper, we analyze on the stability using game theory on such a phenomenon. We propose a game-theoretical model of stability analysis in community networks and provide conditions for a stable community. We then extend the model to analyze the effectiveness of different incentive policies, which could be used when the community cannot maintain its members in certain situations. Then we verify those models through a simulation. Finally, we discuss several ways to promote community network's stability by adjusting the network's properties and give some proposal on the designs of these types of networks from the points of game theory and stability. PMID:26551649
Analysis of floor stability in underground coal mines
Faria Santos, C.A.F.
1988-01-01
This research work presents a rock mass strength criterion for mine floor strata based on the empirical method proposed by Hoek and Brown. This method was modified by the author with the introduction of the concept of the point of critical energy release, the inclusion of tensile strength and the adoption of alithostatic state of stress in rock masses. Its application requires the determination of RMR (rock mass rating) of the Geomechanics Classification. Equivalent values of cohesion and the angle of internal friction are calculated and finally the ultimate stress on the floor layers is determined. An alternative solution employing the limit analysis approach is also presented. A step by step procedure for the design of mine floors is proposed, containing guidelines for the necessary field and laboratory investigations and the establishment of the bearing capacity of floor strata. A practical example, accompanied by a microcomputer program and the code, is also included. Nine case histories have been included for the verification of the developed criterion, both in longwall and room and pillar mining. Numerical modeling was used to analyze the stress distribution and displacements in the headgate entries of two longwall panels, considering both an elastic solution and the time-dependent behavior of the rock. It was concluded that with the current knowledge of rock mechanics the solution of floor stability problems has to rely on empirical methods. Due to the time-dependent nature of floor rocks a long term strength ought to be considered, and thus the point of critical energy release becomes an essential property to be determined during the phase of geotechnical investigations.
Stability Analysis of the Vortex Rope Formed in Draft Tubes
NASA Astrophysics Data System (ADS)
Rajan, Girish Kumar; Cimbala, John
2013-11-01
Studies on draft tube surge have shown that there are undesirable effects in the form of violent pressure fluctuations caused by a helical vortex (often called the vortex rope), formed in the draft tube due to a shear layer produced by a central stalled region with lesser axial velocities, and the swirling main-flow. The vortex rope is formed when hydroturbines operate away from the best efficiency point, and affects the efficiency of the turbine severely. Thus, in order to reduce these undesired effects of the vortex rope, a proper understanding of its structure and stability is necessary. This project, which is in progress, involves a numerical investigation of the vortex rope and its elimination, and a mathematical analysis that could possibly throw some light on the stability of the rope. Several cases have been simulated in ANSYS-FLUENT with the draft tube geometry obtained from the FLINDT project. It is then possible to obtain the vortex rope parameters as functions of the discharge coefficient. In addition, the simulations are also expected to provide information on the mean velocity field in the draft tube. These relations might also be of some help in the stability analysis, which should identify the modes that are unstable.
Stability Analysis of High-Speed Cavity Flow
NASA Astrophysics Data System (ADS)
Sun, Yiyang; Taira, Kunihiko; Cattafesta, Louis; Bres, Guillaume; Ukeiley, Lawrence
2013-11-01
Stability analysis is conducted to uncover the inherent instabilities in subsonic to supersonic open cavity flows. Two- and three-dimensional direct numerical simulations of spanwise periodic cavity flows are performed with the high-fidelity compressible flow solver ``Charles'' developed at Cascade Technologies. Two-dimensional nonlinear computations are carried out to characterize the flow stability over a wide range of Mach numbers and Reynolds numbers, and to extract a base flow for three-dimensional linear stability analysis. Selective frequency damping method is used to solve for the steady state for cases where the flow is found to be unstable. Both stable and unstable two-dimensional steady state can then be used as base state to examine, in the linear limit, how instabilities grow in space and over time. The present study forms a foundation to pursue three-dimensional flow control in which the spanwise instability will be exploited to redistribute kinetic energy from large spanwise vortices to reduce load fluctuations within the cavity. Work supported by AFOSR (grant FA9550-13-1-0091).
Progress Toward the Analysis of the Kinetic Stabilizer Concept
Post, R F; Byers, J A; Cohen, R H; Fowler, T K; Ryutov, D D; Tung, L S
2005-02-08
The Kinetic Stabilizer (K-S) concept [1] represents a means for stabilizing axisymmetric mirror and tandem-mirror (T-M) magnetic fusion systems against MHD interchange instability modes. Magnetic fusion research has given us examples of axisymmetric mirror confinement devices in which radial transport rates approach the classical ''Spitzer'' level, i.e. situations in which turbulence if present at all, is at too low a level to adversely affect the radial transport [2,3,4]. If such a low-turbulence condition could be achieved in a T-M system it could lead to a fusion power system that would be simpler, smaller, and easier to develop than one based on closed-field confinement, e.g., the tokamak, where the transport is known to be dominated by turbulence. However, since conventional axisymmetric mirror systems suffer from the MHD interchange instability, the key to exploiting this new opportunity is to find a practical way to stabilize this mode. The K-S represents one avenue to achieving this goal. The starting point for the K-S concept is a theoretical analysis by Ryutov [5]. He showed that a MHD-unstable plasma contained in an axisymmetric mirror cell can be MHD-stabilized by the presence of a low-density plasma on the expanding field lines outside the mirrors. If this plasma communicates well electrically with the plasma in the then this exterior plasma can stabilize the interior, confined, plasma. This stabilization technique was conclusively demonstrated in the Gas Dynamic Trap (GDT) experiment [6] at Novosibirsk, Russia, at mirror-cell plasma beta values of 40 percent. The GDT operates in a high collisionality regime. Thus the effluent plasma leaking through the mirrors, though much lower in density than that of the confined plasma, is still high enough to satisfy the stabilization criterion. This would not, however, be the case in a fusion T-M with axisymmetric plug and central cell fields. In such a case the effluent plasma would be far too low in density to stabilize the plasmas in the plug cells and the central cell. The K-S resolves this dilemma by employing ion beams injected up the magnetic gradient in the ''expander'' region outside the outermost mirror in such a way that as they are compressed, stagnated, and reflected they form a ''stabilizer'' plasma in the expander. Preliminary calculations [1] showed that the power required to maintain the stabilizer beams would be orders of magnitude less than the fusion power generated. This report reviews those calculations and describes additional theoretical and computational work in progress, aimed at confirming and extending the analysis of the K-S concept as applied to axisymmetric tandem mirror systems.
Generalized Kinetic Theory of Electrons and Phonons: Models, Equilibrium, Stability
A. Rossani; A. M. Scarfone
2003-03-18
In the present paper our aim is to introduce some models for the generalization of the kinetic theory of electrons and phonons (KTEP), as well as to study equilibrium solutions and their stability for the generalized KTEP (GKTEP) equations. We consider a couple of models, relevant to non standard quantum statistics, which give rise to inverse power law decays of the distribution function with respect to energy. In the case of electrons in a phonon background, equilibrium and stability are investigated by means of Lyapounov theory. Connections with thermodynamics are pointed out.
Palo, P.A.; Meggitt, D.J.; Nordell, W.J.
1983-05-01
This paper presents a summary of the development and validation of undersea cable dynamics computer models by the Naval Civil Engineering Laboratory (NCEL) under the sponsorship of the Naval Facilities Engineering Command. These models allow for the analysis of both small displacement (strumming) and large displacement (static and dynamic) deformations of arbitrarily configured cable structures. All of the large displacement models described in this paper are available to the public. This paper does not emphasize the theoretical development of the models (this information is available in other references) but emphasizes the various features of the models, the comparisons between model output and experimental data, and applications for which the models have been used.
Thermohaline circulation stability: a box model study - Part II: coupled atmosphere-ocean model
Lucarini, V; Lucarini, Valerio; Stone, Peter H.
2004-01-01
A thorough analysis of the stability of a coupled version of an inter-hemispheric 3-box model of Thermohaline Circulation (THC) is presented. This study follows a similarly structured analysis on an uncoupled version of the same model presented in Part I. We study how the strength of THC changes when the system undergoes forcings representing global warming conditions. Each perturbation to the initial equilibrium is characterized by the total radiative forcing realized, by the rate of increase, and by the North-South asymmetry. The choice of suitably defined metrics allows us to determine the boundary dividing the set of radiative forcing scenarios that lead the system to equilibria characterized by a THC pattern similar to the present one, from those that drive the system to equilibria where the THC is reversed. We also consider different choices for the atmospheric transport parameterizations and for the ratio between the high latitude to tropical radiative forcing. We generally find that fast forcings are ...
Stabilizing a Bicycle: A Modeling Project
ERIC Educational Resources Information Center
Pennings, Timothy J.; Williams, Blair R.
2010-01-01
This article is a project that takes students through the process of forming a mathematical model of bicycle dynamics. Beginning with basic ideas from Newtonian mechanics (forces and torques), students use techniques from calculus and differential equations to develop the equations of rotational motion for a bicycle-rider system as it tips from…
Robust Stability Analysis of the Space Launch System Control Design: A Singular Value Approach
NASA Technical Reports Server (NTRS)
Pei, Jing; Newsome, Jerry R.
2015-01-01
Classical stability analysis consists of breaking the feedback loops one at a time and determining separately how much gain or phase variations would destabilize the stable nominal feedback system. For typical launch vehicle control design, classical control techniques are generally employed. In addition to stability margins, frequency domain Monte Carlo methods are used to evaluate the robustness of the design. However, such techniques were developed for Single-Input-Single-Output (SISO) systems and do not take into consideration the off-diagonal terms in the transfer function matrix of Multi-Input-Multi-Output (MIMO) systems. Robust stability analysis techniques such as H(sub infinity) and mu are applicable to MIMO systems but have not been adopted as standard practices within the launch vehicle controls community. This paper took advantage of a simple singular-value-based MIMO stability margin evaluation method based on work done by Mukhopadhyay and Newsom and applied it to the SLS high-fidelity dynamics model. The method computes a simultaneous multi-loop gain and phase margin that could be related back to classical margins. The results presented in this paper suggest that for the SLS system, traditional SISO stability margins are similar to the MIMO margins. This additional level of verification provides confidence in the robustness of the control design.
NASA Astrophysics Data System (ADS)
Gill, T. S.; Bala, Parveen; Bains, A. S.
2015-05-01
A rigorous theoretical study based on Zakharov Kuznetsov (ZK) equation of ion-acoustic solitary waves (IASWs), their stability analysis in a magnetized e- p- i plasma is presented. The plasma model consists of inertial ions, magnetic field, electrons and positrons obeying q-nonextensive velocity distribution. Reductive perturbation method is used to derive ZK equation. The solitary wave structures are dependent on chosen plasma model, whose parameters influence the solitary characteristics. Particularly, nonextensivity, proportion of positron concentration, magnetic field and difference between electron and positron temperatures play crucial role in the solitary structures. The present work is also extended to give stability analysis and parametric ranges for the existence of stable and unstable solitons. This research work may be useful to understand the physics of nonlinear electrostatic excitations in different astrophysical and cosmic scenarios like stellar polytropes, hadron matter and quark-gluon plasma.
Stability analysis of inflation with an SU(2) gauge field
Maeda, Kei-ichi; Yamamoto, Kei E-mail: K.Yamamoto@damtp.cam.ac.uk
2013-12-01
We study anisotropic cosmologies of a scalar field interacting with an SU(2) gauge field via a gauge-kinetic coupling. We analyze Bianchi class A models, which include Bianchi type I, II, VI{sub 0}, VII{sub 0}, VIII and IX. The linear stability of isotropic inflationary solution with background magnetic field is shown, which generalizes the known results for U(1) gauge fields. We also study anisotropic inflationary solutions, all of which turn out to be unstable. Then nonlinear stability for the isotropic inflationary solution is examined by numerically investigating the dependence of the late-time behaviour on the initial conditions. We present a number of novel features that may well affect physical predictions and viability of the models. First, in the absence of spatial curvature, strong initial anisotropy leads to a rapid oscillation of gauge field, thwarting convergence to the inflationary attractor. Secondly, the inclusion of spatial curvature destabilizes the oscillatory attractor and the global stability of the isotropic inflation with gauge field is restored. Finally, based on the numerical evidence combined with the knowledge of the eigenvalues for various inflationary solutions, we give a generic lower-bound for the duration of transient anisotropic inflation, which is inversely proportional to the slow-roll parameter.
Stability analysis of position and force control problems for robot arms
NASA Technical Reports Server (NTRS)
Wen, John T.; Murphy, Steve
1990-01-01
Stability issues involving the control of a robot arm under the influence of external forces are discussed. Several different scenarios are considered: position control with the external force as an unmodeled disturbance, compliant control for a bounded external force in some subspace, and compliant control for a force due to the interaction with an environment whose dynamical behavior can be modeled. In each of these cases, a stability analysis using the Lyapunov method is presented. An explanation of instability is put forth for the case in which the environment has flexibility and the gains are inappropriately chosen. When the environment is stiff in the force control subspace, robust stability can be achieved with the integral force feedback.
Inductive heating on a NbTi CICC magnet: energy calibration and stability analysis
NASA Astrophysics Data System (ADS)
Muzzi, L.; Gislon, P.; Turtù, S.; Spadoni, M.
2003-12-01
An experiment on a NbTi coiled cable-in-conduit conductor has been carried out, aimed at measuring its stability under the disturbance conditions determined by the discharge of a capacitor bank on pulsed coils, which produces rapidly varying fields, uniformly distributed over the conductor length. The energy amount actually deposited on the superconducting strands during the external field variations has been determined, on the basis of an experimental analysis of the AC losses and the results of a semi-empirical model of AC losses in saturation regime. The heating power has been taken as input for the simulation code Gandalf: a good agreement has been found between the simulated and the measured evolution of temperature along the conductor length during the inductive disturbance. Transient stability has been measured, as function of electromagnetic and thermo-hydraulic variables. A satisfactory agreement has been obtained in the stability diagrams between experimental data and the results of numerical simulations.
On the stability of steady states in a granuloma model
NASA Astrophysics Data System (ADS)
Friedman, Avner; Lam, King-Yeung
We consider a free boundary problem for a system of two semilinear parabolic equations. The system represents a simple model of granuloma, a collection of immune cells and bacteria filling a 3-dimensional domain ?(t) which varies in time. We prove the existence of stationary spherical solutions and study their linear asymptotic stability as time increases to infinity.
Stability of a general SEIV epidemic model with time delay
NASA Astrophysics Data System (ADS)
Hikal, M. M.; El-Sheikh, M. M. A.
2013-10-01
An SEIV epidemic model with a general nonlinear incidence rate, vaccination and time delay in treatment is considered. Sufficient conditions for the time delay to keep the stability of the endemic equilibria are given. A numerical simulations is given to illustrate our results.
Orbiter Boundary Layer Transition Stability Modeling at Flight Entry Conditions
NASA Technical Reports Server (NTRS)
Bartkowicz, Matt; Johnson, Heath; Candler, Graham; Campbell, Charles H.
2009-01-01
State of the art boundary layer stability modeling capabilities are increasingly seeing application to entry flight vehicles. With the advent of user friendly and robust implementations of two-dimensional chemical nonequilibrium stability modeling with the STABL/PSE-CHEM software, the need for flight data to calibrate such analyses capabilities becomes more critical. Recent efforts to perform entry flight testing with the Orbiter geometry related to entry aerothermodynamics and boundary layer transition is allowing for a heightened focus on the Orbiter configuration. A significant advancement in the state of the art can likely be achieved by establishing a basis of understanding for the occurrence of boundary layer transition on the Orbiter due to discrete protruding gap fillers and the nominal distributed roughness of the actual thermal protection system. Recent success in demonstrating centerline two-dimensional stability modeling on the centerline of the Orbiter at flight entry conditions provides a starting point for additional investigations. The more detailed paper will include smooth Orbiter configuration boundary layer stability results for several typical orbiter entry conditions. In addition, the numerical modeling approach for establishing the mean laminar flow will be reviewed and the method for determining boundary layer disturbance growth will be overviewed. In addition, if actual Orbiter TPS surface data obtained via digital surface scans become available, it may be possible to investigate the effects of an as-flown flight configuration on boundary layer transition compared to a smooth CAD reference.
Stability of Sigma-Model Strings and Textures
R. S. Ward
2002-01-14
In flat space-time, sigma-model strings and textures are both unstable to collapse and subsequent decay. With sufficient cosmological expansion, however, they are stable in a generalized sense: a small perturbation will cause them to change their shape, but they do not decay. The current rate of expansion is sufficient to stabilize strings, but not textures.
Ant Colony Optimization Analysis on Overall Stability of High Arch Dam Basis of Field Monitoring
Liu, Xiaoli; Chen, Hong-Xin; Kim, Jinxie
2014-01-01
A dam ant colony optimization (D-ACO) analysis of the overall stability of high arch dams on complicated foundations is presented in this paper. A modified ant colony optimization (ACO) model is proposed for obtaining dam concrete and rock mechanical parameters. A typical dam parameter feedback problem is proposed for nonlinear back-analysis numerical model based on field monitoring deformation and ACO. The basic principle of the proposed model is the establishment of the objective function of optimizing real concrete and rock mechanical parameter. The feedback analysis is then implemented with a modified ant colony algorithm. The algorithm performance is satisfactory, and the accuracy is verified. The m groups of feedback parameters, used to run a nonlinear FEM code, and the displacement and stress distribution are discussed. A feedback analysis of the deformation of the Lijiaxia arch dam and based on the modified ant colony optimization method is also conducted. By considering various material parameters obtained using different analysis methods, comparative analyses were conducted on dam displacements, stress distribution characteristics, and overall dam stability. The comparison results show that the proposal model can effectively solve for feedback multiple parameters of dam concrete and rock material and basically satisfy assessment requirements for geotechnical structural engineering discipline. PMID:25025089
Stability analysis of restricted non-static axial symmetry
Sharif, M.; Bhatti, M. Zaeem Ul Haq E-mail: mzaeem.math@gmail.com
2013-11-01
This paper aims to investigate the instability of very restricted class of non-static axially symmetric spacetime with anisotropic matter configuration. The perturbation scheme is established for the Einstein field equations and conservation laws. The instability range in the Newtonian and post-Newtonian regions are explored by constructing the collapse equation in this scenario. It is found that the adiabatic index plays an important role in the stability analysis which depends upon the physical parameters i.e., energy density and anisotropic pressure of the fluid distribution.
Thermal Stability Analysis for Superconducting Coupling Coil in MICE
Wu, Hong; Wang, Li; Pan, Heng; Guo, XingLong; Green, M.A.
2010-06-28
The superconducting coupling coil to be used in the Muon Ionization Cooling Experiment (MICE) with inner radius of 750 mm, length of 285 mm and thickness of 110.4 mm will be cooled by a pair of 1.5 W at 4.2 K cryo-coolers. When the coupling coil is powered to 210 A, it will produce about 7.3 T peak magnetic field at the conductor and it will have a stored energy of 13 MJ. A key issue for safe operation of the coupling coil is the thermal stability of the coil during a charge and discharge. The magnet and its cooling system are designed for a rapid discharge where the magnet is to be discharged in 5400 seconds. The numerical simulation for the thermal stability of the MICE coupling coil has been done using ANSYS. The analysis results show that the superconducting coupling coil has a good stability and can be charged and discharged safely.
On stability issues in deriving multivariable regression models.
Sauerbrei, Willi; Buchholz, Anika; Boulesteix, Anne-Laure; Binder, Harald
2015-07-01
In many areas of science where empirical data are analyzed, a task is often to identify important variables with influence on an outcome. Most often this is done by using a variable selection strategy in the context of a multivariable regression model. Using a study on ozone effects in children (n = 496, 24 covariates), we will discuss aspects relevant for deriving a suitable model. With an emphasis on model stability, we will explore and illustrate differences between predictive models and explanatory models, the key role of stopping criteria, and the value of bootstrap resampling (with and without replacement). Bootstrap resampling will be used to assess variable selection stability, to derive a predictor that incorporates model uncertainty, check for influential points, and visualize the variable selection process. For the latter two tasks we adapt and extend recent approaches, such as stability paths, to serve our purposes. Based on earlier experiences and on results from the example, we will argue for simpler models and that predictions are usually very similar, irrespective of the selection method used. Important differences exist for the corresponding variances, and the model uncertainty concept helps to protect against serious underestimation of the variance of a predictor-derived data dependently. Results of stability investigations illustrate severe difficulties in the task of deriving a suitable explanatory model. It seems possible to identify a small number of variables with an important and probably true influence on the outcome, but too often several variables are included whose selection may be a result of chance or may depend on a small number of observations. PMID:25501529
On the stability and bifurcation analysis of dual-spin spacecraft
NASA Astrophysics Data System (ADS)
Nazari, Morad; Butcher, Eric A.
2014-01-01
The dynamics of dual-spin spacecraft under effects of energy dissipation are considered in this paper, where the damper masses in the platform (P) and the rotor (R) cause energy loss in the system. The Floquet theory is employed to obtain stability charts for different relative spin rates of the subsystem R with respect to the subsystem P. Based on the general model for the system with nutation dampers on both P and R, models are presented for a system whose nutation damper exists only in P as well as a system without nutation damper. The results obtained from the Floquet theory agree with the energy sink analysis in the literature. The bifurcation analysis based on the movement of loci of the Floquet multipliers as the system passes through the flutter stability boundary indicates that the system experiences the secondary Hopf (Neimark-Sacker) bifurcation. The investigations show that for spacecraft whose nutation damper exists only in one of the subsystems, there is no need to apply Floquet theory, and the Routh-Hurwitz criteria provides necessary and sufficient conditions for stability. Furthermore, for the case that only P has damping, the Lyapunov stability criteria agree with Routh-Hurwitz criteria.
Stability and Control Analysis of the F-15B Quiet SpikeTM Aircraft
NASA Technical Reports Server (NTRS)
McWherter, Shaun C.; Moua, Cheng M.; Gera, Joseph; Cox, Timothy H.
2009-01-01
The primary purpose of the Quiet Spike(TradeMark) flight research program was to analyze the aerodynamic, structural, and mechanical proof-of-concept of a large multi-stage telescoping nose spike installed on the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) F-15B airplane. This report describes the preflight stability and control analysis performed to assess the effect of the spike on the stability, controllability, and handling qualities of the airplane; and to develop an envelope expansion approach to maintain safety of flight. The overall flight test objective was to collect flight data to validate the spike structural dynamics and loads model up to Mach 1.8. Other objectives included validating the mechanical feasibility of a morphing fuselage at operational conditions and determining the near-field shock wave characterization. The two main issues relevant to the stability and control objectives were the effects of the spike-influenced aerodynamics on the F-15B airplane flight dynamics, and the air data and angle-of-attack sensors. The analysis covered the sensitivity of the stability margins, and the handling qualities due to aerodynamic variation and the maneuvering limitations of the F-15B Quiet Spike configuration. The results of the analysis and the implications for the flight test program are also presented.
Riepema, Karel; Bakker, Douwe; Gordon, Stephen V.
2015-01-01
Johne’s Disease (JD) is a chronic enteritis of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). Current disease control strategies are hampered by the lack of sensitive and specific diagnostic modalities. Therefore, novel diagnostic and prognostic tools are needed, and circulating microRNAs (miRNAs) may hold potential in this area. The aims of this study were twofold: (i) to address the stability of miRNA in bovine sera from biobanked samples, and (ii) to assess the potential of miRNAs as biomarkers for JD disease progression. To address these aims we used bovine sera from an experimental MAP infection model that had been stored at -20°C for over a decade, allowing us to also assess the stability of miRNA profiles in biobanked serum samples through comparison with fresh sera. Approximately 100–200 intact miRNAs were identified in each sample with 83 of these being consistently detected across all 57 samples. The miRNA profile of the biobanked sera stored at -20°C for over 10 years was highly similar to the profile of <1 year-old sera stored at -80°C, with an overlap of 73 shared miRNAs. IsomiR analysis also indicated a distinct bovine serum-specific isomiR profile as compared to previously reported bovine macrophage miRNA profiles. To explore the prognostic potential of miRNA profiles cattle defined as seropositive for anti-MAP antibodies (n = 5) were compared against seronegative cattle (n = 7). No significant differential expressed miRNAs were detected at either the early (6 months) or late (43, 46 and 49 months) intervals (FDR?0.05, fold-change?1.5) across seropositive or seronegative animals. However, comparing pre-infection sera to the early and late time-points identified increased miR-29a and miR-92b abundance (2-fold) that may be due to blood-cell population changes over time (P<0.001). In conclusion our study has demonstrated that bovine circulating miRNAs retain their integrity under long-term sub-optimal storage temperatures opening the way for increased miRNA analyses from biobanked samples for a range of infectious and non-infectious diseases. PMID:26675426
NASA Astrophysics Data System (ADS)
Chanda, Sandip; De, Abhinandan
2015-07-01
A social welfare optimization technique has been proposed in this paper with a developed state space based model and bifurcation analysis to offer substantial stability margin even in most inadvertent states of power system networks. The restoration of the power market dynamic price equilibrium has been negotiated in this paper, by forming Jacobian of the sensitivity matrix to regulate the state variables for the standardization of the quality of solution in worst possible contingencies of the network and even with co-option of intermittent renewable energy sources. The model has been tested in IEEE 30 bus system and illustrious particle swarm optimization has assisted the fusion of the proposed model and methodology.
Slope Stability Analysis of Waste Dump in Sandstone Open Pit Osielec
NASA Astrophysics Data System (ADS)
Adamczyk, Justyna; Ca?a, Marek; Flisiak, Jerzy; Kolano, Malwina; Kowalski, Micha?
2013-03-01
This paper presents the slope stability analysis for the current as well as projected (final) geometry of waste dump Sandstone Open Pit "Osielec". For the stability analysis six sections were selected. Then, the final geometry of the waste dump was designed and the stability analysis was conducted. On the basis of the analysis results the opportunities to improve the stability of the object were identified. The next issue addressed in the paper was to determine the proportion of the mixture containing mining and processing wastes, for which the waste dump remains stable. Stability calculations were carried out using Janbu method, which belongs to the limit equilibrium methods.
Stability of the Zagreb Carnegie-Mellon-Berkeley model
H. Osmanovi?; S. Ceci; A. Švarc; M. Hadžimehmedovi?; J. Stahov
2012-02-16
In ref. [1] we have used the Zagreb realization of Carnegie-Melon-Berkeley coupled-channel, unitary model as a tool for extracting pole positions from the world collection of partial wave data, with the aim of eliminating model dependence in pole-search procedures. In order that the method is sensible, we in this paper discuss the stability of the method with respect to the strong variation of different model ingredients. We show that the Zagreb CMB procedure is very stable with strong variation of the model assumptions, and that it can reliably predict the pole positions of the fitted partial wave amplitudes.
Stability analysis of thermocapillary convection in rectangular cavities
Xu, J.; Zebib, A.
1996-12-31
This paper presents stability analysis on thermocapillary convection of acetone (Pr = 4.4) in rectangular cavities using direct numerical simulation. Influence of the Reynolds number (Re) and cavity aspect ratio (Ar) on motion is investigated. Results are exhibited for streamline and isotherm patterns at different values of Re and Ar. Neutral stability curves for transition to time-dependent convection are delineated for this Pr = 4.4 fluid in the Re-Ar plane, and compared with the results for fluids with Pr = 10.0, 6.78 and 1.0. Several interesting features of these diagrams are discussed. One important conclusion the authors have from the comparison is that Ar{sub cr} increases as Pr decreases. Thus, it appears that large values of both Ar and Re are necessary to induce thermocapillary oscillations for small Pr fluids such as liquid metals. On the other hand, energy analysis is performed for the oscillatory flow in the neighborhood of critical points in order to gain insight of mechanisms leading to instability. Results are provided for flows near both critical points with Ar = 3.0.
Numerical modeling of the stability of horizontal multidrain oil wells
NASA Astrophysics Data System (ADS)
Elyasi, Ayub; Goshtasbi, Kamran
2015-10-01
The stability of the horizontal multidrain wells is a crucial issue and several factors are involved in this matter, including in-situ stresses, magnitude and distribution as well as the mainbore trajectories. In this paper, this issue is evaluated by assuming different circumstances for the above mentioned factors, based on finite difference threedimensional modeling by using the finite difference numerical software, FLAC3D. The stability of the mainbore and lateral branches is analyzed based on the Normalized Yielded Zone Area (NYZA) criterion, i.e. the ratio of the surrounding yielded cross-sectional area to the initial area of the well. Optimum mud pressures are obtained in the mainbore and lateral branches in different mainbore trajectories under three in-situ stress regimes. In addition, the stability of the junction where the lateral branches are bifurcated from the mainbore is assessed in those situations. The optimum trajectory of the mainbore, in which the junction has obtained the most stable condition, is selected in each stress regime. It was concluded that in the Normal Faulting (NF) stress regime, the mainbore and junction stability varies in relation to the mainbore trajectories, inversely. However, in the other two stress regimes, i.e. Strike Slip (SS) and Reverse Faulting (RF), the variations of the mainbore and junction stability are in the same trend with respect to the mainbore trajectory deviations.
Markov chain-based stability analysis of growing networks
Zhenting Hou; Jinying Tong; Dinghua Shi
2008-06-01
From the perspective of probability, the stability of growing network is studied in the present paper. Using the DMS model as an example, we establish a relation between the growing network and Markov process. Based on the concept and technique of first-passage probability in Markov theory, we provide a rigorous proof for existence of the steady-state degree distribution, mathematically re-deriving the exact formula of the distribution. The approach based on Markov chain theory is universal and performs well in a large class of growing networks.
Fuzzy Current-Mode Control and Stability Analysis
NASA Technical Reports Server (NTRS)
Kopasakis, George
2000-01-01
In this paper a current-mode control (CMC) methodology is developed for a buck converter by using a fuzzy logic controller. Conventional CMC methodologies are based on lead-lag compensation with voltage and inductor current feedback. In this paper the converter lead-lag compensation will be substituted with a fuzzy controller. A small-signal model of the fuzzy controller will also be developed in order to examine the stability properties of this buck converter control system. The paper develops an analytical approach, introducing fuzzy control into the area of CMC.
Stability of spiky solution of Keller-Segel's minimal chemotaxis model
NASA Astrophysics Data System (ADS)
Chen, Xinfu; Hao, Jianghao; Wang, Xuefeng; Wu, Yaping; Zhang, Yajing
2014-11-01
A huge volume of research has been done for the simplest chemotaxis model (Keller-Segel's minimal model) and its variants, yet, some of the basic issues remain unresolved until now. For example, it is known that the minimal model has spiky steady states that can be used to model the important cell aggregation phenomenon, but the stability of monotone spiky steady states was not shown. In this paper, we derive, first formally and then rigorously, the asymptotic expansion of these monotone steady states, and then we use this fine information on the spike to prove its local asymptotic stability. Moreover, we obtain the uniqueness of such steady states. We expect that the new ideas and techniques for rigorous asymptotic expansion and spectrum analysis presented in this paper will be useful in attacking and hence stimulating research on other more sophisticated chemotaxis models.
Thermohaline circulation stability: a box model study - Part I: uncoupled model
Lucarini, V; Lucarini, Valerio; Stone, Peter H.
2004-01-01
A thorough analysis of the stability of the uncoupled Rooth interhemispheric 3-box model of thermohaline circulation (THC) is presented. The model consists of a northern high latitudes box, a tropical box, and a southern high latitudes box, which respectively correspond to the northern, tropical and southern Atlantic ocean. We adopt restoring boundary conditions for the temperature variables and flux boundary conditions for the salinity variables. We study how the strength of THC changes when the system undergoes forcings that are analogous to those of global warming conditions by applying to the equilibrium state perturbations to the moisture and heat fluxes into the three boxes. In each class of experiments, we determine, using suitably de- fined metrics, the boundary dividing the set of forcing scenarios that lead the system to equilibria characterized by a THC pattern similar to the present one, from those that drive the system to equilibria with a reversed THC. Fast increases in the moisture flux into th...
Densmore, Jeffery D; Warsa, James S; Lowrie, Robert B; Morel, Jim E
2008-01-01
The Fokker-Planck equation is a widely used approximation for modeling the Compton scattering of photons in high energy density applications. In this paper, we perform a stability analysis of three implicit time discretizations for the Compton-Scattering Fokker-Planck equation. Specifically, we examine (i) a Semi-Implicit (SI) scheme that employs backward-Euler differencing but evaluates temperature-dependent coefficients at their beginning-of-time-step values, (ii) a Fully Implicit (FI) discretization that instead evaluates temperature-dependent coefficients at their end-of-time-step values, and (iii) a Linearized Implicit (LI) scheme, which is developed by linearizing the temperature dependence of the FI discretization within each time step. Our stability analysis shows that the FI and LI schemes are unconditionally stable and cannot generate oscillatory solutions regardless of time-step size, whereas the SI discretization can suffer from instabilities and nonphysical oscillations for sufficiently large time steps. With the results of this analysis, we present time-step limits for the SI scheme that prevent undesirable behavior. We test the validity of our stability analysis and time-step limits with a set of numerical examples.
