Science.gov

Sample records for stainless steel casting

  1. Effect of ferrite on cast stainless steels

    SciTech Connect

    Nadezhdin, A.; Cooper, K. ); Timbers, G. . Kraft Pulp Division)

    1994-09-01

    Premature failure of stainless steel castings in bleach washing service is attributed to poor casting quality high porosity and to a high ferrite content, which makes the castings susceptible to corrosion by hot acid chloride solutions. A survey of the chemical compositions and ferrite contents of corrosion-resistant castings in bleach plants at three pulp mills found high [delta]-ferrite levels in the austenitic matrix due to the improper balance between austenite and ferrite stabilizers.

  2. Cast Stainless Steel Ferrite and Grain Structure

    SciTech Connect

    Ruud, Clayton O.; Ramuhalli, Pradeep; Meyer, Ryan M.; Mathews, Royce; Diaz, Aaron A.; Anderson, Michael T.

    2012-09-01

    In-service inspection requirements dictate that piping welds in the primary pressure boundary of light-water reactors be subject to a volumetric examination based on the rules contained within the American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section XI. The purpose of the inspection is the reliable detection and accurate sizing of service-induced degradation and/or material flaws introduced during fabrication. The volumetric inspection is usually carried out using ultrasonic testing (UT) methods. However, the varied metallurgical macrostructures and microstructures of cast austenitic stainless steel piping and fittings, including statically cast stainless steel and centrifugally cast stainless steel (CCSS), introduce significant variations in the propagation and attenuation of ultrasonic energy. These variations complicate interpretation of the UT responses and may compromise the reliability of UT inspection. A review of the literature indicated that a correlation may exist between the microstructure and the delta ferrite content of the casting alloy. This paper discusses the results of a recent study where the goal was to determine if a correlation existed between measured and/or calculated ferrite content and grain structure in CCSS pipe.

  3. Casting Stainless-Steel Models Around Pressure Tubes

    NASA Technical Reports Server (NTRS)

    Vasquez, Peter; Micol, John R.

    1992-01-01

    Survivability of thin-wall stainless-steel tubing increased to nearly 100 percent. Improves state of art in pressure-model castings and reduces cost associated with machining complete model from stainless-steel blank.

  4. Phase Transformation in Cast Superaustenitic Stainless Steels

    SciTech Connect

    Nathaniel Steven Lee Phillips

    2006-12-12

    Superaustenitic stainless steels constitute a group of Fe-based alloys that are compositionally balanced to have a purely austenitic matrix and exhibit favorable pitting and crevice corrosion resistant properties and mechanical strength. However, intermetallic precipitates such as sigma and Laves can form during casting or exposure to high-temperature processing, which degrade the corrosion and mechanical properties of the material. The goal of this study was to accurately characterize the solid-solid phase transformations seen in cast superaustenitic stainless steels. Heat treatments were performed to understand the time and temperature ranges for intermetallic phase formations in alloys CN3MN and CK3MCuN. Microstructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy and wavelength dispersive spectroscopy (EDS, WDS). The equilibrium microstructures, composed primarily of sigma and Laves within purely austenitic matrices, showed slow transformation kinetics. Factors that determine the extent of transformation, including diffusion, nucleation, and growth, are discussed.

  5. Tensile-property characterization of thermally aged cast stainless steels.

    SciTech Connect

    Michaud, W. F.; Toben, P. T.; Soppet, W. K.; Chopra, O. K.; Energy Technology

    1994-03-03

    The effect of thermal aging on tensile properties of cast stainless steels during service in light water reactors has been evaluated. Tensile data for several experimental and commercial heats of cast stainless steels are presented. Thermal aging increases the tensile strength of these steels. The high-C Mo-bearing CF-8M steels are more susceptible to thermal aging than the Mo-free CF-3 or CF-8 steels. A procedure and correlations are presented for predicting the change in tensile flow and yield stresses and engineering stress-vs.-strain curve of cast stainless steel as a function of time and temperature of service. The tensile properties of aged cast stainless steel are estimated from known material information, i.e., chemical composition and the initial tensile strength of the steel. The correlations described in this report may be used for assessing thermal embrittlement of cast stainless steel components.

  6. Tensile-property characterization of thermally aged cast stainless steels

    SciTech Connect

    Michaud, W.F.; Toben, P.T.; Soppet, W.K.; Chopra, O.K.

    1994-02-01

    The effect of thermal aging on tensile properties of cast stainless steels during service in light water reactors has been evaluated. Tensile data for several experimental and commercial heats of cast stainless steels are presented. Thermal aging increases the tensile strength of these steels. The high-C Mo-bearing CF-8M steels are more susceptible to thermal aging than the Mo-free CF-3 or CF-8 steels. A procedure and correlations are presented for predicting the change in tensile flow and yield stresses and engineering stress-vs.-strain curve of cast stainless steel as a function of time and temperature of service. The tensile properties of aged cast stainless steel are estimated from known material information, i.e., chemical composition and the initial tensile strength of the steel. The correlations described in this report may be used for assessing thermal embrittlement of cast stainless steel components.

  7. Phase transformations in cast duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Kim, Yoon-Jun

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as sigma (sigma) and chi (chi) can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase (sigma + chi) formation were analyzed using the Johnson-Mehl-Avrami (JMA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities, a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, a was stabilized with increasing Cr addition and chi by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in

  8. Phase Transformations in Cast Duplex Stainless Steels

    SciTech Connect

    Yoon-Jun Kim

    2004-12-19

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as {sigma} and {chi} can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase ({sigma} + {chi}) formation were analyzed using the Johnson-Mehl-Avrami (MA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities; a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, {sigma} was stabilized with increasing Cr addition and {chi} by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in

  9. Procedure for flaw detection in cast stainless steel

    DOEpatents

    Kupperman, David S.

    1988-01-01

    A method of ultrasonic flaw detection in cast stainless steel components incorporating the steps of determining the nature of the microstructure of the cast stainless steel at the site of the flaw detection measurements by ultrasonic elements independent of the component thickness at the site; choosing from a plurality of flaw detection techniques, one such technique appropriate to the nature of the microstructure as determined and detecting flaws by use of the chosen technique.

  10. Advanced Cast Austenitic Stainless Steels for High Temperature Components

    SciTech Connect

    Maziasz, P.J.; Shingledecker, J.P.; Evans, N.D.; Pollard, M.J.

    2008-10-09

    In July of 2002, a Cooperative Research and Development Agreement (CRADA) was undertaken between Oak Ridge National Laboratory (ORNL) and Caterpillar, Inc. (Caterpillar Technical Center) to develop and commercialize new cast stainless steels invented and initially tested on a prior CRADA. This CRADA is a direct follow-on project to CRADA ORNL-99-0533 for diesel engine exhaust component and gas turbine engine structural component applications. The goal of this new CRADA was to develop and commercialize the newly discovered cast stainless steels (primarily CF8C-Plus) with improved performance and reliability, as lower-cost upgrade alternatives to more costly cast Ni-based superalloys.

  11. Cast alumina forming austenitic stainless steels

    DOEpatents

    Muralidharan, Govindarajan; Yamamoto, Yukinori; Brady, Michael P

    2013-04-30

    An austenitic stainless steel alloy consisting essentially of, in terms of weight percent ranges 0.15-0.5C; 8-37Ni; 10-25Cr; 2.5-5Al; greater than 0.6, up to 2.5 total of at least one element selected from the group consisting of Nb and Ta; up to 3Mo; up to 3Co; up to 1W; up to 3Cu; up to 15Mn; up to 2Si; up to 0.15B; up to 0.05P; up to 1 total of at least one element selected from the group consisting of Y, La, Ce, Hf, and Zr; <0.3Ti+V; <0.03N; and, balance Fe, where the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale comprising alumina, and a stable essentially single phase FCC austenitic matrix microstructure, the austenitic matrix being essentially delta-ferrite free and essentially BCC-phase-free. A method of making austenitic stainless steel alloys is also disclosed.

  12. Shrinkage Prediction for the Investment Casting of Stainless Steels

    SciTech Connect

    Sabau, Adrian S

    2007-01-01

    In this study, the alloy shrinkage factors were obtained for the investment casting of 17-4PH stainless steel parts. For the investment casting process, unfilled wax and fused silica with a zircon prime coat were used for patterns and shell molds, respectively. Dimensions of the die tooling, wax pattern, and casting were measured using a Coordinate Measurement Machine in order to obtain the actual tooling allowances. The alloy dimensions were obtained from numerical simulation results of solidification, heat transfer, and deformation phenomena. The numerical simulation results for the shrinkage factors were compared with experimental results.

  13. Evaluation of manual ultrasonic inspection of cast stainless steel piping

    SciTech Connect

    Taylor, T.T.

    1984-05-01

    Two studies have attempted to determine the degree of inspectability of centrifugally cast stainless steel (CCSS) pipe. In one study, Westinghouse examined the reliability of ultrasonic test methods in the detection of mechanical fatigue cracks. The second study was an NRC-sponsored Pipe Inspection Round Robin (PIRR) test conducted at Pacific Northwest Laboratory (PNL). The Westinghouse study reported that 80% detection was achieved for mechanical fatigue cracks having 20% throughwall depth. The PNL study reported that less than 30% detection was achieved for thermal fatigue cracks ranging from 5% to 50% through-wall. A cooperative program between PNL and Westinghouse was conducted to resolve the differences between the two studies. The program was designed as a limited round robin. Detection experiments were performed on samples from both the PNL and Westinghouse studies. The data reported here indicate that flaw type (thermal fatigue versus mechanical fatigue) was a significant factor in detection. Mechanical fatigue cracks were more easily detected than thermal fatigue cracks. The data conclusively show that manual ultrasonic inspection cannot size flaws in cast stainless steel material. The study recommends that ultrasonic inspection of cast stainless steel pipe be continued because cracks caused by some failure mechanisms (i.e., mechanical fatigue cracks) have proven to be detectable.

  14. Use of duplex stainless steel castings in control valves

    SciTech Connect

    Gossett, J.L.

    1996-07-01

    Duplex stainless steels have enjoyed rapidly increasing popularity in recent years. For numerous reasons the availability of these alloys in the cast form has lagged behind the availability of the wrought form. Commercial demand for control valves in these alloys has driven development of needed information to move into production. A systematic approach was used to develop specifications, suppliers and weld procedures. Corrosion, stress corrosion cracking (SCC), sulfide stress cracking (SSC) and hardness results are also presented for several alloys including; CD3MN (UNS J92205), CD4MCu (UNS J93370) and CD7MCuN (cast UNS S32550).

  15. Stainless Steel Round Robin Test: Centrifugally cast stainless steel screening phase

    SciTech Connect

    Bates, D.J.; Doctor, S.R.; Heasler, P.G.; Burck, E.

    1987-10-01

    This report presents the results of the Centrifugally Cast Stainless Steel Round Robin Test (CCSSRRT). The CCSSRRT is the first phase of an effort to investigate and improve the capability and reliability of NDE inspections of light water reactor piping systems. This phase was a screening test to identify the most promising procedures presently available for CCSS. The next phase will be an in-depth program to evaluate the capability and reliability of inservice inspections (ISI) for piping. In the CCSSRRT, 15 centrifugally cast stainless steel pipe sections containing welds and laboratory-grown thermal fatigue cracks in both columnar and equiaxed base material were used. These pipe specimens were inspected by a total of 18 teams from Europe and the United States using a variety of NDE techniques, mostly ultrasonic (UT). The inspections were carried out at the team's facilities and included inspections from both sides of the weld and inspections restricted to one side of the weld. The results of the CCSSRRT make it apparent that a more detailed study on the capability and reliability of procedures to inspect stainless steel materials is needed to better understand the specific material and flaw properties and how they affect the outcome of an inspection.

  16. Ultrasonic characterization of centrifugally cast stainless steel: Topical report

    SciTech Connect

    Jeong, P.

    1987-06-01

    Ultrasonic wave propagation in centrifugally cast stainless steel (CCSS) was investigated. The difficulties of inspecting CCSS material stem from elastic anisotropy that hampers defect location and severe attenuation caused by coarse grains within the structure that makes defect detection difficult. During this investigation, grain effects on ultrasonic wave propagation were investigated, techniques for identifying different grain structures were developed, and compensation methods for grain effects were addressed. Each step is explained analytically based on relevant theory and proven experimentally. Experiments were conducted on specially designed test specimens: angled blocks, polygonal blocks, wedge blocks, and calibration blocks. Wave parameters such as phase velocity, skew angle, energy velocity, attenuation, beam width, amplitude variation patterns, and frequency dependence on grain structures were all measured with these specimens. CCSS grain structures investigated were equiaxed-fine grains, columnar-dendritic grains, and coarse grains. For comparison purposes, additional types of material such as static-cast stainless steel, forged stainless steel, and carbon steel materials were also investigated. Longitudinal wave, horizontally and vertically polarized shear wave modes were all considered in experiments. The use of an automated ultrasonic system was also demonstrated for grain structure identification.

  17. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    NASA Astrophysics Data System (ADS)

    Byun, T. S.; Yang, Y.; Overman, N. R.; Busby, J. T.

    2016-02-01

    Cast stainless steels (CASSs) have been extensively used for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich α'-phase by Spinodal decomposition of δ-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to provide an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. An approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. These results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.

  18. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    SciTech Connect

    Byun, T. S.; Yang, Y.; Overman, N. R.; Busby, J. T.

    2015-11-12

    We used cast stainless steels (CASSs)for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich alpha-phase by Spinodal decomposition of delta-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to provide an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. Moreover, an approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. Our results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.

  19. Aging degradation of cast stainless steel: status and program

    SciTech Connect

    Chopra, O.K.; Ayrault, G.

    1983-10-01

    A program has been initiated to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water reactor operating conditions. The existing data are reviewed to determine the critical parameters that control the aging behavior and to define the objectives and scope of the investigation. The test matrices for microstructural studies and mechanical property measurements are presented. The initial experimental effort is focussed on characterizing the microstructure of long-term, low-temperature aged material. Specimens from three heats of cast CF-8 and CF-8M stainless steel aged for up to 70,000 h at 300, 350, and 400/sup 0/C were obtained from George Fisher Ltd., of Switzerland. Initial analyses reveal the formation of three different types of precipitates which are not ..cap alpha..'. An FCC phase, similar to the M/sub 23/C/sub 6/ precipitates, was present in all the long-term aged material. 15 references, 10 figures, 2 tables.

  20. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    DOE PAGESBeta

    Byun, T. S.; Yang, Y.; Overman, N. R.; Busby, J. T.

    2015-11-12

    We used cast stainless steels (CASSs)for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich alpha-phase by Spinodal decomposition of delta-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to providemore » an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. Moreover, an approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. Our results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.« less

  1. Challenges and Capabilities for Inspection of Cast Stainless Steel Piping

    SciTech Connect

    Anderson, Michael T.; Crawford, Susan L.; Cumblidge, Stephen E.; Diaz, Aaron A.; Doctor, Steven R.

    2007-12-31

    Studies conducted at the Pacific N¬orthwest National Laboratory (PNNL) in Richland, Washington, have focused on developing and evaluating the reliability of nondestructive examination (NDE) approaches for inspecting coarse-grained, cast stainless steel reactor components. The objective of this work is to provide information to the United States Nuclear Regulatory Commission (US NRC) on the utility, effec¬tiveness and limitations of NDE techniques as related to the inservice inspec¬tion of primary system piping components in pressurized water reactors (PWRs). This paper describes results from recent assessments built upon early work with low frequency ultrasonic testing (UT) coupled with synthetic aperture focusing technique (SAFT) signal processing, and has subsequently evolved into an approach using low frequency phased array technology as applied from the outer diameter surface of the piping. In addition, eddy current examination as performed from the inner diameter surface of these piping welds is also reported. Cast stainless steel (CSS) pipe specimens were examined that contain thermal and mechanical fatigue cracks located close to the weld roots and have inside/outside surface geometrical conditions that simulate several PWR primary piping weldments and configurations. In addition, segments of vintage centrifugally cast piping were also examined to understand inherent acoustic noise and scattering due to grain structures and determine consistency of UT responses from different locations. The advanced UT methods were applied from the outside surface of these specimens using automated scanning devices and water coupling. The phased array approach was implemented with a modified instrument operating at low frequencies and composite volumetric images of the samples were generated with 500 kHz, 750 kHz, and 1.0 MHz arrays. Eddy current studies were conducted on the inner diameter surface of these piping welds using a commercially available instrument and a

  2. NDE Assessments of Cast Stainless Steel Reactor Piping Components

    SciTech Connect

    Diaz, Aaron A.; Anderson, Michael T.; Cumblidge, Stephen E.; Doctor, Steven R.; Mathews, Royce

    2006-02-01

    Studies conducted at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, have focused on developing and evaluating the effectiveness and reliability of novel NDE approaches for the inspection of coarse-grained, cast stainless steel reactor components. The primary objective of this work is to provide information to the United States Nuclear Regulatory Commission (US NRC) on the utility, effectiveness and reliability of ultrasonic testing (UT) and eddy current testing (ET) inspection techniques as related to the in-service inspection of primary piping components in pressurized water reactors (PWRs). This paper describes recent developments and results from assessments of three different NDE approaches including an ultrasonic phased array inspection methodology, an eddy current testing technique and a low-frequency ultrasonic inspection methodology coupled with a synthetic aperture focusing technique (SAFT). Westinghouse Owner’s Group (WOG) cast stainless steel pipe segments with thermal and mechanical fatigue cracks located close to the weld roots, were used for assessing the inspection methods. ET studies were conducted on the inner diameter (ID) surface of piping specimens while the ultrasonic inspection methods were performed from the outer diameter (OD) surface of the specimens. The ET technique employed a ZETEC MIZ-27SI Eddy Current instrument and a ZETEC Z0000857-1 cross point spot probe with an operating frequency of 250 kHz. On some samples where noise levels were high, degaussing of the sample resulted in significant improvements. The phased array approach was implemented using an RD Tech Tomoscan III system operating at 1 MHz and composite volumetric images of the samples were generated. The low-frequency ultrasonic method employs a zone-focused, multi-incident angle; inspection protocol (operating at 250-450 kHz) coupled with a synthetic aperture focusing technique (SAFT) for improved signal-to-noise and advanced imaging

  3. Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel

    DOE PAGESBeta

    Li, Zhangbo; Lo, Wei-Yang; Chen, Yiren; Pakarinen, Janne; Wu, Yaqiao; Allen, Todd; Yang, Yong

    2015-08-08

    To enable the life extension of Light Water Reactors (LWRs) beyond 60 years, it is critical to gain adequate knowledge for making conclusive predictions to assure the integrity of duplex stainless steel reactor components, e.g. primary pressure boundary and reactor vessel internal. Microstructural changes in the ferrite of thermally aged, neutron irradiated only, and neutron irradiated after being thermally aged cast austenitic stainless steels (CASS) were investigated using atom probe tomography. The thermal aging was performed at 400 °C for 10,000 h and the irradiation was conducted in the Halden reactor at ~315 °C to 0.08 dpa (5.6 × 1019more » n/cm2 E > 1 MeV). Low dose neutron irradiation at a dose rate of 5 × 10-9 dpa/s was found to induce spinod,al decomposition in the ferrite of as-cast microstructure, and further to enhance the spinodal decomposition in the thermally aged cast alloys. Regarding the G-phase precipitates, the neutron irradiation dramatically increases the precipitate size, and alters the composition of the precipitates with increased, Mn, Ni, Si and Mo and reduced Fe and Cr contents. Lastly, The results have shown that low dose neutron irradiation can further accelerate the degradation of ferrite in a duplex stainless steel at the LWR relevant condition.« less

  4. Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel

    SciTech Connect

    Li, Zhangbo; Lo, Wei-Yang; Chen, Yiren; Pakarinen, Janne; Wu, Yaqiao; Allen, Todd; Yang, Yong

    2015-08-08

    To enable the life extension of Light Water Reactors (LWRs) beyond 60 years, it is critical to gain adequate knowledge for making conclusive predictions to assure the integrity of duplex stainless steel reactor components, e.g. primary pressure boundary and reactor vessel internal. Microstructural changes in the ferrite of thermally aged, neutron irradiated only, and neutron irradiated after being thermally aged cast austenitic stainless steels (CASS) were investigated using atom probe tomography. The thermal aging was performed at 400 °C for 10,000 h and the irradiation was conducted in the Halden reactor at ~315 °C to 0.08 dpa (5.6 × 1019 n/cm2 E > 1 MeV). Low dose neutron irradiation at a dose rate of 5 × 10-9 dpa/s was found to induce spinod,al decomposition in the ferrite of as-cast microstructure, and further to enhance the spinodal decomposition in the thermally aged cast alloys. Regarding the G-phase precipitates, the neutron irradiation dramatically increases the precipitate size, and alters the composition of the precipitates with increased, Mn, Ni, Si and Mo and reduced Fe and Cr contents. Lastly, The results have shown that low dose neutron irradiation can further accelerate the degradation of ferrite in a duplex stainless steel at the LWR relevant condition.

  5. Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel

    NASA Astrophysics Data System (ADS)

    Li, Zhangbo; Lo, Wei-Yang; Chen, Yiren; Pakarinen, Janne; Wu, Yaqiao; Allen, Todd; Yang, Yong

    2015-11-01

    To enable the life extension of Light Water Reactors (LWRs) beyond 60 years, it is critical to gain adequate knowledge for making conclusive predictions to assure the integrity of duplex stainless steel reactor components, e.g. primary pressure boundary and reactor vessel internal. Microstructural changes in the ferrite of thermally aged, neutron irradiated only, and neutron irradiated after being thermally aged cast austenitic stainless steels (CASS) were investigated using atom probe tomography. The thermal aging was performed at 400 °C for 10,000 h and the irradiation was conducted in the Halden reactor at ∼315 °C to 0.08 dpa (5.6 × 1019 n/cm2, E > 1 MeV). Low dose neutron irradiation at a dose rate of 5 × 10-9 dpa/s was found to induce spinodal decomposition in the ferrite of as-cast microstructure, and further to enhance the spinodal decomposition in the thermally aged cast alloys. Regarding the G-phase precipitates, the neutron irradiation dramatically increases the precipitate size, and alters the composition of the precipitates with increased, Mn, Ni, Si and Mo and reduced Fe and Cr contents. The results have shown that low dose neutron irradiation can further accelerate the degradation of ferrite in a duplex stainless steel at the LWR relevant condition.

  6. Studies of aged cast stainless steel from the Shippingport reactor

    SciTech Connect

    Chopra, O.K.

    1991-10-01

    The mechanical properties of cast stainless steels from the Shippingport reactor have been characterized. Baseline properties for unaged materials were obtained from tests on either recovery-annealed material or material from a cooler region of the component. The materials exhibited modest decrease in impact energy and fracture toughness and a small increase in tensile strength. The fracture toughness J-R curve, J{sub IC} value, tensile flow stress, and Charpy-impact energy of the materials showed very good agreement with estimations based on accelerated laboratory aging studies. The kinetics of thermal embrittlement and degree of embrittlement at saturation, i.e., the minimum impact energy that would be achieved after long-term aging, were established from materials that were aged further in the laboratory at temperatures between 320 and 400{degree}C. The results showed very good agreement with estimates; the activation energies ranged from 125 to 250 kJ/mole and the minimum room-temperature impact energy was >75 J/cm{sup 2}. The estimated impact energy and fracture toughness J-R curve for materials from the Ringhals reactor hot and crossover-leg elbows are also presented.

  7. In-situ Characterization of Cast Stainless Steel Microstructures

    SciTech Connect

    Ramuhalli, Pradeep; Meyer, Ryan M.; Cinson, Anthony D.; Moran, Traci L.; Prowant, Matthew S.; Watson, Bruce E.; Mathews, Royce; Harris, Robert V.; Diaz, Aaron A.; Anderson, Michael T.

    2012-09-01

    Cast austenitic stainless steel (CASS) was commonly used in selected designs of nuclear power reactor systems for corrosion resistance and enhanced durability in service. CASS materials are generally coarse-grained and elastically anisotropic in nature, and are consequently difficult to inspect ultrasonically, largely due to detrimental effects of ultrasonic wave interactions with the coarse-grain microstructures. To address the inspection needs for these materials, new approaches that are robust to these phenomena are being developed. However, to enhance the probability of detecting flaws, knowledge of the microstructure and the corresponding acoustic properties of the material may be required. This paper discusses the application of ultrasonic backscatter measurement methods for classifying the microstructure of CASS components, when making measurements from the outside surface of the pipe or component. Results to date from laboratory experiments demonstrate the potential of these measurements to classify the material type of CASS for two homogeneous microstructures—equiaxed-grain material or columnar-grain material. Measurements on mixed or banded microstructures also show correlation with the estimated volume-fraction of columnar grains in the material. However, several operational issues will need to be addressed prior to applying this method for in-situ characterization of CASS microstructure.

  8. Evaluation of aging of cast stainless steel components

    SciTech Connect

    Chung, H.M.

    1991-02-01

    Cast stainless steel is used extensively in nuclear reactors for primary-pressure-boundary components such as primary coolant pipes, elbows, valves, pumps, and safe ends. These components are, however, susceptible to thermal aging embrittlement in light water reactors because of the segregation of Cr atoms from Fe and Ni by spinodal decomposition in ferrite and the precipitation of Cr-rich carbides on ferrite/austenite boundaries. A recent advance in understanding the aging kinetics is presented. Aging kinetics are strongly influenced by the synergistic effects of other metallurgical reactions that occur in parallel with spinodal decomposition, i.e., clustering of Ni, Mo, and Si solute atoms and the nucleation and growth of G-phase precipitates in the ferrite phase. A number of methods are outlined for estimating aging embrittlement under end-of-life of life-extension conditions, depending on several factors such as degree of permissible conservatism, availability of component archive material, and methods of estimating and verifying the activation energy of aging. 33 refs., 6 figs., 3 tabs.

  9. In-situ Characterization of Cast Stainless Steel Microstructures

    SciTech Connect

    Anderson, Michael T.; Bond, Leonard J.; Diaz, Aaron A.; Good, Morris S.; Harris, Robert V.; Mathews, Royce; Ramuhalli, Pradeep; Roberts, Kamandi C.

    2010-12-01

    Cast austenitic stainless steel (CASS) that was commonly used in U.S. nuclear power plants is a coarse-grained, elastically anisotropic material. The engineering properties of CASS made it a material of choice for selected designs of nuclear power reactor systems. However, the fabrication processes result in a variety of coarse-grain microstructures that are difficult to inspect ultrasonically, largely due to detrimental effects of wave interactions with the microstructure. To address the inspection needs, new approaches that are robust to these phenomena are being sought. However, overcoming the deleterious effects of the coarse-grained microstructure on the interrogating ultrasonic beam will require knowledge of the microstructure and the corresponding acoustic properties of the material, for potential optimization of inspection parameters to enhance the probability of detecting flaws. The goal of improving the reliability and effectiveness of ultrasonic inspection of CASS specimens can therefore potentially be achieved by first characterizing the microstructure of the component. The characterization of CASS microstructure must be done in-situ, to enable dynamic selection and optimization of the ultrasonic inspection technique. This paper discusses the application of ultrasonic measurement methods for classifying the microstructure of CASS components, when making measurements from the outside surface of the pipe or component. Results to date demonstrate the potential of ultrasonic and electromagnetic measurements to classify the material type of CASS for two consistent microstructures-equiaxed-grain material and columnar-grain material.

  10. Final Report, Volume 1, Metallurgical Evaluation of Cast Duplex Stainless Steels and their Weldments

    SciTech Connect

    Wen, Songqing; Lundin, Carl, W.; Batten, Greg, W.

    2005-09-30

    Duplex stainless steels (DSS) are being specified for chloride containing environments due to their enhanced pitting and stress corrosion cracking resistance. They exhibit improved corrosion performance over the austenitic stainless steels. Duplex stainless steels also offer improved strength properties and are available in various wrought and cast forms. Selected grades of duplex stainless steel castings and their welds, in comparison with their wrought counterparts, were evaluated, regarding corrosion performance and mechanical properties and weldability. Multiple heats of cast duplex stainless steel were evaluated in the as-cast, solution annealed (SA) static cast and SA centrifugal cast conditions, while their wrought counterparts were characterized in the SA condition and in the form of as-rolled plate. Welding, including extensive assessment of autogenous welds and a preliminary study of composite welds (shielded metal arc weld (SMAW)), was performed. The evaluations included critical pitting temperature (CPT) testing, intergranular corrosion (IGC) testing, ASTM A923 (Methods A, B and C), Charpy impact testing, weldability testing (ASTM A494), ferrite measurement and microstructural evaluations. In the study, the corrosion performances of DSS castings were characterized and assessed, including the wrought counterparts for comparison. The evaluation filled the pore of lack of data for cast duplex stainless steels compared to wrought materials. A database of the pitting corrosion and IGC behavior of cast and wrought materials was generated for a greater depth of understanding for the behavior of cast duplex stainless steel. In addition, improved evaluation methods for DSS castings were developed according to ASTM A923, A262, G48 and A494. The study revealed that when properly heat treated according to the specification, (1) DSS castings have equal or better pitting and intergranular corrosion resistance than their wrought counterparts; (2) Welding reduces the

  11. Final Report, Volume 1, Metallurgical Evaluation of Cast Duplex Stainless Steels and their Weldments

    SciTech Connect

    Wen, Songqing; Lundin, Carl, W.; Batten, Greg, W.

    2005-09-30

    Duplex stainless steels (DSS) are being specified for chloride containing environments due to their enhanced pitting and stress corrosion cracking resistance. They exhibit improved corrosion performance over the austenitic stainless steels. Duplex stainless steels also offer improved strength properties and are available in various wrought and cast forms. Selected grades of duplex stainless steel castings and their welds, in comparison with their wrought counterparts, were evaluated, regarding corrosion performance and mechanical properties and weldability. Multiple heats of cast duplex stainless steel were evaluated in the as-cast, solution annealed (SA) static cast and SA centrifugal cast conditions, while their wrought counterparts were characterized in the SA condition and in the form of as-rolled plate. Welding, including extensive assessment of autogenous welds and a preliminary study of composite welds (shielded metal arc weld (SMAW)), was performed. The evaluations included critical pitting temperature (CPT) testing, intergranular corrosion (IGC) testing, ASTM A923 (Methods A, B and C), Charpy impact testing, weldability testing (ASTM A494), ferrite measurement and microstructural evaluations. In the study, the corrosion performances of DSS castings were characterized and assessed, including the wrought counterparts for comparison. The evaluation filled the pore of lack of data for cast duplex stainless steels compared to wrought materials. A database of the pitting corrosion and IGC behavior of cast and wrought materials was generated for a greater depth of understanding for the behavior of cast duplex stainless steel. In addition, improved evaluation methods for DSS castings were developed according to ASTM A923, A262, G48 and A494. The study revealed that when properly heat treated according to the specification, (1) DSS castings have equal or better pitting and intergranular corrosion resistance than their wrought counterparts; (2) Welding reduces the

  12. Cast CF8C-Plus Stainless Steel for Turbocharger Applications

    SciTech Connect

    Maziasz, P.J.; Shyam, A.; Evans, N.D.; Pattabiraman, K. (Honeywell Turbo Technologies

    2010-06-30

    The purpose of this Cooperative Research and Development Agreement (CRADA) project is to provide the critical test data needed to qualify CF8C-Plus cast stainless steel for commercial production and use for turbocharger housings with upgraded performance and durability relative to standard commercial cast irons or stainless steels. The turbocharger technologies include, but are not limited to, heavy-duty highway diesel engines, and passenger vehicle diesel and gasoline engines. This CRADA provides additional critical high-temperature mechanical properties testing and data analysis needed to quality the new CF8C-Plus steels for turbocharger housing applications.

  13. Estimation of fracture toughness of cast stainless steels during thermal aging in LWR systems

    SciTech Connect

    Chopra, O.K. )

    1991-06-01

    A procedure and correlations are presented for predicting the change in fracture toughness of cast stainless steel components due to thermal aging during service in light water rectors (LWRs) at 280--330{degrees}C (535--625{degrees}F). The fracture toughness J-R curve and Charpy-impact energy of aged cast stainless steels are estimated from known mineral in formation. Fracture toughness of a specific cast stainless steel is estimated from the extent and kinetics of thermal embrittlement. The extent of thermal embrittlement is characterized by the room-temperature normalized'' Charpy-impact energy. A correlation for the extent of embrittlement at saturation,'' i.e., the minimum impact energy that would be achieved for the material after long-term aging, is given in terms of a material parameter, {Phi}, which is determined from the chemical composition. The fracture toughness J-R curve for the material is then obtained from correlations between room-temperature Charpy-impact energy and fracture toughness parameters. Fracture toughness as a function of time and temperature of reactor service is estimated from the kinetics of thermal embrittlement, which is determined from chemical composition. A common lower-bound'' J-R curve for cast stainless steels with unknown chemical composition is also defined for a given material specification, ferrite content, and temperature. Examples for estimating impact strength and fracture toughness of cast stainless steel components during reactor service are describes. 24 refs., 39 figs., 2 tabs.

  14. Estimation of mechanical properties of cast stainless steels during thermal aging in LWR systems

    SciTech Connect

    Chopra, O.K.

    1991-10-01

    A procedure and correlations are presented for predicting Charpy- impact energy, tensile flow stress, fracture toughness J-R curve, and J{sub IC} of aged cast stainless steels from known material information. The ``saturation`` impact strength and fracture toughness of a specific cast stainless steel, i.e., the minimum value that would be achieved for the material after long-term service, is estimated from the chemical composition of the steel. Mechanical properties as a function of time and temperature of reactor service are estimated from impact energy and flow stress of the unaged material and the kinetics of embrittlement, which are also determined from chemical composition. The J{sub IC} values are determined from the estimated J-R curve and flow stress. Examples of estimating mechanical properties of cast stainless steel components during reactor service are presented. A common ``lower-bound`` J-R curve for cast stainless steels of unknown chemical composition is also defined for a given grade of steel, ferrite content, and temperature.

  15. Prediction of aging degradation of cast stainless steel components in LWR systems

    SciTech Connect

    Chopra, O.K.

    1992-03-01

    A procedure and correlations are presented for predicting Charpy-impact energy, tensile flow stress, fracture toughness J-R curve, and J{sub IC} of aged cast stainless steels from known material information. The ``saturation`` impact strength and fracture toughness of a specific cast stainless steel, i.e., the minimum value that would be achieved for the material after long-term service, is estimated from the chemical composition of the steel. Mechanical properties as a function of time and temperature of reactor service are estimated from impact energy and flow stress of the unaged material and the kinetics of embrittlement, which are also determined from chemical composition. The J{sub IC} values are determined from the estimated J-R curve and flow stress. Examples of estimating mechanical properties of of cast stainless steel components during reactor service are presented. A common ``predicted lower-bound` J-R curve for cast stainless steels of unknown chemical composition is also defined for a given grade of steel, ferrite content, and temperature.

  16. Prediction of aging degradation of cast stainless steel components in LWR systems

    SciTech Connect

    Chopra, O.K.

    1992-03-01

    A procedure and correlations are presented for predicting Charpy-impact energy, tensile flow stress, fracture toughness J-R curve, and J{sub IC} of aged cast stainless steels from known material information. The saturation'' impact strength and fracture toughness of a specific cast stainless steel, i.e., the minimum value that would be achieved for the material after long-term service, is estimated from the chemical composition of the steel. Mechanical properties as a function of time and temperature of reactor service are estimated from impact energy and flow stress of the unaged material and the kinetics of embrittlement, which are also determined from chemical composition. The J{sub IC} values are determined from the estimated J-R curve and flow stress. Examples of estimating mechanical properties of of cast stainless steel components during reactor service are presented. A common predicted lower-bound' J-R curve for cast stainless steels of unknown chemical composition is also defined for a given grade of steel, ferrite content, and temperature.

  17. Estimation of fracture toughness of cast stainless steels during thermal aging in LWR systems - Revison 1.

    SciTech Connect

    Chopra, O. K.; Energy Technology

    1994-10-05

    This report presents a revision of the procedure and correlations presented earlier in NUREG/CR-4513, ANL-90/42 (June 1991) for predicting the change in mechanical properties of cast stainless steel components due to thermal aging during service in light water reactors at 280-330 C (535-625 F). The correlations presented in this report are based on an expanded data base and have been optimized with mechanical-property data on cast stainless steels aged up to {approx}58,000 h at 290-350 C (554-633 F). The correlations for estimating the change in tensile stress, including the Ramberg/Osgood parameters for strain hardening, are also described. The fracture toughness J-R curve, tensile stress, and Charpy-impact energy of aged cast stainless steels are estimated from known material information. Mechanical properties of a specific cast stainless steel are estimated from the extent and kinetics of thermal embrittlement. Embrittlement of cast stainless steels is characterized in terms of room-temperature Charpy-impact energy. The extent or degree of thermal embrittlement at 'saturation,' i.e., the minimum impact energy that can be achieved for a material after long-term aging, is determined from the chemical composition of the steel. Charpy-impact energy as a function of time and temperature of reactor service is estimated from the kinetics of thermal embrittlement, which are also determined from the chemical composition. The initial impact energy of the unaged steel is required for these estimations. Initial tensile flow stress is needed for estimating the flow stress of the aged material. The fracture toughness J-R curve for the material is then obtained by correlating room-temperature Charpy-impact energy with fracture toughness parameters. The values of JIC are determined from the estimated J-R curve and flow stress. A common 'predicted lower-bound' J-R curve for cast stainless steels of unknown chemical composition is also defined for a given grade of steel, range of

  18. Standard specification for steel castings, carbon, low alloy, and stainless steel, heavy-walled for steam turbines. ASTM standard

    SciTech Connect

    1998-08-01

    This specification is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.18 on Castings. Current edition approved May 10, 1998. Published August 1998. Originally published as A 356-52T. Last previous edition was A 356-96.

  19. Final Report, Volume 3, Guidance Document for the Evaluation of Cast Super Duplex Stainless Steel

    SciTech Connect

    Hariharan, Vasudevan; Lundin, Carl, W.

    2005-09-30

    Volume 3 is comprised of the Development of Qualification Standards for Cast Super Duplex Stainless Steel (A890-5A) which is equivalent to wrought 2507. The objective of this work was to determine the suitability of ASTM A923 Standard Test methods for Detecting Detrimental Intermetallic Phase in Duplex Austenitic-Ferritic Stainless Steels for 25 Cr Cast Super Duplex Stainless Steels (ASTM A890-5A). The various tests which were carried out were ASTM A923 Test Method A, B and C (Sodium Hydroxide Etch Test, Charpy Impact Test and Ferric Chloride Corrosion Test), ferrite measurement using Feritscope®, ASTM E562 Manual Point Count Method and X-Ray Diffraction, hardness measurement using Rockwell B and C and microstructural analysis using SEM and EDS.

  20. Final Report, Volume 3, Guidance Document for the Evaluation of Cast Super Duplex Stainless Steel

    SciTech Connect

    Hariharan, Vasudevan; Lundin, Carl, D.

    2005-09-30

    Volume 3 comprises of the Development of Qualification Standards for Cast Super Duplex Stainless Steel (A890-5A) which is equivalent to wrought 2507. The objective of this work was to determine the suitability of ASTM A923 Standard Test methods for Detecting Detrimental Intermetallic Phase in Duplex Austenitic-Ferritic Stainless Steels for 25 Cr Cast Super Duplex Stainless Steels (ASTM A890-5A). The various tests which were carried out were ASTM A923 Test Method A, B and C (Sodium Hydroxide Etch Test, Charpy Impact Test and Ferric Chloride Corrosion Test), ferrite measurement using Feritscope{reg_sign}, ASTM E562 Manual Point Count Method and X-Ray Diffraction, hardness measurement using Rockwell B and C and microstructural analysis using SEM and EDS.

  1. High-Temperature Performance of Cast CF8C-Plus Austenitic Stainless Steel

    SciTech Connect

    Maziasz, Philip J; Pint, Bruce A

    2011-01-01

    Covers and casings of small to medium size gas turbines can be made from cast austenitic stainless steels, including grades such as CF8C, CF3M, or CF10M. Oak Ridge National Laboratory and Caterpillar have developed a new cast austenitic stainless steel, CF8C-Plus, which is a fully austenitic stainless steel, based on additions of Mn and N to the standard Nb-stabilized CF8C steel grade. The Mn addition improves castability, as well as increases the alloy solubility for N, and both Mn and N synergistically act to boost mechanical properties. CF8C-Plus steel has outstanding creep-resistance at 600-900 C, which compares well with Ni-based superalloys such as alloys X, 625, 617, and 230. CF8C-Plus also has very good fatigue and thermal fatigue resistance. It is used in the as-cast condition, with no additional heat-treatments. While commercial success for CF8C-Plus has been mainly for diesel exhaust components, this steel can also be considered for gas turbine and microturbine casings. The purposes of this paper are to demonstrate some of the mechanical properties, to update the long-term creep-rupture data, and to present new data on the high-temperature oxidation behavior of these materials, particularly in the presence of water vapor.

  2. Clean cast steel technology. Determination of transformation diagrams for duplex stainless steel

    SciTech Connect

    Chumbley, S. L.

    2005-09-01

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as sigma ( can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling- transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe 22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase ( formation were analyzed using the Johnson-Mehl-Avrami (JMA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations, The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities, a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, was stabilized with increasing Cr addition and by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in DSS can be affected by local

  3. Heat treatment giving a stable high temperature micro-structure in cast austenitic stainless steel

    DOEpatents

    Anton, Donald L.; Lemkey, Franklin D.

    1988-01-01

    A novel micro-structure developed in a cast austenitic stainless steel alloy and a heat treatment thereof are disclosed. The alloy is based on a multicomponent Fe-Cr-Mn-Mo-Si-Nb-C system consisting of an austenitic iron solid solution (.gamma.) matrix reinforced by finely dispersed carbide phases and a heat treatment to produce the micro-structure. The heat treatment includes a prebraze heat treatment followed by a three stage braze cycle heat treatment.

  4. Mechanical properties of thermally aged cast stainless steels from Shippingport reactor components

    SciTech Connect

    Chopra, O.K.; Shack, W.J.

    1995-04-01

    Thermal embrittlement of static-cast CF-8 stainless steel components from the decommissioned Shippingport reactor has been characterized. Cast stainless steel materials were obtained from four cold-leg check valves, three hot-leg main shutoff valves, and two pump volutes. The actual time-at-temperature for the materials was {approximately}13 y at {approximately}281 C (538 F) for the hot-leg components and {approximately}264 C (507 F) for the cold-leg components. Baseline mechanical properties for as-cast material were determined from tests on either recovery-annealed material, i.e., annealed for 1 h at 550 C and then water quenched, or material from the cooler region of the component. The Shippingport materials show modest decreases in fracture toughness and Charpy-impact properties and a small increase in tensile strength because of relatively low service temperatures and ferrite content of the steel. The procedure and correlations developed at Argonne National Laboratory for estimating mechanical properties of cast stainless steels predict accurate or slightly lower values for Charpy-impact energy, tensile flow stress, fracture toughness J-R curve, and J{sub IC} of the materials. The kinetics of thermal embrittlement and degree of embrittlement at saturation, i.e., the minimum impact energy achieved after long-term aging, were established from materials that were aged further in the laboratory. The results were consistent with the estimates. The correlations successfully predicted the mechanical properties of the Ringhals 2 reactor hot and crossover-leg elbows (CF-8M steel) after service of {approximately} 15 y and the KRB reactor pump cover plate (CF-8) after {approximately} 8 y of service.

  5. Mechanical properties of thermally aged cast stainless steels from shippingport reactor components.

    SciTech Connect

    Chopra, O. K.; Shack, W. J.; Energy Technology

    1995-06-07

    Thermal embrittlement of static-cast CF-8 stainless steel components from the decommissioned Shippingport reactor has been characterized. Cast stainless steel materials were obtained from four cold-leg check valves, three hot-leg main shutoff valves, and two pump volutes. The actual time-at-temperature for the materials was {approx}13 y at {approx}281 C (538 F) for the hot-leg components and {approx}264 C (507 F) for the cold-leg components. Baseline mechanical properties for as-cast material were determined from tests on either recovery-annealed material, i.e., annealed for 1 h at 550 C and then water quenched, or material from the cooler region of the component. The Shippingport materials show modest decreases in fracture toughness and Charpy-impact properties and a small increase in tensile strength because of relatively low service temperatures and ferrite content of the steel. The procedure and correlations developed at Argonne National Laboratory for estimating mechanical properties of cast stainless steels predict accurate or slightly lower values for Charpy-impact energy, tensile flow stress, fracture toughness J-R curve, and JIC of the materials. The kinetics of thermal embrittlement and degree of embrittlement at saturation, i.e., the minimum impact energy achieved after long-term aging, were established from materials that were aged further in the laboratory. The results were consistent with the estimates. The correlations successfully predicted the mechanical properties of the Ringhals 2 reactor hot- and crossover-leg elbows (CF-8M steel) after service of {approx}15 y and the KRB reactor pump cover plate (CF-8) after {approx}8 y of service.

  6. Estimation of fracture toughness of cast stainless steels during thermal aging in LWR systems-revision 1

    SciTech Connect

    Chopra, O.K

    1994-08-01

    This report presents a revision of the procedure and correlations presented earlier in NUREG/CR-4513, ANL-90/42 (June 1991) for predicting the change in mechanical properties of cast stainless steel components due to thermal aging during service in light water reactors at 280-330{degrees}C (535-625{degrees}F). The correlations presented in this report are based on an expanded data base and have been optimized with mechanical-property data on cast stainless steels aged up to {approx}58,000 h at 290-350{degrees}C (554-633{degrees}F). The fracture toughness J-R curve, tensile stress, and Charpy-impact energy of aged cast stainless steels are estimated from known material information. Mechanical properties of a specific cast stainless steel are estimated from the extent and kinetics of thermal embrittlement. Embrittlement of cast stainless steels is characterized in terms of room-temperature Charpy-impact energy. Charpy-impact energy as a function of time and temperature of reactor service is estimated from the kinetics of thermal embrittlement, which are also determined from the chemical composition. The initial impact energy of the unaged steel is required for these estimations. Initial tensile flow stress is needed for estimating the flow stress of the aged material. The fracture toughness J-R curve for the material is then obtained by correlating room-temperature Charpy-impact energy with fracture toughness parameters. The values of J{sub IC} are determined from the estimated J-R curve and flow stress. A common {open_quotes}predicted lower-bound{close_quotes} J-R curve for cast stainless steels of unknown chemical composition is also defined for a given grade of steel, range of ferrite content, and temperature. Examples of estimating mechanical properties of cast stainless steel components during reactor service are presented.

  7. The Effects of Casting Porosity on the Tensile Behavior of Investment Cast 17-4PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Susan, D. F.; Crenshaw, T. B.; Gearhart, J. S.

    2015-08-01

    The effect of casting porosity on the mechanical behavior of investment cast 17-4PH stainless steel was studied as well as the effect of heat treatment on the alloy's sensitivity to casting defects. Interdendritic porosity, formed during solidification and shrinkage of the alloy, reduces the yield strength and ultimate tensile strength roughly in proportion to the reduction in load bearing cross-section. The effects of casting porosity on ductility (% strain, % reduction in area) are more severe, in agreement with research on other alloy systems. In this study, 10% porosity reduced the ductility of 17-4PH stainless steel by almost 80% for the high-strength H925 condition. Tensile testing at -10°C (263 K) further reduces the alloy ductility with and without pores present. In the lower strength H1100 condition, the ductility is higher than the H925 condition, as expected, and somewhat less sensitive to porosity. By measuring the area % porosity on the fracture surface of tensile specimens, the trend in failure strain versus area % porosity was obtained and analyzed using two methods: an empirical approach to determine an index of defect susceptibility with a logarithmic fit and an analytical approach based on the constitutive stress-strain behavior and critical strain concentration in the vicinity of the casting voids. The applicability of the second method depends on the amount of non-uniform strain (necking) and, as such, the softer H1100 material did not correlate well to the model. The behavior of 17-4PH was compared to previous work on cast Al alloys, Mg alloys, and other cast materials.

  8. Long-term aging of cast stainless steels: Mechanisms and resulting properties

    SciTech Connect

    Chopra, O.K.; Chung, H.M.

    1987-09-01

    Mechanical property data are presented from Charpy-impact, tensile, and J-R curve tests for several heats of cast stainless steel aged up to 10,000 h at 450, 400, 350, 320, and 290/sup 0/C. The results indicate that thermal aging increases the tensile strength and decreases the impactenergy, J/sub IC/ and tearing modulus of the steels. Also, the ductile-to-brittle transition curve shifts to higher temperatures. The low-carbon CF-3 steels were the most resistant and the molybdenum-containing high-carbon CF-8M steels were the most susceptible to low-temperature embrittlement. The influence of nitrogen content and distribution of ferrite on loss of toughness are discussed. Data also indicate that existing correlations do not accurately represent the embrittlement behavior over the temperature range 280 to 450/sup 0/C, i.e., extrapolation of high-temperature data to reactor temperatures may not be valid for some compositions of cast stainless steels. 13 refs., 13 figs., 2 tabs.

  9. Ferrite Measurement in Austenitic and Duplex Stainless Steel Castings - Literature Review

    SciTech Connect

    Lundin, C.D.; Zhou, G.; Ruprecht, W.

    1999-08-01

    The ability to determine ferrite rapidly, accurately and directly on a finished casting, in the solution annealed condition, can enhance the acceptance, save on manufacturing costs and ultimately improve service performance of duplex stainless steel cast products. If the suitability of a non-destructive ferrite determination methodology can be demonstrated for standard industrial measurement instruments, the production of cast secondary standards for calibration of these instruments is a necessity. With these concepts in mind, a series of experiments were carried out to demonstrate, in a non-destructive manner, the proper methodology for determining ferrite content. The literature was reviewed, with regard to measurement techniques and vagaries, an industrial ferrite measurement round-robin was conducted, the effects of casting surface finish, preparation of the casting surface for accurate measurement and the evaluation of suitable means for the production of cast secondary standards for calibration were systematically investigated. The data obtained from this research program provides recommendations to insure accurate, repeatable and reproducible ferrite measurement and qualifies the Feritscope for field use on production castings.

  10. Ferrite Measurement in Austenitic and Duplex Stainless Steel Castings - Final Report

    SciTech Connect

    Lundin, C.D.; Zhou, G.; Ruprecht, W.

    1999-08-01

    The ability to determine ferrite rapidly, accurately and directly on a finished casting, in the solution annealed condition, can enhance the acceptance, save on manufacturing costs and ultimately improve service performance of duplex stainless steel cast products. If the suitability of a non-destructive ferrite determination methodology can be demonstrated for standard industrial measurement instruments, the production of cast secondary standards for calibration of these instruments is a necessity. With these concepts in mind, a series of experiments were carried out to demonstrate, in a non-destructive manner, the proper methodology for determining ferrite content. The literature was reviewed, with regard to measurement techniques and vagaries, an industrial ferrite measurement round-robin was conducted, the effects of casting surface finish, preparation of the casting surface for accurate measurement and the evaluation of suitable means for the production of cast secondary standards for calibration were systematically investigated. The data obtained from this research program provide recommendations to ensure accurate, repeatable, and reproducible ferrite measurement and qualifies the Feritscope for field use on production castings.

  11. Assessment of Crack Detection in Heavy-Walled Cast Stainless Steel Piping Welds Using Advanced Low-Frequency Ultrasonic Methods

    SciTech Connect

    Anderson, Michael T.; Crawford, Susan L.; Cumblidge, Stephen E.; Denslow, Kayte M.; Diaz, Aaron A.; Doctor, Steven R.

    2007-03-01

    Studies conducted at the Pacific Northwest National Laboratory in Richland, Washington, have focused on assessing the effectiveness and reliability of novel approaches to nondestructive examination (NDE) for inspecting coarse-grained, cast stainless steel reactor components. The primary objective of this work is to provide information to the U.S. Nuclear Regulatory Commission on the effectiveness and reliability of advanced NDE methods as related to the inservice inspection of safety-related components in pressurized water reactors (PWRs). This report provides progress, recent developments, and results from an assessment of low frequency ultrasonic testing (UT) for detection of inside surface-breaking cracks in cast stainless steel reactor piping weldments as applied from the outside surface of the components. Vintage centrifugally cast stainless steel piping segments were examined to assess the capability of low-frequency UT to adequately penetrate challenging microstructures and determine acoustic propagation limitations or conditions that may interfere with reliable flaw detection. In addition, welded specimens containing mechanical and thermal fatigue cracks were examined. The specimens were fabricated using vintage centrifugally cast and statically cast stainless steel materials, which are typical of configurations installed in PWR primary coolant circuits. Ultrasonic studies on the vintage centrifugally cast stainless steel piping segments were conducted with a 400-kHz synthetic aperture focusing technique and phased array technology applied at 500 kHz, 750 kHz, and 1.0 MHz. Flaw detection and characterization on the welded specimens was performed with the phased array method operating at the frequencies stated above. This report documents the methodologies used and provides results from laboratory studies to assess baseline material noise, crack detection, and length-sizing capability for low-frequency UT in cast stainless steel piping.

  12. Ultrasonic Sound Field Mapping Through Coarse Grained Cast Austenitic Stainless Steel Components

    SciTech Connect

    Crawford, Susan L.; Prowant, Matthew S.; Cinson, Anthony D.; Larche, Michael R.; Diaz, Aaron A.

    2014-08-01

    The Pacific Northwest National Laboratory (PNNL) has been involved with nondestructive examination (NDE) of coarse-grained cast austenitic stainless steel (CASS) components for over 30 years. More recent work has focused on mapping the ultrasonic sound fields generated by low-frequency phased array probes that are typically used for the evaluation of CASS materials for flaw detection and characterization. The casting process results in the formation of large grained material microstructures that are nonhomogeneous and anisotropic. The propagation of ultrasonic energy for examination of these materials results in scattering, partitioning and redirection of these sound fields. The work reported here provides an assessment of sound field formation in these materials and provides recommendations on ultrasonic inspection parameters for flaw detection in CASS components.

  13. Development of Stronger and More Reliable Cast Austenitic Stainless Steels (H-Series) Based on Scientific and Design Methodology

    SciTech Connect

    Pankiw, Roman I; Muralidharan, G.; Sikka, Vinod K.

    2006-06-30

    The goal of this project was to increase the high-temperature strength of the H-Series of cast austenitic stainless steels by 50% and the upper use temperature by 86 to 140 degrees fahrenheit (30 to 60 degrees celsius). Meeting this goal is expected to result in energy savings of 35 trillion Btu/year by 2020 and energy cost savings of approximately $230 million/year. The higher-strength H-Series cast stainless steels (HK and HP type) have applications for the production of ethylene in the chemical industry, for radiant burner tubes and transfer rolls for secondary processing of steel in the steel industry, and for many applications in the heat treating industry, including radiant burner tubes. The project was led by Duraloy Technologies, Inc., with research participation by Oak Ridge National Laboratory (ORNL) and industrial participation by a diverse group of companies.

  14. Alloy Shrinkage factors for the investment casting of 17-4PH stainless steel parts

    SciTech Connect

    Sabau, Adrian S; Porter, Wallace D

    2008-01-01

    In this study, the alloy shrinkage factors were obtained for the investment casting of 17-4PH stainless steel parts. For the investment casting process, unfilled wax and fused silica with a zircon prime coat were used for patterns and shell molds, respectively. Dimensions of the die tooling, wax pattern, and casting were measured using a Coordinate Measurement Machine. For all the properties, the experimental data available in the literature did not cover the entire temperature range necessary for process simulation. A comparison between the predicted material property data measured property data is made. It was found that most material properties were accurately predicted over the most of the temperature range of the process. Several assumptions were made in order to obtain a complete set of mechanical property data at high temperatures. Thermal expansion measurements for the 17-4PH alloy were conducted at heating and cooling. As a function of temperature, the thermal expansion for both the alloy and shell mold materials showed different evolution at heating and cooling. Thus, one generic simulation were performed with thermal expansion obtained at heating and another one with thermal expansion obtained at cooling. The alloy dimensions were obtained from numerical simulation results of solidification, heat transfer, and deformation phenomena. As compared with experimental results, the numerical simulation results for the shrinkage factors were slightly over-predicted.

  15. Flexural Strength and Toughness of Austenitic Stainless Steel Reinforced High-Cr White Cast Iron Composite

    NASA Astrophysics Data System (ADS)

    Sallam, H. E. M.; Abd El-Aziz, Kh.; Abd El-Raouf, H.; Elbanna, E. M.

    2013-12-01

    Flexural behavior of high-Cr white cast iron (WCI) reinforced with different shapes, i.e., I- and T-sections, and volume fractions of austenitic stainless steel (310 SS) were examined under three-point bending test. The dimensions of casted beams used for bending test were (50 × 100 × 500 mm3). Carbon and alloying elements diffusion enhanced the metallurgical bond across the interface of casted beams. Carbon diffusion from high-Cr WCI into 310 SS resulted in the formation of Cr-carbides in 310 SS near the interface and Ni diffusion from 310 SS into high-Cr WCI led to the formation of austenite within a network of M7C3 eutectic carbides in high-Cr WCI near the interface. Inserting 310 SS plates into high-Cr WCI beams resulted in a significant improvement in their toughness. All specimens of this metal matrix composite failed in a ductile mode with higher plastic deformation prior to failure. The high-Cr WCI specimen reinforced with I-section of 310 SS revealed higher toughness compared to that with T-section at the same volume fraction. The presence of the upper flange increased the reinforcement efficiency for delaying the crack growth.

  16. Thermal embrittlement of simulated heat-affected zone in cast austenitic stainless steels

    SciTech Connect

    Mimura, H.; Taniguchi, T.; Horii, Y.; Kume, R.; Uesugi, N.

    1998-08-01

    Metallurgical factors controlling thermal embrittlement in the heat-affected zone (HAZ) of cast austenitic stainless steels were investigated by using the simulated HAZ. It was shown that the simulated HAZ was more susceptible to the thermal embrittlement by aging at 673 K in correspondence with its higher tendency to age hardening and a higher content of ferrite than the parent casting. Electron microprobe analyzer measurement showed that application of the simulated thermal cycle gave a change in the chemical composition of the ferrite, which might be a cause of the higher age hardening of the ferrite in the simulated HAZ. This higher ferrite hardness had a good correlation with fine precipitates of presumably G-phase in the ferrite grain, which existed more in the simulated HAZ than in the parent casting, though it is not clear whether this correlation was only apparent. Ductility of the austenite portion was found to reduce remarkably when surrounded by the hard ferrite of a high fraction. Annealing after aging restored CTOD to some degree. Aging after fatigue cracking gave more embrittlement than a usual procedure for preparation of test specimens, i.e., fatigue cracking after aging.

