Science.gov

Sample records for stainless steel plate

  1. Plating on stainless steel alloys

    SciTech Connect

    Dini, J.W.; Johnson, H.R.

    1981-09-11

    Quantitative adhesion data are presented for a variety of electroplated stainless steel type alloys. Results show that excellent adhesion can be obtained by using a Wood's nickel strike or a sulfamate nickel strike prior to final plating. Specimens plated after Wood's nickel striking failed in the deposit rather than at the interface between the substrate and the coating. Flyer plate quantitative tests showed that use of anodic treatment in sulfuric acid prior to Wood's nickel striking even further improved adhesion. In contrast activation of stainless steels by immersion or cathodic treatment in hydrochloric acid resulted in very reduced bond strengths with failure always occurring at the interface between the coating and substrate.

  2. Nickel release from nickel-plated metals and stainless steels.

    PubMed

    Haudrechy, P; Foussereau, J; Mantout, B; Baroux, B

    1994-10-01

    Nickel release from nickel-plated metals often induces allergic contact dermatitis, but, for nickel-containing stainless steels, the effect is not well-known. In this paper, AISI 304, 316L, 303 and 430 type stainless steels, nickel and nickel-plated materials were investigated. 4 tests were performed: patch tests, leaching experiments, dimethylglyoxime (DMG) spot tests and electrochemical tests. Patch tests showed that 96% of the patients were intolerant to Ni-plated samples, and 14% to a high-sulfur stainless steel (303), while nickel-containing stainless steels with a low sulfur content elicited no reactions. Leaching experiments confirmed the patch tests: in acidic artificial sweat, Ni-plated samples released about 100 micrograms/cm2/week of nickel, while low-sulfur stainless steels released less than 0.03 microgram/cm2/week of nickel, and AISI 303 about 1.5 micrograms/cm2/week. Attention is drawn to the irrelevance of the DMG spot test, which reveals Ni present in the metal bulk but not its dissolution rate. Electrochemical experiments showed that 304 and 316 grades remain passive in the environments tested, while Ni-plated steels and AISI 303 can suffer significant cation dissolution. Thus, Ni-containing 304 and 316 steels should not induce contact dermatitis, while 303 should be avoided. A reliable nitric acid spot test is proposed to distinguish this grade from other stainless steels. PMID:7842681

  3. Electroless nickel plating on stainless steels and aluminum

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Procedures for applying an adherent electroless nickel plating on 303 SE, 304, and 17-7 PH stainless steels, and 7075 aluminum alloy was developed. When heat treated, the electroless nickel plating provides a hard surface coating on a high strength, corrosion resistant substrate.

  4. Surface modified stainless steels for PEM fuel cell bipolar plates

    DOEpatents

    Brady, Michael P [Oak Ridge, TN; Wang, Heli [Littleton, CO; Turner, John A [Littleton, CO

    2007-07-24

    A nitridation treated stainless steel article (such as a bipolar plate for a proton exchange membrane fuel cell) having lower interfacial contact electrical resistance and better corrosion resistance than an untreated stainless steel article is disclosed. The treated stainless steel article has a surface layer including nitrogen-modified chromium-base oxide and precipitates of chromium nitride formed during nitridation wherein oxygen is present in the surface layer at a greater concentration than nitrogen. The surface layer may further include precipitates of titanium nitride and/or aluminum oxide. The surface layer in the treated article is chemically heterogeneous surface rather than a uniform or semi-uniform surface layer exclusively rich in chromium, titanium or aluminum. The precipitates of titanium nitride and/or aluminum oxide are formed by the nitriding treatment wherein titanium and/or aluminum in the stainless steel are segregated to the surface layer in forms that exhibit a low contact resistance and good corrosion resistance.

  5. 76 FR 31588 - Stainless Steel Plate in Coils From Belgium: Rescission of Countervailing Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... International Trade Administration Stainless Steel Plate in Coils From Belgium: Rescission of Countervailing... countervailing duty (``CVD'') order on stainless steel plate in coils from Belgium. See Antidumping or... FR 23236 (May 3, 2010). On May 28, 2010, we received a request for revocation of this order from...

  6. 75 FR 64709 - Stainless Steel Plate in Coils From Belgium: Notice of Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... International Trade Administration Stainless Steel Plate in Coils From Belgium: Notice of Rescission of... ``Opportunity to Request Administrative Review'' of the antidumping duty order on stainless steel plate in coils... Administrative Review, 75 FR 23236, (May 3, 2010). On June 1, 2009, in accordance with 19 CFR 351.213(b),...

  7. Evaluation of silver-coated stainless steel bipolar plates for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Huang, Ing-Bang

    In this study, computer-aided design and manufacturing (CAD/CAM) technology were applied to develop and produce stainless steel bipolar plates for DMFC (direct methanol fuel cell). Effect of surface modification on the cell performance of DMFC was investigated. Surface modifications of the stainless steel bipolar plates were made by the electroless plating method. A DMFC consisting of silver coated stainless steel as anode and uncoated stainless steel as cathode was assembled and evaluated. The methanol crossover rate (R c) of the proton exchange membrane (PEM) was decreased by about 52.8%, the efficiency (E f) of DMFC increased about 7.1% and amounts of methanol electro-oxidation at the cathode side (M co) were decreased by about 28.6%, as compared to uncoated anode polar plates. These measurements were determined by the transient current and mathematical analysis.

  8. 77 FR 73013 - Stainless Steel Plate in Coils From Belgium: Antidumping Duty Administrative Review, 2010-2011

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-07

    ... International Trade Administration Stainless Steel Plate in Coils From Belgium: Antidumping Duty Administrative... results of the antidumping duty order on stainless steel plate in coils (steel plate) from Belgium.\\1... Review, 77 FR 32517 (June 1, 2012) (Preliminary Results). Based on our analysis of the comments...

  9. Stainless Steel Bipolar Plates Deposited with Multilayer Films for PEMFC Applications

    NASA Astrophysics Data System (ADS)

    Cho, Hyun; Yun, Young-Hoon

    2013-08-01

    A chromium nitride (CrN, Cr2N)/chromium (Cr)/indium-tin-oxide (ITO) system and a gold (Au)/titanium (Ti) system were separately deposited using a sputtering method and an E-beam method, respectively, onto stainless steel 316 and 304 plates. The XRD patterns of the deposited stainless steel plates showed the crystalline phase of typical indium-tin oxide and of metallic phases, such as chromium, gold, and the metal substrate, as well as those of external chromium nitride films. The nitride films were composed of two metal nitride phases that consisted of CrN and Cr2N compounds. The surface morphologies of the modified stainless steel bipolar plates were observed using atomic force microscopy and FE-SEM. The chromium nitride (CrN, Cr2N)/chromium (Cr)/indium-tin-oxide (ITO) multilayer that was formed on the stainless steel plates had a surface microstructural morphology that consisted of fine columnar grains 10 nm in diameter and 60 nm in length. The external gold films that were formed on the stainless steel plates had a grain microstructure approximately 100 nm in diameter. The grain size of the external surface of the stainless steel plates with the gold (Au)/titanium (Ti) system increased with increasing gold film thickness. The electrical resistances and water contact angles of the stainless steel bipolar plates that were covered with the multilayer films were examined as a function of the thickness of the ITO film or of the external gold film. In the corrosion test, ICP-MS results indicated that the gold (Au)/titanium (Ti) films showed relatively excellent chemical stability after exposure to H2SO4 solution with pH 3 at 80 °C.

  10. 75 FR 59744 - Stainless Steel Plate From Belgium, Italy, Korea, South Africa, and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... Commission found that the domestic interested party group response to its notice of institution (75 FR 30434... Plate From Belgium, Italy, Korea, South Africa, and Taiwan AGENCY: United States International Trade... countervailing duty orders on stainless steel plate from Belgium and South Africa and the antidumping duty...

  11. 75 FR 62103 - Stainless Steel Plate in Coils From South Africa: Final Results of Expedited Sunset Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... the Act. See Initiation of Five-Year (``Sunset'') Reviews, 75 FR 30777 (June 2, 2010). The Department... International Trade Administration Stainless Steel Plate in Coils From South Africa: Final Results of Expedited... review of the countervailing duty order (``CVD'') on stainless steel plate in coils from South...

  12. 77 FR 32517 - Stainless Steel Plate in Coils From Belgium: Notice of Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ...The Department of Commerce (the Department) is conducting an administrative review of the antidumping duty order on stainless steel plate in coils (steel plate) from Belgium covering the period of review (POR) May 1, 2010, through April 30, 2011. This review covers one producer/exporter of subject merchandise, Aperam Stainless Belgium N.V. (AS Belgium).\\1\\......

  13. Microstructure and Mechanical Properties of Plasma Arc Brazed AISI 304L Stainless Steel and Galvanized Steel Plates

    NASA Astrophysics Data System (ADS)

    Jin, Yajuan; Li, Ruifeng; Yu, Zhishui; Wang, Yu

    2016-04-01

    Plasma arc brazing is used to join the AISI 304L stainless steel and galvanized steel plate butt joints with the CuSi3Mn1 filler wire. The effect of parameters on weld surface appearance, interfacial microstructure, and composition distribution in the joint was studied. The microhardness and mechanical tests were conducted to determine the mechanical properties of the welded specimens. The results indicated that good appearance, bead shape, and sufficient metallurgical bonding could be obtained when the brazing process was performed with a wire feeding speed of 0.8 m/min, plasma gas flow rate of 3.0 l/min, welding current of 100 A, and welding speed of 27 cm/min. During plasma arc brazing process, the top corner of the stainless steel and galvanized steel plate were heated and melted, and the melted quantity of stainless steel was much more than that of the galvanized steel due to the thermal conductivity coefficient difference between the dissimilar materials. The microhardness test results shows that the microhardness value gradually increased from the side of the galvanized steel to the stainless steel in the joint, and it is good for improving the mechanical properties of joint. The tensile strength was a little higher than that of the brazing filler, and the fracture position of weld joint was at the base metal of galvanized steel plate.

  14. Design parameters of stainless steel plates for maximizing high frequency ultrasound wave transmission.

    PubMed

    Michaud, Mark; Leong, Thomas; Swiergon, Piotr; Juliano, Pablo; Knoerzer, Kai

    2015-09-01

    This work validated, in a higher frequency range, the theoretical predictions made by Boyle around 1930, which state that the optimal transmission of sound pressure through a metal plate occurs when the plate thickness equals a multiple of half the wavelength of the sound wave. Several reactor design parameters influencing the transmission of high frequency ultrasonic waves through a stainless steel plate were examined. The transmission properties of steel plates of various thicknesses (1-7 mm) were studied for frequencies ranging from 400 kHz to 2 MHz and at different distances between plates and transducers. It was shown that transmission of sound pressure through a steel plate showed high dependence of the thickness of the plate to the frequency of the sound wave (thickness ratio). Maximum sound pressure transmission of ∼ 60% of the incident pressure was observed when the ratio of the plate thickness to the applied frequency was a multiple of a half wavelength (2 MHz, 6mm stainless steel plate). In contrast, minimal sound pressure transmission (∼ 10-20%) was measured for thickness ratios that were not a multiple of a half wavelength. Furthermore, the attenuation of the sound pressure in the transmission region was also investigated. As expected, it was confirmed that higher frequencies have more pronounced sound pressure attenuation than lower frequencies. The spatial distribution of the sound pressure transmitted through the plate characterized by sonochemiluminescence measurements using luminol emission, supports the validity of the pressure measurements in this study. PMID:25637292

  15. 76 FR 50495 - Stainless Steel Plate From Belgium, Italy, Korea, South Africa, and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ..., 2010 (75 FR 30434) and determined on September 7, 2010 that it would conduct full reviews (75 FR 59744... 27, 2010 (75 FR 81309). The hearing was held in Washington, DC, on May 26, 2011, and all persons who... COMMISSION Stainless Steel Plate From Belgium, Italy, Korea, South Africa, and Taiwan Determinations On...

  16. 76 FR 53882 - Continuation of Antidumping and Countervailing Duty Orders: Stainless Steel Plate in Coils From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ..., South Africa, and Taiwan, 76 FR 50495 (Aug. 15, 2011), and Stainless Steel Plate in Coils from Belgium... Five-Year (``Sunset'') Review, 75 FR 30777 (June 2, 2010). As a result of its reviews, the Department...: Final Results of the Expedited Sunset Reviews of the Antidumping Duty Orders, 75 FR 61699 (Oct. 6,...

  17. 78 FR 79662 - Stainless Steel Plate in Coils From Belgium: Final Results of Antidumping Duty Administrative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ... Value: Stainless Steel Plate in Coils from Belgium, 64 FR 15476 (March 31, 1999), as amended by...: Preliminary Results of Antidumping Duty Administrative Review; 2011-2012, 78 FR 34644 (June 10, 2013..., Italy, the Republic of Korea, South Africa, and Taiwan, 64 FR 27756 (May 21, 1999); Notice of...

  18. 76 FR 28809 - Stainless Steel Plate From Belgium; Termination of Five-Year Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-18

    ... review concerning the countervailing duty order on stainless steel plate from Belgium (75 FR 30777 and 75 FR 30434). On May 5, 2011, Commerce published notice in the Federal Register of the final results of... recurrence of a countervailable subsidy. Therefore, Commerce revoked the countervailing duty order (76...

  19. 75 FR 30434 - Stainless Steel Plate From Belgium, Italy, Korea, South Africa, and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ...), and part 207, subparts A, D, E, and F (19 CFR part 207), as most recently amended at 74 FR 2847... FR 25288). On May 21, 1999, Commerce issued antidumping duty orders on imports of certain stainless steel plate from Belgium, Canada, Italy, Korea, South Africa, and Taiwan (64 FR 27756). On March...

  20. Protective coatings on stainless steel bipolar plates for proton exchange membrane (PEM) electrolysers

    NASA Astrophysics Data System (ADS)

    Gago, A. S.; Ansar, S. A.; Saruhan, B.; Schulz, U.; Lettenmeier, P.; Cañas, N. A.; Gazdzicki, P.; Morawietz, T.; Hiesgen, R.; Arnold, J.; Friedrich, K. A.

    2016-03-01

    Proton exchange membrane (PEM) electrolysis is a promising technology for large H2 production from surplus electricity from renewable sources. However, the electrolyser stack is costly due to the manufacture of bipolar plates (BPP). Stainless steel can be used as an alternative, but it must be coated. Herein, dense titanium coatings are produced on stainless steel substrates by vacuum plasma spraying (VPS). Further surface modification of the Ti coating with Pt (8 wt% Pt/Ti) deposited by physical vapour deposition (PVD) magnetron sputtering reduces the interfacial contact resistance (ICR). The Ti and Pt/Ti coatings are characterised by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and X-ray photoelectron microscopy (XPS). Subsequently, the coatings are evaluated in simulated and real PEM electrolyser environments, and they managed to fully protect the stainless steel substrate. In contrast, the absence of the thermally sprayed Ti layer between Pt and stainless steel leads to pitting corrosion. The Pt/Ti coating is tested in a PEM electrolyser cell for almost 200 h, exhibiting an average degradation rate of 26.5 μV h-1. The results reported here demonstrate the possibility of using stainless steel as a base material for the stack of a PEM electrolyser.

  1. Material Corrosion and Plate-Out Test of Types 304L and 316L Stainless Steel

    SciTech Connect

    Zapp, P.E.

    2001-02-06

    Corrosion and plate-out tests were performed on 304L and 316L stainless steel in pretreated Envelope B and Envelope C solutions. Flat coupons of the two stainless steels were exposed to 100 degrees C liquid and to 74 degrees C and 88 degrees C vapor above the solutions for 61 days. No significant corrosion was observed either by weight-loss measurements or by microscopic examination. Most coupons had small weight gains due to plate-out of solids, which remained to some extent even after 24-hour immersion in 1 N nitric acid at room temperature. Plate-out was more significant in the Envelope B coupons, with film thickness from less than 0.001 in. to 0.003-inches.

  2. Failure analysis of stainless steel femur fixation plate.

    PubMed

    Hussain, P B; Mohammad, M

    2004-05-01

    Failure analysis was performed to investigate the failure of the femur fixation plate which was previously fixed on the femur of a girl. Radiography, metallography, fractography and mechanical testing were conducted in this study. The results show that the failure was due to the formation of notches on the femur plate. These notches act as stress raisers from where the cracks start to propagate. Finally fracture occurred on the femur plate and subsequently, the plate failed. PMID:15468877

  3. Brazing open cell reticulated copper foam to stainless steel tubing with vacuum furnace brazed gold/indium alloy plating

    DOEpatents

    Howard, Stanley R.; Korinko, Paul S.

    2008-05-27

    A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.

  4. 76 FR 66271 - Stainless Steel Plate in Coils From Belgium: Notice of Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ..., and Taiwan, 68 FR 11520 (March 11, 2003); Notice of Amended Antidumping Duty Orders; Certain Stainless Steel Plate in Coils From Belgium, Canada, Italy, the Republic of Korea, South Africa, and Taiwan, 68 FR... Steel Plate in Coils From Belgium, Canada, Italy, the Republic of Korea, South Africa, and Taiwan, 68...

  5. Investigation of residual stresses in a multipass weld in 1 in. stainless steel plate

    SciTech Connect

    Spooner, S.; Fernandez Baca, J.A.; David, S.A.; Hubbard, C.R.; Holden, T.M.; Root, J.H.

    1994-06-01

    Residual stresses and strains were measured in two welded 25-mm thick plates of type 304 stainless steel by the neutron diffraction. The filler metal was type 308 stainless steel and the weld zone had a two phase microstructure in which the austenitic phase lattice parameter differs from the base metal. In these circumstances stain-free samples were taken from the weld zone area for analysis of the lattice parameters and ferrite content using neutron powder diffraction. Corrections for lattice parameter variation were applied permitting the calculation of residual strains and stresses in weld zone, heat affected zone (HAZ) and base metal. One of the two welds was examined without stress relief and the other was given a stress relief treatment consisting of vibration at a frequency below the resonant condition dudng welding. In both plates the largest residual stress component (longitudinal) is found in the fusion zone near the boundary between the weld zone and the heat affected zone. This longitudinal component is 400 {plus_minus} 50 MPa in tension. The normal stresses are generally close to zero although large fluctuations are found in the weld zone. The transverse stresses are as high as 200 MPa in the weld zone and decrease to 50 MPa {plus_minus} 40 MPa. The lattice parameter variation was equivalent to 5 {times} l0{minus}4 compressive strain and the ferrite content approached 9 percent at the center of the weld zone. Variations in residual stresses with thickness through the base metal plate were small. The treated plate and untreated plate showed nearly identical patterns of stress distribution. Differences in the measured stresses between vibratory-stress-relief treated and untreated plates fall within error bars of the stress determination in these particular 25 mm thick 300-type stainless steel plates.

  6. Thermal distortion tests of aluminum and stainless steel plates

    SciTech Connect

    Bielick, E.; Fornek, T.; Spinka, H.; Underwood, D.

    1993-06-25

    An important upgrade to the STAR detector at the Brookhaven National Laboratory RHIC accelerator will be an electromagnetic calorimeter. One design being considered for this calorimeter involves cast lead modules covering {Delta}{phi} = 6{degree} and 0 {le} {vert_bar}{eta}{vert_bar} {le} 1. These modules would consist of alternating layers of lead and sheets of plastic scintillator. The gaps for scintillator between the layers of lead would be created by parallel aluminum plates of thickness {approx_equal}6.6 mm = 0.260in. in the mold for the modules. These plates would need to be machined or ground to be reasonably flat, perhaps to {plus_minus}0.003in., and of uniform thickness from plate to plate. These requirements are imposed by the need to remove the plates from the casting after cooling, and to have good uniformity of the lead layer thickness, which gives good performance for the modules as a calorimeter. Aluminum was chosen for the plates because of its high coefficient of thermal expansion. An important cost in this calorimeter design is associated with the machining or grinding of the plates to proper thickness and flatness. In most cost estimates, it has been assumed that the mold parts could be used many times. This note describes a simple test which was conducted to investigate possible distortions in the plates after repeated heating to temperatures at which the lead would be poured into the mold and cooling.

  7. Ultrasonic butt welding of aluminum, aluminum alloy and stainless steel plate specimens.

    PubMed

    Tsujino, Jiromaru; Hidai, Kazuaki; Hasegawa, Atsushi; Kanai, Ryoichi; Matsuura, Hisanori; Matsushima, Kaoru; Ueoka, Tetsugi

    2002-05-01

    Welding characteristics of aluminum, aluminum alloy and stainless steel plate specimens of 6.0 mm thickness by a 15 kHz ultrasonic butt welding system were studied. There are no detailed welding condition data of these specimens although the joining of these materials are required due to anticorrosive and high strength characteristics for not only large specimens but small electronic parts especially. These specimens of 6.0 mm thickness were welded end to end using a 15 kHz ultrasonic butt welding equipment with a vibration source using eight bolt-clamped Langevin type PZT transducers and a 50 kW static induction thyristor power amplifier. The stainless steel plate specimens electrolytically polished were joined with welding strength almost equal to the material strength under rather large vibration amplitude of 25 microm (peak-to-zero value), static pressure 70 MPa and welding time of 1.0-3.0 s. The hardness of stainless steel specimen adjacent to a welding surface increased about 20% by ultrasonic vibration. PMID:12159968

  8. Numerical Analysis of Residual Stress for Copper Base Brazed Stainless Steel Plate-Fin Structure

    NASA Astrophysics Data System (ADS)

    Xie, Qiaoyun; Ling, Xiang

    2010-07-01

    Copper base stainless steel plate-fin structure has been widely used as a heat exchanger in many fields. The nonlinear thermal reaction on the residual stress in brazing process of the plate-fin structure was studied in this paper. A finite element model (FEM) was proposed to simulate the heat transfer and the sequential residual stress generated in the plate-fin and filler metals based on thermal elastic-plastic theory. By the stress distribution in four paths marked in the structure obtained from FEM results, it is found that the maximum residual tensile stress occurs in the brazed joint next to the plate side and a crack would initiate in this region. Also, the first principle stresses of reference nodes were calculated and the conclusion is consistent with the simulation results. These results would provide some constructive instructions in the practical brazing procedure.

  9. Brazing titanium to stainless steel

    NASA Technical Reports Server (NTRS)

    Batista, R. I.

    1980-01-01

    Titanium and stainless-steel members are usually joined mechanically for lack of any other effective method. New approach using different brazing alloy and plating steel member with nickel resolves problem. Process must be carried out in inert atmosphere.

  10. Protective nitride formation on stainless steel alloys for proton exchange membrane fuel cell bipolar plates

    NASA Astrophysics Data System (ADS)

    Yang, B.; Brady, M. P.; Wang, H.; Turner, J. A.; More, K. L.; Young, D. J.; Tortorelli, P. F.; Payzant, E. A.; Walker, L. R.

    Gas nitridation has shown excellent promise to form dense, electrically conductive and corrosion-resistant Cr-nitride surface layers on Ni-Cr base alloys for use as proton exchange membrane fuel cell (PEMFC) bipolar plates. Due to the high cost of nickel, Fe-base bipolar plate alloys are needed to meet the cost targets for many PEMFC applications. Unfortunately, nitridation of Fe-base stainless steel alloys typically leads to internal Cr-nitride precipitation rather than the desired protective surface nitride layer formation, due to the high permeability of nitrogen in these alloys. This paper reports the finding that it is possible to form a continuous, protective Cr-nitride (CrN and Cr 2N) surface layer through nitridation of Fe-base stainless steel alloys. The key to form a protective Cr-nitride surface layer was found to be the initial formation of oxide during nitridation, which prevented the internal nitridation typically observed for these alloys, and resulted in external Cr-nitride layer formation. The addition of V to the alloy, which resulted in the initial formation of V 2O 3-Cr 2O 3, was found to enhance this effect, by making the initially formed oxide more amenable to subsequent nitridation. The Cr-nitride surface layer formed on model V-modified Fe-27Cr alloys exhibited excellent corrosion resistance and low interfacial contact resistance under simulated PEMFC bipolar plate conditions.

  11. Quantitative histological evaluation of early fracture healing of cortical bones immobilized by stainless steel and composite plates.

    PubMed

    Akeson, W H; Woo, S L; Coutts, R D; Matthews, J V; Gonsalves, M; Amiel, D

    1975-11-24

    Internal fixation devices of less bending stiffness than conventional plates made of stainless steel or vitallium were compared with conventional plates in a study of fracture healing. The material for this investigation was a fine graphite fiber reinforced methyl methacrylate resin composite with a modulus of elasticity approximately ten times less than that of stainless steel. Osteotomies were performed on canine radii. Internal fixation was accomplished by means of a composite plate on the left side, and a stainless steel plate on the right. Clinical assessment, as well as biomechanical and quantitative histological techniques, were used to compare osteotomy healing of the two sides. At four months, all osteotomies had healed and the bioengineering tests showed radii from the two sides had equivalent strength. However, significantly less cortical porosity was found in the side with the composite plate (6.8 per cent), as compared to that of the stainless steel plated side (14 per cent). These results suggest that a less stiff fixation plate may have some advantage in the treatment of long bone fracture if there is no implant failure, and if union rates are equivalent. PMID:1201463

  12. Residual Stresses in LENS-Deposited AISI 410 Stainless Steel Plates

    SciTech Connect

    Wang, L; Felicellli, S D; Pratt, Phillip R

    2008-01-01

    The residual stress in thin plate components deposited by the laser engineered net shaping (LENS{reg_sign}) process was investigated experimentally and numerically. Neutron diffraction mapping was used to characterize the residual stress in LENS-deposited AISI 410 stainless steel thin wall plates. Using the commercial welding software SYSWELD, a thermo-mechanical three-dimensional finite element model was developed, which considers also the effect of metallurgical phase transformations. The model was employed to predict the temperature history and the residual stress field during the LENS process. Several simulations were performed with the geometry and process parameters that were used to build the experimental samples. The origin of the residual stress distribution is discussed based on the thermal histories of the samples, and the modeling results are compared with measurements obtained by neutron diffraction mapping.

  13. SnO2:F Coated Duplex Stainless Steel for PEM Fuel Cell Bipolar Plates

    SciTech Connect

    Wang, H.; Turner, J. A.

    2008-01-01

    Duplex 2205 stainless steel was deposited with 0.6 {micro}m thick SnO2:F coating; coated steel was characterized for PEMFC bipolar plate application. Compared with bare alloy, interfacial contact resistance (ICR) values of the coated 2205 steel are higher. SnO2:F coating adds its own resistance to the air-formed film on the steel. In a PEMFC anode environment, a current peak of ca. 25 {micro}A/cm2 registered at ca. 30 min for coated 2205 steel. It stabilized at ca. 2.0 {approx} -1.0 {micro}A/cm2. This peak is related to the complicated process of coating dissolution and oxide-layer formation. Anodic-cathodic current transfer occurred at ca. 200 min polarization. In a PEMFC cathode environment, current was stable immediately after polarization. The stable current was ca. 0.5 {approx} 2.0 {micro}A/cm2 during the entire polarization period. AES depth profiles with tested samples and ICP analysis with the tested solutions confirmed the excellent corrosion resistance of the SnO2:F coated 2205 alloy in simulated PEMFC environments.