NASA Astrophysics Data System (ADS)
Peng, Guanghan; Liu, Changqing; Tuo, Manxian
2015-10-01
In this paper, a new lattice model is proposed with the traffic interruption probability term in two-lane traffic system. The linear stability condition and the mKdV equation are derived from linear stability analysis and nonlinear analysis by introducing the traffic interruption probability of optimal current for two-lane traffic freeway, respectively. Numerical simulation shows that the traffic interruption probability corresponding to high reaction coefficient can efficiently improve the stability of two-lane traffic flow as traffic interruption occurs with lane changing.
Aeroelastic stability analyses of two counter rotating propfan designs for a cruise missile model
NASA Technical Reports Server (NTRS)
Mahajan, Aparajit J.; Lucero, John M.; Mehmed, Oral; Stefko, George L.
1992-01-01
Aeroelastic stability analyses were performed to insure structural integrity of two counterrotating propfan blade designs for a NAVY/Air Force/NASA cruise missile model wind tunnel test. This analysis predicted if the propfan designs would be flutter free at the operating conditions of the wind tunnel test. Calculated stability results are presented for the two blade designs with rotational speed and Mach number as the parameters. A aeroelastic analysis code ASTROP2 (Aeroelastic Stability and Response of Propulsion Systems - 2 Dimensional Analysis), developed at LeRC, was used in this project. The aeroelastic analysis is a modal method and uses the combination of a finite element structural model and two dimensional steady and unsteady cascade aerodynamic models. This code was developed to analyze single rotation propfans but was modified and applied to counterrotating propfans for the present work. Modifications were made to transform the geometry and rotation of the aft rotor to the same reference frame as the forward rotor, to input a non-uniform inflow into the rotor being analyzed, and to automatically converge to the least stable aeroelastic mode.
Wavelet modeling and prediction of the stability of states: the Roman Empire and the European Union
NASA Astrophysics Data System (ADS)
Yaroshenko, Tatyana Y.; Krysko, Dmitri V.; Dobriyan, Vitalii; Zhigalov, Maksim V.; Vos, Hendrik; Vandenabeele, Peter; Krysko, Vadim A.
2015-09-01
How can the stability of a state be quantitatively determined and its future stability predicted? The rise and collapse of empires and states is very complex, and it is exceedingly difficult to understand and predict it. Existing theories are usually formulated as verbal models and, consequently, do not yield sharply defined, quantitative prediction that can be unambiguously validated with data. Here we describe a model that determines whether the state is in a stable or chaotic condition and predicts its future condition. The central model, which we test, is that growth and collapse of states is reflected by the changes of their territories, populations and budgets. The model was simulated within the historical societies of the Roman Empire (400 BC to 400 AD) and the European Union (1957-2007) by using wavelets and analysis of the sign change of the spectrum of Lyapunov exponents. The model matches well with the historical events. During wars and crises, the state becomes unstable; this is reflected in the wavelet analysis by a significant increase in the frequency ? (t) and wavelet coefficients W (?, t) and the sign of the largest Lyapunov exponent becomes positive, indicating chaos. We successfully reconstructed and forecasted time series in the Roman Empire and the European Union by applying artificial neural network. The proposed model helps to quantitatively determine and forecast the stability of a state.
A stability theorem for energy-balance climate models
NASA Technical Reports Server (NTRS)
Cahalan, R. F.; North, G. R.
1979-01-01
The paper treats the stability of steady-state solutions of some simple, latitude-dependent, energy-balance climate models. For north-south symmetric solutions of models with an ice-cap-type albedo feedback, and for the sum of horizontal transport and infrared radiation given by a linear operator, it is possible to prove a 'slope stability' theorem, i.e., if the local slope of the steady-state iceline latitude versus solar constant curve is positive (negative) the steady-state solution is stable (unstable). Certain rather weak restrictions on the albedo function and on the heat transport are required for the proof, and their physical basis is discussed.
Quantitation of protein–protein interactions by thermal stability shift analysis
Layton, Curtis J; Hellinga, Homme W
2011-01-01
Thermal stability shift analysis is a powerful method for examining binding interactions in proteins. We demonstrate that under certain circumstances, protein–protein interactions can be quantitated by monitoring shifts in thermal stability using thermodynamic models and data analysis methods presented in this work. This method relies on the determination of protein stabilities from thermal unfolding experiments using fluorescent dyes such as SYPRO Orange that report on protein denaturation. Data collection is rapid and straightforward using readily available real-time polymerase chain reaction instrumentation. We present an approach for the analysis of the unfolding transitions corresponding to each partner to extract the affinity of the interaction between the proteins. This method does not require the construction of a titration series that brackets the dissociation constant. In thermal shift experiments, protein stability data are obtained at different temperatures according to the affinity- and concentration-dependent shifts in unfolding transition midpoints. Treatment of the temperature dependence of affinity is, therefore, intrinsic to this method and is developed in this study. We used the interaction between maltose-binding protein (MBP) and a thermostable synthetic ankyrin repeat protein (Off7) as an experimental test case because their unfolding transitions overlap minimally. We found that MBP is significantly stabilized by Off7. High experimental throughput is enabled by sample parallelization, and the ability to extract quantitative binding information at a single partner concentration. In a single experiment, we were able to quantify the affinities of a series of alanine mutants, covering a wide range of affinities (? 100 nM to ? 100 ?M). PMID:21674662
Bifurcation analysis of aircraft pitching motions near the stability boundary
NASA Technical Reports Server (NTRS)
Hui, W. H.; Tobak, M.
1984-01-01
Bifuraction theory is used to analyze the nonlinear dynamic stability characteristics of an aircraft subject to single degree of freedom pitching-motion perturbations about a large mean angle of attack. The requisite aerodynamic information in the equations of motion is represented in a form equivalent to the response to finite-amplitude pitching oscillations about the mean angle of attack. This information is deduced from the case of infinitesimal-amplitude oscillations. The bifurcation theory analysis reveals that when the mean angle of attack is increased beyond a critical value at which the aerodynamic damping vanishes, new solutions representing finite-amplitude periodic motions bifurcate from the previously stable steady motion. The sign of a simple criterion, cast in terms of aerodynamic properties, determines whether the bifurcating solutions are stable (supercritical) or unstable (subcritical). For flat-plate airfoils flying at supersonic/hypersonic speed, the bifurcation is subcritical, implying either that exchanges of stability between steady and periodic motion are accompanied by hysteresis phenomena, or that potentially large aperiodic departures from steady motion may develop.
Hard-core yukawa model for charge-stabilized colloids
Davoudi; Kohandel; Mohammadi; Tanatar
2000-11-01
The hypernetted chain approximation is used to study the phase diagram of a simple hardcore Yukawa model of a charge-stabilized colloids. We calculate the static structure factor, the pair distribution function, and the collective mode energies over a wide range of parameters, and the results are used for studying the freezing transition of the system. The resulting phase diagram is in good agreement with the known estimates and the Monte Carlo simulations. PMID:11102053
Higgs-radion mixing in stabilized brane world models
NASA Astrophysics Data System (ADS)
Boos, Edward E.; Bunichev, Viacheslav E.; Perfilov, Maxim A.; Smolyakov, Mikhail N.; Volobuev, Igor P.
2015-11-01
We consider a quartic interaction of the Higgs and Goldberger-Wise fields, which connects the mechanism of the extra dimension size stabilization with spontaneous symmetry breaking on our brane and gives rise to a coupling of the Higgs field to the radion and its KK tower. We estimate a possible influence of this coupling on the Higgs-radion mixing and study restrictions on model parameters from the LHC data.
Absolute Stability Analysis of a Phase Plane Controlled Spacecraft
NASA Technical Reports Server (NTRS)
Jang, Jiann-Woei; Plummer, Michael; Bedrossian, Nazareth; Hall, Charles; Jackson, Mark; Spanos, Pol
2010-01-01
Many aerospace attitude control systems utilize phase plane control schemes that include nonlinear elements such as dead zone and ideal relay. To evaluate phase plane control robustness, stability margin prediction methods must be developed. Absolute stability is extended to predict stability margins and to define an abort condition. A constrained optimization approach is also used to design flex filters for roll control. The design goal is to optimize vehicle tracking performance while maintaining adequate stability margins. Absolute stability is shown to provide satisfactory stability constraints for the optimization.
Local Stability Analysis and Eigenvalue Sensitivity of Reacting, Bluff Body Wakes
Emerson, Benjamin; Lieuwen, Tim; Juniper, Matthew P.
2015-01-01
the flame. In all cases, the wake exhibits a sinuous oscillation. Linear stability analysis is performed on the measured time-averaged velocity and density fields. In the first stage of this analysis, a local, spatio-temporal stability analysis is performed...
Symplectic maps for the n-body problem - Stability analysis
NASA Technical Reports Server (NTRS)
Wisdom, Jack; Holman, Matthew
1992-01-01
The stability of new symplectic n-body maps is examined from the point of view of nonlinear dynamics. The resonances responsible for the principal artifacts are identified. These are resonances between the stepsize and the difference of mean motions between pairs of planets. For larger stepsizes resonant perturbations are evident in the variation of the energy of the system corresponding to these stepsize resonances. It is shown that the principal instability of the method can be predicted and corresponds to the overlap of the stepsize resonances. It is noted that the analysis suggests that other artifacts will occur. For example, the overlap of a stepsize resonance with a resonance of the actual system may also give a region of chaotic behavior that is an artifact. It is pointed out that the fact that the principal artifacts corresponds to a particular set of stepsize resonances suggests that it may be possible to perturbatively remove the effect when the stepsize resonances are nonoverlapping.
Stability analysis of runaway-driven waves in a tokamak
NASA Astrophysics Data System (ADS)
Aleynikov, Pavel; Breizman, Boris
2015-04-01
Runaway electrons (REs) generated during disruption events in tokamaks have to be mitigated to minimize the detrimental impact from their massive losses to the wall, especially in ITER. RE-driven micro-instabilities, such as whistlers and magnetized plasma waves, can cause enhanced RE scattering and thereby alleviate the mitigation problem. This work presents a newly developed ray-tracing code COIN which enables stability analysis of runaway-driven waves in a tokamak. The code uses a standard ray-tracing procedure to calculate a wave-packet trajectory in a realistic plasma equilibrium and integrates the runaway kinetic drive and collisional damping of the wave. This approach captures convective aspects of wave amplification, such as the evolution of the wave vector due to plasma non-uniformity and internal reflection of the wave from the plasma boundary. An illustrative ray-tracing calculation of the instability threshold is presented for ITER-like parameters.
Stability analysis of three species food chain with competition
NASA Astrophysics Data System (ADS)
Abadi, Savitri, D.
2015-03-01
We study a food chain system that consists of 1 prey and 2 predators populations. The prey population grows logistically while the predators apply different Holling functional responses. The first predator preys on the prey following Holling type II functional response and the second predator preys on both the prey and the first predator following Holling type II and III functional responses, respectively. The study starts with the stability analysis of critical points of the systems. Then, by using normal form and centre manifold method the information about other nontrivial solutions due to bifurcation including possible limit cycles appearance is obtained. The results are confirmed by numerical simulation using MatCont and biological interpretation of the results are also presented.
Stability Analysis of the Planetary System Orbiting Upsilon Andromedae
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; Rivera, Eugenio J.; DeVincenzi, Donald (Technical Monitor)
2000-01-01
We present results of long-term numerical orbital integrations designed to test the stability of the three-planet system orbiting Upsilon Andromedae and short-term integrations to test whether mutual perturbations among the planets can be used to determine planetary masses. Our initial conditions are based on the latest fits to the radial velocity data obtained by the planet-search group at Lick Observatory. The new fits result in significantly more stable systems than did the initially announced planetary parameters. An analytic analysis of the star and the two outer planets shows that this subsystem is Hill stable up to five. Our integrations involving all three planets show that the system is stable for at least 100 Myr for up to four. In our simulations, we still see a secular resonance between the outer two planets and in some cases large oscillations in the eccentricity of the inner planet.
Stability analysis of a natural circulation lead-cooled fast reactor
NASA Astrophysics Data System (ADS)
Lu, Qiyue
This dissertation is aimed at nuclear-coupled thermal hydraulics stability analysis of a natural circulation lead cooled fast reactor design. The stability concerns arise from the fact that natural circulation operation makes the system susceptible to flow instabilities similar to those observed in boiling water reactors. In order to capture the regional effects, modal expansion method which incorporates higher azimuthal modes is used to model the neutronics part of the system. A reduced order model is used in this work for the thermal-hydraulics. Consistent with the number of heat exchangers (HXs), the reactor core is divided into four equal quadrants. Each quadrant has its corresponding external segments such as riser, plenum, pipes and HX forming an equivalent 1-D closed loop. The local pressure loss along the loop is represented by a lumped friction factor. The heat transfer process in the HX is represented by a model for the coolant temperature at the core inlet that depends on the coolant temperature at the core outlet and the coolant velocity. Additionally, time lag effects are incorporated into this HX model due to the finite coolant speed. A conventional model is used for the fuel pin heat conduction to couple the neutronics and thermal-hydraulics. The feedback mechanisms include Doppler, axial/radial thermal expansion and coolant density effects. These effects are represented by a linear variation of the macroscopic cross sections with the fuel temperature. The weighted residual method is used to convert the governing PDEs to ODEs. Retaining the first and second modes, leads to six ODEs for neutronics, and five ODEs for the thermal-hydraulics in each quadrant. Three models are developed. These are: 1) natural circulation model with a closed coolant flow path but without coupled neutronics, 2) forced circulation model with constant external pressure drop across the heated channels but without coupled neutronics, 3) coupled system including neutronics with higher modes and thermal-hydraulics. In the second model, the HX and the external flow path are not incorporated and therefore no time delays are considered, and a constant heat source term is assumed. There is no difference among four equivalent loops, and the system is finally described by a set of ODEs. The thermal hydraulics in the first and third models is represented by sets of ODEs with time lags, namely, DDEs, due to external pipes and the HX model. Models 1 and 2 use a constant heat source term rather than coupled neutronics as is the case in model 3. In model 3, the four equivalent loops are linked via modal neutronics. They are represented by twenty-six (six for neutronics; twenty for thermal-hydraulics / five for each loop) equations. Two approaches, one in time domain and the other in frequency domain, are used for stability analyses. For model number 1, based on the characteristic of DDEs, a MATLAB package is used to carry out the stability analysis. Results of the frequency domain analysis are presented in core-height---friction-factor space, dividing the space into stable and unstable regions. Results are also verified in time-domain. For model number 2, eigenvalues of the Jacobian matrix are evaluated for the frequency domain stability analysis. Scenarios including pulse stimulation on coolant velocity, and different friction factors are simulated in the time domain. The third model is studied only in the time domain. Eight different scenarios are simulated. These include system response after different perturbations such as positive or negative reactivity insertion in one or more quadrants. Results show that SUPERSTAR design is very robust, and that the nominal operation points have considerable safety margins. Results also identify regions in design and operation parameter spaces where the reactor becomes less stable or even unstable.
Gravitational Stability for a Vacuum Cosmic Space Crystalline Model
J. A. Montemayor-Aldrete; J. R. Morones-Ibarra; A. Morales-Mori; A. Mendoza-Allende; A. Montemayor-Varela; M. del Castillo-Mussot; G. J. Vazquez
2006-03-13
Using Heisenberg's uncertainty principle it is shown that the gravitational stability condition for a crystalline vacuum cosmic space implies to obtain an equation formally equivalent to the relation first used by Gamow to predict the present temperature of the microwave background from the matter density. The compatibility condition between the quantum and the relativistic approaches has been obtained without infinities arising from the quantum analysis or singularities arising from the relativistic theory. The action which leads to our theory is the least action possible in a quantum scheme. The energy fluctuation involved in the gravitational stabilization of vacuum space is 10 to the power of (-40) times the energy of the crystalline structure of vacuum space inside the present Universe volume.
Stability of a Resonant System of Conservation Laws Modeling Polymer Flow with Gravitation
NASA Astrophysics Data System (ADS)
Klingenberg, Christian; Risebro, Nils Henrik
2001-03-01
We prove L1 uniqueness and stability for a resonant 2×2 system of conservation laws that arise as a model for two phase polymer flow in porous media. The analysis uses the equivalence of the Eulerian and Lagrangian formulation of this system, and the results are first established for an auxiliary scalar equation. Our methods are based on front tracking approximations for the auxiliary equation, and the Kružkov entropy condition for scalar conservation laws.
A new approach on the stability analysis in ELKO cosmology
A. Pinho S. S.; S. H. Pereira; J. F. Jesus
2015-01-05
In this work it has been developed a new approach to study the stability of a system composed by an ELKO field interacting with dark matter, which could give some contribution in order to alleviate the cosmic coincidence problem. It is assumed that the potential which characterizes the ELKO field is not specified, but it is related to a constant parameter $\\delta$. The strength of the interaction between matter and ELKO field is characterized by a constant parameter $\\beta$ and it is also assumed that both ELKO field as matter energy density are related to their pressures by equations of state parameters $\\omega_\\phi$ and $\\omega_m$, respectively. The system of equations is analysed by a dynamical system approach. It has been found the conditions of stability between the parameters $\\delta$ and $\\beta$ in order to have stable fixed points for the system for different values of the equation of state parameters $\\omega_\\phi$ and $\\omega_m$, and the results are presented in form of tables. The possibility of decay of ELKO field into dark matter or vice versa can be read directly from the tables, since the parameters $\\delta$ and $\\beta$ satisfy some inequalities. It allows us to constrain the potential assuming that we have a stable system for different interactions terms between the ELKO field and dark matter. The cosmic coincidence problem can be alleviated for some specific relations between the parameters of the model.
Analysis of cavern stability at the Bryan Mound SPR site.
Ehgartner, Brian L.; Sobolik, Steven Ronald
2009-04-01
This report presents computational analyses that simulate the structural response of caverns at the Strategic Petroleum Reserve Bryan Mound site. The cavern field comprises 20 caverns. Five caverns (1, 2, 4, and 5; 3 was later plugged and abandoned) were acquired from industry and have unusual shapes and a history dating back to 1946. The other 16 caverns (101-116) were leached according to SPR standards in the mid-1980s and have tall cylindrical shapes. The history of the caverns and their shapes are simulated in a 3-D geomechanics model of the site that predicts deformations, strains, and stresses. Future leaching scenarios due to oil drawdowns using fresh water are also simulated by increasing the volume of the caverns. Cavern pressures are varied in the model to capture operational practices in the field. The results of the finite element model are interpreted to provide information on the current and future status of subsidence, well integrity, and cavern stability. The most significant result in this report is relevant to caverns 1, 2, and 5. The caverns have non-cylindrical shapes and have potential regions where the surrounding salt may be damaged during workover procedures. During a workover the normal cavern operating pressure is lowered to service a well. At this point the wellhead pressures are atmospheric. When the workover is complete, the cavern is repressurized. The resulting elastic stresses are sufficient to cause tension and large deviatoric stresses at several locations. With time, these stresses relax to a compressive state due to salt creep. However, the potential for salt damage and fracturing exists. The analyses predict tensile stresses at locations with sharp-edges in the wall geometry, or in the case of cavern 5, in the neck region between the upper and lower lobes of the cavern. The effects do not appear to be large-scale, however, so the only major impact is the potential for stress-induced salt falls in cavern 5, potentially leading to hanging string damage. Caverns 1 and 2 have no significant issues regarding leachings due to drawdowns; cavern 5 may require a targeted leaching of the neck region to improve cavern stability and lessen hanging string failure potential. The remaining caverns have no significant issues regarding cavern stability and may be safely enlarged during subsequent oil drawdowns. Well strains are significant and consequently future remedial actions may be necessary. Well strains certainly suggest the need for appropriate monitoring through a well-logging program. Subsidence is currently being monitored; there are no issues identified regarding damage from surface subsidence or horizontal strain to surface facilities.
Stability analysis of switching hyperbolic systems: the example of SMB chromatography
Bastin, Georges
Stability analysis of switching hyperbolic systems: the example of SMB chromatography Georges chromatography, how exponential stability (in L2-norm) can be established when the switching mechanism through the specific example of SMB chromatography [16] and to show how exponential stability (in L2-norm
Stability analysis of switching hyperbolic systems: the example of SMB chromatography
Bastin, Georges
Stability analysis of switching hyperbolic systems: the example of SMB chromatography Georges chromatography, how exponential stability (in L2-norm) can be established when the switching mechanism the specific example of SMB chromatography [16] and to show how exponential stability (in L2-norm) can
A Global Stability Analysis of Clusters of Galaxies with Conduction and AGN Feedback Heating
Fulai Guo; S. Peng Oh; M. Ruszkowski
2008-08-07
We investigate a series of steady-state models of galaxy clusters, in which the hot intracluster gas is efficiently heated by active galactic nucleus (AGN) feedback and thermal conduction, and in which the mass accretion rates are highly reduced compared to those predicted by the standard cooling flow models. We perform a global Lagrangian stability analysis. We show for the first time that the global radial instability in cool core clusters can be suppressed by the AGN feedback mechanism, provided that the feedback efficiency exceeds a critical lower limit. Furthermore, our analysis naturally shows that the clusters can exist in two distinct forms. Globally stable clusters are expected to have either: 1) cool cores stabilized by both AGN feedback and conduction, or 2) non-cool cores stabilized primarily by conduction. Intermediate central temperatures typically lead to globally unstable solutions. This bimodality is consistent with the recently observed anticorrelation between the flatness of the temperature profiles and the AGN activity (Dunn & Fabian 2008) and the observation by Rafferty et al. (2008) that the shorter central cooling times tend to correspond to significantly younger AGN X-ray cavities.
SOSlope 3D: implementing root reinforcement and preferential flow in slope stability modeling
NASA Astrophysics Data System (ADS)
Schwarz, M.; Cohen, D.
2013-12-01
The quantification of root reinforcement represents a key issue in different area of engineering (slope stability, soil protection, silviculture/tree stability, hydraulic). Between all the effects of plants (direct and indirect) on the physical and chemical soil processes, the mechanical effect of roots is considered particularly important for slope stability. The study of root reinforcement is faced with the high complexity of interactions of processes and factors at different spatio-temporal scales. In particular, the hierarchical spatial heterogeneity of vegetation and its effects on soil processes represent a big challenge for quantitative up-scaling methods. The objective of this contribution is to contextualize the complexity of the root-soil interactions in view of slope stability problems, to review the recent scientific contributions in the quantification of root reinforcement, and to discuss the practical meaning of recent research results. In the presentation of an up-scaling framework for the implementation of root reinforcement and preferential flow in slope stability analysis, the following arguments will be discussed: tensile force and pullout force of single roots, apparent elasticity of single roots, strain loading approach for the characterization of root bundle mechanics, meaning of root diameter distribution on root reinforcement, spatial heterogeneity of root distribution, hydro-mechanical and rheological properties of rooted soil under tension and compression, and triggering mechanism of shallow landslides. The above-mentioned factors and processes build up the modules implemented in a numerical model for slope stability calculations, the SOSlope model. The SOSlope model is characterized by the use of a spring-block framework (with 1x1 m cell grid), a strain step loading approach for the redistribution of forces, and the implementation of a spatial distribution of root at the hill slope scale. The results of simulations performed with the SOSlope model serve as background for the discussion on the role of root reinforcement for protection forests management and bioengineering applications.
Predicting waste stabilization pond performance using an ecological simulation model
New, G.R.
1987-01-01
Waste stabilization ponds (lagoons) are often favored in small communities because of their low cost and ease of operation. Most models currently used to predict performance are empirical or fail to address the primary lagoon cell. Empirical methods for predicting lagoon performance have been found to be off as much as 248 percent when used on a system other than the one they were developed for. Also, the present models developed for the primary cell lack the ability to predict parameters other than biochemical oxygen demand (BOD) and nitrogen. Oxygen consumption is usually estimated from BOD utilization. LAGOON is a fortran program which models the biogeochemical processes characteristic of the primary cell of facultative lagoons. Model parameters can be measured from lagoons in the vicinity of a proposed lagoon or estimated from laboratory studies. The model was calibrated utilizing a subset of the Corinne Utah lagoon data then validated utilizing a subset of the Corinne Utah data.
Stability and bifurcations in an epidemic model with varying immunity period
K. B. Blyuss; Y. N. Kyrychko
2012-01-22
An epidemic model with distributed time delay is derived to describe the dynamics of infectious diseases with varying immunity. It is shown that solutions are always positive, and the model has at most two steady states: disease-free and endemic. It is proved that the disease-free equilibrium is locally and globally asymptotically stable. When an endemic equilibrium exists, it is possible to analytically prove its local and global stability using Lyapunov functionals. Bifurcation analysis is performed using DDE-BIFTOOL and traceDDE to investigate different dynamical regimes in the model using numerical continuation for different values of system parameters and different integral kernels.
Analysis of alpha hemoglobin stabilizing protein overexpression in murine ?-thalassemia
Nasimuzzaman, Md; Khandros, Eugene; Wang, Xiaomei; Kong, Yi; Zhao, Huifen; Weiss, David; Rivella, Stefano; Weiss, Mitchell J.; Persons, Derek A.
2013-01-01
Excess free ?-globin is cytotoxic and contributes to the pathophysiology of ?-thalassemia. Alpha hemoglobin stabilizing protein (AHSP) is a molecular chaperone that binds free ?-globin to promote its folding and inhibit its ability to produce damaging reactive oxygen species. Reduced AHSP levels correlate with increased severity of ?-thalassemia in some human cohorts, but causal mechanistic relationships are not established for these associations. We used transgenic and lentiviral gene transfer methods to investigate whether supraphysiologic AHSP levels could mitigate the severity of ?-thalassemia intermedia by providing an increased sink for the excess pool of ?-globin chains. We tested wild-type AHSP and two mutant versions with amino acid substitutions that confer 3- or 13-fold higher affinity for ?-globin. Erythroid overexpression of these AHSP proteins up to 11-fold beyond endogenous levels had no major effects on hematologic parameters in ?-thalassemic animals. Our results demonstrate that endogenous AHSP is not limiting for ?-globin detoxification in a murine model of ?-thalassemia. PMID:20815047
Analysis of stability contributions of high dihedral V-tails
NASA Technical Reports Server (NTRS)
Freeman, C. E.; Yeager, W. T., Jr.
1978-01-01
An investigation was undertaken to determine the effectiveness of four analytical methods (empirical, modified empirical, vortex-lattice, and an inviscid, three dimensional, potential flow, wing body program) to estimate the lateral and longitudinal static stability characteristics of an isolated V-tail wind tunnel model. The experimental tests were conducted in the V/STOL tunnel at a Mach number of 0.18. Angle-of-attack data were obtained from -12 deg to 8 deg at 0 deg sideslip. Sideslip sweeps from -5 deg to 10 deg were made at angles of attack of 4 deg, 0 deg and -4 deg. The V-tail dihedral angles were 45 deg, 50 deg, 55 deg, and 60 deg.
Mesoscale models of dispersions stabilized by surfactants and colloids.
van der Sman, R G M; Meinders, M B J
2014-09-01
In this paper we discuss and give an outlook on numerical models describing dispersions, stabilized by surfactants and colloidal particles. Examples of these dispersions are foams and emulsions. In particular, we focus on the potential of the diffuse interface models based on a free energy approach, which describe dispersions with the surface-active agent soluble in one of the bulk phases. The free energy approach renders thermodynamic consistent models with realistic sorption isotherms and adsorption kinetics. The free energy approach is attractive because of its ability to describe highly complex dispersions, such as emulsions stabilized by ionic surfactants, or surfactant mixtures and dispersions with surfactant micelles. We have classified existing numerical methods into classes, using either a Eulerian or a Lagrangian representation for fluid and for the surfactant/colloid. A Eulerian representation gives a more coarse-grained, mean field description of the surface-active agent, while a Lagrangian representation can deal with steric effects and larger complexity concerning geometry and (amphiphilic) wetting properties of colloids and surfactants. However, the similarity between the description of wetting properties of both Eulerian and Lagrangian models allows for the development of hybrid Eulerian/Lagrangian models having advantages of both representations. PMID:24980050
NASA Technical Reports Server (NTRS)
Tai, H.; Wilson, J. W.; Maiden, D. L.
2003-01-01
The atmospheric ionizing radiation (AIR) ER-2 preflight analysis, one of the first attempts to obtain a relatively complete measurement set of the high-altitude radiation level environment, is described in this paper. The primary thrust is to characterize the atmospheric radiation and to define dose levels at high-altitude flight. A secondary thrust is to develop and validate dosimetric techniques and monitoring devices for protecting aircrews. With a few chosen routes, we can measure the experimental results and validate the AIR model predictions. Eventually, as more measurements are made, we gain more understanding about the hazardous radiation environment and acquire more confidence in the prediction models.
Gravitational Stability for a Vacuum Cosmic Space Crystalline Model
NASA Astrophysics Data System (ADS)
Montemayor-Varela, J.; Morones-Ibarra, J.; Morales-Mori, A.; Mendez-Allende, A.; Montmayer-Varela, A.; del Castillo-Mussot, M.; Vazquez, G.
2011-11-01
Using a generalization of the Heisenberg's uncertainty principle it is shown that the local gravitational stability condition for an infinite tridimensional crystalline m o d e l o f t h e quantum vacuum cosmic space (which is existing from an infinite time before the occurrence of our local actual big bang event) implies to obtain an equation formally equivalent to the relation first used by Gamow to predict the present temperature of the microwave background from the matter density. The compatibility condition between the quantum and the relativistic approaches has been obtained without infinities arising from the quantum analysis or singularities arising from the relativistic theory. The action, which leads to our theory, is the least action possible in a quantum scheme. The energy fluctuation involved in the gravitational stabilization of vacuum space, inside the actual volume of our universe, is 10-40 times the energy of the crystalline structure of vacuum space inside the present Universe volume. The same process of quantum gravitational stabilization occurs everywhere (by pairs of cells with tension- compression gravitational stresses) in the infinite cosmic vacuum space.
Analysis of a Major Electric Grid -- Stability and Adaptive Protection
NASA Astrophysics Data System (ADS)
Alanzi, Sultan
Protective systems of the electric grid are designed to detect and mitigate the effects of faults and other disturbances that may occur. Distance relays are used extensively for the detection of faults on transmission lines. Out-of-step relays are used for generator protection to detect loss of synchronism conditions that result from disturbances on the electric grid. Also, when a disturbance occurs and generators may tend to lose synchronism with each other, it is beneficial to separate the overall system into several independent systems that can remain stable. Unfortunately there have been cases, such as the 2003 Northeast blackout where the operation of protective relays, namely the zone 3 distance relay used for transmission line protection, contributed to the cascading effect of the blackout. It is the objective of this dissertation to propose adaptive relays for both distance protection of transmission lines and out-of-step protection of generators. By being adaptive, the relays are made aware of the system operating conditions and can adjust its settings accordingly. Inputs to the adaptive logic can come from system or environmental conditions. As a result of this effort, a new distance relay operating characteristic is proposed, referred to as a mushroom relay, which is a combination of a quadrilateral relay and a Mho relay. Also, a new criterion for determining if a power swing following a disturbance is stable or unstable is proposed. Distance protection of transmission lines is very important when discussing system responses to faults and disturbances. Distance relays are very common worldwide and although they offer great protection, there are limitations that need to be addressed. Parallel line operations (infeed effect) and the loadability limits are among the limitations that lead to improper response of relays. An Adaptive Distance Relays (ADR) offer great benefits to the protection scheme as their settings can be changed in accordance with prefault system conditions. This dissertation introduces a combination of quadrilateral and mho characteristics to create a distance relay with a mushroom shape in R-X diagrams. This new relay offers larger protective reach with a lower limitation on loadability. When major disturbances occur, the power balance between load and generation might be disturbed causing the generators to lose synchronism (to be out-of-step) with each other. Out-of-step protection against power swings is essential to provide supervising signals for distance relays to mitigate the effects of the disturbance. A new R-X criterion is proposed to identify out-of-step conditions for large and complex power systems, such as KEG. A proposed Adaptive Out-of-Step Relay (AOSR) will monitor power system conditions and adjust the relay reach accordingly for better power swing classification. When unstable swings are detected, controllable tripping signals are initiated and system separation will create small subsystems or islands of the power system. These smaller systems will be created to achieve a balance of load and available generation. The electric power system chosen to study and to illustrate the criteria for the proposed adaptive relays was that of the country of Kuwait. The small oil-rich country of Kuwait has been dealing with an electric energy crisis that started summer 2006. With a dry dessert climate and intensely hot summers, the 3.6 million residents of Kuwait depend on continuously operated A/C units for living. This is the major reason why the peak load in a summer month reaches almost 11,000 MW while the peak load in a winter month does not exceed 5,000 MW. The Kuwait Electric Grid (KEG) is modelled and analyzed using Power Analytics' software known as PaladinRTM DesignBase(TM). Performance studies produce data to examine distance and out-of-step protection. Power Flow (PF), Short Circuit Analysis (SCA), and Transient Stability Analysis (TSA) are used to verify the model of KEG. These studies are the starting point when studying any large power system in order to investigate how the s
NASA Astrophysics Data System (ADS)
Zhang, Wei-Ya; Li, Yong-Li; Chang, Xiao-Yong; Wang, Nan
2013-09-01
In this paper, the dynamic behavior analysis of the electromechanical coupling characteristics of a flywheel energy storage system (FESS) with a permanent magnet (PM) brushless direct-current (DC) motor (BLDCM) is studied. The Hopf bifurcation theory and nonlinear methods are used to investigate the generation process and mechanism of the coupled dynamic behavior for the average current controlled FESS in the charging mode. First, the universal nonlinear dynamic model of the FESS based on the BLDCM is derived. Then, for a 0.01 kWh/1.6 kW FESS platform in the Key Laboratory of the Smart Grid at Tianjin University, the phase trajectory of the FESS from a stable state towards chaos is presented using numerical and stroboscopic methods, and all dynamic behaviors of the system in this process are captured. The characteristics of the low-frequency oscillation and the mechanism of the Hopf bifurcation are investigated based on the Routh stability criterion and nonlinear dynamic theory. It is shown that the Hopf bifurcation is directly due to the loss of control over the inductor current, which is caused by the system control parameters exceeding certain ranges. This coupling nonlinear process of the FESS affects the stability of the motor running and the efficiency of energy transfer. In this paper, we investigate into the effects of control parameter change on the stability and the stability regions of these parameters based on the averaged-model approach. Furthermore, the effect of the quantization error in the digital control system is considered to modify the stability regions of the control parameters. Finally, these theoretical results are verified through platform experiments.
