Science.gov

Sample records for stability maintenance proteins

  1. Structural Maintenance of Chromosome (SMC) Proteins Link Microtubule Stability to Genome Integrity*

    PubMed Central

    Laflamme, Guillaume; Tremblay-Boudreault, Thierry; Roy, Marc-André; Andersen, Parker; Bonneil, Éric; Atchia, Kaleem; Thibault, Pierre; D'Amours, Damien; Kwok, Benjamin H.

    2014-01-01

    Structural maintenance of chromosome (SMC) proteins are key organizers of chromosome architecture and are essential for genome integrity. They act by binding to chromatin and connecting distinct parts of chromosomes together. Interestingly, their potential role in providing connections between chromatin and the mitotic spindle has not been explored. Here, we show that yeast SMC proteins bind directly to microtubules and can provide a functional link between microtubules and DNA. We mapped the microtubule-binding region of Smc5 and generated a mutant with impaired microtubule binding activity. This mutant is viable in yeast but exhibited a cold-specific conditional lethality associated with mitotic arrest, aberrant spindle structures, and chromosome segregation defects. In an in vitro reconstitution assay, this Smc5 mutant also showed a compromised ability to protect microtubules from cold-induced depolymerization. Collectively, these findings demonstrate that SMC proteins can bind to and stabilize microtubules and that SMC-microtubule interactions are essential to establish a robust system to maintain genome integrity. PMID:25135640

  2. Cops2 promotes pluripotency maintenance by Stabilizing Nanog Protein and Repressing Transcription.

    PubMed

    Zhang, Weiyu; Ni, Peiling; Mou, Chunlin; Zhang, Yanqin; Guo, Hongchao; Zhao, Tong; Loh, Yuin-Han; Chen, Lingyi

    2016-01-01

    The COP9 signalosome has been implicated in pluripotency maintenance of human embryonic stem cells. Yet, the mechanism for the COP9 signalosome to regulate pluripotency remains elusive. Through knocking down individual COP9 subunits, we demonstrate that Cops2, but not the whole COP9 signalosome, is essential for pluripotency maintenance in mouse embryonic stem cells. Down-regulation of Cops2 leads to reduced expression of pluripotency genes, slower proliferation rate, G2/M cell cycle arrest, and compromised embryoid differentiation of embryonic stem cells. Cops2 also facilitates somatic cell reprogramming. We further show that Cops2 binds to Nanog protein and prevent the degradation of Nanog by proteasome. Moreover, Cops2 functions as transcriptional corepressor to facilitate pluripotency maintenance. Altogether, our data reveal the essential role and novel mechanisms of Cops2 in pluripotency maintenance. PMID:27226076

  3. Cops2 promotes pluripotency maintenance by Stabilizing Nanog Protein and Repressing Transcription

    PubMed Central

    Zhang, Weiyu; Ni, Peiling; Mou, Chunlin; Zhang, Yanqin; Guo, Hongchao; Zhao, Tong; Loh, Yuin-Han; Chen, Lingyi

    2016-01-01

    The COP9 signalosome has been implicated in pluripotency maintenance of human embryonic stem cells. Yet, the mechanism for the COP9 signalosome to regulate pluripotency remains elusive. Through knocking down individual COP9 subunits, we demonstrate that Cops2, but not the whole COP9 signalosome, is essential for pluripotency maintenance in mouse embryonic stem cells. Down-regulation of Cops2 leads to reduced expression of pluripotency genes, slower proliferation rate, G2/M cell cycle arrest, and compromised embryoid differentiation of embryonic stem cells. Cops2 also facilitates somatic cell reprogramming. We further show that Cops2 binds to Nanog protein and prevent the degradation of Nanog by proteasome. Moreover, Cops2 functions as transcriptional corepressor to facilitate pluripotency maintenance. Altogether, our data reveal the essential role and novel mechanisms of Cops2 in pluripotency maintenance. PMID:27226076

  4. Protein Degradation Pathways Regulate the Functions of Helicases in the DNA Damage Response and Maintenance of Genomic Stability

    PubMed Central

    Sommers, Joshua A.; Suhasini, Avvaru N.; Brosh, Robert M.

    2015-01-01

    Degradation of helicases or helicase-like proteins, often mediated by ubiquitin-proteasomal pathways, plays important regulatory roles in cellular mechanisms that respond to DNA damage or replication stress. The Bloom’s syndrome helicase (BLM) provides an example of how helicase degradation pathways, regulated by post-translational modifications and protein interactions with components of the Fanconi Anemia (FA) interstrand cross-link (ICL) repair pathway, influence cell cycle checkpoints, DNA repair, and replication restart. The FANCM DNA translocase can be targeted by checkpoint kinases that exert dramatic effects on FANCM stability and chromosomal integrity. Other work provides evidence that degradation of the F-box DNA helicase (FBH1) helps to balance translesion synthesis (TLS) and homologous recombination (HR) repair at blocked replication forks. Degradation of the helicase-like transcription factor (HLTF), a DNA translocase and ubiquitylating enzyme, influences the choice of post replication repair (PRR) pathway. Stability of the Werner syndrome helicase-nuclease (WRN) involved in the replication stress response is regulated by its acetylation. Turning to transcription, stability of the Cockayne Syndrome Group B DNA translocase (CSB) implicated in transcription-coupled repair (TCR) is regulated by a CSA ubiquitin ligase complex enabling recovery of RNA synthesis. Collectively, these studies demonstrate that helicases can be targeted for degradation to maintain genome homeostasis. PMID:25906194

  5. Stabilization Pond Operation and Maintenance Manual.

    ERIC Educational Resources Information Center

    Sexauer, Willard N.; Karn, Roger V.

    This manual provides the waste stabilization pond operator with the basics necessary for the treatment of wastewater in stabilization ponds. The material is organized as a comprehensive guide that follows the normal operation and maintenance procedures from the time the wastewater enters the left station until it leaves the pond. A comprehensive…

  6. Forces Stabilizing Proteins

    PubMed Central

    Pace, C. Nick; Scholtz, J. Martin; Grimsley, Gerald R.

    2014-01-01

    The goal of this article is to summarize what has been learned about the major forces stabilizing proteins since the late 1980s when site-directed mutagenesis became possible. The following conclusions are derived from experimental studies of hydrophobic and hydrogen bonding variants. 1. Based on studies of 138 hydrophobic interaction variants in 11 proteins, burying a –CH2– group on folding contributes 1.1 ± 0.5 kcal/mol to protein stability. 2. The burial of nonpolar side chains contributes to protein stability in two ways: first, a term that depends on the removal of the side chains from water and, more importantly, the enhanced London dispersion forces that result from the tight packing in the protein interior. 3. Based on studies of 151 hydrogen bonding variants in 15 proteins, forming a hydrogen bond on folding contributes 1.1 ± 0.8 kcal/mol to protein stability. 4. The contribution of hydrogen bonds to protein stability is strongly context dependent. 5. Hydrogen bonds by side chains and peptide groups make similar contributions to protein stability. 6. Polar group burial can make a favorable contribution to protein stability even if the polar group is not hydrogen bonded. 7. Hydrophobic interactions and hydrogen bonds both make large contributions to protein stability. PMID:24846139

  7. Fanconi anemia proteins in telomere maintenance.

    PubMed

    Sarkar, Jaya; Liu, Yie

    2016-07-01

    Mammalian chromosome ends are protected by nucleoprotein structures called telomeres. Telomeres ensure genome stability by preventing chromosome termini from being recognized as DNA damage. Telomere length homeostasis is inevitable for telomere maintenance because critical shortening or over-lengthening of telomeres may lead to DNA damage response or delay in DNA replication, and hence genome instability. Due to their repetitive DNA sequence, unique architecture, bound shelterin proteins, and high propensity to form alternate/secondary DNA structures, telomeres are like common fragile sites and pose an inherent challenge to the progression of DNA replication, repair, and recombination apparatus. It is conceivable that longer the telomeres are, greater is the severity of such challenges. Recent studies have linked excessively long telomeres with increased tumorigenesis. Here we discuss telomere abnormalities in a rare recessive chromosomal instability disorder called Fanconi Anemia and the role of the Fanconi Anemia pathway in telomere biology. Reports suggest that Fanconi Anemia proteins play a role in maintaining long telomeres, including processing telomeric joint molecule intermediates. We speculate that ablation of the Fanconi Anemia pathway would lead to inadequate aberrant structural barrier resolution at excessively long telomeres, thereby causing replicative burden on the cell. PMID:27118469

  8. Stabilized polyacrylic saccharide protein conjugates

    DOEpatents

    Callstrom, Matthew R.; Bednarski, Mark D.; Gruber, Patrick R.

    1996-01-01

    This invention is directed to water soluble protein polymer conjugates which are stabile in hostile environments. The conjugate comprises a protein which is linked to an acrylic polymer at multiple points through saccharide linker groups.

  9. Mechanisms of RecQ helicases in pathways of DNA metabolism and maintenance of genomic stability

    PubMed Central

    Sharma, Sudha; Doherty, Kevin M.; Brosh, Robert M.

    2006-01-01

    Helicases are molecular motor proteins that couple the hydrolysis of NTP to nucleic acid unwinding. The growing number of DNA helicases implicated in human disease suggests that their vital specialized roles in cellular pathways are important for the maintenance of genome stability. In particular, mutations in genes of the RecQ family of DNA helicases result in chromosomal instability diseases of premature aging and/or cancer predisposition. We will discuss the mechanisms of RecQ helicases in pathways of DNA metabolism. A review of RecQ helicases from bacteria to human reveals their importance in genomic stability by their participation with other proteins to resolve DNA replication and recombination intermediates. In the light of their known catalytic activities and protein interactions, proposed models for RecQ function will be summarized with an emphasis on how this distinct class of enzymes functions in chromosomal stability maintenance and prevention of human disease and cancer. PMID:16925525

  10. Role of polycomb group protein cbx2/m33 in meiosis onset and maintenance of chromosome stability in the Mammalian germline.

    PubMed

    Baumann, Claudia; De La Fuente, Rabindranath

    2011-01-01

    Polycomb group proteins (PcG) are major epigenetic regulators, essential for establishing heritable expression patterns of developmental control genes. The mouse PcG family member M33/Cbx2 (Chromobox homolog protein 2) is a component of the Polycomb-Repressive Complex 1 (PRC1). Targeted deletion of Cbx2/M33 in mice results in homeotic transformations of the axial skeleton, growth retardation and male-to-female sex reversal. In this study, we tested whether Cbx2 is involved in the control of chromatin remodeling processes during meiosis. Our analysis revealed sex reversal in 28.6% of XY(-/-) embryos, in which a hypoplastic testis and a contralateral ovary were observed in close proximity to the kidney, while the remaining male mutant fetuses exhibited bilateral testicular hypoplasia. Notably, germ cells recovered from Cbx2((XY-/-)) testes on day 18.5 of fetal development exhibited premature meiosis onset with synaptonemal complex formation suggesting a role for Cbx2 in the control of meiotic entry in male germ cells. Mutant females exhibited small ovaries with significant germ cell loss and a high proportion of oocytes with abnormal synapsis and non-homologous interactions at the pachytene stage as well as formation of univalents at diplotene. These defects were associated with failure to resolve DNA double strand breaks marked by persistent γH2AX and Rad51 foci at the late pachytene stage. Importantly, two factors required for meiotic silencing of asynapsed chromatin, ubiquitinated histone H2A (ubH2A) and the chromatin remodeling protein BRCA1, co-localized with fully synapsed chromosome axes in the majority of Cbx2((-/-)) oocytes. These results provide novel evidence that Cbx2 plays a critical and previously unrecognized role in germ cell viability, meiosis onset and homologous chromosome synapsis in the mammalian germline. PMID:22200029

  11. Performance of protein stability predictors.

    PubMed

    Khan, Sofia; Vihinen, Mauno

    2010-06-01

    Stability is a fundamental property affecting function, activity, and regulation of biomolecules. Stability changes are often found for mutated proteins involved in diseases. Stability predictors computationally predict protein-stability changes caused by mutations. We performed a systematic analysis of 11 online stability predictors' performances. These predictors are CUPSAT, Dmutant, FoldX, I-Mutant2.0, two versions of I-Mutant3.0 (sequence and structure versions), MultiMutate, MUpro, SCide, Scpred, and SRide. As input, 1,784 single mutations found in 80 proteins were used, and these mutations did not include those used for training. The programs' performances were also assessed according to where the mutations were found in the proteins, that is, in secondary structures and on the surface or in the core of a protein, and according to protein structure type. The extents to which the mutations altered the occupied volumes at the residue sites and the charge interactions were also characterized. The predictions of all programs were in line with the experimental data. I-Mutant3.0 (utilizing structural information), Dmutant, and FoldX were the most reliable predictors. The stability-center predictors performed with similar accuracy. However, at best, the predictions were only moderately accurate ( approximately 60%) and significantly better tools would be needed for routine analysis of mutation effects. PMID:20232415

  12. Stability of frailty in the social/health maintenance organization.

    PubMed

    Hallfors, D; Leutz, W; Capitman, J; Ritter, G

    1994-01-01

    Although many long-term care (LTC) programs assume that the disabilities of their frail elderly participants are stable in nature, there has been suggestive evidence to the contrary. This study tests stability of disability among social/health maintenance organization (S/HMO) members who were judged eligible for admission into a nursing home. Identified persons were reassessed quarterly. By the end of 1 year, less than 50 percent were still considered to be nursing home eligible. Logit analysis revealed an increased likelihood of instability for persons who were newly identified as functionally disabled after hospitalization. Policy implications for capitated managed-care programs for the elderly are discussed. PMID:10138480

  13. Protein Fibrils Induce Emulsion Stabilization.

    PubMed

    Peng, Jinfeng; Simon, Joana Ralfas; Venema, Paul; van der Linden, Erik

    2016-03-01

    The behavior of an oil-in-water emulsion was studied in the presence of protein fibrils for a wide range of fibril concentrations by using rheology, diffusing wave spectroscopy, and confocal laser scanning microscopy. Results showed that above a minimum fibril concentration depletion flocculation occurred, leading to oil droplet aggregation and enhanced creaming of the emulsion. Upon further increasing the concentration of the protein fibrils, the emulsions were stabilized. In this stable regime both aggregates of droplets and single droplets are present, and these aggregates are smaller than the aggregates in the flocculated emulsion samples at the lower fibril concentrations. The size of the droplet aggregates in the stabilized emulsions is independent of fibril concentration. In addition, the droplet aggregation was reversible upon dilution both by a pH 2 HCl solution and by a fibril solution at the same concentration. The viscosity of the emulsions containing fibrils was comparable to that of the pure fibril solution. Neither fibril networks nor droplet gel networks were observed in our study. The stabilization mechanism of emulsions containing long protein fibrils at high protein fibril concentrations points toward the mechanism of a kinetic stabilization. PMID:26882086

  14. The role of stabilization centers in protein thermal stability.

    PubMed

    Magyar, Csaba; Gromiha, M Michael; Sávoly, Zoltán; Simon, István

    2016-02-26

    The definition of stabilization centers was introduced almost two decades ago. They are centers of noncovalent long range interaction clusters, believed to have a role in maintaining the three-dimensional structure of proteins by preventing their decay due to their cooperative long range interactions. Here, this hypothesis is investigated from the viewpoint of thermal stability for the first time, using a large protein thermodynamics database. The positions of amino acids belonging to stabilization centers are correlated with available experimental thermodynamic data on protein thermal stability. Our analysis suggests that stabilization centers, especially solvent exposed ones, do contribute to the thermal stabilization of proteins. PMID:26845354

  15. Protein stability: a crystallographer’s perspective

    PubMed Central

    Deller, Marc C.; Kong, Leopold; Rupp, Bernhard

    2016-01-01

    Protein stability is a topic of major interest for the biotechnology, pharmaceutical and food industries, in addition to being a daily consideration for academic researchers studying proteins. An understanding of protein stability is essential for optimizing the expression, purification, formulation, storage and structural studies of proteins. In this review, discussion will focus on factors affecting protein stability, on a somewhat practical level, particularly from the view of a protein crystallographer. The differences between protein conformational stability and protein compositional stability will be discussed, along with a brief introduction to key methods useful for analyzing protein stability. Finally, tactics for addressing protein-stability issues during protein expression, purification and crystallization will be discussed. PMID:26841758

  16. 40 CFR 1065.410 - Maintenance limits for stabilized test engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Maintenance limits for stabilized test engines. 1065.410 Section 1065.410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Selection, Preparation, and Maintenance § 1065.410 Maintenance limits for...

  17. 40 CFR 1065.410 - Maintenance limits for stabilized test engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....410 Maintenance limits for stabilized test engines. (a) After you stabilize the test engine's emission...—you must completely test an engine for emissions before and after doing any maintenance that might... your test engine has a major mechanical failure that requires you to take it apart, you may no...

  18. Computational approaches for predicting mutant protein stability.

    PubMed

    Kulshreshtha, Shweta; Chaudhary, Vigi; Goswami, Girish K; Mathur, Nidhi

    2016-05-01

    Mutations in the protein affect not only the structure of protein, but also its function and stability. Prediction of mutant protein stability with accuracy is desired for uncovering the molecular aspects of diseases and design of novel proteins. Many advanced computational approaches have been developed over the years, to predict the stability and function of a mutated protein. These approaches based on structure, sequence features and combined features (both structure and sequence features) provide reasonably accurate estimation of the impact of amino acid substitution on stability and function of protein. Recently, consensus tools have been developed by incorporating many tools together, which provide single window results for comparison purpose. In this review, a useful guide for the selection of tools that can be employed in predicting mutated proteins' stability and disease causing capability is provided. PMID:27160393

  19. Contribution of hydrogen bonds to protein stability.

    PubMed

    Pace, C Nick; Fu, Hailong; Lee Fryar, Katrina; Landua, John; Trevino, Saul R; Schell, David; Thurlkill, Richard L; Imura, Satoshi; Scholtz, J Martin; Gajiwala, Ketan; Sevcik, Jozef; Urbanikova, Lubica; Myers, Jeffery K; Takano, Kazufumi; Hebert, Eric J; Shirley, Bret A; Grimsley, Gerald R

    2014-05-01

    Our goal was to gain a better understanding of the contribution of the burial of polar groups and their hydrogen bonds to the conformational stability of proteins. We measured the change in stability, Δ(ΔG), for a series of hydrogen bonding mutants in four proteins: villin headpiece subdomain (VHP) containing 36 residues, a surface protein from Borrelia burgdorferi (VlsE) containing 341 residues, and two proteins previously studied in our laboratory, ribonucleases Sa (RNase Sa) and T1 (RNase T1). Crystal structures were determined for three of the hydrogen bonding mutants of RNase Sa: S24A, Y51F, and T95A. The structures are very similar to wild type RNase Sa and the hydrogen bonding partners form intermolecular hydrogen bonds to water in all three mutants. We compare our results with previous studies of similar mutants in other proteins and reach the following conclusions. (1) Hydrogen bonds contribute favorably to protein stability. (2) The contribution of hydrogen bonds to protein stability is strongly context dependent. (3) Hydrogen bonds by side chains and peptide groups make similar contributions to protein stability. (4) Polar group burial can make a favorable contribution to protein stability even if the polar groups are not hydrogen bonded. (5) The contribution of hydrogen bonds to protein stability is similar for VHP, a small protein, and VlsE, a large protein. PMID:24591301

  20. Contribution of hydrogen bonds to protein stability

    PubMed Central

    Pace, C Nick; Fu, Hailong; Fryar, Katrina Lee; Landua, John; Trevino, Saul R; Schell, David; Thurlkill, Richard L; Imura, Satoshi; Scholtz, J Martin; Gajiwala, Ketan; Sevcik, Jozef; Urbanikova, Lubica; Myers, Jeffery K; Takano, Kazufumi; Hebert, Eric J; Shirley, Bret A; Grimsley, Gerald R

    2014-01-01

    Our goal was to gain a better understanding of the contribution of the burial of polar groups and their hydrogen bonds to the conformational stability of proteins. We measured the change in stability, Δ(ΔG), for a series of hydrogen bonding mutants in four proteins: villin headpiece subdomain (VHP) containing 36 residues, a surface protein from Borrelia burgdorferi (VlsE) containing 341 residues, and two proteins previously studied in our laboratory, ribonucleases Sa (RNase Sa) and T1 (RNase T1). Crystal structures were determined for three of the hydrogen bonding mutants of RNase Sa: S24A, Y51F, and T95A. The structures are very similar to wild type RNase Sa and the hydrogen bonding partners form intermolecular hydrogen bonds to water in all three mutants. We compare our results with previous studies of similar mutants in other proteins and reach the following conclusions. (1) Hydrogen bonds contribute favorably to protein stability. (2) The contribution of hydrogen bonds to protein stability is strongly context dependent. (3) Hydrogen bonds by side chains and peptide groups make similar contributions to protein stability. (4) Polar group burial can make a favorable contribution to protein stability even if the polar groups are not hydrogen bonded. (5) The contribution of hydrogen bonds to protein stability is similar for VHP, a small protein, and VlsE, a large protein. PMID:24591301

  1. Contribution of Hydrogen Bonds to Protein Stability

    NASA Astrophysics Data System (ADS)

    Pace, Nick

    2014-03-01

    I will discuss the contribution of the burial of polar groups and their hydrogen bonds to the conformational stability of proteins. We measured the change in stability, Δ(Δ G), for a series of hydrogen bonding mutants in four proteins: villin head piece subdomain (VHP) containing 36 residues, a surface protein from Borrelia burgdorferi (VlsE) containing 341 residues, and two proteins previously studied in our laboratory, ribonucleases Sa (RNase Sa) and T1 (RNase T1). Crystal structures were determined for three of the hydrogen bonding mutants of RNase Sa: S24A (1.1Å), Y51F(1.5Å), and T95A(1.3Å). The structures are very similar to wild type RNase Sa and the hydrogen bonding partners always form intermolecular hydrogen bonds to water in the mutants. We compare our results with previous studies of similar mutants in other proteins and reach the following conclusions: 1) Hydrogen bonds contribute favorably to protein stability. 2) The contribution of hydrogen bonds to protein stability is strongly context dependent. 3) Hydrogen bonds by side chains and peptide groups make similar contributions to protein stability. 4) Polar group burial can make a favorable contribution to protein stability even if the polar groups are not hydrogen bonded. 5) The contribution of hydrogen bonds to protein stability is similar for VHP, a small protein, and VlsE, a large protein.

  2. Maintenance of genome stability in plants: repairing DNA double strand breaks and chromatin structure stability.

    PubMed

    Roy, Sujit

    2014-01-01

    Plant cells are subject to high levels of DNA damage resulting from plant's obligatory dependence on sunlight and the associated exposure to environmental stresses like solar UV radiation, high soil salinity, drought, chilling injury, and other air and soil pollutants including heavy metals and metabolic by-products from endogenous processes. The irreversible DNA damages, generated by the environmental and genotoxic stresses affect plant growth and development, reproduction, and crop productivity. Thus, for maintaining genome stability, plants have developed an extensive array of mechanisms for the detection and repair of DNA damages. This review will focus recent advances in our understanding of mechanisms regulating plant genome stability in the context of repairing of double stand breaks and chromatin structure maintenance. PMID:25295048

  3. Recombination and the maintenance of plant organelle genome stability.

    PubMed

    Maréchal, Alexandre; Brisson, Normand

    2010-04-01

    Like their nuclear counterpart, the plastid and mitochondrial genomes of plants have to be faithfully replicated and repaired to ensure the normal functioning of the plant. Inability to maintain organelle genome stability results in plastid and/or mitochondrial defects, which can lead to potentially detrimental phenotypes. Fortunately, plant organelles have developed multiple strategies to maintain the integrity of their genetic material. Of particular importance among these processes is the extensive use of DNA recombination. In fact, recombination has been implicated in both the replication and the repair of organelle genomes. Revealingly, deregulation of recombination in organelles results in genomic instability, often accompanied by adverse consequences for plant fitness. The recent identification of four families of proteins that prevent aberrant recombination of organelle DNA sheds much needed mechanistic light on this important process. What comes out of these investigations is a partial portrait of the recombination surveillance machinery in which plants have co-opted some proteins of prokaryotic origin but have also evolved whole new factors to keep their organelle genomes intact. These new features presumably optimized the protection of plastid and mitochondrial genomes against the particular genotoxic stresses they face. PMID:20180912

  4. MAINTENANCE AND STABILITY OF INTRODUCED GENOTYPES IN GROUNDWATER AQUIFER MATERIAL

    EPA Science Inventory

    Three indigenous groundwater bacterial strains and Pseudomonas putida harboring plasmids TOL (pWWO) and RK2 were introduced into experimentally contaminated groundwater aquifer microcosms. Maintenance of the introduced genotypes was measured over time by colony hybridization with...

  5. Protein Interactions in Genome Maintenance as Novel Antibacterial Targets

    PubMed Central

    Walsh, Brian W.; Shapiro, Walker; Simmons, Lyle A.; Keck, James L.

    2013-01-01

    Antibacterial compounds typically act by directly inhibiting essential bacterial enzyme activities. Although this general mechanism of action has fueled traditional antibiotic discovery efforts for decades, new antibiotic development has not kept pace with the emergence of drug resistant bacterial strains. These limitations have severely restricted the therapeutic tools available for treating bacterial infections. Here we test an alternative antibacterial lead-compound identification strategy in which essential protein-protein interactions are targeted rather than enzymatic activities. Bacterial single-stranded DNA-binding proteins (SSBs) form conserved protein interaction “hubs” that are essential for recruiting many DNA replication, recombination, and repair proteins to SSB/DNA nucleoprotein substrates. Three small molecules that block SSB/protein interactions are shown to have antibacterial activity against diverse bacterial species. Consistent with a model in which the compounds target multiple SSB/protein interactions, treatment of Bacillus subtilis cultures with the compounds leads to rapid inhibition of DNA replication and recombination, and ultimately to cell death. The compounds also have unanticipated effects on protein synthesis that could be due to a previously unknown role for SSB/protein interactions in translation or to off-target effects. Our results highlight the potential of targeting protein-protein interactions, particularly those that mediate genome maintenance, as a powerful approach for identifying new antibacterial compounds. PMID:23536821

  6. Contribution of Hydrophobic Interactions to Protein Stability

    PubMed Central

    Pace, C. Nick; Fu, Hailong; Fryar, Katrina Lee; Landua, John; Trevino, Saul R.; Shirley, Bret A.; Hendricks, Marsha McNutt; Iimura, Satoshi; Gajiwala, Ketan; Scholtz, J. Martin; Grimsley, Gerald R.

    2011-01-01

    Our goal was to gain a better understanding of the contribution of hydrophobic interactions to protein stability. We measured the change in conformational stability, Δ(ΔG), for hydrophobic mutants of four proteins: villin head piece subdomain (VHP) with 36 residues, a surface protein from Borrelia burgdorferi (VlsE) with 341 residues, and two proteins previously studied in our laboratory, ribonucleases Sa and T1. We compare our results with previous studies and reach the following conclusions. 1. Hydrophobic interactions contribute less to the stability of a small protein, VHP (0.6 ± 0.3 kcal/mole per –CH2– group), than to the stability of a large protein, VlsE (1.6 ± 0.3 kcal/mol per –CH2– group). 2. Hydrophobic interactions make the major contribution to the stability of VHP (40 kcal/mol) and the major contributors are (in kcal/mol): Phe 18 (3.9), Met 13 (3.1), Phe 7 (2.9), Phe 11 (2.7), and Leu 21 (2.7). 3. Based on Δ(ΔG) values for 148 hydrophobic mutants in 13 proteins, burying a –CH2– group on folding contributes, on average, 1.1 ± 0.5 kcal/mol to protein stability. 4. The experimental Δ(ΔG) values for aliphatic side chains (Ala, Val, Ile, and Leu) are in good agreement with their ΔGtr values from water to cyclohexane. 5. For 22 proteins with 36 to 534 residues, hydrophobic interactions contribute 60 ± 4% and hydrogen bonds 40 ± 4% to protein stability. 6. Conformational entropy contributes about 2.4 kcal/mol per residue to protein instability. The globular conformation of proteins is stabilized predominately by hydrophobic interactions. PMID:21377472

  7. Contribution of hydrophobic interactions to protein stability.

    PubMed

    Pace, C Nick; Fu, Hailong; Fryar, Katrina Lee; Landua, John; Trevino, Saul R; Shirley, Bret A; Hendricks, Marsha McNutt; Iimura, Satoshi; Gajiwala, Ketan; Scholtz, J Martin; Grimsley, Gerald R

    2011-05-01

    Our goal was to gain a better understanding of the contribution of hydrophobic interactions to protein stability. We measured the change in conformational stability, Δ(ΔG), for hydrophobic mutants of four proteins: villin headpiece subdomain (VHP) with 36 residues, a surface protein from Borrelia burgdorferi (VlsE) with 341 residues, and two proteins previously studied in our laboratory, ribonucleases Sa and T1. We compared our results with those of previous studies and reached the following conclusions: (1) Hydrophobic interactions contribute less to the stability of a small protein, VHP (0.6±0.3 kcal/mol per -CH(2)- group), than to the stability of a large protein, VlsE (1.6±0.3 kcal/mol per -CH(2)- group). (2) Hydrophobic interactions make the major contribution to the stability of VHP (40 kcal/mol) and the major contributors are (in kilocalories per mole) Phe18 (3.9), Met13 (3.1), Phe7 (2.9), Phe11 (2.7), and Leu21 (2.7). (3) Based on the Δ(ΔG) values for 148 hydrophobic mutants in 13 proteins, burying a -CH(2)- group on folding contributes, on average, 1.1±0.5 kcal/mol to protein stability. (4) The experimental Δ(ΔG) values for aliphatic side chains (Ala, Val, Ile, and Leu) are in good agreement with their ΔG(tr) values from water to cyclohexane. (5) For 22 proteins with 36 to 534 residues, hydrophobic interactions contribute 60±4% and hydrogen bonds contribute 40±4% to protein stability. (6) Conformational entropy contributes about 2.4 kcal/mol per residue to protein instability. The globular conformation of proteins is stabilized predominantly by hydrophobic interactions. PMID:21377472

  8. Amphiphiles for protein solubilization and stabilization

    DOEpatents

    Gellman, Samuel Helmer; Chae, Pil Seok; Laible, Philip D.; Wander, Marc J.

    2012-09-11

    The invention provides amphiphiles for manipulating membrane proteins. The amphiphiles can feature carbohydrate-derived hydrophilic groups and branchpoints in the hydrophilic moiety and/or in a lipophilic moiety. Such amphiphiles are useful as detergents for solubilization and stabilization of membrane proteins, including photosynthetic protein superassemblies obtained from bacterial membranes.

  9. Amphiphiles for protein solubilization and stabilization

    DOEpatents

    Gellman, Samuel Helmer; Chae, Pil Seok; Laible, Phillip D; Wander, Marc J

    2014-11-04

    The invention provides amphiphiles for manipulating membrane proteins. The amphiphiles can feature carbohydrate-derived hydrophilic groups and branchpoints in the hydrophilic moiety and/or in a lipophilic moiety. Such amphiphiles are useful as detergents for solubilization and stabilization of membrane proteins, including photosynthetic protein superassemblies obtained from bacterial membranes.

  10. Stabilized polyacrylic saccharide protein conjugates

    DOEpatents

    Callstrom, M.R.; Bednarski, M.D.; Gruber, P.R.

    1996-02-20

    This invention is directed to water soluble protein polymer conjugates which are stable in hostile environments. The conjugate comprises a protein which is linked to an acrylic polymer at multiple points through saccharide linker groups. 16 figs.

  11. Immunoglobulin-domain proteins required for maintenance of ventral nerve cord organization.

    PubMed

    Aurelio, Oscar; Hall, David H; Hobert, Oliver

    2002-01-25

    During development, neurons extend axons along defined routes to specific target cells. We show that additional mechanisms ensure that axons maintain their correct positioning in defined axonal tracts. After termination of axonal outgrowth and target recognition, axons in the ventral nerve cord (VNC) of Caenorhabditis elegans require the presence of a specific VNC neuron, PVT, to maintain their correct positioning in the left and right fascicles of the VNC. PVT may exert its stabilizing function by the temporally tightly controlled secretion of 2-immunoglobulin (Ig)-domain proteins encoded by the zig genes. Dedicated axon maintenance mechanisms may be widely used to ensure the preservation of functional neuronal circuitries. PMID:11809975

  12. Stability of proteins inside a hydrophobic cavity

    NASA Astrophysics Data System (ADS)

    Radhakrishna, Mithun; Sharma, Sumit; Kumar, Sanat K.

    2011-03-01

    Previous studies have shown that enclosing a protein in an athermal cavity stabilizes the protein against reversible unfolding by virtue of eliminating many open chain conformations. Examples of such confined spaces include pores in chromatographic columns, Anfinsen's cage in Chaperonins, interiors of Ribosomes or regions of steric occlusion inside cells. However, the situation is more complex inside a hydrophobic cavity. The protein has a tendency to adsorb on the surface of the hydrophobic cavity, but at the same time it loses conformational entropy because of confinement. We study this system using a simple Hydrophobic Polar (HP) lattice protein model. Canonical Monte Carlo (MC) simulations at different temperatures and surface hydrophobicity show that proteins are stabilized at low and moderate hydrophobicity upon adsorption. The range of surface hydrophobicity over which a protein is stable increases with a decrease in radius of the cavity.

  13. Probing protein stability with unnatural amino acids

    SciTech Connect

    Mendel, D.; Ellman, J.A.; Zhiyuh Chang; Veenstra, D.L.; Kollman, P.A.; Schultz, P.G. )

    1992-06-26

    Unnatural amino acid mutagenesis, in combination with molecular modeling and simulation techniques, was used to probe the effect of side chain structure on protein stability. Specific replacements at position 133 in T4 lysozyme included (1) leucine (wt), norvaline, ethylglycine, and alanine to measure the cost of stepwise removal of methyl groups from the hydrophobic core, (2) norvaline and O-methyl serine to evaluate the effects of side chain solvation, and (3) leucine, S,S-2-amino-4-methylhexanoic acid, and S-2-amino-3-cyclopentylpropanoic acid to measure the influence of packing density and side chain conformational entropy on protein stability. All of these factors (hydrophobicity, packing, conformational entropy, and cavity formation) significantly influence protein stability and must be considered when analyzing any structural change to proteins.

  14. Stabilizing effect of knots on proteins

    PubMed Central

    Sułkowska, Joanna I.; Sułkowski, Piotr; Szymczak, P.; Cieplak, Marek

    2008-01-01

    Molecular dynamics studies within a coarse-grained, structure-based model were used on two similar proteins belonging to the transcarbamylase family to probe the effects of the knot in the native structure of a protein. The first protein, N-acetylornithine transcarbamylase, contains no knot, whereas human ormithine transcarbamylase contains a trefoil knot located deep within the sequence. In addition, we also analyzed a modified transferase with the knot removed by the appropriate change of a knot-making crossing of the protein chain. The studies of thermally and mechanically induced unfolding processes suggest a larger intrinsic stability of the protein with the knot. PMID:19064918

  15. Stabilizing effect of knots on proteins.

    PubMed

    Sułkowska, Joanna I; Sulkowski, Piotr; Szymczak, P; Cieplak, Marek

    2008-12-16

    Molecular dynamics studies within a coarse-grained, structure-based model were used on two similar proteins belonging to the transcarbamylase family to probe the effects of the knot in the native structure of a protein. The first protein, N-acetylornithine transcarbamylase, contains no knot, whereas human ormithine transcarbamylase contains a trefoil knot located deep within the sequence. In addition, we also analyzed a modified transferase with the knot removed by the appropriate change of a knot-making crossing of the protein chain. The studies of thermally and mechanically induced unfolding processes suggest a larger intrinsic stability of the protein with the knot. PMID:19064918

  16. Noncanonical SMC protein in Mycobacterium smegmatis restricts maintenance of Mycobacterium fortuitum plasmids

    PubMed Central

    Panas, Michael W.; Jain, Paras; Yang, Hui; Mitra, Shimontini; Biswas, Debasis; Wattam, Alice Rebecca; Letvin, Norman L.; Jacobs, William R.

    2014-01-01

    Research on tuberculosis and leprosy was revolutionized by the development of a plasmid transformation system in the fast-growing surrogate, Mycobacterium smegmatis. This transformation system was made possible by the successful isolation of a M. smegmatis mutant strain mc2155, whose efficient plasmid transformation (ept) phenotype supported the replication of Mycobacterium fortuitum pAL5000 plasmids. In this report, we identified the EptC gene, the loss of which confers the ept phenotype. EptC shares significant amino acid sequence homology and domain structure with the MukB protein of Escherichia coli, a structural maintenance of chromosomes (SMC) protein. Surprisingly, M. smegmatis has three paralogs of SMC proteins: EptC and MSMEG_0370 both share homology with Gram-negative bacterial MukB; and MSMEG_2423 shares homology with Gram-positive bacterial SMCs, including the single SMC protein predicted for Mycobacterium tuberculosis and Mycobacterium leprae. Purified EptC was shown to bind ssDNA and stabilize negative supercoils in plasmid DNA. Moreover, an EptC–mCherry fusion protein was constructed and shown to bind to DNA in live mycobacteria, and to prevent segregation of plasmid DNA to daughter cells. To our knowledge, this is the first report of impaired plasmid maintenance caused by a SMC homolog, which has been canonically known to assist the segregation of genetic materials. PMID:25197070

  17. Cytosolic Selection Systems To Study Protein Stability

    PubMed Central

    Malik, Ajamaluddin; Mueller-Schickert, Antje

    2014-01-01

    Here we describe biosensors that provide readouts for protein stability in the cytosolic compartment of prokaryotes. These biosensors consist of tripartite sandwich fusions that link the in vitro stability or aggregation susceptibility of guest proteins to the in vivo resistance of host cells to the antibiotics kanamycin, spectinomycin, and nourseothricin. These selectable markers confer antibiotic resistance in a wide range of hosts and are easily quantifiable. We show that mutations within guest proteins that affect their stability alter the antibiotic resistances of the cells expressing the biosensors in a manner that is related to the in vitro stabilities of the mutant guest proteins. In addition, we find that polyglutamine tracts of increasing length are associated with an increased tendency to form amyloids in vivo and, in our sandwich fusion system, with decreased resistance to aminoglycoside antibiotics. We demonstrate that our approach allows the in vivo analysis of protein stability in the cytosolic compartment without the need for prior structural and functional knowledge. PMID:25266385

  18. Protein stability at a carbon nanotube interface

    NASA Astrophysics Data System (ADS)

    Vaitheeswaran, S.; Garcia, A. E.

    2011-03-01

    The interactions of proteins with solid surfaces occur in a variety of situations. Motivated by the many nanoengineering applications of protein-carbon nanotube hybrids, we investigate the conformational transitions of hen egg white lysozyme adsorbed on a carbon nanotube. Using a Cα structure-based model and replica exchange molecular dynamics, we show how the folding/unfolding equilibrium of the adsorbed protein varies with the strength of its coupling to the surface. The stability of the native state depends on the balance between the favorable entropy and unfavorable enthalpy change on adsorption. In the case of a weakly attractive surface when the former dominates, the protein is stabilized. In this regime, the protein can fold and unfold while maintaining the same binding fraction. With increasing surface attraction, the unfavorable enthalpic effect dominates, the native state is destabilized, and the protein has to extensively unbind before changing states from unfolded to folded. At the highest surface coupling, the entropic penalty of folding vanishes, and a folding intermediate is strongly stabilized. In this intermediate state, the α-domain of lysozyme is disrupted, while the β-sheet remains fully structured. We rationalize the relative stability of the two domains on the basis of the residue contact order.

