Modeling uncertainties in mining pillar stability analysis.
Cauvin, Maxime; Verdel, Thierry; Salmon, Romuald
2009-10-01
Many countries are now facing problems related to their past mining activities. One of the greatest problems concerns the potential surface instability. In areas where a room-and-pillar extraction method was used, deterministic methodologies are generally used to assess the hazard of surface collapses. However, those methodologies suffer from not being able to take into account all the uncertainties inherent in any hazard analysis. Through the practical example of the assessment of a single pillar stability in a very simple mining layout, this article introduces a logical framework that can be used to incorporate the different kinds of uncertainties related to data and models, as well as to specific expert's choices in the hazard or risk analysis process. Practical recommendations and efficient tools are also provided to help engineers and experts in their daily work. PMID:19473314
Stability Analysis for Car Following Model Based on Control Theory
NASA Astrophysics Data System (ADS)
Meng, Xiang-Pei; Li, Zhi-Peng; Ge, Hong-Xia
2014-05-01
Stability analysis is one of the key issues in car-following theory. The stability analysis with Lyapunov function for the two velocity difference car-following model (for short, TVDM) is conducted and the control method to suppress traffic congestion is introduced. Numerical simulations are given and results are consistent with the theoretical analysis.
Vasquez, Juan Carlos
Aalborg Universitet Modeling, Stability Analysis and Active Stabilization of Multiple DC-Microgrids and Active Stabilization of Multiple DC-Microgrids Clusters. In Proceedings of the 2014 IEEE International of Multiple DC-Microgrid Clusters," in Proc. IEEE International Energy Conference (EnergyCon'14), 2014
Surrogate models for efficient stability analysis of brake systems
NASA Astrophysics Data System (ADS)
Nechak, Lyes; Gillot, Frédéric; Besset, Sébastien; Sinou, Jean-Jacques
2015-07-01
This study assesses capacities of the global sensitivity analysis combined together with the kriging formalism to be useful in the robust stability analysis of brake systems, which is too costly when performed with the classical complex eigenvalues analysis (CEA) based on finite element models (FEMs). By considering a simplified brake system, the global sensitivity analysis is first shown very helpful for understanding the effects of design parameters on the brake system's stability. This is allowed by the so-called Sobol indices which discriminate design parameters with respect to their influence on the stability. Consequently, only uncertainty of influent parameters is taken into account in the following step, namely, the surrogate modelling based on kriging. The latter is then demonstrated to be an interesting alternative to FEMs since it allowed, with a lower cost, an accurate estimation of the system's proportions of instability corresponding to the influent parameters.
Settlement Prediction, Gas Modeling and Slope Stability Analysis
Politècnica de Catalunya, Universitat
Settlement Prediction, Gas Modeling and Slope Stability Analysis in Coll Cardús Landfill Li Yu UNIVERSIDAD POLITÉCNICA DE CATALUÑA April, 2007 GEOMODELS #12;Introduction to Coll Cardús landfill Prediction of settlement in Coll Cardús landfill 1) Settlement prediction by empirical method 2) Settlement prediction
Stability analysis and application of a mathematical cholera model.
Liao, Shu; Wang, Jin
2011-07-01
In this paper, we conduct a dynamical analysis of the deterministic cholera model proposed in [9]. We study the stability of both the disease-free and endemic equilibria so as to explore the complex epidemic and endemic dynamics of the disease. We demonstrate a real-world application of this model by investigating the recent cholera outbreak in Zimbabwe. Meanwhile, we present numerical simulation results to verify the analytical predictions. PMID:21675808
Stability Analysis of a Spinning and Precessing Viscoelastic Rotor Model
NASA Astrophysics Data System (ADS)
Bose, S.; Nandi, A.; Neogy, S.
2013-10-01
The present work deals with stability analysis of a spinning and precessing gyroscopic systems, where the spin axis and precession axis intersect at right angle. The nutation speed is zero, the spin and precession speeds are considered to be uniform and the precession axis is located at one end of the shaft. The properties of the shaft material correspond to a four element type linear viscoelastic model. The shaft disk system is assumed to be axially and torsionally stiff. For analysis, a simple rotor has been considered with the rigid disk placed on a massless viscoelastic shaft at specified locations from one end of the shaft. The governing parametric equations for such a rotor are derived in the simultaneously spinning and precessing frame. A stability analysis is performed considering both two- and four-degree of freedom models. The stability borderlines are computed considering spin and precession speeds as parameters. It is shown that though viscoelastic material may appear attractive for its large material damping, for gyroscopic systems it may lead to unstable vibrations.
Aalborg Universitet Model Order Reductions for Stability Analysis of Islanded Microgrids with Droop
Vasquez, Juan Carlos
Aalborg Universitet Model Order Reductions for Stability Analysis of Islanded Microgrids with Droop. C., & Guerrero, J. M. (2015). Model Order Reductions for Stability Analysis of Islanded Microgrids.aau.dk on: juli 07, 2015 #12;1 Model Order Reductions for Stability Analysis of Islanded Microgrids
Performance Evaluation 40 (2000) 2746 A novel approach to queue stability analysis of polling models
Chang, Rocky Kow-Chuen
2000-01-01
Performance Evaluation 40 (2000) 2746 A novel approach to queue stability analysis of polling, Hong Kong Abstract Previous work in the stability analysis of polling models concentrated mainly this problem by considering queue stability problem that concerns stability of an individual queue in a polling
Island Dynamics Models for Molecular Beam Epitaxy: Stability Analysis and Model Reduction
Ferguson, Thomas S.
Island Dynamics Models for Molecular Beam Epitaxy: Stability Analysis and Model Reduction #3; Russel Ca isch y Bo Li z February 28, 2000 Abstract We consider two island dynamics models recently that can be used for analysis and simulation. Keywords: molecular beam epitaxy, island dynamics, di#11
Models and Stability Analysis of Boiling Water Reactors
John Dorning
2002-04-15
We have studied the nuclear-coupled thermal-hydraulic stability of boiling water reactors (BWRs) using a model that includes: space-time modal neutron kinetics based on spatial w-modes; single- and two-phase flow in parallel boiling channels; fuel rod heat conduction dynamics; and a simple model of the recirculation loop. The BR model is represented by a set of time-dependent nonlinear ordinary differential equations, and is studied as a dynamical system using the modern bifurcation theory and nonlinear dynamical systems analysis. We first determine the stability boundary (SB) - or Hopf bifurcation set- in the most relevant parameter plane, the inlet-subcooling-number/external-pressure-drop plane, for a fixed control rod induced external reactivity equal to the 100% rod line value; then we transform the SB to the practical power-flow map used by BWR operating engineers and regulatory agencies. Using this SB, we show that the normal operating point at 100% power is very stable, that stability of points on the 100% rod line decreases as the flow rate is reduced, and that operating points in the low-flow/high-power region are least stable. We also determine the SB that results when the modal kinetics is replaced by simple point reactor kinetics, and we thereby show that the first harmonic mode does not have a significant effect on the SB. However, we later show that it nevertheless has a significant effect on stability because it affects the basin of attraction of stable operating points. Using numerical simulations we show that, in the important low-flow/high-power region, the Hopf bifurcation that occurs as the SB is crossed is subcritical; hence, growing oscillations can result following small finite perturbations of stable steady-states on the 100% rod line at points in the low-flow/high-power region. Numerical simulations are also performed to calculate the decay ratios (DRs) and frequencies of oscillations for various points on the 100% rod line. It is determined that the U.S. NRC requirement of DR is not rigorously satisfied in the low-flow/high-power region; hence, this region should be avoided during normal startup and shutdown operations. The frequency of oscillation is shown to decrease as the flow rate is reduced. Moreover, the simulation frequency of 0.5Hz determined in the low-flow/high-power region is consistent with those observed during actual instability incidents. Additional numerical simulations show that in the low-flow/high-power region, for the same initial conditions, the use of point kinetics leads to damped oscillations, whereas the model that includes the modal neutron kinetics equations results in growing nonlinear oscillations.
Stability analysis of an implicitly defined labor market model
NASA Astrophysics Data System (ADS)
Mendes, Diana A.; Mendes, Vivaldo M.
2008-06-01
Until very recently, the pervasive existence of models exhibiting well-defined backward dynamics but ill-defined forward dynamics in economics and finance has apparently posed no serious obstacles to the analysis of their dynamics and stability, despite the problems that may arise from possible erroneous conclusions regarding theoretical considerations and policy prescriptions from such models. A large number of papers have dealt with this problem in the past by assuming the existence of symmetry between forward and backward dynamics, even in the case when the map cannot be invertible either forward or backwards. However, this procedure has been seriously questioned over the last few years in a series of papers dealing with implicit difference equations and inverse limit spaces. This paper explores the search and matching labor market model developed by Bhattacharya and Bunzel [J. Bhattacharya, H. Bunzel, Chaotic Planning Solution in the Textbook Model of Equilibrium Labor Market Search and Matching, Mimeo, Iowa State University, 2002; J. Bhattacharya, H. Bunzel, Economics Bulletin 5 (19) (2003) 1-10], with the following objectives in mind: (i) to show that chaotic dynamics may still be present in the model for acceptable parameter values, (ii) to clarify some open questions related with the admissible dynamics in the forward looking setting, by providing a rigorous proof of the existence of cyclic and chaotic dynamics through the application of tools from symbolic dynamics and inverse limit theory.
Stability analysis of the Euler discretization for SIR epidemic model
Suryanto, Agus [Department of Mathematics, Faculty of Sciences, Brawijaya University, Jl. Veteran Malang 65145 (Indonesia)
2014-06-19
In this paper we consider a discrete SIR epidemic model obtained by the Euler method. For that discrete model, existence of disease free equilibrium and endemic equilibrium is established. Sufficient conditions on the local asymptotical stability of both disease free equilibrium and endemic equilibrium are also derived. It is found that the local asymptotical stability of the existing equilibrium is achieved only for a small time step size h. If h is further increased and passes the critical value, then both equilibriums will lose their stability. Our numerical simulations show that a complex dynamical behavior such as bifurcation or chaos phenomenon will appear for relatively large h. Both analytical and numerical results show that the discrete SIR model has a richer dynamical behavior than its continuous counterpart.
Stability analysis of a holographic dark energy model
NASA Astrophysics Data System (ADS)
Banerjee, Narayan; Roy, Nandan
2015-08-01
The stability of interacting holographic dark energy model is discussed. It is found that for some class of the rate of interaction between dark matter and dark energy, the system has a natural solution where the universe had been decelerating in the beginning but finally settles down to an accelerated phase of expansion.
Stability Analysis of Two-Dimensional Models of Quiescent Prominences
NASA Astrophysics Data System (ADS)
Trejo, J. Galindo
1987-09-01
Using the MHD energy principle of Bernstein et al. (1958) we develop a formalism in order to analyze the stability properties of two-dimensional magnetostatic plasma equilibria. We apply this to four models of quiescent prominences, namely those of Menzel (1951), Dungey (1953), Kippenhahn and Schlüter (1957), and finally Lerche and Low (1980). For the observed parameter range, all models are stable and they explain reasonably well the reported flare-initiated oscillations in quiescent prominences. We also investigate other parameters regions, which may be relevant in some stellar atmospheres. It is found that, with the exception of the Kippenhahn and Schlüter model, all models become unstable. The instabilities that occur show simultaneously several features of well-known MHD-instabilities. However, an unequivocal assignment of the instabilities to specific instability prototypes is not possible. Our formalism allows one to investigate not only more realistic prominence equilibria, but also arbitrary one- and two-dimensional static ideal MHD-equilibria.
Stability Analysis of a Model for Foreign Body Fibrotic Reactions
Ibraguimov, A.; Owens, L.; Su, J.; Tang, L.
2012-01-01
Implanted medical devices often trigger immunological and inflammatory reactions from surrounding tissues. The foreign body-mediated tissue responses may result in varying degrees of fibrotic tissue formation. There is an intensive research interest in the area of wound healing modeling, and quantitative methods are proposed to systematically study the behavior of this complex system of multiple cells, proteins, and enzymes. This paper introduces a kinetics-based model for analyzing reactions of various cells/proteins and biochemical processes as well as their transient behavior during the implant healing in 2-dimensional space. In particular, we provide a detailed modeling study of different roles of macrophages (M?) and their effects on fibrotic reactions. The main mathematical result indicates that the stability of the inflamed steady state depends primarily on the reaction dynamics of the system. However, if the said equilibrium is unstable by its reaction-only system, the spatial diffusion and chemotactic effects can help to stabilize when the model is dominated by classical and regulatory macrophages over the inflammatory macrophages. The mathematical proof and counter examples are given for these conclusions. PMID:23193430
Slope Stability Analysis Using Radial Slices: A Mathematical Model
NASA Astrophysics Data System (ADS)
Kumar, Gyan Prakash; Das, Adarsha; Rai, Rajesh; Jaiswal, Ashok
2015-10-01
In this paper, a mathematical model has been formulated for calculating the factor of safety of a slope. Corresponding computer code has also been developed. Limit equilibrium method (moment equilibrium) has been adopted for calculating the net resulting driving and resisting forces. The probable slip circle region has been divided into radial slices for the simulation process. In this approach, the inter-slice shear forces are zero. Thus, the calculation process becomes simpler as compared to that with vertical slices. The slope stability analyses were done. Validation of the present program was done with existing limit equilibrium based methods. Various models were prepared and analysed with varying geometry and soil strength parameters. These models were also analysed with other limit equilibrium methods like Bishop, Janbu and Spencer method. The results were found to be in agreement with the results of other limit equilibrium methods for the same dump soil properties and slope parameters.
Stability Analysis of the Ribosome Flow Model Michael Margaliot and Tamir Tuller
Margaliot, Michael
1 Stability Analysis of the Ribosome Flow Model Michael Margaliot and Tamir Tuller Abstract a new computational model of this process called the ribosome flow model (RFM). In this study, we show computational model of translationthe ribosome flow model (RFM) [39]. We show that the dynamical behavior
Algebraic geometrization of the Kuramoto model: Equilibria and stability analysis
NASA Astrophysics Data System (ADS)
Mehta, Dhagash; Daleo, Noah S.; Dörfler, Florian; Hauenstein, Jonathan D.
2015-05-01
Finding equilibria of the finite size Kuramoto model amounts to solving a nonlinear system of equations, which is an important yet challenging problem. We translate this into an algebraic geometry problem and use numerical methods to find all of the equilibria for various choices of coupling constants K, natural frequencies, and on different graphs. We note that for even modest sizes (N ˜ 10-20), the number of equilibria is already more than 100 000. We analyze the stability of each computed equilibrium as well as the configuration of angles. Our exploration of the equilibrium landscape leads to unexpected and possibly surprising results including non-monotonicity in the number of equilibria, a predictable pattern in the indices of equilibria, counter-examples to conjectures, multi-stable equilibrium landscapes, scenarios with only unstable equilibria, and multiple distinct extrema in the stable equilibrium distribution as a function of the number of cycles in the graph.
Algebraic Geometrization of the Kuramoto Model: Equilibria and Stability Analysis
Dhagash Mehta; Noah Daleo; Florian Dörfler; Jonathan D. Hauenstein
2015-01-03
Finding equilibria of the finite size Kuramoto model amounts to solving a nonlinear system of equations, which is an important yet challenging problem. We translate this into an algebraic geometry problem and use numerical methods to find all of the equilibria for various choices of coupling constants K, natural frequencies, and on different graphs. We note that for even modest sizes (N ~ 10-20), the number of equilibria is already more than 100,000. We analyze the stability of each computed equilibrium as well as the configuration of angles. Our exploration of the equilibrium landscape leads to unexpected and possibly surprising results including non-monotonicity in the number of equilibria, a predictable pattern in the indices of equilibria, counter-examples to popular conjectures, multi-stable equilibrium landscapes, scenarios with only unstable equilibria, and multiple distinct extrema in the stable equilibrium distribution as a function of the number of cycles in the graph.