Power system stability enhancement employing controllers based on a versatile modeling
NASA Astrophysics Data System (ADS)
Chung, Chi Yung
Rapid advances in power electronics have made it both practicable and economic to design powerful thyristor-controlled devices, such as Flexible AC Transmission Systems (FACTS), for stability enhancements. The discrepancies of existing modeling approaches have limited the feasibility of handling these devices or designing its damping controller. In this thesis, a versatile and generalized approach to model standard power system components is proposed. The more systematic and realistic representation, accompanied by the development of powerful eigenvalue-analysis techniques, facilitates the study of small signal stability (monotonic and oscillatory) of the power systems. In monotonic stability study, the effect of exciter and governor is critically reviewed based on the exploitation of eigenvalues, modal and sensitivity analyses over a wide range of operating conditions. In oscillatory stability study, a common FACTS device, the static var compensator (SVC), is used to improve system damping. This study reveals the inadequacy of many conventional methodologies in SVC design since they have ignored (or cannot handle) some important factors such as SVC mode instability and robustness of the power system. Two approaches, combined sensitivities and Hinfinity algorithms, are introduced to solve these limitations. Finally, an extended Hinfinity algorithm, which is applied to PSS design and successfully solves certain limitations of the existing H infinity based PSS design, is also presented. Although these studies are developed on selected controller devices or typical systems for convenience of discussion, extension to more complex systems can be dealt with in a similar way because of the versatility of the proposed modeling methodology.
Costa, Andrea
2006-01-01
We study the modes and stability of non - isothermal coronal loop models with different intensity values of the equilibrium magnetic field. We use an energy principle obtained via non - equilibrium thermodynamic arguments. The principle is expressed in terms of Hermitian operators and allow to consider together the coupled system of equations: the balance of energy equation and the equation of motion. We determine modes characterized as long - wavelength disturbances that are present in inhomogeneous media. This character of the system introduces additional difficulties for the stability analysis because the inhomogeneous nature of the medium determines the structure of the disturbance, which is no longer sinusoidal. Moreover, another complication is that we obtain a continuous spectrum of stable modes in addition to the discrete one. We obtain a unique unstable mode with a characteristic time that is comparable with the characteristic life-time observed for loops. The feasibility of wave-based and flow-based...
Vacuum Stability and Triviality Analyses of the Renormalizable Coloron Model
R. Sekhar Chivukula; Arsham Farzinnia; Elizabeth H. Simmons
2015-07-23
The renormalizable coloron model is built around a minimally extended color gauge group, which is spontaneously broken to QCD. The formalism introduces massive color-octet vector bosons (colorons), as well as several new scalars and fermions associated with the symmetry breaking sector. In this paper, we examine vacuum stability and triviality conditions within the context of the renormalizable coloron model up to a cutoff energy scale of 100~TeV, by computing the beta-functions of all relevant couplings and determining their running behavior as a function of the renormalization scale. We constrain the parameter space of the theory for four separate scenarios based on differing fermionic content, and demonstrate that the vectorial scenarios are less constrained by vacuum stability and triviality bounds than the chiral scenarios. Our results are summarized in exclusion plots for the separate scenarios, with previous bounds on the model overlaid for comparison. We find that a 100 TeV hadron collider could explore the entire allowed parameter space of the chiral models very effectively.
Vacuum stability and triviality analyses of the renormalizable coloron model
NASA Astrophysics Data System (ADS)
Chivukula, R. Sekhar; Farzinnia, Arsham; Simmons, Elizabeth H.
2015-09-01
The renormalizable coloron model is built around a minimally extended color gauge group, which is spontaneously broken to QCD. The formalism introduces massive color-octet vector bosons (colorons), as well as several new scalars and fermions associated with the symmetry breaking sector. In this paper, we examine vacuum stability and triviality conditions within the context of the renormalizable coloron model up to a cutoff energy scale of 100 TeV, by computing the ? -functions of all relevant couplings and determining their running behavior as a function of the renormalization scale. We constrain the parameter space of the theory for four separate scenarios based on differing fermionic content, and demonstrate that the vectorial scenarios are less constrained by vacuum stability and triviality bounds than the chiral scenarios. Our results are summarized in exclusion plots for the separate scenarios, with previous bounds on the model overlaid for comparison. We find that a 100 TeV hadron collider could explore the entire allowed parameter space of the chiral models very effectively.
NASA Technical Reports Server (NTRS)
Kayten, Gerald G
1945-01-01
The analysis of results of wind-tunnel stability and control tests of powered airplane models in terms of the flying qualities of full-scale airplanes is advocated. In order to indicated the topics upon which comments are considered desirable in the report of a wind-tunnel stability and control investigation and to demonstrate the nature of the suggested analysis, the present NACA flying-qualities requirements are discussed in relation to wind-tunnel tests. General procedures for the estimation of flying qualities from wind-tunnel tests are outlined.
Kinetic Analysis of Haloacetonitrile Stability in Drinking Waters.
Yu, Yun; Reckhow, David A
2015-09-15
Haloacetonitriles (HANs) are an important class of drinking water disinfection byproducts (DBPs) that are reactive and can undergo considerable transformation on time scales relevant to system distribution (i.e., from a few hours to a week or more). The stability of seven mono-, di-, and trihaloacetonitriles was examined under a variety of conditions including different pH levels and disinfectant doses that are typical of drinking water distribution systems. Results indicated that hydroxide, hypochlorite, and their protonated forms could react with HANs via nucleophilic attack on the nitrile carbon, forming the corresponding haloacetamides (HAMs) and haloacetic acids (HAAs) as major reaction intermediates and end products. Other stable intermediate products, such as the N-chloro-haloacetamides (N-chloro-HAMs), may form during the course of HAN chlorination. A scheme of pathways for the HAN reactions was proposed, and the rate constants for individual reactions were estimated. Under slightly basic conditions, hydroxide and hypochlorite are primary reactants and their associated second-order reaction rate constants were estimated to be 6 to 9 orders of magnitude higher than those of their protonated conjugates (i.e., neutral water and hypochlorous acid), which are much weaker but more predominant nucleophiles at neutral and acidic pHs. Developed using the estimated reaction rate constants, the linear free energy relationships (LFERs) summarized the nucleophilic nature of HAN reactions and demonstrated an activating effect of the electron withdrawing halogens on nitrile reactivity, leading to decreasing HAN stability with increasing degree of halogenation of the substituents, while subsequent shift from chlorine to bromine atoms has a contrary stabilizing effect on HANs. The chemical kinetic model together with the reaction rate constants that were determined in this work can be used for quantitative predictions of HAN concentrations depending on pH and free chlorine contact times (CTs), which can be applied as an informative tool by drinking water treatment and system management engineers to better control these emerging nitrogenous DBPs, and can also be significant in making regulatory decisions. PMID:26275044
In situ vitrification: application analysis for stabilization of transuranic waste
Oma, K.H.; Farnsworth, R.K.; Rusin, J.M.
1982-09-01
The in situ vitrification process builds upon the electric melter technology previously developed for high-level waste immobilization. In situ vitrification converts buried wastes and contaminated soil to an extremely durable glass and crystalline waste form by melting the materials, in place, using joule heating. Once the waste materials have been solidified, the high integrity waste form should not cause future ground subsidence. Environmental transport of the waste due to water or wind erosion, and plant or animal intrusion, is minimized. Environmental studies are currently being conducted to determine whether additional stabilization is required for certain in-ground transuranic waste sites. An applications analysis has been performed to identify several in situ vitrification process limitations which may exist at transuranic waste sites. Based on the process limit analysis, in situ vitrification is well suited for solidification of most in-ground transuranic wastes. The process is best suited for liquid disposal sites. A site-specific performance analysis, based on safety, health, environmental, and economic assessments, will be required to determine for which sites in situ vitrification is an acceptable disposal technique. Process economics of in situ vitrification compare favorably with other in-situ solidification processes and are an order of magnitude less than the costs for exhumation and disposal in a repository. Leachability of the vitrified product compares closely with that of Pyrex glass and is significantly better than granite, marble, or bottle glass. Total release to the environment from a vitrified waste site is estimated to be less than 10/sup -5/ parts per year. 32 figures, 30 tables.
Analysis of cavern stability at the West Hackberry SPR site.
Ehgartner, Brian L.; Sobolik, Steven Ronald
2009-05-01
This report presents computational analyses that simulate the structural response of caverns at the Strategic Petroleum Reserve (SPR) West Hackberry site. The cavern field comprises 22 caverns. Five caverns (6, 7, 8, 9, 11) were acquired from industry and have unusual shapes and a history dating back to 1946. The other 17 caverns (101-117) were leached according to SPR standards in the mid-1980s and have tall cylindrical shapes. The history of the caverns and their shapes are simulated in a three-dimensional geomechanics model of the site that predicts deformations, strains, and stresses. Future leaching scenarios corresponding to oil drawdowns using fresh water are also simulated by increasing the volume of the caverns. Cavern pressures are varied in the model to capture operational practices in the field. The results of the finite element model are interpreted to provide information on the current and future status of subsidence, well integrity, and cavern stability. The most significant results in this report are relevant to Cavern 6. The cavern is shaped like a bowl with a large ceiling span and is in close proximity to Cavern 9. The analyses predict tensile stresses at the edge of the ceiling during repressuization of Cavern 6 following workover conditions. During a workover the cavern is at low pressure to service a well. The wellhead pressures are atmospheric. When the workover is complete, the cavern is repressurized. The resulting elastic stresses are sufficient to cause tension around the edge of the large ceiling span. With time, these stresses relax to a compressive state because of salt creep. However, the potential for salt fracture and propagation exists, particularly towards Cavern 9. With only 200 ft of salt between the caverns, the operational consequences must be examined if the two caverns become connected. A critical time may be during a workover of Cavern 9 in part because of the operational vulnerabilities, but also because dilatant damage is predicted under the ledge that forms the lower lobe in the cavern. The remaining caverns have no significant issues regarding cavern stability and may be safely enlarged during subsequent oil drawdowns. Predicted well strains and subsidence are significant and consequently future remedial actions may be necessary. These predicted well strains certainly suggest appropriate monitoring through a well-logging program. Subsidence is currently being monitored.
LONG-TERM STABILITY OF FOOD PATTERNS IDENTIFIED BY USE OF FACTOR ANALYSIS AMONG SWEDISH WOMEN
Technology Transfer Automated Retrieval System (TEKTRAN)
Limited data exist on the reproducibility of food patterns measured using factor analysis, as well as the stability of patterns over time. Our primary objective was to explore the long-term stability of food patterns derived using confirmatory factor analysis among 33,840 women participating in the...
Extensions to the time lag models for practical application to rocket engine stability design
NASA Astrophysics Data System (ADS)
Casiano, Matthew J.
The combustion instability problem in liquid-propellant rocket engines (LREs) has remained a tremendous challenge since their discovery in the 1930s. Improvements are usually made in solving the combustion instability problem primarily using computational fluid dynamics (CFD) and also by testing demonstrator engines. Another approach is to use analytical models. Analytical models can be used such that design, redesign, or improvement of an engine system is feasible in a relatively short period of time. Improvements to the analytical models can greatly aid in design efforts. A thorough literature review is first conducted on liquid-propellant rocket engine (LRE) throttling. Throttling is usually studied in terms of vehicle descent or ballistic missile control however there are many other cases where throttling is important. It was found that combustion instabilities are one of a few major issues that occur during deep throttling (other major issues are heat transfer concerns, performance loss, and pump dynamics). In the past and again recently, gas injected into liquid propellants has shown to be a viable solution to throttle engines and to eliminate some forms of combustion instability. This review uncovered a clever solution that was used to eliminate a chug instability in the Common Extensible Cryogenic Engine (CECE), a modified RL10 engine. A separate review was also conducted on classic time lag combustion instability models. Several new stability models are developed by incorporating important features to the classic and contemporary models, which are commonly used in the aerospace rocket industry. The first two models are extensions of the original Crocco and Cheng concentrated combustion model with feed system contributions. A third new model is an extension to the Wenzel and Szuch double-time lag model also with feed system contributions. The first new model incorporates the appropriate injector acoustic boundary condition which is neglected in contemporary models. This new feature shows that the injector boundary can play a significant role for combustion stability, especially for gaseous injection systems or a system with an injector orifice on the order of the size of the chamber. The second new model additionally accounts for resistive effects. Advanced signal analysis techniques are used to extract frequency-dependent damping from a gas generator component data set. The damping values are then used in the new stability model to more accurately represent the chamber response of the component. The results show a more realistic representation of stability margin by incorporating the appropriate damping effects into the chamber response from data. The original Crocco model, a contemporary model, and the two new models are all compared and contrasted to a marginally stable test case showing their applicability. The model that incorporates resistive aspects shows the best comparison to the test data. Parametrics are also examined to show the influence of the new features and their applicability. The new features allow a more accurate representation of stability margin to be obtained. The third new model is an extension to the Wenzel and Szuch double-time lag chug model. The feed system chug model is extended to account for generic propellant flow rates. This model is also extended to incorporate aspects due to oxygen boiling and helium injection in the feed system. The solutions to the classic models, for the single-time lag and the double-time lag models, are often plotted on a practical engine operating map, however the models have presented some difficulties for numerical algorithms for several reasons. Closed-form solutions for use on these practical operating maps are formulated and developed. These models are incorporated in a graphical user interface tool and the new model is compared to an extensive data set. It correctly predicts the stability behavior at various operating conditions incorporating the influence of injected helium and boiling oxygen in the feed system.
The simplest walking model: stability, complexity, and scaling.
Garcia, M; Chatterjee, A; Ruina, A; Coleman, M
1998-04-01
We demonstrate that an irreducibly simple, uncontrolled, two-dimensional, two-link model, vaguely resembling human legs, can walk down a shallow slope, powered only by gravity. This model is the simplest special case of the passive-dynamic models pioneered by McGeer (1990a). It has two rigid massless legs hinged at the hip, a point-mass at the hip, and infinitesimal point-masses at the feet. The feet have plastic (no-slip, no-bounce) collisions with the slope surface, except during forward swinging, when geometric interference (foot scuffing) is ignored. After nondimensionalizing the governing equations, the model has only one free parameter, the ramp slope gamma. This model shows stable walking modes similar to more elaborate models, but allows some use of analytic methods to study its dynamics. The analytic calculations find initial conditions and stability estimates for period-one gait limit cycles. The model exhibits two period-one gait cycles, one of which is stable when 0 < gamma < 0.015 rad. With increasing gamma, stable cycles of higher periods appear, and the walking-like motions apparently become chaotic through a sequence of period doublings. Scaling laws for the model predict that walking speed is proportional to stance angle, stance angle is proportional to gamma 1/3, and that the gravitational power used is proportional to v4 where v is the velocity along the slope. PMID:10412391
Wei, Qingkai
2012-01-01
Two recent test failures of Hypersonic Technology Vehicle 2 impose a strike to the increasingly growing enthusiasm, not only on the United States side. It is important to find out the exact failure reason, otherwise a solution is impossible. In this Note, we propose a potential failure reason from the perspective of lateral stability analysis. We argue that the time variant pressure fluctuations, which are normally omitted in classical aircraft dynamics analysis, could not be neglected in dynamic analysis of hypersonic vehicles. To demonstrate the idea, a hypersonic model is imagined in this work and its aerodynamic parameters are estimated using fundamental fluid principles. Pressure fluctuations are thereafter estimated by an empirical formula. A lateral dynamic equation is set up, taking those time variant fluctuations into account. The resulted equation is a Mathieu differential equation. Numerical solutions of this equation show that the inclusion of fluctuation terms generates more complicated dynamics ...
A Note on Local Stability Conditions for Two Types of Monetary Models with Recursive Utility
NASA Astrophysics Data System (ADS)
Miyazaki, Kenji; Utsunomiya, Hitoshi
2009-09-01
This note explores local stability conditions for money-in-utility-function (MIUF) and transaction-costs (TC) models with recursive utility. Although Chen et al. [Chen, B.-L., M. Hsu, and C.-H. Lin, 2008, Inflation and growth: impatience and a qualitative equivalent, Journal of Money, Credit, and Banking, Vol. 40, No. 6, 1310-1323] investigated the relationship between inflation and growth in MIUF and TC models with recursive utility, they conducted only a comparative static analysis in a steady state. By establishing sufficient conditions for local stability, this note proves that impatience should be increasing in consumption and real balances. Increasing impatience, although less plausible from an empirical point of view, receives more support from a theoretical viewpoint.
Crack stability analysis of low alloy steel primary coolant pipe
Tanaka, T.; Kameyama, M.; Urabe, Y.
1997-04-01
At present, cast duplex stainless steel has been used for the primary coolant piping of PWRs in Japan and joints of dissimilar material have been applied for welding to reactor vessels and steam generators. For the primary coolant piping of the next APWR plants, application of low alloy steel that results in designing main loops with the same material is being studied. It means that there is no need to weld low alloy steel with stainless steel and that makes it possible to reduce the welding length. Attenuation of Ultra Sonic Wave Intensity is lower for low alloy steel than for stainless steel and they have advantageous inspection characteristics. In addition to that, the thermal expansion rate is smaller for low alloy steel than for stainless steel. In consideration of the above features of low alloy steel, the overall reliability of primary coolant piping is expected to be improved. Therefore, for the evaluation of crack stability of low alloy steel piping to be applied for primary loops, elastic-plastic future mechanics analysis was performed by means of a three-dimensioned FEM. The evaluation results for the low alloy steel pipings show that cracks will not grow into unstable fractures under maximum design load conditions, even when such a circumferential crack is assumed to be 6 times the size of the wall thickness.
Slope Stability Analysis Using Limit Equilibrium Method in Nonlinear Criterion
Lin, Hang; Zhong, Wenwen; Xiong, Wei; Tang, Wenyu
2014-01-01
In slope stability analysis, the limit equilibrium method is usually used to calculate the safety factor of slope based on Mohr-Coulomb criterion. However, Mohr-Coulomb criterion is restricted to the description of rock mass. To overcome its shortcomings, this paper combined Hoek-Brown criterion and limit equilibrium method and proposed an equation for calculating the safety factor of slope with limit equilibrium method in Hoek-Brown criterion through equivalent cohesive strength and the friction angle. Moreover, this paper investigates the impact of Hoek-Brown parameters on the safety factor of slope, which reveals that there is linear relation between equivalent cohesive strength and weakening factor D. However, there are nonlinear relations between equivalent cohesive strength and Geological Strength Index (GSI), the uniaxial compressive strength of intact rock ?ci, and the parameter of intact rock mi. There is nonlinear relation between the friction angle and all Hoek-Brown parameters. With the increase of D, the safety factor of slope F decreases linearly; with the increase of GSI, F increases nonlinearly; when ?ci is relatively small, the relation between F and ?ci is nonlinear, but when ?ci is relatively large, the relation is linear; with the increase of mi, F decreases first and then increases. PMID:25147838
BLSTA: A boundary layer code for stability analysis
NASA Technical Reports Server (NTRS)
Wie, Yong-Sun
1992-01-01
A computer program is developed to solve the compressible, laminar boundary-layer equations for two-dimensional flow, axisymmetric flow, and quasi-three-dimensional flows including the flow along the plane of symmetry, flow along the leading-edge attachment line, and swept-wing flows with a conical flow approximation. The finite-difference numerical procedure used to solve the governing equations is second-order accurate. The flow over a wide range of speed, from subsonic to hypersonic speed with perfect gas assumption, can be calculated. Various wall boundary conditions, such as wall suction or blowing and hot or cold walls, can be applied. The results indicate that this boundary-layer code gives velocity and temperature profiles which are accurate, smooth, and continuous through the first and second normal derivatives. The code presented herein can be coupled with a stability analysis code and used to predict the onset of the boundary-layer transition which enables the assessment of the laminar flow control techniques. A user's manual is also included.
Epidemic spreading and global stability of an SIS model with an infective vector on complex networks
NASA Astrophysics Data System (ADS)
Kang, Huiyan; Fu, Xinchu
2015-10-01
In this paper, we present a new SIS model with delay on scale-free networks. The model is suitable to describe some epidemics which are not only transmitted by a vector but also spread between individuals by direct contacts. In view of the biological relevance and real spreading process, we introduce a delay to denote average incubation period of disease in a vector. By mathematical analysis, we obtain the epidemic threshold and prove the global stability of equilibria. The simulation shows the delay will effect the epidemic spreading. Finally, we investigate and compare two major immunization strategies, uniform immunization and targeted immunization.
Hydrodynamic Stability Analysis of Particle-Laden Solid Rocket Motors
NASA Astrophysics Data System (ADS)
Elliott, T. S.; Majdalani, J.
2014-11-01
Fluid-wall interactions within solid rocket motors can result in parietal vortex shedding giving rise to hydrodynamic instabilities, or unsteady waves, that translate into pressure oscillations. The oscillations can result in vibrations observed by the rocket, rocket subsystems, or payload, which can lead to changes in flight characteristics, design failure, or other undesirable effects. For many years particles have been embedded in solid rocket propellants with the understanding that their presence increases specific impulse and suppresses fluctuations in the flowfield. This study utilizes a two dimensional framework to understand and quantify the aforementioned two-phase flowfield inside a motor case with a cylindrical grain perforation. This is accomplished through the use of linearized Navier-Stokes equations with the Stokes drag equation and application of the biglobal ansatz. Obtaining the biglobal equations for analysis requires quantification of the mean flowfield within the solid rocket motor. To that end, the extended Taylor-Culick form will be utilized to represent the gaseous phase of the mean flowfield while the self-similar form will be employed for the particle phase. Advancing the mean flowfield by quantifying the particle mass concentration with a semi-analytical solution the finalized mean flowfield is combined with the biglobal equations resulting in a system of eight partial differential equations. This system is solved using an eigensolver within the framework yielding the entire spectrum of eigenvalues, frequency and growth rate components, at once. This work will detail the parametric analysis performed to demonstrate the stabilizing and destabilizing effects of particles within solid rocket combustion.
CG-DAMS: Concrete gravity dam stability analysis software. Application manual, final report
Not Available
1993-01-01
CG-DAMS is a finite element based program written specifically for the stability analysis of concrete gravity dams. The code automates the prediction and evaluation of cracking in the dam, along the dam-rock interface, and in the foundation using incremental nonlinear analysis techniques based on the ``smeared crack`` approach. Its primary application is in the computation of dam-rock interface sliding stability factors of safety. The automated procedure for crack propagation analysis replaces the trial-and-error cracked-base analysis method commonly used in gravity dam safety analyses. This Application manual of CG-DAMS illustrates, through sample problems, the many features of the software. Example problems illustrate the capabilities of both CG-DAMS-PC and CG-DAMS-ABAQUS. CG-DAMS-PC is a menu driven program that runs on 386/486 PCs under the DOS operating system (4 Megabytes RAM, 25 Megabytes of hard disk space). CG-DAMS-ABAQUS is a pre- and post-processor along with a concrete constitutive model and distributed load module that interfaces with the ABAQUS general purpose finite element program. The PC program contains thermal analysis capabilities, a rough crack constitutive model, and an interface to the CRFLOOD software not available with the ABAQUS version. The CG-DAMS-ABAQUS program contains time marching dynamic analysis capabilities not available with the PC program. Example analyses presented include static, pseudo dynamic, and time marching dynamic analyses. The manual also presents sensitivity evaluations on mesh size and foundation material strength. Comparisons are presented between CG-DAMS and gravity method calculations. Comparisons with other finite element software are included for the dynamic time history analyses.
Lee, S.
2011-05-05
The Savannah River Remediation (SRR) Organization requested that Savannah River National Laboratory (SRNL) develop a Computational Fluid Dynamics (CFD) method to mix and blend the miscible contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank; such as, Tank 50H, to the Salt Waste Processing Facility (SWPF) feed tank. The work described here consists of two modeling areas. They are the mixing modeling analysis during miscible liquid blending operation, and the flow pattern analysis during transfer operation of the blended liquid. The transient CFD governing equations consisting of three momentum equations, one mass balance, two turbulence transport equations for kinetic energy and dissipation rate, and one species transport were solved by an iterative technique until the species concentrations of tank fluid were in equilibrium. The steady-state flow solutions for the entire tank fluid were used for flow pattern analysis, for velocity scaling analysis, and the initial conditions for transient blending calculations. A series of the modeling calculations were performed to estimate the blending times for various jet flow conditions, and to investigate the impact of the cooling coils on the blending time of the tank contents. The modeling results were benchmarked against the pilot scale test results. All of the flow and mixing models were performed with the nozzles installed at the mid-elevation, and parallel to the tank wall. From the CFD modeling calculations, the main results are summarized as follows: (1) The benchmark analyses for the CFD flow velocity and blending models demonstrate their consistency with Engineering Development Laboratory (EDL) and literature test results in terms of local velocity measurements and experimental observations. Thus, an application of the established criterion to SRS full scale tank will provide a better, physically-based estimate of the required mixing time, and elevation of transfer pump for minimum sludge disturbance. (2) An empirical equation for a tank with no cooling coils agrees reasonably with the current modeling results for the dual jet. (3) From the sensitivity study of the cooling coils, it was found that the tank mixing time for the coiled tank was about two times longer than that of the tank fluid with no coils under the 1/10th scale, while the coiled tank required only 50% longer than the one without coils under the full scale Tank 50H. In addition, the time difference is reduced when the pumping U{sub o}d{sub o} value is increased for a given tank. (4) The blending time for T-shape dual jet pump is about 20% longer than that of 15{sup o} upward V-shape pump under the 1/10th pilot-scale tank, while the time difference between the two pumps is about 12% for the full-scale Tank 50H. These results are consistent with the literature information. (5) A transfer pump with a solid-plate suction screen operating at 130 gpm can be located 9.5 inches above settled sludge for 2 in screen height in a 85 ft waste tank without disturbing any sludge. Detailed results are summarized in Table 13. Final pump performance calculations were made by using the established CW pump design, and operating conditions to satisfy the two requirements of minimum sludge disturbance, and adequate blending of tank contents. The final calculation results show that the blending times for the coiled and uncoiled tanks coupled with the CW pump design are 159 and 83 minutes, respectively. All the results are provided in Table 16.
GIS-based modelling of deep-seated slope stability in complex geology
NASA Astrophysics Data System (ADS)
Mergili, Martin; Marchesini, Ivan; Schneider-Muntau, Barbara; Cardinali, Mauro; Fiorucci, Federica; Valigi, Daniela; Santangelo, Michele; Bucci, Francesco; Guzzetti, Fausto
2014-05-01
We use the model r.slope.stability to explore the chances and challenges of physically-based modelling of deep-seated slope stability in complex geology over broad areas and not on individual slopes. The model is developed as a C and python-based raster module within the GRASS GIS software. It makes use of a modification of the three-dimensional sliding surface model proposed by Hovland (1977) and revised and extended by Xie and co-workers (2006). Given a digital elevation model and a set of thematic layers (lithological classes and related geotechnical parameters), the model evaluates the slope stability for a large number of randomly selected potential slip surfaces, ellipsoidal in shape. The bottoms of soil or bedrock layers can also be considered as potential slip surfaces by truncating the ellipsoids. Any single raster cell may be intersected by multiple sliding surfaces, each associated with a computed safety factor. For each pixel, the lowest value of the safety factor and the depth of the associated slip surface are stored. This information can be used to obtain a spatial overview of the potentially unstable regions in the study area. The r.slope.stability model can be executed both in a soil class-based mode, where the input data are mainly structured according to horizontally defined soil classes, and in a layer-based mode, where the data are structured according to a potentially large number of layers. Here, we test the model for the layer-based mode, allowing for the analysis of relatively complex geologic structures. We test the model in the Collazzone area, Umbria, central Italy, which is susceptible to landslides of different types. According to field observations in this area, morpho-structural settings (i.e., the orientation and dip of the geological layers) play a crucial role for the distribution of the deep-seated landslides. We have prepared a lithological model based on aerial photointerpretation, field survey and surface information on the strike and dip directions of each layer. We have further investigated the geotechnical parameters (cohesion and internal friction angle) associated to the layers using direct shear tests. We execute r.slope.stability for various assumptions of the geotechnical parameters, ellipsoid geometry and seepage direction. In this way, we obtain the spatial probability of slope failures which is validated using a pre-existing landslide inventory map, using an ROC plot. Acknowledging the challenges related to the high natural variability of geotechnical parameters in space, the results satisfactorily reproduce the observed distribution of deep-seated landslides in the study area. The assumed direction of seepage (slope-parallel vs. layer-parallel) strongly influences the model results.
A new free-surface stabilization algorithm for geodynamical modelling: Theory and numerical tests
NASA Astrophysics Data System (ADS)
Andrés-Martínez, Miguel; Morgan, Jason P.; Pérez-Gussinyé, Marta; Rüpke, Lars
2015-09-01
The surface of the solid Earth is effectively stress free in its subaerial portions, and hydrostatic beneath the oceans. Unfortunately, this type of boundary condition is difficult to treat computationally, and for computational convenience, numerical models have often used simpler approximations that do not involve a normal stress-loaded, shear-stress free top surface that is free to move. Viscous flow models with a computational free surface typically confront stability problems when the time step is bigger than the viscous relaxation time. The small time step required for stability (< 2 Kyr) makes this type of model computationally intensive, so there remains a need to develop strategies that mitigate the stability problem by making larger (at least ?10 Kyr) time steps stable and accurate. Here we present a new free-surface stabilization algorithm for finite element codes which solves the stability problem by adding to the Stokes formulation an intrinsic penalization term equivalent to a portion of the future load at the surface nodes. Our algorithm is straightforward to implement and can be used with both Eulerian or Lagrangian grids. It includes ? and ? parameters to respectively control both the vertical and the horizontal slope-dependent penalization terms, and uses Uzawa-like iterations to solve the resulting system at a cost comparable to a non-stress free surface formulation. Four tests were carried out in order to study the accuracy and the stability of the algorithm: (1) a decaying first-order sinusoidal topography test, (2) a decaying high-order sinusoidal topography test, (3) a Rayleigh-Taylor instability test, and (4) a steep-slope test. For these tests, we investigate which ? and ? parameters give the best results in terms of both accuracy and stability. We also compare the accuracy and the stability of our algorithm with a similar implicit approach recently developed by Kaus et al. (2010). We find that our algorithm is slightly more accurate and stable for steep slopes, and also conclude that, for longer time steps, the optimal ? controlling factor for both approaches is ?2/3, instead of the 1/2 Crank-Nicolson parameter inferred from a linearized accuracy analysis. This more-implicit value coincides with the velocity factor for a Galerkin time discretization applied to our penalization term using linear shape functions in time.
Joint regression analysis and AMMI model applied to oat improvement
NASA Astrophysics Data System (ADS)
Oliveira, A.; Oliveira, T. A.; Mejza, S.
2012-09-01
In our work we present an application of some biometrical methods useful in genotype stability evaluation, namely AMMI model, Joint Regression Analysis (JRA) and multiple comparison tests. A genotype stability analysis of oat (Avena Sativa L.) grain yield was carried out using data of the Portuguese Plant Breeding Board, sample of the 22 different genotypes during the years 2002, 2003 and 2004 in six locations. In Ferreira et al. (2006) the authors state the relevance of the regression models and of the Additive Main Effects and Multiplicative Interactions (AMMI) model, to study and to estimate phenotypic stability effects. As computational techniques we use the Zigzag algorithm to estimate the regression coefficients and the agricolae-package available in R software for AMMI model analysis.
Proton stability and light Z' inspired by string derived models
Faraggi, Alon E.; Mehta, Viraf M.
2011-10-15
Proton stability is one of the most perplexing puzzles in particle physics. While the renormalizable standard model forbids proton decay mediating operators due to accidental global symmetries, many of its extensions introduce such dimension four, five and six operators. Furthermore, it is, in general, expected that quantum gravity only respects local gauge, or discreet, symmetries. String theory provides the arena to study particle physics in a consistent framework of perturbative quantum gravity. An appealing proposition, in this context, is that the dangerous operators are suppressed by an Abelian gauge symmetry, which is broken near the TeV scale. A viable U(1) symmetry should also be anomaly free, be family universal, and allow the generation of fermion masses via the Higgs mechanism. We discuss such U(1) symmetries that arise in quasirealistic free fermionic heterotic-string derived models. Ensuring that the U(1) symmetry is anomaly free at the low scale requires that the standard model spectrum is augmented by additional states that are compatible with the charge assignments in the string models. We construct such string-inspired models and discuss some of their phenomenological implications.
