Science.gov

Sample records for stand structure alter

  1. Parasites alter community structure.

    PubMed

    Wood, Chelsea L; Byers, James E; Cottingham, Kathryn L; Altman, Irit; Donahue, Megan J; Blakeslee, April M H

    2007-05-29

    Parasites often play an important role in modifying the physiology and behavior of their hosts and may, consequently, mediate the influence hosts have on other components of an ecological community. Along the northern Atlantic coast of North America, the dominant herbivorous snail Littorina littorea structures rocky intertidal communities through strong grazing pressure and is frequently parasitized by the digenean trematode Cryptocotyle lingua. We hypothesized that the effects of parasitism on host physiology would induce behavioral changes in L. littorea, which in turn would modulate L. littorea's influence on intertidal community composition. Specifically, we hypothesized that C. lingua infection would alter the grazing rate of L. littorea and, consequently, macroalgal communities would develop differently in the presence of infected versus uninfected snails. Our results show that uninfected snails consumed 40% more ephemeral macroalgal biomass than infected snails in the laboratory, probably because the digestive system of infected snails is compromised by C. lingua infection. In the field, this weaker grazing by infected snails resulted in significantly greater expansion of ephemeral macroalgal cover relative to grazing by uninfected snails. By decreasing the per-capita grazing rate of the dominant herbivore, C. lingua indirectly affects the composition of the macroalgal community and may in turn affect other species that depend on macroalgae for resources or habitat structure. In light of the abundance of parasites across systems, we suggest that, through trait-mediated indirect effects, parasites may be a common determinant of structure in ecological communities. PMID:17517667

  2. Advanced Standing and Bridge Courses: Structures and Issues

    ERIC Educational Resources Information Center

    GlenMaye, Linnea F.; Lause, Timothy W.; Bolin, Brien L.

    2010-01-01

    This study explores the issue of advanced standing in MSW programs in light of the new Educational Policy and Accreditation Standards (EPAS). Advanced standing structures of MSW programs were studied using a purposive sample consisting of 203 MSW program directors with a response rate of 28% (N=58). The results indicate that slightly more than 15%…

  3. 5. "TEST STAND 13, CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. "TEST STAND 1-3, CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-06; no sheet number within title block. D.O. SERIES 1109/17, Rev. A. Stamped: AS BUILT; NO CHANGES. Date of Revision A: 11/1/50. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-3, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  4. 9. "TEST STAND; STRUCTURAL; CABLE TUNNEL, PLAN, SECTIONS, DETAILS." Specifications ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. "TEST STAND; STRUCTURAL; CABLE TUNNEL, PLAN, SECTIONS, DETAILS." Specifications No. OC1-55-72-(Rev.); Drawing No. 60-09-12; sheet 43 of 148; file no. AF 1320/94, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  5. 27. "TEST STAND; STRUCTURAL; SIDEWALL, NORTH WALL AND SOUTH WALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. "TEST STAND; STRUCTURAL; SIDEWALL, NORTH WALL AND SOUTH WALL FRAMING ELEVATIONS." Specifications No. ENG-04353-55-72; Drawing No. 60-09-12; sheet 27 of 148; file no. 1320/78. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, Rev. B; date: 15 April 1957. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  6. 12. "TEST STAND; STRUCTURAL; DEFLECTOR PIT DETAILS, SHEET NO. 1." ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. "TEST STAND; STRUCTURAL; DEFLECTOR PIT DETAILS, SHEET NO. 1." Specifications No. ENG-04-353-55-72; Drawing No. 60-09-12; sheet 41 of 148; file no. 1320/92, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  7. Methamphetamine Alters Brain Structures, Impairs Mental Flexibility

    MedlinePlus

    ... Alters Brain Structures, Impairs Mental Flexibility Methamphetamine Alters Brain Structures, Impairs Mental Flexibility Email Facebook Twitter March ... methamphetamine use, such as tobacco smoking. Can the Brain Recover? The UCLA study’s findings underscore the importance ...

  8. The effects of partial cutting on stand structure and growth of western hemlock-Sitka spruce stands in southeast Alaska

    USGS Publications Warehouse

    Deal, R.L.; Tappeiner, J.C.

    2002-01-01

    The effects of partial cutting on species composition, new and residual-tree cohorts, tree size distribution, and tree growth was evaluated on 73 plots in 18 stands throughout southeast Alaska. These partially cut stands were harvested 12-96 years ago, when 16-96% of the former stand basal area was removed. Partial cutting maintained stand structures similar to uncut old-growth stands, and the cutting had no significant effects on tree species composition. The establishment of new-tree cohorts was positively related to the proportion of basal-area cut. The current stand basal area, tree species composition, and stand growth were significantly related to trees left after harvest (p < 0.001). Trees that were 20-80 cm dbh at the time of cutting had the greatest tree-diameter and basal-area growth and contributed the most to stand growth. Diameter growth of Sitka spruce and western hemlock was similar, and the proportion of stand basal-area growth between species was consistent for different cutting intensities. Concerns about changing tree species composition, lack of spruce regeneration, and greatly reduced stand growth and vigor with partial cuts were largely unsubstantiated. Silvicultural systems based on partial cutting can provide rapidly growing trees for timber production while maintaining complex stand structures with mixtures of spruce and hemlock trees similar to oldgrowth stands.

  9. 4. "TEST STAND NO. 13, CONCRETE STRUCTURAL PLAN AND ELEVATION." ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. "TEST STAND NO. 1-3, CONCRETE STRUCTURAL PLAN AND ELEVATION." Specifications No. OC11-50-10; Drawing No. 60-09-06; no sheet number within title block. D.O. SERIES 1109/12 REV. E. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04-353 Eng. 177, Rev. E; Date: 17 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-3, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  10. 10. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/14, Rev. B. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. B; Date: 21 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  11. 16. "TEST STANDS NOS. 11, 13, & 15; STRUCTURAL STEEL; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. "TEST STANDS NOS. 1-1, 1-3, & 1-5; STRUCTURAL STEEL; ELEVATIONS AND SECTIONS." Specifications No. ENG 04353-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/35, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04-353 Eng. 177, Rev. A; Date: 29 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  12. 11. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/15, Rev. E. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. E; Date: 21 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  13. 12. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-06; no sheet number within title block. D.O. SERIES 1109/16, Rev. E. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. E; Date: 26 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  14. 9. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. ENG 04-35350-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/13. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, no change; Date: 17 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  15. 15. "TEST STANDS NOS. 11, 13, & 15; STRUCTURAL STEEL; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. "TEST STANDS NOS. 1-1, 1-3, & 1-5; STRUCTURAL STEEL; PLAN & DETAILS." Specifications No. ENG 04-353-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/34, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. A, no change; Date: 21 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  16. 13. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/18, Rev. D. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. D, no change; Date: 18 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  17. Lidar remote sensing of forest canopy and stand structure

    NASA Astrophysics Data System (ADS)

    Lim, Kevin Sheng-Wei

    Passive optical and radar remote sensing have consistently failed to provide reliable estimates of biophysical properties describing canopy and stand structure, and consequently, have not met the data and information needs of forest, landscape, and global ecologists. Lidar remote sensing differs from all other remote sensing technologies in that it samples on a point-wise basis three-dimensional measurements of the surface of the earth and its features. As a result, lidar is capable of providing spatially explicit measurements of canopy height. The research presented in this thesis seeks to enhance our understanding of the application of airborne discrete return lidar for the estimation of canopy and stand structure. Here, the capability of lidar to measure tree height and estimate various biophysical properties describing canopy and stand structure in deciduous forests is investigated. The biophysical properties considered included maximum tree height, Lorey's mean tree height, mean diameter at breast height, total basal area, canopy openness, effective plant area index, crown closure, aboveground biomass and volume, and stem density. Three lidar metrics were considered for model development and applied successfully for estimating canopy and stand structure. Based on theories of plant allometry, a conceptual model is proposed that: (i) describes how vertical distributions of leaf area and lidar canopy height are related; and (ii) explains how certain lidar-based metrics are capable of estimating aboveground biomass. This model suggests that quantiles of lidar canopy height are equivalent with respect to predictive power, and that high sampling point densities are not required for estimating forest biophysical properties at the plot and stand level. To test this conceptual model, the following research issues are addressed in this thesis: (1) The equivalency of quantiles of lidar canopy height for estimation of aboveground biomass was examined for deciduous and

  18. Impact of Acoustic Standing Waves on Structural Responses

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.

    2014-01-01

    For several decades large reverberant chambers and most recently direct field acoustic testing have been used in the aerospace industry to test larger structures with low surface densities such as solar arrays and reflectors to qualify them and to detect faults in the design and fabrication. It has been reported that in reverberant chamber and direct acoustic testing, standing acoustic modes may strongly couple with the fundamental structural modes of the test hardware (Reference 1). In this paper results from a recent reverberant chamber acoustic test of a composite reflector are discussed. These results provide further convincing evidence of the acoustic standing wave and structural modes coupling phenomenon. The purpose of this paper is to alert test organizations to this phenomenon so that they can account for the potential increase in structural responses and ensure that flight hardware undergoes safe testing. An understanding of the coupling phenomenon may also help minimize the over and/or under testing that could pose un-anticipated structural and flight qualification issues.

  19. Effects of Stand age Structure on Regional Carbon Budgets of Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Song, C.; Woodcock, C. E.

    2002-12-01

    This study has developed a two-stage modeling scheme to investigate the importance of age structure on regional carbon fluxes for the forests in the Pacific Northwest of the United States. In the first stage, an individual-based forest ecosystem carbon flux model (IntCarb) at stand scale is developed. IntCarb combines components from the ZELIG and CENTURY models to simulate forest growth and development, and heterotrophic respiration, respectively. Stand scale carbon fluxes simulated by IntCarb strongly depend on stand age. Due to its high variablity over large areas, forest age structure has to be taken into account for realistic estimation of carbon budgets. The RegCarb model is developed to estimate regional scale carbon fluxes based on forest age structure and adjusting for the nonrespiratory carbon losses, such as harvesting. Our initial estimate with RegCarb for the Pacific Northwest of the United States found that this region was a tremendous carbon source to the atmosphere from 1890 to 1990 due to intensive logging of old-growth forest, and is becoming a carbon sink since the last decade. Projections for the role of forests in this region in the global carbon cycle in the future strongly depend on the amount of timber to be harvested, i.e. how the age structure of forests in this region is to be altered.

  20. Free-Standing Photonic Crystal Films with Gradient Structural Colors.

    PubMed

    Ding, Haibo; Liu, Cihui; Ye, Baofen; Fu, Fanfan; Wang, Huan; Zhao, Yuanjin; Gu, Zhongze

    2016-03-23

    Hydrogel colloidal crystal composite materials have a demonstrated value in responsive photonic crystals (PhCs) via controllable stimuli. Although they have been successfully exploited to generate a gradient of color distribution, the soft hydrogels have limitations in terms of stability and storage caused by dependence on environment. Here, we present a practical strategy to fabricate free-standing PhC films with a stable gradient of structural colors using binary polymer networks. A colloidal crystal hydrogel film was prepared for this purpose, with continuously varying photonic band gaps corresponding to the gradient of the press. Then, a second polymer network was used to lock the inside non-close-packed PhC structures and color distribution of the hydrogel film. It was demonstrated that our strategy could bring about a solution to the angle-dependent structural colors of the PhC films by coating the surface with special microstructures. PMID:26962967

  1. RF Choke for Standing Wave Structures and Flanges

    SciTech Connect

    Yeremian, Anahid; Dolgashev, Valery; Tantawi, Sami; /SLAC

    2012-07-03

    SLAC participates in the U.S. High Gradient collaboration whose charter includes basic studies of rf breakdown properties in accelerating structures. These studies include experiments with different materials and construction methods for single cell standing wave accelerating structures. The most commonly used method of joining cells of such structures is the high temperature bonding and/or brazing in hydrogen and/or vacuum. These high temperature processes may not be suitable for some of the new materials that are under consideration. We propose to build structures from cells with an rf choke, taking the cell-to-cell junction out of the electromagnetic field region. These cells may be clamped together in a vacuum enclosure, the choke joint ensuring continuity of rf currents. Next, we propose a structure with a choke joint in a high gradient cell and a view port which may allow us microscopic, in-situ observation of the metal surface during high power tests. And third, we describe the design of a TM01 choke flange for these structures.

  2. Forest stand structure from airborne polarimetric InSAR

    NASA Astrophysics Data System (ADS)

    Balzter, H.; Saich, P.; Luckman, A. J.; Skinner, L.; Grant, J.

    2002-01-01

    Interferometric SAR at short wavelengths can be used to retrieve stand height of forests. We evaluate the precision of tree height estimation from airborne single-pass interferometric E-SAR data at X-band VV polarisation and repeat-pass L-band polarimetric data. General yield class curves were used to estimate tree height from planting year, tree species and yield class data provided by the Forest Enterprise. The data were compared to tree height estimates from X-VV single-pass InSAR and repeat-pass polarimetric InSAR at L-band acquired by DLR's E-SAR during the SHAC campaign 2000. The effect of gap structure and incidence angle on retrieval precision of tree height from interferometric SAR is analysed. Appropriate correction methods to improve tree height retrieval are proposed. The coherent microwave model CASM is used with a Lindenmayer system tree model to simulate the observed underestimation of stand height in the presence of gaps.

  3. SEISMOLOGY OF STANDING KINK OSCILLATIONS OF SOLAR PROMINENCE FINE STRUCTURES

    SciTech Connect

    Soler, R.; Arregui, I.; Oliver, R.; Ballester, J. L.

    2010-10-20

    We investigate standing kink magnetohydrodynamic (MHD) oscillations in a prominence fine structure modeled as a straight and cylindrical magnetic tube only partially filled with the prominence material and with its ends fixed at two rigid walls representing the solar photosphere. The prominence plasma is partially ionized and a transverse inhomogeneous transitional layer is included between the prominence thread and the coronal medium. Thus, ion-neutral collisions and resonant absorption are the damping mechanisms considered. Approximate analytical expressions of the period, the damping time, and their ratio are derived for the fundamental mode in the thin tube and thin boundary approximations. We find that the dominant damping mechanism is resonant absorption, which provides damping ratios in agreement with the observations, whereas ion-neutral collisions are irrelevant for damping. The values of the damping ratio are independent of both the prominence thread length and its position within the magnetic tube, and coincide with the values for a tube fully filled with the prominence plasma. The implications of our results in the context of the MHD seismology technique are discussed, pointing out that the reported short-period (2-10 minutes) and short-wavelength (700-8000 km) thread oscillations may not be consistent with a standing mode interpretation and could be related to propagating waves. Finally, we show that the inversion of some prominence physical parameters, e.g., Alfven speed, magnetic field strength, transverse inhomogeneity length scale, etc., is possible using observationally determined values of the period and damping time of the oscillations along with the analytical approximations of these quantities.

  4. Application of Lidar remote sensing to the estimation of forest canopy and stand structure

    NASA Astrophysics Data System (ADS)

    Lefsky, Michael Andrew

    A new remote sensing instrument, SLICER (Scanning Lidar Imager of Canopies by Echo Recovery), has been applied to the problem of remote sensing the canopy and stand structure of two groups of deciduous forests, Tulip Poplar-Oak stands in the vicinity of Annapolis, MD. and bottomland hardwood stands near Williamston, NC. The ability of the SLICER instrument to remotely sense the vertical distribution of canopy structure (Canopy Height Profile), bulk canopy transmittance, and several indices of canopy height has been successfully validated using twelve stands with coincident field and SLICER estimates of canopy structure. Principal components analysis has been applied to canopy height profiles from both field sites, and three significant factors were identified, each closely related to the amount of foliage in a recognizable layer of the forest, either understory, midstory, or overstory. The distribution of canopy structure to these layers is significantly correlated with the size and number of stems supporting them. The same layered structure was shown to apply to both field and SLICER remotely sensed canopy height profiles, and to apply to SLICER remotely sensed canopy profiles from both the bottomland hardwood stands in the coastal plain of North Carolina, and to mesic Tulip-Poplars stands in the upland coastal plain of Maryland. Linear regressions have demonstrated that canopy and stand structure are correlated to both a statistically significant and useful degree. Stand age and stem density is more highly correlated to stand height, while stand basal area and aboveground biomass are more closely related to a new measure of canopy structure, the quadratic mean canopy height. A geometric model of canopy structure has been shown to explain the differing relationships between canopy structure and stand basal area for stands of Eastern Deciduous Forest and Douglas Fir Forest.

  5. Groundwater Availability Alters Soil-plant Nutrient Cycling in a Stand of Invasive, N-fixing Phreatophytes

    NASA Astrophysics Data System (ADS)

    Dudley, B. D.; Miyazawa, Y.; Hughes, F.; Ostertag, R.; Kettwich, S. K.; MacKenzie, R.; Dulaiova, H.; Waters, C. A.; Bishop, J.; Giambelluca, T. W.

    2013-12-01

    N-fixing phreatophytic trees are common in arid and semi-arid regions worldwide, and can play significant roles in modifying hydrology and soil-plant nutrient cycling where they are present. In light of reductions in groundwater levels in many arid regions we estimated annual transpiration rates at a stand level, and alterations to C, N and P accretion in soils as a function of groundwater depth in a ca.120 year old stand of Prosopis pallida along an elevation gradient in coastal leeward Hawaii. We measured sapflow and stand level sapwood area to quantify transpiration, and calculated groundwater transpiration rates using P. pallida stem water δ18O values. By measuring soil resistivity, we were able to compare the volume of groundwater transpired by these trees to groundwater depth across the stand. We examined nutrient deposition and accretion in soils in lowland areas of the stand with accessible shallow groundwater, compared to upland areas with no groundwater access, as indicated by stem water δ18O values. Resistivity results suggested that groundwater was at a height close to sea level throughout the stand. Transpiration was around 1900 m3 ha-1 year-1 in the areas of the stand closest to the sea (where groundwater was at around 1-4 m below ground level) and decreased to around a tenth of that volume where groundwater was not accessible. Litterfall rates over the course of the year studied were 17 times greater at lowland sites, but this litterfall contributed ca. 24 times the N, and 35 times the P of upland sites. Thus, groundwater access contributed to the total mass of nitrogen and phosphorus deposited in the form of litter through higher litter quantity and quality. Total N content of soils was 4.7 times greater and inorganic N pools were eight times higher at lowland plots. These results suggest that groundwater depth can have strong effects on soil-plant nutrient cycling, so that reductions in the availability of shallow groundwater are likely to impact

  6. Dementia alters standing postural adaptation during a visual search task in older adult men

    PubMed Central

    Joŕdan, Azizah J.; McCarten, J. Riley; Rottunda, Susan; Stoffregen, Thomas A.; Manor, Brad; Wade, Michael G.

    2015-01-01

    This study investigated the effects of dementia on standing postural adaptation during performance of a visual search task. We recruited 16 older adults with dementia and 15 without dementia. Postural sway was assessed by recording medial-lateral (ML) and anterior-posterior (AP) center-of-pressure when standing with and without a visual search task; i.e., counting target letter frequency within a block of displayed randomized letters. ML sway variability was significantly higher in those with dementia during visual search as compared to those without dementia and compared to both groups during the control condition. AP sway variability was significantly greater in those with dementia as compared to those without dementia, irrespective of task condition. In the ML direction, the absolute and percent change in sway variability between the control condition and visual search (i.e., postural adaptation) was greater in those with dementia as compared to those without. In contrast, postural adaptation to visual search was similar between groups in the AP direction. As compared to those without dementia, those with dementia identified fewer letters on the visual task. In the non-dementia group only, greater increases in postural adaptation in both the ML and AP direction, correlated with lower performance on the visual task. The observed relationship between postural adaptation during the visual search task and visual search task performance—in the non-dementia group only—suggests a critical link between perception and action. Dementia reduces the capacity to perform a visual-based task while standing and thus appears to disrupt this perception-action synergy. PMID:25770830

  7. The altered vestibular-evoked myogenic and whole-body postural responses in old men during standing.

    PubMed

    Dalton, Brian H; Blouin, Jean-Sébastien; Allen, Matti D; Rice, Charles L; Inglis, J Timothy

    2014-12-01

    Age-related decrements within the sensorimotor system may lead to alterations and impairments in postural control, but a link to a vestibular mechanism is unclear. The purpose of the present study was to determine whether vestibular control of standing balance is altered with adult aging. Eight old (~77 years) and eight young (~26 years) men stood without aids on a commercially available force plate with their head turned to the right, arms relaxed at their sides and eyes closed while receiving stochastic vestibular stimuli (0-25 Hz, root mean square amplitude=0.85 mA). Surface electromyography signals were sampled from the left soleus, medial gastrocnemius and tibialis anterior. Whole-body balance, as measured by the anteroposterior forces and muscle responses, was quantified using frequency (coherence and gain functions) and time (cumulant density function) domain correlations with the vestibular stimuli. Old men exhibited a compressed frequency response of the vestibular reflex with a greater relative gain at lower frequencies for the plantar flexors and anteroposterior forces than young. In the time domain, the peak amplitude of the short latency response was 45-64% lower for the plantar flexors and anteroposterior forces (p≤0.05) in the old than young, but not for the tibialis anterior (p=0.21). The old men had a 190% and 31% larger medium latency response for only the tibialis anterior and anteroposterior forces, respectively, than young (p≤0.01). A strong correlation between the tibialis anterior and the force response was also detected (r=0.80, p<0.01). In conclusion, net vestibular-evoked muscle responses led to smaller short and larger medium latency peak amplitudes in anteroposterior forces for the old. The present results likely resulted from a compressed and lower operational frequency range of the vestibular reflexes and the activation of additional muscles (tibialis anterior) to maintain standing balance. PMID:25456846

  8. Post-fire stand structure impacts carbon storage within Siberian larch forests

    NASA Astrophysics Data System (ADS)

    Alexander, H. D.; Natali, S.; Loranty, M. M.; Mack, M. C.; Davydov, S. P.; Zimov, N.

    2015-12-01

    Increased fire severity within boreal forests of the Siberian Arctic has the potential to alter forest stand development thereby altering carbon (C) accumulation rates and storage during the post-fire successional interval. One potential change is increased stand density, which may result from fire consumption of the soil organic layer and changes to the seedbed that favor germination and establishment of larch trees during early succession. In this study, we evaluated above- and belowground C pools across 12 stands of varying tree density within a single 75-year old fire scar located near Cherskii, Sakha Republic, Russia. In each stand, we inventoried the size and density of larch trees and large shrubs (Salix and Betula spp.), and in combination with with allometric equations, estimated aboveground contribution to C pools. We quantified woody debris C pools using the line intercept method. We sampled belowground C pools in the soil organic layer + upper (0-10 cm) mineral soil and coarse roots (> 2 mm diameter) using sediment cores and 0.25 x 0.25-m trenches, respectively. We found that high density stands store ~ 20% more C (~7,500 g C m-2) than low density stands (~5,800 g C m-2). In high density stands, about 35% more C is stored aboveground within live larch trees (1650 g C m-2) compared to low density stands (940 g C m-2), and about 15% more C is stored in the soil organic layer and upper mineral soil. Coarse root C was 20% higher in high density stands (~475 g C m-2) compared to those with low density (~350 g C m-2). Less C was stored in large shrubs in high density stands, both in aboveground portions and coarse roots, but these amounts were relatively small (< 10% of total C pools). A fire-driven shift to denser larch stands could increase C storage, leading to a negative feedback to climate, but the combined effects of density on C dynamics, summer and winter albedo, and future fire regimes will interact to determine the magnitude of any vegetation

  9. Stand Structural Controls on Evapotranspiration in Native and Invaded Tropical Montane Cloud Forest in Hawai'i

    NASA Astrophysics Data System (ADS)

    Giambelluca, T. W.; Delay, J. K.; Asner, G. P.; Martin, R. E.; Nullet, M. A.; Huang, M.; Mudd, R. G.; Takahashi, M.

    2008-12-01

    Tropical montane cloud forests (TMCFs) in Hawai'i are important zones of water input and stores of critically important native plant and animal species. Invasion by alien tree species threatens these forests and may alter the hydrological services they provide. At two TMCF sites in Hawai'i, one within native Metrosideros polymorpha forest and the other at a site heavily invaded by Psidium cattleianum, we are conducting measurements of stand-level evapotranspiration (ET), transpiration (using sapflow techniques), energy balance, and related processes. Previously presented results showed that ET as a function of available energy was 27% higher at the invaded site than the native site, with the difference rising to 53% during dry- canopy periods. In this presentation, mechanisms for the observed higher ET rate at the invaded site are explored. The difference in measured xylem flow velocities of native and alien trees cannot explain the observed stand level ET difference. Tree basal area is lower at the invaded site than the native site, again contrary to the ET difference. However, the alien trees have much smaller stem diameters, on average, than the native trees, with little or no heartwood. Hence, the cross-sectional xylem area is much greater in the invaded stand, facilitating higher transpiration rates. These results demonstrate the importance of stand structural controls on ET and raise questions about whether higher ET is a transient feature of the succession or a persistent characteristic of invasive trees.

  10. Estimating structural attributes of Douglas-fir/western hemlock forest stands from Landsat and SPOT imagery

    NASA Technical Reports Server (NTRS)

    Cohen, Warren B.; Spies, Thomas A.

    1992-01-01

    Relationships between spectral and texture variables derived from SPOT HRV 10 m panchromatic and Landsat TM 30 m multispectral data and 16 forest stand structural attributes is evaluated to determine the utility of satellite data for analysis of hemlock forests west of the Cascade Mountains crest in Oregon and Washington, USA. Texture of the HRV data was found to be strongly related to many of the stand attributes evaluated, whereas TM texture was weakly related to all attributes. Data analysis based on regression models indicates that both TM and HRV imagery should yield equally accurate estimates of forest age class and stand structure. It is concluded that the satellite data are a valuable source for estimation of the standard deviation of tree sizes, mean size and density of trees in the upper canopy layers, a structural complexity index, and stand age.

  11. 26. "TEST STAND, STRUCTURAL, FOUNDATION PLAN." Specifications No. ENG043535572; Drawing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. "TEST STAND, STRUCTURAL, FOUNDATION PLAN." Specifications No. ENG-04-353-55-72; Drawing No. 60-0912; sheet 25 of 148; file no. 1320/76. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  12. Array structure design handbook for stand alone photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Didelot, R. C.

    1980-01-01

    This handbook will permit the user to design a low-cost structure for a variety of photovoltaic system applications under 10 kW. Any presently commercially available photovoltaic modules may be used. Design alternatives are provided for different generic structure types, structural materials, and electric interfaces. The use of a hand-held calculator is sufficient to perform the necessary calculations for the array designs.

  13. Modelling Variable Fire Severity in Boreal Forests: Effects of Fire Intensity and Stand Structure

    PubMed Central

    Miquelajauregui, Yosune; Cumming, Steven G.; Gauthier, Sylvie

    2016-01-01

    It is becoming clear that fires in boreal forests are not uniformly stand-replacing. On the contrary, marked variation in fire severity, measured as tree mortality, has been found both within and among individual fires. It is important to understand the conditions under which this variation can arise. We integrated forest sample plot data, tree allometries and historical forest fire records within a diameter class-structured model of 1.0 ha patches of mono-specific black spruce and jack pine stands in northern Québec, Canada. The model accounts for crown fire initiation and vertical spread into the canopy. It uses empirical relations between fire intensity, scorch height, the percent of crown scorched and tree mortality to simulate fire severity, specifically the percent reduction in patch basal area due to fire-caused mortality. A random forest and a regression tree analysis of a large random sample of simulated fires were used to test for an effect of fireline intensity, stand structure, species composition and pyrogeographic regions on resultant severity. Severity increased with intensity and was lower for jack pine stands. The proportion of simulated fires that burned at high severity (e.g. >75% reduction in patch basal area) was 0.80 for black spruce and 0.11 for jack pine. We identified thresholds in intensity below which there was a marked sensitivity of simulated fire severity to stand structure, and to interactions between intensity and structure. We found no evidence for a residual effect of pyrogeographic region on simulated severity, after the effects of stand structure and species composition were accounted for. The model presented here was able to produce variation in fire severity under a range of fire intensity conditions. This suggests that variation in stand structure is one of the factors causing the observed variation in boreal fire severity. PMID:26919456

  14. Design of RF Feed System for Standing-Wave Accelerator Structures

    SciTech Connect

    Neilson, J.; Tantawi, S.; Dolgashev, V.; /SLAC

    2012-05-25

    We are investigating a standing wave accelerator structure that uses a rf feed to each individual cell. This approach minimizes rf power flow and electromagnetic energy absorbed by an rf breakdown. The objective of this work is a robust high-gradient (above 100 MV/m) X-band accelerator structure.

  15. Structurally altered capsular polysaccharides produced by mutant bacteria

    NASA Technical Reports Server (NTRS)

    Kern, Roger G. (Inventor); Petersen, Gene R. (Inventor); Richards, Gil F. (Inventor)

    1995-01-01

    Structurally altered capsular polysaccharides are produced by mutant bacteria. These polysaccharides are isolated by selecting a wild type bacterial strain and a phage producing degradative enzymes that have substrate specificity for the capsular polysaccharides produced by the wild type bacteria. Phage-resistant mutants producing capsular polysaccharides are selected and the structurally altered capsular polysaccharide is isolated therefrom.

  16. Network community structure alterations in adult schizophrenia: identification and localization of alterations

    PubMed Central

    Lerman-Sinkoff, Dov B.; Barch, Deanna M.

    2015-01-01

    A growing body of literature suggests functional connectivity alterations in schizophrenia. While findings have been mixed, evidence points towards a complex pattern of hyper-connectivity and hypo-connectivity. This altered connectivity can be represented and analyzed using the mathematical frameworks provided by graph and information theory to represent functional connectivity data as graphs comprised of nodes and edges linking the nodes. One analytic technique in this framework is the determination and analysis of network community structure, which is the grouping of nodes into linked communities or modules. This data-driven technique finds a best-fit structure such that nodes in a given community have greater connectivity with nodes in their community than with nodes in other communities. These community structure representations have been found to recapitulate known neural-systems in healthy individuals, have been used to identify novel functional systems, and have identified and localized community structure alterations in a childhood onset schizophrenia cohort. In the present study, we sought to determine whether community structure alterations were present in an adult onset schizophrenia cohort while stringently controlling for sources of imaging artifacts. Group level average graphs in healthy controls and individuals with schizophrenia exhibited visually similar network community structures and high amounts of normalized mutual information (NMI). However, testing of individual subject community structures identified small but significant alterations in community structure with alterations being driven by changes in node community membership in the somatosensory, auditory, default mode, salience, and subcortical networks. PMID:26793435

  17. Network community structure alterations in adult schizophrenia: identification and localization of alterations.

    PubMed

    Lerman-Sinkoff, Dov B; Barch, Deanna M

    2016-01-01

    A growing body of literature suggests functional connectivity alterations in schizophrenia. While findings have been mixed, evidence points towards a complex pattern of hyper-connectivity and hypo-connectivity. This altered connectivity can be represented and analyzed using the mathematical frameworks provided by graph and information theory to represent functional connectivity data as graphs comprised of nodes and edges linking the nodes. One analytic technique in this framework is the determination and analysis of network community structure, which is the grouping of nodes into linked communities or modules. This data-driven technique finds a best-fit structure such that nodes in a given community have greater connectivity with nodes in their community than with nodes in other communities. These community structure representations have been found to recapitulate known neural-systems in healthy individuals, have been used to identify novel functional systems, and have identified and localized community structure alterations in a childhood onset schizophrenia cohort. In the present study, we sought to determine whether community structure alterations were present in an adult onset schizophrenia cohort while stringently controlling for sources of imaging artifacts. Group level average graphs in healthy controls and individuals with schizophrenia exhibited visually similar network community structures and high amounts of normalized mutual information (NMI). However, testing of individual subject community structures identified small but significant alterations in community structure with alterations being driven by changes in node community membership in the somatosensory, auditory, default mode, salience, and subcortical networks. PMID:26793435

  18. Forest stand structure, productivity, and age mediate climatic effects on aspen decline.

    PubMed

    Bell, David M; Bradford, John B; Lauenroth, William K

    2014-08-01

    Because forest stand structure, age, and productivity can mediate the impacts of climate on quaking aspen (Populus tremuloides) mortality, ignoring stand-scale factors limits inference on the drivers of recent sudden aspen decline. Using the proportion of aspen trees that were dead as an index of recent mortality at 841 forest inventory plots, we examined the relationship of this mortality index to forest structure and climate in the Rocky Mountains and Intermountain Western United States. We found that forest structure explained most of the patterns in mortality indices, but that variation in growing-season vapor pressure deficit and winter precipitation over the last 20 years was important. Mortality index sensitivity to precipitation was highest in forests where aspen exhibited high densities, relative basal areas, quadratic mean diameters, and productivities, whereas sensitivity to vapor pressure deficit was highest in young forest stands. These results indicate that the effects of drought on mortality may be mediated by forest stand development, competition with encroaching conifers, and physiological vulnerabilities of large trees to drought. By examining mortality index responses to both forest structure and climate, we show that forest succession cannot be ignored in studies attempting to understand the causes and consequences of sudden aspen decline. PMID:25230455

  19. Forest stand structure, productivity, and age mediate climatic effects on aspen decline

    USGS Publications Warehouse

    Bell, David M.; Bradford, John B.; Lauenroth, William K.

    2014-01-01

    Because forest stand structure, age, and productivity can mediate the impacts of climate on quaking aspen (Populus tremuloides) mortality, ignoring stand-scale factors limits inference on the drivers of recent sudden aspen decline. Using the proportion of aspen trees that were dead as an index of recent mortality at 841 forest inventory plots, we examined the relationship of this mortality index to forest structure and climate in the Rocky Mountains and Intermountain Western United States. We found that forest structure explained most of the patterns in mortality indices, but that variation in growing-season vapor pressure deficit and winter precipitation over the last 20 years was important. Mortality index sensitivity to precipitation was highest in forests where aspen exhibited high densities, relative basal areas, quadratic mean diameters, and productivities, whereas sensitivity to vapor pressure deficit was highest in young forest stands. These results indicate that the effects of drought on mortality may be mediated by forest stand development, competition with encroaching conifers, and physiological vulnerabilities of large trees to drought. By examining mortality index responses to both forest structure and climate, we show that forest succession cannot be ignored in studies attempting to understand the causes and consequences of sudden aspen decline.

  20. Stand-structural effects on Heterobasidion abietinum-related mortality following drought events in Abies pinsapo.

    PubMed

    Linares, Juan Carlos; Camarero, Jesús Julio; Bowker, Matthew A; Ochoa, Victoria; Carreira, José Antonio

    2010-12-01

    Climate change may affect tree-pathogen interactions. This possibility has important implications for drought-prone forests, where stand dynamics and disease pathogenicity are especially sensitive to climatic stress. In addition, stand structural attributes including density-dependent tree-to-tree competition may modulate the stands' resistance to drought events and pathogen outbreaks. To assess the effects of stand structure on root-rot-related mortality after severe droughts, we focused on Heterobasidion abietinum mortality in relict Spanish stands of Abies pinsapo, a drought-sensitive fir. We compared stand attributes and tree spatial patterns in three plots with H. abietinum root-rot disease and three plots without root-rot. Point-pattern analyses were used to investigate the scale and extent of mortality patterns and to test hypotheses related to the spread of the disease. Dendrochronology was used to date the year of death and to assess the association between droughts and growth decline. We applied a structural equation modelling approach to test if tree mortality occurs more rapidly than predicted by a simple distance model when trees are subjected to high tree-to-tree competition and following drought events. Contrary to expectations of drought mortality, the effect of precipitation on the year of death was strong and negative, indicating that a period of high precipitation induced an earlier tree death. Competition intensity, related to the size and density of neighbour trees, also induced an earlier tree death. The effect of distance to the disease focus was negligible except in combination with intensive competition. Our results indicate that infected trees have decreased ability to withstand drought stress, and demonstrate that tree-to-tree competition and fungal infection act as predisposing factors of forest decline and mortality. PMID:20838816

  1. Controllable occurrence of free-standing lipid membranes on nanograting structured supports.

    PubMed

    Peng, Po-Yu; Chiang, Po-Chieh; Chao, Ling

    2014-08-13

    Supported lipid bilayers (SLBs) have been widely used to study protein-lipid membrane interactions because their planar geometry is suitable for many surface analysis tools. However, the friction coupling between the support and the membrane can influence the properties of biomolecules in the membrane. Many studies have attempted to span SLBs over nanostructured supports to create free-standing regions in SLBs for biosensor applications. However, membranes following the support surface contour are more frequently observed than are free-standing membranes on structured supports, indicating that the parameter range suitable for formation of free-standing SLBs might be narrow and more information is necessary to understand the required conditions. The objective of this study was to estimate the system energies of free-standing and contour-following membrane states and determine which state is the most energetically favorable under various conditions. For a lipid membrane preferring to stay close to the support, an energy reward occurs when they are in close proximity; however, increasing the contact area on a structured surface can result in an energy penalty because of the bending of the lipid bilayer. Whether the energy reward or the energy penalty dominates could determine the membrane state. We used the extended Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and the Helfrich bending theory to relate the energy sizes to experimentally controllable parameters. We experimentally examined whether the membrane state followed the model prediction when we used various buffer ionic strengths, various lipid types, and nanograting supports with three different geometries. Because it is difficult to observe the experimental membrane state directly at the nanoscale, we developed a method to use the fluorescence recovery shape change after photobleaching to distinguish experimental membrane states at the micrometer scale. Our experimental results closely matched the

  2. Stand dynamics and tree coexistence in an analytical structured model: the role of recruitment.

    PubMed

    Angulo, Óscar; Bravo de la Parra, Rafael; López-Marcos, Juan C; Zavala, Miguel A

    2013-09-21

    Understanding the mechanisms of coexistence and niche partitioning in plant communities is a central question in ecology. Current theories of forest dynamics range between the so-called neutral theories which assume functional equivalence among coexisting species to forest simulators that explain species assemblages as the result of tradeoffs in species individual strategies at several ontogenetic stages. Progress in these questions has been hindered by the inherent difficulties of developing analytical size-structured models of stand dynamics. This precludes examination of the relative importance of each mechanism on tree coexistence. In previous simulation and analytical studies emphasis has been given to interspecific differences at the sapling stage, and less so to interspecific variation in seedling recruitment. In this study we develop a partial differential equation model of stand dynamics in which competition takes place at the recruitment stage. Species differ in their size-dependent growth rates and constant mortality rates. Recruitment is described as proportional to the basal area of conspecifics, to account for fecundity and seed supply per unit of basal area, and is corrected with a decreasing function of species specific basal area to account for competition. We first analyze conditions for population persistence in monospecific stands and second we investigate conditions of coexistence for two species. In the monospecific case we found a stationary stand structure based on an inequality between mortality rate and seed supply. In turn, intra-specific competition does not play any role on the asymptotic extinction or population persistence. In the two-species case we found that coexistence can be attained when the reciprocal negative effect on recruitment follows a given relation with respect to intraspecific competition. Specifically a tradeoff between recruitment potential (i.e. shade tolerance or predation avoidance) and fecundity or growth rate

  3. Lightning Protection and Structural Bonding for the B2 Test Stand

    NASA Technical Reports Server (NTRS)

    Kinard, Brandon

    2015-01-01

    With the privatization of the space industry, NASA has entered a new era. To explore deeper parts of the solar system, NASA is developing a new spacecraft, the Space Launch System (SLS), capable of reaching these destinations, such as an asteroid or Mars. However, the test stand that is capable of testing the stage has been unused for many years. In addition to the updating/repair of the stand, more steel is being added to fully support the SLS. With all these modifications, the lightning protection system must be brought up to code to assure the protection of all personnel and assets. Structural bonding is a part of the lightning protection system. The focus of this project was to assure proper structural bonding. To begin, all relevant technical standards and the construction specifications were reviewed. This included both the specifications for the lightning protection and for general construction. The drawings were reviewed as well. From the drawings, bolted structural joints were reviewed to determine whether bonding was necessary. Several bolted joints were determined to need bonding according to the notes in the drawings. This exceeds the industry standards. The bolted joints are an electrically continuous joint. During tests, the stand experiences heavy vibration that may weaken the continuity of the bolted joint. Therefore, the secondary bonding is implemented to ensure that the structural joint has low resistance. If the structural joint has a high resistance because of corrosion, a potential gradient can occur that can cause a side flash. Damage, injury, or death can occur from a side flash so they are to be prevented. A list of the identified structural joints was compiled and sent to the contractor to be bonded. That covers the scope of this project.

  4. 2013 Immune Risk Standing Review Panel Evidence Review for: The Risk of Crew Adverse Health Event Due to Altered Immune Response

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan

    2014-01-01

    The 2013 Immune Risk Standing Review Panel (from here on referred to as the SRP) met for a site visit in Houston, TX on February 3-4, 2014. The SRP reviewed the new Evidence Report for the Risk of Crew Adverse Health Event Due to Altered Immune Response (from here on referred to as the 2013 Immune Evidence Report), as well as the Research Plan for this Risk that is in the current version of the Human Research Program’s (HRP) Integrated Research Plan (IRP).

  5. Stand structure and dynamics of sand pine differ between the Florida panhandle and peninsula

    USGS Publications Warehouse

    Drewa, P.B.; Platt, W.J.; Kwit, C.; Doyle, T.W.

    2008-01-01

    Size and age structures of stand populations of numerous tree species exhibit uneven or reverse J-distributions that can persist after non-catastrophic disturbance, especially windstorms. Among disjunct populations of conspecific trees, alternative distributions are also possible and may be attributed to more localized variation in disturbance. Regional differences in structure and demography among disjunct populations of sand pine (Pinus clausa (Chapm. ex Engelm.) Vasey ex Sarg.) in the Florida panhandle and peninsula may result from variation in hurricane regimes associated with each of these populations. We measured size, age, and growth rates of trees from panhandle and peninsula populations and then compiled size and age class distributions. We also characterized hurricanes in both regions over the past century. Size and age structures of panhandle populations were unevenly distributed and exhibited continuous recruitment; peninsula populations were evenly sized and aged and exhibited only periodic recruitment. Since hurricane regimes were similar between regions, historical fire regimes may have been responsible for regional differences in structure of sand pine populations. We hypothesize that fires were locally nonexistent in coastal panhandle populations, while periodic high intensity fires occurred in peninsula populations over the past century. Such differences in local fire regimes could have resulted in the absence of hurricane effects in the peninsula. Increased intensity of hurricanes in the panhandle and current fire suppression patterns in the peninsula may shift characteristics of sand pine stands in both regions. ?? 2007 Springer Science+Business Media B.V.

  6. BVOC emission in Norway spruce: the effect of stand structure, high temperature and ozone levels.

    NASA Astrophysics Data System (ADS)

    Pallozzi, Emanuele; Guidolotti, Gabriele; Večeřová, Kristýna; Esposito, Raffaela; Lusini, Ilaria; Juráň, Stanislav; Urban, Otmar; Calfapietra, Carlo

    2015-04-01

    Norway spruce (Picea abies L.) is a widely distributed conifer species in the boreal zone and mountain areas of central Europe and is a moderate emitter of volatile organic compounds (BVOC). Although the vaporization and diffusion processes from resin ducts were generally considered to be the main processes for monoterpene emissions in conifers, recently it has been showed that a significant portion (up to one third) of monoterpene emissions of Norway spruce can originate from novel biosynthesis, thus depending on photosynthetic processes. For this reason, both biosynthesis and emission are strongly influenced by the environment and the stand structure. They increase with both increasing light and temperature during the warmer periods, although those are the periods with the higher ozone concentration that usually act as an inhibitor of both assimilation and isoprenoids synthesis and emission. On the other hand, stand structure can play an important role, because the photosynthetic capacity is influenced by temperature and light conditions through the canopy. In order to assess the effects of stand structure, temperature and ozone on isoprenoids emission of Norway spruce we carried out field and laboratory experiments. In the experimental field campaigns we measured: assimilation and BVOC emission from needles of sun and shade layers within the canopy of the spruce forest present at the Bily Kriz experimental research site (Moravian-Silesian Beskydy Mountains, 49° 33' N, 18° 32' E, NE of Czech Republic, 908 m a.s.l.). Moreover in the same layers we measured continuously concentration of BVOCs in the air using a PTR-TOF-MS. In laboratory we analyzed the effects of short-term exposure to high temperature and high ozone concentrations on branches of spruce trees collected at the Bily Kriz experimental research site. Preliminary results show that in Norway spruce both stand structure and environmental conditions influenced the gas exchange and BVOC emission rates

  7. B-1 Test Stand

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The B-1 test stand, the largest of three test stands used for Space Shuttle Main Engine testing at Stennis Space Center, is a dual position engine stand that was modified for single-engine tests. This structure stands 295 feet tall or 407 feet tall with the crane fully extended.

  8. Hole growth in free-standing block copolymer films: does lamellar structure imitate a support?

    NASA Astrophysics Data System (ADS)

    Farrar, Matthew J.; Croll, Andrew B.; Dalnoki-Veress, Kari

    2007-03-01

    We will discuss how the lamellar structure of a symmetric polystyrene-poly (methyl methacrylate) diblock co-polymer can affect the hole formation of free-standing films. It is found that ordered films (with lamellae aligned parallel to the film surface) exhibit a dramatically enhanced stability over disordered films. This stability is shown to be directly related to the lamellar structure through atomic force microscopy and optical microscopy. Secondly we note how the rim structure of the holes in these two experiments is extremely different. In particular, the steep rims observed in the ordered samples show a striking similarity to holes grown in supported films, which is difficult to reconcile with current theory.

  9. Post-impact alteration of the Manson impact structure

    NASA Technical Reports Server (NTRS)

    Crossey, L. J.; Mccarville, P.

    1993-01-01

    Core materials from the Manson impact site (Manson, Iowa) are examined in order to evaluate post-impact alteration processes. Diagenetic interpretation of post-impact events is based on petrologic, mineralogic, and geochemical investigation of core materials including the following: target strata, disturbed and disrupted strata, ejecta, breccias, microbreccias, and impact melt. The diagenetic study utilizes research cores obtained by the continental scientific drilling project (CSDP) at the Manson structure, as well as core and cuttings of related materials. Samples include impactites (breccias, microbreccias, and melt material), crater fill material (sedimentary clast breccias), disturbed and disrupted target rocks, and reference target material (Amoco Eisheid No. 1 materials). The study of multiple cores will permit development of a regional picture of post-impact thermal history. The specific objectives are as follows: (1) provide a detailed description of authigenic and alteration mineralogy from diverse lithologies encountered in research drill cores at the Manson impact structure, and (2) identify and relate significant post-impact mineral alteration to post-impact thermal regime (extent and duration). Results will provide mineralogical and geochemical constraints on models for post-impact processes including the following: infilling of the crater depression; cooling and hydrothermal alteration of melt rocks; and subsequent long-term, low-temperature alteration of target rocks, breccias, and melt rocks. Preliminary petrologic and x-ray diffraction examination of fracture linings and void fillings from research core M1 indicate the presence of quartz, chlorite, mixed-layer clays, gypsum/anhydrite, calcite, and minor pyrite.

  10. Post-impact alteration of the Manson impact structure

    NASA Astrophysics Data System (ADS)

    Crossey, L. J.; McCarville, P.

    1993-03-01

    Core materials from the Manson impact site (Manson, Iowa) are examined in order to evaluate post-impact alteration processes. Diagenetic interpretation of post-impact events is based on petrologic, mineralogic, and geochemical investigation of core materials including the following: target strata, disturbed and disrupted strata, ejecta, breccias, microbreccias, and impact melt. The diagenetic study utilizes research cores obtained by the continental scientific drilling project (CSDP) at the Manson structure, as well as core and cuttings of related materials. Samples include impactites (breccias, microbreccias, and melt material), crater fill material (sedimentary clast breccias), disturbed and disrupted target rocks, and reference target material (Amoco Eisheid No. 1 materials). The study of multiple cores will permit development of a regional picture of post-impact thermal history. The specific objectives are as follows: (1) provide a detailed description of authigenic and alteration mineralogy from diverse lithologies encountered in research drill cores at the Manson impact structure, and (2) identify and relate significant post-impact mineral alteration to post-impact thermal regime (extent and duration). Results will provide mineralogical and geochemical constraints on models for post-impact processes including the following: infilling of the crater depression; cooling and hydrothermal alteration of melt rocks; and subsequent long-term, low-temperature alteration of target rocks, breccias, and melt rocks. Preliminary petrologic and x-ray diffraction examination of fracture linings and void fillings from research core M1 indicate the presence of quartz, chlorite, mixed-layer clays, gypsum/anhydrite, calcite, and minor pyrite.

  11. Surface and interface structure of quasi-free standing graphene on SiC

    NASA Astrophysics Data System (ADS)

    Melios, C.; Spencer, S.; Shard, A.; Strupiński, W.; Silva, S. R. P.; Kazakova, O.

    2016-06-01

    We perform local nanoscale studies of the surface and interface structure of hydrogen intercalated graphene on 4H–SiC(1000). In particular, we show that intercalation of the interfacial layer results in the formation of quasi-free standing one layer graphene (QFS 1LG) with change in the carrier type from n- to p-type, accompanied by a more than four times increase in carrier mobility. We demonstrate that surface enhanced Raman scattering (SERS) reveals the enhanced Raman signal of Si–H stretching mode, which is the direct proof of successful intercalation. Furthermore, the appearance of D, D + D‧ as well as C–H peaks for the quasi-free standing two layer graphene (QFS 2LG) suggests that hydrogen also penetrates in between the graphene layers to locally form C–H sp3 defects that decrease the mobility. Thus, SERS provides a quick and reliable technique to investigate the interface structure of graphene which is in general not accessible by other conventional methods. Our findings are further confirmed by Kelvin probe force microscopy and x-ray photoelectron spectroscopy.

  12. Damping Effect Studies for X-band Normal Conducting High Gradient Standing Wave Structures

    SciTech Connect

    Pei, S.; Li, Z.; Tantawi, S.G.; Dolgashev, V.A.; Wang, J.; /SLAC

    2009-08-03

    The Multi-TeV colliders should have the capability to accelerate low emittance beam with high rf efficiency, X-band normal conducting high gradient accelerating structure is one of the promising candidate. However, the long range transverse wake field which can cause beam emittance dilution is one of the critical issues. We examined effectiveness of dipole mode damping in three kinds of X-band, {pi}-mode standing wave structures at 11.424GHz with no detuning considered. They represent three damping schemes: damping with cylindrical iris slot, damping with choke cavity and damping with waveguide coupler. We try to reduce external Q factor below 20 in the first two dipole bands, which usually have very high (R{sub T}/Q){sub T}. The effect of damping on the acceleration mode is also discussed.

  13. A MEMS-based Air Flow Sensor with a Free-standing Micro-cantilever Structure

    PubMed Central

    Wang, Yu-Hsiang; Lee, Chia-Yen; Chiang, Che-Ming

    2007-01-01

    This paper presents a micro-scale air flow sensor based on a free-standing cantilever structure. In the fabrication process, MEMS techniques are used to deposit a silicon nitride layer on a silicon wafer. A platinum layer is deposited on the silicon nitride layer to form a piezoresistor, and the resulting structure is then etched to create a freestanding micro-cantilever. When an air flow passes over the surface of the cantilever beam, the beam deflects in the downward direction, resulting in a small variation in the resistance of the piezoelectric layer. The air flow velocity is determined by measuring the change in resistance using an external LCR meter. The experimental results indicate that the flow sensor has a high sensitivity (0.0284 Ω/ms-1), a high velocity measurement limit (45 ms-1) and a rapid response time (0.53 s).

  14. Effect of Forest Structural Change on Carbon Storage in a Coastal Metasequoia glyptostroboides Stand

    PubMed Central

    Cheng, Xiangrong; Yu, Mukui; Wu, Tonggui

    2013-01-01

    Forest structural change affects the forest's growth and the carbon storage. Two treatments, thinning (30% thinning intensity) and underplanting plus thinning, are being implemented in a coastal Metasequoia glyptostroboides forest shelterbelt in Eastern China. The vegetation carbon storage significantly increased in the underplanted and thinned treatments compared with that in the unthinned treatment (P < 0.05). The soil and litterfall carbon storage in the underplanted treatment were significantly higher than those in the unthinned treatment (P < 0.05). The total forest ecosystem carbon storage in the underplanted and thinned treatments increased by 35.3% and 26.3%, respectively, compared with that in the unthinned treatment, an increase that mainly came from the growth of vegetation aboveground. Total ecosystem carbon storage showed no significant difference between the underplanted and thinned treatments (P > 0.05). The soil light fraction organic carbon (LFOC) was significantly higher at the 0–15 cm soil layer in the thinned and underplanted stands compared with that in the unthinned stand (P < 0.05). The soil respiration of the underplanted treatment was significantly higher than that of the unthinned treatment only in July (P < 0.05). This study concludes that 30% thinning and underplanting after thinning could be more favorable to carbon sequestration for M. glyptostroboides plantations in the coastal areas of Eastern China. PMID:24187525

  15. Rarefaction and compressional standing slow mode structures in Mercury's magnetosheath: 3D MHD simulations

    NASA Astrophysics Data System (ADS)

    Pantellini, Filippo; Griton, Léa; Varela, Jacobo

    2015-07-01

    We show that slow mode compressional fronts form upstream of the day side magnetopause in MHD simulations of Mercury's magnetosphere. The strongest compressional fronts are located upstream of the magnetopause with strong magnetic shear. Compressional fronts are crossed by magnetic field lines connecting the interplanetary magnetic field and the planet's intrinsic field, their role is to bend the magnetic field in the magnetosheath towards the magnetopause. Besides these compressional fronts, already observed in space and theoretically discussed by various authors for the case of the Earth, we observe the formation of a slow mode standing rarefaction wave spatially growing over a substantial fraction of the distance between the bow shock and the magnetopause. The slow mode source region for the rarefaction waves is located in the magnetosheath, near the bow shock's nose. The generated standing rarefaction waves, however, form even at large distances from the source region along the magnetospheric flanks. They fine-tune the magnetic field line draping and plasma flow around the magnetopause. In ideal MHD the magnetospheres of Mercury, the Earth and the giant planets do closely resemble each other, we therefore expect the mentioned slow mode structures not to be specific to Mercury.

  16. Catchment streamflow response to climate change conditioned by historic alterations of land-use: forest harvest, succession, and stand conversion.