Algebraic geometrization of the Kuramoto model: Equilibria and stability analysis.
Mehta, Dhagash; Daleo, Noah S; Dörfler, Florian; Hauenstein, Jonathan D
2015-05-01
Finding equilibria of the finite size Kuramoto model amounts to solving a nonlinear system of equations, which is an important yet challenging problem. We translate this into an algebraic geometry problem and use numerical methods to find all of the equilibria for various choices of coupling constants K, natural frequencies, and on different graphs. We note that for even modest sizes (N ~ 10-20), the number of equilibria is already more than 100 000. We analyze the stability of each computed equilibrium as well as the configuration of angles. Our exploration of the equilibrium landscape leads to unexpected and possibly surprising results including non-monotonicity in the number of equilibria, a predictable pattern in the indices of equilibria, counter-examples to conjectures, multi-stable equilibrium landscapes, scenarios with only unstable equilibria, and multiple distinct extrema in the stable equilibrium distribution as a function of the number of cycles in the graph. PMID:26026315
NASA Astrophysics Data System (ADS)
Li, Zhipeng; Li, Wenzhong; Xu, Shangzhi; Qian, Yeqing
2015-02-01
This paper presents an extended intelligent driver traffic flow model, in which the power of the considered vehicle is strengthened in proportion to that of the immediately preceding vehicle. We analyze the stability against a small perturbation by use of the linear stability method for the proposed traffic flow model on a single lane under open boundary condition, with the finding that the traffic flow stability can be improved by increasing the proportion of the direct power cooperation of the preceding vehicle. The participation of forward power cooperation can help to stabilize the traffic flow and suppress the traffic jams. In addition, the simulations under open boundary single lane are conducted to validate the correctness on theoretical deduction, which shows that numerical results in large-wave and short-wave stability are in good agreement with those of theoretical analysis.
[Stability analysis of allelopathic effects of Panax notoginseng on main crops by AMMI model].
Zhang, Zi-long; Hou, Jun-ling; Wang, Wen-quan
2015-01-01
This paper is aimed to study the differences of allelopathic effects of Panax notoginseng under different allelopathic chemicals resources and selection of appropriate rotation crops. The additive main effects and multiplicative interaction ( AMMI) model had been used to evaluate the stability of allelopathic effects of P. notoginseng on the varieties of corn, wheat and rice properly. The model could use not only to evaluate the stability of non-regional trial data but also explore the interaction between the rotation crop genotypes and donor substances more efficiently. Meanwhile, correspondence analysis can be used in the AMMI to evaluate genotype stability and donor substances. Ejingza No. 1 (g6) had stronger allelopathic effects with high stability, but Yunrui No. 1 (g9) which was appropriate rotation crop genotype, had weaker allelopathic effects with high stability. These findings will aid in choosing appropriate rotation crops and establishing proper rotation system. PMID:26080543
Stability analysis of dynamic collaboration model with control signals on two lanes
NASA Astrophysics Data System (ADS)
Li, Zhipeng; Zhang, Run; Xu, Shangzhi; Qian, Yeqing; Xu, Juan
2014-12-01
In this paper, the influence of control signals on the stability of two-lane traffic flow is mainly studied by applying control theory with lane changing behaviors. We present the two-lane dynamic collaboration model with lateral friction and the expressions of feedback control signals. What is more, utilizing the delayed feedback control theory to the two-lane dynamic collaboration model with control signals, we investigate the stability of traffic flow theoretically and the stability conditions for both lanes are derived with finding that the forward and lateral feedback signals can improve the stability of traffic flow while the backward feedback signals cannot achieve it. Besides, direct simulations are conducted to verify the results of theoretical analysis, which shows that the feedback signals have a significant effect on the running state of two vehicle groups, and the results are same with the theoretical analysis.
Stability and Bifurcation Analysis of a Three-Species Food Chain Model with Delay
NASA Astrophysics Data System (ADS)
Pal, Nikhil; Samanta, Sudip; Biswas, Santanu; Alquran, Marwan; Al-Khaled, Kamel; Chattopadhyay, Joydev
In the present paper, we study the effect of gestation delay on a tri-trophic food chain model with Holling type-II functional response. The essential mathematical features of the proposed model are analyzed with the help of equilibrium analysis, stability analysis, and bifurcation theory. Considering time-delay as the bifurcation parameter, the Hopf-bifurcation analysis is carried out around the coexisting equilibrium. The direction of Hopf-bifurcation and the stability of the bifurcating periodic solutions are determined by applying the normal form theory and center manifold theorem. We observe that if the magnitude of the delay is increased, the system loses stability and shows limit cycle oscillations through Hopf-bifurcation. The system also shows the chaotic dynamics via period-doubling bifurcation for further enhancement of time-delay. Our analytical findings are illustrated through numerical simulations.
Stability of the Human Respiratory Control System. Part I: Analysis of a twodimensional delay models of the human respiratory control system have been developed since 1940 to study a wide range signals to the respiratory control system has been studied since the work of Grodins et al. in the early
Stability analysis for HIV infection delay model with protease inhibitor.
Pitchaimani, M; Monica, C; Divya, M
2013-11-01
In this article, we considered a model of HIV-1 infection with a protease inhibitor therapy and three delays. The frequency of the bifurcating periodic solution as well as the threshold value is approximated numerically using realistic parameter. The estimated threshold value is realistic and the frequency of the oscillations is consistent with that of the observed viral blips. PMID:23993948
Stability Analysis of a Model of Atherosclerotic Plaque Growth
Reddy, Sushruth; Seshaiyer, Padmanabhan
2015-01-01
Atherosclerosis, the formation of life-threatening plaques in blood vessels, is a form of cardiovascular disease. In this paper, we analyze a simplified model of plaque growth to derive physically meaningful results about the growth of plaques. In particular, the main results of this paper are two conditions, which express that the immune response increases as LDL cholesterol levels increase and that diffusion prevails over inflammation in a healthy artery. PMID:25883675
Analysis of stability and density waves of traffic flow model in an ITS environment
NASA Astrophysics Data System (ADS)
Li, Z.-P.; Liu, Y.-C.
2006-10-01
By introducing relative velocities of arbitrary number of cars ahead into the full velocity difference models (FVDM), we present a forward looking relative velocity model (FLRVM) of cooperative driving control system. To our knowledge, the model is an improvement over the similar extension in the forward looking optimal velocity models (FLOVM), because it is more reasonable and realistic in implement of incorporating intelligent transportation system in traffic. Then the stability criterion is investigated by the linear stability analysis with finding that new consideration theoretically lead to the improvement of the stability of traffic flow, and the validity of our theoretical analysis is confirmed by direct simulations. In addition, nonlinear analysis of the model shows that the three waves: triangular shock wave, soliton wave and kink-antikink wave appear respectively in stable, metastable and unstable regions. These correspond to the solutions of the Burgers equation, Korteweg-de Vries (KdV) equation and modified Korteweg-de Vries (mKdV) equation.
NASA Technical Reports Server (NTRS)
Bansal, P. N.; Arseneaux, P. J.; Smith, A. F.; Turnberg, J. E.; Brooks, B. M.
1985-01-01
Results of dynamic response and stability wind tunnel tests of three 62.2 cm (24.5 in) diameter models of the Prop-Fan, advanced turboprop, are presented. Measurements of dynamic response were made with the rotors mounted on an isolated nacelle, with varying tilt for nonuniform inflow. One model was also tested using a semi-span wing and fuselage configuration for response to realistic aircraft inflow. Stability tests were performed using tunnel turbulence or a nitrogen jet for excitation. Measurements are compared with predictions made using beam analysis methods for the model with straight blades, and finite element analysis methods for the models with swept blades. Correlations between measured and predicted rotating blade natural frequencies for all the models are very good. The IP dynamic response of the straight blade model is reasonably well predicted. The IP response of the swept blades is underpredicted and the wing induced response of the straight blade is overpredicted. Two models did not flutter, as predicted. One swept blade model encountered an instability at a higher RPM than predicted, showing predictions to be conservative.
Dynamic Modelling and Stability Analysis of Model-Scale Helicopters Under Wind Gust
Adnan Martini; François Léonard; Gabriel Abba
2009-01-01
The purpose of this paper is to present the stabilization (tracking) with motion planning of a reduced-order model having\\u000a 3 Degrees Of Freedom (DOF). This last one represents a scale model helicopter mounted on an experimental platform. It deals\\u000a with the problem of disturbance reconstruction acting on the autonomous helicopter, the disturbance consists in vertical wind\\u000a gusts. The objective is
NASA Astrophysics Data System (ADS)
Ghoreyshi, Mehdi; Jirásek, Adam; Cummings, Russell M.
2014-11-01
Recent advances and challenges in the generation of reduced order aerodynamic models using computational fluid dynamics are presented. The models reviewed are those that can be used for aircraft stability and control analysis and include linear and nonlinear indicial response methods, Volterra theory, radial basis functions, and a surrogate-based recurrence framework. The challenges associated with identification of unknowns for each of the reduced order methods are addressed. A range of test cases, from airfoils to full aircraft, have been used to evaluate and validate the reduced order methods. The motions have different amplitudes and reduced frequencies and could start from different flight conditions including those in the transonic speed range. Overall, these reduced order models help to produce accurate predictions for a wide range of motions, but with the advantage that model predictions require orders of magnitude less time to evaluate once the model is created.
High beta and second region stability analysis and ICRF edge modeling
Not Available
1989-01-01
This report describes the tasks accomplished under Department of Energy contract [number sign]DE-FG02-86ER53236 in modeling the edge plasma-antenna interaction that occurs during Ion Cyclotron Range of Frequency (ICRF) heating. This work has resulted in the development of several codes which determine kinetic and fluid modifications to the edge plasma. When used in combination, these code predict the level of impurity generation observed in experiments on the experiments on the Princeton Large Torus. In addition, these models suggest improvements to the design of ICRF antennas. Also described is progress made on high beta and second region analysis. Code development for a comprehensive infernal mode analysis code is nearing completion. A method has been developed for parameterizing the second region of stability and is applied to circular cross section tokamas. Various studies for high beta experimental devices such as PBX-M and DIII-D have been carried out and are reported on.
Stability analysis of an e-SEIAR model with point-to-group worm propagation
NASA Astrophysics Data System (ADS)
Wang, Fangwei; Zhang, Yunkai; Wang, Changguang; Ma, Jianfeng
2015-03-01
Internet worms have drawn significant attention due to their enormous threats to the Internet. The main goal of this paper is to explore the interaction dynamics between a malicious worm and an benign worm, using a mathematical model, namely e-SEIAR. The e-SEIAR model takes two important network environment factors into consideration: point-to-group worm propagation mode and benign worms. Furthermore, some related dynamics properties are studied, along with the analysis of how to combat the worm prevalence based on the stability of equilibria. Simulation results show that the performance of our proposed models is effective in combating such worms, in terms of decreasing the number of hosts infected by the malicious worm and reducing the malicious worm propagation speed. Based on our simulations, we believe there is great potential for an effective method to use benign worms to combat malicious worms in some point-to-group applications.
Slope Stability Analysis Program
NSDL National Science Digital Library
This site provides information as well as a downloadable demo version of a slope stability and reinforced soil analysis and design software. The software includes an analysis option which analyzes strata profile and groundwater conditions, surcharge loads and earthquake forces, slip surfaces, and reinforced soil options. Data input and editing can also be performed as well as output from the program and graphics.
NASA Astrophysics Data System (ADS)
Georgiou, K.; Tang, J.; Riley, W. J.; Torn, M. S.
2014-12-01
Soil organic matter (SOM) decomposition is regulated by biotic and abiotic processes. Feedback interactions between such processes may act to dampen oscillatory responses to perturbations from equilibrium. Indeed, although biological oscillations have been observed in small-scale laboratory incubations, the overlying behavior at the plot-scale exhibits a relatively stable response to disturbances in input rates and temperature. Recent studies have demonstrated the ability of microbial models to capture nonlinear feedbacks in SOM decomposition that linear Century-type models are unable to reproduce, such as soil priming in response to increased carbon input. However, these microbial models often exhibit strong oscillatory behavior that is deemed unrealistic. The inherently nonlinear dynamics of SOM decomposition have important implications for global climate-carbon and carbon-concentration feedbacks. It is therefore imperative to represent these dynamics in Earth System Models (ESMs) by introducing sub-models that accurately represent microbial and abiotic processes. In the present study we explore, both analytically and numerically, four microbe-enabled model structures of varying levels of complexity. The most complex model combines microbial physiology, a non-linear mineral sorption isotherm, and enzyme dynamics. Based on detailed stability analysis of the nonlinear dynamics, we calculate the system modes as functions of model parameters. This dependence provides insight into the source of state oscillations. We find that feedback mechanisms that emerge from careful representation of enzyme and mineral interactions, with parameter values in a prescribed range, are critical for both maintaining system stability and capturing realistic responses to disturbances. Corroborating and expanding upon the results of recent studies, we explain the emergence of oscillatory responses and discuss the appropriate microbe-enabled model structure for inclusion in ESMs.
Stability analysis of a hybrid cellular automaton model of cell colony growth
NASA Astrophysics Data System (ADS)
Gerlee, P.; Anderson, A. R. A.
2007-05-01
Cell colonies of bacteria, tumor cells, and fungi, under nutrient limited growth conditions, exhibit complex branched growth patterns. In order to investigate this phenomenon we present a simple hybrid cellular automaton model of cell colony growth. In the model the growth of the colony is limited by a nutrient that is consumed by the cells and which inhibits cell division if it falls below a certain threshold. Using this model we have investigated how the nutrient consumption rate of the cells affects the growth dynamics of the colony. We found that for low consumption rates the colony takes on an Eden-like morphology, while for higher consumption rates the morphology of the colony is branched with a fractal geometry. These findings are in agreement with previous results, but the simplicity of the model presented here allows for a linear stability analysis of the system. By observing that the local growth of the colony is proportional to the flux of the nutrient we derive an approximate dispersion relation for the growth of the colony interface. This dispersion relation shows that the stability of the growth depends on how far the nutrient penetrates into the colony. For low nutrient consumption rates the penetration distance is large, which stabilizes the growth, while for high consumption rates the penetration distance is small, which leads to unstable branched growth. When the penetration distance vanishes the dispersion relation is reduced to the one describing Laplacian growth without ultra-violet regularization. The dispersion relation was verified by measuring how the average branch width depends on the consumption rate of the cells and shows good agreement between theory and simulations.
NASA Astrophysics Data System (ADS)
Conway, Sheila Ruth
For a number of years, the United States Federal Government has been formulating the Next Generation Air Transportation System plans for National Airspace System improvement. These improvements attempt to address air transportation holistically, but often address individual improvements in one arena such as ground or in-flight equipment. In fact, air transportation system designers have had only limited success using traditional Operations Research and parametric modeling approaches in their analyses of innovative operations. They need a systemic methodology for modeling of safety-critical infrastructure that is comprehensive, objective, and sufficiently concrete, yet simple enough to be deployed with reasonable investment. The methodology must also be amenable to quantitative analysis so issues of system safety and stability can be rigorously addressed. The literature suggests that both agent-based models and network analysis techniques may be useful for complex system development and analysis. The purpose of this research is to evaluate these two techniques as applied to analysis of commercial air carrier schedule (route) stability in daily operations, an important component of air transportation. Airline-like routing strategies are used to educe essential elements of applying the method. Two main models are developed, one investigating the network properties of the route structure, the other an Agent-based approach. The two methods are used to predict system properties at a macro-level. These findings are compared to observed route network performance measured by adherence to a schedule to provide validation of the results. Those interested in complex system modeling are provided some indication as to when either or both of the techniques would be applicable. For aviation policy makers, the results point to a toolset capable of providing insight into the system behavior during the formative phases of development and transformation with relatively low investment. Both Agent-Based Modeling and Network Analysis were found to be useful in this context, particularly when applied with an eye towards the system context, and concentrated effort on capturing the salient features of the system of interest.