NASA Astrophysics Data System (ADS)
Booth, James; Naud, Catherine; Tierney, Greg; Posselt, Derek; Willison, Jeff
2015-04-01
The warm sector in a developing extratropical cyclone is a region with ample vertical motion and precipitation. While most of the lifting of air masses within this region is driven by a response to baroclinic instability, convection is also active. The current analysis examines the interaction between these two types of vertical motion in numerical models in an effort to better understand general circulation model's (GCM's) projected changes in extratropical cyclones with global warming. First, cyclone-centered diagnostics are used to analyze the cloud field perpendicular to the warm front in a GCM. The analysis shows that the model's convection scheme is very active in the equatorward region of the warm sector. The convective mixing of heat acts to decrease the model relative humidity and cloud fraction, making the modeled cloud field biased low. Given this result, a proxy for warm sector convective activity is created based on the fraction of precipitation generated by the convection scheme. This cyclone-relative metric is examined in a numerical integration of an idealized extratropical cyclone, as well as a regional climate model. These models are analyzed at multiple resolutions, with the convective activity metric being compared to storm intensity and intensification rates. The analysis is then repeated using mean state temperature and moisture profiles meant to represent global warming, and the results are linked to the modeled vertical stability.
Instability of elliptic liquid jets: Temporal linear stability theory and experimental analysis
NASA Astrophysics Data System (ADS)
Amini, Ghobad; Lv, Yu; Dolatabadi, Ali; Ihme, Matthias
2014-11-01
The instability dynamics of inviscid liquid jets issuing from elliptical orifices is studied, and effects of the surrounding gas and the liquid surface tension on the stability behavior are investigated. A dispersion relation for the zeroth azimuthal (axisymmetric) instability mode is derived. Consistency of the analysis is confirmed by demonstrating that these equations reduce to the well-known dispersion equations for the limiting cases of round and planar jets. It is shown that the effect of the ellipticity is to increase the growth rate over a large range of wavenumbers in comparison to those of a circular jet. For higher Weber numbers, at which capillary forces have a stabilizing effect, the growth rate decreases with increasing ellipticity. Similar to circular and planar jets, increasing the density ratio between gas and liquid increases the growth of disturbances significantly. These theoretical investigations are complemented by experiments to validate the local linear stability results. Comparisons of predicted growth rates with measurements over a range of jet ellipticities confirm that the theoretical model provides a quantitatively accurate description of the instability dynamics in the Rayleigh and first wind-induced regimes.
NASA Technical Reports Server (NTRS)
Smith, Todd E.
1990-01-01
The dynamic analysis for the SSME HPOTP first stage turbine blade is presented wherein the rotor aeroelastic stability is assessed. The method employs normal modes analysis to simulate the coupled blade/fluid system. A three-dimensional finite element model of the blade is used in conjunction with a two-dimensional linearized unsteady aerodynamic theory which accounts for steady aerodynamic loading effects. This unsteady aerodynamic model is applied in stacked axisymmetric strips along the airfoil span. The blade dynamic and aerodynamic behaviors are coupled within modal space by expressing the unsteady aerodynamic forces in the frequency domain. A complex eigenvalue problem is solved to determine the stability of the rotor assuming tuned blades. The present analysis indicates that the HPOTP rotor experiences very low aerodynamic damping in the first four vibrational modes. The edgewise mode was found to be dynamically unstable. This mode of the blade became stable when the effect of mechanical damping was considered.
APPLICATIONS ANALYSIS REPORT: CHEMFIX TECHNOLOGIES, INC. - SOLIDIFICATION/STABILIZATION PROCESS
In support of the U.S. Environmental Protection Agency's (EPA) Superfund Innovative Technology Evaluation (SITE) Program, this report evaluates the Chemfix Technologies, Inc. (Chemfix), solidification/stabilization technology for on-site treatment of hazardous waste. The Chemfix ...
AC system stability analysis and assessment for Shipboard Power Systems
Qi, Li
2006-04-12
due to reconfiguration might cause voltage instability, such as progressive voltage decreases or voltage oscillations. SPS stability thus should be assessed to ensure the stable operation of a system during reconfiguration. In this dissertation, time...
Advanced techniques for the analysis of crisis stability, deterrence, and latency
Canavan, G.H.
1997-12-01
Studies on crisis stability, deterrence, and latency are presented in chronological order, which also reflects their logical order of development, captures the main features of stability analysis; relates first strike, crisis, and arms control stability as seen from US and Russian perspective; and addresses questions such as whether uncertainty in damage preference or defense deployment can be destabilizing. It illustrates the problems with alternative metrics, latency and reconstitution, and deep unilateral and proportional force reductions.
Relative stability and local curvature analysis in carbon nanotori
NASA Astrophysics Data System (ADS)
Chuang, Chern; Guan, Jie; Witalka, David; Zhu, Zhen; Jin, Bih-Yaw; Tománek, David
2015-04-01
We introduce a concise formalism to characterize nanometer-sized tori based on carbon nanotubes and to determine their stability by combining ab initio density functional calculations with a continuum elasticity theory approach that requires only shape information. We find that the high strain energy in nanotori containing only hexagonal rings is significantly reduced in nanotori containing also other polygons. Our approach allows to determine local curvature and link it to local strain energy, which is correlated with local stability and chemical reactivity.
(Research stability analysis of fluidized-bed equations)
Not Available
1991-01-01
In previous reports we have outlined the equations governing the flow of a mixture of a fluid infused with solid particles, the equations governing the state of uniform fluidization and the equation governing the linearized stability of the state of uniform fluidization. We have also discussed how material function {beta}{sub 01}, the pressure like term, i.e., the spherical part of the stress tensor for the solid constituent, could play a stabilizing role. We have carried out the optimization study for the stability equations and have obtained bounds for this material function {beta}{sub 01}, which will ensure the stability of the state of uniform fluidization for a range of values for the other material parameters. Here, we provide few preliminary results which show the effect of different material parameters on the stability of the state of uniform fluidization. Figures (1) through (10) show the variation of the root of the characteristic equation with the wave number, {sigma}. Negative values for the root implies that the flow is stabe and positive values that the flow is unstable. For the sake of completeness, we provide the section on stability which can also be found in our previous report.
Maintenance of Genetic Variability under Strong Stabilizing Selection: A Two-Locus Model
Gavrilets, S.; Hastings, A.
1993-01-01
We study a two locus model with additive contributions to the phenotype to explore the relationship between stabilizing selection and recombination. We show that if the double heterozygote has the optimum phenotype and the contributions of the loci to the trait are different, then any symmetric stabilizing selection fitness function can maintain genetic variability provided selection is sufficiently strong relative to linkage. We present results of a detailed analysis of the quadratic fitness function which show that selection need not be extremely strong relative to recombination for the polymorphic equilibria to be stable. At these polymorphic equilibria the mean value of the trait, in general, is not equal to the optimum phenotype, there exists a large level of negative linkage disequilibrium which ``hides'' additive genetic variance, and different equilibria can be stable simultaneously. We analyze dependence of different characteristics of these equilibria on the location of optimum phenotype, on the difference in allelic effect, and on the strength of selection relative to recombination. Our overall result that stabilizing selection does not necessarily eliminate genetic variability is compatible with some experimental results where the lines subject to strong stabilizing selection did not have significant reductions in genetic variability. PMID:8514145
Energy Science and Technology Software Center (ESTSC)
2015-05-15
MATK provides basic functionality to facilitate model analysis within the Python computational environment. Model analysis setup within MATK includes: - define parameters - define observations - define model (python function) - define samplesets (sets of parameter combinations) Currently supported functionality includes: - forward model runs - Latin-Hypercube sampling of parameters - multi-dimensional parameter studies - parallel execution of parameter samples - model calibration using internal Levenberg-Marquardt algorithm - model calibration using lmfit package - modelmore »calibration using levmar package - Markov Chain Monte Carlo using pymc package MATK facilitates model analysis using: - scipy - calibration (scipy.optimize) - rpy2 - Python interface to R« less
ESF SOUTH PORTAL BOX-CUT/HIGHWALL STABILITY ANALYSIS (SCPB:N/A)
Saeed Bonabian
1996-03-28
The main purpose and objective of this analysis is to design a Box-Cut at the ESF South Portal to accommodate the Tunnel Boring Machine's (TBM) exit at the conclusion of the ESF Main Loop construction. The stability of the Highwall and the sidewalls at the Box-Cut are assessed using analytical methods by numerical modeling techniques. A ground reinforcement system for the South Ramp Box-Cut slopes will be recommended. This report summarizes the results of the analyses and provides the details of the recommended ground reinforcement system for the Box-Cut slopes at the South Portal. The reinforcement design details are then incorporated into design output documents for implementation in the field. Method of excavation for the Box-Cut is also discussed and a recommendation is provided in this analysis.
Operations and Modeling Analysis
NASA Technical Reports Server (NTRS)
Ebeling, Charles
2005-01-01
The Reliability and Maintainability Analysis Tool (RMAT) provides NASA the capability to estimate reliability and maintainability (R&M) parameters and operational support requirements for proposed space vehicles based upon relationships established from both aircraft and Shuttle R&M data. RMAT has matured both in its underlying database and in its level of sophistication in extrapolating this historical data to satisfy proposed mission requirements, maintenance concepts and policies, and type of vehicle (i.e. ranging from aircraft like to shuttle like). However, a companion analyses tool, the Logistics Cost Model (LCM) has not reached the same level of maturity as RMAT due, in large part, to nonexistent or outdated cost estimating relationships and underlying cost databases, and it's almost exclusive dependence on Shuttle operations and logistics cost input parameters. As a result, the full capability of the RMAT/LCM suite of analysis tools to take a conceptual vehicle and derive its operations and support requirements along with the resulting operating and support costs has not been realized.
Vibrational stability and load-excitation dynamic analysis of rotor-bearing systems
Gomez-Mancilla, J.; Dimarogonas, A.D.
1995-12-31
The conditions for the existence, behaviors and stability of cyclic vibration in a complex and nonlinear rotor-bearing system is thoroughly analyzed. The present work comprises analytical and numerical studies as well as comparison with experimental studies performed by a major turbine manufacturer. The system analytical model consists of a DeLaval rotor mounted on hardening bearings with cubic stiffening characteristics; it includes the machine load effects. The model renders a 3rd-order complex nonlinear ordinary differential equation that when solved for dynamic equilibria it yields one trivial and two conjugate nontrivial equilibrium points. The equation models typical machine behaviors including limit cycles, stable and unstable; and chaotic vibration in response to load increases and unbalance excitation. Under normal operation, rotor and bearings of high performance machinery orbit around the nontrivial equilibrium point. When the load of a poorly designed machine is highly increased, and/or a large perturbation occurs, the nontrivial equilibrium points interact with the limit cycle provoking system instability, tripping, and damaging chaotic vibration. Analytical expressions for the `linear stability threshold load`, and the `nontrivial equilibrium points` for the machine are given; the former delimits the onset of whether, stable orbits or chaotic vibrational behaviors will occur. Existence of a load range for stable orbits is controlled by the bearing damping, here called `critical damping`, which can be attained by proper machine design using analytical expressions from this analysis.
F-111 natural laminar flow glove flight test data analysis and boundary layer stability analysis
NASA Technical Reports Server (NTRS)
Runyan, L. J.; Navran, B. H.; Rozendaal, R. A.
1984-01-01
An analysis of 34 selected flight test data cases from a NASA flight program incorporating a natural laminar flow airfoil into partial wing gloves on the F-111 TACT airplane is given. This analysis determined the measured location of transition from laminar to turbulent flow. The report also contains the results of a boundary layer stability analysis of 25 of the selected cases in which the crossflow (C-F) and Tollmien-Schlichting (T-S) disturbance amplification factors are correlated with the measured transition location. The chord Reynolds numbers for these cases ranges from about 23 million to 29 million, the Mach numbers ranged from 0.80 to 0.85, and the glove leading-edge sweep angles ranged from 9 deg to 25 deg. Results indicate that the maximum extent of laminar flow varies from 56% chord to 9-deg sweep on the upper surface, and from 51% chord at 16-deg sweep to 6% chord at 25-deg sweep on the lower. The results of the boundary layer stability analysis indicate that when both C-F and T-S disturbances are amplified, an interaction takes place which reduces the maximum amplification factor of either type of disturbance that can be tolerated without causing transition.
Improvement of stability conditions, accuracy and uniqueness of penalty approach in contact modeling
NASA Astrophysics Data System (ADS)
Bednarek, Tomasz; Kowalczyk, Piotr
2013-06-01
The main objective of this paper is to improve stability conditions, uniqueness and convergence of numerical analysis of metal forming processes with contact constraints enforced by the penalty method. A commonly known drawback of this approach is the choice of penalty factor values. When assumed too low, they result in inaccurate fulfillment of the constraints while when assumed too high, they lead to ill-conditioning of the equations system which affects stability and uniqueness of the solution. The proposed modification of the penalty algorithm consists in adaptive estimation of the penalty factor values for the particular system of finite element equations and for the assumed allowed inaccuracy in fulfillment of the contact constraints. The algorithm is tested on realistic examples of sheet metal forming. The finite element code based on flow approach formulation (for rigid-plastic and rigid-viscoplastic material model) has been used.
Stabilization precision control methods of photoelectric aim-stabilized system
NASA Astrophysics Data System (ADS)
Song, Xiaoru; Chen, Hua; Xue, Yonggang
2015-09-01
To solve the question that photoelectric aim-stabilized system can be controlled with high precision and stability, this paper researches a new photoelectric aim-stabilized control algorithm, analyzes the photoelectric aim-stabilized system architecture, sets up stability control system mathematical model, designs the stability of the photoelectric aim-stabilized LSSVM identification and control system, discusses uncertain factors and calculates the LSSVM parameters by the Chaos theory, gives the predictive controller model by the LSSVM and designs new photoelectric aim-stabilized system. Through the simulation calculation and experimental analysis, new photoelectric aim-stabilized control algorithm was verified; the results show the new photoelectric aim-stabilized control method can meet the demand of high precision control in photoelectric aim-stabilized system.
Frequency analysis of the stability of asteroids in the framework of the restricted, three Cedex 4 (France) (elena@obs-nice.fr) October 16, 2003 Abstract The stability of some asteroids an isoenergetic KAM theorem. More precisely, having fixed a level of energy related to the motion of the asteroid
Stability of Vortex Pairs over Slender Conical Bodies: Analysis and Numerical Computation
Liu, Feng
Stability of Vortex Pairs over Slender Conical Bodies: Analysis and Numerical Computation Jinsheng to study the formation and stability of stationary symmetric and asymmetric vortex pairs over slender responsible for the asymmetry of separation vortices over slender conical bodies. I. Introduction AN INITIALLY
A small-gain approach to stability analysis of hybrid systems Dragan Nesic and Daniel Liberzon
Liberzon, Daniel
: liberzon@uiuc.edu. Supported by NSF ECS-0134115 CAR and DARPA/AFOSR MURI F49620-02-1-0325 Awards. A. HybridA small-gain approach to stability analysis of hybrid systems Dragan Nesi´c and Daniel Liberzon Abstract-- We propose to use ISS small-gain theorems to analyze stability of hybrid systems. We demonstrate
Comparative Analysis of Stability--Genetic Diversity in Seagrass (Posidonia oceanica) Meadows
Borges, Rita
Comparative Analysis of Stability--Genetic Diversity in Seagrass (Posidonia oceanica) Meadowsstability relationship is the subject of a long-standing debate in ecology, but the genetic component of diversity has seldom been explored. In this study, we analyzed the interplay between genetic diversity and demographic
NASA Astrophysics Data System (ADS)
Bayer, Natascha; Rank, Elisabet; Traxler, Lukas; Beckert, Erik; Drauschke, Andreas
2015-03-01
Cataract still remains the leading cause of blindness affecting 20 million people worldwide. To restore the patients vision the natural lens is removed and replaced by an intraocular lens (IOL). In modern cataract surgery the posterior capsular bag is maintained to prevent inflammation and to enable stabilization of the implant. Refractive changes following cataract surgery are attributable to lens misalignments occurring due to postoperative shifts and tilts of the artificial lens. Mechanical eye models allow a preoperative investigation of the impact of such misalignments and are crucial to improve the quality of the patients' sense of sight. Furthermore, the success of sophisticated IOLs that correct high order aberrations is depending on a critical evaluation of the lens position. A new type of an IOL holder is designed and implemented into a preexisting mechanical eye model. A physiological representation of the capsular bag is realized with an integrated film element to guarantee lens stabilization and centering. The positioning sensitivity of the IOL is evaluated by performing shifts and tilts in reference to the optical axis. The modulation transfer function is used to measure the optical quality at each position. Lens stability tests within the holder itself are performed by determining the modulation transfer function before and after measurement sequence. Mechanical stability and reproducible measurement results are guaranteed with the novel capsular bag model that allows a precise interpretation of postoperative lens misalignments. The integrated film element offers additional stabilization during measurement routine without damaging the haptics or deteriorating the optical performance.
Advanced techniques for the analysis of crisis stability, deterrence, and latency
Canavan, G.H.
1998-12-31
This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The principal results of studies on crisis stability, deterrence, and latency are presented in their order of development. They capture the main features of stability analysis; relate first strike, crisis, and arms control stability as seen from US and Russian perspective; and address whether different metrics, uncertain damage preferences, or the deployment of defenses can be destabilizing. The report explores differences between unilateral and proportional force reductions in the region of deep reductions where concern shifts from stability to latency.
Li, M.; Sun, Z.; Zeng, D.
1996-12-31
Linear stability theory was applied in the present paper to analyze the stability of the basic state solution of thermocapillary convection in a liquid bridge with liquid encapsulation. Discretizing the linearized disturbance equations by using finite-difference approximation, stability analysis is evolved to a complex generalized eigenvalue problem with a complicated band structure of matrix. The influence of dimensionless parameters on the stability of the system is revealed through solving the complex generalized eigenvalue problem by inverse iteration. The results provide a theoretical and numerical foundation for crystal growth by float-zone method and for other engineering applications.
Strength Analysis of Coconut Fiber Stabilized Earth for Farm Structures
NASA Astrophysics Data System (ADS)
Enokela, O. S.; P. O, Alada
2012-07-01
Investigation of the strength characteristic of soil from alluvial deposit of River Benue in makurdi stabilized with coconut fiber as a stabilizer was carried as local building material for farm structure. Processed coconut fibers were mixed with the soil at four different mix ratios of 1% fiber, 2% fiber, 3% fiber and 4% fiber by percentage weight with 0% fiber as control. Compaction test and compressive strength were carried out on the various stabilizing ratio. From the compaction test, the correlation between the maximum dry density and optimum moisture content is a second order polynomial with a coefficient of 63% obtained at1.91kg/m3and 20.0% respectively while the compressive strength test shows an optimum failure load of 8.62N/mm2 at 2%fibre:100% soil mix ratio at 2.16 maximum dry density.
Kinetic aspects of emulsion stabilization by surfactants: a microfluidic analysis.
Baret, Jean-Christophe; Kleinschmidt, Felix; El Harrak, Abdeslam; Griffiths, Andrew D
2009-06-01
In classical emulsification processes, surfactants play two roles: first, they reduce the interfacial tension, facilitating droplet deformation and rupture, and second, they reduce droplet coalescence. Here, we use a microfluidic emulsification system to completely uncouple these two processes, allowing stabilization against coalescence to be studied quantitatively and independently of droplet formation. We demonstrate that, in addition to the classical effect of stabilization by an increase of surfactant concentration, the dynamics of adsorption of surfactant at the water-oil interface is a key element for droplet stabilization. Microfluidic emulsification devices can therefore be tailored to improve emulsification while decreasing the concentration of surfactant by increasing the time before the droplets first come into contact. PMID:19292501
Linear Stability Regime Analysis of the Compressible Reacting Mixing Layer
NASA Technical Reports Server (NTRS)
Day, M. J.; Reynolds, William C.; Mansour, N. N.; Rai, Man Mohan (Technical Monitor)
1995-01-01
Previous investigations have shown that a compressible reacting mixing layer can develop two peaks in the mean density weighted vorticity profile. Linear stability analyses show that at these peaks two distinct 'outer' instability modes appear in addition to the more common central mode, which exists unaccompanied in incompressible nonreacting flows. The present study parametrically analyzes the effects of compressibility, heat release, stoichiometry, and density ratio on the amplification rate and obliquity of each stability mode. The mean profiles used in the spatial stability calculation are generated by self-similar solutions of the compressible boundary layer equations combined with the assumption of infinitely fast chemistry. It is shown that the influence of stoichiometry and density ratio on the peaks of the density weighted vorticity profile determines which modes will dominate. Of particular interest are the conditions where two modes are equally amplified, causing the mixing layer to develop into a 'colayer' structure.
Bubbles breaking the wall: Two-dimensional stress and stability analysis
NASA Astrophysics Data System (ADS)
Eriksen, Jon Alm; Marks, Benjy; Sandnes, Bjørnar; Toussaint, Renaud
2015-05-01
Submerged granular material exhibits a wide range of behavior when the saturating fluid is slowly displaced by a gas phase. In confined systems, the moving interface between the invading gas and the fluid/grain mixture can cause beads to jam, and induce intermittency in the dynamics. Here, we study the stability of layers of saturated jammed beads around stuck air bubbles, and the deformation mechanism leading to air channel formations in these layers. We describe a two-dimensional extension of a previous model of the effective stress in the jammed packing. The effect of the tangential stress component on the yield stress is discussed, in particular how arching effects may impact the yield threshold. We further develop a linear stability analysis, to study undulations which develop under certain experimental conditions at the air-liquid interface. The linear analysis gives estimates for the most unstable wavelengths for the initial growth of the perturbations. The estimates correspond well with peak to peak length measurements of the experimentally observed undulations.
Bubbles breaking the wall: Two-dimensional stress and stability analysis.
Eriksen, Jon Alm; Marks, Benjy; Sandnes, Bjørnar; Toussaint, Renaud
2015-05-01
Submerged granular material exhibits a wide range of behavior when the saturating fluid is slowly displaced by a gas phase. In confined systems, the moving interface between the invading gas and the fluid/grain mixture can cause beads to jam, and induce intermittency in the dynamics. Here, we study the stability of layers of saturated jammed beads around stuck air bubbles, and the deformation mechanism leading to air channel formations in these layers. We describe a two-dimensional extension of a previous model of the effective stress in the jammed packing. The effect of the tangential stress component on the yield stress is discussed, in particular how arching effects may impact the yield threshold. We further develop a linear stability analysis, to study undulations which develop under certain experimental conditions at the air-liquid interface. The linear analysis gives estimates for the most unstable wavelengths for the initial growth of the perturbations. The estimates correspond well with peak to peak length measurements of the experimentally observed undulations. PMID:26066170
Abdou, Mohamed
, ABDOU Mohamed Fusion Science and Technology Center, UCLA, USA e-mail: vnaveen@ fusion.ucla.edu (Naveen-slip Lock [8] carried out stability analysis and found that the critical Reynolds number Rec becomes larger
Stability and robustness analysis tools for marine robot localization and mapping applications
Englot, Brendan J
2009-01-01
The aim of this analysis is to explore the fundamental stability issues of a robotic vehicle carrying out localization, mapping, and feedback control in a perturbation-filled environment. Motivated by the application of ...
This Applications Analysis Report evaluates the Soliditech, Inc., solidification/ stabilization process for the on-site treatment of waste materials. The Soliditech process mixes and chemically treats waste material with Urrichem (a proprietary reagent), additives, pozzolanic mat...
This Applications Analysis Report evaluates the solidification/stabilization treatment process of Silicate Technology Corporation (STC) for the on-site treatment of hazardous waste. The STC immobilization technology utilizes a proprietary product (FMS Silicate) to chemically stab...
Graphical models and Bayesian analysis
Guillas, Serge
models and Bayesian analysis #12;Not always exact methods #12;Ancient history #12;Conclusions · Huge understanding of risk, university of cambridge senior scientist, mrc biostatistics unit, cambridge UCL
Complete mode-set stability analysis of magnetically insulated ion diode equilibria
Slutz, S.A.; Lemke, R.W.
1993-12-31
We present the first analysis of the stability of magnetically insulated ion diodes that is fully relativistic and includes electromagnetic perturbations both parallel and perpendicular to the applied magnetic field. Applying this formalism to a simple diode equilibrium model that neglects velocity shear and density gradients, we find a fast growing mode that has all of the important attributes of the low frequency mode observed in numerical simulations of magnetically insulated ion diodes, which may be a major cause of ion divergence. We identify this mode as a modified two-stream instability. Previous stability analyses indicate a variety of unstable modes, but none of these exhibit the same behavior as the low frequency mode observed in the simulations. In addition, we analyze a realistic diode equilibrium model that includes velocity shear and an electron density profile consistent with that observed in the numerical simulations. We find that the diocotron instability is reduced, but not fully quenched by the extension of the electron sheath to the anode. However, the inclusion of perturbations parallel to the applied magnetic field with a wavelength smaller than the diode height does eliminate growth of this instability. This may explain why the diocotron mode has been observed experimentally with proton sources, but not with LiF, since the turn on of LiF is not uniform.
EXPOSURE ANALYSIS MODELING SYSTEM (EXAMS)
The Exposure Analysis Modeling System (EXAMS), first published in 1982 (EPA-600/3-82-023), provides interactive computer software for formulating aquatic ecosystem models and rapidly evaluating the fate, transport, and exposure concentrations of synthetic organic chemicals--pesti...
White Oak Dam stability analysis. Appendix. Volume II
Ahmed, S.B.
1994-01-01
A parametric study was conducted to evaluate the stability of the White Oak Dam (WOD) embankment and foundation. Slope stability analyses were performed for the upper and lower bound soil properties at three sections of the dam using the PCSTABL4 computer program. Minimum safety factors were calculated for the applicable seismic and static loading conditions. Liquefaction potential of the dam embankment and foundation solid during the seismic event was assessed by using simplified procedures. The WOD is classified as a low hazard facility and the Evaluation Basis Earthquake (EBE) is defined as an earthquake with a magnitude of m{sub b} = 5.6 and a Peak Ground Accelerator (PGA) of 0.13 g. This event is approximately equivalent to a Modified Mercalli Intensity of VI-VIII. The EBE is used to perform the seismic evaluation for slope stability and liquefaction potential. Results of the stability analyses and the liquefaction assessment lead to the conclusion that the White Oak Dam is safe and stable for the static and the seismic events defined in this study. Ogden Environmental, at the request of MMES, has checked and verified the calculations for the critical loading conditions and performed a peer review of this report. Ogden has determined that the WOD is stable under the defined static and seismic loading conditions and the embankment materials are in general not susceptible to liquefaction.
Survey Paper Stability Analysis of Switched Systems using Variational
Margaliot, Michael
Michael Margaliot a a School of Electrical EngineeringSystems, Tel Aviv University, Israel. Abstract Many, absolute stability, switched controllers, hybrid systems, differential inclusions. 1 Introduction Many- namical behavior in each mode. Our car changes its dy- namic behavior every time we change gears. Our
Arsenin, V. V.
2010-10-15
It is shown that, in contrast to the MHD model, a perturbation at the boundary of convective stability of a finite-pressure plasma in confinement systems without an averaged minB in the Kruskal-Oberman model is not generally a purely flute one. The reasons for this discrepancy are clarified. The analysis is carried out for axisymmetric configurations formed by a poloidal magnetic field.
NASA Astrophysics Data System (ADS)
Marques, Wilson, Jr.; Jacinta Soares, Ana; Pandolfi Bianchi, Miriam; Kremer, Gilberto M.
2015-06-01
A shock wave structure problem, like the one which can be formulated for the planar detonation wave, is analyzed here for a binary mixture of ideal gases undergoing the symmetric reaction {{A}1}+{{A}1}\\rightleftharpoons {{A}2}+{{A}2}. The problem is studied at the hydrodynamic Euler limit of a kinetic model of the reactive Boltzmann equation. The chemical rate law is deduced in this frame with a second-order reaction rate, in a chemical regime such that the gas flow is not far away from the chemical equilibrium. The caloric and the thermal equations of state for the specific internal energy and temperature are employed to close the system of balance laws. With respect to other approaches known in the kinetic literature for detonation problems with a reversible reaction, this paper aims to improve some aspects of the wave solution. Within the mathematical analysis of the detonation model, the equation of the equilibrium Hugoniot curve of the final states is explicitly derived for the first time and used to define the correct location of the equilibrium Chapman-Jouguet point in the Hugoniot diagram. The parametric space is widened to investigate the response of the detonation solution to the activation energy of the chemical reaction. Finally, the mathematical formulation of the linear stability problem is given for the wave detonation structure via a normal-mode approach, when bidimensional disturbances perturb the steady solution. The stability equations with their boundary conditions and the radiation condition of the considered model are explicitly derived for small transversal deviations of the shock wave location. The paper shows how a second-order chemical kinetics description, derived at the microscopic level, and an analytic deduction of the equilibrium Hugoniot curve, lead to an accurate picture of the steady detonation with reversible reaction, as well as to a proper bidimensional linear stability analysis.
Stability of building gene regulatory networks with sparse autoregressive models
Rajapakse, Jagath
Background: Biological networks are constantly subjected to random perturbations, and efficient feedback and compensatory mechanisms exist to maintain their stability. There is an increased interest in building gene ...
Nuclear-coupled thermal-hydraulic stability analysis of boiling water reactors
NASA Astrophysics Data System (ADS)
Karve, Atul A.
We have studied the nuclear-coupled thermal-hydraulic stability of boiling water reactors (BWRs) using a model we developed from: the space-time modal neutron kinetics equations based on spatial omega-modes, the equations for two-phase flow in parallel boiling channels, the fuel rod heat conduction equations, and a simple model for the recirculation loop. The model is represented as a dynamical system comprised of time-dependent nonlinear ordinary differential equations, and it is studied using stability analysis, modern bifurcation theory, and numerical simulations. We first determine the stability boundary (SB) in the most relevant parameter plane, the inlet-subcooling-number/external-pressure-drop plane, for a fixed control rod induced external reactivity equal to the 100% rod line value and then transform the SB to the practical power-flow map. Using this SB, we show that the normal operating point at 100% power is very stable, stability of points on the 100% rod line decreases as the flow rate is reduced, and that points are least stable in the low-flow/high-power region. We also determine the SB when the modal kinetics is replaced by simple point reactor kinetics and show that the first harmonic mode has no significant effect on the SB. Later we carry out the relevant numerical simulations where we first show that the Hopf bifurcation, that occurs as a parameter is varied across the SB is subcritical, and that, in the important low-flow/high-power region, growing oscillations can result following small finite perturbations of stable steady-states on the 100% rod line. Hence, a point on the 100% rod line in the low-flow/high-power region, although stable, may nevertheless be a point at which a BWR should not be operated. Numerical simulations are then done to calculate the decay ratios (DRs) and frequencies of oscillations for various points on the 100% rod line. It is determined that the NRC requirement of DR < 0.75-0.8 is not rigorously satisfied in the low-flow/high-power region and hence these points should be avoided during normal startup and shutdown operations. The frequency of oscillation is shown to decrease as the flow rate is reduced and the frequency of 0.5Hz observed in the low-flow/high-power region is consistent with those observed during actual instability incidents. Additional numerical simulations show that in the low-flow/high-power region, for the same initial conditions, the use of point kinetics leads to damped oscillations, whereas the model that includes the modal kinetics equations results in growing nonlinear oscillations. Thus, we show that side-by-side out-of-phase growing power oscillations result due to the very important first harmonic mode effect and that the use of point kinetics, which fails to predict these growing oscillations, leads to dramatically nonconservative results. Finally, the effect of a simple recirculation loop model that we develop is studied by carrying out additional stability analyses and additional numerical simulations. It is shown that the loop has a stabilizing effect on certain points on the 100% rod line for time delays equal to integer multiples of the natural period of oscillation, whereas it has a destabilizing effect for half-integer multiples. However, for more practical time delays, it is determined that the overall effect generally is destabilizing.
Modeling of Neoclassical Tearing Mode Stability for NSTX
NASA Astrophysics Data System (ADS)
Rosenberg, A.; Gates, D.; Pletzer, A.; Hegna, C.; Kruger, S.
2000-10-01
Neoclassical tearing modes (NTMs) can lead to disruption and loss of confinement. Previous analysis of these modes used large aspect ratio, low ? approximations to determine the effect of NTMs on tokamak plasmas. A more accurate tool is needed to predict the onset of these instabilities. As a follow-up to recent theoretical work, a code has been written which computes the tearing mode island growth rate for arbitrary tokamak geometry. It calls PEST-3 to compute ?^', the resistive MHD matching parameter. The code also calls routines in NIMROD for D_nc, DI and D_R, which are the bootstrap current driven term and the ideal and resistive interchange mode criterion, respectively. In addition to these components, the NIMROD routines calculate ?_s-H, a new correction to the Pfirsch-Schlüter term. Finite parallel transport effects were added and threshold island widths for several NSTX equilibria were determined. Another program takes the output of PEST-3 and allows the user to specify the rational surface, island width, and amount of detail near the perturbed surface to visualize the total helical flux. The results of this work will determine the stability of NTMs in an ST plasma with greater accuracy than previously achieved.