  17. Effect of thermal aging on the fatigue crack growth behavior of cast duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Lü, Xu-ming; Li, Shi-lei; Zhang, Hai-long; Wang, Yan-li; Wang, Xi-tao

    2015-11-01

    The effect of thermal aging on the fatigue crack growth (FCG) behavior of Z3CN20?09M cast duplex stainless steel with low ferrite content was investigated in this study. The crack surfaces and crack growth paths were analyzed to clarify the FCG mechanisms. The microstructure and micromechanical properties before and after thermal aging were also studied. Spinodal decomposition in the aged ferrite phase led to an increase in the hardness and a decrease in the plastic deformation capacity, whereas the hardness and plastic deformation capacity of the austenite phase were almost unchanged after thermal aging. The aged material exhibited a better FCG resistance than the unaged material in the near-threshold regime because of the increased roughness-induced crack closure associated with the tortuous crack path and rougher fracture surface; however, the tendency was reversed in the Paris regime because of the cleavage fracture in the aged ferrite phases.

  18. Properties of cast CF-8 stainless-steel weldments at cryogenic temperatures

    SciTech Connect

    Chow, J.G.Y.; Klamut, C.J.

    1981-01-01

    ISABELLE is a 400 x 400 GeV proton-proton colliding beam accelerator now under construction at Brookhaven National Laboratory. The beams will be guided and focused by superconducting magnets. A total of 722 dipole beam bending magnets and 280 quadrupole beam focusing magnets are required. Centrifugally cast CF-8 stainless steel tubes were selected to provide a rigid support and to house the superconducting magnet assembly. The selection of this material for the support tubes is discussed by Dew-Hughes and Lee. Their study indicates that the presence of delta ferrite strengthens the material but causes a decrease in ductility if the ferrite content is greater than 10%. Brown and Tobler found that the fracture toughness is also decreased as the delta ferrite content is increased.

  19. Automated Flaw Detection Scheme For Cast Austenitic Stainless Steel Weld Specimens Using Hilbert Huang Transform Of Ultrasonic Phased Array Data

    SciTech Connect

    Khan, T.; Majumdar, Shantanu; Udpa, L.; Ramuhalli, Pradeep; Crawford, Susan L.; Diaz, Aaron A.; Anderson, Michael T.

    2012-01-01

    The objective of this work is to develop processing algorithms to detect and localize the flaws using NDE ultrasonic data. Data was collected using cast austenitic stainless steel (CASS) weld specimens on-loan from the U.S. nuclear power industry’s Pressurized Water Reactor Owners Group (PWROG) specimen set. Each specimen consists of a centrifugally cast stainless steel (CCSS) pipe section welded to a statically cast (SCSS) or wrought (WRSS) section. The paper presents a novel automated flaw detection and localization scheme using low frequency ultrasonic phased array inspection signals in the weld and heat affected zone of the base materials. The major steps of the overall scheme are preprocessing and region of interest (ROI) detection followed by the Hilbert Huang transform (HHT) of A-scans in the detected ROIs. HHT offers time-frequency-energy distribution for each ROI. The accumulation of energy in a particular frequency band is used as a classification feature for the particular ROI.

  20. Structure characteristics in industrially centrifugally cast 25Cr20Ni stainless steel tubes solidified under different electromagnetic field intensity

    SciTech Connect

    Wu, X.Q.; Yang, Y.S.; Zhang, J.S.; Jia, G.L.; Hu, Z.Q.

    1999-10-01

    The influences of different electromagnetic field intensities on the solidification structures of industrially centrifugally cast 25Cr20Ni stainless steel tubes have been investigated in detail. The results reveal that the electromagnetic field exerted during the centrifugal solidification causes a marked variation in the structures of the cast tubes. With an increase of the electromagnetic field intensity, the area fraction of the equiaxed structures in transverse sections of the cast tubes increases, and the macrostructures are gradually refined. The distribution of the eutectic carbides changes from the dendrite boundaries to the grain boundaries. However, an excessive electromagnetic field intensity gives rise to many intergranular cast defects formed along the inner walls of the centrifugally cast tubes. The effects of fluid flow induced by the electromagnetic field on the solidification process of the centrifugally cast tubes are the primary reason for the previously mentioned structure variations.

  1. Microstructural characteristics and corrosion behavior of a super duplex stainless steel casting

    SciTech Connect

    Martins, Marcelo Casteletti, Luiz Carlos

    2009-02-15

    The machining of super duplex stainless steel castings is usually complicated by the difficulty involved in maintaining the dimensional tolerances required for given applications. Internal stresses originating from the solidification process and from subsequent heat treatments reach levels that exceed the material's yield strength, promoting plastic strain. Stress relief heat treatments at 520 deg. C for 2 h are an interesting option to solve this problem, but because these materials present a thermodynamically metastable condition, a few precautions should be taken. The main objective of this work was to demonstrate that, after solution annealing at 1130 deg. C and water quenching, stress relief at 520 deg. C for 2 h did not alter the duplex microstructure or impair the pitting corrosion resistance of ASTM A890/A890M Grade 6A steel. This finding was confirmed by microstructural characterization techniques, including light optical and scanning electron microscopy, and X-ray diffraction. Corrosion potential measurements in synthetic sea water containing 20,000 ppm of chloride ions were also conducted at three temperatures: 5 deg. C, 25 deg. C and 60 deg. C.

  2. Strengthening of σ phase in a Fe20Cr9Ni cast austenite stainless steel

    SciTech Connect

    Wang, Y.Q.; Han, J.; Yang, B.; Wang, X.T.

    2013-10-15

    The strengthening mechanism of σ phase in a Fe20Cr9Ni cast austenite stainless steel used for primary coolant pipes of nuclear power plants has been investigated. The yield and ultimate tensile strengths of aged specimens increased comparing with those of the unaged ones. It was found that the increase of strengths is due to the hard and brittle (σ + γ{sub 2}) structure which decomposed from α phase in the steel. Fracture surfaces of specimens after in situ tensile test showed that the inhibition of (σ + γ{sub 2}) structure on the dislocation movements was more significant than ferrite although cracks started predominately at σ/γ{sub 2} interfaces. The (σ + γ{sub 2}) structure behaves like a fiber reinforced composite material. - Highlights: • The strengthening mechanism of σ phase in a Fe20Cr9Ni CASS is investigated. • The yield and ultimate tensile strengths increase with increasing of σ phase. • The increase of strengths is due to hard and brittle (σ + γ{sub 2}) structure. • The (σ + γ{sub 2}) structure in CASS behaves like a fibre reinforced composite material. • The σ/γ{sub 2} and α/σ/γ{sub 2} boundaries hinder the movement of dislocation.

  3. Final Report, Volume 2, The Development of Qualification Standards for Cast Duplex Stainless Steel

    SciTech Connect

    Russell, Steven, W.; Lundin, Carl, D.

    2005-09-30

    The scope of testing cast Duplex Stainless Steel (DSS) required testing to several ASTM specifications, while formulating and conducting industry round robin tests to verify and study the reproducibility of the results. ASTM E562 (Standard Test Method for Determining Volume Fraction by Systematic manual Point Count) and ASTM A923 (Standard Test Methods for Detecting Detrimental Intermetallic Phase in Wrought Duplex Austenitic/Ferritic Stainless Steels) were the specifications utilized in conducting this work. An ASTM E562 industry round robin, ASTM A923 applicability study, ASTM A923 industry round robin, and an ASTM A923 study of the effectiveness of existing foundry solution annealing procedures for producing cast DSS without intermetallic phases were implemented. In the ASTM E562 study, 5 samples were extracted from various cast austenitic and DSS in order to have varying amounts of ferrite. Each sample was metallographically prepared by UT and sent to each of 8 participants for volume fraction of ferrite measurements. Volume fraction of ferrite was measured using manual point count per ASTM E562. FN was measured from the Feritescope{reg_sign} and converted to volume fraction of ferrite. Results indicate that ASTM E562 is applicable to DSS and the results have excellent lab-to-lab reproducibility. Also, volume fraction of ferrite conversions from the FN measured by the Feritescope{reg_sign} were similar to volume fraction of ferrite measured per ASTM E562. In the ASTM A923 applicability to cast DSS study, 8 different heat treatments were performed on 3 lots of ASTM A890-4A (CD3MN) castings and 1 lot of 2205 wrought DSS. The heat treatments were selected to produce a wide range of cooling rates and hold times in order to study the suitability of ASTM A923 to the response of varying amounts on intermetallic phases [117]. The test parameters were identical to those used to develop ASTM A923 for wrought DSS. Charpy V-notch impact samples were extracted from the

  4. Final Report, Volume 2, The Development of Qualification Standards for Cast Duplex Stainless Steel

    SciTech Connect

    Russell, Steven, W.; Lundin, Carl, W.

    2005-09-30

    The scope of testing cast Duplex Stainless Steel (DSS) required testing to several ASTM specifications, while formulating and conducting industry round robin tests to verify and study the reproducibility of the results. ASTM E562 (Standard Test Method for Determining Volume Fraction by Systematic manual Point Count) and ASTM A923 (Standard Test Methods for Detecting Detrimental Intermetallic Phase in Wrought Duplex Austenitic/Ferritic Stainless Steels) were the specifications utilized in conducting this work. An ASTM E562 industry round robin, ASTM A923 applicability study, ASTM A923 industry round robin, and an ASTM A923 study of the effectiveness of existing foundry solution annealing procedures for producing cast DSS without intermetallic phases were implemented. In the ASTM E562 study, 5 samples were extracted from various cast austenitic and DSS in order to have varying amounts of ferrite. Each sample was metallographically prepared by UT and sent to each of 8 participants for volume fraction of ferrite measurements. Volume fraction of ferrite was measured using manual point count per ASTM E562. FN was measured from the Feritescope® and converted to volume fraction of ferrite. Results indicate that ASTM E562 is applicable to DSS and the results have excellent lab-to-lab reproducibility. Also, volume fraction of ferrite conversions from the FN measured by the Feritescope® were similar to volume fraction of ferrite measured per ASTM E562. In the ASTM A923 applicability to cast DSS study, 8 different heat treatments were performed on 3 lots of ASTM A890-4A (CD3MN) castings and 1 lot of 2205 wrought DSS. The heat treatments were selected to produce a wide range of cooling rates and hold times in order to study the suitability of ASTM A923 to the response of varying amounts on intermetallic phases [117]. The test parameters were identical to those used to develop ASTM A923 for wrought DSS. Charpy V-notch impact samples were extracted from the castings and wrought

  5. 3D Numerical Simulation on Thermal Flow Coupling Field of Stainless Steel During Twin-Roll Casting

    NASA Astrophysics Data System (ADS)

    Liu, Lianlian; Liao, Bo; Guo, Jing; Liu, Ligang; Hu, Hongyan; Zhang, Yue; Yang, Qingxiang

    2014-01-01

    The surface crack and lateral crack of the AISI 304 stainless steel thin strip produced by twin-roll casting were observed. The temperature at the center of outlet during twin-roll-casting process was determined by infrared thermometer. In order to avoid the surface cracks of the casting strip, the thermal flow coupling field of AISI 304 stainless steel during twin-roll-casting process was simulated by a 3D fluid-structure coupling model. According to the simulation result, the effect of the casting speed on thermal flow field was analyzed and the process parameters were optimized. Moreover, by studying heat flux curves, the heat transfer mechanism between molten pool and roll was analyzed. The results show that, with the increase of the casting speed, the temperature of the molten pool increases and the solidification point moves toward the outlet. Meanwhile, the whirlpool above gets larger. Based on the solidification front position, the optimized process parameters are 1500 °C and 0.37 m/s. The heat transfer mechanism between molten pool and roll contains direct contacting heat transfer and air gap heat transfer.

  6. Progress in the Reliable Inspection of Cast Stainless Steel Reactor Piping Components

    SciTech Connect

    Doctor, Steven R.; Anderson, Michael T.; Diaz, Aaron A.; Cumblidge, Stephen E.

    2005-12-31

    Studies conducted at the Pacific N¬orthwest National Laboratory (PNNL) in Richland, Washington, have focused on assessing the effectiveness and reliability of novel NDE approaches for the inspection of coarse-grained, cast stainless steel reactor components. The primary objective of this work is to provide information to the United States Nuclear Regulatory Commission (US NRC) on the utility, effec¬tiveness and reliability of ultrasonic testing (UT) and eddy current testing (ET) inspection techniques as related to the inservice ultrasonic inspec¬tion of primary piping components in pressurized water reactors (PWRs). This paper describes progress, recent developments and results from assessments of three different NDE approaches including ultrasonic phased array inspection techniques, eddy current testing for surface-breaking flaws, and a low-frequency ultrasonic inspection methodology coupled with a synthetic aperture focusing technique (SAFT). Westinghouse Owner’s Group (WOG) cast stainless steel pipe segments with thermal and mechanical fatigue cracks, PNNL samples containing thermal fatigue cracks and several blank spool pieces were used for assessing the inspection methods. Eddy current studies were conducted on the inner diameter (ID) surface of piping specimens while the ultrasonic inspection methods were applied from the outer diameter (OD) surface of the specimens. The eddy current technique employed a Zetec MIZ-27SI Eddy Current instrument and a Zetec Z0000857-1 cross point spot probe with an operating frequency of 250 kHz. In order to reduce noise effects, degaussing of a subset of the samples resulted in noticeable improvements. The phased array approach was implemented using an R/D Tech Tomoscan III system operating at 1 MHz, providing composite volumetric images of the samples. The low-frequency ultrasonic method employs a zone-focused, multi-incident angle inspection protocol (operating at 250-500 kHz) coupled with SAFT for improved signal

  7. Cracking behavior of thermally aged and irradiated CF-8 cast austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Alexandreanu, B.; Chen, W.-Y.; Natesan, K.; Li, Z.; Yang, Y.; Rao, A. S.

    2015-11-01

    To assess the combined effect of thermal aging and neutron irradiation on the cracking behavior of CF-8 cast austenitic stainless steel, crack growth rate (CGR) and fracture toughness J-R curve tests were carried out on compact-tension specimens in high-purity water with low dissolved oxygen. Both unaged and thermally aged specimens were irradiated at ∼320 °C to 0.08 dpa. Thermal aging at 400 °C for 10,000 h apparently had no effect on the corrosion fatigue and stress corrosion cracking behavior in the test environment. The cracking susceptibility of CF-8 was not elevated significantly by neutron irradiation at 0.08 dpa. Transgranular cleavage-like cracking was the main fracture mode during the CGR tests, and a brittle morphology of delta ferrite was often seen on the fracture surfaces at the end of CGR tests. The fracture toughness J-R curve tests showed that both thermal aging and neutron irradiation can induce significant embrittlement. The loss of fracture toughness due to neutron irradiation was more pronounced in the unaged than aged specimens. After neutron irradiation, the fracture toughness values of the unaged and aged specimens were reduced to a similar level. G-phase precipitates were observed in the aged and irradiated specimens with or without prior aging. The similar microstructural changes resulting from thermal aging and irradiation suggest a common microstructural mechanism of inducing embrittlement in CF-8.

  8. Erosive Wear Behavior of High-Alloy Cast Iron and Duplex Stainless Steel under Mining Conditions

    NASA Astrophysics Data System (ADS)

    Yoganandh, J.; Natarajan, S.; Kumaresh Babu, S. P.

    2015-09-01

    Centrifugal pumps used in the lignite mines encounter erosive wear problems, leading to a disastrous failure of the pump casings. This paper attempts to evaluate the erosive wear resistance of Ni-Hard 4, high-chromium iron, and Cast CD4MCu duplex stainless steel (DSS), for mining conditions. The prepared test coupons were subjected to an erosion test by varying the impingement velocity and the angle of impingement, under two different pH conditions of 3 and 7, which pertained to the mining conditions. XRD analysis was carried out to confirm the phases present in the alloy. The eroded surface was subjected to SEM analysis to identify the erosion mechanisms. The surface degradation of Ni-Hard 4 and high-chromium iron came from a low-angle abrasion with a grooving and plowing mechanism at a low angle of impingement. At normal impingement, deep indentations resulted in lips and crater formations, leading to degradation of the surface in a brittle manner. A combined extrusion-forging mechanism is observed in the CD4MCu DSS surface at all the impingement angles.

  9. Mechanical property and microstructural change by thermal aging of SCS14A cast duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Yamada, Takuyo; Okano, Satoshi; Kuwano, Hisashi

    2006-03-01

    The aging behavior, especially saturation, of JIS SCS14A cast duplex stainless steels was investigated on the basis of the mechanical properties and microstructural changes during accelerated aging at 350 °C and 400 °C. The aging behavior of the materials mainly proceeds via two stages. During the first stage, the generation and concentration of the iron-rich and chromium-enriched phase in ferrite occurs by phase decomposition. The first stage corresponds to aging times of up to 3000 h at 400 °C. During the first stage, the ferrite hardness achieved is approximately 600 VHN, and the Charpy impact energy is almost saturated. During the second stage, the precipitated chromium-enriched phase aggregates and coarsens, and the G phase precipitation also occurs. The second stage corresponds to the aging times range of 3000-30 000 h at 400 °C. During the second stage, the ferrite hardness achieved is about 800 VHN; however, further hardening exceeding 600 VHN does not influence the Charpy impact energy.

  10. Fabrication of low-cost, cementless femoral stem 316L stainless steel using investment casting technique.

    PubMed

    Baharuddin, Mohd Yusof; Salleh, Sh-Hussain; Suhasril, Andril Arafat; Zulkifly, Ahmad Hafiz; Lee, Muhammad Hisyam; Omar, Mohd Afian; Abd Kader, Ab Saman; Mohd Noor, Alias; A Harris, Arief Ruhullah; Abdul Majid, Norazman

    2014-07-01

    Total hip arthroplasty is a flourishing orthopedic surgery, generating billions of dollars of revenue. The cost associated with the fabrication of implants has been increasing year by year, and this phenomenon has burdened the patient with extra charges. Consequently, this study will focus on designing an accurate implant via implementing the reverse engineering of three-dimensional morphological study based on a particular population. By using finite element analysis, this study will assist to predict the outcome and could become a useful tool for preclinical testing of newly designed implants. A prototype is then fabricated using 316L stainless steel by applying investment casting techniques that reduce manufacturing cost without jeopardizing implant quality. The finite element analysis showed that the maximum von Mises stress was 66.88 MPa proximally with a safety factor of 2.39 against endosteal fracture, and micromotion was 4.73 μm, which promotes osseointegration. This method offers a fabrication process of cementless femoral stems with lower cost, subsequently helping patients, particularly those from nondeveloped countries. PMID:24404766

  11. Technical Letter Report on the Cracking of Irradiated Cast Stainless Steels with Low Ferrite Content

    SciTech Connect

    Chen, Y.; Alexandreanu, B.; Natesan, K.

    2014-11-01

    Crack growth rate and fracture toughness J-R curve tests were performed on CF-3 and CF-8 cast austenite stainless steels (CASS) with 13-14% of ferrite. The tests were conducted at ~320°C in either high-purity water with low dissolved oxygen or in simulated PWR water. The cyclic crack growth rates of CF-8 were higher than that of CF-3, and the differences between the aged and unaged specimens were small. No elevated SCC susceptibility was observed among these samples, and the SCC CGRs of these materials were comparable to those of CASS alloys with >23% ferrite. The fracture toughness values of unirradiated CF-3 were similar between unaged and aged specimens, and neutron irradiation decreased the fracture toughness significantly. The fracture toughness of CF-8 was reduced after thermal aging, and declined further after irradiation. It appears that while lowering ferrite content may help reduce the tendency of thermal aging embrittlement, it is not very effective to mitigate irradiation-induced embrittlement. Under a combined condition of thermal aging and irradiation, neutron irradiation plays a dominant role in causing embrittlement in CASS alloys.

  12. Effect of heavy ion irradiation on microstructural evolution in CF8 cast austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Ying; Li, Meimei; Kirk, Marquis A.; Baldo, Peter M.; Lian, Tiangan

    2016-04-01

    The microstructural evolution in ferrite and austenitic in cast austenitic stainless steel (CASS) CF8, as received or thermally aged at 400 °C for 10,000 h, was followed under TEM with in situ irradiation of 1 MeV Kr ions at 300 and 350 °C to a fluence of 1.9 × 1015 ions/cm2 (∼3 dpa) at the IVEM-Tandem Facility. For the unaged CF8, the irradiation-induced dislocation loops appeared at a much lower dose in the austenite than in the ferrite. At the end dose, the austenite formed a well-developed dislocation network microstructure, while the ferrite exhibited an extended dislocation structure as line segments. Compared to the unaged CF8, the aged specimen appeared to have lower rate of damage accumulation. The rate of microstructural evolution under irradiation in the ferrite was significantly lower in the aged specimen than in the unaged. This difference is attributed to the different initial microstructures in the unaged and aged specimens, which implies that thermal aging and irradiation are not independent but interconnected damage processes.

  13. Application of ultrasonic waves to assess grain structure in cast stainless steel

    SciTech Connect

    Kupperman, D.S.; Reimann, K.J.; Abrego-Lopez, J.

    1985-04-01

    Although the ASME code requires the inspection of cast stainless steel (CSS) piping in nuclear reactors, it has not been possible to demonstrate unambiguously that current inspection techniques are adequate. Ultrasonic inspection is difficult because the microstructure of CSS can vary considerably, from elastically isotropic with equiaxed, relatively small grains to elastically anisotropic with a columnar grain structure to a combination of the two. For the near term, improvements that may increase the reliability of ultrasonic inspection include (a) the development of methods to establish the microstructure of the material (to help optimize the inspection technique), (b) the identification of calibration standards that are more representative of the material to be inspected and (c) the use of cracked CSS samples for training purposes. In this paper, the results of experiments to characterize the microstructure of CSS by use of ultrasonic waves will be discussed. Shear waves may be more effective for isotropic material, whereas longitudinal waves may be better for the anisotropic case because of beam-focusing effects. Sound velocity and beam skewing can be measured accurately enough to characterize CSS even in thick-walled reactor components. 5 refs., 6 figs., 2 tabs.

  14. Methods for the In-Situ Characterization of Cast Austenitic Stainless Steel Microstructures

    SciTech Connect

    Ramuhalli, Pradeep; Good, Morris S.; Harris, Robert V.; Bond, Leonard J.; Ruud, Clayton O.; Diaz, Aaron A.; Anderson, Michael T.

    2011-06-29

    Cast austenitic stainless steel (CASS) that was commonly used in U.S. nuclear power plants is a coarse-grained, elastically anisotropic material. Its engineering properties made it a material of choice for selected designs of nuclear power reactor systems. However, the fabrication processes result in a variety of coarse-grain microstructures that make current ultrasonic in-service inspection of components quite challenging. To address inspection needs, new ultrasonic inspection approaches are being sought. However, overcoming the deleterious and variable effects of the microstructure on the interrogating ultrasonic beam may require knowledge of the microstructure, for potential optimization of inspection parameters to enhance the probability of detection (POD). The ability to classify microstructure type (e.g. polycrystalline or columnar) has the potential to guide selection of optimal NDE approaches. This paper discusses the application of ultrasonic and electromagnetic methods for classifying CASS microstructures, when making measurements from the outside surface of the component. Results to date demonstrate the potential of these measurements to discriminate between two consistent microstructures - equiaxed-grain material versus columnar-grain material. The potential for fusion of ultrasonic and electromagnetic measurements for in-situ microstructure characterization in CASS materials will be explored.

  15. Lamb wave inspection for large cracks in centrifugally cast stainless steel: Interim report

    SciTech Connect

    Not Available

    1988-08-01

    The objective of the present research project is to develop an inspection technique to detect and size large-scale cracks in centrifugally cast stainless steel (CCSS) pipes. This technique is based on the use of Lamb waves, or generally the resonant modes of propagation in the considered geometry, to circumvent the difficulties encountered when the conventional ultrasonic bulk waves are used to inspect the anisotropic, highly absorptive CCSS material. The research activities in 1987 were focused on probe design, Lamb-wave mode selection and excitation, detection mechanism, and anisotropy and curvature effects. The optimal design of a laboratory search unit was determined to be a tandem dual-element system built on the liquid-wedge principle. A reliable mechanism, which features a strong amplitude reduction when the search unit is scanned over a crack, was identified for crack detection and location. The preliminary experimental and analytical findings indicate that the best resonant modes were identified to be the four lowest modes in light of their excitability and minimization of the anisotropy effect. Finally, for typical geometrical dimensions under consideration, the curvature effect was found to be minimal.

  16. Long-term embrittlement of cast duplex stainless steels in LWR systems. Semiannual report, April--September 1992: Volume 7, No. 2

    SciTech Connect

    Chopra, O.K.

    1993-07-01

    This progress report summarizes work performed by Argonne National Laboratory on longterm thermal embrittlement of cast duplex stainless steels in LWR systems during the six months from April--September 1992. A procedure and correlations are presented for predicting Charpy-impact energy, tensile flow stress, fracture toughness J-R curve, tearing modulus, and J{sub IC} of aged cast stainless steels from known material information. The ``saturation`` impact strength and fracture toughness of a specific cast stainless steel, i.e., the minimum value that would be achieved for the material after long-term service, is estimated from the chemical composition of the steel. Mechanical properties as a function of time and temperature of reactor service are estimated from impact energy and flow stress of the unaged material and the kinetics of embrittlement, which are also determined from chemical composition. The J{sub IC} values are determined from the estimated J-R curve and flow stress. Examples of estimating mechanical properties of cast stainless steel components during reactor service are presented. A common ``lower-bound`` J-R curve for cast stainless steels of unknown chemical composition is also defined for a given grade of steel, ferrite content, and temperature.

  17. Analysis of cracking phenomena in continuous casting of 1Cr13 stainless steel billets with final electromagnetic stirring

    NASA Astrophysics Data System (ADS)

    Xu, Yu; Xu, Rong-jun; Fan, Zheng-jie; Li, Cheng-bin; Deng, An-yuan; Wang, En-gang

    2016-05-01

    Solidification cracking that occurs during continuous casting of 1Cr13 stainless steel was investigated with and without final electromagnetic stirring (F-EMS). The results show that cracks initiates and propagates along the grain boundaries where the elements of carbon and sulfur are enriched. The final stirrer should be appropriately placed at a location that is 7.5 m away from the meniscus, and the appropriate thickness of the liquid core in the stirring zone is 50 mm. As a stirring current of 250 A is imposed, it can promote columnar-equiaxed transition, decrease the secondary dendrite arm spacing, and reduce the segregation of both carbon and sulfur. F-EMS can effectively decrease the amount of cracks in 1Cr13 stainless steel.

  18. Long-term embrittlement of cast duplex stainless steels in LWR systems. Semiannual report, October 1991--March 1992: Volume 7, No.1

    SciTech Connect

    Chopra, O.K.

    1993-05-01

    This progress report summarizes work performed by Argonne National Laboratory on long-term thermal embrittlement of cast duplex stainless steels in LWR systems during the six months from October 1991 to March 1992. Charpy-impact, tensile, and fracture toughness J-R curve data are presented for several heats of cast stainless steel that were aged 10,000-58,000 h at 290, 320, and 350{degree}C. The results indicate that thermal aging decreases the fracture toughness of cast stainless steels. In general, CF-3 steels are the least sensitive to thermal aging and CF-8M steels are the most sensitive. The values of fracture toughness J{sub IC} and tearing modulus for CF-8M steels can be as low as {approx}90 kJ/m{sup 2} and {approx}60, respectively. The fracture toughness data are consistent with the Charpy-impact results, i.e. unaged and aged steels that show low impact energy also exhibit lower fracture toughness. All steels reach a minimum saturation fracture toughness after thermal aging; the time to reach saturation depends on the aging temperature. The results also indicate that low-strength cast stainless steels are generally insensitive to thermal aging.

  19. Effect of N addition on tensile and corrosion behaviors of CD4MCU cast duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Son, Jinil; Kim, Sangshik; Lee, Jehyun; Choi, Byunghak

    2003-08-01

    The effect of N addition on the microstructure, tensile, and corrosion behaviors of CD4MCU (Fe-25Cr-5Ni-2.8Cu-2Mo) cast duplex stainless steel was examined in the present study. The slow strain rate tests were also conducted at a nominal strain rate of 1 × 10-6/s in air and 3.5 pct NaCl+5 pct H2SO4 solution for studying the stress corrosion cracking (SCC) behavior. It was observed that the volume fraction of austenitic phase in CD4MCU alloy varied from 38 to 59 pct with increasing nitrogen content from 0 to 0.27 wt. pct. The tensile behavior of CD4MCU cast duplex stainless steels, which tended to vary significantly with different N contents, appeared to be strongly related to the volume changes in ferritic and austenitic phases, rather than the intrinsic N effect. The improvement in the resistance to general corrosion in 3.5 pct NaCl+5 pct H2SO4 aqueous solution was notable with 0.13 pct N addition. The further improvement was not significant with further N addition. The resistance to SCC of CD4MCU cast duplex stainless steels in 3.5 pct NaCl+5 pct H2SO4 aqueous solution, however, increased continuously with increasing N content. The enhancement in the SCC resistance was believed to be related to the volume fraction of globular austenitic colonies, which tended to act as barriers for the development of initial pitting cracks in the ferritic phase into the sharp ones.

  20. Conditions for the Efficient Crushing of the As-Cast Microstructure of 30Cr10Ni Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Terčelj, Milan; Fazarinc, Matevz; Bombač, David; Kugler, Goran

    2010-12-01

    The hot-deformation behavior of as-cast 30Cr10Ni duplex stainless steel was investigated with the aim to understand the conditions better that lead to the occurrence of cracking. Because of the increased content of Cr, Ni, and C, the 30Cr10Ni ferrous alloy exhibits a complex microstructure, especially in the as-cast state in which, in addition to the ferrite, austenite, and sigma phases, carbides also are present; this leads to a very complex hot-deformation behavior. Hot-compression tests on specimens with an as-cast initial microstructure in the temperature range 1223 K (950 °C) to1573 K (1300 °C) and strain rates of 0.1 to 5.0 s-1 were carried out. To find the most appropriate sequence of initial hot-deformation steps for the effective crushing of the as-cast microstructure, a special experimental procedure was developed. The results indicate that in the temperature range 1423 K (1150 °C) to 1523 K (1250 °C), the as-cast microstructure exhibits increased workability, whereas below this temperature, the microstructure is prone to cracking. As such, the as-cast microstructure should be crushed in the high-temperature range to avoid the occurrence of cracking.

  1. Sigma phase morphologies in cast and aged super duplex stainless steel

    SciTech Connect

    Martins, Marcelo; Casteletti, Luiz Carlos

    2009-08-15

    Solution annealed and water quenched duplex and super duplex stainless steels are thermodynamically metastable systems at room temperature. These systems do not migrate spontaneously to a thermodynamically stable condition because an energy barrier separates the metastable and stable states. However, any heat input they receive, for example through isothermal treatment or through prolonged exposure to a voltaic arc in the welding process, cause them to reach a condition of stable equilibrium which, for super duplex stainless steels, means precipitation of intermetallic and carbide phases. These phases include the sigma phase, which is easily identified from its morphology, and its influence on the material's impact strength. The purpose of this work was to ascertain how 2-hour isothermal heat treatments at 920 deg. C and 980 deg. C affect the microstructure of ASTM A890/A890M GR 6A super duplex stainless steel. The sigma phase morphologies were found to be influenced by these two aging temperatures, with the material showing a predominantly lacy microstructure when heat treated at 920 deg. C and block-shaped when heat treated at 980 deg. C.

  2. Development of Stronger and More Reliable Cast Austenitic Stainless Steels (H-Series) Based on Scientific Design Methodology

    SciTech Connect

    Muralidharan, G.; Sikka, V.K.; Pankiw, R.I.

    2006-04-15

    The goal of this program was to increase the high-temperature strength of the H-Series of cast austenitic stainless steels by 50% and upper use temperature by 86 to 140 F (30 to 60 C). Meeting this goal is expected to result in energy savings of 38 trillion Btu/year by 2020 and energy cost savings of $185 million/year. The higher strength H-Series of cast stainless steels (HK and HP type) have applications for the production of ethylene in the chemical industry, for radiant burner tubes and transfer rolls for secondary processing of steel in the steel industry, and for many applications in the heat-treating industry. The project was led by Duraloy Technologies, Inc. with research participation by the Oak Ridge National Laboratory (ORNL) and industrial participation by a diverse group of companies. Energy Industries of Ohio (EIO) was also a partner in this project. Each team partner had well-defined roles. Duraloy Technologies led the team by identifying the base alloys that were to be improved from this research. Duraloy Technologies also provided an extensive creep data base on current alloys, provided creep-tested specimens of certain commercial alloys, and carried out centrifugal casting and component fabrication of newly designed alloys. Nucor Steel was the first partner company that installed the radiant burner tube assembly in their heat-treating furnace. Other steel companies participated in project review meetings and are currently working with Duraloy Technologies to obtain components of the new alloys. EIO is promoting the enhanced performance of the newly designed alloys to Ohio-based companies. The Timken Company is one of the Ohio companies being promoted by EIO. The project management and coordination plan is shown in Fig. 1.1. A related project at University of Texas-Arlington (UT-A) is described in Development of Semi-Stochastic Algorithm for Optimizing Alloy Composition of High-Temperature Austenitic Stainless Steels (H-Series) for Desired

  3. Cast, heat-resistant austenitic stainless steels having reduced alloying element content

    DOEpatents

    Muralidharan, Govindarajan [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Pankiw, Roman I [Greensburg, PA

    2011-08-23

    A cast, austenitic steel composed essentially of, expressed in weight percent of the total composition, about 0.4 to about 0.7 C, about 20 to about 30 Cr, about 20 to about 30 Ni, about 0.5 to about 1 Mn, about 0.6 to about 2 Si, about 0.05 to about 1 Nb, about 0.05 to about 1 W, about 0.05 to about 1.0 Mo, balance Fe, the steel being essentially free of Ti and Co, the steel characterized by at least one microstructural component selected from the group consisting of MC, M.sub.23C.sub.6, and M(C, N).

  4. Cast, heat-resistant austenitic stainless steels having reduced alloying element content

    DOEpatents

    Muralidharan, Govindarajan [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Pankiw, Roman I [Greensburg, PA

    2010-07-06

    A cast, austenitic steel composed essentially of, expressed in weight percent of the total composition, about 0.4 to about 0.7 C, about 20 to about 30 Cr, about 20 to about 30 Ni, about 0.5 to about 1 Mn, about 0.6 to about 2 Si, about 0.05 to about 1 Nb, about 0.05 to about 1 W, about 0.05 to about 1.0 Mo, balance Fe, the steel being essentially free of Ti and Co, the steel characterized by at least one microstructural component selected from the group consisting of MC, M.sub.23C.sub.6, and M(C, N).

  5. Internal Crack Propagation in a Continuously Cast Austenitic Stainless Steel Analyzed by Actual Residual Stress Tensor Distributions

    NASA Astrophysics Data System (ADS)

    Saito, Youichi; Tanaka, Shun-Ichiro

    2016-04-01

    Initiation, propagation, and termination of internal cracks in a continuously cast austenitic stainless steel has been investigated with emphasis on stress loading of the solidified shell during casting. Cracks were formed at the center of the slab, parallel to the width of the cast, and were observed near the narrow faces. Optimized two-dimensional X-ray diffraction method was employed to measure residual stress tensor distributions around the cracks in the as-cast slab with coarse and strongly preferentially oriented grains. The tensor distributions had a sharp peak, as high as 430 MPa, at the crack end neighboring the columnar grains. On the other hand, lower values were measured at the crack end neighboring the equiaxed grains, where the local temperatures were higher during solidification. The true residual stress distributions were determined by evaluating the longitudinal elastic constant for each measured position, resulting in more accurate stress values than before. Electron probe micro-analysis at the terminal crack position showed that Ni, Ti, and Si were concentrated at the boundaries of the equiaxed grains, where the tensile strength was estimated to be lower than at the primary grains. A model of the crack formation and engineering recommendations to reduce crack formation are proposed.

  6. Energy Saving Melting and Revert Reduction (E-SMARRT): Optimization of Heat Treatments on Stainless Steel Castings for Improved Corrosion Resistance and Mechanical Properties

    SciTech Connect

    John N. DuPont; Jeffrey D. Farren; Andrew W. Stockdale; Brett M. Leister

    2012-06-30

    It is commonly believed that high alloy steel castings have inferior corrosion resistance to their wrought counterparts as a result of the increased amount of microsegregation remaining in the as-cast structure. Homogenization and dissolution heat treatments are often utilized to reduce or eliminate the residual microsegregation and dissolve the secondary phases. Detailed electron probe microanalysis (EPMA) and light optical microscopy (LOM) were utilized to correlate the amount of homogenization and dissolution present after various thermal treatments with calculated values and with the resultant corrosion resistance of the alloys.The influence of heat treatment time and temperature on the homogenization and dissolution kinetics were investigated using stainless steel alloys CN3MN and CK3MCuN. The influence of heat treatment time and temperature on the impact toughness and corrosion reistance of cast stainless steel alloys CF-3, CF-3M, CF-8, and CF-8M was also investigated.

  7. Heat treatment of investment cast PH 13-8 Mo stainless steel; Part 2: Isothermal aging kinetics

    SciTech Connect

    Robino, C.V.; Cieslak, M.J. . Physical and Joining Metallurgy Dept.); Hochanadel, P.W.; Edwards, G.R. . Dept. of Metallurgical and Materials Engineering)

    1994-04-01

    The hardening response of investment cast PH 13-8 Mo stainless steel has been evaluated by hardness measurements following aging in the temperature range normally specified for this alloy (510 C to 593 C). A new relationship between fraction transformed and hardness was developed, and analysis of the data in terms of the kinetics of precipitation, in a manner similar to that frequently applied to other precipitation-hardenable martensitic steels, yielded low time exponents and a low value for the apparent activation energy. The values of the time exponents were 0.49, 0.37, 0.56, and 0.53 at 510 C, 538 C, 566 C, and 593 C, respectively, and that for the apparent activation energy was 139 kJ/mole. As has been proposed for other maraging type steels, these estimates suggest that [beta]-NiAl precipitates along or near dislocations and that growth of the precipitates is dominated by dislocation pipe diffusion. However, these predictions were neither supported nor refuted by transmission electron microscopy (TEM) because of difficulties in imaging the [beta]-NiAl precipitates at the aging times and temperatures used. Further, analysis of the data using the formalism of Wert and Zener for the growth of precipitates with interfering diffusion fields indicated that the estimates of fraction transformed from hardness data are not fully appropriate for maraging type steels. Consideration of the nature of the Avrami analysis and the electron microscopy results suggests that other phenomena, including dislocation recovery and reversion of martensite to austenite, occur at rates sufficient to convolute the Avrami analysis. It is further suggested that these results cast doubt on the fundamental implications of previous analyses of precipitation kinetics in age-hardening martensitic steels.

  8. Supertough Stainless Bearing Steel

    NASA Technical Reports Server (NTRS)

    Olson, Gregory B.

    1995-01-01

    Composition and processing of supertough stainless bearing steel designed with help of computer-aided thermodynamic modeling. Fracture toughness and hardness of steel exceeds those of other bearing steels like 440C stainless bearing steel. Developed for service in fuel and oxidizer turbopumps on Space Shuttle main engine. Because of strength and toughness, also proves useful in other applications like gears and surgical knives.

  9. Heat treatment of investment cast PH 13-8 Mo stainless steel: Part II. Isothermal aging kinetics

    NASA Astrophysics Data System (ADS)

    Robino, C. V.; Cieslak, M. J.; Hochanadel, P. W.; Edwards, G. R.

    1994-04-01

    The hardening response of investment cast PH 13-8 Mo stainless steel has been evaluated by hardness measurements following aging in the temperature range normally specified for this alloy (510 °C to 593 °C). A new relationship between fraction transformed and hardness was developed, and analysis of the data in terms of the kinetics of precipitation, in a manner similar to that frequently applied to other precipitation-hardenable martensitic steels, yielded low time exponents and a low value for the apparent activation energy. The values of the time exponents were 0.49, 0.37, 0.56, and 0.53 at 510 °C, 538 °C, 566 °C, and 593 °C, respectively, and that for the apparent activation energy was 139 kJ/mole. As has been proposed for other maraging type steels, these estimates suggest that Β-NiAl precipitates along or near dislocations and that growth of the precipitates is dominated by dislocation pipe diffusion. However, these predictions were neither supported nor refuted by transmission electron microscopy (TEM) because of difficulties in imaging the Β-NiAl precipitates at the aging times and temperatures used. Further, analysis of the data using the formalism of Wert and Zener for the growth of precipitates with interfering diffusion fields indicated that the estimates of fraction transformed from hardness data are not fully appropriate for maraging type steels. Consideration of the nature of the Avrami analysis and the electron microscopy results suggests that other phenomena, including dislocation recovery and reversion of martensite to austenite, occur at rates sufficient to convolute the Avrami analysis. It is further suggested that these results cast doubt on the fundamental implications of previous analyses of precipitation kinetics in age-hardening martensitic steels. Although the Avrami analysis was found not to provide a tenable description of the precipitation kinetics, it does provide a reasonable methodology for portrayal of the hardening response

  10. Field Evaluations of Low-Frequency SAFT-UT on Cast Stainless Steel and Dissimilar Metal Weld Components

    SciTech Connect

    Diaz, Aaron A.; Harris, R. V.; Doctor, Steven R.

    2008-11-01

    This report documents work performed at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, and at the Electric Power Research Institute's (EPRI) Nondestructive Examination (NDE) Center in Charlotte, North Carolina, on evalutating a low frequency ultrasonic inspection technique used for examination of cast stainless steel (CSS) and dissimilar metal (DMW) reactor piping components. The technique uses a zone-focused, multi-incident angle, low frequency (250-450 kHz) inspection protocol coupled with the synthetic aperture focusing technique (SAFT). The primary focus of this work is to provide information to the United States Nuclear Regulatory Commission on the utility, effectiveness and reliability of ultrasonic testing (UT) inspection techniques as related to the inservice ultrasonic inspection of coarse grained primary piping components in pressurized water reactors (PWRs).

  11. 3D stress simulation and parameter design during twin-roll casting of 304 stainless steel based on the Anand model

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Liu, Yuan-yuan; Liu, Li-gang; Zhang, Yue; Yang, Qing-xiang

    2014-07-01

    This study first investigated cracks on the surface of an actual steel strip. Formulating the Anand model in ANSYS software, we then simulated the stress field in the molten pool of type 304 stainless steel during the twin-roll casting process. Parameters affecting the stress distribution in the molten pool were analyzed in detail and optimized. After twin-roll casting, a large number of transgranular and intergranular cracks resided on the surface of the thin steel strip, and followed a tortuous path. In the molten pool, stress was enhanced at the exit and at the roller contact positions. The stress at the exit decreased with increasing casting speed and pouring temperature. To ensure high quality of the fabricated strips, the casting speed and pouring temperature should be controlled above 0.7 m/s and 1520°C, respectively.

  12. Heat and corrosion resistant cast CN-12 type stainless steel with improved high temperature strength and ductility

    DOEpatents

    Mazias, Philip J.; McGreevy, Tim; Pollard,Michael James; Siebenaler, Chad W.; Swindeman, Robert W.

    2007-08-14

    A cast stainless steel alloy and articles formed therefrom containing about 0.5 wt. % to about 10 wt. % manganese, 0.02 wt. % to 0.50 wt. % N, and less than 0.15 wt. % sulfur provides high temperature strength both in the matrix and at the grain boundaries without reducing ductility due to cracking along boundaries with continuous or nearly-continuous carbides. Alloys of the present invention also have increased nitrogen solubility thereby enhancing strength at all temperatures because nitride precipitates or nitrogen porosity during casting are not observed. The solubility of nitrogen is dramatically enhanced by the presence of manganese, which also retains or improves the solubility of carbon thereby providing additional solid solution strengthening due to the presence of manganese and nitrogen, and combined carbon. Such solution strengthening enhances the high temperature precipitation-strengthening benefits of fine dispersions of NbC. Such solid solution effects also enhance the stability of the austenite matrix from resistance to excess sigma phase or chrome carbide formation at higher service temperatures. The presence of sulfides is substantially eliminated.

  13. Manufacture of Alumina-Forming Austenitic Stainless Steel Alloys by Conventional Casting and Hot-Working Methods

    SciTech Connect

    Brady, M.P.; Yamamoto, Y.; Magee, J.H.

    2009-03-23

    Oak Ridge National Laboratory (ORNL) and Carpenter Technology Corporation (CarTech) participated in an in-kind cost share cooperative research and development agreement (CRADA) effort under the auspices of the Energy Efficiency and Renewable Energy (EERE) Technology Maturation program to explore the feasibility for scale up of developmental ORNL alumina-forming austenitic (AFA) stainless steels by conventional casting and rolling techniques. CarTech successfully vacuum melted 30lb heats of four AFA alloy compositions in the range of Fe-(20-25)Ni-(12-14)Cr-(3-4)Al-(1-2.5)Nb wt.% base. Conventional hot/cold rolling was used to produce 0.5-inch thick plate and 0.1-inch thick sheet product. ORNL subsequently successfully rolled the 0.1-inch sheet to 4 mil thick foil. Long-term oxidation studies of the plate form material were initiated at 650, 700, and 800 C in air with 10 volume percent water vapor. Preliminary results indicated that the alloys exhibit comparable (good) oxidation resistance to ORNL laboratory scale AFA alloy arc casting previously evaluated. The sheet and foil material will be used in ongoing evaluation efforts for oxidation and creep resistance under related CRADAs with two gas turbine engine manufacturers. This work will be directed to evaluation of AFA alloys for use in gas turbine recuperators to permit higher-temperature operating conditions for improved efficiencies and reduced environmental emissions.

  14. Ultrasonic Characterization of Cast Austenitic Stainless Steel Microstructure: Discrimination between Equiaxed- and Columnar-Grain Material – An Interim Study

    SciTech Connect

    Ramuhalli, Pradeep; Good, Morris S.; Diaz, Aaron A.; Anderson, Michael T.; Watson, Bruce E.; Peters, Timothy J.; Dixit, Mukul; Bond, Leonard J.

    2009-10-27

    Ultrasonic nondestructive evaluation (NDE) and inspection of cast austenitic stainless steel (CASS) components used in the nuclear power industry is neither as effective nor reliable as is needed due to detrimental effects upon the interrogating ultrasonic beam and interference from ultrasonic backscatter. The root cause is the coarse-grain microstructure inherent to this class of materials. Some ultrasonic techniques perform better for particular microstructural classifications and this has led to the hypothesis that an ultrasonic inspection can be optimized for a particular microstructural class, if a technique exists to reliably classify the microstructure for feedback to the inspection. This document summarizes scoping experiments of in-situ ultrasonic methods for classification and/or characterization of the material microstructures in CASS components from the outside surface of a pipe. The focus of this study was to evaluate ultrasonic methods and provide an interim report that documents results and technical progress. An initial set of experiments were performed to test the hypothesis that in-service characterization of cast austenitic stainless steel (CASS) is feasible, and that, if reliably performed, such data would provide real-time feedback to optimize in-service inspections in the field. With this objective in mind, measurements for the experiment were restricted to techniques that should be robust if carried forward to eventual field implementation. Two parameters were investigated for their ability to discriminate between different microstructures in CASS components. The first parameter was a time-of-flight ratio of a normal incidence shear wave to that of a normal incidence longitudinal wave (TOFRSL). The ratio removed dependency on component thickness which may not be accurately reported in the field. The second parameter was longitudinal wave attenuation. The selected CASS specimens provided five equiaxed-grain material samples and five columnar

  15. Stainless Steel Permeability

    SciTech Connect

    Buchenauer, Dean A.; Karnesky, Richard A.

    2015-09-01

    An understanding of the behavior of hydrogen isotopes in materials is critical to predicting tritium transport in structural metals (at high pressure), estimating tritium losses during production (fission environment), and predicting in-vessel inventory for future fusion devices (plasma driven permeation). Current models often assume equilibrium diffusivity and solubility for a class of materials (e.g. stainless steels or aluminum alloys), neglecting trapping effects or, at best, considering a single population of trapping sites. Permeation and trapping studies of the particular castings and forgings enable greater confidence and reduced margins in the models. For FY15, we have continued our investigation of the role of ferrite in permeation for steels of interest to GTS, through measurements of the duplex steel 2507. We also initiated an investigation of the permeability in work hardened materials, to follow up on earlier observations of unusual permeability in a particular region of 304L forgings. Samples were prepared and characterized for ferrite content and coated with palladium to prevent oxidation. Issues with the poor reproducibility of measurements at low permeability were overcome, although the techniques in use are tedious. Funding through TPBAR and GTS were secured for a research grade quadrupole mass spectrometer (QMS) and replacement turbo pumps, which should improve the fidelity and throughput of measurements in FY16.

  16. Long-Term Oxidation of Candidate Cast Iron and Advanced Austenitic Stainless Steel Exhaust System Alloys from 650-800 C in Air with Water Vapor

    DOE PAGESBeta

    Brady, Michael P; Muralidharan, Govindarajan; Leonard, Donovan N; Haynes, James A

    2014-01-01

    The oxidation behavior of SiMo cast iron, Ni-resist D5S cast iron, cast chromia-forming austenitic stainless steels of varying Cr/Ni content based on CF8C plus, HK, and HP, and a developmental cast alumina-forming austenitic (AFA) stainless steel of interest for diesel exhaust system components were studied for up to 5000 h at 650-800 C in air with 10% H2O. At 650 C, the Ni-resist D5S exhibited moderately better oxidation resistance than did the SiMo cast iron. However, the D5S suffered from oxide scale spallation issues at 700 C and higher, whereas the oxide scales formed on SiMo cast iron remained adherentmore » from 700-800 C despite oxide scales hundreds of microns thick. The oxidation of the SiMo cast iron exhibited unusual temperature dependence, with periods of slower oxidation kinetics at 750-800 C compared to 650-700 C due to continuous silica-rich scale formation at the higher temperatures. The oxidation of the cast chromia-forming austenitics trended with the level of Cr and Ni additions, with small mass losses consistent with Cr oxy-hydroxide volatilization processes for the higher 25Cr/25-35Ni HK and HP type alloys, and transition to rapid Fe-base oxide formation and scale spallation in the lower 19Cr/12Ni CF8C plus type alloy. In contrast, small positive mass changes consistent with protective alumina scale formation were observed for the cast AFA alloy under all conditions studied. Implications of these findings for diesel exhaust system components are discussed.« less

  17. Long-term oxidation of candidate cast iron and stainless steel exhaust system alloys from 650 to 800 °C in air with water vapor

    SciTech Connect

    Brady, Michael P.; Muralidharan, Govindarajan; Leonard, Donovan .; Haynes, James A.; Weldon, R. G.; England, R. D.

    2014-08-29

    Here, the oxidation behavior of SiMo cast iron, Ni-resist D5S cast iron, cast chromia-forming austenitic stainless steels of varying Cr/Ni content based on CF8C plus, HK, and HP, and a developmental cast alumina-forming austenitic (AFA) stainless steel of interest for diesel exhaust system components were studied for up to 5000 h at 650-800 °C in air with 10% H2O. At 650 °C, the Ni-resist D5S exhibited moderately better oxidation resistance than did the SiMo cast iron. However, the D5S suffered from oxide scale spallation issues at 700 °C and higher, whereas the oxide scales formed on SiMo cast iron remained adherent from 700-800 °C despite oxide scales hundreds of microns thick. The oxidation of the SiMo cast iron exhibited unusual temperature dependence, with periods of slower oxidation kinetics at 750-800 °C compared to 650-700 °C due to continuous silica-rich scale formation at the higher temperatures. The oxidation of the cast chromia-forming austenitics trended with the level of Cr and Ni additions, with small mass losses consistent with Cr oxy-hydroxide volatilization processes for the higher 25Cr/25-35Ni HK and HP type alloys, and transition to rapid Fe-base oxide formation and scale spallation in the lower 19Cr/12Ni CF8C plus type alloy. In contrast, small positive mass changes consistent with protective alumina scale formation were observed for the cast AFA alloy under all conditions studied. Implications of these findings for diesel exhaust system components are discussed.

  18. Long-term oxidation of candidate cast iron and stainless steel exhaust system alloys from 650 to 800 °C in air with water vapor

    DOE PAGESBeta

    Brady, Michael P.; Muralidharan, Govindarajan; Leonard, Donovan .; Haynes, James A.; Weldon, R. G.; England, R. D.

    2014-08-29

    Here, the oxidation behavior of SiMo cast iron, Ni-resist D5S cast iron, cast chromia-forming austenitic stainless steels of varying Cr/Ni content based on CF8C plus, HK, and HP, and a developmental cast alumina-forming austenitic (AFA) stainless steel of interest for diesel exhaust system components were studied for up to 5000 h at 650-800 °C in air with 10% H2O. At 650 °C, the Ni-resist D5S exhibited moderately better oxidation resistance than did the SiMo cast iron. However, the D5S suffered from oxide scale spallation issues at 700 °C and higher, whereas the oxide scales formed on SiMo cast iron remainedmore » adherent from 700-800 °C despite oxide scales hundreds of microns thick. The oxidation of the SiMo cast iron exhibited unusual temperature dependence, with periods of slower oxidation kinetics at 750-800 °C compared to 650-700 °C due to continuous silica-rich scale formation at the higher temperatures. The oxidation of the cast chromia-forming austenitics trended with the level of Cr and Ni additions, with small mass losses consistent with Cr oxy-hydroxide volatilization processes for the higher 25Cr/25-35Ni HK and HP type alloys, and transition to rapid Fe-base oxide formation and scale spallation in the lower 19Cr/12Ni CF8C plus type alloy. In contrast, small positive mass changes consistent with protective alumina scale formation were observed for the cast AFA alloy under all conditions studied. Implications of these findings for diesel exhaust system components are discussed.« less

  19. Heat treatment of investment cast PH 13-8 Mo stainless steel: Part I. Mechanical properties and microstructure

    NASA Astrophysics Data System (ADS)

    Hochanadel, P. W.; Edwards, G. R.; Robino, C. V.; Cieslak, M. J.

    1994-04-01

    The microstructure of investment cast PH 13-8 Mo stainless steel heat-treated to various conditions was studied using light and electron microscopy, electron probe microanalysis, and Mössbauer spectroscopy. The mechanical properties were investigated by using uniaxial tensile testing, hardness testing, and Charpy impact testing. The Β-NiAl strengthening precipitates, though detectable by electron diffraction, were difficult to resolve by transmission electron microscopy (TEM) in specimens aged at low temperatures (566 °C and below). A high dislocation density was observed in the lath martensitic structure. The higher strength and lower ductility observed at low aging temperatures was attributed to both the high dislocation density and the precipitation of Β-NiAl. When samples were aged at high temperatures (> 566 °C), a lower dislocation density and a reverted austenite fraction on the order of 15 pct were observed. Spherical Β-NiAl precipitates were observed in the overaged condition. The decrease in strength and corresponding increase in ductility observed in samples aged at temperatures above 566 °C were attributed to the reverted austenite and recovery. Mechanical properties were improved when the homogenizing temperature and time were increased. Electron probe microanalysis quantified the increased homogeneity realized by increasing homogenizing temperature and time. Elimination of the refrigeration step, which normally follows the solution treatment, did not degrade the mechanical properties. Mössbauer spectroscopy showed only minor decreases in the fraction of retained austenite when refrigeration followed the solution treatment.

  20. Phased Array Ultrasonic Sound Field Mapping through Large-Bore Coarse Grained Cast Austenitic Stainless Steel (CASS) Components

    SciTech Connect

    Crawford, Susan L.; Cinson, Anthony D.; Prowant, Matthew S.; Coble, Jamie B.; Diaz, Aaron A.; Anderson, Michael T.

    2012-09-01

    A sound field beam mapping exercise was conducted to assist in understanding the effects of coarse-grained microstructures found in cast austenitic stainless steel (CASS) materials on acoustic longitudinal wave propagation. Ultrasonic laboratory measurements were made on three specimens representing four different grain structures. Phased array (PA) probes were fixed on each specimen surface and excited in the longitudinal mode at specific angles while a point receiver was scanned in a raster pattern over the end of the specimen, generating a transmitted sound field image. Three probes operating at nominal frequencies of 0.5, 0.8, and 1.0 MHz were used. A 6.4 mm (0.25-in.) thick slice was removed from the specimen end and beam mapping was repeated three times, yielding four full sets of beam images. Data were collected both with a constant part path for each configuration (probe, specimen and slice, angle, etc.) and with a variable part path (fixed position on the surface). The base specimens and slices were then polished and etched to reveal measureable grain microstructures that were compared to the sound field interactions and scattering effects seen in the collected data.

  1. Heat and corrosion resistant cast CF8C stainless steel with improved high temperature strength and ductility

    DOEpatents

    Maziasz, Philip J.; McGreevy, Tim; Pollard, Michael James; Siebenaler, Chad W.; Swindeman, Robert W.

    2010-08-17

    A CF8C type stainless steel alloy and articles formed therefrom containing about 18.0 weight percent to about 22.0 weight percent chromium and 11.0 weight percent to about 14.0 weight percent nickel; from about 0.05 weight percent to about 0.15 weight percent carbon; from about 2.0 weight percent to about 10.0 weight percent manganese; and from about 0.3 weight percent to about 1.5 weight percent niobium. The present alloys further include less than 0.15 weight percent sulfur which provides high temperature strength both in the matrix and at the grain boundaries without reducing ductility due to cracking along boundaries with continuous or nearly-continuous carbides. The disclosed alloys also have increased nitrogen solubility thereby enhancing strength at all temperatures because nitride precipitates or nitrogen porosity during casting are not observed. The solubility of nitrogen is dramatically enhanced by the presence of manganese, which also retains or improves the solubility of carbon thereby providing additional solid solution strengthening due to the presence of manganese and nitrogen, and combined carbon.

  2. Heat and corrosion resistant cast CF8C stainless steel with improved high temperature strength and ductility

    DOEpatents

    Maziasz, Philip J.; McGreevy, Tim; Pollard, Michael James; Siebenaler, Chad W.; Swindeman, Robert W.

    2006-12-26

    A CF8C type stainless steel alloy and articles formed therefrom containing about 18.0 weight percent to about 22.0 weight percent chromium and 11.0 weight percent to about 14.0 weight percent nickel; from about 0.05 weight percent to about 0.15 weight percent carbon; from about 2.0 weight percent to about 10.0 weight percent manganese; and from about 0.3 weight percent to about 1.5 weight percent niobium. The present alloys further include less than 0.15 weight percent sulfur which provides high temperature strength both in the matrix and at the grain boundaries without reducing ductility due to cracking along boundaries with continuous or nearly-continuous carbides. The disclosed alloys also have increased nitrogen solubility thereby enhancing strength at all temperatures because nitride precipitates or nitrogen porosity during casting are not observed. The solubility of nitrogen is dramatically enhanced by the presence of manganese, which also retains or improves the solubility of carbon thereby providing additional solid solution strengthening due to the presence of manganese and nitrogen, and combined carbon.