  19. Plasmid maintenance and protein overproduction in selective recycle bioreactors.

    PubMed

    Ogden, K L; Davis, R H

    1991-02-20

    A new plasmid construct has been used in conjunction with selective recycle to successfully maintain otherwise unstable plasmid-bearing E. coli cells in a continuous bioreactor and to produce significant amounts of the plasmid-encoded protein beta-lactamase. The plasmid is constructed so that pilin expression, which leads to bacterial flocculation, is under control of the tac operon. The plasmid-bearing cells are induced to flocculate in the separator, whereas cell growth and product synthesis occur in the main fermentation vessel without the inhibiting effects of pilin production. Selective recycle allows for the maintenance of the plasmid-bearing cells by separating flocculent, plasmid-bearing cells from nonflocculent, segregant cells in an inclined settler, and recycling only the plasmid-bearing cells to the reactor. As a result, product expression levels are maintained that are more than ten times the level achieved without selective recycle. All experimental data agree well with theoretical predictions. PMID:18597374

  20. Prognostic significance of minichromosome maintenance proteins in breast cancer

    PubMed Central

    Kwok, Hang Fai; Zhang, Shu-Dong; McCrudden, Cian M; Yuen, Hiu-Fung; Ting, Kam-Po; Wen, Qing; Khoo, Ui-Soon; Chan, Kelvin Yuen-Kwong

    2015-01-01

    A role for the minichromosome maintenance (MCM) proteins in cancer initiation and progression is slowly emerging. Functioning as a complex to ensure a single chromosomal replication per cell cycle, the six family members have been implicated in several neoplastic disease states, including breast cancer. Our study aim to investigate the prognostic significance of these proteins in breast cancer. We studied the expression of MCMs in various datasets and the associations of the expression with clinicopathological parameters. When considered alone, high level MCM4 overexpression was only weakly associated with shorter survival in the combined breast cancer patient cohort (n = 1441, Hazard Ratio = 1.31; 95% Confidence Interval = 1.11-1.55; p = 0.001). On the other hand, when we studied all six components of the MCM complex, we found that overexpression of all MCMs was strongly associated with shorter survival in the same cohort (n = 1441, Hazard Ratio = 1.75; 95% Confidence Interval = 1.31-2.34; p < 0.001), suggesting these MCM proteins may cooperate to promote breast cancer progression. Indeed, their expressions were significantly correlated with each other in these cohorts. In addition, we found that increasing number of overexpressed MCMs was associated with negative ER status as well as treatment response. Together, our findings are reproducible in seven independent breast cancer cohorts, with 1441 patients, and suggest that MCM profiling could potentially be used to predict response to treatment and prognosis in breast cancer patients. PMID:25628920

  1. Cdk12 is essential for embryonic development and the maintenance of genomic stability.

    PubMed

    Juan, H-C; Lin, Y; Chen, H-R; Fann, M-J

    2016-06-01

    The maintenance of genomic integrity during early embryonic development is important in order to ensure the proper development of the embryo. Studies from cultured cells have demonstrated that cyclin-dependent kinase 12 (Cdk12) is a multifunctional protein that maintains genomic stability and the pluripotency of embryonic stem cells. Perturbation of its functions is also known to be associated with pathogenesis and drug resistance in human cancers. However, the biological significance of Cdk12 in vivo is unclear. Here we bred mice that are deficient in Cdk12 and demonstrated that Cdk12 depletion leads to embryonic lethality shortly after implantation. We also used an in vitro culture system of blastocysts to examine the molecular mechanisms associated with the embryonic lethality of Cdk12-deficient embryos. Cdk12(-/-) blastocysts fail to undergo outgrowth of the inner cell mass because of an increase in the apoptosis of these cells. Spontaneous DNA damage was revealed by an increase in 53BP1 foci among cells cultured from Cdk12(-/-) embryos. Furthermore, the expression levels of various DNA damage response genes, namely Atr, Brca1, Fanci and Fancd2, are reduced in Cdk12(-/-) embryos. These findings indicate that Cdk12 is important for the correct expression of some DNA damage response genes and indirectly has an influence on the efficiency of DNA repair. Our report also highlights that DNA breaks occurring during DNA replication are frequent in mouse embryonic cells and repair of such damage is critical to the successful development of mouse embryos. PMID:26658019

  2. Impact of reconstituted cytosol on protein stability

    PubMed Central

    Sarkar, Mohona; Smith, Austin E.; Pielak, Gary J.

    2013-01-01

    Protein stability is usually studied in simple buffered solutions, but most proteins function inside cells, where the heterogeneous and crowded environment presents a complex, nonideal system. Proteins are expected to behave differently under cellular crowding owing to two types of contacts: hard-core repulsions and weak, chemical interactions. The effect of hard-core repulsions is purely entropic, resulting in volume exclusion owing to the mere presence of the crowders. The weak interactions can be repulsive or attractive, thus enhancing or diminishing the excluded volume, respectively. We used a reductionist approach to assess the effects of intracellular crowding. Escherichia coli cytoplasm was dialyzed, lyophilized, and resuspended at two concentrations. NMR-detected amide proton exchange was then used to quantify the stability of the globular protein chymotrypsin inhibitor 2 (CI2) in these crowded solutions. The cytosol destabilizes CI2, and the destabilization increases with increasing cytosol concentration. This observation shows that the cytoplasm interacts favorably, but nonspecifically, with CI2, and these interactions overcome the stabilizing hard-core repulsions. The effects of the cytosol are even stronger than those of homogeneous protein crowders, reinforcing the biological significance of weak, nonspecific interactions. PMID:24218610

  3. Protein stability: the value of 'old literature'.

    PubMed

    Franks, Felix

    2002-05-01

    The concepts of protein structure and function have been subjects of intensive study throughout the 20th century; they continue to fascinate present-day scientists. Our understanding received a major boost when it was realised during the 1960s, that the physical properties of water play a major role in determining the stability of native proteins in vitro. This recognition changed the emphasis of physicochemical studies towards 'hydration', i.e. protein-water interactions. A rigorous quantitative description of 'hydration' still escapes us, but several semi-quantitative treatments, some with predictive potential, are now available and can account for the marginal stabilities of native proteins in aqueous solvent environments. This article charts the progress achieved during the latter half of the 20th century, which in present day parlance is termed 'old literature'. The thesis is advanced that the common practice of uncritically equating 'recent literature' with 'progress' is of dubious value. In the general area of in vitro protein stability some recent developments seem questionable and have yet to stand the test of time before their usefulness or validity can be accepted. PMID:12034434

  4. Effects of confinement on protein folding and protein stability

    NASA Astrophysics Data System (ADS)

    Ping, G.; Yuan, J. M.; Vallieres, M.; Dong, H.; Sun, Z.; Wei, Y.; Li, F. Y.; Lin, S. H.

    2003-05-01

    In a cell, proteins exist in crowded environments; these environments influence their stability and dynamics. Similarly, for an enzyme molecule encapsulated in an inorganic cavity as in biosensors or biocatalysts, confinement and even surface effects play important roles in its stability and dynamics. Using a minimalist model (two-dimensional HP lattice model), we have carried out Monte Carlo simulations to study confinement effects on protein stability. We have calculated heat capacity as a function of temperature using the histogram method and results obtained show that confinement tends to stabilize the folded conformations, consistent with experimental results (some reported here) and previous theoretical analyses. Furthermore, for a protein molecule tethered to a solid surface the stabilization effect can be even greater. We have also investigated the effects of confinement on the kinetics of the refolding and unfolding processes as functions of temperature and box size. As expected, unfolding time increases as box size decreases, however, confinement affects folding times in a more complicated way. Our theoretical results agree with our experimentally observed trends that thermal stability of horseradish peroxidase and acid phosphatase, encapsulated in mesoporous silica, increases as the pore size of the silica matrix decreases.

  5. Enhancing protein stability with extended disulfide bonds.

    PubMed

    Liu, Tao; Wang, Yan; Luo, Xiaozhou; Li, Jack; Reed, Sean A; Xiao, Han; Young, Travis S; Schultz, Peter G

    2016-05-24

    Disulfide bonds play an important role in protein folding and stability. However, the cross-linking of sites within proteins by cysteine disulfides has significant distance and dihedral angle constraints. Here we report the genetic encoding of noncanonical amino acids containing long side-chain thiols that are readily incorporated into both bacterial and mammalian proteins in good yields and with excellent fidelity. These amino acids can pair with cysteines to afford extended disulfide bonds and allow cross-linking of more distant sites and distinct domains of proteins. To demonstrate this notion, we preformed growth-based selection experiments at nonpermissive temperatures using a library of random β-lactamase mutants containing these noncanonical amino acids. A mutant enzyme that is cross-linked by one such extended disulfide bond and is stabilized by ∼9 °C was identified. This result indicates that an expanded set of building blocks beyond the canonical 20 amino acids can lead to proteins with improved properties by unique mechanisms, distinct from those possible through conventional mutagenesis schemes. PMID:27162342

  6. Axonal maintenance, glia, exosomes, and heat shock proteins.

    PubMed

    Tytell, Michael; Lasek, Raymond J; Gainer, Harold

    2016-01-01

    Of all cellular specializations, the axon is especially distinctive because it is a narrow cylinder of specialized cytoplasm called axoplasm with a length that may be orders of magnitude greater than the diameter of the cell body from which it originates. Thus, the volume of axoplasm can be much greater than the cytoplasm in the cell body. This fact raises a logistical problem with regard to axonal maintenance. Many of the components of axoplasm, such as soluble proteins and cytoskeleton, are slowly transported, taking weeks to months to travel the length of axons longer than a few millimeters after being synthesized in the cell body. Furthermore, this slow rate of supply suggests that the axon itself might not have the capacity to respond fast enough to compensate for damage to transported macromolecules. Such damage is likely in view of the mechanical fragility of an axon, especially those innervating the limbs, as rapid limb motion with high impact, like running, subjects the axons in the limbs to considerable mechanical force. Some researchers have suggested that local, intra-axonal protein synthesis is the answer to this problem. However, the translational state of axonal RNAs remains controversial. We suggest that glial cells, which envelop all axons, whether myelinated or not, are the local sources of replacement and repair macromolecules for long axons. The plausibility of this hypothesis is reinforced by reviewing several decades of work on glia-axon macromolecular transfer, together with recent investigations of exosomes and other extracellular vesicles, as vehicles for the transmission of membrane and cytoplasmic components from one cell to another. PMID:26962444

  7. Axonal maintenance, glia, exosomes, and heat shock proteins

    PubMed Central

    Tytell, Michael; Lasek, Raymond J.; Gainer, Harold

    2016-01-01

    Of all cellular specializations, the axon is especially distinctive because it is a narrow cylinder of specialized cytoplasm called axoplasm with a length that may be orders of magnitude greater than the diameter of the cell body from which it originates. Thus, the volume of axoplasm can be much greater than the cytoplasm in the cell body. This fact raises a logistical problem with regard to axonal maintenance. Many of the components of axoplasm, such as soluble proteins and cytoskeleton, are slowly transported, taking weeks to months to travel the length of axons longer than a few millimeters after being synthesized in the cell body. Furthermore, this slow rate of supply suggests that the axon itself might not have the capacity to respond fast enough to compensate for damage to transported macromolecules. Such damage is likely in view of the mechanical fragility of an axon, especially those innervating the limbs, as rapid limb motion with high impact, like running, subjects the axons in the limbs to considerable mechanical force. Some researchers have suggested that local, intra-axonal protein synthesis is the answer to this problem. However, the translational state of axonal RNAs remains controversial. We suggest that glial cells, which envelop all axons, whether myelinated or not, are the local sources of replacement and repair macromolecules for long axons. The plausibility of this hypothesis is reinforced by reviewing several decades of work on glia-axon macromolecular transfer, together with recent investigations of exosomes and other extracellular vesicles, as vehicles for the transmission of membrane and cytoplasmic components from one cell to another. PMID:26962444

  8. Trehalose glycopolymers as excipients for protein stabilization.

    PubMed

    Lee, Juneyoung; Lin, En-Wei; Lau, Uland Y; Hedrick, James L; Bat, Erhan; Maynard, Heather D

    2013-08-12

    Herein, the synthesis of four different trehalose glycopolymers and investigation of their ability to stabilize proteins to heat and lyophilization stress are described. The disaccharide, α,α-trehalose, was modified with a styrenyl acetal, methacrylate acetal, styrenyl ether, or methacrylate moiety resulting in four different monomers. These monomers were then separately polymerized using free radical polymerization with azobisisobutyronitrile (AIBN) as an initiator to synthesize the glycopolymers. Horseradish peroxidase and glucose oxidase were incubated at 70 and 50 °C, respectively, and β-galactosidase was lyophilized multiple times in the presence of various ratios of the polymers or trehalose. The protein activities were subsequently tested and found to be significantly higher when the polymers were present during the stress compared to no additive and to equivalent amounts of trehalose. Different molecular weights (10 kDa, 20 kDa, and 40 kDa) were tested, and all were equivalent in their stabilization ability. However, some subtle differences were observed regarding stabilization ability between the different polymer samples, depending on the stress. Small molecules such as benzyl ether trehalose were not better stabilizers than trehalose, and the trehalose monomer decreased protein activity, suggesting that hydrophobized trehalose was not sufficient and that the polymeric structure was required. In addition, cytotoxicity studies with NIH 3T3 mouse embryonic fibroblast cells, RAW 264.7 murine macrophages, human dermal fibroblasts (HDFs), and human umbilical vein endothelial cells (HUVECs) were conducted with polymer concentrations up to 8 mg/mL. The data showed that all four polymers were noncytotoxic for all tested concentrations. The results together suggest that trehalose glycopolymers are promising as additives to protect proteins from a variety of stressors. PMID:23777473

  9. Flavor and stability of milk proteins.

    PubMed

    Smith, T J; Campbell, R E; Jo, Y; Drake, M A

    2016-06-01

    A greater understanding of the nature and source of dried milk protein ingredient flavor(s) is required to characterize flavor stability and identify the sources of flavors. The objective of this study was to characterize the flavor and flavor chemistry of milk protein concentrates (MPC 70, 80, 85), isolates (MPI), acid and rennet caseins, and micellar casein concentrate (MCC) and to determine the effect of storage on flavor and functionality of milk protein concentrates using instrumental and sensory techniques. Spray-dried milk protein ingredients (MPC, MPI, caseins, MCC) were collected in duplicate from 5 commercial suppliers or manufactured at North Carolina State University. Powders were rehydrated and evaluated in duplicate by descriptive sensory analysis. Volatile compounds were extracted by solid phase microextraction followed by gas chromatography-mass spectrometry (GC-MS) and gas chromatography-olfactometry. Compounds were identified by comparison of retention indices, odor properties, and mass spectra against reference standards. A subset of samples was selected for further analysis using direct solvent extraction with solvent-assisted flavor extraction, and aroma extract dilution analysis. External standard curves were created to quantify select volatile compounds. Pilot plant manufactured MPC were stored at 3, 25, and 40°C (44% relative humidity). Solubility, furosine, sensory properties, and volatile compound analyses were performed at 0, 1, 3, 6, and 12 mo. Milk proteins and caseins were diverse in flavor and exhibited sweet aromatic and cooked/milky flavors as well as cardboard, brothy, tortilla, soapy, and fatty flavors. Key aroma active compounds in milk proteins and caseins were 2-aminoacetophenone, nonanal, 1-octen-3-one, dimethyl trisulfide, 2-acetyl-1-pyrroline, heptanal, methional, 1-hexen-3-one, hexanal, dimethyl disulfide, butanoic acid, and acetic acid. Stored milk proteins developed animal and burnt sugar flavors over time. Solubility of

  10. Cdk12 is essential for embryonic development and the maintenance of genomic stability

    PubMed Central

    Juan, H-C; Lin, Y; Chen, H-R; Fann, M-J

    2016-01-01

    The maintenance of genomic integrity during early embryonic development is important in order to ensure the proper development of the embryo. Studies from cultured cells have demonstrated that cyclin-dependent kinase 12 (Cdk12) is a multifunctional protein that maintains genomic stability and the pluripotency of embryonic stem cells. Perturbation of its functions is also known to be associated with pathogenesis and drug resistance in human cancers. However, the biological significance of Cdk12 in vivo is unclear. Here we bred mice that are deficient in Cdk12 and demonstrated that Cdk12 depletion leads to embryonic lethality shortly after implantation. We also used an in vitro culture system of blastocysts to examine the molecular mechanisms associated with the embryonic lethality of Cdk12-deficient embryos. Cdk12−/− blastocysts fail to undergo outgrowth of the inner cell mass because of an increase in the apoptosis of these cells. Spontaneous DNA damage was revealed by an increase in 53BP1 foci among cells cultured from Cdk12−/− embryos. Furthermore, the expression levels of various DNA damage response genes, namely Atr, Brca1, Fanci and Fancd2, are reduced in Cdk12−/− embryos. These findings indicate that Cdk12 is important for the correct expression of some DNA damage response genes and indirectly has an influence on the efficiency of DNA repair. Our report also highlights that DNA breaks occurring during DNA replication are frequent in mouse embryonic cells and repair of such damage is critical to the successful development of mouse embryos. PMID:26658019

  11. Stability analysis of an autocatalytic protein model

    NASA Astrophysics Data System (ADS)

    Lee, Julian

    2016-05-01

    A self-regulatory genetic circuit, where a protein acts as a positive regulator of its own production, is known to be the simplest biological network with a positive feedback loop. Although at least three components—DNA, RNA, and the protein—are required to form such a circuit, stability analysis of the fixed points of this self-regulatory circuit has been performed only after reducing the system to a two-component system, either by assuming a fast equilibration of the DNA component or by removing the RNA component. Here, stability of the fixed points of the three-component positive feedback loop is analyzed by obtaining eigenvalues of the full three-dimensional Hessian matrix. In addition to rigorously identifying the stable fixed points and saddle points, detailed information about the system can be obtained, such as the existence of complex eigenvalues near a fixed point.

  12. Invaded grassland communities have altered stability-maintenance mechanisms but equal stability compared to native communities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Theory predicts that stability should increase with diversity via several mechanisms. We tested predictions in a five-year experiment with exotic and native plant mixtures under two irrigation treatments. Diversity declined faster after planting in exotic than native mixtures. Variation in biomas...

  13. Monitoring prion protein stability by NMR.

    PubMed

    Julien, Olivier; Graether, Steffen P; Sykes, Brian D

    2009-01-01

    Prion diseases, or transmissible spongiform encephalopathies (TSE), are a group of fatal neurological diseases that affect both humans and animals. At the end of the 20th century, bovine spongiform encephalopathy (BSE), better known as mad cow disease, was shown to be transmissible to humans. This resulted in considerable concern for public health and a number of questions for scientists. The first question answered was the possible source of the disease, which appears to be the prion protein (PrP). There are two major forms of this protein: the native, noninfectious form (PrP(C)), and the misfolded infectious form (PrP(Sc)). PrP(C) is mainly alpha-helical in structure, whereas PrP(Sc) aggregates into an assembly of beta-sheets, forming amyloid fibrils. Since the first solution structure of the noninfectious form of the mouse prion protein, about 30 structures of the globular portion of PrP(C) have been characterized from different organisms. However, only a few minor differences are observed when comparing one PrP(C) structure to another. The key to understanding prion formation may then be not in the structure of PrP(C), but in the mechanism underlying PrP(C) unfolding and then conversion into a misfolded fibril state. To identify the possible region(s) of PrP(C) responsible for initiating the conversion into the amyloid fibril formation, nuclear magnetic resonance (NMR) was applied to characterize the stability and structure of PrP(C) and intermediate states during the conversion from PrP(C) to PrP(Sc). Subsequently urea was used to induce unfolding, and data analysis revealed region-specific structural stabilities that may bring insights into the mechanisms underlying conversion of protein into an infectious prion. PMID:19697241

  14. Cumulative versus Stabilizing Effects of Methadone Maintenance: A Quasi-Experimental Study Using Longitudinal Self-Report Data.

    ERIC Educational Resources Information Center

    Powers, Keiko Ichikawa; Anglin, M. Douglas

    1993-01-01

    Whether methadone maintenance treatment demonstrates cumulative (rehabilitative) or stabilizing effects on behavior of narcotics addicts over multiple treatment episodes was studied involving 993 addicts in a quasi-experimental design. Observed behavioral changes and longitudinal self-reports indicate stabilizing, but not cumulative, effects. (SLD)

  15. Characterisation of protein stability in rod-insert vaginal rings.

    PubMed

    Pattani, Aditya; Lowry, Deborah; Curran, Rhonda M; McGrath, Stephanie; Kett, Vicky L; Andrews, Gavin P; Malcolm, R Karl

    2012-07-01

    A major goal in vaccine development is elimination of the 'cold chain', the transport and storage system for maintenance and distribution of the vaccine product. This is particularly pertinent to liquid formulation of vaccines. We have previously described the rod-insert vaginal ring (RiR) device, comprising an elastomeric body into which are inserted lyophilised, rod-shaped, solid drug dosage forms, and having potential for sustained mucosal delivery of biomacromolecules, such as HIV envelope protein-based vaccine candidates. Given the solid, lyophilised nature of these insert dosage forms, we hypothesised that antigen stability may be significantly increased compared with more conventional solubilised vaginal gel format. In this study, we prepared and tested vaginal ring devices fitted with lyophilised rod inserts containing the model antigen bovine serum albumin (BSA). Both the RiRs and the gels that were freeze-dried to prepare the inserts were evaluated for BSA stability using PAGE, turbidimetry, microbial load, MALDI-TOF and qualitative precipitate solubility measurements. When stored at 4 °C, but not when stored at 40 °C/75% RH, the RiR formulation offered protection against structural and conformational changes to BSA. The insert also retained matrix integrity and release characteristics. The results demonstrate that lypophilised gels can provide relative protection against degradation at lower temperatures compared to semi-solid gels. The major mechanism of degradation at 40 °C/75% RH was shown to be protein aggregation. Finally, in a preliminary study, we found that addition of trehalose to the formulation significantly reduces the rate of BSA degradation compared to the original formulation when stored at 40 °C/75% RH. Establishing the mechanism of degradation, and finding that degradation is decelerated in the presence of trehalose, will help inform further development of RiRs specifically and polymer based freeze-dried systems in general. PMID

  16. Sequence-based protein stabilization in the absence of glycosylation.

    PubMed

    Tan, Nikki Y; Bailey, Ulla-Maja; Jamaluddin, M Fairuz; Mahmud, S Halimah Binte; Raman, Suresh C; Schulz, Benjamin L

    2014-01-01

    Asparagine-linked N-glycosylation is a common modification of proteins that promotes productive protein folding and increases protein stability. Although N-glycosylation is important for glycoprotein folding, the precise sites of glycosylation are often not conserved between protein homologues. Here we show that, in Saccharomyces cerevisiae, proteins upregulated during sporulation under nutrient deprivation have few N-glycosylation sequons and in their place tend to contain clusters of like-charged amino-acid residues. Incorporation of such sequences complements loss of in vivo protein function in the absence of glycosylation. Targeted point mutation to create such sequence stretches at glycosylation sequons in model glycoproteins increases in vitro protein stability and activity. A dependence on glycosylation for protein stability or activity can therefore be rescued with a small number of local point mutations, providing evolutionary flexibility in the precise location of N-glycans, allowing protein expression under nutrient-limiting conditions, and improving recombinant protein production. PMID:24434425

  17. Road Maintenance Experience Using Polyurethane (PU) Foam Injection System and Geocrete Soil Stabilization as Ground Rehabilitation

    NASA Astrophysics Data System (ADS)

    Fakhar, A. M. M.; Asmaniza, A.

    2016-07-01

    There are many types of ground rehabilation and improvement that can be consider and implement in engineering construction works for soil improvement in order to prevent road profile deformation in later stage. However, when comes to road maintenance especially on operated expressways, not all method can be apply directly as it must comply to opreation's working window and lane closure basis. Key factors that considering ideal proposal for ground rehabilitation are time, cost, quality and most importantly practicality. It should provide long lifespan structure in order to reduce continuous cycle of maintenance. Thus, this paper will present two approaches for ground rehabilitation, namely Polyurethane (PU) Foam Injection System and Geocrete Soil Stabilization. The first approach is an injection system which consists two-parts chemical grout of Isocynate and Polyol when mixed together within soil structure through injection will polymerized with volume expansion. The strong expansion of grouting causes significant compression and compacting of the surrounding soil and subsequently improve ground properties and uplift sunken structure. The later is a cold in-place recyclying whereby mixture process that combines in-situ soil materials, cement, white powder (alkaline) additive and water to produce hard yet flexible and durable ground layer that act as solid foundation with improved bearing capacity. The improvement of the mechanical behaviour of soil through these two systems is investigated by an extensive testing programme which includes in-situ and laboratory test in determining properties such as strength, stiffness, compressibility, bearing capacity, differential settlement and etc.

  18. ATMIN is required for maintenance of genomic stability and suppression of B cell lymphoma.

    PubMed

    Loizou, Joanna I; Sancho, Rocio; Kanu, Nnennaya; Bolland, Daniel J; Yang, Fengtang; Rada, Cristina; Corcoran, Anne E; Behrens, Axel

    2011-05-17

    Defective V(D)J rearrangement of immunoglobulin heavy or light chain (IgH or IgL) or class switch recombination (CSR) can initiate chromosomal translocations. The DNA-damage kinase ATM is required for the suppression of chromosomal translocations but ATM regulation is incompletely understood. Here, we show that mice lacking the ATM cofactor ATMIN in B cells (ATMIN(ΔB/ΔB)) have impaired ATM signaling and develop B cell lymphomas. Notably, ATMIN(ΔB/ΔB) cells exhibited defective peripheral V(D)J rearrangement and CSR, resulting in translocations involving the Igh and Igl loci, indicating that ATMIN is required for efficient repair of DNA breaks generated during somatic recombination. Thus, our results identify a role for ATMIN in regulating the maintenance of genomic stability and tumor suppression in B cells. PMID:21575860

  19. SPLINTS: small-molecule protein ligand interface stabilizers.

    PubMed

    Fischer, Eric S; Park, Eunyoung; Eck, Michael J; Thomä, Nicolas H

    2016-04-01

    Regulatory protein-protein interactions are ubiquitous in biology, and small molecule protein-protein interaction inhibitors are an important focus in drug discovery. Remarkably little attention has been given to the opposite strategy-stabilization of protein-protein interactions, despite the fact that several well-known therapeutics act through this mechanism. From a structural perspective, we consider representative examples of small molecules that induce or stabilize the association of protein domains to inhibit, or alter, signaling for nuclear hormone, GTPase, kinase, phosphatase, and ubiquitin ligase pathways. These SPLINTS (small-molecule protein ligand interface stabilizers) drive interactions that are in some cases physiologically relevant, and in others entirely adventitious. The diverse structural mechanisms employed suggest approaches for a broader and systematic search for such compounds in drug discovery. PMID:26829757

  20. Protein kinesis: The dynamics of protein trafficking and stability

    SciTech Connect

    1995-12-31

    The purpose of this conference is to provide a multidisciplinary forum for exchange of state-of-the-art information on protein kinesis. This volume contains abstracts of papers in the following areas: protein folding and modification in the endoplasmic reticulum; protein trafficking; protein translocation and folding; protein degradation; polarity; nuclear trafficking; membrane dynamics; and protein import into organelles.

  1. Protein thermal stabilization in aqueous solutions of osmolytes.

    PubMed

    Bruździak, Piotr; Panuszko, Aneta; Jourdan, Muriel; Stangret, Janusz

    2016-01-01

    Proteins' thermal stabilization is a significant problem in various biomedical, biotechnological, and technological applications. We investigated thermal stability of hen egg white lysozyme in aqueous solutions of the following stabilizing osmolytes: Glycine (GLY), N-methylglycine (NMG), N,N-dimethylglycine (DMG), N,N,N-trimethylglycine (TMG), and trimethyl-N-oxide (TMAO). Results of CD-UV spectroscopic investigation were compared with FTIR hydration studies' results. Selected osmolytes increased lysozyme's thermal stability in the following order: Gly>NMG>TMAO≈DMG>TMG. Theoretical calculations (DFT) showed clearly that osmolytes' amino group protons and water molecules interacting with them played a distinctive role in protein thermal stabilization. The results brought us a step closer to the exact mechanism of protein stabilization by osmolytes. PMID:26495438

  2. Cold denaturation as a tool to measure protein stability

    PubMed Central

    Sanfelice, Domenico; Temussi, Piero Andrea

    2016-01-01

    Protein stability is an important issue for the interpretation of a wide variety of biological problems but its assessment is at times difficult. The most common parameter employed to describe protein stability is the temperature of melting, at which the populations of folded and unfolded species are identical. This parameter may yield ambiguous results. It would always be preferable to measure the whole stability curve. The calculation of this curve is greatly facilitated whenever it is possible to observe cold denaturation. Using Yfh1, one of the few proteins whose cold denaturation occurs at neutral pH and low ionic strength, we could measure the variation of its full stability curve under several environmental conditions. Here we show the advantages of gauging stability as a function of external variables using stability curves. PMID:26026885

  3. Cold denaturation as a tool to measure protein stability.

    PubMed

    Sanfelice, Domenico; Temussi, Piero Andrea

    2016-01-01

    Protein stability is an important issue for the interpretation of a wide variety of biological problems but its assessment is at times difficult. The most common parameter employed to describe protein stability is the temperature of melting, at which the populations of folded and unfolded species are identical. This parameter may yield ambiguous results. It would always be preferable to measure the whole stability curve. The calculation of this curve is greatly facilitated whenever it is possible to observe cold denaturation. Using Yfh1, one of the few proteins whose cold denaturation occurs at neutral pH and low ionic strength, we could measure the variation of its full stability curve under several environmental conditions. Here we show the advantages of gauging stability as a function of external variables using stability curves. PMID:26026885

  4. Designing Whey Protein-Polysaccharide Particles for Colloidal Stability.

    PubMed

    Wagoner, Ty; Vardhanabhuti, Bongkosh; Foegeding, E Allen

    2016-01-01

    Interactions between whey proteins and polysaccharides, in particular the formation of food-grade soluble complexes, are of interest because of potential functional and health benefits. A specific application that has not received much attention is the use of complexes for enhanced colloidal stability of protein sols, such as protein-containing beverages. In beverages, the primary goal is the formation of complexes that remain dispersed after thermal processing and extended storage. This review highlights recent progress in the area of forming whey protein-polysaccharide soluble complexes that would be appropriate for beverage applications. Research in this area indicates that soluble complexes can be formed and stabilized that are reasonably small in size and possess a large surface charge that would predict colloidal stability. Selection of specific proteins and polysaccharides can be tailored to desired conditions. The principal challenges involve overcoming restrictions on protein concentration and ensuring that protein remains bioavailable. PMID:26934171

  5. Ube2s regulates Sox2 stability and mouse ES cell maintenance.

    PubMed

    Wang, J; Zhang, Y; Hou, J; Qian, X; Zhang, H; Zhang, Z; Li, M; Wang, R; Liao, K; Wang, Y; Li, Z; Zhong, D; Wan, P; Dong, L; Liu, F; Wang, X; Wan, Y; Xiao, W; Zhang, W W

    2016-03-01

    Sox2 has a critical role in embryonic stem (ES) cell maintenance and differentiation. Interestingly, its activity is highly dosage-dependent. Although transcriptional regulation of Sox2 has been extensively studied, the mechanisms orchestrating its degradation remain unclear. In this study, we identified ubiquitin-conjugating enzyme E2S (Ube2s) as a novel effector for Sox2 protein degradation. Ube2s mediates K11-linked polyubiquitin chain formation at the Sox2-K123 residue, thus marking it for proteasome-mediated degradation. Besides its role in fine-tuning the precise level of Sox2, Ube2s reinforces the self-renewing and pluripotent state of ES cells. Importantly, it also represses Sox2-mediated ES cell differentiation toward the neural ectodermal lineage. PMID:26292759

  6. Brd4-mediated nuclear retention of the papillomavirus E2 protein contributes to its stabilization in host cells.

    PubMed

    Li, Jing; Li, Qing; Diaz, Jason; You, Jianxin

    2014-01-01

    Papillomavirus E2 is a multifunctional viral protein that regulates many aspects of the viral life cycle including viral episome maintenance, transcriptional activation, and repression. E2 is degraded by the ubiquitin-proteasome pathway. Cellular bromodomain protein Brd4 has been implicated in the stabilization of the E2 protein. E2 normally shuttles between the cytoplasm and the nucleus. In this study, we demonstrate that E2 ubiquitylation mostly occurs in the cytoplasm. We also find that the interaction with Brd4 promotes nuclear retention of papillomavirus E2 proteins and contributes to their stabilization in the nucleus. Compared to wild type E2 proteins, nuclear-localization-defective mutants are rapidly degraded by the ubiquitin-proteasome pathway; however, co-expression of Brd4 redirects these mutants into the nucleus and significantly increases their stability. We further demonstrate that tethering E2 proteins to chromatin as either double-bromodomain fusion proteins or histone 2B (H2B) fusion proteins significantly stabilizes the E2 proteins. Our studies suggest that chromatin recruitment of the E2 protein via interaction with Brd4 prevents E2 ubiquitylation and proteasomal degradation in the cytoplasm, leading to its stabilization in the nucleus. These studies bring new insights for understanding Brd4-mediated E2 stabilization, and provide an additional mechanism by which the chromatin-associated Brd4 regulates E2 functions. PMID:24448221

  7. Electrodynamic pressure modulation of protein stability in cosolvents.

    PubMed

    Damodaran, Srinivasan

    2013-11-19

    Cosolvents affect structural stability of proteins in aqueous solutions. A clear understanding of the mechanism by which cosolvents impact protein stability is critical to understanding protein folding in a biological milieu. In this study, we investigated the Lifshitz-van der Waals dispersion interaction of seven different solutes with nine globular proteins and report that in an aqueous medium the structure-stabilizing solutes exert a positive electrodynamic pressure, whereas the structure-destabilizing solutes exert a negative electrodynamic pressure on the proteins. The net increase in the thermal denaturation temperature (ΔTd) of a protein in 1 M solution of various solutes was linearly related to the electrodynamic pressure (PvdW) between the solutes and the protein. The slope of the PvdW versus ΔTd plots was protein-dependent. However, we find a positive linear relationship (r(2) = 0.79) between the slope (i.e., d(ΔTd)/dPvdW) and the adiabatic compressibility (βs) of the proteins. Together, these results clearly indicate that the Lifshitz's dispersion forces are inextricably involved in solute-induced stabilization/destabilization of globular proteins. The positive and/or negative electrodynamic pressure generated by the solute-protein interaction across the water medium seems to be the fundamental mechanism by which solutes affect protein stability. This is at variance with the existing preferential hydration concept. The implication of these results is significant in the sense that, in addition to the hydrophobic effect that drives protein folding, the electrodynamic forces between the proteins and solutes in the biological milieu also might play a role in the folding process as well as in the stability of the folded state. PMID:24156352

  8. INCREASING PROTEIN STABILITY BY IMPROVING BETA-TURNS

    PubMed Central

    Fu, Hailong; Grimsley, Gerald R.; Razvi, Abbas; Scholtz, J. Martin; Pace, C. Nick

    2009-01-01

    Our goal was to gain a better understanding of how protein stability can be increased by improving β-turns. We studied 22 β-turns in nine proteins with 66 to 370 residues by replacing other residues with proline and glycine and measuring the stability. These two residues are statistically preferred in some β-turn positions. We studied: Cold shock protein B (CspB), Histidine-containing phosphocarrier protein (HPr), Ubiquitin, Ribonucleases Sa2, Sa3, T1, and HI, Tryptophan synthetase α-subunit (TSα), and Maltose binding protein (MBP). Of the fifteen single proline mutations, 11increased stability (Average = 0.8 ± 0.3; Range = 0.3 – 1.5 kcal/mol), and the stabilizing effect of double proline mutants was additive. Based on this and our previous work, we conclude that proteins can generally be stabilized by replacing non-proline residues with proline residues at the i + 1 position of Type I and II β-turns and at the i position in Type II β-turns. Other turn positions can sometimes be used if the φ angle is near −60° for the residue replaced. It is important that the side chain of the residue replaced is less than 50% buried. Identical substitutions in β-turns in related proteins give similar results. Proline substitutions increase stability mainly by decreasing the entropy of the denatured state. In contrast, the large, diverse group of proteins considered here had almost no residues in β-turns that could be replaced by Gly to increase protein stability. Improving β-turns by substituting Pro residues is a generally useful way of increasing protein stability. PMID:19626709

  9. Mutation analysis of barley malt protein Z4 and protein Z7 on beer foam stability.

    PubMed

    Iimure, Takashi; Kimura, Tatsuji; Araki, Shigeki; Kihara, Makoto; Sato, Masahide; Yamada, Shinji; Shigyou, Tatsuro; Sato, Kazuhiro

    2012-02-15

    Beer foam stability is an important characteristic. It has been suggested that isoforms of protein Z, that is, protein Z4 and protein Z7, contribute to beer foam stability. We investigated the relationship between beer foam stability and protein Z4 and protein Z7 using their deficient mutants. As a protein Z4-deficient mutant, cv. Pirkka was used. Protein Z7 deficiency was screened in 1564 barley accessions in the world collection of Okayama University, Japan. The barley samples from normal, protein Z4-deficient, protein Z7-deficient, and double-deficient were genotyped in F(2) populations and then pooled based on the DNA marker genotypes of protein Z4 and protein Z7. For a brewing trial, F(5) pooled subpopulations were used. After malting and brewing, the foam stability was determined, and the results showed that the levels of foam stability in the four samples were comparable. Two-dimensional gel electrophoresis was used to investigate the proteome in these beer samples. The results showed that low molecular weight proteins, including lipid transfer protein (LTP2), in the deficient mutants were higher than those in the normal sample. Our results suggest that the contribution of protein Z4 and protein Z7 to beer foam stability was not greater than that of other beer proteins. PMID:22251057

  10. Stabilization of supercooled fluids by thermal hysteresis proteins.

    PubMed Central

    Wilson, P W; Leader, J P

    1995-01-01

    It has been reported that thermal hysteresis proteins found in many cold-hardy, freeze-avoiding arthropods stabilize their supercooled body fluids. We give evidence that fish antifreeze proteins, which also produce thermal hysteresis, bind to and reduce the efficiency of heterogenous nucleation sites, rather than binding to embryonic ice nuclei. We discuss both possible mechanisms for stabilization of supercooled body fluids and also describe a new method for measuring and defining the supercooling point of small volumes of liquid. PMID:7612853

  11. Tandem Facial Amphiphiles for Membrane Protein Stabilization

    PubMed Central

    Chae, Pil Seok; Gotfryd, Kamil; Pacyna, Jennifer; Miercke, Larry J. W.; Rasmussen, Søren G. F.; Robbins, Rebecca A.; Rana, Rohini R.; Loland, Claus J.; Kobilka, Brian; Stroud, Robert; Byrne, Bernadette; Gether, Ulrik; Gellman, Samuel H.