    NASA Astrophysics Data System (ADS)

    Young, D. A., II; Zegre, N.; Edwards, P.; Strager, M.

    2014-12-01

    Headwater streams provide drinking water for millions of people and serve a significant nexus, contributing to the physical, chemical, and biological integrity of navigable waters. Long-term research sites, such as the Fernow Experimental Forest serve as the regions bellwether for ecological change. Nevertheless, few studies have quantified the long term impacts of forest treatment and climate change on streamflow for the catchments of the Fernow. This study serves this roll by accessing the change in water and energy balance of four catchments (WS-1, WS-4, WS-6, WS-7) subject to forest harvest, natural and suppressed regrowth, and stand conversion. We apply the Budyko framework to quantify the relative contributions of climate and land cover changes on annual streamflow between two time periods and over a five year interval spanning 1951-2011. Based on this analysis land-use, forest succession, and climate change-variability are differentially impacting streamflow. In the two-period analysis climate change is responsible for on average 3 % change in mean annual runoff (MAR). Forest harvest and/or succession caused changes in MAR of -0.8 % to -30.0 %. The Budyko decomposition method applied over five year intervals captured the influence of forest treatment on streamflow well. However, the reference (WS-4) is changing in ways that climate alone cannot describe. Overall, it is important to consider how climate, land-use disturbance, and forest succession corroborate by distinguishing their respective impacts.

  17. Elevated Carbon Dioxide Alters the Structure of Soil Microbial Communities

    PubMed Central

    Deng, Ye; He, Zhili; Xu, Meiying; Qin, Yujia; Van Nostrand, Joy D.; Wu, Liyou; Roe, Bruce A.; Wiley, Graham; Hobbie, Sarah E.; Reich, Peter B.

    2012-01-01

    Pyrosequencing analysis of 16S rRNA genes was used to examine impacts of elevated CO2 (eCO2) on soil microbial communities from 12 replicates each from ambient CO2 (aCO2) and eCO2 settings. The results suggest that the soil microbial community composition and structure significantly altered under conditions of eCO2, which was closely associated with soil and plant properties. PMID:22307288

  18. Climatic Stress during Stand Development Alters the Sign and Magnitude of Age-Related Growth Responses in a Subtropical Mountain Pine

    PubMed Central

    Ruiz-Benito, Paloma; Madrigal-González, Jaime; Young, Sarah; Mercatoris, Pierre; Cavin, Liam; Huang, Tsurng-Juhn; Chen, Jan-Chang; Jump, Alistair S.

    2015-01-01

    The modification of typical age-related growth by environmental changes is poorly understood, In part because there is a lack of consensus at individual tree level regarding age-dependent growth responses to climate warming as stands develop. To increase our current understanding about how multiple drivers of environmental change can modify growth responses as trees age we used tree ring data of a mountain subtropical pine species along an altitudinal gradient covering more than 2,200 m of altitude. We applied mixed-linear models to determine how absolute and relative age-dependent growth varies depending on stand development; and to quantify the relative importance of tree age and climate on individual tree growth responses. Tree age was the most important factor for tree growth in models parameterised using data from all forest developmental stages. Contrastingly, the relationship found between tree age and growth became non-significant in models parameterised using data corresponding to mature stages. These results suggest that although absolute tree growth can continuously increase along tree size when trees reach maturity age had no effect on growth. Tree growth was strongly reduced under increased annual temperature, leading to more constant age-related growth responses. Furthermore, young trees were the most sensitive to reductions in relative growth rates, but absolute growth was strongly reduced under increased temperature in old trees. Our results help to reconcile previous contrasting findings of age-related growth responses at the individual tree level, suggesting that the sign and magnitude of age-related growth responses vary with stand development. The different responses found to climate for absolute and relative growth rates suggest that young trees are particularly vulnerable under warming climate, but reduced absolute growth in old trees could alter the species’ potential as a carbon sink in the future. PMID:25973854

  19. Twenty-four years after theYellowstone Fires: Are postfire lodgepole pine stands converging in structure and function?

    PubMed

    Turner, Monica G; Whitby, Timothy G; Tinker, Daniel B; Romme, William H

    2016-05-01

    Disturbance and succession have long been of interest in ecology, but how landscape patterns of ecosystem structure and function evolve following large disturbances is poorly understood. After nearly 25 years, lodgepole pine (Pinus contorta var. latifolia) forests that regenerated after the 1988 Yellowstone Fires (Wyoming, USA) offer a prime opportunity to track the fate of disturbance-created heterogeneity in stand structure and function in a wilderness setting. In 2012, we resampled 72 permanent plots to ask (1) How have postfire stand structure and function changed between 11 and 24 yr postfire, and what variables explain these patterns and changes? (2) How has landscape-level (among-stand) variability in postfire stand structure and function changed between 11 and 24 yr postfire? We expected to see evidence of convergence beginning to emerge, but also that initial postfire stem density would still determine trajectories of biomass accumulation. After 24 yr, postfire lodgepole pine density remained very high (mean = 21,738 stems/ha, range = 0-344,067 stems/ha). Stem density increased in most plots between 11 and 24 yr postfire, but declined sharply where 11-yr-postfire stem density was > 72,000 stems/ha. Stems were small in high-density stands, but stand-level lodgepole pine leaf area, foliage biomass, and live aboveground biomass increased over time and with increasing stem density. After 24 yr, mean annual lodgepole pine aboveground net primary production (ANPP) was high (mean = 5 Mg · ha⁻¹ · yr⁻¹, range = 0-16.5 Mg · ha⁻¹ · yr⁻¹). Among stands, lodgepole pine ANPP increased with stem density, which explained 69% of the variation; another 8% of the variation was explained by environmental covariates. Early patterns of postfire lodgepole pine regeneration, which were contingent on prefire serotiny and fire severity, remained the dominant driver of stand structure and function. We observed mechanisms that would lead to convergence in stem density

  20. A stand-alone demography and landscape structure module for Earth system models

    NASA Astrophysics Data System (ADS)

    Nieradzik, L. P.; Haverd, V.; Smith, B.; Cook, G. D.; Briggs, P.; Roxburgh, S.; Liedloff, A.; Meyer, C.; Canadell, J.

    2013-12-01

    We propose and demonstrate a new approach for the simulation of woody ecosystem stand dynamics, demography and disturbance-mediated heterogeneity suitable for continental to global applications and designed for coupling to the terrestrial ecosystem component of any earth system model (Haverd et al., 2013). The approach is encoded in a model called Populations-Order-Physiology (POP). We demonstrate the behaviour and performance of POP coupled to the Community Atmosphere Biosphere Land Exchange model (CABLE) for two contrasting applications: (i) to the Northern Australian Tropical Transect, featuring gradients in savanna vegetation cover, rainfall and fire disturbance and (ii) to a set of globally distributed forest locations coinciding with observations of forest biomass allometry. Along the Northern Australian Tropical Transect, CABLE-POP is able to simultaneously reproduce observation-based estimates of key functional and structural variables, namely gross primary production, tree foliage projective cover, basal area and maximum tree height. This application particularly demonstrates the ability of POP to quantify the contributions of drought and fire to tree mortality. Drought is manifested as an increase in mortality due to a decline in growth efficiency, while fires are treated as partial disturbance events, with tree mortality depending on tree size and fire intensity. In the application to global forests, POP is integrated with global forest data by calibrating it against paired observations of stem biomass and number density. The calibrated POP model is then coupled with CABLE and the coupled model is evaluated against leaf-stem allometry observations from forest stands ranging in age from 20 to 400 years. Results indicate that, in contrast to simulations from many global land surface models (Wolf et al., 2011), simulated biomass pools conform well with observed allometry. We conclude that POP, which can readily be coupled to the terrestrial carbon cycle

  1. Free-standing nanomechanical and nanophotonic structures in single-crystal diamond

    NASA Astrophysics Data System (ADS)

    Burek, Michael John

    Realizing complex three-dimensional structures in a range of material systems is critical to a variety of emerging nanotechnologies. This is particularly true of nanomechanical and nanophotonic systems, both relying on free-standing small-scale components. In the case of nanomechanics, necessary mechanical degrees of freedom require physically isolated structures, such as suspended beams, cantilevers, and membranes. For nanophotonics, elements like waveguides and photonic crystal cavities rely on light confinement provided by total internal reflection or distributed Bragg reflection, both of which require refractive index contrast between the device and surrounding medium (often air). Such suspended nanostructures are typically fabricated in a heterolayer structure, comprising of device (top) and sacrificial (middle) layers supported by a substrate (bottom), using standard surface nanomachining techniques. A selective, isotropic etch is then used to remove the sacrificial layer, resulting in free-standing devices. While high-quality, crystalline, thin film heterolayer structures are readily available for silicon (as silicon-on-insulator (SOI)) or III-V semiconductors (i.e. GaAs/AlGaAs), there remains an extensive list of materials with attractive electro-optic, piezoelectric, quantum optical, and other properties for which high quality single-crystal thin film heterolayer structures are not available. These include complex metal oxides like lithium niobate (LiNbO3), silicon-based compounds such as silicon carbide (SiC), III-V nitrides including gallium nitride (GaN), and inert single-crystals such as diamond. Diamond is especially attractive for a variety of nanoscale technologies due to its exceptional physical and chemical properties, including high mechanical hardness, stiffness, and thermal conductivity. Optically, it is transparent over a wide wavelength range (from 220 nm to the far infrared), has a high refractive index (n ~ 2.4), and is host to a vast

  2. Multicenter mapping of structural network alterations in autism.

    PubMed

    Valk, Sofie L; Di Martino, Adriana; Milham, Michael P; Bernhardt, Boris C

    2015-06-01

    Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions primarily characterized by abnormalities in social cognition. Abundant previous functional MRI studies have shown atypical activity in networks encompassing medial prefrontal cortex (mPFC) and medial parietal regions corresponding to posterior cingulate cortex and precuneus (PCC/PCU). Conversely, studies assessing structural brain anomalies in ASD have been rather inconsistent. The current work evaluated whether structural changes in ASD can be reliability detected in a large multicenter dataset. Our comprehensive structural MRI framework encompassed cortical thickness mapping and structural covariance analysis based on three independent samples comprising individuals with ASD and controls (n = 220), selected from the Autism Brain Imaging Data Exchange open-access database. Surface-based analysis revealed increased cortical thickness in ASD relative to controls in mPFC and lateral prefrontal cortex. Clusters encompassing mPFC were embedded in altered inter-regional covariance networks, showing decreased covariance in ASD relative to controls primarily to PCC/PCU and inferior parietal regions. Cortical thickness increases and covariance reductions in ASD were consistent, yet of variable effect size, across the different sites evaluated and measurable both in children and adults. Our multisite study shows regional and network-level structural alterations in mPFC in ASD that, possibly, relate to atypical socio-cognitive functions in this condition. PMID:25727858

  3. Soil Microbial Community Structure and Metabolic Activity of Pinus elliottii Plantations across Different Stand Ages in a Subtropical Area

    PubMed Central

    Wu, Zeyan; Haack, Stacey Elizabeth; Lin, Wenxiong; Li, Bailian; Wu, Linkun; Fang, Changxun; Zhang, Zhixing

    2015-01-01

    Soil microbes play an essential role in the forest ecosystem as an active component. This study examined the hypothesis that soil microbial community structure and metabolic activity would vary with the increasing stand ages in long-term pure plantations of Pinus elliottii. The phospholipid fatty acids (PLFA) combined with community level physiological profiles (CLPP) method was used to assess these characteristics in the rhizospheric soils of P. elliottii. We found that the soil microbial communities were significantly different among different stand ages of P. elliottii plantations. The PLFA analysis indicated that the bacterial biomass was higher than the actinomycic and fungal biomass in all stand ages. However, the bacterial biomass decreased with the increasing stand ages, while the fungal biomass increased. The four maximum biomarker concentrations in rhizospheric soils of P. elliottii for all stand ages were 18:1ω9c, 16:1ω7c, 18:3ω6c (6,9,12) and cy19:0, representing measures of fungal and gram negative bacterial biomass. In addition, CLPP analysis revealed that the utilization rate of amino acids, polymers, phenolic acids, and carbohydrates of soil microbial community gradually decreased with increasing stand ages, though this pattern was not observed for carboxylic acids and amines. Microbial community diversity, as determined by the Simpson index, Shannon-Wiener index, Richness index and McIntosh index, significantly decreased as stand age increased. Overall, both the PLFA and CLPP illustrated that the long-term pure plantation pattern exacerbated the microecological imbalance previously described in the rhizospheric soils of P. elliottii, and markedly decreased the soil microbial community diversity and metabolic activity. Based on the correlation analysis, we concluded that the soil nutrient and C/N ratio most significantly contributed to the variation of soil microbial community structure and metabolic activity in different stand ages of P

  4. Structure and composition of altered riparian forests in an agricultural Amazonian landscape.

    PubMed

    Nagy, R Chelsea; Porder, Stephen; Neill, Christopher; Brando, Paulo; Quintino, Raimundo Mota; do Nascimento, Sebastiâo Aviz

    2015-09-01

    Deforestation and fragmentation influence the microclimate, vegetation structure, and composition of remaining patches of tropical forest. In the southern Amazon, at the frontier of cropland expansion, forests are converted and fragmented in a pattern that leaves standing riparian forests whose dimensions are mandated by the Brazilian National Forest Code. These altered riparian forests share many characteristics of well-studied upland forest fragments, but differ because they remain connected to larger areas of forest downstream, and because they may experience wetter soil conditions because reduction of forest cover in the surrounding watershed raises groundwater levels and increases stream runoff. We compared forest regeneration, structure, composition, and diversity in four areas of intact riparian forest and four areas each of narrow, medium, and wide altered riparian forests that have been surrounded by agriculture since the early 1980s. We found that seedling abundance was reduced by as much as 64% and sapling abundance was reduced by as much as 67% in altered compared to intact riparian forests. The most pronounced differences between altered and intact forest occurred near forest edges and within the narrowest sections of altered riparian forests. Woody plant species composition differed and diversity was reduced in altered forests compared to intact riparian forests. However, despite being fragmented for several decades, large woody plant biomass and carbon storage, the number of live or dead large woody plants, mortality rates, and the size distribution of woody plants did not differ significantly between altered and intact riparian forests. Thus, even in these relatively narrow forests with high edge: area ratios, we saw no evidence of the increases in mortality and declines in biomass that have been found in other tropical forest fragment studies. However, because of the changes in both species community and reduced regeneration, it is unclear how long

  5. Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests

    USGS Publications Warehouse

    Hall, S. A.; Burke, I.C.; Box, D. O.; Kaufmann, M. R.; Stoker, Jason M.

    2005-01-01

    The ponderosa pine forests of the Colorado Front Range, USA, have historically been subjected to wildfires. Recent large burns have increased public interest in fire behavior and effects, and scientific interest in the carbon consequences of wildfires. Remote sensing techniques can provide spatially explicit estimates of stand structural characteristics. Some of these characteristics can be used as inputs to fire behavior models, increasing our understanding of the effect of fuels on fire behavior. Others provide estimates of carbon stocks, allowing us to quantify the carbon consequences of fire. Our objective was to use discrete-return lidar to estimate such variables, including stand height, total aboveground biomass, foliage biomass, basal area, tree density, canopy base height and canopy bulk density. We developed 39 metrics from the lidar data, and used them in limited combinations in regression models, which we fit to field estimates of the stand structural variables. We used an information–theoretic approach to select the best model for each variable, and to select the subset of lidar metrics with most predictive potential. Observed versus predicted values of stand structure variables were highly correlated, with r2 ranging from 57% to 87%. The most parsimonious linear models for the biomass structure variables, based on a restricted dataset, explained between 35% and 58% of the observed variability. Our results provide us with useful estimates of stand height, total aboveground biomass, foliage biomass and basal area. There is promise for using this sensor to estimate tree density, canopy base height and canopy bulk density, though more research is needed to generate robust relationships. We selected 14 lidar metrics that showed the most potential as predictors of stand structure. We suggest that the focus of future lidar studies should broaden to include low density forests, particularly systems where the vertical structure of the canopy is important

  6. The evaluation of different forest structural indices to predict the stand aboveground biomass of even-aged Scotch pine (Pinus sylvestris L.) forests in Kunduz, Northern Turkey.

    PubMed

    Ercanli, İlker; Kahriman, Aydın

    2015-03-01

    We assessed the effect of stand structural diversity, including the Shannon, improved Shannon, Simpson, McIntosh, Margelef, and Berger-Parker indices, on stand aboveground biomass (AGB) and developed statistical prediction models for the stand AGB values, including stand structural diversity indices and some stand attributes. The AGB prediction model, including only stand attributes, accounted for 85 % of the total variance in AGB (R (2)) with an Akaike's information criterion (AIC) of 807.2407, Bayesian information criterion (BIC) of 809.5397, Schwarz Bayesian criterion (SBC) of 818.0426, and root mean square error (RMSE) of 38.529 Mg. After inclusion of the stand structural diversity into the model structure, considerable improvement was observed in statistical accuracy, including 97.5 % of the total variance in AGB, with an AIC of 614.1819, BIC of 617.1242, SBC of 633.0853, and RMSE of 15.8153 Mg. The predictive fitting results indicate that some indices describing the stand structural diversity can be employed as significant independent variables to predict the AGB production of the Scotch pine stand. Further, including the stand diversity indices in the AGB prediction model with the stand attributes provided important predictive contributions in estimating the total variance in AGB. PMID:25663395

  7. Solving surface structures from normal incidence X-ray standing wave data

    NASA Astrophysics Data System (ADS)

    Basham, Mark; Bennett, Roger A.

    2007-09-01

    A program is provided to determine structural parameters of atoms in or adsorbed on surfaces by refinement of atomistic models towards experimentally determined data generated by the normal incidence X-ray standing wave (NIXSW) technique. The method employs a combination of Differential Evolution Genetic Algorithms and Steepest Descent Line Minimisations to provide a fast, reliable and user friendly tool for experimentalists to interpret complex multidimensional NIXSW data sets. Program summaryProgram title: NIXSW Planewave Solver Catalogue identifier: ADZE_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZE_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 16 874 No. of bytes in distributed program, including test data, etc.: 1 631 874 Distribution format: tar.gz Programming language: Borland C++ Builder 5 Computer: Any Windows Compatible Operating system: Windows 2000 and XP RAM: <10 MB Classification: 7.4 Nature of problem: Using NIXSW experimental data to calculate atomic positions of adsorbates. Restrictions: Data from substrates must have cubic, tetragonal or orthorhombic crystal structures i.e. with 90° between conventional cell axes. Running time: Seconds-minutes dependant on the number of plane waves and the number of atomic sites.

  8. Structural alterations of pathologically or physiologically modified DNA.

    PubMed Central

    Ciomei, M; Spadari, S; Pedrali-Noy, G; Ciarrocchi, G

    1984-01-01

    We have studied the alterations of DNA conformation in in vitro depurinated or methylated topological isomers of the plasmid pAT 153. Depurination by heat/acid treatment or alkylation by methyl methanesulfonate (pathological modifications) result in DNA unwinding detected as a reduction in the degree of supercoiling of DNA topoisomers as measured by the alteration of electrophoretic mobility on agarose gel. On the contrary, in vitro enzymic methylation at the C-5 position of cytosine (physiological modification) does not measurably alter the tertiary structure of the circular substrates. From the average number of modified sites needed to remove one superhelical twist from each single topoisomer of a population of partially relaxed DNA molecules, we have calculated an unwinding angle smaller than -3.4 degree per methylated purine and of approximately -12.0 degree per apurinic site. These results, together with previously reported values of unwinding by pyrimidine dimers, suggest a possible mechanism of recognition of damaged sites by repair mechanisms that are not single-damage specific. Images PMID:6366741

  9. Effects of Dwarf Mistletoe on Stand Structure of Lodgepole Pine Forests 21-28 Years Post-Mountain Pine Beetle Epidemic in Central Oregon

    PubMed Central

    Agne, Michelle C.; Shaw, David C.; Woolley, Travis J.; Queijeiro-Bolaños, Mónica E.

    2014-01-01

    Lodgepole pine (Pinus contorta) forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae) epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes. Dwarf mistletoe (Arceuthobium americanum) also influences stand structure and occurs frequently in post-mountain pine beetle epidemic lodgepole pine forests. Few studies have incorporated both disturbances simultaneously although they co-occur frequently on the landscape. The aim of this study is to investigate the stand structure of lodgepole pine forests 21–28 years after a mountain pine beetle epidemic with varying levels of dwarf mistletoe infection in the Deschutes National Forest in central Oregon. We compared stand density, stand basal area, canopy volume, proportion of the stand in dominant/codominant, intermediate, and suppressed cohorts, average height and average diameter of each cohort, across the range of dwarf mistletoe ratings to address differences in stand structure. We found strong evidence of a decrease in canopy volume, suppressed cohort height, and dominant/codominant cohort diameter with increasing stand-level dwarf mistletoe rating. There was strong evidence that as dwarf mistletoe rating increases, proportion of the stand in the dominant/codominant cohort decreases while proportion of the stand in the suppressed cohort increases. Structural differences associated with variable dwarf mistletoe severity create heterogeneity in this forest type and may have a significant influence on stand productivity and the resistance and resilience of these stands to future biotic and abiotic disturbances. Our findings show that it is imperative to incorporate dwarf mistletoe when studying stand productivity and ecosystem recovery processes in lodgepole pine forests because of its potential to

  10. Extinction order and altered community structure rapidly disrupt ecosystem functioning.

    PubMed

    Larsen, Trond H; Williams, Neal M; Kremen, Claire

    2005-05-01

    By causing extinctions and altering community structure, anthropogenic disturbances can disrupt processes that maintain ecosystem integrity. However, the relationship between community structure and ecosystem functioning in natural systems is poorly understood. Here we show that habitat loss appeared to disrupt ecosystem functioning by affecting extinction order, species richness and abundance. We studied pollination by bees in a mosaic of agricultural and natural habitats in California and dung burial by dung beetles on recently created islands in Venezuela. We found that large-bodied bee and beetle species tended to be both most extinction-prone and most functionally efficient, contributing to rapid functional loss. Simulations confirmed that extinction order led to greater disruption of function than predicted by random species loss. Total abundance declined with richness and also appeared to contribute to loss of function. We demonstrate conceptually and empirically how the non-random response of communities to disturbance can have unexpectedly large functional consequences. PMID:21352458

  11. Changes to oak woodland stand structure and ground flora composition caused by thinning and burning

    USGS Publications Warehouse

    Kinkead, Carter O.; Kabrick, John M.; Stambaugh, Michael C.; Grabner, Keith W.

    2013-01-01

    Our objective was to quantify the cumulative effects of prescribed burning and thinning on forest stocking and species composition at a woodland restoration experiment site in the Ozark Highlands of Missouri. Our study used four treatments (burn, harvest, harvest and burn, control) on three slope position and aspect combinations (south, north, ridge) replicated in three complete blocks. Harvested stands were thinned from below to 40 percent residual stocking. Two prescribed fires were applied to both burn and harvest-burn treatment units in a 5-year period. Results reflect changes that have taken place over a 6-year period, from pretreatment conditions to 1 year after the last fire. In this period, there was a 10-percent reduction in the stocking in burned stands compared to control and a 6-percent reduction in harvested and burned stands compared to harvested stands. Compared to the control, percentage ground cover of woodland indicators was seven times greater in burned stands, six times greater in harvested stands, and 22 percent greater in harvested and burned stands. Th ere was no significant (P > 0.05) interaction between aspect and treatment on stocking or ground flora cover. Th is study indicated that silvicultural treatments do achieve various goals that are common to managers who aim to restore woodland communities.

  12. X-ray standing wave investigation of the surface structure of selenite anions adsorbed on calcite.

    SciTech Connect

    Cheng, L.; Lyman, P. F.; Sturchio, N. C.; Bedzyk, M. J.; Northwestern Univ.

    1997-01-01

    The adsorption of selenite ions (SeO{sup 2-}{sub 3}) from a dilute aqueous solution onto a freshly-cleaved calcite (10 {ovr 1} 4) surface was studied with the X-ray standing wave (XSW) technique. The complex ion SeO{sup 2-}{sub 3} is found to selectively adsorb at the CO{sup 2-}{sub 3} site via ionic exchange, forming a two-dimensional solid-solution of the form Ca(SeO{sub 3}){sub x}(CO{sub 3}){sub 1-x} at the interface. The calcite (10 {ovr 1} 4), (0006) and (11 {ovr 2} 0) Bragg reflections were used to triangulate the Se position with respect to the calcite lattice. The local surface structure at the SeO{sup 2-}{sub 3} adsorbate site, derived from the XSW results, is consistent with a model in which the base of the SeO{sup 2-}{sub 3} trigonal pyramid aligns with (and replaces) the CO{sup 2-}{sub 3} equilateral triangular group. The SeO{sup 2-}{sub 3} adsorption saturated at a coverage of 0.02 monolayers. Under identical chemical conditions, selenate (SeO{sup 2-}{sub 4}) adsorption was inhibited.

  13. Model independent x-ray standing wave analysis of periodic multilayer structures

    SciTech Connect

    Yakunin, S. N.; Pashaev, E. M.; Subbotin, I. A.; Makhotkin, I. A.; Kruijs, R. W. E. van de; Zoethout, E.; Chuev, M. A.; Louis, E.; Seregin, S. Yu.; Novikov, D. V.; Bijkerk, F.; Kovalchuk, M. V.

    2014-04-07

    We present a model independent approach for the analysis of X-ray fluorescence yield modulated by an X-ray standing wave (XSW), that allow a fast reconstruction of the atomic distribution function inside a sample without fitting procedure. The approach is based on the direct regularized solution of the system of linear equations that characterizes the fluorescence yield. The suggested technique was optimized for, but not limited to, the analysis of periodic layered structures where the XSW is formed under Bragg conditions. The developed approach was applied to the reconstruction of the atomic distribution function for LaN/BN multilayers with 50 periods of 43 Å thick layers. The object is especially difficult to analyze with traditional methods, as the estimated thickness of the interface region between the constituent materials is comparable to the individual layer thicknesses. However, using the suggested technique, it was possible to reconstruct width of the La atomic distribution showing that the La atoms stay localized within the LaN layers and interfaces and do not diffuse into the BN layer. The analysis of the reconstructed profiles showed that the positions of the center of the atomic distribution function can be estimated with an accuracy of 1 Å.

  14. Free-standing nanomechanical and nanophotonic structures in single-crystal diamond

    NASA Astrophysics Data System (ADS)

    Burek, Michael John

    Realizing complex three-dimensional structures in a range of material systems is critical to a variety of emerging nanotechnologies. This is particularly true of nanomechanical and nanophotonic systems, both relying on free-standing small-scale components. In the case of nanomechanics, necessary mechanical degrees of freedom require physically isolated structures, such as suspended beams, cantilevers, and membranes. For nanophotonics, elements like waveguides and photonic crystal cavities rely on light confinement provided by total internal reflection or distributed Bragg reflection, both of which require refractive index contrast between the device and surrounding medium (often air). Such suspended nanostructures are typically fabricated in a heterolayer structure, comprising of device (top) and sacrificial (middle) layers supported by a substrate (bottom), using standard surface nanomachining techniques. A selective, isotropic etch is then used to remove the sacrificial layer, resulting in free-standing devices. While high-quality, crystalline, thin film heterolayer structures are readily available for silicon (as silicon-on-insulator (SOI)) or III-V semiconductors (i.e. GaAs/AlGaAs), there remains an extensive list of materials with attractive electro-optic, piezoelectric, quantum optical, and other properties for which high quality single-crystal thin film heterolayer structures are not available. These include complex metal oxides like lithium niobate (LiNbO3), silicon-based compounds such as silicon carbide (SiC), III-V nitrides including gallium nitride (GaN), and inert single-crystals such as diamond. Diamond is especially attractive for a variety of nanoscale technologies due to its exceptional physical and chemical properties, including high mechanical hardness, stiffness, and thermal conductivity. Optically, it is transparent over a wide wavelength range (from 220 nm to the far infrared), has a high refractive index (n ~ 2.4), and is host to a vast

  15. [Soil microbial community structure of monoculture and mixed plantation stands of native tree species in south subtropical China].

    PubMed

    Luo, Da; Shi, Zuo-Min; Tang, Jing-Chao; Liu, Shi-Rong; Lu, Li-Hua

    2014-09-01

    The effects of three plantation stands, Erythrophleumf ordii (EF), Pinus massoniana (PM), and their mixed plantation (MP), on soil microbial biomass and microbial community structure in south subtropical China were studied by the method of phospholipid fatty acids (PLFAs) analysis. The results showed that the amounts of microbial total PLFAs and PLFAs of each microbial group in these three plantation stand soils were significantly higher in dry season than in rainy season. In dry season, the amounts of microbial total PLFAs, bacteria PLFAs, fungi PLFAs, and actinomycetes PLFAs were the highest in the PM soil, moderate in the MP soil, and the lowest in the EF soil. But in rainy season, the amounts of microbial total PLFAs, bacteria PLFAs, fungi PLFAs, and arbuscular mycorrhizal fungi (AMF) PLFAs in the EF soil were higher than in the MP soil, and were significantly higher than in the PM soil. Principal component analysis (PCA) indicated that the variations in soil microbial community structure composition were affected by both plantation types and seasons. Redundancy analysis (RDA) of soil microbial community structure and environmental factors showed that soil temperature and moisture, pH, total nitrogen content, and ammonium nitrogen content had significant correlations with PLFA signatures. In addition, the ratio of fungi PLFAs to bacteria PLFAs in the MP soil was the highest among the three stand soils within the whole year, indicating that mixed plantation stands could facilitate the stability of the soil ecosystem. PMID:25757303

  16. The Period Ratio for Standing Kink and Sausage Modes in Solar Structures with Siphon Flow. I. Magnetized Slabs

    NASA Astrophysics Data System (ADS)

    Li, Bo; Habbal, Shadia Rifai; Chen, Yanjun

    2013-04-01

    In the applications of solar magneto-seismology, the ratio of the period of the fundamental mode to twice the period of its first overtone, P 1/2P 2, plays an important role. We examine how field-aligned flows affect the dispersion properties, and hence the period ratios, of standing modes supported by magnetic slabs in the solar atmosphere. We numerically solve the dispersion relations and devise a graphic means to construct standing modes. For coronal slabs, we find that the flow effects are significant for the fast kink and sausage modes alike. For the kink ones, they may reduce P 1/2P 2 by up to 23% compared with the static case, and the minimum allowed P 1/2P 2 can fall below the lower limit analytically derived for static slabs. For the sausage modes, while introducing the flow reduces P 1/2P 2 by typically <~ 5% relative to the static case, it significantly increases the threshold aspect ratio only above which standing sausage modes can be supported, meaning that their detectability is restricted to even wider slabs. In the case of photospheric slabs, the flow effect is not as strong. However, standing modes are distinct from the coronal case in that standing kink modes show a P 1/2P 2 that deviates from unity even for a zero-width slab, while standing sausage modes no longer suffer from a threshold aspect ratio. We conclude that transverse structuring in plasma density and flow speed should be considered in seismological applications of multiple periodicities to solar atmospheric structures.

  17. THE PERIOD RATIO FOR STANDING KINK AND SAUSAGE MODES IN SOLAR STRUCTURES WITH SIPHON FLOW. I. MAGNETIZED SLABS

    SciTech Connect

    Li Bo; Habbal, Shadia Rifai; Chen Yanjun

    2013-04-20

    In the applications of solar magneto-seismology, the ratio of the period of the fundamental mode to twice the period of its first overtone, P{sub 1}/2P{sub 2}, plays an important role. We examine how field-aligned flows affect the dispersion properties, and hence the period ratios, of standing modes supported by magnetic slabs in the solar atmosphere. We numerically solve the dispersion relations and devise a graphic means to construct standing modes. For coronal slabs, we find that the flow effects are significant for the fast kink and sausage modes alike. For the kink ones, they may reduce P{sub 1}/2P{sub 2} by up to 23% compared with the static case, and the minimum allowed P{sub 1}/2P{sub 2} can fall below the lower limit analytically derived for static slabs. For the sausage modes, while introducing the flow reduces P{sub 1}/2P{sub 2} by typically {approx}< 5% relative to the static case, it significantly increases the threshold aspect ratio only above which standing sausage modes can be supported, meaning that their detectability is restricted to even wider slabs. In the case of photospheric slabs, the flow effect is not as strong. However, standing modes are distinct from the coronal case in that standing kink modes show a P{sub 1}/2P{sub 2} that deviates from unity even for a zero-width slab, while standing sausage modes no longer suffer from a threshold aspect ratio. We conclude that transverse structuring in plasma density and flow speed should be considered in seismological applications of multiple periodicities to solar atmospheric structures.

  18. Lignin structural alterations in thermochemical pretreatments with limited delignification

    SciTech Connect

    Pu, Yunqiao; Hu, Fan; Huang, Fang; Ragauskas, Arthur J.

    2015-08-02

    Lignocellulosic biomass has a complex and rigid cell wall structure that makes biomass recalcitrant to biological and chemical degradation. Among the three major structural biopolymers (i.e., cellulose, hemicellulose and lignin) in plant cell walls, lignin is considered the most recalcitrant component and generally plays a negative role in the biochemical conversion of biomass to biofuels. The conversion of biomass to biofuels through a biochemical platform usually requires a pretreatment stage to reduce the recalcitrance. Pretreatment renders compositional and structural changes of biomass with these changes ultimately govern the efficiency of the subsequent enzymatic hydrolysis. Dilute acid, hot water, steam explosion, and ammonia fiber expansion pretreatments are among the leading thermochemical pretreatments with a limited delignification that can reduce biomass recalcitrance. Practical applications of these pretreatment are rapidly developing as illustrated by recent commercial scale cellulosic ethanol plants. While these thermochemical pretreatments generally lead to only a limited delignification and no significant change of lignin content in the pretreated biomass, the lignin transformations that occur during these pretreatments and the roles they play in recalcitrance reduction is an important research aspect. This review highlights recent advances in our understanding of lignin alterations during these limited delignification thermochemical pretreatments, with emphasis on lignin chemical structures, molecular weights, and redistributions in the pretreated biomass.

  19. Lignin structural alterations in thermochemical pretreatments with limited delignification

    DOE PAGESBeta

    Pu, Yunqiao; Hu, Fan; Huang, Fang; Ragauskas, Arthur J.

    2015-08-02

    Lignocellulosic biomass has a complex and rigid cell wall structure that makes biomass recalcitrant to biological and chemical degradation. Among the three major structural biopolymers (i.e., cellulose, hemicellulose and lignin) in plant cell walls, lignin is considered the most recalcitrant component and generally plays a negative role in the biochemical conversion of biomass to biofuels. The conversion of biomass to biofuels through a biochemical platform usually requires a pretreatment stage to reduce the recalcitrance. Pretreatment renders compositional and structural changes of biomass with these changes ultimately govern the efficiency of the subsequent enzymatic hydrolysis. Dilute acid, hot water, steam explosion,more » and ammonia fiber expansion pretreatments are among the leading thermochemical pretreatments with a limited delignification that can reduce biomass recalcitrance. Practical applications of these pretreatment are rapidly developing as illustrated by recent commercial scale cellulosic ethanol plants. While these thermochemical pretreatments generally lead to only a limited delignification and no significant change of lignin content in the pretreated biomass, the lignin transformations that occur during these pretreatments and the roles they play in recalcitrance reduction is an important research aspect. This review highlights recent advances in our understanding of lignin alterations during these limited delignification thermochemical pretreatments, with emphasis on lignin chemical structures, molecular weights, and redistributions in the pretreated biomass.« less

  20. Structural brain alterations associated with dyslexia predate reading onset.

    PubMed

    Raschle, Nora Maria; Chang, Maria; Gaab, Nadine

    2011-08-01

    Functional magnetic resonance imaging studies have reported reduced activation in parietotemporal and occipitotemporal areas in adults and children with developmental dyslexia compared to controls during reading and reading related tasks. These patterns of regionally reduced activation have been linked to behavioral impairments of reading-related processes (e.g., phonological skills and rapid automatized naming). The observed functional and behavioral differences in individuals with developmental dyslexia have been complemented by reports of reduced gray matter in left parietotemporal, occipitotemporal areas, fusiform and lingual gyrus and the cerebellum. An important question for education is whether these neural differences are present before reading is taught. Developmental dyslexia can only be diagnosed after formal reading education starts. However, here we investigate whether the previously detected gray matter alterations in adults and children with developmental dyslexia can already be observed in a small group of pre-reading children with a family-history of developmental dyslexia compared to age and IQ-matched children without a family-history (N = 20/mean age: 5:9 years; age range 5:1-6:5 years). Voxel-based morphometry revealed significantly reduced gray matter volume indices for pre-reading children with, compared to children without, a family-history of developmental dyslexia in left occipitotemporal, bilateral parietotemporal regions, left fusiform gyrus and right lingual gyrus. Gray matter volume indices in left hemispheric occipitotemporal and parietotemporal regions of interest also correlated positively with rapid automatized naming. No differences between the two groups were observed in frontal and cerebellar regions. This discovery in a small group of children suggests that previously described functional and structural alterations in developmental dyslexia may not be due to experience-dependent brain changes but may be present at birth or

  1. Alterations in Fibrin Structure in Patients with Liver Diseases.

    PubMed

    Lisman, Ton; Ariëns, Robert A S

    2016-06-01

    The hemostatic balance in patients with liver diseases is relatively well preserved due to concomitant alterations in pro- and antihemostatic pathways. Thrombin generation studies support the notion of hemostatic competence in liver diseases, but in such tests alterations in fibrinogen level and function are not taken into account. We have recently studied structural and functional properties of the fibrin clot in patients with liver diseases. Although we have confirmed previous findings that hypersialylation of the fibrinogen molecule in patients with liver diseases contributes to a defective fibrinogen-to-fibrin conversion, we have found that once the clot has been formed, it has a thrombogenic nature as assessed by permeability assays. These thrombogenic properties of the fibrin clot in cirrhosis relate to incompletely characterized intrinsic changes in the fibrinogen molecule, which may include oxidation and hypersialylation. In addition, in patients with nonalcoholic fatty liver disease thrombogenic properties of the fibrin clot are not only due to liver disease but also to obesity and the metabolic syndrome. During liver transplantation, the clot normalizes and becomes increasingly permeable, and the functional properties of the fibrin clot are markedly normalized by fibrinogen concentrate, when added to plasma samples in vitro. These new insights in the functional properties of the fibrin clot in patients with liver diseases facilitate a more rational approach to treatment and prevention of both bleeding and thrombotic complications. PMID:27071046

  2. Altered PLP1 splicing causes hypomyelination of early myelinating structures

    PubMed Central

    Kevelam, Sietske H; Taube, Jennifer R; van Spaendonk, Rosalina M L; Bertini, Enrico; Sperle, Karen; Tarnopolsky, Mark; Tonduti, Davide; Valente, Enza Maria; Travaglini, Lorena; Sistermans, Erik A; Bernard, Geneviève; Catsman-Berrevoets, Coriene E; van Karnebeek, Clara D M; Østergaard, John R; Friederich, Richard L; Fawzi Elsaid, Mahmoud; Schieving, Jolanda H; Tarailo-Graovac, Maja; Orcesi, Simona; Steenweg, Marjan E; van Berkel, Carola G M; Waisfisz, Quinten; Abbink, Truus E M; van der Knaap, Marjo S; Hobson, Grace M; Wolf, Nicole I

    2015-01-01

    Objective The objective of this study was to investigate the genetic etiology of the X-linked disorder “Hypomyelination of Early Myelinating Structures” (HEMS). Methods We included 16 patients from 10 families diagnosed with HEMS by brain MRI criteria. Exome sequencing was used to search for causal mutations. In silico analysis of effects of the mutations on splicing and RNA folding was performed. In vitro gene splicing was examined in RNA from patients’ fibroblasts and an immortalized immature oligodendrocyte cell line after transfection with mutant minigene splicing constructs. Results All patients had unusual hemizygous mutations of PLP1 located in exon 3B (one deletion, one missense and two silent), which is spliced out in isoform DM20, or in intron 3 (five mutations). The deletion led to truncation of PLP1, but not DM20. Four mutations were predicted to affect PLP1/DM20 alternative splicing by creating exonic splicing silencer motifs or new splice donor sites or by affecting the local RNA structure of the PLP1 splice donor site. Four deep intronic mutations were predicted to destabilize a long-distance interaction structure in the secondary PLP1 RNA fragment involved in regulating PLP1/DM20 alternative splicing. Splicing studies in fibroblasts and transfected cells confirmed a decreased PLP1/DM20 ratio. Interpretation Brain structures that normally myelinate early are poorly myelinated in HEMS, while they are the best myelinated structures in Pelizaeus–Merzbacher disease, also caused by PLP1 alterations. Our data extend the phenotypic spectrum of PLP1-related disorders indicating that normal PLP1/DM20 alternative splicing is essential for early myelination and support the need to include intron 3 in diagnostic sequencing. PMID:26125040

  3. Altered adipocyte structure and function in nutritionally programmed microswine offspring.

    PubMed

    DuPriest, E A; Kupfer, P; Lin, B; Sekiguchi, K; Morgan, T K; Saunders, K E; Chatkupt, T T; Denisenko, O N; Purnell, J Q; Bagby, S P

    2012-06-01

    Adipose tissue (AT) dysfunction links obesity of any cause with cardiometabolic disease, but whether early-life nutritional deficiency can program adipocyte dysfunction independently of obesity is untested. In 3-5-month-old juvenile microswine offspring exposed to isocaloric perinatal maternal protein restriction (MPR) and exhibiting accelerated prepubertal fat accrual without obesity, we assessed markers of acquired obesity: adiponectin and tumor necrosis factor (TNF)-α messenger ribonucleic acid (mRNA) levels and adipocyte size in intra-abdominal (ABD-AT) and subcutaneous (SC-AT) adipose tissues. Plasma cortisol, leptin and insulin levels were measured in fetal, neonatal and juvenile offspring. In juvenile low-protein offspring (LPO), adipocyte size in ABD-AT was reduced 22% (P = 0.011 v. controls), whereas adipocyte size in SC-AT was increased in female LPO (P = 0.05) and normal in male LPO; yet, adiponectin mRNA in LPO was low in both sexes and in both depots (P < 0.001). Plasma leptin (P = 0.004) and cortisol (P < 0.05) were reduced only in neonatal LPO during MPR. In juveniles, correlations between % body fat and adiponectin mRNA, TNF-α mRNA or plasma leptin were significant in normal-protein offspring (NPO) but absent in LPO. Plasma glucose in juvenile LPO was increased in males but decreased in females (interaction, P = 0.023); plasma insulin levels and insulin sensitivity were unaffected. Findings support nutritional programming of adipocyte size and gene expression and subtly altered glucose homeostasis. Reduced adiponectin mRNA and adipokine dysregulation in juvenile LPO following accelerated growth occurred independently of obesity, adipocyte hypertrophy or inflammatory markers; thus, perinatal MPR and/or growth acceleration can alter adipocyte structure and disturb adipokine homeostasis in metabolically adverse patterns predictive of enhanced disease risk. PMID:25102010

  4. Postimpact hydrothermal alteration of the Manson impact structure

    NASA Astrophysics Data System (ADS)

    McCarville, P.; Crossey, L. J.

    1994-07-01

    Core materials from the Manson impact structure (MIS), Manson, Iowa, are examined in order to evaluate postimpact alteration processes. Interpretation of the high-temperature postimpact hydrothermal system is based on mineralogic investigation. MIS rocks from the M1, M7, M8, and M10 cores obtained by the continental scientific drilling project (CSDP) in 1991 and 1992 are used in this study. All lithologies, including the sedimentary clast breccias (SCB), crystalline clast breccias (CCB), and central peak crystalline peaks (CPC), have been described previously. Emphasis is placed on fluid conduits that cross-cut all these lithologies. Analytical techniques include petrography, Scanning Electron Microscopy (SEM), and X-ray Diffraction (XRD). The minerals are grouped according to their temperatures of occurrence in modern geothermal systems. The highest temperatures in the MIS are represented by a garnet and ferroactinolite assemblage (assemblage I). Assemblage II contains epidote, prehnite, and wollastonite, which represents slightly lower temperatures in the system. The existence of laumontite, quartz, and adularia defines a third assemblage. Assemblage IV is defined by calcite and clays, and represents the lowest alteration temperature at the MIS. These temperature-sensitive calc-silicates serve to constrain the fluid temperatures of the MIS hydrothermal system. Assemblage I suggests that the system reached over 300 C. Successively decreasing temperatures through time, approaching ambient temperatures, are suggested by the lower temperature assemblages II, III, and IV. A model for the cooling history of the MIS is reported elsewhere. The distribution of these high-temperature minerals points to the central uplift, not the melt sheet, as being the heat source for the system.

  5. Fragmentation alters stream fish community structure in dendritic ecological networks.

    PubMed

    Perkin, Joshuah S; Gido, Keith B

    2012-12-01

    Effects of fragmentation on the ecology of organisms occupying dendritic ecological networks (DENs) have recently been described through both conceptual and mathematical models, but few hypotheses have been tested in complex, real-world ecosystems. Stream fishes provide a model system for assessing effects of fragmentation on the structure of communities occurring within DENs, including how fragmentation alters metacommunity dynamics and biodiversity. A recently developed habitat-availability measure, the "dendritic connectivity index" (DCI), allows for assigning quantitative measures of connectivity in DENs regardless of network extent or complexity, and might be used to predict fish community response to fragmentation. We characterized stream fish community structure in 12 DENs in the Great Plains, USA, during periods of dynamic (summer) and muted (fall) discharge regimes to test the DCI as a predictive model of fish community response to fragmentation imposed by road crossings. Results indicated that fish communities in stream segments isolated by road crossings had reduced species richness (alpha diversity) relative to communities that maintained connectivity with the surrounding DEN during summer and fall. Furthermore, isolated communities had greater dissimilarity (beta diversity) to downstream sites notisolated by road crossings during summer and fall. Finally, dissimilarity among communities within DENs decreased as a function of increased habitat connectivity (measured using the DCI) for summer and fall, suggesting that communities within highly connected DENs tend to be more homogeneous. Our results indicate that the DCI is sensitive to community effects of fragmentation in riverscapes and might be used by managers to predict ecological responses to changes in habitat connectivity. Moreover, our findings illustrate that relating structural connectivity of riverscapes to functional connectivity among communities might aid in maintaining metacommunity

  6. 2013 Immune Risk Standing Review Panel Research Plan Review for: The Risk of Crew Adverse Health Event Due to Altered Immune Response

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan

    2014-01-01

    The 2013 Immune Risk Standing Review Panel (from here on referred to as the SRP) participated in a meeting with representatives from the Human Research Program (HRP) Human Health Countermeasures (HHC) Element and HRP management on February 3-4, 2014 in Houston, TX to review the updated Research Plan for the Risk of Crew Adverse Health Event Due to Altered Immune Response in the HRP Integrated Research Plan. The SRP is impressed with the work the immune discipline has done since the 2012 SRP review and agrees with the new wording of the Gaps, no longer questions, now statements. The SRP also likes the addition of adding targets for closing the Gaps, but it is not clear how they got to some of the interim stages (interval percentages). A major concern that the SRP has mentioned since the initial 2009 SRP meeting is that there is still not enough emphasis on the interdisciplinary aspect of the immune risk associated with other risks (i.e., nutrition, radiation, etc.). The SRP recommends that a "translational SRP" or advisory group be developed that is composed of members from all of the HRP SRPs. The SRP also thinks that the immune discipline should consider a more systems biology approach. Lastly, the SRP is concerned that the risks observed in research from low Earth orbit (LEO) missions may not accurately reflect all the risks of longer duration flight beyond LEO. Also, there does not seem to be a concern for immune responses that may occur when someone is in space longer than six months, for example, a Mars mission would take three years. The absence of disease in past and current flight scenarios does not mean the risk may not be there in future flight settings.

  7. Altered artery mechanics and structure in monocrotaline pulmonary hypertension.

    PubMed

    Langleben, D; Szarek, J L; Coflesky, J T; Jones, R C; Reid, L M; Evans, J N

    1988-11-01

    Pulmonary hypertension in rats, induced by an injection of monocrotaline, is associated with changes in the wall structure of the pulmonary arterial bed. We have studied the effects of this remodeling on mechanical properties of cylindrical pulmonary artery segments from rats 21 days after monocrotaline (MCT) injection. Resting and active (KCl induced) circumference-tension relationships were established for segments of extrapulmonary and intrapulmonary arteries isolated from the hilum and the fifth lateral branch from the axial pathway (all preacinar). The thicknesses of the vessel wall, the media, and adventitia were measured at several positions around the circumference of the artery by computerized analysis of histological cross sections of the segments fixed at a standard circumference. Resting and active stress were also calculated. The study shows that active circumferential tension and active stress are reduced in vessels from MCT-treated rats. Based on our findings, it is unlikely that altered contractile function of preacinar arteries contributes significantly to the increased vascular resistance seen in this model. PMID:3145283

  8. Alteration of Golgi Structure by Stress: A Link to Neurodegeneration?

    PubMed Central

    Alvarez-Miranda, Eduardo A.; Sinnl, Markus; Farhan, Hesso

    2015-01-01

    The Golgi apparatus is well-known for its role as a sorting station in the secretory pathway as well as for its role in regulating post-translational protein modification. Another role for the Golgi is the regulation of cellular signaling by spatially regulating kinases, phosphatases, and GTPases. All these roles make it clear that the Golgi is a central regulator of cellular homeostasis. The response to stress and the initiation of adaptive responses to cope with it are fundamental abilities of all living cells. It was shown previously that the Golgi undergoes structural rearrangements under various stress conditions such as oxidative or osmotic stress. Neurodegenerative diseases are also frequently associated with alterations of Golgi morphology and many stress factors have been described to play an etiopathological role in neurodegeneration. It is however unclear whether the stress-Golgi connection plays a role in neurodegenerative diseases. Using a combination of bioinformatics modeling and literature mining, we will investigate evidence for such a tripartite link and we ask whether stress-induced Golgi arrangements are cause or consequence in neurodegeneration. PMID:26617486

  9. 24 CFR 3285.903 - Permits, alterations, and on-site structures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... from property lines and public roads are met. (b) Alterations. Prior to making any alteration to a home...) Installation of on-site structures. Each accessory building and structure is designed to support all of its own live and dead loads, unless the structure, including any attached garage, carport, deck, and porch,...

  10. 24 CFR 3285.903 - Permits, alterations, and on-site structures.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... from property lines and public roads are met. (b) Alterations. Prior to making any alteration to a home...) Installation of on-site structures. Each accessory building and structure is designed to support all of its own live and dead loads, unless the structure, including any attached garage, carport, deck, and porch,...

  11. 24 CFR 3285.903 - Permits, alterations, and on-site structures.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... from property lines and public roads are met. (b) Alterations. Prior to making any alteration to a home...) Installation of on-site structures. Each accessory building and structure is designed to support all of its own live and dead loads, unless the structure, including any attached garage, carport, deck, and porch,...

  12. 24 CFR 3285.903 - Permits, alterations, and on-site structures.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... from property lines and public roads are met. (b) Alterations. Prior to making any alteration to a home...) Installation of on-site structures. Each accessory building and structure is designed to support all of its own live and dead loads, unless the structure, including any attached garage, carport, deck, and porch,...

  13. Influence of nutrient availability, stand age, and canopy structure on isoprene flux in a Eucalyptus saligna experimental forest

    NASA Astrophysics Data System (ADS)

    Funk, Jennifer L.; Giardina, Christian P.; Knohl, Alexander; Lerdau, Manuel T.

    2006-06-01

    Eucalyptus plantations occupy approximately 10 million ha of land in the tropics and, increasingly, afforestation and reforestation projects are relying on this genus to provide rapid occupation of degraded sites, large quantities of high-quality wood products, and high rates of carbon sequestration. Members of the genus Eucalyptus are also very high emitters of isoprene, the dominant volatile organic compound emitted by trees in tropical ecosystems, which significantly influences the oxidative capacity of the atmosphere. While fertilization growth response of these trees has been intensively studied, little is known about how fertilization and tree age alter isoprene production from plantations of these trees. Here we examined the effects of fertilization and tree age on leaf-level isoprene flux from 2- and 6-year-old trees in a Eucalyptus saligna experimental forest in Hawaii. Leaf-level emission at a given canopy height did not differ between fertilized and unfertilized 6-year-old trees likely because leaf nitrogen content did not vary with fertilization. Across treatments, however, the standardized emission rate of isoprene (emission at a standard light and temperature) followed patterns of leaf N content and declined with canopy depth. Although leaf nitrogen content was similar between 2-year and 6-year fertilized trees, leaf-level emission rates declined with stand age. Surprisingly, despite differences in stand leaf area and leaf area distribution, modeled canopy-level isoprene flux was similar across stands varying in fertilization and tree age. Model results suggest that leaf area index was high enough in all treatments to absorb most of the light penetrating the canopy, leading to similar canopy flux rates despite the very different sized canopies.

  14. Edaphic, salinity, and stand structural trends in chronosequences of native and non-native dominated riparian forests along the Colorado River, USA

    USGS Publications Warehouse

    Merritt, David M.; Shafroth, Patrick B.

    2012-01-01

    Tamarix spp. are introduced shrubs that have become among the most abundant woody plants growing along western North American rivers. We sought to empirically test the long-held belief that Tamarix actively displaces native species through elevating soil salinity via salt exudation. We measured chemical and physical attributes of soils (e.g., salinity, major cations and anions, texture), litter cover and depth, and stand structure along chronosequences dominated by Tamarix and those dominated by native riparian species (Populus or Salix) along the upper and lower Colorado River in Colorado and Arizona/California, USA. We tested four hypotheses: (1) the rate of salt accumulation in soils is faster in Tamarix-dominated stands than stands dominated by native species, (2) the concentration of salts in the soil is higher in mature stands dominated by Tamarix compared to native stands, (3) soil salinity is a function of Tamarix abundance, and (4) available nutrients are more concentrated in native-dominated stands compared to Tamarix-dominated stands. We found that salt concentration increases at a faster rate in Tamarix-dominated stands along the relatively free-flowing upper Colorado but not along the heavily-regulated lower Colorado. Concentrations of ions that are known to be preferentially exuded by Tamarix (e.g., B, Na, and Cl) were higher in Tamarix stands than in native stands. Soil salt concentrations in older Tamarix stands along the upper Colorado were sufficiently high to inhibit germination, establishment, or growth of some native species. On the lower Colorado, salinity was very high in all stands and is likely due to factors associated with floodplain development and the hydrologic effects of river regulation, such as reduced overbank flooding, evaporation of shallow ground water, higher salt concentrations in surface and ground water due to agricultural practices, and higher salt concentrations in fine-textured sediments derived from naturally saline

  15. A stand-alone tree demography and landscape structure module for Earth system models: integration with global forest data

    NASA Astrophysics Data System (ADS)

    Haverd, V.; Smith, B.; Nieradzik, L. P.; Briggs, P. R.