  14. Effect of grain refinement and electrochemical nitridation on corrosion resistance of the 316L stainless steel for bipolar plates in PEMFCs environment

    NASA Astrophysics Data System (ADS)

    Jinlong, Lv; Tongxiang, Liang; Hongyun, Luo

    2015-10-01

    The stain-induced nanocrystalline α'-martensite was obtained by cryogenic cold rolling at liquid-nitrogen temperature for 316L stainless steel. The electrochemical results showed nanocrystalline 316L stainless steel deteriorated its corrosion resistance in a typical proton exchange membrane fuel cell environment compared with coarse grained one. However, comparing with electrochemically nitrided coarse grained stainless steel, electrochemically nitrided nanocrystalline stainless steel improved significantly corrosion resistance in the same environment, which was supported further by Mott-Shottky analysis. X-ray photoelectron spectroscopy analysis revealed that the nanocrystalline promoted the enrichment of nitrogen and chromium and inhibited form of NH3 on the surface, which could significantly improve the corrosion resistance of the 316L stainless steel. The present study showed that the electrochemically nitrided 316L stainless steel was more suitable for the bipolar plates in proton exchange membrane fuel cell environment than the untreated one, especially for nanocrystalline stainless steel.

  15. 78 FR 30271 - Stainless Steel Plate in Coils From Belgium, South Africa, and Taiwan: Notice of Court Decision...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-22

    ... Orders: Stainless Steel Plate in Coils from Belgium, Italy and South Africa, 64 FR 25288 (May 11, 1999... Korea, South Africa, and Taiwan, 64 FR 27756 (May 21, 1999); Notice of Amended Antidumping Duty Orders..., and Taiwan, 68 FR 11520 (March 11, 2003); and Notice of Amended Countervailing Duty Orders;...

  16. 75 FR 81966 - Stainless Steel Plate in Coils From Belgium: Extension of Time Limit for Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... Countervailing Duty Administrative Reviews and Requests for Revocation in Part, 75 FR 37759, 37763 (June 30, 2010... International Trade Administration Stainless Steel Plate in Coils From Belgium: Extension of Time Limit for.... Statutory Time Limits Section 751(a)(3)(A) of the Tariff Act of 1930, as amended (``the Act''), requires...

  17. 76 FR 45511 - Stainless Steel Plate in Coils From Belgium: Notice of Initiation of Antidumping Duty Changed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ... Reviews and Request for Revocation in Part 76 FR 37781 (June 28, 2011).\\2\\ \\1\\ See Antidumping Duty Orders..., and Taiwan, 64 FR 27756 (May 21, 1999); Notice of Amended Antidumping Duty Orders; Certain Stainless Steel Plate in Coils From Belgium, Canada, Italy, the Republic of Korea, South Africa, and Taiwan, 68...

  18. 75 FR 67346 - Stainless Steel Plate in Coils from South Korea: Correction to Final Results of the Expedited...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-02

    ... International Trade Administration Stainless Steel Plate in Coils from South Korea: Correction to Final Results... Co., Ltd. (POSCO), as well as the ``all others'' rate for South Korea. Specifically, the weighted-average margin for POSCO and the ``all others'' rate for South Korea, listed as 16.26 percent, should...

  19. 76 FR 25666 - Stainless Steel Plate in Coils from Belgium: Final Results of Full Sunset Review and Revocation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-05

    ... Initiation of Five-Year (``Sunset'') Review, 75 FR 30777 (June 2, 2010). ] Within the deadline specified in... From Belgium: Preliminary Results of Full Sunset Review, 75 FR 81217, 81218 (December 27, 2010... Duty Orders on Certain Stainless Steel Plate in Coils From Belgium, Italy, and South Africa, 70...

  20. Surface temperature distribution of GTA weld pools on thin-plate 304 stainless steel

    SciTech Connect

    Zacharia, T.; David, S.A.; Vitek, J.M.; Kraus, H.G.

    1995-11-01

    A transient multidimensional computational model was utilized to study gas tungsten arc (GTA) welding of thin-plate 304 stainless steel (SS). The model eliminates several of the earlier restrictive assumptions including temperature-independent thermal-physical properties. Consequently, all important thermal-physical properties were considered as temperature dependent throughout the range of temperatures experienced by the weld metal. The computational model was used to predict surface temperature distribution of the GTA weld pools in 1.5-mm-thick AISI 304 SS. The welding parameters were chosen so as to correspond with an earlier experimental study that produced high-resolution surface temperature maps. One of the motivations of the present study was to verify the predictive capability of the computational model. Comparison of the numerical predictions and experimental observations indicate excellent agreement, thereby verifying the model.

  1. Investigation of a fatigue failure in a stainless steel femoral plate.

    PubMed

    Marcomini, J B; Baptista, C A R P; Pascon, J P; Teixeira, R L; Reis, F P

    2014-10-01

    Surgical implants are exposed to severe working conditions and therefore a wide range of failure mechanisms may occur, including fatigue, corrosion, wear, fretting and combinations of them. The mechanical failures of metallic implants may also be influenced by several other factors, including the design, material, manufacturing, installation, postoperative complications and misuse. An 83-year-old patient suffered an oblique femoral shaft fracture due to a fall at home. A stainless steel locking compression plate (LCP) employed in the fracture reduction failed after four months and was sent back to the producer. A second LCP of the same type was implanted and also failed after six months. A failure analysis of the second femoral LCP is performed in this paper. The results demonstrate that poor material quality was decisive to the failure. The chemical analysis revealed a high P content in the steel, which is not in accordance to the standards. A combination of factors lead to LCP fracture and these include: brittle crack initiation due to phosphorus, segregation at grain boundaries, crack propagation due to cyclic loading and final fast fracture favored by the loss of ductility due to cold work. PMID:25023519

  2. Residual stresses in a multi-pass weld in an austenitic stainless steel plate before and after thermal stress relief

    SciTech Connect

    Spooner, S.; Wang, X.L.; Hubbard, C.R.; David, S.A.

    1994-06-01

    Changes in residual stresses due to thermal stress relief were determined in a welded 1/2 in. thick 304 stainless steel plate from two residual stress maps determined with the neutron diffraction technique. The 304 stainless plate was made from two 6 {times} 12 {times} 1/2 in. pieces joined along the length by a gas tungsten arc welding process. Multi-pass welds were made with a semiautomatic welding machine employing cold-wire feed of type 308 stainless steel filler alloy. The thermal stress relief treatment consisted of heating to 1150 F, holding for one hour at temperature and then air cooling. Strain components were measured along the weld direction (longitudinal), perpendicular to the weld line in the plate (transverse), and normal to the plate. Measurements were confined to the plane bisecting the weld at the center of the plate. The strain components were converted to stresses assuming that the measured strains were along the principal axes of the strain tensor. Parameters used in the calculation were E=224 GPa and v=0.25. As-welded longitudinal stresses are compressive in the base metal and become strongly tensile through the heat affected zone and into the fusion zone. The transverse stresses follow the longitudinal trend but with a lower magnitude while the normal stresses are small throughout. The stress relief treatment reduced the magnitudes of all the stresses. In the weld zone the longitudinal stress was lowered by 30% and the spatial range of residual stresses was reduced as well.

  3. Properties of graphite-stainless steel composite in bipolar plates in simulated anode and cathode environments of PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Włodarczyk, Renata

    2014-09-01

    The use of a graphite-stainless steel composite as bipolar plates (BP) in polymer electrolyte membrane fuel cells (PEMFCs) has been evaluated. The study covers measurements of mechanical properties, microstructural examination, analysis of surface profile, wettability, porosity and corrosion resistance of the composite. The corrosion properties of the composite were examined in 0.1 mol·dm-3 H2SO4 + 2 ppm F- saturated with H2 or with O2 and in solutions with different pH: in Na2SO4+ 2 ppm F- (pH = 1.00, 3.00, 5.00) at 80 °C. The performed tests indicate that the graphite modified with stainless steel can be a good choice to be used as a bipolar plate in PEM fuel cells.

  4. 75 FR 61699 - Stainless Steel Plate in Coils From Belgium, Italy, South Africa, South Korea, and Taiwan: Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ...On June 2, 2010, the Department of Commerce (the Department) initiated sunset reviews of the antidumping duty orders on stainless steel plate in coils (SSPC) from Belgium, Italy, South Africa, South Korea, and Taiwan, pursuant to section 751(c) of the Tariff Act of 1930, as amended (the Act). The Department has conducted expedited (120-day) sunset reviews for these orders pursuant to 19 CFR......

  5. Stainless steel versus titanium volar multi-axial locking plates for fixation of distal radius fractures: a randomised clinical trial

    PubMed Central

    2014-01-01

    Background Distal radius fractures are among the most common fractures seen in the hospital emergency department. Of these, over 40% are considered unstable and require some form of fixation. In recent years with the advent of low profile plating, open reduction and internal fixation (ORIF) using volar plates has become the surgical treatment of choice in many hospitals. However, it is currently unknown which plating system has the lowest complication rate and/or superior clinical and radiological outcomes following surgery. Few studies have compared different types of plates, which may have various features, different plate and screw designs or may be manufactured from different materials (for example, stainless steel or titanium). This study will specifically investigate and compare the clinical and radiological outcomes and complication rates of two commonly used volar plating systems for fixation of distal radius fractures: one made from stainless steel (Trimed™ Volar Plate, Trimed™, California, USA) and the other made from titanium (Medartis® Aptus Volar Plate, Medartis®, Basel, Switzerland). The primary aim of this study is to determine if there is a difference on the Patient Reported Wrist Evaluation six months following ORIF using a volar plate for adult patients with a distal radius fracture. Methods/Design This study will implement a randomized prospective clinical trial study design evaluating the outcomes of two different types of volar plates: one plate manufactured from stainless steel (Trimed™ Volar Plate) and one plate manufactured from titanium (Medartis® Aptus Volar Plate). The surgery will be performed at a major trauma hospital in Brisbane, Australia. Outcome measures including function, adverse events, range of movement, strength, disability, radiological findings and health-related quality of life will be collected at 6 weeks, 3, 6, 12 and 24 months following surgery. A parallel economic analysis will also be performed. This

  6. Electrochemical behaviour and surface conductivity of niobium carbide-modified austenitic stainless steel bipolar plate

    NASA Astrophysics Data System (ADS)

    Wang, Lixia; Sun, Juncai; Kang, Bin; Li, Song; Ji, Shijun; Wen, Zhongsheng; Wang, Xiaochun

    2014-01-01

    A niobium carbide diffusion layer with a cubic NbC phase surface layer (∼6 μm) and a Nb and C diffusion subsurface layer (∼1 μm) is fabricated on the surface of AISI 304 stainless steel (304 SS) bipolar plate in a proton exchange membrane fuel cell (PEMFC) using plasma surface diffusion alloying. The electrochemical behaviour of the niobium carbide diffusion-modified 304 SS (Nb-C 304 SS) is investigated in simulated PEMFC environments (0.5 M H2SO4 and 2 ppm HF solution at 80 °C). Potentiodynamic, potentiostatic polarisation and electrochemical impedance spectroscopy measurements reveal that the niobium carbide diffusion layer considerably improves the corrosion resistance of 304 SS compared with untreated samples. The corrosion current density of Nb-C 304 SS is maintained at 0.058 μA cm-2 and 0.051 μA cm-2 under simulated anodic and cathodic conditions, respectively. The interfacial contact resistance of Nb-C 304 SS is 8.47 mΩ cm2 at a compaction force of 140 N cm-2, which is significantly lower than that of the untreated sample (100.98 mΩ cm2). Moreover, only a minor increase in the ICR of Nb-C 304 SS occurs after 10 h potentiostatic tests in both cathodic and anodic environments.

  7. Multilayer graphene for long-term corrosion protection of stainless steel bipolar plates for polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Stoot, Adam C.; Camilli, Luca; Spiegelhauer, Susie-Ann; Yu, Feng; Bøggild, Peter

    2015-10-01

    Motivated by similar investigations recently published (Pu et al., 2015), we report a comparative corrosion study of three sets of samples relevant as bipolar plates for polymer electrolyte fuel cells: stainless steel, stainless steel with a nickel seed layer (Ni/SS) and stainless steel with Ni seed layer coated by a multi-layered graphene thin film (G/Ni/SS). The graphene film, synthesized by chemical vapour deposition (CVD), has a moderate amount of defects according to Raman spectroscopy. Short/medium-term corrosion test shows no significant advantage of using G/Ni/SS rather than Ni/SS, both samples exhibiting a similar trend, thus questioning the short-term positive effect of graphene coatings. However, partial immersion in boiling seawater for three weeks reveals a clear superiority of the graphene coating with respect to steel just protected by Ni. After the test, the graphene film is still intact with unchanged defect density. Our results show that even non-perfect multilayer graphene films can considerably increase the lifetime of future-generation bipolar plates for fuel cells.

  8. Supertough Stainless Bearing Steel

    NASA Technical Reports Server (NTRS)

    Olson, Gregory B.

    1995-01-01

    Composition and processing of supertough stainless bearing steel designed with help of computer-aided thermodynamic modeling. Fracture toughness and hardness of steel exceeds those of other bearing steels like 440C stainless bearing steel. Developed for service in fuel and oxidizer turbopumps on Space Shuttle main engine. Because of strength and toughness, also proves useful in other applications like gears and surgical knives.

  9. Tensile Stress-Strain Results for 304L and 316L Stainless-Steel Plate at Temperature

    SciTech Connect

    R. K. Blandford; D. K. Morton; S. D. Snow; T. E. Rahl

    2007-07-01

    The Idaho National Laboratory (INL) is conducting moderate strain rate (10 to 200 per second) research on stainless steel materials in support of the Department of Energy’s (DOE) National Spent Nuclear Fuel Program (NSNFP). For this research, strain rate effects are characterized by comparison to quasi-static tensile test results. Considerable tensile testing has been conducted resulting in the generation of a large amount of basic material data expressed as engineering and true stress-strain curves. The purpose of this paper is to present the results of quasi-static tensile testing of 304/304L and 316/316L stainless steels in order to add to the existing data pool for these materials and make the data more readily available to other researchers, engineers, and interested parties. Standard tensile testing of round specimens in accordance with ASTM procedure A 370-03a were conducted on 304L and 316L stainless-steel plate materials at temperatures ranging from -20 °F to 600 °F. Two plate thicknesses, eight material heats, and both base and weld metal were tested. Material yield strength, Young’s modulus, ultimate strength, ultimate strain, failure strength and failure strain were determined, engineering and true stress-strain curves to failure were developed, and comparisons to ASME Code minimums were made. The procedures used during testing and the typical results obtained are described in this paper.

  10. Coating stainless steel plates with Ag/TiO2 for chlorpyrifos decontamination

    NASA Astrophysics Data System (ADS)

    Abdel Fattah, Wafa I.; Gobara, Mohammed M.; El-Hotaby, Walid; Mostafa, Sherif F. M.; Ali, Ghareib W.

    2016-05-01

    Spray coatings of either nanosilver (Ag), titanium (TiO2) or nanosilver titanium (Ag/TiO2) on stainless steel substrates prepared by sol–gel process were successfully achieved. The efficiency of the Ag/TiO2 coat onto 316 stainless steel surface towards cloropyrifos degradation as a chemical warfare agent (CWA) was proved. The crystalline structure and morphological characterization, as well as surface roughness measurements, were assessed. X-ray diffraction results proved the crystalline TiO2 anatase phase. The uniform distribution of Ag along with TiO2 nanoparticles was evidenced through transmission electron microscopy and scanning electron microscopy mapping. The hydrophilic nature of individual Ag, TiO2 and Ag/TiO2 coats was proved by contact angle measurements. The loading of Ag nanoparticles influenced positively the Ag/TiO2 coats surface roughness. The photocatalytic cloropyrifos degradation achieved about 50% within one-hour post UV treatment proving, therefore, the promising Ag/TiO2 continued decontamination efficiency. In conclusion, tuning the physical and morphological properties of TiO2 coated on stainless steel surface could be significantly enhanced by Ag nanoparticles incorporation. The developed Ag/TiO2 coat could be conveniently applied as CWA decontaminant.

  11. An electrochemical treatment to improve corrosion and contact resistance of stainless steel bipolar plates used in polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Gabreab, Ebrahim M.; Hinds, Gareth; Fearn, Sarah; Hodgson, David; Millichamp, Jason; Shearing, Paul R.; Brett, Daniel J. L.

    2014-01-01

    An electrochemical surface treatment is presented that improves the properties of stainless steel (316SS) used as bipolar plates for polymer electrolyte fuel cells (PEFCs). The process is an anodic treatment, whereby the material is polarised beyond the transpassive region. Potentiodynamic corrosion testing, chemical and morphological surface characterisation and interfacial contact resistance measurements indicate that the improved properties of 316SS are primarily a consequence of an enrichment of Cr at the near-surface of the material. The surface treatment increases the corrosion resistance and significantly reduces interfacial contact resistance.

  12. Graphene grown on stainless steel as a high-performance and ecofriendly anti-corrosion coating for polymer electrolyte membrane fuel cell bipolar plates

    NASA Astrophysics Data System (ADS)

    Pu, Nen-Wen; Shi, Gia-Nan; Liu, Yih-Ming; Sun, Xueliang; Chang, Jeng-Kuei; Sun, Chia-Liang; Ger, Ming-Der; Chen, Chun-Yu; Wang, Po-Chiang; Peng, You-Yu; Wu, Chia-Hung; Lawes, Stephen

    2015-05-01

    In this study, the growth of graphene by chemical vapor deposition (CVD) on SUS304 stainless steel and on a catalyzing Ni/SUS304 double-layered structure was investigated. The results indicated that a thin and multilayered graphene film can be continuously grown across the metal grain boundaries of the Ni/SUS304 stainless steel and significantly enhance its corrosion resistance. A 3.5 wt% saline polarization test demonstrated that the corrosion currents in graphene-covered SUS304 were improved fivefold relative to the corrosion currents in non-graphene-covered SUS304. In addition to enhancing the corrosion resistance of stainless steel, a graphene coating also ameliorates another shortcoming of stainless steel in a corrosive environment: the formation of a passive oxidation layer on the stainless steel surface that decreases conductivity. After a corrosion test, the graphene-covered stainless steel continued to exhibit not only an excellent low interfacial contact resistance (ICR) of 36 mΩ cm2 but also outstanding drainage characteristics. The above results suggest that an extremely thin, lightweight protective coating of graphene on stainless steel can act as the next-generation bipolar plates of fuel cells.

  13. Chromium-Makes stainless steel stainless

    USGS Publications Warehouse

    Kropschot, S.J.; Doebrich, Jeff

    2010-01-01

    Chromium, a steely-gray, lustrous, hard metal that takes a high polish and has a high melting point, is a silvery white, hard, and bright metal plating on steel and other material. Commonly known as chrome, it is one of the most important and indispensable industrial metals because of its hardness and resistance to corrosion. But it is used for more than the production of stainless steel and nonferrous alloys; it is also used to create pigments and chemicals used to process leather.

  14. Elastomer-induced crevice corrosion and stress corrosion cracking of stainless steel heat exchanger plates in sour amine service

    SciTech Connect

    Hay, M.G.; Baron, J.J.; Moffat, T.A.

    1996-08-01

    Types S31600 and S31254 stainless steel heat exchanger plates have suffered crevice corrosion and stress corrosion cracking under gaskets in rich amine service in a sour gas plant. The gasket material, ethylene-propylene-diene monomer (EPDM), has been used successfully for many years at other sour gas plants. Laboratory testing has duplicated the corrosion observed and shown that the mechanism is synergistic sulfide-halide attack. The use of a bromine plus chlorine-activated curing system for the EPDM rubber gaskets provided the necessary halides. Laboratory testing identified some nickel-based superalloys which were resistant to this corrosion and also demonstrated that essentially halogen-free, peroxide-cured EPDM gaskets do not cause attack of S31600 or S31254. The heat exchanger packs were replaced with S31600 plates and peroxide-cured EPDM gaskets having a specified total halogen concentration of 200 ppm maximum. Field operating experience has been excellent.

  15. Pre-oxidized and nitrided stainless steel alloy foil for proton exchange membrane fuel cell bipolar plates. Part 2: Single-cell fuel cell evaluation of stamped plates

    NASA Astrophysics Data System (ADS)

    Toops, Todd J.; Brady, Michael P.; Tortorelli, Peter F.; Pihl, Josh A.; Estevez, Francisco; Connors, Daniel; Garzon, Fernando; Rockward, Tommy; Gervasio, Don; Mylan, William; Kosaraju, Sree Harsha

    Thermal (gas) nitridation of stainless steel alloys can yield low interfacial contact resistance (ICR), electrically conductive and corrosion-resistant nitride containing surface layers (Cr 2N, CrN, TiN, V 2N, VN, etc.) of interest for fuel cells, batteries, and sensors. This paper presents results of proton exchange membrane (PEM) single-cell fuel cell studies of stamped and pre-oxidized/nitrided developmental Fe-20Cr-4V weight percent (wt.%) and commercial type 2205 stainless steel alloy foils. The single-cell fuel cell behavior of the stamped and pre-oxidized/nitrided material was compared to as-stamped (no surface treatment) 904L, 2205, and Fe-20Cr-4V stainless steel alloy foils and machined graphite of similar flow field design. The best fuel cell behavior among the alloys was exhibited by the pre-oxidized/nitrided Fe-20Cr-4V, which exhibited ∼5-20% better peak power output than untreated Fe-20Cr-4V, 2205, and 904L metal stampings. Durability was assessed for pre-oxidized/nitrided Fe-20Cr-4V, 904L metal, and graphite plates by 1000+ h of cyclic single-cell fuel cell testing. All three materials showed good durability with no significant degradation in cell power output. Post-test analysis indicated no metal ion contamination of the membrane electrode assemblies (MEAs) occurred with the pre-oxidized and nitrided Fe-20Cr-4V or graphite plates, and only a minor amount of contamination with the 904L plates.

  16. Corrosive characteristics of surface-modified stainless steel bipolar plate in solid polymer fuel cell

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowen; Wang, Lixia; Sun, Juncai

    2015-03-01

    In this paper, corrosion behavior of an AISI 304 stainless steel modified by niobium or niobium nitride (denoted as niobized 304 SS and Nb-N 304 SS, respectively) is investigated in simulated solid polymer fuel cell (SPFC) operating conditions. Potentiodynamic polarizations show that the corrosion potentials of surface modified 304 SS shift to positive direction while the corrosion current densities decrease greatly comparing with the bare 304 SS in simulated anodic SPFC environments. The order of corrosive resistance in corrosive potential, corrosive current density and pitting potential is: Nb-N 304 SS > niobized 304 SS > bare 304 SS. In the methanol-fueled SPFC operating conditions, the results show that the corrosion resistance of bare and niobized 304 SS increases with the methanol concentration increasing in the test solutions.

  17. Lanthanum oxide-coated stainless steel for bipolar plates in solid oxide fuel cells (SOFCs)

    NASA Astrophysics Data System (ADS)

    Yoon, Jong Seol; Lee, Jun; Hwang, Hae Jin; Whang, Chin Myung; Moon, Ji-Woong; Kim, Do-Hyeong

    Solid oxide fuel cells typically operate at temperatures of about 1000 °C. At these temperatures only ceramic interconnects such as LaCrO 3 can be employed. The development of intermediate-temperature solid oxide fuel cells (IT-SOFCs) can potentially bring about reduced manufacturing costs as it makes possible the use of an inexpensive ferritic stainless steel (STS) interconnector. However, the STS suffers from Cr 2O 3 scale formation and a peeling-off phenomenon at the IT-SOFC operating temperature in an oxidizing atmosphere. Application of an oxidation protective coating is an effective means of providing oxidation resistance. In this study, we coated an oxidation protective layer on ferritic stainless steel using a precursor solution prepared from lanthanum nitrate, ethylene glycol, and nitric acid. Heating the precursor solution at 80 °C yielded a spinable solution for coating. A gel film was coated on a STS substrate by a dip coating technique. At the early stage of the heat-treatment, lanthanum-containing oxides such as La 2O 3 and La 2CrO 6 formed, and as the heat-treatment temperature was increased, an oxidation protective perovskite-type LaCrO 3 layer was produced by the reaction between the lanthanum-containing oxide and the Cr 2O 3 scale on the SUS substrate. As the concentration of La-containing precursor solution was increased, the amount of La 2O 3 and La 2CrO 6 phases was gradually increased. The coating layer, which was prepared from a precursor solution of 0.8 M, was composed of LaCrO 3 and small amounts of (Mn,Cr)O 4 spinel. A relatively dense coating layer without pin-holes was obtained by heating the gel coating layer at 1073 K for 2 h. Microstructures and oxidation behavior of the La 2O 3-coated STS444 were investigated.

  18. Conductive and corrosion behaviors of silver-doped carbon-coated stainless steel as PEMFC bipolar plates

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Xu, Hong-feng; Fu, Jie; Tian, Ying

    2016-07-01

    Ni-Cr enrichment on stainless steel SS316L resulting from chemical activation enabled the deposition of carbon by spraying a stable suspension of carbon nanoparticles; trace Ag was deposited in situ to prepare a thin continuous Ag-doped carbon film on a porous carbon-coated SS316L substrate. The corrosion resistance of this film in 0.5 mol·L-1 H2SO4 solution containing 5 ppm F- at 80°C was investigated using polarization tests. The results showed that the surface treatment of the SS316L strongly affected the adhesion of the carbon coating to the stainless steel. Compared to the bare SS316L, the Ag-doped carbon-coated SS316L bipolar plate was remarkably more stable in both the anode and cathode environments of proton exchange membrane fuel cell (PEMFC) and the interface contact resistance between the specimen and Toray 060 carbon paper was reduced from 333.0 mΩ·cm2 to 21.6 mΩ·cm2 at a compaction pressure of 1.2 MPa.

  19. Is stainless steel really "stainless"?

    PubMed

    Porteous, Joan

    2011-06-01

    Initial purchase and replacement costs for surgical instrumentation are significant components in today's operating room budgets. OR staff and medical device reprocessing personnel work together as a team to ensure effective management of this valuable commodity. The purpose of this article is to discuss the composition of stainless steel surgical instruments, to identify processes to minimize damage to instruments caused by staining, corrosion, and pitting, and to utilize that information to describe effective measures to manage instrumentation in both the OR and reprocessing areas. PMID:21823503

  20. Improved corrosion resistance and interfacial contact resistance of 316L stainless-steel for proton exchange membrane fuel cell bipolar plates by chromizing surface treatment

    NASA Astrophysics Data System (ADS)

    Lee, S. B.; Cho, K. H.; Lee, W. G.; Jang, H.

    The electrochemical performance and electrical contact resistance of chromized 316 stainless-steel (SS) are investigated under simulated operating condition in a proton-exchange membrane fuel cell (PEMFC). The corrosion resistance of the chromized stainless steel is assessed by potentiodynamic and potentiostatic tests and the interfacial contact resistance (ICR) is examined by measuring the electrical contact resistance as a function of the compaction force. The results show that the chromizing surface treatment improves the corrosion resistance of the stainless steel due to the high-chromium concentration in the diffuse coating layer. On the other hand, the excess Chromium content on the surface increases the contact resistance of the steel plate to a level that is excessively high for commercial applications. This study examines the root cause of the high-contact resistance after chromizing and reports the optimum process to improve the corrosion resistance without sacrificing the ICR by obtaining a chrome carbide on the outer layer.

  1. Torsional moment to failure for carbon fibre polysulphone expandable rivets as compared with stainless steel screws for carbon fibre-reinforced epoxy fracture plate fixation.