A piecewise linear mean flow model for studying stability in a lined channel
NASA Astrophysics Data System (ADS)
Marx, David
2012-07-01
Acoustic liners are used to reduce sound emission by turbofan engines. Under grazing flow they may sustain hydrodynamic instabilities and these are studied using a stability analysis, based on a simplified model: the liner is a mass-spring-damper system, the base channel flow is piecewise linear, and the inviscid, incompressible Rayleigh equation is used. The model is an extension to the channel case of a boundary layer model by Rienstra and Darau. The piecewise linear profile introduces a finite boundary layer thickness which ensures well-posedness, allowing an initial value problem to be conducted to investigate absolute stability. For typical values in aeronautics the flow above the liner is unstable. Absolute instability is obtained for somewhat extreme values of the mean flow (tiny boundary layer thickness), and under realistic conditions the flow is convectively unstable. The effect of finite channel height is investigated in both cases. In particular, for large boundary layer thicknesses associated with convective instability the channel height has little effect on the unstable mode. Favorable outcomes and failures of the model are shown by comparison to a published experimental work.
Stability and performance analysis of a jump linear control system subject to digital upsets
NASA Astrophysics Data System (ADS)
Wang, Rui; Sun, Hui; Ma, Zhen-Yang
2015-04-01
This paper focuses on the methodology analysis for the stability and the corresponding tracking performance of a closed-loop digital jump linear control system with a stochastic switching signal. The method is applied to a flight control system. A distributed recoverable platform is implemented on the flight control system and subject to independent digital upsets. The upset processes are used to stimulate electromagnetic environments. Specifically, the paper presents the scenarios that the upset process is directly injected into the distributed flight control system, which is modeled by independent Markov upset processes and independent and identically distributed (IID) processes. A theoretical performance analysis and simulation modelling are both presented in detail for a more complete independent digital upset injection. The specific examples are proposed to verify the methodology of tracking performance analysis. The general analyses for different configurations are also proposed. Comparisons among different configurations are conducted to demonstrate the availability and the characteristics of the design. Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61403395), the Natural Science Foundation of Tianjin, China (Grant No. 13JCYBJC39000), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China, the Tianjin Key Laboratory of Civil Aircraft Airworthiness and Maintenance in Civil Aviation of China (Grant No. 104003020106), and the Fund for Scholars of Civil Aviation University of China (Grant No. 2012QD21x).
Flow structure and stability analysis for back-step flow
NASA Astrophysics Data System (ADS)
Mihaiescu, Adrian; Wesfreid, Jose Eduardo
2005-11-01
The structure and stability of the flow over a backward-facing step are studied using direct numerical simulation. Two-dimensional and three-dimensional simulations are conducted at a Reynolds number between 50 and 600. The reattachment length and velocity profiles are in agreement with the experimental and numerical results reported by J.-F. Beaudoin et al.(2003). The Rayleigh discriminant and the Gortler number are calculated for the stability study. Present results identify the same regions of instability as previously found by the two-dimensional simulations of Beaudoin et al., but the values of both Rayleigh discriminant and Gortler number are significantly different. Two Eckman structures close to the lateral walls, followed inside the flow domain by two Gortler structures, located downstream the step are identified. It is shown that other Gortler structures appear when a spanwise periodic perturbation of the inflow velocity is imposed. However, these longitudinal structures depend on the inflow conditions.
Local stability analysis for a planar shock wave
NASA Technical Reports Server (NTRS)
Salas, M. D.
1984-01-01
A procedure to study the local stability of planar shock waves is presented. The procedure is applied to a Rankine-Hugoniot shock in a divergent/convergent nozzle, to an isentropic shock in a divergent/convergent nozzle, and to Rankine-Hugoniot shocks attached to wedges and cones. It is shown that for each case, the equation governing the shock motion is equivalent to the damped harmonic oscillator equation.
Preliminary Experimental Analysis of Soil Stabilizers for Contamination Control
Lagos, L.; Varona, J.; Zidan, A.; Gudavalli, R.; Wu, Kuang-His
2006-07-01
A major focus of Department of Energy's (DOE's) environmental management mission at the Hanford site involves characterizing and remediating contaminated soil and groundwater; stabilizing contaminated soil; remediating disposal sites; decontaminating and decommissioning structures, and demolishing former plutonium production process buildings, nuclear reactors, and separation plants; maintaining inactive waste sites; transitioning facilities into the surveillance and maintenance program; and mitigating effects to biological and cultural resources from site development and environmental cleanup and restoration activities. For example, a total of 470,914 metric tons of contaminated soil from 100 Areas remediation activities were disposed at the Environmental Restoration Disposal Facility (ERDF) during 2004. The Applied Research Center (ARC) at Florida International University (FIU) is supporting the Hanford's site remediation program by analyzing the effectiveness of several soil stabilizers (fixatives) for contamination control during excavation activities. The study is focusing on determining the effects of varying soil conditions, temperature, humidity and wind velocity on the effectiveness of the candidate stabilizers. The test matrix consists of a soil penetration-depth study, wind tunnel experiments for determination of threshold velocity, and temperature and moisture-controlled drying/curing experiments. These three set of experiments are designed to verify performance metrics, as well as provide insight into what fundamental forces are altered by the use of the stabilizer. This paper only presents the preliminary results obtained during wind tunnel experiments using dry Hanford soil samples (with 2.7% moisture by weight). These dry soil samples were exposed to varying wind speeds from 2.22 m/sec to 8.88 m/sec. Furthermore, airborne particulate data was collected for the dry Hanford soil experiments using an aerosol analyzer instrument. (authors)
Working Paper No. 346 Network models and financial stability
Hurd, Thomas R.
investigate how systemic risk is affected by the structure of the financial system. We construct banking for central banks charged with safeguarding overall financial stability. Systemic risk arises when concern for central banks charged with safeguarding overall financial stability. In this paper we
Incorporating seepage processes into a streambank stability model
Technology Transfer Automated Retrieval System (TEKTRAN)
Seepage processes are usually neglected in bank stability analyses although they can become a prominent failure mechanism under certain field conditions. This study incorporated the effects of seepage (i.e., seepage gradient forces and seepage erosion undercutting) into the Bank Stability and Toe Er...
Wave Front Interaction Model of Stabilized Propagating Wave Segments Vladimir S. Zykov1
Showalter, Kenneth
Wave Front Interaction Model of Stabilized Propagating Wave Segments Vladimir S. Zykov1 and Kenneth; published 14 February 2005) A wave front interaction model is developed to describe the relationship between excitability and the size and shape of stabilized wave segments in a broad class of weakly excitable media
NASA Astrophysics Data System (ADS)
Crosta, G.; Castellanza, R.; De Blasio, F.; Utili, S.
2012-04-01
Valles Marineris (VM hereafter) in the equatorial area of Mars exhibits several gravitative failures often involving the whole 6-8 km thickness of the valley walls. The failures have resulted in a series of long-runout landslides up to several hundred cubic kilometres in volume (Quantin et al., 2004), and the formation of sub-circular alcoves perched on the top. Several questions arise as to forces at play in the stability of the walls of VM, the geometrical shape of the alcoves and the shape and long-runout of the landslides (see for example Lucas et al., 2011). In this work, we concentrate on the stability analysis of the walls of VM with two precise questions in mind starting from past studies (Bigot-Cormier and Montgomery, 2006; Neuffer and Schultz, 2006, Schultz, 2002). The first concerns the properties of the materials that give origin to instability. We performed several finite element and discrete element calculations tailored to slope stability analysis based on the genuine shape of the walls of VM taken from the MOLA topographic data. We considered stratified and differently altered/degraded materials to define the range of physical mechanical properties required for failure to occur and to explain the discrete distribution of failures along the VM valley flanks. A second question addressed in this work is the geometrical shape of the sub-circular alcoves. Normally, these shapes are commonplace for slopes made of uniform and isotropic properties, and are also observed in subaqueous environment. We performed calculations taking into consideration the progressive failure in the slope showing the final results in terms of surface failure geometry. Bigot-Cormier, F., Montgomery, D.R. (2007) Valles Marineris landslides: Evidence for a strength limit to Martian relief? Earth and Planetary Science Letters, 260, 1-2, 15, 179-186 Lucas, A., Mangeney, A., Mège, D., and Bouchut, F., 2011. Influence of the scar geometry on landslide dynamics and deposits: Application to Martian landslides, J. Geophys. Res. - Planets, 116, E10001, DOI: 10.1144/1470-9236/05-042 Quantin, C., Allemand, P., Delacourt, C. (2004) Morphology and geometry of Valles Marineris landslides. Planetary and Space Science, 52, 11, 1011-1022 Neuffer, D.P., R.A. Schultz (2006) Mechanisms of slope failure in Valles Marineris, Mars. Quarterly Journal of Engineering Geology and Hydrogeology, 39,.3, 227-240 Schultz, R.A. (2002) Stability of rock slopes in Valles Marineris, Mars. Geophysical Research Letters, 29, 1932, doi:10.1029/2002GL015728
Shell stability analysis in a computer aided engineering (CAE) environment
NASA Technical Reports Server (NTRS)
Arbocz, J.; Hol, J. M. A. M.
1993-01-01
The development of 'DISDECO', the Delft Interactive Shell DEsign COde is described. The purpose of this project is to make the accumulated theoretical, numerical and practical knowledge of the last 25 years or so readily accessible to users interested in the analysis of buckling sensitive structures. With this open ended, hierarchical, interactive computer code the user can access from his workstation successively programs of increasing complexity. The computational modules currently operational in DISDECO provide the prospective user with facilities to calculate the critical buckling loads of stiffened anisotropic shells under combined loading, to investigate the effects the various types of boundary conditions will have on the critical load, and to get a complete picture of the degrading effects the different shapes of possible initial imperfections might cause, all in one interactive session. Once a design is finalized, its collapse load can be verified by running a large refined model remotely from behind the workstation with one of the current generation 2-dimensional codes, with advanced capabilities to handle both geometric and material nonlinearities.
NASA Astrophysics Data System (ADS)
Ma, Manjun; Wang, Zhi-An
2015-08-01
This paper is devoted to studying a reaction-diffusion-chemotaxis model with a volume-filling effect in a bounded domain with Neumann boundary conditions. We first establish the global existence of classical solutions bounded uniformly in time. Then applying the asymptotic analysis and bifurcation theory, we obtain both the local and global structure of steady states bifurcating from the homogeneous steady states in one dimension by treating the chemotactic coefficient as a bifurcation parameter. Moveover we find the stability criterion of the bifurcating steady states and give a sufficient condition for the stability of steady states with small amplitude. The pattern formation of the model is numerically shown and the stability criterion is verified by our numerical simulations.
Electrochemical Stability of Model Polymer Electrolyte/Electrode Interfaces
NASA Astrophysics Data System (ADS)
Hallinan, Daniel; Yang, Guang
2015-03-01
Polymer electrolytes are promising materials for high energy density rechargeable batteries. However, typical polymer electrolytes are not electrochemically stable at the charging voltage of advanced positive electrode materials. Although not yet reported in literature, decomposition is expected to adversely affect the performance and lifetime of polymer-electrolyte-based batteries. In an attempt to better understand polymer electrolyte oxidation and design stable polymer electrolyte/positive electrode interfaces, we are studying electron transfer across model interfaces comprising gold nanoparticles and organic protecting ligands assembled into monolayer films. Gold nanoparticles provide large interfacial surface area yielding a measurable electrochemical signal. They are inert and hence non-reactive with most polymer electrolytes and lithium salts. The surface can be easily modified with ligands of different chemistry and molecular weight. In our study, poly(ethylene oxide) (PEO) will serve as the polymer electrolyte and lithium bis(trifluoromethanesulfonyl) imide salt (LiTFSI) will be the lithium salt. The effect of ligand type and molecular weight on both optical and electrical properties of the gold nanoparticle film will be presented. Finally, the electrochemical stability of the electrode/electrolyte interface and its dependence on interfacial properties will be presented.
Rendón, Adela; Carton, David Gil; Sot, Jesús; García-Pacios, Marcos; Montes, Ruth; Valle, Mikel; Arrondo, José-Luis R.; Goñi, Felix M.; Ruiz-Mirazo, Kepa
2012-01-01
Oleic acid vesicles have been used as model systems to study the properties of membranes that could be the evolutionary precursors of more complex, stable, and impermeable phospholipid biomembranes. Pure fatty acid vesicles in general show high sensitivity to ionic strength and pH variation, but there is growing evidence that this lack of stability can be counterbalanced through mixtures with other amphiphilic or surfactant compounds. Here, we present a systematic experimental analysis of the oleic acid system and explore the spontaneous formation of vesicles under different conditions, as well as the effects that alcohols and alkanes may have in the process. Our results support the hypothesis that alcohols (in particular 10- to 14-C-atom alcohols) contribute to the stability of oleic acid vesicles under a wider range of experimental conditions. Moreover, studies of mixed oleic-acid-alkane and oleic-acid-alcohol systems using infrared spectroscopy and Langmuir trough measurements indicate that precisely those alcohols that increased vesicle stability also decreased the mobility of oleic acid polar headgroups, as well as the area/molecule of lipid. PMID:22339864
How to model the stability of terraced slopes? The case study of Tresenda (northern Italy)
NASA Astrophysics Data System (ADS)
Camera, Corrado; Apuani, Tiziana; Masetti, Marco
2015-04-01
Terraces are very common morphological features all around the Mediterranean Basin. They have been built to adapt the natural morphology of the territory to the development of anthropogenic activities, particularly agriculture. However, the increasing land abandonment during the last century is leading to soil degradation and stability issues, mainly due to lack of maintenance of these peculiar environments. The objective of this study was to develop a coupled hydrologic-stability model to identify possible triggering areas of superficial landslides during intense rainfall events. The model was tested on a slope uphill of the village of Tresenda, in Northern Italy, which experienced several superficial landslides in the last 35 years. Distributed stability analyses are usually carried out using an infinite slope approach, but in the case of terraces some basic assumptions of this method fail: the parallelism between topographical surface and potential sliding surface and the high ratio between slope length and failure surface depth are the most important examples. In addition, the interest is more on the stability of the terrace system (dry stone retaining wall and backfill soil) and not on soil alone. For these reasons, a stability analysis based on the global method of equilibrium is applied and soft coupled to a well know hydrological model (STARWARS). Sections of terrace, one cell wide, are recognized from the base of a wall to the top of the closest downstream one, and each cell (1 x 1 m2) is considered as a slice. The method of Sarma for circular and non-circular failure is applied. The very fine horizontal resolution (1 m) is crucial to take into consideration the hydrogeological and mechanical properties of dry stone walls (0.6-1.0 m wide). A sensitivity analysis was conducted for saturated water content, initial volumetric water content, the cohesion and friction angle of soil and walls and soil depth. The results of the sensitivity analysis showed that instability never occurs if less than 60% of the soil depth is saturated. In addition, a variation of 10% in the cohesion and friction angle of soil leads to changes in critical acceleration (factor of safety) of 4% and 5%, respectively. On the other hand, a variation of 10% in wall cohesion and friction angle leads to changes in the critical acceleration of around 4% and 1.5%, respectively. The use of a soil depth map with slightly different depths caused a different distribution in the number and location of instabilities. This underlines how this parameter, which is difficult to determine at high resolution, plays a central role in controlling location and volume of potential unstable masses. The model was finally evaluated on historical events and it demonstrated to be a good and reliable instrument to reproduce water levels and localise the most critical area for the triggering of superficial landslides on terraced slopes. In detail, field-measured water levels are modelled with a normalized RMSE of about 10%. Regarding stability, the triggering areas of the two superficial landslides occurred in May 1983 were well reproduced both temporally and spatially.
Li, Fuxiang; Ma, Wanbiao; Jiang, Zhichao; Li, Dan
2015-01-01
We investigate the dynamical behavior of a delayed HIV infection model with general incidence rate and immune impairment. We derive two threshold parameters, the basic reproduction number R 0 and the immune response reproduction number R 1. By using Lyapunov functional and LaSalle invariance principle, we prove the global stability of the infection-free equilibrium and the infected equilibrium without immunity. Furthermore, the existence of Hopf bifurcations at the infected equilibrium with CTL response is also studied. By theoretical analysis and numerical simulations, the effect of the immune impairment rate on the stability of the infected equilibrium with CTL response has been studied. PMID:26413141
NASA Technical Reports Server (NTRS)
Joshi, Anjali; Heimdahl, Mats P. E.; Miller, Steven P.; Whalen, Mike W.
2006-01-01
System safety analysis techniques are well established and are used extensively during the design of safety-critical systems. Despite this, most of the techniques are highly subjective and dependent on the skill of the practitioner. Since these analyses are usually based on an informal system model, it is unlikely that they will be complete, consistent, and error free. In fact, the lack of precise models of the system architecture and its failure modes often forces the safety analysts to devote much of their effort to gathering architectural details about the system behavior from several sources and embedding this information in the safety artifacts such as the fault trees. This report describes Model-Based Safety Analysis, an approach in which the system and safety engineers share a common system model created using a model-based development process. By extending the system model with a fault model as well as relevant portions of the physical system to be controlled, automated support can be provided for much of the safety analysis. We believe that by using a common model for both system and safety engineering and automating parts of the safety analysis, we can both reduce the cost and improve the quality of the safety analysis. Here we present our vision of model-based safety analysis and discuss the advantages and challenges in making this approach practical.
Gibbons, Robert D; Morris, Jeremy W F; Prucha, Christopher P; Caldwell, Michael D; Staley, Bryan F
2014-09-01
Landfill functional stability provides a target that supports no environmental threat at the relevant point of exposure in the absence of active control systems. With respect to leachate management, this study investigates "gateway" indicators for functional stability in terms of the predictability of leachate characteristics, and thus potential threat to water quality posed by leachate emissions. Historical studies conducted on changes in municipal solid waste (MSW) leachate concentrations over time (longitudinal analysis) have concentrated on indicator compounds, primarily chemical oxygen demand (COD) and biochemical oxygen demand (BOD). However, validation of these studies using an expanded database and larger constituent sets has not been performed. This study evaluated leachate data using a mixed-effects regression model to determine the extent to which leachate constituent degradation can be predicted based on waste age or operational practices. The final dataset analyzed consisted of a total of 1402 samples from 101 MSW landfills. Results from the study indicated that all leachate constituents exhibit a decreasing trend with time in the post-closure period, with 16 of the 25 target analytes and aggregate classes exhibiting a statistically significant trend consistent with well-studied indicators such as BOD. Decreasing trends in BOD concentration after landfill closure can thus be considered representative of trends for many leachate constituents of concern. PMID:24917368
Analysis and Modeling of Rigid Microswimmers
NASA Astrophysics Data System (ADS)
Meshkati, Farshad
In this thesis, we investigate magnetically actuated rigid microswimmers based on analytical and numerical schemes. These swimming micro-robots have medical applications such as drug delivery and in vivo diagnostics. Our model employs the method of regularized Stokeslets to faithfully incorporate the low-Reynolds-number hydrodynamics of arbitrary rigid geometries. We show how these magnetized swimmers can be actuated and controlled by externally rotating uniform magnetic fields. Our model predicts the swimming characteristics such as speed and direction. We show how to determine the dynamic stability of steadily rotating microswimmers. First, we address what is the simplest geometry capable of swimming. We illustrate that, despite the common belief that rigid microswimmers need to be chiral to be able to cause propulsion, a simple achiral 3-bead geometry can exhibit appreciable propulsion and controllability. We generalize this to explain the minimum geometric requirements for rigid rotating propulsion based on a symmetry analysis. Next, we investigate the implications of the stability analysis on the control of the 3-bead swimmer. We show that by adjusting the angle between the magnetic field and its rotation, one can control the existence of multiple stable rotation modes, leading to control of swimming direction and speed.
Grapentin, Christoph; Barnert, Sabine; Schubert, Rolf
2015-01-01
Perfluorocarbon nanoemulsions (PFC-NE) are disperse systems consisting of nanoscale liquid perfluorocarbon droplets stabilized by an emulsifier, usually phospholipids. Perfluorocarbons are chemically inert and non-toxic substances that are exhaled after in vivo administration. The manufacture of PFC-NE can be done in large scales by means of high pressure homogenization or microfluidization. Originally investigated as oxygen carriers for cases of severe blood loss, their application nowadays is more focused on using them as marker agents in 19F Magnetic Resonance Imaging (19F MRI). 19F is scarce in organisms and thus PFC-NE are a promising tool for highly specific and non-invasive imaging of inflammation via 19F MRI. Neutrophils, monocytes and macrophages phagocytize PFC-NE and subsequently migrate to inflamed tissues. This technique has proven feasibility in numerous disease models in mice, rabbits and mini pigs. The translation to clinical trials in human needs the development of a stable nanoemulsion whose droplet size is well characterized over a long storage time. Usually dynamic light scattering (DLS) is applied as the standard method for determining particle sizes in the nanometer range. Our study uses a second method, analysis of transmission electron microscopy images of cryo-fixed samples (Cryo-TEM), to evaluate stability of PFC-NE in comparison to DLS. Four nanoemulsions of different composition are observed for one year. The results indicate that DLS alone cannot reveal the changes in particle size, but can even mislead to a positive estimation of stability. The combination with Cryo-TEM images gives more insight in the particulate evolution, both techniques supporting one another. The study is one further step in the development of analytical tools for the evaluation of a clinically applicable perfluorooctylbromide nanoemulsion. PMID:26098661
Nonmodal linear stability analysis of miscible viscous fingering in porous media
NASA Astrophysics Data System (ADS)
Hota, Tapan Kumar; Pramanik, Satyajit; Mishra, Manoranjan
2015-11-01
The nonmodal linear stability of miscible viscous fingering in a two-dimensional homogeneous porous medium has been investigated. The linearized perturbed equations for Darcy's law coupled with a convection-diffusion equation is discretized using a finite difference method. The resultant initial value problem is solved by a fourth-order Runge-Kutta method, followed by a singular value decomposition of the propagator matrix. Particular attention is given to the transient behavior rather than the long-time behavior of eigenmodes predicted by the traditional modal analysis. The transient behaviors of the response to external excitations and the response to initial conditions are studied by examining the ? -pseudospectra structures and the largest energy growth function, respectively. With the help of nonmodal stability analysis we demonstrate that at early times the displacement flow is dominated by diffusion and the perturbations decay. At later times, when convection dominates diffusion, perturbations grow. Furthermore, we show that the dominant perturbation that experiences the maximum amplification within the linear regime lead to the transient growth. These two important features were previously unattainable in the existing linear stability methods for miscible viscous fingering. To explore the relevance of the optimal perturbation obtained from nonmodal analysis, we performed direct numerical simulations using a highly accurate pseudospectral method. Furthermore, a comparison of the present stability analysis with existing modal and initial value approach is also presented. It is shown that the nonmodal stability results are in better agreement than the other existing stability analyses, with those obtained from direct numerical simulations.
Flexible Launch Vehicle Stability Analysis Using Steady and Unsteady Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2012-01-01
Launch vehicles frequently experience a reduced stability margin through the transonic Mach number range. This reduced stability margin can be caused by the aerodynamic undamping one of the lower-frequency flexible or rigid body modes. Analysis of the behavior of a flexible vehicle is routinely performed with quasi-steady aerodynamic line loads derived from steady rigid aerodynamics. However, a quasi-steady aeroelastic stability analysis can be unconservative at the critical Mach numbers, where experiment or unsteady computational aeroelastic analysis show a reduced or even negative aerodynamic damping.Amethod of enhancing the quasi-steady aeroelastic stability analysis of a launch vehicle with unsteady aerodynamics is developed that uses unsteady computational fluid dynamics to compute the response of selected lower-frequency modes. The response is contained in a time history of the vehicle line loads. A proper orthogonal decomposition of the unsteady aerodynamic line-load response is used to reduce the scale of data volume and system identification is used to derive the aerodynamic stiffness, damping, and mass matrices. The results are compared with the damping and frequency computed from unsteady computational aeroelasticity and from a quasi-steady analysis. The results show that incorporating unsteady aerodynamics in this way brings the enhanced quasi-steady aeroelastic stability analysis into close agreement with the unsteady computational aeroelastic results.
Katipoglu-Yazan, Tugce
2015-01-01
The objective of the study was to investigate the achievable limits of aerobic sludge stabilization applied on waste-activated sludge generated in domestic, tannery, and pharmaceutical wastewater treatment plants. Stabilization study involved monitoring of conventional parameters and model evaluation of oxygen uptake rate and particulate components of waste sludge. Multi-component biomass approach was adopted based on death-regeneration mechanism. The results showed that sludge stabilization efficiency ranged between 25% and 30%, which was closely related to the fate of different particulate fractions of biomass, that is, viable biomass, hydrolysable particulates, and microbial metabolic products. Model calibration exercises yield in rate coefficient ranges of 0.18-0.32/day for biomass decay and 0.60-0.65/day for hydrolysis of non-biomass components. Degradation rates of particulate metabolic products were estimated as 0.035, 0.04, and 0.01/day for domestic, tannery, and pharmaceutical sludge, respectively. Relatively low degradation rates compared to conventional biological treatment processes confirmed reduced microbial activity in the course of aerobic stabilization. PMID:25687597
Stability of a Random Walk Model for Fruiting Body Aggregation in M. xanthus
NASA Astrophysics Data System (ADS)
McKenzie-Smith, G. C.; Schüttler, H. B.; Cotter, C.; Shimkets, L.
2015-03-01
Myxococcus xanthus exhibits the social starvation behavior of aggregation into a fruiting body containing myxospores able to survive harsh conditions. During fruiting body aggregation, individual bacteria follow random walk paths determined by randomly selected runtimes, turning angles, and speeds. We have simulated this behavior in terms of a continuous-time random walk (CTRW) model, re-formulated as a system of integral equations, describing the angle-resolved cell density, R(r, t, ?), at position r and cell orientation angle ? at time t, and angle-integrated ambient cell density ?(r, t). By way of a linear stability analysis, we investigated whether a uniform cell density R0 will be unstable for a small non-uniform density perturbation ?R(r, t, ?). Such instability indicates aggregate formation, whereas stability indicates absence of aggregation. We show that a broadening of CTRW distributions of the random speed and/or random runtimes strongly favors aggregation. We also show that, in the limit of slowly-varying (long-wavelength) density perturbations, the time-dependent linear density response can be approximated by a drift-diffusion model for which we calculate diffusion and drift coefficients as functions of the CTRW model parameters. Funded by the Fungal Genomics and Computational Biology REU at UGA.
Coupled flexural-longitudinal vibration of delaminated composite beams with local stability analysis
NASA Astrophysics Data System (ADS)
Szekrényes, András
2014-09-01
A novel analytical model is developed to solve the problem of free vibration of delaminated composite beams. The beam with a single delamination was modelled by six equivalent single layers by establishing the kinematic continuity in the undelaminated portion of the system. In the delaminated region the layers were captured by the traditional theories. First, Timoshenko beam theory is applied to solve the problem, then by reducing the model, the corresponding Euler-Bernoulli solution is presented. Both the free and constrained models were considered. The most important aspect of the present analysis is that the beams of the delaminated region are subjected to normal forces, as well. That is the essential reason for leading to a coupled flexural-longitudinal vibration problem. It is also concluded that delamination buckling can take place if the normal force is compressive in one of the half-periods of the vibration and reaches a critical value. The problem was also investigated experimentally by modal hammer and sweep excitation tests on beams made of E-glass/polyester in order to measure the natural frequencies and mode shapes. The comparison of the analytical and experimental results indicates the importance of the independent rotations provided by Timoshenko beams over the simple beam theory. The delamination buckling of the beams was captured based on the static stability analysis in the first step. Further results show that the problem is more complex than it was thought before, e.g., some nonlinearity, time-dependent stiffness as well as parametric excitation aspects were discovered during the present analysis.
Modeling of neoclassical tearing mode stability for generalized toroidal geometry
NASA Astrophysics Data System (ADS)
Rosenberg, A. L.; Gates, D. A.; Pletzer, A.; Menard, J. E.; Kruger, S. E.; Hegna, C. C.; Paoletti, F.; Sabbagh, S.
2002-11-01
Neoclassical tearing modes (NTMs) can lead to disruption and loss of confinement. Previous analysis of these modes used large aspect ratio, low ? (plasma pressure/magnetic pressure) approximations to determine the effect of NTMs on tokamak plasmas. A more accurate tool is needed to predict the onset of these instabilities. As a follow-up to recent theoretical work, a code has been written which computes the tearing mode island growth rate for arbitrary tokamak geometry. It calls PEST-3 [A. Pletzer et al., J. Comput. Phys. 115, 530 (1994)] to compute ?', the resistive magnetohydrodynamic (MHD) matching parameter. The code also calls the FLUXGRID routines in NIMROD [A. H. Glasser et al., Plasma Phys. Controlled Fusion 41, A747 (1999)] for Dnc, DI, and DR [C. C. Hegna, Phys. Plasmas 6, 3980 (1999); A. H. Glasser et al., Phys. Fluids 18, 875 (1975)], which are the bootstrap current driven term and the ideal and resistive interchange mode criterion, respectively. In addition to these components, the NIMROD routines calculate ?s-H, a new correction to the Pfirsch-Schlüter term. Finite parallel transport effects were added and a National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)] equilibrium was analyzed. Another program takes the output of PEST-3 and allows the user to specify the rational surface, island width, and amount of detail near the perturbed surface to visualize the total helical flux. The results of this work will determine the stability of NTMs in a spherical torus (ST) [Y.-K. M. Peng et al., Nucl. Fusion 26, 769 (1986)] plasma with greater accuracy than previously achieved.
Modeling of Neoclassical Tearing Mode Stability for Generalized Toroidal Geometry
A.L. Rosenberg; D.A. Gates; A. Pletzer; J.E. Menard; S.E. Kruger; C.C. Hegna; F. Paoletti; S. Sabbagh
2002-08-21
Neoclassical tearing modes (NTMs) can lead to disruption and loss of confinement. Previous analysis of these modes used large aspect ratio, low beta (plasma pressure/magnetic pressure) approximations to determine the effect of NTMs on tokamak plasmas. A more accurate tool is needed to predict the onset of these instabilities. As a follow-up to recent theoretical work, a code has been written which computes the tearing mode island growth rate for arbitrary tokamak geometry. It calls PEST-3 [A. Pletzer et al., J. Comput. Phys. 115, 530 (1994)] to compute delta prime, the resistive magnetohydrodynamic (MHD) matching parameter. The code also calls the FLUXGRID routines in NIMROD [A.H. Glasser et al., Plasma Phys. Controlled Fusion 41, A747 (1999)] for Dnc, DI and DR [C.C. Hegna, Phys. Plasmas 6, 3980 (1999); A.H. Glasser et al., Phys. Fluids 18, 875 (1975)], which are the bootstrap current driven term and the ideal and resistive interchange mode criterion, respectively. In addition to these components, the NIMROD routines calculate alphas-H, a new correction to the Pfirsch-Schlter term. Finite parallel transport effects were added and a National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)] equilibrium was analyzed. Another program takes the output of PEST-3 and allows the user to specify the rational surface, island width, and amount of detail near the perturbed surface to visualize the total helical flux. The results of this work will determine the stability of NTMs in an spherical torus (ST) [Y.-K.M. Peng et al., Nucl. Fusion 26, 769 (1986)] plasma with greater accuracy than previously achieved.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Wang, Yong; Qian, Yue-Hong
2015-06-01
A combination of the lattice Boltzmann method and the most recently developed dynamic mode decomposition is proposed for stability analysis. The simulations are performed on a graphical processing unit. Stability of the flow past a cylinder at supercritical state, Re = 50, is studied by the combination for both the exponential growing and the limit cycle regimes. The Ritz values, energy spectrum, and modes for both regimes are presented and compared with the Koopman eigenvalues. For harmonic-like periodic flow in the limit cycle, global analysis from the combination gives the same results as those from the Koopman analysis. For transient flow as in the exponential growth regime, the combination can provide more reasonable results. It is demonstrated that the combination of the lattice Boltzmann method and the dynamic mode decomposition is powerful and can be used for stability analysis for more complex flows.
Langley Stability and Transition Analysis Code (LASTRAC) Version 1.2 User Manual
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan
2004-01-01
LASTRAC is a general-purposed, physics-based transition prediction code released by NASA for Laminar Flow Control studies and transition research. The design and development of the LASTRAC code is aimed at providing an engineering tool that is easy to use and yet capable of dealing with a broad range of transition related issues. It was written from scratch based on the state-of-the-art numerical methods for stability analysis and modern software technologies. At low fidelity, it allows users to perform linear stability analysis and N-factor transition correlation for a broad range of flow regimes and configurations by using either the linear stability theory or linear parabolized stability equations method. At high fidelity, users may use nonlinear PSE to track finite-amplitude disturbances until the skin friction rise. This document describes the governing equations, numerical methods, code development, detailed description of input/output parameters, and case studies for the current release of LASTRAC.
Design Analysis Report for 244-AR Interim Stabilization Exhaust Ventilation Ducting
RUTHERFORD, J.