Global stability analysis of an SIR epidemic model with demographics and time delay on networks
NASA Astrophysics Data System (ADS)
Wang, Jianrong; Wang, Jianping; Liu, Maoxing; Li, Youwen
2014-09-01
In this paper, a susceptible-infected-recovery (SIR) epidemic model is governed with demographics and time delay on networks. Firstly, the basic reproduction number R0 is derived dependent on birth rate, death rate, recovery rate and transmission rate. The disease-free equilibrium of the model is stable when R0?1 and unstable when R0>1. Secondly, based on a Jacobian matrix calculated along with the disease-free equilibrium, we find that the system does not occur Hopf branch under the disease-free equilibrium. Thirdly, the global asymptotic stability of a disease-free equilibrium and a unique endemic equilibrium are proved by structuring two Lyapunov functions. Finally, numerical simulations are performed to illustrate the analysis results.
NASA Astrophysics Data System (ADS)
Haldar, Krishnendu
Magnetic shape memory alloys (MSMAs) are a class of active materials that deform under magnetic and mechanical loading conditions. This work is concerned with the modeling of MSMAs constitutive responses. The hysteretic magneto-mechanical responses of such materials are governed by two major mechanisms which are variant reorientation and field induced phase transformation (FIPT). The most widely used material for variant reorientation is Ni2MnGa which can produce up to 6% magnetic field induced strain (MFIS) under 5 MPa actuation stress. The major drawback of this material is a low blocking stress, which is overcome in the NiMnCoIn material system through FIPT. This magnetic alloy can exhibit 5% MFIS under 125 MPa actuation stress. The focus of this work is to capture the key magneto-thermo-mechanical responses of such mechanisms through phenomenological modeling. In this work a detailed thermodynamic framework for the electromagnetic interaction within a continuum solid is presented. A Gibbs free energy function is postulated after identifying the external and internal state variables. Material symmetry restrictions are imposed on the Gibbs free energy and on the evolution equations of the internal state variables. Discrete symmetry is considered for single crystals whereas continuous symmetry is considered for polycrystalline materials. The constitutive equations are derived in a thermodynamically consistent way. A specific form of Gibbs free energy for FIPT is proposed and the explicit form of the constitutive equations is derived from the generalized formulation. The model is calibrated from experimental data and different predictions of magneto-thermo-mechanical loading conditions are presented. The generalized constitutive equations are then reduced to capture variant reorientation. A coupled magneto-mechanical boundary value problem (BVP) is solved that accounts for variant reorientation to investigate the influence of the demagnetization effect on the magnetic field and the effect of Maxwell stress on the Cauchy stress. The BVP, which mimics a real experiment, provides a methodology to correlate the difference between the externally measured magnetic data and internal magnetic field of the specimen due to the demagnetization effect. The numerical results show that localization zones appear inside the material between a certain ranges of applied magnetic field. Stability analysis is performed for variant reorientation to analyze these numerical observations. Detailed numerical and analytical analysis is presented to investigate these localization zones. Magnetostatic stability analysis reveals that the MSMA material system becomes unstable when localizations appear due to non-linear magnetization response. Coupled magneto-mechanical stability analysis shows that magnetically induced localization creates stress-localizations in the unstable zones. A parametric study is performed to show the constraints on material parameters for stable and unstable material responses.
Stability analysis of a viscoelastic model for ion-irradiated silicon
Scott A. Norris
2012-01-12
To study the effect of stress within the thin amorphous film generated atop Si irradiated by Ar+, we model the film as a viscoelastic medium into which the ion beam continually injects biaxial compressive stress. We find that at normal incidence, the model predicts a steady compressive stress of a magnitude comparable to experiment. However, linear stability analysis at normal incidence reveals that this mechanism of stress generation is unconditionally stabilizing due to a purely kinematic material flow, depending on none of the material parameters. Thus, despite plausible conjectures in the literature as to its potential role in pattern formation, we conclude that beam stress at normal incidence is unlikely to be a source of instability at any energy, supporting recent theories attributing hexagonal ordered dots to the effects of composition. In addition, we find that the elastic moduli appear in neither the steady film stress nor the leading order smoothening, suggesting that the primary effects of stress can be captured even if elasticity is neglected. This should greatly simplify future analytical studies of highly nonplanar surface evolution, in which the beam-injected stress is considered to be an important effect.
NASA Astrophysics Data System (ADS)
Chen, S.; Al-Muntasheri, G.; Abousleiman, Y. N.
2014-12-01
The critical state concept based bounding surface model is one of the most widely used elastoplastic constitutive models for geomaterials, attributed mainly to its essential feature of allowing plastic deformation to occur for stress points within the bounding surface and thus the capability to represent the realistic non-recoverable behaviour of soils and rocks observed under the cyclic loading. This paper develops an implicit integration algorithm for the bounding surface model, using the standard return mapping approach (elastic predictor-plastic corrector), to obtain the updated stresses for the given strain increments. The formulation of the constitutive integration requires the derivation of a supplementary differential equation to describe the evolution of a key variable, i.e., the ratio between the image stress and the current stress quantities. It is essentially an extension of the integration scheme presented in an earlier work used for the simple bounding surface version of modified Cam Clay associated with a substantially simplified hardening rule. The integration algorithm for the bounding surface model is implemented into the finite element analysis commercial program, ABAQUS, through the material interface of UMAT (user defined material subroutine), and then used for the analysis of wellbore stability problem. The predictions from the ABAQUS simulations are generally in excellent agreement with the available analytical solutions, thus demonstrating the accuracy and robustness of the proposed integration scheme.
The Stability Analysis for an Extended Car Following Model Based on Control Theory
NASA Astrophysics Data System (ADS)
Ge, Hong-Xia; Meng, Xiang-Pei; Zhu, Ke-Qiang; Cheng, Rong-Jun
2014-08-01
A new method is proposed to study the stability of the car-following model considering traffic interruption probability. The stability condition for the extended car-following model is obtained by using the Lyapunov function and the condition for no traffic jam is also given based on the control theory. Numerical simulations are conducted to demonstrate and verify the analytical results. Moreover, numerical simulations show that the traffic interruption probability has an influence on driving behavior and confirm the effectiveness of the method on the stability of traffic flow.
ERIC Educational Resources Information Center
Rhatigan, Deborah L.; Moore, Todd M.; Stuart, Gregory L.
2005-01-01
This investigation examined relationship stability among 60 women court-mandated to violence interventions by applying a general model (i.e., Rusbult's 1980 Investment Model) to predict intentions to leave current relationships. As in past research, results showed that Investment Model predictions were supported such that court-mandated women who…
Safe distance car-following model including backward-looking and its stability analysis
NASA Astrophysics Data System (ADS)
Yang, Da; Jin, Peter Jing; Pu, Yun; Ran, Bin
2013-03-01
The focus of this paper is the car-following behavior including backward-looking, simply called the bi-directional looking car-following behavior. This study is motivated by the potential changes of the physical properties of traffic flow caused by the fast developing intelligent transportation system (ITS), especially the new connected vehicle technology. Existing studies on this topic focused on general motors (GM) models and optimal velocity (OV) models. The safe distance car-following model, Gipps' model, which is more widely used in practice have not drawn too much attention in the bi-directional looking context. This paper explores the property of the bi-directional looking extension of Gipps' safe distance model. The stability condition of the proposed model is derived using the linear stability theory and is verified using numerical simulations. The impacts of the driver and vehicle characteristics appeared in the proposed model on the traffic flow stability are also investigated. It is found that taking into account the backward-looking effect in car-following has three types of effect on traffic flow: stabilizing, destabilizing and producing non-physical phenomenon. This conclusion is more sophisticated than the study results based on the OV bi-directional looking car-following models. Moreover, the drivers who have the smaller reaction time or the larger additional delay and think the other vehicles have larger maximum decelerations can stabilize traffic flow.
The improvement of OPC accuracy and stability by the model parameters' analysis and optimization
NASA Astrophysics Data System (ADS)
Chung, No-Young; Choi, Woon-Hyuk; Lee, Sung-Ho; Kim, Sung-Il; Lee, Sun-Yong
2007-10-01
The OPC model is very critical in the sub 45nm device because the Critical Dimension Uniformity (CDU) is so tight to meet the device performance and the process window latitude for the production level. The OPC model is generally composed of an optical model and a resist model. Each of them has physical terms to be calculated without any wafer data and empirical terms to be fitted with real wafer data to make the optical modeling and the resist modeling. Empirical terms are usually related to the OPC accuracy, but are likely to be overestimated with the wafer data and so those terms can deteriorate OPC stability in case of being overestimated by a small cost function. Several physical terms have been used with ideal value in the optical property and even weren't be considered because those parameters didn't give a critical impact on the OPC accuracy, but these parameters become necessary to be applied to the OPC modeling at the low k1 process. Currently, real optic parameter instead of ideal optical parameter like the laser bandwidth, source map, pupil polarization including the phase and intensity difference start to be measured and those real measured value are used for the OPC modeling. These measured values can improve the model accuracy and stability. In the other hand these parameters can make the OPC model to overcorrect the process proximity errors without careful handling. The laser bandwidth, source map, pupil polarization, and focus centering for the optical modeling are analyzed and the sample data weight scheme and resist model terms are investigated, too. The image blurring by actual laser bandwidth in the exposure system is modeled and the modeling result shows that the extraction of the 2D patterns is necessary to get a reasonable result due to the 2D patterns' measurement noise in the SEM. The source map data from the exposure machine shows lots of horizontal and vertical intensity difference and this phenomenon must come from the measurement noise because this huge intensity difference can't be caused by the scanner system with respect to the X-Y intensity difference specification in the scanner. Therefore this source map should be well organized for the OPC modeling and a manipulated source map improves the horizontal and vertical mask bias and even OPC convergence. The focus parameter which is critical for the process window OPC and ORC should be matched to the tilted Bossung plot which is caused by uncorrectable aberration to predict the CD change in the through focus with a new devised method. Pupil polarization data can be applied into the OPC modeling and this parameter is also used for the unpolarized source and the polarized source and specially this parameter helps Apodization loss to be 0 and is evaluated for the effect into the modeling. With the analysis and optimization about the model parameters the robust model is achieved in the sub 45nm device node.
NASA Technical Reports Server (NTRS)
Tesch, W. A.; Moszee, R. H.; Steenken, W. G.
1976-01-01
NASA developed stability and frequency response analysis techniques were applied to a dynamic blade row compression component stability model to provide a more economic approach to surge line and frequency response determination than that provided by time-dependent methods. This blade row model was linearized and the Jacobian matrix was formed. The clean-inlet-flow stability characteristics of the compressors of two J85-13 engines were predicted by applying the alternate Routh-Hurwitz stability criterion to the Jacobian matrix. The predicted surge line agreed with the clean-inlet-flow surge line predicted by the time-dependent method to a high degree except for one engine at 94% corrected speed. No satisfactory explanation of this discrepancy was found. The frequency response of the linearized system was determined by evaluating its Laplace transfer function. The results of the linearized-frequency-response analysis agree with the time-dependent results when the time-dependent inlet total-pressure and exit-flow function amplitude boundary conditions are less than 1 percent and 3 percent, respectively. The stability analysis technique was extended to a two-sector parallel compressor model with and without interstage crossflow and predictions were carried out for total-pressure distortion extents of 180 deg, 90 deg, 60 deg, and 30 deg.
Stability of the Human Respiratory Control System. Part I: Analysis of a two-dimensional delay of the human respiratory control system have been developed since 1940 to study a wide range of features. 1 Introduction and Modeling Considerations The human respiratory system acts to exchange carbon
NASA Astrophysics Data System (ADS)
Cuntz, M.; Roy, D.; Musielak, Z. E.
2009-11-01
A significant controversy regarding the climate history of the Earth and its relationship to the development of complex life forms concerns the rise of oxygen in the early Earth's atmosphere. Geological records show that this rise occurred about 2.4 Gyr ago, when the atmospheric oxygen increased from less than 10-5 present atmospheric level (PAL) to more than 0.01 PAL and possibly above 0.1 PAL. However, there is a debate whether this rise happened relatively smoothly or with well-pronounced ups and downs (the Yoyo model). In our study, we explore a simplified atmospheric chemical system consisting of oxygen, methane, and carbon that is driven by the sudden decline of the net input of reductants to the surface as previously considered by Goldblatt et al. Based on the transition stability analysis for the system equations, constituting a set of non-autonomous and non-linear differential equations, as well as the inspection of the Lyapunov exponents, it is found that the equations do not exhibit chaotic behavior. In addition, the rise of oxygen occurs relative smoothly, possibly with minor bumps (within a factor of 1.2), but without major jumps. This result clearly argues against the Yoyo model in agreement with recent geological findings.
Cuntz, M.; Roy, D.; Musielak, Z. E. E-mail: dipanjan.roy@etumel.univmed.f
2009-11-20
A significant controversy regarding the climate history of the Earth and its relationship to the development of complex life forms concerns the rise of oxygen in the early Earth's atmosphere. Geological records show that this rise occurred about 2.4 Gyr ago, when the atmospheric oxygen increased from less than 10{sup -5} present atmospheric level (PAL) to more than 0.01 PAL and possibly above 0.1 PAL. However, there is a debate whether this rise happened relatively smoothly or with well-pronounced ups and downs (the Yoyo model). In our study, we explore a simplified atmospheric chemical system consisting of oxygen, methane, and carbon that is driven by the sudden decline of the net input of reductants to the surface as previously considered by Goldblatt et al. Based on the transition stability analysis for the system equations, constituting a set of non-autonomous and non-linear differential equations, as well as the inspection of the Lyapunov exponents, it is found that the equations do not exhibit chaotic behavior. In addition, the rise of oxygen occurs relative smoothly, possibly with minor bumps (within a factor of 1.2), but without major jumps. This result clearly argues against the Yoyo model in agreement with recent geological findings.
Monte Carlo analysis of critical phenomenon of the Ising model on memory stabilizer structures
C. Ricardo Viteri; Yu Tomita; Kenneth R. Brown
2009-07-02
We calculate the critical temperature of the Ising model on a set of graphs representing a concatenated three-bit error-correction code. The graphs are derived from the stabilizer formalism used in quantum error correction. The stabilizer for a subspace is defined as the group of Pauli operators whose eigenvalues are +1 on the subspace. The group can be generated by a subset of operators in the stabilizer, and the choice of generators determines the structure of the graph. The Wolff algorithm, together with the histogram method and finite-size scaling, is used to calculate both the critical temperature and the critical exponents of each structure. The simulations show that the choice of stabilizer generators, both the number and the geometry, has a large effect on the critical temperature.
Monte Carlo analysis of critical phenomenon of the Ising model on memory stabilizer structures
Viteri, C. Ricardo; Tomita, Yu; Brown, Kenneth R. [School of Chemistry and Biochemistry and Computational Science and Engineering Division, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)
2009-10-15
We calculate the critical temperature of the Ising model on a set of graphs representing a concatenated three-bit error-correction code. The graphs are derived from the stabilizer formalism used in quantum error correction. The stabilizer for a subspace is defined as the group of Pauli operators whose eigenvalues are +1 on the subspace. The group can be generated by a subset of operators in the stabilizer, and the choice of generators determines the structure of the graph. The Wolff algorithm, together with the histogram method and finite-size scaling, is used to calculate both the critical temperature and the critical exponents of each structure. The simulations show that the choice of stabilizer generators, both the number and the geometry, has a large effect on the critical temperature.