    PubMed

    Sell, P J; Prakash, R; Hastings, G W

    1989-04-01

    A method of securing carbon fibre-reinforced epoxy bone plates with carbon fibre polysulphone expanding rivets was investigated. Six carbon fibre-reinforced epoxy bone plates were secured to rods with carbon fibre polysulphone rivets and six were secured with standard cortical stainless steel screws. These constructions were then subjected to pure torsional load to failure. The carbon fibre expandable rivets failed at a greater torsional moment. PMID:2720038

  2. Electroless Ni-Cu-P plating onto open cell stainless steel foam

    NASA Astrophysics Data System (ADS)

    Abdel Aal, A.; Shehata Aly, M.

    2009-04-01

    Metallic foams with a high fraction of porosity, low density and high energy absorption capacity, are a rapidly emerging class of novel ultralightweight materials for various engineering applications. Development of these materials with Ni-Cu-P coatings is expected to widespread their industrial utilizations. This article aims to apply Ni-Cu-P coatings onto open cell stainless steel foams from Ni-P bath containing CuSO 4·5H 2O as a source of Cu ions. Scanning electron microscopy and energy dispersive analysis were used to investigate the microstructure and chemical composition of the deposited coatings, respectively. The influence of CuSO 4·5H 2O addition on the deposition rate, chemical composition and surface morphology of coatings was studied. The corrosion performance of coated foam was examined in 1 M HCl using weight loss technique. The results revealed that wt.% of Cu in deposit increases with CuSO 4·5H 2O concentration, while wt.% of Ni and P is reduced. Better corrosion resistance, finer-grained deposit and lower deposition rate were observed by increasing Cu content into Ni-P matrix.

  3. Articles comprising ferritic stainless steels

    DOEpatents

    Rakowski, James M.

    2016-06-28

    An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the article of manufacture is a fuel cell interconnect for a solid oxide fuel cell.

  4. Solderability study of 63Sn-37Pb on zinc-plated and cadmium-plated stainless steel for the MC4636 lightning arrestor connector.

    SciTech Connect

    Lopez, Edwin Paul; Vianco, Paul Thomas; Rejent, Jerome Andrew; Martin, Joseph J.

    2004-06-01

    Cadmium plating on metal surfaces is commonly used for corrosion protection and to achieve good solderability on the 304L stainless steel shell of the MC4636 lightning arrestor connector (LAC) for the W76-1 system. This study examined the use of zinc as a potential substitute for the cadmium protective surface finish. Tests were performed with an R and RMA flux and test temperatures of 230 C, 245 C, and 260 C. Contact angle, {theta}{sub c}, served as the generalized solderability metric. The wetting rate and wetting time parameters were also collected. The solderability ({theta}{sub c}) of the Erie Plating Cd/Ni coatings was better than that of similar Amphenol coatings. Although the {theta}{sub c} data indicated that both Cd/Ni platings would provide adequate solderability, the wetting rate and wetting time data showed the Amphenol coatings to have better performance. The Zn/Ni coatings exhibited non-wetting under all flux and temperature conditions. Based on the results of these tests, it has been demonstrated that zinc plating is not a viable alternate to cadmium plating for the LAC connectors.

  5. Pre-Oxidized and Nitrided Stainless Steel Foil for Proton Exchange Membrane Fuel Cell Bipolar Plates: Part 1 Corrosion, Interfacial Contact Resistance, and Surface Structure

    SciTech Connect

    Brady, Michael P; Wang, Heli; Turner, John; Meyer III, Harry M; More, Karren Leslie; Tortorelli, Peter F; McCarthy, Brian D

    2010-01-01

    Thermal (gas) nitridation of stainless steels can yield low interfacial contact resistance (ICR), electrically-conductive and corrosion-resistant nitride containing surfaces (Cr2N, CrN, TiN, V2N, VN, etc) of interest for fuel cells, batteries, and sensors. This paper presents the results of scale up studies to determine the feasibility of extending the nitridation approach to thin 0.1 mm stainless steel alloy foils for proton exchange membrane fuel cell (PEMFC) bipolar plates. A major emphasis was placed on selection of alloy foil composition and nitidation conditions potentially capable of meeting the stringent cost goals for automotive PEMFC applications. Developmental Fe-20Cr-4V alloy and type 2205 stainless steel foils were treated by pre-oxidation and nitridation to form low-ICR, corrosion-resistant surfaces. Promising behavior was observed under simulated aggressive anode- and cathode- side bipolar plate conditions for both materials. Variation in ICR values were observed for treated 2205 foil, with lower (better) values generally observed for the treated Fe-20Cr-4V. This behavior was linked to the nature of the pre-oxidized and nitrided surface structure, which contained through surface layer thickness V-nitride particles in the case of Fe-20Cr-4V but near continuous chromia in the case of 2205 stainless steel. The implications of these findings for stamped bipolar plate foils are discussed.

  6. Pre-oxidized and nitrided stainless steel alloy foil for proton exchange membrane fuel cell bipolar plates: Part 1. Corrosion, interfacial contact resistance, and surface structure

    NASA Astrophysics Data System (ADS)

    Brady, M. P.; Wang, H.; Turner, J. A.; Meyer, H. M.; More, K. L.; Tortorelli, P. F.; McCarthy, B. D.

    Thermal (gas) nitridation of stainless steel alloys can yield low interfacial contact resistance (ICR), electrically conductive and corrosion-resistant nitride containing surface layers (Cr 2N, CrN, TiN, V 2N, VN, etc.) of interest for fuel cells, batteries, and sensors. This paper presents results of scale-up studies to determine the feasibility of extending the nitridation approach to thin 0.1 mm stainless steel alloy foils for proton exchange membrane fuel cell (PEMFC) bipolar plates. Developmental Fe-20Cr-4V alloy and type 2205 stainless steel foils were treated by pre-oxidation and nitridation to form low-ICR, corrosion-resistant surfaces. As-treated Fe-20Cr-4V foil exhibited target (low) ICR values, whereas 2205 foil suffered from run-to-run variation in ICR values, ranging up to 2× the target value. Pre-oxidized and nitrided surface structure examination revealed surface-through-layer-thickness V-nitride particles for the treated Fe-20Cr-4V, but near continuous chromia for treated 2205 stainless steel, which was linked to the variation in ICR values. Promising corrosion resistance was observed under simulated aggressive PEMFC anode- and cathode-side bipolar plate conditions for both materials, although ICR values were observed to increase. The implications of these findings for stamped bipolar plate foils are discussed.

  7. Numerical Simulation and Artificial Neural Network Modeling for Predicting Welding-Induced Distortion in Butt-Welded 304L Stainless Steel Plates

    NASA Astrophysics Data System (ADS)

    Narayanareddy, V. V.; Chandrasekhar, N.; Vasudevan, M.; Muthukumaran, S.; Vasantharaja, P.

    2016-02-01

    In the present study, artificial neural network modeling has been employed for predicting welding-induced angular distortions in autogenous butt-welded 304L stainless steel plates. The input data for the neural network have been obtained from a series of three-dimensional finite element simulations of TIG welding for a wide range of plate dimensions. Thermo-elasto-plastic analysis was carried out for 304L stainless steel plates during autogenous TIG welding employing double ellipsoidal heat source. The simulated thermal cycles were validated by measuring thermal cycles using thermocouples at predetermined positions, and the simulated distortion values were validated by measuring distortion using vertical height gauge for three cases. There was a good agreement between the model predictions and the measured values. Then, a multilayer feed-forward back propagation neural network has been developed using the numerically simulated data. Artificial neural network model developed in the present study predicted the angular distortion accurately.

  8. Sensitization of stainless steel

    NASA Technical Reports Server (NTRS)

    Nagy, James P.

    1990-01-01

    The objective of this experiment is to determine the corrosion rates of 18-8 stainless steels that have been sensitized at various temperatures and to show the application of phase diagrams. The laboratory instructor will assign each student a temperature, ranging from 550 C to 1050 C, to which the sample will be heated. Further details of the experimental procedure are detailed.

  9. Nickel release from stainless steels.

    PubMed

    Haudrechy, P; Mantout, B; Frappaz, A; Rousseau, D; Chabeau, G; Faure, M; Claudy, A

    1997-09-01

    In 1994, a study of nickel release and allergic contact dermatitis from nickel-plated metals and stainless steels was published in this journal. It was shown that low-sulfur stainless steel grades like AISI 304, 316L or 430 (S < or = 0.007%) release less than 0.03 microgram/cm2/week of nickel in acid artificial sweat and elicit no reactions in patients already sensitized to nickel. In contrast, nickel-plated samples release around 100 micrograms/cm2/week of Ni and high-sulfur stainless steel (AISI 303-S approximately 0.3%) releases about 1.5 micrograms/cm2/week in this acid artificial sweat. Applied on patients sensitized to nickel, these metals elicit positive reactions in 96% and 14%, respectively, of the patients. The main conclusion was that low-sulfur stainless steels like AISI 304, 316L or 430, even when containing Ni, should not elicit nickel contact dermatitis, while metals having a mean corrosion resistance like a high-sulfur stainless steel (AISI 303) or nickel-plated steel should be avoided. The determining characteristic was in fact the corrosion resistance in chloride media, which, for stainless steels, is connected, among other factors, to the sulfur content. Thus, a question remained concerning the grades with an intermediate sulfur content, around 0.03%, which were not studied. They are the object of the study presented in this paper. 3 tests were performed: leaching experiments, dimethylglyoxime and HNO3 spot tests, and clinical patch tests; however, only stainless steels were tested: a low-sulfur AISI 304 and AISI 303 as references and 3 grades with a sulfur content around 0.03%: AISI 304L, AISI 304L added with Ca, AISI 304L+Cu. Leaching experiments showed that the 4 non-resulfurised grades released less than 0.5 microgram/cm2/week in acid sweat while the reulfurized AISI 303 released around or more than 0.5 microgram/cm2/week. This is explained by the poorer corrosion resistance of the resulfurized grade. Yet all these grades had the same

  10. A metallurgical examination of fractured stainless-steel ASIF tibial plates.

    PubMed

    Richman, M H; Weltman, J K; Cole, A

    1976-08-01

    Between 1970 and 1973 99 tibial fractures were treated by rigid internal fixation with ASIF plates. The fractures were all regarded as sufficiently stable for exercise without weight bearing, thus needing no additional external support during the healing period. Four of the plates broke late in the healing period, after the onset of weight bearing. These fractures had some degree of delayed union with slight resorption of the bone ends, resulting in cyclical bending of the plate. Examination of 2 of the fractured plates by scanning electron microscopy, electron microprobe analysis and optical metallography revealed that the primary cause of plate fracture was fatigue. There was no evidence that corrosion fatigue or inclusion content were factors leading to plate fracture. PMID:1002271

  11. Photon-stimulated desorption yields from stainless steel and copper-plated beam tubes with various pretreatments

    SciTech Connect

    Foerster, C.L.; Halama, H.; Lanni, C. )

    1990-05-01

    Photon-stimulated desorption (PSD) from the walls of electron storage rings and associated beamlines imposes serious limits on their beam quality and beam lifetimes. Stainless steel (SS) is the most used material for beam lines and its use has become more dominant for dedicated light sources. Copper-plated SS beam pipes have been selected for the superconducting super collider (SSC) project. Three-meter-long tubes of 3, 8.8, and 10 cm diameter were prepared using the following pretreatments common in storage rings. The samples were chemically cleaned only, vacuum baked to 200 {degree}C, vacuum fired to 950 {degree}C, and argon--oxygen glow-discharge conditioned. A dedicated beam line at the National Synchrotron Light Source was used to measure PSD from the samples. Desorption was measured as a function of beam current during exposure to white light having a critical energy of 500 MeV. Our results are presented and compared with PSD from previous work on aluminum and SS here and at other laboratories. Glow-discharged SS yields the lowest PSD.

  12. Probing Formability Improvement of Ultra-thin Ferritic Stainless Steel Bipolar Plate of PEMFC in Non-conventional Forming Process

    NASA Astrophysics Data System (ADS)

    Bong, Hyuk Jong; Barlat, Frédéric; Lee, Myoung-Gyu

    2016-05-01

    Formability increase in non-conventional forming profiles programmed in the servo-press was investigated using finite element analysis. As an application, forming experiment on a 0.15-mm-thick ferritic stainless steel sheet for a bipolar plate, a primary component of a proton exchange membrane fuel cell, was conducted. Four different forming profiles were considered to investigate the effects of forming profiles on formability and shape accuracy. The four motions included conventional V motion, holding motion, W motion, and oscillating motion. Among the four motions, the holding motion, in which the slide was held for a certain period at the bottom dead point, led to the best formability. Finite element simulations were conducted to validate the experimental results and to probe the formability improvement in the non-conventional forming profiles. A creep model to address stress relaxation effect along with tool elastic recovery was implemented using a user-material subroutine, CREEP in ABAQUS finite element software. The stress relaxation and variable contact conditions during the holding and oscillating profiles were found to be the main mechanism of formability improvement.

  13. Probing Formability Improvement of Ultra-thin Ferritic Stainless Steel Bipolar Plate of PEMFC in Non-conventional Forming Process

    NASA Astrophysics Data System (ADS)

    Bong, Hyuk Jong; Barlat, Frédéric; Lee, Myoung-Gyu

    2016-08-01

    Formability increase in non-conventional forming profiles programmed in the servo-press was investigated using finite element analysis. As an application, forming experiment on a 0.15-mm-thick ferritic stainless steel sheet for a bipolar plate, a primary component of a proton exchange membrane fuel cell, was conducted. Four different forming profiles were considered to investigate the effects of forming profiles on formability and shape accuracy. The four motions included conventional V motion, holding motion, W motion, and oscillating motion. Among the four motions, the holding motion, in which the slide was held for a certain period at the bottom dead point, led to the best formability. Finite element simulations were conducted to validate the experimental results and to probe the formability improvement in the non-conventional forming profiles. A creep model to address stress relaxation effect along with tool elastic recovery was implemented using a user-material subroutine, CREEP in ABAQUS finite element software. The stress relaxation and variable contact conditions during the holding and oscillating profiles were found to be the main mechanism of formability improvement.

  14. Nickel: makes stainless steel strong

    USGS Publications Warehouse

    Boland, Maeve A.

    2012-01-01

    Nickel is a silvery-white metal that is used mainly to make stainless steel and other alloys stronger and better able to withstand extreme temperatures and corrosive environments. Nickel was first identified as a unique element in 1751 by Baron Axel Fredrik Cronstedt, a Swedish mineralogist and chemist. He originally called the element kupfernickel because it was found in rock that looked like copper (kupfer) ore and because miners thought that "bad spirits" (nickel) in the rock were making it difficult for them to extract copper from it. Approximately 80 percent of the primary (not recycled) nickel consumed in the United States in 2011 was used in alloys, such as stainless steel and superalloys. Because nickel increases an alloy's resistance to corrosion and its ability to withstand extreme temperatures, equipment and parts made of nickel-bearing alloys are often used in harsh environments, such as those in chemical plants, petroleum refineries, jet engines, power generation facilities, and offshore installations. Medical equipment, cookware, and cutlery are often made of stainless steel because it is easy to clean and sterilize. All U.S. circulating coins except the penny are made of alloys that contain nickel. Nickel alloys are increasingly being used in making rechargeable batteries for portable computers, power tools, and hybrid and electric vehicles. Nickel is also plated onto such items as bathroom fixtures to reduce corrosion and provide an attractive finish.

  15. Electroless Plating of Palladium on Stainless Steel Substrates in Hydrazine Solutions: A Study of the Relationships Between Bath Parameters, Deposition Mechanisms, and Deposit Morphologies

    NASA Astrophysics Data System (ADS)

    Davis, Stacy

    Development of a reliable and inexpensive method for producing hydrogen permeable membranes is of intense interest to ongoing fuel cell research. This study investigated electroless plating of palladium onto stainless steel substrates in hydrazine solution as a possible means of membrane production. Following initial research to establish the optimum infiltrant particle size, sensitization time, and activation time, electroless plating experiments were performed to determine the effects of varying hydrazine concentration, agitation, and residence time on the palladium deposit quality and morphology. SEM examination of the experimental products elucidated relationships between specific plating bath parameters or combinations of parameters, the governing deposition mechanisms, and the deposit morphologies. The results indicate that it is possible to produce application-specific deposit layer morphologies by modifying the plating bath parameters at critical stages of the plating cycle.

  16. Stainless steel recycle FY94 progress report

    SciTech Connect

    Imrich, K.J.

    1994-10-28

    The Materials Technology Section (MTS) of the Savannah River Technology Center (SRTC) was asked to demonstrate the practicality of recycling previously contaminated stainless steel components such as reactor heat exchanger heads, process water piping and slug buckets into 208 liters (55 gallon) drums and 2.8 cubic meter (100 ft{sup 3}) storage boxes. Radioactively contaminated stainless steel scrap will be sent to several industrial partners where it will be melted, decontaminated/cast into ingots, and rolled into plate and sheet and fabricated into the drums and boxes. As part of this recycle initiative, MTS was requested to demonstrate that radioactively contaminated Type 304L stainless steel could be remelted and cast to meet the applicable ASTM specification for fabrication of drums and boxes. In addition, MTS was requested to develop the technical basis of melt decontamination and establish practicality of using this approach for value added products. The findings presented in this investigation lead to the following conclusions: recycle of 18 wt% Cr-8 wt% Ni alloy can be achieved by melting Type 304 stainless steel in a air vacuum induction furnace; limited melt decontamination of the contaminated stainless steel was achieved, surface contamination was removed by standard decontamination techniques; carbon uptake in the as-cast ingots resulted from the graphite susceptor used in this experiment and is unavoidable with this furnace configuration. A new furnace optimized for melting stainless steel has been installed and is currently being tested for use in this program.

  17. Photodesorption from stainless steels

    NASA Technical Reports Server (NTRS)

    Mesarwi, A.; Ignatiev, A.

    1988-01-01

    The photodesorption by low-energy photons from three types of stainless steels is examined. For all these systems both CO and CO2 were observed to photodesorb with high yields: about 0.001 molecules/photon for CO2 and about 0.0001 molecules/photon for CO at 250 nm. The observed threshold energies were found to be the same for all systems at E0 = 2.92 eV for CO2 and E0 = 2.92-3.10 eV for CO.

  18. Austenitic stainless steels for cryogenic service

    SciTech Connect

    Dalder, E.N.C.; Juhas, M.C.

    1985-09-19

    Presently available information on austenitic Fe-Cr-Ni stainless steel plate, welds, and castings for service below 77 K are reviewed with the intent (1) of developing systematic relationships between mechanical properties, composition, microstructure, and processing, and (2) of assessing the adequacy of these data bases in the design, fabrication, and operation of engineering systems at 4 K.

  19. Switch to duplex stainless steels

    SciTech Connect

    Quik, J.M.A.; Geudeke, M.

    1994-11-01

    Duplex stainless steels contain approximately equal proportions of ferrite and austenite. These stainless steels have become an established material of construction in the chemical process industries (CPI). Duplexes offer benefits over austenitic stainless steels and carbon steels because of their higher strength, and good toughness and ductility, in combination with equivalent resistance to general corrosion, as well as better resistance to localized corrosion and stress corrosion cracking. Additionally, duplex materials have thermal-conductivity and thermal-expansion coefficients similar to those of ferritic materials, are tough at low (sub-zero) temperatures, and have a high resistance to erosion and abrasion. In some of the highly corrosive environments encountered in the CPI, the super duplex stainless steels offer cost-effective options not possible with the standard austenitic stainless steels. The initial applications were almost exclusively as heat exchanger tubing in water-cooled service. In recent times, duplex stainless steels have been used in the oil, gas, and chemical industries. Examples include service in sweet and mildly sour corrosive environments, on offshore platforms where weight savings can be realized, and as a replacement for standard austenitic stainless steel in chemical-processing plants.

  20. Improved anticorrosion properties and electrical conductivity of 316L stainless steel as bipolar plate for proton exchange membrane fuel cell by lower temperature chromizing treatment

    NASA Astrophysics Data System (ADS)

    Yang, Lijun; Yu, Haijun; Jiang, Lijun; Zhu, Lei; Jian, Xuyu; Wang, Zhong

    The lower temperature chromizing treatment is developed to modify 316L stainless steel (SS 316L) for the application of bipolar plate in proton exchange membrane fuel cell (PEMFC). The treatment is performed to produce a coating, containing mainly Cr-carbide and Cr-nitride, on the substrate to improve the anticorrosion properties and electrical conductivity between the bipolar plate and carbon paper. Shot peening is used as the pretreatment to produce an activated surface on stainless steel to reduce chromizing temperature. Anticorrosion properties and interfacial contact resistance (ICR) are investigated in this study. Results show that the chromized SS 316L exhibits better corrosion resistance and lower ICR value than those of bare SS 316L. The chromized SS 316L shows the passive current density about 3E-7 A cm -2 that is about four orders of magnitude lower than that of bare SS 316L. ICR value of the chromized SS 316L is 13 mΩ cm 2 that is about one-third of bare SS 316L at 200 N cm -2 compaction forces. Therefore, this study clearly states the performance advantages of using chromized SS 316L by lower temperature chromizing treatment as bipolar plate for PEMFC.

  1. Effects of Mo content on microstructure and corrosion resistance of arc ion plated Ti-Mo-N films on 316L stainless steel as bipolar plates for polymer exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Kim, Kwang Ho; Shao, Zhigang; Wang, Feifei; Zhao, Shuang; Suo, Ni

    2014-05-01

    Bipolar plates are one of the most important components in PEMFC stack and have multiple functions, such as separators and current collectors, distributing reactions uniformly, and etc. Stainless steel is ideal candidate for bipolar plates owing to good thermal and electrical conductivity, good mechanical properties etc. However, stainless steel plate still cannot resist the corrosion of working condition. In this work, ternary Ti-Mo-N film was fabricated on 316L stainless steel (SS316L) as a surface modification layer to enhance the corrosion resistance. Effects of Mo content on the microstructure and corrosion resistance of Ti-Mo-N films are systematically investigated by altering sputtering current of the Mo target. XRD results reveal that the preferred orientation changes from [111] to [220] direction as Mo content in the film increases. The synthesized Ti-Mo-N films form a substitutional solid solution of (Ti, Mo)N where larger Mo atoms replace Ti in TiN crystal lattice. The TiN-coated SS316L sample shows the best corrosion resistance. While Mo content in the Ti-Mo-N films increases, the corrosion resistance gradually degrades. Compared with the uncoated samples, all the Ti-Mo-N film coated samples show enhanced corrosion resistance in simulated PEMFC working condition.

  2. Stainless Steel Microstructure and Mechanical Properties Evaluation

    SciTech Connect

    Switzner, Nathan T

    2010-06-01

    A nitrogen strengthened 21-6-9 stainless steel plate was spinformed into hemispherical test shapes. A battery of laboratory tests was used to characterize the hemispheres. The laboratory tests show that near the pole (axis) of a spinformed hemisphere the yield strength is the lowest because this area endures the least “cold-work” strengthening, i.e., the least deformation. The characterization indicated that stress-relief annealing spinformed stainless steel hemispheres does not degrade mechanical properties. Stress-relief annealing reduces residual stresses while maintaining relatively high mechanical properties. Full annealing completely eliminates residual stresses, but reduces yield strength by about 30%.

  3. DETECTION OF BACTERIAL BIOFILM ON STAINLESS STEEL BY HYPERSPECTRAL FLUORESCENCE IMAGING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, hyperspectral fluorescence imaging techniques were investigated for detection of microbial biofilm on stainless steel plates typically used to manufacture food processing equipment. Stainless steel coupons were immersed in bacterium cultures consisting of nonpathogenic E. coli, Pseudo...

  4. Corrosion resistance of stainless steels

    SciTech Connect

    Dillon, C.P.

    1995-12-31

    This book reviews the mechanisms and forms of corrosion and examines the corrosion of stainless steels and similar chromium-bearing nickel containing higher alloys, detailing various corrosive environments including atmospheric and fire-side corrosion, corrosion by water and soil, and corrosion caused by particular industrial processes. It provides information on specific groups and grades of stainless steels; summarizes typical applications for specific stainless alloys; describes common corrosion problems associated with stainless steels; presents the acceptable isocorrosion parameters of concentration and temperature for over 250 chemicals for which stainless steels are the preferred materials of construction; discusses product forms and their availability; elucidates fabrication, welding, and joining techniques; and covers the effects of pickling and passivation.

  5. Stainless Steel Permeability

    SciTech Connect

    Buchenauer, Dean A.; Karnesky, Richard A.

    2015-09-01

    An understanding of the behavior of hydrogen isotopes in materials is critical to predicting tritium transport in structural metals (at high pressure), estimating tritium losses during production (fission environment), and predicting in-vessel inventory for future fusion devices (plasma driven permeation). Current models often assume equilibrium diffusivity and solubility for a class of materials (e.g. stainless steels or aluminum alloys), neglecting trapping effects or, at best, considering a single population of trapping sites. Permeation and trapping studies of the particular castings and forgings enable greater confidence and reduced margins in the models. For FY15, we have continued our investigation of the role of ferrite in permeation for steels of interest to GTS, through measurements of the duplex steel 2507. We also initiated an investigation of the permeability in work hardened materials, to follow up on earlier observations of unusual permeability in a particular region of 304L forgings. Samples were prepared and characterized for ferrite content and coated with palladium to prevent oxidation. Issues with the poor reproducibility of measurements at low permeability were overcome, although the techniques in use are tedious. Funding through TPBAR and GTS were secured for a research grade quadrupole mass spectrometer (QMS) and replacement turbo pumps, which should improve the fidelity and throughput of measurements in FY16.

  6. Ultrasonic Spectroscopy of Stainless Steel Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Cosgriff, Laura M.; Lerch, Bradley A.; Hebsur, Mohan G.; Baaklini, George Y.; Ghosn, Louis J.

    2003-01-01

    Enhanced, lightweight material systems, such as 17-4PH stainless steel sandwich panels are being developed for use as fan blades and fan containment material systems for next generation engines. In order to improve the production for these systems, nondestructive evaluation (NDE) techniques, such as ultrasonic spectroscopy, are being utilized to evaluate the brazing quality between the 17-4PH stainless steel face plates and the 17-4PH stainless steel foam core. Based on NDE data, shear tests are performed on sections representing various levels of brazing quality from an initial batch of these sandwich structures. Metallographic characterization of brazing is done to corroborate NDE findings and the observed shear failure mechanisms.

  7. Explosive Surface Hardening of Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Kovacs-Coskun, T.

    2016-04-01

    In this study, the effects of explosion hardening on the microstructure and the hardness of austenitic stainless steel have been studied. The optimum explosion hardening technology of austenitic stainless steel was researched. In case of the explosive hardening used new idea mean indirect hardening setup. Austenitic stainless steels have high plasticity and can be easily cold formed. However, during cold processing the hardening phenomena always occurs. Upon the explosion impact, the deformation mechanism indicates a plastic deformation and this deformation induces a phase transformation (martensite). The explosion hardening enhances the mechanical properties of the material, includes the wear resistance and hardness. In case of indirect hardening as function of the setup parameters specifically the flayer plate position the hardening increased differently. It was find a relationship between the explosion hardening setup and the hardening level.

  8. Stainless steel display evaluation

    NASA Astrophysics Data System (ADS)

    Hopper, Darrel G.; Meyer, Frederick M.; Longo, Sam J.; Trissell, Terry L.

    2007-04-01

    Active matrix organic light emitting diode (AMOLED) technology is one candidate to become a low power alternative in some applications to the currently dominant, active matrix liquid crystal display (AMLCD), technology. Furthermore, fabrication of the AMOLED on stainless steel (SS) foil rather than the traditional glass substrate, while presenting a set of severe technical challenges, opens up the potential for displays that are both lighter and less breakable. Also, transition to an SS foil substrate may enable rollable displays - large when used but small for stowage within gear already worn or carried or installed. Research has been initiated on AMOLED/SS technology and the first 320 x 240 color pixel 4-in. demonstration device has been evaluated in the AFRL Display Test and Evaluation Laboratory. Results of this evaluation are reported along with a research roadmap.