  3. Modeling of ultrasonic propagation in heavy-walled centrifugally cast austenitic stainless steel based on EBSD analysis.

    PubMed

    Chen, Yao; Luo, Zhongbing; Zhou, Quan; Zou, Longjiang; Lin, Li

    2015-05-01

    The ultrasonic inspection of heavy-walled centrifugally cast austenitic stainless steel (CCASS) is challenging due to the complex metallurgical structure. Numerical modeling could provide quantitative information on ultrasonic propagation and plays an important role in developing advanced and reliable ultrasonic inspection techniques. But the fundamental obstacle is the accurate description of the complex metallurgical structure. To overcome this difficulty, a crystal orientation map of a CCASS specimen in the 96 mm × 12 mm radial-axial cross section was acquired based on the electron backscattered diffraction (EBSD) technique and it was used to describe the coarse-grained structure and grain orientation. A model of ultrasonic propagation for CCASS was built according to the EBSD map. The ultrasonic responses of the CCASS sample were also tested. Some experimental phenomena such as structural noise and signal distortion were reproduced. The simulated results showed a good consistence with the experiments. The modeling method is expected to be effective for the precise interpretation of ultrasonic propagation in the polycrystalline structures of CCASS. PMID:25670411

  4. Comparative study: sensitization development in hot-isostatic-pressed cast and wrought structures type 316L(N)-IG stainless steel under isothermal heat treatment

    NASA Astrophysics Data System (ADS)

    Shutko, K. I.; Belous, V. N.

    2002-12-01

    This work focuses on the relative sensitization resistance of type 316L(N)-IG stainless steel (SS). Cast and wrought structures SS after solid hot-isostatic pressing (solid-HIP) operation are investigated under isothermal heat treatment. Wrought SS/SS solid-HIP joint sensitization is taken also into consideration. These experiments employed the quantitative double-loop electrochemical potentiokinetic reactivation (DL-EPR) and oxalic acid etch screening tests. A copper-copper sulfate-16% sulfuric acid test applied for strongly sensitized cast SS to reinforce the results were received by the methods mentioned above. Results from all employed methods correlate well. Sensitization was detected neither in cast nor in wrought SS in as-HIPed condition excluding wrought SS/SS solid-HIP joints. Significant difference between sensitization development rates was determined in cast and wrought SS structures when annealing at 675 °C for a duration up to 50 h.

  5. Improvements in Low-Frequency, Ultrasonic Phased-Array Evaluation for Thick Section Cast Austenitic Stainless Steel Piping Components

    SciTech Connect

    Anderson, Michael T.; Crawford, Susan L.; Diaz, Aaron A.; Moran, Traci L.

    2010-12-01

    Research is being conducted for the U.S. Nuclear Regulatory Commission (NRC) at the Pacific Northwest National Laboratory (PNNL) to assess the effectiveness and reliability of advanced nondestructive examination (NDE) methods for the inspection of light water reactor (LWR) components. A primary objective of this work is to evaluate various NDE methods to assess their ability to detect, localize, and size cracks in coarse-grained steel components. This particular study focused on the evaluation of custom-designed, low-frequency (500 kHz) phased-array (PA) probes for examining welds in thick-section cast austenitic stainless steel (CASS) piping. In addition, research was conducted to observe ultrasonic sound field propagation effects from known coarse-grained microstructures found in parent CASS material. The study was conducted on a variety of thick-wall, coarse-grained CASS specimens that were previously inspected by an older generation 500-kHz PA-UT probe and acquisition instrument configuration. This comparative study describes the impact of the new PA probe design on flaw detection and sizing in a low signal-to-noise environment. The set of Pressurized Water Reactor Owners Group (PWROG) CASS specimens examined in this study are greater than 50.8-mm (2.0-in.) thick with documented flaws and microstructures. These specimens are on loan to PNNL from the Electric Power Research Institute (EPRI) NDE Center in Charlotte, North Carolina. The flaws contained within these specimens are thermal fatigue cracks (TFC) or mechanical fatigue cracks (MFC) and range from 13% to 42% in through-wall extent. In addition, ultrasonic signal continuity was evaluated on two CASS parent material ring sections by examining the edge-of-pipe response (corner geometry) for regions of signal loss.

  6. Is stainless steel really "stainless"?

    PubMed

    Porteous, Joan

    2011-06-01

    Initial purchase and replacement costs for surgical instrumentation are significant components in today's operating room budgets. OR staff and medical device reprocessing personnel work together as a team to ensure effective management of this valuable commodity. The purpose of this article is to discuss the composition of stainless steel surgical instruments, to identify processes to minimize damage to instruments caused by staining, corrosion, and pitting, and to utilize that information to describe effective measures to manage instrumentation in both the OR and reprocessing areas. PMID:21823503

  7. Final Report, Volume 4, The Development of Qualification Standards for Cast Super Duplex Stainless Steel (2507 Wrought Equivalent)

    SciTech Connect

    Hariharan, Vasudevan; Lundin, Carl, W.

    2005-09-30

    The objective of the program is to determine the suitability of ASTM A923 Standard Test methods for Detecting Detrimental Intermetallic Phase in Wrought Duplex Austenitic-Ferritic Stainless Steels for 25 Cr Cast Super Duplex Stainless Steels (ASTM A890-5A). Different tests were carried out on the materials procured from various steel foundries as stated in the ASTM A923. The foundries were designated as Foundry A, B, C and D. All the materials were foundry solution annealed. Materials from Foundry D were solution heat treated at The University of Tennessee also and then they were subjected to heat treatment schedule which was derived from the testing of wrought DSS to establish the A923 specification. This was possible because the material from the same heat was sufficient for conducting the full scope of heat treatment. This was done prior to carrying out various other tests. Charpy samples were machined. The Ferrite content was measured in all the Charpy samples using Feritscope® and ASTM E562 Manual Point Count Method. After the ferrite content was measured the samples were sent to AMC-Vulcan, Inc. in Alabama to conduct the Charpy impact test based on ASTM A923 Test Method B. This was followed by etch testing and corrosion analysis based on ASTM A923 Test Methods A and C respectively at University of Tennessee. Hardness testing using Rockwell B and C was also carried out on these samples. A correlation was derived between all the three test methods and the best method for evaluating the presence of intermetallic in the material was determined. The ferrite content was correlated with the toughness values. Microstructural analysis was carried out on the etch test samples using Scanning Electron Microscopy in order to determine if intermetallic phases were present. The fracture surfaces from Charpy test specimens were also observed under SEM in order to determine the presence of any cracks and whether it was a brittle or a ductile fracture. A correlation was

  8. Final Report, Volume 4, The Develpoment of Qualification Standards forCast Super Duplex Stainless Steel (2507 Wrought Equivalent)

    SciTech Connect

    Hariharan, Vasudevan; Lundin, Carl, D.

    2005-09-30

    The objective of the program is to determine the suitability of ASTM A923 Standard Test methods for Detecting Detrimental Intermetallic Phase in Wrought Duplex Austenitic-Ferritic Stainless Steels for 25 Cr Cast Super Duplex Stainless Steels (ASTM A890-5A). Different tests were carried out on the materials procured from various steel foundries as stated in the ASTM A923. The foundries were designated as Foundry A, B, C and D. All the materials were foundry solution annealed. Materials from Foundry D were solution heat treated at The University of Tennessee also and then they were subjected to heat treatment schedule which was derived from the testing of wrought DSS to establish the A923 specification. This was possible because the material from the same heat was sufficient for conducting the full scope of heat treatment. This was done prior to carrying out various other tests. Charpy samples were machined. The Ferrite content was measured in all the Charpy samples using Feritscope{reg_sign} and ASTM E562 Manual Point Count Method. After the ferrite content was measured the samples were sent to AMC-Vulcan, Inc. in Alabama to conduct the Charpy impact test based on ASTM A923 Test Method B. This was followed by etch testing and corrosion analysis based on ASTM A923 Test Methods A and C respectively at University of Tennessee. Hardness testing using Rockwell B and C was also carried out on these samples. A correlation was derived between all the three test methods and the best method for evaluating the presence of intermetallic in the material was determined. The ferrite content was correlated with the toughness values. Microstructural analysis was carried out on the etch test samples using Scanning Electron Microscopy in order to determine if intermetallic phases were present. The fracture surfaces from Charpy test specimens were also observed under SEM in order to determine the presence of any cracks and whether it was a brittle or a ductile fracture. A correlation

  9. Stainless steel recycle FY94 progress report

    SciTech Connect

    Imrich, K.J.

    1994-10-28

    The Materials Technology Section (MTS) of the Savannah River Technology Center (SRTC) was asked to demonstrate the practicality of recycling previously contaminated stainless steel components such as reactor heat exchanger heads, process water piping and slug buckets into 208 liters (55 gallon) drums and 2.8 cubic meter (100 ft{sup 3}) storage boxes. Radioactively contaminated stainless steel scrap will be sent to several industrial partners where it will be melted, decontaminated/cast into ingots, and rolled into plate and sheet and fabricated into the drums and boxes. As part of this recycle initiative, MTS was requested to demonstrate that radioactively contaminated Type 304L stainless steel could be remelted and cast to meet the applicable ASTM specification for fabrication of drums and boxes. In addition, MTS was requested to develop the technical basis of melt decontamination and establish practicality of using this approach for value added products. The findings presented in this investigation lead to the following conclusions: recycle of 18 wt% Cr-8 wt% Ni alloy can be achieved by melting Type 304 stainless steel in a air vacuum induction furnace; limited melt decontamination of the contaminated stainless steel was achieved, surface contamination was removed by standard decontamination techniques; carbon uptake in the as-cast ingots resulted from the graphite susceptor used in this experiment and is unavoidable with this furnace configuration. A new furnace optimized for melting stainless steel has been installed and is currently being tested for use in this program.

  10. Articles comprising ferritic stainless steels

    DOEpatents

    Rakowski, James M.

    2016-06-28

    An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the article of manufacture is a fuel cell interconnect for a solid oxide fuel cell.

  11. Final Report, Volume 5, Data Package for ASTM A923 Supporting Inclusion of A890-5 Super Duplex Stainless Steel (Cast Equivalent of 2507)

    SciTech Connect

    Hariharan, Vasudevan; Lundin, Carl, W.

    2005-09-30

    Volume 5 is the Data Package for the evaluation of Super Duplex Stainless Steel Castings prepared at the end of work comprised in volumes 3 and 4. The document deals with the various evaluation methods used in the work documented in volume 3 and 4. This document covers materials regarding evaluation of the A890-5A material in terms of inclusion in ASTM A923. The various tests which were conducted on the A890-5A material are included in this document.

  12. Final Report, Volume 5, Data Package for ASTM A923 Supporting Inclusion of A890-5A Super Duplex Stainless Steel ( Cast Equivalent of 2507)

    SciTech Connect

    Hariharan, Vasudevan; Lundin, Carl, D.

    2005-09-30

    Volume 5 is the Data Package for the evaluation of Super Duplex Stainless Steel Castings prepared at the end of work comprised in volumes 3 and 4. The document deals with the various evaluation methods used in the work documented in volume 3 and 4. This document covers materials regarding evaluation of the A890-5A material in terms of inclusion in ASTM A923. The various tests which were conducted on the A890-5A material are included in this document.

  13. Sensitization of stainless steel

    NASA Technical Reports Server (NTRS)

    Nagy, James P.

    1990-01-01

    The objective of this experiment is to determine the corrosion rates of 18-8 stainless steels that have been sensitized at various temperatures and to show the application of phase diagrams. The laboratory instructor will assign each student a temperature, ranging from 550 C to 1050 C, to which the sample will be heated. Further details of the experimental procedure are detailed.

  14. Effect of the Solution Annealing and Chemical Passivation Followed by Aging on the Corrosion of Shell Mold Cast CF8 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Kim, Kuk-Jin; Ju, Heongkyu; Moon, Young-Dae; Hong, Jun Ho; Pak, Sung Joon

    2016-07-01

    The effects of solution annealing and passivation of shell mold cast CF8 stainless steels on Elbow pipe fittings with 2-month room temperature aging have been studied using a corrosion technique. The resistance of corrosion increased with 2-month room temperature aging combined with solid solution annealing and chemical passivation. The mode of corrosion was deeply related to the δ-ferrite content, permeability, and passivation. The corrosion probability decreased as both the δ-ferrite content and the permeability decreased. Therefore, it is considered that δ-ferrite content and passive film of Cr2O3 play an important role in corrosion resistance of CF8 Elbow pipe fittings due to the long-term aging with solid solution annealing and chemical passivation. This result shows that the corrosion resistance of CF8 fittings can be enhanced by the solid solution annealing and chemical passivation. Decreased ferrite phases and permeability improve IGC resistance in CF8 steel.

  15. Austenitic stainless steels for cryogenic service

    SciTech Connect

    Dalder, E.N.C.; Juhas, M.C.

    1985-09-19

    Presently available information on austenitic Fe-Cr-Ni stainless steel plate, welds, and castings for service below 77 K are reviewed with the intent (1) of developing systematic relationships between mechanical properties, composition, microstructure, and processing, and (2) of assessing the adequacy of these data bases in the design, fabrication, and operation of engineering systems at 4 K.

  16. Oxidation of Slurry Aluminide Coatings on Cast Stainless Steel Alloy CF8C-Plus at 800oC in Water Vapor

    SciTech Connect

    Haynes, James A; Armstrong, Beth L; Dryepondt, Sebastien N; Kumar, Deepak; Zhang, Ying

    2013-01-01

    A new, cast austenitic stainless steel, CF8C-Plus, has been developed for a wide range of high temperature applications, including diesel exhaust components, turbine casings and turbocharger housings. CF8C-Plus offers significant improvements in creep rupture life and creep rupture strength over standard CF8C steel. However, at higher temperatures and in more aggressive environments, such as those containing significant water vapor, an oxidation-resistant protective coating will be necessary. The oxidation behavior of alloys CF8C and CF8C-Plus with various aluminide coatings were compared at 800oC in air plus 10 vol% water vapor. Due to their affordability, slurry aluminides were the primary coating system of interest, although chemical vapor deposition (CVD) and pack cementation coatings were also compared. Additionally, a preliminary study of the low cycle fatigue behavior of aluminized CF8C-Plus was conducted at 800oC. Each type of coating provided substantial improvements in oxidation behavior, with simple slurry aluminides showing very good oxidation resistance after 4,000 h testing in water vapor. Preliminary low cycle fatigue results indicated that thicker aluminide coatings degraded high temperature fatigue properties of CF8C-Plus, whereas thinner coatings did not. Results suggest that appropriately designed slurry aluminide coatings are a viable option for economical, long-term oxidation protection of austenitic stainless steels in water vapor.

  17. Molecular characterization of natural biofilms from household taps with different materials: PVC, stainless steel, and cast iron in drinking water distribution system.

    PubMed

    Lin, Wenfang; Yu, Zhisheng; Chen, Xi; Liu, Ruyin; Zhang, Hongxun

    2013-09-01

    Microorganism in drinking water distribution system may colonize in biofilms. Bacterial 16S rRNA gene diversities were analyzed in both water and biofilms grown on taps with three different materials (polyvinyl chloride (PVC), stainless steel, and cast iron) from a local drinking water distribution system. In total, five clone libraries (440 sequences) were obtained. The taxonomic composition of the microbial communities was found to be dominated by members of Proteobacteria (65.9-98.9 %), broadly distributed among the classes Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Other bacterial groups included Firmicutes, Acidobacteria, Bacteroidetes, Cyanobacteria, and Deinococcus-Thermus. Moreover, a small proportion of unclassified bacteria (3.5-10.6 %) were also found. This investigation revealed that the bacterial communities in biofilms appeared much more diversified than expected and more care should be taken to the taps with high bacterial diversity. Also, regular monitor of outflow water would be useful as potentially pathogenic bacteria were detected. In addition, microbial richness and diversity in taps ranked in the order as: PVC < stainless steel < cast iron. All the results interpreted that PVC would be a potentially suitable material for use as tap component in drinking water distribution system. PMID:23143469

  18. Steel castings by the electroslag casting technique

    NASA Astrophysics Data System (ADS)

    Sikka, V. K.; Mitchell, A.

    1984-10-01

    Electroslag casting facilities in Canada and the United States were reviewed. Several value body castings of 2 1/4 Cr-1 Mo, 9 Cr-1 Mo, and 18% Cr-8% Ni (Mo) steels were made at the University of British Columbia facility. These castings were examined for surface finish, chemical segregation, and macrostructure in the as-cast condition and after various heat treatments. Castings were subjected to tensile, charpy impact, and creep testing. Results of these tests were compared with similar data on wrought material and where applicable, with data on sand castings.

  19. Steel castings by the electroslag casting technique

    SciTech Connect

    Sikka, V.K.; Mitchell, A.

    1984-10-01

    Electroslag casting facilities in Canada and the United States were reviewed. Several valve body castings of 2 1/4 Cr-1 Mo, 9 Cr-1 Mo, and 18% Cr-8% Ni(Mo) steels were made at the University of British Columbia facility. These castings were examined for surface finish, chemical segregation, and macrostructure in the as-cast condition and after various heat treatments. Castings were subjected to tensile, Charpy impact, and creep testing. Results of these tests were compared with similar data on wrought material and, where applicable, with data on sand castings. 22 figures.

  20. Effects of long-term thermal aging on the stress corrosion cracking behavior of cast austenitic stainless steels in simulated PWR primary water

    NASA Astrophysics Data System (ADS)

    Li, Shilei; Wang, Yanli; Wang, Hui; Xin, Changsheng; Wang, Xitao

    2016-02-01

    The stress corrosion cracking (SCC) behavior of cast austenitic stainless steels of unaged and thermally aged at 400 °C for as long as 20,000 h were studied by using a slow strain rate testing (SSRT) system. Spinodal decomposition in ferrite during thermal aging leads to hardening in ferrite and embrittlement of the SSRT specimen. Plastic deformation and thermal aging degree have a great influence on the oxidation rate of the studied material in simulated PWR primary water environments. In the SCC regions of the aged SSRT specimen, the surface cracks, formed by the brittle fracture of ferrite phases, are the possible locations for SCC. In the non-SCC regions, brittle fracture of ferrite phases also occurs because of the effect of thermal aging embrittlement.

  1. Brazing titanium to stainless steel

    NASA Technical Reports Server (NTRS)

    Batista, R. I.

    1980-01-01

    Titanium and stainless-steel members are usually joined mechanically for lack of any other effective method. New approach using different brazing alloy and plating steel member with nickel resolves problem. Process must be carried out in inert atmosphere.

  2. Technical Letter Report Assessment of Ultrasonic Phased Array Testing for Cast Austenitic Stainless Steel Pressurizer Surge Line Piping Welds and Thick Section Primary System Cast Piping Welds JCN N6398, Task 2A

    SciTech Connect

    Diaz, Aaron A.; Denslow, Kayte M.; Cinson, Anthony D.; Morra, Marino; Crawford, Susan L.; Prowant, Matthew S.; Cumblidge, Stephen E.; Anderson, Michael T.

    2008-07-21

    Research is being conducted for the NRC at PNNL to assess the effectiveness and reliability of advanced NDE methods for the inspection of LWR components. The scope of this research encompasses primary system pressure boundary materials including cast austenitic stainless steels (CASS), dissimilar metal welds (DMWs), piping with corrosion-resistant cladding, weld overlays, and far-side examinations of austenitic piping welds. A primary objective of this work is to evaluate various NDE methods to assess their ability to detect, localize, and size cracks in coarse-grained steel components. This interim technical letter report (TLR) provides a synopsis of recent investigations at PNNL aimed at evaluating the capabilities of phased-array (PA) ultrasonic testing (UT) methods as applied to the inspection of CASS welds in nuclear reactor piping. A description of progress, recent developments and interim results are provided.

  3. Photodesorption from stainless steels

    NASA Technical Reports Server (NTRS)

    Mesarwi, A.; Ignatiev, A.

    1988-01-01

    The photodesorption by low-energy photons from three types of stainless steels is examined. For all these systems both CO and CO2 were observed to photodesorb with high yields: about 0.001 molecules/photon for CO2 and about 0.0001 molecules/photon for CO at 250 nm. The observed threshold energies were found to be the same for all systems at E0 = 2.92 eV for CO2 and E0 = 2.92-3.10 eV for CO.

  4. Switch to duplex stainless steels

    SciTech Connect

    Quik, J.M.A.; Geudeke, M.

    1994-11-01

    Duplex stainless steels contain approximately equal proportions of ferrite and austenite. These stainless steels have become an established material of construction in the chemical process industries (CPI). Duplexes offer benefits over austenitic stainless steels and carbon steels because of their higher strength, and good toughness and ductility, in combination with equivalent resistance to general corrosion, as well as better resistance to localized corrosion and stress corrosion cracking. Additionally, duplex materials have thermal-conductivity and thermal-expansion coefficients similar to those of ferritic materials, are tough at low (sub-zero) temperatures, and have a high resistance to erosion and abrasion. In some of the highly corrosive environments encountered in the CPI, the super duplex stainless steels offer cost-effective options not possible with the standard austenitic stainless steels. The initial applications were almost exclusively as heat exchanger tubing in water-cooled service. In recent times, duplex stainless steels have been used in the oil, gas, and chemical industries. Examples include service in sweet and mildly sour corrosive environments, on offshore platforms where weight savings can be realized, and as a replacement for standard austenitic stainless steel in chemical-processing plants.

  5. Pitting corrosion resistant austenite stainless steel

    DOEpatents

    van Rooyen, D.; Bandy, R.

    A pitting corrosion resistant austenite stainless steel comprises 17 to 28 wt. % chromium, 15 to 26 wt. % nickel, 5 to 8 wt. % molybdenum, and 0.3 to 0.5 wt. % nitrogen, the balance being iron, unavoidable impurities, minor additions made in the normal course of melting and casting alloys of this type, and may optionally include up to 10 wt. % of manganese, up to 5 wt. % of silicon, and up to 0.08 wt. % of carbon.

  6. Corrosion resistance of stainless steels

    SciTech Connect

    Dillon, C.P.

    1995-12-31

    This book reviews the mechanisms and forms of corrosion and examines the corrosion of stainless steels and similar chromium-bearing nickel containing higher alloys, detailing various corrosive environments including atmospheric and fire-side corrosion, corrosion by water and soil, and corrosion caused by particular industrial processes. It provides information on specific groups and grades of stainless steels; summarizes typical applications for specific stainless alloys; describes common corrosion problems associated with stainless steels; presents the acceptable isocorrosion parameters of concentration and temperature for over 250 chemicals for which stainless steels are the preferred materials of construction; discusses product forms and their availability; elucidates fabrication, welding, and joining techniques; and covers the effects of pickling and passivation.

  7. Stainless steel display evaluation

    NASA Astrophysics Data System (ADS)

    Hopper, Darrel G.; Meyer, Frederick M.; Longo, Sam J.; Trissell, Terry L.

    2007-04-01

    Active matrix organic light emitting diode (AMOLED) technology is one candidate to become a low power alternative in some applications to the currently dominant, active matrix liquid crystal display (AMLCD), technology. Furthermore, fabrication of the AMOLED on stainless steel (SS) foil rather than the traditional glass substrate, while presenting a set of severe technical challenges, opens up the potential for displays that are both lighter and less breakable. Also, transition to an SS foil substrate may enable rollable displays - large when used but small for stowage within gear already worn or carried or installed. Research has been initiated on AMOLED/SS technology and the first 320 x 240 color pixel 4-in. demonstration device has been evaluated in the AFRL Display Test and Evaluation Laboratory. Results of this evaluation are reported along with a research roadmap.

  8. Welding tritium exposed stainless steel

    SciTech Connect

    Kanne, W.R. Jr.

    1994-11-01

    Stainless steels that are exposed to tritium become unweldable by conventional methods due to buildup of decay helium within the metal matrix. With longer service lives expected for tritium containment systems, methods for welding on tritium exposed material will become important for repair or modification of the systems. Solid-state resistance welding and low-penetration overlay welding have been shown to mitigate helium embrittlement cracking in tritium exposed 304 stainless steel. These processes can also be used on stainless steel containing helium from neutron irradiation, such as occurs in nuclear reactors.

  9. Why stainless steel corrodes.

    PubMed

    Ryan, Mary P; Williams, David E; Chater, Richard J; Hutton, Bernie M; McPhail, David S

    2002-02-14

    Stainless steels are used in countless diverse applications for their corrosion resistance. Although they have extremely good general resistance, they are nevertheless susceptible to pitting corrosion. This localized dissolution of an oxide-covered metal in specific aggressive environments is one of the most common and catastrophic causes of failure of metallic structures. The pitting process has been described as random, sporadic and stochastic and the prediction of the time and location of events remains extremely difficult. Many contested models of pitting corrosion exist, but one undisputed aspect is that manganese sulphide inclusions play a critical role. Indeed, the vast majority of pitting events are found to occur at, or adjacent to, such second-phase particles. Chemical changes in and around sulphide inclusions have been postulated as a mechanism for pit initiation but such variations have never been measured. Here we use nanometre-scale secondary ion mass spectroscopy to demonstrate a significant reduction in the Cr:Fe ratio of the steel matrix around MnS particles. These chromium-depleted zones are susceptible to high-rate dissolution that 'triggers' pitting. The implications of these results are that materials processing conditions control the likelihood of corrosion failures, and these data provide a basis for optimizing such conditions. PMID:11845203

  10. Hybrid Laser-Arc Welding of 10-mm-Thick Cast Martensitic Stainless Steel CA6NM: As-Welded Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Mirakhorli, Fatemeh; Cao, Xinjin; Pham, Xuan-Tan; Wanjara, Priti; Fihey, Jean-Luc

    2016-07-01

    Cast CA6NM martensitic stainless steel plates, 10 mm in thickness, were welded using hybrid laser-arc welding. The effect of different welding speeds on the as-welded joint integrity was characterized in terms of the weld bead geometry, defects, microstructure, hardness, ultimate tensile strength, and impact energy. Significant defects such as porosity, root humping, underfill, and excessive penetration were observed at a low welding speed (0.5 m/min). However, the underfill depth and excessive penetration in the joints manufactured at welding speeds above 0.75 m/min met the specifications of ISO 12932. Characterization of the as-welded microstructure revealed untempered martensite and residual delta ferrite dispersed at prior-austenite grain boundaries in the fusion zone. In addition, four different heat-affected zones in the weldments were differentiated through hardness mapping and inference from the Fe-Cr-Ni ternary phase diagram. The tensile fracture occurred in the base metal for all the samples and fractographic analysis showed that the crack path is within the martensite matrix, along primary delta ferrite-martensite interfaces and within the primary delta ferrite. Additionally, Charpy impact testing demonstrated slightly higher fracture energy values and deeper dimples on the fracture surface of the welds manufactured at higher welding speeds due to grain refinement and/or lower porosity.

  11. Ultrasonic Phased Array Evaluations Of Implanted And In-Situ Grown Flaws In Cast Austenitic Stainless Steel Pressurizer Surge Line Piping

    SciTech Connect

    Crawford, Susan L.; Cinson, Anthony D.; Moran, Traci L.; Prowant, Matthew S.; Diaz, Aaron A.; Anderson, Michael T.

    2011-07-31

    A set of circumferentially oriented thermal fatigue cracks (TFCs) were implanted into three cast austenitic stainless steel (CASS) pressurizer (PZR) surge-line specimen welds (pipe-to-elbow configuration) that were salvaged from a U.S. commercial nuclear power plant that had not been operated. Thus, these welds were fabricated using vintage CASS materials that were formed in the 1970s. Additionally, in-situ grown TFCs were placed in the adjacent CASS base material of one of these specimens. Ultrasonic phased-array responses from both types of flaws (implanted and in-situ grown) were analyzed for detection and characterization based on sizing and signal-to-noise determination. Multiple probes were employed covering the 0.8 to 2.0 MHz frequency range. To further validate the Pacific Northwest National Laboratory (PNNL) findings, an independent in-service inspection (ISI) supplier evaluated the flaws with their American Society of Mechanical Engineers (ASME) Code, Section XI, Appendix VIII-qualified procedure. The results obtained by PNNL personnel compared favorably to the ISI supplier results. All examined flaws were detected and sized within the ASME Code-allowable limits.

  12. Hybrid Laser-Arc Welding of 10-mm-Thick Cast Martensitic Stainless Steel CA6NM: As-Welded Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Mirakhorli, Fatemeh; Cao, Xinjin; Pham, Xuan-Tan; Wanjara, Priti; Fihey, Jean-Luc

    2016-04-01

    Cast CA6NM martensitic stainless steel plates, 10 mm in thickness, were welded using hybrid laser-arc welding. The effect of different welding speeds on the as-welded joint integrity was characterized in terms of the weld bead geometry, defects, microstructure, hardness, ultimate tensile strength, and impact energy. Significant defects such as porosity, root humping, underfill, and excessive penetration were observed at a low welding speed (0.5 m/min). However, the underfill depth and excessive penetration in the joints manufactured at welding speeds above 0.75 m/min met the specifications of ISO 12932. Characterization of the as-welded microstructure revealed untempered martensite and residual delta ferrite dispersed at prior-austenite grain boundaries in the fusion zone. In addition, four different heat-affected zones in the weldments were differentiated through hardness mapping and inference from the Fe-Cr-Ni ternary phase diagram. The tensile fracture occurred in the base metal for all the samples and fractographic analysis showed that the crack path is within the martensite matrix, along primary delta ferrite-martensite interfaces and within the primary delta ferrite. Additionally, Charpy impact testing demonstrated slightly higher fracture energy values and deeper dimples on the fracture surface of the welds manufactured at higher welding speeds due to grain refinement and/or lower porosity.

  13. Chromium-Makes stainless steel stainless

    USGS Publications Warehouse

    Kropschot, S.J.; Doebrich, Jeff

    2010-01-01

    Chromium, a steely-gray, lustrous, hard metal that takes a high polish and has a high melting point, is a silvery white, hard, and bright metal plating on steel and other material. Commonly known as chrome, it is one of the most important and indispensable industrial metals because of its hardness and resistance to corrosion. But it is used for more than the production of stainless steel and nonferrous alloys; it is also used to create pigments and chemicals used to process leather.

  14. Development of Cast Alumina-forming Austenitic Stainless Steel Alloys for use in High Temperature Process Environments

    SciTech Connect

    Muralidharan, Govindarajan; Yamamoto, Yukinori; Brady, Michael P; Pint, Bruce A; Pankiw, Roman; Voke, Don

    2015-01-01

    There is significant interest in the development of alumina-forming, creep resistant alloys for use in various industrial process environments. It is expected that these alloys can be fabricated into components for use in these environments through centrifugal casting and welding. Based on the successful earlier studies on the development of wrought versions of Alumina-Forming Austenitic (AFA) alloys, new alloy compositions have been developed for cast products. These alloys achieve good high-temperature oxidation resistance due to the formation of protective Al2O3 scales while multiple second-phase precipitation strengthening contributes to excellent creep resistance. This work will summarize the results on the development and properties of a centrifugally cast AFA alloy. This paper highlights the strength, oxidation resistance in air and water vapor containing environments, and creep properties in the as-cast condition over the temperature range of 750°C to 900°C in a centrifugally cast heat. Preliminary results for a laboratory cast AFA composition with good oxidation resistance at 1100°C are also presented.

  15. Effects of phosphate addition on biofilm bacterial communities and water quality in annular reactors equipped with stainless steel and ductile cast iron pipes.

    PubMed

    Jang, Hyun-Jung; Choi, Young-June; Ro, Hee-Myong; Ka, Jong-Ok

    2012-02-01

    The impact of orthophosphate addition on biofilm formation and water quality was studied in corrosion-resistant stainless steel (STS) pipe and corrosion-susceptible ductile cast iron (DCI) pipe using cultivation and culture-independent approaches. Sample coupons of DCI pipe and STS pipe were installed in annular reactors, which were operated for 9 months under hydraulic conditions similar to a domestic plumbing system. Addition of 5 mg/L of phosphate to the plumbing systems, under low residual chlorine conditions, promoted a more significant growth of biofilm and led to a greater rate reduction of disinfection by-products in DCI pipe than in STS pipe. While the level of THMs (trihalomethanes) increased under conditions of low biofilm concentration, the levels of HAAs (halo acetic acids) and CH (chloral hydrate) decreased in all cases in proportion to the amount of biofilm. It was also observed that chloroform, the main species of THM, was not readily decomposed biologically and decomposition was not proportional to the biofilm concentration; however, it was easily biodegraded after the addition of phosphate. Analysis of the 16S rDNA sequences of 102 biofilm isolates revealed that Proteobacteria (50%) was the most frequently detected phylum, followed by Firmicutes (10%) and Actinobacteria (2%), with 37% of the bacteria unclassified. Bradyrhizobium was the dominant genus on corroded DCI pipe, while Sphingomonas was predominant on non-corroded STS pipe. Methylobacterium and Afipia were detected only in the reactor without added phosphate. PCR-DGGE analysis showed that the diversity of species in biofilm tended to increase when phosphate was added regardless of the pipe material, indicating that phosphate addition upset the biological stability in the plumbing systems. PMID:22367933

  16. Plating on stainless steel alloys

    SciTech Connect

    Dini, J.W.; Johnson, H.R.

    1981-09-11

    Quantitative adhesion data are presented for a variety of electroplated stainless steel type alloys. Results show that excellent adhesion can be obtained by using a Wood's nickel strike or a sulfamate nickel strike prior to final plating. Specimens plated after Wood's nickel striking failed in the deposit rather than at the interface between the substrate and the coating. Flyer plate quantitative tests showed that use of anodic treatment in sulfuric acid prior to Wood's nickel striking even further improved adhesion. In contrast activation of stainless steels by immersion or cathodic treatment in hydrochloric acid resulted in very reduced bond strengths with failure always occurring at the interface between the coating and substrate.

  17. Automated flaw detection scheme for cast austenitic stainless steel weld specimens using Hilbert-Huang transform of ultrasonic phased array data

    SciTech Connect

    Khan, Tariq; Majumdar, Shantanu; Udpa, Lalita; Ramuhalli, Pradeep; Crawford, Susan; Diaz, Aaron; Anderson, Michael T.

    2012-05-17

    The objective of this work is to develop processing algorithms to detect and localize flaws using ultrasonic phased-array data. Data was collected on cast austenitic stainless stell (CASS) weld specimens onloan from the U.S. nuclear power industry' Pressurized Walter Reactor Owners Group (PWROG) traveling specimen set. Each specimen consists of a centrifugally cast stainless stell (CCSS) pipe section welded to a statically cst(SCSS) or wrought (WRSS) section. The paper presents a novel automated flaw detection and localization scheme using low frequency ultrasonic phased array inspection singals from the weld and heat affected zone of the based materials. The major steps of the overall scheme are preprocessing and region of interest (ROI) detection followed by the Hilbert-Huang transform (HHT) of A-scans in the detected ROIs. HHT offers time-frequency-energy distribution for each ROI. The Accumulation of energy in a particular frequency band is used as a classification feature for the particular ROI.

  18. Technical Letter Report Assessment of Ultrasonic Phased Array Inspection Method for Welds in Cast Austenitic Stainless Steel Pressurizer Surge Line Piping JCN N6398, Task 1B

    SciTech Connect

    Diaz, Aaron A.; Cinson, Anthony D.; Crawford, Susan L.; Mathews, Royce; Moran, Traci L.; Anderson, Michael T.

    2009-07-28

    Research is being conducted for the U.S. Nuclear Regulatory Commission (NRC) at the Pacific Northwest National Laboratory (PNNL) to assess the effectiveness and reliability of advanced nondestructive examination (NDE) methods for the inspection of light water reactor components. The scope of this research encompasses primary system pressure boundary materials including cast austenitic stainless steels (CASS); dissimilar metal welds; piping with corrosion-resistant cladding; weld overlays, inlays and onlays; and far-side examinations of austenitic piping welds. A primary objective of this work is to evaluate various NDE methods to assess their ability to detect, localize, and size cracks in coarse-grained steel components. In this effort, PNNL supports cooperation with Commissariat à l’Energie Atomique (CEA) to assess reliable inspection of CASS materials. The NRC Project Manager has established a cooperative effort with the Institut de Radioprotection et de Surete Nucleaire (IRSN). CEA, under funding from IRSN, are supporting collaborative efforts with the NRC and PNNL. Regarding its work on the NDE of materials, CEA is providing its modeling software (CIVA) in exchange for PNNL offering expertise and data related to phased-array detection and sizing, acoustic attenuation, and back scattering on CASS materials. This collaboration benefits the NRC because CEA performs research and development on CASS for Électricité de France (EdF). This technical letter report provides a summary of a technical evaluation aimed at assessing the capabilities of phased-array (PA) ultrasonic testing (UT) methods as applied to the inspection of welds in CASS pressurizer (PZR) surge line nuclear reactor piping. A set of thermal fatigue cracks (TFCs) was implanted into three CASS PZR surge-line specimens (pipe-to-elbow welds) that were fabricated using vintage CASS materials formed in the 1970s, and flaw responses from these cracks were used to evaluate detection and sizing

  19. Corrosion behavior of 2205 duplex stainless steel.

    PubMed

    Platt, J A; Guzman, A; Zuccari, A; Thornburg, D W; Rhodes, B F; Oshida, Y; Moore, B K

    1997-07-01

    The corrosion of 2205 duplex stainless steel was compared with that of AISI type 316L stainless steel. The 2205 stainless steel is a potential orthodontic bracket material with low nickel content (4 to 6 wt%), whereas the 316L stainless steel (nickel content: 10 to 14 wt%) is a currently used bracket material. Both stainless steels were subjected to electrochemical and immersion (crevice) corrosion tests in 37 degrees C, 0.9 wt% sodium chloride solution. Electrochemical testing indicates that 2205 has a longer passivation range than 316L. The corrosion rate of 2205 was 0.416 MPY (milli-inch per year), whereas 316L exhibited 0.647 MPY. When 2205 was coupled to 316L with equal surface area ratio, the corrosion rate of 2205 reduced to 0.260 MPY, indicating that 316L stainless steel behaved like a sacrificial anode. When 316L is coupled with NiTi, TMA, or stainless steel arch wire and was subjected to the immersion corrosion test, it was found that 316L suffered from crevice corrosion. On the other hand, 2205 stainless steel did not show any localized crevice corrosion, although the surface of 2205 was covered with corrosion products, formed when coupled to NiTi and stainless steel wires. This study indicates that considering corrosion resistance, 2205 duplex stainless steel is an improved alternative to 316L for orthodontic bracket fabrication when used in conjunction with titanium, its alloys, or stainless steel arch wires. PMID:9228844

  20. Microbial corrosion of stainless steel.

    PubMed

    Ibars, J R; Moreno, D A; Ranninger, C

    1992-11-01

    Stainless steel, developed because of their greater resistance to corrosion in different aggressive environments, have proved to be affected, however, by various processes and types of corrosion. Some of these types of corrosion, mainly pitting, is activated and developed in the presence of microorganisms, which acting in an isolated or symbiotic way, according to their adaptation to the environment, create a favorable situation for the corrosion of these steel. The microorganisms that are involved, mainly bacteria of both the aerobic and anaerobic type, modify the environment where the stainless steel is found, creating crevices, differential aeration zones or a more aggressive environment with the presence of metabolites. In these circumstances, a local break of the passive and passivating layer is produced, which is proper to these types of steel and impedes the repassivation that is more favorable to corrosion. In the study and research of these types of microbiologically influenced corrosion are found electrochemical techniques, since corrosion is fundamentally an electrochemical process, and microbiological techniques for the identification, culture, and evaluation of the microorganisms involved in the process, as well as in the laboratory or field study of microorganism-metal pairs. Microstructural characterization studies of stainless steel have also been considered important, since it is known that the microstructure of steel can substantially modify their behavior when faced with corrosion. As for surface analysis studies, it is known that corrosion is a process that is generated on and progresses from the surface. The ways of dealing with microbiologically influenced corrosion must necessarily include biocides, which are not always usable or successful, the design of industrial equipment or components that do not favor the adherence of microorganisms, using microstructures in steel less sensitive to corrosion, or protecting the materials. PMID:1492953

  1. Development of New Stainless Steel

    SciTech Connect

    Robert F. Buck

    2005-08-30

    A new family of innovative martensitic stainless steels, 521-A, 521-B, and 521-C has been developed by Advanced Steel Technology, LLC (Trafford, PA) as high strength fastener (bolt) materials for use at moderate temperatures in turbine engines, including steam turbines, gas turbines, and aircraft engines. The primary objective of the development program was to create a martensitic stainless steel with high strength at moderate temperatures, and which could replace the expensive nickel-based superalloy IN 718 in some fasteners applications. A secondary objective was to replace conventional 12Cr steels such as AISI 422 used as blades, buckets and shafts that operate at intermediate temperatures in turbine engines with stronger steel. The composition of the new alloys was specifically designed to produce excellent mechanical properties while integrating heat treatment steps into production to reduce energy consumption during manufacturing. As a result, production costs and energy consumption during production of rolled bar products is significantly lower than conventional materials. Successful commercialization of the new alloys would permit the installed cost of certain turbine engines to be reduced without sacrificing high availability or operational flexibility, thereby enhancing the global competitiveness of U.S. turbine engine manufacturers. Moreover, the domestic specialty steel industry would also benefit through increased productivity and reduced operating costs, while increasing their share of the international market for turbine engine fasteners, blades, buckets and shafts.

  2. Nickel release from stainless steels.

    PubMed

    Haudrechy, P; Mantout, B; Frappaz, A; Rousseau, D; Chabeau, G; Faure, M; Claudy, A

    1997-09-01

    In 1994, a study of nickel release and allergic contact dermatitis from nickel-plated metals and stainless steels was published in this journal. It was shown that low-sulfur stainless steel grades like AISI 304, 316L or 430 (S < or = 0.007%) release less than 0.03 microgram/cm2/week of nickel in acid artificial sweat and elicit no reactions in patients already sensitized to nickel. In contrast, nickel-plated samples release around 100 micrograms/cm2/week of Ni and high-sulfur stainless steel (AISI 303-S approximately 0.3%) releases about 1.5 micrograms/cm2/week in this acid artificial sweat. Applied on patients sensitized to nickel, these metals elicit positive reactions in 96% and 14%, respectively, of the patients. The main conclusion was that low-sulfur stainless steels like AISI 304, 316L or 430, even when containing Ni, should not elicit nickel contact dermatitis, while metals having a mean corrosion resistance like a high-sulfur stainless steel (AISI 303) or nickel-plated steel should be avoided. The determining characteristic was in fact the corrosion resistance in chloride media, which, for stainless steels, is connected, among other factors, to the sulfur content. Thus, a question remained concerning the grades with an intermediate sulfur content, around 0.03%, which were not studied. They are the object of the study presented in this paper. 3 tests were performed: leaching experiments, dimethylglyoxime and HNO3 spot tests, and clinical patch tests; however, only stainless steels were tested: a low-sulfur AISI 304 and AISI 303 as references and 3 grades with a sulfur content around 0.03%: AISI 304L, AISI 304L added with Ca, AISI 304L+Cu. Leaching experiments showed that the 4 non-resulfurised grades released less than 0.5 microgram/cm2/week in acid sweat while the reulfurized AISI 303 released around or more than 0.5 microgram/cm2/week. This is explained by the poorer corrosion resistance of the resulfurized grade. Yet all these grades had the same

  3. Nano-composite stainless steel

    DOEpatents

    Dehoff, Ryan R.; Blue, Craig A.; Peter, William H.; Chen, Wei; Aprigliano, Louis F.

    2015-07-14

    A composite stainless steel composition is composed essentially of, in terms of wt. % ranges: 25 to 28 Cr; 11 to 13 Ni; 7 to 8 W; 3.5 to 4 Mo; 3 to 3.5 B; 2 to 2.5 Mn; 1 to 1.5 Si; 0.3 to 1.7 C; up to 2 O; balance Fe. The composition has an austenitic matrix phase and a particulate, crystalline dispersed phase.

  4. Nickel: makes stainless steel strong

    USGS Publications Warehouse

    Boland, Maeve A.

    2012-01-01

    Nickel is a silvery-white metal that is used mainly to make stainless steel and other alloys stronger and better able to withstand extreme temperatures and corrosive environments. Nickel was first identified as a unique element in 1751 by Baron Axel Fredrik Cronstedt, a Swedish mineralogist and chemist. He originally called the element kupfernickel because it was found in rock that looked like copper (kupfer) ore and because miners thought that "bad spirits" (nickel) in the rock were making it difficult for them to extract copper from it. Approximately 80 percent of the primary (not recycled) nickel consumed in the United States in 2011 was used in alloys, such as stainless steel and superalloys. Because nickel increases an alloy's resistance to corrosion and its ability to withstand extreme temperatures, equipment and parts made of nickel-bearing alloys are often used in harsh environments, such as those in chemical plants, petroleum refineries, jet engines, power generation facilities, and offshore installations. Medical equipment, cookware, and cutlery are often made of stainless steel because it is easy to clean and sterilize. All U.S. circulating coins except the penny are made of alloys that contain nickel. Nickel alloys are increasingly being used in making rechargeable batteries for portable computers, power tools, and hybrid and electric vehicles. Nickel is also plated onto such items as bathroom fixtures to reduce corrosion and provide an attractive finish.

  5. 60 Years of duplex stainless steel applications

    SciTech Connect

    Olsson, J.; Liljas, M.

    1994-12-31

    In this paper the history of wrought duplex stainless steel development and applications is described. Ferritic-austenitic stainless steels were introduced only a few decades after stainless steels were developed. The paper gives details from the first duplex stainless steels in the 1930`s to the super duplex stainless steel development during the 1980`s. During the years much effort has been devoted to production and welding metallurgy as well as corrosion research of the duplex stainless steels. Therefore, duplex stainless steels are to-day established in a wide product range. Numerous important applications are exemplified. In most cases the selection of a duplex steel has been a result of the combination high strength excellent corrosion resistance. In the pulp and paper industry the most interesting use is as vessel material in digesters. For chemical process industry, the duplex steels are currently used in heat exchangers. The largest application of duplex steels exists in the oil and gas/offshore industry. Hundreds of kms of pipelines are installed and are still being installed. An increased use of duplex steels is foreseen in areas where the strength is of prime importance.

  6. Applications and experiences with super duplex stainless steel in wet FGD scrubber systems

    SciTech Connect

    Francis, R.; Byrne, G.; Warburton, G.; Hebdon, S.

    1998-12-31

    The paper presents the properties of the author`s company`s proprietary super duplex stainless steel. Work is presented showing the development of a more realistic laboratory solution representing typical limestone slurries found in real flue gas desulfurization (FGD) systems. The importance of additions of metal ions such as Fe{sup 3+} and Mn{sup 2+} as well as partially oxidized sulfur species is demonstrated. Results are presented comparing the crevice corrosion resistance of super duplex stainless steel in these slurries with other commonly used wrought and cast stainless steels, for both simulated anthracite and lignite type slurries. Data from loop tests on the erosion resistance of a range of alloys in simulated FGD slurries is presented. The results clearly show the superior resistance of super duplex stainless steel to both crevice corrosion and erosion in FGD slurries. Finally the experiences in UK FGD systems with both cast and wrought super duplex stainless steel are presented.

  7. Post-weld Tempered Microstructure and Mechanical Properties of Hybrid Laser-Arc Welded Cast Martensitic Stainless Steel CA6NM

    NASA Astrophysics Data System (ADS)

    Mirakhorli, Fatemeh; Cao, Xinjin; Pham, Xuan-Tan; Wanjara, Priti; Fihey, Jean-Luc

    2016-01-01

    Manufacturing of hydroelectric turbine components involves the assembly of thick-walled stainless steels using conventional multi-pass arc welding processes. By contrast, hybrid laser-arc welding may be an attractive process for assembly of such materials to realize deeper penetration depths, higher production rates, narrower fusion, and heat-affected zones, and lower distortion. In the present work, single-pass hybrid laser-arc welding of 10-mm thick CA6NM, a low carbon martensitic stainless steel, was carried out in the butt joint configuration using a continuous wave fiber laser at its maximum power of 5.2 kW over welding speeds ranging from 0.75 to 1.2 m/minute. The microstructures across the weldment were characterized after post-weld tempering at 873 K (600 °C) for 1 hour. From microscopic examinations, the fusion zone was observed to mainly consist of tempered lath martensite and some residual delta-ferrite. The mechanical properties were evaluated in the post-weld tempered condition and correlated to the microstructures and defects. The ultimate tensile strength and Charpy impact energy values of the fully penetrated welds in the tempered condition were acceptable according to ASTM, ASME, and industrial specifications, which bodes well for the introduction of hybrid laser-arc welding technology for the manufacturing of next generation hydroelectric turbine components.

  8. Stainless steel-zirconium alloy waste forms

    SciTech Connect

    McDeavitt, S.M.; Abraham, D.P.; Keiser, D.D. Jr.; Park, J.Y.

    1996-07-01

    An electrometallurgical treatment process has been developed by Argonne National Laboratory to convert various types of spent nuclear fuels into stable storage forms and waste forms for repository disposal. The first application of this process will be to treat spent fuel alloys from the Experimental Breeder Reactor-II. Three distinct product streams emanate from the electrorefining process: (1) refined uranium; (2) fission products and actinides extracted from the electrolyte salt that are processed into a mineral waste form; and (3) metallic wastes left behind at the completion of the electrorefining step. The third product stream (i.e., the metal waste stream) is the subject of this paper. The metal waste stream contains components of the chopped spent fuel that are unaffected by the electrorefining process because of their electrochemically ``noble`` nature; this includes the cladding hulls, noble metal fission products (NMFP), and, in specific cases, zirconium from metal fuel alloys. The selected method for the consolidation and stabilization of the metal waste stream is melting and casting into a uniform, corrosion-resistant alloy. The waste form casting process will be carried out in a controlled-atmosphere furnace at high temperatures with a molten salt flux. Spent fuels with both stainless steel and Zircaloy cladding are being evaluated for treatment; thus, stainless steel-rich and Zircaloy-rich waste forms are being developed. Although the primary disposition option for the actinides is the mineral waste form, the concept of incorporating the TRU-bearing product into the metal waste form has enough potential to warrant investigation.

  9. METHOD FOR JOINING ALUMINUM TO STAINLESS STEEL

    DOEpatents

    Lemon, L.C.

    1960-05-24

    Aluminum may be joined to stainless steel without the use of flux by tinning the aluminum with a tin solder containing 1% silver and 1% lead, tinning the stainless steel with a 50% lead 50% tin solder, and then sweating the tinned surfaces together.

  10. Interaction between stainless steel and plutonium metal

    SciTech Connect

    Dunwoody, John T; Mason, Richard E; Freibert, Franz J; Willson, Stephen P; Veirs, Douglas K; Worl, Laura A; Archuleta, Alonso; Conger, Donald J

    2010-01-01

    Long-term storage of excess plutonium is of great concern in the U.S. as well as abroad. The current accepted configuration involves intimate contact between the stored material and an iron-bearing container such as stainless steel. While many safety scenario studies have been conducted and used in the acceptance of stainless steel containers, little information is available on the physical interaction at elevated temperatures between certain forms of stored material and the container itself. The bulk of the safety studies has focused on the ability of a package to keep the primary stainless steel containment below the plutonium-iron eutectic temperature of approximately 410 C. However, the interactions of plutonium metal with stainless steel have been of continuing interest. This paper reports on a scoping study investigating the interaction between stainless steel and plutonium metal in a pseudo diffusion couple at temperatures above the eutectic melt-point.

  11. The comparison of frictional resistance in titanium, self-ligating stainless steel, and stainless steel brackets using stainless steel and TMA archwires: An in vitro study

    PubMed Central

    Khalid, Syed Altaf; Kumar, Vadivel; Jayaram, Prithviraj

    2012-01-01

    Aim: The aim of the study was to compare the frictional resistance of titanium, self-ligating stainless steel, and conventional stainless steel brackets, using stainless steel and titanium molybdenum alloy (TMA) archwires. Materials and Methods: We compared the frictional resistance in 0.018 slot and 0.022 slot of the three brackets – titanium, self-ligating stainless steel, and conventional stainless steel – using stainless steel archwires and TMA archwires. An in vitro study of simulated canine retraction was undertaken to evaluate the difference in frictional resistance between titanium, self-ligating stainless steel, and stainless steel brackets, using stainless steel and TMA archwires. Results and Conclusion: We compared the frictional resistance of titanium, self-ligating stainless steel, and conventional stainless steel brackets, using stainless steel and TMA archwires, with the help of Instron Universal Testing Machine. One-way analysis of variance (ANOVA), Student's “t” test, and post hoc multiple range test at level of <0.05 showed statistically significant difference in the mean values of all groups. Results demonstrated that the titanium, self-ligating stainless steel, and stainless steel brackets of 0.018-inch and 0.022-inch slot had no significant variations in frictional résistance. The self-ligating bracket with TMA archwires showed relatively less frictional resistance compared with the other groups. The titanium bracket with TMA archwires showed relatively less frictional resistance compared with the stainless steel brackets. PMID:23066253

  12. Steel castings by the electroslag casting technique. [CF8M

    SciTech Connect

    Sikka, V.K.; Mitchell, A.

    1984-01-01

    ELectroslag casting facilities in Canada and the United States were reviewed. Several valve body castings of 2-1/4 Cr-1 Mo, 9 Cr-1 Mo, and 18% Cr-8% Ni(Mo) steels were made at the University of British Columbia facility. These castings were examined for surface finish, chemical segregation, and macrostructure in the as-cast condition and after various heat treatments. Castings were subjected to tensile, Charpy impact, and creep testing. Results of these tests were compared with similar data on wrought material and sand castings.

  13. Corrosion of stainless steel, 2. edition

    SciTech Connect

    Sedriks, A.J.

    1996-10-01

    The book describes corrosion characteristics in all the major and minor groups of stainless steels, namely, in austenitic, ferritic, martensitic, duplex, and precipitation hardenable steels. Several chapters are spent on those special forms of corrosion that are investigated in the great detail in stainless steels, namely, pitting corrosion, crevice corrosion, and stress corrosion cracking. The influences of thermal treatment (heat affected zone cases), composition, and microstructure on corrosion are given good coverage. Corrosive environments include high temperature oxidation, sulfidation as well as acids, alkalis, various different petroleum plant environments, and even human body fluids (stainless steels are commonly used prosthetic materials).

  14. Duplex stainless steels for osteosynthesis devices.

    PubMed

    Cigada, A; Rondelli, G; Vicentini, B; Giacomazzi, M; Roos, A

    1989-09-01

    The austenitic stainless steels used today for the manufacture of osteosynthesis devices are sensitive to crevice corrosion. In this study the corrosion properties of some duplex stainless steels were evaluated and compared to traditional austenitic stainless steels. According to our results the following ranking was established: 23Cr-4Ni less than AISI 316L less than ASTM F138 less than 22Cr-5Ni-3Mo less than 27Cr-31Ni-3.5Mo less than 25Cr-7Ni-4Mo-N. In particular the results showed that the high-performance 25Cr-7Ni-4Mo-N duplex stainless steel, with high molybdenum and nitrogen contents, can be considered not susceptible to crevice corrosion in the human body. The duplex stainless steels have also better mechanical properties at the same degree of cold working compared with austenitic stainless steels. Hence the 25Cr-7Ni-4Mo-N duplex stainless steel can be considered a convenient substitute of ASTM F138 for orthopedic and osteosynthesis devices. PMID:2777835

  15. Fillability of Thin-Wall Steel Castings

    SciTech Connect

    Robert C. Voigt; Joseph Bertoletti; Andrew Kaley; Sandi Ricotta; Travis Sunday

    2002-07-30

    The use of steel components is being challenged by lighter nonferrous or cast iron components. The development of techniques for enhancing and ensuring the filability of thin-wall mold cavities is most critical for thinner wall cast steel production. The purpose of this research was to develop thin-wall casting techniques that can be used to reliably produce thin-wall castings from traditional gravity poured sand casting processes. The focus of the research was to enhance the filling behavior to prevent misrunds. Experiments were conducted to investigate the influence of various foundry variables on the filling of thin section steel castings. These variables include casting design, heat transfer, gating design, and metal fluidity. Wall thickness and pouring temperature have the greatest effect on casting fill. As wall thickness increases the volume to surface area of the casting increases, which increases the solidification time, allowing the metal to flow further in thicker sect ions. Pouring time is another significant variable affecting casting fill. Increases or decreases of 20% in the pouring time were found to have a significant effect on the filling of thin-wall production castings. Gating variables, including venting, pouring head height, and mold tilting also significantly affected thin-wall casting fill. Filters offer less turbulent, steadier flow, which is appropriate for thicker castings, but they do not enhance thin-wall casting fill.

  16. Process development of thin strip steel casting

    SciTech Connect

    Sussman, R.C.; Williams, R.S.

    1990-12-01

    An important new frontier is being opened in steel processing with the emergence of thin strip casting. Casting steel directly to thin strip has enormous benefits in energy savings by potentially eliminating the need for hot reduction in a hot strip mill. This has been the driving force for numerous current research efforts into the direct strip casting of steel. The US Department of Energy initiated a program to evaluate the development of thin strip casting in the steel industry. In earlier phases of this program, planar flow casting on an experimental caster was studied by a team of engineers from Westinghouse Electric corporation and Armco Inc. A subsequent research program was designed as a fundamental and developmental study of both planar and melt overflow casting processes. This study was arranged as several separate and distinct tasks which were often completed by different teams of researchers. An early task was to design and build a water model to study fluid flow through different designs of planar flow casting nozzles. Another important task was mathematically modeling of melt overflow casting process. A mathematical solidification model for the formation of the strip in the melt overflow process was written. A study of the material and conditioning of casting substrates was made on the small wheel caster using the melt overflow casting process. This report discusses work on the development of thin steel casting.

  17. Tritiated Water Interaction with Stainless Steel

    SciTech Connect

    Glen R. Longhurst

    2007-05-01

    Experiments conducted to study tritium permeation of stainless steel at ambient and elevated temperatures revealed that HT converts relatively quickly to HTO. Further, the HTO partial pressure contributes essentially equally with elemental tritium gas in driving permeation through the stainless steel. Such permeation appears to be due to dissociation of the water molecule on the hot stainless steel surface. There is an equilibrium concentration of HTO vapor above adsorbed gas on the walls of the experimental apparatus evident from freezing transients. The uptake process of tritium from the carrier gas involves both surface adsorption and isotopic exchange with surface bound water.