    2014-02-01

    Poorly constrained rates of biomass turnover are a key limitation of Earth system models (ESM). In light of this, we recently proposed a new approach encoded in a model called Populations-Order-Physiology (POP), for the simulation of woody ecosystem stand dynamics, demography and disturbance-mediated heterogeneity. POP is suitable for continental to global applications and designed for coupling to the terrestrial ecosystem component of any ESM. POP bridges the gap between first generation Dynamic Vegetation Models (DVMs) with simple large-area parameterisations of woody biomass (typically used in current ESMs) and complex second generation DVMs, that explicitly simulate demographic processes and landscape heterogeneity of forests. The key simplification in the POP approach, compared with second-generation DVMs, is to compute physiological processes such as assimilation at grid-scale (with CABLE or a similar land surface model), but to partition the grid-scale biomass increment among age classes defined at sub grid-scale, each subject to its own dynamics. POP was successfully demonstrated along a savanna transect in northern Australia, replicating the effects of strong rainfall and fire disturbance gradients on observed stand productivity and structure. Here, we extend the application of POP to a range of forest types around the globe, employing paired observations of stem biomass and density from forest inventory data to calibrate model parameters governing stand demography and biomass evolution. The calibrated POP model is then coupled to the CABLE land surface model and the combined model (CABLE-POP) is evaluated against leaf-stem allometry observations from forest stands ranging in age from 3 to 200 yr. Results indicate that simulated biomass pools conform well with observed allometry. We conclude that POP represents a preferable alternative to large-area parameterisations of woody biomass turnover, typically used in current ESMs.

  16. SADIST (the SAndia Data Index STructure): a stand-alone data base for computer-aided design and general use

    SciTech Connect

    Stauffer, J D

    1980-11-01

    A file structure has been designed that fills the needs of multilevel hierarchical design of integrated circuits (ICs). Since the structure is actualized by a stand-alone FORTRAN program, it is applicable to general-purpose use in situations where the structure of the data modeled is similar to that of IC data. Though the structure itself is a FORTRAN direct-access file, its interface with user programs is a small sequential subfile accessible to FORTRAN, PASCAL, and most other languages. This ability facilitates linkup to systems already in use and requires minimal recoding. Backup, restore, and other data base recovery and integrity operations are automatic, but may be initiated by the user if desired. 3 figures.

  17. Perinatal Risk Factors Altering Regional Brain Structure in the Preterm Infant

    ERIC Educational Resources Information Center

    Thompson, Deanne K.; Warfield, Simon K.; Carlin, John B.; Pavlovic, Masa; Wang, Hong X.; Bear, Merilyn; Kean, Michael J.; Doyle, Lex W.; Egan, Gary F.; Inder, Terrie E.

    2007-01-01

    Neuroanatomical structure appears to be altered in preterm infants, but there has been little insight into the major perinatal risk factors associated with regional cerebral structural alterations. MR images were taken to quantitatively compare regional brain tissue volumes between term and preterm infants and to investigate associations between…

  18. Large scale standing slow mode structures in MHD simulations of the hermean magnetosphere

    NASA Astrophysics Data System (ADS)

    Pantellini, Filippo; Meyrand, Romain; Varela, Jacobo

    2015-04-01

    Standing slow mode compressional fronts are seen to form upstream of the day side magnetopause in MHD simulations of Mercury's magnetosphere. These fronts are seen to form upstream of the portions of the magnetopause characterized by a near reversal of the magnetic field orientation. Their role is to bend the magnetosheath field lines towards the magnetopause. Besides these compressional fronts, already observed in space and theoretically discussed by various authors for the case of the Earth, large scale slow mode rarefaction waves are also seen to form in most parts of the magnetosheath. The rarefaction waves are essential to divert the interplanetary magnetic field lines and the solar wind plasma flow around the magnetopause.

  19. Correlations of Flow Structure and Particle Deposition with Structural Alterations in Severe Asthmatic Lungs

    NASA Astrophysics Data System (ADS)

    Choi, Sanghun; Miyawaki, Shinjiro; Choi, Jiwoong; Hoffman, Eric A.; Wenzel, Sally; Lin, Ching-Long

    2014-11-01

    Severe asthmatics are characterized by alterations of bifurcation angle, hydraulic diameter, circularity of the airways, and local shift of air-volume functional change. The characteristics altered against healthy human subjects can affect flow structure and particle deposition. A large-eddy-simulation (LES) model for transitional and turbulent flows is utilized to study flow characteristics and particle deposition with representative healthy and severe asthmatic lungs. For the subject-specific boundary condition, local air-volume changes are derived with two computed tomography images at inspiration and expiration. Particle transport simulations are performed on LES-predicted flow fields. In severe asthmatics, the elevated air-volume changes of apical lung regions affect the increased particle distribution toward upper lobes, especially for small particles. The constricted airways are significantly correlated with high wall shear stress, leading to the increased pressure drop and particle deposition. The structural alterations of bifurcation angle, circularity and hydraulic diameter in severe asthmatics are associated with the increase of particle deposition, wall shear stress and wall thickness. NIH Grants: U01-HL114494, R01-HL094315 and S10-RR022421. Computer time: XSEDE.

  20. Hierarchically structured free-standing hydrogels with liquid crystalline domains and magnetic nanoparticles as dual physical cross-linkers.

    PubMed

    Zhou, Yuxiang; Sharma, Nitin; Deshmukh, Prashant; Lakhman, Rubinder Kaur; Jain, Menka; Kasi, Rajeswari M

    2012-01-25

    Here we report a modular strategy for preparing physically cross-linked and mechanically robust free-standing hydrogels comprising unique thermotropic liquid crystalline (LC) domains and magnetic nanoparticles both of which serve as the physical cross-linkers resulting in hydrogels that can be used as magnetically responsive soft actuators. A series of amphiphilic LC pentablock copolymers of poly(acrylic acid) (PAA), poly(5-cholesteryloxypentyl methacrylate) (PC5MA), and poly(ethylene oxide) (PEO) blocks in the sequence of PAA-PC5MA-PEO-PC5MA-PAA were prepared using reversible addition-fragmentation chain transfer polymerization. These pentablock copolymers served as macromolecular ligands to template Fe(3)O(4) magnetic nanoparticles (MNPs), which were directly anchored to the polymer chains through the coordination bonds with the carboxyl groups of PAA blocks. The resulting polymer/MNP nanocomposites comprised a complicated hierarchical structure in which polymer-coated MNP clusters were dispersed in a microsegregated pentablock copolymer matrix that further contained LC ordering. Upon swelling, the hierarchical structure was disrupted and converted to a network structure, in which MNP clusters were anchored to the polymer chains and LC domains stayed intact to connect solvated PEO and PAA blocks, leading to a free-standing LC magnetic hydrogel (LC ferrogel). By varying the PAA weight fraction (f(AA)) in the pentablock copolymers, the swelling degrees (Q) of the resulting LC ferrogels were tailored. Rheological experiments showed that these physically cross-linked free-standing LC ferrogels exhibit good mechanical strength with storage moduli G' of around 10(4)-10(5) Pa, similar to that of natural tissues. Furthermore, application of a magnetic field induced bending actuation of the LC ferrogels. Therefore, these physically cross-linked and mechanically robust LC ferrogels can be used as soft actuators and artificial muscles. Moreover, this design strategy is a

  1. Hydrothermal alteration in the Bosumtwi impact structure: Evidence from 2M1-muscovite, alteration veins, and fracture fillings

    NASA Astrophysics Data System (ADS)

    Petersen, Michael T.; Newsom, Horton E.; Nelson, Melissa J.; Moore, Duane M.

    Drill-core samples from the Bosumtwi impact structure (1.07 Myr old and 10.5 km in diameter) in Ghana exhibit mineralogical evidence for post-impact hydrothermal alteration. Nine samples of drill core obtained through the 2004 International Continental Scientific Drilling Project (ICDP) were studied, including an uppermost fallback layer overlying impactite breccias, and partly deformed massive meta-graywacke bedrock. The petrographic study revealed alteration veins containing secondary sericitic muscovite (comparable to 2M1-muscovite) crosscutting original bedding in meta-graywacke and forming a matrix between clasts in impactite breccias. X-ray diffraction (XRD) shows that these impactite samples are rich in 2M1-muscovite, consistent with post-impact fluid deposition and alteration. Optical analysis indicates the presence of a pre-impact stratiform chlorite in meta-graywacke samples and a secondary alteration chlorite occurring in all samples. Secondary illite was detected in upper impactites of drill core LB-08A and samples containing accretionary lapilli. The lower temperature constraint for the hydrothermal event is given by 2M1-muscovite, secondary chlorite, and illite, all of which form at temperatures greater than 280 °C. An absence of recrystallization of quartz and feldspar indicates an upper temperature constraint below 900 °C. The presence of alteration materials associated with fractures and veins in the uppermost impactites of drill cores LB-07A and LB-08A indicates that a post-impact hydrothermal system was present in and adjacent to the central uplift portion of the Bosumtwi impact structure. A sample containing accretionary lapilli obtained from drill core LB-05A exhibits limited evidence that hydrothermal processes were more widespread within the impactites on the crater floor.

  2. Polyploidy alters advertisement call structure in gray treefrogs.

    PubMed Central

    Keller, M. J.; Gerhardt, H. C.

    2001-01-01

    Whole-genome duplication is believed to have played a significant role in the early evolution and diversification of vertebrate animals. The establishment of newly arisen polyploid lineages of sexually reproducing animals requires assortative mating between polyploids. Here, we show that genome duplication can directly alter a phenotypic trait mediating mate choice in the absence of genotypic change. Our results suggest that the direct effect of polyploidy on behaviour is a consequence of increased cell size. PMID:11270429

  3. Spatial Scales of Genetic Structure in Free-Standing and Strangler Figs (Ficus, Moraceae) Inhabiting Neotropical Forests.

    PubMed

    Heer, Katrin; Kalko, Elisabeth K V; Albrecht, Larissa; García-Villacorta, Roosevelt; Staeps, Felix C; Herre, Edward Allen; Dick, Christopher W

    2015-01-01

    Wind-borne pollinating wasps (Agaonidae) can transport fig (Ficus sp., Moraceae) pollen over enormous distances (> 100 km). Because of their extensive breeding areas, Neotropical figs are expected to exhibit weak patterns of genetic structure at local and regional scales. We evaluated genetic structure at the regional to continental scale (Panama, Costa Rica, and Peru) for the free-standing fig species Ficus insipida. Genetic differentiation was detected only at distances > 300 km (Jost´s Dest = 0.68 ± 0.07 & FST = 0.30 ± 0.03 between Mesoamerican and Amazonian sites) and evidence for phylogeographic structure (RST>permuted RST) was only significant in comparisons between Central and South America. Further, we assessed local scale spatial genetic structure (SGS, d ≤ 8 km) in Panama and developed an agent-based model parameterized with data from F. insipida to estimate minimum pollination distances, which determine the contribution of pollen dispersal on SGS. The local scale data for F. insipida was compared to SGS data collected for an additional free-standing fig, F. yoponensis (subgenus Pharmacosycea), and two species of strangler figs, F. citrifolia and F. obtusifolia (subgenus Urostigma) sampled in Panama. All four species displayed significant SGS (mean Sp = 0.014 ± 0.012). Model simulations indicated that most pollination events likely occur at distances > > 1 km, largely ruling out spatially limited pollen dispersal as the determinant of SGS in F. insipida and, by extension, the other fig species. Our results are consistent with the view that Ficus develops fine-scale SGS primarily as a result of localized seed dispersal and/or clumped seedling establishment despite extensive long-distance pollen dispersal. We discuss several ecological and life history factors that could have species- or subgenus-specific impacts on the genetic structure of Neotropical figs. PMID:26226482

  4. Spatial Scales of Genetic Structure in Free-Standing and Strangler Figs (Ficus, Moraceae) Inhabiting Neotropical Forests

    PubMed Central

    Heer, Katrin; Albrecht, Larissa; García-Villacorta, Roosevelt; Staeps, Felix C.; Herre, Edward Allen; Dick, Christopher W.

    2015-01-01

    Wind-borne pollinating wasps (Agaonidae) can transport fig (Ficus sp., Moraceae) pollen over enormous distances (> 100 km). Because of their extensive breeding areas, Neotropical figs are expected to exhibit weak patterns of genetic structure at local and regional scales. We evaluated genetic structure at the regional to continental scale (Panama, Costa Rica, and Peru) for the free-standing fig species Ficus insipida. Genetic differentiation was detected only at distances > 300 km (Jost´s Dest = 0.68 ± 0.07 & FST = 0.30 ± 0.03 between Mesoamerican and Amazonian sites) and evidence for phylogeographic structure (RST>>permuted RST) was only significant in comparisons between Central and South America. Further, we assessed local scale spatial genetic structure (SGS, d ≤ 8 km) in Panama and developed an agent-based model parameterized with data from F. insipida to estimate minimum pollination distances, which determine the contribution of pollen dispersal on SGS. The local scale data for F. insipida was compared to SGS data collected for an additional free-standing fig, F. yoponensis (subgenus Pharmacosycea), and two species of strangler figs, F. citrifolia and F. obtusifolia (subgenus Urostigma) sampled in Panama. All four species displayed significant SGS (mean Sp = 0.014 ± 0.012). Model simulations indicated that most pollination events likely occur at distances > > 1 km, largely ruling out spatially limited pollen dispersal as the determinant of SGS in F. insipida and, by extension, the other fig species. Our results are consistent with the view that Ficus develops fine-scale SGS primarily as a result of localized seed dispersal and/or clumped seedling establishment despite extensive long-distance pollen dispersal. We discuss several ecological and life history factors that could have species- or subgenus-specific impacts on the genetic structure of Neotropical figs. PMID:26226482

  5. Altered Esophageal Mucosal Structure in Patients with Celiac Disease

    PubMed Central

    Pinto-Sánchez, María Inés; Nachman, Fabio D.; Fuxman, Claudia; Iantorno, Guido; Hwang, Hui Jer; Ditaranto, Andrés; Costa, Florencia; Longarini, Gabriela; Wang, Xuan Yu; Huang, Xianxi; Vázquez, Horacio; Moreno, María L.; Niveloni, Sonia; Bercik, Premysl; Smecuol, Edgardo; Mazure, Roberto; Bilder, Claudio; Mauriño, Eduardo C.; Verdu, Elena F.; Bai, Julio C.

    2016-01-01

    Background/Aim. Reflux symptoms (RS) are common in patients with celiac disease (CD), a chronic enteropathy that affects primarily the small intestine. We evaluated mucosal integrity and motility of the lower esophagus as mechanisms contributing to RS generation in patients with CD. Methods. We enrolled newly diagnosed CD patients with and without RS, nonceliac patients with classical reflux disease (GERD), and controls (without RS). Endoscopic biopsies from the distal esophagus were assessed for dilated intercellular space (DIS) by light microscopy and electron microscopy. Tight junction (TJ) mRNA proteins expression for zonula occludens-1 (ZO-1) and claudin-2 and claudin-3 (CLDN-2; CLDN-3) was determined using qRT-PCR. Results. DIS scores were higher in patients with active CD than in controls, but similar to GERD patients. The altered DIS was found even in CD patients without RS and normalized after one year of a gluten-free diet. CD patients with and without RS had lower expression of ZO-1 than controls. The expression of CLDN-2 and CLDN-3 was similar in CD and GERD patients. Conclusions. Our study shows that patients with active CD have altered esophageal mucosal integrity, independently of the presence of RS. The altered expression of ZO-1 may underlie loss of TJ integrity in the esophageal mucosa and may contribute to RS generation. PMID:27446827

  6. Altered Esophageal Mucosal Structure in Patients with Celiac Disease.

    PubMed

    Pinto-Sánchez, María Inés; Nachman, Fabio D; Fuxman, Claudia; Iantorno, Guido; Hwang, Hui Jer; Ditaranto, Andrés; Costa, Florencia; Longarini, Gabriela; Wang, Xuan Yu; Huang, Xianxi; Vázquez, Horacio; Moreno, María L; Niveloni, Sonia; Bercik, Premysl; Smecuol, Edgardo; Mazure, Roberto; Bilder, Claudio; Mauriño, Eduardo C; Verdu, Elena F; Bai, Julio C

    2016-01-01

    Background/Aim. Reflux symptoms (RS) are common in patients with celiac disease (CD), a chronic enteropathy that affects primarily the small intestine. We evaluated mucosal integrity and motility of the lower esophagus as mechanisms contributing to RS generation in patients with CD. Methods. We enrolled newly diagnosed CD patients with and without RS, nonceliac patients with classical reflux disease (GERD), and controls (without RS). Endoscopic biopsies from the distal esophagus were assessed for dilated intercellular space (DIS) by light microscopy and electron microscopy. Tight junction (TJ) mRNA proteins expression for zonula occludens-1 (ZO-1) and claudin-2 and claudin-3 (CLDN-2; CLDN-3) was determined using qRT-PCR. Results. DIS scores were higher in patients with active CD than in controls, but similar to GERD patients. The altered DIS was found even in CD patients without RS and normalized after one year of a gluten-free diet. CD patients with and without RS had lower expression of ZO-1 than controls. The expression of CLDN-2 and CLDN-3 was similar in CD and GERD patients. Conclusions. Our study shows that patients with active CD have altered esophageal mucosal integrity, independently of the presence of RS. The altered expression of ZO-1 may underlie loss of TJ integrity in the esophageal mucosa and may contribute to RS generation. PMID:27446827

  7. Take a Stand for Standing

    ERIC Educational Resources Information Center

    Labandz, Stephenie

    2010-01-01

    As a school-based physical therapist, the author sees children with a wide variety of diagnoses affecting their mobility and motor function. Supported standing is an important part of the routines of those who are unable to stand independently due to issues affecting the neuromuscular system. Being eye-to-eye with their peers and interacting with…

  8. Period ratios for standing kink and sausage modes in magnetized structures with siphon flow on the Sun

    NASA Astrophysics Data System (ADS)

    Yu, Hui; Chen, Shao-Xia; Li, Bo; Xia, Li-Dong

    2016-06-01

    Standing oscillations with multiple periods have been found in a number of atmospheric structures on the Sun. The ratio of the period of the fundamental to twice the one of its first overtone, P 1/2P 2, is important in applications of solar magneto-seismology. We examine how field-aligned flows impact P 1/2P 2 of standing modes in solar magnetic cylinders. For coronal loops, the flow effects are significant for both fast kink and sausage modes. For kink modes, they reduce P 1/2P 2 by up to 17% relative to the static case even when the density contrast between the loop and its surroundings approaches infinity. For sausage modes, the reduction in P 1/2P 2 due to flow is typically ≲ 5.5% compared with the static case. However, the threshold aspect ratio, only above which can trapped sausage modes be supported, may increase dramatically with the flow magnitude. For photospheric tubes, the flow effect on P 1/2P 2 is not as strong. However, when applied to sausage modes, introducing field-aligned flows offers more possibilities in interpreting the multiple periods that have recently been measured. We conclude that field-aligned flows should be taken into account to help better understand what causes the departure of P 1/2P 2 from unity.

  9. Forest structure, stand composition, and climate-growth response in montane forests of Jiuzhaigou National Nature Reserve, China.

    PubMed

    Schwartz, Mark W; Dolanc, Christopher R; Gao, Hui; Strauss, Sharon Y; Schwartz, Ari C; Williams, John N; Tang, Ya

    2013-01-01

    Montane forests of western China provide an opportunity to establish baseline studies for climate change. The region is being impacted by climate change, air pollution, and significant human impacts from tourism. We analyzed forest stand structure and climate-growth relationships from Jiuzhaigou National Nature Reserve in northwestern Sichuan province, along the eastern edge of the Tibetan plateau. We conducted a survey to characterize forest stand diversity and structure in plots occurring between 2050 and 3350 m in elevation. We also evaluated seedling and sapling recruitment and tree-ring data from four conifer species to assess: 1) whether the forest appears in transition toward increased hardwood composition; 2) if conifers appear stressed by recent climate change relative to hardwoods; and 3) how growth of four dominant species responds to recent climate. Our study is complicated by clear evidence of 20(th) century timber extraction. Focusing on regions lacking evidence of logging, we found a diverse suite of conifers (Pinus, Abies, Juniperus, Picea, and Larix) strongly dominate the forest overstory. We found population size structures for most conifer tree species to be consistent with self-replacement and not providing evidence of shifting composition toward hardwoods. Climate-growth analyses indicate increased growth with cool temperatures in summer and fall. Warmer temperatures during the growing season could negatively impact conifer growth, indicating possible seasonal climate water deficit as a constraint on growth. In contrast, however, we found little relationship to seasonal precipitation. Projected warming does not yet have a discernible signal on trends in tree growth rates, but slower growth with warmer growing season climates suggests reduced potential future forest growth. PMID:23951188

  10. Forest Structure, Stand Composition, and Climate-Growth Response in Montane Forests of Jiuzhaigou National Nature Reserve, China

    PubMed Central

    Schwartz, Mark W.; Dolanc, Christopher R.; Gao, Hui; Strauss, Sharon Y.; Schwartz, Ari C.; Williams, John N.; Tang, Ya

    2013-01-01

    Montane forests of western China provide an opportunity to establish baseline studies for climate change. The region is being impacted by climate change, air pollution, and significant human impacts from tourism. We analyzed forest stand structure and climate-growth relationships from Jiuzhaigou National Nature Reserve in northwestern Sichuan province, along the eastern edge of the Tibetan plateau. We conducted a survey to characterize forest stand diversity and structure in plots occurring between 2050 and 3350 m in elevation. We also evaluated seedling and sapling recruitment and tree-ring data from four conifer species to assess: 1) whether the forest appears in transition toward increased hardwood composition; 2) if conifers appear stressed by recent climate change relative to hardwoods; and 3) how growth of four dominant species responds to recent climate. Our study is complicated by clear evidence of 20th century timber extraction. Focusing on regions lacking evidence of logging, we found a diverse suite of conifers (Pinus, Abies, Juniperus, Picea, and Larix) strongly dominate the forest overstory. We found population size structures for most conifer tree species to be consistent with self-replacement and not providing evidence of shifting composition toward hardwoods. Climate-growth analyses indicate increased growth with cool temperatures in summer and fall. Warmer temperatures during the growing season could negatively impact conifer growth, indicating possible seasonal climate water deficit as a constraint on growth. In contrast, however, we found little relationship to seasonal precipitation. Projected warming does not yet have a discernible signal on trends in tree growth rates, but slower growth with warmer growing season climates suggests reduced potential future forest growth. PMID:23951188

  11. A biologically inspired modular structure to control the sit-to-stand transfer of a biped robot.

    PubMed

    Andani, M Emadi; Bahrami, F; Maralani, P Jabedar

    2007-01-01

    In this study, a biologically inspired control structure to control the sit-to-stand (STS) transfer from a chair is developed and simulated. STS movement is consisted of two main phases. First phase of the movement is before leaving the seat (seat-off moment). In this phase seat reactions forces act on the body parts which are in contact with the seat. The second phase is after seat-off, where the only external forces acting on the body are ground reaction forces. A proper control algorithm of the STS transfer needs to consider switching between these two phases, which correspond to two different dynamical structures. The control structure developed and discussed in this work is based on the MOSAIC structure, proposed first by Wolpert and Kawato [1]. Original MOSAIC structure has a modular architecture which is based on multiple pairs of forward and inverse models of the dynamical system to be controlled, and each module is trained separately to learn one part of a given task. The number of effective modules is predetermined. We have developed a new method to train all modules simultaneously. This method is based on reinforcement and cooperative competitive learning, and the number of effective modules is determined automatically. In this study, the simulation was begun with four modules. Our results showed that only two modules out of four were selected to control the STS task. Responsibility of controlling the task was switched between the two modules around the seat-off moment. PMID:18002630

  12. Status of High Power Tests of Normal Conducting Single-Cell Standing Wave Structures

    SciTech Connect

    Dolgashev, Valery; Tantawi, Sami; Yeremian, Anahid; Higashi, Yasuo; Spataro, Bruno; /INFN, Rome

    2012-06-25

    Our experiments are directed toward the understanding of the physics of rf breakdown in systems that can be used to accelerate electron beams at {approx}11.4 GHz. The structure geometries have apertures, stored energy per cell, and rf pulse duration close to that of the NLC or CLIC. The breakdown rate is the main parameter that we use to compare rf breakdown behavior for different structures at a given set of rf pulse parameters (pulse shape and peak power) at 60 Hz repetition rate. In our experiments, the typical range of the breakdown rate is from one per few hours to {approx}100 per hour. To date we have tested 29 structures. We consistently found that after the initial conditioning, the behavior of the breakdown rate is reproducible for structures of the same geometry and material, and the breakdown rate dependence on peak magnetic fields is stronger than on peak surface electric fields for structures of different geometries. Below we report the main results from tests of seven structures made from hard copper, soft copper alloys and hard-copper alloys. Additional details on these and other structures will be discussed in future publications.

  13. Stage structure alters how complexity affects stability of ecological networks

    USGS Publications Warehouse

    Rudolf, V.H.W.; Lafferty, Kevin D.

    2011-01-01

    Resolving how complexity affects stability of natural communities is of key importance for predicting the consequences of biodiversity loss. Central to previous stability analysis has been the assumption that the resources of a consumer are substitutable. However, during their development, most species change diets; for instance, adults often use different resources than larvae or juveniles. Here, we show that such ontogenetic niche shifts are common in real ecological networks and that consideration of these shifts can alter which species are predicted to be at risk of extinction. Furthermore, niche shifts reduce and can even reverse the otherwise stabilizing effect of complexity. This pattern arises because species with several specialized life stages appear to be generalists at the species level but act as sequential specialists that are hypersensitive to resource loss. These results suggest that natural communities are more vulnerable to biodiversity loss than indicated by previous analyses.

  14. Standing spin waves and solitons in a quasi-one-dimensional spiral structure

    SciTech Connect

    Kiselev, V. V. Raskovalov, A. A.

    2013-02-15

    On the basis of the sine-Gordon model, we calculated the absorption spectrum for the external pump power in a quasi-one-dimensional spiral structure of easy-plane magnets without the inversion center in the presence of a static magnetic field perpendicular to the magnetic spiral axis. It is shown that these data can be used for determining the material constants of the magnet and diagnostics of spin waves and solitons in its spiral structure. The possibility of using magnetooptical methods to observe local translations of the spiral structure during formation and motion of solitons in it is discussed.

  15. NEO Test Stand Analysis

    NASA Technical Reports Server (NTRS)

    Pike, Cody J.

    2015-01-01

    A project within SwampWorks is building a test stand to hold regolith to study how dust is ejected when exposed to the hot exhaust plume of a rocket engine. The test stand needs to be analyzed, finalized, and fabrication drawings generated to move forward. Modifications of the test stand assembly were made with Creo 2 modeling software. Structural analysis calculations were developed by hand to confirm if the structure will hold the expected loads while optimizing support positions. These calculations when iterated through MatLab demonstrated the optimized position of the vertical support to be 98'' from the far end of the stand. All remaining deflections were shown to be under the 0.6'' requirement and internal stresses to meet NASA Ground Support Equipment (GSE) Safety Standards. Though at the time of writing, fabrication drawings have yet to be generated, but are expected shortly after.

  16. Reverberant Acoustic Testing and Direct Field Acoustic Testing Acoustic Standing Waves and their Impact on Structural Responses

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu

    2012-01-01

    The aerospace industry has been using two methods of acoustic testing to qualify flight hardware: (1) Reverberant Acoustic Test (RAT), (2) Direct Field Acoustic Test (DFAT). The acoustic field obtained by RAT is generally understood and assumed to be diffuse, expect below Schroeder cut-of frequencies. DFAT method of testing has some distinct advantages over RAT, however the acoustic field characteristics can be strongly affected by test setup such as the speaker layouts, number and location of control microphones and control schemes. In this paper the following are discussed based on DEMO tests performed at APL and JPL: (1) Acoustic wave interference patterns and acoustic standing waves, (2) The structural responses in RAT and DFAT.

  17. Methods to determine DNA structural alterations and genetic instability

    PubMed Central

    Wang, Guliang; Zhao, Junhua; Vasquez, Karen M.

    2009-01-01

    Chromosomal DNA is a dynamic structure that can adopt a variety of non-canonical (i.e. non-B) conformations. In this regard, at least ten different forms of non-B DNA conformations have been identified, and many of them have been found to be mutagenic, and associated with human disease development. Despite the importance of non-B DNA structures in genetic instability and DNA metabolic processes, mechanisms remain largely undefined. The purpose of this review is to summarize current methodologies that are used to address questions in the field of non-B DNA structure-induced genetic instability. Advantages and disadvantages of each method will be discussed. A focused effort to further elucidate the mechanisms of non-B DNA-induced genetic instability will lead to a better understanding of how these structure-forming sequences contribute to the development of human disease. PMID:19245837

  18. Impact of Acoustic Standing Waves on Structural Responses: Reverberant Acoustic Testing (RAT) vs. Direct Field Acoustic Testing (DFAT)

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu

    2012-01-01

    Loudspeakers have been used for acoustic qualification of spacecraft, reflectors, solar panels, and other acoustically responsive structures for more than a decade. Limited measurements from some of the recent speaker tests used to qualify flight hardware have indicated significant spatial variation of the acoustic field within the test volume. Also structural responses have been reported to differ when similar tests were performed using reverberant chambers. To address the impact of non-uniform acoustic field on structural responses, a series of acoustic tests were performed using a flat panel and a 3-ft cylinder exposed to the field controlled by speakers and repeated in a reverberant chamber. The speaker testing was performed using multi-input-single-output (MISO) and multi-input-multi-output (MIMO) control schemes with and without the test articles. In this paper the spatial variation of the acoustic field due to acoustic standing waves and their impacts on the structural responses in RAT and DFAT (both using MISO and MIMO controls for DFAT) are discussed in some detail.

  19. Defect structure of a free standing GaN wafer grown by the ammonothermal method

    NASA Astrophysics Data System (ADS)

    Sintonen, Sakari; Suihkonen, Sami; Jussila, Henri; Lipsanen, Harri; Tuomi, Turkka O.; Letts, Edward; Hoff, Sierra; Hashimoto, Tadao

    2014-11-01

    White beam synchrotron radiation X-ray topography (SR-XRT) and X-ray diffraction (XRD) measurements were used to non-destructively study the defect structure of a bulk GaN wafer, grown by the ammonothermal method. SR-XRT topographs revealed high crystal quality with threading dislocation density 8.8×104 cm-2 and granular structure consisting of large, slightly misaligned grains. The threading dislocations within grains were identified as mixed and screw type, while no pure threading edge dislocations were observed.

  20. Habitat structure alters top-down control in litter communities.

    PubMed

    Kalinkat, Gregor; Brose, Ulrich; Rall, Björn Christian

    2013-07-01

    The question whether top-down or bottom-up forces dominate trophic relationships, energy flow, and abundances within food webs has fuelled much ecological research with particular focus on soil litter ecosystems. Because litter simultaneously provides habitat structure and a basal resource, disentangling direct trophic and indirect non-trophic effects on different trophic levels remains challenging. Here, we focussed on short-term per capita interaction strengths of generalist predators (centipedes) on their microbi-detritivore prey (springtails) and addressed how the habitat structuring effects of the leaf litter modifies this interaction. We performed a series of laboratory functional response experiments where four levels of habitat structure were constructed by adding different amounts of leaf litter to the experimental arenas. We found that increased leaf litter reduced the consumption rate of the predator. We interpreted this as a dilution effect of the augmented habitat size provided by the increasing leaf litter surface available to the species. Dilution of the prey population decreased encounter rates, whereas the capture success was not affected. Interestingly, our results imply that top-down control by centipedes decreased with increasing resource supply for the microbi-detritivore prey (i.e. the leaf litter that simultaneously provides habitat structure). Therefore, effective top-down control of predators on microbi-detritvore populations seems unlikely in litter-rich ecosystems due to the non-trophic, habitat-structuring effect of the basal litter resource. PMID:23188055

  1. Electronic Structures of Free-Standing Nanowires made from Indirect Bandgap Semiconductor Gallium Phosphide

    NASA Astrophysics Data System (ADS)

    Liao, Gaohua; Luo, Ning; Chen, Ke-Qiu; Xu, H. Q.

    2016-06-01

    We present a theoretical study of the electronic structures of freestanding nanowires made from gallium phosphide (GaP)—a III-V semiconductor with an indirect bulk bandgap. We consider [001]-oriented GaP nanowires with square and rectangular cross sections, and [111]-oriented GaP nanowires with hexagonal cross sections. Based on tight binding models, both the band structures and wave functions of the nanowires are calculated. For the [001]-oriented GaP nanowires, the bands show anti-crossing structures, while the bands of the [111]-oriented nanowires display crossing structures. Two minima are observed in the conduction bands, while the maximum of the valence bands is always at the Γ-point. Using double group theory, we analyze the symmetry properties of the lowest conduction band states and highest valence band states of GaP nanowires with different sizes and directions. The band state wave functions of the lowest conduction bands and the highest valence bands of the nanowires are evaluated by spatial probability distributions. For practical use, we fit the confinement energies of the electrons and holes in the nanowires to obtain an empirical formula.

  2. Estimating survival rates with time series of standing age-structure data

    USGS Publications Warehouse

    Udevitz, Mark S.; Gogan, Peter J.

    2014-01-01

    It has long been recognized that age-structure data contain useful information for assessing the status and dynamics of wildlife populations. For example, age-specific survival rates can be estimated with just a single sample from the age distribution of a stable, stationary population. For a population that is not stable, age-specific survival rates can be estimated using techniques such as inverse methods that combine time series of age-structure data with other demographic data. However, estimation of survival rates using these methods typically requires numerical optimization, a relatively long time series of data, and smoothing or other constraints to provide useful estimates. We developed general models for possibly unstable populations that combine time series of age-structure data with other demographic data to provide explicit maximum likelihood estimators of age-specific survival rates with as few as two years of data. As an example, we applied these methods to estimate survival rates for female bison (Bison bison) in Yellowstone National Park, USA. This approach provides a simple tool for monitoring survival rates based on age-structure data.

  3. Electronic Structures of Free-Standing Nanowires made from Indirect Bandgap Semiconductor Gallium Phosphide

    PubMed Central

    Liao, Gaohua; Luo, Ning; Chen, Ke-Qiu; Xu, H. Q.

    2016-01-01

    We present a theoretical study of the electronic structures of freestanding nanowires made from gallium phosphide (GaP)—a III-V semiconductor with an indirect bulk bandgap. We consider [001]-oriented GaP nanowires with square and rectangular cross sections, and [111]-oriented GaP nanowires with hexagonal cross sections. Based on tight binding models, both the band structures and wave functions of the nanowires are calculated. For the [001]-oriented GaP nanowires, the bands show anti-crossing structures, while the bands of the [111]-oriented nanowires display crossing structures. Two minima are observed in the conduction bands, while the maximum of the valence bands is always at the Γ-point. Using double group theory, we analyze the symmetry properties of the lowest conduction band states and highest valence band states of GaP nanowires with different sizes and directions. The band state wave functions of the lowest conduction bands and the highest valence bands of the nanowires are evaluated by spatial probability distributions. For practical use, we fit the confinement energies of the electrons and holes in the nanowires to obtain an empirical formula. PMID:27307081

  4. Electronic Structures of Free-Standing Nanowires made from Indirect Bandgap Semiconductor Gallium Phosphide.

    PubMed

    Liao, Gaohua; Luo, Ning; Chen, Ke-Qiu; Xu, H Q

    2016-01-01

    We present a theoretical study of the electronic structures of freestanding nanowires made from gallium phosphide (GaP)-a III-V semiconductor with an indirect bulk bandgap. We consider [001]-oriented GaP nanowires with square and rectangular cross sections, and [111]-oriented GaP nanowires with hexagonal cross sections. Based on tight binding models, both the band structures and wave functions of the nanowires are calculated. For the [001]-oriented GaP nanowires, the bands show anti-crossing structures, while the bands of the [111]-oriented nanowires display crossing structures. Two minima are observed in the conduction bands, while the maximum of the valence bands is always at the Γ-point. Using double group theory, we analyze the symmetry properties of the lowest conduction band states and highest valence band states of GaP nanowires with different sizes and directions. The band state wave functions of the lowest conduction bands and the highest valence bands of the nanowires are evaluated by spatial probability distributions. For practical use, we fit the confinement energies of the electrons and holes in the nanowires to obtain an empirical formula. PMID:27307081

  5. Circulating Microparticles Alter Formation, Structure, and Properties of Fibrin Clots

    PubMed Central

    Zubairova, Laily D.; Nabiullina, Roza M.; Nagaswami, Chandrasekaran; Zuev, Yuriy F.; Mustafin, Ilshat G.; Litvinov, Rustem I.; Weisel, John W.

    2015-01-01

    Despite the importance of circulating microparticles in haemostasis and thrombosis, there is limited evidence for potential causative effects of naturally produced cell-derived microparticles on fibrin clot formation and its properties. We studied the significance of blood microparticles for fibrin formation, structure, and susceptibility to fibrinolysis by removing them from platelet-free plasma using filtration. Clots made in platelet-free and microparticle-depleted plasma samples from the same healthy donors were analyzed in parallel. Microparticles accelerate fibrin polymerisation and support formation of more compact clots that resist internal and external fibrinolysis. These variations correlate with faster thrombin generation, suggesting thrombin-mediated kinetic effects of microparticles on fibrin formation, structure, and properties. In addition, clots formed in the presence of microparticles, unlike clots from the microparticle-depleted plasma, contain 0.1–0.5-μm size granular and CD61-positive material on fibres, suggesting that platelet-derived microparticles attach to fibrin. Therefore, the blood of healthy individuals contains functional microparticles at the levels that have a procoagulant potential. They affect the structure and stability of fibrin clots indirectly through acceleration of thrombin generation and through direct physical incorporation into the fibrin network. Both mechanisms underlie a potential role of microparticles in haemostasis and thrombosis as modulators of fibrin formation, structure, and resistance to fibrinolysis. PMID:26635081

  6. Free-standing carbon nanotube composite sensing skin for distributed strain sensing in structures

    NASA Astrophysics Data System (ADS)

    Burton, Andrew R.; Minegishi, Kaede; Kurata, Masahiro; Lynch, Jerome P.

    2014-04-01

    The technical challenges of managing the health of critical infrastructure systems necessitate greater structural sensing capabilities. Among these needs is the ability for quantitative, spatial damage detection on critical structural components. Advances in material science have now opened the door for novel and cost-effective spatial sensing solutions specially tailored for damage detection in structures. However, challenges remain before spatial damage detection can be realized. Some of the technical challenges include sensor installations and extensive signal processing requirements. This work addresses these challenges by developing a patterned carbon nanotube composite thin film sensor whose pattern has been optimized for measuring the spatial distribution of strain. The carbon nanotube-polymer nanocomposite sensing material is fabricated on a flexible polyimide substrate using a layer-by-layer deposition process. The thin film sensors are then patterned into sensing elements using optical lithography processes common to microelectromechanical systems (MEMS) technologies. The sensor array is designed as a series of sensing elements with varying width to provide insight on the limitations of such patterning and implications of pattern geometry on sensing signals. Once fabrication is complete, the substrate and attached sensor are epoxy bonded to a poly vinyl composite (PVC) bar that is then tested with a uniaxial, cyclic load pattern and mechanical response is characterized. The fabrication processes are then utilized on a larger-scale to develop and instrument a component-specific sensing skin in order to observe the strain distribution on the web of a steel beam. The instrumented beam is part of a larger steel beam-column connection with a concrete slab in composite action. The beam-column subassembly is laterally loaded and strain trends in the web are observed using the carbon nanotube composite sensing skin. The results are discussed in the context of

  7. A top-down approach for fabricating free-standing bio-carbon supercapacitor electrodes with a hierarchical structure

    PubMed Central

    Li, Yingzhi; Zhang, Qinghua; Zhang, Junxian; Jin, Lei; Zhao, Xin; Xu, Ting

    2015-01-01

    Biomass has delicate hierarchical structures, which inspired us to develop a cost-effective route to prepare electrode materials with rational nanostructures for use in high-performance storage devices. Here, we demonstrate a novel top-down approach for fabricating bio-carbon materials with stable structures and excellent diffusion pathways; this approach is based on carbonization with controlled chemical activation. The developed free-standing bio-carbon electrode exhibits a high specific capacitance of 204 F g−1 at 1 A g−1; good rate capability, as indicated by the residual initial capacitance of 85.5% at 10 A g−1; and a long cycle life. These performance characteristics are attributed to the outstanding hierarchical structures of the electrode material. Appropriate carbonization conditions enable the bio-carbon materials to inherit the inherent hierarchical texture of the original biomass, thereby facilitating effective channels for fast ion transfer. The macropores and mesopores that result from chemical activation significantly increase the specific surface area and also play the role of temporary ion-buffering reservoirs, further shortening the ionic diffusion distance. PMID:26394834

  8. Altered Structural Brain Networks in Tuberous Sclerosis Complex.

    PubMed

    Im, Kiho; Ahtam, Banu; Haehn, Daniel; Peters, Jurriaan M; Warfield, Simon K; Sahin, Mustafa; Ellen Grant, P

    2016-05-01

    Tuberous sclerosis complex (TSC) is characterized by benign hamartomas in multiple organs including the brain and its clinical phenotypes may be associated with abnormal neural connections. We aimed to provide the first detailed findings on disrupted structural brain networks in TSC patients. Structural whole-brain connectivity maps were constructed using structural and diffusion MRI in 20 TSC (age range: 3-24 years) and 20 typically developing (TD; 3-23 years) subjects. We assessed global (short- and long-association and interhemispheric fibers) and regional white matter connectivity, and performed graph theoretical analysis using gyral pattern- and atlas-based node parcellations. Significantly higher mean diffusivity (MD) was shown in TSC patients than in TD controls throughout the whole brain and positively correlated with tuber load severity. A significant increase in MD was mainly influenced by an increase in radial diffusivity. Furthermore, interhemispheric connectivity was particularly reduced in TSC, which leads to increased network segregation within hemispheres. TSC patients with developmental delay (DD) showed significantly higher MD than those without DD primarily in intrahemispheric connections. Our analysis allows non-biased determination of differential white matter involvement, which may provide better measures of "lesion load" and lead to a better understanding of disease mechanisms. PMID:25750257

  9. Experimental sulfate amendment alters peatland bacterial community structure.

    PubMed

    Strickman, R J S; Fulthorpe, R R; Coleman Wasik, J K; Engstrom, D R; Mitchell, C P J

    2016-10-01

    As part of a long-term, peatland-scale sulfate addition experiment, the impact of varying sulfate deposition on bacterial community responses was assessed using 16S tag encoded pyrosequencing. In three separate areas of the peatland, sulfate manipulations included an eight year quadrupling of atmospheric sulfate deposition (experimental), a 3-year recovery to background deposition following 5years of elevated deposition (recovery), and a control area. Peat concentrations of methylmercury (MeHg), a bioaccumulative neurotoxin, were measured, the production of which is attributable to a growing list of microorganisms, including many sulfate-reducing Deltaproteobacteria. The total bacterial and Deltaproteobacterial community structures in the experimental treatment differed significantly from those in the control and recovery treatments that were either indistinguishable or very similar to one another. Notably, the relatively rapid return (within three years) of bacterial community structure in the recovery treatment to a state similar to the control, demonstrates significant resilience of the peatland bacterial community to changes in atmospheric sulfate deposition. Changes in MeHg accumulation between sulfate treatments correlated with changes in the Deltaproteobacterial community, suggesting that sulfate may affect MeHg production through changes in the community structure of this group. PMID:27267720

  10. Abdominal Pain, the Adolescent and Altered Brain Structure and Function.

    PubMed

    Hubbard, Catherine S; Becerra, Lino; Heinz, Nicole; Ludwick, Allison; Rasooly, Tali; Wu, Rina; Johnson, Adriana; Schechter, Neil L; Borsook, David; Nurko, Samuel

    2016-01-01

    Irritable bowel syndrome (IBS) is a functional gastrointestinal (GI) disorder of unknown etiology. Although relatively common in children, how this condition affects brain structure and function in a pediatric population remains unclear. Here, we investigate brain changes in adolescents with IBS and healthy controls. Imaging was performed with a Siemens 3 Tesla Trio Tim MRI scanner equipped with a 32-channel head coil. A high-resolution T1-weighted anatomical scan was acquired followed by a T2-weighted functional scan. We used a surface-based morphometric approach along with a seed-based resting-state functional connectivity (RS-FC) analysis to determine if groups differed in cortical thickness and whether areas showing structural differences also showed abnormal RS-FC patterns. Patients completed the Abdominal Pain Index and the GI Module of the Pediatric Quality of Life Inventory to assess abdominal pain severity and impact of GI symptoms on health-related quality of life (HRQOL). Disease duration and pain intensity were also assessed. Pediatric IBS patients, relative to controls, showed cortical thickening in the posterior cingulate (PCC), whereas cortical thinning in posterior parietal and prefrontal areas were found, including the dorsolateral prefrontal cortex (DLPFC). In patients, abdominal pain severity was related to cortical thickening in the intra-abdominal area of the primary somatosensory cortex (SI), whereas HRQOL was associated with insular cortical thinning. Disease severity measures correlated with cortical thickness in bilateral DLPFC and orbitofrontal cortex. Patients also showed reduced anti-correlations between PCC and DLPFC compared to controls, a finding that may reflect aberrant connectivity between default mode and cognitive control networks. We are the first to demonstrate concomitant structural and functional brain changes associated with abdominal pain severity, HRQOL related to GI-specific symptoms, and disease-specific measures in

  11. Abdominal Pain, the Adolescent and Altered Brain Structure and Function

    PubMed Central

    Becerra, Lino; Heinz, Nicole; Ludwick, Allison; Rasooly, Tali; Wu, Rina; Johnson, Adriana; Schechter, Neil L.; Borsook, David; Nurko, Samuel

    2016-01-01

    Irritable bowel syndrome (IBS) is a functional gastrointestinal (GI) disorder of unknown etiology. Although relatively common in children, how this condition affects brain structure and function in a pediatric population remains unclear. Here, we investigate brain changes in adolescents with IBS and healthy controls. Imaging was performed with a Siemens 3 Tesla Trio Tim MRI scanner equipped with a 32-channel head coil. A high-resolution T1-weighted anatomical scan was acquired followed by a T2-weighted functional scan. We used a surface-based morphometric approach along with a seed-based resting-state functional connectivity (RS-FC) analysis to determine if groups differed in cortical thickness and whether areas showing structural differences also showed abnormal RS-FC patterns. Patients completed the Abdominal Pain Index and the GI Module of the Pediatric Quality of Life Inventory to assess abdominal pain severity and impact of GI symptoms on health-related quality of life (HRQOL). Disease duration and pain intensity were also assessed. Pediatric IBS patients, relative to controls, showed cortical thickening in the posterior cingulate (PCC), whereas cortical thinning in posterior parietal and prefrontal areas were found, including the dorsolateral prefrontal cortex (DLPFC). In patients, abdominal pain severity was related to cortical thickening in the intra-abdominal area of the primary somatosensory cortex (SI), whereas HRQOL was associated with insular cortical thinning. Disease severity measures correlated with cortical thickness in bilateral DLPFC and orbitofrontal cortex. Patients also showed reduced anti-correlations between PCC and DLPFC compared to controls, a finding that may reflect aberrant connectivity between default mode and cognitive control networks. We are the first to demonstrate concomitant structural and functional brain changes associated with abdominal pain severity, HRQOL related to GI-specific symptoms, and disease-specific measures in

  12. Structural alterations of the ribosomal RNA genes in leukemic cells.

    PubMed

    Smirnova, I A

    1992-01-01

    Cloned 6.7 kb EcoR1 fragment of mice rDNA was used as a hybridization probe for rDNA structure analysis in mice, rat and calf haemopoietic tumor and normal cells. EcoR1, BglII and Pst1 restriction fragment length polymorphism (RFLP) was found in neoplastic rDNA and was not revealed in normal ones. The rRNA gene rearrangements were observed not only in spacer region but in coding sequences of the genes. Leukemic cells reveal also rDNA amplification. A role of genetic rearrangements of rDNA for mechanisms of carcinogenesis is suggested. PMID:1342066

  13. Structural alterations of DNA ligase I in Bloom syndrome.

    PubMed Central

    Willis, A E; Weksberg, R; Tomlinson, S; Lindahl, T

    1987-01-01

    Cell lines derived from seven patients with Bloom syndrome all contain a DNA ligase I with unusual properties. Six lines were shown to have a reduced level of this enzyme activity and the residual enzyme was anomalously heat-labile. The seventh line contained a dimeric rather than monomeric form of ligase I. Several cell lines representative of other inherited human syndromes have apparently normal DNA ligases. The data indicate that Bloom syndrome is due to a defect in the structure of DNA ligase I caused by a "leaky" point mutation occurring at one of at least two alternative sites. PMID:3479778

  14. Structural network alterations and neurological dysfunction in cerebral amyloid angiopathy.

    PubMed

    Reijmer, Yael D; Fotiadis, Panagiotis; Martinez-Ramirez, Sergi; Salat, David H; Schultz, Aaron; Shoamanesh, Ashkan; Ayres, Alison M; Vashkevich, Anastasia; Rosas, Diana; Schwab, Kristin; Leemans, Alexander; Biessels, Geert-Jan; Rosand, Jonathan; Johnson, Keith A; Viswanathan, Anand; Gurol, M Edip; Greenberg, Steven M

    2015-01-01

    Cerebral amyloid angiopathy is a common form of small-vessel disease and an important risk factor for cognitive impairment. The mechanisms linking small-vessel disease to cognitive impairment are not well understood. We hypothesized that in patients with cerebral amyloid angiopathy, multiple small spatially distributed lesions affect cognition through disruption of brain connectivity. We therefore compared the structural brain network in patients with cerebral amyloid angiopathy to healthy control subjects and examined the relationship between markers of cerebral amyloid angiopathy-related brain injury, network efficiency, and potential clinical consequences. Structural brain networks were reconstructed from diffusion-weighted magnetic resonance imaging in 38 non-demented patients with probable cerebral amyloid angiopathy (69 ± 10 years) and 29 similar aged control participants. The efficiency of the brain network was characterized using graph theory and brain amyloid deposition was quantified by Pittsburgh compound B retention on positron emission tomography imaging. Global efficiency of the brain network was reduced in patients compared to controls (0.187 ± 0.018 and 0.201 ± 0.015, respectively, P < 0.001). Network disturbances were most pronounced in the occipital, parietal, and posterior temporal lobes. Among patients, lower global network efficiency was related to higher cortical amyloid load (r = -0.52; P = 0.004), and to magnetic resonance imaging markers of small-vessel disease including increased white matter hyperintensity volume (P < 0.001), lower total brain volume (P = 0.02), and number of microbleeds (trend P = 0.06). Lower global network efficiency was also related to worse performance on tests of processing speed (r = 0.58, P < 0.001), executive functioning (r = 0.54, P = 0.001), gait velocity (r = 0.41, P = 0.02), but not memory. Correlations with cognition were independent of age, sex, education level, and other magnetic resonance imaging

  15. Soil transfers from valley oak (Quercus lobata Nee) stands increase ectomycorrhizal diversity and alter root and shoot growth on valley oak seedlings.

    PubMed

    Berman, J T; Bledsoe, C S

    1998-02-01

    Soils from valley oak (Quercus lobata Nee) riparian areas of the Cosumnes River Nature Conservancy Preserve near Sacramento, California were added to growth medium of valley oak seedlings grown in a greenhouse or in agricultural fields at Cosumnes which probably once supported valley oak trees and are now replanted with native riparian vegetation or allowed to revegetate naturally. Agricultural field soil from the Cosumnes River Preserve was presumed to be low or lacking in ectomycorrhizal inoculum. The study was designed to (1) determine whether valley oak stand soil transfer could cause mycorrhizal infection on valley oak seedlings in an agricultural field and in a greenhouse, (2) describe ectomycorrhizal morphological types formed on valley oak seedlings, and (3) determine whether seedling growth is enhanced more by transfer of natural valley oak stand soil than agricultural field soil. In the field study, transfer of forest soil increased average ectomycorrhizal diversity (2.4 types) more than transfer of agricultural field soil (1.2 types). Valley oak seedlings were responsive to ectomycorrhizal infection in the field study. With increase in mycorrhizal infection there was an increase in shoot growth at the expense of root growth. In the greenhouse study, both percent mycorrhizal infection and mycorrhizal diversity were increased more by transfer of oak forest and woodland soils than agricultural field soil. Eight morphotypes occurred on seedlings in forest and woodland soils but only three morphotypes in agricultural soil. This result strongly suggests that the agricultural field also harbors ectomycorrhizal propagules but forest and woodland soils support a more abundant and diverse ectomycorrhizal flora. PMID:24578047

  16. Vegetation types, dominant compositions, woody plant diversity and stand structure in Trishna Wildlife Sanctuary of Northeast India.