Mario G. Perhinschi
1998-01-01
The purpose of this paper is to present the development of a simple turbulence representation suitable for helicopter dynamic simulation, stability and performance analysis, as well as pilot-in-the-loop rotorcraft handling qualities assessment. The frozen field hypothesis and linear approximation are assumed. Components of the uniform field velocity are included as additive perturbations affecting aerodynamic terms of the state matrix. Effects
A linear thermal stability analysis for the vertical structure of alpha model accretion disks
NASA Technical Reports Server (NTRS)
Saio, Hideyuki; Cannizzo, John K.; Wheeler, J. Craig
1987-01-01
The linear equations that describe the thermal stability of the convective and radiative vertical structure of an alpha model accretion disk are derived. For a specific model chosen to be representative of a dwarf nova disk, it is found that the eigenfunction for the temperature shows large excursions in the zone of partial ionization, but that the eigenfunctions for the unstable fundamental mode perturbations of the vertical distance and flux are nearly constant over the vertical extent of the disk. The growth of any instability is thus nearly homologous and the stability criteria derived for vertically averaged structures represent an adequate approximation.
NASA Astrophysics Data System (ADS)
Zhao, Xiaomei; Orosz, Gábor
2014-05-01
In day-to-day traffic assignment problems travelers’ past experiences have important impact on their cost prediction which influences their route choice and consequently the arising flow patterns in the network. Many travelers execute the same trip in every few days, not daily, which leads to time delays in the system. In this paper, we propose a nonlinear, discrete-time model with driver experience delay. The linear stability of the stochastic user equilibrium is analyzed by studying the eigenvalues of the Jacobian matrix of the system while the nonlinear oscillations arising at the bifurcations are investigated by normal form calculations, numerical continuation and simulation. The methods are demonstrated on a two-route example. By applying rigorous analysis we show that the linearly unstable parameter domain as well as the period of arising oscillations increase with the delay. Moreover, delays and nonlinearities result in an extended domain of bistability where the stochastic user equilibrium coexists with stable and unstable oscillations. This study explains the influence of initial conditions on the dynamics of transportation networks and may provide guidance for network design and management.
Sijung Yun; Sajung Yun; H. Robert Guy
2011-01-01
Amyloid-? (A?) oligomers appear to play a pivotal role in Alzheimer's disease. A 42 residue long alloform, A?42, is closely related to etiology of the disease. In vitro results show evidences of hexamers; however structures of these hexamers have not been resolved experimentally. Here, we use discrete molecular dynamics (DMD) to analyze long duration stabilities of A?42 hexamer models developed
Local and global stability analysis of a two prey one predator model with help
NASA Astrophysics Data System (ADS)
Tripathi, Jai Prakash; Abbas, Syed; Thakur, Manoj
2014-09-01
In this paper we propose and study a three dimensional continuous time dynamical system modelling a three team consists of two preys and one predator with the assumption that during predation the members of both teams of preys help each other and the rate of predation of both teams are different. In this work we establish the local asymptotic stability of various equilibrium points to understand the dynamics of the model system. Different conditions for the coexistence of equilibrium solutions are discussed. Persistence, permanence of the system and global stability of the positive interior equilibrium solution are discussed by constructing suitable Lyapunov functional. At the end, numerical simulations are performed to substantiate our analytical findings.
Stability analysis of singular patterns in the 1D Gray-Scott model: A matched asymptotics approach
NASA Astrophysics Data System (ADS)
Doelman, Arjen; Gardner, Robert A.; Kaper, Tasso J.
1998-11-01
In this work, we analyze the linear stability of singular homoclinic stationary solutions and spatially periodic stationary solutions in the one-dimensional Gray-Scott model. This stability analysis has several implications for understanding the recently discovered phenomena of self-replicating pulses. For each solution constructed in A. Doelman et al. [Nonlinearity 10 (1997) 523-563], we analytically find a large open region in the space of the two scaled parameters in which it is stable. Specifically, for each value of the scaled inhibitor feed rate, there exists an interval, whose length and location depend on the solution type, of values of the activator (autocatalyst) decay rate for which the solution is stable. The upper boundary of each interval corresponds to a subcritical Hopf bifurcation point, and the lower boundary is explicitly determined by finding the parameter value where the solution ‘disappears’, i.e., below which it no longer exists as a solution of the steady state system. Explicit asymptotic formulae show that the one-pulse homoclinic solution gains stability first as the second parameter is decreased, and then successively, the spatially periodic solutions (with decreasing period) become stable. Moreover, the stability intervals for different solutions overlap. These stability results are derived via the reduction of a fourth-order slow-fast eigenvalue problem to a second-order nonlocal eigenvalue problem (NLEP). Explicit determination of these stability intervals plays a central role in understanding pulse self-replication. Numerical simulations confirm that the spatially periodic stationary solutions are attractors in the pulse-splitting regime; and, moreover, whenever, for a given solution, the value of the activator decay rate was taken to lie in the regime below that solution 's stability interval, initial data close to that solution were observed to evolve toward a different spatially periodic stationary solution, one whose stability interval inclucded the parameter value. The main analytical technique used is that of matched asymptotic expansions.
Kogan, Valeria; Molodtsov, Ivan; Menshikov, Leonid I; Shmookler Reis, Robert J; Fedichev, Peter
2015-01-01
Several animal species are considered to exhibit what is called negligible senescence, i.e. they do not show signs of functional decline or any increase of mortality with age. Recent studies in naked mole rat and long-lived sea urchins showed that these species do not alter their gene-expression profiles with age as much as other organisms do. This is consistent with exceptional endurance of naked mole rat tissues to various genotoxic stresses. We conjectured, therefore, that the lifelong transcriptional stability of an organism may be a key determinant of longevity. We analyzed the stability of a simple genetic-network model and found that under most common circumstances, such a gene network is inherently unstable. Over a time it undergoes an exponential accumulation of gene-regulation deviations leading to death. However, should the repair systems be sufficiently effective, the gene network can stabilize so that gene damage remains constrained along with mortality of the organism. We investigate the relationship between stress-resistance and aging and suggest that the unstable regime may provide a mathematical basis for the Gompertz "law" of aging in many species. At the same time, this model accounts for the apparently age-independent mortality observed in some exceptionally long-lived animals. PMID:26316217
Stability analysis of a model gene network links aging, stress resistance, and negligible senescence
Kogan, Valeria; Molodtsov, Ivan; Menshikov, Leonid I.; Reis, Robert J. Shmookler; Fedichev, Peter
2015-01-01
Several animal species are considered to exhibit what is called negligible senescence, i.e. they do not show signs of functional decline or any increase of mortality with age. Recent studies in naked mole rat and long-lived sea urchins showed that these species do not alter their gene-expression profiles with age as much as other organisms do. This is consistent with exceptional endurance of naked mole rat tissues to various genotoxic stresses. We conjectured, therefore, that the lifelong transcriptional stability of an organism may be a key determinant of longevity. We analyzed the stability of a simple genetic-network model and found that under most common circumstances, such a gene network is inherently unstable. Over a time it undergoes an exponential accumulation of gene-regulation deviations leading to death. However, should the repair systems be sufficiently effective, the gene network can stabilize so that gene damage remains constrained along with mortality of the organism. We investigate the relationship between stress-resistance and aging and suggest that the unstable regime may provide a mathematical basis for the Gompertz “law” of aging in many species. At the same time, this model accounts for the apparently age-independent mortality observed in some exceptionally long-lived animals. PMID:26316217
MAP Stability, Design and Analysis
NASA Technical Reports Server (NTRS)
Ericsson -Jackson, A.J.; Andrews, S. F.; ODonnell, J. R., Jr.; Markley, F. L.
1998-01-01
The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The design and analysis of the MAP attitude control system (ACS) have been refined since work previously reported. The full spacecraft and instrument flexible model was developed in NASTRAN, and the resulting flexible modes were plotted and reduced with the Modal Significance Analysis Package (MSAP). The reduced-order model was used to perform the linear stability analysis for each control mode, the results of which are presented in this paper. Although MAP is going to a relatively disturbance-free Lissajous orbit around the Earth-Sun L2 Lagrange point, a detailed disturbance-torque analysis is required because there are only a small number of opportunities for momentum unloading each year. Environmental torques, including solar pressure at L2, and aerodynamic and gravity gradient during phasing-loop orbits, were calculated and simulated. A simple model of fuel slosh was derived to model its effect on the motion of the spacecraft. In addition, a thruster mode linear impulse controller was developed to meet the accuracy requirements of the phasing loop burns. A dynamic attitude error limiter was added to improve the performance of the ACS during large attitude slews. The result of this analysis is a stable ACS subsystem that meets all of the mission's requirements.
MAP stability, design, and analysis
NASA Technical Reports Server (NTRS)
Ericsson-Jackson, A. J.; Andrews, S. F.; O'Donnell, J. R., Jr.; Markley, F. L.
1998-01-01
The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The design and analysis of the MAP attitude control system (ACS) have been refined since work previously reported. The full spacecraft and instrument flexible model was developed in NASTRAN, and the resulting flexible modes were plotted and reduced with the Modal Significance Analysis Package (MSAP). The reduced-order model was used to perform the linear stability analysis for each control mode, the results of which are presented in this paper. Although MAP is going to a relatively disturbance-free Lissajous orbit around the Earth-Sun L(2) Lagrange point, a detailed disturbance-torque analysis is required because there are only a small number of opportunities for momentum unloading each year. Environmental torques, including solar pressure at L(2), aerodynamic and gravity gradient during phasing-loop orbits, were calculated and simulated. Thruster plume impingement torques that could affect the performance of the thruster modes were estimated and simulated, and a simple model of fuel slosh was derived to model its effect on the motion of the spacecraft. In addition, a thruster mode linear impulse controller was developed to meet the accuracy requirements of the phasing loop burns. A dynamic attitude error limiter was added to improve the performance of the ACS during large attitude slews. The result of this analysis is a stable ACS subsystem that meets all of the mission's requirements.
A simplified spatial model for BWR stability
Berman, Y. [Dept. of Physics, Ben-Gurion Univ. of the Negev, Nuclear Research Center-Negev, Beer-Sheva (Israel); Lederer, Y. [Dept. of Physics, Nuclear Research Center-Negev, Beer-Sheva (Israel); Meron, E. [Dept. of Solar Energy and Environmental Physics, Dept. of Physics, Ben-Gurion Univ. of the Negev, Beer-Sheva (Israel)
2012-07-01
A spatial reduced order model for the study of BWR stability, based on the phenomenological model of March-Leuba et al., is presented. As one dimensional spatial dependence of the neutron flux, fuel temperature and void fraction is introduced, it is possible to describe both global and regional oscillations of the reactor power. Both linear stability analysis and numerical analysis were applied in order to describe the parameters which govern the model stability. The results were found qualitatively similar to past results. Doppler reactivity feedback was found essential for the explanation of the different regions of the flow-power stability map. (authors)
Numerical Stability Analysis of Linear Wave Propagation in Extended MHD Modeling
NASA Astrophysics Data System (ADS)
Gan, Yu; Jardin, Stephen
2006-10-01
Extended MHD (2-fluid) modeling of fusion plasmas using a split semi-implicit time-advance based on a particular high-order finite element with C^1 continuity has been shown to offer significant advantages in efficiency and accuracy[1,2]. However, the method requires the introduction of several viscosity and hyper-viscosity coefficients to provide robust numerical stability. As a code-validation exercise, we report on a systematic study of the simulation of wave propagation in the linear regime. We initialize the simulation in a stable linear eigenmode of the extended MHD equations and follow the evolution to measure the numerical dispersion relation for the 3 sets of MHD waves. We present results showing how the stability, dispersion and dissipation depend on grid size, time step, and the magnitude of the viscosity and hyper-viscosity coefficients. These linear perturbation tests act as useful benchmarks and guides for numerical stability for nonlinear simulations. [1] S. Jardin, J. Comput. Phys. 200 (2004) 133 [2] S. Jardin and J. Breslau, Phys. Plasmas 12, 056101 (2005)
PrimeSupplier Cross-Program Impact Analysis and Supplier Stability Indicator Simulation Model
NASA Technical Reports Server (NTRS)
Calluzzi, Michael
2009-01-01
PrimeSupplier, a supplier cross-program and element-impact simulation model, with supplier solvency indicator (SSI), has been developed so that the shuttle program can see early indicators of supplier and product line stability, while identifying the various elements and/or programs that have a particular supplier or product designed into the system. The model calculates two categories of benchmarks to determine the SSI, with one category focusing on agency programmatic data and the other focusing on a supplier's financial liquidity. PrimeSupplier was developed to help NASA smoothly transition design, manufacturing, and repair operations from the Shuttle program to the Constellation program, without disruption in the industrial supply base.
Stability analysis of free piston Stirling engines
NASA Astrophysics Data System (ADS)
Bégot, Sylvie; Layes, Guillaume; Lanzetta, François; Nika, Philippe
2013-03-01
This paper presents a stability analysis of a free piston Stirling engine. The model and the detailed calculation of pressures losses are exposed. Stability of the machine is studied by the observation of the eigenvalues of the model matrix. Model validation based on the comparison with NASA experimental results is described. The influence of operational and construction parameters on performance and stability issues is exposed. The results show that most parameters that are beneficial for machine power seem to induce irregular mechanical characteristics with load, suggesting that self-sustained oscillations could be difficult to maintain and control.
NASA Technical Reports Server (NTRS)
Wolfgang, R.; Natarajan, T.; Day, J.
1987-01-01
A feedback control system, called an auxiliary array switch, was designed to connect or disconnect auxiliary solar panel segments from a spacecraft electrical bus to meet fluctuating demand for power. A simulation of the control system was used to carry out a number of design and analysis tasks that could not economically be performed with a breadboard of the hardware. These tasks included: (1) the diagnosis of a stability problem, (2) identification of parameters to which the performance of the control system was particularly sensitive, (3) verification that the response of the control system to anticipated fluctuations in the electrical load of the spacecraft was satisfactory, and (4) specification of limitations on the frequency and amplitude of the load fluctuations.
Stochastic stability and instability of model ecosystems
NASA Technical Reports Server (NTRS)
Ladde, G. S.; Siljak, D. D.
1975-01-01
In this work, we initiate a stability study of multispecies communities in stochastic environment by using Ito's differential equations as community models. By applying the direct method of Liapunov, we obtain sufficient conditions for stability and instability in the mean of the equilibrium populations. The conditions are expressed in terms of the dominant diagonal property of community matrices, which is a suitable mechanism for resolving the central problem of 'complexity vs stability' in model ecosystems. As a by-product of this analysis we exhibit important structural properties of the stochastic density-dependent models, and establish tolerance of community stability to a broad class of nonlinear time-varying perturbations.
Analysis of vaccine stability.
Volkin, D B; Burke, C J; Sanyal, G; Middaugh, C R
1996-01-01
The complexity of vaccines creates a unique formulation challenge. Vaccines may consist of one or more types of antigenic component including live attenuated or killed viral or bacterial particles, polysaccharides, proteins, polynucleotides and particle conjugates. In addition, other excipients such as adjuvants may be present. Not only must the chemical and structural integrity of the various components be maintained, but immunogenicity must be ensured. The inherent lability of vaccines can critically limit their distribution, administration, and efficacy in parts of world where it is difficult to maintain a cold chain. Combination with other vaccines and oral administration may also compromise vaccine stability. Successful vaccine stabilization strategies include both empirical efforts to screen and identify appropriate stabilizers and environmental conditions and more rational approaches toward developing an understanding of the causes and mechanisms of vaccine inactivation. In principle, by elucidating the conformational and chemical pathways of macromolecular inactivation, more rational strategies to minimize their occurrence can be adopted. This presentation will review the application of classical techniques such as viral plaque assays to identify vaccine stabilizers by empirical testing. The potential of using various biophysical techniques (both hydrodynamic and spectroscopic methods) to characterize the physicochemical stability of purified vaccine preparations (Hepatitis A and B) is also explored. PMID:8854010
Not Available
1989-12-31
This report describes the tasks accomplished under Department of Energy contract {number_sign}DE-FG02-86ER53236 in modeling the edge plasma-antenna interaction that occurs during Ion Cyclotron Range of Frequency (ICRF) heating. This work has resulted in the development of several codes which determine kinetic and fluid modifications to the edge plasma. When used in combination, these code predict the level of impurity generation observed in experiments on the experiments on the Princeton Large Torus. In addition, these models suggest improvements to the design of ICRF antennas. Also described is progress made on high beta and second region analysis. Code development for a comprehensive infernal mode analysis code is nearing completion. A method has been developed for parameterizing the second region of stability and is applied to circular cross section tokamas. Various studies for high beta experimental devices such as PBX-M and DIII-D have been carried out and are reported on.