  18. Clean Cast Steel Technology, Phase IV

    SciTech Connect

    Charles E. Bates

    2003-02-24

    The objective of the Clean Cast Steel Technology Program was to improve casting product quality by removing or minimizing oxide defects and to allow the production of higher integrity castings for high speed machining lines. Previous research has concentrated on macro-inclusions that break, chip, or crack machine tool cutters and drills and cause immediate shutdown of the machining lines. The overall goal of the project is to reduce the amount of surface macro-inclusions and improve the machinability of steel castings. Macro-inclusions and improve the machinability of steel castings. Macro-inclusions have been identified by industrial sponsors as a major barrier to improving the quality and marketability of steel castings.

  19. Precise carbon control of fabricated stainless steel

    DOEpatents

    Nilsen, R.J.

    1975-12-01

    A process is described for controlling the carbon content of fabricated stainless steel components including the steps of heat treating the component in hydrogen atmospheres of varying dewpoints and carbon potentials.

  20. Hydrogen compatibility handbook for stainless steels

    SciTech Connect

    Caskey, G.R. Jr.

    1983-06-01

    This handbook compiles data on the effects of hydrogen on the mechanical properties of stainless steels and discusses this data within the context of current understanding of hydrogen compatibility of metals. All of the tabulated data derives from continuing studies of hydrogen effects on materials that have been conducted at the Savannah River Laboratory over the past fifteen years. Supplementary data from other sources are included in the discussion. Austenitic, ferritic, martensitic, and precipitation hardenable stainless steels have been studied. Damage caused by helium generated from decay of tritium is a distinctive effect that occurs in addition to the hydrogen isotopes protium and deuterium. The handbook defines the scope of our current knowledge of hydrogen effects in stainless steels and serves as a guide to selection of stainless steels for service in hydrogen.

  1. Development of a carburizing stainless steel alloy

    SciTech Connect

    Wert, D.E. )

    1994-06-01

    A new carburizing stainless steel alloy that resists corrosion, heat, and fatigue has been developed for bearing and gear applications. Pyrowear 675 Stainless alloy is vacuum induction melted and vacuum arc remelted (VIM/VAR) for aircraft-quality cleanliness. Test results show that it has corrosion resistance similar to that of AISI Type 440-C stainless, and its rolling fatigue resistance is superior to that of AISI M50 (UNS K88165). In contrast to alloy gear steels and Type 440C, Pyrowear 675 maintains case hardness of HRC 60 at operating temperatures up to 200 C (400 F). Impact and fracture toughness are superior to that of other stainless bearing steels, which typically are relatively brittle and can break under severe service. Toughness is also comparable or superior to conventional noncorrosion-resistant carburizing bearing steels, such as SAE Types 8620 and 9310.

  2. Stainless steel to titanium bimetallic transitions

    NASA Astrophysics Data System (ADS)

    Kaluzny, J. A.; Grimm, C.; Passarelli, D.

    2015-12-01

    In order to use stainless steel piping in an LCLS-II (Linac Coherent Light Source Upgrade) cryomodule, stainless steel to titanium bimetallic transitions are needed to connect the stainless steel piping to the titanium cavity helium vessel. Explosion bonded stainless steel to titanium transition pieces and bimetallic transition material samples have been tested. A sample transition tube was subjected to tests and x-ray examinations between tests. Samples of the bonded joint material were impact and tensile tested at room temperature as well as liquid helium temperature. The joint has been used successfully in horizontal tests of LCLS-II cavity helium vessels and is planned to be used in LCLS-II cryomodules. Results of material sample and transition tube tests will be presented. Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy.

  3. Stainless Steel to Titanium Bimetallic Transitions

    SciTech Connect

    Kaluzny, J. A.; Grimm, C.; Passarelli, D.

    2015-01-01

    In order to use stainless steel piping in an LCLS-II (Linac Coherent Light Source Upgrade) cryomodule, stainless steel to titanium bimetallic transitions are needed to connect the stainless steel piping to the titanium cavity helium vessel. Explosion bonded stainless steel to titanium transition pieces and bimetallic transition material samples have been tested. A sample transition tube was subjected to tests and x-ray examinations between tests. Samples of the bonded joint material were impact and tensile tested at room temperature as well as liquid helium temperature. The joint has been used successfully in horizontal tests of LCLS-II cavity helium vessels and is planned to be used in LCLS-II cryomodules. Results of material sample and transition tube tests will be presented.

  4. A Duplex Stainless Steel for Chloride Environments

    NASA Astrophysics Data System (ADS)

    Sridhar, N.; Kolts, J.; Flasche, L. H.

    1985-03-01

    This paper examines the effects of microstructural changes on the corrosion, stress corrosion cracking and corrosion fatigue resistance of a duplex stainless steel to chloride environments. The microstructural changes can be precipitation of phases such as sigma and carbides, or changes in the distribution of austenite and ferrite. The former can be important in hot forming operations while the latter is important in welding. The methods of minimizing these deleterious effects can sometimes be different from those used for austenitic stainless steel.

  5. The abrasion-wear resistance of arc sprayed stainless steel and composite stainless steel coatings

    SciTech Connect

    Dallaire, S.; Legoux, J.G.; Levert, H.

    1994-12-31

    Stainless steels are often used to palliate wear problems in various industries. Though they are not wear resistant, they have been used to a limited extent in applications involving both corrosive and abrasive/erosive environments. The protection of industrial components by arc sprayed stainless steel composite coatings could be considered very attractive provided these coatings offer a better wear protection than bulk stainless steel. The wear resistance of stainless steel and composite stainless steel-titanium boride coatings arc sprayed with air and argon was evaluated following the ASTM G-65 Abrasion Wear Test procedures. Wear volume loss measurements show that stainless steel coatings arc sprayed with air were slightly more resistant than bulk stainless steel while those sprayed with argon were slightly less resistant. The abrasion wear resistance of composite stainless steel-titanium diboride coatings is by two or four times beyond the wear resistance of bulk stainless steel depending upon the core wire constitution and the type of gas used for spraying. Microstructural analysis of coatings, microhardness measurements of sprayed lamellae and optical profilometry were used to characterize coatings and wear damages. Spraying with air instead of argon produced much more small particles. These particles, being removed from the metal sheath surface, are individually sprayed without diluting the concentration hard phases within cores. It results in coatings that contain large lamellae with hardnesses sufficient to withstand abrasion. By considering both the wire constitution and the spraying conditions, it was found possible to fabricate composite stainless steel coatings that show a 400% increase in wear resistance over bulk stainless steel.

  6. Molds for electroslag casting systems. [2-1/4 Cr-1 Mo steel, 9 Cr-1 Mo steel

    SciTech Connect

    Bhat, G.K.

    1985-07-01

    This report describes the basic types of molds used for the manufacture of electroslag castings. The report also provides guidelines for the design of such molds based on heat generation and heat transfer considerations pertaining to the electroslag casting process. The designs of the two-step and three-step molds used for the manufacture of electroslag castings of 2-1/4 Cr-1 Mo steel, 316 stainless steel and 9 Cr-1 Mo steel are provided as examples of cost effective mold construction using cooled copper liners for metal-slag containment. 5 refs., 12 figs.

  7. Cleaning, pickling, and passivation of stainless steels

    SciTech Connect

    Dillon, C.P. )

    1994-05-01

    Stainless steels (SS) are chosen for various services because of their appearance and corrosion resistance and for their freedom from contamination in storage and shipment. However, certain conditions in handling or fabrication may make these alloys susceptible to localized corrosion or unsatisfactory performance. A surface of cleanliness, uniformity, and corrosion resistance is desirable and, in some services, absolutely required. Definitions and procedures for cleaning, pickling, and passivating stainless steels are reviewed. Surface contamination and defects including grinding marks and smut are discussed, as are measures for preventing and correcting them. The cleaning and passivating sequence required for free-machining stainless grades is included.

  8. High Mn austenitic stainless steel

    DOEpatents

    Yamamoto, Yukinori [Oak Ridge, TN; Santella, Michael L [Knoxville, TN; Brady, Michael P [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Liu, Chain-tsuan [Knoxville, TN

    2010-07-13

    An austenitic stainless steel alloy includes, in weight percent: >4 to 15 Mn; 8 to 15 Ni; 14 to 16 Cr; 2.4 to 3 Al; 0.4 to 1 total of at least one of Nb and Ta; 0.05 to 0.2 C; 0.01 to 0.02 B; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1W; up to 3 Cu; up to 1 Si; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale including alumina, nanometer scale sized particles distributed throughout the microstructure, the particles including at least one of NbC and TaC, and a stable essentially single phase FCC austenitic matrix microstructure that is essentially delta-ferrite-free and essentially BCC-phase-free.

  9. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  10. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  11. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  12. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  13. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  14. Forming "dynamic" membranes on stainless steel

    NASA Technical Reports Server (NTRS)

    Brandon, C. A.; Gaddis, J. L.

    1979-01-01

    "Dynamic" zirconium polyacrylic membrane is formed directly on stainless steel substrate without excessive corrosion of steel. Membrane is potentially useful in removal of contaminated chemicals from solution through reversed osmosis. Application includes use in filtration and desalination equipment, and in textile industry for separation of dyes from aqueous solvents.

  15. Corrosion behavior of sensitized duplex stainless steel.

    PubMed

    Torres, F J; Panyayong, W; Rogers, W; Velasquez-Plata, D; Oshida, Y; Moore, B K

    1998-01-01

    The present work investigates the corrosion behavior of 2205 duplex stainless steel in 0.9% NaCl solution after various heat-treatments, and compares it to that of 316L austenitic stainless steel. Both stainless steels were heat-treated at 500, 650, and 800 degrees C in air for 1 h, followed by furnace cooling. Each heat-treated sample was examined for their microstructures and Vickers micro-hardness, and subjected to the X-ray diffraction for the phase identification. Using potentiostatic polarization method, each heat-treated sample was corrosion-tested in 37 degrees C 0.9% NaCl solution to estimate its corrosion rate. It was found that simulated sensitization showed an adverse influence on both steels, indicating that corrosion rates increased by increasing the sensitization temperatures. PMID:9713683

  16. NanoComposite Stainless Steel Powder Technologies

    SciTech Connect

    DeHoff, R.; Glasgow, C.

    2012-07-25

    Oak Ridge National Laboratory has been investigating a new class of Fe-based amorphous material stemming from a DARPA, Defense Advanced Research Projects Agency initiative in structural amorphous metals. Further engineering of the original SAM materials such as chemistry modifications and manufacturing processes, has led to the development of a class of Fe based amorphous materials that upon processing, devitrify into a nearly homogeneous distribution of nano sized complex metal carbides and borides. The powder material is produced through the gas atomization process and subsequently utilized by several methods; laser fusing as a coating to existing components or bulk consolidated into new components through various powder metallurgy techniques (vacuum hot pressing, Dynaforge, and hot isostatic pressing). The unique fine scale distribution of microstructural features yields a material with high hardness and wear resistance compared to material produced through conventional processing techniques such as casting while maintaining adequate fracture toughness. Several compositions have been examined including those specifically designed for high hardness and wear resistance and a composition specifically tailored to devitrify into an austenitic matrix (similar to a stainless steel) which poses improved corrosion behavior.

  17. Improvements in 500-kHz Ultrasonic Phased-Array Probe Designs for Evaluation of Thick Section Cast Austenitic Stainless Steel Piping Welds

    SciTech Connect

    Crawford, Susan L.; Cinson, Anthony D.; Moran, Traci L.; Anderson, Michael T.; Diaz, Aaron A.

    2011-02-01

    PNNL has been studying and performing confirmatory research on the inspection of piping welds in coarse-grained steels for over 30 years. More recent efforts have been the application of low frequency phased array technology to this difficult to inspect material. The evolution of 500 kHz PA probes and the associated electronics and scanning protocol are documented in this report. The basis for the probe comparisons are responses from one mechanical fatigue crack and two thermal fatigue cracks in large-bore cast mockup specimens on loan from the Electric Power Research Institution. One of the most significant improvements was seen in the use of piezo-composite elements in the later two probes instead of the piezo-ceramic material used in the prototype array. This allowed a reduction in system gain of 30 dB and greatly reduced electronic noise. The latest probe had as much as a 5 dB increase in signal to noise, adding to its flaw discrimination capability. The system electronics for the latest probe were fully optimized for a 500 kHz center frequency, however significant improvements were not observed in the center frequency of the flaw responses. With improved scanner capabilities, smaller step sizes were used, allowing both line and raster data improvements to be made with the latest probe. The small step sizes produce high resolution images that improve flaw discrimination and, along with the increased signal-to-noise ratio inherent in the latest probe design, enhanced detection of the upper regions of the flaw make depth sizing more plausible. Finally, the physical sizes of the probes were progressively decreased allowing better access to the area of interest on specimens with weld crowns, and the latest probe was designed with non-integral wedges providing flexibility in focusing on different specimen geometries.

  18. Tensile behavior of CF8-CPF8-304H and CF8M-CPF8M-316H stainless steel static and centrifugal castings

    SciTech Connect

    McEnerney, J.W.; Sikka, V.K.; Booker, M.K.

    1981-10-01

    We have analyzed the tensile behavior of 11 heats of grades CF8-CPF8-304H and 13 heats of grades CF8M-CPF8M-316H static and centrifugal castings from room temperature to 650/sup 0/C. Except for anomalous conditions, the centrifugal castings exhibited uniform composition. All CPF8-304H centrifugal castings contained only radial columnar grains, but some CPF8M-316H castings had columnar, banded, or equiaxed structures. Ultimate tensile strength and total elongation were the properties in which castings showed the most inferiority to wrought material. With increasing ferrite content, 0.2% yield strength and ultimate tensile strength increased while uniform elongation, total elongation, and reduction of area decreased. Although centrifugal castings did not exhibit significant end-to-end variation in tensile behavior, the 0.2% yield strength displayed anisotropy, with axial and circumferential values being greater than radial.

  19. Clean cast steel technology. Final report

    SciTech Connect

    Bates, C.E.; Griffin, J.A.

    1998-06-01

    This report documents the results obtained from the Clean Cast Steel Technology Program financially supported by the DOE Metal Casting Competitiveness Research Program and industry. The primary objective of this program is to develop technology for delivering steel free of oxide macroinclusions to mold cavities. The overall objective is to improve the quality of cast steel by developing and demonstrating the technology for substantially reducing surface and sub-surface oxide inclusions. Two approaches are discussed here. A total of 23 castings were produced by submerge pouring along with sixty conventionally poured castings. The submerged poured castings contained, on average, 96% fewer observable surface inclusions (11.9 vs 0.4) compared to the conventionally poured cast parts. The variation in the population of surface inclusions also decreased by 88% from 5.5 to 0.7. The machinability of the casting was also improved by submerged pouring. The submerge poured castings required fewer cutting tool changes and less operator intervention during machining. Subsequent to these trials, the foundry has decided to purchase more shrouds for continued experimentation on other problem castings where submerge pouring is possible. An examination of melting and pouring practices in four foundries has been carried out. Three of the four foundries showed significant improvement in casting quality by manipulating the melting practice. These melting practice variables can be grouped into two separate categories. The first category is the pouring and filling practice. The second category concerns the concentration of oxidizable elements contained in the steel. Silicon, manganese, and aluminum concentrations were important factors in all four foundries. Clean heats can consistently be produced through improved melting practice and reducing exposure of the steel to atmospheric oxygen during pouring and filling.

  20. Superplastic forming of stainless steel automotive components

    SciTech Connect

    Bridges, B.; Elmer, J.; Carol, L.

    1997-02-06

    Exhaust emission standards are governmentally controlled standards, which are increasingly stringent, forcing alternate strategies to meet these standards. One approach to improve the efficiency of the exhaust emission equipment is to decrease the time required to get the catalytic converter to optimum operating temperature. To accomplish this, automotive manufacturers are using double wall stainless steel exhaust manifolds to reduce heat loss of the exhaust gases to the converter. The current method to manufacture double wall stainless steel exhaust components is to use a low-cost alloy with good forming properties and extensively form, cut, assemble, and weld the pieces. Superplastic forming (SPF) technology along with alloy improvements has potential at making this process more cost effective. Lockheed Martin Energy Systems (LMES), Lawrence Livermore National Laboratory (LLNL) and USCAR Low Emission Partnership (LEP) worked under a Cooperative Research And Development Agreement (CRADA) to evaluate material properties, SPF behavior, and welding behavior of duplex stainless steel alloy for automotive component manufacturing. Battelle Pacific Northwest National Laboratory (PNNL) has a separate CRADA with the LEP to use SPF technology to manufacture a double wall stainless steel exhaust component. As a team these CRADAs developed and demonstrated a technical plan to accomplish making double wall stainless steel exhaust manifolds.

  1. Ultrasonic Spectroscopy of Stainless Steel Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Cosgriff, Laura M.; Lerch, Bradley A.; Hebsur, Mohan G.; Baaklini, George Y.; Ghosn, Louis J.

    2003-01-01

    Enhanced, lightweight material systems, such as 17-4PH stainless steel sandwich panels are being developed for use as fan blades and fan containment material systems for next generation engines. In order to improve the production for these systems, nondestructive evaluation (NDE) techniques, such as ultrasonic spectroscopy, are being utilized to evaluate the brazing quality between the 17-4PH stainless steel face plates and the 17-4PH stainless steel foam core. Based on NDE data, shear tests are performed on sections representing various levels of brazing quality from an initial batch of these sandwich structures. Metallographic characterization of brazing is done to corroborate NDE findings and the observed shear failure mechanisms.

  2. Explosive Surface Hardening of Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Kovacs-Coskun, T.

    2016-04-01

    In this study, the effects of explosion hardening on the microstructure and the hardness of austenitic stainless steel have been studied. The optimum explosion hardening technology of austenitic stainless steel was researched. In case of the explosive hardening used new idea mean indirect hardening setup. Austenitic stainless steels have high plasticity and can be easily cold formed. However, during cold processing the hardening phenomena always occurs. Upon the explosion impact, the deformation mechanism indicates a plastic deformation and this deformation induces a phase transformation (martensite). The explosion hardening enhances the mechanical properties of the material, includes the wear resistance and hardness. In case of indirect hardening as function of the setup parameters specifically the flayer plate position the hardening increased differently. It was find a relationship between the explosion hardening setup and the hardening level.

  3. Textured substrate method for the direct continuous casting of steel sheet; Final report

    SciTech Connect

    Gaspar, T.; Hackman, L.E.; Hsiao, Yu-Hsian; Daehn, G.

    1990-03-30

    The three goals of this research project were to demonstrate the feasibility of casting steel strip up to 2 mm (0.079 in) thick on a textured chill roll, to develop the thermal-mechanical processing to optimize the properties of the steel strip and to measure the properties of the steel strip as a function of casting and metalworking variables. Each of these goals have been realized. Type 304 stainless strip measuring up to 329 mm (12.9 in) wide and up to 1.98 mm (0.078 in) thick was cast on a 600 mm (24 in) copper chill roll with a 14 pitch, 60 degree diamond knurl pattern machined on it`s circumference. The casting speed was 0.15 m/s and the depth of liquid steel in contact with the chill roll was approximately 127 m (5 in). The most important process variables are the texture on the chill roll, the chemistry and temperature of the liquid steel, the depth of liquid in contact with the chill roll and the casting speed. It has been shown that thermal mechanical treatment can significantly improve both the surface finish and mechanical properties of Type 304 stainless steel. Cold rolling in excess of 30% reduction serves to completely eliminate the textured pattern from direct cast Type 304 stainless steel strips. Furthermore, cold rolling followed by annealing can produce commercial ingot metallurgy steels. Specifically, for Type 304 stainless steel, 30% cold rolling followed by a 40 minute anneal at 1100 {degree}C (2012 {degree}F) produced equiaxed austenite grains with an average diameter of approximately 20 {mu}m (0.0008 in), and this material gives approximately 45% elongation to failure with and ultimate tensile strength of 660 MPa (96 ksi). 27 refs., 40 figs., 7 tabs.

  4. Stainless Steel Microstructure and Mechanical Properties Evaluation

    SciTech Connect

    Switzner, Nathan T

    2010-06-01

    A nitrogen strengthened 21-6-9 stainless steel plate was spinformed into hemispherical test shapes. A battery of laboratory tests was used to characterize the hemispheres. The laboratory tests show that near the pole (axis) of a spinformed hemisphere the yield strength is the lowest because this area endures the least “cold-work” strengthening, i.e., the least deformation. The characterization indicated that stress-relief annealing spinformed stainless steel hemispheres does not degrade mechanical properties. Stress-relief annealing reduces residual stresses while maintaining relatively high mechanical properties. Full annealing completely eliminates residual stresses, but reduces yield strength by about 30%.

  5. Measuring secondary phases in duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Calliari, I.; Brunelli, K.; Dabalà, M.; Ramous, E.

    2009-01-01

    The use of duplex stainless steels is limited by their susceptibility to the formation of dangerous intermetallic phases resulting in detrimental effects on impact toughness and corrosion resistance. This precipitation and the quantitative determinations of the phases have received considerable attention and different precipitation sequences (σ phase, χ phase, and carbides) have been suggested. This study investigates the phase transformation during continuous cooling and isothermal treatments in commercial duplex stainless steel grades and the effects on alloy properties, and compares the most common techniques of analysis.

  6. Embrittlement of austenitic stainless steel welds

    SciTech Connect

    David, S.A.; Vitek, J.M.; Alexander, D.J.

    1995-06-01

    To prevent hot-cracking, austenitic stainless steel welds generally contain a small percent of delta ferrite. Although ferrite has been found to effectively prevent hot-cracking, it can lead to embrittlement of welds when exposed to elevated temperatures. The aging behavior of type-308 stainless steel weld has been examined over a range of temperatures 475--850 C for times up to 10,000 hrs. Upon aging, and depending on the temperature range, the unstable ferrite may undergo a variety of solid state transformations. These phase changes creep-rupture and Charpy impact properties.

  7. Dendritic inhomogeneity of stainless maraging steels

    SciTech Connect

    Krasnikova, S.I.; Drobot, A.V.; Shmelev, A.Y.; Vukelich, S.B.

    1986-03-01

    The authors investigated dendritic inhomogeneity in industrial ingots 630 mm (steel I) in diameter and 500 mm (steel II) in diameter. The variation in the degree of dendritic inhomogeneity was investigated over the height of the ingots and across the sections on an MS-46 microprobe. It was established that the elements can be placed in the following order in accordance with the degree of reduction in the liquation factor: titanium, molybdenum, nickel, chromium, and cobalt. Titanium and molybdenum exhibit forward liquation in both steels, and chromium in steel II. The distribution of nickel and chromium in the steel I ingots and cobalt in the steel II ingots is unconventional. Dendritic inhomogeneity, which must be considered in assigning the heat treatment for finished articles, develops during the crystallization of stainless maraging steels.

  8. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or...

  9. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or...

  10. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or...

  11. 21 CFR 878.4495 - Stainless steel suture.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Stainless steel suture. 878.4495 Section 878.4495...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4495 Stainless steel suture. (a) Identification. A stainless steel suture is a needled or unneedled nonabsorbable surgical suture composed of...

  12. 21 CFR 878.4495 - Stainless steel suture.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Stainless steel suture. 878.4495 Section 878.4495...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4495 Stainless steel suture. (a) Identification. A stainless steel suture is a needled or unneedled nonabsorbable surgical suture composed of...

  13. 21 CFR 878.4495 - Stainless steel suture.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Stainless steel suture. 878.4495 Section 878.4495...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4495 Stainless steel suture. (a) Identification. A stainless steel suture is a needled or unneedled nonabsorbable surgical suture composed of...

  14. 21 CFR 878.4495 - Stainless steel suture.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Stainless steel suture. 878.4495 Section 878.4495...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4495 Stainless steel suture. (a) Identification. A stainless steel suture is a needled or unneedled nonabsorbable surgical suture composed of...

  15. 21 CFR 878.4495 - Stainless steel suture.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Stainless steel suture. 878.4495 Section 878.4495...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4495 Stainless steel suture. (a) Identification. A stainless steel suture is a needled or unneedled nonabsorbable surgical suture composed of...

  16. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or...

  17. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or...

  18. ASTM update for stainless steels II

    SciTech Connect

    Davison, R.M.

    1999-10-01

    Specifiers and users of stainless steel (SS) should be aware that the American Society for Testing and Materials (ASTM) has revised several of its SS specifications. These changes affect grades commonly used in process and other industries. These changes are discussed.

  19. Proof Testing Of Stainless-Steel Bolts

    NASA Technical Reports Server (NTRS)

    Hsieh, Cheng H.; Hendrickson, James A.; Bamford, Robert M.

    1992-01-01

    Report describes study of development of method for nondestructive proof testing of bolts made of A286 stainless steel. Based on concept that the higher load bolt survives, the smaller the largest flaw and, therefore, the longer its fatigue life after test. Calculations and experiments increase confidence in nondestructive proof tests.

  20. Materials data handbooks on stainless steels

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1973-01-01

    Two handbooks which summarize latest available data have been published. Two types of stainless steels, alloy A-286 and Type 301, are described. Each handbook is divided into twelve chapters. Scope of information presented includes physical- and mechanical-property data at cryogenic, ambient, and elevated temperatures.

  1. Materials data handbook: Stainless steel type 301

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for stainless steel type 301 is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and bonding is developed.

  2. Fabrication of stainless steel foil utilizing chromized steel strip

    NASA Astrophysics Data System (ADS)

    Loria, Edward A.

    1980-10-01

    Stainless steel foil has properties which are, in many respects, unmatched by alternative thin films. The high strength to weight ratio and resistance to corrosion and oxidation at elevated temperatures are generally advantageous. The aerospace and automotive industries have used Type 430 and 304 foil in turbine engine applications. Foil around 2 mils (5.1 × 10-3 cm) thick has been appropriate for the recuperator or heat exchanger and this product has also been used in honeycomb and truss-core structures. Further, such foil has been employed as a wrap to protect tool steel parts from contamination during heat treating. A large part of the high cost of producing stainless steel foil by rolling is due to the complicated and expensive rolling mill and annealing equipment involved. A method will be described which produces (solid) stainless steel foil from chromized (coated) steel which can be cheaper than the conventional processing stainless steel, such as Type 430, from ingot to foil. Also, the material is more ductile and less work hardenable during processing to foil and consequently intermediate annealing treatments are eliminated and scrap losses minimized.

  3. Effect of Nb on high-temperature properties for ferritic stainless steel

    SciTech Connect

    Fujita, N.; Kikuchi, M.; Ohmura, K.; Suzuki, T.; Funaki, S.; Hiroshige, I.

    1996-09-15

    In order to improve the efficiency of automobile engines and to reduce their weight, there is a move toward the use of conventional stainless steel sheets and pipes for exhaust manifolds to replace cast iron, the traditional material for this application. The exhaust manifold is used in an environment that includes engine vibrations as well as heating and cooling cycles caused by the travel pattern. Therefore, among high-temperature characteristics, thermal fatigue resistance is an important one that affects the life span of an exhaust manifold. Generally, austenitic steels have higher strength at high temperature than ferritic steels. However, type 304, a typical austenitic stainless steel, has less thermal fatigue resistance than type 430, a typical ferritic stainless steel. This is because austenitic steels have higher coefficient of thermal expansion than ferritic steels. Therefore, to obtain a material with excellent thermal fatigue resistance, it would conceivably be best to attempt to increase the high temperature strength of ferritic stainless steels. The present study centered on improvement of the high-temperature proof strength of ferritic stainless steels. The mechanism of high temperature strengthening by Nb addition, which was shown to be one of the most effective methods to improve proof strength at high temperature, was discussed.

  4. Yield Improvement in Steel Casting (Yield II)

    SciTech Connect

    Richard A. Hardin; Christoph Beckermann; Tim Hays

    2002-02-18

    This report presents work conducted on the following main projects tasks undertaken in the Yield Improvement in Steel Casting research program: Improvement of Conventional Feeding and Risering Methods, Use of Unconventional Yield Improvement Techniques, and Case Studies in Yield Improvement. Casting trials were conducted and then simulated using the precise casting conditions as recorded by the participating SFSA foundries. These results present a statistically meaningful set of experimental data on soundness versus feeding length. Comparisons between these casting trials and casting trials performed more than forty years ago by Pellini and the SFSA are quite good and appear reasonable. Comparisons between the current SFSA feeding rules and feeding rules based on the minimum Niyama criterion reveal that the Niyama-based rules are generally less conservative. The niyama-based rules also agree better with both the trials presented here, and the casting trails performed by Pellini an d the SFSA years ago. Furthermore, the use of the Niyama criterion to predict centerline shrinkage for horizontally fed plate sections has a theoretical basis according to the casting literature reviewed here. These results strongly support the use of improved feeding rules for horizontal plate sections based on the Niyama criterion, which can be tailored to the casting conditions for a given alloy and to a desired level of soundness. The reliability and repeatability of ASTM shrinkage x-ray ratings was investigated in a statistical study performed on 128 x-rays, each of which were rated seven different times. A manual ''Feeding and Risering Guidelines for Steel Castings' is given in this final report. Results of casting trials performed to test unconventional techniques for improving casting yield are presented. These use a stacked arrangement of castings and riser pressurization to increase the casting yield. Riser pressurization was demonstrated to feed a casting up to four time s the

  5. Fatigue of stainless steel in hydrogen

    NASA Astrophysics Data System (ADS)

    Schuster, G.; Altstetter, C.

    1983-10-01

    The fatigue crack growth rates of two austenitic stainless steel alloys, AISI 301 and 302, were compared in air, argon, and hydrogen environments at atmospheric pressure and room temperature. Under the stresses at the crack tip the austenite in type 301 steel transformed martensitically to a’ to a greater extent than in type 302 steel. The steels were also tested in the cold worked condition under hydrogen or argon. Hydrogen was found to have a deleterious effect on both steels, but the effect was stronger in the unstable than in the stable alloy. Cold work decreased fatigue crack growth rates in argon and hydrogen, but the decrease was less marked in hydrogen than in argon. Metallographic, fractographic, and microhardness surveys in the vicinity of the fatigue crack were used to try to understand the reasons for the observed fatigue behavior.

  6. Textured substrate method for the direct continuous casting of steel sheet: Technical progress report No. 1

    SciTech Connect

    Gaspar, T.

    1988-10-21

    The overall objective of this research project will be to demonstrate the feasibility of casting rapidly solidified steel strip 2 mm (0.080 in.) thick or greater using a textured chill block as described in US Patent No. 4,705,095, issued on November 10, 1987, to Ribbon Technology Corporation. The effect of melt overflow process variables on strip dimensions and uniformity will be investigated. Process variables include, but are not limited to, the following: super heat of the melt; wetting of substrate material; tundish design; and casting speed. Type 304 stainless steel and AISI 1020 standard carbon steel will be investigated.

  7. Hydrogen embrittlement of duplex stainless steel and maraging steel in sea water: Effect of pressure

    SciTech Connect

    Pohjanne, P.; Festy, D.

    1994-12-31

    Hydrogen embrittlement behavior of cast super duplex stainless steel and cast maraging steel was examined as a function of electrode potential and hydrostatic pressure, i.e, the water depth, in synthetic sea water using fracture mechanics bolt-loaded wedge-opening (WOL) specimens. The experimental variables investigated included: (1) Electrode potential: free corrosion potential and cathodic protection; (2) Hydrostatic pressure: ambient and 10 MPa corresponding depth of 1,000 meters. The duplex stainless-,steel was not susceptible to hydrogen embrittlement with initial stress intensity values of 30 MPa{radical}m < K{sub i} < 45 MPa{radical}m at ambient pressure. However, at pressure of 10 MPa slight crack growth was observed at open circuit potential and the crack growth was enhanced by the cathodic protection. The maraging steel was susceptible to hydrogen embrittlement in all tests, with all examined initial stress intensity values, K{sub i} < 36 MPa{radical}m. At the open circuit potential the crack growth rate was almost independent of the pressure. Cathodic protection enhanced crack growth and lowered the threshold stress intensity value at ambient as well as at 10 MPa pressure and the crack growth rate increased clearly as pressure increased from 0.1 MPa to 10 MPa. According to these experimental results the combined effect of cathodic protection and hydrostatic pressure must be taken into consideration when designing new offshore structures and equipment especially for deep sea application.

  8. Low-Temperature Aging Characteristics of Type 316L Stainless Steel Welds: Dependence on Solidification Mode

    NASA Astrophysics Data System (ADS)

    Abe, Hiroshi; Watanabe, Yutaka

    2008-06-01

    Thermal aging embrittlement of light water reactor (LWR) components made of stainless steel cast has been recognized as a potential degradation issue, and careful attention has been paid to it. Although welds of austenitic stainless steels have γ-δ duplex microstructure, which is similar to that of the stainless steel cast, examination of the thermal aging characteristics of the stainless steel welds is very limited. In this investigation, two types of type 316L stainless steel weld metal with different solidification modes were prepared using two kinds of filler metals having tailored Ni equivalent and Cr equivalent. Differences between the two weld metals in the morphology of microstructure, in the composition of δ-ferrite, and in hardening behaviors with isothermal aging at 335 °C have been investigated. The hardness of the ferrite phase has increased with aging time, while the hardness of austenite phase has stayed the same. The mottled aspect has been observed in δ-ferrite of aged samples by transmission electron microscopy (TEM) observation. These characteristics suggest that spinodal decomposition has occurred in δ-ferrite by aging at 335 °C. The age-hardening rate of δ-ferrite was faster for the primary austenite solidification mode (AF mode) sample than the primary ferrite solidification mode (FA mode) sample in the initial stage of the aging up to 2000 hours. It has been suggested that the solidification mode can affect the kinetics of spinodal decomposition.

  9. Formability of type 304 stainless steel sheet

    SciTech Connect

    Coubrough, G.J.; Matlock, D.K.; VanTyne, C.J.

    1992-09-01

    Punch-stretch tests to determine formability of type 304 stainless steel sheet were conducted using a hemispherical dome test. Sheets of 19.1 mm width and 177.8 mm width were stretched on a 101.6 mm diameter punch at punch rates between 0.042 to 2.12 mm/s with three lubricant systems: a mineral seal oil, thin polytetrafluoroethelyne sheet with mineral seal oil, and silicone rubber with mineral seal oil. The resulting strain distributions were measured and the amount of martensite was determined by magnetic means. Increasing lubricity resulted in more uniform strain distributions while increased punch rates tended to decrease both strain and transformation distributions. High forming limit values were related to the formation of high and uniformly distributed martensite volume fractions during deformation. The results of this study are interpreted with an analysis of the effects of strain and temperature on strain induced martensite formation in metastable austenitic stainless steels.

  10. Formability of type 304 stainless steel sheet

    SciTech Connect

    Coubrough, G.J. . Rocky Flats Plant); Matlock, D.K.; VanTyne, C.J. )

    1992-01-01

    Punch-stretch tests to determine formability of type 304 stainless steel sheet were conducted using a hemispherical dome test. Sheets of 19.1 mm width and 177.8 mm width were stretched on a 101.6 mm diameter punch at punch rates between 0.042 to 2.12 mm/s with three lubricant systems: a mineral seal oil, thin polytetrafluoroethelyne sheet with mineral seal oil, and silicone rubber with mineral seal oil. The resulting strain distributions were measured and the amount of martensite was determined by magnetic means. Increasing lubricity resulted in more uniform strain distributions while increased punch rates tended to decrease both strain and transformation distributions. High forming limit values were related to the formation of high and uniformly distributed martensite volume fractions during deformation. The results of this study are interpreted with an analysis of the effects of strain and temperature on strain induced martensite formation in metastable austenitic stainless steels.

  11. Tritium Depth Profiles in 316 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Torikai, Yuji; Murata, Daiju; Penzhorn, Ralf-Dieter; Akaishi, Kenya; Watanabe, Kuniaki; Matsuyama, Masao

    To investigate the behavior of hydrogen uptake and release by 316 stainless steel (SS316), as-received and finely polished stainless steel specimens were exposed at 573 K to tritium gas diluted with hydrogen. Then tritium concentration in the exposed specimens was measured as a function of depth using a chemical etching method. All the tritium concentration profiles showed a sharp drop in the range of 10 μm from the top surface up to the bulk. The amount of tritium absorbed into the polished specimens was three times larger than that into the as-received specimen. However, the polishing effects disappeared by exposing to the air for a long time.

  12. Cold Spray Repair of Martensitic Stainless Steel Components

    NASA Astrophysics Data System (ADS)

    Faccoli, M.; Cornacchia, G.; Maestrini, D.; Marconi, G. P.; Roberti, R.

    2014-12-01

    The possibility of using cold spray as repair technique of martensitic stainless steel components was evaluated through laboratory investigations. An austenitic stainless steel feedstock powder was chosen, instead of soft metals powders like nickel, copper, or aluminum, used for repairing components made in light alloy or cast iron. The present study directly compares the microstructure, the residual stresses, and the micro-hardness of repairs obtained by cold spray and by TIG welding, that is commonly used as repair technique in large steel components. XRD and optical metallographic analysis of the repairs showed that cold spray offers some advantages, inducing compressive residual stresses in the repair and avoiding alterations of the interface between repair and base material. For these reasons, a heat treatment after the cold spray repair is not required to restore the base material properties, whereas a post-weld heat treatment is needed after the welding repair. Cold spray repair also exhibits a higher micro-hardness than the welding repair. In addition, the cavitation erosion resistance of a cold spray coating was investigated through ultrasonic cavitation tests, and the samples worn surfaces were observed by scanning electron microscopy.

  13. Instabilities in stabilized austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Ayer, Raghavan; Klein, C. F.; Marzinsky, C. N.

    1992-09-01

    The effect of aging on the precipitation of grain boundary phases in three austenitic stainless steels (AISI 347, 347AP, and an experimental steel stabilized with hafnium) was investigated. Aging was performed both on bulk steels as well as on samples which were subjected to a thermal treatment to simulate the coarse grain region of the heat affected zone (HAZ) during welding. Aging of the bulk steels at 866 K for 8000 hours resulted in the precipitation of Cr23C6 carbides, σ, and Fe2Nb phases; the propensity for precipitation was least for the hafnium-stabilized steel. Weld simulation of the HAZ resulted in dissolution of the phases present in the as-received 347 and 347AP steels, leading to grain coarsening. Subsequent aging caused extensive grain boundary Cr23C6 carbides and inhomogeneous matrix precipitation. In addition, steel 347AP formed a precipitate free zone (PFZ) along the grain boundaries. The steel containing hafnium showed the best microstructural stability to aging and welding.

  14. Hydrogen induced plastic deformation of stainless steel

    SciTech Connect

    Gadgil, V.J.; Keim, E.G.; Geijselaers, H.J.M.

    1998-12-31

    Hydrogen can influence the behavior of materials significantly. The effects of hydrogen are specially pronounced in high fugacities of hydrogen which can occur at the surface of steels in contact with certain aqueous environments. In this investigation the effect of high fugacity hydrogen on the surface of stainless steel was investigated using electrochemical cathodic charging. Microhardness was measured on the cross section. Transmission electron microscopy was used to investigate the dislocation substructure just below the surface. Computer simulation using finite element method was carried out to estimate the extent and severity of the deformation. The significance of the results are discussed in relation to the loss of ductility due to hydrogen.

  15. Properties of cryogenically worked metals. [stainless steels

    NASA Technical Reports Server (NTRS)

    Schwartzberg, F. R.; Kiefer, T. F.

    1975-01-01

    A program was conducted to determine whether the mechanical properties of cryogenically worked 17-7PH stainless steel are suitable for service from ambient to cryogenic temperatures. It was determined that the stress corrosion resistance of the cryo-worked material is quite adequate for structural service. The tensile properties and fracture toughness at room temperature were comparable to titanium alloy 6Al-4V. However, at cryogenic temperatures, the properties were not sufficient to recommend consideration for structural service.

  16. Softened-Stainless-Steel O-Rings

    NASA Technical Reports Server (NTRS)

    Marquis, G. A.; Waters, William I.

    1993-01-01

    In fabrication of O-ring of new type, tube of 304 stainless steel bent around mandril into circle and welded closed into ring. Ring annealed in furnace to make it soft and highly ductile. In this condition, used as crushable, deformable O-ring seal. O-ring replacements used in variety of atmospheres and temperatures, relatively inexpensive, fabricated with minimum amount of work, amenable to one-of-a-kind production, reusable, and environmentally benign.

  17. Antimicrobial Cu-bearing stainless steel scaffolds.

    PubMed

    Wang, Qiang; Ren, Ling; Li, Xiaopeng; Zhang, Shuyuan; Sercombe, Timothy B; Yang, Ke

    2016-11-01

    Copper-bearing stainless steel scaffolds with two different structures (Body Centered Cubic and Gyroid labyrinth) at two solid fractions (25% and 40%) were fabricated from both 316L powder and a mixture of 316L and elemental Cu powder using selective laser melting, and relative 316L scaffolds were served as control group. After processing, the antimicrobial testing demonstrated that the 316L-Cu scaffolds presented excellent antimicrobial activity against Escherichia coli and Staphylococcus aureus, and the cell viability assay indicated that there was no cytotoxic effect of 316L-Cu scaffolds on rat marrow mesenchymal stem cells. As such, these have the potential to reduce implant-associated infections. The Cu was also found to homogeneously distribute within the microstructure by scanning electronic microcopy. The addition of Cu would not significantly affect its strength and stiffness compared to 316L scaffold, and the stiffness of all the scaffolds (3-20GPa) is similar to that of bone and much less than that of bulk stainless steel. Consequently, fabrication of such low stiffness porous structures, especially coupled with the addition of antimicrobial Cu, may provide a new direction for medical stainless steels. PMID:27524049

  18. SRS stainless steel beneficial reuse program

    SciTech Connect

    Boettinger, W.L.

    1997-02-01

    The US Department of Energy`s (DOE) Savannah River Site (SRS) has thousands of tons of stainless steel radioactive scrap metal (RSNI). Much of the metal is volumetrically contaminated. There is no {open_quotes}de minimis{close_quotes} free release level for volumetric material, and therefore no way to recycle the metal into the normal commercial market. If declared waste, the metal would qualify as low level radioactive waste (LLW) and ultimately be dispositioned through shallow land buried at a cost of millions of dollars. The metal however could be recycled in a {open_quotes}controlled release{close_quote} manner, in the form of containers to hold other types of radioactive waste. This form of recycle is generally referred to as {open_quotes}Beneficial Reuse{close_quotes}. Beneficial reuse reduces the amount of disposal space needed and reduces the need for virgin containers which would themselves become contaminated. Stainless steel is particularly suited for long term storage because of its resistance to corrosion. To assess the practicality of stainless steel RSM recycle the SRS Benficial Reuse Program began a demonstration in 1994, funded by the DOE Office of Science and Technology. This paper discusses the experiences gained in this program.

  19. Standard specification for centrifugally cast austenitic steel pipe for high-temperature service. ASTM standard

    SciTech Connect

    1993-12-01

    This document is available from NTIS under license from ASTM. This specification is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel, and Related Alloys and is the direct responsibility of Subcommittee A01.18 on Castings. Current edition approved Oct. 25, 1993. Published December 1993. Originally published as A 451-61T. Last previous edition was A 451-92. Reapproved 1997.

  20. Decontaminating and Melt Recycling Tritium Contaminated Stainless Steel

    SciTech Connect

    Clark, E.A.

    1995-04-03

    The Westinghouse Savannah River Company, Idaho National Engineering Laboratory, and several university and industrial partners are evaluating recycling radioactively contaminated stainless steel. The goal of this program is to recycle contaminated stainless steel scrap from US Department of Energy national defense facilities. There is a large quantity of stainless steel at the DOE Savannah River Site from retired heavy water moderated Nuclear material production reactors (for example heat exchangers and process water piping), that will be used in pilot studies of potential recycle processes. These parts are contaminated by fission products, activated species, and tritium generated by neutron irradiation of the primary reactor coolant, which is heavy (deuterated) water. This report reviews current understanding of tritium contamination of stainless steel and previous studies of decontaminating tritium exposed stainless steel. It also outlines stainless steel refining methods, and proposes recommendations based on this review.

  1. Amorphous stainless steel coatings prepared by reactive magnetron-sputtering from austenitic stainless steel targets

    NASA Astrophysics Data System (ADS)

    Cusenza, Salvatore; Schaaf, Peter

    2009-01-01

    Stainless steel films were reactively magnetron sputtered in argon/methane gas flow onto oxidized silicon wafers using austenitic stainless-steel targets. The deposited films of about 200 nm thickness were characterized by conversion electron Mössbauer spectroscopy, magneto-optical Kerr-effect, X-ray diffraction, scanning electron microscopy, Rutherford backscattering spectrometry, atomic force microscopy, corrosion resistance tests, and Raman spectroscopy. These complementary methods were used for a detailed examination of the carburization effects in the sputtered stainless-steel films. The formation of an amorphous and soft ferromagnetic phase in a wide range of the processing parameters was found. Further, the influence of the substrate temperature and of post vacuum-annealing were examined to achieve a comprehensive understanding of the carburization process and phase formation.

  2. Weldment for austenitic stainless steel and method

    DOEpatents

    Bagnall, Christopher; McBride, Marvin A.

    1985-01-01

    For making defect-free welds for joining two austenitic stainless steel mers, using gas tungsten-arc welding, a thin foil-like iron member is placed between the two steel members to be joined, prior to making the weld, with the foil-like iron member having a higher melting point than the stainless steel members. When the weld is formed, there results a weld nugget comprising melted and then solidified portions of the joined members with small portions of the foil-like iron member projecting into the solidified weld nugget. The portions of the weld nugget proximate the small portions of the foil-like iron member which project into the weld nugget are relatively rich in iron. This causes these iron-rich nugget portions to display substantial delta ferrite during solidification of the weld nugget which eliminates weld defects which could otherwise occur. This is especially useful for joining austenitic steel members which, when just below the solidus temperature, include at most only a very minor proportion of delta ferrite.

  3. Superhard Nanocrystalline Homometallic Stainless Steel on Steel for Seamless Coatings

    NASA Technical Reports Server (NTRS)

    Tobin, Eric J.; Hafley, R. (Technical Monitor)

    2002-01-01

    The objective of this work is to deposit nanocrystalline stainless steel onto steel substrates (homometallic) for enhanced wear and corrosion resistance. Homometallic coatings provide superior adhesion, and it has been shown that ultrafine-grained materials exhibit the increased hardness and decreased permeability desired for protective coatings. Nanocrystals will be produced by controlling nucleation and growth and use of an ion beam during deposition by e-beam evaporation or sputtering. Phase I is depositing 31 6L nanocrystalline stainless steel onto 31 6L stainless steel substrates. These coatings exhibit hardnesses comparable to those normally obtained for ceramic coatings such ZrO2, and possess the superior adhesion of seamless, homometallic coatings. Hardening the surface with a similar material also enhances adhesion, by avoiding problems associated with thermal and lattice mismatch. So far we have deposited nanocrystalline homometallic 316L stainless steel coatings by varying the ions and the current density of the ion beams. For all deposition conditions we have produced smooth, uniform, superhard coatings. All coatings exhibit hardness of at least 200% harder than that of bulk materials. Our measurements indicate that there is a direct relationship between nanohardness and the current density of the ion beam. Stress measurements indicate that stress in the films is increasingly proportional to current density of the ion beam. TEM, XPS, and XRD results indicate that the coated layers consist of FCC structure nanocrystallites with a dimension of about 10 to 20 nm. The Ni and Mo concentration of these coating are lower than those of bulk 316L but the concentration of Cr is higher.

  4. Stainless Steel Leaches Nickel and Chromium into Foods During Cooking

    PubMed Central

    Kamerud, Kristin L.; Hobbie, Kevin A.; Anderson, Kim A.

    2014-01-01

    Toxicological studies show that oral doses of nickel and chromium can cause cutaneous adverse reactions such as dermatitis. Additional dietary sources, such as leaching from stainless steel cookware during food preparation, are not well characterized. This study examined stainless steel grades, cooking time, repetitive cooking cycles, and multiple types of tomato sauces for their effects on nickel and chromium leaching. Trials included three types of stainless steels and a stainless steel saucepan; cooking times of 2 to 20 hours, ten consecutive cooking cycles, and four commercial tomato sauces. After a simulated cooking process, samples were analyzed by ICP-MS for Ni and Cr. After six hours of cooking, Ni and Cr concentrations in tomato sauce increased up to 26- and 7-fold respectively, depending on the grade of stainless steel. Longer cooking durations resulted in additional increases in metal leaching, where Ni concentrations increased 34 fold and Cr increased approximately 35 fold from sauces cooked without stainless steel. Cooking with new stainless steel resulted in the largest increases. Metal leaching decreases with sequential cooking cycles and stabilized after the sixth cooking cycle, though significant metal contributions to foods were still observed. The tenth cooking cycle, resulted in an average of 88 μg of Ni and 86 μg of Cr leached per 126 g serving of tomato sauce. Stainless steel cookware can be an overlooked source of nickel and chromium, where the contribution is dependent on stainless steel grade, cooking time, and cookware usage. PMID:23984718

  5. TiC reinforced cast Cr steels

    SciTech Connect

    Dogan, O.N.; Hawk, J.A.; Schrems, K.K.

    2006-06-01

    A new class of materials, namely TiC-reinforced cast chromium (Cr) steels, was developed for applications requiring high abrasion resistance and good fracture toughness. The research approach was to modify the carbide structure of commercial AISI 440C steel for better fracture resistance while maintaining the already high abrasion resistance. The new alloys contained 12Cr, 2.5–4.5Ti, and 1–1.5C (wt.%) and were melted in a vacuum induction furnace. Their microstructure was composed primarily of a martensitic matrix with a dispersion of TiC precipitates. Modification of TiC morphology was accomplished through changing the cooling rate during solidification. Wear rates of the TiC-reinforced Cr steels were comparable to that of AISI 440C steel, but the impact resistance was much improved.

  6. Clean Cast Steel Technology - Machinability and Technology Transfer

    SciTech Connect

    C. E. Bates; J. A. Griffin

    2000-05-01

    There were two main tasks in the Clean Cast Steel Technology - Machinability and Technology Transfer Project. These were (1) determine the processing facts that control the machinability of cast steel and (2) determine the ability of ladle stirring to homogenize ladle temperature, reduce the tap and pouring temperatures, and reduce casting scrap.

  7. In vivo evaluation of a high-strength, high-ductility stainless steel for use in surgical implants.

    PubMed

    Syrett, B C; Davis, E E

    1979-07-01

    A high-strength, high-ductility, austenitic stainless steel has been evaluated for use in surgical implants by performing in vivo tests in rats, rabbits, dogs, and rhesus monkeys. This stainless steel, a TRIP (Transformation Induced Plasticity) steel containing about 4% Mo, was compared with two alloys in current clinical use: Type 316L stainless steel and cast Vitallium. Compared with the other two alloys, cast Vitallium generally had higher resistance to corrosion and superior biocompatibility in all animals. The tests in rats and dogs indicated that the corrosion resistances of the TRIP steel and the Type 316L stainless steel were similar and that the tissue reactions caused by these alloys were also similar. However, in rhesus monkeys, the TRIP steel was shown to be susceptible to stress-corrosion cracking and much more susceptible to crevice corrosion than Type 316L stainless steel. Limited tests in rabbits supported the observation that the TRIP steel is susceptible to stress-corrosion cracking. These inconsistencies in the in vivo tests underline the need for a reevaluation of the popular test techniques and of the animals commonly chosen for assessing the suitability of candidate implant materials. The "worst case" results from the rhesus monkey tests were entirely consistent with previous results obtained from in vitro studies. However, further work must be performed before the behavior of metals in humans, rhesus monkeys, or any other animal, can be predicted with confidence from an in vitro test program. PMID:110810

  8. 3. INTERIOR VIEW OF SMOKEHOUSE UNIT; NOTE STAINLESS STEEL NOZZLES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. INTERIOR VIEW OF SMOKEHOUSE UNIT; NOTE STAINLESS STEEL NOZZLES THAT INTRODUCED SMOKE INTO UNIT; FLOOR IS UNPAINTED STEEL - Rath Packing Company, Smokehouse-Hog Chilling Building, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  9. Textured substrate method for the direct continuous casting of steel sheet: Technical progress report No. 4

    SciTech Connect

    Gaspar, T.

    1989-07-14

    The overall objective of this research project will be to demonstrate the feasibility of casting rapidly solidified steel strip 2 mm (0.080 in.) thick or greater using a textured chill block as described in US Patent No. 4,705,095, issues on November 10, 1987, to Ribbon Technology Corporation. The effect of melt overflow process variables on strip dimensions and uniformity will be investigated. Process variables include, but are not limited to, the following: super heat of the melt; wetting of substrate material; tundish design; and casting speed. Type 304 stainless and AISI 1020 standard carbon steel will be investigated.

  10. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting.

    PubMed

    Čapek, Jaroslav; Machová, Markéta; Fousová, Michaela; Kubásek, Jiří; Vojtěch, Dalibor; Fojt, Jaroslav; Jablonská, Eva; Lipov, Jan; Ruml, Tomáš

    2016-12-01

    Recently, porous metallic materials have been extensively studied as candidates for use in the fabrication of scaffolds and augmentations to repair trabecular bone defects, e.g. in surroundings of joint replacements. Fabricating these complex structures by using common approaches (e.g., casting and machining) is very challenging. Therefore, rapid prototyping techniques, such as selective laser melting (SLM), have been investigated for these applications. In this study, we characterized a highly porous (87 vol.%) 316L stainless steel scaffold prepared by SLM. 316L steel was chosen because it presents a biomaterial still widely used for fabrication of joint replacements and, from the practical point of view, use of the same material for fabrication of an augmentation and a joint replacement is beneficial for corrosion prevention. The results are compared to the reported properties of two representative nonporous 316L stainless steels prepared either by SLM or casting and subsequent hot forging. The microstructural and mechanical properties and the surface chemical composition and interaction with the cells were investigated. The studied material exhibited mechanical properties that were similar to those of trabecular bone (compressive modulus of elasticity ~0.15GPa, compressive yield strength ~3MPa) and cytocompatibility after one day that was similar to that of wrought 316L stainless steel, which is a commonly used biomaterial. Based on the obtained results, SLM is a suitable method for the fabrication of porous 316L stainless steel scaffolds with highly porous structures. PMID:27612756

  11. Characterization and Evaluation of Aged Chromium Nickel Niobium Stainless Steels

    NASA Astrophysics Data System (ADS)

    Dewar, Matthew

    20Cr-32Ni-1Nb stainless steel alloys are commonly used in hydrogen reformer manifolds for transporting hot hydrogen by-products at 750-950°C. After long periods of exposure, embrittling secondary carbides and intermetallic phases can precipitate at the grain boundaries which can drastically reduce the ductility, and the repair weldability of the alloy. The intermetallic silicide, G-phase, is commonly observed in 20Cr-32Ni-1Nb stainless steels, and is prone to liquation cracking during welding operations. G-phase is deleterious to the material, where a high degree of G-phase coarsening will render the material unweldable. The present work will investigate various methods in mitigating G-phase precipitation. Variations in casting methods, wall thickness, homogenization treatments, and alloy chemistry will be examined by evaluating their microstructure after periodically aging the samples. Thermodynamic equilibrium modeling using computational thermodynamic tools will be used to optimize the 20Cr-32Ni-1Nb chemistry following ASTM specifications.

  12. Nanostructured nickel-free austenitic stainless steel/hydroxyapatite composites.

    PubMed

    Tulinski, Maciej; Jurczyk, Mieczyslaw

    2012-11-01

    In this work Ni-free austenitic stainless steels with nanostructure and their nanocomposites with hydroxyapatite are presented and characterized by means of X-ray diffraction and optical profiling. The samples were synthesized by mechanical alloying, heat treatment and nitriding of elemental microcrystalline powders with addition of hydroxyapatite (HA). In our work we wanted to introduce into stainless steel hydroxyapatite ceramics that have been intensively studied for bone repair and replacement applications. Such applications were chosen because of their high biocompatibility and ability to bond to bone. Since nickel-free austenitic stainless steels seem to have better mechanical properties, corrosion resistance and biocompatibility compared to 316L stainless steels, it is possible that composite made of this steel and HA could improve properties, as well. Mechanical alloying and nitriding are very effective technologies to improve the corrosion resistance of stainless steel. Similar process in case of nanocomposites of stainless steel with hydroxyapatite helps achieve even better mechanical properties and corrosion resistance. Hence nanocrystalline nickel-free stainless steels and nickel-free stainless steel/hydroxyapatite nanocomposites could be promising bionanomaterials for use as a hard tissue replacement implants, e.g., orthopedic implants. In such application, the surface roughness and more specifically the surface topography influences the proliferation of cells (e.g., osteoblasts). PMID:23421285

  13. Aspects of testing and selecting stainless steels for sea water applications

    SciTech Connect

    Steinsmo, U.; Rogne, T.; Drugli, J.M.

    1994-12-31

    In the period from 1980, highly alloyed stainless steels (i.e. Pitting Resistance Equivalent (PRE{sub N}) > 40) have been widely selected for chlorinated sea water systems in the Norwegian offshore industry. Recently failures have been reported -- severe crevice corrosion on flanges in a cooling water system and crevice corrosion at the threaded cast and forged joints in a fire water system. The failures highlights the question of corrosion testing and safe use limits for high alloyed stainless steels in sea water systems. This paper discusses three aspects regarding testing and selection of highly alloyed stainless steels for sea water application -- the relevancy of the electrochemical test methods used, the quality control system and the importance of repassivation.

  14. Gas Atomization of Stainless Steel - Slow Motion

    SciTech Connect

    2011-01-01

    Stainless steel liquid atomized by supersonic argon gas into a spray of droplets at ~1800ºC. Atomization of metal requires high pressure gas and specialized chambers for cooling and collecting the powders without contamination. The critical step for morphological control is the impingement of the gas on the melt stream. The video is a black and white high speed video of a liquid metal stream being atomized by high pressure gas. This material was atomized at the Ames Laboratory's Materials Preparation Center http://www.mpc.ameslab.gov

  15. Characterization of silane layers on modified stainless steel surfaces and related stainless steel-plastic hybrids

    NASA Astrophysics Data System (ADS)

    Honkanen, Mari; Hoikkanen, Maija; Vippola, Minnamari; Vuorinen, Jyrki; Lepistö, Toivo; Jussila, Petri; Ali-Löytty, Harri; Lampimäki, Markus; Valden, Mika

    2011-09-01

    The aim of this work was to characterize silane layers on the modified stainless steel surfaces and relate it to the adhesion in the injection-molded thermoplastic urethane-stainless steel hybrids. The silane layers were characterized with scanning electron microscope and transmission electron microscope, allowing the direct quantization of silane layer thickness and its variation. The surface topographies were characterized with atomic force microscope and chemical analyses were performed with X-ray photoelectron spectroscopy. The mechanical strength of the respective stainless steel-thermoplastic urethane hybrids was determined by peel test. Polishing and oxidation treatment of the steel surface improved the silane layer uniformity compared to the industrially pickled surface and increased the adhesion strength of the hybrids, resulting mainly cohesive failure in TPU. XPS analysis indicated that the improved silane bonding to the modified steel surface was due to clean Fe 2O 3-type surface oxide and stronger interaction with TPU was due to more amino species on the silane layer surface compared to the cleaned, industrially pickled surface. Silane layer thickness affected failure type of the hybrids, with a thick silane layer the hybrids failed mainly in the silane layer and with a thinner layer cohesively in plastic.