2002-11-21
This report documents the design analysis performed for the exhaust ducting associated with the 244-AR Interim Stabilization Project. The exhaust ducting connects portable exhausters PORO5 and PORO6 to the existing east dog house of the 291-AR filter vault and the vessel ventilation system. This analysis examines loads on the ductwork and ductwork supports.
Mathematical model of thermal shields for long-term stability optical resonators.
Sanjuan, Josep; Gürlebeck, Norman; Braxmaier, Claus
2015-07-13
Modern experiments aiming at tests of fundamental physics, like measuring gravitational waves or testing Lorentz Invariance with unprecedented accuracy, require thermal environments that are highly stable over long times. To achieve such a stability, the experiment including typically an optical resonator is nested in a thermal enclosure, which passively attenuates external temperature fluctuations to acceptable levels. These thermal shields are usually designed using tedious numerical simulations or with simple analytical models. In this paper, we propose an accurate analytical method to estimate the performance of passive thermal shields in the frequency domain, which allows for fast evaluation and optimization. The model analysis has also unveiled interesting properties of the shields, such as dips in the transfer function for some frequencies under certain combinations of materials and geometries. We validate the results by comparing them to numerical simulations performed with commercial software based on finite element methods. PMID:26191850
NASA Astrophysics Data System (ADS)
Rikvold, Per Arne; Sevim, Volkan
2007-05-01
We study an individual-based predator-prey model of biological coevolution, using linear stability analysis and large-scale kinetic Monte Carlo simulations. The model exhibits approximate 1/f noise in diversity and population-size fluctuations, and it generates a sequence of quasisteady communities in the form of simple food webs. These communities are quite resilient toward the loss of one or a few species, which is reflected in different power-law exponents for the durations of communities and the lifetimes of species. The exponent for the former is near -1 , while the latter is close to -2 . Statistical characteristics of the evolving communities, including degree (predator and prey) distributions and proportions of basal, intermediate, and top species, compare reasonably with data for real food webs.
Effect of Spatial Dispersion on Evolutionary Stability: A Two-Phenotype and Two-Patch Model
Li, Qing; Zhang, Jiahua; Zhang, Boyu; Cressman, Ross; Tao, Yi
2015-01-01
In this paper, we investigate a simple two-phenotype and two-patch model that incorporates both spatial dispersion and density effects in the evolutionary game dynamics. The migration rates from one patch to another are considered to be patch-dependent but independent of individual’s phenotype. Our main goal is to reveal the dynamical properties of the evolutionary game in a heterogeneous patchy environment. By analyzing the equilibria and their stabilities, we find that the dynamical behavior of the evolutionary game dynamics could be very complicated. Numerical analysis shows that the simple model can have twelve equilibria where four of them are stable. This implies that spatial dispersion can significantly complicate the evolutionary game, and the evolutionary outcome in a patchy environment should depend sensitively on the initial state of the patches. PMID:26566219
Global stability of a multiple infected compartments model for waterborne diseases
NASA Astrophysics Data System (ADS)
Wang, Yi; Cao, Jinde
2014-10-01
In this paper, mathematical analysis is carried out for a multiple infected compartments model for waterborne diseases, such as cholera, giardia, and rotavirus. The model accounts for both person-to-person and water-to-person transmission routes. Global stability of the equilibria is studied. In terms of the basic reproduction number R0, we prove that, if R0?1, then the disease-free equilibrium is globally asymptotically stable and the infection always disappears; whereas if R0>1, there exists a unique endemic equilibrium which is globally asymptotically stable for the corresponding fast-slow system. Numerical simulations verify our theoretical results and present that the decay rate of waterborne pathogens has a significant impact on the epidemic growth rate. Also, we observe numerically that the unique endemic equilibrium is globally asymptotically stable for the whole system. This statement indicates that the present method need to be improved by other techniques.
Stabilized plane and axisymmetric Lobatto finite element models
NASA Astrophysics Data System (ADS)
Hu, Y. C.; Sze, K. Y.; Zhou, Y. X.
2015-11-01
High order elements are renowned for their high accuracy and convergence. Among them, Lobatto spectral finite elements are commonly used in explicit dynamic analyses as their mass matrices when evaluated by the Lobatto integration rule are diagonal. While there are numerous advanced first and second order elements, advanced high order elements are rarely seen. In this paper, generic stabilization schemes are devised for the reduced integrated plane and axisymmetric elements. Static and explicit dynamic tests are considered for evaluating the relatively merits of the stabilized and conventional elements. The displacement errors of the stabilized elements are less than those of the conventional Lobatto elements. When the material is nearly incompressible, the stabilized elements are also more accurate in terms of the energy error norm. This advantage is of practical importance for bio-tissue and hydrated soil analyses.
Synchronous machine steady-state stability analysis using an artificial neural network
Chen, C.R.; Hsu, Y.Y. . Dept. of Electrical Engineering)
1991-03-01
A new type of artificial neural network is proposed for the steady-state stability analysis of a synchronous generator. In the developed artificial neutral network, those system variables which play an important role in steady-state stability such as generator outputs and power system stabilizer parameters are employed as the inputs. The output of the neural net provides the information on steady-state stability. Once the connection weights of the neural network have been learned using a set of training data derived off-line, the neural net can be applied to analyze the steady-state stability of the system time. To demonstrate the effectiveness of the proposed neural net, steady-state stability analysis is performed on a synchronous generator connected to a large power system. It is found that the proposed neural net requires much less training time than the multilayer feedforward network with backpropagation-momentum learning algorithm. It is also concluded from the test results that correct stability assessment can be achieved by the neural network.
Canister Model, Systems Analysis
Energy Science and Technology Software Center (ESTSC)
1993-09-29
This packges provides a computer simulation of a systems model for packaging nuclear waste and spent nuclear fuel in canisters. The canister model calculates overall programmatic cost, number of canisters, and fuel and waste inventories for the Idaho Chemical Processing Plant (other initial conditions can be entered).
Stability analysis of an interactive system of wave equation and heat equation with memory
NASA Astrophysics Data System (ADS)
Zhang, Qiong
2014-10-01
This paper is devoted to the stability analysis of an interaction system comprised of a wave equation and a heat equation with memory, where the hereditary heat conduction is due to Gurtin-Pipkin law or Coleman-Gurtin law. First, we show the strong asymptotic stability of solutions to this system. Then, the exponential stability of the interaction system is obtained when the hereditary heat conduction is of Gurtin-Pipkin type. Further, we show the lack of uniform decay of the interaction system when the heat conduction law is of Coleman-Gurtin type.
NASA Astrophysics Data System (ADS)
Sivan, Y.; Fibich, G.; Ilan, B.; Weinstein, M. I.
2008-10-01
We present a unified approach for qualitative and quantitative analysis of stability and instability dynamics of positive bright solitons in multidimensional focusing nonlinear media with a potential (lattice), which can be periodic, periodic with defects, quasiperiodic, single waveguide, etc. We show that when the soliton is unstable, the type of instability dynamic that develops depends on which of two stability conditions is violated. Specifically, violation of the slope condition leads to a focusing instability, whereas violation of the spectral condition leads to a drift instability. We also present a quantitative approach that allows one to predict the stability and instability strength.
Stability analysis of a time-periodic 2-dof MEMS structure
NASA Astrophysics Data System (ADS)
Kniffka, Till Jochen; Welte, Johannes; Ecker, Horst
2012-11-01
Microelectromechanical systems (MEMS) are becoming important for all kinds of industrial applications. Among them are filters in communication devices, due to the growing demand for efficient and accurate filtering of signals. In recent developments single degree of freedom (1-dof) oscillators, that are operated at a parametric resonances, are employed for such tasks. Typically vibration damping is low in such MEM systems. While parametric excitation (PE) is used so far to take advantage of a parametric resonance, this contribution suggests to also exploit parametric anti-resonances in order to improve the damping behavior of such systems. Modeling aspects of a 2-dof MEM system and first results of the analysis of the non-linear and the linearized system are the focus of this paper. In principle the investigated system is an oscillating mechanical system with two degrees of freedom x = [x1x2]T that can be described by Mx+Cx+K1x+K3(x2)x+Fes(x,V(t)) = 0. The system is inherently non-linear because of the cubic mechanical stiffness K3 of the structure, but also because of electrostatic forces (1+cos(?t))Fes(x) that act on the system. Electrostatic forces are generated by comb drives and are proportional to the applied time-periodic voltage V(t). These drives also provide the means to introduce time-periodic coefficients, i.e. parametric excitation (1+cos(?t)) with frequency ?. For a realistic MEM system the coefficients of the non-linear set of differential equations need to be scaled for efficient numerical treatment. The final mathematical model is a set of four non-linear time-periodic homogeneous differential equations of first order. Numerical results are obtained from two different methods. The linearized time-periodic (LTP) system is studied by calculating the Monodromy matrix of the system. The eigenvalues of this matrix decide on the stability of the LTP-system. To study the unabridged non-linear system, the bifurcation software ManLab is employed. Continuation analysis including stability evaluations are executed and show the frequency ranges for which the 2-dof system becomes unstable due to parametric resonances. Moreover, the existence of frequency intervals are shown where enhanced damping for the system is observed for this MEMS. The results from the stability studies are confirmed by simulation results.
Small-angle stability analysis of a linear control system for a high power communication satellite
NASA Technical Reports Server (NTRS)
Omalley, T. A.
1972-01-01
A small angle stability analysis is presented for one particular configuration of a high power communication satellite having a linear control system. Both the central body and the solar array are treated as rigid bodies. The control system studied consists of three-axis control of the central body and one-axis control of the solar array rotation relative to the central body. The results yield preliminary indications of the relation of stability to satellite inertias and control gains.
The Stability of IQ in People with Low Intellectual Ability: An Analysis of the Literature
ERIC Educational Resources Information Center
Whitaker, Simon
2008-01-01
A meta-analysis of the stability of low IQ (IQ less than 80) was performed on IQ tests that have been commonly used--tests that were derived by D. Wechsler (1949, 1955, 1974, 1981, 1991, 1997) and those based on the Binet scales (L. M. Terman, 1960; L. M. Terman & Merrill, 1972). Weighted-mean stability coefficients of 0.77 and 0.78 were found for…
Vibration Stabilization of a Mechanical Model of a X-Band Linear Collider Final Focus Magnet
Frisch, Josef; Chang, Allison; Decker, Valentin; Doyle, Eric; Eriksson, Leif; Hendrickson, Linda; Himel, Thomas; Markiewicz, Thomas; Partridge, Richard; Seryi, Andrei; /SLAC
2006-09-28
The small beam sizes at the interaction point of a X-band linear collider require mechanical stabilization of the final focus magnets at the nanometer level. While passive systems provide adequate performance at many potential sites, active mechanical stabilization is useful if the natural or cultural ground vibration is higher than expected. A mechanical model of a room temperature linear collider final focus magnet has been constructed and actively stabilized with an accelerometer based system.
NASA Astrophysics Data System (ADS)
Tassi, Emanuele; Grasso, Daniela; Comisso, Luca
2014-04-01
The influence of a velocity jet, directed along a magnetic guide field, on the linear evolution of collisionless reconnection is investigated both analytically and numerically. The analysis covers both the small and large ?' regimes, with ?' indicating the standard tearing stability parameter, and is carried out, in slab geometry, by means of a reduced four-field model for magnetic reconnection accounting for two-fluid effects. Analytical dispersion relations are derived in both regimes and their predictions on the growth rates are tested against numerical simulations. In both regimes the presence of the flow is shown to have a stabilizing effect, with growth rates decreasing when increasing the amplitude of the equilibrium flow. The analytical results predict that a decrease in the growth rate could be obtained also by reducing the characteristic width of the equilibrium flow profile. Such stabilizing effects appear to be stronger in the small ?' regime. A very good quantitative agreement is found between the analytical predictions and the numerical results. As a complement to the analysis, we also consider, in the small ?' regime, the dispersion relation in the absence of equilibrium flow, which extends a previously derived dispersion relation by including a corrective term due to plasma parallel compressibility. It is shown that such correction can have a stabilizing effect and yields a better agreement with the numerical results.
NASA Astrophysics Data System (ADS)
Malik, S.; Shipsey, I.; Cavanaugh, R.; Bloom, K.; Chan, Kai-Feng; D'Hondt, J.; Klima, B.; Narain, M.; Palla, F.; Rolandi, G.; Schörner-Sadenius, T.
2014-06-01
To impart hands-on training in physics analysis, CMS experiment initiated the concept of CMS Data Analysis School (CMSDAS). It was born over three years ago at the LPC (LHC Physics Centre), Fermilab and is based on earlier workshops held at the LPC and CLEO Experiment. As CMS transitioned from construction to the data taking mode, the nature of earlier training also evolved to include more of analysis tools, software tutorials and physics analysis. This effort epitomized as CMSDAS has proven to be a key for the new and young physicists to jump start and contribute to the physics goals of CMS by looking for new physics with the collision data. With over 400 physicists trained in six CMSDAS around the globe, CMS is trying to engage the collaboration in its discovery potential and maximize physics output. As a bigger goal, CMS is striving to nurture and increase engagement of the myriad talents, in the development of physics, service, upgrade, education of those new to CMS and the career development of younger members. An extension of the concept to the dedicated software and hardware schools is also planned, keeping in mind the ensuing upgrade phase.
Stability analysis of an autonomous system in loop quantum cosmology
Xiao Kui; Zhu Jianyang
2011-04-15
We discuss the stability properties of an autonomous system in loop quantum cosmology. The system is described by a self-interacting scalar field {phi} with positive potential V, coupled with a barotropic fluid in the Universe. With {Gamma}=VV{sup ''}/V{sup '2} considered as a function of {lambda}=V{sup '}/V, the autonomous system is extended from three dimensions to four dimensions. We find that the dynamic behaviors of a subset, not all, of the fixed points are independent of the form of the potential. Considering the higher-order derivatives of the potential, we get an infinite-dimensional autonomous system, which can describe the dynamical behavior of the scalar field with more general potential. We find that there is just one scalar-field-dominated scaling solution in the loop quantum cosmology scenario.
Stability analysis of an autonomous system in loop quantum cosmology
Kui Xiao; Jian-Yang Zhu
2011-04-02
We discuss the stability properties of an autonomous system in loop quantum cosmology. The system is described by a self-interacting scalar field $\\phi$ with positive potential $V$, coupled with a barotropic fluid in the Universe. With $\\Gamma=VV"/V'^2$ considered as a function of $\\lambda=V'/V$, the autonomous system is extended from three dimensions to four dimensions. We find that the dynamic behaviors of a subset, not all, of the fixed points are independent of the form of the potential. Considering the higher-order derivatives of the potential, we get an infinite-dimensional autonomous system which can describe the dynamical behavior of the scalar field with more general potential. We find that there is just one scalar-field-dominated scaling solution in the loop quantum cosmology scenario.
Napin from Brassica juncea: thermodynamic and structural analysis of stability.
Jyothi, T C; Sinha, Sharmistha; Singh, Sridevi A; Surolia, A; Appu Rao, A G
2007-07-01
The napin from Brassica juncea, oriental mustard, is highly thermostable, proteolysis resistant and allergenic in nature. It consists of two subunits - one small (29 amino acid residues) and one large (86 amino acids residues) - held together by disulfide bonds. The thermal unfolding of napin has been followed by differential scanning calorimetry (DSC) and circular dichroism (CD) measurements. The thermal unfolding is characterized by a three state transition with T(M1) and T(M2) at 323.5 K and 335.8 K, respectively; DeltaC(P1) and DeltaC(P2) are 2.05 kcal mol(-1) K(-1) and 1.40 kcal mol(-1) K(-1), respectively. In the temperature range 310-318 K, the molecule undergoes dimerisation. Isothermal equilibrium unfolding by guanidinium hydrochloride also follows a three state transition, N <_-_-> I <_-_-> U with DeltaG(1H2O) and DeltaG(2H2O) values of 5.2 kcal mol(-1) and 5.1 kcal mol(-1) at 300 K, respectively. Excess heat capacity values obtained, are similar to those obtained from DSC measurements. There is an increase in hydrodynamic radius from 20 A to 35.0 A due to unfolding by guanidinium hydrochloride. In silico alignment of sequences of napin has revealed that the internal repeats (40%) spanning residues 31 to 60 and 73 to 109 are conserved in all Brassica species. The internal repeats may contribute to the greater stability of napin. A thorough understanding of the structure and stability of these proteins is essential before they can be exploited for genetic improvements for nutrition. PMID:17544981
Frequency domain stability analysis of nonlinear active disturbance rejection control system.
Li, Jie; Qi, Xiaohui; Xia, Yuanqing; Pu, Fan; Chang, Kai
2015-05-01
This paper applies three methods (i.e., root locus analysis, describing function method and extended circle criterion) to approach the frequency domain stability analysis of the fast tool servo system using nonlinear active disturbance rejection control (ADRC) algorithm. Root locus qualitative analysis shows that limit cycle is generated because the gain of the nonlinear function used in ADRC varies with its input. The parameters in the nonlinear function are adjustable to suppress limit cycle. In the process of root locus analysis, the nonlinear function is transformed based on the concept of equivalent gain. Then, frequency domain description of the nonlinear function via describing function is presented and limit cycle quantitative analysis including estimating prediction error is presented, which virtually and theoretically demonstrates that the describing function method cannot guarantee enough precision in this case. Furthermore, absolute stability analysis based on extended circle criterion is investigated as a complement. PMID:25532936
Structural Analysis of Combustion Models
Tóth, J; Zsély, I
2013-01-01
Using ReactionKinetics, a Mathematica based package a few dozen detailed models for combustion of hydrogen, carbon monoxide and methanol are investigated. Essential structural characteristics are pulled out, and similarities and differences of the mechanisms are highlighted. These investigations can be used before or parallel with usual numerical investigations, such as pathway analysis, sensitivity analysis, parameter estimation, or simulation.
Dynamic Stability Analysis of Blunt Body Entry Vehicles Using Time-Lagged Aftbody Pitching Moments
NASA Technical Reports Server (NTRS)
Kazemba, Cole D.; Braun, Robert D.; Schoenenberger, Mark; Clark, Ian G.
2013-01-01
This analysis defines an analytic model for the pitching motion of blunt bodies during atmospheric entry. The proposed model is independent of the pitch damping sum coefficient present in the standard formulation of the equations of motion describing pitch oscillations of a decelerating blunt body, instead using the principle of a time-lagged aftbody moment as the forcing function for oscillation divergence. Four parameters, all with intuitive physical relevance, are introduced to fully define the aftbody moment and the associated time delay. It is shown that the dynamic oscillation responses typical to blunt bodies can be produced using hysteresis of the aftbody moment in place of the pitch damping coefficient. The approach used in this investigation is shown to be useful in understanding the governing physical mechanisms for blunt body dynamic stability and in guiding vehicle and mission design requirements. A validation case study using simulated ballistic range test data is conducted. From this, parameter identification is carried out through the use of a least squares optimizing routine. Results show good agreement with the limited existing literature for the parameters identified, suggesting that the model proposed could be validated by an experimental ballistic range test series. The trajectories produced by the identified parameters were found to match closely those from the MER ballistic range tests for a wide array of initial conditions and can be identified with a reasonable number of ballistic range shots and computational effort.
Slope Stability Analysis In Seismic Areas Of The Northern Apennines (Italy)
Lo Presti, D.; Fontana, T.; Marchetti, D.
2008-07-08
Several research works have been published on the slope stability in the northern Tuscany (central Italy) and particularly in the seismic areas of Garfagnana and Lunigiana (Lucca and Massa-Carrara districts), aimed at analysing the slope stability under static and dynamic conditions and mapping the landslide hazard. In addition, in situ and laboratory investigations are available for the study area, thanks to the activities undertaken by the Tuscany Seismic Survey. Based on such a huge information the co-seismic stability of few ideal slope profiles have been analysed by means of Limit equilibrium method LEM - (pseudo-static) and Newmark sliding block analysis (pseudo-dynamic). The analysis--results gave indications about the most appropriate seismic coefficient to be used in pseudo-static analysis after establishing allowable permanent displacement. Such indications are commented in the light of the Italian and European prescriptions for seismic stability analysis with pseudo-static approach. The stability conditions, obtained from the previous analyses, could be used to define microzonation criteria for the study area.
The Contribution of Particle Swarm Optimization to Three-Dimensional Slope Stability Analysis
A Rashid, Ahmad Safuan; Ali, Nazri
2014-01-01
Over the last few years, particle swarm optimization (PSO) has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D) slope stability analysis. This paper applied PSO in three-dimensional (3D) slope stability problem to determine the critical slip surface (CSS) of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes. PMID:24991652
King, Amy C; Woods, Matthew; Liu, Wei; Lu, Zhijian; Gill, Davinder; Krebs, Mark R H
2011-01-01
Generating stable antibodies is an important goal in the development of antibody-based drugs. Often, thermal stability is assumed predictive of overall stability. To test this, we used different internally created antibodies and first studied changes in antibody structure as a function of pH, using the dye ANS. Comparison of the pH50 values, the midpoint of the transition from the high-pH to the low-pH conformation, allowed us for the first time to rank antibodies based on their pH stability. Next, thermal stability was probed by heating the protein in the presence of the dye Sypro Orange. A new data analysis method allowed extraction of all three antibody unfolding transitions and showed close correspondence to values obtained by differential scanning calorimetry. T1%, the temperature at which 1% of the protein is unfolded, was also determined. Importantly, no correlations could be found between thermal stability and pH50, suggesting that to accurately quantify antibody stability, different measures of protein stability are necessary. The experimental data were further analyzed using a machine-learning approach with a trained model that allowed the prediction of biophysical stability using primary sequence alone. The pH stability predictions proved most successful and were accurate to within pH ±0.2. PMID:21710487
IMPROVED WET END STABILITY OF A PAPER MACHINE USING MODEL PREDICTIVE CONTROL
Cambridge, University of
and to control the wet- end chemistry of high-speed paper machines. It is now common within the industry to take1 IMPROVED WET END STABILITY OF A PAPER MACHINE USING MODEL PREDICTIVE CONTROL Paul Austin1 , John and retention systems of a high-speed paper machine to provide increased stability and runnability. The paper
ERIC Educational Resources Information Center
Robic, Srebrenka
2010-01-01
To fully understand the roles proteins play in cellular processes, students need to grasp complex ideas about protein structure, folding, and stability. Our current understanding of these topics is based on mathematical models and experimental data. However, protein structure, folding, and stability are often introduced as descriptive, qualitative…
i',('i~-'~" . ?~, Global Stability for the SEIR Model in Epidemiology
Li, Michael
i',('i~-'~" . ?~, ELSEVIER Global Stability for the SEIR Model in Epidemiology MICHAEL Y. LI in epidemiology is studied. Global stability of the endemic equilibrium is proved using a general criterion in epidemiology for the spread of an infectious disease is described by the following system of differential
Consumer acceptance and stability of spray dried betanin in model juices.
Kaimainen, Mika; Laaksonen, Oskar; Järvenpää, Eila; Sandell, Mari; Huopalahti, Rainer
2015-11-15
Spray dried beetroot powder was used to colour model juices, and the consumer acceptance of the juices and stability of the colour during storage at 60 °C, 20 °C, 4 °C, and -20 °C were studied. The majority of the consumers preferred the model juices coloured with anthocyanins or beetroot extract over model juices coloured with spray dried beetroot powder. The consumers preferred more intensely coloured samples over lighter samples. Spray dried betanin samples were described as 'unnatural' and 'artificial' whereas the colour of beetroot extract was described more 'natural' and 'real juice'. No beetroot-derived off-odours or off-flavours were perceived in the model juices coloured with beetroot powder. Colour stability in model juices was greatly dependent on storage temperature with better stability at lower temperatures. Colour stability in the spray dried powder was very good at 20 °C. Betacyanins from beetroot could be a potential colourant for food products that are stored cold. PMID:25977043
Behavior analysis by model slope experiment of artificial rainfall
NASA Astrophysics Data System (ADS)
Park, M. C.
2015-06-01
In this study, we performed a model slope experiment with rainfall seepage, and the results were compared and verified with the unsaturated slope stability analysis method. In the model slope experiment, we measured the changes in water content and matric suction due to rainfall seepage, and determined the time at which the slope failure occurred and the shape of the failure. In addition, we compared and verified the changes in the factor of safety and the shape of the failure surface, which was calculated from the unsaturated slope stability analysis with the model experiment. From the results of experiment and analysis, it is concluded that the unsaturated slope stability analysis can be used to accurately analyze and predict rainfall-induced slope failure. It is also concluded that in seepage analysis, setting the initial conditions and boundary conditions is very important. If engineers will use the measured pore water pressure or matric suction, the accuracy of analysis can be enhanced. The real-time monitoring system of pore water pressure or matric suction can be used as a warning of rainfall-induced slope failure.
Classical linear-control analysis applied to business-cycle dynamics and stability
NASA Technical Reports Server (NTRS)
Wingrove, R. C.
1983-01-01
Linear control analysis is applied as an aid in understanding the fluctuations of business cycles in the past, and to examine monetary policies that might improve stabilization. The analysis shows how different policies change the frequency and damping of the economic system dynamics, and how they modify the amplitude of the fluctuations that are caused by random disturbances. Examples are used to show how policy feedbacks and policy lags can be incorporated, and how different monetary strategies for stabilization can be analytically compared. Representative numerical results are used to illustrate the main points.
NASA Astrophysics Data System (ADS)
Shao, Wei; Bogaard, Thom; Bakker, Mark; Berti, Matteo
2014-05-01
The accuracy of using hydrological-slope stability models for rainfall-induced landslide forecasting relies on the identification of realistic landslide triggering mechanisms and the correct mathematical description of these mechanisms. The subsurface hydrological processes in a highly heterogeneous slope are controlled by complex geological conditions. Preferential flow through macropores, fractures and other local high-permeability zones can change the infiltration pattern, resulting in more rapid and deeper water movement. Preferential flow has significant impact on pore water pressure distribution and consequently on slope stability. Increasingly sophisticated theories and models have been developed to simulate preferential flow in various environmental systems. It is necessary to integrate methods of slope stability analysis with preferential flow models, such as dual-permeability models, to investigate the hydrological and soil mechanical response to precipitation in landslide areas. In this study, a systematic modeling approach is developed by using COMSOL Multiphysics to couple a single-permeability model and a dual-permeability model with a soil mechanical model for slope stability analysis. The dual-permeability model is composed of two Richards equations to describe coupled matrix and preferential flow, which can be used to quantify the influence of preferential flow on distribution and timing of pressure head in a slope. The hydrological models are coupled with a plane-strain elastic soil mechanics model and a local factor of safety method. The factor of safety is evaluated by applying the Mohr-Coulomb failure criterion on the effective stress field. The method is applied to the Rocca Pitigliana landslide located roughly 50 km south of Bologna. The landslide material consists of weathered clay with a thickness of 2-4m overlying clay-shale bedrock. Three years of field data of pore pressure measurements provide a reliable description of the dynamic hydrological response to transient rainfall intensity. So far, the landslide has been successfully modelled using a diffusion wave approach. In this study, the main focus will be on evaluating the predictive power of different model approaches by inter-comparison of new and existing simulation results. This will make it possible to quantify the influence of preferential flow on subsurface hydrological processes and slope stability in the Rocca Pitigliana landslide.
Atmospheric stability analysis over statically and dynamically rough surfaces
NASA Astrophysics Data System (ADS)
Maric, Emina; Metzger, Meredith; Singha, Arindam; Sadr, Reza
2011-11-01
The ratio of buoyancy flux to turbulent kinetic energy production in the atmospheric surface layer is investigated experimentally for air flow over two types of surfaces characterized by static and dynamic roughness. In this study, ``static'' refers to the time-invariant nature of naturally-occurring roughness over a mud/salt playa; while, ``dynamic'' refers to the behavior of water waves along an air-water interface. In both cases, time-resolved measurements of the momentum and heat fluxes were acquired from synchronized 3D sonic anemometers mounted on a vertical tower. Field campaigns were conducted at two sites, representing the ``statically'' and ``dynamically'' rough surfaces, respectively: (1) the SLTEST facility in Utah's western desert, and (2) the new Doha airport in Qatar under construction along the coast of the Persian Gulf. Note, at site 2, anemometers were located directly above the water by extension from a tower secured to the end of a 1 km-long pier. Comparisons of the Monin-Obukhov length, flux Richardson number, and gradient Richardson number are presented, and discussed in the context of the observed evolution of the turbulent spectra in response to diurnal variations of atmospheric stability. Supported by the Qatar National Research Fund.
Contrast analysis and stability on the ExAO testbed
Evans, J; Thomas, S; Gavel, D; Dillon, D; Macintosh, B
2008-06-10
High-contrast adaptive optics systems, such as those needed to image extrasolar planets, are known to require excellent wavefront control and diffraction suppression. The Laboratory for Adaptive Optics at UC Santa Cruz is investigating limits to high-contrast imaging in support of the Gemini Planet Imager. Previous contrast measurements were made with a simple single-opening prolate spheroid shaped pupil that produced a limited region of high-contrast, particularly when wavefront errors were corrected with the 1024-actuator Boston Micromachines MEMS deformable mirror currently in use on the testbed. A more sophisticated shaped pupil is now being used that has a much larger region of interest facilitating a better understanding of high-contrast measurements. In particular we examine the effect of heat sources in the testbed on PSF stability. We find that rms image motion scales as 0.02 {lambda}/D per watt when the heat source is near the pupil plane. As a result heat sources of greater than 5 watts should be avoided near pupil planes for GPI. The safest place to introduce heat is near a focal plane. Heat also can effect the standard deviation of the high-contrast region but in the final instrument other sources of error should be more significant.
Combustion-acoustic stability analysis for premixed gas turbine combustors
NASA Technical Reports Server (NTRS)
Darling, Douglas; Radhakrishnan, Krishnan; Oyediran, Ayo; Cowan, Lizabeth
1995-01-01
Lean, prevaporized, premixed combustors are susceptible to combustion-acoustic instabilities. A model was developed to predict eigenvalues of axial modes for combustion-acoustic interactions in a premixed combustor. This work extends previous work by including variable area and detailed chemical kinetics mechanisms, using the code LSENS. Thus the acoustic equations could be integrated through the flame zone. Linear perturbations were made of the continuity, momentum, energy, chemical species, and state equations. The qualitative accuracy of our approach was checked by examining its predictions for various unsteady heat release rate models. Perturbations in fuel flow rate are currently being added to the model.
Command Process Modeling & Risk Analysis
NASA Technical Reports Server (NTRS)
Meshkat, Leila
2011-01-01
Commanding Errors may be caused by a variety of root causes. It's important to understand the relative significance of each of these causes for making institutional investment decisions. One of these causes is the lack of standardized processes and procedures for command and control. We mitigate this problem by building periodic tables and models corresponding to key functions within it. These models include simulation analysis and probabilistic risk assessment models.
Factor Loading Estimation Error and Stability Using Exploratory Factor Analysis
ERIC Educational Resources Information Center
Sass, Daniel A.
2010-01-01
Exploratory factor analysis (EFA) is commonly employed to evaluate the factor structure of measures with dichotomously scored items. Generally, only the estimated factor loadings are provided with no reference to significance tests, confidence intervals, and/or estimated factor loading standard errors. This simulation study assessed factor loading…
Model building techniques for analysis.
Walther, Howard P.; McDaniel, Karen Lynn; Keener, Donald; Cordova, Theresa Elena; Henry, Ronald C.; Brooks, Sean; Martin, Wilbur D.
2009-09-01
The practice of mechanical engineering for product development has evolved into a complex activity that requires a team of specialists for success. Sandia National Laboratories (SNL) has product engineers, mechanical designers, design engineers, manufacturing engineers, mechanical analysts and experimentalists, qualification engineers, and others that contribute through product realization teams to develop new mechanical hardware. The goal of SNL's Design Group is to change product development by enabling design teams to collaborate within a virtual model-based environment whereby analysis is used to guide design decisions. Computer-aided design (CAD) models using PTC's Pro/ENGINEER software tools are heavily relied upon in the product definition stage of parts and assemblies at SNL. The three-dimensional CAD solid model acts as the design solid model that is filled with all of the detailed design definition needed to manufacture the parts. Analysis is an important part of the product development process. The CAD design solid model (DSM) is the foundation for the creation of the analysis solid model (ASM). Creating an ASM from the DSM currently is a time-consuming effort; the turnaround time for results of a design needs to be decreased to have an impact on the overall product development. This effort can be decreased immensely through simple Pro/ENGINEER modeling techniques that summarize to the method features are created in a part model. This document contains recommended modeling techniques that increase the efficiency of the creation of the ASM from the DSM.
Two numerical models for landslide dynamic analysis
NASA Astrophysics Data System (ADS)
Hungr, Oldrich; McDougall, Scott
2009-05-01
Two microcomputer-based numerical models (Dynamic ANalysis (DAN) and three-dimensional model DAN (DAN3D)) have been developed and extensively used for analysis of landslide runout, specifically for the purposes of practical landslide hazard and risk assessment. The theoretical basis of both models is a system of depth-averaged governing equations derived from the principles of continuum mechanics. Original features developed specifically during this work include: an open rheological kernel; explicit use of tangential strain to determine the tangential stress state within the flowing sheet, which is both more realistic and beneficial to the stability of the model; orientation of principal tangential stresses parallel with the direction of motion; inclusion of the centripetal forces corresponding to the true curvature of the path in the motion direction and; the use of very simple and highly efficient free surface interpolation methods. Both models yield similar results when applied to the same sets of input data. Both algorithms are designed to work within the semi-empirical framework of the "equivalent fluid" approach. This approach requires selection of material rheology and calibration of input parameters through back-analysis of real events. Although approximate, it facilitates simple and efficient operation while accounting for the most important characteristics of extremely rapid landslides. The two models have been verified against several controlled laboratory experiments with known physical basis. A large number of back-analyses of real landslides of various types have also been carried out. One example is presented. Calibration patterns are emerging, which give a promise of predictive capability.