    2010-01-01

    We describe a new type of synthetic amphiphile that is intended to support biochemical characterization of intrinsic membrane proteins. Members of this new family displayed favorable behavior with four of five membrane proteins tested, and these amphiphiles formed relatively small micelles. PMID:21049926

  12. Regulation of TET Protein Stability by Calpains

    PubMed Central

    Wang, Yu; Zhang, Yi

    2014-01-01

    SUMMARY DNA methylation at the fifth position of cytosine (5mC) is an important epigenetic modification that affects chromatin structure and gene expression. Recent studies have established a critical function of the Ten-eleven translocation (Tet) family of proteins in regulating DNA methylation dynamics. Three Tet genes have been identified in mammals, and they all encode for proteins capable of oxidizing 5mC as part of the DNA demethylation process. While regulation of Tet expression at the transcriptional level is well documented, how TET proteins are regulated at post-translational level is poorly understood. In this study, we report that all three TET proteins are direct substrates of calpains, a family of calcium-dependent proteases. Specifically, calpain1 mediates TET1 and TET2 turnover in mouse ES cells, and calpain2 regulates TET3 level during differentiation. This study provides the first evidence that TET proteins are subject to calpain-mediated degradation. PMID:24412366

  13. Two Putative Polysaccharide Deacetylases Are Required for Osmotic Stability and Cell Shape Maintenance in Bacillus anthracis*

    PubMed Central

    Arnaouteli, Sofia; Giastas, Petros; Andreou, Athina; Tzanodaskalaki, Mary; Aldridge, Christine; Tzartos, Socrates J.; Vollmer, Waldemar; Eliopoulos, Elias; Bouriotis, Vassilis

    2015-01-01

    Membrane-anchored lipoproteins have a broad range of functions and play key roles in several cellular processes in Gram-positive bacteria. BA0330 and BA0331 are the only lipoproteins among the 11 known or putative polysaccharide deacetylases of Bacillus anthracis. We found that both lipoproteins exhibit unique characteristics. BA0330 and BA0331 interact with peptidoglycan, and BA0330 is important for the adaptation of the bacterium to grow in the presence of a high concentration of salt, whereas BA0331 contributes to the maintenance of a uniform cell shape. They appear not to alter the peptidoglycan structure and do not contribute to lysozyme resistance. The high resolution x-ray structure of BA0330 revealed a C-terminal domain with the typical fold of a carbohydrate esterase 4 and an N-terminal domain unique for this family, composed of a two-layered (4 + 3) β-sandwich with structural similarity to fibronectin type 3 domains. Our data suggest that BA0330 and BA0331 have a structural role in stabilizing the cell wall of B. anthracis. PMID:25825488

  14. Role of the double-strand break repair pathway in the maintenance of genomic stability

    PubMed Central

    Le Guen, Tangui; Ragu, Sandrine; Guirouilh-Barbat, Josée; Lopez, Bernard S

    2015-01-01

    DNA double-strand breaks (DSBs) are highly lethal lesions that jeopardize genome integrity. However, DSBs are also used to generate diversity during the physiological processes of meiosis or establishment of the immune repertoire. Therefore, DSB repair must be tightly controlled. Two main strategies are used to repair DSBs: homologous recombination (HR) and non-homologous end joining (NHEJ). HR is generally considered to be error-free, whereas NHEJ is considered to be error-prone. However, recent data challenge these assertions. Here, we present the molecular mechanisms involved in HR and NHEJ and the recently described alternative end-joining mechanism, which is exclusively mutagenic. Whereas NHEJ is not intrinsically error-prone but adaptable, HR has the intrinsic ability to modify the DNA sequence. Importantly, in both cases the initial structure of the DNA impacts the outcome. Finally, the consequences and applications of these repair mechanisms are discussed. Both HR and NHEJ are double-edged swords, essential for maintenance of genome stability and diversity but also able to generate genome instability. PMID:27308383

  15. Two Putative Polysaccharide Deacetylases Are Required for Osmotic Stability and Cell Shape Maintenance in Bacillus anthracis.

    PubMed

    Arnaouteli, Sofia; Giastas, Petros; Andreou, Athina; Tzanodaskalaki, Mary; Aldridge, Christine; Tzartos, Socrates J; Vollmer, Waldemar; Eliopoulos, Elias; Bouriotis, Vassilis

    2015-05-22

    Membrane-anchored lipoproteins have a broad range of functions and play key roles in several cellular processes in Gram-positive bacteria. BA0330 and BA0331 are the only lipoproteins among the 11 known or putative polysaccharide deacetylases of Bacillus anthracis. We found that both lipoproteins exhibit unique characteristics. BA0330 and BA0331 interact with peptidoglycan, and BA0330 is important for the adaptation of the bacterium to grow in the presence of a high concentration of salt, whereas BA0331 contributes to the maintenance of a uniform cell shape. They appear not to alter the peptidoglycan structure and do not contribute to lysozyme resistance. The high resolution x-ray structure of BA0330 revealed a C-terminal domain with the typical fold of a carbohydrate esterase 4 and an N-terminal domain unique for this family, composed of a two-layered (4 + 3) β-sandwich with structural similarity to fibronectin type 3 domains. Our data suggest that BA0330 and BA0331 have a structural role in stabilizing the cell wall of B. anthracis. PMID:25825488

  16. Stability and the maintenance of balance following a perturbation from quiet stance

    NASA Astrophysics Data System (ADS)

    Stirling, J. R.; Zakynthinaki, M. S.

    2004-03-01

    We investigate stability and the maintenance of balance with the use of tools from dynamical systems. In particular we investigate the application of such tools to the study of the ground reaction forces resulting from an athlete being perturbed from quiet stance. We develop a nonlinear model consisting of a set of coupled vector fields for the derivative with respect to time of the angles between the resultant ground reaction forces and the vertical in the anteroposterior and mediolateral directions. This model contains a basin of attraction bound by a closed curve which we call the critical curve. It is only inside this curve that perturbations can be corrected, with the orbit spiraling onto an attractor corresponding to quiet stance. We show how the critical curve and also the strength of the attractor found in the basin of attraction can be fit to model the experimental data (time series) for an individual athlete. We also discuss how our model can be used to identify nonsymmetric behavior caused by muscle imbalances and differences in the ranges of motion on either side of the body.

  17. Effects of Glycosylation on the Stability of Protein Pharmaceuticals

    PubMed Central

    SOLÁ, RICARDO J.; GRIEBENOW, KAI

    2008-01-01

    In recent decades, protein-based therapeutics have substantially expanded the field of molecular pharmacology due to their outstanding potential for the treatment of disease. Unfortunately, protein pharmaceuticals display a series of intrinsic physical and chemical instability problems during their production, purification, storage, and delivery that can adversely impact their final therapeutic efficacies. This has prompted an intense search for generalized strategies to engineer the long-term stability of proteins during their pharmaceutical employment. Due to the well known effect that glycans have in increasing the overall stability of glycoproteins, rational manipulation of the glycosylation parameters through glycoengineering could become a promising approach to improve both the in vitro and in vivo stability of protein pharmaceuticals. The intent of this review is therefore to further the field of protein glycoengineering by increasing the general understanding of the mechanisms by which glycosylation improves the molecular stability of protein pharmaceuticals. This is achieved by presenting a survey of the different instabilities displayed by protein pharmaceuticals, by addressing which of these instabilities can be improved by glycosylation, and by discussing the possible mechanisms by which glycans induce these stabilization effects. PMID:18661536

  18. Unexpected effects of macromolecular crowding on protein stability.

    PubMed

    Benton, Laura A; Smith, Austin E; Young, Gregory B; Pielak, Gary J

    2012-12-11

    Most theories about macromolecular crowding focus on two ideas: the macromolecular nature of the crowder and entropy. For proteins, the volume excluded by the crowder favors compact native states over expanded denatured states, enhancing protein stability by decreasing the entropy of unfolding. We tested these ideas with the widely used crowding agent Ficoll-70 and its monomer, sucrose. Contrary to expectations, Ficoll and sucrose have approximately the same stabilizing effect on chymotrypsin inhibitor 2. Furthermore, the stabilization is driven by enthalpy, not entropy. These results point to the need for carefully controlled studies and more sophisticated theories for understanding crowding effects. PMID:23167542

  19. Maintenance Crude Protein Requirement of Penned Female Korean Spotted Deer (Cervus nippon)

    PubMed Central

    Yang, S. Y.; Oh, Y. K.; Ahn, H. S.; Kwak, W. S.

    2014-01-01

    This study was conducted to evaluate the protein requirement for maintenance of 2-year-old female Korean spotted deer. In the course of the experiment, each of three hand-reared female spotted deer was fed three diets that were iso-calorically formulated to contain low (approximately 7%), medium (12%), and high (17%) levels of crude protein (CP). Each of six trials included a 5-day transition, a 10-day preliminary, and a 7-day collection period. Dietary protein levels affected the apparent digestibility of CP (p<0.05) but not the apparent digestibility of dry matter, organic matter, or acid detergent fiber. All of the deer showed a positive CP balance on all of the diets. The maintenance CP requirement estimated by regression analysis was 4.17 g/kg metabolic body weight (W0.75)·d. The maintenance digestible CP requirement was 1.42 g/kg W0.75·d. The metabolic fecal CP was 1.95 g/kg W0.75·d. The blood urea nitrogen of spotted deer increased (p<0.05) as the dietary protein levels increased. PMID:25049923

  20. Conformational stability of dimeric proteins: quantitative studies by equilibrium denaturation.

    PubMed Central

    Neet, K. E.; Timm, D. E.

    1994-01-01

    The conformational stability of dimeric globular proteins can be measured by equilibrium denaturation studies in solvents such as guanidine hydrochloride or urea. Many dimeric proteins denature with a 2-state equilibrium transition, whereas others have stable intermediates in the process. For those proteins showing a single transition of native dimer to denatured monomer, the conformational stabilities, delta Gu (H2O), range from 10 to 27 kcal/mol, which is significantly greater than the conformational stability found for monomeric proteins. The relative contribution of quaternary interactions to the overall stability of the dimer can be estimated by comparing delta Gu (H2O) from equilibrium denaturation studies to the free energy associated with simple dissociation in the absence of denaturant. In many cases the large stabilization energy of dimers is primarily due to the intersubunit interactions and thus gives a rationale for the formation of oligomers. The magnitude of the conformational stability is related to the size of the polypeptide in the subunit and depends upon the type of structure in the subunit interface. The practical use, interpretation, and utility of estimation of conformational stability of dimers by equilibrium denaturation methods are discussed. PMID:7756976

  1. Energetics-Based Methods for Protein Folding and Stability Measurements

    NASA Astrophysics Data System (ADS)

    Geer, M. Ariel; Fitzgerald, Michael C.

    2014-06-01

    Over the past 15 years, a series of energetics-based techniques have been developed for the thermodynamic analysis of protein folding and stability. These techniques include Stability of Unpurified Proteins from Rates of amide H/D Exchange (SUPREX), pulse proteolysis, Stability of Proteins from Rates of Oxidation (SPROX), slow histidine H/D exchange, lysine amidination, and quantitative cysteine reactivity (QCR). The above techniques, which are the subject of this review, all utilize chemical or enzymatic modification reactions to probe the chemical denaturant- or temperature-induced equilibrium unfolding properties of proteins and protein-ligand complexes. They employ various mass spectrometry-, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)-, and optical spectroscopy-based readouts that are particularly advantageous for high-throughput and in some cases multiplexed analyses. This has created the opportunity to use protein folding and stability measurements in new applications such as in high-throughput screening projects to identify novel protein ligands and in mode-of-action studies to identify protein targets of a particular ligand.

  2. Sperm Motility Requires Wnt/GSK3 Stabilization of Proteins.

    PubMed

    De Robertis, Edward M; Ploper, Diego

    2015-11-23

    Inhibition of GSK3 by Wnt signaling stabilizes many cellular proteins, but proof that this effect is independent of β-catenin-mediated transcription is lacking. Koch, Acebron, and colleagues (2015) now demonstrate that transcriptionally silent mammalian sperm require Wnt signaling via exosomes to prevent protein degradation during their lengthy travels through the epididymis. PMID:26609954

  3. Probing protein stabilization by glycerol using electrospray mass spectrometry.

    PubMed

    Grandori, R; Matecko, I; Mayr, P; Müller, N

    2001-08-01

    This study shows that electrospray ionization mass spectrometry (ESI-MS), combined with a heated turbo ion-spray interface, allows monitoring protein stabilization by glycerol in solution. Measurements obtained with the two proteins lysozyme and cytochrome c are presented. The observed mass-to-charge (m/z) distributions reveal the stabilizing effect of the additive on the protein conformations against temperature and acid-induced unfolding, as well as against denaturation by acetonitrile. The data obtained with lysozyme allow detection of minor conformational changes upon glycerol addition to the native protein, and suggest that the protein structure in the presence of the additive is slightly compressed compared with its state in water. This result corroborates previous evidence obtained by nuclear magnetic resonance. It is also shown that analysis of the m/z distributions obtained by ESI-MS can lead to detection of partially folded and partially populated states in protein samples. PMID:11523091

  4. Predicting stability of Arc repressor mutants with protein stochastic moments.

    PubMed

    González-Díaz, Humberto; Uriarte, Eugenio; Ramos de Armas, Ronal

    2005-01-17

    As more and more protein structures are determined and applied to drug manufacture, there is increasing interest in studying their stability. In this study, the stochastic moments ((SR)pi(k)) of 53 Arc repressor mutants were introduced as molecular descriptors modeling protein stability. The Linear Discriminant Analysis model developed correctly classified 43 out of 53, 81.13% of proteins according to their thermal stability. More specifically, the model classified 20/28 (71.4%) proteins with near wild-type stability and 23/25 (92%) proteins with reduced stability. Moreover, validation of the model was carried out by re-substitution procedures (81.0%). In addition, the stochastic moments based model compared favorably with respect to others based on physicochemical and geometric parameters such as D-Fire potential, surface area, volume, partition coefficient, and molar refractivity, which presented less than 77% of accuracy. This result illustrates the possibilities of the stochastic moments' method for the study of bioorganic and medicinal chemistry relevant proteins. PMID:15598555

  5. DIG-1, a novel giant protein, non-autonomously mediates maintenance of nervous system architecture.

    PubMed

    Bénard, Claire Y; Boyanov, Alexander; Hall, David H; Hobert, Oliver

    2006-09-01

    Dedicated mechanisms exist to maintain the architecture of an animal's nervous system after development is completed. To date, three immunoglobulin superfamily members have been implicated in this process in the nematode Caenorhabditis elegans: the secreted two-Ig domain protein ZIG-4, the FGF receptor EGL-15 and the L1-like SAX-7 protein. These proteins provide crucial information for neuronal structures, such as axons, that allows them to maintain the precise position they acquired during development. Yet, how widespread this mechanism is throughout the nervous system, and what other types of factors underlie such a maintenance mechanism, remains poorly understood. Here, we describe a new maintenance gene, dig-1, that encodes a predicted giant secreted protein containing a large number of protein interaction domains. With 13,100 amino acids, the DIG-1 protein is the largest secreted protein identifiable in any genome database. dig-1 functions post-developmentally to maintain axons and cell bodies in place within axonal fascicles and ganglia. The failure to maintain axon and cell body position is accompanied by defects in basement membrane structure, as evidenced by electron microscopy analysis of dig-1 mutants. Expression pattern and mosaic analysis reveals that dig-1 is produced by muscles to maintain nervous system architecture, demonstrating that dig-1 functions non-autonomously to preserve the proper layout of neural structures. We propose that DIG-1 is a component of the basement membrane that mediates specific contacts between cellular surfaces and their environment through the interaction with a cell-type specific set of other maintenance factors. PMID:16887823

  6. Dual degradation signals control Gli protein stability and tumor formation

    PubMed Central

    Huntzicker, Erik G.; Estay, Ivette S.; Zhen, Hanson; Lokteva, Ludmila A.; Jackson, Peter K.; Oro, Anthony E.

    2006-01-01

    Regulated protein destruction controls many key cellular processes with aberrant regulation increasingly found during carcinogenesis. Gli proteins mediate the transcriptional effects of the Sonic hedgehog pathway, which is implicated in up to 25% of human tumors. Here we show that Gli is rapidly destroyed by the proteasome and that mouse basal cell carcinoma induction correlates with Gli protein accumulation. We identify two independent destruction signals in Gli1, DN and DC, and show that removal of these signals stabilizes Gli1 protein and rapidly accelerates tumor formation in transgenic animals. These data argue that control of Gli protein accumulation underlies tumorigenesis and suggest a new avenue for antitumor therapy. PMID:16421275

  7. USP7 and TDP-43: Pleiotropic Regulation of Cryptochrome Protein Stability Paces the Oscillation of the Mammalian Circadian Clock

    PubMed Central

    Yoshitane, Hikari; Oyama, Masaaki; Kozuka-Hata, Hiroko; Lanjakornsiripan, Darin; Fukada, Yoshitaka

    2016-01-01

    Mammalian Cryptochromes, CRY1 and CRY2, function as principal regulators of a transcription-translation-based negative feedback loop underlying the mammalian circadian clockwork. An F-box protein, FBXL3, promotes ubiquitination and degradation of CRYs, while FBXL21, the closest paralog of FBXL3, ubiquitinates CRYs but leads to stabilization of CRYs. Fbxl3 knockout extremely lengthened the circadian period, and deletion of Fbxl21 gene in Fbxl3-deficient mice partially rescued the period-lengthening phenotype, suggesting a key role of CRY protein stability for maintenance of the circadian periodicity. Here, we employed a proteomics strategy to explore regulators for the protein stability of CRYs. We found that ubiquitin-specific protease 7 (USP7 also known as HAUSP) associates with CRY1 and CRY2 and stabilizes CRYs through deubiquitination. Treatment with USP7-specific inhibitor or Usp7 knockdown shortened the circadian period of the cellular rhythm. We identified another CRYs-interacting protein, TAR DNA binding protein 43 (TDP-43), an RNA-binding protein. TDP-43 stabilized CRY1 and CRY2, and its knockdown also shortened the circadian period in cultured cells. The present study identified USP7 and TDP-43 as the regulators of CRY1 and CRY2, underscoring the significance of the stability control process of CRY proteins for period determination in the mammalian circadian clockwork. PMID:27123980

  8. Development of a simple assay system for protein-stabilizing efficiency based on hemoglobin protection against denaturation and measurement of the cooperative effect of mixing protein stabilizers.

    PubMed

    Chen, Siyu; Manabe, Yoshiyuki; Minamoto, Naoya; Saiki, Naoka; Fukase, Koichi

    2016-10-01

    We have elucidated the cooperative stabilization of proteins by sugars, amino acids, and other protein-stabilizing agents using a new and simple assay system. Our system determines the protein-stabilizing ability of various compounds by measuring their ability to protect hemoglobin from denaturation. Hemoglobin denaturation was readily measured by quantitative changes in its ultraviolet-visible absorption spectrum. The efficiency of our assay was confirmed using various sugars such as trehalose and sucrose that are known to be good protein stabilizers. We have also found that mixtures of two different types of protein stabilizers resulted in a cooperative stabilizing effect on protein. PMID:27253914

  9. Fluorinated proteins: from design and synthesis to structure and stability.

    PubMed

    Marsh, E Neil G

    2014-10-21

    Fluorine is all but absent from biology; however, it has proved to be a remarkably useful element with which to modulate the activity of biological molecules and to study their mechanism of action. Our laboratory's interest in incorporating fluorine into proteins was stimulated by the unusual physicochemical properties exhibited by perfluorinated small molecules. These include extreme chemical inertness and thermal stability, properties that have made them valuable as nonstick coatings and fire retardants. Fluorocarbons also exhibit an unusual propensity to phase segregation. This phenomenon, which has been termed the "fluorous effect", has been effectively exploited in organic synthesis to purify compounds from reaction mixtures by extracting fluorocarbon-tagged molecules into fluorocarbon solvents. As biochemists, we were curious to explore whether the unusual physicochemical properties of perfluorocarbons could be engineered into proteins. To do this, we developed a synthesis of a highly fluorinated amino acid, hexafluoroleucine, and designed a model 4-helix bundle protein, α4H, in which the hydrophobic core was packed exclusively with leucine. We then investigated the effects of repacking the hydrophobic core of α4H with various combinations of leucine and hexafluoroleucine. These initial studies demonstrated that fluorination is a general and effective strategy for enhancing the stability of proteins against chemical and thermal denaturation and proteolytic degradation. We had originally envisaged that the "fluorous interactions", postulated from the self-segregating properties of fluorous solvents, might be used to mediate specific protein-protein interactions orthogonal to those of natural proteins. However, various lines of evidence indicate that no special, favorable fluorine-fluorine interactions occur in the core of the fluorinated α4 protein. This makes it unlikely that fluorinated amino acids can be used to direct protein-protein interactions. More

  10. Impact of alcohols on the formation and stability of protein-stabilized nanoemulsions.

    PubMed

    Zeeb, Benjamin; Herz, Eva; McClements, David Julian; Weiss, Jochen

    2014-11-01

    Nanoemulsions are increasingly being used for encapsulation, protection, and delivery of bioactive lipids, however, their formation from natural emulsifiers is still challenging. We investigated the impact of alcohol on the formation and stability of protein-stabilized oil-in-water nanoemulsions prepared by high-pressure homogenization. The influence of different alcohols (ethanol, 1-propanol, and 1-butanol) at various concentrations (0-25% w/w) on the formation and stability of emulsions stabilized by sodium caseinate, whey protein isolate, and fish gelatin was investigated. The mean particle diameter decreased with increasing alcohol concentrations from 0 to 10%w/w, but extensive droplet aggregation occurred at higher levels. This phenomenon was attributed to enhanced protein-protein interactions between the adsorbed emulsifier molecules in the presence of alcohol leading to droplet flocculation. The smallest droplets (d<100nm) were obtained when 10%w/w 1-butanol was added to sodium caseinate-stabilized nanoemulsions, but relatively small droplets (d<150nm) could also be obtained in the presence of a food-grade alcohol (ethanol). This study demonstrated that alcohol addition might be a useful tool for producing protein-stabilized nanoemulsions suitable for use as delivery systems of lipophilic bioactive agents. PMID:25129338

  11. Reprint of: Impact of alcohols on the formation and stability of protein-stabilized nanoemulsions.

    PubMed

    Zeeb, Benjamin; Herz, Eva; McClements, David Julian; Weiss, Jochen

    2015-07-01

    Nanoemulsions are increasingly being used for encapsulation, protection, and delivery of bioactive lipids, however, their formation from natural emulsifiers is still challenging. We investigated the impact of alcohol on the formation and stability of protein-stabilized oil-in-water nanoemulsions prepared by high-pressure homogenization. The influence of different alcohols (ethanol, 1-propanol, and 1-butanol) at various concentrations (0-25% w/w) on the formation and stability of emulsions stabilized by sodium caseinate, whey protein isolate, and fish gelatin was investigated. The mean particle diameter decreased with increasing alcohol concentrations from 0 to 10%w/w, but extensive droplet aggregation occurred at higher levels. This phenomenon was attributed to enhanced protein-protein interactions between the adsorbed emulsifier molecules in the presence of alcohol leading to droplet flocculation. The smallest droplets (d<100 nm) were obtained when 10%w/w 1-butanol was added to sodium caseinate-stabilized nanoemulsions, but relatively small droplets (d<150 nm) could also be obtained in the presence of a food-grade alcohol (ethanol). This study demonstrated that alcohol addition might be a useful tool for producing protein-stabilized nanoemulsions suitable for use as delivery systems of lipophilic bioactive agents. PMID:25865241

  12. SRide: a server for identifying stabilizing residues in proteins

    PubMed Central

    Magyar, Csaba; Gromiha, M. Michael; Pujadas, Gerard; Tusnády, Gábor E.; Simon, István

    2005-01-01

    Residues expected to play key roles in the stabilization of proteins [stabilizing residues (SRs)] are selected by combining several methods based mainly on the interactions of a given residue with its spatial, rather than its sequential neighborhood and by considering the evolutionary conservation of the residues. A residue is selected as a stabilizing residue if it has high surrounding hydrophobicity, high long-range order, high conservation score and if it belongs to a stabilization center. The definition of all these parameters and the thresholds used to identify the SRs are discussed in detail. The algorithm for identifying SRs was originally developed for TIM-barrel proteins [M. M. Gromiha, G. Pujadas, C. Magyar, S. Selvaraj, and I. Simon (2004), Proteins, 55, 316–329] and is now generalized for all proteins of known 3D structure. SRs could be applied in protein engineering and homology modeling and could also help to explain certain folds with significant stability. The SRide server is located at . PMID:15980477

  13. SRide: a server for identifying stabilizing residues in proteins.

    PubMed

    Magyar, Csaba; Gromiha, M Michael; Pujadas, Gerard; Tusnády, Gábor E; Simon, István

    2005-07-01

    Residues expected to play key roles in the stabilization of proteins [stabilizing residues (SRs)] are selected by combining several methods based mainly on the interactions of a given residue with its spatial, rather than its sequential neighborhood and by considering the evolutionary conservation of the residues. A residue is selected as a stabilizing residue if it has high surrounding hydrophobicity, high long-range order, high conservation score and if it belongs to a stabilization center. The definition of all these parameters and the thresholds used to identify the SRs are discussed in detail. The algorithm for identifying SRs was originally developed for TIM-barrel proteins [M. M. Gromiha, G. Pujadas, C. Magyar, S. Selvaraj, and I. Simon (2004), Proteins, 55, 316-329] and is now generalized for all proteins of known 3D structure. SRs could be applied in protein engineering and homology modeling and could also help to explain certain folds with significant stability. The SRide server is located at http://sride.enzim.hu. PMID:15980477

  14. Rational stabilization of complex proteins: a divide and combine approach

    PubMed Central

    Lamazares, Emilio; Clemente, Isabel; Bueno, Marta; Velázquez-Campoy, Adrián; Sancho, Javier

    2015-01-01

    Increasing the thermostability of proteins is often crucial for their successful use as analytic, synthetic or therapeutic tools. Most rational thermostabilization strategies were developed on small two-state proteins and, unsurprisingly, they tend to fail when applied to the much more abundant, larger, non-fully cooperative proteins. We show that the key to stabilize the latter is to know the regions of lower stability. To prove it, we have engineered apoflavodoxin, a non-fully cooperative protein on which previous thermostabilizing attempts had failed. We use a step-wise combination of structure-based, rationally-designed, stabilizing mutations confined to the less stable structural region, and obtain variants that, according to their van't Hoff to calorimetric enthalpy ratios, exhibit fully-cooperative thermal unfolding with a melting temperature of 75°C, 32 degrees above the lower melting temperature of the non-cooperative wild type protein. The ideas introduced here may also be useful for the thermostabilization of complex proteins through formulation or using specific stabilizing ligands (e.g. pharmacological chaperones). PMID:25774740

  15. Effects of sugars on the thermal stability of a protein.

    PubMed

    Oshima, Hiraku; Kinoshita, Masahiro

    2013-06-28

    It is experimentally known that the heat-denaturation temperature of a protein is raised (i.e., its thermal stability is enhanced) by sugar addition. In earlier works, we proposed a physical picture of thermal denaturation of proteins in which the measure of the thermal stability is defined as the solvent-entropy gain upon protein folding at 298 K normalized by the number of residues. A multipolar-model water was adopted as the solvent. The polyatomic structures of the folded and unfolded states of a protein were taken into account in the atomic detail. A larger value of the measure implies higher thermal stability. First, we show that the measure remains effective even when the model water is replaced by the hard-sphere solvent whose number density and molecular diameter are set at those of real water. The physical picture is then adapted to the elucidation of the effects of sugar addition on the thermal stability of a protein. The water-sugar solution is modeled as a binary mixture of hard spheres. The thermal stability is determined by a complex interplay of the diameter of sugar molecules dC and the total packing fraction of the solution η: dC is estimated from the volume per molecule in the sugar crystal and η is calculated using the experimental data of the solution density. We find that the protein is more stabilized as the sucrose or glucose concentration becomes higher and the stabilization effect is stronger for sucrose than for glucose. These results are in accord with the experimental observations. Using a radial-symmetric integral equation theory and the morphometric approach, we decompose the change in the measure upon sugar addition into two components originating from the protein-solvent pair and protein-solvent many-body correlations, respectively. Each component is further decomposed into the excluded-volume and solvent-accessible-surface terms. These decompositions give physical insights into the microscopic origin of the thermal-stability

  16. Effects of sugars on the thermal stability of a protein

    NASA Astrophysics Data System (ADS)

    Oshima, Hiraku; Kinoshita, Masahiro

    2013-06-01

    It is experimentally known that the heat-denaturation temperature of a protein is raised (i.e., its thermal stability is enhanced) by sugar addition. In earlier works, we proposed a physical picture of thermal denaturation of proteins in which the measure of the thermal stability is defined as the solvent-entropy gain upon protein folding at 298 K normalized by the number of residues. A multipolar-model water was adopted as the solvent. The polyatomic structures of the folded and unfolded states of a protein were taken into account in the atomic detail. A larger value of the measure implies higher thermal stability. First, we show that the measure remains effective even when the model water is replaced by the hard-sphere solvent whose number density and molecular diameter are set at those of real water. The physical picture is then adapted to the elucidation of the effects of sugar addition on the thermal stability of a protein. The water-sugar solution is modeled as a binary mixture of hard spheres. The thermal stability is determined by a complex interplay of the diameter of sugar molecules dC and the total packing fraction of the solution η: dC is estimated from the volume per molecule in the sugar crystal and η is calculated using the experimental data of the solution density. We find that the protein is more stabilized as the sucrose or glucose concentration becomes higher and the stabilization effect is stronger for sucrose than for glucose. These results are in accord with the experimental observations. Using a radial-symmetric integral equation theory and the morphometric approach, we decompose the change in the measure upon sugar addition into two components originating from the protein-solvent pair and protein-solvent many-body correlations, respectively. Each component is further decomposed into the excluded-volume and solvent-accessible-surface terms. These decompositions give physical insights into the microscopic origin of the thermal-stability

  17. Stability of ALS-related Superoxide Dismutase Protein variants

    NASA Astrophysics Data System (ADS)

    Lusebrink, Daniel; Plotkin, Steven

    Superoxide dismutase (SOD1) is a metal binding, homodimeric protein, whose misfolding is implicated in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). Monomerization is believed to be a key step in the propagation of the disease. The dimer stability is often difficult to measure experimentally however, because it is entangled with protein unfolding and metal loss. We thus computationally investigate the dimer stability of mutants of SOD1 known to be associated with ALS. We report on systematic trends in dimer stability, as well as intriguing allosteric communication between mutations and the dimer interface. We study the dimer stabilities in molecular dynamics simulations and obtain the binding free energies of the dimers from pulling essays. Mutations are applied in silicoand we compare the differences of binding free energies compared to the wild type.

  18. Mechanism of protein precipitation and stabilization by co-solvents

    NASA Astrophysics Data System (ADS)

    Timasheff, Serge N.; Arakawa, Tsutomu

    1988-07-01

    The interactions between proteins and a number of substances which, when present at high concentration, stabilize or precipitate proteins, have been analyzed in terms of the preferential interactions of these co-solvents with proteins. In all cases, stabilization or precipitation was accompanied by preferential exclusion of the co-solvent from the immediate domain of the protein, i.e., preferential hydration of the protein. This means that addition of the co-solvent to the aqueous protein solution increased the chemical potentials of both components. The thermodynamic interaction parameters derived from such data make it possible to calculate the salting out constant, Ks, as well as to construct a phase isotherm for any given solvent mixture which indicates the limiting protein solubility. The salting-out effect can be decomposed into contributions from non-specific preferential exclusion and specific binding of the ligand to the protein, the balance leading to solubilization or precipitation. In reactions, such as denaturation, the effect of co-solvent on the reaction depends on the difference in the preferential interactions of the two end states of the protein. Principal sources of preferential exclusion have been identified as steric exclusion, increase of the surface tension of water by the co-solvent, repulsion by charged loci on the protein and solvophobicity.

  19. A topological and conformational stability alphabet for multipass membrane proteins.

    PubMed

    Feng, Xiang; Barth, Patrick

    2016-03-01

    Multipass membrane proteins perform critical signal transduction and transport across membranes. How transmembrane helix (TMH) sequences encode the topology and conformational flexibility regulating these functions remains poorly understood. Here we describe a comprehensive analysis of the sequence-structure relationships at multiple interacting TMHs from all membrane proteins with structures in the Protein Data Bank (PDB). We found that membrane proteins can be deconstructed in interacting TMH trimer units, which mostly fold into six distinct structural classes of topologies and conformations. Each class is enriched in recurrent sequence motifs from functionally unrelated proteins, revealing unforeseen consensus and evolutionary conserved networks of stabilizing interhelical contacts. Interacting TMHs' topology and local protein conformational flexibility were remarkably well predicted in a blinded fashion from the identified binding-hotspot motifs. Our results reveal universal sequence-structure principles governing the complex anatomy and plasticity of multipass membrane proteins that may guide de novo structure prediction, design, and studies of folding and dynamics. PMID:26780406

  20. Interactions of phospholipase D and cytochrome P450 protein stability

    SciTech Connect

    Zangar, Richard C.; Fan, Yang-Yi; Chapkin, Robert S.

    2004-08-01

    Previous studies have suggested a relationship between cytochrome P450 (P450) 3A (CYP3A) conformation and the phospholipid composition of the associated membrane. In this study, we utilized a novel microsomal incubation system that mimics many of the characteristics of CYP3A degradation pathway that have been observed in vivo and in cultured cells to study the effects of phospholipid composition on protein stability. We found that addition of phosphatidylcholine-specific phospholipase D (PLD) stabilized CYP3A in this system, but that phosphatidylinositol-specific phospholipase C (PLC) was without effect. Addition of phosphatidic acid also stabilized CYP3A protein in the microsomes. The use of 1,10-phenanthroline (phenanthroline), an inhibitor of PLD activity, decreased CYP3A stability in incubated microsomes. Similarly, 6-h treatment of primary cultures of rat hepatocytes with phenanthroline resulted in nearly complete loss of CYP3A protein. Treatment of rats with nicardipine or dimethylsulfoxide (DMSO), which have been shown to affect CYP3A stability, altered the phospholipid composition of hepatic microsomes. It did not appear, though, that the changes in phospholipid composition that resulted from these in vivo treatments accounted for the change in CYP3A stability observed in hepatic microsomes from these animals.

  1. Protein Stability, Folding and Misfolding in Human PGK1 Deficiency.

    PubMed

    Valentini, Giovanna; Maggi, Maristella; Pey, Angel L

    2013-01-01

    Conformational diseases are often caused by mutations, altering protein folding and stability in vivo. We review here our recent work on the effects of mutations on the human phosphoglycerate kinase 1 (hPGK1), with a particular focus on thermodynamics and kinetics of protein folding and misfolding. Expression analyses and in vitro biophysical studies indicate that disease-causing mutations enhance protein aggregation propensity. We found a strong correlation among protein aggregation propensity, thermodynamic stability, cooperativity and dynamics. Comparison of folding and unfolding properties with previous reports in PGKs from other species suggests that hPGK1 is very sensitive to mutations leading to enhance protein aggregation through changes in protein folding cooperativity and the structure of the relevant denaturation transition state for aggregation. Overall, we provide a mechanistic framework for protein misfolding of hPGK1, which is insightful to develop new therapeutic strategies aimed to target native state stability and foldability in hPGK1 deficient patients. PMID:24970202

  2. Storage Stability of Food Protein Hydrolysates-A Review.

    PubMed

    Rao, Qinchun; Klaassen Kamdar, Andre; Labuza, Theodore P

    2016-05-18

    In recent years, mainly due to the specific health benefits associated with (1) the discovery of bioactive peptides in protein hydrolysates, (2) the reduction of protein allergenicity by protein hydrolysis, and (3) the improved protein digestibility and absorption of protein hydrolysates, the utilization of protein hydrolysates in functional foods and beverages has significantly increased. Although the specific health benefits from different hydrolysates are somewhat proven, the delivery and/or stability of these benefits is debatable during distribution, storage, and consumption. In this review, we discuss (1) the quality changes in different food protein hydrolysates during storage; (2) the resulting changes in the structure and texture of three food matrices, i.e., low moisture foods (LMF, aw < 0.6), intermediate moisture foods (IMF, 0.6 ≤ aw < 0.85), and high moisture foods (HMF, aw ≥ 0.85); and (3) the potential solutions to improve storage stability of food protein hydrolysates. In addition, we note there is a great need for evaluation of biofunction availability of bioactive peptides in food protein hydrolysates during storage. PMID:24915379

  3. Temperature compensation via cooperative stability in protein degradation

    NASA Astrophysics Data System (ADS)

    Peng, Yuanyuan; Hasegawa, Yoshihiko; Noman, Nasimul; Iba, Hitoshi

    2015-08-01

    Temperature compensation is a notable property of circadian oscillators that indicates the insensitivity of the oscillator system's period to temperature changes; the underlying mechanism, however, is still unclear. We investigated the influence of protein dimerization and cooperative stability in protein degradation on the temperature compensation ability of two oscillators. Here, cooperative stability means that high-order oligomers are more stable than their monomeric counterparts. The period of an oscillator is affected by the parameters of the dynamic system, which in turn are influenced by temperature. We adopted the Repressilator and the Atkinson oscillator to analyze the temperature sensitivity of their periods. Phase sensitivity analysis was employed to evaluate the period variations of different models induced by perturbations to the parameters. Furthermore, we used experimental data provided by other studies to determine the reasonable range of parameter temperature sensitivity. We then applied the linear programming method to the oscillatory systems to analyze the effects of protein dimerization and cooperative stability on the temperature sensitivity of their periods, which reflects the ability of temperature compensation in circadian rhythms. Our study explains the temperature compensation mechanism for circadian clocks. Compared with the no-dimer mathematical model and linear model for protein degradation, our theoretical results show that the nonlinear protein degradation caused by cooperative stability is more beneficial for realizing temperature compensation of the circadian clock.

  4. Yeast hnRNP-related proteins contribute to the maintenance of telomeres

    SciTech Connect

    Lee-Soety, Julia Y.; Jones, Jennifer; MacGibeny, Margaret A.; Remaly, Erin C.; Daniels, Lynsey; Ito, Andrea; Jean, Jessica; Radecki, Hannah; Spencer, Shannon

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Yeast hnRNP-related proteins are able to prevent faster senescence in telomerase-null cells. Black-Right-Pointing-Pointer The conserved RRMs in Npl3 are important for telomere maintenance. Black-Right-Pointing-Pointer Human hnRNP A1 is unable to complement the lack of NPL3 in yeast. Black-Right-Pointing-Pointer Npl3 and Cbc2 may work as telomere capping proteins. -- Abstract: Telomeres protect the ends of linear chromosomes, which if eroded to a critical length can become uncapped and lead to replicative senescence. Telomerase maintains telomere length in some cells, but inappropriate expression facilitates the immortality of cancer cells. Recently, proteins involved in RNA processing and ribosome assembly, such as hnRNP (heterogeneous nuclear ribonucleoprotein) A1, have been found to participate in telomere maintenance in mammals. The Saccharomyces cerevisiae protein Npl3 shares significant amino acid sequence similarities with hnRNP A1. We found that deleting NPL3 accelerated the senescence of telomerase null cells. The highly conserved RNA recognition motifs (RRM) in Npl3 appear to be important for preventing faster senescence. Npl3 preferentially binds telomere sequences in vitro, suggesting that Npl3 may affect telomeres directly. Despite similarities between the two proteins, human hnRNP A1 is unable to complement the lack of Npl3 to rescue accelerated senescence in tlc1 npl3 cells. Deletion of CBC2, which encodes another hnRNP-related protein that associates with Npl3, also accelerates senescence. Potential mechanisms by which hnRNP-related proteins maintain telomeres are discussed.

  5. Separation of stem cell maintenance and transposon silencing functions of Piwi protein

    PubMed Central

    Klenov, Mikhail S.; Sokolova, Olesya A.; Yakushev, Evgeny Y.; Stolyarenko, Anastasia D.; Mikhaleva, Elena A.; Lavrov, Sergey A.; Gvozdev, Vladimir A.