  16. 78 FR 21417 - Drawn Stainless Steel Sinks From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ..., Washington, DC, and by publishing the notice in the Federal Register on October 22, 2012 (77 FR 64545). The... COMMISSION Drawn Stainless Steel Sinks From China Determinations On the basis of the record \\1\\ developed in... drawn stainless steel sinks from China, provided for in subheading 7324.10.00 of the Harmonized...

  17. 77 FR 23752 - Drawn Stainless Steel Sinks From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-20

    ... the notice in the Federal Register of March 7, 2012 (77 FR 13631). The conference was held in... COMMISSION Drawn Stainless Steel Sinks From China Determinations On the basis of the record \\1\\ developed in... (April 2012), entitled Drawn Stainless Steel Sinks from China: Investigation Nos. 701-TA-489 and...

  18. New Method For Joining Stainless Steel to Titanium

    NASA Technical Reports Server (NTRS)

    Emanuel, W. H.

    1982-01-01

    In new process, edge of stainless-steel sheet is perforated, and joined to titanium by resistance seam welding. Titanium flows into perforations, forming a strong interlocking joint. Process creates a quasi-metallurgical bond between the thin sheets of stainless steel and titanium.

  19. 6. DETAIL VIEW OF SPIN FORM FURNACE FOR STAINLESS STEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL VIEW OF SPIN FORM FURNACE FOR STAINLESS STEEL FABRICATION. STAINLESS STEEL WAS MACHINED IN SIDE A OF THE BUILDING, BEGINNING IN 1957. (4/24/78) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  20. THE CLEANING OF 303 STAINLESS STEEL

    SciTech Connect

    Shen, T H

    2004-04-20

    The sulfur found on the surfaces of stainless steel 303 (SS303) after nitric acid passivation originated from the MnS inclusions in the steel. The nitric acid attacked and dissolved these MnS inclusions, and redeposited micron-sized elemental sulfur particles back to the surface. To develop an alternative passivation procedure for SS303, citric and phosphoric acids have been evaluated. The experimental results show neither acid causes a significant amount of sulfur deposit. Thus, these two acids can be used as alternatives to nitric acid passivation for NIF applications. For SS303 previously passivated by nitric acid, NaOH soak can be used as a remedial cleaning process to effectively remove the sulfur deposits.

  1. CC process optimization through an improved thermal modeling of the cast steel products

    SciTech Connect

    Selaries, J.; Hoffbeck, AM.; Jolivet, JM.; Niederlaender, M.; Perrin, G.; Bobadilla, M.

    1997-12-31

    Heat transfer models developed for continuous casting are more and more becoming simulation tools for defining, from metallurgical criteria, the values of casting parameters (superheat, primary and secondary cooling, casting speed,...) in order to obtain quality products (free from surface cracks and having a low level of central segregation) in the framework of a given production. From this outlook, it is important to have reliable models for the description of the basic mechanisms (heat transfer, microsegregation) as well as for the values relative to the thermophysical data to be used (thermal conductivity, density, enthalpy,...). The studies conducted by IRSID in these fields have made it possible to define the improvements to be brought to the thermal models of continuous casting that are already available. In the first part of this paper, the principles of the improvements brought to the basic models are presented in detail: mathematical formulation taking into account the evolution of the thermal conductivity and the density of steel with temperature, introduction of the microsegregation model adapted to various steel grades (low carbon steels, high carbon steels, stainless steels,...) and selection of the thermophysical data (thermal conductivity, density, enthalpy) with respect to the steel grade. In the second part, some industrial applications of the new model for heat transfers in continuous casting are presented.

  2. Citric Acid Passivation of Stainless Steel

    NASA Technical Reports Server (NTRS)

    Yasensky, David; Reali, John; Larson, Chris; Carl, Chad

    2009-01-01

    Passivation is a process for cleaning and providing corrosion protection for stainless steel. Currently, on Kennedy Space Center (KSC), only parts passivated with nitric acid are acceptable for use. KSC disposes of approximately 125gal of concentrated nitric acid per year, and receives many parts from vendors who must also dispose of used nitric acid. Unfortunately, nitric acid presents health and environmental hazards. As a result, several recent industry studies have examined citric acid as an alternative. Implementing a citric acid-based passivation procedure would improve the health and environmental safety aspects of passivation process. However although there is a lack of published studies that conclusively prove citric acid is a technically sound passivation agent. In 2007, NASA's KSC Materials Advisory Working Group requested the evaluation of citric acid in place of nitric acid for passivation of parts at KSC. United Space Alliance Materials & Processes engineers have developed a three-phase test plan to evaluate citric acid as an alternative to nitric acid on three stainless steels commonly used at KSC: UNS S30400, S41000, and S17400. Phases 1 and 2 will produce an optimized citric acid treatment based on results from atmospheric exposure at NASA's Beach Corrosion Facility. Phase 3 will compare the optimized solution(s) with nitric acid treatments. If the results indicate that citric acid passivates as well or better than nitric acid, NASA intends to approve this method for parts used at the Kennedy Space Center.

  3. Embrittlement of austenitic stainless steel welds

    SciTech Connect

    David, S.A.; Vitek, J.M.

    1997-12-31

    The microstructure of type-308 austenitic stainless steel weld metal containing {gamma} and {delta} and ferrite is shown. Typical composition of the weld metal is Cr-20.2, Ni-9.4, Mn-1.7, Si-0.5, C-0.05, N-0.06 and balance Fe (in wt %). Exposure of austenitic stainless steel welds to elevated temperatures can lead to extensive changes in the microstructural features of the weld metal. On exposure to elevated temperatures over a long period of time, a continuous network of M{sub 23}C{sub 6} carbide forms at the austenite/ferrite interface. Upon aging at temperatures between 550--850 C, ferrite in the weld has been found to be unstable and transforms to sigma phase. These changes have been found to influence mechanical behavior of the weld metal, in particular the creep-rupture properties. For aging temperatures below 550 C the ferrite decomposes spinodally into {alpha} and {alpha}{prime} phases. In addition, precipitation of G-phase occurs within the decomposed ferrite. These transformations at temperatures below 550 C lead to embrittlement of the weld metal as revealed by the Charpy impact properties.

  4. Antibacterial polyelectrolyte micelles for coating stainless steel.

    PubMed

    Falentin-Daudré, Céline; Faure, Emilie; Svaldo-Lanero, Tiziana; Farina, Fabrice; Jérôme, Christine; Van De Weerdt, Cécile; Martial, Joseph; Duwez, Anne-Sophie; Detrembleur, Christophe

    2012-05-01

    In this study, we report on the original synthesis and characterization of novel antimicrobial coatings for stainless steel by alternating the deposition of aqueous solutions of positively charged polyelectrolyte micelles doped with silver-based nanoparticles with a polyanion. The micelles are formed by electrostatic interaction between two oppositely charged polymers: a polycation bearing 3,4-dihydroxyphenylalanine units (DOPA, a major component of natural adhesives) and a polyanion (poly(styrene sulfonate), PSS) without using any block copolymer. DOPA units are exploited for their well-known ability to anchor to stainless steel and to form and stabilize biocidal silver nanoparticles (Ag(0)). The chlorine counteranion of the polycation forms and stabilizes biocidal silver chloride nanoparticles (AgCl). We demonstrate that two layers of micelles (alternated by PSS) doped with silver particles are enough to impart to the surface strong antibacterial activity against gram-negative E. coli. Moreover, micelles that are reservoirs of biocidal Ag(+) can be easily reactivated after depletion. This novel water-based approach is convenient, simple, and attractive for industrial applications. PMID:22506542

  5. Elastic-plastic characterization of a cast stainless steep pipe elbow material

    SciTech Connect

    Joyce, J.A.; Hackett, E.M.; Roe, C.

    1992-01-01

    Tests conducted in Japan as part of the High Level Vibration Test (HLVT) program for reactor piping systems revealed fatigue crack growth in a cast stainless steel pipe elbow. The material tested was equivalent to ASME SA-351CF8M. The David Taylor Research Center (DTRC) was tasked to developed the appropriate material property data to characterize cyclic deformation, cyclic elastic-plastic crack growth and ductile tearing resistance in the pipe elbow material. It was found that the cast stainless steel was very resistant to ductile crack extension. J-R curves essentially followed a blunting behavior to very high J levels. Low cycle fatigue crack growth rate data obtained on this material using a cyclic J integral approach was consistent with the high cycle fatigue crack growth rate and with a standard textbook correlation equation typical for this type of material. Evaluation of crack closure effects was essential to accurately determine the crack driving force for cyclic elastic- plastic crack growth in this material. SEM examination of several of the cyclic J test fracture surfaces indicated that fatigue was the primary mode of fracture with ductile crack extension intervening only during the last few cycles of loading.

  6. High-Power Diode Laser-Treated 13Cr4Ni Stainless Steel for Hydro Turbines

    NASA Astrophysics Data System (ADS)

    Mann, B. S.

    2014-06-01

    The cast martensitic chromium nickel stainless steels such as 13Cr4Ni, 16Cr5Ni, and 17Cr4Ni PH have found wide application in hydro turbines. These steels have adequate corrosion resistance with good mechanical properties because of chromium content of more than 12%. The 13Cr4Ni stainless steel is most widely used among these steels; however, lacks silt, cavitation, and water impingement erosion resistances (SER, CER, and WIER). This article deals with characterizing 13Cr4Ni stainless steel for silt, cavitation, and water impingement erosion; and studying its improved SER, CER, and WIER behavior after high-power diode laser (HPDL) surface treatment. The WIER and CER have improved significantly after laser treatment, whereas there is a marginal improvement in SER. The main reason for improved WIER and CER is due to its increased surface hardness and formation of fine-grained microstructure after HPDL surface treatment. CER and WIER of HPDL-treated 13Cr4Ni stainless steel samples have been evaluated as per ASTM G32-2003 and ASTM G73-1978, respectively; and these were correlated with microstructure and mechanical properties such as ultimate tensile strength, modified ultimate resilience, and microhardness. The erosion damage mechanism, compared on the basis of scanning electron micrographs and mechanical properties, is discussed and reported in this article.

  7. Tundish Technology for Casting Clean Steel: A Review

    NASA Astrophysics Data System (ADS)

    Sahai, Yogeshwar

    2016-03-01

    With increasing demand of high-quality clean steel, cleanliness is of paramount importance in steel production and casting. Tundish plays an important role in controlling the continuously cast steel quality as it links a batch vessel, ladle, to a continuous casting mold. Tundish is also the last vessel in which metal flows before solidifying in mold. For controlling the quality of steel, flow and temperature control of the melt are critical, and these are presented in this paper. Use of proper flux, design of flow control devices, and gas injection in tundish become important factors in casting clean steel. Recycling of hot tundish, centrifugal flow tundish, H-shaped tundish, etc. are some of the developments which were implemented to cast clean steel and these are discussed.

  8. Tundish Technology for Casting Clean Steel: A Review

    NASA Astrophysics Data System (ADS)

    Sahai, Yogeshwar

    2016-08-01

    With increasing demand of high-quality clean steel, cleanliness is of paramount importance in steel production and casting. Tundish plays an important role in controlling the continuously cast steel quality as it links a batch vessel, ladle, to a continuous casting mold. Tundish is also the last vessel in which metal flows before solidifying in mold. For controlling the quality of steel, flow and temperature control of the melt are critical, and these are presented in this paper. Use of proper flux, design of flow control devices, and gas injection in tundish become important factors in casting clean steel. Recycling of hot tundish, centrifugal flow tundish, H-shaped tundish, etc. are some of the developments which were implemented to cast clean steel and these are discussed.

  9. Microbial-Influenced Corrosion of Corten Steel Compared with Carbon Steel and Stainless Steel in Oily Wastewater by Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Mansouri, Hamidreza; Alavi, Seyed Abolhasan; Fotovat, Meysam

    2015-07-01

    The microbial corrosion behavior of three important steels (carbon steel, stainless steel, and Corten steel) was investigated in semi petroleum medium. This work was done in modified nutrient broth (2 g nutrient broth in 1 L oily wastewater) in the presence of Pseudomonas aeruginosa and mixed culture (as a biotic media) and an abiotic medium for 2 weeks. The behavior of corrosion was analyzed by spectrophotometric and electrochemical methods and at the end was confirmed by scanning electron microscopy. The results show that the degree of corrosion of Corten steel in mixed culture, unlike carbon steel and stainless steel, is less than P. aeruginosa inoculated medium because some bacteria affect Corten steel less than other steels. According to the experiments, carbon steel had less resistance than Corten steel and stainless steel. Furthermore, biofilm inhibits separated particles of those steels to spread to the medium; in other words, particles get trapped between biofilm and steel.

  10. In vivo behavior of a high performance duplex stainless steel.

    PubMed

    Cigada, A; De Santis, G; Gatti, A M; Roos, A; Zaffe, D

    1993-01-01

    An in vivo investigation of a new high molybdenum and nitrogen duplex stainless steel (25Cr--7Ni--4Mo--0.3N) has been performed. Cylindrical pins and specially developed devices, to test in static conditions the in vivo localized corrosion resistance, made of this new duplex steel and of a common austenitic stainless steel were implanted in rabbit's femurs for 6 and 12 months. After sacrifice, SEM observations and EDS microanalyses to detect metallic ion release were carried out on the femur sections surrounding the pins. Morphologic observations with stereoscope and SEM were performed on the metallic surfaces of the special devices in order to detect the presence of localized corrosion. Both ion release and localized corrosion were observed for the specimens made of austenitic stainless steel, but not for those made of 25Cr--7Ni--4Mo--0.3N duplex stainless steel. PMID:10148344

  11. Utility chromium stainless steels in the transportation industry

    SciTech Connect

    Northart, J.F.

    1998-12-31

    The advantages of stainless steel in the Transportation Industry have been well documented over the last two decades. Benefits have been based on fractional maintenance costs, improved operational efficiency, and favorable life cycle cost. The bus and coach industry, as well as rail and trucking industry applications have all exhibited excellent histories utilizing stainless steels. The introduction of the new generation utility ferrilic stainless steels (11%--12% Chromium, or Cr 12) has led to a new and major benefit, which is driving the use of stainless steels in the transportation industry to new heights. Application of these corrosion resistant, utility steels in coal hopper cars, bus underframes, truck bodies and chassis, and even some European car chassis, has reshaped the thinking of those interested in excellent life cycle costing.

  12. A mortality study among mild steel and stainless steel welders.

    PubMed Central

    Moulin, J J; Wild, P; Haguenoer, J M; Faucon, D; De Gaudemaris, R; Mur, J M; Mereau, M; Gary, Y; Toamain, J P; Birembaut, Y

    1993-01-01

    A mortality study was carried out in conjunction with the European mortality study among welders coordinated by the International Agency for Research on Cancer (IARC). The study was aimed at assessing risks for lung cancer in relation to exposure to asbestos, welding fumes containing chromium and nickel, and tobacco smoke. The study included a cohort of 2721 welders and an internal comparison group of 6683 manual workers employed in 13 factories in France. The mortality of the two cohorts was studied from 1975 to 1988 by the historical prospective method. Job histories of welders were traced including welding processes used, metals welded, and proportion of worktime spent in welding. Data on smoking habits were collected from medical records. The observed number of deaths were compared with those expected (standardised mortality ratio (SMR)) based on national rates with adjustments for age, sex, and calendar time. The smoking habits of 87% of the whole study population were known. The distribution of welders and controls according to smoking was not statistically different. The overall mortality was slightly higher for welders (SMR = 1.02, 95% confidence interval (95% CI) 0.89-1.18) than for controls (SMR = 0.91, 95% CI 0.84-0.99). For lung cancer, the SMR was 1.24 (95% CI 0.75-1.94) for welders, whereas the corresponding value was lower for controls (SMR = 0.94, 95% CI 0.68-1.26). The SMR for lung cancer was 1.59 among non-shipyard mild steel welders (95% CI 0.73-3.02). This contrasted with the results for all stainless steel welders (SMR = 0.92, 95% CI 0.19-2.69), and for stainless steel welders predominantly exposed to chromium VI (SMR = 1.03, 95% CI 0.12-3.71). Moreover, SMRs for lung cancer for mild steel welders tended to increase with duration of exposure and time since first exposure, leading to significant excesses for duration > or = 20 years and latency > or = 20 years. Such a pattern was not found for stainless steel welders. PMID:8457490

  13. Nickel release from nickel-plated metals and stainless steels.

    PubMed

    Haudrechy, P; Foussereau, J; Mantout, B; Baroux, B

    1994-10-01

    Nickel release from nickel-plated metals often induces allergic contact dermatitis, but, for nickel-containing stainless steels, the effect is not well-known. In this paper, AISI 304, 316L, 303 and 430 type stainless steels, nickel and nickel-plated materials were investigated. 4 tests were performed: patch tests, leaching experiments, dimethylglyoxime (DMG) spot tests and electrochemical tests. Patch tests showed that 96% of the patients were intolerant to Ni-plated samples, and 14% to a high-sulfur stainless steel (303), while nickel-containing stainless steels with a low sulfur content elicited no reactions. Leaching experiments confirmed the patch tests: in acidic artificial sweat, Ni-plated samples released about 100 micrograms/cm2/week of nickel, while low-sulfur stainless steels released less than 0.03 microgram/cm2/week of nickel, and AISI 303 about 1.5 micrograms/cm2/week. Attention is drawn to the irrelevance of the DMG spot test, which reveals Ni present in the metal bulk but not its dissolution rate. Electrochemical experiments showed that 304 and 316 grades remain passive in the environments tested, while Ni-plated steels and AISI 303 can suffer significant cation dissolution. Thus, Ni-containing 304 and 316 steels should not induce contact dermatitis, while 303 should be avoided. A reliable nitric acid spot test is proposed to distinguish this grade from other stainless steels. PMID:7842681

  14. Automatic welding of stainless steel tubing

    NASA Technical Reports Server (NTRS)

    Clautice, W. E.

    1978-01-01

    The use of automatic welding for making girth welds in stainless steel tubing was investigated as well as the reduction in fabrication costs resulting from the elimination of radiographic inspection. Test methodology, materials, and techniques are discussed, and data sheets for individual tests are included. Process variables studied include welding amperes, revolutions per minute, and shielding gas flow. Strip chart recordings, as a definitive method of insuring weld quality, are studied. Test results, determined by both radiographic and visual inspection, are presented and indicate that once optimum welding procedures for specific sizes of tubing are established, and the welding machine operations are certified, then the automatic tube welding process produces good quality welds repeatedly, with a high degree of reliability. Revised specifications for welding tubing using the automatic process and weld visual inspection requirements at the Kennedy Space Center are enumerated.

  15. Radiation resistant austenitic stainless steel alloys

    DOEpatents

    Maziasz, Philip J.; Braski, David N.; Rowcliffe, Arthur F.

    1989-01-01

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01% to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties.

  16. Magnetic characterisation of duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Mészáros, I.

    2006-02-01

    Heat treatment-induced microstructural processes were studied by different non-destructive magnetic and mechanical material testing methods in the present work. A commercial SAF 2507 type superduplex stainless steel was investigated. This alloy contains about 40% metastable ferrite which can decompose to a sigma phase and secondary austenite due to heat treatment. All the mechanical, corrosion resistance and magnetic properties are strongly influenced by this microstructural changes. This study had two aims: to understand better the kinetics of the ferrite decomposition process and to study the application possibilities of the applied magnetic measurements. This paper presents an application possibility of the nonlinear harmonics analysis measurement and demonstrates the possibility to find a quantitative correlation between measured harmonics and mechanical properties obtained from destructive tests.

  17. Wear evaluation of high interstitial stainless steel

    SciTech Connect

    Rawers, J.C.; Tylczak, J.H.

    2008-07-01

    A new series of high nitrogen-carbon manganese stainless steel alloys are studied for their wear resistance. High nitrogen and carbon concentrations were obtained by melting elemental iron-chromium-manganese (several with minor alloy additions of nickel, silicon, and molybdenum) in a nitrogen atmosphere and adding elemental graphite. The improvement in material properties (hardness and strength) with increasing nitrogen and carbon interstitial concentration was consistent with previously reported improvements in similar material properties alloyed with nitrogen only. Wear tests included: scratch, pin-on-disk, sand-rubber-wheel, impeller, and jet erosion. Additions of interstitial nitrogen and carbon as well as interstitial nitrogen and carbide precipitates were found to greatly improve material properties. In general, with increasing nitrogen and carbon concentrations, strength, hardness, and wear resistance increased.

  18. Radiation resistant austenitic stainless steel alloys

    DOEpatents

    Maziasz, P.J.; Braski, D.N.; Rowcliffe, A.F.

    1987-02-11

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01 to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties. 4 figs.

  19. Automatic Welding of Stainless Steel Tubing

    NASA Technical Reports Server (NTRS)

    Clautice, W. E.

    1978-01-01

    To determine if the use of automatic welding would allow reduction of the radiographic inspection requirement, and thereby reduce fabrication costs, a series of welding tests were performed. In these tests an automatic welder was used on stainless steel tubing of 1/2, 3/4, and 1/2 inch diameter size. The optimum parameters were investigated to determine how much variation from optimum in machine settings could be tolerate and still result in a good quality weld. The process variables studied were the welding amperes, the revolutions per minute as a function of the circumferential weld travel speed, and the shielding gas flow. The investigation showed that the close control of process variables in conjunction with a thorough visual inspection of welds can be relied upon as an acceptable quality assurance procedure, thus permitting the radiographic inspection to be reduced by a large percentage when using the automatic process.

  20. MOCVD deposition of YSZ on stainless steels

    NASA Astrophysics Data System (ADS)

    Chevalier, S.; Kilo, M.; Borchardt, G.; Larpin, J. P.

    2003-01-01

    Yttria stabilized zirconia was deposited on stainless steel using the metal-organic chemical vapor deposition (MOCVD) technique, from β-diketonate precursors. The variation of the evaporation temperatures of yttrium and zirconium precursor allowed to control the level of Y within the film. Over the temperature range 125-150 °C, the Y content increased from 2.5 to 17.6 at.%. X-ray diffraction (XRD) analyses evidenced tetragonal phase of zirconia when the Y content was below 8 at.%, and cubic phase for higher concentration. Sputtered neutral mass spectrometry (SNMS) profiles confirmed that the control and stability of Y precursor temperature were of major importance to guarantee the homogeneity of the deposited films.

  1. Hydrogen vibrations in austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Danilkin, S. A.; Delafosse, D.; Fuess, H.; Gavriljuk, V. G.; Ivanov, A.; Magnin, T.; Wipf, H.

    The vibrational modes of hydrogen in fcc Fe-25Cr-20Ni stainless steel with a hydrogen content of 0.33at.% were studied by neutron spectroscopy. Hydrogen doping was performed at 810K in a hydrogen-gas atmosphere of 190bar. Neutron spectra were taken at 2K and 77K with the spectrometer IN1-BeF (ILL, Grenoble). The spectra show the fundamental hydrogen vibration at 130 meV and the second harmonics at 260 meV. The frequencies are higher than in other fcc hydrides. In spite of the cubic symmetry of the octahedral hydrogen positions and the low hydrogen content, the inelastic hydrogen peak has a relatively large width and an asymmetric shape.

  2. Materials compatibility of hydride storage materials with austenitic stainless steels

    SciTech Connect

    Clark, E.A.

    1992-09-21

    This task evaluated the materials compatibility of LaNi[sub 5-x]Al[sub x] (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

  3. Materials compatibility of hydride storage materials with austenitic stainless steels

    SciTech Connect

    Clark, E.A.

    1992-09-21

    This task evaluated the materials compatibility of LaNi{sub 5-x}Al{sub x} (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

  4. Materials compatibility of hydride storage materials with austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Clark, E. A.

    1992-09-01

    This task evaluated the materials compatibility of LaNi(5-x)Al(x) (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

  5. A preliminary ferritic-martensitic stainless steel constitution diagram

    SciTech Connect

    Balmforth, M.C.; Lippold, J.C.

    1998-01-01

    This paper describes preliminary research to develop a constitution diagram that will more accurately predict the microstructure of ferritic and martensitic stainless steel weld deposits. A button melting technique was used to produce a wide range of compositions using mixtures of conventional ferritic and martensitic stainless steels, including types 403, 409, 410, 430, 439 and 444. These samples were prepared metallographically, and the vol-% ferrite and martensite was determined quantitatively. In addition, the hardness and ferrite number (FN) were measured. Using this data, a preliminary constitution diagram is proposed that provides a more accurate method for predicting the microstructures of arc welds in ferritic and martensitic stainless steels.

  6. Stainless steel anodes for alkaline water electrolysis and methods of making

    DOEpatents

    Soloveichik, Grigorii Lev

    2014-01-21

    The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.

  7. Bacterial adhesion on ion-implanted stainless steel surfaces

    NASA Astrophysics Data System (ADS)

    Zhao, Q.; Liu, Y.; Wang, C.; Wang, S.; Peng, N.; Jeynes, C.

    2007-08-01

    Stainless steel disks were implanted with N +, O + and SiF 3+, respectively at the Surrey Ion Beam Centre. The surface properties of the implanted surfaces were analyzed, including surface chemical composition, surface topography, surface roughness and surface free energy. Bacterial adhesion of Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus aureus, which frequently cause medical device-associated infections was evaluated under static condition and laminar flow condition. The effect of contact time, growth media and surface properties of the ion-implanted steels on bacterial adhesion was investigated. The experimental results showed that SiF 3+-implanted stainless steel performed much better than N +-implanted steel, O +-implanted steel and untreated stainless steel control on reducing bacterial attachment under identical experimental conditions.

  8. A new view of the ultrasonic behavior of cast austenitic steels

    SciTech Connect

    Beller, L.S.

    1986-01-01

    A three-dimensionally anisotropic model of the cast austenitics is proposed and tested experimentally. The model predicts unique propagation modes and directions, which are observed experimentally in centrifugally cast stainless steel (CCSS) specimens, but which are not predicted by the single- preferred-axis model. It accounts for a large share of the difficulties noted in ultrasonic inspection of these materials by conventional techniques. The model also suggests a technique for significant improvement in signal/noise ratio (SNR) and in apparent attenuation; this technique is demonstrated experimentally to give striking improvements in SNR. In addition, a number of previously anomalous behaviors are explained by this model. 10 refs., 6 figs.

  9. Heat Treatment Procedure Qualification for Steel Castings

    SciTech Connect

    Mariol Charles; Nicholas Deskevich; Vipin Varkey; Robert Voigt; Angela Wollenburg

    2004-04-29

    Heat treatment practices used by steel foundries have been carefully studied as part of comprehensive heat treatment procedure qualification development trials. These studies highlight the relationships between critical heat treatment process control parameters and heat treatment success. Foundry heat treatment trials to develop heat treatment procedure qualifications have shed light on the relationship between heat treatment theory and current practices. Furnace load time-temperature profiles in steel foundries exhibit significant differences depending on heat treatment equipment, furnace loading practice, and furnace maintenance. Time-temperature profiles of furnace control thermocouples can be very different from the time-temperature profiles observed at the center of casting loads in the furnace. Typical austenitization temperatures and holding times used by steel foundries far exceed what is required for transformation to austenite. Quenching and hardenability concepts were also investigated. Heat treatment procedure qualification (HTPQ) schema to demonstrate heat treatment success and to pre-qualify other alloys and section sizes requiring lesser hardenability have been developed. Tempering success is dependent on both tempering time and temperature. As such, furnace temperature uniformity and control of furnace loading during tempering is critical to obtain the desired mechanical properties. The ramp-up time in the furnace prior to the establishment of steady state heat treatment conditions contributes to the extent of heat treatment performed. This influence of ramp-up to temperature during tempering has been quantified.

  10. Liquid Metal Corrosion of 316L Stainless Steel, 410 Stainless Steel, and 1015 Carbon Steel in a Molten Zinc Bath

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Bright, Mark A.; Liu, Xingbo; Barbero, Ever

    2007-11-01

    Corrosion tests of 1015 low-carbon steel and two stainless steels (410 and 316L) were conducted in a pure zinc bath (99.98 wt pct Zn) in order to better understand the reaction mechanisms that occur during the degradation of submerged hardware at industrial general (batch) galvanizing operations. Through this testing, it was found that, in general, 316L stainless steel showed the best dissolution resistance among these three alloys, while 1015 carbon steel provided a lower solubility than 410 stainless steel. Investigating the failure mechanisms, both metallurgical composition and lattice structure played important roles in the molten metal corrosion behaviors of these alloys. High contents of nickel combined with the influence of chromium improved the resistance to molten zinc corrosion. Moreover, a face-centered-cubic (fcc) structure was more corrosion resistant than body-centered-cubic (bcc) possibly due to the compactness of the atomic structure. Analogously, the body-centered-tetragonal (bct) martensite lattice structure possessed enhanced susceptibility to zinc corrosion as a result of the greater atomic spacing and high strain energy. Finally, an increased bath temperature played an important role in molten metal corrosion by accelerating the dissolution process and changing the nature of intermetallic layers.

  11. Ultrasonics permits brazing complex stainless steel assembly without flux

    NASA Technical Reports Server (NTRS)

    Baker, W. H.

    1967-01-01

    Ultrasonic vibration of an assembly of stainless steel instrumentation tubes ensures brazing without flux. Vibration with an ultrasonic transducer permits the brazing material to flow down each tube in contact with a seal plug installed in a pressure vessel wall.

  12. Stainless-steel elbows formed by spin forging

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Large seamless austenitic stainless steel elbows are fabricated by spin forging /rotary shear forming/. A specially designed spin forging tool for mounting on a hydrospin machine has been built for this purpose.

  13. Surface modified stainless steels for PEM fuel cell bipolar plates

    DOEpatents

    Brady, Michael P [Oak Ridge, TN; Wang, Heli [Littleton, CO; Turner, John A [Littleton, CO

    2007-07-24

    A nitridation treated stainless steel article (such as a bipolar plate for a proton exchange membrane fuel cell) having lower interfacial contact electrical resistance and better corrosion resistance than an untreated stainless steel article is disclosed. The treated stainless steel article has a surface layer including nitrogen-modified chromium-base oxide and precipitates of chromium nitride formed during nitridation wherein oxygen is present in the surface layer at a greater concentration than nitrogen. The surface layer may further include precipitates of titanium nitride and/or aluminum oxide. The surface layer in the treated article is chemically heterogeneous surface rather than a uniform or semi-uniform surface layer exclusively rich in chromium, titanium or aluminum. The precipitates of titanium nitride and/or aluminum oxide are formed by the nitriding treatment wherein titanium and/or aluminum in the stainless steel are segregated to the surface layer in forms that exhibit a low contact resistance and good corrosion resistance.

  14. Stress corrosion cracking evaluation of precipitation-hardening stainless steel

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1970-01-01

    Accelerated test program results show which precipitation hardening stainless steels are resistant to stress corrosion cracking. In certain cases stress corrosion susceptibility was found to be associated with the process procedure.

  15. Cavitation erosion of duplex and super duplex stainless steels

    SciTech Connect

    Kwok, C.T.; Man, H.C.; Cheng, F.T.

    1998-10-05

    Owing to their excellent corrosion resistance, stainless steels are widely used both in the marine, urban water, chemical and food industries. In addition to the corrosive environment, high fluid flow speeds are always encountered for components used in these industries. The cavitation characteristics of S30400 and S31600 austenitic stainless steels and duplex stainless steels were studied in detail by a number of authors. It was generally agreed that S30400 has higher cavitation erosion resistance than that of S31600 due to higher tendency of strain induced martensitic transformation under high impulse of stress. A considerable number of results on stress corrosion cracking characteristics of SDSS and duplex stainless steels have been published but data concerning their cavitation erosion property are extremely rare.

  16. Stress-Corrosion Cracking in Martensitic PH Stainless Steels

    NASA Technical Reports Server (NTRS)

    Humphries, T.; Nelson, E.

    1984-01-01

    Precipitation-hardening alloys evaluated in marine environment tests. Report describes marine-environment stress-corrosion cracking (SCC) tests of three martensitic precipitation hardening (PH) stainless-steel alloys.

  17. 27. STAINLESS STEEL FERMENTING CASKS MADE BY ZERO MANG OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. STAINLESS STEEL FERMENTING CASKS MADE BY ZERO MANG OF WASHINGTON, MISSOURI. VIEW LOOKING NORTH TOWARD VAULT OF THE TWELVE APOSTLES - Stone Hill Winery, 401 West Twelfth Street, Hermann, Gasconade County, MO

  18. Nafion coated stainless steel for anti-biofilm application.

    PubMed

    Zhong, Li Juan; Pang, Li Qing; Che, Li Ming; Wu, Xue E; Chen, Xiao Dong

    2013-11-01

    Biofilms can adhere to most surfaces and have caused a wide range of problems in various industrial processes as well as daily life activities. In this work, the anti-biofilm ability of Nafion-coated stainless steel surface was investigated and our results showed that stainless steel discs coated with 1% Nafion can significantly reduce E. coli adhesion. Nafion has a large amount of negatively charged sulphonate groups, and the findings of this study suggest that the negative surface charge can greatly reduce bacterial adhesion through increasing the electrostatic repulsion between negatively charged bacterial cells and Nafion coated stainless steel surface. The roughness of coated and uncoated stainless steel discs made no significant differences while the hydrophobic of the discs increased after coated with Nafion. PMID:23831592

  19. Hafnium stainless steel absorber rod for control rod

    SciTech Connect

    Charnley, J.E.; Cearley, J.E.; Dixon, R.C.; Izzo, K.R.; Aiello, L.L.

    1989-08-01

    This patent describes an improvement in a control rod having a stainless steel body for enclosing a neutron absorbing poison, the control rod having movement along an axial direction for insertion into and out of a nuclear reactor for controlling a nuclear reaction. The improvement comprising: a piece of hafnium; a piece of stainless steel joined to the hafnium by a thin diffusion interface created by friction welding. The hafnium and the stainless steel oriented serially in the axial direction with the thin diffusion interface disposed normal to the axial direction of the control rod movement; means for confining the hafnium to movement along the axial direction with the control rod; and means for attaching the piece of stainless steel to the remaining portion of the control rod to load the weld therebetween under compression or tension during the control rod movement. Whereby the thin diffusion interface is loaded in tension or compression only upon dynamic movement of the control rod.

  20. Compressive Strength of Stainless-Steel Sandwiches at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Mathauser, Eldon E.; Pride, Richard A.

    1959-01-01

    Experimental results are presented from crippling tests of stainless-steel sandwich specimens in the temperature range from 80 F to 1,200 F. The specimens included resistance-welded 17-7 PH stainless-steel sandwiches with single-corrugated cores, type 301 stainless-steel sandwiches with double-corrugated cores, and brazed 17-7 PH stainless-steel sandwiches with honeycomb cores. The experimental strengths are compared with predicted buckling and crippling strengths. The crippling strengths were predicted from the calculated maximum strength of the individual plate elements of the sandwiches and from a correlation procedure which gives the elevated-temperature crippling strength when the experimental room-temperature crippling strengths are known. Photographs of some of the tested specimens are included to show the modes of failure.

  1. Eddy sensors for small diameter stainless steel tubes.

    SciTech Connect

    Skinner, Jack L.; Morales, Alfredo Martin; Grant, J. Brian; Korellis, Henry James; LaFord, Marianne Elizabeth; Van Blarigan, Benjamin; Andersen, Lisa E.

    2011-08-01

    The goal of this project was to develop non-destructive, minimally disruptive eddy sensors to inspect small diameter stainless steel metal tubes. Modifications to Sandia's Emphasis/EIGER code allowed for the modeling of eddy current bobbin sensors near or around 1/8-inch outer diameter stainless steel tubing. Modeling results indicated that an eddy sensor based on a single axial coil could effectively detect changes in the inner diameter of a stainless steel tubing. Based on the modeling results, sensor coils capable of detecting small changes in the inner diameter of a stainless steel tube were designed, built and tested. The observed sensor response agreed with the results of the modeling and with eddy sensor theory. A separate limited distribution SAND report is being issued demonstrating the application of this sensor.

  2. 77 FR 64545 - Drawn Stainless Steel Sinks From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... respect to electronic filing have been amended. The amendments took effect on November 7, 2011. See 76 FR... COMMISSION Drawn Stainless Steel Sinks From China Scheduling of the final phase of countervailing duty and... retarded, by reason of subsidized and less-than-fair-value imports from China of drawn stainless...

  3. Measurement of intergranular attack in stainless steel using ultrasonic energy

    DOEpatents

    Mott, Gerry; Attaar, Mustan; Rishel, Rick D.

    1989-08-08

    Ultrasonic test methods are used to measure the depth of intergranular attack (IGA) in a stainless steel specimen. The ultrasonic test methods include a pitch-catch surface wave technique and a through-wall pulse-echo technique. When used in combination, these techniques can establish the extent of IGA on both the front and back surfaces of a stainless steel specimen from measurements made on only one surface.

  4. Probing the duplex stainless steel phases via magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Gheno, S. M.; Santos, F. S.; Kuri, S. E.

    2008-03-01

    Duplex stainless steels are austenitic-ferritic alloys used in many applications, thanks to their excellent mechanical properties and high corrosion resistance. In this work, chemical analyses, x-ray diffraction, and magnetic force microscopy (MFM) were employed to characterize the solution annealed and aged duplex stainless steel. The samples exhibited no changes in lattice parameters and the MFM technique proved successful in clearly imaging the magnetic domain structure of the ferrite phase.

  5. Solidification behavior of austenitic stainless steel filler metals

    SciTech Connect

    David, S.A.; Goodwin, G.M.; Braski, D.N.

    1980-02-01

    Thermal analysis and interrupted solidification experiments on selected austenitic stainless steel filler metals provided an understanding of the solidification behavior of austenitic stainless steel welds. The sequences of phase separations found were for type 308 stainless steel filler metal, L + L + delta + L + delta + ..gamma.. ..-->.. ..gamma.. + delta, and for type 310 stainless steel filler metal, L ..-->.. L + ..gamma.. ..-->.. ..gamma... In type 308 stainless steel filler metal, ferrite at room temperature was identified as either the untransformed primary delta-ferrite formed during the initial stages of solidification or the residual ferrite after Widmanstaetten austenite precipitation. Microprobe and scanning transmission electron microscope microanalyses revealed that solute extensively redistributes during the transformation of primary delta-ferrite to austenite, leading to enrichment and stabilization of ferrite by chromium. The type 310 stainless steel filler metal investigated solidifies by the primary crystallization of austenite, with the transformation going to completion at the solidus temperature. In our samples residual ferrite resulting from solute segregation was absent at the intercellular or interdendritic regions.

  6. X-ray attenuation properties of stainless steel (u)

    SciTech Connect

    Wang, Lily L; Berry, Phillip C

    2009-01-01

    Stainless steel vessels are used to enclose solid materials for studying x-ray radiolysis that involves gas release from the materials. Commercially available stainless steel components are easily adapted to form a static or a dynamic condition to monitor the gas evolved from the solid materials during and after the x-ray irradiation. Experimental data published on the x-ray attenuation properties of stainless steel, however, are very scarce, especially over a wide range of x-ray energies. The objective of this work was to obtain experimental data that will be used to determine how a poly-energetic x-ray beam is attenuated by the stainless steel container wall. The data will also be used in conjunction with MCNP (Monte Carlos Nuclear Particle) modeling to develop an accurate method for determining energy absorbed in known solid samples contained in stainless steel vessels. In this study, experiments to measure the attenuation properties of stainless steel were performed for a range of bremsstrahlung x-ray beams with a maximum energy ranging from 150 keV to 10 MeV. Bremsstrahlung x-ray beams of these energies are commonly used in radiography of engineering and weapon components. The weapon surveillance community has a great interest in understanding how the x-rays in radiography affect short-term and long-term properties of weapon materials.

  7. Task 1 Final Report, Theoretical/Mathematical Modeling of Ultrasonic Wave Propagation in Anisotropic Polycrystalline Stainless Steels

    SciTech Connect

    Ahmed, Salahuddin; Anderson, Michael T.

    2009-04-20

    One of the tasks of the U.S. Nuclear Regulatory Commission-sponsored project titled "Reliability of Nondestructive Examination (NDE) for Nuclear Power Plant (NPP) Inservice Examination (ISI)" is to provide collaborative assistance to Commissariat à l’Energie Atomique (CEA) in France through theoretical predictions of ultrasonic scattering by grains of cast stainless steels (CASS) components. More specifically, a mathematical treatment of ultrasonic scattering in media having duplex micro¬structure is sought because cast stainless steel components often contains larger-scale macrograins that are composed of sub-grains/colonies. In this report, we present formal mathematical theories for ultrasonic wave propagation in polycrystalline aggregates having both simple (composed of grains only) and complex microstructures (having macrograins and sub-grains/colonies). Computations based on these theories are then carried out for ultrasonic backscatter power, attenuation due to scattering, and phase velocity dispersions. Specifically, numerical results are presented for backscatter coefficient for plane longitudinal wave propagating in duplex steel containing macrograins and colonies. Furthermore, the expected propagation characteristics (attenuation coefficient and phase velocity) are computed and described in this report for plane longitudinal waves propagating in (1) steels composed of randomly oriented grains, (2) [001] aligned grains encountered in austenitic stainless steel welds and casts, and (3) duplex steels.

  8. Fabrication of stainless steel clad tubing. [gas pressure bonding

    NASA Technical Reports Server (NTRS)

    Kovach, C. W.

    1978-01-01

    The feasibility of producing stainless steel clad carbon steel tubing by a gas pressure bonding process was evaluated. Such a tube product could provide substantial chromium savings over monolithic stainless tubing in the event of a serious chromium shortage. The process consists of the initial assembly of three component tubesets from conventionally produced tubing, the formation of a strong metallurgical bond between the three components by gas pressure bonding, and conventional cold draw and anneal processing to final size. The quality of the tubes produced was excellent from the standpoint of bond strength, mechanical, and forming properties. The only significant quality problem encountered was carburization of the stainless clad by the carbon steel core which can be overcome by further refinement through at least three different approaches. The estimated cost of clad tubing produced by this process is greater than that for monolithic stainless tubing, but not so high as to make the process impractical as a chromium conservation method.

  9. Austenitic stainless steel for high temperature applications

    DOEpatents

    Johnson, Gerald D.; Powell, Roger W.

    1985-01-01

    This invention describes a composition for an austenitic stainless steel which has been found to exhibit improved high temperature stress rupture properties. The composition of this alloy is about (in wt. %): 12.5 to 14.5 Cr; 14.5 to 16.5 Ni; 1.5 to 2.5 Mo; 1.5 to 2.5 Mn; 0.1 to 0.4 Ti; 0.02 to 0.08 C; 0.5 to 1.0 Si; 0.01 maximum, N; 0.02 to 0.08 P; 0.002 to 0.008 B; 0.004-0.010 S; 0.02-0.05 Nb; 0.01-0.05 V; 0.005-0.02 Ta; 0.02-0.05 Al; 0.01-0.04 Cu; 0.02-0.05 Co; 0.03 maximum, As; 0.01 maximum, O; 0.01 maximum, Zr; and with the balance of the alloy being essentially iron. The carbon content of the alloy is adjusted such that wt. % Ti/(wt. % C+wt. % N) is between 4 and 6, and most preferably about 5. In addition the sum of the wt. % P+wt. % B+wt. % S is at least 0.03 wt. %. This alloy is believed to be particularly well suited for use as fast breeder reactor fuel element cladding.

  10. Weldable, age hardenable, austenitic stainless steel

    DOEpatents

    Brooks, J.A.; Krenzer, R.W.

    1975-07-22

    An age hardenable, austenitic stainless steel having superior weldability properties as well as resistance to degradation of properties in a hydrogen atmosphere is described. It has a composition of from about 24.0 to about 34.0 weight percent (w/o) nickel, from about 13.5 to about 16.0 w/o chromium, from about 1.9 to about 2.3 w/o titanium, from about 1.0 to about 1.5 w/ o molybdenum, from about 0.01 to about 0.05 w/o carbon, from about 0 to about 0.25 w/o manganese, from about 0 to about 0.01 w/o phosphorous and preferably about 0.005 w/o maximum, from about 0 to about 0.010 w/o sulfur and preferably about 0.005 w/o maximum, from about 0 to about 0.25 w/o silicon, from about 0.1 to about 0.35 w/o aluminum, from about 0.10 to about 0.50 w/o vanadium, from about 0 to about 0.0015 w/o boron, and the balance essentially iron. (auth)

  11. New Economical 19Cr Duplex Stainless Steels

    NASA Astrophysics Data System (ADS)

    Li, Jun; Zhang, Zixing; Chen, Hong; Xiao, Xueshan; Zhao, Junliang; Jiang, Laizhu

    2012-02-01

    New economical duplex stainless steels (DSSs) containing 19Cr-6Mn- xNi-1.0Mo-0.5W-0.5Cu-0.2N ( x = 0.5 to 2.0) were developed, and the microstructure, impact property, and corrosion resistance of the alloys were studied. The ferrite content increases with the solution treatment temperature, but decreases with an increase in nickel. The sigma phase is not found precipitating in the alloys treated with solution from 1023 K to 1523 K (750 °C to 1250 °C). The low-temperature impact energy of the experimental alloys increases first and then decreases rapidly with an increase in nickel, which is mainly due to the martensite transformation with an increase in austenite. The alloys have a better mechanical property and pitting corrosion resistance than AISI 304. Among the designed DSS alloys, 19Cr-6Mn-1.3Ni-1.0Mo-0.5W-0.5Cu-0.2N is found to be an optimum alloy with proper phase proportion, a better combination of mechanical strength and elongation, and higher pitting corrosion resistance compared with those of the other alloys.

  12. Weldability of neutron irradiated austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Asano, Kyoichi; Nishimura, Seiji; Saito, Yoshiaki; Sakamoto, Hiroshi; Yamada, Yuji; Kato, Takahiko; Hashimoto, Tsuneyuki

    1999-01-01

    Degradation of weldability in neutron irradiated austenitic stainless steel is an important issue to be addressed in the planning of proactive maintenance of light water reactor core internals. In this work, samples selected from reactor internal components which had been irradiated to fluence from 8.5 × 10 22 to 1.4 × 10 26 n/m 2 ( E > 1 MeV) corresponding to helium content from 0.11 to 103 appm, respectively, were subjected to tungsten inert gas arc (TIG) welding with heat input ranged 0.6-16 kJ/cm. The weld defects were characterized by penetrant test and cross-sectional metallography. The integrity of the weld was better when there were less helium and at lower heat input. Tensile properties of weld joint containing 0.6 appm of helium fulfilled the requirement for unirradiated base metal. Repeated thermal cycles were found to be very hazardous. The results showed the combination of material helium content and weld heat input where materials can be welded with little concern to invite cracking. Also, the importance of using properly selected welding procedures to minimize thermal cycling was recognized.

  13. Welding Behavior of Free Machining Stainless Steel

    SciTech Connect

    BROOKS,JOHN A.; ROBINO,CHARLES V.; HEADLEY,THOMAS J.; MICHAEL,JOSEPH R.

    2000-07-24

    The weld solidification and cracking behavior of sulfur bearing free machining austenitic stainless steel was investigated for both gas-tungsten arc (GTA) and pulsed laser beam weld processes. The GTA weld solidification was consistent with those predicted with existing solidification diagrams and the cracking response was controlled primarily by solidification mode. The solidification behavior of the pulsed laser welds was complex, and often contained regions of primary ferrite and primary austenite solidification, although in all cases the welds were found to be completely austenite at room temperature. Electron backscattered diffraction (EBSD) pattern analysis indicated that the nature of the base metal at the time of solidification plays a primary role in initial solidification. The solid state transformation of austenite to ferrite at the fusion zone boundary, and ferrite to austenite on cooling may both be massive in nature. A range of alloy compositions that exhibited good resistance to solidification cracking and was compatible with both welding processes was identified. The compositional range is bounded by laser weldability at lower Cr{sub eq}/Ni{sub eq} ratios and by the GTA weldability at higher ratios. It was found with both processes that the limiting ratios were somewhat dependent upon sulfur content.

  14. Investigation of the diffusion kinetics of borided stainless steels

    NASA Astrophysics Data System (ADS)

    Kayali, Yusuf

    2013-12-01

    In this study, the kinetics of borides formed on AISI 420, AISI 304 and AISI 304L stainless steels was investigated. Boronizing treatment was carried out using Ekabor-II powders at the processing temperatures of 1123, 1173 and 1223 K for 2, 4 and 6 h. The phases of the boride layers of borided AISI 420, AISI 304 and AISI 304L stainless steels were FeB, Fe2B, CrB and NiB, respectively. The thickness of the boride layer formed on the borided steels ranged from 4.6 to 64 μm depending on the boriding temperature, boriding time and alloying elements of the stainless steels. Depending on the chemical composition, temperature and layer thickness, the activation energies of boron in AISI 420, AISI 304 and AISI 304L stainless steels were found to be 206.161, 234.641 and 222.818 kJ/mol, respectively. The kinetics of growth of the boride layers formed on the AISI 420, AISI 304 and AISI 304L stainless steels and the thickness of the boride layers were investigated.

  15. From flint to stainless steel: observations on surgical instrument composition.

    PubMed Central

    Kirkup, J.

    1993-01-01

    Man's failure to extract deeply embedded thorns and arrowheads, with bare hands and teeth, stimulated 'instrument substitutes' mimicking these appendages. Evidence from primitive communities suggest animal, plant and mineral items were employed, both before and after metal became the standard material of today's armamentarium. Changing surgical instrument composition has mirrored concurrent technology and manufacturing methods both of which are reviewed. Particular significance is accorded flint, bronze, crucible steel, thermal sterilisation, nickel-plate, stainless steel and disposable plastics. The paper is based on an exhibition From Flint to Stainless Steel on display at the College. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8215156

  16. Stainless steel tube-based cell cryopreservation containers.

    PubMed

    Shih, Wei-Hung; Yu, Zong-Yan; Wu, Wei-Te

    2013-12-01

    This study focused on increasing the freezing rate in cell vitrification cryopreservation by using a cryopreservation container possessing rigid mechanical properties and high heat-transfer efficiency. Applying a fast freezing rate in vitrification cryopreservation causes a rapid temperature change in the cryopreservation container and has a substantial impact on mechanical properties; therefore, a highly rigid cryopreservation container that possesses a fast freezing rate must be developed. To produce a highly rigid cryopreservation container possessing superior heat transfer efficiency, this study applies an electrochemical machining (ECM) method to an ANSI 316L stainless steel tube to treat the surface material by polishing and roughening, thereby increasing the freezing rate and reducing the probability of ice crystal formation. The results indicated that the ECM method provided high-quality surface treatment of the stainless steel tube. This method can reduce internal surface roughness in the stainless steel tube, thereby reducing the probability of ice crystal formation, and increase external surface roughness, consequently raising convection heat-transfer efficiency. In addition, by thinning the stainless steel tube, this method reduces heat capacity and thermal resistance, thereby increasing the freezing rate. The freezing rate (3399 ± 197 °C/min) of a stainless steel tube after interior and exterior polishing and exterior etching by applying ECM compared with the freezing rate (1818 ± 54 °C/min) of an original stainless steel tube was increased by 87%, which also exceeds the freezing rate (2015 ± 49 °C/min) of an original quartz tube that has a 20% lower heat capacity. However, the results indicated that increasing heat-transferring surface areas and reducing heat capacities cannot effectively increase the freezing rate of a stainless steel tube if only one method is applied; instead, both techniques must be implemented concurrently to improve the

  17. Estimation of fatigue strain-life curves for austenitic stainless steels in light water reactor environments.

    SciTech Connect

    Chopra, O. K.; Smith, J. L.

    1998-02-12

    The ASME Boiler and Pressure Vessel Code design fatigue curves for structural materials do not explicitly address the effects of reactor coolant environments on fatigue life. Recent test data indicate a significant decrease in fatigue lives of austenitic stainless steels (SSs) in light water reactor (LWR) environments. Unlike those of carbon and low-alloy steels, environmental effects on fatigue lives of SSs are more pronounced in low-dissolved-oxygen (low-DO) water than in high-DO water, This paper summarizes available fatigue strain vs. life data on the effects of various material and loading variables such as steel type, DO level, strain range, and strain rate on the fatigue lives of wrought and cast austenitic SSs. Statistical models for estimating the fatigue lives of these steels in LWR environments have been updated with a larger data base. The significance of the effect of environment on the current Code design curve has been evaluated.

  18. Corrosion in lithium-stainless steel thermal-convection systems

    SciTech Connect

    Tortorelli, P.F.; DeVan, J.H.; Selle, J.E.

    1980-01-01

    The corrosion of types 304L and 316 austenitic stainless steel by flowing lithium was studied in thermal-convection loops operated at 500 to 650/sup 0/C. Both weight and compositional changes were measured on specimens distributed throughout each loop and were combined with metallographic examinations to evaluate the corrosion processes. The corrosion rate and mass transfer characteristics did not significantly differ between the two austenitic stainless steels. Addition of 500 or 1700 wt ppM N to purified lithium did not increase the dissolution rate or change the attack mode of type 316 stainless steel. Adding 5 wt % Al to the lithium reduced the weight loss of this steel by a factor of 5 relative to a pure lithium-thermal-convection loop.

  19. Machinability of a Stainless Steel by Electrochemical Discharge Microdrilling

    NASA Astrophysics Data System (ADS)

    Coteaţǎ, Margareta; Schulze, Hans-Peter; Pop, Nicolae; Beşliu, Irina; Slǎtineanu, Laurenţiu

    2011-05-01

    Due to the chemical elements included in their structure for ensuring an increased resistance to the environment action, the stainless steels are characterized by a low machinability when classical machining methods are applied. For this reason, sometimes non-traditional machining methods are applied, one of these being the electrochemical discharge machining. To obtain microholes and to evaluate the machinability by electrochemical discharge microdrilling, test pieces of stainless steel were used for experimental research. The electrolyte was an aqueous solution of sodium silicate with different densities. A complete factorial plan was designed to highlight the influence of some input variables on the sizes of the considered machinability indexes (electrode tool wear, material removal rate, depth of the machined hole). By mathematically processing of experimental data, empirical functions were established both for stainless steel and carbon steel. Graphical representations were used to obtain more suggestive vision concerning the influence exerted by the considered input variables on the size of the machinability indexes.

  20. Machinability of a Stainless Steel by Electrochemical Discharge Microdrilling

    SciTech Connect

    Coteata, Margareta; Pop, Nicolae; Slatineanu, Laurentiu; Schulze, Hans-Peter; Besliu, Irina

    2011-05-04

    Due to the chemical elements included in their structure for ensuring an increased resistance to the environment action, the stainless steels are characterized by a low machinability when classical machining methods are applied. For this reason, sometimes non-traditional machining methods are applied, one of these being the electrochemical discharge machining. To obtain microholes and to evaluate the machinability by electrochemical discharge microdrilling, test pieces of stainless steel were used for experimental research. The electrolyte was an aqueous solution of sodium silicate with different densities. A complete factorial plan was designed to highlight the influence of some input variables on the sizes of the considered machinability indexes (electrode tool wear, material removal rate, depth of the machined hole). By mathematically processing of experimental data, empirical functions were established both for stainless steel and carbon steel. Graphical representations were used to obtain more suggestive vision concerning the influence exerted by the considered input variables on the size of the machinability indexes.

  1. Solidification and solid state transformations of austenitic stainless steel welds

    SciTech Connect

    Brooks, J A; Williams, J C; Thompson, A W

    1982-05-01

    The microstructure of austenitic stainless steel welds can contain a large variety of ferrite morphologies. It was originally thought that many of these morphologies were direct products of solidification. Subsequently, detailed work on castings suggested the structures can solidify either as ferrite or austenite. However, when solidification occurs by ferrite, a large fraction of the ferrite transforms to austenite during cooling via a diffusion controlled transformation. It was also shown by Arata et al that welds in a 304L alloy solidified 70-80% as primary ferrite, a large fraction of which also transformed to austenite upon cooling. More recently it was suggested that the cooling rates in welds were sufficiently high that diffusionless transformations were responsible for several commonly observed ferrite morphologies. However, other workers have suggested that even in welds, delta ..-->.. ..gamma.. transformations are diffusion controlled. A variety of ferrite morphologies have more recently been characterized by Moisio and coworkers and by David. The purpose of this paper is to provide further understanding of the evaluation of the various weld microstructures which are related to both the solidification behavior and the subsequent solid state transformations. To accomplish this, both TEM and STEM (Scanning Transmission Electron Microscopy) techniques were employed.

  2. Developmental techniques for ultrasonic flaw detection and characterization in stainless steel. [PWR

    SciTech Connect

    Kupperman, D.S.

    1983-04-01

    Flaw detection and characterization by ultrasonic methods is particularly difficult for stainless steel. This paper focuses on two specific problem areas: (a) the inspection of centrifugally cast stainless steel (CCSS) and (b) the differentiation of intergranular stress-corrosion cracking (IGSCC) from geometrical reflectors such as the weld root. To help identify optimal conditions for the ultrasonic inspection of CCSS, the effect of frequency on propagation of longitudinal and shear waves was examined in both isotropic and anisotropic samples. Good results were obtained with isotropic CCSS and 0.5-MHz angle beam shear waves. The use of beam-scattering patterns (i.e. signal amplitude vs skew angle) as a tool for discriminating IGSCC from geometrical reflectors is also discussed.

  3. Yield improvement and defect reduction in steel casting

    SciTech Connect

    Kent Carlson

    2004-03-16

    This research project investigated yield improvement and defect reduction techniques in steel casting. Research and technology development was performed in the following three specific areas: (1) Feeding rules for high alloy steel castings; (2) Unconventional yield improvement and defect reduction techniques--(a) Riser pressurization; and (b) Filling with a tilting mold; and (3) Modeling of reoxidation inclusions during filling of steel castings. During the preparation of the proposal for this project, these areas were identified by the High Alloy Committee and Carbon and Low Alloy Committee of the Steel Founders' Society of America (SFSA) as having the highest research priority to the steel foundry industry. The research in each of the areas involved a combination of foundry experiments, modeling and simulation. Numerous SFSA member steel foundries participated in the project through casting trials and meetings. The technology resulting from this project will result in decreased scrap and rework, casting yield improvement, and higher quality steel castings produced with less iteration. This will result in considerable business benefits to steel foundries, primarily due to reduced energy and labor costs, increased capacity and productivity, reduced lead-time, and wider use and application of steel castings. As estimated using energy data provided by the DOE, the technology produced as a result of this project will result in an energy savings of 2.6 x 10{sup 12} BTU/year. This excludes the savings that were anticipated from the mold tilting research. In addition to the energy savings, and corresponding financial savings this implies, there are substantial environmental benefits as well. The results from each of the research areas listed above are summarized.