    PubMed

    Majumdar, Koushik; Datta, B K

    2015-03-01

    Present study was carried out to assess the vegetation types, diversity and phytosociological status of woody plants in Trishna Wildlife Sanctuary of Tripura, Northeast India. Vegetation data was derived by 25 line transects (10 m wide and 500 m length, each 0.5 ha size). All woody species at >10 cm gbh (Girth at Breast Height) within each plots were measured and counted. A total of six forest types were classified by cluster analysis using Importance Value Index (IVI) of 289 woody species. Species diversity, forest structure and woody community associations were evaluated and discussed. One way ANOVA revealed significant differences in all species diversity measures and stand structure along the forest types. Distribution of stem density at ten different gbh classes showed reverse J-shaped curves. Population status of woody plants was also examined through grouping of all individuals into four population age stages viz. sapling (<30 cm gbh), adult (> or = 30 - <120 cm gbh), mature (>120 - 210 cm gbh) and old (> or =210 cm). To observe dominant composition and species population trend, IVI of top ten dominant species from all forest types were tabulated. The present study suggested that Trishna Wildlife Sanctuary is an important habitat in Tripura from floristic point of view and it should be conserved on priority basis for remaining wildlife endurances and monitor for forest livelihoods products for sustainable biodiversity conservation in this region. PMID:25895264

  17. Ectomycorrhizal Community Structure and Soil Characteristics of Mature Lodgepole Pine (Pinus Contorta) and Adjacent Stands of Old Growth Mixed Conifer in Yellowstone National Park, Wyoming USA

    NASA Technical Reports Server (NTRS)

    Douglas, Robert B.; Parker, V. Thomas; Cullings, Kenneth W.; Sun, Sidney (Technical Monitor)

    2003-01-01

    Forest development patterns following disturbance are known to influence the physical and chemical attributes of soils at different points in time. Changes in soil resources are thought to have a corresponding effect on ectomycorrhizal (ECM) community structure. We used molecular methods to compare below-ground ECM species richness, composition, and abundance between adjacent stands of homogenous lodgepole pine and old growth mixed conifer in Yellowstone National Park (YNP). In each stand-type we collected soil cores to both identify mycorrhizae and assess soil chemistry. Although no statistical difference was observed in the mean number of ECM root tips per core between stand types, the total number of species identified (85 versus 35) and the mean number of species per core (8.8 +/- 0.6 versus 2.5 +/- 0.3) were significantly higher in lodgepole pine. Differences between the actual and estimated species richness levels indicated that these forest types support a high number of ECM species and that undersampling was severe. Species compositions were widely disparate between stands where only four species were shared out of a total of 116. Soil analysis also revealed that mixed conifer was significantly lower in pH, but higher in organic matter, potassium, phosphorus, and ammonium when compared to lodgepole pine stands. Species richness per core was correlated with these chemical data, however, analysis of covariance indicated that stand type was the only statistically significant factor in the observed difference in species richness. Our data suggest that ECM fungal richness increases as homogenous lodgepole pine stands grow and mature, but declines after Engelmann spruce and subalpine fir colonize. Despite difficulties linking species composition with soil chemistry, there are a variety of physical and chemical factors that could be influencing ECM community structure. Future field experiments are necessary to test some of the mechanisms potentially operating

  18. Depth- and momentum- resolved electronic structure at buried oxide interfaces from standing-wave angle-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Fadley, Charles

    2015-03-01

    It is clear that interfaces in complex oxide heterostructures often represent emergent materials that possess surprising properties not associated with the parent oxides, such as two-dimensional electron gases (2DEGs), superconductivity, and magnetism. A detailed knowledge of the composition, atomic structure, and electronic structure through such interfaces is thus critical. Photomission (PES) and angle-resolved photoemission (ARPES) represent techniques of choice for such studies, but have certain limitations in being too surface sensitive and in not being able to focus specifically on buried interfaces or heterostructure layers. In this talk, I will discuss combining two newer elements of PES/ARPES to deal with this challenge: - the use of soft x-rays in the ca. few hundred-to-2000 eV regime, or even into the true hard x-ray regime, to probe more deeply into the structure, and - tailoring of the x-ray intensity profile into a strong standing wave (SW) through reflection from a multilayer heterostructure to provide much enhanced depth resolution. The relative advantages of soft/hard x-ray PES and ARPES and their complementarity to conventional VUV ARPES in the ca. 5-150 eV regime will be considered. As illustrative examples, by combining SW-PES and SW-ARPES, it has been possible to measure for the first time the detailed concentration profiles and momentum-resolved electronic structure at the SrTiO3/La0.67Sr0.33MnO3 interface and to directly measure the depth profile of the 2DEG at SrTiO3/GdTiO3 interfaces. Future directions for such measurements will also be discussed. Supported by US DOE Contract No. DE-AC02-05CH11231, ARO-MURI Grant W911-NF-09-1-0398, and the PALM-APTCOM Project (France).

  19. Electronic structures of [1 1 1]-oriented free-standing InAs and InP nanowires

    NASA Astrophysics Data System (ADS)

    Liao, Gaohua; Luo, Ning; Chen, Ke-Qiu; Xu, H. Q.

    2016-04-01

    We report on a theoretical study of the electronic structures of the [1 1 1]-oriented, free-standing, zincblende InAs and InP nanowires with hexagonal cross sections by means of an atomistic s{{p}3}{{s}\\ast} , spin-orbit interaction included, nearest-neighbor, tight-binding method. The band structures and the band state wave functions of these nanowires are calculated and the symmetry properties of the bands and band states are analyzed based on the C 3v double point group. It is shown that all bands of these nanowires are doubly degenerate at the Γ -point and some of these bands will split into non-degenerate bands when the wave vector k moves away from the Γ -point as a manifestation of spin-splitting due to spin-orbit interaction. It is also shown that the lower conduction bands of these nanowires all show simple parabolic dispersion relations, while the top valence bands show complex dispersion relations and band crossings. The band state wave functions are presented by the spatial probability distributions and it is found that all the band states show 2π /3 -rotation symmetric probability distributions. The effects of quantum confinement on the band structures of the [1 1 1]-oriented InAs and InP nanowires are also examined and an empirical formula for the description of quantization energies of the lowest conduction band and the highest valence band is presented. The formula can simply be used to estimate the enhancement of the band gaps of the nanowires at different sizes as a result of quantum confinement.

  20. Electronic structures of [1 1 1]-oriented free-standing InAs and InP nanowires.

    PubMed

    Liao, Gaohua; Luo, Ning; Chen, Ke-Qiu; Xu, H Q

    2016-04-01

    We report on a theoretical study of the electronic structures of the [1 1 1]-oriented, free-standing, zincblende InAs and InP nanowires with hexagonal cross sections by means of an atomistic sp(3)s*, spin-orbit interaction included, nearest-neighbor, tight-binding method. The band structures and the band state wave functions of these nanowires are calculated and the symmetry properties of the bands and band states are analyzed based on the C(3v) double point group. It is shown that all bands of these nanowires are doubly degenerate at the Γ-point and some of these bands will split into non-degenerate bands when the wave vector k moves away from the Γ-point as a manifestation of spin-splitting due to spin-orbit interaction. It is also shown that the lower conduction bands of these nanowires all show simple parabolic dispersion relations, while the top valence bands show complex dispersion relations and band crossings. The band state wave functions are presented by the spatial probability distributions and it is found that all the band states show 2π/3-rotation symmetric probability distributions. The effects of quantum confinement on the band structures of the [1 1 1]-oriented InAs and InP nanowires are also examined and an empirical formula for the description of quantization energies of the lowest conduction band and the highest valence band is presented. The formula can simply be used to estimate the enhancement of the band gaps of the nanowires at different sizes as a result of quantum confinement. PMID:26951953

  1. Sensitivity of ERS-1 and JERS-1 radar data to biomass and stand structure in Alaskan boreal forest

    SciTech Connect

    Harrell, P.A.; Christensen, N.L. Jr.; Bourgeau-Chavez, L.L.; Kasischke, E.S.; French, N.H.F.

    1995-12-01

    As the boreal system is such an important component of the global carbon budget, it is important that the system and the potential changes be understood, whether from anthropogenic disturbances or global climate change. Thirty-two boreal forest sites were identified and sampled in the central region of Alaska to evaluate the sensitivity of the C-band ERS-1 and the L-band JERS-1 radar platforms to site biophysical properties. The sites selected represent black spruce (Picea mariana) and white spruce (Picea glauca) stands in a post-fire chronosequence. Black spruce biomass ranged from less than 1 kg/m{sup 2} to 5.6 kg/m{sup 2} and white spruce from 8.8 to 21.5 kg/m{sup 2}. Results indicate both ERS-1 and JERS-1 backscatter is responsive to biomass, density, and height, though other factors, principally surface moisture conditions, are often a stronger influence. Sensitivity to forest biomass and structure appears greatest when surface moisture conditions are minimized as a factor. Biomass correlations with the radar backscatter were strongest in the late winter imagery when all sites had a snow cover, and late summer when the surface is most dry. ERS-1 data may be more sensitive to surface moisture conditions than the JERS-1 data due to the shorter wavelength of the C-band sensor, though this is inconclusive because of limited JERS-1 L-band data for comparison.

  2. A structural study of the interaction of methanethiol with Pt (1 1 1) using X-ray standing waves

    NASA Astrophysics Data System (ADS)

    Lee, J. J.; Fisher, C. J.; Bittencourt, C.; Woodruff, D. P.; Chan, A. S. Y.; Jones, R. G.

    2002-09-01

    In combination with surface characterisation by synchrotron radiation X-ray photoelectron spectroscopy, the normal incidence X-ray standing wave (NIXSW) technique has been applied to a determination of the structure of surface phases formed on Pt(1 1 1) by reaction with methanethiol. On surfaces heated to ⩾ ≈500 K, producing only coadsorbed atomic S and C, the S atoms are found to occupy fcc hollow sites (directly above Pt atoms in the third layer) in a geometry essentially identical to that of simple ordered S overlayer phases on Pt(1 1 1) with a S-Pt layer spacing of 1.67 Å, but with possible fractional co-occupation of a complex S phase. On a surface annealed to ≈223 K only a surface methanethiolate (CH 3S-) species is believed to be present, the favoured model involves a tilted off-atop bonding such that the S atoms are located offset from the fcc hollow sites, with frustrated rotational vibrations of large amplitude, although an alternative model based on co-occupation of atop and fcc hollow sites is also consistent with the NIXSW data.

  3. Asexual Endophytes and Associated Alkaloids Alter Arthropod Community Structure and Increase Herbivore Abundances on a Native Grass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dispite their minute biomass, microbial symbionts of plants potentially alter herbivory, diversity and community structure. Infection of grasses by asexual endophytic fungi often decreases herbivore loads and alters arthropod diverisy. However, most studies to date have involved agronomic grasses ...

  4. Mordenite and montmorillonite alteration of glass structures in a rhyolite pipe, northern Black Hills, South Dakota

    SciTech Connect

    Kirchner, J.G. )

    1991-10-01

    Green structures, 0.5 to 1.5 in. across, occur in a Tertiary rhyolite pipe in the northern Black Hills, South Dakota. The structures are of two types: angular to ellipsoidal masses and stretched or smeared structures. Thin section analysis revealed that those of the first type are massive, with no internal structure, and those of the second type are cellular and have classic flame structure characteristics. XRD indicated the composition to be a mixture of secondary mordenite (a zeolite) and montmorillonite. The first type is interpreted to be deuterically altered vitrophyre clasts and the second type to be altered vesicular structures produced by degassing of the magma in the pipe. Chemical analysis of the alteration material indicates a loss of alkalies and silica, with an increase in water, CaO, MgO and ferric iron when compared to the composition of fresh vitrophyre from the same pipe. The changes are in agreement with experimental work on the alteration of rhyolitic glass by a number of researchers. This is the first occurrence of mordenite reported for the Black Hills.

  5. In utero and postnatal exposure to arsenic alters pulmonary structure and function

    SciTech Connect

    Lantz, R. Clark Chau, Binh; Sarihan, Priyanka; Witten, Mark L.; Pivniouk, Vadim I.; Chen, Guan Jie

    2009-02-15

    In addition to cancer endpoints, arsenic exposures can also lead to non-cancerous chronic lung disease. Exposures during sensitive developmental time points can contribute to the adult disease. Using a mouse model, in utero and early postnatal exposures to arsenic (100 ppb or less in drinking water) were found to alter airway reactivity to methacholine challenge in 28 day old pups. Removal of mice from arsenic exposure 28 days after birth did not reverse the alterations in sensitivity to methacholine. In addition, adult mice exposed to similar levels of arsenic in drinking water did not show alterations. Therefore, alterations in airway reactivity were irreversible and specific to exposures during lung development. These functional changes correlated with protein and gene expression changes as well as morphological structural changes around the airways. Arsenic increased the whole lung levels of smooth muscle actin in a dose dependent manner. The level of smooth muscle mass around airways was increased with arsenic exposure, especially around airways smaller than 100 {mu}m in diameter. This increase in smooth muscle was associated with alterations in extracellular matrix (collagen, elastin) expression. This model system demonstrates that in utero and postnatal exposure to environmentally relevant levels of arsenic can irreversibly alter pulmonary structure and function in the adults.

  6. Alterations in the activity and structure of pectin methylesterase treated by high pressure carbon dioxide.

    PubMed

    Zhou, Linyan; Wu, Jihong; Hu, Xiaosong; Zhi, Xian; Liao, Xiaojun

    2009-03-11

    The influence of high pressure carbon dioxide (HPCD) on the activity and structure of pectin methylesterase (PME) from orange was investigated. The pressures were 8-30 MPa, temperature 55 degrees C and time 10 min. HPCD caused significant inactivation on PME, the lowest residual activity was about 9.3% at 30 MPa. The SDS-PAGE electrophoretic behavior of HPCD-treated PME was not altered, while changes in the secondary and tertiary structures were found. The beta-structure fraction in the secondary structure decreased and the fluorescence intensity increased as HPCD pressures were elevated. After 7-day storage at 4 degrees C, no alteration of its activity and no reversion of its beta-structure fraction were observed, while its fluorescence intensity further decreased. PMID:19256556

  7. Magnetic resonance imaging structural alterations in brain of alcohol abusers and its association with impulsivity.

    PubMed

    Asensio, Samuel; Morales, Julia L; Senabre, Isabel; Romero, Maria J; Beltran, Miguel A; Flores-Bellver, Miguel; Barcia, Jorge M; Romero, Francisco J

    2016-07-01

    Despite the suggestion that impulsivity plays a central role in the transfer from a recreational drug use to a substance use disorder, very few studies focused on neurobiological markers for addiction. This study aimed to identify volumetric alterations in a sample of patients with mild alcohol use disorder with a short history of alcohol use, compared with a control group, and also focused on its association with impulsivity levels. Most magnetic resonance imaging studies have focused on severe alcohol use disorder, formerly called alcohol-dependent patients, showing alcohol-related structural alterations and their association with alcohol use history variables but not with personality parameters like impulsivity. Our hypothesis is that our group of alcohol users may already display structural alterations especially in brain regions related to inhibitory control like medial-prefrontal regions, and that those structural alterations could be more associated to personality traits like impulsivity than to drug use variables. Our results clearly demonstrate that our population showed lower regional grey and white matter volumes in the medial-prefrontal and orbitofrontal cortices, as well as higher regional white matter volume in the ventral striatum and the internal capsule. Volumetric alterations were associated to the Barratt's impulsivity score: the more impulsive the subjects, the lower the medial-prefrontal cortex grey matter volume. PMID:25988724

  8. Ultra-structural hair alterations of drug abusers: a scanning electron microscopic investigation.

    PubMed

    Turkmenoglu, Fatma Pinar; Kasirga, Ugur Baran; Celik, Hakan Hamdi

    2015-01-01

    As drug abuse carries a societal stigma, patients do not often report their history of drug abuse to the healthcare providers. However, drug abuse is highly co-morbid with a host of other health problems such as psychiatric disorders and skin diseases, and majority of individuals with drug use disorders seek treatment in the first place for other problems. Therefore, it is very important for physicians to be aware of clinical signs and symptoms of drug use. Recently diagnostic value of dermatologic tissue alterations associated with drug abuse has become a very particular interest because skin changes were reported to be the earliest noticeable consequence of drug abuse prompting earlier intervention and treatment. Although hair is an annex of skin, alterations on hair structure due to drug use have not been demonstrated. This study represents the first report on ultra-structural hair alterations of drug abusers. We have investigated ultra-structure of the hair samples obtained from 6 cocaine, 6 heroin, 7 cannabis and 4 lysergic acid diethylamide (LSD) abusers by scanning electron microscope (SEM). SEM analysis of hair samples gave us drug-specific discriminating alterations. We suggest that results of this study will make a noteworthy contribution to cutaneous alterations associated with drug abuse which are regarded as the earliest clinical manifestations, and this SEM approach is a very specific and effective tool in the detection of abuse of respective drugs, leading early treatment. PMID:26309532

  9. Ultra-structural hair alterations of drug abusers: a scanning electron microscopic investigation

    PubMed Central

    Turkmenoglu, Fatma Pinar; Kasirga, Ugur Baran; Celik, Hakan Hamdi

    2015-01-01

    As drug abuse carries a societal stigma, patients do not often report their history of drug abuse to the healthcare providers. However, drug abuse is highly co-morbid with a host of other health problems such as psychiatric disorders and skin diseases, and majority of individuals with drug use disorders seek treatment in the first place for other problems. Therefore, it is very important for physicians to be aware of clinical signs and symptoms of drug use. Recently diagnostic value of dermatologic tissue alterations associated with drug abuse has become a very particular interest because skin changes were reported to be the earliest noticeable consequence of drug abuse prompting earlier intervention and treatment. Although hair is an annex of skin, alterations on hair structure due to drug use have not been demonstrated. This study represents the first report on ultra-structural hair alterations of drug abusers. We have investigated ultra-structure of the hair samples obtained from 6 cocaine, 6 heroin, 7 cannabis and 4 lysergic acid diethylamide (LSD) abusers by scanning electron microscope (SEM). SEM analysis of hair samples gave us drug-specific discriminating alterations. We suggest that results of this study will make a noteworthy contribution to cutaneous alterations associated with drug abuse which are regarded as the earliest clinical manifestations, and this SEM approach is a very specific and effective tool in the detection of abuse of respective drugs, leading early treatment. PMID:26309532

  10. Altered sphingoid base profiles predict compromised membrane structure and permeability in atopic dermatitis

    PubMed Central

    Loiseau, Nicolas; Obata, Yasuko; Moradian, Sam; Sano, Hiromu; Yoshino, Saeko; Aburai, Kenichi; Takayama, Kozo; Sakamoto, Kazutami; Holleran, Walter M.; Elias, Peter M.; Uchida, Yoshikazu

    2013-01-01

    Background Ceramide hydrolysis by ceramidase in the stratum corneum (SC) yields both sphingoid bases and free fatty acids (FFA). While FFA are key constituents of the lamellar bilayers that mediate the epidermal permeability barrier, whether sphingoid bases influence permeability barrier homeostasis remains unknown. Pertinently, alterations of lipid profile, including ceramide and ceramidase activities occur in atopic dermatitis (AD). Object We investigated alterations in sphingoid base levels and/or profiles (sphingosine to sphinganine ratio) in the SC of normal vs. AD mice, a model that faithfully replicates human AD, and then whether altered sphingoid base levels and/or profiles influence(s) membrane stability and/or structures. Methods Unilamellar vesicles (LV), incorporating the three major SC lipids (ceramides/FFA/cholesterol) and different ratios of sphingosine/sphinganine, encapsulating carboxyfluorescein, were used as the model of SC lipids. Membrane stability was measured as release of carboxyfluorescein. Thermal analysis of LV was conducted by Differential scanning calorimetry (DSC). Results LV containing AD levels of sphingosine/sphinganine (AD-LV) displayed altered membrane permeability vs. normal-LV. DSC analyses revealed decreases in orthorhombic structures that form tightly-packed lamellar structures in AD-LV. Conclusion Sphingoid base composition influences lamellar membrane architecture in SC, suggesting that altered sphingoid base profiles could contribute to the barrier abnormality in AD. PMID:24070864

  11. Structural Connectivity is Differently Altered in Dementia with Lewy Body and Alzheimer’s Disease

    PubMed Central

    Delli Pizzi, Stefano; Franciotti, Raffaella; Taylor, John-Paul; Esposito, Roberto; Tartaro, Armando; Thomas, Astrid; Onofrj, Marco; Bonanni, Laura

    2015-01-01

    The structural connectivity within cortical areas and between cortical and subcortical structures was investigated in dementia with Lewy bodies (DLB) and Alzheimer’s disease (AD). We hypothesized that white matter (WM) tracts, which are linked to visual, attentional, and mnemonic functions, would be differentially and selectively affected in DLB as compared to AD and age-matched control subjects. Structural tensor imaging and diffusion tensor imaging (DTI) were performed on 14 DLB patients, 14 AD patients, and 15 controls. DTI metrics related to WM damage were assessed within tracts reconstructed by FreeSurfer’s TRActs Constrained by UnderLying Anatomy pipeline. Correlation analysis between WM and gray matter (GM) metrics was performed to assess whether the structural connectivity alteration in AD and DLB could be secondary to GM neuronal loss or a consequence of direct WM injury. Anterior thalamic radiation (ATR) and cingulum-cingulate gyrus were altered in DLB, whereas cingulum-angular bundle (CAB) was disrupted in AD. In DLB patients, secondary axonal degeneration within ATR was found in relation to microstructural damage within medio-dorsal thalamus, whereas axonal degeneration within CAB was related to precuneus thinning. WM alteration within the uncinate fasciculus was present in both groups of patients and was related to frontal and to temporal thinning in DLB and AD, respectively. We found structural connectivity alterations within fronto-thalamic and fronto-parietal (precuneus) network in DLB whereas, in contrast, disruption of structural connectivity of mnemonic pathways was present in AD. Furthermore, the high correlation between GM and WM metrics suggests that the structural connectivity alteration in DLB could be linked to GM neuronal loss rather than by direct WM injury. Thus, this finding supports the key role of cortical and subcortical atrophy in DLB. PMID:26578952

  12. [Influence of mulching management on the relationships between foliar non-structural carbohydrates and N, P concentrations in Phyllostachys violascens stand].

    PubMed

    Guo, Zi-wu; Hu, Jun-jing; Yang, Qing-ping; Li, Ying-chun; Chen, Shuang-lin; Chen, Wei-jun

    2015-04-01

    To understand the physiological adaptive mechanism of Phyllostachys violascens to intensive mulching management, the effect of mulching management (CK, 1, 3 and 6 years) on the concentrations and ratios of non-structural carbohydrates (NSC), nitrogen (N) and phosphorus (P) in bamboo foliage, and their stoichiometry was investigated. The results showed the concentrations of NSC and soluble sugar increased, while the starch content and N/P decreased markedly in bamboo stand with 1-year mulching, compared to CK stand, which suggested the N limitation to bamboo growth was strengthened. Foliar soluble sugar content decreased significantly, while the starch content increased dramatically, and the NSC content by per unit mass of N and P reached the maximum in the bamboo stand with 3-year mulching, compared to all other treatments. Foliar NSC and soluble sugar contents decreased significantly, while foliar starch content and N/P increased dramatically in the stand with 6-year mulching, which suggested the P limitation to bamboo growth was strengthened. Foliar NSC content was positively correlated with N and P concentrations in a short-term mulching management stand (≤ 3 years), while showed negative relationship with N/P. The foliar starch content in the stand with 6-year mulching was negatively correlated with N and P contents, while was positively correlated with N/P. The results indicated that short-term mulching management accelerated the accumulation of soluble sugar and decomposition of starch in foliage, thus the growth and activity of Ph. violascens was enhanced greatly. Long-term mulching management promoted the starch accumulation, which led to the transition from N limitation to P limitation for bamboo growth. In summary, long-term (6 years) mulching management caused the decrease of growth and activity of Ph. violascens dramatically, thus enhancing the bamboo stand degradation. The utilization efficiency of N and P reached the highest in the stand with 3-year

  13. 24 CFR 3285.903 - Permits, alterations, and on-site structures.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Permits, alterations, and on-site structures. 3285.903 Section 3285.903 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR HOUSING-FEDERAL HOUSING COMMISSIONER, DEPARTMENT OF HOUSING AND URBAN...

  14. 18 CFR 1304.209 - Land-based structures/alterations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (electric, water-intake lines, etc.) may be placed within the access corridor as follows: (1) Power lines... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Land-based structures/alterations. 1304.209 Section 1304.209 Conservation of Power and Water Resources TENNESSEE VALLEY...

  15. 18 CFR 1304.209 - Land-based structures/alterations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (electric, water-intake lines, etc.) may be placed within the access corridor as follows: (1) Power lines... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Land-based structures/alterations. 1304.209 Section 1304.209 Conservation of Power and Water Resources TENNESSEE VALLEY...

  16. 18 CFR 1304.209 - Land-based structures/alterations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (electric, water-intake lines, etc.) may be placed within the access corridor as follows: (1) Power lines... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Land-based structures/alterations. 1304.209 Section 1304.209 Conservation of Power and Water Resources TENNESSEE VALLEY...

  17. 18 CFR 1304.209 - Land-based structures/alterations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (electric, water-intake lines, etc.) may be placed within the access corridor as follows: (1) Power lines... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Land-based structures/alterations. 1304.209 Section 1304.209 Conservation of Power and Water Resources TENNESSEE VALLEY...

  18. 18 CFR 1304.209 - Land-based structures/alterations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (electric, water-intake lines, etc.) may be placed within the access corridor as follows: (1) Power lines... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Land-based structures/alterations. 1304.209 Section 1304.209 Conservation of Power and Water Resources TENNESSEE VALLEY...

  19. Discovery of structural alterations in solid tumor oligodendroglioma by single molecule analysis

    PubMed Central

    2013-01-01

    Background Solid tumors present a panoply of genomic alterations, from single base changes to the gain or loss of entire chromosomes. Although aberrations at the two extremes of this spectrum are readily defined, comprehensive discernment of the complex and disperse mutational spectrum of cancer genomes remains a significant challenge for current genome analysis platforms. In this context, high throughput, single molecule platforms like Optical Mapping offer a unique perspective. Results Using measurements from large ensembles of individual DNA molecules, we have discovered genomic structural alterations in the solid tumor oligodendroglioma. Over a thousand structural variants were identified in each tumor sample, without any prior hypotheses, and often in genomic regions deemed intractable by other technologies. These findings were then validated by comprehensive comparisons to variants reported in external and internal databases, and by selected experimental corroborations. Alterations range in size from under 5 kb to hundreds of kilobases, and comprise insertions, deletions, inversions and compound events. Candidate mutations were scored at sub-genic resolution and unambiguously reveal structural details at aberrant loci. Conclusions The Optical Mapping system provides a rich description of the complex genomes of solid tumors, including sequence level aberrations, structural alterations and copy number variants that power generation of functional hypotheses for oligodendroglioma genetics. PMID:23885787

  20. 18 CFR 1304.211 - Change in ownership of grandfathered structures or alterations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Change in ownership of grandfathered structures or alterations. 1304.211 Section 1304.211 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY APPROVAL OF CONSTRUCTION IN THE TENNESSEE RIVER SYSTEM AND REGULATION...

  1. 18 CFR 1304.211 - Change in ownership of grandfathered structures or alterations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Change in ownership of grandfathered structures or alterations. 1304.211 Section 1304.211 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY APPROVAL OF CONSTRUCTION IN THE TENNESSEE RIVER SYSTEM AND REGULATION...

  2. 18 CFR 1304.211 - Change in ownership of grandfathered structures or alterations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Change in ownership of grandfathered structures or alterations. 1304.211 Section 1304.211 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY APPROVAL OF CONSTRUCTION IN THE TENNESSEE RIVER SYSTEM AND REGULATION...

  3. 18 CFR 1304.211 - Change in ownership of grandfathered structures or alterations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Change in ownership of grandfathered structures or alterations. 1304.211 Section 1304.211 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY APPROVAL OF CONSTRUCTION IN THE TENNESSEE RIVER SYSTEM AND REGULATION...

  4. Experimental alteration of artificial and natural impact melt rock from the Chesapeake Bay impact structure

    USGS Publications Warehouse

    Declercq, J.; Dypvik, H.; Aagaard, P.; Jahren, J.; Ferrell, R.E., Jr.; Horton, J. Wright, Jr.

    2009-01-01

    The alteration or transformation of impact melt rock to clay minerals, particularly smectite, has been recognized in several impact structures (e.g., Ries, Chicxulub, Mj??lnir). We studied the experimental alteration of two natural impact melt rocks from suevite clasts that were recovered from drill cores into the Chesapeake Bay impact structure and two synthetic glasses. These experiments were conducted at hydrothermal temperature (265 ??C) in order to reproduce conditions found in meltbearing deposits in the first thousand years after deposition. The experimental results were compared to geochemical modeling (PHREEQC) of the same alteration and to original mineral assemblages in the natural melt rock samples. In the alteration experiments, clay minerals formed on the surfaces of the melt particles and as fine-grained suspended material. Authigenic expanding clay minerals (saponite and Ca-smectite) and vermiculite/chlorite (clinochlore) were identified in addition to analcime. Ferripyrophyllite was formed in three of four experiments. Comparable minerals were predicted in the PHREEQC modeling. A comparison between the phases formed in our experiments and those in the cores suggests that the natural alteration occurred under hydrothermal conditions similar to those reproduced in the experiment. ?? 2009 The Geological Society of America.

  5. Temporal and structural effects of stands on litter production in Melaleuca quinquenervia dominated wetlands of South Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Melaleuca quinquenervia (melaleuca) dominates large areas of the Florida Everglades in the southeastern USA where it has transformed sedge-dominated marshes into melaleuca forests. Despite its prevalence, very little is known about the ecology and stand dynamics of this invasive tree. We delineated...

  6. How the timberline formed: altitudinal changes in stand structure and dynamics around the timberline in central Japan

    PubMed Central

    Takahashi, Koichi; Hirosawa, Tatsuru; Morishima, Ryohei

    2012-01-01

    Background and Aims Altitudinal timberlines are thought to move upward by global warming, a crucial topic in ecology. Tall tree species (the conifer Abies mariesii and the deciduous broad-leaved Betula ermanii) dominate the sub-alpine zone between 1600 and 2500 m a.s.l., the timberline, on Mount Norikura in central Japan. Dwarf pine Pinus pumila dominates above the timberline to near the summit (3026 m a.s.l.). This study evaluated how the timberline formed on Mount Norikura by examining altitudinal changes in stand structure and dynamics around the timberline. Methods One hundred and twenty-five plots of 10 m × 10 m were established around the timberline (2350–2600 m a.s.l.). Trunk diameter growth rate during 6 years was examined for A. mariesii, B. ermanii and P. pumila. Mortality during this period and mechanical damage scars on the trunks and branches due to strong wind and snow were examined for A. mariesii only. Key Results The density, maximum trunk height and diameter of A. mariesii in plots decreased with altitude. The maximum trunk height of B. ermanii decreased with altitude, but density and maximum trunk diameter did not decrease. In contrast, the density of P. pumila abruptly increased from around the timberline. A strong negative correlation was found between the densities of P. pumila and tall tree species, indicating their interspecific competition. Trunk diameter growth rates of A. mariesii and B. ermanii did not decrease with altitude, suggesting that these two tall tree species can grow at the timberline. The ratio of trees with mechanical damage scars increased with altitude for A. mariesii, a tendency more conspicuous for larger trees. The mortality of larger A. mariesii was also greater at higher altitude. Tall tree species may not increase their trunk height and survive around the timberline because of mechanical damage. Conclusions This study suggests that the altitudinal location of the timberline is mainly affected by mechanical damage

  7. Functional topography of band 3: specific structural alteration linked to function aberrations in human erythrocytes

    SciTech Connect

    Kay, M.M.B.; Bosman, G.J.C.G.M.; Lawrence, C.

    1988-01-01

    Band 3 is the major anion transport polypeptide of erythrocytes. It appears to be the binding site of several glycolytic enzymes. Structurally, band 3 is the major protein spanning the erythrocyte membrane and connects the plasma membrane to band 2.1, which binds to the cytoskeleton. In the present study, the authors report an alteration of band 3 molecule that is associated with the following changes: erythrocyte shape change from discoid to thorny cells (acanthocytes), restriction of rotational diffusion of band 3 in the membrane, increase in anion transport, and decrease in the number of high-affinity ankyrin-binding sites. Changes in erythrocyte IgG binding, glyceraldehyde-3-phosphate dehydrogenase, fluorescence polarization (indicative of membrane fluidity), and other membrane proteins as determined by polyacrylamide gel electrophoresis were not detected. Cells containing the altered band 3 polypeptide were obtained from individuals with abnormal erythrocyte morphology. Two-dimensional peptide maps revealed differences in the M/sub r/ 17,000 anion transport segment of band 3 consistent with additions of tyrosines or tyrosine-containing peptides. The data suggest that (i) this alteration of band 3 does not result in accelerated aging as does cleavage and (ii) structural changes in the anion transport region result in alterations in anion transport.

  8. Neonatal handling alters the structure of maternal behavior and affects mother-pup bonding.

    PubMed

    Reis, A R; de Azevedo, M S; de Souza, M A; Lutz, M L; Alves, M B; Izquierdo, I; Cammarota, M; Silveira, P P; Lucion, A B

    2014-05-15

    During early life, a mother and her pups establish a very close relationship, and the olfactory learning of the nest odor is very important for the bond formation. The olfactory bulb (OB) is a structure that plays a fundamental role in the olfactory learning (OL) mechanism that also involves maternal behavior (licking and contact). We hypothesized that handling the pups would alter the structure of the maternal behavior, affect OL, and alter mother-pup relationships. Moreover, changes in the cyclic AMP-response element binding protein phosphorylation (CREB) and neurotrophic factors could be a part of the mechanism of these changes. This study aimed to analyze the effects of neonatal handling, 1 min per day from postpartum day 1 to 10 (PPD 1 to PPD 10), on the maternal behavior and pups' preference for the nest odor in a Y maze (PPD 11). We also tested CREB's phosphorylation and BDNF signaling in the OB of the pups (PPD 7) by Western blot analysis. The results showed that handling alters mother-pups interaction by decreasing mother-pups contact and changing the temporal pattern of all components of the maternal behavior especially the daily licking and nest-building. We found sex-dependent changes in the nest odor preference, CREB and BDNF levels in pups OB. Male pups were more affected by alterations in the licking pattern, and female pups were more affected by changes in the mother-pup contact (the time spent outside the nest and nursing). PMID:24598277

  9. Structural controls, alteration, permeability and thermal regime of Dixie Valley from new-generation MT/galvanic array profiling

    SciTech Connect

    Philip E. Wannamaker

    2007-11-30

    State-of-the-art MT array measurements in contiguous bipole deployments across the Dixie Valley thermal area have been integrated with regional MT transect data and other evidence to address several basic geothermal goals. These include 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single rangefront fault versus shallower, stepped pediment; 2), delineate fault zones which have experienced fluid flux as indicated by low resistivity; 3), infer ultimate heat and fluid sources for the thermal area; and 4), from a generic technique standpoint, investigate the capability of well-sampled electrical data for resolving subsurface structure. Three dense lines cross the Senator Fumaroles area, the Cottonwood Creek and main producing area, and the low-permeability region through the section 10-15 area, and have stand-alone MT soundings appended at one or both ends for local background control. Regularized 2-D inversion implies that shallow pediment basement rocks extend for a considerable distance (1-2 km) southeastward from the topographic scarp of the Stillwater Range under all three dense profiles, but especially for the Senator Fumaroles line. This result is similar to gravity interpretations in the area, but with the intrinsic depth resolution possible from EM wave propagation. Low resistivity zones flank the interpreted main offsetting fault especially toward the north end of the field which may be due to alteration from geothermal fluid outflow and upflow. The appended MT soundings help to substantiate a deep, subvertical conductor intersecting the base of Dixie Valley from the middle crust, which appears to be a hydrothermal conduit feeding from deep crustal magmatic underplating. This may supply at least part of the high temperature fluids and explain enhanced He-3 levels in those fluids.

  10. A-1 Test Stand work

    NASA Technical Reports Server (NTRS)

    2010-01-01

    A structural steel beam to support the new thrust measurement system on the A-1 Test Stand at NASA's John C. Stennis Space Center is lifted to waiting employees for installation. The beam is part of the thrust takeout structure needed to support the new measurement system. Four such beams have been installed at the stand in preparation for installation of the system in upcoming weeks. Operators are preparing the stand for testing the next generation of rocket engines for the U.S. space program.

  11. Structure and composition of vegetation of longleaf pine plantations compared to natural stands occurring along an environmental gradient at the Savannah River Site.

    SciTech Connect

    Smith, Gregory, P.; Shelburne, Victor, B.; Walker, Joan, L.

    2001-12-30

    Study plots in 33-43 year old longleaf pine plantations were compared to remnant longleaf plots on the Savannah River Site in South Carolina. Within these stands, the structure and composition of primarily the herb layer relative to a presumed soil moisture or soil texture gradient was studied using the North Carolina Vegetation Survey methodology. Data were also collected on soils and landform variables. Based on ordination and cluster analyses, both plantation plots and natural stand plots were separated into three distinct site units (xeric, sub-xeric, and sub-mesic). Lack of a major compositional difference between xeric plantation and natural longleaf sites suggests that restoration of the herbaceous layer may not be as complex as once thought. This provides reasonable encouragement for the restoration of the longleaf pine ecosystem.

  12. Label-free optical quantification of structural alterations in Alzheimer's disease.

    PubMed

    Lee, Moosung; Lee, Eeksung; Jung, JaeHwang; Yu, Hyeonseung; Kim, Kyoohyun; Yoon, Jonghee; Lee, Shinhwa; Jeong, Yong; Park, YongKeun

    2016-01-01

    We present a wide-field quantitative label-free imaging of mouse brain tissue slices with sub-micrometre resolution, employing holographic microscopy and an automated scanning platform. From the measured light field images, scattering coefficients and anisotropies are quantitatively retrieved by using the modified the scattering-phase theorem, which enables access to structural information about brain tissues. As a proof of principle, we demonstrate that these scattering parameters enable us to quantitatively address structural alteration in the brain tissues of mice with Alzheimer's disease. PMID:27485313

  13. Label-free optical quantification of structural alterations in Alzheimer’s disease

    PubMed Central

    Lee, Moosung; Lee, Eeksung; Jung, JaeHwang; Yu, Hyeonseung; Kim, Kyoohyun; Yoon, Jonghee; Lee, Shinhwa; Jeong, Yong; Park, YongKeun

    2016-01-01

    We present a wide-field quantitative label-free imaging of mouse brain tissue slices with sub-micrometre resolution, employing holographic microscopy and an automated scanning platform. From the measured light field images, scattering coefficients and anisotropies are quantitatively retrieved by using the modified the scattering-phase theorem, which enables access to structural information about brain tissues. As a proof of principle, we demonstrate that these scattering parameters enable us to quantitatively address structural alteration in the brain tissues of mice with Alzheimer’s disease. PMID:27485313

  14. Altered Modular Organization of Structural Cortical Networks in Children with Autism

    PubMed Central

    Shi, Feng; Wang, Li; Peng, Ziwen; Wee, Chong-Yaw; Shen, Dinggang

    2013-01-01

    Autism is a complex developmental disability that characterized by deficits in social interaction, language skills, repetitive stereotyped behaviors and restricted interests. Although great heterogeneity exists, previous findings suggest that autism has atypical brain connectivity patterns and disrupted small-world network properties. However, the organizational alterations in the autistic brain network are still poorly understood. We explored possible organizational alterations of 49 autistic children and 51 typically developing controls, by investigating their brain network metrics that are constructed upon cortical thickness correlations. Three modules were identified in controls, including cortical regions associated with brain functions of executive strategic, spatial/auditory/visual, and self-reference/episodic memory. There are also three modules found in autistic children with similar patterns. Compared with controls, autism demonstrates significantly reduced gross network modularity, and a larger number of inter-module connections. However, the autistic brain network demonstrates increased intra- and inter-module connectivity in brain regions including middle frontal gyrus, inferior parietal gyrus, and cingulate, suggesting one underlying compensatory mechanism associated with brain functions of self-reference and episodic memory. Results also show that there is increased correlation strength between regions inside frontal lobe, as well as impaired correlation strength between frontotemporal and frontoparietal regions. This alteration of correlation strength may contribute to the organization alteration of network structures in autistic brains. PMID:23675456

  15. Connectomics-based structural network alterations in obsessive-compulsive disorder.

    PubMed

    Reess, T J; Rus, O G; Schmidt, R; de Reus, M A; Zaudig, M; Wagner, G; Zimmer, C; van den Heuvel, M P; Koch, K

    2016-01-01

    Given the strong involvement of affect in obsessive-compulsive disorder (OCD) and recent findings, the current cortico-striato-thalamo-cortical (CSTC) model of pathophysiology has repeatedly been questioned regarding the specific role of regions involved in emotion processing such as limbic areas. Employing a connectomics approach enables us to characterize structural connectivity on a whole-brain level, extending beyond the CSTC circuitry. Whole-brain structural networks of 41 patients and 42 matched healthy controls were analyzed based on 83 × 83 connectivity matrices derived from cortical and subcortical parcellation of structural T1-weighted magnetic resonance scans and deterministic fiber tracking based on diffusion tensor imaging data. To assess group differences in structural connectivity, the framework of network-based statistic (NBS) was applied. Graph theoretical measures were calculated to further assess local and global network characteristics. The NBS analysis revealed a single network consistently displaying decreased structural connectivity in patients comprising orbitofrontal, striatal, insula and temporo-limbic areas. In addition, graph theoretical measures indicated local alterations for amygdala and temporal pole while the overall topology of the network was preserved. To the best of our knowledge, this is the first study combining the NBS with graph theoretical measures in OCD. Along with regions commonly described in the CSTC model of pathophysiology, our results indicate an involvement of mainly temporo-limbic regions typically associated with emotion processing supporting their importance for neurobiological alterations in OCD. PMID:27598966

  16. Neurodevelopmental alterations of large-scale structural networks in children with new-onset epilepsy

    PubMed Central

    Bonilha, Leonardo; Tabesh, Ali; Dabbs, Kevin; Hsu, David A.; Stafstrom, Carl E.; Hermann, Bruce P.; Lin, Jack J.

    2014-01-01

    Recent neuroimaging and behavioral studies have revealed that children with new onset epilepsy already exhibit brain structural abnormalities and cognitive impairment. How the organization of large-scale brain structural networks is altered near the time of seizure onset and whether network changes are related to cognitive performances remain unclear. Recent studies also suggest that regional brain volume covariance reflects synchronized brain developmental changes. Here, we test the hypothesis that epilepsy during early-life is associated with abnormalities in brain network organization and cognition. We used graph theory to study structural brain networks based on regional volume covariance in 39 children with new-onset seizures and 28 healthy controls. Children with new-onset epilepsy showed a suboptimal topological structural organization with enhanced network segregation and reduced global integration compared to controls. At the regional level, structural reorganization was evident with redistributed nodes from the posterior to more anterior head regions. The epileptic brain network was more vulnerable to targeted but not random attacks. Finally, a subgroup of children with epilepsy, namely those with lower IQ and poorer executive function, had a reduced balance between network segregation and integration. Taken together, the findings suggest that the neurodevelopmental impact of new onset childhood epilepsies alters large-scale brain networks, resulting in greater vulnerability to network failure and cognitive impairment. PMID:24453089

  17. Forest to reclaimed mine land use change leads to altered ecosystem structure and function

    SciTech Connect

    Simmons, J.A.; Currie, W.S.; Eshleman, K.N.; Kuers, K.; Monteleone, S.; Negley, T.L.; Pohlad, B.R.; Thomas, C.L.

    2008-01-15

    The United States' use of coal results in many environmental alterations. In the Appalachian coal belt region, one widespread alteration is conversion of forest to reclaimed mineland. The goal of this study was to quantify the changes to ecosystem structure and function associated with a conversion from forest to reclaimed mine grassland by comparing a small watershed containing a 15-year-old reclaimed mine with a forested, reference watershed in western Maryland. Major differences were apparent between the two watersheds in terms of biogeochemistry. Total C, N, and P pools were all substantially lower at the mined site, mainly due to the removal of woody biomass but also, in the case of P, to reductions in soil pools. Mineral soil C, N, and P pools were 96%, 79%, and 69% of native soils, respectively. Although annual runoff from the watersheds was similar, the mined watershed exhibited taller, narrower storm peaks as a result of a higher soil bulk density and decreased infiltration rates. Stream export of N was much lower in the mined watershed due to lower net nitrification rates and nitrate concentrations in soil. However, stream export of sediment and P and summer stream temperature were much higher. Stream leaf decomposition was reduced and macroinvertebrate community structure was altered as a result of these changes to the stream environment. This land use change leads to substantial, long-term changes in ecosystem capital and function.

  18. Structural Basis for the Altered PAM Specificities of Engineered CRISPR-Cas9.

    PubMed

    Hirano, Seiichi; Nishimasu, Hiroshi; Ishitani, Ryuichiro; Nureki, Osamu

    2016-03-17

    The RNA-guided endonuclease Cas9 cleaves double-stranded DNA targets bearing a PAM (protospacer adjacent motif) and complementarity to the guide RNA. A recent study showed that, whereas wild-type Streptococcus pyogenes Cas9 (SpCas9) recognizes the 5'-NGG-3' PAM, the engineered VQR, EQR, and VRER SpCas9 variants recognize the 5'-NGA-3', 5'-NGAG-3', and 5'-NGCG-3' PAMs, respectively, thus expanding the targetable sequences in Cas9-mediated genome editing applications. Here, we present the high-resolution crystal structures of the three SpCas9 variants in complexes with a single-guide RNA and its altered PAM-containing, partially double-stranded DNA targets. A structural comparison of the three SpCas9 variants with wild-type SpCas9 revealed that the multiple mutations synergistically induce an unexpected displacement in the phosphodiester backbone of the PAM duplex, thereby allowing the SpCas9 variants to directly recognize the altered PAM nucleotides. Our findings explain the altered PAM specificities of the SpCas9 variants and establish a framework for further rational engineering of CRISPR-Cas9. PMID:26990991

  19. Forest to reclaimed mine land use change leads to altered ecosystem structure and function.

    PubMed

    Simmons, Jeffrey A; Currie, William S; Eshleman, Keith N; Kuers, Karen; Monteleone, Susan; Negley, Tim L; Pohlad, Bob R; Thomas, Carolyn L

    2008-01-01

    The United States' use of coal results in many environmental alterations. In the Appalachian coal belt region, one widespread alteration is conversion of forest to reclaimed mineland. The goal of this study was to quantify the changes to ecosystem structure and function associated with a conversion from forest to reclaimed mine grassland by comparing a small watershed containing a 15-year-old reclaimed mine with a forested, reference watershed in western Maryland. Major differences were apparent between the two watersheds in terms of biogeochemistry. Total C, N, and P pools were all substantially lower at the mined site, mainly due to the removal of woody biomass but also, in the case of P, to reductions in soil pools. Mineral soil C, N, and P pools were 96%, 79%, and 69% of native soils, respectively. Although annual runoff from the watersheds was similar, the mined watershed exhibited taller, narrower storm peaks as a result of a higher soil bulk density and decreased infiltration rates. Stream export of N was much lower in the mined watershed due to lower net nitrification rates and nitrate concentrations in soil. However, stream export of sediment and P and summer stream temperature were much higher. Stream leaf decomposition was reduced and macroinvertebrate community structure was altered as a result of these changes to the stream environment. This land use change leads to substantial, long-term changes in ecosystem capital and function. PMID:18372559

  20. Structural health monitoring (vibration) as a tool for identifying structural alterations of the lumbar spine: a twin control study

    PubMed Central

    Kawchuk, Gregory N.; Hartvigsen, Jan; Edgecombe, Tiffany; Prasad, Narasimha; van Dieen, Jaap H.

    2016-01-01

    Structural health monitoring (SHM) is an engineering technique used to identify mechanical abnormalities not readily apparent through other means. Recently, SHM has been adapted for use in biological systems, but its invasive nature limits its clinical application. As such, the purpose of this project was to determine if a non-invasive form of SHM could identify structural alterations in the spines of living human subjects. Lumbar spines of 10 twin pairs were visualized by magnetic resonance imaging then assessed by a blinded radiologist to determine whether twin pairs were structurally concordant or discordant. Vibration was then applied to each subject’s spine and the resulting response recorded from sensors overlying lumbar spinous processes. The peak frequency, area under the curve and the root mean square were computed from the frequency response function of each sensor. Statistical analysis demonstrated that in twins whose structural appearance was discordant, peak frequency was significantly different between twin pairs while in concordant twins, no outcomes were significantly different. From these results, we conclude that structural changes within the spine can alter its vibration response. As such, further investigation of SHM to identify spinal abnormalities in larger human populations is warranted. PMID:26964507

  1. Structural health monitoring (vibration) as a tool for identifying structural alterations of the lumbar spine: a twin control study.

    PubMed

    Kawchuk, Gregory N; Hartvigsen, Jan; Edgecombe, Tiffany; Prasad, Narasimha; van Dieen, Jaap H

    2016-01-01

    Structural health monitoring (SHM) is an engineering technique used to identify mechanical abnormalities not readily apparent through other means. Recently, SHM has been adapted for use in biological systems, but its invasive nature limits its clinical application. As such, the purpose of this project was to determine if a non-invasive form of SHM could identify structural alterations in the spines of living human subjects. Lumbar spines of 10 twin pairs were visualized by magnetic resonance imaging then assessed by a blinded radiologist to determine whether twin pairs were structurally concordant or discordant. Vibration was then applied to each subject's spine and the resulting response recorded from sensors overlying lumbar spinous processes. The peak frequency, area under the curve and the root mean square were computed from the frequency response function of each sensor. Statistical analysis demonstrated that in twins whose structural appearance was discordant, peak frequency was significantly different between twin pairs while in concordant twins, no outcomes were significantly different. From these results, we conclude that structural changes within the spine can alter its vibration response. As such, further investigation of SHM to identify spinal abnormalities in larger human populations is warranted. PMID:26964507

  2. Histological conversion of follicular lymphoma with structural alterations of t(14;18) and immunoglobin genes.

    PubMed

    Raghoebier, S; Broos, L; Kramer, M H; van Krieken, J H; Kluin-Nelemans, J C; van Ommen, G J; Kluin, P

    1995-10-01

    About half of the patients with follicular lymphoma will develop an aggressive B cell lymphoma with morphological changes in growth pattern and cellular morphology. Changes of the immunophenotype, especially of the expression of immunoglobulin (Ig) have been documented less frequently. Multiple tumor samples of two patients with follicular lymphoma who developed tumor progression, were studied by Southern blot analysis for rearrangements of the Ig genes and the oncogenes BCL2 and MYC. In both patients, the general pattern of Ig gene rearrangements, especially of the Ig light-chain genes, and the structure of the t(14;18) breakpoint as assessed by the polymerase chain reaction (PRC) and fine restriction mapping, remained unaltered with time. However, both within the functional Ig heavy-chain allele and around the t(14;18) breakpoint, extensive secondary alterations took place. This indicates clonal evolution rather than the appearance of an independent lymphoma. In the first case with progression from follicular lymphoma to Burkitt's lymphoma 3 years after diagnosis, alterations were especially present 3' of the t(14;18) breakpoint. In the second patient with a change from follicular to diffuse centroblastic lymphoma 4 years after diagnosis, subsequent class switches from IgM to IgG and to defective IgH expression were accompanied by deletion of C mu sequences and a rearrangement of the MYC gene, respectively. Additionally, in both patients alterations in individual restriction sites occurred, which most likely were due to somatic mutations within both the functional IgH and translocated allele. Our data indicate that complex alterations of both the functional and non-functional IgH allele may accompany tumor progression and may erroneously suggest the appearance of independent clones by Southern blot analysis. It remains to be established whether these alterations are causative events or the consequence of genetic instability and clonal evolution. PMID:7564520

  3. Structural alterations of brain grey and white matter in early deaf adults.

    PubMed

    Hribar, Manja; Suput, Dušan; Carvalho, Altiere Araujo; Battelino, Saba; Vovk, Andrej

    2014-12-01

    Functional and structural brain alterations in the absence of the auditory input have been described, but the observed structural brain changes in the deaf are not uniform. Some of the previous researchers focused only on the auditory areas, while others investigated the whole brain or other selected regions of interest. Majority of studies revealed decreased white matter (WM) volume or altered WM microstructure and preserved grey matter (GM) structure of the auditory areas in the deaf. However, preserved WM and increased or decreased GM volume of the auditory areas in the deaf have also been reported. Several structural alterations in the deaf were found also outside the auditory areas, but these regions differ between the studies. The observed differences between the studies could be due to the use of different single-analysis techniques, or the diverse population sample and its size, or possibly due to the usage of hearing aids by some participating deaf subjects. To overcome the aforementioned limitations four different image-processing techniques were used to investigate changes in the brain morphology of prelingually deaf adults who have never used hearing aids. GM and WM volume of the Heschl's gyrus (HG) were measured using manual volumetry, while whole brain GM volume, thickness and surface area were assessed by voxel-based morphometry (VBM) and surface-based analysis. The microstructural properties of the WM were evaluated by diffusion tensor imaging (DTI). The data were compared between 14 congenitally deaf adults and 14 sex- and age-matched normal hearing controls. Manual volumetry revealed preserved GM volume of the bilateral HG and significantly decreased WM volume of the left HG in the deaf. VBM showed increased cerebellar GM volume in the deaf, while no statistically significant differences were observed in the GM thickness or surface area between the groups. The results of the DTI analysis showed WM microstructural alterations between the groups in

  4. Structural alteration of spermatozoa in the persons employed in lead acid battery factory.

    PubMed

    Naha, Nibedita; Bhar, R B; Mukherjee, A; Chowdhury, Amal Roy

    2005-04-01

    Lead is one of the industrially heavy metals that caused adverse effects on male reproductive system among battery factory workers, but information on the possible impact of lead on the structural integrity of sperm cell is limited. Thus present study was undertaken to assess the structural details of human spermatozoa of lead acid battery factory workers. Blood and semen samples were collected from total 80 workers (7-15 years exposure) and 40 non-occupationally exposed control subjects. The lead exposed battery factory workers showed lowering (P < 0.001) of sperm count, density, motility and semen volume along with an increase incidence of sperm abnormality and prolong liquefaction time. Structural alteration of sperm cell was prevalent among the exposed population as evidenced by significantly (P < 0.001) low sperm viability, low hypoosmotic swelling test (HOST) percentage, high lipid peroxidation of sperm membrane with concomitant alterations of seminal plasma total and dehydro ascorbate level. Sharp depressions, membrane folding and granularity at sperm head surfaces were observed by scanning electron microscopy (SEM). Both blood lead and semen lead was significantly (P < 0.001) higher among the factory workers. Thus it appears plausible that lead may reduce the antioxidant level in seminal plasma and enhance the lipid peroxidative changes in sperm membrane leading to concomitant structural damage of sperm cell surface in the workers employed in lead acid battery factories. PMID:16170983

  5. Hemin/G-quadruplex structure and activity alteration induced by magnesium cations.

    PubMed

    Kosman, J; Juskowiak, B

    2016-04-01

    The influence of metal cations on G-quadruplex structure and peroxidase-mimicking DNAzyme activity was investigated. Experiments revealed a significant role of magnesium ion, which in the presence of potassium cation influenced DNAzyme activity. This ability has been associated with alteration of G-quadruplex topology and consequently affinity to bind hemin molecule. It has been demonstrated that G-quadruplex based on PS2.M sequence under these conditions formed parallel topology, which exhibited lower activity than that observed in standard potassium-containing solution. On the other hand DNAzyme/magnesium ion system based on telomeric sequence, which did not undergo significant structural changes, exhibited higher peroxidase activity upon magnesium ion addition. In both cases, the stabilization effect of magnesium cations on G-quadruplex structure was observed. The mechanism of DNAzyme activity alteration by magnesium ion can be explained by its influence on the pKa value of DNAzyme. Magnesium ion decreased pKa for PS2.M based system but increased it for telomeric DNAzyme. Magnesium cation effect on G-quadruplex structure as well as DNAzyme activity is particularly important since this ion is one of the most common metal cations in biological samples. PMID:26778160

  6. Quantitative assessment of multiscale structural and functional alterations in asthmatic populations

    PubMed Central

    Hoffman, Eric A.; Wenzel, Sally E.; Castro, Mario; Fain, Sean B.; Jarjour, Nizar N.; Schiebler, Mark L.; Chen, Kun

    2015-01-01

    Relationships between structural and functional variables in asthmatic lungs at local and global (or lobar) levels remain to be discovered. This study aims to investigate local alterations of structural variables [bifurcation angle, circularity, airway wall thickness (WT), and hydraulic diameter (Dh)] in asthmatic subjects, and their correlations with other imaging and pulmonary function test-based global and lobar metrics, including lung shape, air-trapping, regional volume change, and more. Sixty-one healthy subjects, and 67 nonsevere and 67 severe asthmatic subjects were studied. The structural variables were derived from computed tomography images at total lung capacity (TLC). Air-trapping was measured at functional residual capacity, and regional volume change (derived from image registration) was measured between functional residual capacity and TLC. The tracheal diameter and WT predicted by 61 healthy subjects were used to normalize the Dh and WT. New normalization schemes allowed for the dissociation of luminal narrowing and wall thickening effects. In severe asthmatic subjects, the alteration of bifurcation angle was found to be correlated with a global lung shape at TLC, and circularity was significantly decreased in the right main bronchus. While normalized WT increased especially in the upper lobes of severe asthmatic subjects, normalized Dh decreased in the lower lobes. Among local structural variables, normalized Dh was the most representative variable, because it was significantly correlated with alterations of functional variables, including pulmonary function test's data. In conclusion, understanding multiscale phenomena may help to provide guidance in the search for potential imaging-based phenotypes for the development and outcomes assessment of therapeutic intervention. PMID:25814641

  7. A stand-alone tree demography and landscape structure module for Earth system models: integration with inventory data from temperate and boreal forests

    NASA Astrophysics Data System (ADS)

    Haverd, V.; Smith, B.; Nieradzik, L. P.; Briggs, P. R.