    2011-01-01

    Piwi-interacting RNAs (piRNAs) and Piwi proteins have the evolutionarily conserved function of silencing of repetitive genetic elements in germ lines. The founder of the Piwi subfamily, Drosophila nuclear Piwi protein, was also shown to be required for the maintenance of germ-line stem cells (GSCs). Hence, null mutant piwi females exhibit two types of abnormalities, overexpression of transposons and severely underdeveloped ovaries. It remained unknown whether the failure of GSC maintenance is related to transposon derepression or if GSC self-renewal and piRNA silencing are two distinct functions of the Piwi protein. We have revealed a mutation, piwiNt, removing the nuclear localization signal of the Piwi protein. piwiNt females retain the ability of GSC self-renewal and a near-normal number of egg chambers in the ovarioles but display a drastic transposable element derepression and nuclear accumulation of their transcripts in the germ line. piwiNt mutants are sterile most likely because of the disturbance of piRNA-mediated transposon silencing. Analysis of chromatin modifications in the piwiNt ovaries indicated that Piwi causes chromatin silencing only of certain types of transposons, whereas others are repressed in the nuclei without their chromatin modification. Thus, Piwi nuclear localization that is required for its silencing function is not essential for the maintenance of GSCs. We suggest that the Piwi function in GSC self-renewal is independent of transposon repression and is normally realized in the cytoplasm of GSC niche cells. PMID:22065765

  6. Separation of stem cell maintenance and transposon silencing functions of Piwi protein.

    PubMed

    Klenov, Mikhail S; Sokolova, Olesya A; Yakushev, Evgeny Y; Stolyarenko, Anastasia D; Mikhaleva, Elena A; Lavrov, Sergey A; Gvozdev, Vladimir A

    2011-11-15

    Piwi-interacting RNAs (piRNAs) and Piwi proteins have the evolutionarily conserved function of silencing of repetitive genetic elements in germ lines. The founder of the Piwi subfamily, Drosophila nuclear Piwi protein, was also shown to be required for the maintenance of germ-line stem cells (GSCs). Hence, null mutant piwi females exhibit two types of abnormalities, overexpression of transposons and severely underdeveloped ovaries. It remained unknown whether the failure of GSC maintenance is related to transposon derepression or if GSC self-renewal and piRNA silencing are two distinct functions of the Piwi protein. We have revealed a mutation, piwi(Nt), removing the nuclear localization signal of the Piwi protein. piwi(Nt) females retain the ability of GSC self-renewal and a near-normal number of egg chambers in the ovarioles but display a drastic transposable element derepression and nuclear accumulation of their transcripts in the germ line. piwi(Nt) mutants are sterile most likely because of the disturbance of piRNA-mediated transposon silencing. Analysis of chromatin modifications in the piwi(Nt) ovaries indicated that Piwi causes chromatin silencing only of certain types of transposons, whereas others are repressed in the nuclei without their chromatin modification. Thus, Piwi nuclear localization that is required for its silencing function is not essential for the maintenance of GSCs. We suggest that the Piwi function in GSC self-renewal is independent of transposon repression and is normally realized in the cytoplasm of GSC niche cells. PMID:22065765

  7. Development of dextran nanoparticles for stabilizing delicate proteins

    NASA Astrophysics Data System (ADS)

    Wu, Fei; Zhou, Zhihua; Su, Jing; Wei, Liangming; Yuan, Weien; Jin, Tuo

    2013-04-01

    One of the most challenging problems in the development of protein pharmaceuticals is to deal with stabilities of proteins due to its complicated structures. This study aims to develop a novel approach to stabilize and encapsulate proteins into dextran nanoparticles without contacting the interface between the aqueous phase and the organic phase. The bovine serum albumin, granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), β-galactosidase, and myoglobin were selected as model proteins. The proteins were added into an aqueous solution containing the dextran and polyethylene glycol, and then encapsulated into dextran nanoparticles by aqueous-aqueous freezing-induced phase separation. The encapsulation efficiency and recovery of dextran nanoparticles were determined. The dextran nanoparticles loaded with proteins were characterized by scanning electron microscopy and particle size analysis. The protein aggregation was determined by size-exclusion chromatography-high-performance chromatography, and the bioactivity of proteins recovered during formulation steps was determined. The bioactivity of GM-CSF, G-CSF, and β-galactosidase were examined by the proliferation of TF-1 cell, NSF-60 cell, and ortho-nitrophenyl- β-galactoside assay, respectively. The results of bioactivity recovered show that this novel dextran nanoparticle can preserve the protein's bioactivity during the preparation process. LysoSensor™ Yellow/Blue dextran, a pH-sensitive indicator with fluorescence excited at two channels, was encapsulated into dextran nanoparticles to investigate the ability of dextran nanoparticles to resist the acidic microenvironment (pH < 2.5). The result shows that the dextran nanoparticles attenuate the acidic microenvironment in the poly (lactic-co-glycolic acid) microsphere by means of the dilution effect. These novel dextran nanoparticles provided an appealing approach to stabilize the delicate proteins for

  8. The Role of Trehalose for the Stabilization of Proteins.

    PubMed

    Olsson, Christoffer; Jansson, Helén; Swenson, Jan

    2016-05-26

    Understanding of how the stabilization mechanism of trehalose operates on biological molecules against different types of environmental stress could prove to gain great advancements in many different types of conservation techniques, such as cryopreservation or freeze-drying. Many theories exist that aim to explain why trehalose possesses an extraordinary ability to stabilize biomolecules. However, all of them just explain parts of its mechanism and a comprehensive picture is still lacking. In this study, we have used differential scanning calorimetry (DSC) and viscometry measurements to determine how the glass transition temperature Tg, the protein denaturation temperature Tden, and the dynamic viscosity depend on both the trehalose and the protein concentration in myoglobin-trehalose-water systems. The aim has been to determine whether these physical properties are related and to gain indirect structural insights from the limits of water crystallization at different concentration ratios. The results show that for systems without partial crystallization of water the addition of protein increases Tg, most likely due to the fact that the protein adsorbs water and thereby reduces the water content in the trehalose-water matrix. Furthermore, these systems are generally decreasing in Tden with an increasing protein concentration, and thereby also an increasing viscosity, showing that the dynamics of the trehalose-water matrix and the stability of the native structure of the protein are not necessarily coupled. We also infer, by analyzing the maximum amount of water for which ice formation is avoided, that the preferential hydration model is consistent with our experimental data. PMID:27135987

  9. Biglycan is an extracellular MuSK binding protein important for synapse stability

    PubMed Central

    Amenta, A.R.; Creely, H.E.; Mercado, M.L.; Hagiwara, H.; McKechnie, B. A.; Lechner, B.E.; Rossi, S. G.; Wang, Q.; Owens, R. T.; Marrero, E.; Mei, L.; Hoch, W.; Young, M. F.; McQuillan, D. J.; Rotundo, R. L.; Fallon, J.R.

    2012-01-01

    The receptor tyrosine kinase MuSK is indispensable for nerve-muscle synapse formation and maintenance. MuSK is necessary for pre-patterning of the endplate zone anlage and as a signaling receptor for agrin-mediated postsynaptic differentiation. MuSK-associated proteins such as Dok7, LRP4, and Wnt11r are involved in these early events in neuromuscular junction formation. However, the mechanisms regulating synapse stability are poorly understood. Here we examine a novel role for the extracellular matrix protein biglycan in synapse stability. Synaptic development in fetal and early postnatal biglycan null (bgn-/o) muscle is indistinguishable from wild type controls. However, by 5 wks after birth nerve-muscle synapses in bgn-/o mice are abnormal as judged by the presence of perijunctional folds, increased segmentation and focal misalignment of acetylcholinesterase and AChRs. These observations indicate that previously occupied pre- and post- synaptic territory has been vacated. Biglycan binds MuSK and the levels of this receptor tyrosine kinase are selectively reduced at bgn-/o synapses. In bgn-/o myotubes, the initial stages of agrin-induced MuSK phosphorylation and AChR clustering are normal, but the AChR clusters are unstable. This stability defect can be substantially rescued by the addition of purified biglycan. Together, these results indicate that biglycan is an extracellular ligand for MuSK that is important for synapse stability. PMID:22396407

  10. Mutational effects on stability are largely conserved during protein evolution.

    PubMed

    Ashenberg, Orr; Gong, L Ian; Bloom, Jesse D

    2013-12-24

    Protein stability and folding are the result of cooperative interactions among many residues, yet phylogenetic approaches assume that sites are independent. This discrepancy has engendered concerns about large evolutionary shifts in mutational effects that might confound phylogenetic approaches. Here we experimentally investigate this issue by introducing the same mutations into a set of diverged homologs of the influenza nucleoprotein and measuring the effects on stability. We find that mutational effects on stability are largely conserved across the homologs. We reach qualitatively similar conclusions when we simulate protein evolution with molecular-mechanics force fields. Our results do not mean that proteins evolve without epistasis, which can still arise even when mutational stability effects are conserved. However, our findings indicate that large evolutionary shifts in mutational effects on stability are rare, at least among homologs with similar structures and functions. We suggest that properly describing the clearly observable and highly conserved amino acid preferences at individual sites is likely to be far more important for phylogenetic analyses than accounting for rare shifts in amino acid propensities due to site covariation. PMID:24324165

  11. Sde2: A novel nuclear protein essential for telomeric silencing and genomic stability in Schizosaccharomyces pombe

    SciTech Connect

    Sugioka-Sugiyama, Rie; Sugiyama, Tomoyasu

    2011-03-18

    Research highlights: {yields} Sde2 is essential for telomere silencing. {yields} Sde2 is involved in the maintenance of genomic stability. {yields} Sde2 promotes the recruitment of SHREC, a histone deacetylase complex, to telomeres. -- Abstract: Telomeres, specialized domains assembled at the ends of linear chromosomes, are essential for genomic stability in eukaryotes. The formation and maintenance of telomeres are governed by numerous factors such as telomeric repeats, telomere-binding proteins, heterochromatin proteins, and telomerase. Here, we report Sde2, a novel nuclear protein essential for telomeric silencing and genomic stability in the fission yeast Schizosaccharomyces pombe. A deficiency in sde2 results in the derepression of the ura4{sup +} gene inserted near telomeric repeats, and the noncoding transcripts from telomeric regions accumulate in sde2{Delta} cells. The loss of Sde2 function compromises transcriptional silencing at telomeres, and this silencing defect is accompanied by increased levels of acetylated histone H3K14 and RNA polymerase II occupancy at telomeres as well as reduced recruitment of the SNF2 ATPase/histone deacetylase-containing complex SHREC to telomeres. Deletion of sde2 also leads to a higher frequency of mitotic minichromosome loss, and sde2{Delta} cells often form asci that contain spores in abnormal numbers, shapes, or both. In addition, sde2{Delta} cells are highly sensitive to several stresses, including high/low temperatures, bleomycin, which induces DNA damage, and thiabendazole, a microtubule-destabilizing agent. Furthermore, Sde2 genetically interacts with the telomere regulators Taz1, Pof3, and Ccq1. These findings demonstrate that Sde2 cooperates with other telomere regulators to maintain functional telomeres, thereby preventing genomic instability.

  12. Some implications of colloid stability theory for protein crystallization

    NASA Technical Reports Server (NTRS)

    Young, C. C.; De Mattei, R. C.; Feigelson, R. S.; Tiller, W. A.

    1988-01-01

    Colloid stability theory has been applied to protein crystallization and predicts a narrow range of conditions under which crystals can be grown without the agglomeration of protein molecules (colloids) in the bulk solution. It also predicts a critical electrolyte concentration above which agglomeration will always occur. Using this theory, the rapid protein agglomeration occurring during Schlieren experiments as well as a terminal crystal size effect in a fixed container were explained. Following this concept, the supposed 'terminal' crystal size has been at least doubled.

  13. Structure of a double hexamer of the Pyrococcus furiosus minichromosome maintenance protein N-terminal domain.

    PubMed

    Meagher, Martin; Enemark, Eric J

    2016-07-01

    The crystal structure of the N-terminal domain of the Pyrococcus furiosus minichromosome maintenance (MCM) protein as a double hexamer is described. The MCM complex is a ring-shaped helicase that unwinds DNA at the replication fork of eukaryotes and archaea. Prior to replication initiation, the MCM complex assembles as an inactive double hexamer at specific sites of DNA. The presented structure is highly consistent with previous MCM double-hexamer structures and shows two MCM hexamers with a head-to-head interaction mediated by the N-terminal domain. Minor differences include a diminished head-to-head interaction and a slightly reduced inter-hexamer rotation. PMID:27380371

  14. Graph theory and stability analysis of protein complex interaction networks.

    PubMed

    Huang, Chien-Hung; Chen, Teng-Hung; Ng, Ka-Lok

    2016-04-01

    Protein complexes play an essential role in many biological processes. Complexes can interact with other complexes to form protein complex interaction network (PCIN) that involves in important cellular processes. There are relatively few studies on examining the interaction topology among protein complexes; and little is known about the stability of PCIN under perturbations. We employed graph theoretical approach to reveal hidden properties and features of four species PCINs. Two main issues are addressed, (i) the global and local network topological properties, and (ii) the stability of the networks under 12 types of perturbations. According to the topological parameter classification, we identified some critical protein complexes and validated that the topological analysis approach could provide meaningful biological interpretations of the protein complex systems. Through the Kolmogorov-Smimov test, we showed that local topological parameters are good indicators to characterise the structure of PCINs. We further demonstrated the effectiveness of the current approach by performing the scalability and data normalization tests. To measure the robustness of PCINs, we proposed to consider eight topological-based perturbations, which are specifically applicable in scenarios of targeted, sustained attacks. We found that the degree-based, betweenness-based and brokering-coefficient-based perturbations have the largest effect on network stability. PMID:26997661

  15. The structural stability of wild-type horse prion protein.

    PubMed

    Zhang, Jiapu

    2011-10-01

    Prion diseases (e.g. Creutzfeldt-Jakob disease (CJD), variant CJD (vCJD), Gerstmann-Straussler-Scheinker syndrome (GSS), Fatal Familial Insomnia (FFI) and Kuru in humans, scrapie in sheep, bovine spongiform encephalopathy (BSE or 'mad-cow' disease) and chronic wasting disease (CWD) in cattles) are invariably fatal and highly infectious neurodegenerative diseases affecting humans and animals. However, by now there have not been some effective therapeutic approaches or medications to treat all these prion diseases. Rabbits, dogs, and horses are the only mammalian species reported to be resistant to infection from prion diseases isolated from other species. Recently, the β2-α2 loop has been reported to contribute to their protein structural stabilities. The author has found that rabbit prion protein has a strong salt bridge ASP177-ARG163 (like a taut bow string) keeping this loop linked. This paper confirms that this salt bridge also contributes to the structural stability of horse prion protein. Thus, the region of β2-α2 loop might be a potential drug target region. Besides this very important salt bridge, other four important salt bridges GLU196-ARG156-HIS187, ARG156-ASP202 and GLU211-HIS177 are also found to greatly contribute to the structural stability of horse prion protein. Rich databases of salt bridges, hydrogen bonds and hydrophobic contacts for horse prion protein can be found in this paper. PMID:21875155

  16. Designed protein reveals structural determinants of extreme kinetic stability

    PubMed Central

    Broom, Aron; Ma, S. Martha; Xia, Ke; Rafalia, Hitesh; Trainor, Kyle; Colón, Wilfredo; Gosavi, Shachi; Meiering, Elizabeth M.

    2015-01-01

    The design of stable, functional proteins is difficult. Improved design requires a deeper knowledge of the molecular basis for design outcomes and properties. We previously used a bioinformatics and energy function method to design a symmetric superfold protein composed of repeating structural elements with multivalent carbohydrate-binding function, called ThreeFoil. This and similar methods have produced a notably high yield of stable proteins. Using a battery of experimental and computational analyses we show that despite its small size and lack of disulfide bonds, ThreeFoil has remarkably high kinetic stability and its folding is specifically chaperoned by carbohydrate binding. It is also extremely stable against thermal and chemical denaturation and proteolytic degradation. We demonstrate that the kinetic stability can be predicted and modeled using absolute contact order (ACO) and long-range order (LRO), as well as coarse-grained simulations; the stability arises from a topology that includes many long-range contacts which create a large and highly cooperative energy barrier for unfolding and folding. Extensive data from proteomic screens and other experiments reveal that a high ACO/LRO is a general feature of proteins with strong resistances to denaturation and degradation. These results provide tractable approaches for predicting resistance and designing proteins with sufficient topological complexity and long-range interactions to accommodate destabilizing functional features as well as withstand chemical and proteolytic challenge. PMID:26554002

  17. Expression, function, and targeting of the nuclear exporter chromosome region maintenance 1 (CRM1) protein

    PubMed Central

    Ishizawa, Jo; Kojima, Kensuke; Hail, Numsen; Tabe, Yoko; Andreeff, Michael

    2015-01-01

    Nucleocytoplasmic trafficking of proteins/RNAs is essential to normal cellular function. Indeed, accumulating evidence suggests that cancer cells escape anti-neoplastic mechanisms and benefit from pro-survival signals via the dysregulation of this system. The nuclear exporter chromosome region maintenance 1 (CRM1) protein is the only protein in the karyopherin-β protein family that contributes to the trafficking of numerous proteins and RNAs from the nucleus. It is considered to be an oncogenic, anti-apoptotic protein in transformed cells, since it reportedly functions as a gatekeeper for cell survival, including affecting p53 function, and ribosomal biogenesis. Furthermore, abnormally high expression of CRM1 is correlated with poor patient prognosis in various malignancies. Therapeutic targeting of CRM1 has emerged as a novel cancer treatment strategy, starting with a clinical trial with leptomycin B, the original specific inhibitor of CRM1, followed by development of several next-generation small molecules. KPT-330, a novel member of the CRM1-selective inhibitors of nuclear export (SINE) class of compounds, is currently undergoing clinical evaluation for the therapy of various malignancies. Results from these trials suggest that SINE compounds may be particularly useful against hematological malignancies, which often become refractory to standard chemotherapeutic agents. PMID:26048327

  18. Energy and protein needs of cats for maintenance, gestation and lactation.

    PubMed

    Wichert, B; Schade, L; Gebert, S; Bucher, B; Zottmaier, B; Wenk, C; Wanner, M

    2009-10-01

    In the present investigation, data on the energy intakes and energy needs, as well as protein and fat accretion, of queens during pregnancy, during lactation and after lactation are given. Eleven adult cats were used as experimental animals. Data were collected during the fourth and seventh week of pregnancy, the second and sixth week of lactation and the second and sixth week after lactation. The cats were fed dry kitten food. During gestation and after lactation, all measurements were performed with respiration chambers. During lactation, balance trials without respiration chambers were performed. Body weight was measured and nitrogen, carbon and energy balances were calculated. From these, protein and fat accretion, as well as the metabolisable energy intake, was calculated. The weight gain during gestation was linearly independent of the number of kittens. During lactation, all cats lost weight; nevertheless, all cats except one were heavier 2 weeks after lactation than at mating. The energy intake of the cats during gestation was 1.8 times the maintenance requirement in the fourth week and two times maintenance requirement in the seventh week, and these energy intakes differed greatly among individuals. The energy intake of the cats during lactation was clearly higher than that recommended by National Research Council (NRC)(1), whereas the recommended protein intake in the second week of lactation was met. As the calculated protein balance was negative, the NRC recommendation for protein intake seems to be too low. In comparison to previous data, the cats showed a higher energy intake during lactation (median 502kJ/kgBW/d, second week lactation), and the weight loss was much lower. Further investigations on pregnant and lactating cats are necessary to complete the database. PMID:19564126

  19. Detergent Stabilized Nanopore Formation Kinetics of an Anthrax Protein

    NASA Astrophysics Data System (ADS)

    Peterson, Kelby

    2015-03-01

    This summer research project funded through the Society of Physics Students Internship Program and The National Institute of Standards and Technology focused on optimization of pore formation of Protective Antigen protein secreted by Bacillus Anthraces. This experiment analyzes the use of N-tetradecylphosphocholine (FOS-14 Detergent) to stabilize the water soluble protein, protective antigen protein (PA63) to regulate the kinetics of pore formation in a model bilayer lipid membrane. The FOS-14 Detergent was tested under various conditions to understand its impact on the protein pore formation. The optimization of this channel insertion is critical in preparing samples of oriented for neutron reflectometry that provide new data to increase the understanding of the protein's structure.

  20. [Protein Folding and Stability in the Presence of Osmolytes].

    PubMed

    Fonin, A V; Uversky, V N; Kuznetsova, I M; Turoverov, K K

    2016-01-01

    Osmolytes are molecules with the function among others to align hydrostatic pressure between intracellular and extracellular spaces. Accumulation of osmolytes occurs in the cell in response to stress caused by pressure change, change in temperature, pH, and concentration of inorganic salts. Osmolytes can prevent native proteins denaturation and promote folding of unfolding proteins. Investigation of the osmolytes effect on these processes is essential for understanding the mechanisms of folding and functioning of proteins in vivo. A score of works, devoted to the effect of osmolytes on proteins, are not always consistent with each other. In this review an attempt was made to systemize available array of data on the subject and consider the problem of folding and stability of proteins in solutions in the presence of osmolytes from the single viewpoint. PMID:27192822

  1. Dynamic Stabilization of Expressed Proteins in Engineered Diatom Biosilica Matrices.

    PubMed

    Xiong, Yijia; Ford, Nicole R; Hecht, Karen A; Roesijadi, Guritno; Squier, Thomas C

    2016-05-18

    Self-assembly of recombinant proteins within the biosilica of living diatoms represents a means to construct functional materials in a reproducible and scalable manner that will enable applications that harness the inherent specificities of proteins to sense and respond to environmental cues. Here we describe the use of a silaffin-derived lysine-rich 39-amino-acid targeting sequence (Sil3T8) that directs a single chain fragment variable (scFv) antibody or an enhanced green fluorescent protein (EGFP) to assemble within the biosilica frustule, resulting in abundance of >200 000 proteins per frustule. Using either a fluorescent ligand bound to the scFv or the intrinsic fluorescence of EGFP, we monitored protein conformational dynamics, accessibility to external quenchers, binding affinity, and conformational stability. Like proteins in solution, proteins within isolated frustules undergo isotropic rotational motion, but with 2-fold increases in rotational correlation times that are indicative of weak macromolecular associations within the biosilica. Solvent accessibilities and high-affinity (pM) binding are comparable to those in solution. In contrast to solution conditions, scFv antibodies within the biosilica matrix retain their binding affinity in the presence of chaotropic agents (i.e., 8 M urea). Together, these results argue that dramatic increases in protein conformational stability within the biosilica matrices arise through molecular crowding, acting to retain native protein folds and associated functionality with the potential to allow the utility of engineered proteins under a range of harsh environmental conditions associated with environmental sensing and industrial catalytic transformations. PMID:27139003

  2. Protein stabilization by macromolecular crowding through enthalpy rather than entropy.

    PubMed

    Senske, Michael; Törk, Lisa; Born, Benjamin; Havenith, Martina; Herrmann, Christian; Ebbinghaus, Simon

    2014-06-25

    The interior of the cell is a densely crowded environment in which protein stability is affected differently than in dilute solution. Macromolecular crowding is commonly understood in terms of an entropic volume exclusion effect based on hardcore repulsions among the macromolecules. We studied the thermal unfolding of ubiquitin in the presence of different cosolutes (glucose, dextran, poly(ethylene glycol), KCl, urea). Our results show that for a correct dissection of the cosolute-induced changes of the free energy into its enthalpic and entropic contributions, the temperature dependence of the heat capacity change needs to be explicitly taken into account. In contrast to the prediction by the excluded volume theory, we observed an enthalpic stabilization and an entropic destabilization for glucose, dextran, and poly(ethylene glycol). The enthalpic stabilization mechanism induced by the macromolecular crowder dextran was similar to the enthalpic stabilization mechanism of its monomeric building block glucose. In the case of poly(ethylene glycol), entropy is dominating over enthalpy leading to an overall destabilization. We propose a new model to classify cosolute effects in terms of their enthalpic contributions to protein stability. PMID:24888734

  3. The yeast ubiquitin protease, Ubp3p, promotes protein stability.

    PubMed Central

    Brew, Christine T; Huffaker, Tim C

    2002-01-01

    Stu1p is a microtubule-associated protein required for spindle assembly. In this article we show that the temperature-sensitive stu1-5 allele is synthetically lethal in combination with ubp3, gim1-gim5, and kem1 mutations. The primary focus of this article is on the stu1-5 ubp3 interaction. Ubp3 is a deubiquitination enzyme and a member of a large family of cysteine proteases that cleave ubiquitin moieties from protein substrates. UBP3 is the only one of 16 UBP genes in yeast whose loss is synthetically lethal with stu1-5. Stu1p levels in stu1-5 cells are several-fold lower than the levels in wild-type cells and the stu1-5 temperature sensitivity can be rescued by additional copies of stu1-5. These results indicate that the primary effect of the stu1-5 mutation is to make the protein less stable. The levels of Stu1p are even lower in ubp3Delta stu1-5 cells, suggesting that Ubp3p plays a role in promoting protein stability. We also found that ubp3Delta produces growth defects in combination with mutations in other genes that decrease protein stability. Overall, these data support the idea that Ubp3p has a general role in the reversal of protein ubiquitination. PMID:12454057

  4. Stability of Protein-Specific Hydration Shell on Crowding.

    PubMed

    Huang, Kuo-Ying; Kingsley, Carolyn N; Sheil, Ryan; Cheng, Chi-Yuan; Bierma, Jan C; Roskamp, Kyle W; Khago, Domarin; Martin, Rachel W; Han, Songi

    2016-04-27

    We demonstrate that the effect of protein crowding is critically dependent on the stability of the protein's hydration shell, which can dramatically vary between different proteins. In the human eye lens, γS-crystallin (γS-WT) forms a densely packed transparent hydrogel with a high refractive index, making it an ideal system for studying the effects of protein crowding. A single point mutation generates the cataract-related variant γS-G18V, dramatically altering the optical properties of the eye lens. This system offers an opportunity to explore fundamental questions regarding the effect of protein crowding, using γS-WT and γS-G18V: (i) how do the diffusion dynamics of hydration water change as a function of protein crowding?; and (ii) upon hydrogel formation of γS-WT, has a dynamic transition occurred generating a single population of hydration water, or do populations of bulk and hydration water coexist? Using localized spin probes, we separately probe the local translational diffusivity of both surface hydration and interstitial water of γS-WT and γS-G18V in solution. Surprisingly, we find that under the influence of hydrogel formation at highly crowded γS-WT concentrations up to 500 mg/mL, the protein hydration shell remains remarkably dynamic, slowing by less than a factor of 2, if at all, compared to that in dilute protein solutions of ∼5 mg/mL. Upon self-crowding, the population of this robust surface hydration water increases, while a significant bulk-like water population coexists even at ∼500 mg/mL protein concentrations. In contrast, surface water of γS-G18V irreversibly dehydrates with moderate concentration increases or subtle alterations to the solution conditions, demonstrating that the effect of protein crowding is highly dependent on the stability of the protein-specific hydration shell. The core function of γS-crystallin in the eye lens may be precisely its capacity to preserve a robust hydration shell, whose stability is abolished

  5. Inner Membrane Protein YhcB Interacts with RodZ Involved in Cell Shape Maintenance in Escherichia coli

    PubMed Central

    Li, Gaochi; Hamamoto, Kentaro; Kitakawa, Madoka

    2012-01-01

    Depletion of YhcB, an inner membrane protein of Escherichia coli, inhibited the growth of rodZ deletion mutant showing that the loss of both YhcB and RodZ is synthetically lethal. Furthermore, YhcB was demonstrated to interact with RodZ as well as several other proteins involved in cell shape maintenance and an inner membrane protein YciS of unknown function, using bacterial two-hybrid system. These observations seem to indicate that YhcB is involved in the biogenesis of cell envelope and the maintenance of cell shape together with RodZ.

  6. Thermal stability of matrix protein from Newcastle disease virus.

    PubMed

    Morán, Irene Sánchez; Cuadrado-Castano, Sara; Barroso, Isabel Muñoz; Kostetsky, Eduard Ya; Zhadan, Galina; Gómez, Javier; Shnyrov, Valery L; Villar, Enrique

    2013-10-01

    The thermal stability of the matrix protein (M protein) of Newcastle disease virus (NDV) has been investigated using high-sensitivity differential scanning calorimetry (DSC) at pH 7.4. The thermal folding/unfolding of M protein at this pH value is a reversible process involving a highly cooperative transition between folded and unfolded monomers with a transition temperature (Tm) of 63 °C, an unfolding enthalpy, ΔH(Tm), of 340 kcal mol(-1), and the difference in heat capacity between the native and denatured states of the protein, ΔCp, of 5.1 kcal K(-1) mol(-1). The heat capacity of the native state of the protein is in good agreement with the values calculated using a structure-based parameterization, whereas the calculated values for the hypothetical fully-unfolded state of the protein is higher than those determined experimentally. This difference between the heat capacity of denatured M protein and the heat capacity expected for an unstructured polypeptide of the same sequence, together with the data derived from the heat-induced changes in the steady-state fluorescence of the protein, indicates that the polypeptide chain maintains a significant amount of residual structure after thermal denaturation. PMID:23916643

  7. Nanobody stabilization of G protein coupled receptor conformational states

    PubMed Central

    Steyaert, Jan; K Kobilka, Brian

    2011-01-01

    Remarkable progress has been made in the field of G protein coupled receptor (GPCR) structural biology during the past four years. Several obstacles to generating diffraction quality crystals of GPCRs have been overcome by combining innovative methods ranging from protein engineering to lipid-based screens and microdiffraction technology. The initial GPCR structures represent energetically stable inactive-state conformations. However, GPCRs signal through different G protein isoforms or G protein-independent effectors upon ligand binding suggesting the existence of multiple ligand-specific active states. These active-state conformations are unstable in the absence of specific cytosolic signaling partners representing new challenges for structural biology. Camelid single chain antibody fragments (nanobodies) show promise for stabilizing active GPCR conformations and as chaperones for crystallogenesis. PMID:21782416

  8. Genome-health nutrigenomics and nutrigenetics: nutritional requirements or 'nutriomes' for chromosomal stability and telomere maintenance at the individual level.

    PubMed

    Bull, Caroline; Fenech, Michael

    2008-05-01

    It is becoming increasingly evident that (a) risk for developmental and degenerative disease increases with more DNA damage, which in turn is dependent on nutritional status, and (b) the optimal concentration of micronutrients for prevention of genome damage is also dependent on genetic polymorphisms that alter the function of genes involved directly or indirectly in the uptake and metabolism of micronutrients required for DNA repair and DNA replication. The development of dietary patterns, functional foods and supplements that are designed to improve genome-health maintenance in individuals with specific genetic backgrounds may provide an important contribution to an optimum health strategy based on the diagnosis and individualised nutritional prevention of genome damage, i.e. genome health clinics. The present review summarises some of the recent knowledge relating to micronutrients that are associated with chromosomal stability and provides some initial insights into the likely nutritional factors that may be expected to have an impact on the maintenance of telomeres. It is evident that developing effective strategies for defining nutrient doses and combinations or 'nutriomes' for genome-health maintenance at the individual level is essential for further progress in this research field. PMID:18412988

  9. Bromodomain Proteins Contribute to Maintenance of Bloodstream Form Stage Identity in the African Trypanosome

    PubMed Central

    Schulz, Danae; Mugnier, Monica R.; Paulsen, Eda-Margaret; Kim, Hee-Sook; Chung, Chun-wa W.; Tough, David F.; Rioja, Inmaculada; Prinjha, Rab K.; Papavasiliou, F. Nina; Debler, Erik W.

    2015-01-01

    Trypanosoma brucei, the causative agent of African sleeping sickness, is transmitted to its mammalian host by the tsetse. In the fly, the parasite’s surface is covered with invariant procyclin, while in the mammal it resides extracellularly in its bloodstream form (BF) and is densely covered with highly immunogenic Variant Surface Glycoprotein (VSG). In the BF, the parasite varies this highly immunogenic surface VSG using a repertoire of ~2500 distinct VSG genes. Recent reports in mammalian systems point to a role for histone acetyl-lysine recognizing bromodomain proteins in the maintenance of stem cell fate, leading us to hypothesize that bromodomain proteins may maintain the BF cell fate in trypanosomes. Using small-molecule inhibitors and genetic mutants for individual bromodomain proteins, we performed RNA-seq experiments that revealed changes in the transcriptome similar to those seen in cells differentiating from the BF to the insect stage. This was recapitulated at the protein level by the appearance of insect-stage proteins on the cell surface. Furthermore, bromodomain inhibition disrupts two major BF-specific immune evasion mechanisms that trypanosomes harness to evade mammalian host antibody responses. First, monoallelic expression of the antigenically varied VSG is disrupted. Second, rapid internalization of antibodies bound to VSG on the surface of the trypanosome is blocked. Thus, our studies reveal a role for trypanosome bromodomain proteins in maintaining bloodstream stage identity and immune evasion. Importantly, bromodomain inhibition leads to a decrease in virulence in a mouse model of infection, establishing these proteins as potential therapeutic drug targets for trypanosomiasis. Our 1.25Å resolution crystal structure of a trypanosome bromodomain in complex with I-BET151 reveals a novel binding mode of the inhibitor, which serves as a promising starting point for rational drug design. PMID:26646171

  10. Bromodomain Proteins Contribute to Maintenance of Bloodstream Form Stage Identity in the African Trypanosome.

    PubMed

    Schulz, Danae; Mugnier, Monica R; Paulsen, Eda-Margaret; Kim, Hee-Sook; Chung, Chun-wa W; Tough, David F; Rioja, Inmaculada; Prinjha, Rab K; Papavasiliou, F Nina; Debler, Erik W

    2015-12-01

    Trypanosoma brucei, the causative agent of African sleeping sickness, is transmitted to its mammalian host by the tsetse. In the fly, the parasite's surface is covered with invariant procyclin, while in the mammal it resides extracellularly in its bloodstream form (BF) and is densely covered with highly immunogenic Variant Surface Glycoprotein (VSG). In the BF, the parasite varies this highly immunogenic surface VSG using a repertoire of ~2500 distinct VSG genes. Recent reports in mammalian systems point to a role for histone acetyl-lysine recognizing bromodomain proteins in the maintenance of stem cell fate, leading us to hypothesize that bromodomain proteins may maintain the BF cell fate in trypanosomes. Using small-molecule inhibitors and genetic mutants for individual bromodomain proteins, we performed RNA-seq experiments that revealed changes in the transcriptome similar to those seen in cells differentiating from the BF to the insect stage. This was recapitulated at the protein level by the appearance of insect-stage proteins on the cell surface. Furthermore, bromodomain inhibition disrupts two major BF-specific immune evasion mechanisms that trypanosomes harness to evade mammalian host antibody responses. First, monoallelic expression of the antigenically varied VSG is disrupted. Second, rapid internalization of antibodies bound to VSG on the surface of the trypanosome is blocked. Thus, our studies reveal a role for trypanosome bromodomain proteins in maintaining bloodstream stage identity and immune evasion. Importantly, bromodomain inhibition leads to a decrease in virulence in a mouse model of infection, establishing these proteins as potential therapeutic drug targets for trypanosomiasis. Our 1.25Å resolution crystal structure of a trypanosome bromodomain in complex with I-BET151 reveals a novel binding mode of the inhibitor, which serves as a promising starting point for rational drug design. PMID:26646171

  11. Sgs1, a Homologue of the Bloom's and Werner's Syndrome Genes, Is Required for Maintenance of Genome Stability in Saccharomyces Cerevisiae

    PubMed Central

    Watt, P. M.; Hickson, I. D.; Borts, R. H.; Louis, E. J.

    1996-01-01

    The Saccharomyces cerevisiae SGS1 gene is homologous to Escherichia coli RecQ and the human BLM and WRN proteins that are defective in the cancer-prone disorder Bloom's syndrome and the premature aging disorder Werner's syndrome, respectively. While recQ mutants are deficient in conjugational recombination and DNA repair, Bloom's syndrome cell lines show hyperrecombination. Bloom's and Werner's syndrome cell lines both exhibit chromosomal instability. sgs1Δ strains show mitotic hyperrecombination, as do Bloom's cells. This was manifested as an increase in the frequency of interchromosomal homologous recombination, intrachromosomal excision recombination, and ectopic recombination. Hyperrecombination was partially independent of both RAD52 and RAD1. Meiotic recombination was not increased in sgs1Δ mutants, although meiosis I chromosome missegregation has been shown to be elevated. sgs1Δ suppresses the slow growth of a top3Δ strain lacking topoisomerase III. Although there was an increase in subtelomeric Y' instability in sgs1Δ strains due to hyperrecombination, no evidence was found for an increase in the instability of terminal telomeric sequences in a top3Δ or a sgs1Δ strain. This contrasts with the telomere maintenance defects of Werner's patients. We conclude that the SGS1 gene product is involved in the maintenance of genome stability in S. cerevisiae. PMID:8913739

  12. Redox control of iron regulatory protein 2 stability.

    PubMed

    Hausmann, Anja; Lee, Julie; Pantopoulos, Kostas

    2011-02-18

    Iron regulatory protein 2 (IRP2) is a critical switch for cellular and systemic iron homeostasis. In iron-deficient or hypoxic cells, IRP2 binds to mRNAs containing iron responsive elements (IREs) and regulates their expression. Iron promotes proteasomal degradation of IRP2 via the F-box protein FBXL5. Here, we explored the effects of oxygen and cellular redox status on IRP2 stability. We show that iron-dependent decay of tetracycline-inducible IRP2 proceeds efficiently under mild hypoxic conditions (3% oxygen) but is compromised in severe hypoxia (0.1% oxygen). A treatment of cells with exogenous H(2)O(2) protects IRP2 against iron and increases its IRE-binding activity. IRP2 is also stabilized during menadione-induced oxidative stress. These data demonstrate that the degradation of IRP2 in iron-replete cells is not only oxygen-dependent but also sensitive to redox perturbations. PMID:21281640

  13. Multi-step Loading of Human Minichromosome Maintenance Proteins in Live Human Cells*

    PubMed Central

    Symeonidou, Ioanna-Eleni; Kotsantis, Panagiotis; Roukos, Vassilis; Rapsomaniki, Maria-Anna; Grecco, Hernán E.; Bastiaens, Philippe; Taraviras, Stavros; Lygerou, Zoi

    2013-01-01

    Once-per-cell cycle replication is regulated through the assembly onto chromatin of multisubunit protein complexes that license DNA for a further round of replication. Licensing consists of the loading of the hexameric MCM2–7 complex onto chromatin during G1 phase and is dependent on the licensing factor Cdt1. In vitro experiments have suggested a two-step binding mode for minichromosome maintenance (MCM) proteins, with transient initial interactions converted to stable chromatin loading. Here, we assess MCM loading in live human cells using an in vivo licensing assay on the basis of fluorescence recovery after photobleaching of GFP-tagged MCM protein subunits through the cell cycle. We show that, in telophase, MCM2 and MCM4 maintain transient interactions with chromatin, exhibiting kinetics similar to Cdt1. These are converted to stable interactions from early G1 phase. The immobile fraction of MCM2 and MCM4 increases during G1 phase, suggestive of reiterative licensing. In late G1 phase, a large fraction of MCM proteins are loaded onto chromatin, with maximal licensing observed just prior to S phase onset. Fluorescence loss in photobleaching experiments show subnuclear concentrations of MCM-chromatin interactions that differ as G1 phase progresses and do not colocalize with sites of DNA synthesis in S phase. PMID:24158436

  14. Small-molecule tools for dissecting the roles of SSB/protein interactions in genome maintenance

    SciTech Connect

    Lu, Duo; Bernstein, Douglas A.; Satyshur, Kenneth A.; Keck, James L.