  4. Antibacterial effect of silver nanofilm modified stainless steel surface

    NASA Astrophysics Data System (ADS)

    Fang, F.; Kennedy, J.; Dhillon, M.; Flint, S.

    2015-03-01

    Bacteria can attach to stainless steel surfaces, resulting in the colonization of the surface known as biofilms. The release of bacteria from biofilms can cause contamination of food such as dairy products in manufacturing plants. This study aimed to modify stainless steel surfaces with silver nanofilms and to examine the antibacterial effectiveness of the modified surface. Ion implantation was applied to produce silver nanofilms on stainless steel surfaces. 35 keV Ag ions were implanted with various fluences of 1 × 1015 to 1 × 1017 ions•cm-2 at room temperature. Representative atomic force microscopy characterizations of the modified stainless steel are presented. Rutherford backscattering spectrometry spectra revealed the implanted atoms were located in the near-surface region. Both unmodified and modified stainless steel coupons were then exposed to two types of bacteria, Pseudomonas fluorescens and Streptococcus thermophilus, to determine the effect of the surface modification on bacterial attachment and biofilm development. The silver modified coupon surface fluoresced red over most of the surface area implying that most bacteria on coupon surface were dead. This study indicates that the silver nanofilm fabricated by the ion implantation method is a promising way of reducing the attachment of bacteria and delay biofilm formation.

  5. Work of adhesion of dairy products on stainless steel surface

    PubMed Central

    Bernardes, Patrícia Campos; Araújo, Emiliane Andrade; dos Santos Pires, Ana Clarissa; Queiroz Fialho Júnior, José Felício; Lelis, Carini Aparecida; de Andrade, Nélio José

    2012-01-01

    The adhesion of the solids presents in food can difficult the process of surface cleaning and promotes the bacterial adhesion process and can trigger health problems. In our study, we used UHT whole milk, chocolate based milk and infant formula to evaluate the adhesion of Enterobacter sakazakii on stainless steel coupons, and we determine the work of adhesion by measuring the contact angle as well as measured the interfacial tension of the samples. In addition we evaluated the hydrophobicity of stainless steel after pre-conditioning with milk samples mentioned. E. sakazakii was able to adhere to stainless steel in large numbers in the presence of dairy products. The chocolate based milk obtained the lower contact angle with stainless steel surface, higher interfacial tension and consequently higher adhesion work. It was verified a tendency of decreasing the interfacial tension as a function of the increasing of protein content. The preconditioning of the stainless steel coupons with milk samples changed the hydrophobic characteristics of the surfaces and became them hydrophilic. Therefore, variations in the composition of the milk products affect parameters important that can influence the procedure of hygiene in surface used in food industry. PMID:24031951

  6. A stainless steel bracket for orthodontic application.

    PubMed

    Oh, Keun-Taek; Choo, Sung-Uk; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2005-06-01

    Aesthetics has become an essential element when choosing orthodontic fixed appliances. Most metallic brackets used in orthodontic therapy are made from stainless steel (SS) with the appropriate physical properties and good corrosion resistance, and are available as types 304, 316 and 17-4 PH SS. However, localized corrosion of these materials can frequently occur in the oral environment. This study was undertaken to evaluate the accuracy of sizing, microstructure, hardness, corrosion resistance, frictional resistance and cytotoxicity of commercially available Mini-diamond (S17400), Archist (S30403) and experimentally manufactured SR-50A (S32050) brackets. The size accuracy of Mini-diamond was the highest at all locations except for the external horizontal width of the tie wing (P < 0.05). Micrographs of the Mini-diamond and Archist showed precipitates in the grains and around their boundaries. SR-50A showed the only austenitic phase and the highest polarization resistance of the tested samples. SR-50A also had the highest corrosion resistance [SR-50A, Mini-diamond and Archist were 0.9 x 10(-3), 3.7 x 10(-3), and 7.4 x 10(-3) mm per year (mpy), respectively], in the artificial saliva. The frictional force of SR-50A decreased over time, but that of Mini-diamond and Archist increased. Therefore, SR-50A is believed to have better frictional properties to orthodontic wire than Mini-diamond and Archist. Cytotoxic results showed that the response index of SR-50A was 0/1 (mild), Mini-diamond 1/1 (mild+), and Archist 1/2 (mild+). SR-50A showed greater biocompatibility than either Mini-diamond or Archist. It is concluded that the SR-50A bracket has good frictional property, corrosion resistance and biocompatibility with a lower probability of allergic reaction, compared with conventionally used SS brackets. PMID:15947222

  7. Variation and optimization of acid-dissolved aluminum content in stainless steel

    NASA Astrophysics Data System (ADS)

    Zhang, Le-chen; Bao, Yan-ping; Wang, Min; Zhang, Chao-jie

    2016-04-01

    As a key step in secondary refining, the deoxidation process in clean stainless steel production is widely researched by many scholars. In this study, vacuum oxygen decarburization (VOD) deoxidation refining in a 40-t electric arc furnace + VOD + ingot casting process was analyzed and optimized on the basis of Al deoxidation of stainless steel and thermodynamic equilibrium reactions between the slag and steel. Under good stirring conditions in VOD, the deoxidation reaction reaches equilibrium rapidly, and the oxygen activity in the bulk steel is controlled by the slag composition and Al content. A basicity of 3-5 and an Al content greater than 0.015wt% in the melt resulted in an oxygen content less than 0.0006wt%. In addition, the dissolved oxygen content decreased slightly when the Al content in the steel was greater than 0.02wt%. Because of the equilibrium of the Si-O reaction between the slag and steel, the activity of SiO2 will increase while the Si content increases; thus, the Si content should be lowered to enable the formation of a high-basicity slag. A high-basicity, low-Al2O3 slag and an increased Si content will reduce the Al consumption caused by SiO2 reduction.

  8. Moessbauer and SEM characterization of the scale on type 304 stainless steel

    SciTech Connect

    Waanders, F.B.; Vorster, S.W.; Engelbrecht, A.

    2000-05-10

    Defects that form on stainless steels during production cause reworking, leading to higher production costs associated with production delays. Primarily wrong casting, rolling, grinding, annealing and pickling practices cause typical metallurgical defects such as the formation of residual scale. In the present investigation the problem of residual scale development on austenitic stainless steel (type AISI 304, with typical composition 19%Cr, 8%Ni, 1.5%Mn, <1%Si and the balance Fe) was investigated. Scale that is not removed during the pickling process is referred to as residual scale. Characterization of the surface scale is a prerequisite for effective measures aimed at minimizing scale formation and the design of efficient descaling procedures. The scale consists of an outer layer of iron oxides and an inner layer composed of small grains of FeCr{sub 2}O{sub 4} with the scale-metal interface not uniform and oxidation occurring along grain boundaries. Internal oxidation is found near the scale-metal interface with the amount of unoxidized metal increasing toward the scale-metal interface. If the scale is not removed from the hot steel it may be rolled into the product surface which will then require additional processing. Descaling presently used for stainless steel comprises of acid pickling, mechanical descaling and electrolytic pickling.

  9. Heat treatment temperature influence on ASTM A890 GR 6A super duplex stainless steel microstructure

    SciTech Connect

    Martins, Marcelo; E-mail: marcelo.martins@sulzer.com; Casteletti, Luiz Carlos

    2005-09-15

    Duplex and super duplex stainless steels are ferrous alloys with up to 26% chromium, 8% nickel, 5% molybdenum and 0.3% nitrogen, which are largely used in applications in media containing ions from the halogen family, mainly the chloride ion (Cl{sup -}). The emergence of this material aimed at substituting Copper-Nickel alloys (Cupro-Nickel) that despite presenting good corrosion resistance, has mechanical properties quite inferior to steel properties. The metallurgy of duplex and super duplex stainless steel is complex due to high sensitiveness to sigma phase precipitation that becomes apparent, due to the temperatures they are exposed on cooling from solidification as well as from heat treatment processes. The objective of this study was to verify the influence of heat treating temperatures on the microstructure and hardness of ASTM A890/A890M Gr 6A super duplex stainless steel type. Microstructure control is of extreme importance for castings, as the chemical composition and cooling during solidification inevitably provide conditions for precipitation of sigma phase. Higher hardness in these materials is directly associated to high sigma phase concentration in the microstructure, precipitated in the ferrite/austenite interface. While heat treatment temperature during solution treatment increases, the sigma phase content in the microstructure decreases and consequently, the material hardness diminishes. When the sigma phase was completely dissolved by the heat treatment, the material hardness was influenced only due to ferrite and austenite contents in the microstructure.

  10. Tensile properties of the modified 13Cr martensitic stainless steels

    NASA Astrophysics Data System (ADS)

    Mabruri, Efendi; Anwar, Moch. Syaiful; Prifiharni, Siska; Romijarso, Toni B.; Adjiantoro, Bintang

    2016-04-01

    This paper reports the influence of Mo and Ni on the tensile properties of the modified 13Cr martensitic stainless steels in tempered condition. Four steels with different content of Mo and Ni were prepared by induction melting followed by hot forging, quenching and tempering. The experimental results showed that the addition of about 1% and 3% Mo has a beneficial effect to increase both the tensile strength and the elongation of the steels. On the contrary, the addition of about 3% Ni into the martensitic stainless steel results in decreasing of both the tensile strength and the elongation. Among the alloys investigated the 13Cr3Mo type steel exhibited largest tensile strength of 1348 MPa and largest elongation of 12%. The observation on the tensile fractured surfaces by using scanning electron microscope supported these findings.

  11. DETECTION OF BACTERIAL BIOFILM ON STAINLESS STEEL BY HYPERSPECTRAL FLUORESCENCE IMAGING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, hyperspectral fluorescence imaging techniques were investigated for detection of microbial biofilm on stainless steel plates typically used to manufacture food processing equipment. Stainless steel coupons were immersed in bacterium cultures consisting of nonpathogenic E. coli, Pseudo...

  12. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Clean Steel Casting Production

    SciTech Connect

    Kuyucak, Selcuk; Li, Delin

    2013-12-31

    Inclusions in steel castings can cause rework, scrap, poor machining, and reduced casting performance, which can obviously result in excess energy consumption. Significant progress in understanding inclusion source, formation and control has been made. Inclusions can be defined as non-metallic materials such as refractory, sand, slag, or coatings, embedded in a metallic matrix. This research project has focused on the mold filling aspects to examine the effects of pouring methods and gating designs on the steel casting cleanliness through water modeling, computer modeling, and melting/casting experiments. Early in the research project, comprehensive studies of bottom-pouring water modeling and low-alloy steel casting experiments were completed. The extent of air entrainment in bottom-poured large castings was demonstrated by water modeling. Current gating systems are designed to prevent air aspiration. However, air entrainment is equally harmful and no prevention measures are in current practice. In this study, new basin designs included a basin dam, submerged nozzle, and nozzle extension. The entrained air and inclusions from the gating system were significantly reduced using the new basin method. Near the end of the project, there has been close collaboration with Wescast Industries Inc., a company manufacturing automotive exhaust components. Both computer modeling using Magma software and melting/casting experiments on thin wall turbo-housing stainless steel castings were completed in this short period of time. Six gating designs were created, including the current gating on the pattern, non-pressurized, partially pressurized, naturally pressurized, naturally pressurized without filter, and radial choke gating without filter, for Magma modeling. The melt filling velocity and temperature were determined from the modeling. Based on the simulation results, three gating designs were chosen for further melting and casting experiments on the same casting pattern using

  13. Borated stainless steel application in spent-fuel storage racks

    SciTech Connect

    Smith, R.J.; Loomis, G.W.; Deltete, C.P.

    1992-06-01

    EPRI is continuing to investigate the application of borated stainless steel products within the commercial nuclear power industry through participation in code development and material testing. This effort provides documentation of the material properties of interest in design applications utilizing the borated stainless steel products as structural elements as well as serving as neutron absorbers. The properties of most concern in the design of spent fuel storage racks, shipping casks, and other containment type applications are the materials' ductility, tensile strength, corrosion resistance and resistance to degradation due to radiation and temperature. The data presented in this report indicate that practical designs can be achieved utilizing borated stainless steels and that the materials can be cost effectively applied.

  14. Highly robust stainless steel tips as microelectrospray emitters.

    PubMed

    Ishihama, Yasushi; Katayama, Hiroyuki; Asakawa, Naoki; Oda, Yoshiya

    2002-01-01

    Tapered stainless steel spray tips for sheathless microelectrospray ionization (microESI) have been developed. The fabrication procedure for the tapered stainless steel tips was optimized using an electropolishing technique followed by removal of the burr. Using the tip as the microESI emitter, a stable ESI spray was obtained at a flow rate of 20 nL/min. The sensitivity of the microESI system was almost two orders greater than that of the conventional ion spray system. The tip was highly stable, and was successfully used for over 1000 h. Moreover, these stainless steel tips were suitable for use with sheathless capillary electrophoresis/mass spectrometry (CE/MS) and capillary liquid chromatography/mass spectrometry (LC/MS) for routine analysis in proteomic and pharmaceutical applications. PMID:11968120

  15. Copper-ceramic composite coatings for steel strip casting

    SciTech Connect

    Legoux, J.G.; Dallaire, S.

    1994-12-31

    Materials in contact with solidifying steel during continuous strip casting should have high thermal conductivity, good thermal shock resistance and high inertness to liquid steel. A good ability to withstand mechanical damages could be mandatory particularly during the braking-in period. A copper-ceramic coating has been developed in order to fulfill these requirements. This coating was plasma sprayed on the rolls of a prototype twin-roll strip casting machine. As it is ductile it can withstand mechanical deformations. Being a barrier preventing reactions with liquid steel, it ensures the spreading of liquid steel over the rolls and the easy removal of the solidified strip. As a thin ceramic rich continuous layer is formed and renewed after each mechanical damage this coating possesses self-healing properties. This paper presents the development of this copper-ceramic coating in regards to the demanding service conditions of strip casting and relates its performance to its peculiar microstructure.

  16. The fatigue crack initiation at the interface between matrix and {delta}-ferrite in 304L stainless steel

    SciTech Connect

    Rho, B.S.; Hong, H.U.; Nam, S.W.

    1998-10-13

    It is well known that austenitic stainless steels have good mechanical properties and good corrosion resistance at high temperatures and are widely used in high temperature application. However, representative 304L stainless steel among austenitic stainless steels has the undesirable {delta}-ferrite in {gamma} matrix unavoidably because of the limitation of the manufacturing process. While large amounts of {delta}-ferrite in the austenitic stainless steels can give rise to a decrease in the hot workability, the absence of {delta}-ferrite in 304L stainless steel can be the cause of longitudinal facial crack and shortness of continuous cast slab. However, there are few reported papers related with the effect of {delta}-ferrite nucleating the initial crack at the interface between matrix and {delta}-ferrite on fatigue properties at high temperature. In the present work, a comparison of fatigue life with the amount of {delta}-ferrite was examined and to find out the mechanism of crack initiation caused by {delta}-ferrite, dislocation behavior near the interface between {delta}-ferrite and matrix during fatigue testing was analyzed. To analyze the dislocation character near the interface between the matrix and {delta}-ferrite during a low cycle fatigue test, trace analysis was applied. Using Burgers vector and dislocation line direction, calculated by trace analysis, it was possible to obtain some characteristic of dislocation behaviors near the interface.

  17. Microstructure and texture of Nb + Ti stabilized ferritic stainless steel

    SciTech Connect

    Yan Haitao Bi Hongyun; Li Xin; Xu Zhou

    2008-12-15

    The microstructure, texture and grain boundary character distribution of Nb + Ti stabilized ferritic stainless steel were analyzed using scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The addition of alloying elements such as Ti and Nb to ferritic stainless steel causes the formation of TiN, NbC and Fe{sub 2}Nb. The textures of cold rolled samples were dominated by the {alpha}-fiber, while the textures of annealed samples exhibit a very strong {gamma}-fiber. The changes in texture are closely related to the grain boundary characteristics.

  18. Transmission electron microscopy of undermined passive films on stainless steel

    SciTech Connect

    Isaacs, H.S.; Zhu, Y.; Sabatini, R.L.; Ryan, M.P.

    1999-06-01

    A study has been made of the passive film remaining over pits on stainless steel using a high resolution transmission electron microscope. Type 305 stainless steel was passivated in a borate buffer solution and pitted in ferric chloride. Passive films formed at 0.2 V relative to a saturated calomel electrode were found to be amorphous. Films formed at higher potentials showed only broad diffraction rings. The passive film was found to cover a remnant lacy structure formed over pits passivated at 0.8 V. The metallic strands of the lace were roughly hemitubular in shape with the curved surface facing the center of the pit.

  19. Corrosion evaluation of stainless steel root weld shielding

    SciTech Connect

    Gorog, M.; Sawyer, L.A.

    1999-07-01

    The effect of five shielding methods for gas tungsten arc root pass welds, on the corrosion resistance of stainless steel was evaluated in two laboratory solutions. The first experiment was performed in 6% ferric chloride solution, a test designed to corrode stainless steel. The second experiment was performed in a simulated paper machine white water solution that contained hydrogen peroxide. Argon shielding produced excellent results by maintaining corrosion resistance in both solutions. Nitrogen purging and flux coated TIG rod techniques produced variable results. Paste fluxes and welding without shielding are not recommended for root protection. They performed very poorly with the welds corroding in both tests.

  20. Comparison of carbon fiber and stainless steel root canal posts.

    PubMed

    Purton, D G; Payne, J A

    1996-02-01

    This in vitro study compared physical properties of root canal posts made of carbon fiber-reinforced epoxy resin with those of stainless steel posts. Three-point bending tests were used to derive the transverse modulus of elasticity of the posts. Resin composite cores on the posts were subjected to tensile forces to test the bonds between the cores and posts. Carbon fiber posts appeared to have adequate rigidity for their designed purpose. The bond strength of the resin composite cores to the carbon fiber posts was significantly less than that to the stainless steel posts. PMID:9063218

  1. Corrosion induced by cathodic hydrogen in 2205 duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Michalska, J.

    2011-05-01

    In this work new results about the influence of cathodic hydrogen on passivity and corrosion resistance of 2205 duplex stainless steel are described. The results were discussed by taking into account hydrogen charged samples and without hydrogen. The corrosion resistance to pitting was qualified with the polarization curves. The conclusion is that, hydrogen deteriorated the passive film stability and corrosion resistance to pitting of 2205 duplex stainless steel. The presence of hydrogen in passive films increases corrosion current density and decreases the potential of the film breakdown. It was also found that degree of susceptibility to hydrogen action was dependent on the hydrogen charging conditions.

  2. Ozone decay on stainless steel and sugarcane bagasse surfaces

    NASA Astrophysics Data System (ADS)

    Souza-Corrêa, Jorge A.; Oliveira, Carlos; Amorim, Jayr

    2013-07-01

    Ozone was generated using dielectric barrier discharges at atmospheric pressure to treat sugarcane bagasse for bioethanol production. It was shown that interaction of ozone molecules with the pretreatment reactor wall (stainless steel) needs to be considered during bagasse oxidation in order to evaluate the pretreatment efficiency. The decomposition coefficients for ozone on both materials were determined to be (3.3 ± 0.2) × 10-8 for stainless steel and (2.0 ± 0.3) × 10-7 for bagasse. The results have indicated that ozone decomposition has occurred more efficiently on the biomass material.

  3. Characterizing pre-polished Type 304L stainless steel

    SciTech Connect

    Hsu, R.H.; Summer, M.E.; Rankin, W.N.

    1994-10-01

    Prepolished Type 304L stainless steel surfaces are being specified for replacement of some equipment in the 221-H Canyon Building at the Savannah River Site. A prepolished stainless steel surface picks up less contamination than a hot-rolled and pickled surface and is easier to decontaminate; therefore, less waste is generated. Surface-characterization techniques and specification for a prepolished surface were developed to ensure that prepolished items being obtained were properly electropolished. The use of this technology has resulted in obtaining prepolished items with an improved surface finish.

  4. Susceptibility of stainless steel weldments to microbiologically influenced corrosion

    SciTech Connect

    Borenstein, S.W.

    1993-12-31

    Microbiologically influenced corrosion (MIC) is the term used for the phenomenon where corrosion is initiated or accelerated by microorganisms. Biofilms of bacteria form on metal surfaces when exposed to natural waters. The activity of these biofilms and how they attach themselves to metal surfaces directly influence corrosion mechanisms. This paper describes the mechanisms for MIC and the factors which influence the susceptibility of austenitic stainless steel weldments to MIC. The metallurgical, microbiological and electrochemical factors that influence MIC are discussed. Case histories of MIC-related failures and field test results of austenitic stainless steel weldments in various welded conditions are presented.

  5. 49 CFR 178.47 - Specification 4DS welded stainless steel cylinders for aircraft use.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 4DS welded stainless steel cylinders...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.47 Specification 4DS welded stainless steel... stainless steel sphere (two seamless hemispheres) or circumferentially welded cylinder both with a...

  6. 49 CFR 178.47 - Specification 4DS welded stainless steel cylinders for aircraft use.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 4DS welded stainless steel cylinders...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.47 Specification 4DS welded stainless steel... stainless steel sphere (two seamless hemispheres) or circumferentially welded cylinder both with a...

  7. 77 FR 60478 - Control of Ferrite Content in Stainless Steel Weld Metal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... COMMISSION Control of Ferrite Content in Stainless Steel Weld Metal AGENCY: Nuclear Regulatory Commission... Ferrite Content in Stainless Steel Weld Metal.'' This guide describes a method that the NRC staff considers acceptable for controlling ferrite content in stainless steel weld metal. Revision 4 updates...

  8. 76 FR 31585 - Forged Stainless Steel Flanges From India: Notice of Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... International Trade Administration Forged Stainless Steel Flanges From India: Notice of Rescission of... stainless steel flanges from India. The period of review is February 1, 2010, through January 22, 2011... stainless steel flanges from India. See Antidumping or Countervailing Duty Order, Finding, or...

  9. 76 FR 1599 - Stainless Steel Bar From Brazil: Final Results of Antidumping Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-11

    ... Less Than Fair Value: Stainless Steel Bar From Brazil, 59 FR 66914 (December 28, 1994). These deposit... International Trade Administration Stainless Steel Bar From Brazil: Final Results of Antidumping Duty... results of its administrative review of the antidumping duty order on stainless steel bar from Brazil....

  10. 77 FR 60673 - Drawn Stainless Steel Sinks From the People's Republic of China: Antidumping Duty Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ... International Trade Administration Drawn Stainless Steel Sinks From the People's Republic of China: Antidumping...'') preliminarily determines that drawn stainless steel sinks (``drawn sinks'') from the People's Republic of China... unfinished, regardless of type of finish, gauge, or grade of stainless steel. Mounting clips,...

  11. 75 FR 67689 - Stainless Steel Bar From Brazil: Preliminary Results of Antidumping Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... Brazil. See Antidumping Duty Orders: Stainless Steel Bar from Brazil, India and Japan, 60 FR 9661... Less Than Fair Value: Stainless Steel Bar From Brazil, 59 FR 66914 (December 28, 1994). These deposit... International Trade Administration Stainless Steel Bar From Brazil: Preliminary Results of Antidumping...

  12. 77 FR 13270 - Stainless Steel Bar From India: Preliminary Results and Partial Rescission of the Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-06

    ... Duty Orders: Stainless Steel Bar from Brazil, India and Japan, 60 FR 9661 (February 21, 1995) (the... Less Than Fair Value: Stainless Steel Bar from India, 59 FR 66915 (December 28, 1994). These deposit... International Trade Administration Stainless Steel Bar From India: Preliminary Results and Partial Rescission...

  13. 75 FR 12514 - Stainless Steel Bar From Brazil: Preliminary Results of Antidumping Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-16

    ... Brazil. See Antidumping Duty Orders: Stainless Steel Bar from Brazil, India and Japan, 60 FR 9661... Review, 73 FR 75398, 75399 (December 11, 2008) (SSPC from Belgium), and Stainless Steel Sheet and Strip... International Trade Administration Stainless Steel Bar From Brazil: Preliminary Results of Antidumping...

  14. Accelerated corrosion of stainless steel in thiocyanate-containing solutions

    SciTech Connect

    Pistorius, P Chris; Li, Wen

    2012-09-19

    It is known that reduced sulfur compounds (such as thiocyanate and thiosulfate) can accelerate active corrosion of austenitic stainless steel in acid solutions, but before we started this project the mechanism of acceleration was largely unclear. This work combined electrochemical measurements and analysis using scanning electron microscopy (SEM) and X-ray photo-electron spectroscopy (XPS), which provided a comprehensive understanding of the catalytic effect of reduced sulfur species on the active corrosion of stainless steel. Both the behavior of the pure elements and the steel were studied and the work focused on the interaction between the pure elements of the steel, which is the least understood area. Upon completion of this work, several aspects are now much clearer. The main results from this work can be summarized as follows: The presence of low concentrations (around 0.1 mM) of thiocyanate or tetrathionate in dilute sulfuric acid greatly accelerates the anodic dissolution of chromium and nickel, but has an even stronger effect on stainless steels (iron-chromium-nickel alloys). Electrochemical measurements and surface analyses are in agreement with the suggestion that accelerated dissolution really results from suppressed passivation. Even well below the passivation potential, the electrochemical signature of passivation is evident in the electrode impedance; the electrode impedance shows clearly that this pre-passivation is suppressed in the presence of thiocyanate. For the stainless steels, remarkable changes in the morphology of the corroded metal surface and in the surface concentration of chromium support the suggestion that pre-passivation of stainless steels is suppressed because dissolution of chromium is accelerated. Surface analysis confirmed that adsorbed sulfur / sulfide forms on the metal surfaces upon exposure to solutions containing thiocyanate or thiosulfate. For pure nickel, and steels containing nickel (and residual copper), bulk sulfide

  15. Electrochemically induced annealing of stainless-steel surfaces.

    PubMed

    Burstein, G T; Hutchings, I M; Sasaki, K

    2000-10-19

    Modification of the surface properties of metals without affecting their bulk properties is of technological interest in demanding applications where surface stability and hardness are important. When austenitic stainless steel is heavily plastically deformed by grinding or rolling, a martensitic phase transformation occurs that causes significant changes in the bulk and surface mechanical properties of the alloy. This martensitic phase can also be generated in stainless-steel surfaces by cathodic charging, as a consequence of lattice strain generated by absorbed hydrogen. Heat treatment of the steel to temperatures of several hundred degrees can result in loss of the martensitic structure, but this alters the bulk properties of the alloy. Here we show that martensitic structures in stainless steel can be removed by appropriate electrochemical treatment in aqueous solutions at much lower temperature than conventional annealing treatments. This electrochemically induced annealing process allows the hardness of cold-worked stainless steels to be maintained, while eliminating the brittle martensitic phase from the surface. Using this approach, we are able to anneal the surface and near-surface regions of specimens that contain rolling-induced martensite throughout their bulk, as well as those containing surface martensite induced by grinding. Although the origin of the electrochemical annealing process still needs further clarification, we expect that this treatment will lead to further development in enhancing the surface properties of metals. PMID:11057662

  16. Bactericidal behavior of Cu-containing stainless steel surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangyu; Huang, Xiaobo; Ma, Yong; Lin, Naiming; Fan, Ailan; Tang, Bin

    2012-10-01

    Stainless steels are one of the most common materials used in health care environments. However, the lack of antibacterial advantage has limited their use in practical application. In this paper, antibacterial stainless steel surfaces with different Cu contents have been prepared by plasma surface alloying technology (PSAT). The steel surface with Cu content 90 wt.% (Cu-SS) exhibits strong bactericidal activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) within 3 h. Although the Cu-containing surface with Cu content 2.5 wt.% (CuNi-SS) can also kill all tested bacteria, this process needs 12 h. SEM observation of the bacterial morphology and an agarose gel electrophoresis were performed to study the antibacterial mechanism of Cu-containing stainless steel surfaces against E. coli. The results indicated that Cu ions are released when the Cu-containing surfaces are in contact with bacterial and disrupt the cell membranes, killing the bacteria. The toxicity of Cu-alloyed surfaces does not cause damage to the bacterial DNA. These results provide a scientific explanation for the antimicrobial applications of Cu-containing stainless steel. The surfaces with different antibacterial abilities could be used as hygienic surfaces in healthcare-associated settings according to the diverse requirement of bactericidal activities.

  17. The P/M processing of high-nitrogen stainless steels

    NASA Astrophysics Data System (ADS)

    Simmons, J. W.; Kemp, W. E.; Dunning, J. S.

    1996-04-01

    The production of high-nitrogen steels requires the utilization of unique melting and casting technologies such as pressurized electroslag remelting; however, production can be accomplished via powder metallurgy techniques utilizing lower-cost modifications to existing gas-atomization equipment and, in the solid state, by the development of novel processing schemes and equipment. This article describes two methods, one liquid- and one solid-state processing, for the production of high-nitrogen stainless steels—pressurized gas atomization and solid-state nitriding in a mechanical-fluidized vacuum machine.

  18. High-temperature brazing of stainless steel

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Heisman, R. M.; Mitchell, M. J.

    1978-01-01

    Prevention of iron contamination of platens is eliminated by placing alumina/silica ceramic-fiber blankets between platens and carbon-steel plate. Carbon-steel plates provide rigidity and improve heat transfer.

  19. Development of a thin steel strip casting process. Final report

    SciTech Connect

    Williams, R.S.

    1994-04-01

    This is a comprehensive effort to develop direct strip casting to the point where a pilot scale program for casting carbon steel strip could be initiated. All important aspects of the technology were being investigated, however the program was terminated early due to a change in the business strategy of the primary contractor, Armco Inc. (focus to be directed at specialty steels, not low carbon steel). At termination, the project was on target on all milestones and under budget. Major part was casting of strip at the experiment casting facility. A new caster, capable of producing direct cast strip of up to 12 in. wide in heats of 1000 and 3000 lb, was used. A total of 81 1000-1200 lb heats were cast as well as one test heat of 3000 lb. Most produced strip of from 0.016 to 0.085 in. thick. Process reliability was excellent for short casting times; quality was generally poor from modern hot strip mill standards, but the practices necessary for good surface quality were identified.

  20. Using stainless steels as long-lasting rebar material

    SciTech Connect

    Smith, F.N.; Tullmin, M.

    1999-05-01

    Corrosion of carbon steel (CS) reinforcing bars (rebars) is a major cause of damage and failure in reinforced concrete structures. A more corrosion resistant rebar material is needed to replace CS in the critical parts of these structures. Stainless steels (SS) have shown considerable promise in terms of the corrosion resistance and mechanical properties required to fulfill this role. Although SS rebars are more expensive, their use can be justified on a life-cycle cost basis.

  1. 37. REDUCTION PLANT DRYER Stainless steel screen cylinder, encased ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. REDUCTION PLANT - DRYER Stainless steel screen cylinder, encased within an outer steel shell (top half missing). As fish were tumbled by the rotating screen, they were cooked and dried by live steam piped into the dryer through overhead pipes. The dryer is mounted on a slight angle, aiding the process by moving the drying fish towards the exhaust end of the dryer. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  2. Mechanical properties of low-nickel stainless steel

    NASA Technical Reports Server (NTRS)

    Montano, J. W.

    1978-01-01

    Demand for improved corrosion-resistant steels, coupled with increased emphasis on conserving strategic metals, has led to development of family of stainless steels in which manganese and nitrogen are substituted for portion of usual nickel content. Advantages are approximately-doubled yield strength in annealed condition, better resistance to stress-corrosion cracking, retention of low magnetic permeability even after severe cold working, excellent strength and ductility at cryogenic temperatures, superior resistance to wear and galling, and excellent high-temperature properties.

  3. Stainless steels with improved strength for service at 760 C and above

    SciTech Connect

    Swindeman, R.W.

    1998-03-01

    An evaluation was undertaken of modified 25Cr-20Ni stainless steels and a modified 20Cr-25Ni-Nb stainless steel for advanced energy applications at 760 C (1,400 F) and higher. It was found that good fabricability, strength, and ductility could be produced in the modified steels. Stress rupture data to beyond 10,000 h showed that the strengths of the modified steels were more than double that for type 310H stainless steel.

  4. Natural clinoptilolite composite membranes on tubular stainless steel supports for water softening.

    PubMed

    Adamaref, Solmaz; An, Weizhu; Jarligo, Maria Ophelia; Kuznicki, Tetyana; Kuznicki, Steven M

    2014-01-01

    Disk membranes generated from high-purity natural clinoptilolite mineral rock have shown promising water desalination and de-oiling performance. In order to scale up production of these types of membranes for industrial wastewater treatment applications, a coating strategy was devised. A composite mixture of natural clinoptilolite from St. Cloud (Winston, NM, USA) and aluminum phosphate was deposited on the inner surface of porous stainless steel tubes by the slip casting technique. The commercial porous stainless steel tubes were pre-coated with a TiO2 layer of about 10 μm. Phase composition and morphology of the coating materials were investigated using X-ray diffraction and scanning electron microscopy. Water softening performance of the fabricated membranes was evaluated using Edmonton (Alberta, Canada) municipal tap water as feed source. Preliminary experimental results show a high water flux of 7.7 kg/(m(2) h) and 75% reduction of hardness and conductivity in a once-through membrane process at 95 °C and feed pressure of 780 kPa. These results show that natural zeolite coated, stainless steel tubular membranes have high potential for large-scale purification of oil sands steam-assisted gravity drainage water at high temperature and pressure requirements. PMID:25353948

  5. Properties of super stainless steels for orthodontic applications.

    PubMed

    Oh, Keun-Taek; Kim, Young-Sik; Park, Yong-Soo; Kim, Kyoung-Nam

    2004-05-15

    Orthodontic stainless-steel appliances are considered to be corrosion resistant, but localized corrosion can occur in the oral cavity. This study was undertaken to evaluate the properties of super stainless steels in orthodontic applications. Accordingly, the metallurgical properties, mechanical properties, corrosion resistance, amount of the released nickel, cytotoxicity, and characteristics of the passive film were investigated. Corrosion resistances of the specimens were high and in the following order: super austenitic stainless steel (SR-50A) > super ferritic stainless steel (SFSS) = super duplex stainless steel (SR-6DX) > 316L SS > super martensitic stainless steel (SR-3Mo) in artificial saliva, 37 degrees C. At 500 mV (SCE), current densities of SR-50A, SFSS, SR-6DX, 316L SS, and SR-3Mo were 5.96 microA/cm(2), 20.3 microA/cm(2), 31.9 microA/cm(2), 805 microA/cm(2), and 5.36 mA/cm(2), respectively. Open circuit potentials of SR-50A, 316L SS, SR-6DX, SR-3Mo, and SFSS were - 0.2, - 0.22, - 0.24, - 0.43, and - 0.46 V (SCE), respectively. SR-50A, SFSS, and SR-6DX released below 3 ng/ml nickel for 8 weeks, and increased a little with immersion time, and 316L SS released about 3.5 ng/ml nickel, but SR-3Mo released a large amount of nickel, which increased with immersion time. The study demonstrated that SR-50A, SR-6DX, and SFSS have high corrosion resistance and mild or no cytotoxicity, due to the passive film enhanced by synergistic effect of Mo + N or by high addition effect of Cr + W. All super stainless steels showed very low cytotoxicity regardless of their nickel contents, although SR-3Mo was found to be relatively cytotoxic. From these studies, these steels are considered suitable for orthodontic applications. PMID:15116408

  6. 77 FR 1504 - Stainless Steel Wire Rod From India

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-10

    ... Commission instituted this review on July 1, 2011 (76 FR 38686) and determined on October 4, 2011, that it would conduct an expedited review (76 FR 64105, October 17, 2011). The Commission transmitted its... COMMISSION Stainless Steel Wire Rod From India Determination On the basis of the record \\1\\ developed in...

  7. Gas Leak from Vinyl Taped Stainless Steel Dressing Jars

    SciTech Connect

    Tim Hayes

    1999-03-01

    The leak rates of nitrogen gas from stainless steel dressing jars taped with 2 inch vinyl tape were measured. These results were used to calculate hydrogen leak rates from the same jars. The calculations show that the maximum concentration of hydrogen buildup in this type of container configuration will beat least 3 orders of magnitude below the lower explosion limit for hydrogen in air.

  8. Battery and fuel cell electrodes containing stainless steel charging additive

    DOEpatents

    Zuckerbrod, David; Gibney, Ann

    1984-01-01

    An electrode for use in electrochemical energy cells is made, comprising a hydrophilic layer and a hydrophobic layer, where the hydrophilic layer comprises a hydrophilic composite which includes: (i) carbon particles; (ii) stainless steel particles; (iii) a nonwetting agent; and (iv) a catalyst, where at least one current collector contacts said composite.

  9. Stainless steel 301 and Inconel 718 hydrogen embrittlement

    NASA Technical Reports Server (NTRS)

    Allgeier, R. K.; Forman, R.

    1970-01-01

    Conditions and results of tensile tests of 26 Inconel 718 and four cryoformed stainless steel specimens are presented. Conclusions determine maximum safe hydrogen operating pressure for cryogenic pressure vessels and provide definitive information concerning flaw growth characteristics under the most severe temperature and pressure conditions

  10. Behavior of stainless steels in pressurized water reactor primary circuits

    NASA Astrophysics Data System (ADS)

    Féron, D.; Herms, E.; Tanguy, B.

    2012-08-01

    Stainless steels are widely used in primary circuits of pressurized water reactors (PWRs). Operating experience with the various grades of stainless steels over several decades of years has generally been excellent. Nevertheless, stress corrosion failures have been reported in few cases. Two main factors contributing to SCC susceptibility enhancement are investigated in this study: cold work and irradiation. Irradiation is involved in the stress corrosion cracking and corrosion of in-core reactor components in PWR environment. Irradiated assisted stress corrosion cracking (IASCC) is a complex and multi-physics phenomenon for which a predictive modeling able to describe initiation and/or propagation is not yet achieved. Experimentally, development of initiation smart tests and of in situ instrumentation, also in nuclear reactors, is an important axis in order to gain a better understanding of IASCC kinetics. A strong susceptibility for SCC of heavily cold worked austenitic stainless steels is evidenced in hydrogenated primary water typical of PWRs. It is shown that for a given cold-working procedure, SCC susceptibility of austenitic stainless steels materials increases with increasing cold-work. Results have shown also strong influences of the cold work on the oxide layer composition and of the maximum stress on the time to fracture.

  11. Metal release from stainless steel in biological environments: A review.

    PubMed

    Hedberg, Yolanda S; Odnevall Wallinder, Inger

    2016-03-01

    Due to its beneficial corrosion resistance, stainless steel is widely used in, e.g., biomedical applications, as surfaces in food contact, and for products intended to come into skin contact. Low levels of metals can be released from the stainless steel surface into solution, even for these highly corrosion resistant alloys. This needs to be considered in risk assessment and management. This review aims to compile the different metal release mechanisms that are relevant for stainless steel when used in different biological settings. These mechanisms include corrosion-induced metal release, dissolution of the surface oxide, friction-induced metal release, and their combinations. The influence of important physicochemical surface properties, different organic species and proteins in solution, and of biofilm formation on corrosion-induced metal release is discussed. Chemical and electrochemical dissolution mechanisms of the surface oxides of stainless steel are presented with a focus on protonation, complexation/ligand-induced dissolution, and reductive dissolution by applying a perspective on surface adsorption of complexing or reducing ligands and proteins. The influence of alloy composition, microstructure, route of manufacture, and surface finish on the metal release process is furthermore discussed as well as the chemical speciation of released metals. Typical metal release patterns are summarized. PMID:26514345

  12. 304L stainless steel resistance to cesium chloride

    SciTech Connect

    Graves, C.E.

    1998-08-27

    B and W Hanford Company have two Oak Ridge National Laboratory (ORNL) Type 4 canisters filled with cesium chloride (CsCl) originally produced at WESF (Waste Encapsulation and Storage Facility). These canisters are constructed of 304L stainless steel per drawing ORNL 970-294. Instead of removing the CsCl from the Type 4 canisters and repacking into an Inner Capsule, it is intended (for ALARA, schedule and cost purposes) that the Type 4 canisters be decontaminated (scrubbed) and placed [whole] inside a Type ``W`` overpack. The overpack is constructed from 316L stainless steel. Several tests have been run by Pacific Northwest National Laboratory (PNNL) over the. years documenting the corrosion compatibility of 316L SS with CsCl (Bryan 1989 and Fullam 1972). However, no information for 304L SS compatibility is readily available. This document estimates the corrosion resistance of 304L stainless steel in a WESF CsCl environment as it compares with that of 316L stainless steel.

  13. [The question of nickel release from stainless steel cooking pots].

    PubMed

    Vrochte, H; Schätzke, M; Dringenberg, E; Wölwer-Rieck, U; Büning-Pfaue, H

    1991-09-01

    For three items of foods (rhubarb, spinach, sauerkraut) the possible release of nickel (by means of AAS) was analysed, a release which may be caused by a possible corrosive effect of the concerned (oxalic-, milk-, vinegar-) acids (as well as common salt) within a normal domestic food-preparation. For this analysis stainless steel cooking pots of different manufacturers, various types and in a representative selection and quantity were taken into consideration; the detailed analyses were extended so far that clear statistical evaluations were possible. This method complies regulations for accuracy to determine traces of heavy metal. For all three analysed food-stuffs an identical result was reached that no nickel release from the stainless steel cooking pots into the food was found. Differences of the various stainless steel cooking pots with regard to their surfaces' quality or their origin (manufacturers) were not yielded, either. All detected concentrations of nickel are within the reach of the natural nickel content of the analysed food-stuffs and their amount is even much lower than other food's content of nickel. This leads up to the conclusion that the former view of a possible nickel release of stainless steel cooking pots has to be revised because these assumptions were not confirmed in the presented results of this analysis and therefore have to be regarded as not correct. PMID:1763555

  14. 2. GENERAL VIEW OF STAINLESS STEEL SMOKEHOUSES ON LEVEL 6, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GENERAL VIEW OF STAINLESS STEEL SMOKEHOUSES ON LEVEL 6, LOOKING EAST; SMOKEHOUSE UNITS WERE BUILT BY DRYING SYSTEMS COMPANY, DIVISION OF MICHIGAN OVEN COMPANY, MORTON GROVE, ILLINOIS - Rath Packing Company, Smokehouse-Hog Chilling Building, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  15. 6. DETAIL OF STAINLESS STEEL VISCERA CHUTE IN SOUTHEAST CORNER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL OF STAINLESS STEEL VISCERA CHUTE IN SOUTHEAST CORNER OF LEVEL4; ENTRAILS WERE DROPPED INTO CHUTE, THEN PASSED THROUGH THE FLOOR TO THE GUT SHANTY ON LEVEL 3 TO BE SORTED AND CLEANED - Rath Packing Company, Hog Dressing Building, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  16. Lithium wetting of stainless steel for plasma facing components

    NASA Astrophysics Data System (ADS)

    Skinner, C. H.; Capece, A. M.; Roszell, J. P.; Koel, B. E.

    2014-10-01

    Ensuring continuous wetting of a solid container by the liquid metal is a critical issue in the design of liquid metal plasma facing components foreseen for NSTX-U and FNSF. Ultrathin wetting layers may form on metallic surfaces under ultrahigh vacuum (UHV) conditions if material reservoirs are present from which spreading and wetting can start. The combined scanning electron microscopy (SEM), Auger electron spectroscopy (AES) and ion beam etching capabilities of a Scanning Auger Microprobe (SAM) have been used to study the spreading of lithium films on stainless steel substrates. A small (mm-scale) amount of metallic lithium was applied to a stainless steel surface in an argon glove box and transferred to the SAM. Native impurities on the stainless steel and lithium surfaces were removed by Ar+ ion sputtering. Elemental mapping of Li and Li-O showed that surface diffusion of Li had taken place at room temperature, well below the 181°C Li melting temperature. The influence of temperature and surface oxidation on the rate of Li spreading on stainless steel will be reported. Support was provided through DOE Contract Number DE-AC02-09CH11466.

  17. Graphene Nanoplatelets Based Protective and Functionalizing Coating for Stainless Steel.

    PubMed

    Mondal, Jayanta; Kozlova, Jekaterina; Sammelselg, Väino

    2015-09-01

    Stainless steel is the most widely used alloy for many industrial and everyday applications, and protection of this alloy substrate against corrosion is an important industrial issue. Here we report a promising application of graphene oxide and graphene nanoplatelets as effective corrosion inhibitors for AISI type 304 stainless steel alloy. The graphene oxide and graphene coatings on the stainless steel substrates were prepared using spin coating techniques. Homogeneous and complete surface coverage by the graphene oxide and graphene nanoplatelets were observed with a high-resolution scanning electron microscope. The corrosion inhibition ability of these materials was investigated through measurement of open circuit potential and followed by potentiodymamic polarization analysis in aqueous sodium chloride solution before and after a month of immersion. Analyzed result exhibits effective corrosion inhibition for both substrates coated with graphene oxide or graphene nanoplatelets by increasing corrosion potential, pitting potential and decreasing passive current density. The corrosion inhibition ability of the coated substrates has not changed even after the long-term immersion. The result showed both graphene materials can be used as an effective corrosion inhibitor for the stainless steel substrates, which would certainly increase lifetime the substrate. However, long-term protection ability of the graphene coated susbtsrate showed somewhat better inhibition performance than the ones coated with graphene oxide. PMID:26716239

  18. Reactor Material Program Fracture Toughness of Type 304 Stainless Steel

    SciTech Connect

    Awadalla, N.G.

    2001-03-28

    This report describes the experimental procedure for Type 304 Stainless Steel fracture toughness measurements and the application of results. Typical toughness values are given based on the completed test program for the Reactor Materials Program (RMP). Test specimen size effects and limitations of the applicability in the fracture mechanics methodology are outlined as well as a brief discussion on irradiation effects.

  19. 73. View of line of stainless steel coolant storage tanks ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. View of line of stainless steel coolant storage tanks for bi-sodium sulfate/water coolant solution at first floor of transmitter building no. 102. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  20. Materials data handbook: Stainless steel alloy A-286

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for stainless steel alloy A-286 is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and bonding is developed.

  1. Method of forming dynamic membrane on stainless steel support

    NASA Technical Reports Server (NTRS)

    Gaddis, Joseph L. (Inventor); Brandon, Craig A. (Inventor)

    1988-01-01

    A suitable member formed from sintered, powdered, stainless steel is contacted with a nitrate solution of a soluble alkali metal nitrate and a metal such as zirconium in a pH range and for a time sufficient to effect the formation of a membrane of zirconium oxide preferably including an organic polymeric material such as polyacrylic acid.

  2. Electroless nickel plating on stainless steels and aluminum

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Procedures for applying an adherent electroless nickel plating on 303 SE, 304, and 17-7 PH stainless steels, and 7075 aluminum alloy was developed. When heat treated, the electroless nickel plating provides a hard surface coating on a high strength, corrosion resistant substrate.

  3. Failure Assessment Diagram for Brazed 304 Stainless Steel Joints

    NASA Technical Reports Server (NTRS)

    Flom, Yory

    2011-01-01

    Interaction equations were proposed earlier to predict failure in Albemet 162 brazed joints. Present study demonstrates that the same interaction equations can be used for lower bound estimate of the failure criterion in 304 stainless steel joints brazed with silver-based filler metals as well as for construction of the Failure Assessment Diagrams (FAD).

  4. Alternative to Nitric Acid for Passivation of Stainless Steel Alloys

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie L.; Kolody, Mark; Curran, Jerry

    2013-01-01

    Corrosion is an extensive problem that affects the Department of Defense (DoD) and National Aeronautics and Space Administration (NASA). The deleterious effects of corrosion result in steep costs, asset downtime affecting mission readiness, and safety risks to personnel. Consequently, it is vital to reduce corrosion costs and risks in a sustainable manner. The DoD and NASA have numerous structures and equipment that are fabricated from stainless steel. The standard practice for protection of stainless steel is a process called passivation. Typical passivation procedures call for the use of nitric acid; however, there are a number of environmental, worker safety, and operational issues associated with its use. Citric acid offers a variety of benefits including increased safety for personnel, reduced environmental impact, and reduced operational cost. DoD and NASA agreed to collaborate to validate citric acid as an acceptable passivating agent for stainless steel. This paper details our investigation of prior work developing the citric acid passivation process, development of the test plan, optimization of the process for specific stainless steel alloys, ongoing and planned testing to elucidate the process' resistance to corrosion in comparison to nitric acid, and preliminary results.

  5. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.

    PubMed

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-05-01

    The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution. PMID:26952459

  6. Fatigue Crack Growth Behavior of Gas Metal Arc Welded AISI 409 Grade Ferritic Stainless Steel Joints

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, A. K.; Shanmugam, K.; Balasubramanian, V.

    2009-10-01

    The effect of filler metals such as austenitic stainless steel, ferritic stainless steel, and duplex stainless steel on fatigue crack growth behavior of the gas metal arc welded ferritic stainless steel joints was investigated. Rolled plates of 4 mm thickness were used as the base material for preparing single ‘V’ butt welded joints. Center cracked tensile specimens were prepared to evaluate fatigue crack growth behavior. Servo hydraulic controlled fatigue testing machine with a capacity of 100 kN was used to evaluate the fatigue crack growth behavior of the welded joints. From this investigation, it was found that the joints fabricated by duplex stainless steel filler metal showed superior fatigue crack growth resistance compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Higher yield strength and relatively higher toughness may be the reasons for superior fatigue performance of the joints fabricated by duplex stainless steel filler metal.

  7. Formation of Inclusions in Ti-Stabilized 17Cr Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Yin, Xue; Sun, Yanhui; Yang, Yindong; Bai, Xuefeng; Barati, Mansoor; Mclean, Alex

    2016-04-01

    The behavior and formation mechanisms of inclusions in Ti-stabilized, 17Cr Austenitic Stainless Steel produced by the ingot casting route were investigated through systematic sampling of liquid steel and rolled products. Analysis methods included total oxygen and nitrogen contents, optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The results indicate that the composition of inclusions was strongly dependent on the types of added alloying agents. During the AOD refining process, after the addition of ferrosilicon alloy and electrolytic manganese, followed by aluminum, the composition of inclusions changed from manganese silicate-rich inclusions to alumina-rich inclusions. After tapping and titanium wire feeding, pure TiN particles and complex inclusions with Al2O3-MgO-TiO x cores containing TiN were found to be the dominant inclusions when [pct Ti] was 0.307 mass pct in the molten steel. These findings were confirmed by thermodynamic calculations which indicated that there was a driving force for TiN inclusions to be formed in the liquid phase due to the high contents of [Ti] and [N] in the molten steel. From the start of casting through to the rolled bar, there was no further change in the composition of inclusions compared to the titanium addition stage. Stringer-shaped TiN inclusions were observed in the rolled bar. These inclusions were elongated along the rolling direction with lengths varying from 17 to 84 µm and could have a detrimental impact on the corrosion resistance as well as the mechanical properties of the stainless steel products.

  8. Low Temperature Surface Carburization of Stainless Steels

    SciTech Connect

    Collins, Sunniva R; Heuer, Arthur H; Sikka, Vinod K

    2007-12-07

    Low-temperature colossal supersaturation (LTCSS) is a novel surface hardening method for carburization of austenitic stainless steels (SS) without the precipitation of carbides. The formation of carbides is kinetically suppressed, enabling extremely high or colossal carbon supersaturation. As a result, surface carbon concentrations in excess of 12 at. % are routinely achieved. This treatment increases the surface hardness by a factor of four to five, improving resistance to wear, corrosion, and fatigue, with significant retained ductility. LTCSS is a diffusional surface hardening process that provides a uniform and conformal hardened gradient surface with no risk of delamination or peeling. The treatment retains the austenitic phase and is completely non-magnetic. In addition, because parts are treated at low temperature, they do not distort or change dimensions. During this treatment, carbon diffusion proceeds into the metal at temperatures that constrain substitutional diffusion or mobility between the metal alloy elements. Though immobilized and unable to assemble to form carbides, chromium and similar alloying elements nonetheless draw enormous amounts of carbon into their interstitial spaces. The carbon in the interstitial spaces of the alloy crystals makes the surface harder than ever achieved before by more conventional heat treating or diffusion process. The carbon solid solution manifests a Vickers hardness often exceeding 1000 HV (equivalent to 70 HRC). This project objective was to extend the LTCSS treatment to other austenitic alloys, and to quantify improvements in fatigue, corrosion, and wear resistance. Highlights from the research include the following: • Extension of the applicability of the LTCSS process to a broad range of austenitic and duplex grades of steels • Demonstration of LTCSS ability for a variety of different component shapes and sizes • Detailed microstructural characterization of LTCSS-treated samples of 316L and other alloys

  9. Cavitation Erosion of Sensitized UNS S31803 Duplex Stainless Steels

    NASA Astrophysics Data System (ADS)

    Mitelea, Ion; Micu, Lavinia Mădălina; Bordeaşu, Ilare; Crăciunescu, Corneliu Marius

    2016-05-01

    During processing or use, duplex steels can be subjected to heating at high temperatures that can affect their behavior. This work aims to correlate the influence of the sensitization treatment on the ultrasonic cavitation erosion behavior of a UNS S31803 (X2CrNiMoN22-5-3) duplex stainless steel. Duplex stainless steels, formed as a result of rapid cooling after solution annealing, are sensitized at temperatures of 475 and 850 °C, respectively, leading to hardening and embrittlement due to the spinodal decomposition of the ferrite and the precipitation of secondary phases. The ultrasonic cavitation erosion experiments showed that the sensitization at 850 °C reduced the mean depth of erosion by about 11% and the mean depth of erosion rate by 28%. By contrast, the sensitization at 475 °C deteriorates the cavitation erosion resistance, increasing the erosion parameters by up to 22%, compared to the solution annealed state.

  10. Cavitation Erosion of Sensitized UNS S31803 Duplex Stainless Steels

    NASA Astrophysics Data System (ADS)

    Mitelea, Ion; Micu, Lavinia Mădălina; Bordeaşu, Ilare; Crăciunescu, Corneliu Marius

    2016-04-01

    During processing or use, duplex steels can be subjected to heating at high temperatures that can affect their behavior. This work aims to correlate the influence of the sensitization treatment on the ultrasonic cavitation erosion behavior of a UNS S31803 (X2CrNiMoN22-5-3) duplex stainless steel. Duplex stainless steels, formed as a result of rapid cooling after solution annealing, are sensitized at temperatures of 475 and 850 °C, respectively, leading to hardening and embrittlement due to the spinodal decomposition of the ferrite and the precipitation of secondary phases. The ultrasonic cavitation erosion experiments showed that the sensitization at 850 °C reduced the mean depth of erosion by about 11% and the mean depth of erosion rate by 28%. By contrast, the sensitization at 475 °C deteriorates the cavitation erosion resistance, increasing the erosion parameters by up to 22%, compared to the solution annealed state.

  11. Evaluation of the wear properties of high interstitial stainless steels

    SciTech Connect

    Tylczak, J.H.; Rawers, J.C.; Alman, D.E.

    2007-04-01

    Adding carbon to high nitrogen steels increases interstitial concentrations over what can be obtained with nitrogen addition alone. This can results in an increase in hardness, strength, and wear resistance. The alloys produced for this study were all based on commercially available high-nitrogen Fe-18Cr-18Mn stainless steel. This study is the first significant wear study of these new high interstitial nitrogen-carbon stainless steel alloys. Wear tests included: scratch, pin-on-disk abrasion, dry sand/rubber wheel abrasion, impeller impact, and jet erosion. Increasing interstitial concentration increased strength and hardness and improved wear resistance under all test conditions. The results are discussed in terms of overall interstitial alloy concentration.

  12. Achievement of a superpolish on bare stainless steel

    SciTech Connect

    Howells, M.R.; Casstevens, J.

    1997-08-01

    We report the achievement of a superpolished surface, suitable for x-ray reflection, on bare stainless steel. The rms roughness obtained on various samples varied from 2.2 to 4.2 {angstrom}, as measured by an optical profiler with a bandwidth 0.29-100 mm{sup -1}. The type 17-4 PH precipitation-hardening stainless steel used to make the mirrors is also capable of ultrastability and has good manufactureability. This combination of properties makes it an excellent candidate material for mirror substrates. We describe the successful utilization of this type of steel in making elliptical-cylinder mirrors for a soft-x-ray microprobe system at the Advanced Light Source, and discuss possible for its unusual stability and polishability.

  13. Interfacial Phenomena in Fe/Stainless Steel-TiC Systems and the Effect of Mo

    NASA Astrophysics Data System (ADS)

    Kiviö, Miia; Holappa, Lauri; Yoshikawa, Takeshi; Tanaka, Toshihiro

    2014-12-01

    Titanium carbide is used as reinforcement particles in composites due to its hardness, wear resistance and stability. This work is a part of the study in which titanium carbides are formed in stainless steel castings in the mold to improve the wear resistance of a certain surface of the casting. Such local reinforcement is a very potential method but it is a quite demanding task requiring profound knowledge of interfacial phenomena in the system, wettability, stability, dissolution and precipitation of new phases in production of these materials. Good wetting between different constituents in the material is a key factor to attain maximal positive effects. Mo is used with TiC or Ti(C,N) reinforcement in composites to improve wettability. In this work the effect of Mo on the phenomena in Fe/stainless steel-TiC systems was examined by wetting experiments between the substrate and the alloy. Wetting was not significantly improved by adding Mo to the systems. Core-rim type carbides as well as more homogenous carbide particles were observed. Overall the carbide particles are very complex regarding to their chemistry, size and shape which aspects have to be taken into account in the development of these materials and manufacturing processes.

  14. 2012 ACCOMPLISHMENTS - TRITIUM AGING STUDIES ON STAINLESS STEELS

    SciTech Connect

    Morgan, M.