Iqbal, Kamran; Roy, Anindo
2009-01-01
We consider a simplified characterization of the postural control system that embraces two broad components: one representing the musculoskeletal dynamics in the sagittal plane and the other representing proprioceptive feedback and the central nervous system (CNS). Specifically, a planar four-segment neuromusculoskeletal model consisting of the ankle, knee, and hip degrees-of-freedom (DOFs) is described in this paper. The model includes important physiological constructs such as Hill-type muscle model, active and passive muscle stiffnesses, force feedback from the Golgi tendon organ, muscle length and rate feedback from the muscle spindle, and transmission latencies in the neural pathways. A proportional-integral-derivative (PID) controller for each individual DOF is assumed to represent the CNS analog in the modeling paradigm. Our main hypothesis states that all stabilizing PID controllers for such multisegment biomechanical models can be parametrized and analytically synthesized. Our analytical and simulation results show that the proposed representation adequately shapes a postural control that (a) possesses good disturbance rejection and trajectory tracking, (b) is robust against feedback latencies and torque perturbations, and (c) is flexible to embrace changes in the musculoskeletal parameters. We additionally present detailed sensitivity analysis to show that control under conditions of limited or no proprioceptive feedback results in (a) significant reduction in the stability margins, (b) substantial decrease in the available stabilizing parameter set, and (c) oscillatory movement trajectories. Overall, these results suggest that anatomical arrangement, active muscle stiffness, force feedback, and physiological latencies play a major role in shaping motor control processes in humans. PMID:19045918
NASA Technical Reports Server (NTRS)
Smith, Arthur F.
1985-01-01
Results of static stability wind tunnel tests of three 62.2 cm (24.5 in) diameter models of the Prop-Fan are presented. Measurements of blade stresses were made with the Prop-Fans mounted on an isolated nacelle in an open 5.5 m (18 ft) wind tunnel test section with no tunnel flow. The tests were conducted in the United Technology Research Center Large Subsonic Wind Tunnel. Stall flutter was determined by regions of high stress, which were compared with predictions of boundaries of zero total viscous damping. The structural analysis used beam methods for the model with straight blades and finite element methods for the models with swept blades. Increasing blade sweep tends to suppress stall flutter. Comparisons with similar test data acquired at NASA/Lewis are good. Correlations between measured and predicted critical speeds for all the models are good. The trend of increased stability with increased blade sweep is well predicted. Calculated flutter boundaries generaly coincide with tested boundaries. Stall flutter is predicted to occur in the third (torsion) mode. The straight blade test shows third mode response, while the swept blades respond in other modes.
Stability analysis of multi-group deterministic and stochastic epidemic models with vaccination rate
NASA Astrophysics Data System (ADS)
Wang, Zhi-Gang; Gao, Rui-Mei; Fan, Xiao-Ming; Han, Qi-Xing
2014-09-01
We discuss in this paper a deterministic multi-group MSIR epidemic model with a vaccination rate, the basic reproduction number ?0, a key parameter in epidemiology, is a threshold which determines the persistence or extinction of the disease. By using Lyapunov function techniques, we show if ?0 is greater than 1 and the deterministic model obeys some conditions, then the disease will prevail, the infective persists and the endemic state is asymptotically stable in a feasible region. If ?0 is less than or equal to 1, then the infective disappear so the disease dies out. In addition, stochastic noises around the endemic equilibrium will be added to the deterministic MSIR model in order that the deterministic model is extended to a system of stochastic ordinary differential equations. In the stochastic version, we carry out a detailed analysis on the asymptotic behavior of the stochastic model. In addition, regarding the value of ?0, when the stochastic system obeys some conditions and ?0 is greater than 1, we deduce the stochastic system is stochastically asymptotically stable. Finally, the deterministic and stochastic model dynamics are illustrated through computer simulations.
Tailings dams stability analysis using numerical modelling of geotechnical and geophysical data
NASA Astrophysics Data System (ADS)
Mihai, S.; Zlagnean, M.; Oancea, I.; Petrescu, A.
2009-04-01
Methods for monitoring seepage and detecting internal erosion are essential for the safety evaluation of embankment dams. Internal erosion is one of the major reasons for embankment dam failures, and there are thousands of large tailings dams and waste-rock dumps in the world that may pe considered as hotspots for environmental impact. In this research the geophysical survey works were performed on Cetatuia 2 tailings dam. Electrical resistivity imaging (ERI) method was able to detect spatially anomalous zones inside the embankment dam. These anomalies are the results of internal erosion phenomena which may progressing inside the dam and is difficult to detect by conventional methods. Data aquired by geophysical survey together with their interpretations were used in the numerical model for slope stability assessment. The final results show us the structural weakness induced by the presence of internal erosion elements especially for seismic loading case. This research methodology may be also available for tailings dam monitoring purposes. Electrical Rezistivity Imaging (ERI) was performed on Cetatuia 2 dam at the Uranium Milling Plant Feldioara, in order to map areas with lateral and vertical changes in resistivity. The electrodes are connected to an automated computer operated switch box that selects the 4 electrodes to be used. A computer controls the switch box and the measuring device, and runs a program that selects the electrodes, makes the measurement, and stores the measurement. For inversion processing procedures was used Res2Din software. The measured resistivity were plotted by the pseudo section contouring method. There are five resistivity pseudosections obtained from the Cetatuia 2 tailings dam during the october 2007 measurements. Four transversal profiles trans1 to trans4 are perpendicular to the berms and the longitudinal one long1 is placed along dam's crest. The high resistivities near the berms surfaces corresponds to unsaturated fill materials and the low resistivities near the crest correspond to water saturated material. The resistivities values greater then 80 ohm.m may be explained by some error obtained for that inversion model. Profiles trans3 and trans4 were measured on perpendicular directions to berm alignment and show two distinct zones. The upward low resistivities zone correspond to water saturated materials especially from the compacted clay dam's core and the downward high resistivities zone belongs to unsaturated fill materials. The boundary between high and low resistivity at the depth of about 5 to 7 meters shows the groundwater level. The continuation of the high resistivity zones towards the end of the profile trans3, which is different from other profiles is probably due to the presence of dry coarse materials in shallow depth correspondingly to sandy clay. The sand fractions from the clay matrix may be affected by internal erosional phenomena, due to seepage currents that overpassed the material critical gradient. In this case the relative high resistivities values were considered as a presumptive erosional pattern. This profile was considered for the slope stability finite element modelling. The profile long1 which is placed along dam's crest is the longest profiles and extends up to nearly 420 m. The boundary between high and low resistivity at the depth of about 4 to 8 meters shows the groundwater across the dam core. The central part of the profile (about meter 200) shows the same relative high resistivities that occurred on transversal profile trans3. Resistivity data was used for building the 3D electrical resistivity model. The water saturated materials have locations very close to dam's crest (resistivity values usually lower then 10 ohm.m) and on both dam's arms. The groundwater levels were confirmed by the piezometric measurements. Electrical Rezistivity Imaging method had the possibility to show the most important disturbant elements that in certain conditions may weak the dam's state of safety. This study considered the SSR (Shear Strength Reduction) technique for sl
NASA Astrophysics Data System (ADS)
Banshchikov, A. V.; Chaikin, S. V.
2015-09-01
Applying Lyapunov's approach to the investigation of the stability of the motion according to first order approximation equations, the regions are singled out in the space of the inputed parameters where the stability, instability, or gyroscopic stabilization of relative equilibriums of a prolate axisymmetric orbital gyrostat with a constant gyrostatic moment vector are ensured. In particular, the result concerning instability and impossibility of gyroscopic stabilization of one in two existing equilibrium classes of the system have been formulated. The investigation was carried out using the LinModel software package and the symbolic—numerical modeling functions of the Mathematica Computer Algebra System.
NASA Technical Reports Server (NTRS)
Sevart, F. D.
1971-01-01
An analytical and mechanization study was conducted for two flutter stability augmentation systems. One concept uses only the wing trailing edge control surface. Another concept uses leading and trailing edge control surfaces operating simultaneously. The combined use of leading and trailing edge control surfaces should improve the surface coupling (controllability) with vertical bending and torsional structural modes and decrease the coupling between bending and torsional modes. The study was directed toward stability augmentation systems characteristics for the supersonic transport aircraft.
Linear stability analysis for an optimum Glauert rotor modelled by an actuator disc
NASA Astrophysics Data System (ADS)
Smith, D. M.; Blackburn, H. M.; Sheridan, J.
2014-06-01
We approximate a wind turbine using the Actuator Disc methodology with loading for an optimum Glauert rotor, and vary blade length and tip speed ratio, to determine base flows for linear stability computations at a Reynolds number of 100. Results from such computations suggest that the least stable mode is axisymmetric and insensitive to changes in tip speed operation, suggesting that the stability properties in the farfield wake for an optimised rotor are independent of the chosen tip speed optimization point. Higher azimuthal modes promote greater variation in velocities and may be relevant to cases at higher Reynolds numbers.
Lateral stability analysis for X-29A drop model using system identification methodology
NASA Technical Reports Server (NTRS)
Raney, David L.; Batterson, James G.
1989-01-01
A 22-percent dynamically scaled replica of the X-29A forward-swept-wing airplane has been flown in radio-controlled drop tests at the NASA Langley Research Center. A system identification study of the recorded data was undertaken to examine the stability and control derivatives that influence the lateral behavior of this vehicle with particular emphasis on an observed wing rock phenomenon. All major lateral stability derivatives and the damping-in-roll derivative were identified for angles of attack from 5 to 80 degrees by using a data-partitioning methodology and a modified stepwise regression algorithm.
MATHEMATICAL MODELING OF CHARGED LIQUID DROPLETS: NUMERICAL SIMULATION AND STABILITY ANALYSIS
Betelu, Santiago Ignacio
gun" is loaded with electrically charged paint, which is in turn attracted by a polarized surface [Bea]. This results in the surface getting coated with a uniform film of paint. · Stabilization and control of viscous Propulsion (FEEP) thrusters [Van], that are used to control satellites, are based on the emission of droplets
CFD analysis of baffle flame stabilization
NASA Astrophysics Data System (ADS)
Chen, Yen-Sen; Farmer, Richard C.
1991-06-01
A computational fluid dynamics analysis of ignition and combustion in baffle flame stabilized combustors was developed in order to increase the understanding of combustion efficiency and stability. The objectives of this investigation were to develop and verify a computational model of the ignition and combustion of typical augmenter configurations and to generalize the model for application to the combustion occurring in a generic gas turbine engine with augmenters, upstream vitiation, and a downstream chocked nozzle. Triangular bar and cone stabilized flames were simulated. Quasi-global propane and methane kinetics models were employed in the computation. A more detailed methane-air kinetics model was also used. An ignition procedure was devised by initially providing a 1200 K hot spot near the base to start the flame. The recirculation zone lengths of cold and hot flows were well predicted. Time averaged flow quantities were used for data comparisons since the predicted recirculating zones of the reacting flows were unsteady.
Jacobi stability analysis of the Lorenz system
NASA Astrophysics Data System (ADS)
Harko, Tiberiu; Ho, Chor Yin; Leung, Chun Sing; Yip, Stan
2015-06-01
We perform the study of the stability of the Lorenz system by using the Jacobi stability analysis, or the Kosambi-Cartan-Chern (KCC) theory. The Lorenz model plays an important role for understanding hydrodynamic instabilities and the nature of the turbulence, also representing a nontrivial testing object for studying nonlinear effects. The KCC theory represents a powerful mathematical method for the analysis of dynamical systems. In this approach, we describe the evolution of the Lorenz system in geometric terms, by considering it as a geodesic in a Finsler space. By associating a nonlinear connection and a Berwald type connection, five geometrical invariants are obtained, with the second invariant giving the Jacobi stability of the system. The Jacobi (in)stability is a natural generalization of the (in)stability of the geodesic flow on a differentiable manifold endowed with a metric (Riemannian or Finslerian) to the non-metric setting. In order to apply the KCC theory, we reformulate the Lorenz system as a set of two second-order nonlinear differential equations. The geometric invariants associated to this system (nonlinear and Berwald connections), and the deviation curvature tensor, as well as its eigenvalues, are explicitly obtained. The Jacobi stability of the equilibrium points of the Lorenz system is studied, and the condition of the stability of the equilibrium points is obtained. Finally, we consider the time evolution of the components of the deviation vector near the equilibrium points.
NASA Astrophysics Data System (ADS)
Tsamopoulos, John; Karapetsas, George
2013-11-01
It is well known that during extrusion of viscoelastic fluids various flow instabilities may arise resulting in a distorted free surface. In order to investigate the factors generating these instabilities we perform a linear stability analysis at zero Reynolds number around the steady solution of the cylindrical or planar stick-slip flow for a viscoelastic fluid following the PTT model. The stick-slip flow is an important special case of the extrudate swell problem, since the latter reduces to it in the limit of infinite surface tension. We will show that the flow becomes unstable as the Weissenberg number increases above a critical value, due to a Hopf bifurcation suggesting that the flow will become periodic in time. Both the critical value of the Weissenberg number and the frequency of the instability depend strongly on the rheological parameters of the viscoelastic model. The elasticity alone can be responsible for the appearance of instabilities in the extrusion process of viscoelastic fluids and the often used assumptions of wall slip or compressibility, although they might be present, are not required. Finally, the mechanisms that produce these instabilities are examined through energy analysis of the disturbance flow. It is well known that during extrusion of viscoelastic fluids various flow instabilities may arise resulting in a distorted free surface. In order to investigate the factors generating these instabilities we perform a linear stability analysis at zero Reynolds number around the steady solution of the cylindrical or planar stick-slip flow for a viscoelastic fluid following the PTT model. The stick-slip flow is an important special case of the extrudate swell problem, since the latter reduces to it in the limit of infinite surface tension. We will show that the flow becomes unstable as the Weissenberg number increases above a critical value, due to a Hopf bifurcation suggesting that the flow will become periodic in time. Both the critical value of the Weissenberg number and the frequency of the instability depend strongly on the rheological parameters of the viscoelastic model. The elasticity alone can be responsible for the appearance of instabilities in the extrusion process of viscoelastic fluids and the often used assumptions of wall slip or compressibility, although they might be present, are not required. Finally, the mechanisms that produce these instabilities are examined through energy analysis of the disturbance flow. The authors would like to acknowledge the financial support by the General Secretariat of Research and Technology of Greece under the Action ``Supporting Postdoctoral Researchers'' (Grant No: PE8/906), and under the ``Excellence Program'' (Grant No: 1918)
Analysis of lateral stability of X-29 drop model using system identification methodology
NASA Technical Reports Server (NTRS)
Raney, David L.
1987-01-01
A 22-percent dynamically scaled replica of the X-29 forward-swept-wing aircraft is currently being flown in radio-controlled drop tests at NASA Langley's Plumtree Test Site. Flight data were recorded from early flights in the test program, which consisted mainly of large amplitude maneuvers over wide angle-of-attack ranges with several uncontrolled wing rock episodes. A system identification study of the recorded data was undertaken to examine the stability and control derivatives which influence the lateral behavior of this vehicle with particular emphasis on the wing rock phenomenon. All major lateral stability derivatives and the damping-in-roll derivative were identified for 5-80 deg angle-of-attack by using a data partitioning methodology and a modified stepwise regression algorithm. No control effectiveness derivatives could be identified from the flights conducted so far.
Cage stability analysis for SSME HPOTP bearings
NASA Technical Reports Server (NTRS)
Merriman, T. L.; Kannel, J. W.