Bastero-Gil, Mar; Cerezo, Rafael; Berera, Arjun; Ramos, Rudnei O.; Vicente, Gustavo S. E-mail: ab@ph.ed.ac.uk E-mail: rudnei@uerj.br
2012-11-01
The effects of bulk viscosity are examined for inflationary dynamics in which dissipation and thermalization are present. A complete stability analysis is done for the background inflaton evolution equations, which includes both inflaton dissipation and radiation bulk viscous effects. Three representative approaches of bulk viscous irreversible thermodynamics are analyzed: the Eckart noncausal theory, the linear and causal theory of Israel-Stewart and a more recent nonlinear and causal bulk viscous theory. It is found that the causal theories allow for larger bulk viscosities before encountering an instability in comparison to the noncausal Eckart theory. It is also shown that the causal theories tend to suppress the radiation production due to bulk viscous pressure, because of the presence of relaxation effects implicit in these theories. Bulk viscosity coefficients derived from quantum field theory are applied to warm inflation model building and an analysis is made of the effects to the duration of inflation. The treatment of bulk pressure would also be relevant to the reheating phase after inflation in cold inflation dynamics and during the radiation dominated regime, although very little work in both areas has been done; the methodology developed in this paper could be extended to apply to these other problems.
ISAC: A tool for aeroservoelastic modeling and analysis
NASA Technical Reports Server (NTRS)
Adams, William M., Jr.; Hoadley, Sherwood Tiffany
1993-01-01
The capabilities of the Interaction of Structures, Aerodynamics, and Controls (ISAC) system of program modules is discussed. The major modeling, analysis, and data management components of ISAC are identified. Equations of motion are displayed for a Laplace-domain representation of the unsteady aerodynamic forces. Options for approximating a frequency-domain representation of unsteady aerodynamic forces with rational functions of the Laplace variable are shown. Linear time invariant state-space equations of motion that result are discussed. Model generation and analyses of stability and dynamic response characteristics are shown for an aeroelastic vehicle which illustrates some of the capabilities of ISAC as a modeling and analysis tool for aeroelastic applications.
NASA Astrophysics Data System (ADS)
Ding, Juli; Fei, Jianfang; Huang, Xiaogang; Cheng, Xiaoping; Hu, Xiaohua; Ji, Liang
2015-06-01
This study aims to validate and improve the universal evaporation duct (UED) model through a further analysis of the stability function ( ?). A large number of hydrometeorological observations obtained from a tower platform near Xisha Island of the South China Sea are employed, together with the latest variations in ? function. Applicability of different ? functions for specific sea areas and stratification conditions is investigated based on three objective criteria. The results show that, under unstable conditions, ? function of Fairall et al. (1996) (i.e., Fairall96, similar for abbreviations of other function names) in general offers the best performance. However, strictly speaking, this holds true only for the stability (represented by bulk Richardson number R iB) range -2.6 ? R iB < -0.1; when conditions become weakly unstable (-0.1 ? R iB < -0.01), Fairall96 offers the second best performance after Hu and Zhang (1992) (HYQ92). Conversely, for near-neutral but slightly unstable conditions (-0.01 ? R iB < 0.0), the effects of Edson04, Fairall03, Grachev00, and Fairall96 are similar, with Edson04 being the best function but offering only a weak advantage. Under stable conditions, HYQ92 is the optimal and offers a pronounced advantage, followed by the newly introduced SHEBA07 (by Grachev et al., 2007) function. Accordingly, the most favorable functions, i.e., Fairall96 and HYQ92, are incorporated into the UED model to obtain an improved version of the model. With the new functions, the mean root-mean-square (rms) errors of the modified refractivity ( M), 0-5-m M slope, 5-40-m M slope, and the rms errors of evaporation duct height (EDH) are reduced by 21.65%, 9.12%, 38.79%, and 59.06%, respectively, compared to the classical Naval Postgraduate School model.
Stability Analysis of the Dilatonic Black Hole in Two Dimensions
Won T. Kim; Julian Lee; Young Jai Park
1995-02-18
We explicitly show that the net number of degrees of freedom in the two-dimensional dilaton gravity is zero through the Hamiltonian constraint analysis. This implies that the local space-time dependent physical excitations do not exist. From the linear perturbation around the black hole background, we explicitly prove that the exponentially growing mode with time is in fact eliminated outside the horizon. Therefore, the two-dimensional dilation gravity is essentially stable.
Stability analysis of the dilatonic black hole in two dimensions
Kim, W T; Park, Y J
1994-01-01
We explicitly show that the net number of degrees of freedom in the two-dimensional dilaton gravity is zero through the Hamiltonian constraint analysis. This implies that the local space-time dependent physical excitations do not exist. From the linear perturbation around the black hole background, we explicitly prove that the exponentially growing mode with time is in fact eliminated outside the horizon. Therefore, the two-dimensional dilation gravity is essentially stable.
Modelling of dual stability in a cable-in-conduit conductor
Bottura, L. . NET Design Team); Minervini, J.V. )
1990-01-01
A zero dimensional stability model has been developed for cable-in-conduit superconductors. The model is effective in simulating the multi-valued stability behaviour in the vicinity of the limiting current. This has been by modifying the helium heat transfer coefficient to account for inertial and fractional terms which affect the induced helium flow. Although this effect is treated qualitatively on a pseudo-one-dimensional basis, the model can reproduce with remarkable accuracy the multi-valued stability behaviour shown in earlier measurements performed by Lue, et al. The influence of the steady state mass flow is discussed, and a first order approximation of its effect is introduced in the model showing how an increase of the steady flow tends to wash-away'' the multiple stability region as observed in the experiment.
Stability analysis and simulations of coupled bulk-surface reaction–diffusion systems
Madzvamuse, Anotida; Chung, Andy H. W.; Venkataraman, Chandrasekhar
2015-01-01
In this article, we formulate new models for coupled systems of bulk-surface reaction–diffusion equations on stationary volumes. The bulk reaction–diffusion equations are coupled to the surface reaction–diffusion equations through linear Robin-type boundary conditions. We then state and prove the necessary conditions for diffusion-driven instability for the coupled system. Owing to the nature of the coupling between bulk and surface dynamics, we are able to decouple the stability analysis of the bulk and surface dynamics. Under a suitable choice of model parameter values, the bulk reaction–diffusion system can induce patterning on the surface independent of whether the surface reaction–diffusion system produces or not, patterning. On the other hand, the surface reaction–diffusion system cannot generate patterns everywhere in the bulk in the absence of patterning from the bulk reaction–diffusion system. For this case, patterns can be induced only in regions close to the surface membrane. Various numerical experiments are presented to support our theoretical findings. Our most revealing numerical result is that, Robin-type boundary conditions seem to introduce a boundary layer coupling the bulk and surface dynamics. PMID:25792948
NASA Astrophysics Data System (ADS)
Yoo, Yeon-Jong
The purpose of this study is to investigate the performance and stability of the gas-injection enhanced natural circulation in heavy-liquid-metal-cooled systems. The target system is STAR-LM, which is a 400-MWt-class advanced lead-cooled fast reactor under development by Argonne National Laboratory and Oregon State University. The primary loop of STAR-LM relies on natural circulation to eliminate main circulation pumps for enhancement of passive safety. To significantly increase the natural circulation flow rate for the incorporation of potential future power uprates, the injection of noncondensable gas into the coolant above the core is envisioned ("gas lift pump"). Reliance upon gas-injection enhanced natural circulation raises the concern of flow instability due to the relatively high temperature change in the reactor core and the two-phase flow condition in the riser. For this study, the one-dimensional flow field equations were applied to each flow section and the mixture models of two-phase flow, i.e., both the homogeneous and drift-flux equilibrium models were used in the two-phase region of the riser. For the stability analysis, the linear perturbation technique based on the frequency-domain approach was used by employing the Nyquist stability criterion and a numerical root search method. It has been shown that the thermal power of the STAR-LM natural circulation system could be increased from 400 up to 1152 MW with gas injection under the limiting void fraction of 0.30 and limiting coolant velocity of 2.0 m/s from the steady-state performance analysis. As the result of the linear stability analysis, it has turned out that the STAR-LM natural circulation system would be stable even with gas injection. In addition, through the parametric study, it has been found that the thermal inertia effects of solid structures such as fuel rod and heat exchanger tube should be considered in the stability analysis model. The results of this study will be a part of the optimized stable design of the gas-injection enhanced natural circulation of STAR-LM with substantially improved power level and economical competitiveness. Furthermore, combined with the parametric study, this research could contribute a guideline for the design of other similar heavy-liquid-metal-cooled natural circulation systems with gas injection.
Posterior cruciate-retaining versus posterior-stabilized total knee arthroplasty: a meta-analysis.
Bercik, Michael J; Joshi, Ashish; Parvizi, Javad
2013-03-01
The objective of this meta-analysis was to compare outcomes of posterior cruciate-retaining and posterior stabilized prostheses. A computerized literature search was conducted to identify randomized controlled trials comparing the clinical outcomes of cruciate-retaining and posterior-stabilized designs. The table of contents of four major Orthopaedic journals and the references section of two arthroplasty text books were reviewed to identify other relevant studies. Ultimately, 1114 patients (1265 knees) were compared. Statistical analysis revealed a significant difference in flexion and range of motion in favor of posterior-stabilized knees, but no difference in complication rates. The clinical importance of this remains unknown. The decision to use one design versus the other should rest with the surgeon's preference and comfort with a particular design. PMID:23433255
Rakkiyappan, R; Velmurugan, G; Cao, Jinde
2015-04-01
In this paper, the problem of the existence, uniqueness and uniform stability of memristor-based fractional-order neural networks (MFNNs) with two different types of memductance functions is extensively investigated. Moreover, we formulate the complex-valued memristor-based fractional-order neural networks (CVMFNNs) with two different types of memductance functions and analyze the existence, uniqueness and uniform stability of such networks. By using Banach contraction principle and analysis technique, some sufficient conditions are obtained to ensure the existence, uniqueness and uniform stability of the considered MFNNs and CVMFNNs with two different types of memductance functions. The analysis results establish from the theory of fractional-order differential equations with discontinuous right-hand sides. Finally, four numerical examples are presented to show the effectiveness of our theoretical results. PMID:25861402
Stability and error analysis of nodal expansion method for convection-diffusion equation
Deng, Z.; Rizwan-Uddin; Li, F.; Sun, Y.
2012-07-01
The development, and stability and error analyses of nodal expansion method (NEM) for one dimensional steady-state convection diffusion equation is presented. Following the traditional procedure to develop NEM, the discrete formulation of the convection-diffusion equation, which is similar to the standard finite difference scheme, is derived. The method of discrete perturbation analysis is applied to this discrete form to study the stability of the NEM. The scheme based on the NEM is found to be stable for local Peclet number less than 4.644. A maximum principle is proved for the NEM scheme, followed by an error analysis carried out by applying the Maximum principle together with a carefully constructed comparison function. The scheme for the convection diffusion equation is of second-order. Numerical experiments are carried and the results agree with the conclusions of the stability and error analyses. (authors)
Transverse Beam Stability Measurement and Analysis for the SNS Accumulator Ring
Xie, Zaipeng; Schulte, Mike; Hu, Yu Hen; Deibele, Craig E
2015-01-01
A Field-programmable gate array (FPGA) based transverse feedback damper system was implemented in the Spallation Neutron Source (SNS) accumulator ring with the intention to stabilize the electron-proton (e-p) instability in a frequency range from 1 MHz to 300 MHz. The transverse damper could also be used as a diagnostic tool by measuring the beam transfer function (BTF). An analysis of the BTF measurement provides the stability diagram for the production beam at SNS. This paper describes the feedback damper system and its set-up as the BTF diagnostic tool. Experimental BTF results are presented and beam stability analysis is performed based on the BTF measurements for the SNS accumulator ring.
Measurement and analysis of the frequency stability of GPS Navstar clocks
McCaskill, T.B.; Largay, M.M.; Oaks, O.J.
1994-12-31
Analysis of the frequency stability of Global Positioning System (GPS) on-orbit Navstar clocks Z`s performed by the Naval Research Laboratory (NRL). Clock offsets for each Navstar clock are derived from smoothed pseudorange measurements collected as the Navstar space vehicle passes over the tracking station. The clock offsets are further smoothed and estimated at the time of closest approach (TCA) of the space vehicle over the tracking station. Analysis of more than 50 Navstar clocks by NRL shows that the majority of these clocks provide performance that exceeds the GPS frequency stability specification. This precision measurement technique is capable of determining one-day frequency stabilities of the Navstar GPS clocks to an accuracy of better than 1 x 10-13.
Analysis of Dynamic Stability Constraints for a Mobile Humanoid Robot
Li, Yangmin
. The work [8] developed a typical model of tip- over dynamics of heavy-duty hydraulic mobile manipulators by controlling self- motions of the onboard redundant mobile manipulator and designed an online fuzzy logic self planning strategy to allow mobile manipulators to perform tasks quickly without generating dynamic forces
Analysis and Stability of Bent–Core Liquid Crystal Fibers
2011-02-21
Feb 21, 2011 ... fibers made from smectic layers of kinked (bent–core) liquid crystal molecules. In [1] a ... eventually impossible, to draw fibers as the air temperature is cooled [5]. ... varying ? and ? affects the molecule's height (layer thickness) while varying ... isotropic and is modeled by a constant bulk energy density in ?0:.
Design and Analysis of the ITER Vertical Stability Coils
Peter H. Titus, et. al.
2012-09-06
The ITER vertical stability (VS) coils have been developed through the preliminary design phase by Princeton Plasma Physics Laboratory (PPPL). Final design, prototyping and construction will be carried out by the Chinese Participant Team contributing lab, Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). The VS coils are a part of the in-vessel coil systems which include edge localized mode (ELM) coils as well as the VS coils. An overview of the ELM coils is provided in another paper at this conference. 15 The VS design employs four turns of stainless steel jacketed mineral insulated copper (SSMIC) conductors The mineral insulation is Magnesium Oxide (MgO). Joule and nuclear heat is removed by water flowing at 3 m/s through the hollow copper conductor. A key element in the design is that slightly elevated temperatures in the conductor and its support spine during operation impose compressive stresses that mitigate fatigue damage. Away from joints, and break-outs, conductor thermal stresses are low because of the axisymmetry of the winding (there are no corner bends as in the ELM coils).The 120 degree segment joint, and break-out or terminal regions are designed with similar but imperfect constraint compared with the ring coil portion of the VS. The support for the break-out region is made from a high strength copper alloy, CuCrZr. This is needed to conduct nuclear heat to the actively cooled conductor and to the vessel wall. The support "spine" for the ring coil portion of the VS is 316 stainless steel, held to the vessel with preloaded 718 bolts. Lorentz loads resulting from normal operating loads, disruption loads and loads from disruption currents in the support spine shared with vessel, are applied to the VS coil. The transmission of the Lorentz and thermal expansion loads from the "spine" to the vessel rails is via friction augmented with a restraining "lip" to ensure the coil frictional slip is minimal and acceptable. Stresses in the coil, joints, and break-outs are presented. These are compared with static and fatigue allowables. Design for fatigue is much less demanding than for the ELM coils. A total of 30,000 cycles is required for VS design. Loads on the vessel due to the thermal expansion of the coil and spine are significant. Efforts to reduce these by reducing the cross section of the spine have been made but the vessel still must support loads resulting from restraint of thermal expansion.
Evaluation of protein drug stability with vitreous humor in a novel ex-vivo intraocular model.
Patel, Sulabh; Müller, Gerd; Stracke, Jan Olaf; Altenburger, Ulrike; Mahler, Hanns-Christian; Jere, Dhananjay
2015-09-01
The stability of protein therapeutics during the residence time in the vitreous humor (VH) is an important consideration for intra ocular treatment and can possibly impact therapeutic efficacy and/or treatment intervals. Unavailability of the reliable Ex-vivo intravitreal (ExVit) model to estimate protein stability following IVT has driven the research focus to develop such model which can facilitate protein stability estimation before in-vivo experiments. In this manuscript, we have developed and evaluated three ExVit models, namely, ExVit static, semi-dynamic and dynamic. These models were utilized and compared when studying the in-vitro stability of model protein formulations under simulated intraocular conditions using porcine vitreous humor (VH). The ExVit static model exhibited significant precipitation and aggregation of proteins, most likely due to pH change occurred in the VH after isolation. The semi-dynamic model assessed was composed of two compartments i.e., VH- and buffer-compartment which has effectively stabilized the pH of the VH and facilitated the migration of VH degradation products. However, some limitations related to investigation of long-term protein stability were also observed with semi-dynamic model. The dynamic model developed, was comprised of three diffusion controlling barriers (two diffusion controlling membranes and a gel-matrix), which allowed modulation of the diffusion rate of macromolecules. The ability of dynamic model to modulate protein retention time in the VH will overcome the challenges faced by the semi-dynamic model such as long-term stability evaluation. PMID:26032291
Ultraviolet stability and contamination analysis of Spectralon diffuse reflectance material
NASA Technical Reports Server (NTRS)
Stiegman, Albert E.; Bruegge, Carol J.; Springsteen, Arthur W.
1993-01-01
A detailed chemical analysis was carried out on Spectralon, a highly Lambertian, diffuse reflectance material. Results of this investigation unambiguously identified the presence of an organic (hydrocarbon) impurity intrinsic to the commercial material. This impurity could be removed by a vacuum bake-out procedure and was identified as the cause of optical changes (degradation) that occur in the material when exposed to UV light. It was found that when this impurity was removed, the Spectralon material was photochemically stable and maintained its reflectance properties even after extensive solar UV exposure.
ROCK PROPERTIES MODEL ANALYSIS MODEL REPORT
Clinton Lum
2002-02-04
The purpose of this Analysis and Model Report (AMR) is to document Rock Properties Model (RPM) 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties models are intended principally for use as input to numerical physical-process modeling, such as of ground-water flow and/or radionuclide transport. The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. This work was conducted in accordance with the following planning documents: WA-0344, ''3-D Rock Properties Modeling for FY 1998'' (SNL 1997, WA-0358), ''3-D Rock Properties Modeling for FY 1999'' (SNL 1999), and the technical development plan, Rock Properties Model Version 3.1, (CRWMS M&O 1999c). The Interim Change Notice (ICNs), ICN 02 and ICN 03, of this AMR were prepared as part of activities being conducted under the Technical Work Plan, TWP-NBS-GS-000003, ''Technical Work Plan for the Integrated Site Model, Process Model Report, Revision 01'' (CRWMS M&O 2000b). The purpose of ICN 03 is to record changes in data input status due to data qualification and verification activities. These work plans describe the scope, objectives, tasks, methodology, and implementing procedures for model construction. The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The work scope for this activity consists of the following: (1) Conversion of the input data (laboratory measured porosity data, x-ray diffraction mineralogy, petrophysical calculations of bound water, and petrophysical calculations of porosity) for each borehole into stratigraphic coordinates; (2) Re-sampling and merging of data sets; (3) Development of geostatistical simulations of porosity; (4) Generation of derivative property models via linear coregionalization with porosity; (5) Post-processing of the simulated models to impart desired secondary geologic attributes and to create summary and uncertainty models; and (6) Conversion of the models into real-world coordinates. The conversion to real world coordinates is performed as part of the integration of the RPM into the Integrated Site Model (ISM) 3.1; this activity is not part of the current analysis. The ISM provides a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site and consists of three components: (1) Geologic Framework Model (GFM); (2) RPM, which is the subject of this AMR; and (3) Mineralogic Model. The interrelationship of the three components of the ISM and their interface with downstream uses are illustrated in Figure 1. Figure 2 shows the geographic boundaries of the RPM and other component models of the ISM.
Integration of complex models for slope stability and landslide runout with GIS
NASA Astrophysics Data System (ADS)
Mergili, M.; Schratz, K.; Ostermann, A.; Fellin, W.
2009-04-01
Geographic Information Systems (GIS) are common tools for landslide susceptibility and hazard analysis on various spatial scales, from global to local. Complex multivariate statistical methods are successfully used in combination with GIS for studies of landslide susceptibility at the regional scale. In contrast, relatively simple deterministic or semi-deterministic methods are often employed for detailed studies at the local scale (for example infinite slope stability models or two-parameter friction models for runout). These methods, however, are inappropriate in many cases, and more complex approaches would be required instead. The main reasons for the scarcity of more advanced GIS-based deterministic modelling tools are that (a) in contrast to many statistical methods, which, though mathematically complex, rely on the simple overlay of maps, deterministic models for slope stability or landslide motion are often geometrically complex, and (b) that many deterministic models are expressed in non-rectangular coordinate systems. Whilst these, chosen by engineers, physicians, or mathematicians, are adequate for the problems to be solved, they seem to discourage geoinformation scientists. The work presented here is understood as an attempt to overcome these problems by involving geoinformation scientists, engineers, and mathematicians in a common project. The following two gaps were attacked: (1) A GIS-based model for rotational slope failures. Infinite slope stability models, which are frequently used in combination with GIS, are suitable for the identification of shallow translational slope failures. Theoretically, they are only valid for cohesionless soil and a constant inclination of the slope. They fail for deep-seated rotational failures. Being more complex from a geometrical point of view, rotational failures are usually modelled based on a pre-defined longitudinal section, assuming a circular or elliptical slip surface. The most critical slip surface is often approached with a Monte Carlo simulation. Only few attempts have been made to develop GIS-based, three-dimensional software including such models, though this would be essential for allowing realistic simulations of landslides in complex terrain. (2) A fully deterministic GIS-based model for the runout of debris flows and related phenomena, based on the Savage-Hutter theory. The motion of so-called granular flows is a highly complex phenomenon. Semi-deterministic approaches (e.g. two-parameter friction models) are frequently applied in combination with GIS, but fully deterministic models are required for detailed studies of travel distance, velocity, and energy of granular flows. The most advanced concept for understanding and modelling such flows is the Savage-Hutter theory, a system of differential equations based on the conservation of mass and momentum. The equations have been solved for a number of idealized topographies, but not yet satisfactorily for arbitrary terrain, and no attempts to use them directly with GIS were known up to now. Both models were integrated with the Open Source GIS software GRASS GIS as raster-based modules. Tests with study areas in Italy and Argentina were promising, but also highlighted a strong need for further research.
Computaional Modeling of the Stability of Crevice Corrosion of Wetted SS316L
F. Cui; F.J. Presuel-Moreno; R.G. Kelly
2006-04-17
The stability of localized corrosion sites on SS 316L exposed to atmospheric conditions was studied computationally. The localized corrosion system was decoupled computationally by considering the wetted cathode and the crevice anode separately and linking them via a constant potential boundary condition at the mouth of the crevice. The potential of interest for stability was the repassivation potential. The limitations on the ability of the cathode that are inherent due to the restricted geometry were assessed in terms of the dependence on physical and electrochemical parameters. Physical parameters studied include temperature, electrolyte layer thickness, solution conductivity, and the size of the cathode, as well as the crevice gap for the anode. The current demand of the crevice was determined considering a constant crevice solution composition that simulates the critical crevice solution as described in the literature. An analysis of variance showed that the solution conductivity and the length of the cathode were the most important parameters in determining the total cathodic current capacity of the external surface. A semi-analytical equation was derived for the total current from a restricted geometry held at a constant potential at one end. The equation was able to reproduce all the model computation results both for the wetted external cathode and the crevice and give good explanation on the effects of physicochemical and kinetic parameters.
Stability of Periodic Solutionsof Conservation Laws with Viscosity:Analysis of the Evans Function
NASA Astrophysics Data System (ADS)
Oh, M.; Zumbrun, K.
We establish instability of periodic traveling waves arising in conservation laws featuring phase transition. The analysis uses the Evans function framework introduced by R.A. Gardner in the periodic case. The main new tool is a periodic generalization of the stability index introduced by Gardner and Zumbrun in the traveling front or pulse case.
Neurocomputing 70 (2006) 603606 Stability analysis of an unsupervised neural network
Pilyugin, Sergei S.
2006-01-01
Neurocomputing 70 (2006) 603606 Letters Stability analysis of an unsupervised neural network a new method of analyzing the dynamics of self-organizing neural networks with different time scales of recurrent neural networks. This paper investigates the dynamical behavior of self- organizing neural
Li, Yangmin
Hybrid Kinematics and Stability Analysis for the Mobile Modular Manipulator Yangmin Li and Yugang for the mobile modular manipulator, how to decompose a given task into motions to be carried out by the manipulator or the mobile platform, and what conditions to meet to avoid the mobile modular manipulator from
MULTICHANNEL BLIND DECONVOLUTION OF ARBITRARY SIGNALS: ADAPTIVE ALGORITHMS AND STABILITY ANALYSIES
Douglas, Scott C.
MULTICHANNEL BLIND DECONVOLUTION OF ARBITRARY SIGNALS: ADAPTIVE ALGORITHMS AND STABILITY ANALYSIES for the multichannel blind deconvolution of arbitrary non-Gaussian source mixtures. Two of the algorithms are spa- tia-temporal extensions of recently-derived blind signal separation algorithms that combine kurta- sis-based contrast
Yang, Jianke
2012-01-01
periodic potentials (optical lattices) is analyzed in both one- and two-dimensional systems. First we showPHYSICAL REVIEW A 85, 023822 (2012) Stability analysis for solitons in PT -symmetric optical lattices Sean Nixon,1 Lijuan Ge,1,2 and Jianke Yang1,* 1 Department of Mathematics and Statistics
ERIC Educational Resources Information Center
Linting, Marielle; Meulman, Jacqueline J.; Groenen, Patrick J. F.; van der Kooij, Anita J.
2007-01-01
Principal components analysis (PCA) is used to explore the structure of data sets containing linearly related numeric variables. Alternatively, nonlinear PCA can handle possibly nonlinearly related numeric as well as nonnumeric variables. For linear PCA, the stability of its solution can be established under the assumption of multivariate…
Stability Analysis of a Vision-Based Control Design for an Autonomous Mobile Robot
Bastin, Georges
1 Stability Analysis of a Vision-Based Control Design for an Autonomous Mobile Robot J.B. Coulaud, implying an extended Kalman filter to dynamically estimate the image parameters required for the feedback a mobile robot equipped with a camera to track a line on the ground. The control algorithm as well
ERIC Educational Resources Information Center
Mehl, Andrew F.; Crawford, Mary A.; Zhang, Lei
2009-01-01
Few laboratory procedures describe the use of circular dichroism (CD) at the undergraduate level. To increase the number of laboratory exercises using CD, a thermal denaturation study of myoglobin using CD is described to assess protein stability. Values obtained from a more classic linear data analysis approach are consistent with data analyzed…
FLUT - A program for aeroelastic stability analysis. [of aircraft structures in subsonic flow
NASA Technical Reports Server (NTRS)
Johnson, E. H.
1977-01-01
A computer program (FLUT) that can be used to evaluate the aeroelastic stability of aircraft structures in subsonic flow is described. The algorithm synthesizes data from a structural vibration analysis with an unsteady aerodynamics analysis and then performs a complex eigenvalue analysis to assess the system stability. The theoretical basis of the program is discussed with special emphasis placed on some innovative techniques which improve the efficiency of the analysis. User information needed to efficiently and successfully utilize the program is provided. In addition to identifying the required input, the flow of the program execution and some possible sources of difficulty are included. The use of the program is demonstrated with a listing of the input and output for a simple example.
Stability patterns for a size-structured population model and its stage-structured counterpart.
Zhang, Lai; Pedersen, Michael; Lin, Zhigui
2015-09-01
In this paper we compare a general size-structured population model, where a size-structured consumer feeds upon an unstructured resource, to its simplified stage-structured counterpart in terms of equilibrium stability. Stability of the size-structured model is understood in terms of an equivalent delayed system consisting of a renewal equation for the consumer population birth rate and a delayed differential equation for the resource. Results show that the size- and stage-structured models differ considerably with respect to equilibrium stability, although the two models have completely identical equilibrium solutions. First, when adult consumers are superior foragers to juveniles, the size-structured model is more stable than the stage-structured model while the opposite occurs when juveniles are the superior foragers. Second, relatively large juvenile (adult) mortality tends to stabilise (destabilise) the size-structured model but destabilise (stabilise) the stage-structured model. Third, the stability pattern is sensitive to the adult-offspring size ratio in the size-structured model but much less sensitive in the stage-structured model. Finally, unless the adult-offspring size ratio is sufficiently small, the stage-structured model cannot satisfactorily capture the dynamics of the size-structured model. We conclude that caution must be taken when the stage-structured population model is applied, although it can consistently translate individual life history and stage-specific differences to the population level. PMID:26187293
Glass Stability and Kinetic Analysis of Iron-Metalloid Bulk Metallic Glass
NASA Astrophysics Data System (ADS)
Santhaweesuk, Charuayporn
Multicomponent Fe-based bulk metallic glasses (BMGs) with a combination of excellent properties such as good soft magnetic properties, high strength, high hardness, and high corrosion resistance have attracted increasing attention both from a basic science research standpoint and due to their industrial application potential. However, many of the elemental additions which lead to the easiest glass formation are expensive. The identification of alloys composed of abundant and inexpensive elements that still retain excellent properties would promote applications for engineering and industry. In short, the development of the Fe-based BMG without any glass-forming metal elements and with high glass forming ability is desired. This study shows that the thermal stability of the Fe-based alloys can be improved beyond a simple rule of mixtures prediction by utilizing a well-balance multi-metalloid approach. The kinetics aspect of glass-forming ability is studied experimentally for Fe-B-Si-P alloys. The systematic variation in alloy composition gives access to differences in phase selection and the final dimensions of glass formation. Two alloys, representing the best glass-forming composition and the poorest glass-forming composition, were studied in terms of their stability to crystallization, solidification microstructure evolution and thermal history. The utility of the wedge-casting technique is developed to examine bulk glass-forming alloys by combining multiple temperature profiles of the quenching melt with a measurement-based kinetic analysis of the phase selection competition and critical cooling rate conditions. Based upon direct thermal measurement, microstructural analysis and kinetic modeling, it was found that both representative alloys show a board spectrum of solidification microstructures which include a critical cooling rate range. The kinetic competition in the formation of certain phases can enhance or detract from the final dimension of bulk glass formation of the representative alloys. Practical strategies in crystallization kinetics analysis and microstructure control are developed to extend the knowledge of phase competition leading to successful synthesis of BMGs. Low cost Fe-metalloid BMGs will provide a great advantage for the transition to commercial applications when material cost is a critical issue.
Analysis for Free Dendritic Growth Model Applicable to Nondilute Alloys
NASA Astrophysics Data System (ADS)
Li, Shu; Zhang, Jiong; Wu, Ping
2012-10-01
A steady-state free dendritic growth model applicable to concentrated alloys was proposed as an extension of Wang et al.'s model.[14] The present model adopted a realistic thermodynamic model to replace the Baker-Cahn equation and included a generalized marginal stability criterion and a nondilute solute trapping model to completely eliminate the dilute alloy limitation. Comparative analysis shows that Wang et al.'s model is a very close approximation to the present model at low undercoolings for dilute alloys. However, the difference appears at high undercoolings even for dilute alloys. Furthermore, the difference of the model predictions for both models increases with nominal composition of alloys due to the inherent limitation of dilute alloys in Wang et al.'s model. A comparison with the experimental data for Cu70Ni30 alloy demonstrates the applicability of the present model to nondilute alloys.
NASA Astrophysics Data System (ADS)
Sleep, Brent; Mondal, Pulin; Furbacher, Paul; Cui, Ziteng; Krol, Magdalena
2015-04-01
Nano-scale zero valent iron (nZVI) is capable of reacting with a wide variety of groundwater contaminants. Therefore, during the last decade nZVI has received significant attention for application in subsurface remediation, particularly for sites contaminated with chlorinated compounds and heavy metals. However, due to agglomeration of the nZVI, delivery into the contaminated subsurface zones is challenging. Polymer stabilization of nZVI can enhance the mobility of the iron particles in the subsurface. In this study, a set of laboratory-scale transport experiments and numerical simulations were performed to evaluate carboxymethyl cellulose (CMC) polymer stabilized nZVI transport in porous media. Experiments were conducted in a two-dimensional water-saturated lab-scale glass-walled sandbox, uniformly packed with silica sand, to identify the effects of water specific discharge and CMC concentration on nZVI transport. Experiments were also performed using Lissamine Green B (LGB) dye as a non-reactive tracer to characterize the sand media. The CMC stabilized nZVI was synthesized freshly at a concentration of 1000 mg/L before each transport experiment. The synthesized CMC-nZVI mixture was characterized using transmission electron microscopy, dynamic light scattering, and UV-visual spectrophotometry. The movement of the LGB dye and nZVI in the sandbox during the experiments was monitored using time-lapsed images captured using a light source and a dark box. The transport of LGB, CMC, and CMC-nZVI was evaluated through analysis of the breakthrough curves at the outlet and the retained nZVI in the sandbox. The LGB, CMC, and nZVI transport was also modeled using a multiphase flow and transport model considering LGB and CMC as solutes, and nZVI as a colloid. Analysis of the breakthrough data showed that the mass recovery of LGB and CMC was greater than 95 % indicating conservative transport in silica sand. However, the mean residence time of CMC was significantly higher than that of LGB due to CMC viscosity effects. Increasing the CMC concentration from 0.2 % to 0.8 % increased nZVI stability, but caused higher pressure drops in the sand box, indicating that use of high CMC concentration may limit the injection rates. The images captured during transport experiments and the total iron analysis of the sand after the transport experiments showed that a significant amount of nZVI was retained in the sandbox. The mass recovery of nZVI was lower than 40 % due to the attachment onto the sand surfaces. The simulation results of LGB, CMC, and nZVI matched the experimental observations and allowed estimation of transport parameters that could be used to predict CMC stabilized nZVI transport under a variety of conditions.