  9. Welding tritium exposed stainless steel

    SciTech Connect

    Kanne, W.R. Jr.

    1994-11-01

    Stainless steels that are exposed to tritium become unweldable by conventional methods due to buildup of decay helium within the metal matrix. With longer service lives expected for tritium containment systems, methods for welding on tritium exposed material will become important for repair or modification of the systems. Solid-state resistance welding and low-penetration overlay welding have been shown to mitigate helium embrittlement cracking in tritium exposed 304 stainless steel. These processes can also be used on stainless steel containing helium from neutron irradiation, such as occurs in nuclear reactors.

  10. An investigation of the typical corrosion parameters used to test polymer electrolyte fuel cell bipolar plate coatings, with titanium nitride coated stainless steel as a case study

    NASA Astrophysics Data System (ADS)

    Orsi, A.; Kongstein, O. E.; Hamilton, P. J.; Oedegaard, A.; Svenum, I. H.; Cooke, K.

    2015-07-01

    Stainless steel bipolar plates (BPP) for polymer electrolyte membrane fuel cells (PEMFCs) have good manufacturability, durability and low costs, but inadequate corrosion resistance and elevated interfacial contact resistance (ICR) in the fuel cell environment. Thin film coatings of titanium nitride (TiN) of 1 μm in thickness, were deposited by means of physical vapour deposition (PVD) process on to stainless steel (SS) 316L substrates and were evaluated, in a series of tests, for their level of corrosion protection and ICR. In the ex-situ corrosion tests, variables such as applied potential, experimental duration and pH of the sulphate electrolyte at 80 °C were altered. The ICR values were found to increase after exposure to greater applied potentials and electrolytes of a higher pH. In terms of experimental duration, the ICR increased most rapidly at the beginning of each experiment. It was also found that the oxidation of TiN was accelerated after exposure to electrolytes of a higher pH. When coated BPPs were incorporated into an accelerated fuel cell test, the degradation of the fuel cell cathode resembled the plates that were tested at the highest anodic potential (1.4 VSHE).

  11. Why stainless steel corrodes.

    PubMed

    Ryan, Mary P; Williams, David E; Chater, Richard J; Hutton, Bernie M; McPhail, David S

    2002-02-14

    Stainless steels are used in countless diverse applications for their corrosion resistance. Although they have extremely good general resistance, they are nevertheless susceptible to pitting corrosion. This localized dissolution of an oxide-covered metal in specific aggressive environments is one of the most common and catastrophic causes of failure of metallic structures. The pitting process has been described as random, sporadic and stochastic and the prediction of the time and location of events remains extremely difficult. Many contested models of pitting corrosion exist, but one undisputed aspect is that manganese sulphide inclusions play a critical role. Indeed, the vast majority of pitting events are found to occur at, or adjacent to, such second-phase particles. Chemical changes in and around sulphide inclusions have been postulated as a mechanism for pit initiation but such variations have never been measured. Here we use nanometre-scale secondary ion mass spectroscopy to demonstrate a significant reduction in the Cr:Fe ratio of the steel matrix around MnS particles. These chromium-depleted zones are susceptible to high-rate dissolution that 'triggers' pitting. The implications of these results are that materials processing conditions control the likelihood of corrosion failures, and these data provide a basis for optimizing such conditions. PMID:11845203

  12. Manufacturing and Performance Assessment of Stamped, Laser Welded, and Nitrided FeCrV Stainless Steel Bipolar Plates for Proton Exchange Membrane Fuel Cells

    SciTech Connect

    Brady, Michael P; Abdelhamid, Mahmoud; Dadheech, G; Bradley, J; Toops, Todd J; Meyer III, Harry M; Tortorelli, Peter F

    2013-01-01

    A manufacturing and single-cell fuel cell performance study of stamped, laser welded, and gas nitrided ferritic stainless steel foils in an advanced automotive bipolar plate assembly design was performed. Two developmental foil compositions were studied: Fee20Cre4V and Fee23Cre4V wt.%. Foils 0.1 mm thick were stamped and then laser welded together to create single bipolar plate assemblies with cooling channels. The plates were then surface treated by pre-oxidation and nitridation in N2e4H2 based gas mixtures using either a conventional furnace or a short-cycle quartz lamp infrared heating system. Single-cell fuel cell testing was performed at 80 C for 500 h at 0.3 A/cm2 using 100% humidification and a 100%/40% humidification cycle that stresses the membrane and enhances release of the fluoride ion and promotes a more corrosive environment for the bipolar plates. Periodic high frequency resistance potential-current scans during the 500 h fuel cell test and posttest analysis of the membrane indicated no resistance increase of the plates and only trace levels of metal ion contamination.

  13. Standard specification for heat-resisting chromium and chromium-nickel stainless steel plate, sheet, and strip for pressure vessels. ASTM standard

    SciTech Connect

    1998-10-01

    This specification is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.17 on Flat Stainless Steel Products. Current edition approved Sep. 10, and Nov. 10, 1997, Apr. 10, and Jun. 10, 1998. Published October 1998. Originally published as A 240-40T. Last previous edition A 240/A 240M-97a.

  14. Multilayered Zr-C/a-C film on stainless steel 316L as bipolar plates for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Bi, Feifei; Peng, Linfa; Yi, Peiyun; Lai, Xinmin

    2016-05-01

    A multilayered zirconium-carbon/amorphous carbon (Zr-C/a-C) coating is synthesized by magnetron sputtering in order to improve the corrosion resistance and interfacial conductivity of stainless steel 316L (SS316L) as bipolar plates for proton exchange membrane fuel cells (PEMFCs). Zr-C/a-C film contains an outmost pure amorphous carbon layer and a sub zirconium containing carbon layer. Interfacial contact resistance (ICR) between carbon paper and coated SS316L decreases to 3.63 mΩ cm2 at 1.4 MPa. Potentiodynamic polarization results reveal that the corrosion potential of Zr-C/a-C coated sample is more positive than pure a-C coated sample and the current density is only 0.49 μA cm-2 at the cathode applied potential 0.6 V. Electrochemical impendence spectroscopy also indicates that multilayered Zr-C/a-C film coated SS316L has much higher charge transfer resistance than the bare sample. After potentiostatic polarization, ICR values are 3.92 mΩ cm2 and 3.82 mΩ cm2 in the simulated PEMFCs cathode and anode environment, respectively. Moreover, XPS analysis of the coated samples before and after potential holding tests shows little difference, which disclose the chemical stability of multilayered Zr-C/a-C film. Therefore, the multilayered Zr-C/a-C coating exhibits excellent performance in various aspects and is preferred for the application of stainless steel bipolar plates.

  15. Corrosion behaviour of austenitic stainless steel as a function of methanol concentration for direct methanol fuel cell bipolar plate

    NASA Astrophysics Data System (ADS)

    Wang, Lixia; Kang, Bin; Gao, Na; Du, Xiao; Jia, Linan; Sun, Juncai

    2014-05-01

    The corrosion behaviour of an AISI 304 stainless steel (304 SS) is investigated in aqueous acid methanol solutions (0.5 M H2SO4 + 2 ppm HF + x M CH3OH, x = 0, 1, 5, 10 and 20) at 50 °C to simulate the varied anodic operating conditions of direct methanol fuel cells. Electrochemical measurements including potentiodynamic polarisation, potentiostatic polarisation and electrochemical impedance spectroscopy tests, are employed to analyse the corrosion behaviour. The results reveal that the corrosion resistance of 304 SS is enhanced in solutions with higher methanol content. Scanning electron microscopy and inductively coupled plasma atomic emission spectrometry data indicate that the surface corrosion on 304 SS is alleviated when the methanol concentration is increased. According to the X-ray photoelectron spectroscopy and Mott-Schottky analyses, the passive films formed on the 304 SS after potentiostatic tests in all the test solutions are composed of a duplex electronic structure with an external n-type semiconductor layer and an internal p-type semiconductor layer. Further analyses of the surface conductivity conducted by measuring the interfacial contact resistance between the 304 SS and carbon paper reveal that the passive film formed in the solution with higher methanol content exhibits lower conductivity.

  16. Corrosion behavior of 2205 duplex stainless steel.

    PubMed

    Platt, J A; Guzman, A; Zuccari, A; Thornburg, D W; Rhodes, B F; Oshida, Y; Moore, B K

    1997-07-01

    The corrosion of 2205 duplex stainless steel was compared with that of AISI type 316L stainless steel. The 2205 stainless steel is a potential orthodontic bracket material with low nickel content (4 to 6 wt%), whereas the 316L stainless steel (nickel content: 10 to 14 wt%) is a currently used bracket material. Both stainless steels were subjected to electrochemical and immersion (crevice) corrosion tests in 37 degrees C, 0.9 wt% sodium chloride solution. Electrochemical testing indicates that 2205 has a longer passivation range than 316L. The corrosion rate of 2205 was 0.416 MPY (milli-inch per year), whereas 316L exhibited 0.647 MPY. When 2205 was coupled to 316L with equal surface area ratio, the corrosion rate of 2205 reduced to 0.260 MPY, indicating that 316L stainless steel behaved like a sacrificial anode. When 316L is coupled with NiTi, TMA, or stainless steel arch wire and was subjected to the immersion corrosion test, it was found that 316L suffered from crevice corrosion. On the other hand, 2205 stainless steel did not show any localized crevice corrosion, although the surface of 2205 was covered with corrosion products, formed when coupled to NiTi and stainless steel wires. This study indicates that considering corrosion resistance, 2205 duplex stainless steel is an improved alternative to 316L for orthodontic bracket fabrication when used in conjunction with titanium, its alloys, or stainless steel arch wires. PMID:9228844

  17. Electrochemical behavior of nanocrystalline Ta/TaN multilayer on 316L stainless steel: Novel bipolar plates for proton exchange membrane fuel-cells

    NASA Astrophysics Data System (ADS)

    Alishahi, M.; Mahboubi, F.; Mousavi Khoie, S. M.; Aparicio, M.; Hübner, R.; Soldera, F.; Gago, R.

    2016-08-01

    Insufficient corrosion resistance and surface conductivity are two main issues that plague large-scale application of stainless steel (SS) bipolar plates in proton exchange membrane fuel cells (PEMFCs). This study explores the use of nanocrystalline Ta/TaN multilayer coatings to improve the electrical and electrochemical performance of polished 316L SS bipolar plates. The multilayer coatings have been deposited by (reactive) magnetron sputtering and characterized by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy. The electrochemical behavior of bare and coated substrates has been evaluated in simulated PEMFC working environments by potentiodynamic and potentiostatic polarization tests at ambient temperature and 80 °C. The results show that the Ta/TaN multilayer coating increases the polarization resistance of 316L SS by about 30 and 104 times at ambient and elevated temperatures, respectively. The interfacial contact resistance (ICR) shows a low value of 12 mΩ × cm2 before the potentiostatic test. This ICR is significantly lower than for the bare substrate and remains mostly unchanged after potentiostatic polarization for 14 h. In addition, the high contact angle (92°) with water for coated substrates indicates a hydrophobic character, which can improve the water management within the cell in PEMFC stacks.

  18. Annealing induced interfacial layers in niobium-clad stainless steel developed as a bipolar plate material for polymer electrolyte membrane fuel cell stacks

    SciTech Connect

    Hong, Sung Tae; Weil, K. Scott; Choi, Jung-Pyung; Bae, In-Tae; Pan, Jwo

    2010-05-01

    Niobium (Nb)-clad 304L stainless steel (SS) manufactured by cold rolling is currently under consideration for use as a bipolar plate material in polymer electrolyte membrane fuel cell (PEMFC) stacks. To make the fabrication of bipolar plates using the Nb-clad SS feasible, annealing may be necessary for the Nb-clad SS to reduce the springback induced by cold rolling. However, the annealing can develop an interfacial layer between the Nb cladding and the SS core and the interfacial layer plays a key role in the failure of the Nb-clad SS as reported earlier [JPS our work]. In this investigation, the Nb-clad SS specimens in as-rolled condition were annealed at different combinations of temperature and time. Based on the results of scanning electron microscope (SEM) analysis, an annealing process map for the Nb-clad SS was obtained. The results of SEM analysis and Transmission Electron Microscope (TEM) analysis also suggest that different interfacial layers occurred based on the given annealing conditions.

  19. Microbial corrosion of stainless steel.

    PubMed

    Ibars, J R; Moreno, D A; Ranninger, C

    1992-11-01

    Stainless steel, developed because of their greater resistance to corrosion in different aggressive environments, have proved to be affected, however, by various processes and types of corrosion. Some of these types of corrosion, mainly pitting, is activated and developed in the presence of microorganisms, which acting in an isolated or symbiotic way, according to their adaptation to the environment, create a favorable situation for the corrosion of these steel. The microorganisms that are involved, mainly bacteria of both the aerobic and anaerobic type, modify the environment where the stainless steel is found, creating crevices, differential aeration zones or a more aggressive environment with the presence of metabolites. In these circumstances, a local break of the passive and passivating layer is produced, which is proper to these types of steel and impedes the repassivation that is more favorable to corrosion. In the study and research of these types of microbiologically influenced corrosion are found electrochemical techniques, since corrosion is fundamentally an electrochemical process, and microbiological techniques for the identification, culture, and evaluation of the microorganisms involved in the process, as well as in the laboratory or field study of microorganism-metal pairs. Microstructural characterization studies of stainless steel have also been considered important, since it is known that the microstructure of steel can substantially modify their behavior when faced with corrosion. As for surface analysis studies, it is known that corrosion is a process that is generated on and progresses from the surface. The ways of dealing with microbiologically influenced corrosion must necessarily include biocides, which are not always usable or successful, the design of industrial equipment or components that do not favor the adherence of microorganisms, using microstructures in steel less sensitive to corrosion, or protecting the materials. PMID:1492953

  20. Development of New Stainless Steel

    SciTech Connect

    Robert F. Buck

    2005-08-30

    A new family of innovative martensitic stainless steels, 521-A, 521-B, and 521-C has been developed by Advanced Steel Technology, LLC (Trafford, PA) as high strength fastener (bolt) materials for use at moderate temperatures in turbine engines, including steam turbines, gas turbines, and aircraft engines. The primary objective of the development program was to create a martensitic stainless steel with high strength at moderate temperatures, and which could replace the expensive nickel-based superalloy IN 718 in some fasteners applications. A secondary objective was to replace conventional 12Cr steels such as AISI 422 used as blades, buckets and shafts that operate at intermediate temperatures in turbine engines with stronger steel. The composition of the new alloys was specifically designed to produce excellent mechanical properties while integrating heat treatment steps into production to reduce energy consumption during manufacturing. As a result, production costs and energy consumption during production of rolled bar products is significantly lower than conventional materials. Successful commercialization of the new alloys would permit the installed cost of certain turbine engines to be reduced without sacrificing high availability or operational flexibility, thereby enhancing the global competitiveness of U.S. turbine engine manufacturers. Moreover, the domestic specialty steel industry would also benefit through increased productivity and reduced operating costs, while increasing their share of the international market for turbine engine fasteners, blades, buckets and shafts.

  1. Compressive Strength of Stainless-Steel Sandwiches at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Mathauser, Eldon E.; Pride, Richard A.

    1959-01-01

    Experimental results are presented from crippling tests of stainless-steel sandwich specimens in the temperature range from 80 F to 1,200 F. The specimens included resistance-welded 17-7 PH stainless-steel sandwiches with single-corrugated cores, type 301 stainless-steel sandwiches with double-corrugated cores, and brazed 17-7 PH stainless-steel sandwiches with honeycomb cores. The experimental strengths are compared with predicted buckling and crippling strengths. The crippling strengths were predicted from the calculated maximum strength of the individual plate elements of the sandwiches and from a correlation procedure which gives the elevated-temperature crippling strength when the experimental room-temperature crippling strengths are known. Photographs of some of the tested specimens are included to show the modes of failure.

  2. Nano-composite stainless steel

    DOEpatents

    Dehoff, Ryan R.; Blue, Craig A.; Peter, William H.; Chen, Wei; Aprigliano, Louis F.

    2015-07-14

    A composite stainless steel composition is composed essentially of, in terms of wt. % ranges: 25 to 28 Cr; 11 to 13 Ni; 7 to 8 W; 3.5 to 4 Mo; 3 to 3.5 B; 2 to 2.5 Mn; 1 to 1.5 Si; 0.3 to 1.7 C; up to 2 O; balance Fe. The composition has an austenitic matrix phase and a particulate, crystalline dispersed phase.

  3. From flint to stainless steel: observations on surgical instrument composition.

    PubMed Central

    Kirkup, J.

    1993-01-01

    Man's failure to extract deeply embedded thorns and arrowheads, with bare hands and teeth, stimulated 'instrument substitutes' mimicking these appendages. Evidence from primitive communities suggest animal, plant and mineral items were employed, both before and after metal became the standard material of today's armamentarium. Changing surgical instrument composition has mirrored concurrent technology and manufacturing methods both of which are reviewed. Particular significance is accorded flint, bronze, crucible steel, thermal sterilisation, nickel-plate, stainless steel and disposable plastics. The paper is based on an exhibition From Flint to Stainless Steel on display at the College. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8215156

  4. Fatigue Crack Growth Behavior of Gas Metal Arc Welded AISI 409 Grade Ferritic Stainless Steel Joints

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, A. K.; Shanmugam, K.; Balasubramanian, V.

    2009-10-01

    The effect of filler metals such as austenitic stainless steel, ferritic stainless steel, and duplex stainless steel on fatigue crack growth behavior of the gas metal arc welded ferritic stainless steel joints was investigated. Rolled plates of 4 mm thickness were used as the base material for preparing single ‘V’ butt welded joints. Center cracked tensile specimens were prepared to evaluate fatigue crack growth behavior. Servo hydraulic controlled fatigue testing machine with a capacity of 100 kN was used to evaluate the fatigue crack growth behavior of the welded joints. From this investigation, it was found that the joints fabricated by duplex stainless steel filler metal showed superior fatigue crack growth resistance compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Higher yield strength and relatively higher toughness may be the reasons for superior fatigue performance of the joints fabricated by duplex stainless steel filler metal.

  5. 60 Years of duplex stainless steel applications

    SciTech Connect

    Olsson, J.; Liljas, M.

    1994-12-31

    In this paper the history of wrought duplex stainless steel development and applications is described. Ferritic-austenitic stainless steels were introduced only a few decades after stainless steels were developed. The paper gives details from the first duplex stainless steels in the 1930`s to the super duplex stainless steel development during the 1980`s. During the years much effort has been devoted to production and welding metallurgy as well as corrosion research of the duplex stainless steels. Therefore, duplex stainless steels are to-day established in a wide product range. Numerous important applications are exemplified. In most cases the selection of a duplex steel has been a result of the combination high strength excellent corrosion resistance. In the pulp and paper industry the most interesting use is as vessel material in digesters. For chemical process industry, the duplex steels are currently used in heat exchangers. The largest application of duplex steels exists in the oil and gas/offshore industry. Hundreds of kms of pipelines are installed and are still being installed. An increased use of duplex steels is foreseen in areas where the strength is of prime importance.

  6. High-temperature brazing of stainless steel

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Heisman, R. M.; Mitchell, M. J.

    1978-01-01

    Prevention of iron contamination of platens is eliminated by placing alumina/silica ceramic-fiber blankets between platens and carbon-steel plate. Carbon-steel plates provide rigidity and improve heat transfer.

  7. METHOD FOR JOINING ALUMINUM TO STAINLESS STEEL

    DOEpatents

    Lemon, L.C.

    1960-05-24

    Aluminum may be joined to stainless steel without the use of flux by tinning the aluminum with a tin solder containing 1% silver and 1% lead, tinning the stainless steel with a 50% lead 50% tin solder, and then sweating the tinned surfaces together.

  8. Interaction between stainless steel and plutonium metal

    SciTech Connect

    Dunwoody, John T; Mason, Richard E; Freibert, Franz J; Willson, Stephen P; Veirs, Douglas K; Worl, Laura A; Archuleta, Alonso; Conger, Donald J

    2010-01-01

    Long-term storage of excess plutonium is of great concern in the U.S. as well as abroad. The current accepted configuration involves intimate contact between the stored material and an iron-bearing container such as stainless steel. While many safety scenario studies have been conducted and used in the acceptance of stainless steel containers, little information is available on the physical interaction at elevated temperatures between certain forms of stored material and the container itself. The bulk of the safety studies has focused on the ability of a package to keep the primary stainless steel containment below the plutonium-iron eutectic temperature of approximately 410 C. However, the interactions of plutonium metal with stainless steel have been of continuing interest. This paper reports on a scoping study investigating the interaction between stainless steel and plutonium metal in a pseudo diffusion couple at temperatures above the eutectic melt-point.

  9. The comparison of frictional resistance in titanium, self-ligating stainless steel, and stainless steel brackets using stainless steel and TMA archwires: An in vitro study

    PubMed Central

    Khalid, Syed Altaf; Kumar, Vadivel; Jayaram, Prithviraj

    2012-01-01

    Aim: The aim of the study was to compare the frictional resistance of titanium, self-ligating stainless steel, and conventional stainless steel brackets, using stainless steel and titanium molybdenum alloy (TMA) archwires. Materials and Methods: We compared the frictional resistance in 0.018 slot and 0.022 slot of the three brackets – titanium, self-ligating stainless steel, and conventional stainless steel – using stainless steel archwires and TMA archwires. An in vitro study of simulated canine retraction was undertaken to evaluate the difference in frictional resistance between titanium, self-ligating stainless steel, and stainless steel brackets, using stainless steel and TMA archwires. Results and Conclusion: We compared the frictional resistance of titanium, self-ligating stainless steel, and conventional stainless steel brackets, using stainless steel and TMA archwires, with the help of Instron Universal Testing Machine. One-way analysis of variance (ANOVA), Student's “t” test, and post hoc multiple range test at level of <0.05 showed statistically significant difference in the mean values of all groups. Results demonstrated that the titanium, self-ligating stainless steel, and stainless steel brackets of 0.018-inch and 0.022-inch slot had no significant variations in frictional résistance. The self-ligating bracket with TMA archwires showed relatively less frictional resistance compared with the other groups. The titanium bracket with TMA archwires showed relatively less frictional resistance compared with the stainless steel brackets. PMID:23066253

  10. Carbon fiber reinforced plastic (CFRP) plates versus stainless steel dynamic compression plates in the treatment of fractures of the tibiae in dogs.

    PubMed

    Skirving, A P; Day, R; Macdonald, W; McLaren, R

    1987-11-01

    In a series of 14 dogs, fractures of both tibiae were caused by a "bone-breaker" designed in the authors' department and observed to produce a consistent and realistic canine fracture. One tibia was plated with a carbon fiber reinforced plastic (CFRP) plate and the other with a dynamic compression (DC) plate. Roentgenographic examination demonstrated healing of the CFRP-plated tibiae with abundant callus, and almost total remodeling of the fracture callus between ten and 20 weeks. Biomechanical testing by three-point bending revealed little difference between the strength of union of the fractures at 12-16 weeks. At 20 weeks, although the numbers were too small for statistical confirmation, the CFRP-plated tibiae were consistently stronger than the DC-plated tibiae. PMID:3665229

  11. Simulations and measurements of artificial cracks and pits in flat stainless steel plates using tone burst eddy-current thermography (TBET)

    NASA Astrophysics Data System (ADS)

    Libin, M. N.; Balasubramaniam, Krishnan; Maxfield, B. W.; Krishnamurthy, C. V.

    2013-01-01

    Tone Burst Eddy current Thermography (TBET) is a new hybrid, non-contacting, Non-Destructive Evaluation (NDE) method which employs a combination of Pulsed Eddy current Thermography (PEC) and Thermographic Non-Destructive Evaluation (TNDE). For understanding the influence of cracking and pitting on heat generation and flow within a metallic body, a fundamental knowledge of the detailed induced current density distribution in the component under test is required. This information enables us to calculate the amount of heat produced by the defects and how that heat diffuses to the surface where it is imaged. This paper describes simulation work done for artificial pits and cracks within pits on the far surface of poorly conducting metals like stainless steel. The first phase of this investigation simulates the transient thermal distribution for artificial 2D pit and crack-like defects using the finite element package COMSOL multi-physics with the AC/DC module and general heat transfer. Considering the reflection measurement geometry where thermal excitation and temperature monitoring are on the same surface, pitting reduces the material volume thereby contributing to a larger temperature rise for the same thermal energy input. A crack within a pit gives a further increase in temperature above the pure pit baseline. The tone burst frequency can be changed to obtain approximately uniform heating (low frequency) or heating of a thin region at the observation surface. Although front surface temperature changes due to 10% deep far-side pits in a 6 mm thick plate can be measured, it is not yet clear whether a 20% deep crack within this pit can be discriminated against the background. Both simulations and measurements will be presented. The objective of this work is to determine whether the TBET method is suitable for the detection and characterization of far side pitting, cracking and cracks within those pits.

  12. Corrosion of stainless steel, 2. edition

    SciTech Connect

    Sedriks, A.J.

    1996-10-01

    The book describes corrosion characteristics in all the major and minor groups of stainless steels, namely, in austenitic, ferritic, martensitic, duplex, and precipitation hardenable steels. Several chapters are spent on those special forms of corrosion that are investigated in the great detail in stainless steels, namely, pitting corrosion, crevice corrosion, and stress corrosion cracking. The influences of thermal treatment (heat affected zone cases), composition, and microstructure on corrosion are given good coverage. Corrosive environments include high temperature oxidation, sulfidation as well as acids, alkalis, various different petroleum plant environments, and even human body fluids (stainless steels are commonly used prosthetic materials).

  13. Duplex stainless steels for osteosynthesis devices.

    PubMed

    Cigada, A; Rondelli, G; Vicentini, B; Giacomazzi, M; Roos, A

    1989-09-01

    The austenitic stainless steels used today for the manufacture of osteosynthesis devices are sensitive to crevice corrosion. In this study the corrosion properties of some duplex stainless steels were evaluated and compared to traditional austenitic stainless steels. According to our results the following ranking was established: 23Cr-4Ni less than AISI 316L less than ASTM F138 less than 22Cr-5Ni-3Mo less than 27Cr-31Ni-3.5Mo less than 25Cr-7Ni-4Mo-N. In particular the results showed that the high-performance 25Cr-7Ni-4Mo-N duplex stainless steel, with high molybdenum and nitrogen contents, can be considered not susceptible to crevice corrosion in the human body. The duplex stainless steels have also better mechanical properties at the same degree of cold working compared with austenitic stainless steels. Hence the 25Cr-7Ni-4Mo-N duplex stainless steel can be considered a convenient substitute of ASTM F138 for orthopedic and osteosynthesis devices. PMID:2777835

  14. Tritiated Water Interaction with Stainless Steel

    SciTech Connect

    Glen R. Longhurst

    2007-05-01

    Experiments conducted to study tritium permeation of stainless steel at ambient and elevated temperatures revealed that HT converts relatively quickly to HTO. Further, the HTO partial pressure contributes essentially equally with elemental tritium gas in driving permeation through the stainless steel. Such permeation appears to be due to dissociation of the water molecule on the hot stainless steel surface. There is an equilibrium concentration of HTO vapor above adsorbed gas on the walls of the experimental apparatus evident from freezing transients. The uptake process of tritium from the carrier gas involves both surface adsorption and isotopic exchange with surface bound water.