    2010-09-03

    Bacterial single-stranded DNA-binding proteins (SSBs) help to recruit a diverse array of genome maintenance enzymes to their sites of action through direct protein interactions. For all cases examined to date, these interactions are mediated by the evolutionarily conserved C terminus of SSB (SSB-Ct). The essential nature of SSB protein interactions makes inhibitors that block SSB complex formation valuable biochemical tools and attractive potential antibacterial agents. Here, we identify four small molecules that disrupt complexes formed between Escherichia coli SSB and Exonuclease I (ExoI), a well-studied SSB-interacting enzyme. Each compound disrupts ExoI/SSB-Ct peptide complexes and abrogates SSB stimulation of ExoI nuclease activity. Structural and biochemical studies support a model for three of the compounds in which they compete with SSB for binding to ExoI. The fourth appears to rely on an allosteric mechanism to disrupt ExoI/SSB complexes. Subsets of the inhibitors block SSB-Ct complex formation with two other SSB-interaction partners as well, which highlights their utility as reagents for investigating the roles of SSB/protein interactions in diverse DNA replication, recombination, and repair reactions.

  15. Physical and oxidative stability of fish oil-in-water emulsions stabilized with fish protein hydrolysates.

    PubMed

    García-Moreno, Pedro J; Guadix, Antonio; Guadix, Emilia M; Jacobsen, Charlotte

    2016-07-15

    The emulsifying and antioxidant properties of fish protein hydrolysates (FPH) for the physical and oxidative stabilization of 5% (by weight) fish oil-in-water emulsions were investigated. Muscle proteins from sardine (Sardina pilchardus) and small-spotted catshark (Scyliorhinus canicula) were hydrolyzed to degrees of hydrolysis (DH) of 3-4-5-6% with subtilisin. Sardine hydrolysates with low DH, 3% and 4%, presented the most effective peptides to physically stabilize emulsions with smaller droplet size. This implied more protein adsorbed at the interface to act as physical barrier against prooxidants. This fact might also be responsible for the higher oxidative stability of these emulsions, as shown by their lowest peroxide value and concentration of volatiles such as 1-penten-3-one and 1-penten-3-ol. Among the hydrolysates prepared from small-spotted catshark only the hydrolysate with DH 3% yielded a physically stable emulsion with low concentration of unsaturated aldehydes. These results show the potential of FPH as alternative protein emulsifiers for the production of oxidatively stable fish oil-in-water emulsions. PMID:26948597

  16. Intercellular chaperone transmission via exosomes contributes to maintenance of protein homeostasis at the organismal level

    PubMed Central

    Takeuchi, Toshihide; Suzuki, Mari; Fujikake, Nobuhiro; Popiel, H. Akiko; Kikuchi, Hisae; Futaki, Shiroh; Wada, Keiji; Nagai, Yoshitaka

    2015-01-01

    The heat shock response (HSR), a transcriptional response that up-regulates molecular chaperones upon heat shock, is necessary for cell survival in a stressful environment to maintain protein homeostasis (proteostasis). However, there is accumulating evidence that the HSR does not ubiquitously occur under stress conditions, but largely depends on the cell types. Despite such imbalanced HSR among different cells and tissues, molecular mechanisms by which multicellular organisms maintain their global proteostasis have remained poorly understood. Here, we report that proteostasis can be maintained by molecular chaperones not only in a cell-autonomous manner but also in a non–cell-autonomous manner. We found that elevated expression of molecular chaperones, such as Hsp40 and Hsp70, in a group of cells improves proteostasis in other groups of cells, both in cultured cells and in Drosophila expressing aggregation-prone polyglutamine proteins. We also found that Hsp40, as well as Hsp70 and Hsp90, is physiologically secreted from cells via exosomes, and that the J domain at the N terminus is responsible for its exosome-mediated secretion. Addition of Hsp40/Hsp70-containing exosomes to the culture medium of the polyglutamine-expressing cells results in efficient suppression of inclusion body formation, indicating that molecular chaperones non-cell autonomously improve the protein-folding environment via exosome-mediated transmission. Our study reveals that intercellular chaperone transmission mediated by exosomes is a novel molecular mechanism for non–cell-autonomous maintenance of organismal proteostasis that could functionally compensate for the imbalanced state of the HSR among different cells, and also provides a novel physiological role of exosomes that contributes to maintenance of organismal proteostasis. PMID:25918398

  17. The effects of a protein osmolyte on the stability of the integral membrane protein glycerol facilitator.

    PubMed

    Baturin, Simon; Galka, Jamie J; Piyadasa, Hadeesha; Gajjeraman, S; O'Neil, Joe D

    2014-12-01

    Osmolytes are naturally occurring molecules used by a wide variety of organisms to stabilize proteins under extreme conditions of temperature, salinity, hydrostatic pressure, denaturant concentration, and desiccation. The effects of the osmolyte trimethylamine N-oxide (TMAO) as well as the influence of detergent head group and acyl chain length on the stability of the Escherichia coli integral membrane protein glycerol facilitator (GF) tetramer to thermal and chemical denaturation by sodium dodecyl sulphate (SDS) are reported. TMAO promotes the association of the normally tetrameric α-helical protein into higher order oligomers in dodecyl-maltoside (DDM), but not in tetradecyl-maltoside (TDM), lyso-lauroylphosphatidyl choline (LLPC), or lyso-myristoylphosphatidyl choline (LMPC), as determined by dynamic light scattering (DLS); an octameric complex is particularly stable as indicated by SDS polyacrylamide gel electrophoresis. TMAO increases the heat stability of the GF tetramer an average of 10 °C in the 4 detergents and also protects the protein from denaturation by SDS. However, it did not promote re-association to the tetramer when added to SDS-dissociated protein. TMAO also promotes the formation of rod-like detergent micelles, and DLS was found to be useful for monitoring the structure of the protein and the redistribution of detergent during thermal dissociation of the protein. The protein is more thermally stable in detergents with the phosphatidylcholine head group (LLPC and LMPC) than in the maltoside detergents. The implications of the results for osmolyte mechanism, membrane protein stability, and protein-protein interactions are discussed. PMID:25387032

  18. Quantitation of protein-protein interactions by thermal stability shift analysis.

    PubMed

    Layton, Curtis J; Hellinga, Homme W

    2011-08-01

    Thermal stability shift analysis is a powerful method for examining binding interactions in proteins. We demonstrate that under certain circumstances, protein-protein interactions can be quantitated by monitoring shifts in thermal stability using thermodynamic models and data analysis methods presented in this work. This method relies on the determination of protein stabilities from thermal unfolding experiments using fluorescent dyes such as SYPRO Orange that report on protein denaturation. Data collection is rapid and straightforward using readily available real-time polymerase chain reaction instrumentation. We present an approach for the analysis of the unfolding transitions corresponding to each partner to extract the affinity of the interaction between the proteins. This method does not require the construction of a titration series that brackets the dissociation constant. In thermal shift experiments, protein stability data are obtained at different temperatures according to the affinity- and concentration-dependent shifts in unfolding transition midpoints. Treatment of the temperature dependence of affinity is, therefore, intrinsic to this method and is developed in this study. We used the interaction between maltose-binding protein (MBP) and a thermostable synthetic ankyrin repeat protein (Off7) as an experimental test case because their unfolding transitions overlap minimally. We found that MBP is significantly stabilized by Off7. High experimental throughput is enabled by sample parallelization, and the ability to extract quantitative binding information at a single partner concentration. In a single experiment, we were able to quantify the affinities of a series of alanine mutants, covering a wide range of affinities (∼ 100 nM to ∼ 100 μM). PMID:21674662

  19. Machine learning algorithms for predicting protein folding rates and stability of mutant proteins: comparison with statistical methods.

    PubMed

    Gromiha, M Michael; Huang, Liang-Tsung

    2011-09-01

    Machine learning algorithms have wide range of applications in bioinformatics and computational biology such as prediction of protein secondary structures, solvent accessibility, binding site residues in protein complexes, protein folding rates, stability of mutant proteins, and discrimination of proteins based on their structure and function. In this work, we focus on two aspects of predictions: (i) protein folding rates and (ii) stability of proteins upon mutations. We briefly introduce the concepts of protein folding rates and stability along with available databases, features for prediction methods and measures for prediction performance. Subsequently, the development of structure based parameters and their relationship with protein folding rates will be outlined. The structure based parameters are helpful to understand the physical basis for protein folding and stability. Further, basic principles of major machine learning techniques will be mentioned and their applications for predicting protein folding rates and stability of mutant proteins will be illustrated. The machine learning techniques could achieve the highest accuracy of predicting protein folding rates and stability. In essence, statistical methods and machine learning algorithms are complimenting each other for understanding and predicting protein folding rates and the stability of protein mutants. The available online resources on protein folding rates and stability will be listed. PMID:21787301

  20. Cleavage and polyadenylation factor, Rna14 is an essential protein required for the maintenance of genomic integrity in fission yeast Schizosaccharomyces pombe.

    PubMed

    Sonkar, Amit; Yadav, Sudhanshu; Ahmed, Shakil

    2016-02-01

    Faithful segregation of chromosomes is essential for the maintenance of genome integrity. In a genetic screen to identify genes related to checkpoint function, we have characterized the role of rna14, an essential gene in the maintenance of chromosome dynamics. We demonstrate that Rna14 localizes in the nucleus and in the absence of functional Rna14, the cells exhibit chromosomal segregation defects. The mutant allele of rna14 exhibits genetic interaction with key kinetochore components and spindle checkpoint proteins. Inactivation of rna14 leads to accumulation of Bub1-GFP foci, a protein required for spindle checkpoint activation that could be due to the defects in the attachment of mitotic spindle to the chromosome. Consistently, the double mutant of rna14-11 and bub1 knockout exhibits high degree of chromosome mis-segregation. At restrictive condition, the rna14-11 mutant cells exhibit defects in cell cycle progression with high level of septation. The orthologs of Rna14 in Saccharomyces cerevisiae (sc Rna14) and human (CstF3) contain similar domain architecture and are required for 3'-end processing of pre-mRNA. We have also demonstrated that the fission yeast Rna14 is required to prevent transcriptional read-through. These findings reveal the importance of transcription termination in the maintenance of genomic stability through the regulation of kinetochore function. PMID:26581324

  1. Protein stability regulators screening assay (Pro-SRSA): protein degradation meets the CRISPR-Cas9 library.

    PubMed

    Wu, Yuanzhong; Kang, Tiebang

    2016-01-01

    The regulation of protein stability is a fundamental issue for biophysical processes, but there has not previously been a convenient and unbiased method of identifying regulators of protein stability. However, as reported in the article entitled "A genome-scale CRISPR-Cas9 screening method for protein stability reveals novel regulators of Cdc25A," recently published in Cell Discovery, our team developed a protein stability regulators screening assay (Pro-SRSA) by combining the whole-genome clustered regularly interspaced short palindromic repeats Cas9 (CRISPR-Cas9) library with a dual-fluorescence-based protein stability reporter and high-throughput sequencing to screen for regulators of protein stability. Based on our findings, we are confident that this efficient and unbiased screening method at the genome scale will be used by researchers worldwide to identify regulators of protein stability. PMID:27357860

  2. Altered Dimer Interface Decreases Stability in an Amyloidogenic Protein

    SciTech Connect

    Baden, Elizabeth M.; Owen, Barbara A.L.; Peterson, Francis C.; Volkman, Brian F.; Ramirez-Alvarado, Marina; Thompson, James R.

    2008-07-21

    Amyloidoses are devastating and currently incurable diseases in which the process of amyloid formation causes fatal cellular and organ damage. The molecular mechanisms underlying amyloidoses are not well known. In this study, we address the structural basis of immunoglobulin light chain amyloidosis, which results from deposition of light chains produced by clonal plasma cells. We compare light chain amyloidosis protein AL-09 to its wild-type counterpart, the kl O18/O8 light chain germline. Crystallographic studies indicate that both proteins form dimers. However, AL-09 has an altered dimer interface that is rotated 90 degrees from the kl O18/O8 dimer interface. The three non-conservative mutations in AL-09 are located within the dimer interface, consistent with their role in the decreased stability of this amyloidogenic protein. Moreover, AL-09 forms amyloid fibrils more quickly than kl O18/O8 in vitro. These results support the notion that the increased stability of the monomer and delayed fibril formation, together with a properly formed dimer, may be protective against amyloidogenesis. This could open a new direction into rational drug design for amyloidogenic proteins.

  3. Liquid drop stability for protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Owen, Robert B.; Broom, Beth H.; Snyder, Robert S.; Daniel, Ron

    1987-01-01

    It is possible to grow protein crystals for biomedical research in microgravity by deploying a protein-rich solution from a syringe, forming a drop in which crystallization can occur with the proper degree of supersaturation. Drop stability is critical to the success of this research, due to the large drop sizes which can be achieved in space. In order to determine the type of syringe tips most suitable to support these large drops, tests were performed during brief periods of weightlessness onboard the NASA KC-135 low-gravity simulation aircraft. The drops were analyzed using three simple models in which the samples were approximated by modified pendulum and spring systems. It was concluded that the higher frequency systems were the most stable, indicating that of the syringes utilized, a disk-shaped configuration provided the most stable environment of low-gravity protein crystal growth.

  4. Electrostatic Interactions in the Denatured State Ensemble: Their Effect Upon Protein Folding and Protein Stability

    PubMed Central

    Sato, Satoshi; Horng, Jia-Cherng; Anil, Burcu

    2009-01-01

    It is now recognized that the denatured state ensemble (DSE) of proteins can contain significant amounts of structure, particularly under native conditions. Well-studied examples include small units of hydrogen bonded secondary structure, particularly helices or turns as well hydrophobic clusters. Other types of interactions are less well characterized and it has often been assumed that electrostatic interactions play at most a minor role in the DSE. However, recent studies have shown that both favorable and unfavorable electrostatic interactions can be formed in the DSE. These can include surprisingly specific non-native interactions that can even persist in the transition state for protein folding. DSE electrostatic interactions can be energetically significant and their modulation either by mutation or by varying solution conditions can have a major impact upon protein stability. pH dependent stability studies have shown that electrostatic interactions can contribute up to 4 kcal mol−1 to the stability of the DSE. PMID:17900519

  5. AbdB-like Hox proteins stabilize DNA binding by the Meis1 homeodomain proteins.

    PubMed Central

    Shen, W F; Montgomery, J C; Rozenfeld, S; Moskow, J J; Lawrence, H J; Buchberg, A M; Largman, C

    1997-01-01

    Recent studies show that Hox homeodomain proteins from paralog groups 1 to 10 gain DNA binding specificity and affinity through cooperative binding with the divergent homeodomain protein Pbx1. However, the AbdB-like Hox proteins from paralogs 11, 12, and 13 do not interact with Pbx1a, raising the possibility of different protein partners. The Meis1 homeobox gene has 44% identity to Pbx within the homeodomain and was identified as a common site of viral integration in myeloid leukemias arising in BXH-2 mice. These integrations result in constitutive activation of Meis1. Furthermore, the Hoxa-9 gene is frequently activated by viral integration in the same BXH-2 leukemias, suggesting a biological synergy between these two distinct classes of homeodomain proteins in causing malignant transformation. We now show that the Hoxa-9 protein physically interacts with Meis1 proteins by forming heterodimeric binding complexes on a DNA target containing a Meis1 site (TGACAG) and an AbdB-like Hox site (TTTTACGAC). Hox proteins from the other AbdB-like paralogs, Hoxa-10, Hoxa-11, Hoxd-12, and Hoxb-13, also form DNA binding complexes with Meis1b, while Hox proteins from other paralogs do not appear to interact with Meis1 proteins. DNA binding complexes formed by Meis1 with Hox proteins dissociate much more slowly than DNA complexes with Meis1 alone, suggesting that Hox proteins stabilize the interactions of Meis1 proteins with their DNA targets. PMID:9343407

  6. AbdB-like Hox proteins stabilize DNA binding by the Meis1 homeodomain proteins.

    PubMed

    Shen, W F; Montgomery, J C; Rozenfeld, S; Moskow, J J; Lawrence, H J; Buchberg, A M; Largman, C

    1997-11-01

    Recent studies show that Hox homeodomain proteins from paralog groups 1 to 10 gain DNA binding specificity and affinity through cooperative binding with the divergent homeodomain protein Pbx1. However, the AbdB-like Hox proteins from paralogs 11, 12, and 13 do not interact with Pbx1a, raising the possibility of different protein partners. The Meis1 homeobox gene has 44% identity to Pbx within the homeodomain and was identified as a common site of viral integration in myeloid leukemias arising in BXH-2 mice. These integrations result in constitutive activation of Meis1. Furthermore, the Hoxa-9 gene is frequently activated by viral integration in the same BXH-2 leukemias, suggesting a biological synergy between these two distinct classes of homeodomain proteins in causing malignant transformation. We now show that the Hoxa-9 protein physically interacts with Meis1 proteins by forming heterodimeric binding complexes on a DNA target containing a Meis1 site (TGACAG) and an AbdB-like Hox site (TTTTACGAC). Hox proteins from the other AbdB-like paralogs, Hoxa-10, Hoxa-11, Hoxd-12, and Hoxb-13, also form DNA binding complexes with Meis1b, while Hox proteins from other paralogs do not appear to interact with Meis1 proteins. DNA binding complexes formed by Meis1 with Hox proteins dissociate much more slowly than DNA complexes with Meis1 alone, suggesting that Hox proteins stabilize the interactions of Meis1 proteins with their DNA targets. PMID:9343407

  7. Diets with High or Low Protein Content and Glycemic Index for Weight-Loss Maintenance

    PubMed Central

    Larsen, Thomas Meinert; Dalskov, Stine-Mathilde; van Baak, Marleen; Jebb, Susan A.; Papadaki, Angeliki; Pfeiffer, Andreas F.H.; Martinez, J. Alfredo; Handjieva-Darlenska, Teodora; Kunešová, Marie; Pihlsgård, Mats; Stender, Steen; Holst, Claus; Saris, Wim H.M.; Astrup, Arne

    2012-01-01

    Background Studies of weight-control diets that are high in protein or low in glycemic index have reached varied conclusions, probably owing to the fact that the studies had insufficient power. Methods We enrolled overweight adults from eight European countries who had lost at least 8% of their initial body weight with a 3.3-MJ (800-kcal) low-calorie diet. Participants were randomly assigned, in a two-by-two factorial design, to one of five ad libitum diets to prevent weight regain over a 26-week period: a low-protein and low-glycemic-index diet, a low-protein and high-glycemic-index diet, a high-protein and low-glycemic-index diet, a high-protein and high-glycemic-index diet, or a control diet. Results A total of 1209 adults were screened (mean age, 41 years; body-mass index [the weight in kilograms divided by the square of the height in meters], 34), of whom 938 entered the low-calorie-diet phase of the study. A total of 773 participants who completed that phase were randomly assigned to one of the five maintenance diets; 548 completed the intervention (71%). Fewer participants in the high-protein and the low-glycemic-index groups than in the low-protein–high-glycemic-index group dropped out of the study (26.4% and 25.6%, respectively, vs. 37.4%; P = 0.02 and P = 0.01 for the respective comparisons). The mean initial weight loss with the low-calorie diet was 11.0 kg. In the analysis of participants who completed the study, only the low-protein–high-glycemic-index diet was associated with subsequent significant weight regain (1.67 kg; 95% confidence interval [CI], 0.48 to 2.87). In an intention-to-treat analysis, the weight regain was 0.93 kg less (95% CI, 0.31 to 1.55) in the groups assigned to a high-protein diet than in those assigned to a low-protein diet (P = 0.003) and 0.95 kg less (95% CI, 0.33 to 1.57) in the groups assigned to a low-glycemic-index diet than in those assigned to a high-glycemic-index diet (P = 0.003). The analysis involving

  8. Heat shock protein 90 stabilizes nucleolin to increase mRNA stability in mitosis.

    PubMed

    Wang, Shao-An; Li, Hao-Yi; Hsu, Tsung-I; Chen, Shu-Hui; Wu, Chin-Jen; Chang, Wen-Chang; Hung, Jan-Jong

    2011-12-23

    Most studies on heat shock protein 90 (Hsp90) have focused on the involvement of Hsp90 in the interphase, whereas the role of this protein in the nucleus during mitosis remains largely unclear. In this study, we found that the level of the acetylated form of Hsp90 decreased dramatically during mitosis, which indicates more chaperone activity during mitosis. We thus probed proteins that interacted with Hsp90 by liquid chromatography/mass spectrometry (LC/MS) and found that nucleolin was one of those interacting proteins during mitosis. The nucleolin level decreased upon geldanamycin treatment, and Hsp90 maintained the cyclin-dependent kinase 1 (CDK1) activity to phosphorylate nucleolin at Thr-641/707. Mutation of Thr-641/707 resulted in the destabilization of nucleolin in mitosis. We globally screened the level of mitotic mRNAs and found that 229 mRNAs decreased during mitosis in the presence of geldanamycin. Furthermore, a bioinformatics tool and an RNA immunoprecipitation assay found that 16 mRNAs, including cadherin and Bcl-xl, were stabilized through the recruitment of nucleolin to the 3'-untranslated regions (3'-UTRs) of those genes. Overall, strong correlations exist between the up-regulation of Hsp90, nucleolin, and the mRNAs related to tumorigenesis of the lung. Our findings thus indicate that nucleolin stabilized by Hsp90 contributes to the lung tumorigenesis by increasing the level of many tumor-related mRNAs during mitosis. PMID:21998300

  9. What makes a protein a protein? Hydrophobic core designs that specify stability and structural properties.

    PubMed Central

    Munson, M.; Balasubramanian, S.; Fleming, K. G.; Nagi, A. D.; O'Brien, R.; Sturtevant, J. M.; Regan, L.

    1996-01-01

    Here we describe how the systematic redesign of a protein's hydrophobic core alters its structure and stability. We have repacked the hydrophobic core of the four-helix-bundle protein, Rop, with altered packing patterns and various side chain shapes and sizes. Several designs reproduce the structure and native-like properties of the wild-type, while increasing the thermal stability. Other designs, either with similar sizes but different shapes, or with decreased sizes of the packing residues, destabilize the protein. Finally, overpacking the core with the larger side chains causes a loss of native-like structure. These results allow us to further define the roles of tight residue packing and the burial of hydrophobic surface area in the construction of native-like proteins. PMID:8844848

  10. Effective stabilization of CLA by microencapsulation in pea protein.

    PubMed

    Costa, A M M; Nunes, J C; Lima, B N B; Pedrosa, C; Calado, V; Torres, A G; Pierucci, A P T R

    2015-02-01

    CLA was microencapsulated by spray drying in ten varied wall systems (WS) consisting of pea protein isolate or pea protein concentrate (PPC) alone at varied core:WS ratios (1:2; 1:3 and 1:4), or blended with maltodextrin (M) and carboxymethylcellulose at a pea protein:carbohydrate ratio of 3:1. The physical-chemical properties of the CLA microparticles were characterised by core retention, microencapsulation efficiency (ME), particle size and moisture. CLA:M:PPC (1:1:3) showed the most promising results, thus we evaluated the effect of M addition in the WS on other physical-chemical characteristics and oxidative stability (CLA isomer profile, quantification of CLA and volatile compounds by SPME coupled with CG-MS) during two months of storage at room temperature, CLA:PPC (1:4) was selected for comparisons. CLA:M:PPC (1:1:3) microparticles demonstrated better morphology, solubility, dispersibility and higher glass-transition temperature values. M addition did not influence the oxidative stability of CLA, however its presence improved physical-chemical characteristics necessary for food applications. PMID:25172695

  11. SLIRP stabilizes LRPPRC via an RRM-PPR protein interface.

    PubMed

    Spåhr, Henrik; Rozanska, Agata; Li, Xinping; Atanassov, Ilian; Lightowlers, Robert N; Chrzanowska-Lightowlers, Zofia M A; Rackham, Oliver; Larsson, Nils-Göran

    2016-08-19

    LRPPRC is a protein that has attracted interest both for its role in post-transcriptional regulation of mitochondrial gene expression and more recently because numerous mutated variants have been characterized as causing severe infantile mitochondrial neurodegeneration. LRPPRC belongs to the pentatricopeptide repeat (PPR) protein family, originally defined by their RNA binding capacity, and forms a complex with SLIRP that harbours an RNA recognition motif (RRM) domain. We show here that LRPPRC displays a broad and strong RNA binding capacity in vitro in contrast to SLIRP that associates only weakly with RNA. The LRPPRC-SLIRP complex comprises a hetero-dimer via interactions by polar amino acids in the single RRM domain of SLIRP and three neighbouring PPR motifs in the second quarter of LRPPRC, which critically contribute to the LRPPRC-SLIRP binding interface to enhance its stability. Unexpectedly, specific amino acids at this interface are located within the PPRs of LRPPRC at positions predicted to interact with RNA and within the RNP1 motif of SLIRP's RRM domain. Our findings thus unexpectedly establish that despite the prediction that these residues in LRPPRC and SLIRP should bind RNA, they are instead used to facilitate protein-protein interactions, enabling the formation of a stable complex between these two proteins. PMID:27353330

  12. Role of DNA polymerase κ in the maintenance of genomic stability

    PubMed Central

    Pillaire, Marie-Jeanne; Bétous, Rémy; Hoffmann, Jean-Sébastien

    2014-01-01

    To ensure high cell viability and genomic stability, cells have evolved two major mechanisms to deal with the constant challenge of DNA replication fork arrest during S phase of the cell cycle: (1) induction of the ataxia telangiectasia and Rad3-related (ATR) replication checkpoint mechanism, and (2) activation of a pathway that bypasses DNA damage and DNA with abnormal structure and is mediated by translesion synthesis (TLS) Y-family DNA polymerases. This review focuses on how DNA polymerase kappa (Pol κ), one of the most highly conserved TLS DNA polymerases, is involved in each of these pathways and thereby coordinates them to choreograph the response to a stalled replication fork. We also describe how loss of Pol κ regulation, which occurs frequently in human cancers, affects genomic stability and contributes to cancer development. PMID:27308312

  13. Stability and folding of the tumour suppressor protein p16.

    PubMed

    Tang, K S; Guralnick, B J; Wang, W K; Fersht, A R; Itzhaki, L S

    1999-01-29

    The tumour suppressor p16 is a member of the INK4 family of inhibi tors of the cyclin D-dependent kinases, CDK4 and CDK6, that are involved in the key growth control pathway of the eukaryotic cell cycle. The 156 amino acid residue protein is composed of four ankyrin repeats (a helix-turn-helix motif) that stack linearly as two four-helix bundles resulting in a non-globular, elongated molecule. The thermodynamic and kinetic properties of the folding of p16 are unusual. The protein has a very low free energy of unfolding, Delta GH-2O/D-N, of 3.1 kcal mol-1 at 25 degreesC. The rate-determining transition state of folding/unfolding is very compact (89% as compact as the native state). The other unusual feature is the very rapid rate of unfolding in the absence of denaturant of 0.8 s-1 at 25 degreesC. Thus, p16 has both thermodynamic and kinetic instability. These features may be essential for the regulatory function of the INK4 proteins and of other ankyrin-repeat-containing proteins that mediate a wide range of protein-protein interactions. The mechanisms of inactivation of p16 by eight cancer-associated mutations were dissected using a systematic method designed to probe the integrity of the secondary structure and the global fold. The structure and folding of p16 appear to be highly vulnerable to single point mutations, probably as a result of the protein's low stability. This vulnerability provides one explanation for the striking frequency of p16 mutations in tumours and in immortalised cell lines. PMID:9917418

  14. Discovery of Manassantin A Protein Targets Using Large-Scale Protein Folding and Stability Measurements.

    PubMed

    Geer Wallace, M Ariel; Kwon, Do-Yeon; Weitzel, Douglas H; Lee, Chen-Ting; Stephenson, Tesia N; Chi, Jen-Tsan; Mook, Robert A; Dewhirst, Mark W; Hong, Jiyong; Fitzgerald, Michael C

    2016-08-01

    Manassantin A is a natural product that has been shown to have anticancer activity in cell-based assays, but has a largely unknown mode-of-action. Described here is the use of two different energetics-based approaches to identify protein targets of manassantin A. Using the stability of proteins from rates of oxidation technique with an isobaric mass tagging strategy (iTRAQ-SPROX) and the pulse proteolysis technique with a stable isotope labeling with amino acids in cell culture strategy (SILAC-PP), over 1000 proteins in a MDA-MB-231 cell lysate grown under hypoxic conditions were assayed for manassantin A interactions (both direct and indirect). A total of 28 protein hits were identified with manassantin A-induced thermodynamic stability changes. Two of the protein hits (filamin A and elongation factor 1α) were identified using both experimental approaches. The remaining 26 hit proteins were only assayed in either the iTRAQ-SPROX or the SILAC-PP experiment. The 28 potential protein targets of manassantin A identified here provide new experimental avenues along which to explore the molecular basis of manassantin A's mode of action. The current work also represents the first application iTRAQ-SPROX and SILAC-PP to the large-scale analysis of protein-ligand binding interactions involving a potential anticancer drug with an unknown mode-of-action. PMID:27322910

  15. Regulation of the protein stability of EMT transcription factors

    PubMed Central

    Díaz, VM; Viñas-Castells, R; García de Herreros, A

    2014-01-01

    The epithelial to mesenchymal transition (EMT) consists of a rapid change of cell phenotype, characterized by the loss of epithelial characteristics and the acquisition of a more invasive phenotype. Transcription factors regulating EMT (Snail, Twist and Zeb) are extremely labile proteins, rapidly degraded by the proteasome system. In this review we analyze the current mechanisms controlling degradation of EMT transcription factors, focusing on the role of new E3 ubiquitin-ligases involved in EMT. We also summarize the regulation of the stability of these EMT transcription factors, specially observed in different stress conditions, such as hypoxia, chemotherapeutic drugs, oxidative stress or γ-irradiation. PMID:25482633

  16. Uncoupling the Roles of the SUV3 Helicase in Maintenance of Mitochondrial Genome Stability and RNA Degradation*

    PubMed Central

    Guo, Xuning Emily; Chen, Chi-Fen; Wang, Dennis Ding-Hwa; Modrek, Aram Sandaldjian; Phan, Vy Hoai; Lee, Wen-Hwa; Chen, Phang-Lang

    2011-01-01

    Yeast SUV3 is a nuclear encoded mitochondrial RNA helicase that complexes with an exoribonuclease, DSS1, to function as an RNA degradosome. Inactivation of SUV3 leads to mitochondrial dysfunctions, such as respiratory deficiency; accumulation of aberrant RNA species, including excised group I introns; and loss of mitochondrial DNA (mtDNA). Although intron toxicity has long been speculated to be the major reason for the observed phenotypes, direct evidence to support or refute this theory is lacking. Moreover, it remains unknown whether SUV3 plays a direct role in mtDNA maintenance independently of its degradosome activity. In this paper, we address these questions by employing an inducible knockdown system in Saccharomyces cerevisiae with either normal or intronless mtDNA background. Expressing mutants defective in ATPase (K245A) or RNA binding activities (V272L or ΔCC, which carries an 8-amino acid deletion at the C-terminal conserved region) resulted in not only respiratory deficiencies but also loss of mtDNA under normal mtDNA background. Surprisingly, V272L, but not other mutants, can rescue the said deficiencies under intronless background. These results provide genetic evidence supporting the notion that the functional requirements of SUV3 for degradosome activity and maintenance of mtDNA stability are separable. Furthermore, V272L mutants and wild-type SUV3 associated with an active mtDNA replication origin and facilitated mtDNA replication, whereas K245A and ΔCC failed to support mtDNA replication. These results indicate a direct role of SUV3 in maintaining mitochondrial genome stability that is independent of intron turnover but requires the intact ATPase activity and the CC conserved region. PMID:21911497

  17. Protein accumulation and rumen stability of wheat γ-gliadin fusion proteins in tobacco and alfalfa.

    PubMed

    Sun, Xiaodong; Chi-Ham, Cecilia L; Cohen-Davidyan, Tamar; DeBen, Christopher; Getachow, Girma; DePeters, Edward; Putnam, Daniel; Bennett, Alan

    2015-09-01

    The nutritional value of various crops can be improved by engineering plants to produce high levels of proteins. For example, because methionine deficiency limits the protein quality of Medicago Sativa (alfalfa) forage, producing alfalfa plants that accumulate high levels of a methionine-rich protein could increase the nutritional value of that crop. We used three strategies in designing methionine-rich recombinant proteins that could accumulate to high levels in plants and thereby serve as candidates for improving the protein quality of alfalfa forage. In tobacco, two fusion proteins, γ-gliadin-δ-zein and γ-δ-zein, as well as δ-zein co-expressed with β-zein, all formed protein bodies. However, the γ-gliadin-δ-zein fusion protein accumulated to the highest level, representing up to 1.5% of total soluble protein (TSP) in one transformant. In alfalfa, γ-gliadin-δ-zein accumulated to 0.2% of TSP, and in an in vitro rumen digestion assay, γ-gliadin-δ-zein was more resistant to microbial degradation than Rubisco. Additionally, although it did not form protein bodies, a γ-gliadin-GFP fusion protein accumulated to much higher levels, 7% of TSP, than a recombinant protein comprised of an ER localization signal fused to GFP in tobacco. Based on our results, we conclude that γ-gliadin-δ-zein is a potential candidate protein to use for enhancing methionine levels in plants and for improving rumen stability of forage protein. γ-gliadin fusion proteins may provide a general platform for increasing the accumulation of recombinant proteins in transgenic plants. PMID:25659597

  18. Maintenance of the DNA-Damage Checkpoint Requires DNA-Damage-Induced Mediator Protein Oligomerization

    PubMed Central

    Usui, Takehiko; Foster, Steven S.; Petrini, John H.J.

    2010-01-01

    SUMMARY Oligomeric assembly of Brca1 C-terminal (BRCT) domain-containing mediator proteins occurs at sites of DNA damage. However, the functional significance and regulation of such assemblies are not well understood. In this study, we defined the molecular mechanism of DNA-damage-induced oligomerization of the S. cerevisiae BRCT protein Rad9. Our data suggest that Rad9’s tandem BRCT domain mediates Rad9 oligomerization via its interaction with its own Mec1/Tel1-phosphorylated SQ/TQ cluster domain (SCD). Rad53 activation is unaffected by mutations that impair Rad9 oligomerization, but checkpoint maintenance is lost, indicating that oligomerization is required to sustain checkpoint signaling. Once activated, Rad53 phosphorylates the Rad9 BRCT domain, which attenuates the BRCT-SCD interaction. Failure to phosphorylate the Rad9 BRCT results in cytologically visible Rad9 foci. This suggests a feedback loop wherein Rad53 activity and Rad9 oligomerization are regulated to tune the DNA-damage response. PMID:19187758

  19. Interaction of Gamma-Herpesvirus Genome Maintenance Proteins with Cellular Chromatin

    PubMed Central

    Callegari, Simone; Gastaldello, Stefano; Masucci, Maria G.

    2013-01-01

    The capacity of gamma-herpesviruses to establish lifelong infections is dependent on the expression of genome maintenance proteins (GMPs) that tether the viral episomes to cellular chromatin and allow their persistence in latently infected proliferating cells. Here we have characterized the chromatin interaction of GMPs encoded by viruses belonging to the genera Lymphocryptovirus (LCV) and Rhadinovirus (RHV). We found that, in addition to a similar diffuse nuclear localization and comparable detergent resistant interaction with chromatin in transfected cells, all GMPs shared the capacity to promote the decondensation of heterochromatin in the A03-1 reporter cell line. They differed, however, in their mobility measured by fluorescence recovery after photobleaching (FRAP), and in the capacity to recruit accessory molecules required for the chromatin remodeling function. While the AT-hook containing GMPs of LCVs were highly mobile, a great variability was observed among GMPs encoded by RHV, ranging from virtually immobile to significantly reduced mobility compared to LCV GMPs. Only the RHV GMPs recruited the bromo- and extra terminal domain (BET) proteins BRD2 and BRD4 to the site of chromatin remodeling. These findings suggest that differences in the mode of interaction with cellular chromatin may underlie different strategies adopted by these viruses for reprogramming of the host cells during latency. PMID:23667520

  20. Effect of minichromosome maintenance protein 2 deficiency on the locations of DNA replication origins

    PubMed Central

    Kunnev, Dimiter; Freeland, Amy; Qin, Maochun; Leach, Robert W.; Wang, Jianmin; Shenoy, Rajani M.

    2015-01-01

    Minichromosome maintenance (MCM) proteins are loaded onto chromatin during G1-phase and define potential locations of DNA replication initiation. MCM protein deficiency results in genome instability and high rates of cancer in mouse models. Here we develop a method of nascent strand capture and release and show that MCM2 deficiency reduces DNA replication initiation in gene-rich regions of the genome. DNA structural properties are shown to correlate with sequence motifs associated with replication origins and with locations that are preferentially affected by MCM2 deficiency. Reduced nascent strand density correlates with sites of recurrent focal CNVs in tumors arising in MCM2-deficient mice, consistent with a direct relationship between sites of reduced DNA replication initiation and genetic damage. Between 10% and 90% of human tumors, depending on type, carry heterozygous loss or mutation of one or more MCM2-7 genes, which is expected to compromise DNA replication origin licensing and result in elevated rates of genome damage at a subset of gene-rich locations. PMID:25762552

  1. Effect of Ramipril on Urinary Protein Excretion in Maintenance Renal Transplant Patients Converted to Sirolimus.

    PubMed

    Mandelbrot, D A; Alberú, J; Barama, A; Marder, B A; Silva, H T; Flechner, S M; Flynn, A; Healy, C; Li, H; Tortorici, M A; Schulman, S L

    2015-12-01

    This prospective, randomized, double-blind, placebo-controlled study evaluated the effects of ramipril on urinary protein excretion in renal transplant patients treated with sirolimus following conversion from a calcineurin inhibitor. Patients received ramipril or placebo for up to 6 weeks before conversion and 52 weeks thereafter. Doses were increased if patients developed proteinuria (urinary protein/creatinine ratio ≥0.5); losartan was given as rescue therapy for persistent proteinuria. The primary end point was time to losartan initiation. Of 295 patients randomized, 264 met the criteria for sirolimus conversion (ramipril, 138; placebo, 126). At 52 weeks, the cumulative rate of losartan initiation was significantly lower with ramipril (6.2%) versus placebo (23.2%) (p < 0.001). No significant differences were observed between ramipril and placebo for change in glomerular filtration rate from baseline (p = 0.148) or in the number of patients with biopsy-confirmed acute rejection (13 vs. 5, respectively; p = 0.073). One patient in the placebo group died due to cerebrovascular accident. Treatment-emergent adverse events were consistent with the known safety profile of sirolimus and were not potentiated by ramipril co-administration. Ramipril was effective in reducing the incidence of proteinuria for up to 1 year following conversion to sirolimus in maintenance renal transplant patients. PMID:26176342

  2. Cockayne syndrome group B protein (CSB) plays a general role in chromatin maintenance and remodeling

    PubMed Central

    Newman, John C.; Bailey, Arnold D.; Weiner, Alan M.