1988-01-01
A numerical model of cage motion (CAGEDYN) was used to analyze the stability of bearing cages in the Space Shuttle main engine (SSME) high pressure oxygen turbopump (HPOTP). The stability of existing bearing geometries, as well as perturbations of these geometries, was analyzed for various operating conditions. Results of the analyses show that some combinations of operating parameters, exacerbated by the sparse lubrication that exist in the HPOTP bearings, can cause unstable cage oscillations. Frequencies of cage oscillations were predicted by the CAGEDYN numerical model by Fourier analysis of predicted cage motions. Under conditions that cause unstable cage motion, high frequency oscillations were predicted that could cause premature cage failures.
Liapunov stability analysis of spinning flexible spacecraft.
NASA Technical Reports Server (NTRS)
Barbera, F. J.; Likins, P.
1973-01-01
The attitude stability of a class of spinning flexible spacecraft in a force-free environment is analyzed. The spacecraft is modeled as a rigid core having attached to it a flexible appendage idealized as a collection of elastically interconnected particles. Liapunov stability theorems are employed with the Hamiltonian of the system, constrained through the angular momentum integral so as to admit complete damping, used as a testing function. The Hamiltonian is written in terms of modal coordinates as interpreted by the hybrid coordinate formulation, thus allowing truncation to a level amenable to literal stability analysis. Testing functions are constructed for a spacecraft with an arbitrary (discretized) appendage, and closed form stability criteria are generated for the first mode of a restricted appendage model lying in a plane which contains the center of mass and is orthogonal to the spin axis. The criteria are (except for idealized cases on the stability boundary line in the parameter space) both necessary and sufficient for stability for any spacecraft characterized by the planar appendage model, such as a spacecraft containing solar panels and/or radial booms.
Global Stability, Local Stability and Permanence in Model Food Webs
XIN CHEN; JOEL E. COHEN
2001-01-01
The dynamical theory of food webs has been based typically on local stability analysis. The relevance of local stability to food web properties has been questioned because local stability holds only in the immediate vicinity of the equilibrium and provides no information about the size of the basin of attraction. Local stability does not guarantee persistence of food webs in
Sneharani, Athahalli H; Karakkat, Jimsheena V; Singh, Sridevi Annapurna; Rao, A G Appu
2010-10-27
Curcumin (diferuloyl methane) is the physiologically and pharmacologically active component of turmeric (Curcuma longa L.). Solubility and stability of curcumin are the limiting factors for realizing its therapeutic potential. ?-Lactoglobulin (?LG), the major whey protein, can solubilize and bind many small hydrophobic molecules. The stability of curcumin bound to ?LG in solution is enhanced 6.7 times, in comparison to curcumin alone (in aqueous solution). The complex formation of curcumin with ?LG has been investigated employing spectroscopic techniques. ?LG interacts with curcumin at pH 7.0 with an association constant of 1.04 ± 0.1 × 10(5) M(-1) to form a 1:1 complex at 25 °C. Entropy and free energy changes for the interaction derived from the van't Hoff plot are 18.7 cal mol(-1) K(-1) and -6.8 kcal mol(-1) at 25 °C, respectively; the interaction is hydrophobic in nature. The interaction of ?LG with curcumin does not affect either the conformation or the state of association of ?LG. Competitive ligand binding measurements, binding studies with denatured ?LG, effect of pH on the curcumin-?LG interaction, Förster energy transfer measurements, and molecular docking studies suggest that curcumin binds to the central calyx of ?LG. These binding studies have prompted the preparation and encapsulation of curcumin in ?LG nanoparticles. Nanoparticles of ?LG prepared by desolvation are found to encapsulate curcumin with >96% efficiency. The solubility of curcumin in ?LG nanoparticle is significantly enhanced to ?625 ?M in comparison with its aqueous solubility (30 nM). Nanoparticles of ?LG, by virtue of their ability to enhance solubility and stability of curcumin, may fit the choice as a carrier molecule. PMID:20925386
Spectral stability of unitary network models
NASA Astrophysics Data System (ADS)
Asch, Joachim; Bourget, Olivier; Joye, Alain
2015-08-01
We review various unitary network models used in quantum computing, spectral analysis or condensed matter physics and establish relationships between them. We show that symmetric one-dimensional quantum walks are universal, as are CMV matrices. We prove spectral stability and propagation properties for general asymptotically uniform models by means of unitary Mourre theory.
Spectral Stability of Unitary Network Models
Joachim Asch; Olivier Bourget; Alain Joye
2015-02-08
We review various unitary network models used in quantum computing, spectral analysis or condensed matter physics and establish relationships between them. We show that symmetric one dimensional quantum walks are universal, as are CMV matrices. We prove spectral stability and propagation properties for general asymptotically uniform models by means of unitary Mourre theory.
Stability of Einstein-aether cosmological models
NASA Astrophysics Data System (ADS)
Sandin, Patrik; Alhulaimi, Bassemah; Coley, Alan
2013-02-01
We use a dynamical systems analysis to investigate the future behavior of Einstein-Aether cosmological models with a scalar field coupling to the expansion of the aether and a noninteracting perfect fluid. The stability of the equilibrium solutions are analyzed, and the results are compared with the standard inflationary cosmological solutions and previously studied cosmological Einstein-aether models.
Stability analysis of the Biot/squirt models for wave propagation in saturated porous media
Jiawei, Liu
2015-01-01
This work is concerned with the Biot/squirt (BISQ) models for wave propagation in saturated porous media. We show that the models allow exponentially exploding solutions, as time goes to infinity, when the characteristic squirt-flow coefficient is negative or has a non-zero imaginary part. We also show that the squirt-flow coefficient does have non-zero imaginary parts for some experimental parameters. Because the models are linear, the existence of such exploding solutions indicates instability of the BISQ models. This result calls on a reconsideration of the widely used BISQ theory. Furthermore, we demonstrate that the 3D isotropic BISQ model is stable when the squirt-flow coefficient is positive. In particular, the original Biot model is unconditionally stable where the squirt-flow coefficient is 1.
CDC01REG1559 Stability and reachability analysis of a hybrid model
Dang, Thao
sensing system found in uni cellular bacteria that exhibit bioluminescence. The luminescence is governed systems to the quorum sensing system, and demonstrates that bioluminescence can be modeled and understood, certain behavior is efficiently performed by the quorum, such as bioluminescence, the best known model
Parallel fast-floquet analysis of trim and stability for large helicopter models
S. Subramanian; S. Venkataratnam; G. H. Gaonkar
2001-01-01
A parallel shooting method based on the fast-Floquet theory and damped Newton iteration is developed to predict helicopter trim (control settings and periodic responses) and the equivalent Floquet transition matrix; the parallel eigenanalysis of this matrix by a library subroutine leads to the damping levels and frequencies. The parallel fast-Floquet analysis comprises these shooting and eigenanalysis methods. It is compared
The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model
NASA Astrophysics Data System (ADS)
Anggriani, N.; Supriatna, A. K.; Soewono, E.
2015-06-01
In this paper we formulate an SIR (Susceptible - Infective - Recovered) model of Dengue fever transmission with constant recruitment. We found a threshold parameter K0, known as the Basic Reproduction Number (BRN). This model has two equilibria, disease-free equilibrium and endemic equilibrium. By constructing suitable Lyapunov function, we show that the disease- free equilibrium is globally asymptotic stable whenever BRN is less than one and when it is greater than one, the endemic equilibrium is globally asymptotic stable. Numerical result shows the dynamic of each compartment together with effect of multiple bio-agent intervention as a control to the dengue transmission.
Stability analysis of a simplified model of a fluidized bed combustor
Trevino, C. (Div. de Estudios de Posgrado, Facultad de Ingenieria, UNAM (MX)); Herrera, C. (Instituto de Investigaciones Electricas, Departamento Mecanico, A.P. 5-849 (MX)); Garcia-Ybarra, P. (Universidad Nacional de Educacion a Distancia, Departamento de Fisica Experimental, Madrid (ES))
1990-06-01
The transient behavior of a simplified two-phase model of a fluidized bed combustor is analyzed in this article. The chemical reaction assumed was only the heterogeneous reaction C + 1/2 O{sub 2} {r arrow} CO, which is also assumed to be controlled by diffusion. A set of nonlinear perturbation equations, around the steady-state solution, have been obtained. The corresponding set of linearized equations are then solved, obtaining the stable and unstable regions in the parametric space. The system proves to be always stable for the possible parametric set of the present model.
www.labex-action.fr Stability Analysis of the Lugiato-Lefever Model for Kerr
Jeanjean, Louis
coupling. Optical-frequency comb generators can be made of a wide variety of WGM resonators. In this study, 22092211(1987) Chembo, Y., Menyuk, C., Spatiotemporal model for Kerr comb generation in whispering gallery mode resonators, ArXiv (2012) Chembo, Y.,Yu N., Modal expantion approach to optical-frequency-comb
Enhanced rotor modeling tailored for rub dynamic stability analysis and simulation
NASA Technical Reports Server (NTRS)
Davis, R. R.
1989-01-01
New methods are presented that allow straightforward application of complex nonlinearities to finite element based rotor dynamic analyses. The key features are: (1) the methods can be implemented with existing finite element or dynamic simulation programs, (2) formulation is general for simple application to a wide range of problems, and (3) implementation is simplified because nonlinear aspects are separated from the linear part of the model. The new techniques are illustrated with examples of inertial nonlinearity and torquewhirl which can be important in rubbing turbomachinery. The sample analyses provide new understanding of these nonlinearities which are discussed.
NASA Technical Reports Server (NTRS)
Jordan, Keith J.
1998-01-01
This report documents results from the NASA-Langley sponsored Euler Technology Assessment Study conducted by Lockheed-Martin Tactical Aircraft Systems (LMTAS). The purpose of the study was to evaluate the ability of the SPLITFLOW code using viscous and inviscid flow models to predict aerodynamic stability and control of an advanced fighter model. The inviscid flow model was found to perform well at incidence angles below approximately 15 deg, but not as well at higher angles of attack. The results using a turbulent, viscous flow model matched the trends of the wind tunnel data, but did not show significant improvement over the Euler solutions. Overall, the predictions were found to be useful for stability and control design purposes.
NASA Technical Reports Server (NTRS)
Charlton, Eric F.
1998-01-01
Aerodynamic analysis are performed using the Lockheed-Martin Tactical Aircraft Systems (LMTAS) Splitflow computational fluid dynamics code to investigate the computational prediction capabilities for vortex-dominated flow fields of two different tailless aircraft models at large angles of attack and sideslip. These computations are performed with the goal of providing useful stability and control data to designers of high performance aircraft. Appropriate metrics for accuracy, time, and ease of use are determined in consultations with both the LMTAS Advanced Design and Stability and Control groups. Results are obtained and compared to wind-tunnel data for all six components of forces and moments. Moment data is combined to form a "falling leaf" stability analysis. Finally, a handful of viscous simulations were also performed to further investigate nonlinearities and possible viscous effects in the differences between the accumulated inviscid computational and experimental data.
NASA Astrophysics Data System (ADS)
Sreenivasachar, Kannan
2001-07-01
Unified power flow controller (UPFC) has been the most versatile Flexible AC Transmission System (FACTS) device due to its ability to control real and reactive power flow on transmission lines while controlling the voltage of the bus to which it is connected. UPFC being a multi-variable power system controller it is necessary to analyze its effect on power system operation. To study the performance of the UPFC in damping power oscillations using PSCAD-EMTDC software, a de-coupled control system has been designed for the shunt inverter to control the UPFC bus voltage and the DC link capacitor voltage. The series inverter of a UPFC controls the real power flow in the transmission line. One problem associated with using a high gain PI controller (used to achieve fast control of transmission line real power flow) for the series inverter of a UPFC to control the real power flow in a transmission line is the presence of low damping. This problem is solved in this research by using a fuzzy controller. A method to model a fuzzy controller in PSCAD-EMTDC software has also been described. Further, in order to facilitate proper operation between the series and the shunt inverter control system, a new real power coordination controller has been developed and its performance was evaluated. The other problem concerning the operation of a UPFC is with respect to transmission line reactive power flow control. Step changes to transmission line reactive power references have significant impact on the UPFC bus voltage. To reduce the adverse effect of step changes in transmission line reactive power references on the UPFC bus voltage, a new reactive power coordination controller has been designed. Transient response studies have been conducted using PSCAD-EMTDC software to show the improvement in power oscillation damping with UPFC. These simulations include the real and reactive power coordination controllers. Finally, a new control strategy has been proposed for UPFC. In this proposed control strategy, the shunt inverter controls the DC link capacitor voltage and the transmission line reactive power flow. The series inverter controls the transmission line real power flow and the UPFC bus voltage. PSCAD-EMTDC simulations have been conducted to show the viability of the control strategy in damping power oscillations.
Cosmological Models and Stability
NASA Astrophysics Data System (ADS)
Andersson, Lars
Principles in the form of heuristic guidelines or generally accepted dogma play an important role in the development of physical theories. In particular, philosophical considerations and principles figure prominently in the work of Albert Einstein. As mentioned in the talk by Ji?í Bi?ák at this conference, Einstein formulated the equivalence principle, an essential step on the road to general relativity, during his time in Prague 1911-1912. In this talk, I would like to discuss some aspects of cosmological models. As cosmology is an area of physics where "principles" such as the "cosmological principle" or the "Copernican principle" play a prominent role in motivating the class of models which form part of the current standard model, I will start by comparing the role of the equivalence principle to that of the principles used in cosmology. I will then briefly describe the standard model of cosmology to give a perspective on some mathematical problems and conjectures on cosmological models, which are discussed in the later part of this paper.
Modeling of shallow stabilization ponds
Babarutsi, S.; Marchand, P.; Safieddine, T.
1999-07-01
A two-dimensional hydrodynamic model is used to simulate shallow stabilization ponds. The model computes the flow field and the concentration distribution of a conservative tracer in the entire area of a pond. The location and the size of the dead zones, the bypassing, and the recirculating areas are also determined by the model. The numerical results are in good agreement with the experimental data obtained in the laboratory.
Stability assessment of power systems by {mu}-analysis
Yao, Z.; Davat, B. [G.R.E.E.N.-ENSEM of INPL (France)
1994-12-31
Based upon the modeling technique of power systems, called {open_quotes}Component Oriented Modeling Technique (COMT),{close_quotes} this paper applies the small gain theorem and {mu}-analysis to establish a stability assessment method for interconnected power systems. Although the stability criterion provides only the sufficient conditions, it permits a direct and fast stability assessment of power systems that may be nonlinear, time variant and unbalanced in three phase structure.
Stability analysis of a polymer coating process
NASA Astrophysics Data System (ADS)
Kallel, A.; Hachem, E.; Demay, Y.; Agassant, J. F.
2015-05-01
A new coating process involving a short stretching distance (1 mm) and a high draw ratio (around 200) is considered. The resulting thin molten polymer film (around 10 micrometers) is set down on a solid primary film and then covered by another solid secondary film. In experimental studies, periodical fluctuation in the thickness of the coated layer may be observed. The processing conditions markedly influence the onset and the development of these defects and modeling will help our understanding of their origins. The membrane approach which has been commonly used for cast film modeling is no longer valid and two dimensional time dependent models (within the thickness) are developed in the whole domain (upstream die and stretching path). A boundary-value problem with a free surface for the Stokes equations is considered and stability of the free surface is assessed using two different numerical strategies: a tracking strategy combined with linear stability analysis involving computation of leading eigenvalues, and a Level Set capturing strategy coupled with transient stability analysis.
Stabilizing hadron resonance gas models
Chatterjee, S.; Godbole, R. M.; Gupta, Sourendu
2010-04-15
We examine the stability of hadron resonance gas models by extending them to include undiscovered resonances through the Hagedorn formula. We find that the influence of unknown resonances on thermodynamics is large but bounded. We model the decays of resonances and investigate the ratios of particle yields in heavy-ion collisions. We find that observables such as hydrodynamics and hadron yield ratios change little upon extending the model. As a result, heavy-ion collisions at the RHIC and LHC are insensitive to a possible exponential rise in the hadronic density of states, thus increasing the stability of the predictions of hadron resonance gas models in this context. Hadron resonance gases are internally consistent up to a temperature higher than the crossover temperature in QCD, but by examining quark number susceptibilities we find that their region of applicability ends below the QCD crossover.