    2014-08-01

    Poorly constrained rates of biomass turnover are a key limitation of Earth system models (ESMs). In light of this, we recently proposed a new approach encoded in a model called Populations-Order-Physiology (POP), for the simulation of woody ecosystem stand dynamics, demography and disturbance-mediated heterogeneity. POP is suitable for continental to global applications and designed for coupling to the terrestrial ecosystem component of any ESM. POP bridges the gap between first-generation dynamic vegetation models (DVMs) with simple large-area parameterisations of woody biomass (typically used in current ESMs) and complex second-generation DVMs that explicitly simulate demographic processes and landscape heterogeneity of forests. The key simplification in the POP approach, compared with second-generation DVMs, is to compute physiological processes such as assimilation at grid-scale (with CABLE (Community Atmosphere Biosphere Land Exchange) or a similar land surface model), but to partition the grid-scale biomass increment among age classes defined at sub-grid-scale, each subject to its own dynamics. POP was successfully demonstrated along a savanna transect in northern Australia, replicating the effects of strong rainfall and fire disturbance gradients on observed stand productivity and structure. Here, we extend the application of POP to wide-ranging temporal and boreal forests, employing paired observations of stem biomass and density from forest inventory data to calibrate model parameters governing stand demography and biomass evolution. The calibrated POP model is then coupled to the CABLE land surface model, and the combined model (CABLE-POP) is evaluated against leaf-stem allometry observations from forest stands ranging in age from 3 to 200 year. Results indicate that simulated biomass pools conform well with observed allometry. We conclude that POP represents an ecologically plausible and efficient alternative to large-area parameterisations of woody

  8. Large-scale natural disturbance alters genetic population structure of the sailfin molly, Poecilia latipinna.

    PubMed

    Apodaca, Joseph J; Trexler, Joel C; Jue, Nathaniel K; Schrader, Matthew; Travis, Joseph

    2013-02-01

    Many inferences about contemporary rates of gene flow are based on the assumption that the observed genetic structure among populations is stable. Recent studies have uncovered several cases in which this assumption is tenuous. Most of those studies have focused on the effects that regular environmental fluctuations can have on genetic structure and gene flow patterns. Occasional catastrophic disturbances could also alter either the distribution of habitat or the spatial distribution of organisms in a way that affects population structure. However, evidence of such effects is sparse in the literature because it is difficult to obtain. Hurricanes, in particular, have the potential to exert dramatic effects on population structure of organisms found on islands or coral reefs or in near shore and coastal habitats. Here we draw on a historic genetic data set and new data to suggest that the genetic structure of sailfin molly (Poecilia latipinna) populations in north Florida was altered dramatically by an unusually large and uncommon type of storm surge associated with Hurricane Dennis in 2005. We compare the spatial pattern of genetic variation in these populations after Hurricane Dennis to the patterns described in an earlier study in this same area. We use comparable genetic data from another region of Florida, collected in the same two periods, to estimate the amount of change expected from typical temporal variation in population structure. The comparative natural history of sailfin mollies in these two regions indicates that the change in population structure produced by the storm surge is not the result of many local extinctions with recolonization from a few refugia but emerged from a pattern of mixing and redistribution. PMID:23348779

  9. A Stand-Alone Demography and Landscape Structure Module for Earth System Models: Integration with Inventory Data from Temperate and Boreal Forests

    NASA Astrophysics Data System (ADS)

    Haverd, V. E.; Smith, B.; Nieradzik, L. P.; Briggs, P.

    2014-12-01

    Poorly constrained rates of biomass turnover are a key limitation of Earth system models (ESM). In light of this, we recently proposed a new approach encoded in a model called Populations-Order-Physiology (POP), for the simulation of woody ecosystem stand dynamics, demography and disturbance-mediated heterogeneity. POP is suitable for continental to global applications and designed for coupling to the terrestrial ecosystem component of any ESM. POP bridges the gap between first generation Dynamic Vegetation Models (DVMs) with simple large-area parameterisations of woody biomass (typically used in current ESMs) and complex second generation DVMs, that explicitly simulate demographic processes and landscape heterogeneity of forests. The key simplification in the POP approach, compared with second-generation DVMs, is to compute physiological processes such as assimilation at grid-scale (with CABLE or a similar land surface model), but to partition the grid-scale biomass increment among age classes defined at sub grid-scale, each subject to its own dynamics. POP was successfully demonstrated along a savanna transect in northern Australia, replicating the effects of strong rainfall and fire disturbance gradients on observed stand productivity and structure. Here, we extend the application of POP to a range of forest types around the globe, employing paired observations of stem biomass and density from forest inventory data to calibrate model parameters governing stand demography and biomass evolution. The calibrated POP model is then coupled to the CABLE land surface model and the combined model (CABLE-POP) is evaluated against leaf-stem allometry observations from forest stands ranging in age from 3 to 200 years. Results indicate that simulated biomass pools conform well with observed allometry. We conclude that POP represents an ecologically plausible and efficient alternative to large-area parameterisations of woody biomass turnover, typically used in current ESMs

  10. Petrography, geochemistry, and alteration of country rocks from the Bosumtwi impact structure, Ghana

    NASA Astrophysics Data System (ADS)

    Karikari, Forson; Ferrière, Ludovic; Koeberl, Christian; Reimold, Wolf Uwe; Mader, Dieter

    Samples of the country rocks that likely constituted the target rocks at the 1.07 Myr old Bosumtwi impact structure in Ghana, West Africa, collected outside of the crater rim in the northern and southern parts of the structure, were studied for their petrographic characteristics and analyzed for their major- and trace-element compositions. The country rocks, mainly meta-graywacke, shale, and phyllite of the Early Proterozoic Birimian Supergroup and some granites of similar age, are characterized by two generations of alteration. A pre-impact hydrothermal alteration, often along shear zones, is characterized by new growth of secondary minerals, such as chlorite, sericite, sulfides, and quartz, or replacement of some primary minerals, such as plagioclase and biotite, by secondary sericite and chlorite. A late, argillic alteration, mostly associated with the suevites, is characterized by alteration of the melt/glass clasts in the groundmass of suevites to phyllosilicates. Suevite, which occurs in restricted locations to the north and to the south-southwest of the crater rim, contains melt fragments, diaplectic quartz glass, ballen quartz, and clasts derived from the full variety of target rocks. No planar deformation features (PDFs) in quartz were found in the country rock samples, and only a few quartz grains in the suevite samples show PDFs, and in rare cases two sets of PDFs. Based on a total alkali element-silica (TAS) plot, the Bosumtwi granites have tonalitic to quartz-dioritic compositions. The Nb versus Y and Ta versus Yb discrimination plots show that these granites are of volcanic-arc tectonic provenance. Provenance studies of the metasedimentary rocks at the Bosumtwi crater have also indicated that the metasediments are volcanic-arc related. Compared to the average siderophile element contents of the upper continental crust, both country rocks and impact breccias of the Bosumtwi structure show elevated siderophile element contents. This, however, does not

  11. Alteration of structure and mobility of erythrocyte aggregates under normal- to microgravity conditions.

    PubMed

    Singh, M; Middelberg, J; Ramachandran, G; Rath, H J

    1993-03-01

    An experimental analysis of the aggregates structure and their mobility under normal- and micro-g conditions is carried out. Fresh well mixed erythrocyte suspensions in plasma at 8.0% hematocrit are placed in a glass chamber and on-line video microscopic recording of the aggregation process under microgravity condition is carried out. The analysis of aggregate structure and mobility are carried out by an IBM-PC/AT based image processing system. The results show that (a) under normal gravity conditions the velocity of the formed aggregates depend on their sizes which tend to grow further by interacting with single cells and small aggregates, (b) under microgravity conditions the mobility of the aggregates reduces to zero and an alteration in their structural parameters is observed. PMID:11541490

  12. New possibilities in nanoscale surface structure diagnostics using X-ray standing waves under conditions of continuous resonant X-ray Raman scattering

    NASA Astrophysics Data System (ADS)

    Zel'Tser, I. A.; Kukushkin, S. A.; Moos, E. N.

    2008-07-01

    The main principles, new possibilities, and instrumental implementations of a structure-sensitive spectroscopy of the surface of condensed media probed by X-ray standing waves (XSWs) are considered in the case of electron emission under the action of continuous resonant X-ray Raman scattering. It is shown that prospects for the development and use of the new possibilities offered by the XSW method for surface investigations are related to the creation of a set of specific experimental equipment and special sources of synchrotron radiation.

  13. Altered structural and functional connectivity between the bilateral primary motor cortex in unilateral subcortical stroke

    PubMed Central

    Zhang, Yong; Li, Kuang-Shi; Ning, Yan-Zhe; Fu, Cai-Hong; Liu, Hong-Wei; Han, Xiao; Cui, Fang-Yuan; Ren, Yi; Zou, Yi-Huai

    2016-01-01

    Abstract A large number of functional imaging studies have focused on the understanding of motor-related neural activities after ischemic stroke. However, the knowledge is still limited in the structural and functional changes of the interhemispheric connections of the bilateral primary motor cortices (M1s) and their potential influence on motor function recovery following stroke. Twenty-four stroke patients with right hemispheric subcortical infarcts and 25 control subjects were recruited to undergo multimodal magnetic resonance imaging examinations. Structural impairments between the bilateral M1s were measured by fractional anisotropy. Functional changes of the bilateral M1s were assessed via M1-M1 resting-state functional connectivity. Task-evoked activation analysis was applied to identify the roles of the bilateral hemispheres in motor function recovery. Compared with control subjects, unilateral subcortical stroke patients revealed significantly decreased fractional anisotropy and functional connectivity between the bilateral M1s. Stroke patients also revealed higher activations in multiple brain regions in both hemispheres and that more regions were located in the contralesional hemisphere. This study increased our understanding of the structural and functional alterations between the bilateral M1s that occur in unilateral subcortical stroke and provided further evidence for the compensatory role played by the contralesional hemisphere for these alterations during motor function recovery. PMID:27495109

  14. A MYLK variant regulates asthmatic inflammation via alterations in mRNA secondary structure.

    PubMed

    Wang, Ting; Zhou, Tong; Saadat, Laleh; Garcia, Joe G N

    2015-06-01

    Myosin light-chain kinase (MYLK) is a gene known to be significantly associated with severe asthma in African Americans. Here we further examine the molecular function of a single-nucleotide polymorphism (SNP), located in the non-muscle myosin light-chain kinase isoform (nmMLCK), in asthma susceptibility and pathobiology. We identified nmMLCK variant (reference SNP: rs9840993, NM_053025: 721C>T, c.439C>T) with a distinct mRNA secondary structure from the other variants. The nmMLCK variant (721C) secondary structure exhibits increased stability with an elongated half-life in the human endothelial cell, and greater efficiency in protein translation initiation owing to an increased accessibility to translation start site. Finally, nmMLCK expression of 721C- and 721T-containing MYLK transgenes were compared in nmMLCK(-/-) mice and confirmed deleterious effects of nmMLCK expression on asthmatic indices and implicated the augmented influence of MYLK 721C>T (c.439C>T) SNP on asthma severity. The confirmation of the novel mechanism of the regulation of asthmatic inflammation by a MYLK advances knowledge of the genetic basis for asthma disparities, and further suggests the potential of nmMLCK as a therapeutic target. Our study suggests that in addition to altering protein structure and function, non-synonymous SNPs may also lead to phenotypic disparity by altering protein expression. PMID:25271083

  15. 2015 Sensorimotor Risk Standing Review Panel Evidence and Status Review For: the Risk of Impaired Control of Spacecraft/Associated Systems and Decreased Mobility Due to Vestibular/Sensorimotor Alterations Associated with Spaceflight

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan

    2015-01-01

    The 2015 Sensorimotor Risk Standing Review Panel (from here on referred to as the SRP) participated in a WebEx/teleconference with members of the Human Health Countermeasures (HHC) Element, representatives from the Human Research Program (HRP), NASA Headquarters, and NASA Research and Education Support Services (NRESS) on December 17, 2015 (list of participants is in Section VI of this report). The SRP reviewed the new Evidence Report for the Risk of Impaired Control of Spacecraft/Associated Systems and Decreased Mobility Due to Vestibular/Sensorimotor Alterations Associated with Spaceflight (from here on referred to as the 2015 Sensorimotor Evidence Report), and also received a status review of the Risk. The opening section of the 2015 Sensorimotor Evidence Report provides written descriptions of various incidents that have occurred during space missions. In most of these incidents, the main underlying contributing factors are not easy to identify unambiguously. For example, in section 1.9, a number of falls occurred while astronauts were walking on the moon. It is not clear to the SRP, however, why they fell. It is only possible to extrapolate from likely specific psychophysical or physiological abnormalities, but how these abnormalities were determined, and how they were directly responsible for the falls is unclear to the SRP. Section 2.1.2 on proprioception is very interesting, but the functional significance of the abnormalities detected is not clear. The SRP sees this as a problem throughout the report: a mapping between the component abnormalities identified and the holistic behaviors that are most relevant, for example, controlling the vehicle, and locomotion during egress, is generally lacking. The SRP thinks the cognitive section is too strongly focused on vestibular functioning. The SRP questions the notion that the main cognitive effects are mainly attributable to reversible vestibular changes induced by spaceflight. The SRP thinks that there can also

  16. Cortical Structure Alterations and Social Behavior Impairment in p50-Deficient Mice

    PubMed Central

    Bonini, Sara Anna; Mastinu, Andrea; Maccarinelli, Giuseppina; Mitola, Stefania; Premoli, Marika; La Rosa, Luca Rosario; Ferrari-Toninelli, Giulia; Grilli, Mariagrazia; Memo, Maurizio

    2016-01-01

    Alterations in genes that regulate neurodevelopment can lead to cortical malformations, resulting in malfunction during postnatal life. The NF-κB pathway has a key role during neurodevelopment by regulating the maintenance of the neural progenitor cell pool and inhibiting neuronal differentiation. In this study, we evaluated whether mice lacking the NF-κB p50 subunit (KO) present alterations in cortical structure and associated behavioral impairment. We found that, compared with wild type (WT), KO mice at postnatal day 2 present an increase in radial glial cells, an increase in Reelin protein expression levels, in addition to an increase of specific layer thickness. Moreover, adult KO mice display abnormal columnar organization in the somatosensory cortex, a specific decrease in somatostatin- and parvalbumin-expressing interneurons, altered neurite orientation, and a decrease in Synapsin I protein levels. Concerning behavior, KO mice, in addition to an increase in locomotor and exploratory activity, display impairment in social behaviors, with a reduction in social interaction. Finally, we found that risperidone treatment decreased hyperactivity of KO mice, but had no effect on defective social interaction. Altogether, these data add complexity to a growing body of data, suggesting a link between dysregulation of the NF-κB pathway and neurodevelopmental disorders pathogenesis. PMID:26946128

  17. Cortical Structure Alterations and Social Behavior Impairment in p50-Deficient Mice.

    PubMed

    Bonini, Sara Anna; Mastinu, Andrea; Maccarinelli, Giuseppina; Mitola, Stefania; Premoli, Marika; La Rosa, Luca Rosario; Ferrari-Toninelli, Giulia; Grilli, Mariagrazia; Memo, Maurizio

    2016-06-01

    Alterations in genes that regulate neurodevelopment can lead to cortical malformations, resulting in malfunction during postnatal life. The NF-κB pathway has a key role during neurodevelopment by regulating the maintenance of the neural progenitor cell pool and inhibiting neuronal differentiation. In this study, we evaluated whether mice lacking the NF-κB p50 subunit (KO) present alterations in cortical structure and associated behavioral impairment. We found that, compared with wild type (WT), KO mice at postnatal day 2 present an increase in radial glial cells, an increase in Reelin protein expression levels, in addition to an increase of specific layer thickness. Moreover, adult KO mice display abnormal columnar organization in the somatosensory cortex, a specific decrease in somatostatin- and parvalbumin-expressing interneurons, altered neurite orientation, and a decrease in Synapsin I protein levels. Concerning behavior, KO mice, in addition to an increase in locomotor and exploratory activity, display impairment in social behaviors, with a reduction in social interaction. Finally, we found that risperidone treatment decreased hyperactivity of KO mice, but had no effect on defective social interaction. Altogether, these data add complexity to a growing body of data, suggesting a link between dysregulation of the NF-κB pathway and neurodevelopmental disorders pathogenesis. PMID:26946128

  18. Structure and function of soil microbial community in artificially planted Sonneratia apetala and S. caseolaris forests at different stand ages in Shenzhen Bay, China.

    PubMed

    Yang, Q; Lei, A P; Li, F L; Liu, L N; Zan, Q J; Shin, P K S; Cheung, S G; Tam, N F Y

    2014-08-30

    The present study examined the relationships between soil characteristics, microbial community structure and function in the forests artificially planted with exotic Sonneratia apetala at stand ages of 1-, 2-, 7-, 10- and 14-years and Sonneratia caseolaris of 1-, 4-, 7-, 10- and 14-years in Futian National Nature Reserve, Shenzhen Bay, China. The 7-years old forests of both Sonneratia species reached peak growth and had the highest content of nitrogen and phosphorus, enzymatic activities, including dehydrogenase, cellulase, phosphatase, urease and ß-glucosidase, except arylsulphatase which increased continuously with stand ages. The microbial community structure reflected by phospholipid fatty acid (PLFA) profiles also reached the maximum value in the 7-years old forests and soil bacterial PLFAs in both forests were significantly higher than fungal PLFAs. The canonical correlation analysis revealed that differences in microbial structural variables were significantly correlated to the differences in their functional variables, and the highest correlation was found between the soil enzymatic activities and the content of carbon and nitrogen. PMID:24629377

  19. Demonstration of structural alterations in experimental corneal infectious model using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Lo, Wen; Tan, Hsin-Yuan; Chang, Yuh-Ling; Sun, Yen; Lin, Sung-Jan; Jee, Shiou-Hwa; Dong, Chen-Yuan

    2007-02-01

    The aim of this study is to assess the application of multiphoton autofluorescence and second harmonic generation (SHG) microscopy for investigating the structural alterations and the pattern of microbial spreading during corneal infectious process in an in vitro organ culture model. The autofluorescence spectrum derived from pathogens allows us to monitoring the pattern of microbial spreading within corneal lamellae. In addition, the destruction and regeneration of second harmonic generating collagen during infectious process can also be monitored in a non-invasive fashion. Therefore we propose that multiphoton microscopy may potentially be applied as an effective monitoring tool for corneal infection studies.

  20. Does methyl isocyante interaction with normal hemoglobin alter its structure and function

    SciTech Connect

    Jeevaratnam, K. ); Vaidyanathan, C.S. )

    1992-01-01

    The predominant biological effect of methyl isocyanate (MIC) intoxication in mammals is severe tissue hypoxia leading to acute lactic acidosis. In rabbits administered MIC subcutaneously (s.c.) the hypoxia was shown to be of the stagnant type resulting from hypovolemic hypotension. The occurrence of carbamylation of Hb by MIC in vivo was demonstrated unequivocally. Furthermore, the characteristic observation, dark red colored (cherry red) blood in animals exposed to MIC remained unexplained. This prompted the authors to investigate whether MIC exposure caused an alteration in structure and/or function of normal Hb leading to tissue hypoxia and the change in the color of the blood.

  1. The research on the surface structure and conductivity of free-standing diamond films for photo-transistor applications

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Xiao, Qi; Wang, Lin-jun; Zeng, Qing-kai; Huang, Jian; Tang, Ke; Zhang, Ji-jun; Min, Jia-hua; Shi, Wei-min; Xia, Yi-ben

    2009-07-01

    Free-standing polycrystalline diamond films with a thickness of about 200 μm were grown by microwave plasma chemical vapor deposition (MPCVD) method. Raman spectra indicated high quality diamond film of the nucleation surface. AFM result indicated the nucleation surface was quite smooth with a mean surface roughness (RMS) of about 10 nm. The sheet carrier densities and sheet resistivities of hydrogenated nucleation surfaces of diamond film under different annealing temperatures were investigated by Hall effect measurement. The sheet carrier density and sheet resistivity remained in a relatively stable range until the annealing temperature above 200 ºC, and the sheet carrier density dropped drastically and sheet resistivity rose sharply, achieving a sharp change at an annealing temperature of 250 °C. The ultra-violet Raman spectra and infrared spectra showed CHx stretching modes at the hydrogenated nucleation surface, whereas almost little hydrogen incorporation on annealed sample.

  2. Consumer return chronology alters recovery trajectory of stream ecosystem structure and function following drought.

    PubMed

    Murdock, Justin N; Gido, Keith B; Dodds, Walter K; Bertrand, Katie N; Whiles, Matt R

    2010-04-01

    Consumers are increasingly being recognized as important drivers of ecological succession, yet it is still hard to predict the nature and direction of consumer effects in nonequilibrium environments. We used stream consumer exclosures and large outdoor mesocosms to study the impact of macroconsumers (i.e., fish and crayfish) on recovery of intermittent prairie streams after drying. In the stream, macroconsumers altered system recovery trajectory by decreasing algal and macroinvertebrate biomass, primary productivity, and benthic nutrient uptake rates. However, macroconsumer influence was transient, and differences between exclosures and controls disappeared after 35 days. Introducing and removing macroconsumers after 28 days resulted mainly in changes to macroinvertebrates. In mesocosms, a dominant consumer (the grazing minnow Phoxinus erythrogaster) reduced macroinvertebrate biomass but had little effect on algal assemblage structure and ecosystem rates during recovery. The weak effect of P. erythrogaster in mesocosms, in contrast to the strong consumer effect in the natural stream, suggests that both timing and diversity of returning consumers are important to their overall influence on stream recovery patterns. Although we found that consumers significantly altered ecosystem structure and function in a system experiencing rapid changes in abiotic and biotic factors following disturbance, consumer effects diminished over time and trajectories converged to similar states with respect to primary producers, in spite of differences in consumer colonization history. Thus, consumer impacts can be substantial in recovering ecosystems and are likely to be dependent on the disturbance regime and diversity of the consumer community. PMID:20462119

  3. Brain structural and functional alterations in patients with unilateral hearing loss.

    PubMed

    Yang, Ming; Chen, Hua-Jun; Liu, Bin; Huang, Zhi-Chun; Feng, Yuan; Li, Jing; Chen, Jing-Ya; Zhang, Ling-Ling; Ji, Hui; Feng, Xu; Zhu, Xin; Teng, Gao-Jun

    2014-10-01

    Alterations of brain structure and functional connectivity have been described in patients with hearing impairments due to distinct pathogenesis; however, the influence of unilateral hearing loss (UHL) on brain morphology and regional brain activity is still not completely understood. In this study, we aim to investigate regional brain structural and functional alterations in patients with UHL. T1-weighted volumetric images and task-free fMRIs were acquired from 14 patients with right-sided UHL (pure tone average ≥ 40 dB HL) and 19 healthy controls. Hearing ability was assessed by pure tone audiometry. Voxel-based morphometry (VBM) was performed to detect brain regions with changed gray matter volume or white matter volume in UHL. The amplitude of low-frequency fluctuation (ALFF) was calculated to analyze brain activity at the baseline and was compared between two groups. Compared with controls, UHL patients showed decreased gray matter volume in bilateral posterior cingulate gyrus and precuneus, left superior/middle/inferior temporal gyrus, and right parahippocampal gyrus and lingual gyrus. Meanwhile, patients showed significantly decreased ALFF in bilateral precuneus, left inferior parietal lobule, and right inferior frontal gyrus and insula and increased ALFF in right inferior and middle temporal gyrus. These findings suggest that chronic UHL could induce brain morphological changes and is associated with aberrant baseline brain activity. PMID:25093284

  4. Kelp forest size alters microbial community structure and function on Vancouver Island, Canada.

    PubMed

    Clasen, J L; Shurin, J B

    2015-03-01

    Bacteria are ubiquitous and important components of marine ecosystems, yet the interaction between bacteria and higher trophic levels remain poorly understood. The trophic cascade involving sea otters, urchins, and kelp in the North Pacific is a classic case of altered ecosystem states; however, its impacts on microbial communities are unknown. We investigated the response of microbial communities to variation in kelp abundance between regions with and without sea otter populations along the west coast of Vancouver Island, British Columbia, Canada. We compared bacterial community structure and function between regions with large and small kelp forests, including an subset of the bacterial community that produces alginate lyase, which allows direct utilization of kelp carbon. The abundance and activity of alginate-lyase-producing bacteria were 3.2 and 1.4 times higher, respectively, in the region with large kelp forests, and declined rapidly with increasing distance from kelp. Total bacterial abundance was 2.7 times greater, and bacteria grew faster and experienced more zooplankton grazing and viral-mediated mortality in the presence of large kelp forests. These patterns suggest that larger kelp forests produce more detritus and dissolved organic matter, which stimulate microbial activity. Our results indicate that variation in kelp forest size alters the community structure and productivity of microbes and contributes to the growing evidence that top predators interact with microbes and ecosystem processes through a cascade of indirect effects. PMID:26236881

  5. Chronic ethanol intake leads to structural and molecular alterations in the rat endometrium.

    PubMed

    Martinez, Marcelo; Milton, Flora A; Pinheiro, Patricia Fernanda F; Almeida-Francia, Camila C D; Cagnon-Quitete, Valeria H A; Tirapelli, Luiz F; Padovani, Carlos Roberto; Chuffa, Luiz Gustavo A; Martinez, Francisco Eduardo

    2016-05-01

    We described the effects of low- and high-dose ethanol intake on the structure and apoptosis signaling of the uterine endometrium of UChA and UChB rats (animals with voluntary ethanol consumption). Thirty adult female rats, 90 days old, were divided into three groups (n = 10/group): UChA rats fed with 10% (v/v) ethanol ad libitum (free choice for water or ethanol) drinking < 1.9 g/kg/day; UChB rats fed with 10% (v/v) ethanol ad libitum (free choice for water or ethanol) drinking from 2 to 5 g/kg/day; control rats without ethanol (only water). After 120 days of treatment, rats displaying estrus were euthanized. Uterine epithelial cells of the UCh rats showed dilated cisterns of the rough endoplasmic reticulum, presence of lipid droplets, altered nuclear chromatin, and disrupted mitochondria. The UCh rats exhibited intense atrophied epithelial cells with smaller areas and perimeters of cytoplasm and nuclei. The endometrium of UChA rats showed higher levels of caspase-3 while Xiap and Bcl2 varied from moderate to weak. Both UChA and UChB rats exhibited a stronger immunoreaction to Ki-67 and IGFR-1 on epithelial and stromal cells. Chronic ethanol intake leads to structural and molecular alterations in the uterine endometrium of UCh rats, regardless of low- or high-dose consumption, promoting reproductive disorders. PMID:27139238

  6. Chloroplast Structure and Function Is Altered in the NCS2 Maize Mitochondrial Mutant 1

    PubMed Central

    Roussell, Deborah L.; Thompson, Deborah L.; Pallardy, Steve G.; Miles, Donald; Newton, Kathleen J.

    1991-01-01

    The nonchromosomal stripe 2 (NCS2) mutant of maize (Zea mays L.) has a DNA rearrangement in the mitochondrial genome that segregates with the abnormal growth phenotype. Yet, the NCS2 characteristic phenotype includes striped sectors of pale-green tissue on the leaves. This suggests a chloroplast abnormality. To characterize the chloroplasts present in the mutant sectors, we examined the chloroplast structure by electron microscopy, chloroplast function by radiolabeled carbon dioxide fixation and fluorescence induction kinetics, and thylakoid protein composition by polyacrylamide gel electrophoresis. The data from these analyses suggest abnormal or prematurely arrested chloroplast development. Deleterious effects of the NCS2 mutant mitochondria upon the cells of the leaf include structural and functional alterations in the both the bundle sheath and mesophyll chloroplasts. ImagesFigure 1Figure 2Figure 3Figure 5Figure 6 PMID:16668157

  7. [Night sleep structural alteration as a function of individual strategy of adapting to 520-isolation].

    PubMed

    Zavalko, I M; Boritko, Ya S; Kovrov, G V; Vinokhodova, A G; Chekalina, A I; Smoleevsky, A E

    2014-01-01

    Purpose of the work was to establish a relationship between trends in sleep alteration and individual adaptation to the stress-factors in the 520-day isolation study. Psychological evaluations using a battery of motivation tests and L. Sobchik's modification of the Luscher personality test, and Mirror coordinograph enabled to differentiate groups reacting to the stress on the pattern of "control" (G-1) or "search" (G-2) manifested in individual styles of behavior and operator's activity. The 2 groups showed different dynamics of the night sleep structure. Difficulties with falling asleep in G-1 arose on the eve of "landing onto Mars" and end of the experiment, whereas in G-2 they were evident prior to the end only. Besides, the micro- and segmental sleep structures were more stable in G-1 suggesting the integrity of somnogenic mechanisms despite difficult sleep initiation. PMID:25033611

  8. Alterations in structure of elastic laminae of rat pulmonary arteries in hypoxic hypertension.

    PubMed

    Liu, S Q

    1996-11-01

    The effect of hypoxic hypertension on the remodeling process of the elastic laminae of the rat hilar pulmonary arteries (PAs) was studied by electron microscopy. Rats were exposed to hypoxia (10% O2) for periods of 0.5, 2,6,12,48,96,144, and 240 h. Changes in the structure of the PA elastic laminae were examined and analyzed with respect to changes in the PA wall tensile stress. The PA blood pressure increased rapidly within the first several hours of hypoxia and reached a stable level within 2 days, whereas the PA wall tensile stress increased initially due to elevated blood pressure and then decreased after 48 h due to vessel wall thickening and returned to the control level after 4 days. In association with these changes, the elastic laminae, which appeared homogeneous in normal control rats, changed into structures composed of randomly oriented filaments and edematous contents with an increase in the volume during the early period of hypoxia and regained their homogeneous appearance and normal volume after 4 days. The changes in the elastic laminae were correlated with changes in the tensile stress. These changes were associated with a transient decrease in the stiffness of the PAs. In hypoxic rats given nifedipine, no change was found in the blood pressure, the tensile stress, or the structure of the elastic laminae of the PAs despite continuous exposure to hypoxia. These results suggested that altered tensile stress in the PA wall played a critical role in the initiation and regulation of structural changes in the elastic laminae and that these changes might contribute to alterations in the mechanical properties of the PA in hypoxic hypertension. PMID:8941540

  9. Field-based experimental acidification alters fouling community structure and reduces diversity.

    PubMed

    Brown, Norah E M; Therriault, Thomas W; Harley, Christopher D G

    2016-09-01

    Increasing levels of CO2 in the atmosphere are affecting ocean chemistry, leading to increased acidification (i.e. decreased pH) and reductions in calcium carbonate saturation state. Many species are likely to respond to acidification, but the direction and magnitude of these responses will be based on interspecific and ontogenetic variation in physiology and the relative importance of calcification. Differential responses to ocean acidification (OA) among species will likely result in important changes in community structure and diversity. To characterize the potential impacts of OA on community composition and structure, we examined the response of a marine fouling community to experimental CO2 enrichment in field-deployed flow-through mesocosm systems. Acidification significantly altered the community structure by altering the relative abundance of species and reduced community variability, resulting in more homogenous biofouling communities from one experimental tile to the next both among and within the acidified mesocosms. Mussel (Mytilus trossulus) recruitment was reduced by over 30% in the elevated CO2 treatment compared to the ambient treatment by the end of the experiment. Strong differences in mussel cover (up to 40% lower in acidified conditions) developed over the second half of the 10-week experiment. Acidification did not appear to affect the mussel growth, as average mussel sizes were similar between treatments at the end of the experiment. Hydroid (Obelia dichotoma) cover was significantly reduced in the elevated CO2 treatment after 8 weeks. Conversely, the percentage cover of bryozoan colonies (Mebranipora membranacea) was higher under acidified conditions with differences becoming apparent after 6 weeks. Neither recruitment nor final size of barnacles (Balanus crenatus) was affected by acidification. By the end of the experiment, diversity was 41% lower in the acidified treatment relative to ambient conditions. Overall, our findings support the

  10. Canopy structural alterations to nitrogen functions of the soil microbial community in a Quercus virginiana forest

    NASA Astrophysics Data System (ADS)

    Moore, L. D.; Van Stan, J. T., II; Rosier, C. L.; Gay, T. E.; Wu, T.

    2014-12-01

    Forest canopy structure controls the timing, amount and chemical character of precipitation supply to soils through interception and drainage along crown surfaces. Yet, few studies have examined forest canopy structural connections to soil microbial communities (SMCs), and none have measured how this affects SMC N functions. The maritime Quercus virginiana Mill. (southern live oak) forests of St Catherine's Island, GA, USA provide an ideal opportunity to examine canopy structural alterations to SMCs and their functioning, as their throughfall varies substantially across space due to dense Tillandsia usneoides L. (spanish moss) mats bestrewn throughout. To examine the impact of throughfall variability on SMC N functions, we examined points along the canopy coverage continuum: large canopy gaps (0%), bare canopy (50-60%), and canopy of heavy T. usneoides coverage (>=85%). Five sites beneath each of the canopy cover types were monitored for throughfall water/ions and soil leachates chemistry for one storm each month over the growing period (7 months, Mar-2014 to Sep-2014) to compare with soil chemistry and SMC communities sampled every two months throughout that same period (Mar, May, Jul, Sep). DGGE and QPCR analysis of the N functioning genes (NFGs) to characterize the ammonia oxidizing bacterial (AOB-amoA), archaea (AOA-amoA), and ammonification (chiA) communities were used to determine the nitrification and decomposition potential of these microbial communities. PRS™-probes (Western Ag Innovations Inc., Saskatoon, Canada) were then used to determine the availability of NO3-N and NH4+N in the soils over a 6-week period to evaluate whether the differing NFG abundance and community structures resulted in altered N cycling.

  11. Structural and alteration controls on gold mineralization the of the amphibolite facies Detour Lake Deposit, Canada

    NASA Astrophysics Data System (ADS)

    Dubosq, Renelle; Schneider, David

    2016-04-01

    The 15M oz Detour Lake deposit is a Neoarchean orogenic gold ore body located in the northern most region of the Abitibi district within the Superior Province. The mine is an open pit design in the high strain zone of the Sunday Lake Deformation Zone (SLDZ). The ductile-brittle SLDZ parallels the broadly E-W Abitibi greenstone belt and the deposit is situated in a dilation zone between volcanoclastic rocks of the Caopatina Assemblage and Lower Detour Lake Formation, consisting of ultramafic talc-chlorite-sericite schist. The Upper Detour Lake Formation consists of pillowed and massive flows and hyloclastic units crosscut by minor felsic to intermediate dykes. All of the formations are sub-vertical, north-dipping units with stretching lineations indicating dip-slip motion. The Detour deposit differs from other classic ore deposits in the dominantly greenschist facies Abitibi Subprovince by possessing an amphibolite facies metamorphic assemblage of actinolite-biotite-plagioclase-almandine. Consequently, the typical indicator minerals used to identify alteration and mineralization, such as secondary biotite, may not be useful. Petrological and geochemical analyses have revealed at least four populations of biotite: 1) large euhedral crystals located within quartz-carbonate veins, 2) small, euhedral zoned crystals present as alteration haloes, 3) very small, anhedral to subhedral indistinct crystal present in mafic volcanic host rock, and 4) large euhedral crystals defining the main metamorphic foliation in the metasediments. Extensive examination of mineral assemblages, alteration products, and vein structure in rock core across barren and mineralized zones has documented over a dozen vein types which can be grouped into two main categories: 1) sulfidized quartz-carbonate veins associated with biotite alteration and 2) late carbonate veins. Gold grades do not prove to be dependent on vein type but rather on the host rock composition: the highest ore grades are present

  12. Alterations of Functional and Structural Networks in Schizophrenia Patients with Auditory Verbal Hallucinations

    PubMed Central

    Zhu, Jiajia; Wang, Chunli; Liu, Feng; Qin, Wen; Li, Jie; Zhuo, Chuanjun

    2016-01-01

    Background: There have been many attempts at explaining the underlying neuropathological mechanisms of auditory verbal hallucinations (AVH) in schizophrenia on the basis of regional brain changes, with the most consistent findings being that AVH are associated with functional and structural impairments in auditory and speech-related regions. However, the human brain is a complex network and the global topological alterations specific to AVH in schizophrenia remain unclear. Methods: Thirty-five schizophrenia patients with AVH, 41 patients without AVH, and 50 healthy controls underwent resting-state functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI). The whole-brain functional and structural networks were constructed and analyzed using graph theoretical approaches. Inter-group differences in global network metrics (including small-world properties and network efficiency) were investigated. Results: We found that three groups had a typical small-world topology in both functional and structural networks. More importantly, schizophrenia patients with and without AVH exhibited common disruptions of functional networks, characterized by decreased clustering coefficient, global efficiency and local efficiency, and increased characteristic path length; structural networks of only schizophrenia patients with AVH showed increased characteristic path length compared with those of healthy controls. Conclusion: Our findings suggest that less “small-worldization” and lower network efficiency of functional networks may be an independent trait characteristic of schizophrenia, and regularization of structural networks may be the underlying pathological process engaged in schizophrenic AVH symptom expression. PMID:27014042

  13. Characterizing structural association alterations within brain networks in normal aging using Gaussian Bayesian networks

    PubMed Central

    Guo, Xiaojuan; Wang, Yan; Chen, Kewei; Wu, Xia; Zhang, Jiacai; Li, Ke; Jin, Zhen; Yao, Li

    2014-01-01

    Recent multivariate neuroimaging studies have revealed aging-related alterations in brain structural networks. However, the sensory/motor networks such as the auditory, visual and motor networks, have obtained much less attention in normal aging research. In this study, we used Gaussian Bayesian networks (BN), an approach investigating possible inter-regional directed relationship, to characterize aging effects on structural associations between core brain regions within each of these structural sensory/motor networks using volumetric MRI data. We then further examined the discriminability of BN models for the young (N = 109; mean age =22.73 years, range 20–28) and old (N = 82; mean age =74.37 years, range 60–90) groups. The results of the BN modeling demonstrated that structural associations exist between two homotopic brain regions from the left and right hemispheres in each of the three networks. In particular, compared with the young group, the old group had significant connection reductions in each of the three networks and lesser connection numbers in the visual network. Moreover, it was found that the aging-related BN models could distinguish the young and old individuals with 90.05, 73.82, and 88.48% accuracy for the auditory, visual, and motor networks, respectively. Our findings suggest that BN models can be used to investigate the normal aging process with reliable statistical power. Moreover, these differences in structural inter-regional interactions may help elucidate the neuronal mechanism of anatomical changes in normal aging. PMID:25324771

  14. Structural brain alterations in primary open angle glaucoma: a 3T MRI study

    PubMed Central

    Wang, Jieqiong; Li, Ting; Sabel, Bernhard A.; Chen, Zhiqiang; Wen, Hongwei; Li, Jianhong; Xie, Xiaobin; Yang, Diya; Chen, Weiwei; Wang, Ningli; Xian, Junfang; He, Huiguang

    2016-01-01

    Glaucoma is not only an eye disease but is also associated with degeneration of brain structures. We now investigated the pattern of visual and non-visual brain structural changes in 25 primary open angle glaucoma (POAG) patients and 25 age-gender-matched normal controls using T1-weighted imaging. MRI images were subjected to volume-based analysis (VBA) and surface-based analysis (SBA) in the whole brain as well as ROI-based analysis of the lateral geniculate nucleus (LGN), visual cortex (V1/2), amygdala and hippocampus. While VBA showed no significant differences in the gray matter volumes of patients, SBA revealed significantly reduced cortical thickness in the right frontal pole and ROI-based analysis volume shrinkage in LGN bilaterally, right V1 and left amygdala. Structural abnormalities were correlated with clinical parameters in a subset of the patients revealing that the left LGN volume was negatively correlated with bilateral cup-to-disk ratio (CDR), the right LGN volume was positively correlated with the mean deviation of the right visual hemifield, and the right V1 cortical thickness was negatively correlated with the right CDR in glaucoma. These results demonstrate that POAG affects both vision-related structures and non-visual cortical regions. Moreover, alterations of the brain visual structures reflect the clinical severity of glaucoma. PMID:26743811

  15. Structural Insight Into the Altered Substrate Specificity of Human Cytochrome P450 2a6 Mutants

    SciTech Connect

    Sansen, S.; Hsu, M.-H.; Stout, C.David.; Johnson, E.F.

    2007-07-12

    Human P450 2A6 displays a small active site that is well adapted for the oxidation of small planar substrates. Mutagenesis of CYP2A6 resulted in an increased catalytic efficiency for indole biotransformation to pigments and conferred a capacity to oxidize substituted indoles (Wu, Z.-L., Podust, L.M., Guengerich, F.P. J. Biol. Chem. 49 (2005) 41090-41100.). Here, we describe the structural basis that underlies the altered metabolic profile of three mutant enzymes, P450 2A6 N297Q, L240C/N297Q and N297Q/I300V. The Asn297 substitution abolishes a potential hydrogen bonding interaction with substrates in the active site, and replaces a structural water molecule between the helix B-C region and helix I while maintaining structural hydrogen bonding interactions. The structures of the P450 2A6 N297Q/L240C and N297Q/I300V mutants provide clues as to how the protein can adapt to fit the larger substituted indoles in the active site, and enable a comparison with other P450 family 2 enzymes for which the residue at the equivalent position was seen to function in isozyme specificity, structural integrity and protein flexibility.

  16. Structural and functional alterations to rat medial prefrontal cortex following chronic restraint stress and recovery

    PubMed Central

    Goldwater, Deena S.; Pavlides, Constantine; Hunter, Richard G.; Bloss, Erik B.; Hof, Patrick R.; McEwen, Bruce S.; Morrison, John H.

    2009-01-01

    Chronic stress has been shown in animal models to result in altered dendritic morphology of pyramidal neurons of the medial prefrontal cortex (mPFC). It has been hypothesized that the stress-induced dendritic retractions and spine loss lead to disrupted connectivity that results in stress-induced functional impairment of mPFC. While these alterations were initially viewed as a neurodegenerative event, it has recently been established that stress induced dendritic alterations are reversible if animals are given time to recover from chronic stress. However, whether spine growth accompanies dendritic extension remains to be demonstrated. It is also not known if recovery-phase dendritic extension allows for re-establishment of functional capacity. The goal of this study, therefore, was to characterize the structural and functional effects of chronic stress and recovery on the infralimbic (IL) region of the rat mPFC. We compared neuronal morphology of layer V IL pyramidal neurons from animals subjected to 21 days of chronic restraint stress (CRS) to those that experienced CRS followed by a 21 day recovery period. Layer V pyramidal cell functional capacity was assessed by intra-IL long-term potentiation (LTP) both in the absence and presence of SKF38393, a dopamine receptor partial agonist and a known PFC LTP modulator. We found that stress-induced IL apical dendritic retraction and spine loss co-occur with receptor-mediated impairments to catecholaminergic facilitation of synaptic plasticity. We also found that while post-stress recovery did not reverse distal dendritic retraction, it did result in over-extension of proximal dendritic neuroarchitecture and spine growth as well as a full reversal of CRS-induced impairments to catecholaminergic-mediated synaptic plasticity. Our results support the hypothesis that disease-related PFC dysfunction is a consequence of network disruption secondary to altered structural and functional plasticity and that circuitry

  17. Fabrication of thickness controllable free-standing sandwich-structured hybrid carbon film for high-rate and high-power supercapacitor.

    PubMed

    Wei, Helin; Wei, Sihang; Tian, Weifeng; Zhu, Daming; Liu, Yuhao; Yuan, Lili; Li, Xin

    2014-01-01

    Hybrid carbon films composed of graphene film and porous carbon film may give full play to the advantages of both carbon materials, and have great potential for application in energy storage and conversion devices. Unfortunately, there are very few reports on fabrication of hybrid carbon films. Here we demonstrate a simple approach to fabricate free-standing sandwich-structured hybrid carbon film composed of porous amorphous carbon film and multilayer graphene film by chemical vapor deposition in a controllable and scalable way. Hybrid carbon films reveal good electrical conductivity, excellent flexibility, and good compatibility with substrate. Supercapacitors assembled by hybrid carbon films exhibit ultrahigh rate capability, wide frequency range, good capacitance performance, and high-power density. Moreover, this approach may provide a general path for fabrication of hybrid carbon materials with different structures by using different metals with high carbon solubility, and greatly expands the application scope of carbon materials. PMID:25394410

  18. Fabrication of thickness controllable free-standing sandwich-structured hybrid carbon film for high-rate and high-power supercapacitor

    PubMed Central

    Wei, Helin; Wei, Sihang; Tian, Weifeng; Zhu, Daming; Liu, Yuhao; Yuan, Lili; Li, Xin

    2014-01-01

    Hybrid carbon films composed of graphene film and porous carbon film may give full play to the advantages of both carbon materials, and have great potential for application in energy storage and conversion devices. Unfortunately, there are very few reports on fabrication of hybrid carbon films. Here we demonstrate a simple approach to fabricate free-standing sandwich-structured hybrid carbon film composed of porous amorphous carbon film and multilayer graphene film by chemical vapor deposition in a controllable and scalable way. Hybrid carbon films reveal good electrical conductivity, excellent flexibility, and good compatibility with substrate. Supercapacitors assembled by hybrid carbon films exhibit ultrahigh rate capability, wide frequency range, good capacitance performance, and high-power density. Moreover, this approach may provide a general path for fabrication of hybrid carbon materials with different structures by using different metals with high carbon solubility, and greatly expands the application scope of carbon materials. PMID:25394410

  19. Packaging and structural phenotype of brome mosaic virus capsid protein with altered N-terminal {beta}-hexamer structure

    SciTech Connect

    Wispelaere, Melissanne de; Chaturvedi, Sonali; Wilkens, Stephan; Rao, A.L.N.

    2011-10-10

    The first 45 amino acid region of brome mosaic virus (BMV) capsid protein (CP) contains RNA binding and structural domains that are implicated in the assembly of infectious virions. One such important structural domain encompassing amino acids {sup 28}QPVIV{sup 32}, highly conserved between BMV and cowpea chlorotic mottle virus (CCMV), exhibits a {beta}-hexamer structure. In this study we report that alteration of the {beta}-hexamer structure by mutating {sup 28}QPVIV{sup 32} to {sup 28}AAAAA{sup 32} had no effect either on symptom phenotype, local and systemic movement in Chenopodium quinoa and RNA profile of in vivo assembled virions. However, sensitivity to RNase and assembly phenotypes distinguished virions assembled with CP subunits having {beta}-hexamer from those of wild type. A comparison of 3-D models obtained by cryo electron microscopy revealed overall similar structural features for wild type and mutant virions, with small but significant differences near the 3-fold axes of symmetry.

  20. Implications for faunal habitat related to altered macrophyte structure in regulated lakes in northern Minnesota

    USGS Publications Warehouse

    Wilcox, Douglas A.; Meeker, James E.

    1992-01-01

    Water-level regulation has altered the plant species composition and thus the structure of nearshore aquatic macrophyte communities in two regulated lakes in northern Minnesota as compared with a nearby unregulated lake. Results of previous faunal studies in the regulated lakes were used as a basis for assessing the effects of vegetation changes on faunal communities. The unregulated lake with mean annual water-level fluctuations of 1.6 m supported structurally diverse plant communities and varied faunal habitat at all depths studied. Mean annual fluctuations on one regulated lake were reduced to 1.1 m, and dense beds of four erect aquatic macrophytes dominated the 1.75-m depth that was never dewatered. We suggest that this lack of plant diversity and structural complexity resulted in diminished habitat for invertebrates, reduced availability of invertebrates as food for waterbirds and fish, reduced winter food supplies for muskrats, and reduced feeding efficiency for adult northern pike, yellow perch, and muskellunge. Mean annual fluctuations in the other regulated lake were increased to 2.7 m, and rosette and mat-forming species dominated the 1.25-m depth that was affected by winter drawdowns. We suggest that the lack of larger canopy plants resulted in poor habitat for invertebrates, reduced availability of invertebrates as food for waterbirds and fish, and poor nursery and adult feeding habitat for many species of fish. In addition, the timing and extent of winter drawdowns reduced access to macrophytes as food for muskrats and as spawning habitat for northern pike and yellow perch. In regulated lakes throughout the world, indirect effects on aquatic fauna resulting from alteration of wetland and aquatic macrophyte communities should be considered when water-level management plans are developed.