  15. Stainless Steel to Titanium Bimetallic Transitions

    SciTech Connect

    Kaluzny, J. A.; Grimm, C.; Passarelli, D.

    2015-01-01

    In order to use stainless steel piping in an LCLS-II (Linac Coherent Light Source Upgrade) cryomodule, stainless steel to titanium bimetallic transitions are needed to connect the stainless steel piping to the titanium cavity helium vessel. Explosion bonded stainless steel to titanium transition pieces and bimetallic transition material samples have been tested. A sample transition tube was subjected to tests and x-ray examinations between tests. Samples of the bonded joint material were impact and tensile tested at room temperature as well as liquid helium temperature. The joint has been used successfully in horizontal tests of LCLS-II cavity helium vessels and is planned to be used in LCLS-II cryomodules. Results of material sample and transition tube tests will be presented.

  16. Precise carbon control of fabricated stainless steel

    DOEpatents

    Nilsen, R.J.

    1975-12-01

    A process is described for controlling the carbon content of fabricated stainless steel components including the steps of heat treating the component in hydrogen atmospheres of varying dewpoints and carbon potentials.

  17. Hydrogen compatibility handbook for stainless steels

    SciTech Connect

    Caskey, G.R. Jr.

    1983-06-01

    This handbook compiles data on the effects of hydrogen on the mechanical properties of stainless steels and discusses this data within the context of current understanding of hydrogen compatibility of metals. All of the tabulated data derives from continuing studies of hydrogen effects on materials that have been conducted at the Savannah River Laboratory over the past fifteen years. Supplementary data from other sources are included in the discussion. Austenitic, ferritic, martensitic, and precipitation hardenable stainless steels have been studied. Damage caused by helium generated from decay of tritium is a distinctive effect that occurs in addition to the hydrogen isotopes protium and deuterium. The handbook defines the scope of our current knowledge of hydrogen effects in stainless steels and serves as a guide to selection of stainless steels for service in hydrogen.

  18. Development of a carburizing stainless steel alloy

    SciTech Connect

    Wert, D.E. )

    1994-06-01

    A new carburizing stainless steel alloy that resists corrosion, heat, and fatigue has been developed for bearing and gear applications. Pyrowear 675 Stainless alloy is vacuum induction melted and vacuum arc remelted (VIM/VAR) for aircraft-quality cleanliness. Test results show that it has corrosion resistance similar to that of AISI Type 440-C stainless, and its rolling fatigue resistance is superior to that of AISI M50 (UNS K88165). In contrast to alloy gear steels and Type 440C, Pyrowear 675 maintains case hardness of HRC 60 at operating temperatures up to 200 C (400 F). Impact and fracture toughness are superior to that of other stainless bearing steels, which typically are relatively brittle and can break under severe service. Toughness is also comparable or superior to conventional noncorrosion-resistant carburizing bearing steels, such as SAE Types 8620 and 9310.

  19. Stainless steel to titanium bimetallic transitions

    NASA Astrophysics Data System (ADS)

    Kaluzny, J. A.; Grimm, C.; Passarelli, D.

    2015-12-01

    In order to use stainless steel piping in an LCLS-II (Linac Coherent Light Source Upgrade) cryomodule, stainless steel to titanium bimetallic transitions are needed to connect the stainless steel piping to the titanium cavity helium vessel. Explosion bonded stainless steel to titanium transition pieces and bimetallic transition material samples have been tested. A sample transition tube was subjected to tests and x-ray examinations between tests. Samples of the bonded joint material were impact and tensile tested at room temperature as well as liquid helium temperature. The joint has been used successfully in horizontal tests of LCLS-II cavity helium vessels and is planned to be used in LCLS-II cryomodules. Results of material sample and transition tube tests will be presented. Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy.

  20. A Duplex Stainless Steel for Chloride Environments

    NASA Astrophysics Data System (ADS)

    Sridhar, N.; Kolts, J.; Flasche, L. H.

    1985-03-01

    This paper examines the effects of microstructural changes on the corrosion, stress corrosion cracking and corrosion fatigue resistance of a duplex stainless steel to chloride environments. The microstructural changes can be precipitation of phases such as sigma and carbides, or changes in the distribution of austenite and ferrite. The former can be important in hot forming operations while the latter is important in welding. The methods of minimizing these deleterious effects can sometimes be different from those used for austenitic stainless steel.

  1. The abrasion-wear resistance of arc sprayed stainless steel and composite stainless steel coatings

    SciTech Connect

    Dallaire, S.; Legoux, J.G.; Levert, H.

    1994-12-31

    Stainless steels are often used to palliate wear problems in various industries. Though they are not wear resistant, they have been used to a limited extent in applications involving both corrosive and abrasive/erosive environments. The protection of industrial components by arc sprayed stainless steel composite coatings could be considered very attractive provided these coatings offer a better wear protection than bulk stainless steel. The wear resistance of stainless steel and composite stainless steel-titanium boride coatings arc sprayed with air and argon was evaluated following the ASTM G-65 Abrasion Wear Test procedures. Wear volume loss measurements show that stainless steel coatings arc sprayed with air were slightly more resistant than bulk stainless steel while those sprayed with argon were slightly less resistant. The abrasion wear resistance of composite stainless steel-titanium diboride coatings is by two or four times beyond the wear resistance of bulk stainless steel depending upon the core wire constitution and the type of gas used for spraying. Microstructural analysis of coatings, microhardness measurements of sprayed lamellae and optical profilometry were used to characterize coatings and wear damages. Spraying with air instead of argon produced much more small particles. These particles, being removed from the metal sheath surface, are individually sprayed without diluting the concentration hard phases within cores. It results in coatings that contain large lamellae with hardnesses sufficient to withstand abrasion. By considering both the wire constitution and the spraying conditions, it was found possible to fabricate composite stainless steel coatings that show a 400% increase in wear resistance over bulk stainless steel.

  2. Cleaning, pickling, and passivation of stainless steels

    SciTech Connect

    Dillon, C.P. )

    1994-05-01

    Stainless steels (SS) are chosen for various services because of their appearance and corrosion resistance and for their freedom from contamination in storage and shipment. However, certain conditions in handling or fabrication may make these alloys susceptible to localized corrosion or unsatisfactory performance. A surface of cleanliness, uniformity, and corrosion resistance is desirable and, in some services, absolutely required. Definitions and procedures for cleaning, pickling, and passivating stainless steels are reviewed. Surface contamination and defects including grinding marks and smut are discussed, as are measures for preventing and correcting them. The cleaning and passivating sequence required for free-machining stainless grades is included.

  3. Ex situ evaluation of nanometer range gold coating on stainless steel substrate for automotive polymer electrolyte membrane fuel cell bipolar plate

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Ricketts, M.; Hirano, S.

    The bipolar plate in polymer electrolyte membrane (PEM) fuel cell helps to feed reactant gases to the membrane electrode assembly (MEA) and collect current from the MEA. To facilitate these functions, the bipolar plate material should exhibit excellent electrical conductivity and corrosion resistance under fuel cell operating conditions, and simultaneously be of low-cost to meet commercialization enabling targets for automotive fuel cells. In the present work, we focus on the benchmarking of 10 nm gold coated SS316L (a.k.a. Au Nanoclad ®) bipolar plate material through ex situ tests, which is provided by Daido Steel (Japan). The use of nanometer range Au coatings help to retain the noble properties of gold while significantly reducing the cost of the bipolar plate. The area specific resistance of the flat sample is 0.9 mΩ cm 2 while that for the formed bipolar plate is 6.3 mΩ cm 2 at compaction force of 60 N cm -2. The corrosion current density was less than 1 μA cm -2 at 0.8 V/NHE with air sparge simulating cathodic conditions. Additionally, gold coated SS316L showed anodic passivation of SS316L, thereby exhibiting robustness towards coating defects including surface scratches that may originate during the manufacturing of the bipolar plate. These series of ex situ tests indicate that 10 nm gold coated SS316L has good potential to be considered for commercial bipolar plates in automotive fuel cell stack.

  4. High Mn austenitic stainless steel

    DOEpatents

    Yamamoto, Yukinori [Oak Ridge, TN; Santella, Michael L [Knoxville, TN; Brady, Michael P [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Liu, Chain-tsuan [Knoxville, TN

    2010-07-13

    An austenitic stainless steel alloy includes, in weight percent: >4 to 15 Mn; 8 to 15 Ni; 14 to 16 Cr; 2.4 to 3 Al; 0.4 to 1 total of at least one of Nb and Ta; 0.05 to 0.2 C; 0.01 to 0.02 B; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1W; up to 3 Cu; up to 1 Si; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale including alumina, nanometer scale sized particles distributed throughout the microstructure, the particles including at least one of NbC and TaC, and a stable essentially single phase FCC austenitic matrix microstructure that is essentially delta-ferrite-free and essentially BCC-phase-free.

  5. Forming "dynamic" membranes on stainless steel

    NASA Technical Reports Server (NTRS)

    Brandon, C. A.; Gaddis, J. L.

    1979-01-01

    "Dynamic" zirconium polyacrylic membrane is formed directly on stainless steel substrate without excessive corrosion of steel. Membrane is potentially useful in removal of contaminated chemicals from solution through reversed osmosis. Application includes use in filtration and desalination equipment, and in textile industry for separation of dyes from aqueous solvents.

  6. Corrosion behavior of sensitized duplex stainless steel.

    PubMed

    Torres, F J; Panyayong, W; Rogers, W; Velasquez-Plata, D; Oshida, Y; Moore, B K

    1998-01-01

    The present work investigates the corrosion behavior of 2205 duplex stainless steel in 0.9% NaCl solution after various heat-treatments, and compares it to that of 316L austenitic stainless steel. Both stainless steels were heat-treated at 500, 650, and 800 degrees C in air for 1 h, followed by furnace cooling. Each heat-treated sample was examined for their microstructures and Vickers micro-hardness, and subjected to the X-ray diffraction for the phase identification. Using potentiostatic polarization method, each heat-treated sample was corrosion-tested in 37 degrees C 0.9% NaCl solution to estimate its corrosion rate. It was found that simulated sensitization showed an adverse influence on both steels, indicating that corrosion rates increased by increasing the sensitization temperatures. PMID:9713683

  7. Superplastic forming of stainless steel automotive components

    SciTech Connect

    Bridges, B.; Elmer, J.; Carol, L.

    1997-02-06

    Exhaust emission standards are governmentally controlled standards, which are increasingly stringent, forcing alternate strategies to meet these standards. One approach to improve the efficiency of the exhaust emission equipment is to decrease the time required to get the catalytic converter to optimum operating temperature. To accomplish this, automotive manufacturers are using double wall stainless steel exhaust manifolds to reduce heat loss of the exhaust gases to the converter. The current method to manufacture double wall stainless steel exhaust components is to use a low-cost alloy with good forming properties and extensively form, cut, assemble, and weld the pieces. Superplastic forming (SPF) technology along with alloy improvements has potential at making this process more cost effective. Lockheed Martin Energy Systems (LMES), Lawrence Livermore National Laboratory (LLNL) and USCAR Low Emission Partnership (LEP) worked under a Cooperative Research And Development Agreement (CRADA) to evaluate material properties, SPF behavior, and welding behavior of duplex stainless steel alloy for automotive component manufacturing. Battelle Pacific Northwest National Laboratory (PNNL) has a separate CRADA with the LEP to use SPF technology to manufacture a double wall stainless steel exhaust component. As a team these CRADAs developed and demonstrated a technical plan to accomplish making double wall stainless steel exhaust manifolds.

  8. Casting Stainless-Steel Models Around Pressure Tubes

    NASA Technical Reports Server (NTRS)

    Vasquez, Peter; Micol, John R.

    1992-01-01

    Survivability of thin-wall stainless-steel tubing increased to nearly 100 percent. Improves state of art in pressure-model castings and reduces cost associated with machining complete model from stainless-steel blank.

  9. Direct observation of the passive layer on high nitrogen stainless steel used as bipolar plates for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kumagai, Masanobu; Myung, Seung-Taek; Yashiro, Hitoshi; Katada, Yasuyuki

    2012-07-01

    The purpose of this report is to directly observe the passive layer and concentration behavior of nitrogen interstitially incorporated in Ni-saving high nitrogen stainless steel (HNS) using an aberration corrected scanning transmission electron microscopy-energy dispersive spectroscopy (STEM-EDS) or - electron energy loss spectroscopy (EELS). The thickness of the passive layer barely changed after 1000 h single cell operation, compared with the as-polished state. The observed passive layer was thin (3 nm) and mainly composed of chromium oxide, as confirmed by STEM-EDS. It was confirmed that nitrogen was not present in the passive layer, but was concentrated at the interface between the passive layer and the metal bulk. The concentrated area ranged approximately 2 nm to steel bulk from the interface. With help of the STEM-EDS and EELS, we were able to understand the nature of the passive layer for Ni-saving HNS, which caused remarkable improvement of the cell performance due to superior corrosion resistance.

  10. Measuring secondary phases in duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Calliari, I.; Brunelli, K.; Dabalà, M.; Ramous, E.

    2009-01-01

    The use of duplex stainless steels is limited by their susceptibility to the formation of dangerous intermetallic phases resulting in detrimental effects on impact toughness and corrosion resistance. This precipitation and the quantitative determinations of the phases have received considerable attention and different precipitation sequences (σ phase, χ phase, and carbides) have been suggested. This study investigates the phase transformation during continuous cooling and isothermal treatments in commercial duplex stainless steel grades and the effects on alloy properties, and compares the most common techniques of analysis.

  11. Embrittlement of austenitic stainless steel welds

    SciTech Connect

    David, S.A.; Vitek, J.M.; Alexander, D.J.

    1995-06-01

    To prevent hot-cracking, austenitic stainless steel welds generally contain a small percent of delta ferrite. Although ferrite has been found to effectively prevent hot-cracking, it can lead to embrittlement of welds when exposed to elevated temperatures. The aging behavior of type-308 stainless steel weld has been examined over a range of temperatures 475--850 C for times up to 10,000 hrs. Upon aging, and depending on the temperature range, the unstable ferrite may undergo a variety of solid state transformations. These phase changes creep-rupture and Charpy impact properties.

  12. Dendritic inhomogeneity of stainless maraging steels

    SciTech Connect

    Krasnikova, S.I.; Drobot, A.V.; Shmelev, A.Y.; Vukelich, S.B.

    1986-03-01

    The authors investigated dendritic inhomogeneity in industrial ingots 630 mm (steel I) in diameter and 500 mm (steel II) in diameter. The variation in the degree of dendritic inhomogeneity was investigated over the height of the ingots and across the sections on an MS-46 microprobe. It was established that the elements can be placed in the following order in accordance with the degree of reduction in the liquation factor: titanium, molybdenum, nickel, chromium, and cobalt. Titanium and molybdenum exhibit forward liquation in both steels, and chromium in steel II. The distribution of nickel and chromium in the steel I ingots and cobalt in the steel II ingots is unconventional. Dendritic inhomogeneity, which must be considered in assigning the heat treatment for finished articles, develops during the crystallization of stainless maraging steels.

  13. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or...

  14. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or...

  15. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or...

  16. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or...

  17. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or...

  18. 21 CFR 878.4495 - Stainless steel suture.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Stainless steel suture. 878.4495 Section 878.4495...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4495 Stainless steel suture. (a) Identification. A stainless steel suture is a needled or unneedled nonabsorbable surgical suture composed of...

  19. 21 CFR 878.4495 - Stainless steel suture.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Stainless steel suture. 878.4495 Section 878.4495...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4495 Stainless steel suture. (a) Identification. A stainless steel suture is a needled or unneedled nonabsorbable surgical suture composed of...

  20. 21 CFR 878.4495 - Stainless steel suture.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Stainless steel suture. 878.4495 Section 878.4495...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4495 Stainless steel suture. (a) Identification. A stainless steel suture is a needled or unneedled nonabsorbable surgical suture composed of...

  1. 21 CFR 878.4495 - Stainless steel suture.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Stainless steel suture. 878.4495 Section 878.4495...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4495 Stainless steel suture. (a) Identification. A stainless steel suture is a needled or unneedled nonabsorbable surgical suture composed of...

  2. 21 CFR 878.4495 - Stainless steel suture.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Stainless steel suture. 878.4495 Section 878.4495...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4495 Stainless steel suture. (a) Identification. A stainless steel suture is a needled or unneedled nonabsorbable surgical suture composed of...

  3. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing

    PubMed Central

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands. PMID:26601037

  4. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    PubMed

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands. PMID:26601037

  5. A role of {delta}-ferrite in edge-crack formation during hot-rolling of austenitic stainless steels

    SciTech Connect

    Czerwinski, F.; Brodtka, A.; Cho, J.Y.; Szpunar, J.A.; Zielinska-Lipiec, A.; Sunwoo, J.H.

    1997-10-15

    Austenitic stainless steels are substantially harder during hot-rolling than either ferritic or mild steels. The objective of this study is to verify the possible correlation between the edge-crack formation during hot-rolling and the presence of {delta} ferrite in austenitic stainless steel. Hot-rolled plates of austenitic stainless steels, examined at room temperatures, contain up to 9% of {delta} ferrite in austenitic matrix. The distribution of ferrite in steel plate is inhomogeneous: the highest ferrite content is located in the vicinity of the plate edge. Moreover, the content of {delta} ferrite changes irregularly across the plate thickness. The results obtained from analysis of several plates suggest a correlation between the maximum content of {delta} ferrite in steel microstructure and the length of the edge-crack formed during hot-rolling: the higher the volume fraction of ferrite, the longer the edge-crack.

  6. Technique to eliminate helium induced weld cracking in stainless steels

    SciTech Connect

    Chin-An Wang; Chin, B.A.; Grossbeck, M.L.

    1992-12-31

    Experiments have shown that Type 316 stainless steel is susceptible to heat-affected-zone (HAZ) cracking upon cooling when welded using the gas tungsten arc (GTA) process under lateral constraint. The cracking has been hypothesized to be caused by stress-assisted helium bubble growth and rupture at grain boundaries. This study utilized an experimental welding setup which enabled different compressive stresses to be applied to the plates during welding. Autogenous GTA welds were produced in Type 316 stainless steel doped with 256 appm helium. The application of a compressive stress, 55 Mpa, during welding suppressed the previously observed catastrophic cracking. Detailed examinations conducted after welding showed a dramatic change in helium bubble morphology. Grain boundary bubble growth along directions parallel to the weld was suppressed. Results suggest that stress-modified welding techniques may be used to suppress or eliminate helium-induced cracking during joining of irradiated materials.

  7. Long-Term Underground Corrosion of Stainless Steels

    SciTech Connect

    M. K. Adler Flitton; T. S. Yoder

    2007-03-01

    In 1970, the National Institute of Standards and Technology (NIST) implemented the most ambitious and comprehensive long-term corrosion behavior test to date for stainless steels in soil environments. Over thirty years later, one of the six test sites was targeted to research subsurface contamination and transport processes in the vadose and saturated zones. This research directly applies to environmental management operational corrosion issues and long term stewardship scientific needs for understanding the behavior of waste forms and their near-field contaminant transport of chemical and radiological contaminants at nuclear disposal sites. This paper briefly describes the ongoing research and the corrosion analysis results of the stainless steel plate specimens recovered from the partial recovery of the first test site.

  8. Glow discharge cleaning of carbon fiber composite and stainless steel

    NASA Astrophysics Data System (ADS)

    Airapetov, A.; Begrambekov, L.; Brémond, S.; Douai, D.; Kuzmin, A.; Sadovsky, Ya.; Shigin, P.; Vergasov, S.

    2011-08-01

    The paper experimentally investigates and analyses the features and mechanisms of both of oxygen removal by deuterium glow discharge from CFC, pyrolytic graphite and stainless steel subjected to irradiation in oxygen contaminated plasma. It is shown that oxygen implanted in pyrolytic graphite (PG) perpendicular to basal plates is removed after sputtering the layer slightly thicker than oxygen stopping zone (≈2 nm). Fast deuterium ions penetrating into CFC during GDC transfer the trapped oxygen atoms into the bulk. Thus, much thicker surface layer has to be removed (500-1000 nm) for oxygen release. Irradiation of stainless steel in plasma leads to formation of a barrier layer with thickness (2-4 nm) equal, or slightly higher than stopping range of oxygen ions. The layer accumulates the main fraction of implanted oxygen and prevents its penetration into the bulk. After barrier layer sputtering oxygen spreads into the bulk. Parameters and conditions of optimum GDC are discussed.

  9. Emissivity of sodium wetted and oxidized Type 304 stainless steel

    SciTech Connect

    Haines, N.L.; Craig, R.E.; Forsyth, D.R.; Novendstern, E.H.

    1980-01-01

    The emissivity of sodium wetted and oxidized Type 304 stainless steel was determined to provide data for calculating the heat flow through Liquid Metal Fast Breeder Reactor (LMFBR) reflector plates, located above the sodium pool, to the reactor closure head. An emissivity experiment using a Type 304 stainless steel specimen was performed in an inerted glovebox. Relatively high oxygen concentrations of 10,000 and 50 vppm were used in the argon/oxygen mixtures to reduce reaction time. Following wetting and oxidation, the specimen was heated to a maximum temperature of 450/sup 0/C and the emissivity of the oxidized coating was calculated. Results indicate that the emissivity of the coating ranged from 0.55 to 0.92.

  10. Proof Testing Of Stainless-Steel Bolts

    NASA Technical Reports Server (NTRS)

    Hsieh, Cheng H.; Hendrickson, James A.; Bamford, Robert M.

    1992-01-01

    Report describes study of development of method for nondestructive proof testing of bolts made of A286 stainless steel. Based on concept that the higher load bolt survives, the smaller the largest flaw and, therefore, the longer its fatigue life after test. Calculations and experiments increase confidence in nondestructive proof tests.

  11. ASTM update for stainless steels II

    SciTech Connect

    Davison, R.M.

    1999-10-01

    Specifiers and users of stainless steel (SS) should be aware that the American Society for Testing and Materials (ASTM) has revised several of its SS specifications. These changes affect grades commonly used in process and other industries. These changes are discussed.

  12. Materials data handbook: Stainless steel type 301

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for stainless steel type 301 is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and bonding is developed.

  13. Materials data handbooks on stainless steels

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1973-01-01

    Two handbooks which summarize latest available data have been published. Two types of stainless steels, alloy A-286 and Type 301, are described. Each handbook is divided into twelve chapters. Scope of information presented includes physical- and mechanical-property data at cryogenic, ambient, and elevated temperatures.

  14. Fabrication of stainless steel foil utilizing chromized steel strip

    NASA Astrophysics Data System (ADS)

    Loria, Edward A.

    1980-10-01

    Stainless steel foil has properties which are, in many respects, unmatched by alternative thin films. The high strength to weight ratio and resistance to corrosion and oxidation at elevated temperatures are generally advantageous. The aerospace and automotive industries have used Type 430 and 304 foil in turbine engine applications. Foil around 2 mils (5.1 × 10-3 cm) thick has been appropriate for the recuperator or heat exchanger and this product has also been used in honeycomb and truss-core structures. Further, such foil has been employed as a wrap to protect tool steel parts from contamination during heat treating. A large part of the high cost of producing stainless steel foil by rolling is due to the complicated and expensive rolling mill and annealing equipment involved. A method will be described which produces (solid) stainless steel foil from chromized (coated) steel which can be cheaper than the conventional processing stainless steel, such as Type 430, from ingot to foil. Also, the material is more ductile and less work hardenable during processing to foil and consequently intermediate annealing treatments are eliminated and scrap losses minimized.

  15. 77 FR 2032 - Certain Cut-to-Length Carbon-Quality Steel Plate Products From the Republic of Korea: Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-13

    ... as stated in Stainless Steel Sheet and Strip in Coils From Mexico; Preliminary Results of Antidumping Duty Administrative Review, 73 FR 45708, 45714 (August 6, 2008), unchanged in Stainless Steel Sheet and... International Trade Administration Certain Cut-to-Length Carbon-Quality Steel Plate Products From the...

  16. Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel

    SciTech Connect

    Jafarzadegan, M.; Feng, A.H.; Abdollah-zadeh, A.; Saeid, T.; Shen, J.; Assadi, H.

    2012-12-15

    In the present study, 3 mm-thick plates of 304 stainless steel and st37 steel were welded together by friction stir welding at a welding speed of 50 mm/min and tool rotational speed of 400 and 800 rpm. X-ray diffraction test was carried out to study the phases which might be formed in the welds. Metallographic examinations, and tensile and microhardness tests were used to analyze the microstructure and mechanical properties of the joint. Four different zones were found in the weld area except the base metals. In the stir zone of the 304 stainless steel, a refined grain structure with some features of dynamic recrystallization was evidenced. A thermomechanically-affected zone was characterized on the 304 steel side with features of dynamic recovery. In the other side of the stir zone, the hot deformation of the st37 steel in the austenite region produced small austenite grains and these grains transformed to fine ferrite and pearlite and some products of displacive transformations such as Widmanstatten ferrite and martensite by cooling the material after friction stir welding. The heat-affected zone in the st37 steel side showed partially and fully refined microstructures like fusion welding processes. The recrystallization in the 304 steel and the transformations in the st37 steel enhanced the hardness of the weld area and therefore, improved the tensile properties of the joint. - Highlights: Black-Right-Pointing-Pointer FSW produced sound welds between st37 low carbon steel and 304 stainless steel. Black-Right-Pointing-Pointer The SZ of the st37 steel contained some products of allotropic transformation. Black-Right-Pointing-Pointer The material in the SZ of the 304 steel showed features of dynamic recrystallization. Black-Right-Pointing-Pointer The finer microstructure in the SZ increased the hardness and tensile strength.

  17. Market Opportunities for Austenitic Stainless Steels in SO2 Scrubbers

    NASA Astrophysics Data System (ADS)

    Michels, Harold T.

    1980-10-01

    Recent U.S. federal legislation has created new opportunities for SO2 scrubbers because all coals, even low-sulfur western coals, will probably require scrubbing to remove SO2 from gaseous combustion products. Scrubbing, the chemical absorption of SO2 by vigorous contact with a slurry—usually lime or limestone—creates an aggressive acid-chloride solution. This presents a promising market for pitting-resistant austenitic stainless steels, but there is active competition from rubber and fiberglass-lined carbon steel. Since the latter are favored on a first-cost basis, stainless steels must be justified on a cost/performance or life-cost basis. Nickel-containing austenitic alloys are favored because of superior field fabricability. Ferritic stainless steels have little utility in this application because of limitations in weldability and resulting poor corrosion resistance. Inco corrosion test spools indicate that molybdenum-containing austenitic alloys are needed. The leanest alloys for this application are 316L and 317L. Low-carbon grades of stainless steel are specified to minimize corrosion in the vicinity of welds. More highly alloyed materials may be required in critical areas. At present, 16,000 MW of scrubber capacity is operational and 17,000 MW is under construction. Another 29,000 MW is planned, bringing the total to 62,000 MW. Some 160,000 MW of scrubber capacity is expected to be placed in service over the next 10 years. This could translate into a total potential market of 80,000 tons of alloy plate for new power industry construction in the next decade. Retrofitting of existing power plants plus scrubbers for other applications such as inert gas generators for oil tankers, smelters, municipal incinerators, coke ovens, the pulp and paper industry, sulfuric acid plants, and fluoride control in phosphoric acid plants will add to this large market.