Beg, Ilyas; Minton, Allen P; Hassan, Imtaiyaz; Islam, Asimul; Ahmad, Faizan
2015-06-16
The reversible thermal denaturation of apo ?-lactalbumin and lysozyme was monitored via measurement of changes in absorbance and ellipticity in the presence of varying concentrations of seven mono- and oligosaccharides: glucose, galactose, fructose, sucrose, trehalose, raffinose, and stachyose. The temperature dependence of the unfolding curves was quantitatively accounted for by a two-state model, according to which the free energy of unfolding is increased by an amount that is independent of temperature and depends linearly upon the concentration of added saccharide. The increment of added unfolding free energy per mole of added saccharide was found to depend approximately linearly upon the extent of oligomerization of the saccharide. The relative strength of stabilization of different saccharide oligomers could be accounted for by a simplified statistical-thermodynamic model attributing the stabilization effect to volume exclusion deriving from steric repulsion between protein and saccharide molecules. PMID:26000826
Slope Stability Analysis Using Finite Element Techniques
Swan Jr., Colby Corson
Slope Stability Analysis Using Finite Element Techniques Colby C. Swan, Assoc. Professor Young;LIMIT STATE ANALYSIS OF EARTHEN SLOPES USING DUAL CONTINUUM/FEM APPROACHES A. Review of Classical Methods B. Proposed Slope Stability Analysis Methods C. Comparison of the Methods for Total Stress
NASA Technical Reports Server (NTRS)
Iwens, R. P.; Yu, Y.; Triner, J. E.
1975-01-01
Using state variable representation a nonlinear, discrete-time system is derived that models the converter exactly. This system is linearized about its steady state solution, and converter stability, transient response and audio susceptibility are studied. The steady state solution of the converter is stable if and only if all the roots of the linearized system are absolutely less than unity. Excellent agreement with laboratory test data has been observed.
NASA Technical Reports Server (NTRS)
Sevart, F. D.; Patel, S. M.
1973-01-01
Testing and evaluation of a stability augmentation system for aircraft flight control were performed. The flutter suppression system and synthesis conducted on a scale model of a supersonic wing for a transport aircraft are discussed. Mechanization and testing of the leading and trailing edge surface actuation systems are described. The ride control system analyses for a 375,000 pound gross weight B-52E aircraft are presented. Analyses of the B-52E aircraft maneuver load control system are included.
Stability analysis in Modified Non-Local Gravity
H. Farajollahi; F. Milani
2011-03-18
In this paper we consider FRW cosmology in modified non-local gravity. The stability analysis shows that there is only one stable critical point for the model and the universe undergoes a quintessence dominated era.
Relocation Analysis of Stabilizing MAC
NASA Astrophysics Data System (ADS)
Leone, Pierre; Papatriantafilou, Marina; Schiller, Elad M.
The designers of media access control (MAC) protocols often do not consider the relocation of mobile nodes. Alternatively, when they do assume that the nodes are not stationary, designers tend to assume that some nodes temporarily do not change their location and coordinate the communications among mobile nodes. An understanding is needed of the relationship between the performances of MAC algorithms and the different settings by which the location of the mobile nodes is modeled. We study this relationship with an emphasis on stabilization concepts, which are imperative in mobile ad hoc networks (MANETs). We show that efficient MAC algorithms must balance a trade-off between two strategies; one that is oblivious to the history of local broadcasts and one that is not.
Stability analysis and future singularity of the m2 R square-2 R model of non-local gravity
NASA Astrophysics Data System (ADS)
Dirian, Yves; Mitsou, Ermis
2014-10-01
We analyse the classical stability of the model proposed by Maggiore and Mancarella, where gravity is modified by a term ~ m2 R square-2 R to produce the late-time acceleration of the expansion of the universe. Our study takes into account all excitations of the metric that can potentially drive an instability. There are some subtleties in identifying these modes, as a non-local field theory contains dynamical fields which yet do not correspond to degrees of freedom. Since some of them are ghost-like, we clarify the impact of such modes on the stability of the solutions of interest that are the flat space-time and cosmological solutions. We then find that flat space-time is unstable under scalar perturbations, but the instability manifests itself only at cosmological scales, i.e. out of the region of validity of this solution. It is therefore the stability of the FLRW solution which is relevant there, in which case the scalar perturbations are known to be well-behaved by numerical studies. By finding the analytic solution for the late-time behaviour of the scale factor, which leads to a big rip singularity, we argue that the linear perturbations are bounded in the future because of the domination of Hubble friction. In particular, this effect damps the scalar ghost perturbations which were responsible for destabilizing Minkowski space-time. Thus, the model remains phenomenologically viable.
NASA Astrophysics Data System (ADS)
Guo, Hui-Jun; Huang, Wei; Liu, Xi; Gao, Pan; Zhuo, Shi-Yi; Xin, Jun; Yan, Cheng-Feng; Zheng, Yan-Qing; Yang, Jian-Hua; Shi, Er-Wei
2014-09-01
Polytype stability is very important for high quality SiC single crystal growth. However, the growth conditions for the 4H, 6H and 15R polytypes are similar, and the mechanism of polytype stability is not clear. The kinetics aspects, such as surface-step nucleation, are important. The kinetic Monte Carlo method is a common tool to study surface kinetics in crystal growth. However, the present lattice models for kinetic Monte Carlo simulations cannot solve the problem of the competitive growth of two or more lattice structures. In this study, a competitive lattice model was developed for kinetic Monte Carlo simulation of the competition growth of the 4H and 6H polytypes of SiC. The site positions are fixed at the perfect crystal lattice positions without any adjustment of the site positions. Surface steps on seeds and large ratios of diffusion/deposition have positive effects on the 4H polytype stability. The 3D polytype distribution in a physical vapor transport method grown SiC ingot showed that the facet preserved the 4H polytype even if the 6H polytype dominated the growth surface. The theoretical and experimental results of polytype growth in SiC suggest that retaining the step growth mode is an important factor to maintain a stable single 4H polytype during SiC growth.
Liberzon, Daniel
Stability Analysis and Stabilization of Randomly Switched Systems Debasish Chatterjee and Daniel;2 DEBASISH CHATTERJEE AND DANIEL LIBERZON Among the several stochastic stability notions, perhaps the most
Performance and stability analysis of a photovoltaic power system
NASA Technical Reports Server (NTRS)
Merrill, W. C.; Blaha, R. J.; Pickrell, R. L.
1978-01-01
The performance and stability characteristics of a 10 kVA photovoltaic power system are studied using linear Bode analysis and a nonlinear analog simulation. Power conversion efficiencies, system stability, and system transient performance results are given for system operation at various levels of solar insolation. Additionally, system operation and the modeling of system components for the purpose of computer simulation are described.
Stability Analysis of ISS Medications
NASA Technical Reports Server (NTRS)
Wotring, V. E.
2014-01-01
It is known that medications degrade over time, and that extreme storage conditions will hasten their degradation. The temperature and humidity conditions of the ISS have been shown to be within the ideal ranges for medication storage, but the effects of other environmental factors, like elevated exposure to radiation, have not yet been evaluated. Current operational procedures ensure that ISS medications are re-stocked before expiration, but this may not be possible on long duration exploration missions. For this reason, medications that have experienced long duration storage on the ISS were returned to JSC for analysis to determine any unusual effects of aging in the low- Earth orbit environment. METHODS Medications were obtained by the JSC Pharmacy from commercial distributors and were re-packaged by JSC pharmacists to conserve up mass and volume. All medication doses were part of the ISS crew medical kit and were transported to the International Space Station (ISS) via NASA's Shuttle Transportation System (Space Shuttle). After 568 days of storage, the medications were removed from the supply chain and returned to Earth on a Dragon (SpaceX) capsule. Upon return to Earth, medications were transferred to temperature and humidity controlled environmental chambers until analysis. Nine medications were chosen on the basis of their availability for study. The medications included several of the most heavily used by US crewmembers: 2 sleep aids, 2 antihistamines/decongestants, 3 pain relievers, an antidiarrheal and an alertness medication. Each medication was available at a single time point; analysis of the same medication at multiple time points was not possible. Because the samples examined in this study were obtained opportunistically from medical supplies, there were no control samples available (i.e. samples aged for a similar period of time on the ground); a significant limitation of this study. Medications were analyzed using the HPLC/MS methods described in the United States Pharmacopeia (USP) to measure the amount of intact active ingredient, identify degradation products and measure their amounts. Some analyses were conducted by an independent analytical laboratory, but certain (Schedule) medications could not be shipped to their facility and were analyzed at JSC. RESULTS Nine medications were analyzed with respect to active pharmaceutical ingredient (API) and degradant amounts. Results were compared to the USP requirements for API and degradants/impurities content for every FDA-approved medication. One medication met USP requirements at 5 months after its expiration date. Four of the nine (44% of those tested) medications tested met USP requirements up to 8 months post-expiration. Another 3 medications (33% of those tested) met USP guidelines 2-3 months before expiration. One medication, a compound classed by the FDA as a dietary supplement and sometimes used as a sleep aid, failed to meet USP requirements at 11 months post-expiration. CONCLUSION Analysis of each medication at a single time point provides limited information on the stability of a medication stored in particular conditions; it is not possible to predict how long a medication may be safe and effective from these data. Notwithstanding, five of the nine medications tested (56%) met USP requirements for API and degradants/impurities at least 5 months past expiration dates. The single compound that failed to meet USP requirements is not regulated as strictly as prescription medications are during manufacture; it is unknown if this medication would have met the requirements prior to flight. Notably, it was the furthest beyond its expiration date. Only more comprehensive analysis of flight-aged samples compared to appropriate ground controls will permit determination of spaceflight effects on medication stability.
Massively Parallel Linear Stability Analysis with P_ARPACK for 3D Fluid Flow Modeled with MPSalsa
Lehoucq, R.B.; Salinger, A.G.
1998-10-13
We are interested in the stability of three-dimensional fluid flows to small dkturbances. One computational approach is to solve a sequence of large sparse generalized eigenvalue problems for the leading modes that arise from discretizating the differential equations modeling the flow. The modes of interest are the eigenvalues of largest real part and their associated eigenvectors. We discuss our work to develop an effi- cient and reliable eigensolver for use by the massively parallel simulation code MPSalsa. MPSalsa allows simulation of complex 3D fluid flow, heat transfer, and mass transfer with detailed bulk fluid and surface chemical reaction kinetics.
Power System Transient Stability Analysis through a Homotopy Analysis Method
Wang, Shaobu; Du, Pengwei; Zhou, Ning
2014-04-01
As an important function of energy management systems (EMSs), online contingency analysis plays an important role in providing power system security warnings of instability. At present, N-1 contingency analysis still relies on time-consuming numerical integration. To save computational cost, the paper proposes a quasi-analytical method to evaluate transient stability through time domain periodic solutions’ frequency sensitivities against initial values. First, dynamic systems described in classical models are modified into damping free systems whose solutions are either periodic or expanded (non-convergent). Second, because the sensitivities experience sharp changes when periodic solutions vanish and turn into expanded solutions, transient stability is assessed using the sensitivity. Third, homotopy analysis is introduced to extract frequency information and evaluate the sensitivities only from initial values so that time consuming numerical integration is avoided. Finally, a simple case is presented to demonstrate application of the proposed method, and simulation results show that the proposed method is promising.
Mean flow stability analysis of oscillating jet experiments
Oberleithner, Kilian; Soria, Julio
2014-01-01
Linear stability analysis is applied to the mean flow of an oscillating round jet with the aim to investigate the robustness and accuracy of mean flow stability wave models. The jet's axisymmetric mode is excited at the nozzle lip through a sinusoidal modulation of the flow rate at amplitudes ranging from 0.1 % to 100 %. The instantaneous flow field is measured via particle image velocimetry and decomposed into a mean and periodic part utilizing proper orthogonal decomposition. Local linear stability analysis is applied to the measured mean flow adopting a weakly nonparallel flow approach. The resulting global perturbation field is carefully compared to the measurements in terms of spatial growth rate, phase velocity, and phase and amplitude distribution. It is shown that the stability wave model accurately predicts the excited flow oscillations during their entire growth phase and during a large part of their decay phase. The stability wave model applies over a wide range of forcing amplitudes, showing no pr...
NASA Astrophysics Data System (ADS)
Collier, A.; Lao, L. L.; Abla, G.; Chu, M. S.; Prater, R.; Smith, S. P.; St. John, H. E.; Guo, W.; Li, G.; Pan, C.; Ren, Q.; Park, J. M.; Bisai, N.; Srinivasan, R.; Sun, A. P.; Liu, Y.; Worrall, M.
2010-11-01
This presentation summarizes several useful applications provided by the IMFIT integrated modeling framework to support DIII-D and EAST research. IMFIT is based on Python and utilizes modular task-flow architecture with a central manager and extensive GUI support to coordinate tasks among component modules. The kinetic-EFIT application allows multiple time-slice reconstructions by fetching pressure profile data directly from MDS+ or from ONETWO or PTRANSP. The stability application analyzes a given reference equilibrium for stability limits by performing parameter perturbation studies with MHD codes such as DCON, GATO, ELITE, or PEST3. The transport task includes construction of experimental energy and momentum fluxes from profile analysis and comparison against theoretical models such as MMM95, GLF23, or TGLF.
The stability of colorectal cancer mathematical models
NASA Astrophysics Data System (ADS)
Khairudin, Nur Izzati; Abdullah, Farah Aini
2013-04-01
Colorectal cancer is one of the most common types of cancer. To better understand about the kinetics of cancer growth, mathematical models are used to provide insight into the progression of this natural process which enables physicians and oncologists to determine optimal radiation and chemotherapy schedules and develop a prognosis, both of which are indispensable for treating cancer. This thesis investigates the stability of colorectal cancer mathematical models. We found that continuous saturating feedback is the best available model of colorectal cancer growth. We also performed stability analysis. The result shows that cancer progress in sequence of genetic mutations or epigenetic which lead to a very large number of cells population until become unbounded. The cell population growth initiate and its saturating feedback is overcome when mutation changes causing the net per-capita growth rate of stem or transit cells exceed critical threshold.
Monte Carlo stability analysis of strained layer superlattice interfaces
Dodson, B.W.
1985-01-01
We have developed a procedure, based on conventional Monte Carlo methods, to investigate the limits of stability of a strained layer superlattice (SLS) system as a function of lattice mismatch and layer thickness. The method is demonstrated by the analysis of two-dimensional Lennard-Jones SLS systems, for which the regime of absolute SLS stability is mapped out. Extension of the technique to three-dimensional silicon-like model systems is discussed, and appropriate model potentials for stability analysis of the Si/SiGe system are introduced.
NASA Astrophysics Data System (ADS)
Feng, Xiao-Li; Li, Yu-Xiao; Gu, Jian-Zhong; Zhuo, Yi-Zhong
2009-10-01
The relaxation property of both Eigen model and Crow-Kimura model with a single peak fitness landscape is studied from phase transition point of view. We first analyze the eigenvalue spectra of the replication mutation matrices. For sufficiently long sequences, the almost crossing point between the largest and second-largest eigenvalues locates the error threshold at which critical slowing down behavior appears. We calculate the critical exponent in the limit of infinite sequence lengths and compare it with the result from numerical curve fittings at sufficiently long sequences. We find that for both models the relaxation time diverges with exponent 1 at the error (mutation) threshold point. Results obtained from both methods agree quite well. From the unlimited correlation length feature, the first order phase transition is further confirmed. Finally with linear stability theory, we show that the two model systems are stable for all ranges of mutation rate. The Eigen model is asymptotically stable in terms of mutant classes, and the Crow-Kimura model is completely stable.