  1. Alteration of human serum albumin tertiary structure induced by glycation. Spectroscopic study.

    PubMed

    Szkudlarek, A; Maciążek-Jurczyk, M; Chudzik, M; Równicka-Zubik, J; Sułkowska, A

    2016-01-15

    The modification of human serum albumin (HSA) structure by non-enzymatic glycation is one of the underlying factors that contribute to the development of complications of diabetes and neurodegenerative diseases. The aim of the present work was to estimate how glycation of HSA altered its tertiary structure. Changes of albumin conformation were investigated by comparison of glycated (gHSA) and non-glycated human serum albumin (HSA) absorption spectra, red edge excitation shift (REES) and synchronous spectra. Effect of glycation on human serum albumin tertiary structure was also investigated by (1)H NMR spectroscopy. Formation of gHSA Advanced Glycation End-products (AGEs) caused absorption of UV-VIS light between 310 nm and 400 nm while for non-glycated HSA in this region no absorbance has been registered. Analysis of red edge excitation shift effect allowed for observation of structural changes of gHSA in the hydrophobic pocket containing the tryptophanyl residue. Moreover changes in the microenvironment of tryptophanyl and tyrosyl residues brought about AGEs on the basis of synchronous fluorescence spectroscopy have been confirmed. The influence of glycation process on serum albumin binding to 5-dimethylaminonaphthalene-1-sulfonamide (DNSA), 2-(p-toluidino) naphthalene-6-sulfonic acid (TNS), has been studied. Fluorescence analysis showed that environment of both binding site I and II is modified by galactose glycation. PMID:26433342

  2. Is higher serum cholesterol associated with altered tendon structure or tendon pain? A systematic review

    PubMed Central

    Tilley, Benjamin J; Cook, Jill L; Docking, Sean I; Gaida, James E

    2015-01-01

    Background Tendon pain occurs in individuals with extreme cholesterol levels (familial hypercholesterolaemia). It is unclear whether the association with tendon pain is strong with less extreme elevations of cholesterol. Objective To determine whether lipid levels are associated with abnormal tendon structure or the presence of tendon pain. Methods We conducted a systematic review and meta-analysis. Relevant articles were found through an electronic search of 6 medical databases—MEDLINE, Cochrane, AMED, EMBASE, Web of Science and Scopus. We included all case–control or cross-sectional studies with data describing (1) lipid levels or use of lipid-lowering drugs and (2) tendon structure or tendon pain. Results 17 studies (2612 participants) were eligible for inclusion in the review. People with altered tendon structure or tendon pain had significantly higher total cholesterol, low-density lipoprotein cholesterol and triglycerides, as well as lower high-density lipoprotein cholesterol; with mean difference values of 0.66, 1.00, 0.33, and −0.19 mmol/L, respectively. Conclusions The results of this review indicate that a relationship exists between an individual’s lipid profile and tendon health. However, further longitudinal studies are required to determine whether a cause and effect relationship exists between tendon structure and lipid levels. This could lead to advancement in the understanding of the pathoaetiology and thus treatment of tendinopathy. PMID:26474596

  3. The influence of preterm birth on structural alterations of the vision-deprived brain.

    PubMed

    Wan, Catherine Y; Wood, Amanda G; Chen, Jian; Wilson, Sarah J; Reutens, David C

    2013-04-01

    Differences in brain structures between blind and sighted individuals have not been widely investigated. Furthermore, existing studies have included individuals who were blinded by retinopathy of prematurity, a condition that is associated with premature birth. Recent pediatric research has reported structural differences in individuals who were born prematurely, suggesting that some of the structural abnormalities previously observed in blind individuals may be related to prematurity rather than being specific to blindness. In the present study, we used voxel-based morphometry to investigate gray and white matter differences between 24 blind and 16 sighted individuals. Of the blind individuals, six were born prematurely and 18 at term. Compared to those born at term, blind individuals born preterm showed differences in gray, but not white, matter volumes in various brain regions. When the preterm individuals were excluded from analysis, there were significant differences between blind and sighted individuals. Full-term blind individuals showed regional gray matter decreases in the cuneus, lingual gyrus, middle occipital gyrus, precuneus, inferior and superior parietal lobules, and the thalamus, and gray matter increases in the globus pallidus. They also showed regional white matter decreases in the cuneus, lingual gyrus, and the posterior cingulate. These differences were observed in blind individuals irrespective of blindness onset age, providing evidence for structural alterations in the mature brain. Our findings highlight the importance of considering the potential impact of premature birth on neurodevelopmental outcomes in studies of blind individuals. PMID:22591801

  4. Epileptic seizures induce structural and functional alterations on brain tissue membranes.

    PubMed

    Turker, Sevgi; Severcan, Mete; Ilbay, Gul; Severcan, Feride

    2014-12-01

    Epilepsy is characterized by disruption of balance between cerebral excitation and inhibition, leading to recurrent and unprovoked convulsions. Studies are still underway to understand mechanisms lying epileptic seizures with the aim of improving treatment strategies. In this context, the research on brain tissue membranes gains importance for generation of epileptic activities. In order to provide additional information for this field, we have investigated the effects of pentylenetetrazol-induced and audiogenetically susceptible epileptic seizures on structure, content and function of rat brain membrane components using Fourier transform infrared (FT-IR) spectroscopy. The findings have shown that both two types of epileptic seizures stimulate the variations in the molecular organization of membrane lipids, which have potential to influence the structures in connection with functions of membrane proteins. Moreover, less fluid lipid structure and a decline in content of lipids obtained from the ratio of CH3 asym/lipid, CH2 asym/lipid, CO/lipid, and olefinicCH/lipid and the areas of the PO2 symmetric and asymmetric modes were observed. Moreover, based on IR data the changes in the conformation of proteins were predicted by neural network (NN) analysis, and displayed as an increase in random coil despite a decrease in beta sheet. Depending on spectral parameters, we have successfully differentiated treated samples from the control by principal component analysis (PCA) and cluster analysis. In summary, FT-IR spectroscopy may offer promising attempt to identify compositional, structural and functional alterations in brain tissue membranes resulting from epileptic activities. PMID:25194682

  5. Alteration of human serum albumin tertiary structure induced by glycation. Spectroscopic study

    NASA Astrophysics Data System (ADS)

    Szkudlarek, A.; Maciążek-Jurczyk, M.; Chudzik, M.; Równicka-Zubik, J.; Sułkowska, A.

    2016-01-01

    The modification of human serum albumin (HSA) structure by non-enzymatic glycation is one of the underlying factors that contribute to the development of complications of diabetes and neurodegenerative diseases. The aim of the present work was to estimate how glycation of HSA altered its tertiary structure. Changes of albumin conformation were investigated by comparison of glycated (gHSA) and non-glycated human serum albumin (HSA) absorption spectra, red edge excitation shift (REES) and synchronous spectra. Effect of glycation on human serum albumin tertiary structure was also investigated by 1H NMR spectroscopy. Formation of gHSA Advanced Glycation End-products (AGEs) caused absorption of UV-VIS light between 310 nm and 400 nm while for non-glycated HSA in this region no absorbance has been registered. Analysis of red edge excitation shift effect allowed for observation of structural changes of gHSA in the hydrophobic pocket containing the tryptophanyl residue. Moreover changes in the microenvironment of tryptophanyl and tyrosyl residues brought about AGEs on the basis of synchronous fluorescence spectroscopy have been confirmed. The influence of glycation process on serum albumin binding to 5-dimethylaminonaphthalene-1-sulfonamide (DNSA), 2-(p-toluidino) naphthalene-6-sulfonic acid (TNS), has been studied. Fluorescence analysis showed that environment of both binding site I and II is modified by galactose glycation.

  6. Standing Tall: The Benefits of Standing Devices

    ERIC Educational Resources Information Center

    Warner, Mark P.

    2007-01-01

    In the author's opinion as a pediatric physical therapist, with the exception of a wheelchair, there is no other piece of assistive technology that is more beneficial to children and adults with special needs than a standing device. Postural symmetry during standing and walking activities is extremely important for everyone. Very few children…

  7. Molecular interactions alter clay and polymer structure in polymer clay nanocomposites.

    PubMed

    Sikdar, Debashis; Katti, Kalpana S; Katti, Dinesh R

    2008-04-01

    OMMTs with three different organic modifiers further confirm the change in structural orientation of silica tetrahedra of OMMTs by organic modifiers. Thus, from our work it is evident that organic modifiers have significant influence on the structure of polymer and clay in PCNs. It appears that in nanocomposites, in addition to strong interactions at interfaces between constituents, the structure of different phases (clay and polymer) of PCN are also altered, which does not occur in conventional composite materials. Thus, the mechanisms governing composite action in nanocomposites are quite different from that of conventional macro composites. PMID:18572562

  8. Vorinostat differentially alters 3D nuclear structure of cancer and non-cancerous esophageal cells

    PubMed Central

    Nandakumar, Vivek; Hansen, Nanna; Glenn, Honor L.; Han, Jessica H.; Helland, Stephanie; Hernandez, Kathryn; Senechal, Patti; Johnson, Roger H.; Bussey, Kimberly J.; Meldrum, Deirdre R.

    2016-01-01

    The histone deacetylase (HDAC) inhibitor vorinostat has received significant attention in recent years as an ‘epigenetic’ drug used to treat solid tumors. However, its mechanisms of action are not entirely understood, particularly with regard to its interaction with the aberrations in 3D nuclear structure that accompany neoplastic progression. We investigated the impact of vorinostat on human esophageal epithelial cell lines derived from normal, metaplastic (pre-cancerous), and malignant tissue. Using a combination of novel optical computed tomography (CT)-based quantitative 3D absorption microscopy and conventional confocal fluorescence microscopy, we show that subjecting malignant cells to vorinostat preferentially alters their 3D nuclear architecture relative to non-cancerous cells. Optical CT (cell CT) imaging of fixed single cells showed that drug-treated cancer cells exhibit significant alterations in nuclear morphometry. Confocal microscopy revealed that vorinostat caused changes in the distribution of H3K9ac-marked euchromatin and H3K9me3-marked constitutive heterochromatin. Additionally, 3D immuno-FISH showed that drug-induced expression of the DNA repair gene MGMT was accompanied by spatial relocation toward the center of the nucleus in the nuclei of metaplastic but not in non-neoplastic cells. Our data suggest that vorinostat’s differential modulation of 3D nuclear architecture in normal and abnormal cells could play a functional role in its anti-cancer action. PMID:27503568

  9. Maternal Hyperleptinemia Is Associated with Male Offspring’s Altered Vascular Function and Structure in Mice

    PubMed Central

    Pollock, Kelly E.; Talton, Omonseigho O.; Foote, Christopher A.; Reyes-Aldasoro, Constantino C.; Wu, Ho-Hsiang; Ji, Tieming; Martinez-Lemus, Luis A.; Schulz, Laura C.

    2016-01-01

    Children of mothers with gestational diabetes have greater risk of developing hypertension but little is known about the mechanisms by which this occurs. The objective of this study was to test the hypothesis that high maternal concentrations of leptin during pregnancy, which are present in mothers with gestational diabetes and/or obesity, alter blood pressure, vascular structure and vascular function in offspring. Wildtype (WT) offspring of hyperleptinemic, normoglycemic, Leprdb/+ dams were compared to genotype matched offspring of WT-control dams. Vascular function was assessed in male offspring at 6, and at 31 weeks of age after half the offspring had been fed a high fat, high sucrose diet (HFD) for 6 weeks. Blood pressure was increased by HFD but not affected by maternal hyperleptinemia. On a standard diet, offspring of hyperleptinemic dams had outwardly remodeled mesenteric arteries and an enhanced vasodilatory response to insulin. In offspring of WT but not Leprdb/+ dams, HFD induced vessel hypertrophy and enhanced vasodilatory responses to acetylcholine, while HFD reduced insulin responsiveness in offspring of hyperleptinemic dams. Offspring of hyperleptinemic dams had stiffer arteries regardless of diet. Therefore, while maternal hyperleptinemia was largely beneficial to offspring vascular health under a standard diet, it had detrimental effects in offspring fed HFD. These results suggest that circulating maternal leptin concentrations may interact with other factors in the pre- and post -natal environments to contribute to altered vascular function in offspring of diabetic pregnancies. PMID:27187080

  10. Vorinostat differentially alters 3D nuclear structure of cancer and non-cancerous esophageal cells.

    PubMed

    Nandakumar, Vivek; Hansen, Nanna; Glenn, Honor L; Han, Jessica H; Helland, Stephanie; Hernandez, Kathryn; Senechal, Patti; Johnson, Roger H; Bussey, Kimberly J; Meldrum, Deirdre R

    2016-01-01

    The histone deacetylase (HDAC) inhibitor vorinostat has received significant attention in recent years as an 'epigenetic' drug used to treat solid tumors. However, its mechanisms of action are not entirely understood, particularly with regard to its interaction with the aberrations in 3D nuclear structure that accompany neoplastic progression. We investigated the impact of vorinostat on human esophageal epithelial cell lines derived from normal, metaplastic (pre-cancerous), and malignant tissue. Using a combination of novel optical computed tomography (CT)-based quantitative 3D absorption microscopy and conventional confocal fluorescence microscopy, we show that subjecting malignant cells to vorinostat preferentially alters their 3D nuclear architecture relative to non-cancerous cells. Optical CT (cell CT) imaging of fixed single cells showed that drug-treated cancer cells exhibit significant alterations in nuclear morphometry. Confocal microscopy revealed that vorinostat caused changes in the distribution of H3K9ac-marked euchromatin and H3K9me3-marked constitutive heterochromatin. Additionally, 3D immuno-FISH showed that drug-induced expression of the DNA repair gene MGMT was accompanied by spatial relocation toward the center of the nucleus in the nuclei of metaplastic but not in non-neoplastic cells. Our data suggest that vorinostat's differential modulation of 3D nuclear architecture in normal and abnormal cells could play a functional role in its anti-cancer action. PMID:27503568

  11. Experience-dependent plasticity in white matter microstructure: reasoning training alters structural connectivity.

    PubMed

    Mackey, Allyson P; Whitaker, Kirstie J; Bunge, Silvia A

    2012-01-01

    Diffusion tensor imaging (DTI) techniques have made it possible to investigate white matter plasticity in humans. Changes in DTI measures, principally increases in fractional anisotropy (FA), have been observed following training programs as diverse as juggling, meditation, and working memory. Here, we sought to test whether three months of reasoning training could alter white matter microstructure. We recruited participants (n = 23) who were enrolled in a course to prepare for the Law School Admission Test (LSAT), a test that places strong demands on reasoning skills, as well as age- and IQ-matched controls planning to take the LSAT in the future (n = 22). DTI data were collected at two scan sessions scheduled three months apart. In trained participants but not controls, we observed decreases in radial diffusivity (RD) in white matter connecting frontal cortices, and in mean diffusivity (MD) within frontal and parietal lobe white matter. Further, participants exhibiting larger gains on the LSAT exhibited greater decreases in MD in the right internal capsule. In summary, reasoning training altered multiple measures of white matter structure in young adults. While the cellular underpinnings are unknown, these results provide evidence of experience-dependent white matter changes that may not be limited to myelination. PMID:22936899

  12. Experience-dependent plasticity in white matter microstructure: reasoning training alters structural connectivity

    PubMed Central

    Mackey, Allyson P.; Whitaker, Kirstie J.; Bunge, Silvia A.

    2012-01-01

    Diffusion tensor imaging (DTI) techniques have made it possible to investigate white matter plasticity in humans. Changes in DTI measures, principally increases in fractional anisotropy (FA), have been observed following training programs as diverse as juggling, meditation, and working memory. Here, we sought to test whether three months of reasoning training could alter white matter microstructure. We recruited participants (n = 23) who were enrolled in a course to prepare for the Law School Admission Test (LSAT), a test that places strong demands on reasoning skills, as well as age- and IQ-matched controls planning to take the LSAT in the future (n = 22). DTI data were collected at two scan sessions scheduled three months apart. In trained participants but not controls, we observed decreases in radial diffusivity (RD) in white matter connecting frontal cortices, and in mean diffusivity (MD) within frontal and parietal lobe white matter. Further, participants exhibiting larger gains on the LSAT exhibited greater decreases in MD in the right internal capsule. In summary, reasoning training altered multiple measures of white matter structure in young adults. While the cellular underpinnings are unknown, these results provide evidence of experience-dependent white matter changes that may not be limited to myelination. PMID:22936899

  13. Tension-dependent structural deformation alters single-molecule transition kinetics

    PubMed Central

    Sudhanshu, B.; Mihardja, S.; Koslover, E. F.; Mehraeen, S.; Bustamante, C.; Spakowitz, A. J.

    2011-01-01

    We analyze the response of a single nucleosome to tension, which serves as a prototypical biophysical measurement where tension-dependent deformation alters transition kinetics. We develop a statistical-mechanics model of a nucleosome as a wormlike chain bound to a spool, incorporating fluctuations in the number of bases bound, the spool orientation, and the conformations of the unbound polymer segments. With the resulting free-energy surface, we perform dynamic simulations that permit a direct comparison with experiments. This simple approach demonstrates that the experimentally observed structural states at nonzero tension are a consequence of the tension and that these tension-induced states cease to exist at zero tension. The transitions between states exhibit substantial deformation of the unbound polymer segments. The associated deformation energy increases with tension; thus, the application of tension alters the kinetics due to tension-induced deformation of the transition states. This mechanism would arise in any system where the tether molecule is deformed in the transition state under the influence of tension. PMID:21245354

  14. Tension-dependent structural deformation alters single-molecule transition kinetics.

    PubMed

    Sudhanshu, B; Mihardja, S; Koslover, E F; Mehraeen, S; Bustamante, C; Spakowitz, A J

    2011-02-01

    We analyze the response of a single nucleosome to tension, which serves as a prototypical biophysical measurement where tension-dependent deformation alters transition kinetics. We develop a statistical-mechanics model of a nucleosome as a wormlike chain bound to a spool, incorporating fluctuations in the number of bases bound, the spool orientation, and the conformations of the unbound polymer segments. With the resulting free-energy surface, we perform dynamic simulations that permit a direct comparison with experiments. This simple approach demonstrates that the experimentally observed structural states at nonzero tension are a consequence of the tension and that these tension-induced states cease to exist at zero tension. The transitions between states exhibit substantial deformation of the unbound polymer segments. The associated deformation energy increases with tension; thus, the application of tension alters the kinetics due to tension-induced deformation of the transition states. This mechanism would arise in any system where the tether molecule is deformed in the transition state under the influence of tension. PMID:21245354

  15. Alterations in Brain Structure and Functional Connectivity in Alcohol Dependent Patients and Possible Association with Impulsivity

    PubMed Central

    Dong, Yue; Ma, Mengying; Ma, Yi; Dong, Yuru; Niu, Yajuan; Jiang, Yin; Wang, Hong; Wang, Zhiyan; Wu, Liuzhen; Sun, Hongqiang; Cui, Cailian

    2016-01-01

    Background Previous studies have documented that heightened impulsivity likely contributes to the development and maintenance of alcohol use disorders. However, there is still a lack of studies that comprehensively detected the brain changes associated with abnormal impulsivity in alcohol addicts. This study was designed to investigate the alterations in brain structure and functional connectivity associated with abnormal impulsivity in alcohol dependent patients. Methods Brain structural and functional magnetic resonance imaging data as well as impulsive behavior data were collected from 20 alcohol dependent patients and 20 age- and sex-matched healthy controls respectively. Voxel-based morphometry was used to investigate the differences of grey matter volume, and tract-based spatial statistics was used to detect abnormal white matter regions between alcohol dependent patients and healthy controls. The alterations in resting-state functional connectivity in alcohol dependent patients were examined using selected brain areas with gray matter deficits as seed regions. Results Compared with healthy controls, alcohol dependent patients had significantly reduced gray matter volume in the mesocorticolimbic system including the dorsal posterior cingulate cortex, the dorsal anterior cingulate cortex, the medial prefrontal cortex, the orbitofrontal cortex and the putamen, decreased fractional anisotropy in the regions connecting the damaged grey matter areas driven by higher radial diffusivity value in the same areas and decreased resting-state functional connectivity within the reward network. Moreover, the gray matter volume of the left medial prefrontal cortex exhibited negative correlations with various impulse indices. Conclusions These findings suggest that chronic alcohol dependence could cause a complex neural changes linked to abnormal impulsivity. PMID:27575491

  16. Evasion of Innate Immune Responses by the Highly Virulent Cryptococcus gattii by Altering Capsule Glucuronoxylomannan Structure

    PubMed Central

    Urai, Makoto; Kaneko, Yukihiro; Ueno, Keigo; Okubo, Yoichiro; Aizawa, Tomoko; Fukazawa, Hidesuke; Sugita, Takashi; Ohno, Hideaki; Shibuya, Kazutoshi; Kinjo, Yuki; Miyazaki, Yoshitsugu

    2016-01-01

    Cryptococcus neoformans causes life-threatening diseases mainly in immunosuppressed hosts such as AIDS patients; C. gattii causes disseminated infections even in healthy hosts. To identify the possible molecular mechanisms underlying this difference in virulence, we investigated the survival and histopathology of lung tissue in wild-type and CD4-depleted mice infected with C. neoformans H99 and C. gattii JP02 (the highly virulent strain isolated in Japan); we then compared dendritic cell (DC) cytokine release responses to different cell fractions from these two strains. JP02-infected mice exhibited shorter survival and fewer inflammatory cells in the lung than H99-infected control mice. Depletion of CD4-related cellular immunity reduced survival of H99-infected mice but had no effect on the survival or inflammatory cell infiltration in JP02-infected mice, suggesting that JP02 evades immune detection. To identify the molecule(s) conferring this difference, we measured cytokine production from murine DCs co-cultured with H99 and JP02 in vitro. The levels of inflammatory cytokines from DCs treated with intact JP02 cells, the extracted capsule, secreted extracellular polysaccharides, and purified glucuronoxylomannan (GXM) were markedly lower than those induced by intact H99 cells and corresponding H99 fractions. Structural analysis of GXM indicated that JP02 altered one of two O-acetyl groups detected in the H99 GXM. Deacetylated GXM lost the ability to induce inflammatory cytokine release from DCs, implicating these O-acetyl groups in immune recognition. We conclude that the highly virulent C. gattii processes a structural alteration in GXM that allows this pathogen to evade the immune response and therefore elimination. PMID:26779451

  17. Histone H3 phosphorylation near the nucleosome dyad alters chromatin structure

    PubMed Central

    North, Justin A.; Šimon, Marek; Ferdinand, Michelle B.; Shoffner, Matthew A.; Picking, Jonathan W.; Howard, Cecil J.; Mooney, Alex M.; van Noort, John; Poirier, Michael G.; Ottesen, Jennifer J.

    2014-01-01

    Nucleosomes contain ∼146 bp of DNA wrapped around a histone protein octamer that controls DNA accessibility to transcription and repair complexes. Posttranslational modification (PTM) of histone proteins regulates nucleosome function. To date, only modest changes in nucleosome structure have been directly attributed to histone PTMs. Histone residue H3(T118) is located near the nucleosome dyad and can be phosphorylated. This PTM destabilizes nucleosomes and is implicated in the regulation of transcription and repair. Here, we report gel electrophoretic mobility, sucrose gradient sedimentation, thermal disassembly, micrococcal nuclease digestion and atomic force microscopy measurements of two DNA–histone complexes that are structurally distinct from nucleosomes. We find that H3(T118ph) facilitates the formation of a nucleosome duplex with two DNA molecules wrapped around two histone octamers, and an altosome complex that contains one DNA molecule wrapped around two histone octamers. The nucleosome duplex complex forms within short ∼150 bp DNA molecules, whereas altosomes require at least ∼250 bp of DNA and form repeatedly along 3000 bp DNA molecules. These results are the first report of a histone PTM significantly altering the nucleosome structure. PMID:24561803

  18. Structural alterations of adhesion mediating components in cells cultured on poly-beta-hydroxy butyric acid.

    PubMed

    Nebe, B; Forster, C; Pommerenke, H; Fulda, G; Behrend, D; Bernewski, U; Schmitz, K P; Rychly, J

    2001-09-01

    Polymers may serve as a biodegradable material in tissue engineering. To assess the biocompatibility of poly-beta-hydroxy butyric acid (PHB), we studied the structural organization of cellular molecules involved in adhesion using osteoblastic and epithelial cell lines. On PHB, both cell lines revealed a rounded cell shape due to reduced spreading. The filamentous organization of the actin cytoskeleton was impaired. In double immunofluorescence analyses we demostrated that the colocalization of the fibronectin fibrils with the actin filaments was lost in cultures on PHB. Similarly, collagen II distribution was altered, whereas the organization of collagen I was not obviously affected. Further evidence for impaired structural organization was obtained for the beta1-integrin receptor and vinculin which mediate the interaction of the cytoskeleton with the extracellular matrix. In confluent epithelial cells, the tight junction protein ZO-1 showed a larger lateral extension in the cell-cell contacts when cells were grown on PHB. Because structural organization of components which mediate cell-matrix and cell-cell adhesion controls cell physiology these parameters could be a sensitive indicator for the biocompatibility of implant materials. PMID:11511040

  19. Brain Structural Alterations in Obsessive-Compulsive Disorder Patients with Autogenous and Reactive Obsessions

    PubMed Central

    Subirà, Marta; Alonso, Pino; Segalàs, Cinto; Real, Eva; López-Solà, Clara; Pujol, Jesús; Martínez-Zalacaín, Ignacio; Harrison, Ben J.; Menchón, José M.; Cardoner, Narcís; Soriano-Mas, Carles

    2013-01-01

    Obsessive-compulsive disorder (OCD) is a clinically heterogeneous condition. Although structural brain alterations have been consistently reported in OCD, their interaction with particular clinical subtypes deserves further examination. Among other approaches, a two-group classification in patients with autogenous and reactive obsessions has been proposed. The purpose of the present study was to assess, by means of a voxel-based morphometry analysis, the putative brain structural correlates of this classification scheme in OCD patients. Ninety-five OCD patients and 95 healthy controls were recruited. Patients were divided into autogenous (n = 30) and reactive (n = 65) sub-groups. A structural magnetic resonance image was acquired for each participant and pre-processed with SPM8 software to obtain a volume-modulated gray matter map. Whole-brain and voxel-wise comparisons between the study groups were then performed. In comparison to the autogenous group, reactive patients showed larger gray matter volumes in the right Rolandic operculum. When compared to healthy controls, reactive patients showed larger volumes in the putamen (bilaterally), while autogenous patients showed a smaller left anterior temporal lobe. Also in comparison to healthy controls, the right middle temporal gyrus was smaller in both patient subgroups. Our results suggest that autogenous and reactive obsessions depend on partially dissimilar neural substrates. Our findings provide some neurobiological support for this classification scheme and contribute to unraveling the neurobiological basis of clinical heterogeneity in OCD. PMID:24098688

  20. Structural basis for the alteration of coenzyme specificity in a malate dehydrogenase mutant

    SciTech Connect

    Tomita, Takeo; Fushinobu, Shinya; Kuzuyama, Tomohisa; Nishiyama, Makoto . E-mail: umanis@mail.ecc.u-tokyo.ac.jp

    2006-08-25

    To elucidate the structural basis for the alteration of coenzyme specificity from NADH toward NADPH in a malate dehydrogenase mutant EX7 from Thermus flavus, we determined the crystal structures at 2.0 A resolution of EX7 complexed with NADPH and NADH, respectively. In the EX7-NADPH complex, Ser42 and Ser45 form hydrogen bonds with the 2'-phosphate group of the adenine ribose of NADPH, although the adenine moiety is not seen in the electron density map. In contrast, although Ser42 and Ser45 occupy a similar position in the EX7-NADH complex structure, both the adenine and adenine ribose moieties of NADH are missing in the map. These results and kinetic analysis of site-directed mutant enzymes indicate (1) that the preference of EX7 for NADPH over NADH is ascribed to the recognition of the 2'-phosphate group by two Ser and Arg44, and (2) that the adenine moiety of NADPH is not recognized in this mutant.

  1. Early-Life Seizures Produce Lasting Alterations in the Structure and Function of the Prefrontal Cortex

    PubMed Central

    Kleen, Jonathan K.; Sesqué, Alexandre; Wu, Edie X.; Miller, Forrest A.; Hernan, Amanda E.; Holmes, Gregory L.; Scott, Rod C.

    2011-01-01

    Early-life seizures (ELS) are associated with long-term behavioral disorders including autism and ADHD, suggesting that frontal lobe structures may be permanently affected. We tested whether ELS produce structural alterations in the prefrontal cortex (PFC) and impair PFC-mediated function using an operant task of behavioral flexibility in rats. Adult rats that had been exposed to 75 flurothyl seizures during postnatal days 1–10 showed decreased behavioral flexibility in the task compared to controls over multiple behavioral sessions, measured as a lever preference asymmetry (p<0.001) and a decreased efficiency of attaining food rewards (p<0.05). ELS rats also showed an increased thickness of the PFC (p<0.01), primarily attributed to layer V (p<0.01) with no differences in cell density. These structural changes correlated with lever preference behavioral impairments (p<0.05). This study demonstrates that the consequences of ELS extend to the PFC, which may help explain the high prevalence of comorbid behavioral disorders following ELS. PMID:21873119

  2. Resources Alter the Structure and Increase Stochasticity in Bromeliad Microfauna Communities

    PubMed Central

    Petermann, Jana S.; Kratina, Pavel; Marino, Nicholas A. C.; MacDonald, A. Andrew M.; Srivastava, Diane S.

    2015-01-01

    Although stochastic and deterministic processes have been found to jointly shape structure of natural communities, the relative importance of both forces may vary across different environmental conditions and across levels of biological organization. We tested the effects of abiotic environmental conditions, altered trophic interactions and dispersal limitation on the structure of aquatic microfauna communities in Costa Rican tank bromeliads. Our approach combined natural gradients in environmental conditions with experimental manipulations of bottom-up interactions (resources), top-down interactions (predators) and dispersal at two spatial scales in the field. We found that resource addition strongly increased the abundance and reduced the richness of microfauna communities. Community composition shifted in a predictable way towards assemblages dominated by flagellates and ciliates but with lower abundance and richness of algae and amoebae. While all functional groups responded strongly and predictably to resource addition, similarity among communities at the species level decreased, suggesting a role of stochasticity in species-level assembly processes. Dispersal limitation did not affect the communities. Since our design excluded potential priority effects we can attribute the differences in community similarity to increased demographic stochasticity of resource-enriched communities related to erratic changes in population sizes of some species. In contrast to resources, predators and environmental conditions had negligible effects on community structure. Our results demonstrate that bromeliad microfauna communities are strongly controlled by bottom-up forces. They further suggest that the relative importance of stochasticity may change with productivity and with the organizational level at which communities are examined. PMID:25775464

  3. Resources alter the structure and increase stochasticity in bromeliad microfauna communities.

    PubMed

    Petermann, Jana S; Kratina, Pavel; Marino, Nicholas A C; MacDonald, A Andrew M; Srivastava, Diane S

    2015-01-01

    Although stochastic and deterministic processes have been found to jointly shape structure of natural communities, the relative importance of both forces may vary across different environmental conditions and across levels of biological organization. We tested the effects of abiotic environmental conditions, altered trophic interactions and dispersal limitation on the structure of aquatic microfauna communities in Costa Rican tank bromeliads. Our approach combined natural gradients in environmental conditions with experimental manipulations of bottom-up interactions (resources), top-down interactions (predators) and dispersal at two spatial scales in the field. We found that resource addition strongly increased the abundance and reduced the richness of microfauna communities. Community composition shifted in a predictable way towards assemblages dominated by flagellates and ciliates but with lower abundance and richness of algae and amoebae. While all functional groups responded strongly and predictably to resource addition, similarity among communities at the species level decreased, suggesting a role of stochasticity in species-level assembly processes. Dispersal limitation did not affect the communities. Since our design excluded potential priority effects we can attribute the differences in community similarity to increased demographic stochasticity of resource-enriched communities related to erratic changes in population sizes of some species. In contrast to resources, predators and environmental conditions had negligible effects on community structure. Our results demonstrate that bromeliad microfauna communities are strongly controlled by bottom-up forces. They further suggest that the relative importance of stochasticity may change with productivity and with the organizational level at which communities are examined. PMID:25775464

  4. Neural networks, brainwaves, and ionic structures: acupuncture vs. altered states of consciousness.

    PubMed

    Rakovic, D

    1991-01-01

    It is shown that neural networks with embedded "brainwaves" can cross the gap between the fast parallel unconscious mode of neuroscience and the slow serial conscious mode of psychology. The electromagnetic (EM) component of ultra low frequency (ULF) "brainwaves" appears to enable perfect fitting with narrowed limits of conscious capacity in normal awake states and very extended limits in altered states of consciousness - due to the biophysical relativistic mechanism of dilated subjective time base. An additional complex low-dielectric (epsilon r approximately 1) structure is also necessary in these processes. This structure can be related to a displaced (from the body) part of acupuncture ionic system which can conduct ULF brainwave currents approximately 10(-7) A, inside the conductive channels of the initial ionic concentration approximately 10(-15) cm-3, with a tendency of deterioration during a period of approximately 1 hour. It provides an extraordinary biophysical basis for traditional psychology, including trans-personal experiences down to the ultimate state of thoughtless consciousness. Notions, such as "qi", "subtle body", and "causal body", are physically inevitably associated with ions, displaced (from the body) part of acupuncture ionic structure, and in it embedded an EM component of ULF brainwaves, respectively. PMID:1685625

  5. Is pancreatic exocrine insufficiency in celiac disease related to structural alterations in pancreatic parenchyma?

    PubMed Central

    Rana, Surinder S.; Dambalkar, Arvind; Chhabra, Puneet; Sharma, Ravi; Nada, Ritambhra; Sharma, Vishal; Rana, Satyavati; Bhasin, Deepak K.

    2016-01-01

    Background Although exocrine pancreatic insufficiency (EPI) has been reported in a number of patients with celiac disease (CD), it is not clear if this is primarily a functional or a structural defect. We studied pancreatic structural abnormalities by endoscopic ultrasound (EUS) in adult CD patients with EPI. Methods Pancreatic exocrine function was prospectively assessed in 36 recently diagnosed CD patients (mean age: 29.8 years) by measuring fecal elastase. Pancreatic structural changes were assessed in CD patients with EPI by EUS and elastography. Exocrine functions were reassessed after 3 months of gluten-free diet. Results Of the 36 CD patients included, 30 (83%) had anemia, 21 (58%) diarrhea, and 7 (19%) hypothyroidism. Ten (28%) patients had EPI with mean elastase levels of 141.6 μg/g of stool, of whom only one had a history of recurrent acute pancreatitis while the rest 9 patients had no history of acute or chronic pancreatitis. Of these 10 patients, 8 (80%) had diarrhea, 8 (80%) anemia, and 2 (20%) hypothyroidism. EUS was done in 8 patients which showed: normal pancreas in 5 (50%), hyperechoic strands in 3 (30%), and hyperechoic foci without shadowing in 2 (20%) patients. None had lobularity or parenchymal calcification. All patients except the patient with recurrent pancreatitis had normal strain ratio. Follow-up fecal elastase was within normal range in 6 of 7 (86%) patients. Conclusion EPI, assessed by fecal elastase levels in adult CD patients, possibly does not relate to structural alterations in the pancreatic parenchyma and may be reversible by following a gluten-free diet. PMID:27366039

  6. Bioturbating shrimp alter the structure and diversity of bacterial communities in coastal marine sediments.

    PubMed

    Laverock, Bonnie; Smith, Cindy J; Tait, Karen; Osborn, A Mark; Widdicombe, Steve; Gilbert, Jack A

    2010-12-01

    Bioturbation is a key process in coastal sediments, influencing microbially driven cycling of nutrients as well as the physical characteristics of the sediment. However, little is known about the distribution, diversity and function of the microbial communities that inhabit the burrows of infaunal macroorganisms. In this study, terminal-restriction fragment length polymorphism analysis was used to investigate variation in the structure of bacterial communities in sediment bioturbated by the burrowing shrimp Upogebia deltaura or Callianassa subterranea. Analyses of 229 sediment samples revealed significant differences between bacterial communities inhabiting shrimp burrows and those inhabiting ambient surface and subsurface sediments. Bacterial communities in burrows from both shrimp species were more similar to those in surface-ambient than subsurface-ambient sediment (R=0.258, P<0.001). The presence of shrimp was also associated with changes in bacterial community structure in surrounding surface sediment, when compared with sediments uninhabited by shrimp. Bacterial community structure varied with burrow depth, and also between individual burrows, suggesting that the shrimp's burrow construction, irrigation and maintenance behaviour affect the distribution of bacteria within shrimp burrows. Subsequent sequence analysis of bacterial 16S rRNA genes from surface sediments revealed differences in the relative abundance of bacterial taxa between shrimp-inhabited and uninhabited sediments; shrimp-inhabited sediment contained a higher proportion of proteobacterial sequences, including in particular a twofold increase in Gammaproteobacteria. Chao1 and ACE diversity estimates showed that taxon richness within surface bacterial communities in shrimp-inhabited sediment was at least threefold higher than that in uninhabited sediment. This study shows that bioturbation can result in significant structural and compositional changes in sediment bacterial communities, increasing

  7. Different methods to alter surface morphology of high aspect ratio structures

    NASA Astrophysics Data System (ADS)

    Leber, M.; Shandhi, M. M. H.; Hogan, A.; Solzbacher, F.; Bhandari, R.; Negi, S.

    2016-03-01

    In various applications such as neural prostheses or solar cells, there is a need to alter the surface morphology of high aspect ratio structures so that the real surface area is greater than geometrical area. The change in surface morphology enhances the devices functionality. One of the applications of altering the surface morphology is of neural implants such as the Utah electrode array (UEA) that communicate with single neurons by charge injection induced stimulation or by recording electrical neural signals. For high selectivity between single cells of the nervous system, the electrode surface area is required to be as small as possible, while the impedance is required to be as low as possible for good signal to noise ratios (SNR) during neural recording. For stimulation, high charge injection and charge transfer capacities of the electrodes are required, which increase with the electrode surface. Traditionally, researchers have worked with either increasing the roughness of the existing metallization (platinum grey, black) or other materials such as Iridium Oxide and PEDOT. All of these previously investigated methods lead to more complicated metal deposition processes that are difficult to control and often have a critical impact on the mechanical properties of the metal films. Therefore, a modification of the surface underneath the electrode's coating will increase its surface area while maintaining the standard and well controlled metal deposition process. In this work, the surfaces of the silicon micro-needles were engineered by creating a defined microstructure on the electrodes surface using several methods such as laser ablation, focused ion beam, sputter etching, reactive ion etching (RIE) and deep reactive ion etching (DRIE). The surface modification processes were optimized for the high aspect ratio silicon structures of the UEA. The increase in real surface area while maintaining the geometrical surface area was verified using scanning electron

  8. Alterations of CNS structure & function by charged particle radiation & resultant oxidative stress

    NASA Astrophysics Data System (ADS)

    Nelson, Gregory; Chang, Polly; Favre, Cecile; Fike, John; Komarova, Natalia; Limoli, Charles; Mao, Xiao-Wen; Obenaus, Andre; Raber, Jacob; Spigelman, Igor; Soltesz, Ivan; Song, Sheng-Kwei; Stampanoni, Marco; Vlkolinsky, Roman; Wodarz, Dominik

    The NSCOR program project is transitioning from establishing the existence of CNS responses to low doses of charged particles, to an investigation of mechanisms underlying these changes and extending the irradiation paradigm to more space-like exposures. In earlier experiments we examined radiation responses of the mouse brain (hippocampus) following exposure to 250 MeV protons and 600 MeV/n iron ions. Our key findings on structural changes were: 1) Significant dose and time dependent loss of en-dothelial cells and microvessel network remodeling occurs suggesting that vascular insufficiency is produced. 2) Significant dose dependent losses of neural precursor cells were observed in a lineage specific pattern which may be associated with cognitive impairment. 3) Evaluation of DNA damage showed dose and time dependent accumulation of mutations with region-specific mutation structures and gene expression profiling demonstrated activation of neurotrophic and adhesion factors as well as chemokine receptors associated with inflammation. Our key find-ings on functional changes were: 1) Time and dose dependent modifications to neural output expressed as enhanced excitability but reduced synaptic efficacy and plasticity (including long term potentiation). 2) Intrinsic membrane properties of neurons were not significantly modi-fied by radiation exposure but pharmacological treatments demonstrated changes in inhibitory synapses. 3) MRI imaging visualized brain structural changes based on altered water diffu-sion properties and patterns were consistent with demyelination or gliosis. Our key findings on neurodegeneration and fidelity of homeostasis were: 1) APP23 transgenic mice exhibited accelerated APP-type electrophysiological pathology over several months. 2) Microvessel net-work changes following irradiation were suggestive of poor tissue oxygenation. 3) The ability of the brain to respond a controlled septic shock was altered by irradiation; the septic shock reactions

  9. Alterations of CNS structure & function by charged particle radiation & resultant oxidative stress

    NASA Astrophysics Data System (ADS)

    Nelson, Gregory; Chang, Polly; Favre, Cecile; Fike, John; Komarova, Natalia; Limoli, Charles; Mao, Xiao-Wen; Obenaus, Andre; Raber, Jacob; Spigelman, Igor; Soltesz, Ivan; Song, Sheng-Kwei; Stampanoni, Marco; Vlkolinsky, Roman; Wodarz, Dominik

    The NSCOR program project is transitioning from establishing the existence of CNS responses to low doses of charged particles, to an investigation of mechanisms underlying these changes and extending the irradiation paradigm to more space-like exposures. In earlier experiments we examined radiation responses of the mouse brain (hippocampus) following exposure to 250 MeV protons and 600 MeV/n iron ions. Our key findings on structural changes were: 1) Significant dose and time dependent loss of en-dothelial cells and microvessel network remodeling occurs suggesting that vascular insufficiency is produced. 2) Significant dose dependent losses of neural precursor cells were observed in a lineage specific pattern which may be associated with cognitive impairment. 3) Evaluation of DNA damage showed dose and time dependent accumulation of mutations with region-specific mutation structures and gene expression profiling demonstrated activation of neurotrophic and adhesion factors as well as chemokine receptors associated with inflammation. Our key find-ings on functional changes were: 1) Time and dose dependent modifications to neural output expressed as enhanced excitability but reduced synaptic efficacy and plasticity (including long term potentiation). 2) Intrinsic membrane properties of neurons were not significantly modi-fied by radiation exposure but pharmacological treatments demonstrated changes in inhibitory synapses. 3) MRI imaging visualized brain structural changes based on altered water diffu-sion properties and patterns were consistent with demyelination or gliosis. Our key findings on neurodegeneration and fidelity of homeostasis were: 1) APP23 transgenic mice exhibited accelerated APP-type electrophysiological pathology over several months. 2) Microvessel net-work changes following irradiation were suggestive of poor tissue oxygenation. 3) The ability of the brain to respond a controlled septic shock was altered by irradiation; the septic shock reactions

  10. Structure and pH-induced alterations of recombinant and natural spider silk proteins in solution.

    PubMed

    Leclerc, Jérémie; Lefèvre, Thierry; Pottier, Fabien; Morency, Louis-Philippe; Lapointe-Verreault, Camille; Gagné, Stéphane M; Auger, Michèle

    2012-06-01

    The spinning process of spiders can modulate the mechanical properties of their silk fibers. It is therefore of primary importance to understand what are the key elements of the spider spinning process to develop efficient industrial spinning processes. We have exhaustively investigated the native conformation of major ampullate silk (MaS) proteins by comparing the content of the major ampullate gland of Nephila clavipes, solubilized MaS (SolMaS) fibers and the recombinant proteins rMaSpI and rMaSpII using (1) H solution NMR spectroscopy. The results indicate that the protein secondary structure is basically identical for the recombinant protein rMaSpI, SolMaS proteins, and the proteins in the dope, and corresponds to a disordered protein rich in 3(1) -helices. The data also show that glycine proton chemical shifts of rMaSpI and SolMaS are affected by pH, but that this change is not due to a modification of the secondary structure. Using a combination of NMR and dynamic light scattering, we have found that the spectral alteration of glycine is concomitant to a modification of the hydrodynamical diameter of recombinant and solubilized MaS. This led us to suggest new potential roles for the pH acidification in the spinning process of MaS proteins. PMID:21898365

  11. Structural alterations in the male reproductive system of the freshwater crayfish, Cherax quadricarinatus (Decapoda, Parastacidae).

    PubMed

    Bugnot, Ana B; López Greco, Laura S

    2009-10-01

    No diseases affecting reproductive performance have been previously reported in freshwater crayfishes. This study aims to characterise one reproductive system abnormality found in males of Cherax quadricarinatus reared in captivity. Fifteen adult males of C. quadricarinatus (70-110 g) were purchased from San Mateo S.A. farm (Entre Ríos, Argentina) each season during 2007. Macroscopic analysis showed that 26.6% of the animals sacrificed in winter presented brownish distal vasa deferentia. Histological analysis showed different levels of structural abnormality in the epithelium of the vasa deferentia and spermatophore. Granular and hyaline haemocytes were identified within the vasa deferentia but no significant differences were found in the sperm count between normal and brownish vas deferens. Histological analysis of the crayfishes sacrificed in autumn also showed these modifications in 22% of the animals, however, they did not show the brownish colour under macroscopic analysis. The similarities between the male reproductive system syndrome in shrimps and the abnormalities found in C. quadricarinatus are notable. An unspecific response to thermic stress is a possible explanation of these structural alterations. PMID:19682455

  12. Structural Analysis of Alterations in Zebrafish Muscle Differentiation Induced by Simvastatin and Their Recovery with Cholesterol

    PubMed Central

    Campos, Laise M.; Rios, Eduardo A.; Midlej, Victor; Atella, Georgia C.; Herculano-Houzel, Suzana; Benchimol, Marlene; Mermelstein, Claudia; Costa, Manoel Luís

    2015-01-01

    In vitro studies show that cholesterol is essential to myogenesis. We have been using zebrafish to overcome the limitations of the in vitro approach and to study the sub-cellular structures and processes involved during myogenesis. We use simvastatin—a drug widely used to prevent high levels of cholesterol and cardiovascular disease—during zebrafish skeletal muscle formation. Simvastatin is an efficient inhibitor of cholesterol synthesis that has various myotoxic consequences. Here, we employed simvastatin concentrations that cause either mild or severe morphological disturbances to observe changes in the cytoskeleton (intermediate filaments and microfilaments), extracellular matrix and adhesion markers by confocal microscopy. With low-dose simvastatin treatment, laminin was almost normal, and alpha-actinin was reduced in the myofibrils. With high simvastatin doses, laminin and vinculin were reduced and appeared discontinuous along the septa, with almost no myofibrils, and small amounts of desmin accumulating close to the septa. We also analyzed sub-cellular alterations in the embryos by electron microscopy, and demonstrate changes in embryo and somite size, septa shape, and in myofibril structure. These effects could be reversed by the addition of exogenous cholesterol. These results contribute to the understanding of the mechanisms of action of simvastatin in muscle cells in particular, and in the study of myogenesis in general. PMID:25786435

  13. Human hemoglobin structural and functional alterations and heme degradation upon interaction with benzene: A spectroscopic study

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Reza; Moosavi-Movahedi, Ali Akbar

    2016-03-01

    Here, the effect of benzene on hemoglobin structure, stability and heme prosthetic group integrity was studied by different methods. These included UV-vis absorption spectrophotometry, normal and synchronous fluorescence techniques, and differential scanning calorimetry (DSC). Our results indicated that benzene has high hemolytic potential even at low concentrations. The UV-vis spectroscopic results demonstrated that benzene altered both the globin chain and the heme prosthetic group of hemoglobin increasing met- and deoxy-Hb, while decreasing oxy-Hb. However, with increasing benzene the concentration of all species decreased due to heme destruction. The spectrophotometric results show that benzene has a high potential for penetrating the hydrophobic pocket of hemoglobin. These results were consistent with the molecular docking simulation results of benzene-hHb. Aggregation and thermal denaturation studies show that the increased benzene concentration induced hemoglobin aggregation with a decrease in stability, which is consistent with the DSC results. Conventional fluorescence spectroscopy revealed that the heme degradation species were produced in the presence of benzene. The results of constant wavelength synchronous fluorescence spectroscopy (CWSFS) indicated that at least five heme-degraded species were produced. Together, our results indicated that benzene has adverse effects on hemoglobin structure and function, and heme degradation.

  14. Faunal Drivers of Soil Flux Dynamics via Alterations in Crack Structure

    NASA Astrophysics Data System (ADS)

    DeCarlo, Keita; Caylor, Kelly

    2016-04-01

    Organismal activity, in addition to its role in ecological feedbacks, has the potential to serve as instigators or enhancers of atmospheric and hydrologic processes via alterations in soil structural regimes. We investigated the biomechanical effect of faunal activity on soil carbon dynamics via changes in soil crack structure, focusing on three dryland soil systems: bioturbated, biocompacted and undisturbed soils. Carbon fluxes were characterized using a closed-system respiration chamber, with CO2 concentration differences measured using an infrared gas analyzer (IRGA). Results show that faunal influences play a divergent biomechanics role in bulk soil cracking: bioturbation induced by belowground fauna creates "surficial" (shallow, large, well-connected) networks relative to the "systematic" (deep, moderate, poorly connected) networks created by aboveground fauna. The latter also shows a "memory" of past wetting/drying events in the consolidated soil through a crack layering effect. These morphologies further drive differences in soil carbon flux: under dry conditions, bioturbated and control soils show a persistently high and low mean carbon flux, respectively, while biocompacted soils show a large diurnal trend, with daytime lows and nighttime highs comparable to the control and bioturbated soils, respectively. Overall fluxes under wet conditions are considerably higher, but also more variable, though higher mean fluxes are observed in the biocompacted and bioturbated soils. Our results suggest that the increased surface area in the bioturbated soils create enhanced but constant diffusive processes, whereas the increased thermal gradient in the biocompacted soils create novel convective processes that create high fluxes that are diurnal in nature.

  15. Ultraviolet Light Catalyzed Gelation of 3-Methacryloxypropyltrimethoxysilane via Altered Silicate Spatial Structure.

    PubMed

    Wei, Li; Yonggang, Wu; Shukun, Shen; Shaofei, Song; Daodao, Hu

    2016-09-01

    The gelation of 3-methacryloxypropyltrimethoxysilane (MAPTMS) is much more difficult to achieve in conventional conditions. This article describes a novel and concise approach to acquire transparent and firm hybrid gel material by one step promptly without photoinitiator or other tetraalkoxysilane. MAPTMS was hydrolyzed in acidified aqueous solution, which became homogeneous sol in 3 min, and then the sol was irradiated with UV light for a few minutes to form gel. The experimental results indicated that MAPTMS sol gelled in the presence of UV-irradiation was mainly attributed to altering Si-O-Si skeleton structure through hydroxyl radicals, and the gelation originated from the hydrolytic polycondensation of MAPTMS rather than the polymerization of methacryloxy substituent groups. The hydroxyl radicals could break the Si-O-Si ring structure to form cross-linker like species, and these cross-linkers chemically joined linear chains together to form the gel network. This investigation offers not only the photoinduced gelation strategy for MAPTMS sol but also the new insight into the effect of UV-irradiation on the sol-gel process of organotrialkoxysilanes. PMID:27504920

  16. Altered sperm chromatin structure in mice exposed to sodium fluoride through drinking water.

    PubMed

    Sun, Zilong; Niu, Ruiyan; Wang, Bin; Wang, Jundong

    2014-06-01

    This study investigated the effects of sodium fluoride (NaF) on sperm abnormality, sperm chromatin structure, protamine 1 and protamine 2 (P1 and P2) mRNA expression, and histones expression in sperm in male mice. NaF was orally administrated to male mice at 30, 70, and 150 mg/l for 49 days (more than one spermatogenic cycle). Sperm head and tail abnormalities were significantly enhanced at middle and high doses. Similarly, sperm chromatin structure was also adversely affected by NaF exposure, indicating DNA integrity damage. Furthermore, middle and high NaF significantly reduced the mRNA expressions of P1 and P2, and P1/P2 ratio, whereas the sperm histones level was increased, suggesting the abnormal histone-protamine replacement. Therefore, we concluded that the mechanism by which F induced mice sperm abnormality and DNA integrity damage may involved in the alterations in P1, P2, and histones expression in sperm of mice. PMID:22865829

  17. Diverse clinical compounds alter the quaternary structure and inhibit the activity of an essential enzyme

    PubMed Central

    Lawrence, Sarah H.; Selwood, Trevor; Jaffe, Eileen K.

    2011-01-01

    An in vitro evaluation of the Johns Hopkins Clinical Compound Library demonstrates that certain drugs can alter the quaternary structure of an essential human protein. Human porphobilinogen synthase (HsPBGS) is an essential enzyme involved in heme biosynthesis; it exists as an equilibrium of high activity octamers, low activity hexamers, and alternate dimer configurations that dictate the stoichiometry and architecture of further assembly. Reduced HsPBGS activity is implicated in toxicities associated with lead poisoning and ALAD porphyria, the latter of which involves hexamer-favoring HsPBGS variants. A medium-throughput native PAGE mobility shift screen, coupled with evaluation of hits as HsPBGS inhibitors, revealed twelve drugs that stabilize the HsPBGS hexamer and inhibit HsPBGS activity in vitro. A detailed characterization of these effects is presented. Drug inhibition of HsPBGS in vivo by inducing hexamer formation would constitute an unprecedented mechanism for side effects. We suggest that small molecule perturbation of quaternary structure equilibria be considered as a general mechanism for drug action and side effects. PMID:21506274

  18. Human hemoglobin structural and functional alterations and heme degradation upon interaction with benzene: A spectroscopic study.

    PubMed

    Hosseinzadeh, Reza; Moosavi-Movahedi, Ali Akbar

    2016-03-15

    Here, the effect of benzene on hemoglobin structure, stability and heme prosthetic group integrity was studied by different methods. These included UV-vis absorption spectrophotometry, normal and synchronous fluorescence techniques, and differential scanning calorimetry (DSC). Our results indicated that benzene has high hemolytic potential even at low concentrations. The UV-vis spectroscopic results demonstrated that benzene altered both the globin chain and the heme prosthetic group of hemoglobin increasing met- and deoxy-Hb, while decreasing oxy-Hb. However, with increasing benzene the concentration of all species decreased due to heme destruction. The spectrophotometric results show that benzene has a high potential for penetrating the hydrophobic pocket of hemoglobin. These results were consistent with the molecular docking simulation results of benzene-hHb. Aggregation and thermal denaturation studies show that the increased benzene concentration induced hemoglobin aggregation with a decrease in stability, which is consistent with the DSC results. Conventional fluorescence spectroscopy revealed that the heme degradation species were produced in the presence of benzene. The results of constant wavelength synchronous fluorescence spectroscopy (CWSFS) indicated that at least five heme-degraded species were produced. Together, our results indicated that benzene has adverse effects on hemoglobin structure and function, and heme degradation. PMID:26710175

  19. Historical and modern disturbance regimes, stand structures, and landscape dynamics in pinon-juniper vegetation of the western United States.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Piñon–juniper is a major vegetation type in western North America. Effective management of these ecosystems has been hindered by inadequate understanding of 1) the variability in ecosystem structure and ecological processes that exists among the diverse combinations of piñons, junipers, and associat...

  20. Electronic structures of [001]- and [111]-oriented InSb and GaSb free-standing nanowires

    SciTech Connect

    Liao, Gaohua; Luo, Ning; Yang, Zhihu; Chen, Keqiu; Xu, H. Q. E-mail: hongqi.xu@ftf.lth.se

    2015-09-07

    We report on a theoretical study of the electronic structures of InSb and GaSb nanowires oriented along the [001] and [111] crystallographic directions. The nanowires are described by atomistic, tight-binding models, including spin-orbit interaction. The band structures and the wave functions of the nanowires are calculated by means of a Lanczos iteration algorithm. For the [001]-oriented InSb and GaSb nanowires, the systems with both square and rectangular cross sections are considered. Here, it is found that all the energy bands are doubly degenerate. Although the lowest conduction bands in these nanowires show good parabolic dispersions, the top valence bands show rich and complex structures. In particular, the topmost valence bands of the nanowires with a square cross section show a double maximum structure. In the nanowires with a rectangular cross section, this double maximum structure is suppressed, and the top valence bands gradually develop into parabolic bands as the aspect ratio of the cross section is increased. For the [111]-oriented InSb and GaSb nanowires, the systems with hexagonal cross sections are considered. It is found that all the bands at the Γ-point are again doubly degenerate. However, some of them will split into non-degenerate bands when the wave vector moves away from the Γ-point. Although the lowest conduction bands again show good parabolic dispersions, the topmost valence bands do not show the double maximum structure. Instead, they show a single maximum structure with its maximum at a wave vector slightly away from the Γ-point. The wave functions of the band states near the band gaps of the [001]- and [111]-oriented InSb and GaSb nanowires are also calculated and are presented in terms of probability distributions in the cross sections. It is found that although the probability distributions of the band states in the [001]-oriented nanowires with a rectangular cross section could be qualitatively described by one-band effective

  1. Electronic structures of [001]- and [111]-oriented InSb and GaSb free-standing nanowires

    NASA Astrophysics Data System (ADS)

    Liao, Gaohua; Luo, Ning; Yang, Zhihu; Chen, Keqiu; Xu, H. Q.