    2006-01-01

    Cockayne syndrome (CS) is an inherited neurodevelopmental disorder with progeroid features. Although the genes responsible for CS have been implicated in a variety of DNA repair- and transcription-related pathways, the nature of the molecular defect in CS remains mysterious. Using expression microarrays and a unique method for comparative expression analysis called L2L, we sought to define this defect in cells lacking a functional CS group B (CSB) protein, the SWI/SNF-like ATPase responsible for most cases of CS. Remarkably, many of the genes regulated by CSB are also affected by inhibitors of histone deacetylase and DNA methylation, as well as by defects in poly(ADP-ribose)-polymerase function and RNA polymerase II elongation. Moreover, consistent with these microarray expression data, CSB-null cells are sensitive to inhibitors of histone deacetylase or poly(ADP-ribose)-polymerase. Our data indicate a general role for CSB protein in maintenance and remodeling of chromatin structure and suggest that CS is a disease of transcriptional deregulation caused by misexpression of growth-suppressive, inflammatory, and proapoptotic pathways. PMID:16772382

  3. Maintenance of mitochondrial genome distribution by mitochondrial AAA+ protein ClpX.

    PubMed

    Kasashima, Katsumi; Sumitani, Megumi; Endo, Hitoshi

    2012-11-01

    The segregation of mitochondrial DNA (mtDNA) is important for the maintenance and transmission of the genome between generations. Recently, we clarified that human mitochondrial transcription factor A (TFAM) is required for equal distribution and symmetric segregation of mtDNA in cultured cells; however, the molecular mechanism involved is largely unknown. ClpX is an ATPase associated with various cellular activities (AAA+) proteins that localize to the mitochondrial matrix and is suggested to associate with mtDNA. In this study, we found that RNAi-mediated knockdown of ClpX in HeLa cells resulted in enlarged mtDNA nucleoids, which is very similar to that observed in TFAM-knockdown cells in several properties. The expression of TFAM protein was not significantly reduced in ClpX-knockdown cells. However, the enlarged mtDNA nucleoids caused by ClpX-knockdown were suppressed by overexpression of recombinant TFAM and the phenotype was not observed in knockdown with ClpP, a protease subunit of ClpXP. Endogenous ClpX and TFAM exist in close vicinity, and ClpX enhanced DNA-binding activity of TFAM in vitro. These results suggest that human ClpX, a novel mtDNA regulator, maintains mtDNA nucleoid distribution through TFAM function as a chaperone rather than as a protease and its involvement in mtDNA segregation. PMID:22841477

  4. Stabilization of collagen through bioconversion: An insight in protein-protein interaction.

    PubMed

    Usharani, Nagarajan; Jayakumar, Gladstone Christopher; Kanth, Swarna Vinodh; Rao, Jonnalagadda Raghava

    2014-08-01

    Collagen is a natural protein, which is used as a vital biomaterial in tissue engineering. The major concern about native collagen is lack of its thermal stability and weak resistance to proteolytic degradation. In this scenario, the crosslinking compounds used for stabilization of collagen are mostly of chemical nature and exhibit toxicity. The enzyme mediated crosslinking of collagen provides a novel alternative, nontoxic method for stabilization. In this study, aldehyde forming enzyme (AFE) is used in the bioconversion of hydroxylmethyl groups of collagen to formyl groups that results in the formation of peptidyl aldehyde. The resulted peptidyl aldehyde interacts with bipolar ions of basic amino acid residues of collagen. Further interaction leads to the formation of conjugated double bonds (aldol condensation involving the aldehyde group of peptidyl aldehyde) within the collagen. The enzyme modified collagen matrices have shown an increase in the denaturation temperature, when compared with native collagen. Enzyme modified collagen membranes exhibit resistance toward collagenolytic activity. Moreover, they exhibited a nontoxic nature. The catalytic activity of AFE on collagen as a substrate establishes an efficient modification, which enhances the structural stability of collagen. This finds new avenues in the context of protein-protein stabilization and discovers paramount application in tissue engineering. PMID:25098180

  5. Age-related differences in the maintenance of frontal plane dynamic stability while stepping to targets

    PubMed Central

    Hurt, Christopher P.; Grabiner, Mark D.

    2015-01-01

    Older adults may be vulnerable to frontal plane dynamic instability, which is of clinical significance. The purpose of the current investigation was to examine the age-related differences in frontal plane dynamic stability by quantifying the margin of stability and hip abductor moment generation of subjects performing a single crossover step and sidestep to targets that created three different step widths during forward locomotion. Nineteen young adults (9 males, age: 22.9±3.1 years, height: 174.3±10.2 cm, mass: 71.7±13.0 kg) and 18 older adults (9 males, age: 72.8±5.2 years, height: 174.9±8.6 cm, mass: 78.0±16.3 kg) participated. For each walking trial, subjects performed a single laterally-directed step to a target on a force plate. Subjects were instructed to “perform the lateral step and keep walking forward”. The peak hip abductor moment of the stepping limb was 42% larger by older adults compared to younger adults (p<0.001). Older adults were also more stable than younger adults at all step targets (p<0.001). Older adults executed the lateral step with slower forward-directed and lateral-directed velocity despite similar step widths. Age-related differences in hip abduction moments may reflect greater muscular effort by older adults to reduce the likelihood of becoming unstable. The results of this investigation, in which subjects performed progressively larger lateral-directed steps, provide evidence that older adults may not be more laterally unstable than younger adults. However, age-related differences in this study could also reflect a compensatory strategy by older adults to ensure stability while performing this task. PMID:25627870

  6. Gene stability in mammalian cells and protein consistency.

    PubMed

    Berthold, W

    1994-01-01

    The safety of a patient who is the recipient of protein drugs has to be assured. A "wrong" protein is thought to represent a great risk. The philosophy of testing strategies related to gene stability with product safety will be discussed in the light of experimental data available today. Although all mammalian cell lines used in the production of biologicals including recombinant DNA-derived lines have been produced from individual clones (functional monoclonality) they have been found to be heterogenous with regard to the genomic content (number of chromosomes, characteristics of identifiable chromosomes and position and number of integrated recombinant sequences). The verification of the presence of correct gene in a production cell line constitutes a well accepted and useful test, especially if derived by "population sequencing". A batch not related repeated confirmation of this fact cannot lead to any additional assurance for the correctness of all proteins constituting a given product beyond the level provided by cheminal testing. In contrast to this obvious and unavoidable heterogeneity in cellular genomes, the coding regions of genes have not been shown to change. Evidence is available to demonstrate the consistency of protein products originating from recombinant (and hybridoma) cell lines, e.g. more than 500,000 patients have received and tolerated rtPA well. PMID:7883100

  7. Trimeric transmembrane domain interactions in paramyxovirus fusion proteins: roles in protein folding, stability, and function.

    PubMed

    Smith, Everett Clinton; Smith, Stacy E; Carter, James R; Webb, Stacy R; Gibson, Kathleen M; Hellman, Lance M; Fried, Michael G; Dutch, Rebecca Ellis

    2013-12-13

    Paramyxovirus fusion (F) proteins promote membrane fusion between the viral envelope and host cell membranes, a critical early step in viral infection. Although mutational analyses have indicated that transmembrane (TM) domain residues can affect folding or function of viral fusion proteins, direct analysis of TM-TM interactions has proved challenging. To directly assess TM interactions, the oligomeric state of purified chimeric proteins containing the Staphylococcal nuclease (SN) protein linked to the TM segments from three paramyxovirus F proteins was analyzed by sedimentation equilibrium analysis in detergent and buffer conditions that allowed density matching. A monomer-trimer equilibrium best fit was found for all three SN-TM constructs tested, and similar fits were obtained with peptides corresponding to just the TM region of two different paramyxovirus F proteins. These findings demonstrate for the first time that class I viral fusion protein TM domains can self-associate as trimeric complexes in the absence of the rest of the protein. Glycine residues have been implicated in TM helix interactions, so the effect of mutations at Hendra F Gly-508 was assessed in the context of the whole F protein. Mutations G508I or G508L resulted in decreased cell surface expression of the fusogenic form, consistent with decreased stability of the prefusion form of the protein. Sedimentation equilibrium analysis of TM domains containing these mutations gave higher relative association constants, suggesting altered TM-TM interactions. Overall, these results suggest that trimeric TM interactions are important driving forces for protein folding, stability and membrane fusion promotion. PMID:24178297

  8. Structural Assessment of the Effects of Amino Acid Substitutions on Protein Stability and Protein-Protein Interaction

    PubMed Central

    Teng, Shaolei; Wang, Liangjiang; Srivastava, Anand K.; Schwartz, Charles E.; Alexov, Emil

    2012-01-01

    A structure-based approach is described for predicting the effects of amino acid substitutions on protein function. Structures were predicted using a homology modelling method. Folding and binding energy differences between wild-type and mutant structures were computed to quantitatively assess the effects of amino acid substitutions on protein stability and protein–protein interaction, respectively. We demonstrated that pathogenic mutations at the interaction interface could affect binding energy and destabilise protein complex, whereas mutations at the non-interface might reduce folding energy and destabilise monomer structure. The results suggest that the structure-based analysis can provide useful information for understanding the molecular mechanisms of diseases. PMID:21297231

  9. Cementing proteins provide extra mechanical stabilization to viral cages

    NASA Astrophysics Data System (ADS)

    Hernando-Pérez, M.; Lambert, S.; Nakatani-Webster, E.; Catalano, C. E.; de Pablo, P. J.

    2014-07-01

    The study of virus shell stability is key not only for gaining insights into viral biological cycles but also for using viral capsids in materials science. The strength of viral particles depends profoundly on their structural changes occurring during maturation, whose final step often requires the specific binding of ‘decoration’ proteins (such as gpD in bacteriophage lambda) to the viral shell. Here we characterize the mechanical stability of gpD-free and gpD-decorated bacteriophage lambda capsids. The incorporation of gpD into the lambda shell imparts a major mechanical reinforcement that resists punctual deformations. We further interrogate lambda particle stability with molecular fatigue experiments that resemble the sub-lethal Brownian collisions of virus shells with macromolecules in crowded environments. Decorated particles are especially robust against collisions of a few kBT (where kB is the Boltzmann’s constant and T is the temperature ~300 K), which approximate those anticipated from molecular insults in the environment.

  10. Enhancing protein stability by adsorption onto raftlike lipid domains.

    PubMed

    Litt, Jeffrey; Padala, Chakradhar; Asuri, Prashanth; Vutukuru, Srinavya; Athmakuri, Krishna; Kumar, Sanat; Dordick, Jonathan; Kane, Ravi S

    2009-05-27

    We demonstrate that the stability of adsorbed proteins can be enhanced by controlling the heterogeneity of the surfaceby creating raftlike domains in a soft liposomal membrane. Recent work has shown that enzymes adsorbed onto highly curved nanoscale supports can be more stable than those adsorbed on flat surfaces with nominally the same chemical structure. This effect has been attributed to a decrease in lateral interenzyme interactions on a curved surface. Exploiting this idea, we asked if adsorbing enzymes onto "patchy" surfaces composed of adsorbing and nonadsorbing regions can be used to reduce lateral interactions even on relatively flat surfaces. We demonstrate that creating domains on which an enzyme can adsorb enhances the stability of that enzyme under denaturing conditions. Furthermore, we demonstrate that the size of these domains has a considerable effect on the degree of stability imparted by adsorption. Such biomimetic raft-inspired systems may find use in applications ranging from biorecognition to the design of novel strategies for the separation of biomolecules and controlling the interaction of multicomponent membrane-bound enzymes. PMID:19385631

  11. Cementing proteins provide extra mechanical stabilization to viral cages.

    PubMed

    Hernando-Pérez, M; Lambert, S; Nakatani-Webster, E; Catalano, C E; de Pablo, P J

    2014-01-01

    The study of virus shell stability is key not only for gaining insights into viral biological cycles but also for using viral capsids in materials science. The strength of viral particles depends profoundly on their structural changes occurring during maturation, whose final step often requires the specific binding of 'decoration' proteins (such as gpD in bacteriophage lambda) to the viral shell. Here we characterize the mechanical stability of gpD-free and gpD-decorated bacteriophage lambda capsids. The incorporation of gpD into the lambda shell imparts a major mechanical reinforcement that resists punctual deformations. We further interrogate lambda particle stability with molecular fatigue experiments that resemble the sub-lethal Brownian collisions of virus shells with macromolecules in crowded environments. Decorated particles are especially robust against collisions of a few kBT (where kB is the Boltzmann's constant and T is the temperature ~300 K), which approximate those anticipated from molecular insults in the environment. PMID:25072871

  12. Protein stability induced by ligand binding correlates with changes in protein flexibility

    PubMed Central

    Celej, María Soledad; Montich, Guillermo G.; Fidelio, Gerardo D.

    2003-01-01

    The interaction between ligands and proteins usually induces changes in protein thermal stability with modifications in the midpoint denaturation temperature, enthalpy of unfolding, and heat capacity. These modifications are due to the coupling of unfolding with binding equilibrium. Furthermore, they can be attained by changes in protein structure and conformational flexibility induced by ligand interaction. To study these effects we have used bovine serum albumin (BSA) interacting with three different anilinonaphthalene sulfonate derivatives (ANS). These ligands have different effects on protein stability, conformation, and dynamics. Protein stability was studied by differential scanning calorimetry and fluorescence spectroscopy, whereas conformational changes were detected by circular dichroism and infrared spectroscopy including kinetics of hydrogen/deuterium exchange. The order of calorimetric midpoint of denaturation was: 1,8-ANS-BSA > 2,6-ANS-BSA > free BSA >> (nondetected) bis-ANS-BSA. Both 1,8-ANS and 2,6-ANS did not substantially modify the secondary structure of BSA, whereas bis-ANS induced a distorted α-helix conformation with an increase of disordered structure. Protein flexibility followed the order: 1,8-ANS-BSA < 2,6-ANS-BSA < free BSA << bis-ANS-BSA, indicating a clear correlation between stability and conformational flexibility. The structure induced by an excess of bis-ANS to BSA is compatible with a molten globule-like state. Within the context of the binding landscape model, we have distinguished five conformers (identified by subscript): BSA1,8-ANS, BSA2,6-ANS, BSAfree, BSAbis-ANS, and BSAunfolded among the large number of possible states of the conformational dynamic ensemble. The relative population of each distinguishable conformer depends on the type and concentration of ligand and the temperature of the system. PMID:12824495

  13. Influence of environmental stability on the regulation of end-point impedance during the maintenance of arm posture

    PubMed Central

    Krutky, Matthew A.; Trumbower, Randy D.

    2013-01-01

    Many common tasks compromise arm stability along specific directions. Such tasks can be completed only if the impedance of the arm is sufficient to compensate for the destabilizing effects of the task. During movement, it has been demonstrated that the direction of maximal arm stiffness, the static component of impedance, can be preferentially increased to compensate for directionally unstable environments. In contrast, numerous studies have shown that such control is not possible during postural tasks. It remains unknown if these findings represent a fundamental difference in the control of arm mechanics during posture and movement or an involuntary response to the destabilizing environments used in the movement studies but not yet tested during posture maintenance. Our goal was to quantify how arm impedance is adapted during postural tasks that compromise stability along specific directions. Our results demonstrate that impedance can be modulated to compensate for these instabilities during postural tasks but that the changes are modest relative to those previously reported during reaching. Our observed changes were primarily in the magnitude of end-point stiffness, but these were not sufficient to alter the direction of maximal stiffness. Furthermore, there were no substantial changes in the magnitude of end-point viscosity or inertia, suggesting that the primary change to arm impedance was a selective increase in stiffness to compensate for the destabilizing stiffness properties of the environment. We suggest that these modest changes provide an initial involuntary response to destabilizing environments prior to the larger changes that can be affected through voluntary interventions. PMID:23221409

  14. Minichromosome maintenance protein 7 regulates phagocytosis in kuruma shrimp Marsupenaeus japonicas against white spot syndrome virus.

    PubMed

    Wang, Zhi; Zhu, Fei

    2016-08-01

    Minichromosome maintenance protein (MCM7) belongs to the MCM protein family and participates in the MCM complex by playing a role in the cell replication cycle and chromosome initiation of eukaryotes. Previously, we found that several genes, including MCM7, were over-expressed in Drosophila melanogaster after white spot syndrome virus (WSSV) infection. In this study, we aimed to further research the MCM7 of kuruma shrimp, Marsupenaeus japonicus (mjMCM7) and determine its role in the innate immune system. To this end, we cloned the entire 2307-bp mjMCM7 sequence, including a 1974-bp open reading frame (ORF) encoding a 658-aa-long protein. Real-time PCR showed that the gene was primarily expressed in the hemolymph and hepatopancreas and over-expressed in shrimp challenged with WSSV. Gene function study was carried out by knocking down the expression of MCM7 using small interference RNA (siRNA). The results revealed that β-actin, hemocyanin, prophenoloxidase (proPO) and tumor necrosis factor-α (TNF-α) were up-regulated while the cytoskeleton proteins such as myosin and Rho were significantly down-regulated at 24 h after treatment. The results indicate a possible relationship between mjMCM7 and the innate immune system, and suggest that mjMCM7 may play a role in phagocytosis. After WSSV challenge, WSSV copies and mortality count were both higher in the MCM7-siRNA-treated groups at 60 h after treatment, and the mortality count approached that of the control groups over time. The phagocytosis rate was significantly lower in the MCM7-siRNA-treated group than in the WSSV group. The findings of this study confirm that mjMCM7 positively regulates phagocytosis and plays an important role against WSSV. These results could help researchers to further understand the function of the MCM7 protein and reveal its potential role in the innate immunity of invertebrates. PMID:27276115

  15. Hdac3 is essential for the maintenance of chromatin structure and genome stability

    PubMed Central

    Bhaskara, Srividya; Knutson, Sarah K.; Jiang, Guochun; Chandrasekharan, Mahesh B.; Wilson, Andrew J.; Zheng, Siyuan; Yenamandra, Ashwini; Locke, Kimberly; Yuan, Jia-ling; Bonine-Summers, Alyssa R.; Wells, Christina E.; Kaiser, Jonathan F.; Washington, M. Kay; Zhao, Zhongming; Wagner, Florence F.; Sun, Zu-Wen; Xia, Fen; Holson, Edward B.; Khabele, Dineo; Hiebert, Scott W.

    2010-01-01

    Summary Hdac3 is essential for efficient DNA replication and DNA damage control. Deletion of Hdac3 impaired DNA repair and greatly reduced chromatin compaction and heterochromatin content. These defects corresponded to increases in histone H3K9,K14ac, and H4K5ac and H4K12ac in late S phase of the cell cycle, and histone deposition marks were retained in quiescent Hdac3-null cells. Liver-specific deletion of Hdac3 culminated in hepatocellular carcinoma. While HDAC3 expression was down regulated in only a small number of human liver cancers, the mRNA levels of the HDAC3 cofactor NCOR1 were reduced in 1/3 of these cases. siRNA targeting of NCOR1 and SMRT (NCOR2) increased H4K5ac and caused DNA damage, indicating that the HDAC3/NCOR/SMRT axis is critical for maintaining chromatin structure and genomic stability. PMID:21075309

  16. Solubilizing and Stabilizing Proteins in Anhydrous Ionic Liquids through Formation of Protein-Polymer Surfactant Nanoconstructs.

    PubMed

    Brogan, Alex P S; Hallett, Jason P

    2016-04-01

    Nonaqueous biocatalysis is rapidly becoming a desirable tool for chemical and fuel synthesis in both the laboratory and industry. Similarly, ionic liquids are increasingly popular anhydrous reaction media for a number of industrial processes. Consequently, the use of enzymes in ionic liquids as efficient, environment-friendly, commercial biocatalysts is highly attractive. However, issues surrounding the poor solubility and low stability of enzymes in truly anhydrous media remain a significant challenge. Here, we demonstrate for the first time that engineering the surface of a protein to yield protein-polymer surfactant nanoconstructs allows for dissolution of dry protein into dry ionic liquids. Using myoglobin as a model protein, we show that this method can deliver protein molecules with near native structure into both hydrophilic and hydrophobic anhydrous ionic liquids. Remarkably, using temperature-dependent synchrotron radiation circular dichroism spectroscopy to measure half-denaturation temperatures, our results show that protein stability increases by 55 °C in the ionic liquid as compared to aqueous solution, pushing the solution thermal denaturation beyond the boiling point of water. Therefore, the work presented herein could provide a platform for the realization of biocatalysis at high temperatures or in anhydrous solvent systems. PMID:26976718

  17. Excluded volume effects upon protein stability in covalently crosslinked proteins with variable linker lengths†

    PubMed Central

    Kim, Yun Ho; Stites, Wesley E.

    2008-01-01

    To explore the effects of molecular crowding and excluded volume upon protein stability a series of crosslinking reagents have been used with nine different single cysteine mutants of staphylococcal nuclease to make covalently linked dimers. These crosslinkers ranged in length from 10.5 Å to 21.3 Å, compelling separations which would normally be found only in the most concentrated protein solutions. The stabilities of the dimeric proteins and monomeric controls were determined by guanidine hydrochloride and thermal denaturation. Dimers with short linkers tend to show pronounced three state denaturation behavior, as opposed to the two state behavior of the monomeric controls. Increasing linker length leads to less pronounced three state behavior. The three state behavior is interpreted in a three state model where crosslinked native protein dimer, N-N, interconverts in a two state transition with a dimer where one protein subunit is denatured, N-D. The remaining native protein in turn can denature in another two state transition to a state, D-D, where both tethered proteins are denatured. Three state behavior is best explained by excluded volume effects in the denatured state. For many dimers, linkers longer than 17 Å removed most three state character. This sets a limit on the flexibility and size of the denatured state. Notably, in contradiction to theoretical predictions, these crosslinked dimers were not stabilized. The failure of these predictions is possibly due to neglect of the alteration in hydrophobic exposure that accompanies any significant reduction in the conformational space of the denatured state. PMID:18656955

  18. Potential Benefit of the Charge-Stabilized Nanostructure Saline RNS60 for Myelin Maintenance and Repair.

    PubMed

    Rao, Vijayaraghava T S; Khan, Damla; Jones, Russell G; Nakamura, Diane S; Kennedy, Timothy E; Cui, Qiao-Ling; Rone, Malena B; Healy, Luke M; Watson, Richard; Ghosh, Supurna; Antel, Jack P

    2016-01-01

    Myelin injury in multiple sclerosis (MS) has been attributed both to "outside-in" primary immune mediated and "inside-out" metabolic stress of oligodendrocyte (OL) related mechanisms. Subsequent remyelination is dependent on recruitment and differentiation of oligodendrocyte progenitor cells (OPCs). RNS60 is a physically-modified saline containing charge-stabilized nanobubbles generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. Administration of RNS60 has been shown to reduce the severity of EAE by dampening the immune response and myelin loss. Additionally, RNS60 has been demonstrated to enhance mitochondrial ATP synthesis in neurons. Here, we used post-natal rat derived OLs and OPCs to assess the impact of RNS60 on the response of OLs to metabolic stress in vitro (glucose-nutrient deprivation, referred to as 'NG') and on OPC differentiation capacity. Under the NG condition, our findings indicate that RNS60 decreases caspases 3/7 activation. Respirometric analyses revealed that RNS60 increased spare glycolytic capacity (SGC) under normal culture conditions. However, RNS60 enhanced OL spare respiratory capacity (SRC) when a metabolic stress was present. Furthermore, we show that RNS60 promotes OPC differentiation under physiological conditions. Our findings provide evidence for the potential therapeutic efficacy of RNS60 through the promotion of OL survival and OPC differentiation. PMID:27451946

  19. Potential Benefit of the Charge-Stabilized Nanostructure Saline RNS60 for Myelin Maintenance and Repair

    PubMed Central

    Rao, Vijayaraghava T. S.; Khan, Damla; Jones, Russell G.; Nakamura, Diane S.; Kennedy, Timothy E.; Cui, Qiao-Ling; Rone, Malena B.; Healy, Luke M.; Watson, Richard; Ghosh, Supurna; Antel, Jack P.

    2016-01-01

    Myelin injury in multiple sclerosis (MS) has been attributed both to “outside-in” primary immune mediated and “inside-out” metabolic stress of oligodendrocyte (OL) related mechanisms. Subsequent remyelination is dependent on recruitment and differentiation of oligodendrocyte progenitor cells (OPCs). RNS60 is a physically-modified saline containing charge-stabilized nanobubbles generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. Administration of RNS60 has been shown to reduce the severity of EAE by dampening the immune response and myelin loss. Additionally, RNS60 has been demonstrated to enhance mitochondrial ATP synthesis in neurons. Here, we used post-natal rat derived OLs and OPCs to assess the impact of RNS60 on the response of OLs to metabolic stress in vitro (glucose-nutrient deprivation, referred to as ‘NG’) and on OPC differentiation capacity. Under the NG condition, our findings indicate that RNS60 decreases caspases 3/7 activation. Respirometric analyses revealed that RNS60 increased spare glycolytic capacity (SGC) under normal culture conditions. However, RNS60 enhanced OL spare respiratory capacity (SRC) when a metabolic stress was present. Furthermore, we show that RNS60 promotes OPC differentiation under physiological conditions. Our findings provide evidence for the potential therapeutic efficacy of RNS60 through the promotion of OL survival and OPC differentiation. PMID:27451946

  20. The intricate relationship between microtubules and their associated motor proteins during axon growth and maintenance.

    PubMed

    Prokop, Andreas

    2013-01-01

    The hallmarks of neurons are their slender axons which represent the longest cellular processes of animals and which act as the cables that electrically wire the brain, and the brain to the body. Axons extend along reproducible paths during development and regeneration, and they have to be maintained for the lifetime of an organism. Both axon extension and maintenance essentially depend on the microtubule (MT) cytoskeleton. For this, MTs organize into parallel bundles that are established through extension at the leading axon tips within growth cones, and these bundles then form the architectural backbones, as well as the highways for axonal transport essential for supply and intracellular communication. Axon transport over these enormous distances takes days or even weeks and is a substantial logistical challenge. It is performed by kinesins and dynein/dynactin, which are molecular motors that form close functional links to the MTs they walk along. The intricate machinery which regulates MT dynamics, axonal transport and the motors is essential for nervous system development and function, and its investigation has huge potential to bring urgently required progress in understanding the causes of many developmental and degenerative brain disorders. During the last years new explanations for the highly specific properties of axonal MTs and for their close functional links to motor proteins have emerged, and it has become increasingly clear that motors play active roles also in regulating axonal MT networks. Here, I will provide an overview of these new developments. PMID:24010872

  1. The RNA-binding protein Puf1 functions in the maintenance of gametocytes in Plasmodium falciparum.

    PubMed

    Shrestha, Sony; Li, Xiaolian; Ning, Gang; Miao, Jun; Cui, Liwang

    2016-08-15

    Translation control plays an important role in the regulation of gene expression in the malaria parasite Plasmodium falciparum, especially in transition stages between the vertebrate host and mosquito vector. Here, we determined the function of the Puf-family member Puf1 (denoted as PfPuf1 for the P. falciparum protein) during P. falciparum sexual development. We show that PfPuf1 was expressed in all gametocyte stages and at higher levels in female gametocytes. PfPuf1 disruption did not interfere with the asexual erythrocyte cycle of the parasite but resulted in an approximately tenfold decrease of mature gametocytes. In the PfPuf1-disrupted lines, gametocytes appeared normal before stage III but subsequently exhibited a sharp decline in gametocytemia. This was accompanied by a concomitant accumulation of dead and dying late-stage gametocytes, which retained normal gross morphology. In addition, significantly more female gametocytes were lost in the PfPuf1-disrupted lines during development, resulting in a reversed male-to-female sex ratio. These results indicate that PfPuf1 is important for the differentiation and maintenance of gametocytes, especially female gametocytes. PMID:27383769

  2. The intricate relationship between microtubules and their associated motor proteins during axon growth and maintenance

    PubMed Central

    2013-01-01

    The hallmarks of neurons are their slender axons which represent the longest cellular processes of animals and which act as the cables that electrically wire the brain, and the brain to the body. Axons extend along reproducible paths during development and regeneration, and they have to be maintained for the lifetime of an organism. Both axon extension and maintenance essentially depend on the microtubule (MT) cytoskeleton. For this, MTs organize into parallel bundles that are established through extension at the leading axon tips within growth cones, and these bundles then form the architectural backbones, as well as the highways for axonal transport essential for supply and intracellular communication. Axon transport over these enormous distances takes days or even weeks and is a substantial logistical challenge. It is performed by kinesins and dynein/dynactin, which are molecular motors that form close functional links to the MTs they walk along. The intricate machinery which regulates MT dynamics, axonal transport and the motors is essential for nervous system development and function, and its investigation has huge potential to bring urgently required progress in understanding the causes of many developmental and degenerative brain disorders. During the last years new explanations for the highly specific properties of axonal MTs and for their close functional links to motor proteins have emerged, and it has become increasingly clear that motors play active roles also in regulating axonal MT networks. Here, I will provide an overview of these new developments. PMID:24010872

  3. The kinesin related motor protein, Eg5, is essential for maintenance of pre-implantation embryogenesis

    SciTech Connect

    Castillo, Andrew; Justice, Monica J. . E-mail: mjustice@bcm.tmc.edu

    2007-06-08

    Eg5 is a plus end directed kinesin related motor protein (KRP) previously shown to be involved in the assembly and maintenance of the mitotic spindle. KRPs are molecular motors capable of generating forces upon microtubules (MTs) in dividing cells and driving structural rearrangements necessary in the developing spindle. In vitro experiments demonstrate that loss of Eg5 results in cell cycle arrest and defective centrosome separation resulting in the development of monopolar spindles. Here we describe mice with a genetrap insertion in Eg5. Heterozygous mutant mice appear phenotypically normal. In contrast, embryos homozygous for the Eg5 null allele recovered at embryonic days 2.5-3.5 display signs of a proliferation defect as reduced cell numbers and failure of compaction and progression to the blastocyst stage was observed. These data, in conjunction with previous in vitro data, suggest that loss of Eg5 results in abnormal spindle structure, cell cycle arrest and thereby reduced cell proliferation of early cleavage pre-implantation embryos. These observations further support the conclusion that Eg5 is essential for cell division early in mouse development, and that maternal contribution may sustain the embryo through the maternal to zygotic transition at which point supplies of functional Eg5 are exhausted, preventing further cell cleavage.

  4. Nuclear HMGA1 nonhistone chromatin proteins directly influence mitochondrial transcription, maintenance, and function

    SciTech Connect

    Dement, Gregory A.; Maloney, Scott C.; Reeves, Raymond . E-mail: reevesr@mail.wsu.edu

    2007-01-01

    We have previously demonstrated that HMGA1 proteins translocate from the nucleus to mitochondria and bind to mitochondrial DNA (mtDNA) at the D-loop control region [G.A. Dement, N.R. Treff, N.S. Magnuson, V. Franceschi, R. Reeves, Dynamic mitochondrial localization of nuclear transcription factor HMGA1, Exp. Cell Res. 307 (2005) 388-401.] [11]. To elucidate possible physiological roles for such binding, we employed methods to analyze mtDNA transcription, mitochondrial maintenance, and other organelle functions in transgenic human MCF-7 cells (HA7C) induced to over-express an HA-tagged HMGA1 protein and control (parental) MCF-7 cells. Quantitative real-time (RT) PCR analyses demonstrated that mtDNA levels were reduced approximately 2-fold in HMGA1 over-expressing HA7C cells and flow cytometric analyses further revealed that mitochondrial mass was significantly reduced in these cells. Cellular ATP levels were also reduced in HA7C cells and survival studies showed an increased sensitivity to killing by 2-deoxy-D-glucose, a glycolysis-specific inhibitor. Flow cytometric analyses revealed additional mitochondrial abnormalities in HA7C cells that are consistent with a cancerous phenotype: namely, increased reactive oxygen species (ROS) and increased mitochondrial membrane potential ({delta}{psi}{sub m}). Additional RT-PCR analyses demonstrated that gene transcripts from both the heavy (ND2, COXI, ATP6) and light (ND6) strands of mtDNA were up-regulated approximately 3-fold in HA7C cells. Together, these mitochondrial changes are consistent with many previous reports and reveal several possible mechanisms by which HMGA1 over-expression, a common feature of naturally occurring cancers, may affect tumor progression.

  5. Conservation of Oxidative Protein Stabilization in an Insect Homologue of Parkinsonism-Associated Protein DJ-1

    SciTech Connect

    Lin, Jiusheng; Prahlad, Janani; Wilson, Mark A.

    2012-08-21

    DJ-1 is a conserved, disease-associated protein that protects against oxidative stress and mitochondrial damage in multiple organisms. Human DJ-1 contains a functionally essential cysteine residue (Cys106) whose oxidation is important for regulating protein function by an unknown mechanism. This residue is well-conserved in other DJ-1 homologues, including two (DJ-1{alpha} and DJ-1{beta}) in Drosophila melanogaster. Because D. melanogaster is a powerful model system for studying DJ-1 function, we have determined the crystal structure and impact of cysteine oxidation on Drosophila DJ-1{beta}. The structure of D. melanogaster DJ-1{beta} is similar to that of human DJ-1, although two important residues in the human protein, Met26 and His126, are not conserved in DJ-1{beta}. His126 in human DJ-1 is substituted with a tyrosine in DJ-1{beta}, and this residue is not able to compose a putative catalytic dyad with Cys106 that was proposed to be important in the human protein. The reactive cysteine in DJ-1 is oxidized readily to the cysteine-sulfinic acid in both flies and humans, and this may regulate the cytoprotective function of the protein. We show that the oxidation of this conserved cysteine residue to its sulfinate form (Cys-SO{sub 2{sup -}}) results in considerable thermal stabilization of both Drosophila DJ-1{beta} and human DJ-1. Therefore, protein stabilization is one potential mechanism by which cysteine oxidation may regulate DJ-1 function in vivo. More generally, most close DJ-1 homologues are likely stabilized by cysteine-sulfinic acid formation but destabilized by further oxidation, suggesting that they are biphasically regulated by oxidative modification.

  6. SUMOylation Confers Posttranslational Stability on NPM-ALK Oncogenic Protein.

    PubMed

    Vishwamitra, Deeksha; Curry, Choladda V; Shi, Ping; Alkan, Serhan; Amin, Hesham M

    2015-09-01

    Nucleophosmin-anaplastic lymphoma kinase-expressing (NPM-ALK+) T-cell lymphoma is an aggressive form of cancer that commonly affects children and adolescents. The expression of NPM-ALK chimeric oncogene results from the chromosomal translocation t(2;5)(p23;q35) that causes the fusion of the ALK and NPM genes. This translocation generates the NPM-ALK protein tyrosine kinase that forms the constitutively activated NPM-ALK/NPM-ALK homodimers. In addition, NPM-ALK is structurally associated with wild-type NPM to form NPM/NPM-ALK heterodimers, which can translocate to the nucleus. The mechanisms that sustain the stability of NPM-ALK are not fully understood. SUMOylation is a posttranslational modification that is characterized by the reversible conjugation of small ubiquitin-like modifiers (SUMOs) with target proteins. SUMO competes with ubiquitin for substrate binding and therefore, SUMOylation is believed to protect target proteins from proteasomal degradation. Moreover, SUMOylation contributes to the subcellular distribution of target proteins. Herein, we found that the SUMOylation pathway is deregulated in NPM-ALK+ T-cell lymphoma cell lines and primary lymphoma tumors from patients. We also identified Lys24 and Lys32 within the NPM domain as the sites where NPM-ALK conjugates with SUMO-1 and SUMO-3. Importantly, antagonizing SUMOylation by the SENP1 protease decreased the accumulation of NPM-ALK and suppressed lymphoma cell viability, proliferation, and anchorage-independent colony formation. One possible mechanism for the SENP1-mediated decrease in NPM-ALK levels was the increase in NPM-ALK association with ubiquitin, which facilitates its degradation. Our findings propose a model in which aberrancies in SUMOylation contribute to the pathogenesis of NPM-ALK+ T-cell lymphoma. Unraveling such pathogenic mechanisms may lead to devising novel strategies to eliminate this aggressive neoplasm. PMID:26476082

  7. Mathematics, Thermodynamics, and Modeling to Address Ten Common Misconceptions about Protein Structure, Folding, and Stability

    ERIC Educational Resources Information Center

    Robic, Srebrenka

    2010-01-01

    To fully understand the roles proteins play in cellular processes, students need to grasp complex ideas about protein structure, folding, and stability. Our current understanding of these topics is based on mathematical models and experimental data. However, protein structure, folding, and stability are often introduced as descriptive, qualitative…

  8. Phosphorylation in protein-protein binding: effect on stability and function

    PubMed Central

    Nishi, Hafumi; Hashimoto, Kosuke; Panchenko, Anna R.

    2011-01-01

    Summary Post-translational modifications offer a dynamic way to regulate protein activity, subcellular localization and stability. Here we estimate the effect of phosphorylation on protein binding and function for different types of complexes from human proteome. We find that phosphorylation sites have a tendency to be located on binding interfaces in heterooligomeric and weak transient homooligomeric complexes. The analysis of molecular mechanisms of phosphorylation shows that phosphorylation may modulate the strength of interactions directly on interfaces and binding hotspots have a tendency to be phosphorylated in heterooligomers. Although majority of phosphosites do not show significant estimated stability differences upon attaching the phosphate groups, for about one third of all complexes it causes relatively large changes in binding energy. We discuss the cases where phosphorylation mediates the complex formation and regulates the function. We show that phosphorylation sites are not only more likely to be evolutionary conserved than surface residues but even more so than other interfacial residues. PMID:22153503

  9. The E3 ligase CUL3/RDX controls centromere maintenance by ubiquitylating and stabilizing CENP-A in a CAL1-dependent manner.

    PubMed

    Bade, Debora; Pauleau, Anne-Laure; Wendler, Astrid; Erhardt, Sylvia

    2014-03-10

    Centromeres are defined by the presence of the histone H3 variant CENP-A in a subset of centromeric nucleosomes. CENP-A deposition to centromeres depends on a specialized loading factor from yeast to humans that is called CAL1 in Drosophila. Here, we show that CAL1 directly interacts with RDX, an adaptor for CUL3-mediated ubiquitylation. However, CAL1 is not a substrate of the CUL3/RDX ligase but functions as an additional substrate-specifying factor for the CUL3/RDX-mediated ubiquitylation of CENP-A. Remarkably, ubiquitylation of CENP-A by CUL3/RDX does not trigger its degradation but stabilizes CENP-A and CAL1. Loss of RDX leads to a rapid degradation of CAL1 and CENP-A and to massive chromosome segregation defects during development. Essentially, we identified a proteolysis-independent role of ubiquitin conjugation in centromere regulation that is essential for the maintenance of the centromere-defining protein CENP-A and its loading factor CAL1. PMID:24636256

  10. Lower Protein Stability Does Not Necessarily Increase Local Dynamics.

    PubMed

    McClelland, Levi J; Bowler, Bruce E

    2016-05-17

    Overall protein stability is thought to have an important impact on the millisecond time scale dynamics modulating enzyme function. In order to better understand the effects of overall stability on the substructure dynamics of mitochondrial cytochrome c, we test the effect of a destabilizing L85A mutation on the kinetics and equilibrium thermodynamics of the alkaline conformational transition. The alkaline conformational transition replaces the Met80 ligand of the heme with a lysine residue from Ω-loop D, the heme crevice loop, consisting of residues 70-85. Residues 67-87 are the most conserved portion of the sequence of mitochondrial cytochrome c, suggesting that this region is of prime importance for function. Mutations to Ω-loop D affect the stability of the heme crevice directly, modulating the pKapp of the alkaline transition. Two variants of yeast iso-1-cytochrome c, WT*/L85A and WT*/K73H/L85A, were prepared for these studies. Guanidine-HCl unfolding monitored by circular dichroism and pH titrations at 695 nm, respectively, were used to study the thermodynamics of global and local unfolding of these variants. The kinetics of the alkaline transition were measured by pH-jump stopped-flow methods. Gated electron transfer techniques using bis(2,2',2″-terpyridine)cobalt(II) as a reducing reagent were implemented to measure the heme crevice dynamics for the WT*/K73H/L85A variant. Contrary to the expectation that dynamics around the heme crevice would be faster for the less stable WT*/K73H/L85A variant, based on the behavior of psychrophilic versus mesophilic enzymes, they were similar to those for a variant without the L85A mutation. In fact, below pH 7, the dynamics of the WT*/K73H/L85A variant were slower. PMID:27104373

  11. Osmolytes stabilize ribonuclease S by stabilizing its fragments S protein and S peptide to compact folding-competent states.