  18. Fatigue of stainless steel in hydrogen

    NASA Astrophysics Data System (ADS)

    Schuster, G.; Altstetter, C.

    1983-10-01

    The fatigue crack growth rates of two austenitic stainless steel alloys, AISI 301 and 302, were compared in air, argon, and hydrogen environments at atmospheric pressure and room temperature. Under the stresses at the crack tip the austenite in type 301 steel transformed martensitically to a’ to a greater extent than in type 302 steel. The steels were also tested in the cold worked condition under hydrogen or argon. Hydrogen was found to have a deleterious effect on both steels, but the effect was stronger in the unstable than in the stable alloy. Cold work decreased fatigue crack growth rates in argon and hydrogen, but the decrease was less marked in hydrogen than in argon. Metallographic, fractographic, and microhardness surveys in the vicinity of the fatigue crack were used to try to understand the reasons for the observed fatigue behavior.

  19. Standard specification for general requirements for steel plates for pressure vessels. ASTM standard

    SciTech Connect

    1998-11-01

    This specification is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel, and Related Alloys and is the direct responsibility of Subcommittee A01.11 on Steel Plates for Boilers and Pressure Vessels. Current edition approved Sep. 10, 1997. Published November 1998. Originally published as A 20-50T. Last previous edition A 20/A 20M-97a.

  20. Tensile-property characterization of thermally aged cast stainless steels.

    SciTech Connect

    Michaud, W. F.; Toben, P. T.; Soppet, W. K.; Chopra, O. K.; Energy Technology

    1994-03-03

    The effect of thermal aging on tensile properties of cast stainless steels during service in light water reactors has been evaluated. Tensile data for several experimental and commercial heats of cast stainless steels are presented. Thermal aging increases the tensile strength of these steels. The high-C Mo-bearing CF-8M steels are more susceptible to thermal aging than the Mo-free CF-3 or CF-8 steels. A procedure and correlations are presented for predicting the change in tensile flow and yield stresses and engineering stress-vs.-strain curve of cast stainless steel as a function of time and temperature of service. The tensile properties of aged cast stainless steel are estimated from known material information, i.e., chemical composition and the initial tensile strength of the steel. The correlations described in this report may be used for assessing thermal embrittlement of cast stainless steel components.

  1. Tensile-property characterization of thermally aged cast stainless steels

    SciTech Connect

    Michaud, W.F.; Toben, P.T.; Soppet, W.K.; Chopra, O.K.

    1994-02-01

    The effect of thermal aging on tensile properties of cast stainless steels during service in light water reactors has been evaluated. Tensile data for several experimental and commercial heats of cast stainless steels are presented. Thermal aging increases the tensile strength of these steels. The high-C Mo-bearing CF-8M steels are more susceptible to thermal aging than the Mo-free CF-3 or CF-8 steels. A procedure and correlations are presented for predicting the change in tensile flow and yield stresses and engineering stress-vs.-strain curve of cast stainless steel as a function of time and temperature of service. The tensile properties of aged cast stainless steel are estimated from known material information, i.e., chemical composition and the initial tensile strength of the steel. The correlations described in this report may be used for assessing thermal embrittlement of cast stainless steel components.

  2. Corrosion Testing of Stainless Steel Fuel Cell Hardware

    SciTech Connect

    Wilson, M.S.; Zawodzinski, C.; Gottesfeld, S.

    1998-11-01

    Metal hardware is gaining increasing interest in polymer electrolyte fuel cell (PEFC) development as a possible alternative to machined graphite hardware because of its potential for low-cost manufacturing combined with its intrinsic high conductivity, minimal permeability and advantageous mechanical properties. A major barrier to more widespread use of metal hardware has been the susceptibility of various metals to corrosion. Few pure metals can withstand the relatively aggressive environment of a fuel cell and thus the choices for hardware are quite limited. Precious metals such as platinum or gold are prohibitively expensive and so tend to be utilized as coatings on inexpensive substrates such as aluminum or stainless steel. The main challenge with coatings has been to achieve pin-hole free surfaces that will remain so after years of use. Titanium has been used to some extent and though it is very corrosion-resistant, it is also relatively expensive and often still requires some manner of surface coating to prevent the formation of a poorly conducting oxide layer. In contrast, metal alloys may hold promise as potentially low-cost, corrosion-resistant materials for bipolar plates. The dozens of commercially available stainless steel and nickel based alloys have been specifically formulated to offer a particular advantage depending upon their application. In the case of austenitic stainless steels, for example, 316 SS contains molybdenum and a higher chromium content than its more common counterpart, 304 SS, that makes it more noble and increases its corrosion resistance. Likewise, 316L SS contains less carbon than 316 SS to make it easier to weld. A number of promising corrosion-resistant, highly noble alloys such as Hastelloy{trademark} or Duplex{trademark} (a stainless steel developed for seawater service) are available commercially, but are expensive and difficult to obtain in various forms (i.e. wire screen, foil, etc.) or in small amounts for R and D

  3. Growth and adherence on stainless steel by Enterococcus faecium cells.

    PubMed

    Andrade, N J; Ajao, D B; Zottola, E A

    1998-11-01

    Enterococcus faecium isolated from Brazilian raw milk was used in this study. For growth studies, E. faecium was inoculated into 10% RSM (reconstituted skim milk) and MRS both, incubated at 6.5 and 9 degrees C for 10 days and at 30, 42, and 45 degrees C for 48 h. Cells were enumerated after spread-plating onto MRS agar and incubating at 30 degrees C for 48 h. The ability of E. faecium cells to adhere to stainless-steel chips (6 by 6 by 1 mm, AISI 304, finish #4) was investigated. MRS broth containing stainless steel chips was inoculated to an initial concentration of 10(3) or 10(6) CFU/ml of E. faecium. Adherent cells were stained with acridine orange and enumerated by epifluorescence microscopy. E. faecium grew between 6.5 and 42 degrees C in MRS and between 9 and 40 degrees C in RSM. In MRS broth with 10(6) or 10(3) CFU/ml, the g (generation time) values were 0.62 and 0.42 h and R (growth rate) values were 1.6 and 2.4 h-1. Values of R = 2.3 h-1 and g = 0.43 h were determined for E. faecium growing in RSM with 10(3) CFU/ml. In MRS broth, for samples with a starting concentration of 10(6) cells per ml, adherence to stainless-steel chips was first observed at 2 h. However, adherence was first observed at 4 h in samples with an initial concentration of 10(3) cells per ml. After 10 h of exposure the number of adherent cells was similar for all samples regardless of initial inoculum. These results indicate that E. faecium readily adheres to stainless steel. It also underscores the need to control E. faecium by using appropriate low storage temperatures and adequate sanitizing practices in the dairy industry. PMID:9829184

  4. Phase Transformation in Cast Superaustenitic Stainless Steels

    SciTech Connect

    Nathaniel Steven Lee Phillips

    2006-12-12

    Superaustenitic stainless steels constitute a group of Fe-based alloys that are compositionally balanced to have a purely austenitic matrix and exhibit favorable pitting and crevice corrosion resistant properties and mechanical strength. However, intermetallic precipitates such as sigma and Laves can form during casting or exposure to high-temperature processing, which degrade the corrosion and mechanical properties of the material. The goal of this study was to accurately characterize the solid-solid phase transformations seen in cast superaustenitic stainless steels. Heat treatments were performed to understand the time and temperature ranges for intermetallic phase formations in alloys CN3MN and CK3MCuN. Microstructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy and wavelength dispersive spectroscopy (EDS, WDS). The equilibrium microstructures, composed primarily of sigma and Laves within purely austenitic matrices, showed slow transformation kinetics. Factors that determine the extent of transformation, including diffusion, nucleation, and growth, are discussed.

  5. Formability of type 304 stainless steel sheet

    SciTech Connect

    Coubrough, G.J.; Matlock, D.K.; VanTyne, C.J.

    1992-09-01

    Punch-stretch tests to determine formability of type 304 stainless steel sheet were conducted using a hemispherical dome test. Sheets of 19.1 mm width and 177.8 mm width were stretched on a 101.6 mm diameter punch at punch rates between 0.042 to 2.12 mm/s with three lubricant systems: a mineral seal oil, thin polytetrafluoroethelyne sheet with mineral seal oil, and silicone rubber with mineral seal oil. The resulting strain distributions were measured and the amount of martensite was determined by magnetic means. Increasing lubricity resulted in more uniform strain distributions while increased punch rates tended to decrease both strain and transformation distributions. High forming limit values were related to the formation of high and uniformly distributed martensite volume fractions during deformation. The results of this study are interpreted with an analysis of the effects of strain and temperature on strain induced martensite formation in metastable austenitic stainless steels.

  6. Formability of type 304 stainless steel sheet

    SciTech Connect

    Coubrough, G.J. . Rocky Flats Plant); Matlock, D.K.; VanTyne, C.J. )

    1992-01-01

    Punch-stretch tests to determine formability of type 304 stainless steel sheet were conducted using a hemispherical dome test. Sheets of 19.1 mm width and 177.8 mm width were stretched on a 101.6 mm diameter punch at punch rates between 0.042 to 2.12 mm/s with three lubricant systems: a mineral seal oil, thin polytetrafluoroethelyne sheet with mineral seal oil, and silicone rubber with mineral seal oil. The resulting strain distributions were measured and the amount of martensite was determined by magnetic means. Increasing lubricity resulted in more uniform strain distributions while increased punch rates tended to decrease both strain and transformation distributions. High forming limit values were related to the formation of high and uniformly distributed martensite volume fractions during deformation. The results of this study are interpreted with an analysis of the effects of strain and temperature on strain induced martensite formation in metastable austenitic stainless steels.

  7. Tritium Depth Profiles in 316 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Torikai, Yuji; Murata, Daiju; Penzhorn, Ralf-Dieter; Akaishi, Kenya; Watanabe, Kuniaki; Matsuyama, Masao

    To investigate the behavior of hydrogen uptake and release by 316 stainless steel (SS316), as-received and finely polished stainless steel specimens were exposed at 573 K to tritium gas diluted with hydrogen. Then tritium concentration in the exposed specimens was measured as a function of depth using a chemical etching method. All the tritium concentration profiles showed a sharp drop in the range of 10 μm from the top surface up to the bulk. The amount of tritium absorbed into the polished specimens was three times larger than that into the as-received specimen. However, the polishing effects disappeared by exposing to the air for a long time.

  8. Instabilities in stabilized austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Ayer, Raghavan; Klein, C. F.; Marzinsky, C. N.

    1992-09-01

    The effect of aging on the precipitation of grain boundary phases in three austenitic stainless steels (AISI 347, 347AP, and an experimental steel stabilized with hafnium) was investigated. Aging was performed both on bulk steels as well as on samples which were subjected to a thermal treatment to simulate the coarse grain region of the heat affected zone (HAZ) during welding. Aging of the bulk steels at 866 K for 8000 hours resulted in the precipitation of Cr23C6 carbides, σ, and Fe2Nb phases; the propensity for precipitation was least for the hafnium-stabilized steel. Weld simulation of the HAZ resulted in dissolution of the phases present in the as-received 347 and 347AP steels, leading to grain coarsening. Subsequent aging caused extensive grain boundary Cr23C6 carbides and inhomogeneous matrix precipitation. In addition, steel 347AP formed a precipitate free zone (PFZ) along the grain boundaries. The steel containing hafnium showed the best microstructural stability to aging and welding.

  9. Water Lubrication of Stainless Steel using Reduced Graphene Oxide Coating

    NASA Astrophysics Data System (ADS)

    Kim, Hae-Jin; Kim, Dae-Eun

    2015-11-01

    Lubrication of mechanical systems using water instead of conventional oil lubricants is extremely attractive from the view of resource conservation and environmental protection. However, insufficient film thickness of water due to low viscosity and chemical reaction of water with metallic materials have been a great obstacle in utilization of water as an effective lubricant. Herein, the friction between a 440 C stainless steel (SS) ball and a 440 C stainless steel (SS) plate in water lubrication could be reduced by as much as 6-times by coating the ball with reduced graphene oxide (rGO). The friction coefficient with rGO coated ball in water lubrication was comparable to the value obtained with the uncoated ball in oil lubrication. Moreover, the wear rate of the SS plate slid against the rGO coated ball in water lubrication was 3-times lower than that of the SS plate slid against the uncoated ball in oil lubrication. These results clearly demonstrated that water can be effectively utilized as a lubricant instead of oil to lower the friction and wear of SS components by coating one side with rGO. Implementation of this technology in mechanical systems is expected to aid in significant reduction of environmental pollution caused by the extensive use of oil lubricants.

  10. Water Lubrication of Stainless Steel using Reduced Graphene Oxide Coating

    PubMed Central

    Kim, Hae-Jin; Kim, Dae-Eun

    2015-01-01

    Lubrication of mechanical systems using water instead of conventional oil lubricants is extremely attractive from the view of resource conservation and environmental protection. However, insufficient film thickness of water due to low viscosity and chemical reaction of water with metallic materials have been a great obstacle in utilization of water as an effective lubricant. Herein, the friction between a 440 C stainless steel (SS) ball and a 440 C stainless steel (SS) plate in water lubrication could be reduced by as much as 6-times by coating the ball with reduced graphene oxide (rGO). The friction coefficient with rGO coated ball in water lubrication was comparable to the value obtained with the uncoated ball in oil lubrication. Moreover, the wear rate of the SS plate slid against the rGO coated ball in water lubrication was 3-times lower than that of the SS plate slid against the uncoated ball in oil lubrication. These results clearly demonstrated that water can be effectively utilized as a lubricant instead of oil to lower the friction and wear of SS components by coating one side with rGO. Implementation of this technology in mechanical systems is expected to aid in significant reduction of environmental pollution caused by the extensive use of oil lubricants. PMID:26593645

  11. Hydrogen induced plastic deformation of stainless steel

    SciTech Connect

    Gadgil, V.J.; Keim, E.G.; Geijselaers, H.J.M.

    1998-12-31

    Hydrogen can influence the behavior of materials significantly. The effects of hydrogen are specially pronounced in high fugacities of hydrogen which can occur at the surface of steels in contact with certain aqueous environments. In this investigation the effect of high fugacity hydrogen on the surface of stainless steel was investigated using electrochemical cathodic charging. Microhardness was measured on the cross section. Transmission electron microscopy was used to investigate the dislocation substructure just below the surface. Computer simulation using finite element method was carried out to estimate the extent and severity of the deformation. The significance of the results are discussed in relation to the loss of ductility due to hydrogen.

  12. Pitting corrosion resistant austenite stainless steel

    DOEpatents

    van Rooyen, D.; Bandy, R.

    A pitting corrosion resistant austenite stainless steel comprises 17 to 28 wt. % chromium, 15 to 26 wt. % nickel, 5 to 8 wt. % molybdenum, and 0.3 to 0.5 wt. % nitrogen, the balance being iron, unavoidable impurities, minor additions made in the normal course of melting and casting alloys of this type, and may optionally include up to 10 wt. % of manganese, up to 5 wt. % of silicon, and up to 0.08 wt. % of carbon.

  13. Softened-Stainless-Steel O-Rings

    NASA Technical Reports Server (NTRS)

    Marquis, G. A.; Waters, William I.

    1993-01-01

    In fabrication of O-ring of new type, tube of 304 stainless steel bent around mandril into circle and welded closed into ring. Ring annealed in furnace to make it soft and highly ductile. In this condition, used as crushable, deformable O-ring seal. O-ring replacements used in variety of atmospheres and temperatures, relatively inexpensive, fabricated with minimum amount of work, amenable to one-of-a-kind production, reusable, and environmentally benign.

  14. Properties of cryogenically worked metals. [stainless steels

    NASA Technical Reports Server (NTRS)

    Schwartzberg, F. R.; Kiefer, T. F.

    1975-01-01

    A program was conducted to determine whether the mechanical properties of cryogenically worked 17-7PH stainless steel are suitable for service from ambient to cryogenic temperatures. It was determined that the stress corrosion resistance of the cryo-worked material is quite adequate for structural service. The tensile properties and fracture toughness at room temperature were comparable to titanium alloy 6Al-4V. However, at cryogenic temperatures, the properties were not sufficient to recommend consideration for structural service.

  15. Effect of ferrite on cast stainless steels

    SciTech Connect

    Nadezhdin, A.; Cooper, K. ); Timbers, G. . Kraft Pulp Division)

    1994-09-01

    Premature failure of stainless steel castings in bleach washing service is attributed to poor casting quality high porosity and to a high ferrite content, which makes the castings susceptible to corrosion by hot acid chloride solutions. A survey of the chemical compositions and ferrite contents of corrosion-resistant castings in bleach plants at three pulp mills found high [delta]-ferrite levels in the austenitic matrix due to the improper balance between austenite and ferrite stabilizers.

  16. SRS stainless steel beneficial reuse program

    SciTech Connect

    Boettinger, W.L.

    1997-02-01

    The US Department of Energy`s (DOE) Savannah River Site (SRS) has thousands of tons of stainless steel radioactive scrap metal (RSNI). Much of the metal is volumetrically contaminated. There is no {open_quotes}de minimis{close_quotes} free release level for volumetric material, and therefore no way to recycle the metal into the normal commercial market. If declared waste, the metal would qualify as low level radioactive waste (LLW) and ultimately be dispositioned through shallow land buried at a cost of millions of dollars. The metal however could be recycled in a {open_quotes}controlled release{close_quote} manner, in the form of containers to hold other types of radioactive waste. This form of recycle is generally referred to as {open_quotes}Beneficial Reuse{close_quotes}. Beneficial reuse reduces the amount of disposal space needed and reduces the need for virgin containers which would themselves become contaminated. Stainless steel is particularly suited for long term storage because of its resistance to corrosion. To assess the practicality of stainless steel RSM recycle the SRS Benficial Reuse Program began a demonstration in 1994, funded by the DOE Office of Science and Technology. This paper discusses the experiences gained in this program.

  17. Antimicrobial Cu-bearing stainless steel scaffolds.

    PubMed

    Wang, Qiang; Ren, Ling; Li, Xiaopeng; Zhang, Shuyuan; Sercombe, Timothy B; Yang, Ke

    2016-11-01

    Copper-bearing stainless steel scaffolds with two different structures (Body Centered Cubic and Gyroid labyrinth) at two solid fractions (25% and 40%) were fabricated from both 316L powder and a mixture of 316L and elemental Cu powder using selective laser melting, and relative 316L scaffolds were served as control group. After processing, the antimicrobial testing demonstrated that the 316L-Cu scaffolds presented excellent antimicrobial activity against Escherichia coli and Staphylococcus aureus, and the cell viability assay indicated that there was no cytotoxic effect of 316L-Cu scaffolds on rat marrow mesenchymal stem cells. As such, these have the potential to reduce implant-associated infections. The Cu was also found to homogeneously distribute within the microstructure by scanning electronic microcopy. The addition of Cu would not significantly affect its strength and stiffness compared to 316L scaffold, and the stiffness of all the scaffolds (3-20GPa) is similar to that of bone and much less than that of bulk stainless steel. Consequently, fabrication of such low stiffness porous structures, especially coupled with the addition of antimicrobial Cu, may provide a new direction for medical stainless steels. PMID:27524049

  18. Cast Stainless Steel Ferrite and Grain Structure

    SciTech Connect

    Ruud, Clayton O.; Ramuhalli, Pradeep; Meyer, Ryan M.; Mathews, Royce; Diaz, Aaron A.; Anderson, Michael T.

    2012-09-01

    In-service inspection requirements dictate that piping welds in the primary pressure boundary of light-water reactors be subject to a volumetric examination based on the rules contained within the American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section XI. The purpose of the inspection is the reliable detection and accurate sizing of service-induced degradation and/or material flaws introduced during fabrication. The volumetric inspection is usually carried out using ultrasonic testing (UT) methods. However, the varied metallurgical macrostructures and microstructures of cast austenitic stainless steel piping and fittings, including statically cast stainless steel and centrifugally cast stainless steel (CCSS), introduce significant variations in the propagation and attenuation of ultrasonic energy. These variations complicate interpretation of the UT responses and may compromise the reliability of UT inspection. A review of the literature indicated that a correlation may exist between the microstructure and the delta ferrite content of the casting alloy. This paper discusses the results of a recent study where the goal was to determine if a correlation existed between measured and/or calculated ferrite content and grain structure in CCSS pipe.

  19. Disinfection of Preexisting Contamination of BACILLUS CEREUS on Stainless Steel when Using Glycoconjugate Solution

    NASA Astrophysics Data System (ADS)

    Pavan, Casey; Tarasenko, Olga

    2011-06-01

    Stainless steel is ubiquitous in our modern world, however it can become contaminated. This can endanger our health. The aim of our study is to disinfect stainless steel using Bacillus cereus as a model organism. Bacillus cereus is a microbe that is ubiquitous in nature, specifically soil. B. cereus is known to cause illness in humans. To prevent this, we propose to use a glycoconjugate solution (GS) for disinfection of stainless steel after it is contamination by B. cereus spores. In this study, two GS (9, 10) were tested for disinfection effectiveness on B. cereus spores on the surface of stainless steel foil (AISI-Series 200/300/400, THERMA-FOIL, Dayville, CT 0241). The disinfection rate of each GS was assessed by exposing the steel surface to B. cereus spores first and allowing them to settle for 24 hours. GS was used to treat the contaminated surface. The steel is washed and the resulting solution is plated on tryptic soy agar (TSA) plates. The GS with the fewest colony forming unit (CFU) formed on TSA is determined to be the most efficient during disinfection. Results show that both GS demonstrate a strong ability to disinfect B. cereus spores. Between the two, GS 9 shows the highest disinfection efficacy by killing approximately 99.5% of spores. This is a drastic improvement over the 0-20% disinfection of the control. Based on this we find that studied GS do have the capacity to act as a disinfectant on stainless steel.

  20. Disinfection of preexisting contamination of bacillus cereus on stainless steel when using glycoconjugate solution

    SciTech Connect

    Pavan, Casey; Tarasenko, Olga

    2011-06-10

    Stainless steel is ubiquitous in our modern world, however it can become contaminated. This can endanger our health. The aim of our study is to disinfect stainless steel using Bacillus cereus as a model organism. Bacillus cereus is a microbe that is ubiquitous in nature, specifically soil. B. cereus is known to cause illness in humans. To prevent this, we propose to use a glycoconjugate solution (GS) for disinfection of stainless steel after it is contamination by B. cereus spores. In this study, two GS (9, 10) were tested for disinfection effectiveness on B. cereus spores on the surface of stainless steel foil (AISI-Series 200/300/400, THERMA-FOIL, Dayville, CT 0241). The disinfection rate of each GS was assessed by exposing the steel surface to B. cereus spores first and allowing them to settle for 24 hours. GS was used to treat the contaminated surface. The steel is washed and the resulting solution is plated on tryptic soy agar (TSA) plates. The GS with the fewest colony forming unit (CFU) formed on TSA is determined to be the most efficient during disinfection. Results show that both GS demonstrate a strong ability to disinfect B. cereus spores. Between the two, GS 9 shows the highest disinfection efficacy by killing approximately 99.5% of spores. This is a drastic improvement over the 0-20% disinfection of the control. Based on this we find that studied GS do have the capacity to act as a disinfectant on stainless steel.

  1. Decontaminating and Melt Recycling Tritium Contaminated Stainless Steel

    SciTech Connect

    Clark, E.A.

    1995-04-03

    The Westinghouse Savannah River Company, Idaho National Engineering Laboratory, and several university and industrial partners are evaluating recycling radioactively contaminated stainless steel. The goal of this program is to recycle contaminated stainless steel scrap from US Department of Energy national defense facilities. There is a large quantity of stainless steel at the DOE Savannah River Site from retired heavy water moderated Nuclear material production reactors (for example heat exchangers and process water piping), that will be used in pilot studies of potential recycle processes. These parts are contaminated by fission products, activated species, and tritium generated by neutron irradiation of the primary reactor coolant, which is heavy (deuterated) water. This report reviews current understanding of tritium contamination of stainless steel and previous studies of decontaminating tritium exposed stainless steel. It also outlines stainless steel refining methods, and proposes recommendations based on this review.

  2. Amorphous stainless steel coatings prepared by reactive magnetron-sputtering from austenitic stainless steel targets

    NASA Astrophysics Data System (ADS)

    Cusenza, Salvatore; Schaaf, Peter

    2009-01-01

    Stainless steel films were reactively magnetron sputtered in argon/methane gas flow onto oxidized silicon wafers using austenitic stainless-steel targets. The deposited films of about 200 nm thickness were characterized by conversion electron Mössbauer spectroscopy, magneto-optical Kerr-effect, X-ray diffraction, scanning electron microscopy, Rutherford backscattering spectrometry, atomic force microscopy, corrosion resistance tests, and Raman spectroscopy. These complementary methods were used for a detailed examination of the carburization effects in the sputtered stainless-steel films. The formation of an amorphous and soft ferromagnetic phase in a wide range of the processing parameters was found. Further, the influence of the substrate temperature and of post vacuum-annealing were examined to achieve a comprehensive understanding of the carburization process and phase formation.

  3. Weldment for austenitic stainless steel and method

    DOEpatents

    Bagnall, Christopher; McBride, Marvin A.

    1985-01-01

    For making defect-free welds for joining two austenitic stainless steel mers, using gas tungsten-arc welding, a thin foil-like iron member is placed between the two steel members to be joined, prior to making the weld, with the foil-like iron member having a higher melting point than the stainless steel members. When the weld is formed, there results a weld nugget comprising melted and then solidified portions of the joined members with small portions of the foil-like iron member projecting into the solidified weld nugget. The portions of the weld nugget proximate the small portions of the foil-like iron member which project into the weld nugget are relatively rich in iron. This causes these iron-rich nugget portions to display substantial delta ferrite during solidification of the weld nugget which eliminates weld defects which could otherwise occur. This is especially useful for joining austenitic steel members which, when just below the solidus temperature, include at most only a very minor proportion of delta ferrite.

  4. Superhard Nanocrystalline Homometallic Stainless Steel on Steel for Seamless Coatings

    NASA Technical Reports Server (NTRS)

    Tobin, Eric J.; Hafley, R. (Technical Monitor)

    2002-01-01

    The objective of this work is to deposit nanocrystalline stainless steel onto steel substrates (homometallic) for enhanced wear and corrosion resistance. Homometallic coatings provide superior adhesion, and it has been shown that ultrafine-grained materials exhibit the increased hardness and decreased permeability desired for protective coatings. Nanocrystals will be produced by controlling nucleation and growth and use of an ion beam during deposition by e-beam evaporation or sputtering. Phase I is depositing 31 6L nanocrystalline stainless steel onto 31 6L stainless steel substrates. These coatings exhibit hardnesses comparable to those normally obtained for ceramic coatings such ZrO2, and possess the superior adhesion of seamless, homometallic coatings. Hardening the surface with a similar material also enhances adhesion, by avoiding problems associated with thermal and lattice mismatch. So far we have deposited nanocrystalline homometallic 316L stainless steel coatings by varying the ions and the current density of the ion beams. For all deposition conditions we have produced smooth, uniform, superhard coatings. All coatings exhibit hardness of at least 200% harder than that of bulk materials. Our measurements indicate that there is a direct relationship between nanohardness and the current density of the ion beam. Stress measurements indicate that stress in the films is increasingly proportional to current density of the ion beam. TEM, XPS, and XRD results indicate that the coated layers consist of FCC structure nanocrystallites with a dimension of about 10 to 20 nm. The Ni and Mo concentration of these coating are lower than those of bulk 316L but the concentration of Cr is higher.