    2015-09-01

    We report on a theoretical study of the electronic structures of InSb and GaSb nanowires oriented along the [001] and [111] crystallographic directions. The nanowires are described by atomistic, tight-binding models, including spin-orbit interaction. The band structures and the wave functions of the nanowires are calculated by means of a Lanczos iteration algorithm. For the [001]-oriented InSb and GaSb nanowires, the systems with both square and rectangular cross sections are considered. Here, it is found that all the energy bands are doubly degenerate. Although the lowest conduction bands in these nanowires show good parabolic dispersions, the top valence bands show rich and complex structures. In particular, the topmost valence bands of the nanowires with a square cross section show a double maximum structure. In the nanowires with a rectangular cross section, this double maximum structure is suppressed, and the top valence bands gradually develop into parabolic bands as the aspect ratio of the cross section is increased. For the [111]-oriented InSb and GaSb nanowires, the systems with hexagonal cross sections are considered. It is found that all the bands at the Γ-point are again doubly degenerate. However, some of them will split into non-degenerate bands when the wave vector moves away from the Γ-point. Although the lowest conduction bands again show good parabolic dispersions, the topmost valence bands do not show the double maximum structure. Instead, they show a single maximum structure with its maximum at a wave vector slightly away from the Γ-point. The wave functions of the band states near the band gaps of the [001]- and [111]-oriented InSb and GaSb nanowires are also calculated and are presented in terms of probability distributions in the cross sections. It is found that although the probability distributions of the band states in the [001]-oriented nanowires with a rectangular cross section could be qualitatively described by one-band effective

  2. Alterations in nuclear structure promote lupus autoimmunity in a mouse model

    PubMed Central

    Singh, Namrata; Johnstone, Duncan B.; Martin, Kayla A.; Tempera, Italo; Kaplan, Mariana J.

    2016-01-01

    ABSTRACT Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by the development of autoantibodies that recognize components of the cell nucleus. The vast majority of lupus research has focused on either the contributions of immune cell dysfunction or the genetics of the disease. Because granulocytes isolated from human SLE patients had alterations in neutrophil nuclear morphology that resembled the Pelger–Huet anomaly, and had prominent mis-splicing of mRNA encoding the nuclear membrane protein lamin B receptor (LBR), consistent with their Pelger–Huet-like nuclear morphology, we used a novel mouse model system to test the hypothesis that a disruption in the structure of the nucleus itself also contributes to the development of lupus autoimmunity. The lupus-prone mouse strain New Zealand White (NZW) was crossed with c57Bl/6 mice harboring a heterozygous autosomal dominant mutation in Lbr (B6.Lbric/+), and the (NZW×B6.Lbric)F1 offspring were evaluated for induction of lupus autoimmunity. Only female (NZW×B6.Lbric)F1 mice developed lupus autoimmunity, which included splenomegaly, kidney damage and autoantibodies. Kidney damage was accompanied by immune complex deposition, and perivascular and tubule infiltration of mononuclear cells. The titers of anti-chromatin antibodies exceeded those of aged female MRL-Faslpr mice, and were predominantly of the IgG2 subclasses. The anti-nuclear antibody staining profile of female (NZW×B6.Lbric)F1 sera was complex, and consisted of an anti-nuclear membrane reactivity that colocalized with the A-type lamina, in combination with a homogeneous pattern that was related to the recognition of histones with covalent modifications that are associated with gene activation. An anti-neutrophil IgM recognizing calreticulin, but not myeloperoxidase (MPO) or proteinase 3 (PR3), was also identified. Thus, alterations in nuclear structure contribute to lupus autoimmunity when expressed in the context of a lupus

  3. Scleral structural alterations associated with chronic experimental intraocular pressure elevation in mice

    PubMed Central

    Nguyen, Cathy; Oglesby, Ericka N.; Pease, Mary E.; Steinhart, Matthew R.; Quigley, Harry A.

    2013-01-01

    Purpose To study changes in scleral structure induced by chronic experimental intraocular pressure elevation in mice. Methods We studied the effect of chronic bead-induced glaucoma on scleral thickness, collagen lamellar structure, and collagen fibril diameter distribution in C57BL/6 (B6) and CD1 mice, and in collagen 8α2 mutant mice (Aca23) and their wild-type littermates (Aca23-WT) using electron and confocal microscopy. Results In unfixed tissue, the control B6 peripapillary sclera was thicker than in CD1 mice (p<0.001). After 6 weeks of glaucoma, the unfixed CD1 and B6 sclera thinned by 9% and 12%, respectively (p<0.001). The fixed sclera, measured by electron microscopy, was significantly thicker in control Aca23 than in B6 or CD1 mice (p<0.05). The difference between fresh and fixed scleral thickness was nearly 68% in untreated control B6 and CD1 mice, but differed by only 10% or less in fresh/fixed glaucoma scleral comparisons. There were 39.3±9.6 lamellae (mean, standard deviation) in control sclera, categorized as 41% cross-section, 24% cellular, 20% oblique, and 15% longitudinal. After glaucoma, mean peripapillary thickness significantly increased in fixed specimens of all mouse strains by 10.3 ±4.8 µm (p=0.001) and the total number of lamellae increased by 18% (p=0.01). The number of cellular and cross-section lamellae increased in glaucoma eyes. After glaucoma, there were more small and fewer large collagen fibrils (p<0.0001). Second harmonic generation imaging showed that the normal circumferential pattern of collagen fibrils in the peripapillary sclera was altered in significantly damaged glaucomatous eyes. Conclusions Dynamic responses of the sclera to experimental mouse glaucoma may be more important than baseline anatomic features in explaining susceptibility to damage. These include decreases in nonfibrillar elements, alterations in lamellar orientation, an increased number of smaller collagen fibrils and fewer larger fibrils, and relative

  4. Deep-water stands of Cystoseira zosteroides C. Agardh (Fucales, Ochrophyta) in the Northwestern Mediterranean: Insights into assemblage structure and population dynamics

    NASA Astrophysics Data System (ADS)

    Ballesteros, Enric; Garrabou, Joaquim; Hereu, Bernat; Zabala, Mikel; Cebrian, Emma; Sala, Enric

    2009-04-01

    Populations dominated by Cystoseira zosteroides, an endemic and threatened Mediterranean seaweed, colonize deep-water rocky habitats down to more than 50 m depth. Assemblages dominated by this species display high algal and invertebrate species richness. Algal biomass averages 1134 g dw m -2. Erect and turf algae account for only 25% of total algal dry weight, while encrusting corallines are responsible for the remaining 75%. Sponges, bryozoans and ascidians constitute the dominant sessile macrofauna. Cystoseira zosteroides is the dominant erect algae, with a mean biomass of 60.6 g dw m -2, and densities ranging from 4 to 7 plants m -2. The alien turf alga Womersleyella setacea has a biomass of 104.2 g dw m -2 and covers most of the understory substrate. The size-frequency distribution of C. zosteroides populations shows differences over time. Mean annual growth of the main axis is around 0.5 cm and mean annual mortality rate is lower than 2%. Recruitment was almost nil during the studied period of time (10 years). Processes structuring these deep-water Cystoseira stands must be driven by episodic disturbances, after-disturbance recruitment pulses, and long periods of steady growth that last at least 10 years. However, it is also possible that recruitment is irreversibly inhibited by the alien alga W. setacea in which case these old-growth stands are faced with extinction. The highly diversified assemblages and the low growth and low mortality rates of C. zosteroides indicate high vulnerability to natural and anthropogenic disturbances, and call for effective measures to ensure their conservation.

  5. Changes in carbon pool and stand structure of a native subtropical mangrove forest after inter-planting with exotic species Sonneratia apetala.

    PubMed

    Lu, Weizhi; Yang, Shengchang; Chen, Luzhen; Wang, Wenqing; Du, Xiaona; Wang, Canmou; Ma, Yan; Lin, Guangxuan; Lin, Guanghui

    2014-01-01

    In this study, we compared stand structure, biomass and soil carbon pools, and litterfall production between a mixed mangrove forest consisting of Aegiceras corniculatum inter-planted with the exotic Sonneratia apetala and a native monospecific forest dominated by A. corniculatum in the intertidal area of Zhanjiang, Guangdong Province, southeast China. The goal of this study was to test the hypothesis that inter-planting fast growing exotic mangrove S. apetala into subtropical native mangrove forests will significantly increase C sequestration. Although the tree heights and basal diameters of S. apetala were significantly higher than those of A. corniculatum, the density of the 12-year-old S. apetala trees in the mixed forest was much smaller than that of A. corniculatum in the monospecific forest. In contrast to several previous studies on S. apetala forests planted directly on mangrove-free mudflats, the mixed mangrove forest showed no significant difference in either standing biomass or soil carbon pools from the native monospecific mangrove forest (p = 0.294 and 0.073, respectively) twelve years after inter-planting with S. apetala. Moreover, carbon cycling was likely speeded up after inter-planting S. apetala due to higher litterfall input and lower C/N ratio. Thus, inter-planting fast-growing S. apetala into native mangrove forest is not an effective way to increase carbon sequestration in this subtropical mangrove forest. Given that exotic plant species may exert negative impact on native mangrove species and related epifauna, this fast-growing mangrove species is not suitable for mangrove plantation projects aiming mainly at enhancing carbon sequestration. PMID:24618793

  6. Changes in Carbon Pool and Stand Structure of a Native Subtropical Mangrove Forest after Inter-Planting with Exotic Species Sonneratia apetala

    PubMed Central

    Lu, Weizhi; Yang, Shengchang; Chen, Luzhen; Wang, Wenqing; Du, Xiaona; Wang, Canmou; Ma, Yan; Lin, Guangxuan; Lin, Guanghui

    2014-01-01

    In this study, we compared stand structure, biomass and soil carbon pools, and litterfall production between a mixed mangrove forest consisting of Aegiceras corniculatum inter-planted with the exotic Sonneratia apetala and a native monospecific forest dominated by A. corniculatum in the intertidal area of Zhanjiang, Guangdong Province, southeast China. The goal of this study was to test the hypothesis that inter-planting fast growing exotic mangrove S. apetala into subtropical native mangrove forests will significantly increase C sequestration. Although the tree heights and basal diameters of S. apetala were significantly higher than those of A. corniculatum, the density of the 12-year-old S. apetala trees in the mixed forest was much smaller than that of A. corniculatum in the monospecific forest. In contrast to several previous studies on S. apetala forests planted directly on mangrove-free mudflats, the mixed mangrove forest showed no significant difference in either standing biomass or soil carbon pools from the native monospecific mangrove forest (p = 0.294 and 0.073, respectively) twelve years after inter-planting with S. apetala. Moreover, carbon cycling was likely speeded up after inter-planting S. apetala due to higher litterfall input and lower C/N ratio. Thus, inter-planting fast-growing S. apetala into native mangrove forest is not an effective way to increase carbon sequestration in this subtropical mangrove forest. Given that exotic plant species may exert negative impact on native mangrove species and related epifauna, this fast-growing mangrove species is not suitable for mangrove plantation projects aiming mainly at enhancing carbon sequestration. PMID:24618793

  7. Leptin Therapy Alters Appetite and Neural Responses to Food Stimuli in Brain Areas of Leptin-Sensitive Subjects Without Altering Brain Structure

    PubMed Central

    Farr, Olivia M.; Fiorenza, Christina; Papageorgiou, Panagiotis; Brinkoetter, Mary; Ziemke, Florencia; Koo, Bang-Bon; Rojas, Rafael

    2014-01-01

    acutely hypoleptinemic women did not alter brain structure but did alter functional cortical activity to food cues in key feeding and reward-related areas. PMID:25279500

  8. Invasive symbiont bearing (and other) foraminifera altering the community structure of eastern Mediterranean rocky reefs environments

    NASA Astrophysics Data System (ADS)

    Hyams-Kaphzan, Orit; Perelis Grossowicz, Lydia; Almogi-Labin, Ahuva

    2015-04-01

    The rocky reefs of the Israeli eastern Mediterranean shelf constitute a highly diverse marine ecosystem rich in macroalgae and calcareous organisms. The benthic foraminiferal community living in this ecosystem is rapidly changing due to massive invasion of symbiont bearing foraminifera (SBF) as well as other foraminiferal species of tropical origin. This trend facilitated by the ongoing increase in temperature enables more tropical species to adjust to the eastern Mediterranean habitats. In order to document the status of the benthic foraminiferal community structure rocky reefs at Akhziv (AK) and Carmel Head (CH), northern Israel were sampled by scuba diving. Different macroalgae species, including invasive ones, accommodating the live epiphytic benthic foraminifera were sampled twice a year at AK and in each season at CH in three depth intervals between 5-20 m, during 2013-4. The numerical abundance of the group ranges between 170-3500 #/10cc (wet macroalgae volume) without any significant difference in standing stocks within regions, water depths or macroalgae preference. In total 77 benthic foraminiferal species were identified 71 in CH and only 43 at AK. Species richness per site varied between 3 and 42 with higher values at CH. 25% of all species were aliens, mostly Lessepsian, that comprise on average 70% - 84% of the numerical abundance of AK and CH respectively. Cluster analysis using benthic foraminifera relative abundance data did not correlate with the different macroalgae species, water depths or seasonality, indicating that the foraminiferal community in the two regions is quite homogenous. Amphistegina lobifera a Lessepsian migrant is by far the most common species on the Israeli rocky reefs occurring in all samples and comprising 18-93% of the foraminiferal community. Heterostegina depressa behaves similarly to A. lobifera though it occurs in lower numbers. Pararotalia calcariformata, a recently arriving SBF occupies mainly shallow water sites at CH

  9. Val66Met Polymorphism of BDNF Alters Prodomain Structure to Induce Neuronal Growth Cone Retraction

    PubMed Central

    Anastasia, Agustin; Deinhardt, Katrin; Chao, Moses V.; Will, Nathan E.; Irmady, Krithi; Lee, Francis S.; Hempstead, Barbara L.; Bracken, Clay

    2013-01-01

    A common single-nucleotide polymorphism in the human brain-derived neurotrophic factor (BDNF) gene results in a Val66Met substitution in the BDNF prodomain region. This single-nucleotide polymorphism is associated with alterations in memory and with enhanced risk to develop depression and anxiety disorders in humans. Here we show that the isolated BDNF prodomain is detected in the hippocampus and that it can be secreted from neurons in an activity-dependent manner. Using nuclear magnetic resonance spectroscopy and circular dichroism we find that the prodomain is intrinsically disordered, and the Val66Met substitution induces structural changes. Surprisingly, application of Met66 (but not Val66) BDNF prodomain induces acute growth cone retraction and a decrease in Rac activity in hippocampal neurons. Expression of p75NTR and differential engagement of the Met66 prodomain to the SorCS2 receptor are required for this effect. These results identify the Met66 prodomain as a new active ligand which modulates neuronal morphology. PMID:24048383

  10. Exercise Challenge in Gulf War Illness Reveals Two Subgroups with Altered Brain Structure and Function

    PubMed Central

    Rayhan, Rakib U.; Stevens, Benson W.; Raksit, Megna P.; Ripple, Joshua A.; Timbol, Christian R.; Adewuyi, Oluwatoyin; VanMeter, John W.; Baraniuk, James N.

    2013-01-01

    Nearly 30% of the approximately 700,000 military personnel who served in Operation Desert Storm (1990–1991) have developed Gulf War Illness, a condition that presents with symptoms such as cognitive impairment, autonomic dysfunction, debilitating fatigue and chronic widespread pain that implicate the central nervous system. A hallmark complaint of subjects with Gulf War Illness is post-exertional malaise; defined as an exacerbation of symptoms following physical and/or mental effort. To study the causal relationship between exercise, the brain, and changes in symptoms, 28 Gulf War veterans and 10 controls completed an fMRI scan before and after two exercise stress tests to investigate serial changes in pain, autonomic function, and working memory. Exercise induced two clinical Gulf War Illness subgroups. One subgroup presented with orthostatic tachycardia (n = 10). This phenotype correlated with brainstem atrophy, baseline working memory compensation in the cerebellar vermis, and subsequent loss of compensation after exercise. The other subgroup developed exercise induced hyperalgesia (n = 18) that was associated with cortical atrophy and baseline working memory compensation in the basal ganglia. Alterations in cognition, brain structure, and symptoms were absent in controls. Our novel findings may provide an understanding of the relationship between the brain and post-exertional malaise in Gulf War Illness. PMID:23798990

  11. Structural Alterations of the Social Brain: A Comparison between Schizophrenia and Autism

    PubMed Central

    Radeloff, Daniel; Ciaramidaro, Angela; Siniatchkin, Michael; Hainz, Daniela; Schlitt, Sabine; Weber, Bernhard; Poustka, Fritz; Bölte, Sven; Walter, Henrik; Freitag, Christine Margarete

    2014-01-01

    Autism spectrum disorder and schizophrenia share a substantial number of etiologic and phenotypic characteristics. Still, no direct comparison of both disorders has been performed to identify differences and commonalities in brain structure. In this voxel based morphometry study, 34 patients with autism spectrum disorder, 21 patients with schizophrenia and 26 typically developed control subjects were included to identify global and regional brain volume alterations. No global gray matter or white matter differences were found between groups. In regional data, patients with autism spectrum disorder compared to typically developed control subjects showed smaller gray matter volume in the amygdala, insula, and anterior medial prefrontal cortex. Compared to patients with schizophrenia, patients with autism spectrum disorder displayed smaller gray matter volume in the left insula. Disorder specific positive correlations were found between mentalizing ability and left amygdala volume in autism spectrum disorder, and hallucinatory behavior and insula volume in schizophrenia. Results suggest the involvement of social brain areas in both disorders. Further studies are needed to replicate these findings and to quantify the amount of distinct and overlapping neural correlates in autism spectrum disorder and schizophrenia. PMID:25188200

  12. CTP:phosphocholine cytidylyltransferase α (CCTα) and lamins alter nuclear membrane structure without affecting phosphatidylcholine synthesis.

    PubMed

    Gehrig, Karsten; Ridgway, Neale D

    2011-06-01

    CTP:phosphocholine cytidylyltransferase α (CCTα) is a nuclear enzyme that catalyzes the rate-limiting step in the CDP-choline pathway for phosphatidylcholine (PC) synthesis. Lipid activation of CCTα results in its translocation to the nuclear envelope and expansion of an intranuclear membrane network termed the nucleoplasmic reticulum (NR) by a mechanism involving membrane deformation. Nuclear lamins are also required for stability and proliferation of the NR, but whether this unique structure, or the nuclear lamina in general, is required for PC synthesis is not known. To examine this relationship, the nuclear lamina was depleted by RNAi or disrupted by expression of the Hutchinson-Gilford progeria syndrome (HGPS) mutant lamin A (progerin), and the effect on CCTα and choline metabolism was analyzed. siRNA-mediated silencing of lamin A/C or lamin B1 in CHO cells to diminish the NR had no effect on PC synthesis, while double knockdown non-specifically inhibited the pathway. Confirming this minor role in PC synthesis, only 10% of transiently overexpressed choline/ethanolamine phosphotransferase was detected in the NR. In CHO cells, CCTα was nucleoplasmic and co-localized with GFP-progerin in nuclear folds and invaginations; however, HGPS fibroblasts displayed an abnormal distribution of CCTα in the cytoplasm and nuclear envelope that was accompanied by a 2-fold reduction in PC synthesis. In spite of its altered localization, choline-labeling experiments showed that CCT activity was unaffected, and inhibition of PC synthesis was traced to reduced activity of a hemicholinium-sensitive choline transporter. We conclude that CCTα and lamins specifically cooperate to form the NR, but the overall structure of the nuclear envelope has a minimal impact on CCT activity and PC synthesis. PMID:21504799

  13. Exposure of Soil Microbial Communities to Chromium and Arsenic Alters Their Diversity and Structure

    PubMed Central

    Rizvi, Fariha Z.; Rehman, Yasir; Faisal, Muhammad; Hasnain, Shahida; McInerney, Michael J.; Krumholz, Lee R.

    2012-01-01

    Extensive use of chromium (Cr) and arsenic (As) based preservatives from the leather tanning industry in Pakistan has had a deleterious effect on the soils surrounding production facilities. Bacteria have been shown to be an active component in the geochemical cycling of both Cr and As, but it is unknown how these compounds affect microbial community composition or the prevalence and form of metal resistance. Therefore, we sought to understand the effects that long-term exposure to As and Cr had on the diversity and structure of soil microbial communities. Soils from three spatially isolated tanning facilities in the Punjab province of Pakistan were analyzed. The structure, diversity and abundance of microbial 16S rRNA genes were highly influenced by the concentration and presence of hexavalent chromium (Cr (VI)) and arsenic. When compared to control soils, contaminated soils were dominated by Proteobacteria while Actinobacteria and Acidobacteria (which are generally abundant in pristine soils) were minor components of the bacterial community. Shifts in community composition were significant and revealed that Cr (VI)-containing soils were more similar to each other than to As contaminated soils lacking Cr (VI). Diversity of the arsenic resistance genes, arsB and ACR3 were also determined. Results showed that ACR3 becomes less diverse as arsenic concentrations increase with a single OTU dominating at the highest concentration. Chronic exposure to either Cr or As not only alters the composition of the soil bacterial community in general, but affects the arsenic resistant individuals in different ways. PMID:22768219

  14. Aspirin-mediated acetylation induces structural alteration and aggregation of bovine pancreatic insulin.

    PubMed

    Yousefi, Reza; Taheri, Behnaz; Alavi, Parnian; Shahsavani, Mohammad Bagher; Asadi, Zahra; Ghahramani, Maryam; Niazi, Ali; Alavianmehr, Mohammad Mehdi; Moosavi-Movahedi, Ali Akbar

    2016-01-01

    The simple aggregation of insulin under various chemical and physical stresses is still an important challenge for both pharmaceutical production and clinical formulation. In the storage form, this protein is subjected to various chemical modifications which alter its physicochemical and aggregation properties. Aspirin (acetylsalicylic acid) which is the most widely used medicine worldwide has been indicated to acetylate a large number of proteins both in vitro and in vivo. In this study, as insulin treated with aspirin at 37°C, a significant level of acetylation was observed by flourescamine and o-phthalaldehyde assay. Also, different spectroscopic techniques, gel electrophoresis, and microscopic assessment were applied to compare the structural variation and aggregation/fibrillation propensity among acetylated and non-acetylated insulin samples. The results of spectroscopic assessments elucidate that acetylation induces insulin unfolding which is accompanied with the exposure of protein hydrophobic patches, a transition from alpha-helix to beta-sheet and increased propensity of the protein for aggregation. The kinetic studies propose that acetylation increases aggregation rate of insulin under both thermal and chemical stresses. Also, gel electrophoresis and dynamic light scattering experiments suggest that acetylation induces insulin oligomerization. Additionally, the results of Thioflavin T fluorescence study, Congo red absorption assessment, and microscopic analysis suggest that acetylation with aspirin enhances the process of insulin fibrillation. Overall, the increased susceptibility of acetylated insulin for aggregation may reflect the fact that this type of modification has significant structural destabilizing effect which finally makes the protein more vulnerable for pathogenic aggregation/fibrillation. PMID:25994118

  15. Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure.

    PubMed

    Sheik, Cody S; Mitchell, Tyler W; Rizvi, Fariha Z; Rehman, Yasir; Faisal, Muhammad; Hasnain, Shahida; McInerney, Michael J; Krumholz, Lee R

    2012-01-01

    Extensive use of chromium (Cr) and arsenic (As) based preservatives from the leather tanning industry in Pakistan has had a deleterious effect on the soils surrounding production facilities. Bacteria have been shown to be an active component in the geochemical cycling of both Cr and As, but it is unknown how these compounds affect microbial community composition or the prevalence and form of metal resistance. Therefore, we sought to understand the effects that long-term exposure to As and Cr had on the diversity and structure of soil microbial communities. Soils from three spatially isolated tanning facilities in the Punjab province of Pakistan were analyzed. The structure, diversity and abundance of microbial 16S rRNA genes were highly influenced by the concentration and presence of hexavalent chromium (Cr (VI)) and arsenic. When compared to control soils, contaminated soils were dominated by Proteobacteria while Actinobacteria and Acidobacteria (which are generally abundant in pristine soils) were minor components of the bacterial community. Shifts in community composition were significant and revealed that Cr (VI)-containing soils were more similar to each other than to As contaminated soils lacking Cr (VI). Diversity of the arsenic resistance genes, arsB and ACR3 were also determined. Results showed that ACR3 becomes less diverse as arsenic concentrations increase with a single OTU dominating at the highest concentration. Chronic exposure to either Cr or As not only alters the composition of the soil bacterial community in general, but affects the arsenic resistant individuals in different ways. PMID:22768219

  16. Local structure of Co{sup 2+} incorporated at the calcite surface: An x-ray standing wave and SEXAFS study

    SciTech Connect

    Cheng, Likwan; Sturchio, Neil C.; Bedzyk, Michael J.

    2000-02-15

    Following adsorption from a dilute water solution, the lattice site and first-neighbor bonding distances of Co{sup 2+} ions incorporated at the calcite (101(bar sign)4) surface were determined with atomic resolution by the combination of x-ray standing wave triangulation and polarization-dependent surface extended x-ray absorption fine-structure spectroscopy. The incorporated Co{sup 2+} ions selectively occupy the Ca{sup 2+} lattice sites with an inward relaxation of 0.34 Aa. The Co{sup 2+} ions remain octahedrally coordinated, with a first-neighbor Co-O bonding distance of 2.11 Aa. The octahedral coordination suggests that a coadsorbed species from the solution remains bonded to the Co{sup 2+} ion above the surface. The structure of Co{sup 2+} incorporated at the calcite surface is successfully described by a model in which the Co{sup 2+} sites are mainly determined by relaxation due to surface lattice asymmetry, and the first-neighbor Co-O relaxation by reconformation of the adjacent carbonate molecules. (c) 2000 The American Physical Society.

  17. Structural and electronic properties of free standing one-sided and two-sided hydrogenated silicene: A first principle study

    SciTech Connect

    Mohan, Brij Kumar, Ashok Ahluwalia, P. K.

    2014-04-24

    We performed first-principle study of the structural and electronic properties of two-dimensional hydrogenated silicene for two configurations; one is hydrogenation along one side of silicene sheet and second is hydrogenation in both sides of silicene sheet. The one-side hydrogenated silicene is found stable at planar geometry while increased buckling of 0.725 Å is found for both-side hydrogenated silicene. The result shows that the hydrogenation occupy the extended π-bonding network of silicene, and thus it exhibits semi-conducting behaviour with a band gap of 1.77 eV and 2.19 eV for one-side hydrogenated silicene and both-side hydrogenated silicene respectively. However, both-side hydrogenated silicene of binding energy 4.56 eV is more stable than one-side hydrogenated silicene of binding energy 4.30 eV, but experimentally silicene is synthesized on substrates which interacts one side of silicene layer and only other side is available for H-atoms. Therefore, practically one-side hydrogenation is also important.

  18. Modeling Coniferous Canopy Structure over Extensive Areas for Ray Tracing Simulations: Scaling from the Leaf to the Stand Level

    NASA Astrophysics Data System (ADS)

    van Aardt, J. A.; van Leeuwen, M.; Kelbe, D.; Kampe, T.; Krause, K.

    2015-12-01

    Remote sensing is widely accepted as a useful technology for characterizing the Earth surface in an objective, reproducible, and economically feasible manner. To date, the calibration and validation of remote sensing data sets and biophysical parameter estimates remain challenging due to the requirements to sample large areas for ground-truth data collection, and restrictions to sample these data within narrow temporal windows centered around flight campaigns or satellite overpasses. The computer graphics community have taken significant steps to ameliorate some of these challenges by providing an ability to generate synthetic images based on geometrically and optically realistic representations of complex targets and imaging instruments. These synthetic data can be used for conceptual and diagnostic tests of instrumentation prior to sensor deployment or to examine linkages between biophysical characteristics of the Earth surface and at-sensor radiance. In the last two decades, the use of image generation techniques for remote sensing of the vegetated environment has evolved from the simulation of simple homogeneous, hypothetical vegetation canopies, to advanced scenes and renderings with a high degree of photo-realism. Reported virtual scenes comprise up to 100M surface facets; however, due to the tighter coupling between hardware and software development, the full potential of image generation techniques for forestry applications yet remains to be fully explored. In this presentation, we examine the potential computer graphics techniques have for the analysis of forest structure-function relationships and demonstrate techniques that provide for the modeling of extremely high-faceted virtual forest canopies, comprising billions of scene elements. We demonstrate the use of ray tracing simulations for the analysis of gap size distributions and characterization of foliage clumping within spatial footprints that allow for a tight matching between characteristics

  19. Comparison of crystal structures of two homologous proteins: structural origin of altered domain interactions in immunoglobulin light-chain dimers.

    PubMed

    Huang, D B; Chang, C H; Ainsworth, C; Brünger, A T; Eulitz, M; Solomon, A; Stevens, F J; Schiffer, M

    1994-12-13

    The sequence and structure of a second human kappa 1 immunoglobulin light-chain variable domain, Wat, has been determined. The R-factor is 15.7% for 1.9-A data. One hundred and ninety-five water molecules were identified; 30 water molecules were located in identical positions in each of the monomers. Some of the water molecules are integral parts of the domains. This light chain is encoded by the same variable domain gene that encoded the previously characterized kappa I variable domain, Rei. Due to limited somatic mutation, the two highly homologous proteins differ in only 20 of the 108 residues. Wat crystallized in space group P6(4) while Rei crystallized in space group P6(1); in both crystals, the asymmetric unit was the noncovalent dimer. Although the basic domain structure is the same for both proteins, the relative positions of the domains within the two dimers differ. This difference is most likely accounted for by the replacement of Tyr36 in Rei by Phe in the Wat protein. Residue Tyr36 is part of the hydrogen-bonding network in the interface between the domains in Rei. Losing the hydrogen-bonding capability of residue 36 by replacement of Tyr by Phe alters the network of hydrogen bonds between the domains, resulting in a different domain-domain contact. The details of lattice contacts in the two crystals were compared. One type of contact that extends the beta-sheet of the individual domains was conserved, but because it involved different symmetry elements within the crystal, different crystal packing resulted. In the Wat crystal, one of the contacts shows an example of how a symmetrical binding site can "bind" an asymmetrical object. Further, the examination of the Wat crystal also illustrates how the different crystalline environments of the domains of the dimer results in different distributions of temperature factors for the residues within the domains. PMID:7993911

  20. Activation of the oncogenic potential of the avian cellular src protein by specific structural alteration of the carboxy terminus.

    PubMed Central

    Reynolds, A B; Vila, J; Lansing, T J; Potts, W M; Weber, M J; Parsons, J T

    1987-01-01

    The role of tyrosine phosphorylation in the regulation of tyrosine protein kinase activity was investigated using site-directed mutagenesis to alter the structure and environment of the three tyrosine residues present in the C terminus of avian pp60c-src. Mutations that change Tyr 527 to Phe or Ser activate in vivo tyrosine protein kinase activity and induce cellular transformation of chicken cells in culture. In contrast, alterations of tyrosine residues present at positions 511 or 519 in c-src do not induce transformation or in vivo tyrosine protein kinase activity. Amber mutations, which alter the structure of the pp60c-src C terminus by inducing premature termination of the c-src protein at either residue 518 or 523 also induce morphological transformation and increase in vivo tyrosine phosphorylation, whereas removal of the last four residues of c-src by chain termination at residue 530 does not alter the kinase activity or the biological activity of the resultant c-src protein. We conclude from these studies that C-terminal alterations which either remove or replace Tyr 527 serve to activate the c-src protein resulting in cellular transformation and increased in vivo tyrosine protein kinase activity. Images Fig. 2. Fig. 3. Fig. 4. PMID:2822389

  1. Multimodal Characterization of Proliferative Diabetic Retinopathy Reveals Alterations in Outer Retinal Function and Structure

    PubMed Central

    Boynton, Grace E.; Stem, Maxwell S.; Kwark, Leon; Jackson, Gregory R.; Farsiu, Sina; Gardner, Thomas W.

    2014-01-01

    diffusely thinned RPE layers (p=0.031) compared to controls. Conclusions Patients with untreated PDR exhibit inner retinal dysfunction, as evidenced by reduced contrast sensitivity and FDP performance, accompanied by alterations in inner and outer retinal structure. PRP-treated patients had more profound changes in outer retinal structure and function. Distinguishing the effects of PDR and PRP may guide the development of restorative vision therapies for patients with advanced diabetic retinopathy. PMID:25601533

  2. PERSPECTIVE VIEW LOOKING NORTHEAST AT THE TEST STAND, NOTE THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PERSPECTIVE VIEW LOOKING NORTHEAST AT THE TEST STAND, NOTE THE SERVICE AND SUPPORT BUILDINGS TO THE LEFT AND RIGHT OF THE TEST STAND. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL

  3. Alteration patterns and structural controls of the El Espino IOCG mining district, Chile

    NASA Astrophysics Data System (ADS)

    Lopez, G. P.; Hitzman, M. W.; Nelson, E. P.

    2014-02-01

    The El Espino IOCG mining district is characterized by several mineralized bodies the largest of which is the El Espino deposit, which has an estimated geologic resource of 123 Mt at 0.66 % Cu and 0.24 g/t Au. Mineralized bodies are distributed in a 7 × 10 km2 area throughout a 1,000-m vertical section. They range from single veins to stockworks and breccias to manto-type deposits. The ore bodies are hosted primarily by volcanic, volcaniclastic, and sedimentary rocks of the Early Cretaceous Arqueros and Quebrada Marquesa formations, with a few mineralized zones within Late Cretaceous dioritic intrusions. The fault and vein architecture shows that El Espino IOCG system was localized within a dilatational jog along a major transtensional dextral fault system. Sodic alteration (albite) is the most extensive style of alteration in the district, and it is bounded by major NS-NNE trending faults. Sodic-calcic (epidote-albite) alteration occurs at deep to medium elevations (1,000-500 m) and grades inward into calcic alteration. Calcic alteration surrounds dioritic intrusions of the Llahuin plutonic suite. Significant iron oxides are associated with later calcic alteration associations (actinolite-epidote-hematite). The upper portions of the alteration system (0-500 m) display hydrolytic alteration associations with abundant hematite. Hydrolytic veins are feeders to zones of manto-type alteration and mineralization within favorable volcano-sedimentary lithologies that formed El Espino deposit. Sulfides are largely confined to calcic and hydrolytic alteration associations. Hydrothermal fluids responsible for hematite and sulfide mineralization had salinities between 32 and 34 wt% NaCleq and temperature of approximately 425 °C at an estimated depth of 3-4 km. Geochronological U-Pb and 40Ar/39Ar data indicate that hydrothermal alteration was coeval with magmatic intrusive activity. One particular dioritic intrusion (88.5 Ma) preceded the calcic stage (88.4 Ma), which was

  4. Altered fibrin clot structure/function in patients with antiphospholipid syndrome: association with thrombotic manifestation.

    PubMed

    Celińska-Lowenhoff, M; Iwaniec, T; Padjas, A; Musiał, J; Undas, A

    2014-08-01

    We tested the hypothesis that plasma fibrin clot structure/function is unfavourably altered in patients with antiphospholipid syndrome (APS). Ex vivo plasma clot permeability, turbidity and susceptibility to lysis were determined in 126 consecutive patients with APS enrolled five months or more since thrombotic event vs 105 controls. Patients with both primary and secondary APS were characterised by 11% lower clot permeability (p<0.001), 4.8% shorter lag phase (p<0.001), 10% longer clot lysis time (p<0.001), and 4.7% higher maximum level of D-dimer released from clots (p=0.02) as compared to the controls. Scanning electron microscopy images confirmed denser fibrin networks composed of thinner fibres in APS. Clots from patients with "triple-antibody positivity" were formed after shorter lag phase (p=0.019) and were lysed at a slower rate (p=0.004) than in the remainder. Clots from APS patients who experienced stroke and/or myocardial infarction were 8% less permeable (p=0.01) and susceptible to lysis (10.4% longer clot lysis time [p=0.006] and 4.5% slower release of D-dimer from clots [p=0.01]) compared with those following venous thromboembolism alone. Multivariate analysis adjusted for potential confounders showed that in APS patients, lupus anticoagulant and "triple-positivity" were the independent predictors of clot permeability, while "triple-positivity" predicted lysis time. We conclude that APS is associated with prothrombotic plasma fibrin clot phenotype, with more pronounced abnormalities in arterial thrombosis. Molecular background for this novel prothrombotic mechanism in APS remains to be established. PMID:24652596

  5. Bordetella pertussis Naturally Occurring Isolates with Altered Lipooligosaccharide Structure Fail To Fully Mature Human Dendritic Cells

    PubMed Central

    Brummelman, Jolanda; Veerman, Rosanne E.; Hamstra, Hendrik Jan; Deuss, Anna J. M.; Schuijt, Tim J.; Sloots, Arjen; Kuipers, Betsy; van Els, Cécile A. C. M.; van der Ley, Peter; Mooi, Frits R.; Han, Wanda G. H.

    2014-01-01

    Bordetella pertussis is a Gram-negative bacterium and the causative agent of whooping cough. Despite high vaccination coverage, outbreaks are being increasingly reported worldwide. Possible explanations include adaptation of this pathogen, which may interfere with recognition by the innate immune system. Here, we describe innate immune recognition and responses to different B. pertussis clinical isolates. By using HEK-Blue cells transfected with different pattern recognition receptors, we found that 3 out of 19 clinical isolates failed to activate Toll-like receptor 4 (TLR4). These findings were confirmed by using the monocytic MM6 cell line. Although incubation with high concentrations of these 3 strains resulted in significant activation of the MM6 cells, it was found to occur mainly through interaction with TLR2 and not through TLR4. When using live bacteria, these 3 strains also failed to activate TLR4 on HEK-Blue cells, and activation of MM6 cells or human monocyte-derived dendritic cells was significantly lower than activation induced by the other 16 strains. Mass spectrum analysis of the lipid A moieties from these 3 strains indicated an altered structure of this molecule. Gene sequence analysis revealed mutations in genes involved in lipid A synthesis. Findings from this study indicate that B. pertussis isolates that do not activate TLR4 occur naturally and that this phenotype may give this bacterium an advantage in tempering the innate immune response and establishing infection. Knowledge on the strategies used by this pathogen in evading the host immune response is essential for the improvement of current vaccines or for the development of new ones. PMID:25348634

  6. Overexpression of p49/STRAP alters cellular cytoskeletal structure and gross anatomy in mice

    PubMed Central

    2014-01-01

    Background The protein p49/STRAP (SRFBP1) is a transcription cofactor of serum response factor (SRF) which regulates cytoskeletal and muscle-specific genes. Results Two conserved domains were found in the p49/STRAP protein. The SRF-binding domain was at its N-terminus and was highly conserved among mammalian species, xenopus and zebrafish. A BUD22 domain was found at its C-terminus in three sequence databases. The BUD22 domain was conserved among mammalian p49/STRAP proteins, and yeast cellular morphogenesis proteins, which is involved in ribosome biogenesis that affects growth rate and cell size. The endogenous p49/SRAP protein was localized mainly in the nucleus but also widely distributed in the cytoplasm, and was in close proximity to the actin. Transfected GFP-p49/STRAP protein co-localized with nucleolin within the nucleolus. Overexpression of p49/STRAP reduced actin content in cultured cells and resulted in smaller cell size versus control cells. Increased expression of p49/STRAP in transgenic mice resulted in newborns with malformations, which included asymmetric abdominal and thoracic cavities, and substantial changes in cardiac morphology. p49/STRAP altered the expression of certain muscle-specific genes, including that of the SRF gene, which is a key regulator of cardiac genes at the developmental, structural and maintenance level and has two SRE binding sites. Conclusions Since p49/STRAP is a co-factor of SRF, our data suggest that p49/STRAP likely regulates cell size and morphology through SRF target genes. The function of its BUD22 domain warrants further investigation. The observed increase in p49/STRAP expression during cellular aging may contribute to observed morphological changes in senescence. PMID:25183317

  7. HTR4 gene structure and altered expression in the developing lung

    PubMed Central

    2013-01-01

    Background Meta-analyses of genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) spanning the 5-hydroxytryptamine receptor 4 (5-HT4R) gene (HTR4) associated with lung function. The aims of this study were to i) investigate the expression profile of HTR4 in adult and fetal lung tissue and cultured airway cells, ii) further define HTR4 gene structure and iii) explore the potential functional implications of key SNPs using a bioinformatic approach. Methods Following reverse transcription (RT)-PCR in human brain, 5′ rapid amplification of cDNA ends (5′ RACE) was used to examine the exonic structure of HTR4 at the 5′ end. Quantitative (Q)-PCR was used to quantify HTR4 mRNA expression in total RNA from cultured airway cells and whole lung tissue. Publically available gene microarray data on fetal samples of estimated gestational age 7–22 weeks were mined for HTR4 expression. Immunohistochemistry (IHC; in adult and fetal lung tissue) and a radioligand binding assay (in cultured airway cells) were used to analyze 5­HT4R protein expression. Results IHC in adult lung, irrespective of the presence of chronic obstructive pulmonary disease (COPD), suggested low level expression of 5-HT4R protein, which was most prominent in alveolar pneumocytes. There was evidence of differential 5-HT4R protein levels during gestation in fetal lung, which was also evident in gene expression microarray data. HTR4 mRNA expression, assessed by Q-PCR, was <0.5% relative to brain in total adult lung tissue and in human airway smooth muscle (HASM) and bronchial epithelial cells (HBEC) derived from adult donors. Radioligand binding experiments also indicated that HBEC and HASM cells did not express a significant 5-HT4R population. 5′ RACE in brain identified a novel N-terminal variant, containing an extended N-terminal sequence. The functional significance of key HTR4 SNPs was investigated using the encyclopedia of DNA elements consortium (ENCODE

  8. Multi-decadal water-table manipulation alters peatland hydraulic structure and moisture retention.

    NASA Astrophysics Data System (ADS)

    Moore, Paul; Morris, Paul; Waddington, James

    2015-04-01

    Peatlands are a globally important store of freshwater and soil carbon. However, there is a concern that these water and carbon stores may be at risk due to climate change as vapour pressure deficits, evapotranspiration and summer moisture deficits are expected to increase, leading to greater water table (WT) drawdown in northern continental regions where peatlands are prevalent. We argue that in order to evaluate the hydrological response (i.e. changes in WT level, storage, surface moisture availability, and moss evaporation) of peatlands under future climate change scenarios, the hydrophysical properties of peat and disparities between microforms must be well understood. A peatland complex disturbed by berm construction in the 1950's was used to examine the long-term impact of WT manipulation on peatland hydraulic properties and moisture retention at three adjacent sites with increasing average depth to WT (WET, INTermediate reference, and DRY). All three sites exhibited a strong depth dependence for hydraulic conductivity, specific yield, and bulk density. Moreover, the effect of microform on near-surface peat properties tended to be greater than the site effect. Bulk density was found to explain a high amount of variance (r2 > 0.69) in moisture retention across a range of pore water pressures (-15 to -500 cm H2O), where bulk density tended to be higher in hollows. The estimated residual water content for surface Sphagnum samples, while on average lower in hummocks (0.082 m3 m-3) versus hollows (0.087 m3 m-3), increased from WET (0.058 m3 m-3) to INT (0.088 m3 m-3) to DRY (0.108 m3 m-3) which has important implications for moisture stress under conditions of persistent WT drawdown. While we did not observe significant differences between sites, we did observe a greater proportional coverage and greater relative height of hummocks at the drier sites. Given the potential importance of microtopographic succession for altering peatland hydraulic structure, our

  9. Breakdown mechanism in AlGaN/GaN high-electron mobility transistor structure on free-standing n-type GaN substrate

    NASA Astrophysics Data System (ADS)

    Tanabe, Shinichi; Watanabe, Noriyuki; Matsuzaki, Hideaki

    2016-05-01

    The breakdown mechanism in a high-electron mobility transistor structure on free-standing n-type GaN substrates consisting of a C-doped GaN layer as a high-resistivity buffer was investigated with a two-terminal vertical device that has a C-doped GaN buffer between electrodes. Initially, current density increases with the square of bias voltage. This is then followed by an abrupt increase by several orders of magnitude within ten volts, which results in breakdown. These behaviors are consistent with the theory of the space-charge limited current. In this theory, current density increases steeply when trap sites at a certain energy level are completely filled with injected carriers. These results indicate that the existence of trap levels in the C-doped GaN layer is one of the possible factors that determine the breakdown. The trap density and trap level of the C-doped GaN layer were also evaluated.

  10. Structural brain alterations in heart failure: a review of the literature and implications for risk of Alzheimer's disease.

    PubMed

    Alosco, Michael L; Hayes, Scott M

    2015-09-01

    Cardiovascular disease is a recognized contributor to the pathogenesis of Alzheimer's disease (AD). Heart failure (HF) is a cardiovascular subtype that can be used to model the contribution of cardiovascular disease to AD. Neuroimaging research indicates that HF patients exhibit a diverse range of structural brain alterations and epidemiological studies suggest HF may be an important risk factor for AD. The neural alterations observed in HF may overlap with those observed in AD and contribute to increased risk of AD in HF patients. To examine this possibility, we reviewed structural MRI studies in persons with HF. We examined subcortical brain regions affected in the early stages of AD (medial temporal lobes), as well as cortical alterations that typically occur in the later stages of AD. Our review indicates that patients with HF exhibit greater neural atrophy and white matter microstructural alterations of nearly every region of the Papez circuit (e.g., hippocampus, cingulate gyrus, thalamus, mammillary bodies, and fornix), as well-significant alterations in cortical and cerebellar regions. Based on animal research and past work in AD patients, the mechanisms for structural brain changes in HF may stem from reductions in cerebral blood flow subsequent to cardiac deficiency. This review supports the hypothesis that HF may contribute to AD risk via widespread structural brain changes, including many of the same regions affected by AD. Case-controlled prospective neuroimaging studies with long-term follow-ups are needed to clarify the risk of AD in HF and elucidate the neural underpinnings of AD risk in HF. PMID:25896528

  11. Planter unit test stand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A planter test stand was developed to evaluate individual row-crop metering units in early 2013. This test stand provided the ability to quantify actual seed metering in terms of population, seed spacing, skips, and multiples over a range of meter RPMs and vacuum pressures. Preliminary data has been...

  12. Unravelling the importance of forest age stand and forest structure driving microbiological soil properties, enzymatic activities and soil nutrients content in Mediterranean Spanish black pine(Pinus nigra Ar. ssp. salzmannii) Forest.

    PubMed

    Lucas-Borja, M E; Hedo, J; Cerdá, A; Candel-Pérez, D; Viñegla, B

    2016-08-15

    This study aimed to investigate the effects that stand age and forest structure have on microbiological soil properties, enzymatic activities and nutrient content. Thirty forest compartments were randomly selected at the Palancares y Agregados managed forest area (Spain), supporting forest stands of five ages; from 100 to 80years old to compartments with trees that were 19-1years old. Forest area ranging from 80 to 120years old and without forest intervention was selected as the control. We measured different soil enzymatic activities, soil respiration and nutrient content (P, K, Na, Mg, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pb and Ca) in the top cm of 10 mineral soils in each compartment. Results showed that the lowest forest stand age and the forest structure created by management presented lower values of organic matter, soil moisture, water holding capacity and litterfall and higher values of C/N ratio in comparison with the highest forest stand age and the related forest structure, which generated differences in soil respiration and soil enzyme activities. The forest structure created by no forest management (control plot) presented the highest enzymatic activities, soil respiration, NH4(+) and NO3(-). Results did not show a clear trend in nutrient content comparing all the experimental areas. Finally, the multivariate PCA analysis clearly clustered three differentiated groups: Control plot; from 100 to 40years old and from 39 to 1year old. Our results suggest that the control plot has better soil quality and that extreme forest stand ages (100-80 and 19-1years old) and the associated forest structure generates differences in soil parameters but not in soil nutrient content. PMID:27099995

  13. Structural Brain Alterations in Motor Subtypes of Parkinson’s Disease: Evidence from Probabilistic Tractography and Shape Analysis

    PubMed Central

    Vervoort, Griet; Leunissen, Inge; Firbank, Michael; Heremans, Elke; Nackaerts, Evelien; Vandenberghe, Wim; Nieuwboer, Alice

    2016-01-01

    Background and Objectives The postural instability and gait disorder (PIGD) and tremor dominant (TD) subtypes of Parkinson’s disease (PD) show different patterns of alterations in functional connectivity (FC) between specific brain regions. This study aimed to investigate the relation between symptomatic heterogeneity in PD and structural alterations underlying these FC changes. Methods 68 PD patients classified as PIGD (n = 41) or TD (n = 19) and 19 age-matched controls underwent Magnetic Resonance Imaging (MRI). Diffusion-weighted images were used to assess fractional anisotropy (FA) and mean diffusivity (MD) at the whole-brain level using tract-based spatial statistics (TBSS). In addition, structural connectivity was assessed between regions that previously showed altered FC using probabilistic tractography. Anatomical images were used to determine shape and volume of the putamen, caudate and pallidum. Results TBSS revealed widespread FA reductions in PIGD compared to controls involving the superior longitudinal fasciculi and corpus callosum. No such differences were found in TD. Both PD subgroups had increased MD compared to controls in tracts connecting the left caudate with the bilateral ventral putamen. TD patients additionally showed increased MD compared to PIGD and controls in tracts connecting the right inferior parietal lobule with the right premotor and primary motor cortex, which previously showed altered FC. We also found grey matter atrophy in the rostrodorsal head of the caudate in PIGD compared to controls. Conclusion Microstructural changes in white matter tracts, particularly in those connecting striatal sub-areas, partly underlie FC alterations in PD subtypes. Caudate shape alterations further implicate the striatum in PIGD pathophysiology. PMID:27314952

  14. Stress analysis of down force calibration stand

    SciTech Connect

    COVERDELL, B.L.

    1998-10-01

    This document presents the stress analysis of the Down Force Calibration Stand. All structural components were evaluated and found to be adequate to withstand the applicable design loads meeting all codes and standards requirements.

  15. Timelapse: Webb's Ambient Optical Assembly Stand

    NASA Video Gallery

    The clean room at NASA's Goddard Space Flight Center in Greenbelt, Md., has received a giant structural steel frame called "AOAS," the Ambient Optical Assembly Stand that will be used to assemble t...

  16. Transformation of the Spatial Structure of an Optical Echo-Hologram Response by External Non-Resonant Pulses of Electromagnetic Standing Waves

    NASA Astrophysics Data System (ADS)

    Sakhbieva, A. R.; Nefed‧ev, L. A.; Garnaeva, G. I.

    2015-11-01

    It was shown that non-resonant electromagnetic standing wave pulses between exciting laser pulses during formation of a stimulated echo hologram transformed the wave front of the stimulated echo-hologram response.

  17. Population structure, density and food sources of Terebralia palustris (Potamididae: Gastropoda) in a low intertidal Avicennia marina mangrove stand (Inhaca Island, Mozambique)

    NASA Astrophysics Data System (ADS)

    Penha-Lopes, Gil; Bouillon, Steven; Mangion, Perrine; Macia, Adriano; Paula, José

    2009-09-01

    Population structure and distribution of Terebralia palustris were compared with the environmental parameters within microhabitats in a monospecific stand of Avicennia marina in southern Mozambique. Stable carbon and nitrogen isotope analyses of T. palustris and potential food sources (leaves, pneumatophore epiphytes, and surface sediments) were examined to establish the feeding preferences of T. palustris. Stable isotope signatures of individuals of different size classes and from different microhabitats were compared with local food sources. Samples of surface sediments 2.5-10 m apart showed some variation (-21.2‰ to -23.0‰) in δ13C, probably due to different contributions from seagrasses, microalgae and mangrove leaves, while δ15N values varied between 8.7‰ and 15.8‰, indicating that there is a very high variability within a small-scale microcosm. Stable isotope signatures differed significantly between the T. palustris size classes and between individuals of the same size class, collected in different microhabitats. Results also suggested that smaller individuals feed on sediment, selecting mainly benthic microalgae, while larger individuals feed on sediment, epiphytes and mangrove leaves. Correlations were found between environmental parameters and gastropod population structure and distribution vs. the feeding preferences of individuals of different size classes and in different microhabitats. While organic content and the abundance of leaves were parameters that correlated best with the total density of gastropods (>85%), the abundance of pneumatophores and leaves, as well as grain size, correlated better with the gastropod size distribution (>65%). Young individuals (height < 3 cm) occur predominantly in microhabitats characterized by a low density of leaf litter and pneumatophores, reduced organic matter and larger grain size, these being characteristic of lower intertidal open areas that favour benthic microalgal growth. With increasing shell

  18. Free-standing superconductive articles

    SciTech Connect

    Wu, X.D.; Muenchausen, R.E.

    1991-12-31

    A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template layer, the ceramic superconductive material layer and the protective material layer, removing the protective material layer from the composite structure whereby a substrate-free, free-standing ceramic superconductive film remains.

  19. Detection of Chromosomal Structural Alterations in Single Cells by SNP Arrays: A Systematic Survey of Amplification Bias and Optimized Workflow

    PubMed Central

    Iwamoto, Kazuya; Bundo, Miki; Ueda, Junko; Nakano, Yoko; Ukai, Wataru; Hashimoto, Eri; Saito, Toshikazu; Kato, Tadafumi

    2007-01-01

    Background In single-cell human genome analysis using whole-genome amplified product, a strong amplification bias involving allele dropout and preferential amplification hampers the quality of results. Using an oligonucleotide single nucleotide polymorphism (SNP) array, we systematically examined the nature of this amplification bias, including frequency, degree, and preference for genomic location, and we assessed the effects of this amplification bias on subsequent genotype and chromosomal copy number analyses. Methodology/Principal Findings We found a large variability in amplification bias among the amplified products obtained by multiple displacement amplification (MDA), and this bias had a severe effect on the genotype and chromosomal copy number analyses. We established optimal experimental conditions for pre-screening for high-quality amplified products, processing array data, and analyzing chromosomal structural alterations. Using this optimized protocol, we successfully detected previously unidentified chromosomal structural alterations in single cells from a lymphoblastoid cell line. These alterations were subsequently confirmed by karyotype analysis. In addition, we successfully obtained reproducible chromosomal copy number profiles of single cells from the cell line with a complex karyotype, indicating the applicability and potential of our optimized workflow. Conclusions/Significance Our results suggest that the quality of amplification products should be critically assessed before using them for genomic analyses. The method of MDA-based whole-genome amplification followed by SNP array analysis described here will be useful for exploring chromosomal alterations in single cells. PMID:18074030

  20. Alterations in T-tubule and dyad structure in heart disease: challenges and opportunities for computational analyses

    PubMed Central

    Poláková, Eva; Sobie, Eric A.