    PubMed

    Ratnaparkhi, G S; Varadarajan, R

    2001-08-01

    Osmolytes stabilize proteins to thermal and chemical denaturation. We have studied the effects of the osmolytes sarcosine, betaine, trimethylamine-N-oxide, and taurine on the structure and stability of the protein.peptide complex RNase S using x-ray crystallography and titration calorimetry, respectively. The largest degree of stabilization is achieved with 6 m sarcosine, which increases the denaturation temperatures of RNase S and S pro by 24.6 and 17.4 degrees C, respectively, at pH 5 and protects both proteins against tryptic cleavage. Four crystal structures of RNase S in the presence of different osmolytes do not offer any evidence for osmolyte binding to the folded state of the protein or any perturbation in the water structure surrounding the protein. The degree of stabilization in 6 m sarcosine increases with temperature, ranging from -0.52 kcal mol(-1) at 20 degrees C to -5.4 kcal mol(-1) at 60 degrees C. The data support the thesis that osmolytes that stabilize proteins, do so by perturbing unfolded states, which change conformation to a compact, folding competent state in the presence of osmolyte. The increased stabilization thus results from a decrease in conformational entropy of the unfolded state. PMID:11373282

  12. More than 10% of yeast genes are related to genome stability and influence cellular senescence via rDNA maintenance.

    PubMed

    Saka, Kimiko; Takahashi, Akihiro; Sasaki, Mariko; Kobayashi, Takehiko

    2016-05-19

    Genome instability triggers cellular senescence and is a common cause of cancer. The ribosomal RNA genes (rDNA), due to their repetitive structure, form a fragile site with frequent rearrangements. To identify eukaryotic factors that connect reduced genome stability to senescence we screened 4,876 strains of a Saccharomyces cerevisiae deletion library for aberrant rDNA and found 708 genes that contribute to its upkeep. 28 mutants caused abnormalities in non-rDNA chromosomes and among them 12 mutants have abnormalities both in rDNA and in non-rDNA chromosomes. Many mutated genes have not previously been implicated with genome maintenance nor their homologues with tumorigenesis in mammals. The link between rDNA state and senescence was broken after deletion of factors related with DNA polymerase ϵ. These mutations also suppressed the short lifespan phenotype of a sir2 mutant, suggesting a model in which molecular events at the heart of the replication fork induce abnormal rDNA recombination and are responsible for the emergence of an aging signal. PMID:26912831

  13. Effect of cosolvent on protein stability: a theoretical investigation.

    PubMed

    Chalikian, Tigran V

    2014-12-14

    We developed a statistical thermodynamic algorithm for analyzing solvent-induced folding/unfolding transitions of proteins. The energetics of protein transitions is governed by the interplay between the cavity formation contribution and the term reflecting direct solute-cosolvent interactions. The latter is viewed as an exchange reaction in which the binding of a cosolvent to a solute is accompanied by release of waters of hydration to the bulk. Our model clearly differentiates between the stoichiometric and non-stoichiometric interactions of solvent or co-solvent molecules with a solute. We analyzed the urea- and glycine betaine (GB)-induced conformational transitions of model proteins of varying size which are geometrically approximated by a sphere in their native state and a spherocylinder in their unfolded state. The free energy of cavity formation and its changes accompanying protein transitions were computed based on the concepts of scaled particle theory. The free energy of direct solute-cosolvent interactions were analyzed using empirical parameters previously determined for urea and GB interactions with low molecular weight model compounds. Our computations correctly capture the mode of action of urea and GB and yield realistic numbers for (∂ΔG°/∂a3)T,P which are related to the m-values of protein denaturation. Urea is characterized by negative values of (∂ΔG°/∂a3)T,P within the entire range of urea concentrations analyzed. At concentrations below ∼1 M, GB exhibits positive values of (∂ΔG°/∂a3)T,P which turn positive at higher GB concentrations. The balance between the thermodynamic contributions of cavity formation and direct solute-cosolvent interactions that, ultimately, defines the mode of cosolvent action is extremely subtle. A 20% increase or decrease in the equilibrium constant for solute-cosolvent binding may change the sign of (∂ΔG°/∂a3)T,P thereby altering the mode of cosolvent action (stabilizing to destabilizing or

  14. Effect of cosolvent on protein stability: A theoretical investigation

    NASA Astrophysics Data System (ADS)

    Chalikian, Tigran V.

    2014-12-01

    We developed a statistical thermodynamic algorithm for analyzing solvent-induced folding/unfolding transitions of proteins. The energetics of protein transitions is governed by the interplay between the cavity formation contribution and the term reflecting direct solute-cosolvent interactions. The latter is viewed as an exchange reaction in which the binding of a cosolvent to a solute is accompanied by release of waters of hydration to the bulk. Our model clearly differentiates between the stoichiometric and non-stoichiometric interactions of solvent or co-solvent molecules with a solute. We analyzed the urea- and glycine betaine (GB)-induced conformational transitions of model proteins of varying size which are geometrically approximated by a sphere in their native state and a spherocylinder in their unfolded state. The free energy of cavity formation and its changes accompanying protein transitions were computed based on the concepts of scaled particle theory. The free energy of direct solute-cosolvent interactions were analyzed using empirical parameters previously determined for urea and GB interactions with low molecular weight model compounds. Our computations correctly capture the mode of action of urea and GB and yield realistic numbers for (∂ΔG°/∂a3)T,P which are related to the m-values of protein denaturation. Urea is characterized by negative values of (∂ΔG°/∂a3)T,P within the entire range of urea concentrations analyzed. At concentrations below ˜1 M, GB exhibits positive values of (∂ΔG°/∂a3)T,P which turn positive at higher GB concentrations. The balance between the thermodynamic contributions of cavity formation and direct solute-cosolvent interactions that, ultimately, defines the mode of cosolvent action is extremely subtle. A 20% increase or decrease in the equilibrium constant for solute-cosolvent binding may change the sign of (∂ΔG°/∂a3)T,P thereby altering the mode of cosolvent action (stabilizing to destabilizing or vice

  15. Effect of cosolvent on protein stability: A theoretical investigation

    SciTech Connect

    Chalikian, Tigran V.

    2014-12-14

    We developed a statistical thermodynamic algorithm for analyzing solvent-induced folding/unfolding transitions of proteins. The energetics of protein transitions is governed by the interplay between the cavity formation contribution and the term reflecting direct solute-cosolvent interactions. The latter is viewed as an exchange reaction in which the binding of a cosolvent to a solute is accompanied by release of waters of hydration to the bulk. Our model clearly differentiates between the stoichiometric and non-stoichiometric interactions of solvent or co-solvent molecules with a solute. We analyzed the urea- and glycine betaine (GB)-induced conformational transitions of model proteins of varying size which are geometrically approximated by a sphere in their native state and a spherocylinder in their unfolded state. The free energy of cavity formation and its changes accompanying protein transitions were computed based on the concepts of scaled particle theory. The free energy of direct solute-cosolvent interactions were analyzed using empirical parameters previously determined for urea and GB interactions with low molecular weight model compounds. Our computations correctly capture the mode of action of urea and GB and yield realistic numbers for (∂ΔG°/∂a{sub 3}){sub T,P} which are related to the m-values of protein denaturation. Urea is characterized by negative values of (∂ΔG°/∂a{sub 3}){sub T,P} within the entire range of urea concentrations analyzed. At concentrations below ∼1 M, GB exhibits positive values of (∂ΔG°/∂a{sub 3}){sub T,P} which turn positive at higher GB concentrations. The balance between the thermodynamic contributions of cavity formation and direct solute-cosolvent interactions that, ultimately, defines the mode of cosolvent action is extremely subtle. A 20% increase or decrease in the equilibrium constant for solute-cosolvent binding may change the sign of (∂ΔG°/∂a{sub 3}){sub T,P} thereby altering the mode of

  16. Maintenance and propagation of a deleterious mitochondrial genome by the mitochondrial unfolded protein response.

    PubMed

    Lin, Yi-Fan; Schulz, Anna M; Pellegrino, Mark W; Lu, Yun; Shaham, Shai; Haynes, Cole M

    2016-05-19

    Mitochondrial genomes (mitochondrial DNA, mtDNA) encode essential oxidative phosphorylation (OXPHOS) components. Because hundreds of mtDNAs exist per cell, a deletion in a single mtDNA has little impact. However, if the deletion genome is enriched, OXPHOS declines, resulting in cellular dysfunction. For example, Kearns-Sayre syndrome is caused by a single heteroplasmic mtDNA deletion. More broadly, mtDNA deletion accumulation has been observed in individual muscle cells and dopaminergic neurons during ageing. It is unclear how mtDNA deletions are tolerated or how they are propagated in somatic cells. One mechanism by which cells respond to OXPHOS dysfunction is by activating the mitochondrial unfolded protein response (UPR(mt)), a transcriptional response mediated by the transcription factor ATFS-1 that promotes the recovery and regeneration of defective mitochondria. Here we investigate the role of ATFS-1 in the maintenance and propagation of a deleterious mtDNA in a heteroplasmic Caenorhabditis elegans strain that stably expresses wild-type mtDNA and mtDNA with a 3.1-kilobase deletion (∆mtDNA) lacking four essential genes. The heteroplasmic strain, which has 60% ∆mtDNA, displays modest mitochondrial dysfunction and constitutive UPR(mt) activation. ATFS-1 impairment reduced the ∆mtDNA nearly tenfold, decreasing the total percentage to 7%. We propose that in the context of mtDNA heteroplasmy, UPR(mt) activation caused by OXPHOS defects propagates or maintains the deleterious mtDNA in an attempt to recover OXPHOS activity by promoting mitochondrial biogenesis and dynamics. PMID:27135930

  17. Sequences of a hairpin structure in the 3'-untranslated region mediate regulation of human pulmonary surfactant protein B mRNA stability.

    PubMed

    Huang, Helen W; Payne, David E; Bi, Weizhen; Pan, Su; Bruce, Shirley R; Alcorn, Joseph L

    2012-05-15

    The ability of pulmonary surfactant to reduce alveolar surface tension requires adequate expression of surfactant protein B (SP-B). Dexamethasone (DEX, 10(-7) M) increases human SP-B mRNA stability by a mechanism that requires a 126-nt-long segment (the 7.6S region) of the 3'-untranslated region (3'-UTR). The objective of this study was to identify sequences in the 7.6S region that mediate regulation of SP-B mRNA stability. The 7.6S region was found to be sufficient for DEX-mediated stabilization of mRNA. Sequential substitution mutagenesis of the 7.6S region indicates that a 90-nt region is required for DEX-mediated stabilization and maintenance of intrinsic stability. In this region, one 30-nt-long element (002), predicted to form a stem-loop structure, is sufficient for DEX-mediated stabilization of mRNA and intrinsic mRNA stability. Cytosolic proteins specifically bind element 002, and binding activity is unaffected whether proteins are isolated from cells incubated in the absence or presence of DEX. While loop sequences of element 002 have no role in regulation of SP-B mRNA stability, the proximal stem sequences are required for DEX-mediated stabilization and specific binding of proteins. Mutation of the sequences that comprise the proximal or distal arm of the stem negates the destabilizing activity of element 002 on intrinsic SP-B mRNA stability. These results indicate that cytosolic proteins bind a single hairpin structure that mediates intrinsic and hormonal regulation of SP-B mRNA stability via mechanisms that involve sequences of the stems of the hairpin structure. PMID:22367784

  18. Polyglutamylated Tubulin Binding Protein C1orf96/CSAP Is Involved in Microtubule Stabilization in Mitotic Spindles

    PubMed Central

    Ohta, Shinya; Hamada, Mayako; Sato, Nobuko; Toramoto, Iyo

    2015-01-01

    The centrosome-associated C1orf96/Centriole, Cilia and Spindle-Associated Protein (CSAP) targets polyglutamylated tubulin in mitotic microtubules (MTs). Loss of CSAP causes critical defects in brain development; however, it is unclear how CSAP association with MTs affects mitosis progression. In this study, we explored the molecular mechanisms of the interaction of CSAP with mitotic spindles. Loss of CSAP caused MT instability in mitotic spindles and resulted in mislocalization of Nuclear protein that associates with the Mitotic Apparatus (NuMA), with defective MT dynamics. Thus, CSAP overload in the spindles caused extensive MT stabilization and recruitment of NuMA. Moreover, MT stabilization by CSAP led to high levels of polyglutamylation on MTs. MT depolymerization by cold or nocodazole treatment was inhibited by CSAP binding. Live-cell imaging analysis suggested that CSAP-dependent MT-stabilization led to centrosome-free MT aster formation immediately upon nuclear envelope breakdown without γ-tubulin. We therefore propose that CSAP associates with MTs around centrosomes to stabilize MTs during mitosis, ensuring proper bipolar spindle formation and maintenance. PMID:26562023

  19. Stability and Immunogenicity of Hypoallergenic Peanut Protein-Polyphenol Complexes during In Vitro Pepsin Diges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Allergenic peanut proteins are relatively resistant to digestion, and if digested, metabolized peptides tend to remain large and immunoreactive, triggering allergic reactions in sensitive individuals. In this study, the stability of hypoallergenic peanut protein-polyphenol complexes was evaluated d...

  20. Stability and Immunogenicity of Hypoallergenic Peanut Protein-Polyphenol Complexes During In Vitro Pepsin Digestion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Allergenic peanut proteins are relatively resistant to digestion, and if digested, metabolized peptides tend to remain large and immunoreactive, triggering allergic reactions in sensitive individuals. In this study, the stability of hypoallergenic peanut protein-polyphenol complexes was evaluated d...

  1. Diagnosis of bladder cancer by immunocytochemical detection of minichromosome maintenance protein-2 in cells retrieved from urine

    PubMed Central

    Saeb-Parsy, K; Wilson, A; Scarpini, C; Corcoran, M; Chilcott, S; McKean, M; Thottakam, B; Rai, B; Nabi, G; Rana, D; Perera, M; Stewart, K; Laskey, R A; Neal, D E; Coleman, N

    2012-01-01

    Background: We tested the accuracy of immunocytochemistry (ICC) for minichromosome maintenance protein-2 (MCM-2) in diagnosing bladder cancer, using cells retrieved from urine. Methods: Adequate samples were obtained from 497 patients, the majority presenting with gross haematuria (GH) or undergoing cystoscopic surveillance (CS) following previous bladder cancer. We performed an initial study of 313 patients, followed by a validation study of 184 patients. In all cases, presence/absence of bladder cancer was established by cystoscopy/biopsy. Results: In the initial study, receiver operator characteristic analysis showed an area under the curve of 0.820 (P<0.0005) for the GH group and 0.821 (P<0.01) for the CS group. Optimal sensitivity/specificity were provided by threshold values of 50+ MCM-2-positive cells in GH samples and 200+ cells in CS samples, based on a minimum total cell number of 5000. Applying these thresholds to the validation data set gave 81.3% sensitivity, 76.0% specificity and 92.7% negative predictive value (NPV) in GH and 63.2% sensitivity, 89.9% specificity and 89.9% NPV in CS. Minichromosome maintenance protein-2 ICC provided clinically relevant improvements over urine cytology, with greater sensitivity in GH and greater specificity in CS (P=0.05). Conclusions: Minichromosome maintenance protein-2 ICC is a reproducible and accurate test that is suitable for both GH and CS patient groups. PMID:22968648

  2. Genetic selection designed to stabilize proteins uncovers a chaperone called Spy

    PubMed Central

    Quan, Shu; Koldewey, Philipp; Tapley, Tim; Kirsch, Nadine; Ruane, Karen M.; Pfizenmaier, Jennifer; Shi, Rong; Hofmann, Stephan; Foit, Linda; Ren, Guoping; Jakob, Ursula; Xu, Zhaohui; Cygler, Miroslaw; Bardwell, James C. A.

    2011-01-01

    To optimize the in vivo folding of proteins, we linked protein stability to antibiotic resistance, thereby forcing bacteria to effectively fold and stabilize proteins. When we challenged Escherichia coli to stabilize a very unstable periplasmic protein, it massively overproduced a periplasmic protein called Spy, which increases the steady-state levels of a set of unstable protein mutants up to 700-fold. In vitro studies demonstrate that the Spy protein is an effective ATP-independent chaperone that suppresses protein aggregation and aids protein refolding. Our strategy opens up new routes for chaperone discovery and the custom tailoring of the in vivo folding environment. Spy forms thin, apparently flexible cradle-shaped dimers. Spy is unlike the structure of any previously solved chaperone, making it the prototypical member of a new class of small chaperones that facilitate protein refolding in the absence of energy cofactors. PMID:21317898

  3. Salting the Charged Surface: pH and Salt Dependence of Protein G B1 Stability

    PubMed Central

    Lindman, Stina; Xue, Wei-Feng; Szczepankiewicz, Olga; Bauer, Mikael C.; Nilsson, Hanna; Linse, Sara

    2006-01-01

    This study shows significant effects of protein surface charges on stability and these effects are not eliminated by salt screening. The stability for a variant of protein G B1 domain was studied in the pH-range of 1.5–11 at low, 0.15 M, and 2 M salt. The variant has three mutations, T2Q, N8D, and N37D, to guarantee an intact covalent chain at all pH values. The stability of the protein shows distinct pH dependence with the highest stability close to the isoelectric point. The stability is pH-dependent at all three NaCl concentrations, indicating that interactions involving charged residues are important at all three conditions. We find that 2 M salt stabilizes the protein at low pH (protein net charge is +6 and total number of charges is 6) but not at high pH (net charge is ≤−6 and total number of charges is ≥18). Furthermore, 0.15 M salt slightly decreases the stability of the protein over the pH range. The results show that a net charge of the protein is destabilizing and indicate that proteins contain charges for reasons other than improved stability. Salt seems to reduce the electrostatic contributions to stability under conditions with few total charges, but cannot eliminate electrostatic effects in highly charged systems. PMID:16443658

  4. The Protein Arginine Methylase 5 (PRMT5/SKB1) Gene Is Required for the Maintenance of Root Stem Cells in Response to DNA Damage.

    PubMed

    Li, Qiuling; Zhao, Yan; Yue, Minghui; Xue, Yongbiao; Bao, Shilai

    2016-04-20

    Plant root stem cells and their surrounding microenvironment, namely the stem cell niche, are hypersensitive to DNA damage. However, the molecular mechanisms that help maintain the genome stability of root stem cells remain elusive. Here we show that the root stem cells in the skb1 (Shk1 kinase binding protein 1) mutant undergoes DNA damage-induced cell death, which is enhanced when combined with a lesion of the Ataxia-telangiectasia mutated (ATM) or the ATM/RAD3-related (ATR) genes, suggesting that the SKB1 plays a synergistically effect with ATM and ATR in DNA damage pathway. We also provide evidence that SKB1 is required for the maintenance of quiescent center (QC), a root stem cell niche, under DNA damage treatments. Furthermore, we report decreased and ectopic expression of SHORTROOT (SHR) in response to DNA damage in the skb1 root tips, while the expression of SCARECROW (SCR) remains unaffected. Our results uncover a new mechanism of plant root stem cell maintenance under DNA damage conditions that requires SKB1. PMID:27090604

  5. Another Role of Proline: Stabilization Interactions in Proteins and Protein Complexes Concerning Proline and Tryptophane

    SciTech Connect

    Biedermannova, Lada; Riley, Kevin E.; Berka, Karel; Hobza, Pavel; Vondrasek, Jiri

    2008-09-11

    Proline–tryptophan complexes derived from experimental structures are investigated by quantum chemical procedures known to properly describe the London dispersion energy. We study two geometrical arrangements: the “L-shaped”, stabilized by an H-bond, and the “stacked-like”, where the two residues are in parallel orientation without any H-bond. Interestingly, the interaction energies in both cases are comparable and very large (~7 kcal mol⁻¹). The strength of stabilization in the stacked arrangement is rather surprising considering the fact that only one partner has an aromatic character. The interaction energy decomposition using the SAPT method further demonstrates the very important role of dispersion energy in such arrangement. To elucidate the structural features responsible for this unexpectedly large stabilization we examined the role of the nitrogen heteroatom and the importance of the cyclicity of the proline residue. We show that the electrostatic interaction due to the presence of the dipole, caused by the nitrogen heteroatom, contributes largely to the strength of the interaction. Nevertheless, the cyclic arrangement of proline, which allows for the largest amount of dispersive contact with the aromatic partner, also has a notable-effect. Geometry optimizations carried out for the “stackedlike” complexes show that the arrangements derived from protein structure are close to their gas phase optimum geometry, suggesting that the environment has only a minor effect on the geometry of the interaction. We conclude that the strength of proline non-covalent interactions, combined with this residue’s rigidity, might be the explanation for its prominent role in protein stabilization and recognition processes.

  6. Protocols for Studying Protein Stability in an Arabidopsis Protoplast Transient Expression System.

    PubMed

    Planchais, Séverine; Camborde, Laurent; Jupin, Isabelle

    2016-01-01

    Protein stability influences many aspects of biology, and measuring their stability in vivo can provide important insights into biological systems.This chapter describes in details two methods to assess the stability of a specific protein based on its transient expression in Arabidopsis protoplasts. First, a pulse-chase assay based on radioactive metabolic labeling of cellular proteins, followed by immunoprecipitation of the protein of interest. The decrease in radioactive signal is monitored over time and can be used to determine the protein's half-life.Alternatively, we also present a nonradioactive assay based on the use of reporter proteins, whose ratio can be quantified. This assay can be used to determine the relative stability of a protein of interest under specific conditions. PMID:27424754

  7. Analysis of socioeconomic and environmental impacts of waste stabilization pond and unrestricted wastewater irrigation: interface with maintenance.

    PubMed

    Agunwamba, J C

    2001-03-01

    The effluent from the waste stabilization ponds (WSPs) of the University of Nigeria, Nsukka Campus, is used for irrigation by poor rural farmers. There has been fear that the poorly maintained WSPs and the reuse practices are contributing to environmental degradation and health hazards. In this study the environmental and socioeconomic impacts of the WSPs and reuse were evaluated based on data collected from questionnaires and the literature. The engineering and agricultural properties of soil in the irrigated and nonirrigated areas were compared. Comparison of the health status of the farmers and nonfarmers, of consumers of crops irrigated with wastewater and nonconsumers was performed using Student's t test and the z-score test. The occurrences of diarrhea, typhoid fever, and malaria among the various groups were used as indices. Analyses show that the health status of the farmers and consumers is poorer than those of nonfarmers and nonconsumers at the 5% level of significance. Vegetable cultivation using WSP effluent is a means of sustenance to the farmers and provides an affordable means of satisfying their nutritional deficiencies. However, the poorly maintained WSPs create odor and mosquito nuisances, trap and destroy livestock, and flood nearby compounds with waste debris. At both 1% and 5% levels of significance, communities around the ponds (< 300 m) suffer malaria more frequently than those who live far away (> or = 300 m). Cost-benefit analysis argues in favor of improvement of WSP management and irrigation reuse of wastewater. Dredging of the ponds, training workers and farmers, and adopting appropriate maintenance and monitoring strategies will greatly enhance the socioeconomic status of the urban poor farmers. PMID:11148770

  8. Using state diagrams for predicting colloidal stability of whey protein beverages.

    PubMed

    Wagoner, Ty B; Ward, Loren; Foegeding, E Allen

    2015-05-01

    A method for evaluating aspects of colloidal stability of whey protein beverages after thermal treatment was established. Three state diagrams for beverages (pH 3-7) were developed representing protein solubility, turbidity, and macroscopic state after two ultrahigh-temperature (UHT) treatments. Key transitions of stability in the state diagrams were explored using electrophoresis and chromatography to determine aggregation propensities of β-lactoglobulin, α-lactalbumin, bovine serum albumin, and glycomacropeptide. The state diagrams present an overlapping view of high colloidal stability at pH 3 accompanied by high solubility of individual whey proteins. At pH 5, beverages were characterized by poor solubility, high turbidity, and aggregation/gelation of whey proteins with the exception of glycomacropeptide. Stability increased at pH 6, due to increased solubility of α-lactalbumin. The results indicate that combinations of state diagrams can be used to identify key regions of stability for whey protein containing beverages. PMID:25880701

  9. Identification of Multiple Proteins Coupling Transcriptional Gene Silencing to Genome Stability in Arabidopsis thaliana.

    PubMed

    Hale, Christopher J; Potok, Magdalena E; Lopez, Jennifer; Do, Truman; Liu, Ao; Gallego-Bartolome, Javier; Michaels, Scott D; Jacobsen, Steven E

    2016-06-01

    Eukaryotic genomes are regulated by epigenetic marks that act to modulate transcriptional control as well as to regulate DNA replication and repair. In Arabidopsis thaliana, mutation of the ATXR5 and ATXR6 histone methyltransferases causes reduction in histone H3 lysine 27 monomethylation, transcriptional upregulation of transposons, and a genome instability defect in which there is an accumulation of excess DNA corresponding to pericentromeric heterochromatin. We designed a forward genetic screen to identify suppressors of the atxr5/6 phenotype that uncovered loss-of-function mutations in two components of the TREX-2 complex (AtTHP1, AtSAC3B), a SUMO-interacting E3 ubiquitin ligase (AtSTUbL2) and a methyl-binding domain protein (AtMBD9). Additionally, using a reverse genetic approach, we show that a mutation in a plant homolog of the tumor suppressor gene BRCA1 enhances the atxr5/6 phenotype. Through characterization of these mutations, our results suggest models for the production atxr5 atxr6-induced extra DNA involving conflicts between the replicative and transcriptional processes in the cell, and suggest that the atxr5 atxr6 transcriptional defects may be the cause of the genome instability defects in the mutants. These findings highlight the critical intersection of transcriptional silencing and DNA replication in the maintenance of genome stability of heterochromatin. PMID:27253878

  10. Identification of Multiple Proteins Coupling Transcriptional Gene Silencing to Genome Stability in Arabidopsis thaliana

    PubMed Central

    Hale, Christopher J.; Potok, Magdalena E.; Lopez, Jennifer; Do, Truman; Liu, Ao; Michaels, Scott D.; Jacobsen, Steven E.

    2016-01-01

    Eukaryotic genomes are regulated by epigenetic marks that act to modulate transcriptional control as well as to regulate DNA replication and repair. In Arabidopsis thaliana, mutation of the ATXR5 and ATXR6 histone methyltransferases causes reduction in histone H3 lysine 27 monomethylation, transcriptional upregulation of transposons, and a genome instability defect in which there is an accumulation of excess DNA corresponding to pericentromeric heterochromatin. We designed a forward genetic screen to identify suppressors of the atxr5/6 phenotype that uncovered loss-of-function mutations in two components of the TREX-2 complex (AtTHP1, AtSAC3B), a SUMO-interacting E3 ubiquitin ligase (AtSTUbL2) and a methyl-binding domain protein (AtMBD9). Additionally, using a reverse genetic approach, we show that a mutation in a plant homolog of the tumor suppressor gene BRCA1 enhances the atxr5/6 phenotype. Through characterization of these mutations, our results suggest models for the production atxr5 atxr6-induced extra DNA involving conflicts between the replicative and transcriptional processes in the cell, and suggest that the atxr5 atxr6 transcriptional defects may be the cause of the genome instability defects in the mutants. These findings highlight the critical intersection of transcriptional silencing and DNA replication in the maintenance of genome stability of heterochromatin. PMID:27253878

  11. Ultra-High Pressure Homogenization improves oxidative stability and interfacial properties of soy protein isolate-stabilized emulsions.

    PubMed

    Fernandez-Avila, C; Trujillo, A J

    2016-10-15

    Ultra-High Pressure Homogenization (100-300MPa) has great potential for technological, microbiological and nutritional aspects of fluid processing. Its effect on the oxidative stability and interfacial properties of oil-in-water emulsions prepared with 4% (w/v) of soy protein isolate and soybean oil (10 and 20%, v/v) were studied and compared to emulsions treated by conventional homogenization (15MPa). Emulsions were characterized by particle size, emulsifying activity index, surface protein concentration at the interface and by transmission electron microscopy. Primary and secondary lipid oxidation products were evaluated in emulsions upon storage. Emulsions with 20% oil treated at 100 and 200MPa exhibited the most oxidative stability due to higher amount of oil and protein surface load at the interface. This manuscript addresses the improvement in oxidative stability in emulsions treated by UHPH when compared to conventional emulsions. PMID:27173541

  12. Denatured state aggregation parameters derived from concentration dependence of protein stability.

    PubMed

    Schön, Arne; Clarkson, Benjamin R; Siles, Rogelio; Ross, Patrick; Brown, Richard K; Freire, Ernesto

    2015-11-01

    Protein aggregation is a major issue affecting the long-term stability of protein preparations. Proteins exist in equilibrium between the native and denatured or partially denatured conformations. Often denatured or partially denatured conformations are prone to aggregate because they expose to solvent the hydrophobic core of the protein. The aggregation of denatured protein gradually shifts the protein equilibrium toward increasing amounts of denatured and ultimately aggregated protein. Recognizing and quantitating the presence of denatured protein and its aggregation at the earliest possible time will bring enormous benefits to the identification and selection of optimal solvent conditions or the engineering of proteins with the best stability/aggregation profile. In this article, a new approach that allows simultaneous determination of structural stability and the amount of denatured and aggregated protein is presented. This approach is based on the analysis of the concentration dependence of the Gibbs energy (ΔG) of protein stability. It is shown that three important quantities can be evaluated simultaneously: (i) the population of denatured protein, (ii) the population of aggregated protein, and (iii) the fraction of denatured protein that is aggregated. PMID:26239214

  13. The role of maintenance proteins in the preservation of epithelial cell identity during mammary gland remodeling and breast cancer initiation

    PubMed Central

    Coradini, Danila; Oriana, Saro

    2014-01-01

    During normal postnatal mammary gland development and adult remodeling related to the menstrual cycle, pregnancy, and lactation, ovarian hormones and peptide growth factors contribute to the delineation of a definite epithelial cell identity. This identity is maintained during cell replication in a heritable but DNA-independent manner. The preservation of cell identity is fundamental, especially when cells must undergo changes in response to intrinsic and extrinsic signals. The maintenance proteins, which are required for cell identity preservation, act epigenetically by regulating gene expression through DNA methylation, histone modification, and chromatin remodeling. Among the maintenance proteins, the Trithorax (TrxG) and Polycomb (PcG) group proteins are the best characterized. In this review, we summarize the structures and activities of the TrxG and PcG complexes and describe their pivotal roles in nuclear estrogen receptor activity. In addition, we provide evidence that perturbations in these epigenetic regulators are involved in disrupting epithelial cell identity, mammary gland remodeling, and breast cancer initiation. PMID:23845141

  14. Coordination contributions to protein stability in metal-substituted carbonic anhydrase.

    PubMed

    Lisi, George P; Hughes, Russell P; Wilcox, Dean E

    2016-09-01

    Contributions of the active site metal to the stability of carbonic anhydrase (CA) were quantified by differential scanning calorimetry and complementary unfolding measurements of CA substituted with Co(2+), Cd(2+), Cu(2+), Ni(2+) and Mn(2+). The metal ions stabilize the protein to different extent, with the highest stability provided by the native Zn(2+). This additional stability does not correlate with the enthalpy of the three metal-imidazole (His) bonds at the active site or other properties of the metal ions (charge density, hydration enthalpy). However, DFT calculations reveal an energetic penalty associated with metal coordination at the active site, and the magnitude of this penalty correlates inversely with metal contributions to the stability of the protein. While the affinity of CA for metal ions generally reflects the Irving-Williams series, the additional thermal stability provided by metal ions is modulated by the rigid His3 coordination that is imposed at the protein site. PMID:27350155

  15. A Multi-layered Protein Network Stabilizes the Escherichia coli FtsZ-ring and Modulates Constriction Dynamics

    PubMed Central

    Buss, Jackson; Coltharp, Carla; Shtengel, Gleb; Yang, Xinxing; Hess, Harald; Xiao, Jie

    2015-01-01

    The prokaryotic tubulin homolog, FtsZ, forms a ring-like structure (FtsZ-ring) at midcell. The FtsZ-ring establishes the division plane and enables the assembly of the macromolecular division machinery (divisome). Although many molecular components of the divisome have been identified and their interactions extensively characterized, the spatial organization of these proteins within the divisome is unclear. Consequently, the physical mechanisms that drive divisome assembly, maintenance, and constriction remain elusive. Here we applied single-molecule based superresolution imaging, combined with genetic and biophysical investigations, to reveal the spatial organization of cellular structures formed by four important divisome proteins in E. coli: FtsZ, ZapA, ZapB and MatP. We show that these interacting proteins are arranged into a multi-layered protein network extending from the cell membrane to the chromosome, each with unique structural and dynamic properties. Further, we find that this protein network stabilizes the FtsZ-ring, and unexpectedly, slows down cell constriction, suggesting a new, unrecognized role for this network in bacterial cell division. Our results provide new insight into the structure and function of the divisome, and highlight the importance of coordinated cell constriction and chromosome segregation. PMID:25848771

  16. Abundance and Temperature Dependency of Protein-Protein Interaction Revealed by Interface Structure Analysis and Stability Evolution

    NASA Astrophysics Data System (ADS)

    He, Yi-Ming; Ma, Bin-Guang

    2016-05-01

    Protein complexes are major forms of protein-protein interactions and implement essential biological functions. The subunit interface in a protein complex is related to its thermostability. Though the roles of interface properties in thermal adaptation have been investigated for protein complexes, the relationship between the interface size and the expression level of the subunits remains unknown. In the present work, we studied this relationship and found a positive correlation in thermophiles rather than mesophiles. Moreover, we found that the protein interaction strength in complexes is not only temperature-dependent but also abundance-dependent. The underlying mechanism for the observed correlation was explored by simulating the evolution of protein interface stability, which highlights the avoidance of misinteraction. Our findings make more complete the picture of the mechanisms for protein complex thermal adaptation and provide new insights into the principles of protein-protein interactions.

  17. Abundance and Temperature Dependency of Protein-Protein Interaction Revealed by Interface Structure Analysis and Stability Evolution

    PubMed Central

    He, Yi-Ming; Ma, Bin-Guang

    2016-01-01

    Protein complexes are major forms of protein-protein interactions and implement essential biological functions. The subunit interface in a protein complex is related to its thermostability. Though the roles of interface properties in thermal adaptation have been investigated for protein complexes, the relationship between the interface size and the expression level of the subunits remains unknown. In the present work, we studied this relationship and found a positive correlation in thermophiles rather than mesophiles. Moreover, we found that the protein interaction strength in complexes is not only temperature-dependent but also abundance-dependent. The underlying mechanism for the observed correlation was explored by simulating the evolution of protein interface stability, which highlights the avoidance of misinteraction. Our findings make more complete the picture of the mechanisms for protein complex thermal adaptation and provide new insights into the principles of protein-protein interactions. PMID:27220911

  18. Drosophila Uri, a PP1α binding protein, is essential for viability, maintenance of DNA integrity and normal transcriptional activity

    PubMed Central

    Kirchner, Jasmin; Vissi, Emese; Gross, Sascha; Szoor, Balazs; Rudenko, Andrey; Alphey, Luke; White-Cooper, Helen

    2008-01-01

    Background Protein phosphatase 1 (PP1) is involved in diverse cellular processes, and is targeted to substrates via interaction with many different protein binding partners. PP1 catalytic subunits (PP1c) fall into PP1α and PP1β subfamilies based on sequence analysis, however very few PP1c binding proteins have been demonstrated to discriminate between PP1α and PP1β. Results URI (unconventional prefoldin RPB5 interactor) is a conserved molecular chaperone implicated in a variety of cellular processes, including the transcriptional response to nutrient signalling and maintenance of DNA integrity. We show that Drosophila Uri binds PP1α with much higher affinity than PP1β, and that this ability to discriminate between PP1c forms is conserved to humans. Most Uri is cytoplasmic, however we found some protein associated with active RNAPII on chromatin. We generated a uri loss of function allele, and show that uri is essential for viability in Drosophila. uri mutants have transcriptional defects, reduced cell viability and differentiation in the germline, and accumulate DNA damage in their nuclei. Conclusion Uri is the first PP1α specific binding protein to be described in Drosophila. Uri protein plays a role in transcriptional regulation. Activity of uri is required to maintain DNA integrity and cell survival in normal development. PMID:18412953

  19. Measuring the interaction of urea and protein stabilizing osmolytes with the nonpolar surface of hydroxypropyl cellulose†

    PubMed Central

    Stanley, Christopher; Rau, Donald C.

    2008-01-01

    The interaction of urea and several naturally occurring protein stabilizing osmolytes, glycerol, sorbitol, glycine betaine, trimethylamine oxide (TMAO), and proline, with condensed arrays of a hydrophobically modified polysaccharide, hydroxypropylcellulose (HPC), has been inferred from the effect of these solutes on the forces acting between HPC polymers. Urea interacts only very weakly. The protein stabilizing osmolytes are strongly excluded. The observed energies indicate that the exclusion of the protein stabilizing osmolytes from protein hydrophobic side chains would add significantly to protein stability. The temperature dependence of exclusion indicates a significant enthalpy contribution to the interaction energy in contrast to expectations from ‘molecular crowding’ theories based on steric repulsion. The dependence of exclusion on the distance between HPC polymers rather indicates that perturbations of water structuring or hydration forces underlie exclusion. PMID:18512956

  20. A functional protein retention and release multilayer with high stability

    NASA Astrophysics Data System (ADS)

    Nie, Kun; An, Qi; Zhang, Yihe

    2016-04-01

    Effective and robust interfacial protein retention lies at the heart of the fabrication of protein-based functional interfaces, which is potentially applicable in catalysis, medical therapy, antifouling, and smart devices, but remains challenging due to the sensitive nature of proteins. This study reports a general protein retention strategy to spatial-temporally confine various types of proteins at interfacial regions. The proteins were preserved in mesoporous silica nanoparticles embedded in covalently woven multilayers. It is worth noting that the protein retention strategy effectively preserves the catalytic capabilities of the proteins, and the multilayer structure is robust enough to withstand the bubbling catalytic reactions and could be repeatedly used due to conservation of proteins. The spatiotemporal retention of proteins could be adjusted by varying the number of capping layers. Furthermore, we demonstrate that the protein-loaded interfacial layers could not only be used to construct catalytic-active interfaces, but also be integrated as the power-generating unit to propel a macroscopic floating device.Effective and robust interfacial protein retention lies at the heart of the fabrication of protein-based functional interfaces, which is potentially applicable in catalysis, medical therapy, antifouling, and smart devices, but remains challenging due to the sensitive nature of proteins. This study reports a general protein retention strategy to spatial-temporally confine various types of proteins at interfacial regions. The proteins were preserved in mesoporous silica nanoparticles embedded in covalently woven multilayers. It is worth noting that the protein retention strategy effectively preserves the catalytic capabilities of the proteins, and the multilayer structure is robust enough to withstand the bubbling catalytic reactions and could be repeatedly used due to conservation of proteins. The spatiotemporal retention of proteins could be adjusted by

  1. Metabolic Turnover of Synaptic Proteins: Kinetics, Interdependencies and Implications for Synaptic Maintenance

    PubMed Central

    Cohen, Laurie D.; Zuchman, Rina; Sorokina, Oksana; Müller, Anke; Dieterich, Daniela C.; Armstrong, J. Douglas; Ziv, Tamar; Ziv, Noam E.