  5. Stainless Steel Leaches Nickel and Chromium into Foods During Cooking

    PubMed Central

    Kamerud, Kristin L.; Hobbie, Kevin A.; Anderson, Kim A.

    2014-01-01

    Toxicological studies show that oral doses of nickel and chromium can cause cutaneous adverse reactions such as dermatitis. Additional dietary sources, such as leaching from stainless steel cookware during food preparation, are not well characterized. This study examined stainless steel grades, cooking time, repetitive cooking cycles, and multiple types of tomato sauces for their effects on nickel and chromium leaching. Trials included three types of stainless steels and a stainless steel saucepan; cooking times of 2 to 20 hours, ten consecutive cooking cycles, and four commercial tomato sauces. After a simulated cooking process, samples were analyzed by ICP-MS for Ni and Cr. After six hours of cooking, Ni and Cr concentrations in tomato sauce increased up to 26- and 7-fold respectively, depending on the grade of stainless steel. Longer cooking durations resulted in additional increases in metal leaching, where Ni concentrations increased 34 fold and Cr increased approximately 35 fold from sauces cooked without stainless steel. Cooking with new stainless steel resulted in the largest increases. Metal leaching decreases with sequential cooking cycles and stabilized after the sixth cooking cycle, though significant metal contributions to foods were still observed. The tenth cooking cycle, resulted in an average of 88 μg of Ni and 86 μg of Cr leached per 126 g serving of tomato sauce. Stainless steel cookware can be an overlooked source of nickel and chromium, where the contribution is dependent on stainless steel grade, cooking time, and cookware usage. PMID:23984718

  6. An understanding of HSLA-65 plate steels

    NASA Astrophysics Data System (ADS)

    Sampath, K.

    2006-02-01

    HSLA-65 plate steels can be produced using one of five plate manufacturing techniques: normalizing, controlled rolling (CR), controlled rolling followed by accelerated cooling (CR-AC), direct quenching and tempering (DQT), or conventional quenching and tempering (Q&T). The HSLA-65 steels are characterized by low carbon content and low alloy content, and they exhibit a low carbon equivalent that allows improved plate weldability. These characteristics in turn (a) provide the steel plate with a refined microstructure that ensures high strength and toughness; (b) eliminate or substantially reduce the need for preheating during welding; (c) resist susceptibility to hydrogen-assisted cracking (HAC) in the weld heat affected zone (HAZ) when fusion (arc) welded using low heat-input conditions; and (d) depending on section thickness, facilitate high heat-input welding (about 2 kJ/mm) without significant loss of strength or toughness in the HAZ. However, application of this plate manufacturing process and of these controls produces significant differences in the metallurgical structure and range of mechanical properties of the HSLA-65 plate steels both among themselves and versus conventional higher strength steel (HSS) plates. For example, among the HSLA-65 plate steels, those produced by Q&T exhibit minimal variability in mechanical properties, especially in thicker plates. Besides variability in mechanical properties depending on plate thickness, the CR and CR-AC plate steels exhibit a relatively higher yield strength to ultimate tensile strength (YS/UTS) ratio than do DQT and Q&T steels. Such differences in processing and properties of HSLA-65 plate steels could potentially affect the selection and control of various secondary fabrication practices, including arc welding. Consequently, fabricators must exercise extreme caution when transferring allowable limits of certified secondary fabrication practices from one type of HSLA-65 plate steel to another, even for the

  7. Corrosive effect of carbon-fibre reinforced plastic on stainless-steel screws during implantation into man.

    PubMed

    Tayton, K

    1983-01-01

    The corrosion of stainless-steel screws used to fix carbon-fibre reinforced plastic (CFRP) plates to human fractures was compared with the corrosion on similar screws used to fix stainless-steel AO plates. Corrosive changes were noted in both sets of screws with similar frequency and severity; however, the stainless-steel plates were 'in situ' almost twice as long as the CFRP ones, showing that the corrosive changes occurred more rapidly on screws in contact with CFRP. Nevertheless, over the implantation time necessary for bone healing, corrosion was very mild and there is no clinical contra-indication to the use of stainless-steel and CFRP together in this particular application. PMID:6842566

  8. 3. INTERIOR VIEW OF SMOKEHOUSE UNIT; NOTE STAINLESS STEEL NOZZLES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. INTERIOR VIEW OF SMOKEHOUSE UNIT; NOTE STAINLESS STEEL NOZZLES THAT INTRODUCED SMOKE INTO UNIT; FLOOR IS UNPAINTED STEEL - Rath Packing Company, Smokehouse-Hog Chilling Building, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  9. Nanostructured nickel-free austenitic stainless steel/hydroxyapatite composites.

    PubMed

    Tulinski, Maciej; Jurczyk, Mieczyslaw

    2012-11-01

    In this work Ni-free austenitic stainless steels with nanostructure and their nanocomposites with hydroxyapatite are presented and characterized by means of X-ray diffraction and optical profiling. The samples were synthesized by mechanical alloying, heat treatment and nitriding of elemental microcrystalline powders with addition of hydroxyapatite (HA). In our work we wanted to introduce into stainless steel hydroxyapatite ceramics that have been intensively studied for bone repair and replacement applications. Such applications were chosen because of their high biocompatibility and ability to bond to bone. Since nickel-free austenitic stainless steels seem to have better mechanical properties, corrosion resistance and biocompatibility compared to 316L stainless steels, it is possible that composite made of this steel and HA could improve properties, as well. Mechanical alloying and nitriding are very effective technologies to improve the corrosion resistance of stainless steel. Similar process in case of nanocomposites of stainless steel with hydroxyapatite helps achieve even better mechanical properties and corrosion resistance. Hence nanocrystalline nickel-free stainless steels and nickel-free stainless steel/hydroxyapatite nanocomposites could be promising bionanomaterials for use as a hard tissue replacement implants, e.g., orthopedic implants. In such application, the surface roughness and more specifically the surface topography influences the proliferation of cells (e.g., osteoblasts). PMID:23421285

  10. Production of Oil-in-Water Microspheres Using a Stainless Steel Microchannel.

    PubMed

    Tong, Jihong; Nakajima, Mitsutoshi; Nabetani, Hiroshi; Kikuchi, Yuji; Maruta, Yasuhiro

    2001-05-15

    From the point of view of practical application of the microchannel (MC) emulsification technique, which can be used to produce super-monodispersed microspheres (MS), we fabricated a stainless steel MC and investigated the production and characterization of oil-in-water (O/W) MS using a stainless steel MC instead of a silicon MC plate. We discovered that a stainless steel MC could not be fabricated precisely at a 1-&mgr;m scale; because of its multicrystal property, it can only be processed mechanically on a 10-&mgr;m scale. O/W-MS ranging from 20 to 210 &mgr;m in average diameter were produced using a stainless steel MC with 10 to 80 &mgr;m in equivalent diameter. The MS produced were monodispersed with a coefficient of variation lower than 3% for each individual channel. This value is smaller than that of normal emulsions obtained by the conventional emulsification techniques by 1 order of magnitude. The average diameter of the MS produced at breakthrough pressure was about 2.6 times the stainless steel MC equivalent diameter. The operation pressure affects the MS formation, causing a size-stable zone, size-expanding zone, and outflow zone observed. Larger stainless steel MC demonstrated difficulties in stably producing monodispersed O/W-MS. The breakthrough pressure was approximately inversely proportional to the MC equivalent diameter. Copyright 2001 Academic Press. PMID:11334539

  11. Gas Atomization of Stainless Steel - Slow Motion

    SciTech Connect

    2011-01-01

    Stainless steel liquid atomized by supersonic argon gas into a spray of droplets at ~1800ºC. Atomization of metal requires high pressure gas and specialized chambers for cooling and collecting the powders without contamination. The critical step for morphological control is the impingement of the gas on the melt stream. The video is a black and white high speed video of a liquid metal stream being atomized by high pressure gas. This material was atomized at the Ames Laboratory's Materials Preparation Center http://www.mpc.ameslab.gov

  12. Characterization of silane layers on modified stainless steel surfaces and related stainless steel-plastic hybrids

    NASA Astrophysics Data System (ADS)

    Honkanen, Mari; Hoikkanen, Maija; Vippola, Minnamari; Vuorinen, Jyrki; Lepistö, Toivo; Jussila, Petri; Ali-Löytty, Harri; Lampimäki, Markus; Valden, Mika

    2011-09-01

    The aim of this work was to characterize silane layers on the modified stainless steel surfaces and relate it to the adhesion in the injection-molded thermoplastic urethane-stainless steel hybrids. The silane layers were characterized with scanning electron microscope and transmission electron microscope, allowing the direct quantization of silane layer thickness and its variation. The surface topographies were characterized with atomic force microscope and chemical analyses were performed with X-ray photoelectron spectroscopy. The mechanical strength of the respective stainless steel-thermoplastic urethane hybrids was determined by peel test. Polishing and oxidation treatment of the steel surface improved the silane layer uniformity compared to the industrially pickled surface and increased the adhesion strength of the hybrids, resulting mainly cohesive failure in TPU. XPS analysis indicated that the improved silane bonding to the modified steel surface was due to clean Fe 2O 3-type surface oxide and stronger interaction with TPU was due to more amino species on the silane layer surface compared to the cleaned, industrially pickled surface. Silane layer thickness affected failure type of the hybrids, with a thick silane layer the hybrids failed mainly in the silane layer and with a thinner layer cohesively in plastic.

  13. New Method For Joining Stainless Steel to Titanium

    NASA Technical Reports Server (NTRS)

    Emanuel, W. H.

    1982-01-01

    In new process, edge of stainless-steel sheet is perforated, and joined to titanium by resistance seam welding. Titanium flows into perforations, forming a strong interlocking joint. Process creates a quasi-metallurgical bond between the thin sheets of stainless steel and titanium.

  14. 6. DETAIL VIEW OF SPIN FORM FURNACE FOR STAINLESS STEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL VIEW OF SPIN FORM FURNACE FOR STAINLESS STEEL FABRICATION. STAINLESS STEEL WAS MACHINED IN SIDE A OF THE BUILDING, BEGINNING IN 1957. (4/24/78) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  15. 78 FR 21417 - Drawn Stainless Steel Sinks From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ..., Washington, DC, and by publishing the notice in the Federal Register on October 22, 2012 (77 FR 64545). The... COMMISSION Drawn Stainless Steel Sinks From China Determinations On the basis of the record \\1\\ developed in... drawn stainless steel sinks from China, provided for in subheading 7324.10.00 of the Harmonized...

  16. 77 FR 23752 - Drawn Stainless Steel Sinks From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-20

    ... the notice in the Federal Register of March 7, 2012 (77 FR 13631). The conference was held in... COMMISSION Drawn Stainless Steel Sinks From China Determinations On the basis of the record \\1\\ developed in... (April 2012), entitled Drawn Stainless Steel Sinks from China: Investigation Nos. 701-TA-489 and...

  17. THE CLEANING OF 303 STAINLESS STEEL

    SciTech Connect

    Shen, T H

    2004-04-20

    The sulfur found on the surfaces of stainless steel 303 (SS303) after nitric acid passivation originated from the MnS inclusions in the steel. The nitric acid attacked and dissolved these MnS inclusions, and redeposited micron-sized elemental sulfur particles back to the surface. To develop an alternative passivation procedure for SS303, citric and phosphoric acids have been evaluated. The experimental results show neither acid causes a significant amount of sulfur deposit. Thus, these two acids can be used as alternatives to nitric acid passivation for NIF applications. For SS303 previously passivated by nitric acid, NaOH soak can be used as a remedial cleaning process to effectively remove the sulfur deposits.

  18. Microstructural characterization of the HAZ in AISI 444 ferritic stainless steel welds

    SciTech Connect

    Silva, Cleiton C. Farias, Jesualdo P.; Miranda, Helio C.; Guimaraes, Rodrigo F.; Menezes, John W.A.; Neto, Moises A.M.

    2008-05-15

    Ferritic stainless steel is used as a coating for equipment in the petroleum refining industry. Welding is the main manufacturing and maintenance process used. However, little information on the metallurgical alterations caused by welding of these steels is found in the literature, prompting this study. In this study the authors evaluated the HAZ microstructure of AISI 444 ferritic stainless steel welded plates, by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results indicated that a weld thermal cycle caused microphase precipitation in the HAZ of the ferritic stainless steel. Also needle-like Laves phase precipitation occurred in the HAZ, near the partially-melted zone. Other secondary phases such as chi and sigma were observed, as well as nitride, carbide and carbonitride precipitates.

  19. PORTABLE HYPERSPECTRAL FLUORESCENCE IMAGING SYSTEM FOR DETECTION OF BIOFILM ON STAINLESS STEEL COUPON

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Portable hyperspectral fluorescence imaging, as a rapid nondestructive method, was used to investigate detection of bacterial contamination on the surfaces of food processing equipment. In this study, stainless steel plates typically used to manufacture food processing equipment was utilized to gro...

  20. Embrittlement of austenitic stainless steel welds

    SciTech Connect

    David, S.A.; Vitek, J.M.

    1997-12-31

    The microstructure of type-308 austenitic stainless steel weld metal containing {gamma} and {delta} and ferrite is shown. Typical composition of the weld metal is Cr-20.2, Ni-9.4, Mn-1.7, Si-0.5, C-0.05, N-0.06 and balance Fe (in wt %). Exposure of austenitic stainless steel welds to elevated temperatures can lead to extensive changes in the microstructural features of the weld metal. On exposure to elevated temperatures over a long period of time, a continuous network of M{sub 23}C{sub 6} carbide forms at the austenite/ferrite interface. Upon aging at temperatures between 550--850 C, ferrite in the weld has been found to be unstable and transforms to sigma phase. These changes have been found to influence mechanical behavior of the weld metal, in particular the creep-rupture properties. For aging temperatures below 550 C the ferrite decomposes spinodally into {alpha} and {alpha}{prime} phases. In addition, precipitation of G-phase occurs within the decomposed ferrite. These transformations at temperatures below 550 C lead to embrittlement of the weld metal as revealed by the Charpy impact properties.

  1. Antibacterial polyelectrolyte micelles for coating stainless steel.

    PubMed

    Falentin-Daudré, Céline; Faure, Emilie; Svaldo-Lanero, Tiziana; Farina, Fabrice; Jérôme, Christine; Van De Weerdt, Cécile; Martial, Joseph; Duwez, Anne-Sophie; Detrembleur, Christophe

    2012-05-01

    In this study, we report on the original synthesis and characterization of novel antimicrobial coatings for stainless steel by alternating the deposition of aqueous solutions of positively charged polyelectrolyte micelles doped with silver-based nanoparticles with a polyanion. The micelles are formed by electrostatic interaction between two oppositely charged polymers: a polycation bearing 3,4-dihydroxyphenylalanine units (DOPA, a major component of natural adhesives) and a polyanion (poly(styrene sulfonate), PSS) without using any block copolymer. DOPA units are exploited for their well-known ability to anchor to stainless steel and to form and stabilize biocidal silver nanoparticles (Ag(0)). The chlorine counteranion of the polycation forms and stabilizes biocidal silver chloride nanoparticles (AgCl). We demonstrate that two layers of micelles (alternated by PSS) doped with silver particles are enough to impart to the surface strong antibacterial activity against gram-negative E. coli. Moreover, micelles that are reservoirs of biocidal Ag(+) can be easily reactivated after depletion. This novel water-based approach is convenient, simple, and attractive for industrial applications. PMID:22506542

  2. Citric Acid Passivation of Stainless Steel

    NASA Technical Reports Server (NTRS)

    Yasensky, David; Reali, John; Larson, Chris; Carl, Chad

    2009-01-01

    Passivation is a process for cleaning and providing corrosion protection for stainless steel. Currently, on Kennedy Space Center (KSC), only parts passivated with nitric acid are acceptable for use. KSC disposes of approximately 125gal of concentrated nitric acid per year, and receives many parts from vendors who must also dispose of used nitric acid. Unfortunately, nitric acid presents health and environmental hazards. As a result, several recent industry studies have examined citric acid as an alternative. Implementing a citric acid-based passivation procedure would improve the health and environmental safety aspects of passivation process. However although there is a lack of published studies that conclusively prove citric acid is a technically sound passivation agent. In 2007, NASA's KSC Materials Advisory Working Group requested the evaluation of citric acid in place of nitric acid for passivation of parts at KSC. United Space Alliance Materials & Processes engineers have developed a three-phase test plan to evaluate citric acid as an alternative to nitric acid on three stainless steels commonly used at KSC: UNS S30400, S41000, and S17400. Phases 1 and 2 will produce an optimized citric acid treatment based on results from atmospheric exposure at NASA's Beach Corrosion Facility. Phase 3 will compare the optimized solution(s) with nitric acid treatments. If the results indicate that citric acid passivates as well or better than nitric acid, NASA intends to approve this method for parts used at the Kennedy Space Center.

  3. Cast alumina forming austenitic stainless steels

    DOEpatents

    Muralidharan, Govindarajan; Yamamoto, Yukinori; Brady, Michael P

    2013-04-30

    An austenitic stainless steel alloy consisting essentially of, in terms of weight percent ranges 0.15-0.5C; 8-37Ni; 10-25Cr; 2.5-5Al; greater than 0.6, up to 2.5 total of at least one element selected from the group consisting of Nb and Ta; up to 3Mo; up to 3Co; up to 1W; up to 3Cu; up to 15Mn; up to 2Si; up to 0.15B; up to 0.05P; up to 1 total of at least one element selected from the group consisting of Y, La, Ce, Hf, and Zr; <0.3Ti+V; <0.03N; and, balance Fe, where the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale comprising alumina, and a stable essentially single phase FCC austenitic matrix microstructure, the austenitic matrix being essentially delta-ferrite free and essentially BCC-phase-free. A method of making austenitic stainless steel alloys is also disclosed.

  4. Attenuation of shock waves in copper and stainless steel

    SciTech Connect

    Harvey, W.B.

    1986-06-01

    By using shock pins, data were gathered on the trajectories of shock waves in stainless steel (SS-304L) and oxygen-free-high-conductivity copper (OFHC-Cu). Shock pressures were generated in these materials by impacting the appropriate target with thin (approx.1.5 mm) flying plates. The flying plates in these experiments were accelerated to high velocities (approx.4 km/s) by high explosives. Six experiments were conducted, three using SS-304L as the target material and three experiments using OFHC-Cu as the target material. Peak shock pressures generated in the steel experiments were approximately 109, 130, and 147 GPa and in the copper experiments, the peak shock pressures were approximately 111, 132, and 143 GPa. In each experiment, an attenuation of the shock wave by a following release wave was clearly observed. An extensive effort using two characteristic codes (described in this work) to theoretically calculate the attenuation of the shock waves was made. The efficacy of several different constitutive equations to successfully model the experiments was studied by comparing the calculated shock trajectories to the experimental data. Based on such comparisons, the conclusion can be drawn that OFHC-Cu enters a melt phase at about 130 GPa on the principal Hugoniot. There was no sign of phase changes in the stainless-steel experiments. In order to match the observed attenuation of the shock waves in the SS-304L experiments, it was necessary to include strength effects in the calculations. It was found that the values for the parameters in the strength equations were dependent on the equation of state used in the modeling of the experiments. 66 refs., 194 figs., 77 tabs.

  5. Dissimilar Friction Stir Welding Between UNS S31603 Austenitic Stainless Steel and UNS S32750 Superduplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Theodoro, Maria Claudia; Pereira, Victor Ferrinho; Mei, Paulo Roberto; Ramirez, Antonio Jose

    2015-02-01

    In order to verify the viability of dissimilar UNS S31603 austenitic and UNS S32750 superduplex stainless steels joined by friction stir welding, 6-mm-thick plates were welded using a PCBN-WRe tool. The welded joints were performed in position control mode at rotational speeds of 100 to 300 rpm and a feed rate of 100 mm/min. The joints performed with 150 and 200 rpm showed good appearance and no defects. The metallographic analysis of both joints showed no internal defects and that the material flow pattern is visible only in the stirred zone (SZ) of the superduplex steel. On the SZ top, these patterns are made of regions of different phases (ferrite and austenite), and on the bottom and central part of the SZ, these patterns are formed by alternated regions of different grain sizes. The ferrite grains in the superduplex steel are larger than those in the austenitic ones along the SZ and thermo-mechanically affected zone, explained by the difference between austenite and ferrite recrystallization kinetics. The amount of ferrite islands present on the austenitic steel base metal decreased near the SZ interface, caused by the dissolving of the ferrite in austenitic matrix. No other phases were found in both joints. The best weld parameters were found to be 200 rpm rotation speed, 100 mm/min feed rate, and tool position control.

  6. Microbial-Influenced Corrosion of Corten Steel Compared with Carbon Steel and Stainless Steel in Oily Wastewater by Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Mansouri, Hamidreza; Alavi, Seyed Abolhasan; Fotovat, Meysam

    2015-07-01

    The microbial corrosion behavior of three important steels (carbon steel, stainless steel, and Corten steel) was investigated in semi petroleum medium. This work was done in modified nutrient broth (2 g nutrient broth in 1 L oily wastewater) in the presence of Pseudomonas aeruginosa and mixed culture (as a biotic media) and an abiotic medium for 2 weeks. The behavior of corrosion was analyzed by spectrophotometric and electrochemical methods and at the end was confirmed by scanning electron microscopy. The results show that the degree of corrosion of Corten steel in mixed culture, unlike carbon steel and stainless steel, is less than P. aeruginosa inoculated medium because some bacteria affect Corten steel less than other steels. According to the experiments, carbon steel had less resistance than Corten steel and stainless steel. Furthermore, biofilm inhibits separated particles of those steels to spread to the medium; in other words, particles get trapped between biofilm and steel.

  7. In vivo behavior of a high performance duplex stainless steel.

    PubMed

    Cigada, A; De Santis, G; Gatti, A M; Roos, A; Zaffe, D

    1993-01-01

    An in vivo investigation of a new high molybdenum and nitrogen duplex stainless steel (25Cr--7Ni--4Mo--0.3N) has been performed. Cylindrical pins and specially developed devices, to test in static conditions the in vivo localized corrosion resistance, made of this new duplex steel and of a common austenitic stainless steel were implanted in rabbit's femurs for 6 and 12 months. After sacrifice, SEM observations and EDS microanalyses to detect metallic ion release were carried out on the femur sections surrounding the pins. Morphologic observations with stereoscope and SEM were performed on the metallic surfaces of the special devices in order to detect the presence of localized corrosion. Both ion release and localized corrosion were observed for the specimens made of austenitic stainless steel, but not for those made of 25Cr--7Ni--4Mo--0.3N duplex stainless steel. PMID:10148344

  8. Utility chromium stainless steels in the transportation industry

    SciTech Connect

    Northart, J.F.

    1998-12-31

    The advantages of stainless steel in the Transportation Industry have been well documented over the last two decades. Benefits have been based on fractional maintenance costs, improved operational efficiency, and favorable life cycle cost. The bus and coach industry, as well as rail and trucking industry applications have all exhibited excellent histories utilizing stainless steels. The introduction of the new generation utility ferrilic stainless steels (11%--12% Chromium, or Cr 12) has led to a new and major benefit, which is driving the use of stainless steels in the transportation industry to new heights. Application of these corrosion resistant, utility steels in coal hopper cars, bus underframes, truck bodies and chassis, and even some European car chassis, has reshaped the thinking of those interested in excellent life cycle costing.

  9. A mortality study among mild steel and stainless steel welders.

    PubMed Central

    Moulin, J J; Wild, P; Haguenoer, J M; Faucon, D; De Gaudemaris, R; Mur, J M; Mereau, M; Gary, Y; Toamain, J P; Birembaut, Y

    1993-01-01

    A mortality study was carried out in conjunction with the European mortality study among welders coordinated by the International Agency for Research on Cancer (IARC). The study was aimed at assessing risks for lung cancer in relation to exposure to asbestos, welding fumes containing chromium and nickel, and tobacco smoke. The study included a cohort of 2721 welders and an internal comparison group of 6683 manual workers employed in 13 factories in France. The mortality of the two cohorts was studied from 1975 to 1988 by the historical prospective method. Job histories of welders were traced including welding processes used, metals welded, and proportion of worktime spent in welding. Data on smoking habits were collected from medical records. The observed number of deaths were compared with those expected (standardised mortality ratio (SMR)) based on national rates with adjustments for age, sex, and calendar time. The smoking habits of 87% of the whole study population were known. The distribution of welders and controls according to smoking was not statistically different. The overall mortality was slightly higher for welders (SMR = 1.02, 95% confidence interval (95% CI) 0.89-1.18) than for controls (SMR = 0.91, 95% CI 0.84-0.99). For lung cancer, the SMR was 1.24 (95% CI 0.75-1.94) for welders, whereas the corresponding value was lower for controls (SMR = 0.94, 95% CI 0.68-1.26). The SMR for lung cancer was 1.59 among non-shipyard mild steel welders (95% CI 0.73-3.02). This contrasted with the results for all stainless steel welders (SMR = 0.92, 95% CI 0.19-2.69), and for stainless steel welders predominantly exposed to chromium VI (SMR = 1.03, 95% CI 0.12-3.71). Moreover, SMRs for lung cancer for mild steel welders tended to increase with duration of exposure and time since first exposure, leading to significant excesses for duration > or = 20 years and latency > or = 20 years. Such a pattern was not found for stainless steel welders. PMID:8457490

  10. Stainless Steel Round Robin Test: Centrifugally cast stainless steel screening phase

    SciTech Connect

    Bates, D.J.; Doctor, S.R.; Heasler, P.G.; Burck, E.

    1987-10-01

    This report presents the results of the Centrifugally Cast Stainless Steel Round Robin Test (CCSSRRT). The CCSSRRT is the first phase of an effort to investigate and improve the capability and reliability of NDE inspections of light water reactor piping systems. This phase was a screening test to identify the most promising procedures presently available for CCSS. The next phase will be an in-depth program to evaluate the capability and reliability of inservice inspections (ISI) for piping. In the CCSSRRT, 15 centrifugally cast stainless steel pipe sections containing welds and laboratory-grown thermal fatigue cracks in both columnar and equiaxed base material were used. These pipe specimens were inspected by a total of 18 teams from Europe and the United States using a variety of NDE techniques, mostly ultrasonic (UT). The inspections were carried out at the team's facilities and included inspections from both sides of the weld and inspections restricted to one side of the weld. The results of the CCSSRRT make it apparent that a more detailed study on the capability and reliability of procedures to inspect stainless steel materials is needed to better understand the specific material and flaw properties and how they affect the outcome of an inspection.

  11. Evaluation of Microstructure and Mechanical Properties in Dissimilar Austenitic/Super Duplex Stainless Steel Joint

    NASA Astrophysics Data System (ADS)

    Rahmani, Mehdi; Eghlimi, Abbas; Shamanian, Morteza

    2014-10-01

    To study the effect of chemical composition on microstructural features and mechanical properties of dissimilar joints between super duplex and austenitic stainless steels, welding was attempted by gas tungsten arc welding process with a super duplex (ER2594) and an austenitic (ER309LMo) stainless steel filler metal. While the austenitic weld metal had vermicular delta ferrite within austenitic matrix, super duplex stainless steel was mainly comprised of allotriomorphic grain boundary and Widmanstätten side plate austenite morphologies in the ferrite matrix. Also the heat-affected zone of austenitic base metal comprised of large austenite grains with little amounts of ferrite, whereas a coarse-grained ferritic region was observed in the heat-affected zone of super duplex base metal. Although both welded joints showed acceptable mechanical properties, the hardness and impact strength of the weld metal produced using super duplex filler metal were found to be better than that obtained by austenitic filler metal.