Stability analysis of a mobile robot base carrying a robotic manipulator
Bouchard, J.F.; Sias, F.R. Jr.
1994-12-31
A robotic manipulator mounted on a mobile robot base is useful for performing tasks in an environment not suitable for humans. However, the capabilities of such a robot may be limited by its physical stability. A mobile robot by itself is designed to have a high degree of stability, with a center of gravity located low to the ground and well within the area enclosed by its wheels. When a manipulator is mounted on a mobile robot, the overall center of gravity is raised and may also be shifted outside of the area of stability, which would cause the robot to tip. Three factors that may influence the physical stability of such a configuration are the position of the manipulator links, the load at the tool position, and the inclide on which the robot is supported. A stability analysis provides numerical information concerning the effect that each of these three factors has on the stability of the robot`s vehicle-manipulator system.
NASA Technical Reports Server (NTRS)
Brinkmann, R. P.
1989-01-01
This paper is a contribution to the stability analysis of current-carrying plasmas, i.e., plasma systems that are forced by external mchanisms to carry a nonrelaxing electrical current. Under restriction to translationally invariant configurations, the thermodynamic stability criterion for a multicomponent plasma is rederived within the framework of nonideal MHD. The chosen dynamics neglects scalar resistivity, but allows for other types of dissipation effects both in Ohm's law and in the equation of motion. In the second section of the paper, the thermodynamic stability criterion is compared with the ideal MHD based energy principle of Bernstein et al. With the help of Schwarz's inequality, it is shown that the former criterion is always more 'pessimistic' than the latter, i.e., that thermodynamic stability implies stability according to the MHD principle, but not vice versa. This reuslt confirms the physical plausible idea that dissipational effects tend to weaken the stability properties of current-carrying plasma equilibria by breaking the constraints of ideal MHD and allowing for possibly destabilizing effects such as magnetic field line reconfiguration.
Stability and mixing conditions for HIV/AIDS models with regional compartments
NASA Astrophysics Data System (ADS)
Thomas, Richard
Compartmental models have been adapted to derive temporal epidemic forecasting systems for imitating the transfer of HIV infection between those with different behaviours or rates of risk activity. Alternatively, models with regional compartments, which forecast disease incidence in both space and time, have emerged as a response to the challenge of anticipating the pandemic pathways of this infection. This paper combines these frameworks to obtain properties for a multiregion model that also contains demographic compartments. Section 2 begins by showing how the stability conditions (starting thresholds) for a purely regional model are a special case of the existing conditions that have been derived for the general compartmental framework. Then, these results are extended to encompass a regions with compartments design. Section 3 presents an analysis of the population mixing relationships that are embedded in all these specifications. Here, the topics include the maintenance of contact symmetry, the representation of alternative partner selection behaviours, and the identification of core populations for the diffusion of HIV infection. The discussion considers how these theoretical findings might be applied to disease prevention.
On the Stability and Growth Forms of a Mathematical Model for growth of Coral Reefs
Wedagedera, Janak R.
On the Stability and Growth Forms of a Mathematical Model for growth of Coral Reefs L. W carbonate) which takes place only on the outer surface of the coral reef itself. Then we proceed to study-Diffusion-Convection type mathematical model for formation of corals is proposed based on a model previously proposed in [1
Modelling and Asymptotic Stability of a Growth Factor-Dependent Stem Cells
Crauste, Fabien
Modelling and Asymptotic Stability of a Growth Factor-Dependent Stem Cells Dynamics Model) Abstract Under the action of growth factors, proliferating and nonproliferating hematopoietic stem cells population. We propose a mathe- matical model describing the evolution of a hematopoietic stem cell
Diffusion, Crowding & Protein Stability in a Dynamic Molecular Model of the Bacterial Cytoplasm
Potsdam, Universität
Diffusion, Crowding & Protein Stability in a Dynamic Molecular Model of the Bacterial Cytoplasm prokaryote Escherichia coli as a test system, have assembled an atomically detailed model of its cytoplasmic concentrations. Brownian dynamics (BD) simulations of the cytoplasm model have been calibrated to reproduce
The Stability of Hot Spot Patterns for Reaction-Diffusion Models of Urban
Ward, Michael Jeffrey
The Stability of Hot Spot Patterns for Reaction-Diffusion Models of Urban Crime Michael J. Ward Kolokolonikov (Dalhousie); Simon Tse (UBC); Juncheng Wei (Chinese U. Hong Kong, UBC) UBC p. #12;Modeling Urban Crime I Multidisciplinary efforts to model patterns of urban crime lead by UCLA group; A. Bertozzi, P
NASA Technical Reports Server (NTRS)
Stone, David G.
1947-01-01
From flight tests of 0.5-scale models of the Fairchild Lark pilotless aircraft conducted at the flight test station of the Pilotless Aircraft Research Division at Wallops Island, Va., some evaluations of the static longitudinal stability were obtained by analysis of the short-period oscillations induced by the abrupt movement of the rudder elevators. The analysis shows that for the Lark configuration with wing flap deflections of 0 degrees and 15 degrees the static longitudinal stability decreases slightly up to the critical Mach number and than as the Mach number increases further the stability increases greatly.
NASA Astrophysics Data System (ADS)
Overman, E. A., II; Zabusky, N. J.; Ossakow, S. L.
1983-04-01
An ionospheric plasma cloud is modeled by piecewise-constant ion density regions, accomplishing regularization by means of a tangential diffusion operator modeling aspects of the diffusion operator in two dimensions, in order to study liner stability and nonlinear evolution. A complete linear stability analysis of a circular cloud indicates that a single mode exc itation cascades downward in number with increasing amplitude, due to symmetry-breaking by the electric field. A simple rescaling demonstrates that clouds with large cloud ion density/ambient ion density ratio values evolve more slowly, and appear more dissipative. Nonlinear regime calculations show the experimentally observed 'backside' striations, and a secondary structure arises on the sides of the primary striations at long times.
NASA Astrophysics Data System (ADS)
Doneva, Daniela D.; Kokkotas, Kostas D.; Stefanov, Ivan Zh.; Yazadjiev, Stoytcho S.
2011-10-01
We study the time evolution of the radial perturbation for self-gravitating soliton and black-hole solutions in a generalized Skyrme model in which a dilaton is present. The background solutions were obtained recently by some of the authors. For both the solitons and the black holes two branches of solutions exist which merge at some critical value of the corresponding parameter. The results show that, similar to the case without a scalar field, one of the branches is stable against radial perturbations and the other is unstable. The conclusions for the linear stability of the black holes in the generalized Skyrme model are also in agreement with the results from the thermodynamical stability analysis based on the turning point method.
Doneva, Daniela D.; Kokkotas, Kostas D.; Stefanov, Ivan Zh.; Yazadjiev, Stoytcho S.
2011-10-15
We study the time evolution of the radial perturbation for self-gravitating soliton and black-hole solutions in a generalized Skyrme model in which a dilaton is present. The background solutions were obtained recently by some of the authors. For both the solitons and the black holes two branches of solutions exist which merge at some critical value of the corresponding parameter. The results show that, similar to the case without a scalar field, one of the branches is stable against radial perturbations and the other is unstable. The conclusions for the linear stability of the black holes in the generalized Skyrme model are also in agreement with the results from the thermodynamical stability analysis based on the turning point method.
76 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 1, JANUARY 2003 Stability Analysis of M occurs when certain types of animals forage for food or try to avoid predators. Analogous behaviors can, the swarm movement flexibility is analyzed. Such stability analysis is of fundamental importance if one
Analysis of a Precambrian resonance-stabilized day length
Bartlett, Benjamin C
2015-01-01
Stromatolite data suggest the day length throughout much of the Precambrian to be relatively constant near 21 hours; this period would have been resonant with the semidiurnal atmospheric tide. At this point, the atmospheric torque would have been nearly maximized, being comparable in magnitude but opposite in direction to the lunar torque, halting Earth's angular deceleration, as suggested by Zahnle and Walker [1987]. Computational simulations of this scenario indicate that, depending on the atmospheric $Q$-factor, a persistent increase in temperature larger than ~10K over a period of time less than $10^7$ years will break resonance, such as the deglaciation following a snowball event near the end of the Precambrian. The resonance was found to be relatively unaffected by other forms of climate fluctuation (thermal noise). Our model provides a simulated day length over time that matches existing records of day length, though further data is needed.
Stability analysis of the laser system for the TTF photoinjector at Fermilab
Xi Yang
2004-05-12
A solid-state laser system that produces a 1MHz pulse train of 800 pulses with 18 {micro}J per pulse at {lambda} = 263.5 nm has been developed to meet the requirements of the TESLA Test Facility (TTF) at Fermilab and in operation since 1998.[1,2] Besides the production of high charges, high brightness electron beams, the need for high bunch charge stability requires that each laser pulse in the pulse train must have the same energy, and the energy per laser pulse should not vary significantly from shot to shot. This motivates the stability analysis of the laser system for the TTF photoinjector.
NASA Technical Reports Server (NTRS)
Harvey, William D.; Harris, Charles D.; Brooks, Cuyler W., Jr.
1989-01-01
A swept, supercritical laminar flow control (LFC) airfoil designated NASA SCLFC(1)-0513F was tested at subsonic and transonic speeds in the NASA Langley eight-foot Transonic Pressure Tunnel. This paper examines Tollmien-Schlichting and crossflow disturbance amplification for this airfoil using the linear stability method. The design methodology using linear stability analysis is evaluated and the results of the incompressible and compressible methods are compared. Experimental data on the swept, supercritical LFC airfoil and reference wind tunnel and flight results are used to correlate and evaluate the N-factor method for transition prediction over a speed range M(infinity) from zero to one.
NASA Technical Reports Server (NTRS)
Chun, E.; Rosner, R.
1993-01-01
We study the linear stability of an optically thin uniform radiating plasma subject to nonlocal heat transport. We derive the dispersion relation appropriate to this problem, and the marginal wavenumbers for instability. Our analysis indicates that nonlocal heat transport acts to reduce the stabilizing influence of thermal conduction, and that there are critical values for the electron mean free path such that the plasma is always unstable. Our results may be applied to a number of astrophysical plasmas, one such example being the halos of clusters of galaxies.
NASA Technical Reports Server (NTRS)
Stoll, John C.
1995-01-01
The performance of an unaided attitude determination system based on GPS interferometry is examined using linear covariance analysis. The modelled system includes four GPS antennae onboard a gravity gradient stabilized spacecraft, specifically the Air Force's RADCAL satellite. The principal error sources are identified and modelled. The optimal system's sensitivities to these error sources are examined through an error budget and by varying system parameters. The effects of two satellite selection algorithms, Geometric and Attitude Dilution of Precision (GDOP and ADOP, respectively) are examined. The attitude performance of two optimal-suboptimal filters is also presented. Based on this analysis, the limiting factors in attitude accuracy are the knowledge of the relative antenna locations, the electrical path lengths from the antennae to the receiver, and the multipath environment. The performance of the system is found to be fairly insensitive to torque errors, orbital inclination, and the two satellite geometry figures-of-merit tested.
Stability analysis of the inverse transmembrane potential problem in electrocardiography
NASA Astrophysics Data System (ADS)
Burger, Martin; Mardal, Kent-André; Nielsen, Bjørn Fredrik
2010-10-01
In this paper we study some mathematical properties of an inverse problem arising in connection with electrocardiograms (ECGs). More specifically, we analyze the possibility for recovering the transmembrane potential in the heart from ECG recordings, a challenge currently investigated by a growing number of groups. Our approach is based on the bidomain model for the electrical activity in the myocardium, and leads to a parameter identification problem for elliptic partial differential equations (PDEs). It turns out that this challenge can be split into two subproblems: the task of recovering the potential at the heart surface from body surface recordings; the problem of computing the transmembrane potential inside the heart from the potential determined at the heart surface. Problem (1), which can be formulated as the Cauchy problem for an elliptic PDE, has been extensively studied and is well known to be severely ill-posed. The main purpose of this paper is to prove that problem (2) is stable and well posed if a suitable prior is available. Moreover, our theoretical findings are illuminated by a series of numerical experiments. Finally, we discuss some aspects of uniqueness related to the anisotropy in the heart.
Steady-state solutions of a diffusive energy-balance climate model and their stability
NASA Technical Reports Server (NTRS)
Ghil, M.
1975-01-01
A diffusive energy-balance climate model, governed by a nonlinear parabolic partial differential equation, was studied. Three positive steady-state solutions of this equation are found; they correspond to three possible climates of our planet: an interglacial (nearly identical to the present climate), a glacial, and a completely ice-covered earth. Models similar to the main one are considered, and the number of their steady states was determined. All the models have albedo continuously varying with latitude and temperature, and entirely diffusive horizontal heat transfer. The stability under small perturbations of the main model's climates was investigated. A stability criterion is derived, and its application shows that the present climate and the deep freeze are stable, whereas the model's glacial is unstable. The dependence was examined of the number of steady states and of their stability on the average solar radiation.
Models in palaeontological functional analysis
Anderson, Philip S. L.; Bright, Jen A.; Gill, Pamela G.; Palmer, Colin; Rayfield, Emily J.
2012-01-01
Models are a principal tool of modern science. By definition, and in practice, models are not literal representations of reality but provide simplifications or substitutes of the events, scenarios or behaviours that are being studied or predicted. All models make assumptions, and palaeontological models in particular require additional assumptions to study unobservable events in deep time. In the case of functional analysis, the degree of missing data associated with reconstructing musculoskeletal anatomy and neuronal control in extinct organisms has, in the eyes of some scientists, rendered detailed functional analysis of fossils intractable. Such a prognosis may indeed be realized if palaeontologists attempt to recreate elaborate biomechanical models based on missing data and loosely justified assumptions. Yet multiple enabling methodologies and techniques now exist: tools for bracketing boundaries of reality; more rigorous consideration of soft tissues and missing data and methods drawing on physical principles that all organisms must adhere to. As with many aspects of science, the utility of such biomechanical models depends on the questions they seek to address, and the accuracy and validity of the models themselves. PMID:21865242
Multidimensional cluster stability analysis from a Brazilian Bradyrhizobium sp. RFLP/PCR data set
NASA Astrophysics Data System (ADS)
Milagre, S. T.; Maciel, C. D.; Shinoda, A. A.; Hungria, M.; Almeida, J. R. B.
2009-05-01
The taxonomy of the N2-fixing bacteria belonging to the genus Bradyrhizobium is still poorly refined, mainly due to conflicting results obtained by the analysis of the phenotypic and genotypic properties. This paper presents an application of a method aiming at the identification of possible new clusters within a Brazilian collection of 119 Bradyrhizobium strains showing phenotypic characteristics of B. japonicum and B. elkanii. The stability was studied as a function of the number of restriction enzymes used in the RFLP-PCR analysis of three ribosomal regions with three restriction enzymes per region. The method proposed here uses clustering algorithms with distances calculated by average-linkage clustering. Introducing perturbations using sub-sampling techniques makes the stability analysis. The method showed efficacy in the grouping of the species B. japonicum and B. elkanii. Furthermore, two new clusters were clearly defined, indicating possible new species, and sub-clusters within each detected cluster.
Design of Launch Vehicle Flight Control Systems Using Ascent Vehicle Stability Analysis Tool
NASA Technical Reports Server (NTRS)
Jang, Jiann-Woei; Alaniz, Abran; Hall, Robert; Bedossian, Nazareth; Hall, Charles; Jackson, Mark
2011-01-01
A launch vehicle represents a complicated flex-body structural environment for flight control system design. The Ascent-vehicle Stability Analysis Tool (ASAT) is developed to address the complicity in design and analysis of a launch vehicle. The design objective for the flight control system of a launch vehicle is to best follow guidance commands while robustly maintaining system stability. A constrained optimization approach takes the advantage of modern computational control techniques to simultaneously design multiple control systems in compliance with required design specs. "Tower Clearance" and "Load Relief" designs have been achieved for liftoff and max dynamic pressure flight regions, respectively, in the presence of large wind disturbances. The robustness of the flight control system designs has been verified in the frequency domain Monte Carlo analysis using ASAT.
NASA Astrophysics Data System (ADS)
Hamed, Haikel Ben; Bennacer, Rachid
2008-08-01
This work consists in evaluating algebraically and numerically the influence of a disturbance on the spectral values of a diagonalizable matrix. Thus, two approaches will be possible; to use the theorem of disturbances of a matrix depending on a parameter, due to Lidskii and primarily based on the structure of Jordan of the no disturbed matrix. The second approach consists in factorizing the matrix system, and then carrying out a numerical calculation of the roots of the disturbances matrix characteristic polynomial. This problem can be a standard model in the equations of the continuous media mechanics. During this work, we chose to use the second approach and in order to illustrate the application, we choose the Rayleigh-Bénard problem in Darcy media, disturbed by a filtering through flow. The matrix form of the problem is calculated starting from a linear stability analysis by a finite elements method. We show that it is possible to break up the general phenomenon into other elementary ones described respectively by a disturbed matrix and a disturbance. A good agreement between the two methods was seen. To cite this article: H.B. Hamed, R. Bennacer, C. R. Mecanique 336 (2008).
Stability and convergence analysis of the quasi-dynamics method for the initial pebble packing
Li, Y.; Ji, W.
2012-07-01
The simulation for the pebble flow recirculation within Pebble Bed Reactors (PBRs) requires an efficient algorithm to generate an initial overlap-free pebble configuration within the reactor core. In the previous work, a dynamics-based approach, the Quasi-Dynamics Method (QDM), has been proposed to generate densely distributed pebbles in PBRs with cylindrical and annular core geometries. However, the stability and the efficiency of the QDM were not fully addressed. In this work, the algorithm is reformulated with two control parameters and the impact of these parameters on the algorithm performance is investigated. Firstly, the theoretical analysis for a 1-D packing system is conducted and the range of the parameter in which the algorithm is convergent is estimated. Then, this estimation is verified numerically for a 3-D packing system. Finally, the algorithm is applied to modeling the PBR fuel loading configuration and the convergence performance at different packing fractions is presented. Results show that the QDM is efficient in packing pebbles within the realistic range of the packing fraction in PBRs, and it is capable in handling cylindrical geometry with packing fractions up to 63.5%. (authors)
Model selection for amplitude analysis
NASA Astrophysics Data System (ADS)
Guegan, B.; Hardin, J.; Stevens, J.; Williams, M.
2015-09-01
Model complexity in amplitude analyses is often a priori under-constrained since the underlying theory permits a large number of possible amplitudes to contribute to most physical processes. The use of an overly complex model results in reduced predictive power and worse resolution on unknown parameters of interest. Therefore, it is common to reduce the complexity by removing from consideration some subset of the allowed amplitudes. This paper studies a method for limiting model complexity from the data sample itself through regularization during regression in the context of a multivariate (Dalitz-plot) analysis. The regularization technique applied greatly improves the performance. An outline of how to obtain the significance of a resonance in a multivariate amplitude analysis is also provided.
Numerical analysis of thermal stability of an immersion-cooled, pancake type superconducting coil
NASA Astrophysics Data System (ADS)
Okada, S.; Kim, J.-K.; Aihara, T.; Kuroda, K.
A numerical analysis of the thermal stability of an immersion-cooled, single pancake type superconducting coil has been carried out, taking into account transient boiling heat transfer and the temperature dependence of the physical properties of the superconducting composite. The unsteady heat conduction equation, with source terms allowing for heat conduction through an electric insulation film, thermal disturbance, heat transfer and Joule heat generation, has been solved by a control volume finite method. The stability limit of the variable property solution (VPS) is compared with that of the constant property solution (CPS). The result shows that the VPS is 1.5 times as large as the CPS. Also, the effects of the transport current density and the magnetic flux density on the stability of the superconducting coil are clarified.
Stability analysis of nonlinear systems by multiple time scaling. [using perturbation methods
NASA Technical Reports Server (NTRS)
Morino, L.
1974-01-01
The asymptotic solution for the transient analysis of a general nonlinear system in the neighborhood of the stability boundary was obtained by using the multiple-time-scaling asymptotic-expansion method. The nonlinearities are assumed to be of algebraic nature. Terms of order epsilon to the 3rd power (where epsilon is the order of amplitude of the unknown) are included in the solution. The solution indicates that there is always a limit cycle which is stable (unstable) and exists above (below) the stability boundary if the nonlinear terms are stabilizing (destabilizing). Extension of the solution to include fifth order nonlinear terms is also presented. Comparisons with harmonic balance and with multiple-time-scaling solution of panel flutter equations are also included.
Boundary-Layer Stability Analysis of the Mean Flows Obtained Using Unstructured Grids
NASA Technical Reports Server (NTRS)
Liao, Wei; Malik, Mujeeb R.; Lee-Rausch, Elizabeth M.; Li, Fei; Nielsen, Eric J.; Buning, Pieter G.; Chang, Chau-Lyan; Choudhari, Meelan M.
2012-01-01
Boundary-layer stability analyses of mean flows extracted from unstructured-grid Navier- Stokes solutions have been performed. A procedure has been developed to extract mean flow profiles from the FUN3D unstructured-grid solutions. Extensive code-to-code validations have been performed by comparing the extracted mean ows as well as the corresponding stability characteristics to the predictions based on structured-grid solutions. Comparisons are made on a range of problems from a simple at plate to a full aircraft configuration-a modified Gulfstream-III with a natural laminar flow glove. The future aim of the project is to extend the adjoint-based design capability in FUN3D to include natural laminar flow and laminar flow control by integrating it with boundary-layer stability analysis codes, such as LASTRAC.
NASA Technical Reports Server (NTRS)
Meirovitch, L.
1973-01-01
This paper is concerned with the stability of a hybrid dynamical system in the neighborhood of a nontrivial equilibrium, where the system consists of one rigid part and n elastic members. The body moves in a central-force field with its mass center describing a circular orbit. The nontrivial equilibrium is defined by steady rotation of the system at an angular velocity equal to the orbital velocity, with the elastic members being in deformed state. A Liapunov stability analysis is performed by assuming small perturbations about the nontrivial equilibrium, where the latter is generally defined by nonlinear differential equations. The theory is applied to a gravity-gradient stabilized satellite with flexible appendages.
2014-01-01
The use of biotherapeutics, such as monoclonal antibodies, has markedly increased in recent years. It is thus essential that biotherapeutic production pipelines are as efficient as possible. For the production process, one of the major concerns is the propensity of a biotherapeutic antibody to aggregate. In addition to reducing bioactive material recovery, protein aggregation can have major effects on drug potency and cause highly undesirable immunological effects. It is thus essential to identify processing conditions which maximize recovery while avoiding aggregation. Heat resistance is a proxy for long-term aggregation propensity. Thermal stability assays are routinely performed using various spectroscopic and scattering detection methods. Here, we evaluated the potential of macro attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectroscopic imaging as a novel method for the high-throughput thermal stability assay of a monoclonal antibody. This chemically specific visualization method has the distinct advantage of being able to discriminate between monomeric and aggregated protein. Attenuated total reflection is particularly suitable for selectively probing the bottom of vessels, where precipitated aggregates accumulate. With focal plane array detection, we tested 12 different buffer conditions simultaneously to assess the effect of pH and ionic strength on protein thermal stability. Applying the Finke model to our imaging kinetics allowed us to determine the rate constants of nucleation and autocatalytic growth. This analysis demonstrated the greater stability of our immunoglobulin at higher pH and moderate ionic strength, revealing the key role of electrostatic interactions. The high-throughput approach presented here has significant potential for analyzing the stability of biotherapeutics as well as any other biological molecules prone to aggregation. PMID:25221926
NASA Technical Reports Server (NTRS)
Wigley, D. A.
1983-01-01
This report documents the results of a dimensional stability analysis of seventeen stepped specimens that were used in the evaluation of factors influencing warpage in metallic alloys being used for cryogenic wind tunnel models. Specimens used in the analysis were manufactured from 18Ni 200 Grade Maaraging steel, PH13-8Mo, and A-286 stainless steel. Quantitative data are provided on the behavior of the specimens due to the effects of both machining and cryogenic cycling effects.
NASA Technical Reports Server (NTRS)
McCullough, George B.; Weiberg, James A.; Gault, Donald E.
1947-01-01
Estimates of the static stick-fixed stability and control characteristics of the Consolidated Vultee model 240 airplane are presented in this report. The estimates are based on tests of a 0.092-scale powered model in the 10-foot wind tunnel of the Guggenheim Aeronautical Laboratory of the California Institute of Technology. Results of the analysis are evaluated in terms of the Army specifications for stability and control characteristics which are more specific and, in general, equal to or more rigid than the Civil Aeronautics Administration requirements. The stick-fixed stability and control characteristics of the Consolidated Vultee model 240 were found to be satisfactory except for the following: 1) Marginal longitudinal stability in the landing approach (flaps 30 deg, 50% minimum continuous power) with aft center of gravity (31% M.A.C.); 2) Marginal rudder control to hold zero sideslip in a climb after take-off with asymmetric power (flaps 30 deg, left engine inoperative, right engine delivering take-off power) with maximum rudder throw limited to +/- 18 deg; 3) Marginal dihedral effect with flaps 40 deg and engines delivering maximum continuous power.
Rabel, Annette; Köhler, Steffen Gerhard; Schmidt-Westhausen, Andrea Maria
2007-09-01
Primary stability has a major impact on the long-term success of dental implants. The aim of this study was to investigate the correlation of resonance frequency analysis (RFA) and insertion torque of self-tapping and non-self-tapping implants and their respective differences in primary stability. A group of 263 patients were treated with a total of 602 conically formed dental implants: 408 non-self-tapping Ankylos and 194 self-tapping Camlog. The maximum insertion torque during implant placement was recorded. Resonance frequency, measured as the implant stability quotient (ISQ), was assessed once immediately after insertion and twice 3 months later. Torque values of the non-self-tapping implants were significantly higher than those in the self-tapping group (p = 0.023). RFA did not show differences between the 2 groups (p = 0.956), but a correlation between ISQ values after implantation and 3 months after implant placement was measured (r = 0.712). Within the implant systems, no correlation between insertion torque and resonance frequency values could be determined (r = 0.305). Our study indicates that the ISQ values obtained from different implant systems are not comparable. The RFA does not appear suitable for the evaluation of implant stability when used as a single method. Higher insertion torque of the non-self-tapping implants appeared to confirm higher clinical primary stability. PMID:17401588
Dynamical stability analysis of delayed recurrent neural networks with ring structure
NASA Astrophysics Data System (ADS)
Zhang, Huaguang; Huang, Yujiao; Cai, Tiaoyang; Wang, Zhanshan
2014-04-01
In this paper, multistability is discussed for delayed recurrent neural networks with ring structure and multi-step piecewise linear activation functions. Sufficient criteria are obtained to check the existence of multiple equilibria. A lemma is proposed to explore the number and the cross-direction of purely imaginary roots for the characteristic equation, which corresponds to the neural network model. Stability of all of equilibria is investigated. The work improves and extends the existing stability results in the literature. Finally, two examples are given to illustrate the effectiveness of the obtained results.
Modelling of dimensional stability of fiber reinforced composite materials
NASA Technical Reports Server (NTRS)
Hahn, H. T.; Hosangadi, A.
1982-01-01
Various methods of predicting the expansion and diffusion properties of composite laminates are reviewed. The prediction equations for continuous fiber composites can be applied to SMC composites as the effective fiber aspect ratio in the latter is large enough. The effect of hygrothermal expansion on the dimensional stability of composite laminates was demonstrated through the warping of unsymmetric graphite/epoxy laminates. The warping is very sensitive to the size of the panel, and to the moisture content which is in turn sensitive to the relative humidity in the environment. Thus, any long term creep test must be carried out in a humidity-controlled environment. Environmental effects in SMC composites and bulk polyester were studied under seven different environments. The SMC composites chosen are SMC-R25, SMC-R40, and SMC-R65.
Stability of core-shell nanowires in selected model solutions
NASA Astrophysics Data System (ADS)
Kalska-Szostko, B.; Wykowska, U.; Basa, A.; Zambrzycka, E.
2015-03-01
This paper presents the studies of stability of magnetic core-shell nanowires prepared by electrochemical deposition from an acidic solution containing iron in the core and modified surface layer. The obtained nanowires were tested according to their durability in distilled water, 0.01 M citric acid, 0.9% NaCl, and commercial white wine (12% alcohol). The proposed solutions were chosen in such a way as to mimic food related environment due to a possible application of nanowires as additives to, for example, packages. After 1, 2 and 3 weeks wetting in the solutions, nanoparticles were tested by Infrared Spectroscopy, Atomic Absorption Spectroscopy, Transmission Electron Microscopy and X-ray diffraction methods.
Global stability and optimal control of an SIRS epidemic model on heterogeneous networks
NASA Astrophysics Data System (ADS)
Chen, Lijuan; Sun, Jitao
2014-09-01
In this paper, we consider an SIRS epidemic model with vaccination on heterogeneous networks. By constructing suitable Lyapunov functions, global stability of the disease-free equilibrium and the endemic equilibrium of the model is investigated. Also we firstly study an optimally controlled SIRS epidemic model on complex networks. We show that an optimal control exists for the control problem. Finally some examples are presented to show the global stability and the efficiency of this optimal control. These results can help in adopting pragmatic treatment upon diseases in structured populations.
NASA Technical Reports Server (NTRS)
Woods-Vedeler, Jessica A.; Rombado, Gabriel
1997-01-01
The purpose of this paper is to provide final results of a pointing stability analysis for external payload attachment sites (PAS) on the International Space Station (ISS). As a specific example, the pointing stability requirement of the SAGE III atmospheric science instrument was examined in this paper. The instrument requires 10 arcsec stability over 2 second periods. SAGE 3 will be mounted on the ISS starboard side at the lower, outboard FIAS. In this engineering analysis, an open-loop DAC-3 finite element model of ISS was used by the Microgravity Group at Johnson Space Flight Center to generate transient responses at PAS to a limited number of disturbances. The model included dynamics up to 50 Hz. Disturbance models considered included operation of the solar array rotary joints, thermal radiator rotary joints, and control moment gyros. Responses were filtered to model the anticipated vibration attenuation effects of active control systems on the solar and thermal radiator rotary joints. A pointing stability analysis was conducted by double integrating acceleration transient over a 2 second period. Results of the analysis are tabulated for ISS X, Y, and Z Axis rotations. These results indicate that the largest excursions in rotation during pointing occurred due to rapid slewing of the thermal radiator. Even without attenuation at the rotary joints, the resulting pointing error was limited to less than 1.6 arcsec. With vibration control at the joints, to a maximum 0.5 arcsec over a 2 second period. Based on this current level of model definition, it was concluded that between 0 - 50 Hz, the pointing stability requirement for SAGE 3 will not be exceeded by the disturbances evaluated in this study.
Combustion instability modeling and analysis
Santoro, R.J.; Yang, V.; Santavicca, D.A.; Sheppard, E.J.
1995-12-31
It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors. The present study represents a coordinated effort between industry, government and academia to investigate gas turbine combustion dynamics. Specific study areas include development of advanced diagnostics, definition of controlling phenomena, advancement of analytical and numerical modeling capabilities, and assessment of the current status of our ability to apply these tools to practical gas turbine combustors. The present work involves four tasks which address, respectively, (1) the development of a fiber-optic probe for fuel-air ratio measurements, (2) the study of combustion instability using laser-based diagnostics in a high pressure, high temperature flow reactor, (3) the development of analytical and numerical modeling capabilities for describing combustion instability which will be validated against experimental data, and (4) the preparation of a literature survey and establishment of a data base on practical experience with combustion instability.
Modeling and Analysis of Large Amplitude Flight Maneuvers
NASA Technical Reports Server (NTRS)
Anderson, Mark R.
2004-01-01
Analytical methods for stability analysis of large amplitude aircraft motion have been slow to develop because many nonlinear system stability assessment methods are restricted to a state-space dimension of less than three. The proffered approach is to create regional cell-to-cell maps for strategically located two-dimensional subspaces within the higher-dimensional model statespace. These regional solutions capture nonlinear behavior better than linearized point solutions. They also avoid the computational difficulties that emerge when attempting to create a cell map for the entire state-space. Example stability results are presented for a general aviation aircraft and a micro-aerial vehicle configuration. The analytical results are consistent with characteristics that were discovered during previous flight-testing.