    2013-01-01

    Chemical synapses contain multitudes of proteins, which in common with all proteins, have finite lifetimes and therefore need to be continuously replaced. Given the huge numbers of synaptic connections typical neurons form, the demand to maintain the protein contents of these connections might be expected to place considerable metabolic demands on each neuron. Moreover, synaptic proteostasis might differ according to distance from global protein synthesis sites, the availability of distributed protein synthesis facilities, trafficking rates and synaptic protein dynamics. To date, the turnover kinetics of synaptic proteins have not been studied or analyzed systematically, and thus metabolic demands or the aforementioned relationships remain largely unknown. In the current study we used dynamic Stable Isotope Labeling with Amino acids in Cell culture (SILAC), mass spectrometry (MS), Fluorescent Non–Canonical Amino acid Tagging (FUNCAT), quantitative immunohistochemistry and bioinformatics to systematically measure the metabolic half-lives of hundreds of synaptic proteins, examine how these depend on their pre/postsynaptic affiliation or their association with particular molecular complexes, and assess the metabolic load of synaptic proteostasis. We found that nearly all synaptic proteins identified here exhibited half-lifetimes in the range of 2–5 days. Unexpectedly, metabolic turnover rates were not significantly different for presynaptic and postsynaptic proteins, or for proteins for which mRNAs are consistently found in dendrites. Some functionally or structurally related proteins exhibited very similar turnover rates, indicating that their biogenesis and degradation might be coupled, a possibility further supported by bioinformatics-based analyses. The relatively low turnover rates measured here (∼0.7% of synaptic protein content per hour) are in good agreement with imaging-based studies of synaptic protein trafficking, yet indicate that the metabolic load

  2. Metabolic turnover of synaptic proteins: kinetics, interdependencies and implications for synaptic maintenance.

    PubMed

    Cohen, Laurie D; Zuchman, Rina; Sorokina, Oksana; Müller, Anke; Dieterich, Daniela C; Armstrong, J Douglas; Ziv, Tamar; Ziv, Noam E

    2013-01-01

    Chemical synapses contain multitudes of proteins, which in common with all proteins, have finite lifetimes and therefore need to be continuously replaced. Given the huge numbers of synaptic connections typical neurons form, the demand to maintain the protein contents of these connections might be expected to place considerable metabolic demands on each neuron. Moreover, synaptic proteostasis might differ according to distance from global protein synthesis sites, the availability of distributed protein synthesis facilities, trafficking rates and synaptic protein dynamics. To date, the turnover kinetics of synaptic proteins have not been studied or analyzed systematically, and thus metabolic demands or the aforementioned relationships remain largely unknown. In the current study we used dynamic Stable Isotope Labeling with Amino acids in Cell culture (SILAC), mass spectrometry (MS), Fluorescent Non-Canonical Amino acid Tagging (FUNCAT), quantitative immunohistochemistry and bioinformatics to systematically measure the metabolic half-lives of hundreds of synaptic proteins, examine how these depend on their pre/postsynaptic affiliation or their association with particular molecular complexes, and assess the metabolic load of synaptic proteostasis. We found that nearly all synaptic proteins identified here exhibited half-lifetimes in the range of 2-5 days. Unexpectedly, metabolic turnover rates were not significantly different for presynaptic and postsynaptic proteins, or for proteins for which mRNAs are consistently found in dendrites. Some functionally or structurally related proteins exhibited very similar turnover rates, indicating that their biogenesis and degradation might be coupled, a possibility further supported by bioinformatics-based analyses. The relatively low turnover rates measured here (∼0.7% of synaptic protein content per hour) are in good agreement with imaging-based studies of synaptic protein trafficking, yet indicate that the metabolic load

  3. Conserved interaction of Ctf18-RFC with DNA polymerase ε is critical for maintenance of genome stability in Saccharomyces cerevisiae.

    PubMed

    Okimoto, Hiroko; Tanaka, Seiji; Araki, Hiroyuki; Ohashi, Eiji; Tsurimoto, Toshiki

    2016-05-01

    Human Ctf18-RFC, a PCNA loader complex, interacts with DNA polymerase ε (Polε) through a structure formed by the Ctf18, Dcc1 and Ctf8 subunits. The C-terminal stretch of Ctf18, which is highly conserved from yeast to human, is necessary to form the Polε-capturing structure. We found that in the budding yeast Saccharomyces cerevisiae, Ctf18, Dcc1 and Ctf8 formed the same structure through the conserved C-terminus and interacted specifically with Polε. Thus, the specific interaction of Ctf18-RFC with Polε is a conserved feature between these proteins. A C-terminal deletion mutant of Ctf18 (ctf18(ΔC) ) exhibited the same high sensitivity to hydroxyurea as the complete deletion strain (ctf18Δ) or ATPase-deficient mutant (ctf18(K189A) ), but was somewhat less sensitive to methyl methanesulfonate than either of them. These phenotypes were also observed in dcc1Δ and ctf8Δ, predicted to be deficient in the interaction with Polε. Furthermore, both plasmid loss and gross chromosomal rearrangement (GCR) rates were increased in ctf18(ΔC) cells to the same extent as in ctf18Δ cells. These results indicate that the Ctf18-RFC/Polε interaction plays a crucial role in maintaining genome stability in budding yeast, probably through recruitment of this PCNA loader to the replication fork. PMID:26987677

  4. A functional protein retention and release multilayer with high stability.

    PubMed

    Nie, Kun; An, Qi; Zhang, Yihe

    2016-04-21

    Effective and robust interfacial protein retention lies at the heart of the fabrication of protein-based functional interfaces, which is potentially applicable in catalysis, medical therapy, antifouling, and smart devices, but remains challenging due to the sensitive nature of proteins. This study reports a general protein retention strategy to spatial-temporally confine various types of proteins at interfacial regions. The proteins were preserved in mesoporous silica nanoparticles embedded in covalently woven multilayers. It is worth noting that the protein retention strategy effectively preserves the catalytic capabilities of the proteins, and the multilayer structure is robust enough to withstand the bubbling catalytic reactions and could be repeatedly used due to conservation of proteins. The spatiotemporal retention of proteins could be adjusted by varying the number of capping layers. Furthermore, we demonstrate that the protein-loaded interfacial layers could not only be used to construct catalytic-active interfaces, but also be integrated as the power-generating unit to propel a macroscopic floating device. PMID:27064353

  5. Unraveling protein stabilization mechanisms: vitrification and water replacement in a glass transition temperature controlled system.

    PubMed

    Grasmeijer, N; Stankovic, M; de Waard, H; Frijlink, H W; Hinrichs, W L J

    2013-04-01

    The aim of this study was to elucidate the role of the two main mechanisms used to explain the stabilization of proteins by sugar glasses during drying and subsequent storage: the vitrification and the water replacement theory. Although in literature protein stability is often attributed to either vitrification or water replacement, both mechanisms could play a role and they should be considered simultaneously. A model protein, alkaline phosphatase, was incorporated in either inulin or trehalose by spray drying. To study the storage stability at different glass transition temperatures, a buffer which acts as a plasticizer, ammediol, was incorporated in the sugar glasses. At low glass transition temperatures (<50°C), the enzymatic activity of the protein strongly decreased during storage at 60°C. Protein stability increased when the glass transition temperature was raised considerably above the storage temperature. This increased stability could be attributed to vitrification. A further increase of the glass transition temperature did not further improve stability. In conclusion, vitrification plays a dominant role in stabilization at glass transition temperatures up to 10 to 20°C above storage temperature, depending on whether trehalose or inulin is used. On the other hand, the water replacement mechanism predominantly determines stability at higher glass transition temperatures. PMID:23360765

  6. Identification of VPS13C as a Galectin-12-Binding Protein That Regulates Galectin-12 Protein Stability and Adipogenesis

    PubMed Central

    Yang, Ri-Yao; Xue, Huiting; Yu, Lan; Velayos-Baeza, Antonio; Monaco, Anthony P.; Liu, Fu-Tong

    2016-01-01

    Galectin-12, a member of the galectin family of β-galactoside-binding animal lectins, is preferentially expressed in adipocytes and required for adipocyte differentiation in vitro. This protein was recently found to regulate lipolysis, whole body adiposity, and glucose homeostasis in vivo. Here we identify VPS13C, a member of the VPS13 family of vacuolar protein sorting-associated proteins highly conserved throughout eukaryotic evolution, as a major galectin-12-binding protein. VPS13C is upregulated during adipocyte differentiation, and is required for galectin-12 protein stability. Knockdown of Vps13c markedly reduces the steady-state levels of galectin-12 by promoting its degradation through primarily the lysosomal pathway, and impairs adipocyte differentiation. Our studies also suggest that VPS13C may have a broader role in protein quality control. The regulation of galectin-12 stability by VPS13C could potentially be exploited for therapeutic intervention of obesity and related metabolic diseases. PMID:27073999

  7. Zwitterionic gel encapsulation promotes protein stability, enhances pharmacokinetics, and reduces immunogenicity.

    PubMed

    Zhang, Peng; Sun, Fang; Tsao, Caroline; Liu, Sijun; Jain, Priyesh; Sinclair, Andrew; Hung, Hsiang-Chieh; Bai, Tao; Wu, Kan; Jiang, Shaoyi

    2015-09-29

    Advances in protein therapy are hindered by the poor stability, inadequate pharmacokinetic (PK) profiles, and immunogenicity of many therapeutic proteins. Polyethylene glycol conjugation (PEGylation) is the most successful strategy to date to overcome these shortcomings, and more than 10 PEGylated proteins have been brought to market. However, anti-PEG antibodies induced by treatment raise serious concerns about the future of PEGylated therapeutics. Here, we demonstrate a zwitterionic polymer network encapsulation technology that effectively enhances protein stability and PK while mitigating the immune response. Uricase modified with a comprehensive zwitterionic polycarboxybetaine (PCB) network exhibited exceptional stability and a greatly prolonged circulation half-life. More importantly, the PK behavior was unchanged, and neither anti-uricase nor anti-PCB antibodies were detected after three weekly injections in a rat model. This technology is applicable to a variety of proteins and unlocks the possibility of adopting highly immunogenic proteins for therapeutic or protective applications. PMID:26371311

  8. Zwitterionic gel encapsulation promotes protein stability, enhances pharmacokinetics, and reduces immunogenicity

    PubMed Central

    Zhang, Peng; Sun, Fang; Tsao, Caroline; Liu, Sijun; Jain, Priyesh; Sinclair, Andrew; Hung, Hsiang-Chieh; Bai, Tao; Wu, Kan; Jiang, Shaoyi

    2015-01-01

    Advances in protein therapy are hindered by the poor stability, inadequate pharmacokinetic (PK) profiles, and immunogenicity of many therapeutic proteins. Polyethylene glycol conjugation (PEGylation) is the most successful strategy to date to overcome these shortcomings, and more than 10 PEGylated proteins have been brought to market. However, anti-PEG antibodies induced by treatment raise serious concerns about the future of PEGylated therapeutics. Here, we demonstrate a zwitterionic polymer network encapsulation technology that effectively enhances protein stability and PK while mitigating the immune response. Uricase modified with a comprehensive zwitterionic polycarboxybetaine (PCB) network exhibited exceptional stability and a greatly prolonged circulation half-life. More importantly, the PK behavior was unchanged, and neither anti-uricase nor anti-PCB antibodies were detected after three weekly injections in a rat model. This technology is applicable to a variety of proteins and unlocks the possibility of adopting highly immunogenic proteins for therapeutic or protective applications. PMID:26371311

  9. RINT1 functions as a multitasking protein at the crossroads between genomic stability, ER homeostasis, and autophagy.

    PubMed

    Grigaravicius, Paulius; von Deimling, Andreas; Frappart, Pierre-Olivier

    2016-08-01

    RINT1 was first identified as an RAD50-interacting protein and its function was therefore linked to the maintenance of genomic stability. It was also shown that RINT1 was a key player in ER-Golgi trafficking as a member of an ER tethering complex interacting with STX18. However, due to early embryonic lethality of rint1-null mice, the in vivo functions of RINT1 remained for the most part elusive. We recently described the consequences of Rint1 inactivation in various neuronal cells of the central nervous system. We observed that lack of RINT1 in vivo triggers genomic instability and ER stress leading to depletion of the neural progenitor pool and neurodegeneration. Surprisingly, we also observed inhibition of autophagy in RINT1-deficient neurons, indicating an involvement of RINT1 in the regulation of neuronal autophagy. Here, we summarize our main RINT1 findings and discuss its putative roles in autophagy. PMID:27367497

  10. A chloroplast-targeted DnaJ protein contributes to maintenance of photosystem II under chilling stress.

    PubMed

    Kong, Fanying; Deng, Yongsheng; Zhou, Bin; Wang, Guodong; Wang, Yu; Meng, Qingwei

    2014-01-01

    DnaJ proteins act as essential molecular chaperones in protein homeostasis and protein complex stabilization under stress conditions. The roles of a tomato (Lycopersicon esculentum) chloroplast-targeted DnaJ protein (LeCDJ1), whose expression was upregulated by treatment at 4 and 42 °C, and with high light, NaCl, polyethylene glycol, and H2O2, were investigated here using sense and antisense transgenic tomatoes. The sense plants exhibited not only higher chlorophyll content, fresh weight and net photosynthetic rate, but also lower accumulation of reactive oxygen species and membrane damage under chilling stress. Moreover, the maximal photochemistry efficiency of photosystem II (PSII) (F v/F m) and D1 protein content were higher in the sense plants and lower in the antisense plants, and the photoinhibitory quenching was lower in the sense plants and higher in the antisense plants, suggesting that the inhibition of PSII was less severe in the sense plants and more severe in the antisense plants compared with the wild type. Furthermore, the PSII protein complexes were also more stable in the sense plants. Interestingly, the sense plants treated with streptomycin (SM), an inhibitor of organellar translation, still showed higher F v/F m, D1 protein content and PSII stability than the SM-untreated antisense plants. This finding suggested that the protective effect of LeCDJ1 on PSII was, at least partially, independent of D1 protein synthesis. Furthermore, chloroplast heat-shock protein 70 was identified as the partner of LeCDJ1. These results indicate that LeCDJ1 has essential functions in maintaining PSII under chilling stress. PMID:24227338

  11. Folding and Stabilization of Native-Sequence-Reversed Proteins

    PubMed Central

    Zhang, Yuanzhao; Weber, Jeffrey K; Zhou, Ruhong

    2016-01-01

    Though the problem of sequence-reversed protein folding is largely unexplored, one might speculate that reversed native protein sequences should be significantly more foldable than purely random heteropolymer sequences. In this article, we investigate how the reverse-sequences of native proteins might fold by examining a series of small proteins of increasing structural complexity (α-helix, β-hairpin, α-helix bundle, and α/β-protein). Employing a tandem protein structure prediction algorithmic and molecular dynamics simulation approach, we find that the ability of reverse sequences to adopt native-like folds is strongly influenced by protein size and the flexibility of the native hydrophobic core. For β-hairpins with reverse-sequences that fail to fold, we employ a simple mutational strategy for guiding stable hairpin formation that involves the insertion of amino acids into the β-turn region. This systematic look at reverse sequence duality sheds new light on the problem of protein sequence-structure mapping and may serve to inspire new protein design and protein structure prediction protocols. PMID:27113844

  12. Folding and Stabilization of Native-Sequence-Reversed Proteins.

    PubMed

    Zhang, Yuanzhao; Weber, Jeffrey K; Zhou, Ruhong

    2016-01-01

    Though the problem of sequence-reversed protein folding is largely unexplored, one might speculate that reversed native protein sequences should be significantly more foldable than purely random heteropolymer sequences. In this article, we investigate how the reverse-sequences of native proteins might fold by examining a series of small proteins of increasing structural complexity (α-helix, β-hairpin, α-helix bundle, and α/β-protein). Employing a tandem protein structure prediction algorithmic and molecular dynamics simulation approach, we find that the ability of reverse sequences to adopt native-like folds is strongly influenced by protein size and the flexibility of the native hydrophobic core. For β-hairpins with reverse-sequences that fail to fold, we employ a simple mutational strategy for guiding stable hairpin formation that involves the insertion of amino acids into the β-turn region. This systematic look at reverse sequence duality sheds new light on the problem of protein sequence-structure mapping and may serve to inspire new protein design and protein structure prediction protocols. PMID:27113844

  13. Cooperative hydration effect causes thermal unfolding of proteins and water activity plays a key role in protein stability in solutions.

    PubMed

    Miyawaki, Osato; Dozen, Michiko; Hirota, Kaede

    2016-08-01

    The protein unfolding process observed in a narrow temperature range was clearly explained by evaluating the small difference in the enthalpy of hydrogen-bonding between amino acid residues and the hydration of amino acid residue separately. In aqueous solutions, the effect of cosolute on the protein stability is primarily dependent on water activity, aw, the role of which has been long neglected in the literature. The effect of aw on protein stability works as a power law so that a small change in aw is amplified substantially through the cooperative hydration effect. In the present approach, the role of hydrophobic interaction stands behind. This affects protein stability indirectly through the change in solution structure caused by the existence of cosolute. PMID:26896315

  14. Repeat-protein folding: new insights into origins of cooperativity, stability, and topology

    PubMed Central

    Kloss, Ellen; Courtemanche, Naomi; Barrick, Doug

    2008-01-01

    Although our understanding of globular protein folding continues to advance, the irregular tertiary structures and high cooperativity of globular proteins complicates energetic dissection. Recently, proteins with regular, repetitive tertiary structures have been identified that sidestep limitations imposed by globular protein architecture. Here we review recent studies of repeat-protein folding. These studies uniquely advance our understanding of both the energetics and kinetics of protein folding. Equilibrium studies provide detailed maps of local stabilities, access to energy landscapes, insights into cooperativity, determination of nearest-neighbor interaction parameters using statistical thermodynamics, relationships between consensus sequences and repeat-protein stability. Kinetic studies provide insight into the influence of short-range topology on folding rates, the degree to which folding proceeds by parallel (versus localized) pathways, and the factors that select among multiple potential pathways. The recent application of force spectroscopy to repeat-protein unfolding is providing a unique route to test and extend many of these findings. PMID:17963718

  15. Multiple interaction partners for Cockayne syndrome proteins: implications for genome and transcriptome maintenance

    PubMed Central

    Aamann, Maria D.; Muftuoglu, Meltem; Bohr, Vilhelm A.; Stevnsner, Tinna

    2013-01-01

    Cockayne syndrome (CS) is characterized by progressive multisystem degeneration and is classified as a segmental premature aging syndrome. The majority of CS cases are caused by defects in the CS complementation group B (CSB) protein and the rest are mainly caused by defects in the CS complementation group A (CSA) protein. Cells from CS patients are sensitive to UV light and a number of other DNA damaging agents including various types of oxidative stress. The cells also display transcription deficiencies, abnormal apoptotic response to DNA damage, and DNA repair deficiencies. Herein we have critically reviewed the current knowledge about known protein interactions of the CS proteins. The review focuses on the participation of the CSB and CSA proteins in many different protein interactions and complexes, and how these interactions inform us about pathways that are defective in the disease. PMID:23583689

  16. The role of endogenous proteins in the protein-free maintenance of 3 distinct tumor-cell lines invitro.

    PubMed

    Watanabe, H; Chigira, M

    1992-09-01

    We established new two protein-free culture subclones from murine well-characterized Ehrlich ascites carcinoma and P815 mastocytoma using intermittent protein-free culture performed previously for a protein-free subclone of fibrosarcoma (Gc-4 PF). The Ehrlich protein-free subclone (Ehrlich PF) grew much more slowly than the original cell line and showed a proliferative response to FCS. On the other hand, like Gc-4 PF, the P815 protein-free subclone (P815 PF) showed a similar growth rate to that of the original counterpart. Interestingly the original P815 mastocytoma cells also grew exponentially in protein-free medium. Although the protein-free culture exhibited cells that were more spheroid and spread less in each of these three cell lines, the major structure protein bands demonstrated on SDS-PAGE were virtually identical between the original and protein-free culture cells. In contrast to the structural peptides, the distribution of the secretory peptide differed among the three protein-free culture cell lines, which may reflect their state of differentiation. Growth-inhibiting activities were detected from the supernatant of all three protein-free culture cells, while no protein-free culture cells secreted predominantly growth-stimulating activity into their cultured media. These results suggest that autonomy in tumor cell proliferation may result from the acquisition of the ability to escape from negative control in multicellular organisms, as shown in monads, rather than an acquisition of further response to growth-stimulating control. PMID:21584570

  17. Protein Structure and Stability in Neat Ionic Liquid

    NASA Astrophysics Data System (ADS)

    Bihari, Malvika; Russell, Thomas P.; Hoagland, David A.

    2010-03-01

    Ionic liquid (IL) as a medium for room temperature preservation of biomacromolecules has been proposed, and to investigate the possibility, we studied physicochemical and enzymatic properties of several proteins in the neat hydrophilic IL, ethylmethyl imidazolium ethyl sulfate [EMIM][EtSO4]. Molecular dissolution of α-chymotypsin, cytochrome-c and other proteins could be achieved with moderate heating (60C). Dynamic light scattering and dilute solution viscometry typically reveal protein size slightly larger than in buffer, suggesting different solvation or protein unfolding. Spectroscopic methods (UV-Vis, fluorescence, FTIR, CD) show largely unchanged secondary structure but significantly changed tertiary structure. IL-dissolved cytochrome-c has heightened peroxidase activity, supporting the same conclusions. Transfer of dissolved protein from IL to buffer and ensuing alterations to protein conformation/activity will be discussed.

  18. Beta-turn propensities as paradigms for the analysis of structural motifs to engineer protein stability.

    PubMed Central

    Ohage, E. C.; Graml, W.; Walter, M. M.; Steinbacher, S.; Steipe, B.

    1997-01-01

    The thermodynamic stability of a protein provides an experimental metric for the relationship of protein sequence and native structure. We have investigated an approach based on an analysis of the structural database for stability engineering of an immunoglobulin variable domain. The most frequently occurring residues in specific positions of beta-turn motifs were predicted to increase the folding stability of mutants that were constructed by site-directed mutagenesis. Even in positions in which different residues are conserved in immunoglobulin sequences, the predictions were confirmed. Frequently, mutants with increased beta-turn propensities display increased folding cooperativities, suggesting pronounced effects on the unfolded state independent of the expected effect on conformational entropy. We conclude that structural motifs with predominantly local interactions can serve as templates with which patterns of sequence preferences can be extracted from the database of protein structures. Such preferences can predict the stability effects of mutations for protein engineering and design. PMID:9007995

  19. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance

    PubMed Central

    Mortensen, Monika; Soilleux, Elizabeth J.; Djordjevic, Gordana; Tripp, Rebecca; Lutteropp, Michael; Sadighi-Akha, Elham; Stranks, Amanda J.; Glanville, Julie; Knight, Samantha; W. Jacobsen, Sten-Eirik; Kranc, Kamil R.

    2011-01-01

    The role of autophagy, a lysosomal degradation pathway which prevents cellular damage, in the maintenance of adult mouse hematopoietic stem cells (HSCs) remains unknown. Although normal HSCs sustain life-long hematopoiesis, malignant transformation of HSCs leads to leukemia. Therefore, mechanisms protecting HSCs from cellular damage are essential to prevent hematopoietic malignancies. In this study, we crippled autophagy in HSCs by conditionally deleting the essential autophagy gene Atg7 in the hematopoietic system. This resulted in the loss of normal HSC functions, a severe myeloproliferation, and death of the mice within weeks. The hematopoietic stem and progenitor cell compartment displayed an accumulation of mitochondria and reactive oxygen species, as well as increased proliferation and DNA damage. HSCs within the Lin−Sca-1+c-Kit+ (LSK) compartment were significantly reduced. Although the overall LSK compartment was expanded, Atg7-deficient LSK cells failed to reconstitute the hematopoietic system of lethally irradiated mice. Consistent with loss of HSC functions, the production of both lymphoid and myeloid progenitors was impaired in the absence of Atg7. Collectively, these data show that Atg7 is an essential regulator of adult HSC maintenance. PMID:21339326

  20. Long-term manure amendments reduced soil aggregate stability via redistribution of the glomalin-related soil protein in macroaggregates

    NASA Astrophysics Data System (ADS)

    Xie, Hongtu; Li, Jianwei; Zhang, Bin; Wang, Lianfeng; Wang, Jingkuan; He, Hongbo; Zhang, Xudong

    2015-10-01

    Glomalin-related soil protein (GRSP) contributes to the formation and maintenance of soil aggregates, it is however remains unclear whether long-term intensive manure amendments alter soil aggregates stability and whether GRSP regulates these changes. Based on a three-decade long fertilization experiment in northeast China, this study examined the impact of long-term manure input on soil organic carbon (SOC), total and easily extractable GRSP (GRSPt and GRSPe) and their respective allocations in four soil aggregates (>2000 μm 2000-250 μm 250-53 μm and <53 μm). The treatments include no fertilization (CK), low and high manure amendment (M1, M2), chemical nitrogen, phosphorus and potassium fertilizers (NPK), and combined manure and chemical fertilizers (NPKM1, NPKM2). Though SOC, GRSPe and GRSPt in soil and SOC in each aggregate generally increased with increasing manure input, GRSPt and GRSPe in each aggregate showed varying changes with manure input. Both GRSP in macroaggregates (2000-250 μm) were significantly higher under low manure input, a pattern consistent with changes in soil aggregate stability. Constituting 38~49% of soil mass, macroaggregates likely contributed to the nonlinear changes of aggregate stability under manure amendments. The regulatory process of GRSP allocations in soil aggregates has important implications for manure management under intensive agriculture.

  1. Long-term manure amendments reduced soil aggregate stability via redistribution of the glomalin-related soil protein in macroaggregates

    PubMed Central

    Xie, Hongtu; Li, Jianwei; Zhang, Bin; Wang, Lianfeng; Wang, Jingkuan; He, Hongbo; Zhang, Xudong

    2015-01-01

    Glomalin-related soil protein (GRSP) contributes to the formation and maintenance of soil aggregates, it is however remains unclear whether long-term intensive manure amendments alter soil aggregates stability and whether GRSP regulates these changes. Based on a three-decade long fertilization experiment in northeast China, this study examined the impact of long-term manure input on soil organic carbon (SOC), total and easily extractable GRSP (GRSPt and GRSPe) and their respective allocations in four soil aggregates (>2000 μm; 2000–250 μm; 250–53 μm; and <53 μm). The treatments include no fertilization (CK), low and high manure amendment (M1, M2), chemical nitrogen, phosphorus and potassium fertilizers (NPK), and combined manure and chemical fertilizers (NPKM1, NPKM2). Though SOC, GRSPe and GRSPt in soil and SOC in each aggregate generally increased with increasing manure input, GRSPt and GRSPe in each aggregate showed varying changes with manure input. Both GRSP in macroaggregates (2000–250 μm) were significantly higher under low manure input, a pattern consistent with changes in soil aggregate stability. Constituting 38~49% of soil mass, macroaggregates likely contributed to the nonlinear changes of aggregate stability under manure amendments. The regulatory process of GRSP allocations in soil aggregates has important implications for manure management under intensive agriculture. PMID:26423355

  2. Long-term manure amendments reduced soil aggregate stability via redistribution of the glomalin-related soil protein in macroaggregates.

    PubMed

    Xie, Hongtu; Li, Jianwei; Zhang, Bin; Wang, Lianfeng; Wang, Jingkuan; He, Hongbo; Zhang, Xudong

    2015-01-01

    Glomalin-related soil protein (GRSP) contributes to the formation and maintenance of soil aggregates, it is however remains unclear whether long-term intensive manure amendments alter soil aggregates stability and whether GRSP regulates these changes. Based on a three-decade long fertilization experiment in northeast China, this study examined the impact of long-term manure input on soil organic carbon (SOC), total and easily extractable GRSP (GRSPt and GRSPe) and their respective allocations in four soil aggregates (>2000 μm; 2000-250 μm; 250-53 μm; and <53 μm). The treatments include no fertilization (CK), low and high manure amendment (M1, M2), chemical nitrogen, phosphorus and potassium fertilizers (NPK), and combined manure and chemical fertilizers (NPKM1, NPKM2). Though SOC, GRSPe and GRSPt in soil and SOC in each aggregate generally increased with increasing manure input, GRSPt and GRSPe in each aggregate showed varying changes with manure input. Both GRSP in macroaggregates (2000-250 μm) were significantly higher under low manure input, a pattern consistent with changes in soil aggregate stability. Constituting 38~49% of soil mass, macroaggregates likely contributed to the nonlinear changes of aggregate stability under manure amendments. The regulatory process of GRSP allocations in soil aggregates has important implications for manure management under intensive agriculture. PMID:26423355

  3. Clinical application for the preservation of phospho-proteins through in-situ tissue stabilization

    PubMed Central

    2010-01-01

    Background Protein biomarkers will play a pivotal role in the future of personalized medicine for both diagnosis and treatment decision-making. While the results of several pre-clinical and small-scale clinical studies have demonstrated the value of protein biomarkers, there have been significant challenges to translating these findings into routine clinical care. Challenges to the use of protein biomarkers include inter-sample variability introduced by differences in post-collection handling and ex vivo degradation of proteins and protein modifications. Results In this report, we re-create laboratory and clinical scenarios for sample collection and test the utility of a new tissue stabilization technique in preserving proteins and protein modifications. In the laboratory setting, tissue stabilization with the Denator Stabilizor T1 resulted in a significantly higher yield of phospho-protein when compared to standard snap freeze preservation. Furthermore, in a clinical scenario, tissue stabilization at collection resulted in a higher yield of total phospho-protein, total phospho-tyrosine, pErkT202/Y204 and pAktS473 when compared to standard methods. Tissue stabilization did not have a significant effect on other post-translational modifications such as acetylation and glycosylation, which are more stable ex-vivo. Tissue stabilization did decrease total RNA quantity and quality. Conclusion Stabilization at the time of collection offers the potential to better preserve tissue protein and protein modification levels, as well as reduce the variability related to tissue processing delays that are often associated with clinical samples. PMID:21092202

  4. Contribution of Charged Groups to the Enthalpic Stabilization of the Folded States of Globular Proteins

    PubMed Central

    Dadarlat, Voichita M.; Post, Carol Beth

    2016-01-01

    In this paper we use the results from all atom MD simulations of proteins and peptides to assess individual contribution of charged atomic groups to the enthalpic stability of the native state of globular proteins and investigate how the distribution of charged atomic groups in terms of solvent accessibility relates to protein enthalpic stability. The contributions of charged groups is calculated using a comparison of nonbonded interaction energy terms from equilibrium simulations of charged amino acid dipeptides in water (the “unfolded state”) and charged amino acids in globular proteins (the “folded state”). Contrary to expectation, the analysis shows that many buried, charged atomic groups contribute favorably to protein enthalpic stability. The strongest enthalpic contributions favoring the folded state come from the carboxylate (COO−) groups of either Glu or Asp. The contributions from Arg guanidinium groups are generally somewhat stabilizing, while NH3+ groups from Lys contribute little toward stabilizing the folded state. The average enthalpic gain due to the transfer of a methyl group in an apolar amino acid from solution to the protein interior is described for comparison. Notably, charged groups that are less exposed to solvent contribute more favorably to protein native-state enthalpic stability than charged groups that are solvent exposed. While solvent reorganization/release has favorable contributions to folding for all charged atomic groups, the variation in folded state stability among proteins comes mainly from the change in the nonbonded interaction energy of charged groups between the unfolded and folded states. A key outcome is that the calculated enthalpic stabilization is found to be inversely proportional to the excess charge density on the surface, in support of an hypothesis proposed previously. PMID:18303881

  5. Organization and maintenance of Drosophila telomeres: the roles of terminin and non-terminin proteins.

    PubMed

    Raffa, G D; Cenci, G; Ciapponi, L; Gatti, M

    2013-01-01

    Drosophila telomeres are elongated by occasional transposition of specialized retroelements rather than telomerase activity, and are assembled independently of the sequence of the DNA termini. Drosophila telomeres are capped by terminin, a complex formed by the HOAP, Moi, Ver and HipHop proteins that localize exclusively at telomeres and protect them from fusion events. Other proteins required to prevent end-to-end fusion include HP 1 Eff/UbcD 1, ATM, the components of the Mrel 1-Rad50-Nbs (MRN) complex, and the Woc transcription factor. The terminin proteins are encoded by fast-evolving genes and are not evolutionarily conserved outside the Drosophila species. In contrast, the non-terminin telomere capping proteins are not fast-evolving, do not localize only at telomeres and are conserved from yeasts to mammals. We propose that following telomerase loss, Drosophila rapidly evolved terminin to bind chromosome ends in a sequence-independent manner, and that non-terminin proteins did not evolve as rapidly as terminin because of the functional constraints imposed by their involvement in diverse cellular processes. This hypothesis suggests that the Drosophila non-terminin proteins might correspond to ancestral telomere-associated proteins with homologues in other organisms including humans. PMID:23795467

  6. Two-Photon Fluorescence Anisotropy Imaging to Elucidate the Dynamics and the Stability of Immobilized Proteins.

    PubMed

    Orrego, Alejandro H; García, Carolina; Mancheño, José M; Guisán, Jose M; Lillo, M Pilar; López-Gallego, Fernando

    2016-01-28

    Time/spatial-resolved fluorescence determines anisotropy values of supported-fluorescent proteins through different immobilization chemistries, evidencing some of the molecular mechanisms that drive the stabilization of proteins at the interfaces with solid surfaces. Fluorescence anisotropy imaging provides a normalized protein mobility parameter that serves as a guide to study the effect of different immobilization parameters (length and flexibility of the spacer arm and multivalency of the protein-support interaction) on the final stability of the supported proteins. Proteins in a more constrained environment correspond to the most thermostable ones, as was shown by thermal inactivation studies. This work contributes to explain the experimental evidence found with conventional methods based on observable measurements; thus this advanced characterization technique provides reliable molecular information about the immobilized proteins with sub-micrometer spatial resolution. Such information has been very useful for fabricating highly stable heterogeneous biocatalysts with high interest in industrial developments. PMID:26716569

  7. Mitochondrial Heat Shock Protein Machinery Hsp70/Hsp40 Is Indispensable for Proper Mitochondrial DNA Maintenance and Replication

    PubMed Central

    Týč, Jiří; Klingbeil, Michele M.

    2015-01-01

    ABSTRACT  Mitochondrial chaperones have multiple functions that are essential for proper functioning of mitochondria. In the human-pathogenic protist Trypanosoma brucei, we demonstrate a novel function of the highly conserved machinery composed of mitochondrial heat shock proteins 70 and 40 (mtHsp70/mtHsp40) and the ATP exchange factor Mge1. The mitochondrial DNA of T. brucei, also known as kinetoplast DNA (kDNA), is represented by a single catenated network composed of thousands of minicircles and dozens of maxicircles packed into an electron-dense kDNA disk. The chaperones mtHsp70 and mtHsp40 and their cofactor Mge1 are uniformly distributed throughout the single mitochondrial network and are all essential for the parasite. Following RNA interference (RNAi)-mediated depletion of each of these proteins, the kDNA network shrinks and eventually disappears. Ultrastructural analysis of cells depleted for mtHsp70 or mtHsp40 revealed that the otherwise compact kDNA network becomes severely compromised, a consequence of decreased maxicircle and minicircle copy numbers. Moreover, we show that the replication of minicircles is impaired, although the lack of these proteins has a bigger impact on the less abundant maxicircles. We provide additional evidence that these chaperones are indispensable for the maintenance and replication of kDNA, in addition to their already known functions in Fe-S cluster synthesis and protein import. PMID:25670781

  8. Molecular basis for polyol-induced protein stability revealed by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Liu, Fu-Feng; Ji, Luo; Zhang, Lin; Dong, Xiao-Yan; Sun, Yan

    2010-06-01

    Molecular dynamics simulations of chymotrypsin inhibitor 2 in different polyols (glycerol, xylitol, sorbitol, trehalose, and sucrose) at 363 K were performed to probe the molecular basis of the stabilizing effect, and the data in water, ethanol, and glycol were compared. It is found that protein protection by polyols is positively correlated with both the molecular volume and the fractional polar surface area, and the former contributes more significantly to the protein's stability. Polyol molecules have only a few direct hydrogen bonds with the protein, and the number of hydrogen bonds between a polyol and the protein is similar for different polyols. Thus, it is concluded that the direct interactions contribute little to the stabilizing effect. It is clarified that the preferential exclusion of the polyols is the origin of their protective effects, and it increases with increasing polyol size. Namely, there is preferential hydration on the protein surface (2 Å), and polyol molecules cluster around the protein at a distance of about 4 Å. The preferential exclusion of polyols leads to indirect interactions that prevent the protein from thermal unfolding. The water structure becomes more ordered with increasing the polyol size. So, the entropy of water in the first hydration shell decreases, and a larger extent of decrease is observed with increasing polyol size, leading to larger transfer free energy. The findings suggest that polyols protect the protein from thermal unfolding via indirect interactions. The work has thus elucidated the molecular mechanism of structural stability of the protein in polyol solutions.

  9. Molecular basis for polyol-induced protein stability revealed by molecular dynamics simulations.

    PubMed

    Liu, Fu-Feng; Ji, Luo; Zhang, Lin; Dong, Xiao-Yan; Sun, Yan

    2010-06-14

    Molecular dynamics simulations of chymotrypsin inhibitor 2 in different polyols (glycerol, xylitol, sorbitol, trehalose, and sucrose) at 363 K were performed to probe the molecular basis of the stabilizing effect, and the data in water, ethanol, and glycol were compared. It is found that protein protection by polyols is positively correlated with both the molecular volume and the fractional polar surface area, and the former contributes more significantly to the protein's stability. Polyol molecules have only a few direct hydrogen bonds with the protein, and the number of hydrogen bonds between a polyol and the protein is similar for different polyols. Thus, it is concluded that the direct interactions contribute little to the stabilizing effect. It is clarified that the preferential exclusion of the polyols is the origin of their protective effects, and it increases with increasing polyol size. Namely, there is preferential hydration on the protein surface (2 A), and polyol molecules cluster around the protein at a distance of about 4 A. The preferential exclusion of polyols leads to indirect interactions that prevent the protein from thermal unfolding. The water structure becomes more ordered with increasing the polyol size. So, the entropy of water in the first hydration shell decreases, and a larger extent of decrease is observed with increasing polyol size, leading to larger transfer free energy. The findings suggest that polyols protect the protein from thermal unfolding via indirect interactions. The work has thus elucidated the molecular mechanism of structural stability of the protein in polyol solutions. PMID:20550422

  10. Principles and equations for measuring and interpreting protein stability: From monomer to tetramer.

    PubMed

    Bedouelle, Hugues

    2016-02-01

    The ability to measure the thermodynamic stability of proteins with precision is important for both academic and applied research. Such measurements rely on mathematical models of the protein denaturation profile, i.e. the relation between a global protein signal, corresponding to the folding states in equilibrium, and the variable value of a denaturing agent, either heat or a chemical molecule, e.g. urea or guanidinium hydrochloride. In turn, such models rely on a handful of physical laws: the laws of mass action and conservation, the law that relates the protein signal and concentration, and the one that relates stability and denaturant value. So far, equations have been derived mainly for the denaturation profiles of homomeric proteins. Here, we review the underlying basic physical laws and show in detail how to derive model equations for the unfolding equilibria of homomeric or heteromeric proteins up to trimers and potentially tetramers, with or without folding intermediates, and give full demonstrations. We show that such equations cannot be derived for pentamers or higher oligomers except in special degenerate cases. We expand the method to signals that do not correspond to extensive protein properties. We review and expand methods for uncovering hidden intermediates of unfolding. Finally, we review methods for comparing and interpreting the thermodynamic parameters that derive from stability measurements for cognate wild-type and mutant proteins. This work should provide a robust theoretical basis for measuring the stability of complex proteins. PMID:26607240