NASA Astrophysics Data System (ADS)
Wang, Jinliang; Liu, Shengqiang
2015-01-01
We investigate an in-host model with general incidence and removal rate, as well as distributed delays in virus infections and in productions. By employing Lyapunov functionals and LaSalle's invariance principle, we define and prove the basic reproductive number R0 as a threshold quantity for stability of equilibria. It is shown that if R0 > 1 , then the infected equilibrium is globally asymptotically stable, while if R0 ? 1 , then the infection free equilibrium is globally asymptotically stable under some reasonable assumptions. Moreover, n + 1 distributed delays describe (i) the time between viral entry and the transcription of viral RNA, (ii) the n - 1 -stage time needed for activated infected cells between viral RNA transcription and viral release, and (iii) the time necessary for the newly produced viruses to be infectious (maturation), respectively. The model can describe the viral infection dynamics of many viruses such as HIV-1, HCV and HBV.
Stability analysis and stabilization strategies for linear supply chains
NASA Astrophysics Data System (ADS)
Nagatani, Takashi; Helbing, Dirk
2004-04-01
Due to delays in the adaptation of production or delivery rates, supply chains can be dynamically unstable with respect to perturbations in the consumption rate, which is known as “bull-whip effect”. Here, we study several conceivable production strategies to stabilize supply chains, which is expressed by different specifications of the management function controlling the production speed in dependence of the stock levels. In particular, we will investigate, whether the reaction to stock levels of other producers or suppliers has a stabilizing effect. We will also demonstrate that the anticipation of future stock levels can stabilize the supply system, given the forecast horizon ? is long enough. To show this, we derive linear stability conditions and carry out simulations for different control strategies. The results indicate that the linear stability analysis is a helpful tool for the judgement of the stabilization effect, although unexpected deviations can occur in the non-linear regime. There are also signs of phase transitions and chaotic behavior, but this remains to be investigated more thoroughly in the future.
Concrete gravity dam stability analysis
Morris, D.
1992-09-01
Under Federal Energy Regulatory Commission (FERC) guidelines, dam owners must evaluate the stability of their structures every five years. Because traditional approaches typically yield overly conservative stability estimates, EPRI sponsored the development of a computer code, CG-DAMS, to provide more-realistic assessments that reflect site-specific conditions. This finite-element code-which is available in mainframe, workstation, and personal computer versions-can be used to predict crack growth, shear, and stress under a variety of loads.
Linear stability analysis of homogeneous three-dimensional turbulent flows
NASA Astrophysics Data System (ADS)
Mishra, Anand; Girimaji, Sharath
2012-11-01
We examine the stability characteristics of homogeneous three-dimensional mean flows. Such mean fields can be categorized based on the invariants of the velocity gradient tensor. In this study, the linear stability of different three-dimensional mean-flow topologies and the action of pressure in each category are investigated. Expressly, this entails an analysis of the Kelvin-Moffat system in Fourier space. The concomitant invariant sets and their appurtenant bifurcations are explicated. Thence, the stability characteristics of the system are analyzed, apropos individual modes (i.e., Hydrodynamic stability) and the statistical ensemble (Rapid Distortion Theory). Such understanding can lead to improved pressure-strain correlation models.
NASA Astrophysics Data System (ADS)
Sunil; Sharma, Poonam; Mahajan, Amit
2010-12-01
This paper presents a nonlinear stability analysis of a double-diffusive convection in a magnetized ferrofluid layer confined between stress-free boundaries using a thermal non-equilibrium model by the energy method. A Darcy-Brinkman model is used for the momentum equation and a two-field model is used for the energy equation, each representing the solid and fluid phases separately. The mathematical emphasis is on how to control the nonlinear terms caused by magnetic body and inertia forces. The effects of the interface heat transfer coefficient ( {{\\ H}^\\prime } ) , magnetic parameter (M3), Darcy-Brinkman number ( {\\hat{D}a} ) and porosity-modified conductivity ratio (?') on the onset of ferroconvection in the presence of solute (S') have been analysed. For all the cases studied, it is found that solute gradient enhances the stability of the system. A comparison with linear instability theory shows that there is a difference between the critical Rayleigh numbers and thus indicates the possibility of the existence of a subcritical instability region for ferrofluids. However, for non-ferrofluids stability and instability boundaries coincide.
Zachert, Gregor; Rapp, Marion; Eggert, Rebecca; Schulze-Hessing, Maaike; Gros, Nina; Stratmann, Christina; Wendlandt, Robert; Kaiser, Martin M
2015-08-01
Purpose?For pediatric femoral shaft fractures, elastic stable intramedullary nailing (ESIN) is an accepted method of treatment. But problems regarding stability with shortening or axial deviation are well known in complex fracture types and heavier children. Biomechanical in vitro testing was performed to determine whether two modified osteosyntheses with an additional tension screw fixation or screw fixation alone without nails could significantly improve the stability in comparison to classical ESIN. Methods?A total of 24 synthetic adolescent-sized femoral bone models (Sawbones, 4th generation; Vashon, Washington, United States) with an identical spiral fracture (length 100 mm) were used. All grafts underwent retrograde fixation with two C-shaped steel nails (2C). Of the 24, 8 osteosyntheses were supported by one additional tension screw (2C1S) and another 8 by two screws (2S) in which the intramedullary nails were removed before testing. Each configuration underwent biomechanical testing in 4-point bending, external rotation (ER) and internal rotation (IR). Furthermore, the modifications were tested in axial physiological 9 degrees position for shifting and dynamic compression as well as dynamic load. Results?Both screw configurations (2C1S and 2S) demonstrated a significantly higher stability in comparison to the 2C configuration in 4-point bending (anterior-posterior, 0.95 Nm/mm [2C]?stability for 2S than 2C1S in all testing, except the axial 9 degrees compression tests for shifting. In contrast to the 2C configuration, both modifications (2C1S and 2S) turned out to be stable in dynamic 9 degrees axial compression with a force of 100 up to 1,000?N at 2.5?Hz in 250,000 load cycles. Conclusions?In this in vitro adolescence femur spiral fracture model, the stability of ESIN could be significantly improved by two modifications with additional tension screws. If transferred in clinical practice, these modifications might offer earlier weight bearing and less problems of shortening or axial deviation. PMID:24914565
NASA Technical Reports Server (NTRS)
Smith, Arthur F.
1985-01-01
Results of wind tunnel tests at low forward speed for blade dynamic response and stability of three 62.2 cm (24.5 in) diameter models of the Prop-Fan, advanced turboprop, are presented. Measurements of dynamic response were made with the rotors mounted on an isolated nacelle, with varying tilt for nonuniform inflow. Low speed stall flutter tests were conducted at Mach numbers from 0.0 to 0.35. Measurements are compared to Eigen-solution flutter boundaries. Calculated 1P stress response agrees favorably with experiment. Predicted stall flutter boundaries correlate well with measured high stress regions. Stall flutter is significantly reduced by increased blade sweep. Susceptibility to stall flutter decreases rapidly with forward speed.
On the predictive capability and stability of rubber material models
Zheng, Haining
2008-01-01
Due to the high non-linearity and incompressibility constraint of rubber materials, the predictive capability and stability of rubber material models require specific attention for practical engineering analysis. In this ...
High beta and second stability region transport and stability analysis
Hughes, M.H.; Phillps, M.W.; Todd, A.M.M.; Krishnaswami, J.; Hartley, R.
1992-09-01
This report describes ideal and resistive studies of high-beta plasmas and of the second stability region. Emphasis is focused on supershot'' plasmas in TFIR where MHD instabilities are frequently observed and which spoil their confinement properties. Substantial results are described from the analysis of these high beta poloidal plasmas. During these studies, initial pressure and safety factor profiles were obtained from the TRANSP code, which is used extensively to analyze experimental data. Resistive MBD stability studies of supershot equilibria show that finite pressure stabilization of tearing modes is very strong in these high {beta}p plasmas. This has prompted a detailed re-examination of linear tearing mode theory in which we participated in collaboration with Columbia University and General Atomics. This finite pressure effect is shown to be highly sensitive to small scale details of the pressure profile. Even when an ad hoc method of removing this stabilizing mechanism is implemented, however, it is shown that there is only superficial agreement between resistive MBD stability computation and the experimental data. While the mode structures observed experimentally can be found computationally, there is no convincing correlation with the experimental observations when the computed results are compared with a large set of supershot data. We also describe both the ideal and resistive stability properties of TFIR equilibria near the transition to the second region. It is shown that the highest {beta} plasmas, although stable to infinite-n ideal ballooning modes, can be unstable to the so called infernal'' modes associated with small shear. The sensitivity of these results to the assumed pressure and current density profiles is discussed. Finally, we describe results from two collaborative studies with PPPL. The first involves exploratory studies of the role of the 1/1 mode in tokamaks and, secondly, a study of sawtooth stabilization using ICRF.
Biacore analysis with stabilized GPCRs
Rich, Rebecca L.; Errey, James; Marshall, Fiona; Myszka, David G.
2010-01-01
Using stabilized forms of ?1 adrenergic and A2A adenosine G-protein-coupled receptors, we applied Biacore to monitor receptor activity and characterize binding constants of small-molecule antagonists spanning >20,000 fold in affinity. We also illustrate an improved method for tethering His-tagged receptors on NTA chips to yield stable, high-capacity, high-activity surfaces, as well as a novel approach to regenerate receptor-binding sites. Based on our success with this approach, we expect that the combination of stabilized receptors with biosensor technology will become a common method for characterizing members of this receptor family. PMID:20969829
Solar Dynamic Power System Stability Analysis and Control
NASA Technical Reports Server (NTRS)
Momoh, James A.; Wang, Yanchun
1996-01-01
The objective of this research is to conduct dynamic analysis, control design, and control performance test of solar power system. Solar power system consists of generation system and distribution network system. A bench mark system is used in this research, which includes a generator with excitation system and governor, an ac/dc converter, six DDCU's and forty-eight loads. A detailed model is used for modeling generator. Excitation system is represented by a third order model. DDCU is represented by a seventh order system. The load is modeled by the combination of constant power and constant impedance. Eigen-analysis and eigen-sensitivity analysis are used for system dynamic analysis. The effects of excitation system, governor, ac/dc converter control, and the type of load on system stability are discussed. In order to improve system transient stability, nonlinear ac/dc converter control is introduced. The direct linearization method is used for control design. The dynamic analysis results show that these controls affect system stability in different ways. The parameter coordination of controllers are recommended based on the dynamic analysis. It is concluded from the present studies that system stability is improved by the coordination of control parameters and the nonlinear ac/dc converter control stabilize system oscillation caused by the load change and system fault efficiently.
Martínez-García, C G; Olguín, M T; Fall, C
2014-08-01
Aerobic digestion batch tests were run on a sludge model that contained only two fractions, the heterotrophic biomass (XH) and its endogenous residue (XP). The objective was to describe the stabilization of the sludge and estimate the endogenous decay parameters. Modeling was performed with Aquasim, based on long-term data of volatile suspended solids and chemical oxygen demand (VSS, COD). Sensitivity analyses were carried out to determine the conditions for unique identifiability of the parameters. Importantly, it was found that the COD/VSS ratio of the endogenous residues (1.06) was significantly lower than for the active biomass fraction (1.48). The decay rate constant of the studied sludge (low bH, 0.025 d(-1)) was one-tenth that usually observed (0.2d(-1)), which has two main practical significances. Digestion time required is much more long; also the oxygen uptake rate might be <1.5 mg O?/gTSSh (biosolids standards), without there being significant decline in the biomass. PMID:24907570
Stability analysis of graphite crystal lattice with moment interactions
Krivtsov, Anton M.
Stability analysis of graphite crystal lattice with moment interactions Igor E. Berinskiy A. M a math- ematical model for interaction between carbon atoms in hexagonal graphite lattice. The 2D layer of graphite lattice is considered. The model is based on usage of moment interactions. Carbon atom
The stability of input structures in a supply-driven input-output model: A regional analysis
Allison, T.
1994-06-01
Disruptions in the supply of strategic resources or other crucial factor inputs often present significant problems for planners and policymakers. The problem may be particularly significant at the regional level where higher levels of product specialization mean supply restrictions are more likely to affect leading regional industries. To maintain economic stability in the event of a supply restriction, regional planners may therefore need to evaluate the importance of market versus non-market systems for allocating the remaining supply of the disrupted resource to the region`s leading consuming industries. This paper reports on research that has attempted to show that large short term changes on the supply side do not lead to substantial changes in input coefficients and do not therefore mean the abandonment of the concept of the production function as has been suggested (Oosterhaven, 1988). The supply-driven model was tested for six sectors of the economy of Washington State and found to yield new input coefficients whose values were in most cases close approximations of their original values, even with substantial changes in supply. Average coefficient changes from a 50% output reduction in these six sectors were in the vast majority of cases (297 from a total of 315) less than +2.0% of their original values, excluding coefficient changes for the restricted input. Given these small changes, the most important issue for the validity of the supply-driven input-output model may therefore be the empirical question of the extent to which these coefficient changes are acceptable as being within the limits of approximation.
Stability determination of steric-stabilized nanoparticles - Numerical and experimental analysis
NASA Astrophysics Data System (ADS)
Olatunji, Olakunle; Tomas, Jürgen
2013-06-01
Particle sedimentation is an essential tool for determining the stability behaviour of colloidal dispersions. In this study, we derive new analytical equations of motion for estimating the settling velocity-time function of particles sedimenting in colloidal dispersions under uniformly accelerated sedimentation model. The stability behaviour of spherically shaped TiO2 nanoparticles synthesized by reproducible sol-gel process and steric-stabilized by commercial surfactant Brij 30 were analysed both numerically and experimentally. Our newly derived analytical equation was used for the numerical analysis while experimentally a multiple light scattering analysis was applied. We show in the study that increase in solid volume fraction means decrease in porosity within the colloidal dispersion system and dispersion stability estimated by particle sedimentation rate is accurate.
Developments in Cylindrical Shell Stability Analysis
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Starnes, James H., Jr.
1998-01-01
Today high-performance computing systems and new analytical and numerical techniques enable engineers to explore the use of advanced materials for shell design. This paper reviews some of the historical developments of shell buckling analysis and design. The paper concludes by identifying key research directions for reliable and robust methods development in shell stability analysis and design.
NASA Astrophysics Data System (ADS)
Karapetsas, George; Tsamopoulos, John
2013-09-01
During extrusion of viscoelastic fluids various flow instabilities may arise resulting in a distorted free surface. In order to investigate the factors generating these instabilities we performed a linear stability analysis at zero Reynolds number around the steady solution of the cylindrical or planar stick-slip flow for a viscoelastic fluid following the affine exponential Phan-Thien Tanner (PTT) model. Stick-slip flow is an important special case of the extrudate swell problem, since the latter reduces to it in the limit of infinite surface tension but avoids the complications of a free-boundary flow. The linear stability analysis is performed for various values of the rheological parameters of the PTT model in order to determine the effects of all material properties. It is found that the flow becomes unstable as the Weissenberg number increases above a critical value, due to a Hopf bifurcation suggesting that the flow will become periodic in time. Both the critical value of the Weissenberg number and the frequency of the instability depend strongly on the rheological parameters of the viscoelastic model. The corresponding eigenvectors indicate that the perturbed flow field has a spatially periodic structure, initiated at the rim of the die, extending for up to 5-7 die gaps downstream, but confined close to the surface of the extrudate, in qualitative agreement with existing experiments. This suggests that instability is generated by the combination of the singularity in the velocity and stress fields at the die lip and the strong extension that the extruded polymer undergoes near its surface. The elasticity alone can be responsible for the appearance of instabilities in the extrusion process of viscoelastic fluids and the often used assumptions of wall slip or compressibility, although they might be present, are not required. Finally, the mechanisms that produce these instabilities are examined through energy analysis of the disturbance flow.
Convective instability in sedimentation: Linear stability analysis
NASA Astrophysics Data System (ADS)
Yu, Xiao; Hsu, Tian-Jian; Balachandar, S.
2013-01-01