    2013-01-31

    This report summarizes the research and development accomplishments during FY12 for the tritium effects on materials program. The tritium effects on materials program is designed to measure the long-term effects of tritium and its radioactive decay product, helium-3, on the structural properties of forged stainless steels which are used as the materials of construction for tritium reservoirs. The FY12 R&D accomplishments include: (1) Fabricated and Thermally-Charged 150 Forged Stainless Steel Samples with Tritium for Future Aging Studies; (2) Developed an Experimental Plan for Measuring Cracking Thresholds of Tritium-Charged-and-Aged Steels in High Pressure Hydrogen Gas; (3) Calculated Sample Tritium Contents For Laboratory Inventory Requirements and Environmental Release Estimates; (4) Published report on “Cracking Thresholds and Fracture Toughness Properties of Tritium-Charged-and-Aged Stainless Steels”; and, (5) Published report on “The Effects of Hydrogen, Tritium, and Heat Treatment on the Deformation and Fracture Toughness Properties of Stainless Steels”. These accomplishments are highlighted here and references given to additional reports for more detailed information.

  15. The effect of dose rate on the response of austenitic stainless steels to neutron radiaiton

    SciTech Connect

    Allen, T. R.; Cole, J I.; Trybus, Carole L.; Porter, D. L.; Tsai, Hanchung; Garner, Francis A.; Kenik, E A.; Yoshitake, T.; Ohta, Joji

    2006-01-01

    Depending on reactor design and component location, austenitic stainless steels may experience significantly different irradiation dose rates in the same reactor. Understanding the effect of dose rate on radiation performance is important to predicting component lifetime. This study examined the effect of dose rate on swelling, grain boundary segregation, and tensile properties in austenitic stainless steels through the examination of components retrieved from the Experimental Breeder Reactor-II (EBR-II) following its shutdown. Annealed 304 stainless steel, stress-relieved 304 stainless steel, 12% cold-worked 316 stainless steel, and 20% cold-worked 316 stainless steel were irradiated over a dose range of 1-56 dpa at temperatures from 371 to 440 C and dose rates from 0.5 to 5.8 ? 10*7 dpa/s. Density and tensile properties were measured for 304 and 316 stainless steel. Changes in grain boundary composition were examined for 304 stainless steel. Swelling appears to increase at lower dose rates in both 304 and 316 stainless steel, although the effect was not always statistically significant. Grain boundary segregation also appears to increase at lower dose rate in 304 stainless steel. For the range of dose rates examined, no measurable dose rate effect on tensile properties was noted for any of the steels.

  16. Neutron irradiation creep in stainless steel alloys

    NASA Astrophysics Data System (ADS)

    Schüle, Wolfgang; Hausen, Hermann

    1994-09-01

    Irradiation creep elongations were measured in the HFR at Petten on AMCR steels, on 316 CE-reference steels, and on US-316 and US-PCA steels varying the irradiation temperature between 300°C and 500°C and the stress between 25 and 300 MPa. At the beginning of an irradiation a type of "primary" creep stage is observed for doses up to 3-5 dpa after which dose the "secondary" creep stage begins. The "primary" creep strain decreases in cold-worked steel materials with decreasing stress and decreasing irradiation temperature achieving also negative creep strains depending also on the pre-treatment of the materials. These "primary" creep strains are mainly attributed to volume changes due to the formation of radiation-induced phases, e.g. to the formation of α-ferrite below about 400°C and of carbides below about 700°C, and not to irradiation creep. The "secondary" creep stage is found for doses larger than 3 to 5 dpa and is attributed mainly to irradiation creep. The irradiation creep rate is almost independent of the irradiation temperature ( Qirr = 0.132 eV) and linearly dependent on the stress. The total creep elongations normalized to about 8 dpa are equal for almost every type of steel irradiated in the HFR at Petten or in ORR or in EBR II. The negative creep elongations are more pronounced in PCA- and in AMCR-steels and for this reason the total creep elongation is slightly smaller at 8 dpa for these two steels than for the other steels.

  17. Balance fatigue design of cast steel nodes in tubular steel structures.

    PubMed

    Wang, Libin; Jin, Hui; Dong, Haiwei; Li, Jing

    2013-01-01

    Cast steel nodes are being increasingly popular in steel structure joint application as their advanced mechanical performances and flexible forms. This kind of joints improves the structural antifatigue capability observably and is expected to be widely used in the structures with fatigue loadings. Cast steel node joint consists of two parts: casting itself and the welds between the node and the steel member. The fatigue resistances of these two parts are very different; the experiment results showed very clearly that the fatigue behavior was governed by the welds in all tested configurations. This paper focuses on the balance fatigue design of these two parts in a cast steel node joint using fracture mechanics and FEM. The defects in castings are simulated by cracks conservatively. The final crack size is decided by the minimum of 90% of the wall thickness and the value deduced by fracture toughness. The allowable initial crack size could be obtained through the integral of Paris equation when the crack propagation life is considered equal to the weld fatigue life; therefore, the two parts in a cast steel node joint will have a balance fatigue life. PMID:24163621

  18. Balance Fatigue Design of Cast Steel Nodes in Tubular Steel Structures

    PubMed Central

    Wang, Libin; Jin, Hui; Li, Jing

    2013-01-01

    Cast steel nodes are being increasingly popular in steel structure joint application as their advanced mechanical performances and flexible forms. This kind of joints improves the structural antifatigue capability observably and is expected to be widely used in the structures with fatigue loadings. Cast steel node joint consists of two parts: casting itself and the welds between the node and the steel member. The fatigue resistances of these two parts are very different; the experiment results showed very clearly that the fatigue behavior was governed by the welds in all tested configurations. This paper focuses on the balance fatigue design of these two parts in a cast steel node joint using fracture mechanics and FEM. The defects in castings are simulated by cracks conservatively. The final crack size is decided by the minimum of 90% of the wall thickness and the value deduced by fracture toughness. The allowable initial crack size could be obtained through the integral of Paris equation when the crack propagation life is considered equal to the weld fatigue life; therefore, the two parts in a cast steel node joint will have a balance fatigue life. PMID:24163621

  19. Considerations upon the cavitation erosion resistance of stainless steel with variable chromium and nickel content

    NASA Astrophysics Data System (ADS)

    Karabenciov, A.; Jurchela, A. D.; Bordeasu, I.; Popoviciu, M.; Birău, N.; Lustyan, A.

    2010-08-01

    Paper presents results of experimental investigations regarding the cavitation erosion of eight different stainless steels with constant carbon content (0.1 %). Four of them have constant chromium (12%) and variable nickel content. The other four have constant nickel (10 %) and variable chromium content. Using the images of the eroded specimens, the parameters MDPR and MDP as well as the characteristic curves, the influence of chemical and structural modifications, upon the cavitation erosion, are put into evidence. The investigated steels, manufactured through casting, maintain the general composition of the materials with good cavitation erosion qualities. The experimental researches were carried out in Timisoara Hydraulic Machinery Laboratory on a magnetostrictive facility, taking into account the ASTM G32-2008 Standards [10].

  20. Role of surface finishing on pitting corrosion of a duplex stainless steel in seawater

    NASA Astrophysics Data System (ADS)

    Salah-Rousset, N. Ben; Chaouachi, M. A.; Chellouf, A.

    1996-04-01

    Localized corrosion of duplex UNS S32550 stainless steel in seawater was investigated in the laboratory and in field trials for several surface finish conditions: polished, ground, and sandblasted. Electrochemical data obtained by polarization curves showed that the smoother, polished surface had better characteristics (higher pitting and protection potentials) than the ground or sandblasted surfaces. However, despite its high degree of roughness, the sandblasted surface was the most resistant in field conditions, exhibiting the lowest number of sites attacked. Internal compressive stresses created by sandblasting seem also to have an “unsensitizing” effect on sensitized zones that exist in cast steel (due to repairs of mold defects), reducing its susceptibility to microbiologically influenced corrosion (MIC). Such stresses are not generated in polished or ground surfaces, and localized MIC attack can occur.

  1. Review of environmental effects on fatigue crack growth of austenitic stainless steels

    SciTech Connect

    Shack, W.J.; Kassner, T.F.

    1994-05-01

    Fatigue and environmentally assisted cracking of piping, pressure vessel cladding, and core components in light water reactors are potential concerns to the nuclear industry and regulatory agencies. The degradation processes include intergranular stress corrosion cracking of austenitic stainless steel (SS) piping in boiling water reactors (BWRs), and propagation of fatigue or stress corrosion cracks (which initiate in sensitized SS cladding) into low-alloy ferritic steels in BWR pressure vessels. Crack growth data for wrought and cast austenitic SSs in simulated BWR water, developed at Argonne National Laboratory under US Nuclear Regulatory Commission sponsorship over the past 10 years, have been compiled into a data base along with similar data obtained from the open literature. The data were analyzed to develop corrosion-fatigue curves for austenitic SSs in aqueous environments corresponding to normal BWR water chemistries, for BWRs that add hydrogen to the feedwater, and for pressurized water reactor primary-system-coolant chemistry.

  2. Reducing tool wear when machining austenitic stainless steels

    SciTech Connect

    Magee, J.H.; Kosa, T.

    1998-07-01

    Austenitic stainless steels are considered more difficult to machine than carbon steels due to their high work hardening rate, large spread between yield and ultimate tensile strength, high toughness and ductility, and low thermal conductivity. These characteristics can result in a built-up edge or excessive tool wear during machining, especially when the cutting speed is too high. The practical solution is to lower the cutting speed until tool life reaches an acceptable level. However, lower machining speed negatively impacts productivity. Thus, in order to overcome tool wear at relatively high machining speeds for these alloys, on-going research is being performed to improve cutting fluids, develop more wear-resistant tools, and to modify stainless steels to make them less likely to cause tool wear. This paper discusses compositional modifications to the two most commonly machined austenitic stainless steels (Type 303 and 304) which reduced their susceptibility to tool wear, and allowed these grades to be machined at higher cutting speeds.

  3. Market Opportunities for Austenitic Stainless Steels in SO2 Scrubbers

    NASA Astrophysics Data System (ADS)

    Michels, Harold T.

    1980-10-01

    Recent U.S. federal legislation has created new opportunities for SO2 scrubbers because all coals, even low-sulfur western coals, will probably require scrubbing to remove SO2 from gaseous combustion products. Scrubbing, the chemical absorption of SO2 by vigorous contact with a slurry—usually lime or limestone—creates an aggressive acid-chloride solution. This presents a promising market for pitting-resistant austenitic stainless steels, but there is active competition from rubber and fiberglass-lined carbon steel. Since the latter are favored on a first-cost basis, stainless steels must be justified on a cost/performance or life-cost basis. Nickel-containing austenitic alloys are favored because of superior field fabricability. Ferritic stainless steels have little utility in this application because of limitations in weldability and resulting poor corrosion resistance. Inco corrosion test spools indicate that molybdenum-containing austenitic alloys are needed. The leanest alloys for this application are 316L and 317L. Low-carbon grades of stainless steel are specified to minimize corrosion in the vicinity of welds. More highly alloyed materials may be required in critical areas. At present, 16,000 MW of scrubber capacity is operational and 17,000 MW is under construction. Another 29,000 MW is planned, bringing the total to 62,000 MW. Some 160,000 MW of scrubber capacity is expected to be placed in service over the next 10 years. This could translate into a total potential market of 80,000 tons of alloy plate for new power industry construction in the next decade. Retrofitting of existing power plants plus scrubbers for other applications such as inert gas generators for oil tankers, smelters, municipal incinerators, coke ovens, the pulp and paper industry, sulfuric acid plants, and fluoride control in phosphoric acid plants will add to this large market.

  4. A Comparative Study on Nd:YAG Laser Cutting of Steel and Stainless Steel Using Continuous, Square, and Sine Waveforms

    NASA Astrophysics Data System (ADS)

    Lo, K. H.

    2012-06-01

    Laser cutting with the sine waveform is seldom reported. This article is a comparative study on Nd:YAG laser cutting using the continuous (CW), square, and sine waveforms. The materials used in this study were steel and stainless steel. It has been found that the cutting capability, in descending order, is: CW > sine > square. The cutting of steel (C ~0.3 wt.%) and AISI304 austenitic stainless steel may be satisfactorily described by the Steen model, irrespective of waveform. Steel is slightly easier to cut than stainless steel. Limitations of the present study are discussed and suggestions for future work are made.

  5. Hydrogen transport through stainless steel under plasma irradiation

    NASA Astrophysics Data System (ADS)

    Airapetov, A. A.; Begrambekov, L. B.; Kaplevsky, A. S.; Sadovskiy, Ya A.

    2016-01-01

    The paper presents the results of investigation of gas exchange through stainless steel surface of the plasma chamber under irradiation with hydrogen atoms in oxygen atmosphere or oxygen contaminated hydrogen plasma. Dependence of this process on various irradiation parameters, such as the metal temperature, energy of irradiating ions, gas composition of plasma are studied. It is shown, that desorption from stainless steel is activated with the increase of the plasma chamber walls temperature and energy of irradiating ions. Hydrogen release occurs also under irradiation of the walls by helium and argon plasmas added with oxygen, however the amount of released hydrogen is several times lower than in the case of irradiation with oxygen contaminated deuterium plasma.

  6. Failure Assessment of Stainless Steel and Titanium Brazed Joints

    NASA Technical Reports Server (NTRS)

    Flom, Yury A.

    2012-01-01

    Following successful application of Coulomb-Mohr and interaction equations for evaluation of safety margins in Albemet 162 brazed joints, two additional base metal/filler metal systems were investigated. Specimens consisting of stainless steel brazed with silver-base filler metal and titanium brazed with 1100 Al alloy were tested to failure under combined action of tensile, shear, bending and torsion loads. Finite Element Analysis (FEA), hand calculations and digital image comparison (DIC) techniques were used to estimate failure stresses and construct Failure Assessment Diagrams (FAD). This study confirms that interaction equation R(sub sigma) + R(sub tau) = 1, where R(sub sigma) and R(sub t u) are normal and shear stress ratios, can be used as conservative lower bound estimate of the failure criterion in stainless steel and titanium brazed joints.

  7. Inhibition of Sodium Benzoate on Stainless Steel in Tropical Seawater

    SciTech Connect

    Seoh, S. Y.; Senin, H. B.; Nik, W. N. Wan; Amin, M. M.

    2007-05-09

    The inhibition of sodium benzoate for stainless steel controlling corrosion was studied in seawater at room temperature. Three sets of sample have been immersed in seawater containing sodium benzoate with the concentrations of 0.3M, 0.6M and 1.0M respectively. One set of sample has been immersed in seawater without adding any sodium benzoate. It was found that the highest corrosion rate was observed for the stainless steel with no inhibitor was added to the seawater. As the concentration of sodium benzoate being increased, the corrosion rate is decreases. Results show that by the addition of 1.0M of sodium benzoate in seawater samples, it giving {>=} 90% efficiencies.

  8. STAINLESS STEEL INTERACTIONS WITH SALT CONTAINING PLUTONIUM OXIDES

    SciTech Connect

    Nelson, Z.; Chandler, G.; Dunn, K.; Stefek, T.; Summer, M.

    2010-02-01

    Salt containing plutonium oxide materials are treated, packaged and stored within nested, stainless steel containers based on requirements established in the DOE 3013 Standard. The moisture limit for the stored materials is less than 0.5 weight %. Surveillance activities which are conducted to assess the condition of the containers and assure continuing 3013 container integrity include the destructive examination of a select number of containers to determine whether corrosion attack has occurred as a result of stainless steel interactions with salt containing plutonium oxides. To date, some corrosion has been observed on the innermost containers, however, no corrosion has been noted on the outer containers and the integrity of the 3013 container systems is not expected to be compromised over a 50 year storage lifetime.

  9. Milling and Drilling Evaluation of Stainless Steel Powder Metallurgy Alloys

    SciTech Connect

    Lazarus, L.J.

    2001-12-10

    Near-net-shape components can be made with powder metallurgy (PM) processes. Only secondary operations such as milling and drilling are required to complete these components. In the past and currently production components are made from powder metallurgy (PM) stainless steel alloys. process engineers are unfamiliar with the difference in machining properties of wrought versus PM alloys and have had to make parts to develop the machining parameters. Design engineers are not generally aware that some PM alloy variations can be furnished with machining additives that greatly increase tool life. Specimens from a MANTEC PM alloy property study were made available. This study was undertaken to determine the machining properties of a number of stainless steel wrought and PM alloys under the same conditions so that comparisons of their machining properties could be made and relative tool life determined.

  10. Technique to eliminate helium induced weld cracking in stainless steels

    SciTech Connect

    Chin-An Wang; Chin, B.A.; Grossbeck, M.L.

    1992-12-31

    Experiments have shown that Type 316 stainless steel is susceptible to heat-affected-zone (HAZ) cracking upon cooling when welded using the gas tungsten arc (GTA) process under lateral constraint. The cracking has been hypothesized to be caused by stress-assisted helium bubble growth and rupture at grain boundaries. This study utilized an experimental welding setup which enabled different compressive stresses to be applied to the plates during welding. Autogenous GTA welds were produced in Type 316 stainless steel doped with 256 appm helium. The application of a compressive stress, 55 Mpa, during welding suppressed the previously observed catastrophic cracking. Detailed examinations conducted after welding showed a dramatic change in helium bubble morphology. Grain boundary bubble growth along directions parallel to the weld was suppressed. Results suggest that stress-modified welding techniques may be used to suppress or eliminate helium-induced cracking during joining of irradiated materials.

  11. Lifetest investigations with stainless steel/water heat pipes

    NASA Astrophysics Data System (ADS)

    Muenzel, W. D.; Kraehling, H.

    Life tests were conducted on water heat pipes, made from four different alloys of stainless steel, at operation temperatures of 120, 160, 220, and 320 C in a reflux boiler mode for more than 20,000 hr. Other parameters varied during the tests included capillary structure, pretreatment and cleaning of the components, additional oxidation of the inner surface, filling procedures, amoung of liquid change, the number of ventings, and the duration of the reaction runs. The best results were obtained with pipes containing stainless steels with molybdenum alloy additions and with carbon contents of greater than 0.03%; with components which formed a protective surface layer; with the use of double-distilled water that had been ultrasonically degassed; with repeated ventings during the initial reaction run of 500 hr minimum duration; and with the addition of gaseous oxygen into the heat pipe during the reaction run with subsequent venting.

  12. New hermetic sealing material for vacuum brazing of stainless steels

    NASA Astrophysics Data System (ADS)

    Hildebrandt, S.; Wiehl, G.; Silze, F.

    2016-03-01

    For vacuum brazing applications such as in vacuum interrupter industry Hermetic Sealing Materials (HSM) with low partial pressure are widely used. AgCu28 dominates the hermetic sealing market, as it has a very good wetting behavior on copper and metallized ceramics. Within recent decades wetting on stainless steel has become more and more important. However, today the silver content of HSMs is more in focus than in the past decades, because it has the biggest impact on the material prices. Umicore Technical Materials has developed a new copper based HSM, CuAg40Ga10. The wettability on stainless steel is significantly improved compared to AgCu28 and the total silver content is reduced by almost 44%. In this article the physical properties of the alloy and its brazed joints will be presented compared to AgCu28.

  13. Electrochemical Corrosion Testing of Borated Stainless Steel Alloys

    SciTech Connect

    lister, tedd e; Mizia, Ronald E

    2007-05-01

    The Department of Energy Office of Civilian Radioactive Waste Management has specified borated stainless steel manufactured to the requirements of ASTM A 887-89, Grade A, UNS S30464, to be the material used for the fabrication of the fuel basket internals of the preliminary transportation, aging, and disposal canister system preliminary design. The long-term corrosion resistance performance of this class of borated materials must be verified when exposed to expected YMP repository conditions after a waste package breach. Electrochemical corrosion tests were performed on crevice corrosion coupons of Type 304 B4 and Type 304 B5 borated stainless steels exposed to single postulated in-package chemistry at 60°C. The results show low corrosion rates for the test period

  14. Electrochemical Corrosion Testing of Borated Stainless Steel Alloys

    SciTech Connect

    lister, tedd e; Mizia, Ronald E

    2007-09-01

    The Department of Energy Office of Civilian Radioactive Waste Management has specified borated stainless steel manufactured to the requirements of ASTM A 887-89, Grade A, UNS S30464, to be the material used for the fabrication of the fuel basket internals of the preliminary transportation, aging, and disposal canister system preliminary design. The long-term corrosion resistance performance of this class of borated materials must be verified when exposed to expected YMP repository conditions after a waste package breach. Electrochemical corrosion tests were performed on crevice corrosion coupons of Type 304 B4 and Type 304 B5 borated stainless steels exposed to single postulated in-package chemistry at 60°C. The results show low corrosion rates for the test period

  15. Glow discharge cleaning of carbon fiber composite and stainless steel

    NASA Astrophysics Data System (ADS)

    Airapetov, A.; Begrambekov, L.; Brémond, S.; Douai, D.; Kuzmin, A.; Sadovsky, Ya.; Shigin, P.; Vergasov, S.

    2011-08-01

    The paper experimentally investigates and analyses the features and mechanisms of both of oxygen removal by deuterium glow discharge from CFC, pyrolytic graphite and stainless steel subjected to irradiation in oxygen contaminated plasma. It is shown that oxygen implanted in pyrolytic graphite (PG) perpendicular to basal plates is removed after sputtering the layer slightly thicker than oxygen stopping zone (≈2 nm). Fast deuterium ions penetrating into CFC during GDC transfer the trapped oxygen atoms into the bulk. Thus, much thicker surface layer has to be removed (500-1000 nm) for oxygen release. Irradiation of stainless steel in plasma leads to formation of a barrier layer with thickness (2-4 nm) equal, or slightly higher than stopping range of oxygen ions. The layer accumulates the main fraction of implanted oxygen and prevents its penetration into the bulk. After barrier layer sputtering oxygen spreads into the bulk. Parameters and conditions of optimum GDC are discussed.

  16. The technology of chromium oxide passivation on stainless steel surface

    SciTech Connect

    Ohmi, Tadahiro; Ohki, Atsushi; Nakamura, Masakazu; Kawada, Koji; Watanabe, Tsuyoshi; Nakagawa, Yoshinori; Miyoshi, Shinji; Takahashi, Shinji; Chen, M.S.K. . Dept. of Electronics)

    1993-06-01

    A complete chromium oxide (Cr[sub 2]O[sub 3]) passivation technology has been developed for stainless steel surfaces for use in high purity gas-delivery systems and process chambers. Starting with an electrochemical buffing (ECB) to add to electro-polished (EP) SUS316L stainless steel material, an optimal thermal treatment was found by using a gas mixture of 10% hydrogen, 1--10 ppm oxygen and argon balance gas at 500C for 1 h. Five-day corrosion tests with HCl gas (containing 1.4 ppm moisture) at 5 kg/cm[sup 2] and 100C showed no sign of corrosion on the chromium oxide passivated surface. Chemical stability tests on this surface with silane specialty gas thermal decomposition also showed a remarkable noncatalytic activity compared with conventional surfaces.

  17. Duplex stainless steels for the pulp and paper industry

    SciTech Connect

    Alfonsson, E.; Olsson, J.

    1999-07-01

    The metallurgy and corrosion resistance of duplex stainless steel, particularly with regards to applications in the pulp and paper industry, are described. Practical experiences from pressure vessel installations in cooking plants and bleach plants as well as from non-pressurized items in different parts along the fiber line, are given. The paper also reviews corrosion test results presented previously and compares these with recent test data and the practical experiences. Though most of the installations have been successful, some cases of corrosion attacks on duplex stainless steel have been reported, although these are very limited in number: one digester, one calorifier, two pulp storage towers, and two bleach plant filter washers, of a total of more than 700 identified installations.

  18. Investigation of Laser Peening Effects on Hydrogen Charged Stainless Steels

    SciTech Connect

    Zaleski, Tania M.

    2008-10-30

    Hydrogen-rich environments such as fuel cell reactors can exhibit damage caused by hydrogen permeation in the form of corrosion cracking by lowering tensile strength and decreasing material ductility. Coatings and liners have been investigated, but there were few shot-peening or laser peening studies referenced in the literature with respect to preventing hydrogen embrittlement. The surface compressive residual stress induced by laser peening had shown success in preventing stress corrosion cracking (SCC) for stainless steels in power plants. The question arose if the residual stresses induced by laser peening could delay the effects of hydrogen in a material. This study investigated the effect of laser peening on hydrogen penetration into metal alloys. Three areas were studied: laser peening, hydrogenation, and hydrogen detection. This study demonstrated that laser peening does not reduce the hydrogen permeation into a stainless steel surface nor does it prevent hydrogen embrittlement. The effect of laser peening to reduce hydrogen-assisted fatigue was unclear.

  19. Sensitization and IGSCC susceptibility prediction in stainless steel pipe weldments

    SciTech Connect

    Atteridge, D.G.; Simmons, J.W.; Li, Ming; Bruemmer, S.M.

    1991-11-01

    An analytical model, based on prediction of chromium depletion, has been developed for predicting thermomechanical effects on austenitic stainless steel intergranular stress corrosion cracking (IGSCC) susceptibility. Model development and validation is based on sensitization development analysis of over 30 Type 316 and 304 stainless steel heats. The data base included analysis of deformation effects on resultant sensitization development. Continuous Cooling sensitization behavior is examined and modelled with and without strain. Gas tungsten are (GTA) girth pipe weldments are also characterized by experimental measurements of heat affected zone (HAZ) temperatures, strains and sensitization during/after each pass; pass by pass thermal histories are also predicted. The model is then used to assess pipe chemistry changes on IGSCC resistance.

  20. Emissivity of sodium wetted and oxidized Type 304 stainless steel

    SciTech Connect

    Haines, N.L.; Craig, R.E.; Forsyth, D.R.; Novendstern, E.H.

    1980-01-01

    The emissivity of sodium wetted and oxidized Type 304 stainless steel was determined to provide data for calculating the heat flow through Liquid Metal Fast Breeder Reactor (LMFBR) reflector plates, located above the sodium pool, to the reactor closure head. An emissivity experiment using a Type 304 stainless steel specimen was performed in an inerted glovebox. Relatively high oxygen concentrations of 10,000 and 50 vppm were used in the argon/oxygen mixtures to reduce reaction time. Following wetting and oxidation, the specimen was heated to a maximum temperature of 450/sup 0/C and the emissivity of the oxidized coating was calculated. Results indicate that the emissivity of the coating ranged from 0.55 to 0.92.

  1. Long-Term Underground Corrosion of Stainless Steels

    SciTech Connect

    M. K. Adler Flitton; T. S. Yoder

    2007-03-01

    In 1970, the National Institute of Standards and Technology (NIST) implemented the most ambitious and comprehensive long-term corrosion behavior test to date for stainless steels in soil environments. Over thirty years later, one of the six test sites was targeted to research subsurface contamination and transport processes in the vadose and saturated zones. This research directly applies to environmental management operational corrosion issues and long term stewardship scientific needs for understanding the behavior of waste forms and their near-field contaminant transport of chemical and radiological contaminants at nuclear disposal sites. This paper briefly describes the ongoing research and the corrosion analysis results of the stainless steel plate specimens recovered from the partial recovery of the first test site.

  2. SELECTIVE SEPARATION OF URANIUM FROM FERRITIC STAINLESS STEELS

    DOEpatents

    Beaver, R.J.; Cherubini, J.H.

    1963-05-14

    A process is described for separating uranium from a nuclear fuel element comprising a uranium-containing core and a ferritic stainless steel clad by heating said element in a non-carburizing atmosphere at a temperature in the range 850-1050 un. Concent 85% C, rapidly cooling the heated element through the temperature range 815 un. Concent 85% to 650 EC to avoid annealing said steel, and then contacting the cooled element with an aqueous solution of nitric acid to selectively dissolve the uranium. (AEC)

  3. Surface nanocrystallization of stainless steel for reduced biofilm adherence.

    PubMed

    Yu, Bin; Davis, Elisabeth M; Hodges, Robert S; Irvin, Randall T; Li, D Y

    2008-08-20

    Stainless steel is one of the most common metallic biomedical materials. For medical applications, its resistance to the adherence of biofilms is of importance to the elimination or minimization of bacterial infections. In this study, we demonstrate the effectiveness of a process combining surface nanocrystallization and thermal oxidation (or a recovery heat treatment in air) for reducing the biofilm's adherence to stainless steel. During this treatment, a target surface was sandblasted and the resultant dislocation cells in the surface layer were turned into nanosized grains by a subsequent recovery treatment in air. This process generated a more protective oxide film that blocked the electron exchange or reduced the surface activity more effectively. As a result, the biofilm's adherence to the treated surface was markedly minimized. A synthetic peptide was utilized as a substitute of biofilms to evaluate the adhesion between a treated steel surface and biofilms using an atomic force microscope (AFM) through measuring the adhesive force between the target surface and a peptide-coated AFM tip. It was shown that the adhesive force decreased with a decrease in the grain size of the steel. The corresponding surface electron work function (EWF) of the steel was also measured, which showed a trend of variation in EWF with the grain size, consistent with corresponding changes in the adhesive force. PMID:21730615

  4. Surface nanocrystallization of stainless steel for reduced biofilm adherence

    NASA Astrophysics Data System (ADS)

    Yu, Bin; Davis, Elisabeth M.; Hodges, Robert S.; Irvin, Randall T.; Li, D. Y.

    2008-08-01

    Stainless steel is one of the most common metallic biomedical materials. For medical applications, its resistance to the adherence of biofilms is of importance to the elimination or minimization of bacterial infections. In this study, we demonstrate the effectiveness of a process combining surface nanocrystallization and thermal oxidation (or a recovery heat treatment in air) for reducing the biofilm's adherence to stainless steel. During this treatment, a target surface was sandblasted and the resultant dislocation cells in the surface layer were turned into nanosized grains by a subsequent recovery treatment in air. This process generated a more protective oxide film that blocked the electron exchange or reduced the surface activity more effectively. As a result, the biofilm's adherence to the treated surface was markedly minimized. A synthetic peptide was utilized as a substitute of biofilms to evaluate the adhesion between a treated steel surface and biofilms using an atomic force microscope (AFM) through measuring the adhesive force between the target surface and a peptide-coated AFM tip. It was shown that the adhesive force decreased with a decrease in the grain size of the steel. The corresponding surface electron work function (EWF) of the steel was also measured, which showed a trend of variation in EWF with the grain size, consistent with corresponding changes in the adhesive force.

  5. Ion beam nitriding of single and polycrystalline austenitic stainless steel

    SciTech Connect

    Abrasonis, G.; Riviere, J.P.; Templier, C.; Declemy, A.; Pranevicius, L.; Milhet, X.

    2005-04-15

    Polycrystalline and single crystalline [orientations (001) and (011)] AISI 316L austenitic stainless steel was implanted at 400 deg. C with 1.2 keV nitrogen ions using a high current density of 0.5 mA cm{sup -2}. The nitrogen distribution profiles were determined using nuclear reaction analysis (NRA). The structure of nitrided polycrystalline stainless steel samples was analyzed using glancing incidence and symmetric x-ray diffraction (XRD) while the structure of the nitrided single crystalline stainless steel samples was analyzed using x-ray diffraction mapping of the reciprocal space. For identical treatment conditions, it is observed that the nitrogen penetration depth is larger for the polycrystalline samples than for the single crystalline ones. The nitrogen penetration depth depends on the orientation, the <001> being more preferential for nitrogen diffusion than <011>. In both type of samples, XRD analysis shows the presence of the phase usually called 'expanded' austenite or {gamma}{sub N} phase. The lattice expansion depends on the crystallographic plane family, the (001) planes showing an anomalously large expansion. The reciprocal lattice maps of the nitrided single crystalline stainless steel demonstrate that during nitriding lattice rotation takes place simultaneously with lattice expansion. The analysis of the results based on the presence of stacking faults, residual compressive stress induced by the lattice expansion, and nitrogen concentration gradient indicates that the average lattice parameter increases with the nitrided layer depth. A possible explanation of the anomalous expansion of the (001) planes is presented, which is based on the combination of faster nitriding rate in the (001) oriented grains and the role of stacking faults and compressive stress.

  6. Manganese-stabilized austenitic stainless steels for fusion applications

    DOEpatents

    Klueh, Ronald L.; Maziasz, Philip J.

    1990-01-01

    An austenitic stainless steel that is comprised of Fe, Cr, Mn, C but no Ni or Nb and minimum N. To enhance strength and fabricability minor alloying additions of Ti, W, V, B and P are made. The resulting alloy is one that can be used in fusion reactor environments because the half-lives of the elements are sufficiently short to allow for handling and disposal.

  7. Manganese-stabilized austenitic stainless steels for fusion applications

    DOEpatents

    Klueh, Ronald L.; Maziasz, Philip J.

    1990-08-07

    An austenitic stainless steel that is comprised of Fe, Cr, Mn, C but no Ni or Nb and minimum N. To enhance strength and fabricability minor alloying additions of Ti, W, V, B and P are made. The resulting alloy is one that can be used in fusion reactor environments because the half-lives of the elements are sufficiently short to allow for handling and disposal.

  8. Corrosion Testing of Stainless Steel Fuel Cell Hardware

    SciTech Connect

    Wilson, M.S.; Zawodzinski, C.; Gottesfeld, S.

    1998-11-01

    Metal hardware is gaining increasing interest in polymer electrolyte fuel cell (PEFC) development as a possible alternative to machined graphite hardware because of its potential for low-cost manufacturing combined with its intrinsic high conductivity, minimal permeability and advantageous mechanical properties. A major barrier to more widespread use of metal hardware has been the susceptibility of various metals to corrosion. Few pure metals can withstand the relatively aggressive environment of a fuel cell and thus the choices for hardware are quite limited. Precious metals such as platinum or gold are prohibitively expensive and so tend to be utilized as coatings on inexpensive substrates such as aluminum or stainless steel. The main challenge with coatings has been to achieve pin-hole free surfaces that will remain so after years of use. Titanium has been used to some extent and though it is very corrosion-resistant, it is also relatively expensive and often still requires some manner of surface coating to prevent the formation of a poorly conducting oxide layer. In contrast, metal alloys may hold promise as potentially low-cost, corrosion-resistant materials for bipolar plates. The dozens of commercially available stainless steel and nickel based alloys have been specifically formulated to offer a particular advantage depending upon their application. In the case of austenitic stainless steels, for example, 316 SS contains molybdenum and a higher chromium content than its more common counterpart, 304 SS, that makes it more noble and increases its corrosion resistance. Likewise, 316L SS contains less carbon than 316 SS to make it easier to weld. A number of promising corrosion-resistant, highly noble alloys such as Hastelloy{trademark} or Duplex{trademark} (a stainless steel developed for seawater service) are available commercially, but are expensive and difficult to obtain in various forms (i.e. wire screen, foil, etc.) or in small amounts for R and D

  9. Growth and adherence on stainless steel by Enterococcus faecium cells.

    PubMed

    Andrade, N J; Ajao, D B; Zottola, E A

    1998-11-01

    Enterococcus faecium isolated from Brazilian raw milk was used in this study. For growth studies, E. faecium was inoculated into 10% RSM (reconstituted skim milk) and MRS both, incubated at 6.5 and 9 degrees C for 10 days and at 30, 42, and 45 degrees C for 48 h. Cells were enumerated after spread-plating onto MRS agar and incubating at 30 degrees C for 48 h. The ability of E. faecium cells to adhere to stainless-steel chips (6 by 6 by 1 mm, AISI 304, finish #4) was investigated. MRS broth containing stainless steel chips was inoculated to an initial concentration of 10(3) or 10(6) CFU/ml of E. faecium. Adherent cells were stained with acridine orange and enumerated by epifluorescence microscopy. E. faecium grew between 6.5 and 42 degrees C in MRS and between 9 and 40 degrees C in RSM. In MRS broth with 10(6) or 10(3) CFU/ml, the g (generation time) values were 0.62 and 0.42 h and R (growth rate) values were 1.6 and 2.4 h-1. Values of R = 2.3 h-1 and g = 0.43 h were determined for E. faecium growing in RSM with 10(3) CFU/ml. In MRS broth, for samples with a starting concentration of 10(6) cells per ml, adherence to stainless-steel chips was first observed at 2 h. However, adherence was first observed at 4 h in samples with an initial concentration of 10(3) cells per ml. After 10 h of exposure the number of adherent cells was similar for all samples regardless of initial inoculum. These results indicate that E. faecium readily adheres to stainless steel. It also underscores the need to control E. faecium by using appropriate low storage temperatures and adequate sanitizing practices in the dairy industry. PMID:9829184

  10. Attack polish for nickel-base alloys and stainless steels

    DOEpatents

    Steeves, Arthur F.; Buono, Donald P.

    1983-01-01

    A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels. The chemical attack polish comprises Fe(NO.sub.3).sub.3, concentrated CH.sub.3 COOH, concentrated H.sub.2 SO.sub.4 and H.sub.2 O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

  11. Method of polishing nickel-base alloys and stainless steels

    DOEpatents

    Steeves, Arthur F.; Buono, Donald P.

    1981-01-01

    A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels. The chemical attack polish comprises Fe(NO.sub.3).sub.3, concentrated CH.sub.3 COOH, concentrated H.sub.2 SO.sub.4 and H.sub.2 O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

  12. Fatigue crack propagation behavior of stainless steel welds

    NASA Astrophysics Data System (ADS)

    Kusko, Chad S.

    The fatigue crack propagation behavior of austenitic and duplex stainless steel base and weld metals has been investigated using various fatigue crack growth test procedures, ferrite measurement techniques, light optical microscopy, stereomicroscopy, scanning electron microscopy, and optical profilometry. The compliance offset method has been incorporated to measure crack closure during testing in order to determine a stress ratio at which such closure is overcome. Based on this method, an empirically determined stress ratio of 0.60 has been shown to be very successful in overcoming crack closure for all da/dN for gas metal arc and laser welds. This empirically-determined stress ratio of 0.60 has been applied to testing of stainless steel base metal and weld metal to understand the influence of microstructure. Regarding the base metal investigation, for 316L and AL6XN base metals, grain size and grain plus twin size have been shown to influence resulting crack growth behavior. The cyclic plastic zone size model has been applied to accurately model crack growth behavior for austenitic stainless steels when the average grain plus twin size is considered. Additionally, the effect of the tortuous crack paths observed for the larger grain size base metals can be explained by a literature model for crack deflection. Constant Delta K testing has been used to characterize the crack growth behavior across various regions of the gas metal arc and laser welds at the empirically determined stress ratio of 0.60. Despite an extensive range of stainless steel weld metal FN and delta-ferrite morphologies, neither delta-ferrite morphology significantly influence the room temperature crack growth behavior. However, variations in weld metal da/dN can be explained by local surface roughness resulting from large columnar grains and tortuous crack paths in the weld metal.

  13. Attack polish for nickel-base alloys and stainless steels

    DOEpatents

    Not Available

    1980-05-28

    A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels is described. The chemical attack polich comprises FeNO/sub 3/, concentrated CH/sub 3/COOH, concentrated H/sub 2/SO/sub 4/ and H/sub 2/O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

  14. Study of Influence of Heat Treatment on Cyclic Properties of L21HMF Cast Steel

    NASA Astrophysics Data System (ADS)

    Mroziński, Stanisław; Golański, Grzegorz

    2016-07-01

    This work presents the results of studies of CrMoV cast steel after long-term service and after regenerative heat treatment (RHT). The cast steel was investigated in the conditions of static and changeable load. The tests were carried out at room temperature and 550 °C. The fatigue lifetime curves were determined and described using the Basquin-Manson-Coffin relationship. It has been shown that the cast steel after RHT is characterized by smaller range of plastic strain and bigger range of stress amplitude, with the same value of total strain, compared with the cast steel after service. For the cast steel after RHT, the observed fatigue properties were different in comparison with the cast steel after service at small and large strains. At room temperature (20 °C) and at elevated temperature (550 °C), there is an increase in the life of samples of the cast steel after RHT in comparison with the samples of the cast steel after service only in the area of large strains ( ɛ ac > 1.2%). For small strains ɛ ac < 0.50%, the life of the cast steel after RHT at the examined temperatures is shorter than that of the cast steel after service. The paper shows that regardless of an explicit improvement in the strength properties (the static and cyclic ones), as a result of the performed RHT, a complete improvement in the fatigue properties of the cast steel does not occur.

  15. 46 CFR 148.04-13 - Ferrous metal borings, shavings, turnings, or cuttings (excluding stainless steel).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (excluding stainless steel). 148.04-13 Section 148.04-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... stainless steel). (a) This section applies to the stowage and transportation in bulk of hazardous materials... steel). However, unmanned barges on which the article is stowed for or transported on a voyage...

  16. 75 FR 39663 - Stainless Steel Bar From Brazil: Final Results of Antidumping Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-12

    ... Antidumping Duty Administrative Review, 73 FR 75398, 75399 (December 11, 2008), and Stainless Steel Sheet and... Steel Bar From Brazil, 59 FR 66914 (December 28, 1994). These deposit requirements shall remain in... International Trade Administration Stainless Steel Bar From Brazil: Final Results of Antidumping...

  17. 75 FR 54090 - Stainless Steel Bar From India: Final Results of Antidumping Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... Steel Bar from India, 59 FR 66915 (December 28, 1994). These cash deposit requirements, when imposed... International Trade Administration Stainless Steel Bar From India: Final Results of Antidumping Duty... results of the administrative review of the antidumping duty order on stainless steel bar (``SSB'')...

  18. Phase transformations in aged CF 8 and CF 8M stainless steels

    SciTech Connect

    Bentley, J.; Miller, M.K.

    1987-01-01

    The mechanical properties of CF 8 and CF 8M cast stainless steels used for the primary coolant pipes in pressurized light-water nuclear reactors (service temperature about 300C) may be degraded by extended aging at 300 to 400C. Of particular concern is the dramatic loss in impact properties to approximately 15% of the initial value. The cast steels have a duplex microstructure consisting of austenite (el) with 15 to 20% delta-ferrite. The ferrite increases the yield strength and reduces the susceptibility to hot cracking. During aging, the ferrite decomposes spinodally into a fine scaled interconnected network of iron-rich phase and chromium-enriched ' phase. In addition, fine particles of G-phase, a complex silicide, are formed in the ferrite. In some cases, extensive carbide formation at el-delta interfaces occurs. These fine scale phase transformations are believed to be responsible for the degradation of mechanical properties. This paper describes the results of microstructural analysis by atom-probe field-ion microscopy and analytical electron microscopy which provide a powerful combination for a complete characterization of these steels for reliable structure-property correlations.

  19. Crack growth rates and fracture toughness of irradiated austenitic stainless steels in BWR environments.

    SciTech Connect

    Chopra, O. K.; Shack, W. J.

    2008-01-21

    In light water reactors, austenitic stainless steels (SSs) are used extensively as structural alloys in reactor core internal components because of their high strength, ductility, and fracture toughness. However, exposure to high levels of neutron irradiation for extended periods degrades the fracture properties of these steels by changing the material microstructure (e.g., radiation hardening) and microchemistry (e.g., radiation-induced segregation). Experimental data are presented on the fracture toughness and crack growth rates (CGRs) of wrought and cast austenitic SSs, including weld heat-affected-zone materials, that were irradiated to fluence levels as high as {approx} 2x 10{sup 21} n/cm{sup 2} (E > 1 MeV) ({approx} 3 dpa) in a light water reactor at 288-300 C. The results are compared with the data available in the literature. The effects of material composition, irradiation dose, and water chemistry on CGRs under cyclic and stress corrosion cracking conditions were determined. A superposition model was used to represent the cyclic CGRs of austenitic SSs. The effects of neutron irradiation on the fracture toughness of these steels, as well as the effects of material and irradiation conditions and test temperature, have been evaluated. A fracture toughness trend curve that bounds the existing data has been defined. The synergistic effects of thermal and radiation embrittlement of cast austenitic SS internal components have also been evaluated.

  20. Recrystallization and Grain Growth of 316L Stainless Steel Wires

    NASA Astrophysics Data System (ADS)

    Zhao, Xiuyun; Liu, Yong; Wang, Yan; Feng, Ping; Tang, Huiping

    2014-07-01

    Recrystallization and grain growth behaviors of 316L stainless steel wires with a diameter of 12 µm were investigated by optical microscopy, scanning electron microscopy, transmission electron microscopy (TEM), and X-ray diffraction techniques. Heavily cold-drawn wires were isothermally held at temperatures from 1073 K to 1223 K (800 °C to 950 °C) for various holding times. Optical microscopy and TEM observations showed that recrystallization grains have irregular shape and that twins exist. The texture formed during drawing and annealing processes of the wires, as measured by X-ray methods, showed a fiber texture approximated by a <111> and a <100> component. The value of the grain growth exponent n was calculated, and the kinetic rates were plotted using the Arrhenius equation. Results show that the activation energy of the grain growth for 316L stainless steel wire was determined to be 407 kJ/mol, which was much higher than that of the bulk 316L stainless steel. The small wire diameter and the existence of texture played important roles in the increase of the activation energy for grain growth of the wire.

  1. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    PubMed

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands. PMID:26601037

  2. Surface interactions of cesium and boric acid with stainless steel

    SciTech Connect

    Grossman-Canfield, N.

    1995-08-01

    In this report, the effects of cesium hydroxide and boric acid on oxidized stainless steel surfaces at high temperatures and near one atmosphere of pressure are investigated. This is the first experimental investigation of this chemical system. The experimental investigations were performed using a mass spectrometer and a mass electrobalance. Surfaces from the different experiments were examined using a scanning electron microscope to identify the presence of deposited species, and electron spectroscopy for chemical analysis to identify the species deposited on the surface. A better understanding of the equilibrium thermodynamics, the kinetics of the steam-accelerated volatilizations, and the release kinetics are gained by these experiments. The release rate is characterized by bulk vaporization/gas-phase mass transfer data. The analysis couples vaporization, deposition, and desorption of the compounds formed by cesium hydroxide and boric acid under conditions similar to what is expected during certain nuclear reactor accidents. This study shows that cesium deposits on an oxidized stainless steel surface at temperatures between 1000 and 1200 Kelvin. Cesium also deposits on stainless steel surfaces coated with boric oxide in the same temperature ranges. The mechanism for cesium deposition onto the oxide layer was found to involve the chemical reaction between cesium and chromate. Some revaporization in the cesium hydroxide-boric acid system was observed. It has been found that under the conditions given, boric acid will react with cesium hydroxide to form cesium metaborate. A model is proposed for this chemical reaction.

  3. Impact Testing of Stainless Steel Material at Cold Temperatures

    SciTech Connect

    Spencer D. Snow; D. Keith Morton; Robert K. Blandford

    2008-07-01

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these base materials and their welds under dynamic loads in the strain rate range of concern are not well documented. However, a previous paper [1] reported on impact testing and analysis results performed at the Idaho National Laboratory using 304/304L and 316/316L stainless steel base material specimens at room and elevated temperatures. The goal of the work presented herein is to add recently completed impact tensile testing results at -20 degrees F conditions for dual-marked 304/304L and 316/316L stainless steel material specimens (hereafter referred to as 304L and 316L, respectively). Recently completed welded material impact testing at -20 degrees F, room, 300 degrees F, and 600 degrees F is also reported. Utilizing a drop-weight impact test machine and 1/4-inch to 1/2-inch thick dog-bone shaped test specimens, the impact tests achieved strain rates in the 4 to 40 per second range, depending upon the material temperature. Elevated true stress-strain curves for these materials reflecting varying strain rates and temperatures are presented herein.

  4. Iodine susceptibility of pseudomonads grown attached to stainless steel surfaces

    NASA Technical Reports Server (NTRS)

    Pyle, B. H.; McFeters, G. A.

    1990-01-01

    Pseudomonads were adapted to grow in phosphate-buffered water and on stainless steel surfaces to study the iodine sensitivity of attached and planktonic cells. Cultures adapted to low nutrient growth were incubated at room temperature in a circulating reactor system with stainless steel coupons to allow biofilm formation on the metal surfaces. In some experiments, the reactor was partially emptied and refilled with buffer at each sampling time to simulate a "fill-and-draw" water system. Biofilms of attached bacteria, resuspended biofilm bacteria, and reactor suspension, were exposed to 1 mg l-1 iodine for 2 min. Attached bacterial populations which established on coupons within 3 to 5 days displayed a significant increase in resistance to iodine. Increased resistance was also observed for resuspended cells from the biofilm and planktonic bacteria in the system suspension. Generally, intact biofilms and resuspended biofilm cells were most resistant, followed by planktonic bacteria and phosphate buffer cultures. Thus, biofilm formation on stainless steel surfaces within water systems can result in significantly increased disinfection resistance of commonly-occurring water-borne bacteria that may enhance their ability to colonise water treatment and distribution systems.

  5. Stress corrosion cracking evaluation of martensitic precipitation hardening stainless steels

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The resistance of the martensitic precipitation hardening stainless steels PH13-8Mo, 15-5PH, and 17-4PH to stress corrosion cracking was investigated. Round tensile and c-ring type specimens taken from several heats of the three alloys were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, to salt spray, and to a seacoast environment. The results indicate that 15-5PH is highly resistant to stress corrosion cracking in conditions H1000 and H1050 and is moderately resistant in condition H900. The stress corrosion cracking resistance of PH13-8Mo and 17-4PH stainless steels in conditions H1000 and H1050 was sensitive to mill heats and ranged from low to high among the several heats included in the tests. Based on a comparison with data from seacoast environmental tests, it is apparent that alternate immersion in 3.5 percent salt water is not a suitable medium for accelerated stress corrosion testing of these pH stainless steels.

  6. Corrosion Performance of Stainless Steels in a Simulated Launch Environment

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Vinje, Rubiela D.; MacDowell, Louis

    2004-01-01

    At the Kennedy Space Center, NASA relies on stainless steel (SS) tubing to supply the gases and fluids required to launch the Space Shuttle. 300 series SS tubing has been used for decades but the highly corrosive environment at the launch pad has proven to be detrimental to these alloys. An upgrade with higher alloy content materials has become necessary in order to provide a safer and long lasting launch facility. In the effort to find the most suitable material to replace the existing AISI 304L SS ([iNS S30403) and AISI 316L SS (UNS S31603) shuttle tubing, a study involving atmospheric exposure at the corrosion test site near the launch pads and electrochemical measurements is being conducted. This paper presents the results of an investigation in which stainless steels of the 300 series, 304L, 316L, and AISI 317L SS (UNS S31703) as well as highly alloyed stainless steels 254-SMO (UNS S32154), AL-6XN (N08367) and AL29-4C ([iNS S44735) were evaluated using direct current (DC) electrochemical techniques under conditions designed to simulate those found at the Space Shuttle Launch pad. The electrochemical results were compared to the atmospheric exposure data and evaluated for their ability to predict the long-term corrosion performance of the alloys.

  7. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing

    PubMed Central

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands. PMID:26601037

  8. Thermo-mechanical behavior of stainless steel knitted structures

    NASA Astrophysics Data System (ADS)

    Hamdani, Syed Talha Ali; Fernando, Anura; Maqsood, Muhammad

    2015-11-01

    Heating fabric is an advanced textile material that is extensively researched by the industrialists and the scientists alike. Ability to create highly flexible and drapeable heating fabrics has many applications in everyday life. This paper presents a study conducted on the comparison of heatability of knitted fabric made of stainless steel yarn. The purpose of the study is to find a suitable material for protective clothing against cold environments. In the current research the ampacity of stainless steel yarn is observed in order to prevent the overheating of the heating fabrics. The behavior of the knitted structure is studied for different levels of supply voltage. Infrared temperature sensing is used to measure the heat generated from the fabrics in order to measure the temperature of the fabrics without physical contact. It is concluded that interlock structure is one of the most suited structures for knitted heating fabrics. As learnt through this research, fabrics made of stainless steel yarn are capable of producing a higher level of heating compared to that of knitted fabric made using silver coated polymeric yarn at the same supply voltage.

  9. Recombination coefficients of O and N radicals on stainless steel

    NASA Astrophysics Data System (ADS)

    Singh, Harmeet; Coburn, J. W.; Graves, David B.

    2000-09-01

    Surface recombination coefficients of O and N radicals in pure O2 and N2 plasmas, respectively, have been estimated on the stainless steel walls of a low-pressure inductively coupled plasma reactor. The recombination coefficients are estimated using a steady state plasma model describing the balance between the volume generation of the radicals from electron-impact dissociation of the parent molecules, and the loss of the radicals due to surface recombination. The model uses radical and parent molecule number densities and the electron energy distribution function (EEDF) as input parameters. We have measured the radical number density using appearance potential mass spectrometry. The parent neutral number density is measured using mass spectrometry. The EEDF is measured using a Langmuir probe. The recombination coefficient of O radicals on stainless steel walls at approximately 330 K is estimated to be 0.17±0.02, and agrees well with previous measurements. The recombination coefficient of N radicals is estimated to be 0.07±0.02 on stainless steel at 330 K.

  10. Compatibility Assessment of Advanced Stainless Steels in Sodium

    SciTech Connect

    Pawel, Steven J

    2012-01-01

    Type 316L stainless steel capsules containing commercially pure sodium and miniature tensile specimens of HT-UPS (austenitic, 14Cr-16Ni), NF-616 (ferritic/martensitic, 9Cr-2W-0.5Mo), or 316L (austenitic, 17Cr-10Ni-2Mo) stainless steel were exposed at 600 or 700 C for 100 and 400 h as a screening test for compatibility. Using weight change, tensile testing, and metallographic analysis, HT-UPS and 316L were found to be largely immune to changes resulting from sodium exposure, but NF-616 was found susceptible to substantial decarburization at 700 C. Subsequently, two thermal convection loops (TCLs) constructed of 316L and loaded with commercially pure sodium and miniature tensile specimens of HT-UPS and 316L were operated for 2000 h each one between 500 and 650 C, the other between 565 and 725 C at a flow rate of about 1.5 cm/s. Changes in specimen appearance, weight, and tensile properties were observed to be very minor in all cases, and there was no metallographic evidence of microstructure changes, composition gradients, or mass transfer resulting from prolonged exposure in a TCL. Thus, it appears that HT-UPS and 316L stainless steels are similarly compatible with commercially pure sodium under these exposure conditions.

  11. Corrosion of stainless steel for HLW containers under gamma irradiation

    SciTech Connect

    Osada, K.; Muraoka, S.

    1993-12-31

    The corrosion behavior of type 304 stainless steel was studied under gamma irradiation as part of the evaluation for the long-term durability of high-level radioactive waste (HLW) disposal containers. Gamma rays, generated from fission products in high-level radioactive waste, are considered to change the environment around the canisters and overpacks. The redox potentials for NaCl solutions and corrosion potentials of stainless steel were measured to consider the effects of gamma irradiation, by using an electrochemical method. The pitting potentials of stainless steel for NaCl solutions were also measured to examine the pitting corrosion under gamma irradiation. As a result of this experiment, it is concluded that the oxidizing properties as a result of the formation of H{sub 2}O{sub 2} and H{sub 2} produced by gamma irradiation depended on the concentration of Cl{sup -}, and that the strength of oxidizing properties of 1M (mol{center_dot}dm{sup -3}) NaCl solution was particularly high, and the pitting corrosion as found for 1M NaCl solution under gamma irradiation at the dose rate of 2.6{times}10{sup 2} C/kg{center_dot}h (1.0{times}10{sup 6} R/h) at 60{degrees}C, by using an electrochemical method.

  12. Adsorption of ammonia on treated stainless steel and polymer surfaces

    NASA Astrophysics Data System (ADS)

    Vaittinen, O.; Metsälä, M.; Persijn, S.; Vainio, M.; Halonen, L.

    2014-05-01

    Adsorption of dynamically diluted ammonia at part-per-billion to low part-per-million concentrations in dry nitrogen was studied with treated and non-treated stainless steel and polymer test tubes. The treatments included electropolishing and two types of coatings based on amorphous silicon. Cavity ring-down spectroscopy with an external cavity diode laser operating in the near-infrared wavelength range was used to monitor the adsorption process in real time in continuous-flow conditions to obtain quantitative assessment of the adsorptive properties of the studied surfaces. The investigated polymers were all less adsorptive than any of the treated or non-treated stainless steel surfaces. Some of the commercial coatings reduced the adsorption loss of stainless steel by a factor of ten or more. Polyvinylidene fluoride was found to be superior (less adsorption) to the four other studied polymer coatings. The number of adsorbed ammonia molecules per surface area obtained at different ammonia gas phase concentrations was modeled with Langmuir and Freundlich isotherms. The time behavior of the adsorption-desorption process occurring in the time scale of seconds and minutes was simulated with a simple kinetic model.

  13. Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel

    SciTech Connect

    Jafarzadegan, M.; Feng, A.H.; Abdollah-zadeh, A.; Saeid, T.; Shen, J.; Assadi, H.

    2012-12-15

    In the present study, 3 mm-thick plates of 304 stainless steel and st37 steel were welded together by friction stir welding at a welding speed of 50 mm/min and tool rotational speed of 400 and 800 rpm. X-ray diffraction test was carried out to study the phases which might be formed in the welds. Metallographic examinations, and tensile and microhardness tests were used to analyze the microstructure and mechanical properties of the joint. Four different zones were found in the weld area except the base metals. In the stir zone of the 304 stainless steel, a refined grain structure with some features of dynamic recrystallization was evidenced. A thermomechanically-affected zone was characterized on the 304 steel side with features of dynamic recovery. In the other side of the stir zone, the hot deformation of the st37 steel in the austenite region produced small austenite grains and these grains transformed to fine ferrite and pearlite and some products of displacive transformations such as Widmanstatten ferrite and martensite by cooling the material after friction stir welding. The heat-affected zone in the st37 steel side showed partially and fully refined microstructures like fusion welding processes. The recrystallization in the 304 steel and the transformations in the st37 steel enhanced the hardness of the weld area and therefore, improved the tensile properties of the joint. - Highlights: Black-Right-Pointing-Pointer FSW produced sound welds between st37 low carbon steel and 304 stainless steel. Black-Right-Pointing-Pointer The SZ of the st37 steel contained some products of allotropic transformation. Black-Right-Pointing-Pointer The material in the SZ of the 304 steel showed features of dynamic recrystallization. Black-Right-Pointing-Pointer The finer microstructure in the SZ increased the hardness and tensile strength.

  14. Mechanical Behavior and Fractography of 304 Stainless Steel with High Hydrogen Concentration

    SciTech Connect

    Au, M.

    2003-02-05

    Hydrogen embrittlement of 304 stainless steel with different hydrogen concentrations has been investigated. An electrochemical technique was used to effectively charge the high level of hydrogen into 304 stainless steel in a short period of time. At 25 ppm of hydrogen, 304 stainless steel loses 10 percent of its original mechanical strength and 20 percent plasticity. Although the ductile feature dominates the fractography, the brittle crown area near the outer surface shows the intergranular rupture effected by hydrogen. At 60 ppm of hydrogen, 304 stainless steel loses 23 percent of its strength and 38 percent plasticity, where the brittle mode dominates the fracture of the materials. Experimental results show that hydrogen damage to the performance of 304 stainless steel is significant even at very low levels. The fractograph analysis indicates the high penetration ability of hydrogen in 304 stainless steel. This work also demonstrates the advantages of the electrochemical charging technique in the study of hydrogen embrittlement.