  12. Magnetic characterisation of duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Mészáros, I.

    2006-02-01

    Heat treatment-induced microstructural processes were studied by different non-destructive magnetic and mechanical material testing methods in the present work. A commercial SAF 2507 type superduplex stainless steel was investigated. This alloy contains about 40% metastable ferrite which can decompose to a sigma phase and secondary austenite due to heat treatment. All the mechanical, corrosion resistance and magnetic properties are strongly influenced by this microstructural changes. This study had two aims: to understand better the kinetics of the ferrite decomposition process and to study the application possibilities of the applied magnetic measurements. This paper presents an application possibility of the nonlinear harmonics analysis measurement and demonstrates the possibility to find a quantitative correlation between measured harmonics and mechanical properties obtained from destructive tests.

  13. Wear evaluation of high interstitial stainless steel

    SciTech Connect

    Rawers, J.C.; Tylczak, J.H.

    2008-07-01

    A new series of high nitrogen-carbon manganese stainless steel alloys are studied for their wear resistance. High nitrogen and carbon concentrations were obtained by melting elemental iron-chromium-manganese (several with minor alloy additions of nickel, silicon, and molybdenum) in a nitrogen atmosphere and adding elemental graphite. The improvement in material properties (hardness and strength) with increasing nitrogen and carbon interstitial concentration was consistent with previously reported improvements in similar material properties alloyed with nitrogen only. Wear tests included: scratch, pin-on-disk, sand-rubber-wheel, impeller, and jet erosion. Additions of interstitial nitrogen and carbon as well as interstitial nitrogen and carbide precipitates were found to greatly improve material properties. In general, with increasing nitrogen and carbon concentrations, strength, hardness, and wear resistance increased.

  14. Radiation resistant austenitic stainless steel alloys

    DOEpatents

    Maziasz, P.J.; Braski, D.N.; Rowcliffe, A.F.

    1987-02-11

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01 to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties. 4 figs.

  15. Automatic Welding of Stainless Steel Tubing

    NASA Technical Reports Server (NTRS)

    Clautice, W. E.

    1978-01-01

    To determine if the use of automatic welding would allow reduction of the radiographic inspection requirement, and thereby reduce fabrication costs, a series of welding tests were performed. In these tests an automatic welder was used on stainless steel tubing of 1/2, 3/4, and 1/2 inch diameter size. The optimum parameters were investigated to determine how much variation from optimum in machine settings could be tolerate and still result in a good quality weld. The process variables studied were the welding amperes, the revolutions per minute as a function of the circumferential weld travel speed, and the shielding gas flow. The investigation showed that the close control of process variables in conjunction with a thorough visual inspection of welds can be relied upon as an acceptable quality assurance procedure, thus permitting the radiographic inspection to be reduced by a large percentage when using the automatic process.

  16. MOCVD deposition of YSZ on stainless steels

    NASA Astrophysics Data System (ADS)

    Chevalier, S.; Kilo, M.; Borchardt, G.; Larpin, J. P.

    2003-01-01

    Yttria stabilized zirconia was deposited on stainless steel using the metal-organic chemical vapor deposition (MOCVD) technique, from β-diketonate precursors. The variation of the evaporation temperatures of yttrium and zirconium precursor allowed to control the level of Y within the film. Over the temperature range 125-150 °C, the Y content increased from 2.5 to 17.6 at.%. X-ray diffraction (XRD) analyses evidenced tetragonal phase of zirconia when the Y content was below 8 at.%, and cubic phase for higher concentration. Sputtered neutral mass spectrometry (SNMS) profiles confirmed that the control and stability of Y precursor temperature were of major importance to guarantee the homogeneity of the deposited films.

  17. Automatic welding of stainless steel tubing

    NASA Technical Reports Server (NTRS)

    Clautice, W. E.

    1978-01-01

    The use of automatic welding for making girth welds in stainless steel tubing was investigated as well as the reduction in fabrication costs resulting from the elimination of radiographic inspection. Test methodology, materials, and techniques are discussed, and data sheets for individual tests are included. Process variables studied include welding amperes, revolutions per minute, and shielding gas flow. Strip chart recordings, as a definitive method of insuring weld quality, are studied. Test results, determined by both radiographic and visual inspection, are presented and indicate that once optimum welding procedures for specific sizes of tubing are established, and the welding machine operations are certified, then the automatic tube welding process produces good quality welds repeatedly, with a high degree of reliability. Revised specifications for welding tubing using the automatic process and weld visual inspection requirements at the Kennedy Space Center are enumerated.

  18. Radiation resistant austenitic stainless steel alloys

    DOEpatents

    Maziasz, Philip J.; Braski, David N.; Rowcliffe, Arthur F.

    1989-01-01

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01% to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties.

  19. Hydrogen vibrations in austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Danilkin, S. A.; Delafosse, D.; Fuess, H.; Gavriljuk, V. G.; Ivanov, A.; Magnin, T.; Wipf, H.

    The vibrational modes of hydrogen in fcc Fe-25Cr-20Ni stainless steel with a hydrogen content of 0.33at.% were studied by neutron spectroscopy. Hydrogen doping was performed at 810K in a hydrogen-gas atmosphere of 190bar. Neutron spectra were taken at 2K and 77K with the spectrometer IN1-BeF (ILL, Grenoble). The spectra show the fundamental hydrogen vibration at 130 meV and the second harmonics at 260 meV. The frequencies are higher than in other fcc hydrides. In spite of the cubic symmetry of the octahedral hydrogen positions and the low hydrogen content, the inelastic hydrogen peak has a relatively large width and an asymmetric shape.

  20. Materials compatibility of hydride storage materials with austenitic stainless steels

    SciTech Connect

    Clark, E.A.

    1992-09-21

    This task evaluated the materials compatibility of LaNi[sub 5-x]Al[sub x] (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

  1. Materials compatibility of hydride storage materials with austenitic stainless steels

    SciTech Connect

    Clark, E.A.

    1992-09-21

    This task evaluated the materials compatibility of LaNi{sub 5-x}Al{sub x} (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

  2. A preliminary ferritic-martensitic stainless steel constitution diagram

    SciTech Connect

    Balmforth, M.C.; Lippold, J.C.

    1998-01-01

    This paper describes preliminary research to develop a constitution diagram that will more accurately predict the microstructure of ferritic and martensitic stainless steel weld deposits. A button melting technique was used to produce a wide range of compositions using mixtures of conventional ferritic and martensitic stainless steels, including types 403, 409, 410, 430, 439 and 444. These samples were prepared metallographically, and the vol-% ferrite and martensite was determined quantitatively. In addition, the hardness and ferrite number (FN) were measured. Using this data, a preliminary constitution diagram is proposed that provides a more accurate method for predicting the microstructures of arc welds in ferritic and martensitic stainless steels.

  3. Materials compatibility of hydride storage materials with austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Clark, E. A.

    1992-09-01

    This task evaluated the materials compatibility of LaNi(5-x)Al(x) (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

  4. Stainless steel-zirconium alloy waste forms

    SciTech Connect

    McDeavitt, S.M.; Abraham, D.P.; Keiser, D.D. Jr.; Park, J.Y.

    1996-07-01

    An electrometallurgical treatment process has been developed by Argonne National Laboratory to convert various types of spent nuclear fuels into stable storage forms and waste forms for repository disposal. The first application of this process will be to treat spent fuel alloys from the Experimental Breeder Reactor-II. Three distinct product streams emanate from the electrorefining process: (1) refined uranium; (2) fission products and actinides extracted from the electrolyte salt that are processed into a mineral waste form; and (3) metallic wastes left behind at the completion of the electrorefining step. The third product stream (i.e., the metal waste stream) is the subject of this paper. The metal waste stream contains components of the chopped spent fuel that are unaffected by the electrorefining process because of their electrochemically ``noble`` nature; this includes the cladding hulls, noble metal fission products (NMFP), and, in specific cases, zirconium from metal fuel alloys. The selected method for the consolidation and stabilization of the metal waste stream is melting and casting into a uniform, corrosion-resistant alloy. The waste form casting process will be carried out in a controlled-atmosphere furnace at high temperatures with a molten salt flux. Spent fuels with both stainless steel and Zircaloy cladding are being evaluated for treatment; thus, stainless steel-rich and Zircaloy-rich waste forms are being developed. Although the primary disposition option for the actinides is the mineral waste form, the concept of incorporating the TRU-bearing product into the metal waste form has enough potential to warrant investigation.

  5. Standard specification for pressure vessel plates, carbon steel, high strength, for moderate and lower temperature service. ASTM standard

    SciTech Connect

    1998-12-01

    This specification is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel, and Related Alloys and is the responsibility of Subcommittee A01.11 on Steel Plates for Boilers and Pressure Vessels. Current edition approved Sep. 10, 1998. Published December 1998. Originally published as A 612-70. Last previous edition A 612/A 612M-90(1996).

  6. Stainless steel anodes for alkaline water electrolysis and methods of making

    DOEpatents

    Soloveichik, Grigorii Lev

    2014-01-21

    The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.

  7. Bacterial adhesion on ion-implanted stainless steel surfaces

    NASA Astrophysics Data System (ADS)

    Zhao, Q.; Liu, Y.; Wang, C.; Wang, S.; Peng, N.; Jeynes, C.

    2007-08-01

    Stainless steel disks were implanted with N +, O + and SiF 3+, respectively at the Surrey Ion Beam Centre. The surface properties of the implanted surfaces were analyzed, including surface chemical composition, surface topography, surface roughness and surface free energy. Bacterial adhesion of Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus aureus, which frequently cause medical device-associated infections was evaluated under static condition and laminar flow condition. The effect of contact time, growth media and surface properties of the ion-implanted steels on bacterial adhesion was investigated. The experimental results showed that SiF 3+-implanted stainless steel performed much better than N +-implanted steel, O +-implanted steel and untreated stainless steel control on reducing bacterial attachment under identical experimental conditions.

  8. Phase Transformations in Cast Duplex Stainless Steels

    SciTech Connect

    Yoon-Jun Kim

    2004-12-19

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as {sigma} and {chi} can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase ({sigma} + {chi}) formation were analyzed using the Johnson-Mehl-Avrami (MA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities; a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, {sigma} was stabilized with increasing Cr addition and {chi} by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in

  9. Phase transformations in cast duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Kim, Yoon-Jun

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as sigma (sigma) and chi (chi) can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase (sigma + chi) formation were analyzed using the Johnson-Mehl-Avrami (JMA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities, a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, a was stabilized with increasing Cr addition and chi by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in

  10. Liquid Metal Corrosion of 316L Stainless Steel, 410 Stainless Steel, and 1015 Carbon Steel in a Molten Zinc Bath

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Bright, Mark A.; Liu, Xingbo; Barbero, Ever

    2007-11-01

    Corrosion tests of 1015 low-carbon steel and two stainless steels (410 and 316L) were conducted in a pure zinc bath (99.98 wt pct Zn) in order to better understand the reaction mechanisms that occur during the degradation of submerged hardware at industrial general (batch) galvanizing operations. Through this testing, it was found that, in general, 316L stainless steel showed the best dissolution resistance among these three alloys, while 1015 carbon steel provided a lower solubility than 410 stainless steel. Investigating the failure mechanisms, both metallurgical composition and lattice structure played important roles in the molten metal corrosion behaviors of these alloys. High contents of nickel combined with the influence of chromium improved the resistance to molten zinc corrosion. Moreover, a face-centered-cubic (fcc) structure was more corrosion resistant than body-centered-cubic (bcc) possibly due to the compactness of the atomic structure. Analogously, the body-centered-tetragonal (bct) martensite lattice structure possessed enhanced susceptibility to zinc corrosion as a result of the greater atomic spacing and high strain energy. Finally, an increased bath temperature played an important role in molten metal corrosion by accelerating the dissolution process and changing the nature of intermetallic layers.

  11. Cavitation erosion of duplex and super duplex stainless steels

    SciTech Connect

    Kwok, C.T.; Man, H.C.; Cheng, F.T.

    1998-10-05

    Owing to their excellent corrosion resistance, stainless steels are widely used both in the marine, urban water, chemical and food industries. In addition to the corrosive environment, high fluid flow speeds are always encountered for components used in these industries. The cavitation characteristics of S30400 and S31600 austenitic stainless steels and duplex stainless steels were studied in detail by a number of authors. It was generally agreed that S30400 has higher cavitation erosion resistance than that of S31600 due to higher tendency of strain induced martensitic transformation under high impulse of stress. A considerable number of results on stress corrosion cracking characteristics of SDSS and duplex stainless steels have been published but data concerning their cavitation erosion property are extremely rare.

  12. Stress-Corrosion Cracking in Martensitic PH Stainless Steels

    NASA Technical Reports Server (NTRS)

    Humphries, T.; Nelson, E.

    1984-01-01

    Precipitation-hardening alloys evaluated in marine environment tests. Report describes marine-environment stress-corrosion cracking (SCC) tests of three martensitic precipitation hardening (PH) stainless-steel alloys.

  13. 27. STAINLESS STEEL FERMENTING CASKS MADE BY ZERO MANG OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. STAINLESS STEEL FERMENTING CASKS MADE BY ZERO MANG OF WASHINGTON, MISSOURI. VIEW LOOKING NORTH TOWARD VAULT OF THE TWELVE APOSTLES - Stone Hill Winery, 401 West Twelfth Street, Hermann, Gasconade County, MO

  14. Ultrasonics permits brazing complex stainless steel assembly without flux

    NASA Technical Reports Server (NTRS)

    Baker, W. H.

    1967-01-01

    Ultrasonic vibration of an assembly of stainless steel instrumentation tubes ensures brazing without flux. Vibration with an ultrasonic transducer permits the brazing material to flow down each tube in contact with a seal plug installed in a pressure vessel wall.

  15. Stainless-steel elbows formed by spin forging

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Large seamless austenitic stainless steel elbows are fabricated by spin forging /rotary shear forming/. A specially designed spin forging tool for mounting on a hydrospin machine has been built for this purpose.

  16. Stress corrosion cracking evaluation of precipitation-hardening stainless steel

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1970-01-01

    Accelerated test program results show which precipitation hardening stainless steels are resistant to stress corrosion cracking. In certain cases stress corrosion susceptibility was found to be associated with the process procedure.

  17. Nafion coated stainless steel for anti-biofilm application.

    PubMed

    Zhong, Li Juan; Pang, Li Qing; Che, Li Ming; Wu, Xue E; Chen, Xiao Dong

    2013-11-01

    Biofilms can adhere to most surfaces and have caused a wide range of problems in various industrial processes as well as daily life activities. In this work, the anti-biofilm ability of Nafion-coated stainless steel surface was investigated and our results showed that stainless steel discs coated with 1% Nafion can significantly reduce E. coli adhesion. Nafion has a large amount of negatively charged sulphonate groups, and the findings of this study suggest that the negative surface charge can greatly reduce bacterial adhesion through increasing the electrostatic repulsion between negatively charged bacterial cells and Nafion coated stainless steel surface. The roughness of coated and uncoated stainless steel discs made no significant differences while the hydrophobic of the discs increased after coated with Nafion. PMID:23831592

  18. Hafnium stainless steel absorber rod for control rod

    SciTech Connect

    Charnley, J.E.; Cearley, J.E.; Dixon, R.C.; Izzo, K.R.; Aiello, L.L.

    1989-08-01

    This patent describes an improvement in a control rod having a stainless steel body for enclosing a neutron absorbing poison, the control rod having movement along an axial direction for insertion into and out of a nuclear reactor for controlling a nuclear reaction. The improvement comprising: a piece of hafnium; a piece of stainless steel joined to the hafnium by a thin diffusion interface created by friction welding. The hafnium and the stainless steel oriented serially in the axial direction with the thin diffusion interface disposed normal to the axial direction of the control rod movement; means for confining the hafnium to movement along the axial direction with the control rod; and means for attaching the piece of stainless steel to the remaining portion of the control rod to load the weld therebetween under compression or tension during the control rod movement. Whereby the thin diffusion interface is loaded in tension or compression only upon dynamic movement of the control rod.

  19. Eddy sensors for small diameter stainless steel tubes.

    SciTech Connect

    Skinner, Jack L.; Morales, Alfredo Martin; Grant, J. Brian; Korellis, Henry James; LaFord, Marianne Elizabeth; Van Blarigan, Benjamin; Andersen, Lisa E.

    2011-08-01

    The goal of this project was to develop non-destructive, minimally disruptive eddy sensors to inspect small diameter stainless steel metal tubes. Modifications to Sandia's Emphasis/EIGER code allowed for the modeling of eddy current bobbin sensors near or around 1/8-inch outer diameter stainless steel tubing. Modeling results indicated that an eddy sensor based on a single axial coil could effectively detect changes in the inner diameter of a stainless steel tubing. Based on the modeling results, sensor coils capable of detecting small changes in the inner diameter of a stainless steel tube were designed, built and tested. The observed sensor response agreed with the results of the modeling and with eddy sensor theory. A separate limited distribution SAND report is being issued demonstrating the application of this sensor.

  20. Welding stainless steels for structures operating at liquid helium temperature

    SciTech Connect

    Witherell, C.E.

    1980-04-18

    Superconducting magnets for fusion energy reactors require massive monolithic stainless steel weldments which must operate at extremely low temperatures under stresses approaching 100 ksi (700 MPa). A three-year study was conducted to determine the feasibility of producing heavy-section welds having usable levels of strength and toughness at 4.2/sup 0/K for fabrication of these structures in Type 304LN plate. Seven welding processes were evaluated. Test weldments in full-thickness plate were made under severe restraint to simulate that of actual structures. Type 316L filler metal was used for most welds. Welds deposited under some conditions and which solidify as primary austenite have exhibited intergranular embrittlement at 4.2/sup 0/K. This is believed to be associated with grain boundary metal carbides or carbonitrides precipitated during reheating of already deposited beads by subsequent passes. Weld deposits which solidify as primary delta ferrite appear immune. Through use of fully austenitic filler metals of low nitrogen content under controlled shielded metal arc welding conditions, and through use of filler metals solidifying as primary delta ferrite where only minimum residuals remain to room temperature, welds of Type 316L composition have been made with 4.2K yield strength matching that of Type 304LN plate and acceptable levels of soundness, ductility and toughness.

  1. 77 FR 64545 - Drawn Stainless Steel Sinks From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... respect to electronic filing have been amended. The amendments took effect on November 7, 2011. See 76 FR... COMMISSION Drawn Stainless Steel Sinks From China Scheduling of the final phase of countervailing duty and... retarded, by reason of subsidized and less-than-fair-value imports from China of drawn stainless...

  2. Probing the duplex stainless steel phases via magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Gheno, S. M.; Santos, F. S.; Kuri, S. E.

    2008-03-01

    Duplex stainless steels are austenitic-ferritic alloys used in many applications, thanks to their excellent mechanical properties and high corrosion resistance. In this work, chemical analyses, x-ray diffraction, and magnetic force microscopy (MFM) were employed to characterize the solution annealed and aged duplex stainless steel. The samples exhibited no changes in lattice parameters and the MFM technique proved successful in clearly imaging the magnetic domain structure of the ferrite phase.

  3. Procedure for flaw detection in cast stainless steel

    DOEpatents

    Kupperman, David S.

    1988-01-01

    A method of ultrasonic flaw detection in cast stainless steel components incorporating the steps of determining the nature of the microstructure of the cast stainless steel at the site of the flaw detection measurements by ultrasonic elements independent of the component thickness at the site; choosing from a plurality of flaw detection techniques, one such technique appropriate to the nature of the microstructure as determined and detecting flaws by use of the chosen technique.

  4. Measurement of intergranular attack in stainless steel using ultrasonic energy

    DOEpatents

    Mott, Gerry; Attaar, Mustan; Rishel, Rick D.

    1989-08-08

    Ultrasonic test methods are used to measure the depth of intergranular attack (IGA) in a stainless steel specimen. The ultrasonic test methods include a pitch-catch surface wave technique and a through-wall pulse-echo technique. When used in combination, these techniques can establish the extent of IGA on both the front and back surfaces of a stainless steel specimen from measurements made on only one surface.

  5. X-ray attenuation properties of stainless steel (u)

    SciTech Connect

    Wang, Lily L; Berry, Phillip C

    2009-01-01

    Stainless steel vessels are used to enclose solid materials for studying x-ray radiolysis that involves gas release from the materials. Commercially available stainless steel components are easily adapted to form a static or a dynamic condition to monitor the gas evolved from the solid materials during and after the x-ray irradiation. Experimental data published on the x-ray attenuation properties of stainless steel, however, are very scarce, especially over a wide range of x-ray energies. The objective of this work was to obtain experimental data that will be used to determine how a poly-energetic x-ray beam is attenuated by the stainless steel container wall. The data will also be used in conjunction with MCNP (Monte Carlos Nuclear Particle) modeling to develop an accurate method for determining energy absorbed in known solid samples contained in stainless steel vessels. In this study, experiments to measure the attenuation properties of stainless steel were performed for a range of bremsstrahlung x-ray beams with a maximum energy ranging from 150 keV to 10 MeV. Bremsstrahlung x-ray beams of these energies are commonly used in radiography of engineering and weapon components. The weapon surveillance community has a great interest in understanding how the x-rays in radiography affect short-term and long-term properties of weapon materials.

  6. Solidification behavior of austenitic stainless steel filler metals

    SciTech Connect

    David, S.A.; Goodwin, G.M.; Braski, D.N.

    1980-02-01

    Thermal analysis and interrupted solidification experiments on selected austenitic stainless steel filler metals provided an understanding of the solidification behavior of austenitic stainless steel welds. The sequences of phase separations found were for type 308 stainless steel filler metal, L + L + delta + L + delta + ..gamma.. ..-->.. ..gamma.. + delta, and for type 310 stainless steel filler metal, L ..-->.. L + ..gamma.. ..-->.. ..gamma... In type 308 stainless steel filler metal, ferrite at room temperature was identified as either the untransformed primary delta-ferrite formed during the initial stages of solidification or the residual ferrite after Widmanstaetten austenite precipitation. Microprobe and scanning transmission electron microscope microanalyses revealed that solute extensively redistributes during the transformation of primary delta-ferrite to austenite, leading to enrichment and stabilization of ferrite by chromium. The type 310 stainless steel filler metal investigated solidifies by the primary crystallization of austenite, with the transformation going to completion at the solidus temperature. In our samples residual ferrite resulting from solute segregation was absent at the intercellular or interdendritic regions.

  7. Hybrid Laser-arc Welding of 17-4 PH Martensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Ma, Junjie; Atabaki, Mehdi Mazar; Pillai, Raju; Kumar, Biju; Vasudevan, Unnikrishnan; Sreshta, Harold; Kovacevic, Radovan

    2015-06-01

    17-4 PH stainless steel has wide applications in severe working conditions due to its combination of good corrosion resistance and high strength. The weldability of 17-4 PH stainless steel is challenging. In this work, hybrid laser-arc welding was developed to weld 17-4 PH stainless steel. This method was chosen based on its advantages, such as deep weld penetration, less filler materials, and high welding speed. The 17-4 PH stainless steel plates with a thickness of 19 mm were successfully welded in a single pass. During the hybrid welding, the 17-4 PH stainless steel was immensely susceptible to porosity and solidification cracking. The porosity was avoided by using nitrogen as the shielding gas. The nitrogen stabilized the keyhole and inhibited the formation of bubbles during welding. Solidification cracking easily occurred along the weld centerline at the root of the hybrid laser-arc welds. The microstructural evolution and the cracking susceptibility of 17-4 PH stainless steel were investigated to remove these centerline cracks. The results showed that the solidification mode of the material changed due to high cooling rate at the root of the weld. The rapid cooling rate caused the transformation from ferrite to austenite during the solidification stage. The solidification cracking was likely formed as a result of this cracking-susceptible microstructure and a high depth/width ratio that led to a high tensile stress concentration. Furthermore, the solidification cracking was prevented by preheating the base metal. It was found that the preheating slowed the cooling rate at the root of the weld, and the ferrite-to-austenite transformation during the solidification stage was suppressed. Delta ferrite formation was observed in the weld bead as well no solidification cracking occurred by optimizing the preheating temperature.

  8. Fabrication of stainless steel clad tubing. [gas pressure bonding

    NASA Technical Reports Server (NTRS)

    Kovach, C. W.

    1978-01-01

    The feasibility of producing stainless steel clad carbon steel tubing by a gas pressure bonding process was evaluated. Such a tube product could provide substantial chromium savings over monolithic stainless tubing in the event of a serious chromium shortage. The process consists of the initial assembly of three component tubesets from conventionally produced tubing, the formation of a strong metallurgical bond between the three components by gas pressure bonding, and conventional cold draw and anneal processing to final size. The quality of the tubes produced was excellent from the standpoint of bond strength, mechanical, and forming properties. The only significant quality problem encountered was carburization of the stainless clad by the carbon steel core which can be overcome by further refinement through at least three different approaches. The estimated cost of clad tubing produced by this process is greater than that for monolithic stainless tubing, but not so high as to make the process impractical as a chromium conservation method.

  9. Weldability of neutron irradiated austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Asano, Kyoichi; Nishimura, Seiji; Saito, Yoshiaki; Sakamoto, Hiroshi; Yamada, Yuji; Kato, Takahiko; Hashimoto, Tsuneyuki

    1999-01-01

    Degradation of weldability in neutron irradiated austenitic stainless steel is an important issue to be addressed in the planning of proactive maintenance of light water reactor core internals. In this work, samples selected from reactor internal components which had been irradiated to fluence from 8.5 × 10 22 to 1.4 × 10 26 n/m 2 ( E > 1 MeV) corresponding to helium content from 0.11 to 103 appm, respectively, were subjected to tungsten inert gas arc (TIG) welding with heat input ranged 0.6-16 kJ/cm. The weld defects were characterized by penetrant test and cross-sectional metallography. The integrity of the weld was better when there were less helium and at lower heat input. Tensile properties of weld joint containing 0.6 appm of helium fulfilled the requirement for unirradiated base metal. Repeated thermal cycles were found to be very hazardous. The results showed the combination of material helium content and weld heat input where materials can be welded with little concern to invite cracking. Also, the importance of using properly selected welding procedures to minimize thermal cycling was recognized.

  10. New Economical 19Cr Duplex Stainless Steels

    NASA Astrophysics Data System (ADS)

    Li, Jun; Zhang, Zixing; Chen, Hong; Xiao, Xueshan; Zhao, Junliang; Jiang, Laizhu

    2012-02-01

    New economical duplex stainless steels (DSSs) containing 19Cr-6Mn- xNi-1.0Mo-0.5W-0.5Cu-0.2N ( x = 0.5 to 2.0) were developed, and the microstructure, impact property, and corrosion resistance of the alloys were studied. The ferrite content increases with the solution treatment temperature, but decreases with an increase in nickel. The sigma phase is not found precipitating in the alloys treated with solution from 1023 K to 1523 K (750 °C to 1250 °C). The low-temperature impact energy of the experimental alloys increases first and then decreases rapidly with an increase in nickel, which is mainly due to the martensite transformation with an increase in austenite. The alloys have a better mechanical property and pitting corrosion resistance than AISI 304. Among the designed DSS alloys, 19Cr-6Mn-1.3Ni-1.0Mo-0.5W-0.5Cu-0.2N is found to be an optimum alloy with proper phase proportion, a better combination of mechanical strength and elongation, and higher pitting corrosion resistance compared with those of the other alloys.