  15. Effect of sand dilation on core expansion during steel casting

    NASA Astrophysics Data System (ADS)

    Galles, D.; Beckermann, C.

    2015-06-01

    The thermo-mechanical behavior of the bonded sand used for molds and cores has a strong effect on dimensions of steel castings. Experiments are conducted in which a thick- walled hollow carbon steel cylinder is cast using a silica sand core. The temporal evolution of the inner diameter of the cylinder is measured in-situ during solidification and cooling by utilizing quartz rods connected to LVDTs (Linear Variable Differential Transformers). It is found that the inner diameter increases significantly during the initial stages of solidification when the steel offers little restraint to core expansion. Without accurately modeling this initial core expansion, the final cylinder dimensions at room temperature cannot be predicted. Preliminary simulations using the measured linear thermal expansion coefficient of the core considerably under-predict the measurements, which suggests that shear induced sand dilation also contributes to core expansion. The Drucker-Prager Cap model, which can predict dilative behavior, is used to simulate the mechanical behavior of the core. Utilizing this model in conjunction with an elasto-visco-plastic constitutive law for the steel, the stress simulations successfully predict the observed dimensional changes in the casting during solidification.

  16. Thermal conductivity of commercially available 21-6-9 stainless steel

    SciTech Connect

    Yuecel, A.; Maddocks, J.R.

    1993-08-01

    Thermal conductivity values of 21-6-9 stainless steel over the temperature range of 5 K to 120 K are reported. Thermal conductivity integrals are measured using a steady-state heat flux method. The resulting data are fit with a polynomial and differentiated to obtain the conductivity. The derived conductivity is compared to published data for high-manganese stainless steels and to data for other stainless steels. A discussion of the methodology and its accuracy is included.

  17. Particle Impact Ignition Test Data on a Stainless Steel Hand Valve

    NASA Technical Reports Server (NTRS)

    Peralta, Stephen

    2010-01-01

    This slide presentation reviews the particle impact ignition test of a stainless steel hand valve. The impact of particles is a real fire hazard with stainless steel hand valves, however 100 mg of particulate can be tolerated. Since it is unlikely that 100 mg of stainless steel contaminant particles can be simultaneously released into this type of valve in the WSTF configuration, this is acceptable and within statistical confidence as demonstrated by testing.

  18. Tensile behavior of irradiated manganese-stabilized stainless steel

    SciTech Connect

    Klueh, R.L.

    1996-10-01

    Tensile tests were conducted on seven experimental, high-manganese austenitic stainless steels after irradiation up to 44 dpa in the FFTF. An Fe-20Mn-12Cr-0.25C base composition was used, to which various combinations of Ti, W, V, B, and P were added to improve strength. Nominal amounts added were 0.1% Ti, 1% W, 0.1% V, 0.005% B, and 0.03% P. Irradiation was carried out at 420, 520, and 600{degrees}C on the steels in the solution-annealed and 20% cold-worked conditions. Tensile tests were conducted at the irradiation temperature. Results were compared with type 316 SS. Neutron irradiation hardened all of the solution-annealed steels at 420, 520, and 600{degrees}C, as measured by the increase in yield stress and ultimate tensile strength. The steel to which all five elements were added to the base composition showed the least amount of hardening. It also showed a smaller loss of ductility (uniform and total elongation) than the other steels. The total and uniform elongations of this steel after irradiation at 420{degrees}C was over four times that of the other manganese-stabilized steels and 316 SS. There was much less difference in strength and ductility at the two higher irradiation temperatures, where there was considerably less hardening, and thus, less loss of ductility. In the cold-worked condition, hardening occured only after irradiation at 420{degrees}C, and there was much less difference in the properties of the steels after irradiation. At the 420{degrees}C irradiation temperature, most of the manganese-stabilized steels maintained more ductility than the 316 SS. After irradiation at 420{degrees}C, the temperature of maximum hardening, the steel to which all five of the elements were added had the best uniform elongation.

  19. High temperature properties of an austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Nikulin, I.; Kaibyshev, R.; Skorobogatykh, V.

    2010-07-01

    Tensile properties of the 18Cr-9Ni-W-Nb-V-N austenitic stainless steel were studied at strain rates ranging from 6.7×10-6 to 1.3×10-2 s-1 in the temperature interval 20-740°C. It was found that this steel exhibits jerky flow at temperatures ranging from 530 to 680°C and an initial strain rate of 1.3×10-3 s-1. This phenomenon was interpreted in terms of Portevin-Le Chatelier (PLC) effect occurring due to dynamic strain aging (DSA). PLC yields significant increase in high temperature strength of this steel due to extending of plateau on temperature dependence of yield strength (YS) and ultimate tensile strength (UTS) to higher temperatures. As a result, YS and UTS remain virtually unchanged with increasing temperature from 350 to 740°C. Role of additives of tungsten and vanadium in DSA and high temperatures strength of the austenitic stainless steel is discussed.

  20. Defect microstructures in neutron-irradiated copper and stainless steel

    SciTech Connect

    Zinkle, S.J.; Sindelar, R.L.

    1987-09-01

    The defect microstructures of copper and type 304L austenitic stainless steel have been examined following neutron irradiation under widely different conditions. Less than 0.2% of the defect clusters in steel irradiated at 120/sup 0/C with moderated fission neutrons were resolvable as stacking fault tetrahedra (SFT). The fraction of defect clusters identified as SFT in copper varied from approx.10% for a low-dose 14-MeV neutron irradiation at 25/sup 0/C to approx.50% for copper irradiated to 1.3 dpa in a moderated fission spectrum at 182/sup 0/C. The mean cluster size in copper was about 2.6 nm for both cases, despite the large differences in irradiation conditions. The mean defect cluster size in the irradiated steel was about 1.8 nm. The absence of SFT in stainless steel may be due to the generation of 35 appm He during the irradiation, which caused the vacancies to form helium-filled cavities instead of SFT. 20 refs.

  1. Superplastic Forming of Duplex Stainless Steel for Aerospace Part

    SciTech Connect

    Lee, Ho-Sung; Yoon, Jong-Hoon; Yoo, Joon-Tae; Yi, Young-Moo

    2011-08-22

    In this study, the high temperature forming behavior of duplex stainless steel has been characterized and the outer shell of a combustion chamber was fabricated with pressure difference of hot gas. It consists of two parts which are the outer skin made of stainless steel to sustain the internal pressure and the inner shell made of copper alloy for regenerative cooling channels. Two outer skins partitioned to half with respect to the symmetric axis was prepared by hot gas forming process with a maximum pressure of 7 MPa following to FEM analysis. For inner layer, copper alloy was machined for cooling channels and then placed in the gas pressure welding fixture. It is shown that the optimum condition of gas pressure welding is 7 MPa at 890 deg. C, for one hour. EDX analysis and scanning electron microscope micrograph confirm the atomic diffusion process is observed at the interface and copper atoms diffuse into steel, while iron and chrome atoms diffuse into copper. The result shows that the manufacturing method with superplastic forming and gas pressure welding of steel and copper alloy has been successful for near net shape manufacturing of scaled combustion chamber of launch vehicle.

  2. Hydrogen-related phase transformations in austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Narita, N.; Altstetter, C. J.; Birnbaum, H. K.

    1982-08-01

    The effect of hydrogen and stress (strain) on the stability of the austenite phase in stainless steels was investigated. Hydrogen was introduced by severe cathodic charging and by elevated temperature equilibration with high pressure H2 gas. Using X-ray diffraction and magnetic techniques, the behavior of two “stable” type AISI310 steels and an “unstable” type AISI304 steel was studied during charging and during the outgassing period following charging. Transformation from the fcc γ phase to an expanded fcc phase, γ*, and to the hcp ɛ phase occurred during cathodic charging. Reversion of the γ* and e phases to the original γ structure and formation of the bcc α structure were examined, and the kinetics of these processes was studied. The γ* phase was shown to be ferromagnetic with a subambient Curie temperature. The γ⇆ɛ phase transition was studied after hydrogen charging in high pressure gas, as was the formation of a during outgassing. These results are interpreted as effects of hydrogen and stress (strain) on the stability of the various phases. A proposed psuedo-binary phase diagram for the metal-hydrogen system was proposed to account for the formation of the γ* phase. The relation of these phase changes to hydrogen embrittlement and stress corrosion cracking of stainless steel is discussed.

  3. Correlation Between Shear Punch and Tensile Strength for Low-Carbon Steel and Stainless Steel Sheets

    NASA Astrophysics Data System (ADS)

    Mahmudi, R.; Sadeghi, M.

    2013-02-01

    The deformation behavior of AISI 1015 low-carbon steel, and AISI 304 stainless steel sheets was investigated by uniaxial tension and the shear punch test (SPT). Both materials were cold rolled to an 80% thickness reduction and subsequently annealed in the temperature range 25-850 °C to produce a wide range of yield and ultimate strength levels. The correlations between shear punch and tensile yield and ultimate stresses were established empirically. Different linear relationships having different slopes and intercepts were found for the low-carbon and stainless steel sheets, and the possible parameters affecting the correlation were discussed. It was shown that, within limits, yield and tensile strength of thin steel sheets can be predicted from the shear data obtained by the easy-to-perform SPT.

  4. Electrochemical and passivation behavior investigation of ferritic stainless steel in simulated concrete pore media.

    PubMed

    Luo, Hong; Su, Huaizhi; Dong, Chaofang; Xiao, Kui; Li, Xiaogang

    2015-12-01

    The applications of stainless steel are one of the most reliable solutions in concrete structures to reduce chloride-induced corrosion problems and increase the structures service life, however, due to high prices of nickel, especially in many civil engineering projects, the austenitic stainless steel is replaced by the ferritic stainless steels. Compared with austenite stainless steel, the ferritic stainless steel is known to be extremely resistant of stress corrosion cracking and other properties. The good corrosion resistance of the stainless steel is due to the formation of passive film. While, there is little literature about the electrochemical and passive behavior of ferritic stainless steel in the concrete environments. So, here, we present the several corrosion testing methods, such as the potentiodynamic measurements, EIS and Mott-Schottky approach, and the surface analysis methods like XPS and AES to display the passivation behavior of 430 ferritic stainless steel in alkaline solution with the presence of chloride ions. These research results illustrated a simple and facile approach for studying the electrochemical and passivation behavior of stainless steel in the concrete pore environments. PMID:26501086

  5. Electrochemical and passivation behavior investigation of ferritic stainless steel in simulated concrete pore media

    PubMed Central

    Luo, Hong; Su, Huaizhi; Dong, Chaofang; Xiao, Kui; Li, Xiaogang

    2015-01-01

    The applications of stainless steel are one of the most reliable solutions in concrete structures to reduce chloride-induced corrosion problems and increase the structures service life, however, due to high prices of nickel, especially in many civil engineering projects, the austenitic stainless steel is replaced by the ferritic stainless steels. Compared with austenite stainless steel, the ferritic stainless steel is known to be extremely resistant of stress corrosion cracking and other properties. The good corrosion resistance of the stainless steel is due to the formation of passive film. While, there is little literature about the electrochemical and passive behavior of ferritic stainless steel in the concrete environments. So, here, we present the several corrosion testing methods, such as the potentiodynamic measurements, EIS and Mott–Schottky approach, and the surface analysis methods like XPS and AES to display the passivation behavior of 430 ferritic stainless steel in alkaline solution with the presence of chloride ions. These research results illustrated a simple and facile approach for studying the electrochemical and passivation behavior of stainless steel in the concrete pore environments. PMID:26501086

  6. Improved corrosion resistance of 316L stainless steel by nanocrystalline and electrochemical nitridation in artificial saliva solution

    NASA Astrophysics Data System (ADS)

    Lv, Jinlong; Liang, Tongxiang

    2015-12-01

    The fluoride ion in artificial saliva significantly changed semiconductor characteristic of the passive film formed on the surface of 316L stainless steels. The electrochemical results showed that nanocrystalline α‧-martensite improved corrosion resistance of the stainless steel in a typical artificial saliva compared with coarse grained stainless steel. Moreover, comparing with nitrided coarse grained stainless steel, corrosion resistance of the nitrided nanocrystalline stainless steel was also improved significantly, even in artificial saliva solution containing fluoride ion. The present study showed that the cryogenic cold rolling and electrochemical nitridation improved corrosion resistance of 316L stainless steel for the dental application.

  7. Formation Mechanism of Spinel-Type Inclusions in High-Alloyed Stainless Steel Melts

    NASA Astrophysics Data System (ADS)

    Park, Joo Hyun

    2007-08-01

    Fundamental thermodynamics of the relationship between high-alloyed stainless steel melts (Fe-20 mass pct Cr-13 mass pct Ni-3 mass pct Si) and the inclusions were investigated. The formation mechanism of the inclusions containing the spinel crystals was developed based on the experimental results and from the compositions of the inclusions in the steel samples taken during plant operations. The molar content of alumina in the inclusions was found to be linearly proportional to the increase of aluminum content, indicating that the inclusions could contain alumina even with less than about 200 ppm aluminum in the steel melt, e.g., steel melts that were mainly deoxidized by silicon. Furthermore, the composition of the inclusions is shown to be a function of the activity of the deoxidizers such as aluminum and silicon in the steel melt. From the analysis of the plant samples, it was found that the contents of MgO and Al2O3 in the calcium silicate type inclusions increased continuously as the steel melt transfers from the argon oxygen decarburization (AOD) converter to the tundish. This composition change in the inclusions originated from the reduction of MgO and Al2O3 in the slags or refractories by silicon in the steel melt. Increases of MgO and Al2O3 contents were prominent in tundish samples, and thus, the spinel phase could be crystallized in the calcium silicate inclusion matrix in the tundish; and finally the spinel crystals grew during cooling of the steel melt through the continuous casting (CC) mold and in the slabs. On the other hand, manganese silicate type inclusions containing chromium oxide were observed after tapping of the molten steel to the ladle. The MnO and Cr2O3 in these inclusions was initially reduced by silicon in the steel melt in the ladle treatment (LT) process, followed by further reduction by aluminum through the LT to the CC mold. The fractions of inclusions containing spinel crystals in cast slabs were negligible at the alumina content of

  8. Quantitative metallographic method for determining delta ferrite content in austenitic stainless steels. Final report

    SciTech Connect

    Pressly, G.A.

    1986-01-01

    Delta ferrite is a magnetic form of iron and has a body centered cubic crystal structure. It is often present as a nonequilibrium phase in austenitic stainless steel welds, castings, and wrought materials. The ferrite content of austenitic stainless steel can directly affect its properties, especially weldability and formability. Therefore, it is highly desirable to be able to predict and/or measure the ferrite content accurately. Current magnetic ferrite measuring methods are not applicable when test materials are geometrically small (less than 2.54 mm thick and 6.35 mm wide). Therefore, a standard metallographic test method STM 00107-A was established to determine delta ferrite content in small weldments and base metals of austenitic stainless steel. This standard test method (STM 00107-A) was then performed on several exemplary metallographic specimens to illustrate its capabilities and applications. The results from the exemplary tests were compared and contrasted to metallographic manual point count measurements, Ferritescope measurements, and predicted values calculated from chemical analyses. By utilizing the manual metallographic point count data, an accuracy of +-16% and a precision of +-0.77% were determined for the standard test method. The comparison of Ferritescope data to standard test method revealed that the results obtained by the two methods are close at low (0 to 3%) ferrite contents and Ferritscope results are substantially greater at higher (6 to 10%) ferrite contents. The standard test method data compiled from the exemplary weld specimens was noted to be very similar to the predicted values calculated from chemical analyses. It was also shown that because the standard test method utilizes optics the morphology of the delta ferrite particles can be determined. This type of determination is possible only with metallographic methods.

  9. The development of high strength corrosion resistant precipitation hardening cast steels

    NASA Astrophysics Data System (ADS)

    Abrahams, Rachel A.

    Precipitation Hardened Cast Stainless Steels (PHCSS) are a corrosion resistant class of materials which derive their properties from secondary aging after a normalizing heat treatment step. While PHCSS materials are available in austenitic and semi-austenitic forms, the martensitic PHCSS are most widely used due to a combination of high strength, good toughness, and corrosion resistance. If higher strength levels can be achieved in these alloys, these materials can be used as a lower-cost alternative to titanium for high specific strength applications where corrosion resistance is a factor. Although wrought precipitation hardened materials have been in use and specified for more than half a century, the specification and use of PHCSS has only been recent. The effects of composition and processing on performance have received little attention in the cast steel literature. The work presented in these investigations is concerned with the experimental study and modeling of microstructural development in cast martensitic precipitation hardened steels at high strength levels. Particular attention is focused on improving the performance of the high strength CB7Cu alloy by control of detrimental secondary phases, notably delta ferrite and retained austenite, which is detrimental to strength, but potentially beneficial in terms of fracture and impact toughness. The relationship between age processing and mechanical properties is also investigated, and a new age hardening model based on simultaneous precipitation hardening and tempering has been modified for use with these steels. Because the CB7Cu system has limited strength even with improved processing, a higher strength prototype Fe-Ni-Cr-Mo-Ti system has been designed and adapted for use in casting. This prototype is expected to develop high strengths matching or exceed that of cast Ti-6Al-4V alloys. Traditional multicomponent constitution phase diagrams widely used for phase estimation in conventional stainless steels

  10. A Study on the Wear Behavior of Cast Boron Steel

    NASA Astrophysics Data System (ADS)

    Fu, Han-Guang; Xing, Jian-Dong; Lei, Yong-Ping; Huang, Li-Ming

    2011-12-01

    In this study, a wear-resistant Cast Boron Steel (CBS) of nominal composition 0.25% C, 1.18% B, 1.27% Cr, 0.85% Mn, and 0.69% Si was oil-quenched at different temperatures. The effect of quenching temperature on the microstructure and wear resistance of CBS was investigated. Moreover, the wear resistance between CBS and high chromium cast iron was compared. The results show that a martensite matrix can be obtained by quenching from 900 to 1050 °C, and the wear resistance of quenched CBS is excellent, which reaches the level of high chromium cast iron. The reason behind the fact that CBS has excellent wear resistance is discussed.

  11. The interaction between nitride uranium and stainless steel

    NASA Astrophysics Data System (ADS)

    Shornikov, D. P.; Nikitin, S. N.; Tarasov, B. A.; Baranov, V. G.; Yurlova, M. S.

    2016-04-01

    Uranium nitride is most popular nuclear fuel for Fast Breeder Reactor New Generation. In-pile experiments at reactor BOR-60 was shown an interaction between nitride fuel and stainless steel in the range of 8-11% burn up (HA). In order to investigate this interaction has been done diffusion tests of 200 h and has been shown that the reaction occurs in the temperature range 1000-1100 ° C. UN interacted with steel in case of high pollution oxygen (1000-2000 ppm). Also has been shown to increase interaction UN with EP-823 steel in the presence of cesium. In this case the interaction layer had a thickness about 2-3 μm. Has been shown minimal interaction with new ODS steel EP-450. The interaction layer had a thickness less then 2 μm. Did not reveal the influence of tellurium and iodine increased interaction. It was show compatibility at 1000 °C between UN and EP-450 ODS steel, chrome steel, alloying aluminium and silicium.

  12. Semen quality and sex hormones among mild steel and stainless steel welders: a cross sectional study.

    PubMed Central

    Bonde, J P

    1990-01-01

    Welding may be detrimental to the male reproductive system. To test this hypothesis, semen quality was examined in 35 stainless steel welders, 46 mild steel welders, and 54 non-welding metal workers and electricians. These figures represent a participation rate of 37.1% in welders and 36.7% in non-welding subjects. The mean exposure to welding fume particulates was 1.3 mg/m3 (SD 0.8) in stainless steel welders using tungsten inert gas, 3.2 mg/m3 (SD 1.0) in low exposed mild steel welders using manual metal arc or metal active gas (n = 31), and 4.7 mg/m3 (SD 2.1) in high exposed mild steel welders (n = 15). The semen quality of each participant was defined in terms of the mean values of the particular semen parameters in three semen samples delivered at monthly intervals in a period with occupational exposure in a steady state. The sperm concentration was not reduced in either mild steel or stainless steel welders. The sperm count per ejaculate, the proportion of normal sperm forms, the degree of sperm motility, and the linear penetration rate of the sperm were significantly decreased and the sperm concentration of follicle stimulating hormone (FSH) was non-significantly increased in mild steel welders. A dose response relation between exposure to welding fumes and these semen parameters (sperm count excepted) was found. Semen quality decreased and FSH concentrations increased with increasing exposure. Significant deteriorations in some semen parameters were also observed in stainless steel welders. An analysis of information from questionnaires obtained from the whole population including subjects who declined to participate indicated an underestimation of effects due to selection bias. Potential confounding was treated by restriction and statistical analysis. The results support the hypothesis that mild steel welding and to a lesser extent stainless steel welding with tungsten inert gas is associated with reduced semen quality at exposure in the range of the

  13. Role of microstructure and heat treatments on the desorption kinetics of tritium from austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Chêne, J.; Brass, A.-M.; Trabuc, P.; Gastaldi, O.

    2007-02-01

    The liquid scintillation counting of solid samples (LSC-SS technique) was successfully used to study the role of microstructure and heat treatments on the behavior of residual tritium in several austenitic stainless steels (as-cast remelted tritiated waste, 316LN and 321 steels). The role of desorption annealing in the 100-600 °C range on the residual amount of tritium in tritiated waste was investigated. The residual tritium concentration computed from surface activity measurements is in good agreement with experimental values measured by liquid scintillation counting after full dissolution of the samples. The kinetics of tritium desorption recorded with the LSC-SS technique shows a significant desorption of residual tritium at room temperature, a strong barrier effect of thermal oxide films on the tritium desorption and a dependance of the tritium release on the steels microstructure. Annealing in the 300-600 °C range allows to desorb a large fraction of the residual tritium. However a significant trapping of tritium is evidenced. The influence of trapping phenomena on the concentration of residual tritium and on its dependance with the annealing temperature was investigated with different recrystallized and sensitized microstructures. Trapping is evidenced mainly below 150 °C and concerns a small fraction of the total amount of tritium introduced in austenitic steels. It presumably occurs preferentially on precipitates such as Ti(CN) or on intermetallic phases.

  14. Quantitative evaluation of material degradation of thermally aged duplex stainless steels using chemical immersion test

    NASA Astrophysics Data System (ADS)

    Yi, Y. S.; Shoji, T.

    1996-12-01

    In order to develop a non-destructive evaluation technique for detection of thermal aging embrittlement of duplex stainless steels, corrosion tests on unaged and aged specimens of cast duplex stainless steels were performed in 5 wt% HCl solution. After the immersion test, the dissolution rate of specimens was obtained by a dissolved depth measurement with an AFM. In the measurements of dissolved depths, a replica technique was used for easier handling and also for a possible field application of the AFM analysis method. Changes in corrosion properties by aging measured in terms of the dissolved depth after the immersion were compared with the changes in mechanical properties by aging embrittlement. The changes in corrosion properties of unaged and aged specimen were analyzed in relation to the microstructural change by thermal aging. Based upon insights on the immersion test results and the comparison of the changes in corrosion properties and mechanical properties, a possible non-destructive detection and evaluation technique for thermal aging embrittlement by spinodal decomposition is proposed.

  15. The microstructural, mechanical, and fracture properties of austenitic stainless steel alloyed with gallium

    NASA Astrophysics Data System (ADS)

    Kolman, D. G.; Bingert, J. F.; Field, R. D.

    2004-11-01

    The mechanical and fracture properties of austenitic stainless steels (SSs) alloyed with gallium require assessment in order to determine the likelihood of premature storage-container failure following Ga uptake. AISI 304 L SS was cast with 1, 3, 6, 9, and 12 wt pct Ga. Increased Ga concentration promoted duplex microstructure formation with the ferritic phase having a nearly identical composition to the austenitic phase. Room-temperature tests indicated that small additions of Ga (less than 3 wt pct) were beneficial to the mechanical behavior of 304 L SS but that 12 wt pct Ga resulted in a 95 pct loss in ductility. Small additions of Ga are beneficial to the cracking resistance of stainless steel. Elastic-plastic fracture mechanics analysis indicated that 3 wt pct Ga alloys showed the greatest resistance to crack initiation and propagation as measured by fatigue crack growth rate, fracture toughness, and tearing modulus. The 12 wt pct Ga alloys were least resistant to crack initiation and propagation and these alloys primarily failed by transgranular cleavage. It is hypothesized that Ga metal embrittlement is partially responsible for increased embrittlement.

  16. High-pressure stainless steel active membrane microvalves

    NASA Astrophysics Data System (ADS)

    Sharma, G.; Svensson, S.; Ogden, S.; Klintberg, L.; Hjort, K.

    2011-07-01

    In this work, high-pressure membrane microvalves have been designed, manufactured and evaluated. The valves were able to withstand back-pressures of 200 bar with a response time of less than 0.6 s. These stainless steel valves, manufactured with back-end batch production, utilize the large volume expansion coupled to the solid-liquid phase transition in paraffin wax. When membrane materials were evaluated, parylene coated stainless steel was found to be the best choice as compared to polydimethylsiloxane and polyimide. Also, the influence of the orifice placement and diameter is included in this work. If the orifice is placed too close to the rim of the membrane, the valve can stay sealed even after turning the power off, and the valve will not open until the pressure in the system is released. The developed steel valves, evaluated for both water and air, provide excellent properties in terms of mechanical stability, ease of fabrication, and low cost. Possible applications include sampling at high pressures, chemical microreactors, high performance liquid chromatography, pneumatics, and hydraulics.

  17. Sensitization of Laser-beam Welded Martensitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin; Rajendran, Kousika Dhasanur; Lindner, Stefan

    Ferritic and martensitic stainless steels are an attractive alternative in vehicle production due to their inherent corrosion resistance. By the opportunity of press hardening, their strength can be increased to up to 2000 MPa, making them competitors for unalloyed ultra-high strength steels. Welding, nevertheless, requires special care, especially when it comes to joining of high strength heat treated materials. With an adopted in-line heat treatment of the welds in as-rolled as well as press hardened condition, materials with sufficient fatigue strength and acceptable structural behavior can be produced. Because of microstructural transformations in the base material such as grain coarsening and forced carbide precipitation, the corrosion resistance of the weld zone may be locally impaired. Typically the material in the heat-affected zone becomes sensitive to intergranular cracking in the form of knife-edge corrosion besides the fusion line. The current study comprises of two text scenarios. By an alternating climate test, general response in a corroding environment is screened. In order to understand the corrosion mechanisms and to localize the sensitive zones, sensitisation tests were undertaken. Furthermore, the applicability of a standard test according to ASTM 763-83 was examined. It was found that the alternative climate test does not reveal any corrosion effects. Testing by the oxalic acid test revealed clearly the effect of welding, weld heat treatment and state of thermal processing. Also application of the standard which originally suited for testing ferritic stainless steels could have been justified.

  18. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications.

    PubMed

    Talha, Mohd; Behera, C K; Sinha, O P

    2013-10-01

    The field of biomaterials has become a vital area, as these materials can enhance the quality and longevity of human life. Metallic materials are often used as biomaterials to replace structural components of the human body. Stainless steels, cobalt-chromium alloys, commercially pure titanium and its alloys are typical metallic biomaterials that are being used for implant devices. Stainless steels have been widely used as biomaterials because of their very low cost as compared to other metallic materials, good mechanical and corrosion resistant properties and adequate biocompatibility. However, the adverse effects of nickel ions being released into the human body have promoted the development of "nickel-free nitrogen containing austenitic stainless steels" for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel and emphatically the advantages of nitrogen in stainless steel, as well as the development of nickel-free nitrogen containing stainless steels for medical applications. By combining the benefits of stable austenitic structure, high strength, better corrosion and wear resistance and superior biocompatibility in comparison to the currently used austenitic stainless steel (e.g. 316L), the newly developed nickel-free high nitrogen austenitic stainless steel is a reliable substitute for the conventionally used medical stainless steels. PMID:23910251

  19. Effect of superheat on the solidification structures of AISI 310S austenitic stainless steel

    SciTech Connect

    Ozbayraktar, S.; Koursaris, A.

    1996-04-01

    An experimental study was carried out to investigate the evolution of macrostructure and microstructure in AISI 310S stainless steel during solidification. Experimental findings suggested that the macrostructure a/nd the microstructure of the cast material responded differently to variations in casting temperature. As the casting temperature decreased, the macrostructure was refined, as expected, but the microstructure coarsened. A relationship was established between the proportion of equiaxed zone and superheat as follows: pct equiaxed zone = a + b ln (1/{Delta}T), where a and b are constants. The relationship between grain width and superheat could be expressed by the equation: gw = e(c+d/{Delta}T), where c and d are constants determined by the distance from the edge of the ingot. The relationship between primary arm spacing and superheat could be expressed by the equation: {lambda}{sub 1} = p + q ln (1/{Delta}T), where p and q are constants determined by the distance from the edge of the ingot. The parameter grain width ratio has been introduced to describe the relationship between the shape and the nucleation and growth kinetics of the columnar grains.

  20. Phase stability of laves intermetallics in stainless steel-zirconium alloys.

    SciTech Connect

    Abraham, D. P.

    1999-04-08

    Phase transformations occurring in a stainless steel-15 wt% zirconium (SS-15Zr) alloy were studied by in situ neutron diffraction. Neutron diffraction patterns as a function of time were obtained on alloys that were held at various elevated temperatures (1084-1275 C). As-cast SS-15Zr alloys contain ferrite, austenite, ZrFe{sub 2}-type Laves polytypes C36 and C15, and small amounts of a Fe{sub 23}Zr{sub 6}-type intermetallic. Annealing at high temperatures resulted in an increase of the Fe{sub 23}Zr{sub 6}, intermetallic content. The C15 Laves polytype is the equilibrium phase for T {le} 1230 C; C36 is the stable polytype at higher temperatures ({approximately}1275 C). Phase changes were slow for temperatures <1100 C.These findings have important implications for use of the SS-15Zr alloy as a nuclear waste form.

  1. Influence of thermal aging on the reactivity of duplex stainless steel surfaces

    NASA Astrophysics Data System (ADS)

    Amadou, T.; Rhouma, A. Ben; Sidhom, H.; Braham, C.; Ledion, J.

    2000-08-01

    The annealing of large cast pieces in duplex stainless steel (SS) and the different heat cycles resulting from repairs involve significant structural changes characterized by carbide and intermetallic phase precipitation. This yields to lower local corrosion resistance in sea water due to changes in the local content of alloying elements. The precipitation of chromium carbide affects the resistance to the intergranular corrosion and the repassivation behavior. The eutectoidal decomposition of ferritic phase into regenerated austenite and in sigma phase ( α → γ r + σ) results in weakening the resistance to pit nucleation in synthetic sea water. In contrast, such precipitation will not have any significant effect when the treatment temperature is high enough to involve a rapid rehomogenization of depleted zones and ensure a self-healing.

  2. NDE of stainless steel and on-line leak monitoring of LWRs

    SciTech Connect

    Kupperman, D.S.; Claytor, T.N.; Mathieson, T.; Prine, D.W.

    1985-10-01

    The GARD/ANL acoustic leak detection system is under evaluation in the laboratory. Results of laboratory tests with simulated acoustic leak signals and acoustic signals from field-induced intergranular stress corrosion cracks (IGSCCs) indicate that cross-correlation techniques can be used to locate the position of a leak. Leaks from a 2-in. ball valve and a flange were studied and compared with leaks from IGSCCs and fatigue cracks. The dependence of acoustic signal on flow rate and frequency for the valve and the flange was comparable to that of fatigue cracks (thermal and mechanical) and different from that of IGSCCs. Two pipe-to-endcap weldments with overlays were examined. Because the amount of cracking in the specimens was limited, the emphasis was on trying understand the nature of crack overcalling. Four 60-mm-thick cast stainless steel plates with microstructures ranging from equiaxed to primarily columnar grains have been examined with ultrasonic waves. 13 refs., 23 figs.

  3. Joining dissimilar stainless steels for pressure vessel components

    NASA Astrophysics Data System (ADS)

    Sun, Zheng; Han, Huai-Yue

    1994-03-01

    A series of studies was carried out to examine the weldability and properties of dissimilar steel joints between martensitic and austenitic stainless steels - F6NM (OCr13Ni4Mo) and AISI 347, respectively. Such joints are important parts in, e.g. the primary circuit of a pressurized water reactor (PWR). This kind of joint requires both good mechanical properties, corrosion resistance and a stable magnetic permeability besides good weldability. The weldability tests included weld thermal simulation of the martensitic steel for investigating the influence of weld thermal cycles and post-weld heat treatment (PWHT) on the mechanical properties of the heat-affected zone (HAZ); implant testing for examining the tendency for cold cracking of martensitic steel; rigid restraint testing for determining hot crack susceptibility of the multi-pass dissimilar steel joints. The joints were subjected to various mechanical tests including a tensile test, bending test and impact test at various temperatures, as well as slow strain-rate test for examining the stress corrosion cracking tendency in the simulated environment of a primary circuit of a PWR. The results of various tests indicated that the quality of the tube/tube joints is satisfactory for meeting all the design requirements.

  4. Biomonitoring of genotoxic exposure among stainless steel welders.

    PubMed

    Knudsen, L E; Boisen, T; Christensen, J M; Jelnes, J E; Jensen, G E; Jensen, J C; Lundgren, K; Lundsteen, C; Pedersen, B; Wassermann, K

    1992-05-16

    A biosurvey in the Danish metal industry measured the genotoxic exposure from stainless steel welding. The study comprised measurements of chromosomal aberrations (CA), sister-chromatid exchanges (SCE), unscheduled DNA synthesis (UDS) in peripheral lymphocytes and serum immunoglobulin G. Environmental monitoring of welding fumes and selected metal oxides, biomonitoring of chromium and nickel in serum and urine and mutagenic activity in urine, and evaluation of semen quality were also done. Manual metal arc (MMA) welding and tungsten inert gas (TIG) welding were the dominant welding processes. A higher frequency of chromosomal aberrations, classified as translocations, double minutes, exchanges and rings, was observed in stainless steel welders than in non-welders. SCE was lower in welders working with both MMA and TIG welding than in reference persons. N-Acetoxy-N-acetylaminofluorene (NA-AAF)-induced UDS was lower in 23 never-smoking welders than in 19 unexposed never-smokers. Smoking was a confounding factor resulting in significantly higher CA, SCE, NA-AAF binding to DNA and mutagenic activity in urine. Age was also a confounder: CA, SCE, NA-AAF binding to DNA and UDS increased significantly with age. No significant correlation between SCE and CA or between CA and UDS was found. UDS decreased significantly with increasing lymphocyte count and a higher lymphocyte count was seen in MMA welders than in reference persons and in smokers than in non-smokers. Differences in the composition among lymphocytes in exposed persons compared with non-exposed are suggested. MMA welding gave the highest exposure to chromium, an increased number of chromosomal aberrations and a decrease in SCE when compared with TIG welding. Consequently improvements in the occupational practice of stainless steel welding with MMA is recommended. PMID:1375338

  5. Aging and Embrittlement of High Fluence Stainless Steels

    SciTech Connect

    Was, gary; Jiao, Zhijie; der ven, Anton Van; Bruemmer, Stephen; Edwards, Dan

    2012-12-31

    Irradiation of austenitic stainless steels results in the formation of dislocation loops, stacking fault tetrahedral, Ni-Si clusters and radiation-induced segregation (RIS). Of these features, it is the formation of precipitates which is most likely to impact the mechanical integrity at high dose. Unlike dislocation loops and RIS, precipitates exhibit an incubation period that can extend from 10 to 46 dpa, above which the cluster composition changes and a separate phase, (G-phase) forms. Both neutron and heavy ion irradiation showed that these clusters develop slowly and continue to evolve beyond 100 dpa. Overall, this work shows that the irradiated microstructure features produced by heavy ion irradiation are remarkably comparable in nature to those produced by neutron irradiation at much lower dose rates. The use of a temperature shift to account for the higher damage rate in heavy ion irradiation results in a fairly good match in the dislocation loop microstructure and the precipitate microstructure in austenitic stainless steels. Both irradiations also show segregation of the same elements and in the same directions, but to achieve comparable magnitudes, heavy ion irradiation must be conducted at a much higher temperature than that which produces a match with loops and precipitates. First-principles modeling has confirmed that the formation of Ni-Si precipitates under irradiation is likely caused by supersaturation of solute to defect sinks caused by highly correlated diffusion of Ni and Si. Thus, the formation and evolution of Ni-Si precipitates at high dose in austenitic stainless steels containing Si is inevitable.

  6. Systems design of high-performance stainless steels

    NASA Astrophysics Data System (ADS)

    Campbell, Carelyn Elizabeth

    A systems approach has been applied to the design of high performance stainless steels. Quantitative property objectives were addressed integrating processing/structure/property relations with mechanistic models. Martensitic transformation behavior was described using the Olson-Cohen model for heterogeneous nucleation and the Ghosh-Olson solid-solution strengthening model for interfacial mobility, and incorporating an improved description of Fe-Co-Cr thermodynamic interaction. Coherent Msb2C precipitation in a BCC matrix was described, taking into account initial paraequilibrium with cementite. Using available SANS data, a composition dependent strain energy was calibrated and a composition independent interfacial energy was evaluated to predict the critical particle size versus the fraction of the reaction completed as input to strengthening theory. Multicomponent Pourbaix diagrams provided an effective tool for evaluating oxide stability; constrained equilibrium calculations correlated oxide stability to Cr enrichment in the oxide film to allow more efficient use of alloy Cr content. Multicomponent solidification simulations provided composition constraints to improve castability. Using the Thermo-Calc and DICTRA software packages, the models were integrated to design a carburizing, secondary-hardening martensitic stainless steel. Initial characterization of the prototype showed good agreement with the design models and achievement of the desired property objectives. Prototype evaluation confirmed the predicted martensitic transformation temperature and the desired carburizing response, achieving a case hardness of Rsb{c} 64 in the secondary-hardened condition without case primary carbides. Decarburization experiments suggest that the design core toughness objective (Ksb{IC} = 65 MPasurdm) can be achieved by reducing the core carbon level to 0.05 weight percent. To achieve the core toughness objective at high core strength levels requires further analysis of an

  7. Influence of fretting on flexural fatigue of 304 stainless steel and mild steel

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Rohn, D. A.

    1978-01-01

    Fretting fatigue experiments conducted on 304 stainless steel using a flexural fatigue test arrangement with bolted on fretting pads demonstrated that fatigue life is reduced by at least a factor of 10 in the 265 to 334 MPa (38,500 - to 48,500 psi) nominal flexural fatigue stress range. In addition, experiments in which the fretting pads were removed after selected numbers of cycles, followed by continued flexural fatigue without fretting show that continued fretting beyond 50,000 cycles does not significantly further reduce fatigue life of 304 stainless steel at 317 MPa (46,000 psi). Microscopic examination of the fretted contact areas revealed fracture initiation sites as well as numerous cracks that did not propagate to failure. Flexural fretting fatigue experiments performed on mild steel showed an insensitivity of fatigue life to the incidence of fretting under flexural stress conditions of from 162 to 217 MPa (23,500 to 31,500 psi).

  8. Cytotoxicity study of plasma-sprayed hydroxyapatite coating on high nitrogen austenitic stainless steels.

    PubMed

    Ossa, C P O; Rogero, S O; Tschiptschin, A P

    2006-11-01

    Stainless steel has been frequently used for temporary implants but its use as permanent implants is restricted due to its low pitting corrosion resistance. Nitrogen additions to these steels improve both mechanical properties and corrosion resistance, particularly the pitting and crevice corrosion resistance. Many reports concerning allergic reactions caused by nickel led to the development of nickel free stainless steel; it has excellent mechanical properties and very high corrosion resistance. On the other hand, stainless steels are biologically tolerated and no chemical bonds are formed between the steel and the bone tissue. Hydroxyapatite coatings deposited on stainless steels improve osseointegration, due their capacity to form chemical bonds (bioactive fixation) with the bone tissue. In this work hydroxyapatite coatings were plasma-sprayed on three austenitic stainless steels: ASTM-F138, ASTM-F1586 and the nickel-free Böhler-P558. The coatings were analyzed by SEM and XDR. The cytotoxicity of the coatings/steels was studied using the neutral red uptake method by quantitative evaluation of cell viability. The three uncoated stainless steels and the hydroxyapatite coated Böhler-P558 did not have any toxic effect on the cell culture. The hydroxyapatite coated ASTM-F138 and ASTM-F1586 stainless steels presented cytotoxicity indexes (IC50%) lower than 50% and high nickel contents in the extracts. PMID:17122924

  9. Oxidation resistant high creep strength austenitic stainless steel

    DOEpatents

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  10. Portable probe to measure sensitization of stainless steel

    DOEpatents

    Park, Jang Y.

    1979-01-01

    An electrochemical cell for making field measurements of metals such as stainless steel comprises a cylinder containing a reservoir of an electrolyte, a reference electrode, a capillary tube connecting the electrolyte to the surface of the metal to be measured and another electrode in electrical contact with the electrolyte. External connections from the reference electrode, the other electrode, and the sample to a measuring device provide means for maintaining the potential of the electrolyte while sweeping the potential difference between the electrolyte and the metal. Such a sweep enables the determination of a current-voltage characteristic that is a measure of sensitization in the metal.

  11. Apparatus and process for ultrasonic seam welding stainless steel foils

    DOEpatents

    Leigh, Richard W.

    1992-01-01

    An ultrasonic seam welding apparatus having a head which is rotated to form contact, preferably rolling contact, between a metallurgically inert coated surface of the head and an outside foil of a plurality of layered foils or work materials. The head is vibrated at an ultrasonic frequency, preferably along a longitudinal axis of the head. The head is constructed to transmit vibration through a contacting surface of the head into each of the layered foils. The contacting surface of the head is preferably coated with aluminum oxide to prevent the head from becoming welded to layered stainless steel foils.

  12. Surface characterization of adsorbed asphaltene on a stainless steel surface

    NASA Astrophysics Data System (ADS)

    Abdallah, W. A.; Taylor, S. D.

    2007-05-01

    X-ray photoelectron spectroscopy was used to characterize a single layer of adsorbed asphaltene on a metallic surface. The deposits were created by immersing a stainless steel disc into a dilute asphaltene solution with either toluene or dichloromethane as the solvent, although the toluene solution allowed for better control of the adsorbed asphaltene layer and less atmospheric oxygen contamination. The analyses for C 1s, S 2p3/2, N 1s and O 1s photoemission peaks indicated that different functional groups are present in the asphaltene layer including carboxylic, pyrrolic, pyridininc, thiophenic and sulfite, with slight differences in their binding energies.

  13. General and Localized Corrosion of Borated Stainless Steels

    SciTech Connect

    T.E. Lister; Ronald E. Mizia; A.W. Erickson; T.L. Trowbridge; B. S. Matteson

    2008-03-01

    The Transportation, Aging and Disposal (TAD) canister-based system is being proposed to transport and store spent nuclear fuel at the Monitored Geologic Repository (MGR) located at Yucca Mountain, Nevada. The preliminary design of this system identifies borated stainless steel as the neutron absorber material that will be used to fabricate fuel basket inserts for nuclear criticality control. This paper discusses corrosion test results for verifying the performance of this material manufactured to the requirements of ASTM A887, Grade A, under the expected repository conditions.

  14. Modeling of Linear Gas Tungsten Arc Welding of Stainless Steel

    NASA Astrophysics Data System (ADS)

    Maran, P.; Sornakumar, T.; Sundararajan, T.

    2008-08-01

    A heat and fluid flow model has been developed to solve the gas tungsten arc (GTA) linear welding problem for austenitic stainless steel. The moving heat source problem associated with the electrode traverse has been simplified into an equivalent two-dimensional (2-D) transient problem. The torch residence time has been calculated from the arc diameter and torch speed. The mathematical formulation considers buoyancy, electromagnetic induction, and surface tension forces. The governing equations have been solved by the finite volume method. The temperature and velocity fields have been determined. The theoretical predictions for weld bead geometry are in good agreement with experimental measurements.

  15. Hardening of aged duplex stainless steels by spinodal decomposition.

    PubMed

    Danoix, F; Auger, P; Blavette, D

    2004-06-01

    Mechanical properties, such as hardness and impact toughness, of ferrite-containing stainless steels are greatly affected by long-term aging at intermediate temperatures. It is known that the alpha-alpha' spinodal decomposition occurring in the iron-chromium-based ferrite is responsible for this aging susceptibility. This decomposition can be characterized unambiguously by atom probe analysis, allowing comparison both with the existing theories of spinodal decomposition and the evolution of some mechanical properties. It is then possible to predict the evolution of hardness of industrial components during service, based on the detailed knowledge of the involved aging process. PMID:15233853

  16. Low cycle fatigue behavior of aluminum/stainless steel composites

    NASA Technical Reports Server (NTRS)

    Bhagat, R. B.

    1983-01-01

    Composites consisting of an aluminum matrix reinforced with various volume fractions of stainless steel wire were fabricated by hot die pressing under various conditions of temperature, time, and pressure. The composites were tested in plane bending to complete fracture under cycle loading, and the results were analyzed on a computer to obtain a statistically valid mathematical relationship between the low-cycle fatigue life and the fiber volume fraction of the composite. The fractured surfaces of the composites were examined by scanning electron microscopy to identify the characteristic features of fatigue damage. Fatigue damage mechanisms are proposed and discussed.

  17. Fiber laser micro-cutting of stainless steel sheets

    NASA Astrophysics Data System (ADS)

    Baumeister, M.; Dickmann, K.; Hoult, T.

    2006-11-01

    The authors report on laser micro-cutting results for stainless steel foils with the aid of a 100 W fiber laser. This novel laser source combines a high output power in relation to conventional laser sources for micro-processing applications with an excellent beam quality (M2=1.1). Different material thicknesses were evaluated (100 μm to 300 μm). Processing was carried out with cw operation of the laser source, and with nitrogen and oxygen as assisting gases. Besides the high processing rate of oxygen assisted cutting, a better cutting performance in terms of a lower kerf width was obtained.

  18. Equation of state and electrical conductivity of stainless steel.

    SciTech Connect

    Desjarlais, Michael Paul; Mattsson, Thomas Kjell Rene

    2004-11-01

    Warm dense matter is the region in phase space of density and temperature where the thermal, Fermi, and Coulomb energies are approximately equal. The lack of a dominating scale and physical behavior makes it challenging to model the physics to high fidelity. For Sandia, a fundamental understanding of the region is of importance because of the needs of our experimental HEDP programs for high fidelity descriptive and predictive modeling. We show that multi-scale simulations of macroscopic physical phenomena now have predictive capability also for difficult but ubiquitous materials such as stainless steel, a transition metal alloy.

  19. Carbon, nitrogen, and oxygen ion implantation of stainless steel

    SciTech Connect

    Rej, D.J.; Gavrilov, N.V.; Emlin, D.

    1995-12-31

    Ion implantation experiments of C, N, and O into stainless steel have been performed, with beam-line and plasma source ion implantation methods. Acceleration voltages were varied between 27 and 50 kV, with pulsed ion current densities between 1 and 10 mA/cm{sup 2}. Implanted doses ranged from 0.5 to 3 {times} 10{sup 18}cm{sup -2}, while workpiece temperatures were maintained between 25 and 800 C. Implant concentration profiles, microstructure, and surface mechanical properties of the implanted materials are reported.

  20. Laser-induced color marking of stainless steel

    NASA Astrophysics Data System (ADS)

    Antonczak, Arkadiusz J.; Nowak, Maciej; Koziol, Pawel; Kaczmarek, Pawel R.; Waz, Adam T.; Abramski, Krzysztof M.

    2013-01-01

    This paper presents the analysis of the impact of selected process parameters on the resulting laser color marking. The study was conducted for AISI 304 multipurpose stainless steel using a commercially available industrial fiber laser. It was determined how various process parameters, such as laser power, scanning speed of the laser beam, temperature of the material, location of the sample relative to the focal plane, affect the repeatability of the colors obtained. For objective assessment of color changes, an optical spectrometer and the CIE color difference parameter ΔEab * were used.

  1. Laser Welding of Large Scale Stainless Steel Aircraft Structures

    NASA Astrophysics Data System (ADS)

    Reitemeyer, D.; Schultz, V.; Syassen, F.; Seefeld, T.; Vollertsen, F.

    In this paper a welding process for large scale stainless steel structures is presented. The process was developed according to the requirements of an aircraft application. Therefore, stringers are welded on a skin sheet in a t-joint configuration. The 0.6 mm thickness parts are welded with a thin disc laser, seam length up to 1920 mm are demonstrated. The welding process causes angular distortions of the skin sheet which are compensated by a subsequent laser straightening process. Based on a model straightening process parameters matching the induced welding distortion are predicted. The process combination is successfully applied to stringer stiffened specimens.

  2. Microstructures of laser deposited 304L austenitic stainless steel

    SciTech Connect

    BROOKS,JOHN A.; HEADLEY,THOMAS J.; ROBINO,CHARLES V.

    2000-05-22

    Laser deposits fabricated from two different compositions of 304L stainless steel powder were characterized to determine the nature of the solidification and solid state transformations. One of the goals of this work was to determine to what extent novel microstructure consisting of single-phase austenite could be achieved with the thermal conditions of the LENS [Laser Engineered Net Shape] process. Although ferrite-free deposits were not obtained, structures with very low ferrite content were achieved. It appeared that, with slight changes in alloy composition, this goal could be met via two different solidification and transformation mechanisms.

  3. Aluminum nanocomposites having wear resistance better than stainless steel

    SciTech Connect

    An, Linan; Qu, Jun; Luo, Jinsong; Fan, Yi; Zhang, Ligong; Liu, Jinling; Xu, Chengying; Blau, Peter Julian

    2011-01-01

    Tribological behavior of alumina-particle-reinforced aluminum composites made by powder metallurgy process has been investigated. The nanocomposite containing 15 vol% of Al2O3 nanoparticles exhibits excellent wear resistance by showing significantly low wear rate and abrasive wear mode. The wear rate of the nanocomposite is even lower than stainless steel. We have also demonstrated that such excellent wear resistance only occurred in the composite reinforced with the high volume fraction of nanosized reinforcing particles. The results were discussed in terms of the microstructure of the nanocomposite.

  4. Iron contamination causes stress corrosion cracking in stainless steels

    SciTech Connect

    Khatak, H.S.; Bharasi, N.S.; Gnanamoorthy, J.B. . Metallurgy Div.)

    1994-06-01

    Iron-contaminated U-bend samples of types 316 and 304 stainless steels (SS) were exposed to a sodium chloride solution in the laboratory at room temperature. Two of the four samples of 304 SS and one of the four samples of 316 SS showed cracking. The cracks initiated in the iron-contaminated regions. Based on the results of these tests, the failure of many components in industries can be explained and the importance of carrying out pickling and passivation immediately after fabrication to remove possible iron contamination is highlighted.

  5. High Strength Stainless Steel Properties that Affect Resistance Welding

    SciTech Connect

    Kanne, W.R.

    2001-08-01

    This report discusses results of a study on selected high strength stainless steel alloy properties that affect resistance welding. The austenitic alloys A-286, JBK-75 (Modified A-286), 21-6-9, 22-13-5, 316 and 304L were investigated and compared. The former two are age hardenable, and the latter four obtain their strength through work hardening. Properties investigated include corrosion and its relationship to chemical cleaning, the effects of heat treatment on strength and surface condition, and the effect of mechanical properties on strength and weldability.

  6. Controlled powder morphology experiments in megabar 304 stainless steel compaction

    SciTech Connect

    Staudhammer, K.P.; Johnson, K.A.

    1985-01-01

    Experiments with controlled morphology including shape, size, and size distribution were made on 304L stainless steel powders. These experiments involved not only the powder variables but pressure variables of 0.08 to 1.0 Mbar. Also included are measured container strain on the material ranging from 1.5% to 26%. Using a new strain controllable design it was possible to seperate and control, independently, strain and pressure. Results indicate that powder morphology, size distribution, packing density are among the pertinent parameters in predicting compaction of these powders.

  7. Evaluation of tantalum 316 stainless steel transition joints

    NASA Technical Reports Server (NTRS)

    Stoner, D. R.

    1972-01-01

    Tubular transition joints providing a metallurgically bonded connection between tantalum and 316 stainless steel pipe sections were comparatively evaluated for durability under thermal cycling conditions approximating the operation of a SNAP-8 mercury boiler. Both coextruded and vacuum brazed transition joints of 50mm (2 inch) diameter were tested by thermal cycling 100 times between 730 C and 120 C(1350 F and 250 F) in a high vacuum environment. The twelve evaluated transition joints survived the full test sequence without developing leaks, although liquid penetrant bond line indications eventually developed in all specimens. The brazed transition joints exhibited the best dimensional stability and bond line durability.

  8. 75 FR 67110 - Forged Stainless Steel Flanges From India and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-01

    ... stainless steel flanges from India and Taiwan (65 FR 49964). Following second five-year reviews by Commerce... duty orders on imports of forged stainless steel flanges from India and Taiwan (71 FR 3457, January 23... part 201), and part 207, subparts A, D, E, and F (19 CFR part 207), as most recently amended at 74...

  9. 77 FR 41754 - Drawn Stainless Steel Sinks From the People's Republic of China: Postponement of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ...'s Republic of China: Initiation of Antidumping Duty Investigation, 77 FR 18207 (March 27, 2012). On... International Trade Administration Drawn Stainless Steel Sinks From the People's Republic of China: Postponement...'') initiated an antidumping duty investigation on drawn stainless steel sinks from the People's Republic...

  10. 78 FR 21596 - Drawn Stainless Steel Sinks From the People's Republic of China: Countervailing Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-11

    ... Countervailing Duty Determination, 78 FR 13017 (February 26, 2013). \\2\\ See Drawn Stainless Steel Sinks from... From the People's Republic of China: Preliminary Affirmative Countervailing Duty Determination, 77 FR... International Trade Administration Drawn Stainless Steel Sinks From the People's Republic of...

  11. 78 FR 45271 - Welded Stainless Steel Pressure Pipe From Malaysia, Thailand, and Vietnam

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ... Commission, Washington, DC, and by publishing the notice in the Federal Register of May 24, 2013 (78 FR 31574... COMMISSION Welded Stainless Steel Pressure Pipe From Malaysia, Thailand, and Vietnam Determination On the... injured by reason of imports from Malaysia, Thailand, and Vietnam of welded stainless steel pressure...

  12. 75 FR 53714 - Stainless Steel Butt-Weld Pipe Fittings From Japan, Korea, and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ... imports of stainless steel butt-weld pipe fittings from Japan (53 FR 9787). On February 23, 1993, Commerce... on imports of stainless steel butt-weld pipe fittings from Japan, Korea, and Taiwan (65 FR 11766... Japan, Korea, and Taiwan (70 FR 61119). The Commission is now conducting third reviews to...

  13. 77 FR 41969 - Stainless Steel Bar From Japan: Rescission of Antidumping Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-17

    ... Revocation in Part, and Deferral of Administrative Review, 77 FR 19179, 19181 (March 30, 2012). Based on a... International Trade Administration Stainless Steel Bar From Japan: Rescission of Antidumping Duty Administrative...) initiated an administrative review of the antidumping duty order on stainless steel bar from Japan...

  14. 75 FR 59744 - Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... group response to its notice of institution (75 FR 30437, June 1, 2010) was adequate and that the... COMMISSION Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan AGENCY... Korea and the antidumping duty orders on stainless steel sheet and strip from Germany, Italy,...

  15. 75 FR 76025 - Stainless Steel Butt-Weld Pipe Fittings From Japan, Korea, and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... party responded to the sunset review notice of initiation by the applicable deadline * * *'' (75 FR... COMMISSION Stainless Steel Butt-Weld Pipe Fittings From Japan, Korea, and Taiwan AGENCY: United States... stainless steel butt-weld pipe fittings from Japan, Korea, and Taiwan would be likely to lead...

  16. 78 FR 63517 - Control of Ferrite Content in Stainless Steel Weld Metal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... Information The NRC published DG-1279 in the Federal Register on October 3, 2012 (77 FR 60479), for a 60-day... COMMISSION Control of Ferrite Content in Stainless Steel Weld Metal AGENCY: Nuclear Regulatory Commission... revision to Regulatory Guide (RG) 1.31, ``Control of Ferrite Content in Stainless Steel Weld Metal.''...

  17. Corrosion characteristics of ferric and austenitic stainless steels for dental magnetic attachment.

    PubMed

    Endo, K; Suzuki, M; Ohno, H

    2000-03-01

    The corrosion behaviors of four ferric stainless steels and two austenitic stainless steels were examined in a simulated physiological environment (0.9% NaCl solution) to obtain basic data for evaluating the appropriate composition of stainless steels for dental magnetic attachments. The corrosion resistance was evaluated by electrochemical techniques and the analysis of released metal ions by atomic absorption spectrophotometry. The surface of the stainless steels was analyzed by X-ray photoelectron spectroscopy (XPS). The breakdown potential of ferric stainless steels increased and the total amount of released metal ions decreased linearly with increases in the sum of the Cr and Mo contents. The corrosion rate of the ferric stainless steels increased 2 to 6 times when they were galvanically coupled with noble metal alloys but decreased when coupled with commercially pure Ti. For austenitic stainless steels, the breakdown potential of high N-bearing stainless steel was approximately 500 mV higher than that of SUS316L, which is currently used as a component in dental magnetic attachments. The enriched nitrogen at the alloy/passive film interface may be effective in improving the localized corrosion resistance. PMID:11219089

  18. 77 FR 3231 - Certain Stainless Steel Wire Rods From India: Continuation of Antidumping Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... [Federal Register Volume 77, Number 14 (Monday, January 23, 2012)] [Notices] [Pages 3231-3232] [FR... (``Sunset'') Review, 76 FR 38613 (July 1, 2011); see also Stainless Steel Wire Rod From India; Institution..., 76 FR 38686 (July 1, 2011). \\1\\ Antidumping Duty Order: Certain Stainless Steel Wire Rods from...

  19. 76 FR 31588 - Stainless Steel Plate in Coils From Belgium: Rescission of Countervailing Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... International Trade Administration Stainless Steel Plate in Coils From Belgium: Rescission of Countervailing... countervailing duty (``CVD'') order on stainless steel plate in coils from Belgium. See Antidumping or... FR 23236 (May 3, 2010). On May 28, 2010, we received a request for revocation of this order from...

  20. 75 FR 64709 - Stainless Steel Plate in Coils From Belgium: Notice of Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... International Trade Administration Stainless Steel Plate in Coils From Belgium: Notice of Rescission of... ``Opportunity to Request Administrative Review'' of the antidumping duty order on stainless steel plate in coils... Administrative Review, 75 FR 23236, (May 3, 2010). On June 1, 2009, in accordance with 19 CFR 351.213(b),...