    2013-01-01

    Compelling recent experimental results make clear that sub-cellular structures are altered in ventricular myocytes during the development of heart failure, in both human samples and diverse experimental models. These alterations can include, but are not limited to, changes in the clusters of sarcoplasmic reticulum (SR) Ca2+-release channels, ryanodine receptors, and changes in the average distance between the cell membrane and ryanodine receptor clusters. In this review, we discuss the potential consequences of these structural alterations on the triggering of SR Ca2+ release during excitation–contraction coupling. In particular, we describe how mathematical models of local SR Ca2+ release can be used to predict functional changes resulting from diverse modifications that occur in disease states. We review recent studies that have used simulations to understand the consequences of sub-cellular structural changes, and we discuss modifications that will allow for future modelling studies to address unresolved questions. We conclude with a discussion of improvements in both experimental and mathematical modelling techniques that will be required to provide a stronger quantitative understanding of the functional consequences of changes in sub-cellular structure in heart disease. PMID:23396602

  1. The Structural Alteration and Aggregation of Bovine Lens Gamma-Crystallin by Homocysteinylation; The Pathomechanism Underlying Cataract Development During Hyperhomocysteinimia.

    PubMed

    Hajjari, Shahrzad; Masoudi, Raheleh; Javadi, Sajjad; Hemmateenejad, Bahram; Yousefi, Reza

    2016-01-01

    A significant association between increased level of blood homocysteine (hyperhomocysteinimia) and various eye pathological disorders including cataract has been reported. This metabolic byproduct is converted into a highly reactive cyclic thioester compound, homocysteine thiolactone (HCTL), which can potentially react with free amino groups in protein. In the current study, as bovine lens γ-Crystallin (γ-Cry) was incubated with HCTL, various spectroscopic techniques, gel mobility shift assay, and microscopic analysis were applied to characterize structural variation and aggregation of this protein. According to the fluorescence results, HCTL-induced structural alteration was accompanied with the significant enhancement in surface hydrophobicity of γ-Cry. Also, this cyclic thioester was indicated to alter γ-Cry secondary structures and to induce aggregation of this protein. The results of gel mobility shift assay suggest the involvement of disulfide bond cross-linking in formation of the protein aggregates. In conjunction with Thioflavin T and Congo red assays, the microscopic analysis also suggests that HCTL can induce formation of ordered aggregate entities in bovine lens γ-Cry. The relationship between γ-Cry insolubilization/aggregation and growth of cataract disorders has been already reported. Therefore, the induction of structural alteration and aggregation of γ-Cry by HCTL can elucidate the pathomechanism underlying cataract disorders particularly in hyperhomocysteinimia. PMID:26548860

  2. Test Stand 500

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a ground level view of Test Stand 500 at the east test area of the Marshall Space Flight Center. Originally constructed in 1966, Test Stand 500 is a multipurpose, dual-position test facility. The stand was utilized to test liquid hydrogen/liquid oxygen turbopumps and combustion devices for the J-2 engine. One test position has a high superstructure with lines and tankage for testing liquid hydrogen and liquid oxygen turbopumps while the other position is adaptable to pressure-fed test programs such as turbo machinery bearings or seals. The facility was modified in 1980 to support Space Shuttle main engine (SSME) bearing testing.

  3. Macroalgae Decrease Growth and Alter Microbial Community Structure of the Reef-Building Coral, Porites astreoides

    PubMed Central

    Vega Thurber, Rebecca; Burkepile, Deron E.; Correa, Adrienne M. S.; Thurber, Andrew R.; Shantz, Andrew A.; Welsh, Rory; Pritchard, Catharine; Rosales, Stephanie

    2012-01-01

    With the continued and unprecedented decline of coral reefs worldwide, evaluating the factors that contribute to coral demise is of critical importance. As coral cover declines, macroalgae are becoming more common on tropical reefs. Interactions between these macroalgae and corals may alter the coral microbiome, which is thought to play an important role in colony health and survival. Together, such changes in benthic macroalgae and in the coral microbiome may result in a feedback mechanism that contributes to additional coral cover loss. To determine if macroalgae alter the coral microbiome, we conducted a field-based experiment in which the coral Porites astreoides was placed in competition with five species of macroalgae. Macroalgal contact increased variance in the coral-associated microbial community, and two algal species significantly altered microbial community composition. All macroalgae caused the disappearance of a γ-proteobacterium previously hypothesized to be an important mutualist of P. astreoides. Macroalgal contact also triggered: 1) increases or 2) decreases in microbial taxa already present in corals, 3) establishment of new taxa to the coral microbiome, and 4) vectoring and growth of microbial taxa from the macroalgae to the coral. Furthermore, macroalgal competition decreased coral growth rates by an average of 36.8%. Overall, this study found that competition between corals and certain species of macroalgae leads to an altered coral microbiome, providing a potential mechanism by which macroalgae-coral interactions reduce coral health and lead to coral loss on impacted reefs. PMID:22957055

  4. How-to-Do-It: Herbivory-Induced Alteration of Community Structure--A Classroom Model.

    ERIC Educational Resources Information Center

    Porter, John R.

    1989-01-01

    Described is a laboratory study designed to demonstrate loss of vegetation, alterations in the species composition of a community, and the impoverishment of a community with respect to desirable food plant species when herbivore feeding exceeds the rate of vegetation regrowth. The laboratory uses a classroom aquarium. (CW)

  5. Conodont color alteration (CAI) as an aid to structural interpretation in the Black Pine Mountains, Idaho

    USGS Publications Warehouse

    Smith, Fred J., Jr.; Wardlaw, Bruce R.

    2012-01-01

    The Black Pine Mountains, southeastern Cassia County, Idaho, consist of southern and northern blocks separated by a northeast-trending, high-angle fault. Differences in conodont color alteration values distinguish the two blocks. The southern block has significantly higher organic maturation levels than the northern block and is interpreted to have been thrust northeastward adjacent to the northern block.

  6. Diazinon alters sperm chromatin structure in mice by phosphorylating nuclear protamines

    SciTech Connect

    Pina-Guzman, B.; Solis-Heredia, M.J.; Quintanilla-Vega, B. . E-mail: mquintan@mail.cinvestav.mx

    2005-01-15

    Organophosphorus (OP) pesticides, widely used in agriculture and pest control, are associated with male reproductive effects, including sperm chromatin alterations, but the mechanisms underlying these effects are unknown. The main toxic action of OP is related to phosphorylation of proteins. Chemical alterations in sperm nuclear proteins (protamines), which pack DNA during the last steps of spermatogenesis, contribute to male reproductive toxicity. Therefore, in the present study, we tested the ability of diazinon (DZN), an OP compound, to alter sperm chromatin by phosphorylating nuclear protamines. Mice were injected with a single dose of DZN (8.12 mg/kg, i.p.), and killed 8 and 15 days after treatment. Quality of sperm from epididymis and vas deferens was evaluated through standard methods and chromatin condensation by flow cytometry (DNA Fragmented Index parameters: DFI and DFI%) and fluorescence microscopy using chromomycin-A{sub 3} (CMA{sub 3}). Increases in DFI (15%), DFI% (4.5-fold), and CMA{sub 3} (2-fold) were observed only at 8 days post-treatment, indicating an alteration in sperm chromatin condensation and DNA damage during late spermatid differentiation. In addition, an increase of phosphorous content (approximately 50%) in protamines, especially in the phosphoserine content (approximately 73%), was found at 8 days post-treatment. Sperm viability, motility, and morphology showed significant alterations at this time. These data strongly suggest that spermatozoa exposed during the late steps of maturation were the targets of DZN exposure. The correlation observed between the phosphorous content in nuclear protamines with DFI%, DFI, and CMA{sub 3} provides evidence that phosphorylation of nuclear protamines is involved in the OP effects on sperm chromatin.

  7. The Stimulus test stand

    SciTech Connect

    Christofek, L.; Rapidis, P.; Reinhard, A.; /Fermilab

    2005-06-01

    The Stimulus Test Stand was originally constructed and assembled for testing the SVX2 ASIC readout and then upgraded for SVX3 ASIC prototyping and testing. We have modified this system for SVX4 ASIC [1] prototype testing. We described the individual components below. Additional details for other hardware for SVX4 testing can be found in reference [2]. We provide a description of the Stimulus Test Stand used for prototype testing of the SVX4 chip.

  8. DNA ALTERATIONS

    EPA Science Inventory

    The exposure of an organism to genotoxic chemicals may induce a cascade of genetic events. nitially, structural alterations to DNA are formed. ext, the DNA damage is processed and subsequently expressed in mutant gene products. inally, diseases result from the genetic damage. he ...

  9. 13. Photographic copy of site plan displaying Test Stand 'C' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Photographic copy of site plan displaying Test Stand 'C' (4217/E-18), Test Stand 'D' (4223/E-24), and Control and Recording Center (4221/E-22) with ancillary structures, and connecting roads and services. California Institute of Technology, Jet Propulsion Laboratory, Facilities Engineering and Construction Office 'Repairs to Test Stand 'C,' Edwards Test Station, Legend & Site Plan M-1,' drawing no. ESP/115, August 14, 1987. - Jet Propulsion Laboratory Edwards Facility, Test Stand C, Edwards Air Force Base, Boron, Kern County, CA

  10. Flood-Induced Surface Blooms Alter Deep Chlorophyll Maxima Community Structure in Lake Michigan.

    NASA Astrophysics Data System (ADS)

    Aguilar, C.; Cuhel, R. L.; Seline, L.

    2008-12-01

    Watershed-wide floods can bring increased nutrients and phytoplankton to receiving waters. This input can alter physical, chemical and phytoplankton community structure in a major way. Phytoplankton species composition and size distribution are key factors in their use as ecological indicators. Since 2003, phytoplankton communities in Lake Michigan have shifted from diatom and big cell (>10μm)- dominated to small cell picocyanobacteria-dominated phytoplankton (<3μm). Picoplankton typically thrive under lower light conditions than diatoms, are adapted with phycobiliprotein pigments for deepwater light quality, have a higher surface-to-volume ratio for effective nutrient scavenging, and are smaller than the preferred range (5-100μm) for filter-feeding mussel populations. After only five years with Quagga Mussels, dampened seasonal cycling of silicate indicated a basin-wide reduction of diatom production, and unicellular Cyanobacteria became dominant in deep chlorophyll maximum (DCM) zones. In the DCM, Synechococcus-like cells reached populations of at least 210,000 cells/ml. DCM chlorophyll (chl) remained similar (3-4μg/l) but late summer species composition changed dramatically to mostly <3μm cells. During the June 2008 Midwest floods, the rivers into Lake Michigan discharged at over 30 times the rate of water typically flowing into the lake. Nearshore phytoplankton were dominated by diatoms localized in the epilimnion (upper 5-10m). Chl increased several-fold in surface waters and diatom biomass increased from the previous years. The 1% PAR penetration changed from 35-40m previously to only 25m in 2008. Chl in the >10μm fraction increased from previous years, and over 75% of the particulate Si was also in this size fraction. Because of the rapid sinking of diatoms during calm weather of late June-early July of 2008, particulate Si did not reach high values in surfaces waters (ca. 1.5μM) but remained at a consistently higher level than in 2007. Sinking of

  11. Structure and Composition of Vegetation on Longleaf Plantation Sites Compared to Natural Stands Occurring Along an Environmental Gradient at the Savannah River Site

    SciTech Connect

    Smith, G.P.

    2000-10-01

    The diversity and abundance of native grasses and herbaceous species characteristic of the longleaf savanna were compared between remnant stands that were not previously under agriculture and recent old-fields.The objective of the study was to establish a baseline for future restoration objectives and to compare the degree of degradation associated with agriculture. In most cases even the natural stands have suffered degradation as a result of fire exclusion and as such are not representative of pristine conditions. Community classification and ordination procedures were implemented to array the communities. Three distinct sub-units were identified and associated with xeric, sub-xeric, and medic types associated with texture and soil moisture. Between plantations and natural stands, the xeric group demonstrated the most similarity. The presence of a B horizon was the most important discriminate variable in both groups.

  12. Altered white matter and cortical structure in neonates with antenatally diagnosed isolated ventriculomegaly

    PubMed Central

    Lockwood Estrin, G.; Kyriakopoulou, V.; Makropoulos, A.; Ball, G.; Kuhendran, L.; Chew, A.; Hagberg, B.; Martinez-Biarge, M.; Allsop, J.; Fox, M.; Counsell, S.J.; Rutherford, M.A.

    2016-01-01

    Ventriculomegaly (VM) is the most common central nervous system abnormality diagnosed antenatally, and is associated with developmental delay in childhood. We tested the hypothesis that antenatally diagnosed isolated VM represents a biological marker for altered white matter (WM) and cortical grey matter (GM) development in neonates. 25 controls and 21 neonates with antenatally diagnosed isolated VM had magnetic resonance imaging at 41.97(± 2.94) and 45.34(± 2.14) weeks respectively. T2-weighted scans were segmented for volumetric analyses of the lateral ventricles, WM and cortical GM. Diffusion tensor imaging (DTI) measures were assessed using voxel-wise methods in WM and cortical GM; comparisons were made between cohorts. Ventricular and cortical GM volumes were increased, and WM relative volume was reduced in the VM group. Regional decreases in fractional anisotropy (FA) and increases in mean diffusivity (MD) were demonstrated in WM of the VM group compared to controls. No differences in cortical DTI metrics were observed. At 2 years, neurodevelopmental delays, especially in language, were observed in 6/12 cases in the VM cohort. WM alterations in isolated VM cases may be consistent with abnormal development of WM tracts involved in language and cognition. Alterations in WM FA and MD may represent neural correlates for later neurodevelopmental deficits. PMID:26937382

  13. Structural and Functional Alterations of Skeletal Muscle Microvasculature in Dystrophin-Deficient mdx Mice.

    PubMed

    Latroche, Claire; Matot, Béatrice; Martins-Bach, Aurea; Briand, David; Chazaud, Bénédicte; Wary, Claire; Carlier, Pierre G; Chrétien, Fabrice; Jouvion, Grégory

    2015-09-01

    Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disease, caused by an absence of dystrophin, inevitably leading to death. Although muscle lesions are well characterized, blood vessel alterations that may have a major impact on muscle regeneration remain poorly understood. Our aim was to elucidate alterations of the vascular network organization, taking advantage of Flk1(GFP/+) crossed with mdx mice (model for human DMD where all blood vessels express green fluorescent protein) and functional repercussions using in vivo nuclear magnetic resonance, combining arterial spin-labeling imaging of perfusion, and (31)P-spectroscopy of phosphocreatine kinetics. For the first time, our study focused on old (12-month-old) mdx mice, displaying marked chronic muscle lesions, similar to the lesions observed in human DMD, in comparison to young-adult (3-month-old) mdx mice displaying only mild muscle lesions with no fibrosis. By using an original approach combining a specific animal model, state-of-the-art histology/morphometry techniques, and functional nuclear magnetic resonance, we demonstrated that the microvascular system is almost normal in young-adult in contrast to old mdx mice, displaying marked microvessel alterations, and the functional repercussions on muscle perfusion and bioenergetics after a hypoxic stress vary depending on stage of pathology. This original approach clarifies disease evolution and paves the way for setting up new diagnostic markers or therapeutic strategies. PMID:26193666

  14. Influence of glass composition and alteration solution on leached silicate glass structure: A solid-state NMR investigation

    NASA Astrophysics Data System (ADS)

    Angeli, Frédéric; Gaillard, Marina; Jollivet, Patrick; Charpentier, Thibault

    2006-05-01

    A multinuclear solid-state NMR investigation of the structure of the amorphous alteration products (so called gels) that form during the aqueous alteration of silicate glasses is reported. The studied glass compositions are of increasing complexity, with addition of aluminum, calcium, and zirconium to a sodium borosilicate glass. Two series of gels were obtained, in acidic and in basic solutions, and were analyzed using 1H, 29Si, and 27Al MAS NMR spectroscopy. Advanced NMR techniques have been employed such as 1H- 29Si and 1H- 27Al cross-polarization (CP) MAS NMR, 1H double quantum (DQ) MAS NMR and 27Al multiple quantum (MQ) MAS NMR. Under acidic conditions, 29Si CP MAS NMR data show that the repolymerized silicate networks have similar configuration. Zirconium as a second nearest neighbor increases the 29Si isotropic chemical shift. The gel porosity is influenced by the pristine glass composition, modifying the silicon-proton interactions. From 1H DQ and 1H- 29Si CP MAS NMR experiments, it was possible to discriminate between silanol groups (isolated or not) and physisorbed molecular water near Si (Q 2), Si (Q 3), and Si (Q 4) sites, as well as to gain insight into the hydrogen-bonding interaction and the mobility of the proton species. These experiments were also carried out on heated samples (180 °C) to evidence hydrogen bonds between hydroxyl groups on molecular water. Alteration in basic media resulted in a gel structure that is more dependent on the initial glass composition. 27Al MQMAS NMR data revealed an exchange of charge compensating cations of the [AlO 4] - groups during glass alteration. 1H- 27Al CP MAS NMR data provide information about the proximities of these two nuclei and two aluminum environments have been distinguished. The availability of these new structural data should provide a better understanding of the impact of glass composition on the gel structure depending on the nature of the alteration solution.

  15. Looking northeast from Test Stand 'A' superstructure towards Test Stand ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking northeast from Test Stand 'A' superstructure towards Test Stand 'D' tower (4223/E-24, left background), Test Stand 'C' tower (4217/E-18, center), and Test Stand 'B' (4215/E-16, right foreground). - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA

  16. Structural reorganization of pyramidal neurons in the medial prefrontal cortex of alcohol dependent rats is associated with altered glial plasticity

    PubMed Central

    Kim, Airee; Zamora-Martinez, Eva R.; Edwards, Scott; Mandyam, Chitra D.

    2014-01-01

    In rodents, chronic intermittent ethanol vapor exposure (CIE) produces alcohol dependence, alters the activity of pyramidal neurons and decreases the number of glial progenitors in the medial prefrontal cortex (mPFC). Adult male Wistar rats were exposed to CIE and were injected with mitotic markers to label and phenotype proliferating cells to test the hypothesis that CIE produces concurrent alterations in the structure of pyramidal neurons and the cell cycle kinetics and developmental stages of glial progenitors in the mPFC. Medial prefrontal cortical tissue was processed for Golgi-Cox staining, immunohistochemistry and Western blotting analysis. CIE increased dendritic arborization and spine densities within basal and apical dendrites of pyramidal neurons via aberrant reorganization of actin cytoskeleton-associated molecules. CIE concomitantly increased expression of total NR2B subunits without affecting phosphorylation of NR2B at Tyr-1472 or levels of PSD-95. CIE reduced the length of S phase of the cell cycle of glial progenitors and reduced proliferation and differentiation of progenitors into bHLH transcription factor Olig2-expressing premyelinating oligodendrocyte progenitor cells (OPCs). CIE also produced a corresponding hyperphosphorylation of Olig2, and reduced expression of myelin basic protein. Our findings demonstrate that CIE-induced alterations in OPCs and myelin-related proteins are associated with profound alterations in the structure of pyramidal neurons. In sum, our results not only provide evidence that alcohol dependence leads to pathological changes in the mPFC, which may in part define a cellular basis for cognitive impairments associated with alcoholism, but also show dependence-associated morphological changes in the PFC at the single neuron level. PMID:24667898

  17. Structural reorganization of pyramidal neurons in the medial prefrontal cortex of alcohol dependent rats is associated with altered glial plasticity.

    PubMed

    Kim, Airee; Zamora-Martinez, Eva R; Edwards, Scott; Mandyam, Chitra D

    2015-01-01

    In rodents, chronic intermittent ethanol vapor exposure (CIE) produces alcohol dependence, alters the activity of pyramidal neurons and decreases the number of glial progenitors in the medial prefrontal cortex (mPFC). Adult male Wistar rats were exposed to CIE and were injected with mitotic markers to label and phenotype proliferating cells to test the hypothesis that CIE produces concurrent alterations in the structure of pyramidal neurons and the cell cycle kinetics and developmental stages of glial progenitors in the mPFC. Medial prefrontal cortical tissue was processed for Golgi-Cox staining, immunohistochemistry and Western blotting analysis. CIE increased dendritic arborization and spine densities within basal and apical dendrites of pyramidal neurons via aberrant reorganization of actin cytoskeleton-associated molecules. CIE concomitantly increased the expression of total NR2B subunits without affecting phosphorylation of NR2B at Tyr-1472 or levels of PSD-95. CIE reduced the length of S-phase of the cell cycle of glial progenitors and reduced proliferation and differentiation of progenitors into bHLH transcription factor Olig2-expressing premyelinating oligodendrocyte progenitor cells (OPCs). CIE also produced a corresponding hyperphosphorylation of Olig2, and reduced expression of myelin basic protein. Our findings demonstrate that CIE-induced alterations in OPCs and myelin-related proteins are associated with profound alterations in the structure of pyramidal neurons. In sum, our results not only provide evidence that alcohol dependence leads to pathological changes in the mPFC, which may in part define a cellular basis for cognitive impairments associated with alcoholism, but also show dependence-associated morphological changes in the PFC at the single neuron level. PMID:24667898

  18. PPT Thrust Stand

    NASA Technical Reports Server (NTRS)

    Haag, Thomas W.

    1995-01-01

    A torsional-type thrust stand has been designed and built to test Pulsed Plasma Thrusters (PPT's) in both single shot and repetitive operating modes. Using this stand, momentum per pulse was determined strictly as a function of thrust stand deflection, spring constant, and natural frequency. No empirical corrections were required. The accuracy of the method was verified using a swinging impact pendulum. Momentum transfer data between the thrust stand and the pendulum were consistent to within 1%. Following initial calibrations, the stand was used to test a Lincoln Experimental Satellite (LES-8/9) thruster. The LES-8/9 system had a mass of approximately 7.5 kg, with a nominal thrust to weight ratio of 1.3 x 10(exp -5). A total of 34 single shot thruster pulses were individually measured. The average impulse bit per pulse was 266 microN-s, which was slightly less than the value of 300 microN-s published in previous reports on this device. Repetitive pulse measurements were performed similar to ordinary steady-state thrust measurements. The thruster was operated for 30 minutes at a repetition rate of 132 pulses per minute and yielded an average thrust of 573 microN. Using average thrust, the average impulse bit per pulse was estimated to be 260 microN-s, which was in agreement with the single shot data. Zero drift during the repetitive pulse test was found to be approximately 1% of the measured thrust.

  19. Alterations in upper limb muscle synergy structure in chronic stroke survivors

    PubMed Central

    Rymer, William Z.; Perreault, Eric J.; Yoo, Seng Bum; Beer, Randall F.

    2013-01-01

    Previous studies in neurologically intact subjects have shown that motor coordination can be described by task-dependent combinations of a few muscle synergies, defined here as a fixed pattern of activation across a set of muscles. Arm function in severely impaired stroke survivors is characterized by stereotypical postural and movement patterns involving the shoulder and elbow. Accordingly, we hypothesized that muscle synergy composition is altered in severely impaired stroke survivors. Using an isometric force matching protocol, we examined the spatial activation patterns of elbow and shoulder muscles in the affected arm of 10 stroke survivors (Fugl-Meyer <25/66) and in both arms of six age-matched controls. Underlying muscle synergies were identified using non-negative matrix factorization. In both groups, muscle activation patterns could be reconstructed by combinations of a few muscle synergies (typically 4). We did not find abnormal coupling of shoulder and elbow muscles within individual muscle synergies. In stroke survivors, as in controls, two of the synergies were comprised of isolated activation of the elbow flexors and extensors. However, muscle synergies involving proximal muscles exhibited consistent alterations following stroke. Unlike controls, the anterior deltoid was coactivated with medial and posterior deltoids within the shoulder abductor/extensor synergy and the shoulder adductor/flexor synergy in stroke was dominated by activation of pectoralis major, with limited anterior deltoid activation. Recruitment of the altered shoulder muscle synergies was strongly associated with abnormal task performance. Overall, our results suggest that an impaired control of the individual deltoid heads may contribute to poststroke deficits in arm function. PMID:23155178

  20. Chronic N-amended soils exhibit an altered bacterial community structure in Harvard Forest, MA, USA.

    PubMed

    Turlapati, Swathi A; Minocha, Rakesh; Bhiravarasa, Premsai S; Tisa, Louis S; Thomas, William K; Minocha, Subhash C

    2013-02-01

    At the Harvard Forest, Petersham, MA, the impact of 20 years of annual ammonium nitrate application to the mixed hardwood stand on soil bacterial communities was studied using 16S rRNA genes pyrosequencing. Amplification of 16S rRNA genes was done using DNA extracted from 30 soil samples (three treatments × two horizons × five subplots) collected from untreated (control), low N-amended (50 kg ha(-1) year(-1)) and high N-amended (150 kg ha(-1) year(-1)) plots. A total of 1.3 million sequences were processed using qiime. Although Acidobacteria represented the most abundant phylum based on the number of sequences, Proteobacteria were the most diverse in terms of operational taxonomic units (OTUs). UniFrac analyses revealed that the bacterial communities differed significantly among soil horizons and treatments. Microsite variability among the five subplots was also evident. Nonmetric multidimensional scaling ordination of normalized OTU data followed by permutational manova further confirmed these observations. Richness indicators and indicator species analyses revealed higher bacterial diversity associated with N amendment. Differences in bacterial diversity and community composition associated with the N treatments were also observed at lower phylogenetic levels. Only 28-35% of the 6 936 total OTUs identified were common to three treatments, while the rest were specific to one treatment or common to two. PMID:22974374

  1. Wide-area estimates of stand structure and water use of tamarix spp. on the lower colorado river: Implications for restoration and water management projects

    USGS Publications Warehouse

    Nagler, P.L.; Glenn, E.P.; Didan, K.; Osterberg, J.; Jordan, F.; Cunningham, J.

    2008-01-01

    Tamarix spp. removal has been proposed to salvage water and allow native vegetation to recolonize western U.S. riparian corridors. We conducted wide-area studies on the Lower Colorado River to answer some of the scientific questions about Tamarix water use and the consequences of removal, combining ground surveys with remote sensing methods. Tamarix stands had moderate rates of evapotranspiration (ET), based on remote sensing estimates, averaging 1.1 m/yr, similar to rates determined for other locations on the river and other rivers. Leaf area index values were also moderate, and stands were relatively open, with areas of bare soil interspersed within stands. At three Tamarix sites in the Cibola National Wildlife Refuge, groundwater salinity at the site nearest to the river (200 m) was relatively low (circa 2,250 mg/L) and was within 3 m of the surface. However, 750 and 1,500 m from the river, the groundwater salinity was 5,000-10,000 mg/L due to removal of water by the Tamarix stands. Despite the high groundwater salinity, the sites away from the river did not have saline surface soils. Only 1% of the mean annual river flow is lost to Tamarix ET on the Lower Colorado River in the United States, and the opportunities for water salvage through Tamarix removal are constrained by its modest ET rates. A possible alternative to Tamarix removal is to intersperse native plants among the stands to improve the habitat value of the riparian zone. ?? 2008 Society for Ecological Restoration International.

  2. Standing wave compressor

    DOEpatents

    Lucas, Timothy S.

    1991-01-01

    A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.

  3. Prolonged Intake of Dietary Lipids Alters Membrane Structure and T Cell Responses in LDLr-/- Mice.

    PubMed

    Pollock, Abigail H; Tedla, Nicodemus; Hancock, Sarah E; Cornely, Rhea; Mitchell, Todd W; Yang, Zhengmin; Kockx, Maaike; Parton, Robert G; Rossy, Jérémie; Gaus, Katharina

    2016-05-15

    Although it is recognized that lipids and membrane organization in T cells affect signaling and T cell activation, to what extent dietary lipids alter T cell responsiveness in the absence of obesity and inflammation is not known. In this study, we fed low-density lipoprotein receptor knockout mice a Western high-fat diet for 1 or 9 wk and examined T cell responses in vivo along with T cell lipid composition, membrane order, and activation ex vivo. Our data showed that high levels of circulating lipids for a prolonged period elevated CD4(+) and CD8(+) T cell proliferation and resulted in an increased proportion of CD4(+) central-memory T cells within the draining lymph nodes following induction of contact hypersensitivity. In addition, the 9-wk Western high-fat diet elevated the total phospholipid content and monounsaturated fatty acid level, but decreased saturated phosphatidylcholine and sphingomyelin within the T cells. The altered lipid composition in the circulation, and of T cells, was also reflected by enhanced membrane order at the activation site of ex vivo activated T cells that corresponded to increased IL-2 mRNA levels. In conclusion, dietary lipids can modulate T cell lipid composition and responses in lipoprotein receptor knockout mice even in the absence of excess weight gain and a proinflammatory environment. PMID:27183636

  4. Polyethylene glycol binding alters human telomere G-quadruplex structure by conformational selection

    PubMed Central

    Buscaglia, Robert; Miller, M. Clarke; Dean, William L.; Gray, Robert D.; Lane, Andrew N.; Trent, John O.; Chaires, Jonathan B.

    2013-01-01

    Polyethylene glycols (PEGs) are widely used to perturb the conformations of nucleic acids, including G-quadruplexes. The mechanism by which PEG alters G-quadruplex conformation is poorly understood. We describe here studies designed to determine how PEG and other co-solutes affect the conformation of the human telomeric quadruplex. Osmotic stress studies using acetonitrile and ethylene glycol show that conversion of the ‘hybrid’ conformation to an all-parallel ‘propeller’ conformation is accompanied by the release of about 17 water molecules per quadruplex and is energetically unfavorable in pure aqueous solutions. Sedimentation velocity experiments show that the propeller form is hydrodynamically larger than hybrid forms, ruling out a crowding mechanism for the conversion by PEG. PEGs do not alter water activity sufficiently to perturb quadruplex hydration by osmotic stress. PEG titration experiments are most consistent with a conformational selection mechanism in which PEG binds more strongly to the propeller conformation, and binding is coupled to the conformational transition between forms. Molecular dynamics simulations show that PEG binding to the propeller form is sterically feasible and energetically favorable. We conclude that PEG does not act by crowding and is a poor mimic of the intranuclear environment, keeping open the question of the physiologically relevant quadruplex conformation. PMID:23804761

  5. Structural Brain Alterations Associated with Rapid Eye Movement Sleep Behavior Disorder in Parkinson’s Disease

    PubMed Central

    Boucetta, Soufiane; Salimi, Ali; Dadar, Mahsa; Jones, Barbara E.; Collins, D. Louis; Dang-Vu, Thien Thanh

    2016-01-01

    Characterized by dream-enactment motor manifestations arising from rapid eye movement (REM) sleep, REM sleep behavior disorder (RBD) is frequently encountered in Parkinson’s disease (PD). Yet the specific neurostructural changes associated with RBD in PD patients remain to be revealed by neuroimaging. Here we identified such neurostructural alterations by comparing large samples of magnetic resonance imaging (MRI) scans in 69 PD patients with probable RBD, 240 patients without RBD and 138 healthy controls, using deformation-based morphometry (p < 0.05 corrected for multiple comparisons). All data were extracted from the Parkinson’s Progression Markers Initiative. PD patients with probable RBD showed smaller volumes than patients without RBD and than healthy controls in the pontomesencephalic tegmentum, medullary reticular formation, hypothalamus, thalamus, putamen, amygdala and anterior cingulate cortex. These results demonstrate that RBD is associated with a prominent loss of volume in the pontomesencephalic tegmentum, where cholinergic, GABAergic and glutamatergic neurons are located and implicated in the promotion of REM sleep and muscle atonia. It is additionally associated with more widespread atrophy in other subcortical and cortical regions whose loss also likely contributes to the altered regulation of sleep-wake states and motor activity underlying RBD in PD patients. PMID:27245317

  6. Structural Brain Alterations Associated with Rapid Eye Movement Sleep Behavior Disorder in Parkinson's Disease.

    PubMed

    Boucetta, Soufiane; Salimi, Ali; Dadar, Mahsa; Jones, Barbara E; Collins, D Louis; Dang-Vu, Thien Thanh

    2016-01-01

    Characterized by dream-enactment motor manifestations arising from rapid eye movement (REM) sleep, REM sleep behavior disorder (RBD) is frequently encountered in Parkinson's disease (PD). Yet the specific neurostructural changes associated with RBD in PD patients remain to be revealed by neuroimaging. Here we identified such neurostructural alterations by comparing large samples of magnetic resonance imaging (MRI) scans in 69 PD patients with probable RBD, 240 patients without RBD and 138 healthy controls, using deformation-based morphometry (p < 0.05 corrected for multiple comparisons). All data were extracted from the Parkinson's Progression Markers Initiative. PD patients with probable RBD showed smaller volumes than patients without RBD and than healthy controls in the pontomesencephalic tegmentum, medullary reticular formation, hypothalamus, thalamus, putamen, amygdala and anterior cingulate cortex. These results demonstrate that RBD is associated with a prominent loss of volume in the pontomesencephalic tegmentum, where cholinergic, GABAergic and glutamatergic neurons are located and implicated in the promotion of REM sleep and muscle atonia. It is additionally associated with more widespread atrophy in other subcortical and cortical regions whose loss also likely contributes to the altered regulation of sleep-wake states and motor activity underlying RBD in PD patients. PMID:27245317

  7. Functional network alterations and their structural substrate in drug-resistant epilepsy

    PubMed Central

    Caciagli, Lorenzo; Bernhardt, Boris C.; Hong, Seok-Jun; Bernasconi, Andrea; Bernasconi, Neda

    2014-01-01

    The advent of MRI has revolutionized the evaluation and management of drug-resistant epilepsy by allowing the detection of the lesion associated with the region that gives rise to seizures. Recent evidence indicates marked chronic alterations in the functional organization of lesional tissue and large-scale cortico-subcortical networks. In this review, we focus on recent methodological developments in functional MRI (fMRI) analysis techniques and their application to the two most common drug-resistant focal epilepsies, i.e., temporal lobe epilepsy related to mesial temporal sclerosis and extra-temporal lobe epilepsy related to focal cortical dysplasia. We put particular emphasis on methodological developments in the analysis of task-free or “resting-state” fMRI to probe the integrity of intrinsic networks on a regional, inter-regional, and connectome-wide level. In temporal lobe epilepsy, these techniques have revealed disrupted connectivity of the ipsilateral mesiotemporal lobe, together with contralateral compensatory reorganization and striking reconfigurations of large-scale networks. In cortical dysplasia, initial observations indicate functional alterations in lesional, peri-lesional, and remote neocortical regions. While future research is needed to critically evaluate the reliability, sensitivity, and specificity, fMRI mapping promises to lend distinct biomarkers for diagnosis, presurgical planning, and outcome prediction. PMID:25565942

  8. Standing alone with prosodic help*

    PubMed Central

    Frazier, Lyn; Clifton, Charles; Carlson, Katy; Harris, Jesse A.

    2013-01-01

    Two partially independent issues are addressed in two auditory rating studies: under what circumstances is a sub-string of a sentence identified as a stand-alone sentence, and under what circumstances do globally ill-formed but ‘locally coherent’ analyses (Tabor, Galantucci, & Richardson., 2004) emerge? A new type of locally coherent structure is established in Experiment 1, where a that-less complement clause is at least temporarily analyzed as a stand-alone sentence when it corresponds to a prosodic phrase. In Experiment 2, reduced relative clause structures like those in Tabor et al. were investigated. As in Experiment 1, the root sentence (mis-)analyses emerged most frequently when the locally coherent clause corresponded to a prosodic phrase. However, a substantial number of locally coherent analyses emerged even without prosodic help, especially in examples with for-datives (which do not grammatically permit a reduced relative clause structure for some speakers). Overall, the results suggest that prosodic grouping of constituents encourages analysis of a sub-string as a root sentence, and raise the question of whether all local coherence structures involve analysis of an utterance-final sub-string as a root sentence. PMID:24729648

  9. Sensitivity-enhanced NMR reveals alterations in protein structure by cellular milieus.

    PubMed

    Frederick, Kendra K; Michaelis, Vladimir K; Corzilius, Björn; Ong, Ta-Chung; Jacavone, Angela C; Griffin, Robert G; Lindquist, Susan

    2015-10-22

    Biological processes occur in complex environments containing a myriad of potential interactors. Unfortunately, limitations on the sensitivity of biophysical techniques normally restrict structural investigations to purified systems, at concentrations that are orders of magnitude above endogenous levels. Dynamic nuclear polarization (DNP) can dramatically enhance the sensitivity of nuclear magnetic resonance (NMR) spectroscopy and enable structural studies in biologically complex environments. Here, we applied DNP NMR to investigate the structure of a protein containing both an environmentally sensitive folding pathway and an intrinsically disordered region, the yeast prion protein Sup35. We added an exogenously prepared isotopically labeled protein to deuterated lysates, rendering the biological environment "invisible" and enabling highly efficient polarization transfer for DNP. In this environment, structural changes occurred in a region known to influence biological activity but intrinsically disordered in purified samples. Thus, DNP makes structural studies of proteins at endogenous levels in biological contexts possible, and such contexts can influence protein structure. PMID:26456111

  10. Standing waves braneworlds

    NASA Astrophysics Data System (ADS)

    Gogberashvili, Merab; Mantidze, Irakli; Sakhelashvili, Otari; Shengelia, Tsotne

    2016-05-01

    The class of nonstationary braneworld models generated by the coupled gravitational and scalar fields is reviewed. The model represents a brane in a spacetime with single time and one large (infinite) and several small (compact) spacelike extra dimensions. In some particular cases the model has the solutions corresponding to the bulk gravi-scalar standing waves bounded by the brane. Pure gravitational localization mechanism of matter particles on the node of standing waves, where the brane is placed, is discussed. Cosmological applications of the model is also considered.

  11. Gestational exposure to diethylstilbestrol alters cardiac structure/function, protein expression and DNA methylation in adult male mice progeny.

    PubMed

    Haddad, Rami; Kasneci, Amanda; Mepham, Kathryn; Sebag, Igal A; Chalifour, Lorraine E

    2013-01-01

    Pregnant women, and thus their fetuses, are exposed to many endocrine disruptor compounds (EDCs). Fetal cardiomyocytes express sex hormone receptors making them potentially susceptible to re-programming by estrogenizing EDCs. Diethylstilbestrol (DES) is a proto-typical, non-steroidal estrogen. We hypothesized that changes in adult cardiac structure/function after gestational exposure to the test compound DES would be a proof in principle for the possibility of estrogenizing environmental EDCs to also alter the fetal heart. Vehicle (peanut oil) or DES (0.1, 1.0 and 10.0μg/kg/da.) was orally delivered to pregnant C57bl/6n dams on gestation days 11.5-14.5. At 3months, male progeny were left sedentary or were swim trained for 4weeks. Echocardiography of isoflurane anesthetized mice revealed similar cardiac structure/function in all sedentary mice, but evidence of systolic dysfunction and increased diastolic relaxation after swim training at higher DES doses. The calcium homeostasis proteins, SERCA2a, phospholamban, phospho-serine 16 phospholamban and calsequestrin 2, are important for cardiac contraction and relaxation. Immunoblot analyses of ventricle homogenates showed increased expression of SERCA2a and calsequestrin 2 in DES mice and greater molecular remodeling of these proteins and phospho-serine 16 phospholamban in swim trained DES mice. DES increased cardiac DNA methyltransferase 3a expression and DNA methylation in the CpG island within the calsequestrin 2 promoter in heart. Thus, gestational DES epigenetically altered ventricular DNA, altered cardiac function and expression, and reduced the ability of adult progeny to cardiac remodel when physically challenged. We conclude that gestational exposure to estrogenizing EDCs may impact cardiac structure/function in adult males. PMID:23142472

  12. The tomato res mutant which accumulates JA in roots in non-stressed conditions restores cell structure alterations under salinity.

    PubMed

    Garcia-Abellan, José O; Fernandez-Garcia, Nieves; Lopez-Berenguer, Carmen; Egea, Isabel; Flores, Francisco B; Angosto, Trinidad; Capel, Juan; Lozano, Rafael; Pineda, Benito; Moreno, Vicente; Olmos, Enrique; Bolarin, Maria C

    2015-11-01

    Jasmonic acid (JA) regulates a wide spectrum of plant biological processes, from plant development to stress defense responses. The role of JA in plant response to salt stress is scarcely known, and even less known is the specific response in root, the main plant organ responsible for ionic uptake and transport to the shoot. Here we report the characterization of the first tomato (Solanum lycopersicum) mutant, named res (restored cell structure by salinity), that accumulates JA in roots prior to exposure to stress. The res tomato mutant presented remarkable growth inhibition and displayed important morphological alterations and cellular disorganization in roots and leaves under control conditions, while these alterations disappeared when the res mutant plants were grown under salt stress. Reciprocal grafting between res and wild type (WT) (tomato cv. Moneymaker) indicated that the main organ responsible for the development of alterations was the root. The JA-signaling pathway is activated in res roots prior to stress, with transcripts levels being even higher in control condition than in salinity. Future studies on this mutant will provide significant advances in the knowledge of JA role in root in salt-stress tolerance response, as well as in the energy trade-off between plant growth and response to stress. PMID:25582191

  13. Structural and Diffusion Property Alterations in Unaffected Siblings of Patients with Obsessive-Compulsive Disorder

    PubMed Central

    Shi, Changzheng; Miao, Guodong; Yang, Qiong; Gao, Wei; Wolff, Jason J.; Chan, Raymond C. K.; Shen, Dinggang

    2014-01-01

    Disrupted white matter integrity and abnormal cortical thickness are widely reported in the pathophysiology of obsessive-compulsive disorder (OCD). However, the relationship between alterations in white matter connectivity and cortical thickness in OCD is unclear. In addition, the heritability of this relationship is poorly understood. To investigate the relationship of white matter microstructure with cortical thickness, we measure fractional anisotropy (FA) of white matter in 30 OCD patients, 19 unaffected siblings and 30 matched healthy controls. Then, we take those regions of significantly altered FA in OCD patients compared with healthy controls to perform fiber tracking. Next, we calculate the fiber quantity in the same tracts. Lastly, we compare cortical thickness in the target regions of those tracts. Patients with OCD exhibited decreased FA in cingulum, arcuate fibers near the superior parietal lobule, inferior longitudinal fasciculus near the right superior temporal gyrus and uncinate fasciculus. Siblings showed reduced FA in arcuate fibers near the superior parietal lobule and anterior limb of internal capsule. Significant reductions in both fiber quantities and cortical thickness in OCD patients and their unaffected siblings were also observed in the projected brain areas when using the arcuate fibers near the left superior parietal lobule as the starting points. Reduced FA in the left superior parietal lobule was observed not only in patients with OCD but also in their unaffected siblings. Originated from the superior parietal lobule, the number of fibers was also found to be decreased and the corresponding cortical regions were thinner relative to controls. The linkage between disrupted white matter integrity and the abnormal cortical thickness may be a vulnerability marker for OCD. PMID:24489665

  14. Hyperosmolar Tears Induce Functional and Structural Alterations of Corneal Nerves: Electrophysiological and Anatomical Evidence Toward Neurotoxicity

    PubMed Central

    Hirata, Harumitsu; Mizerska, Kamila; Marfurt, Carl F.; Rosenblatt, Mark I.

    2015-01-01

    Purpose In an effort to elucidate possible neural mechanisms underlying diminished tearing in dry eye disease, this study sought to determine if hyperosmolar tears, a ubiquitous sign of dry eye disease, produce functional changes in corneal nerve responses to drying of the cornea and if these changes correlate with alterations in corneal nerve morphology. Methods In vivo extracellular electrophysiological recordings were performed in rat trigeminal ganglion neurons that innervated the cornea before, and up to 3 hours after, the ocular application of continuous hyperosmolar tears or artificial tears. In corollary experiments, immunohistochemical staining was performed to compare corneal nerve morphology in control and in eyes treated with hyperosmolar solutions. Results Our previous studies identified a population of corneal afferents, dry-sensitive neurons that are strongly excited by corneal dessication (“dry response”), a response thought to trigger the lacrimation reflex. In the present study, we found that the dry responses of corneal dry-sensitive neurons were depressed or even completely abolished by hyperosmolar tears in a time- (30 minutes to 3 hours) and dose (450- to 1000-mOsm solutions)-dependent manner. Furthermore, eyes treated with hyperosmolar tears for 3 hours contained large numbers of morphologically abnormal (granular, fragmented, or prominently beaded) subbasal nerves that appeared to be undergoing degeneration. Conclusions These results demonstrate that tear hyperosmolarity, considered to be a “core” mechanism of dry eye disease, significantly decreases physiological sensitivity and morphologic integrity of the corneal nerves important in tear production. These alterations might contribute to the diminished tearing seen clinically in dry eye patients. PMID:26720465

  15. TMS delivered for A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    2010-01-01

    A state-of-the-art thrust measurement system for the A-3 Test Stand under construction at NASA's John C. Stennis Space Center was delivered March 17. Once completed, the A-3 stand (seen in background) will allow simulated high-altitude testing on the next generation of rocket engines for America's space program. Work on the stand began in 2007, with activation scheduled for 2012. The stand is the first major test structure to be built at Stennis since the 1960s. The recently delivered TMS was fabricated by Thrust Measurement Systems in Illinois. It is an advanced calibration system capable of measuring vertical and horizontal thrust loads with an accuracy within 0.15 percent at 225,000 pounds.

  16. Free-Standing Canes.

    ERIC Educational Resources Information Center

    Ehresman, Paul

    1995-01-01

    A precane device, called the "free-standing cane," was developed to help children with blindness along with other disabilities. The cane detects obstacles; guides the user's hands into a relaxed, static position in front of the hips; facilitates postural security and control; and offers tactile and kinesthetic feedback. (JDD)

  17. View looking west at Test Stand 'A' complex in morning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View looking west at Test Stand 'A' complex in morning sun. View shows Monitor Building 4203/E-4 at left, barrier (Building 4216/E-17) to right of 4203/E-4, and Test Stand 'A' tower. Attached structure to lower left of tower is Test Stand 'A' machine room which contained refrigeration equipment. Building in right background with Test Stand 'A' tower shadow on it is Assembly Building 4288/E-89, built in 1984. Row of ground-mounted brackets in foreground was used to carry electrical cable and/or fuel lines. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA

  18. ONTOGENETIC ALTERATIONS IN MOLECULAR AND STRUCTURAL CORRELATES OF DENDRITIC GROWTH FOLLOWING DEVELOPMENTAL EXPOSURE TO POLYCHLORINATED BIPHENYLS.

    EPA Science Inventory

    This is the first report showing both molecular and structural changes in brain following developmental exposure to a neurotoxicant. It is known that perinatal exposure to a neurotoxicant, polychlorinated biphenyls (PCBs), is associated with decreased IQ scores, impaired learnin...

  19. Confinement and transverse standing acoustic resonances in free-standing membranes

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Sooryakumar, R.; Bussmann, K.

    2003-09-01

    Brillouin light scattering (BLS) reveal standing wave acoustic resonances in unsupported 100 and 200 nm thick, SiN membranes. In contrast to supported thin films where discrete high frequency (GHz) longitudinal standing wave excitations were recently reported, transverse standing resonances are observed by light scattering in an unsupported laminar structure. Due to the boundary conditions imposed by the free upper and lower surfaces, the standing wave resonances are quantized in frequency. The resonances provide for a direct, nondestructive, measure of all principal elastic constants (C11,C44) that completely characterize the mechanical properties of the membrane. In addition, the two lowest order Lamb waves (dilational and flexural modes) of the membrane are observed. The results are compared to BLS performed on nitride films atop a Si underlayer when it is found that all standing resonances transform to leaky modes leading to featureless light scattering spectra.

  20. S-IC Test Stand Design Model

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo is of the S-IC test stand design model created prior to construction.

  1. S-IC Test Stand Design Model

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo is of the S-IC test stand design model.

  2. Measuring and Altering Ferroelectric Domain Structures in Lead Perovskite Single-Crystals

    NASA Astrophysics Data System (ADS)

    Harker, John Chamberlain

    Relaxor ferroelectric single-crystal materials PMN-PT and PZN-PT are currently of interest to the scientific community due to their enhanced properties and possible role as next-generation piezoelectric transducers in applications such as sonar and medical ultrasound. One key phenomenon affecting both the properties and the mechanical integrity of these materials is the ferroelectric domain structure within the material. In this work we examine the morphology and behavior of domain structures in PMN-29%PT. In order to do this we first present details of the construction and testing of a working piezo-response force microscope (PFM), and then use the PFM to verify a new domain observation technique called "relief polishing". Relief polishing is shown to reveal surface domains in the same manner as acid etching, preserving domain details as small as 0.5mum. Using these two techniques, we then determine that cutting and polishing strongly affect the surface and subsurface ferroelectric domain structures in PMN-29%PT. Specifically, we show that saw cutting can create characteristic striated domain structures as deep as 130mum within a sample, while straight polishing creates a characteristic domain structure known as the "fingerprint" pattern to a depth proportional to the size of the polishing grit, on the order of 0--12mum for grits as large as 15mum. We hypothesize that most samples contain these "skin effect" domain structures. In consequence, it is suggested that researchers presenting experimental results on domain structures should report the physical treatment history of the samples along with the experimental data.

  3. Deep sequencing of the hepatitis B virus in hepatocellular carcinoma patients reveals enriched integration events, structural alterations and sequence variations.

    PubMed

    Toh, Soo Ting; Jin, Yu; Liu, Lizhen; Wang, Jingbo; Babrzadeh, Farbod; Gharizadeh, Baback; Ronaghi, Mostafa; Toh, Han Chong; Chow, Pierce Kah-Hoe; Chung, Alexander Y-F; Ooi, London L-P-J; Lee, Caroline G-L

    2013-04-01

    Chronic hepatitis B virus (HBV) infection is epidemiologically associated with hepatocellular carcinoma (HCC), but its role in HCC remains poorly understood due to technological limitations. In this study, we systematically characterize HBV in HCC patients. HBV sequences were enriched from 48 HCC patients using an oligo-bead-based strategy, pooled together and sequenced using the FLX-Genome-Sequencer. In the tumors, preferential integration of HBV into promoters of genes (P < 0.001) and significant enrichment of integration into chromosome 10 (P < 0.01) were observed. Integration into chromosome 10 was significantly associated with poorly differentiated tumors (P < 0.05). Notably, in the tumors, recurrent integration into the promoter of the human telomerase reverse transcriptase (TERT) gene was found to correlate with increased TERT expression. The preferred region within the HBV genome involved in integration and viral structural alteration is at the 3'-end of hepatitis B virus X protein (HBx), where viral replication/transcription initiates. Upon integration, the 3'-end of the HBx is often deleted. HBx-human chimeric transcripts, the most common type of chimeric transcripts, can be expressed as chimeric proteins. Sequence variation resulting in non-conservative amino acid substitutions are commonly observed in HBV genome. This study highlights HBV as highly mutable in HCC patients with preferential regions within the host and virus genome for HBV integration/structural alterations. PMID:23276797

  4. Disruption of secondary structure by oxidative stress alters the cross-linking pattern of myosin by microbial transglutaminase.

    PubMed

    Li, Chunqiang; Xiong, Youling L

    2015-10-01

    Porcine myofibrillar protein (MP) was oxidatively stressed in an iron-H2O2 radical-producing system then subjected to microbial transglutaminase (TGase, E:S=1:20) at 4°C. Changes in the MP secondary structure and cross-linking site on myosin (subfragments S1, S2, rod, light meromyosin, and heavy meromyosin) after TGase treatment were investigated. Circular dichroism and FTIR recorded unraveling of helixes caused by both oxidation and TGase. The loss of α-helix due to TGase treatment was oxidation-dependent, namely, mild oxidation (0.1-1mM H2O2)>non-oxidation>moderate oxidation (5-20mM H2O2). Moreover, oxidation altered the myosin cross-linking pattern: TGase-initiated S1 cross-linking (which dominated non-oxidized MP) partially shifted to the rod under 0.1-0.5mM H2O2 and extensively to the S2 site with 20mM H2O2. Unraveling of the helical structure and formation of disulfide bonds due to oxidation were implicated in the altered myosin cross-linking pattern during subsequent TGase reactions. PMID:26068405

  5. Utility of biological membranes as indicators for radiation exposure: alterations in membrane structure and function over time.

    PubMed

    Dainiak, N; Tan, B J

    1995-05-01

    In addition to interacting with genomic DNA, ionizing radiation may directly and indirectly alter the structure and function of components of the plasma membrane of eukaryotic cells. Water radiolysis generates reactive species, including superoxide, hypochlorous acid and chloride radicals that may in turn react with biological membranes, as well as with cellular DNA. Reaction of plasma membrane lipids with molecular oxygen results in lipid peroxidation of both reconstituted membranes and biological membranes, an effect that increases with decreasing dose rate. Both ionizing radiation and ultraviolet light alter functions of membrane-anchored molecules, including adhesion molecules, histocompatibility complex antigens and membrane-bound growth factors. The latter growth factors represent a repertoire of growth and differentiation signals that are expressed in a nondiffusible fashion at the cell surface, and in soluble forms appearing after cleavage of their extracellular domain. The importance of cell-cell signaling via the membrane-anchored form of growth factors is becoming increasingly recognized. Expression of membrane-bound hematopoietic cytokines by eukaryotic cells is impaired after exposure to ultraviolet light, a defect in cell-cell signaling that may lead to impaired hematopoiesis. While studies suggest that permanent changes in membrane structure and function may result from radiation-induced injury to the plasma membrane and reconstituted "pure" membranes, reversibility of these defects over time requires additional study. PMID:7488940

  6. Discoidin domain receptor 2 germline gene deletion leads to altered heart structure and function in the mouse

    PubMed Central

    Yeo, Seon Ju; Kim, In Jai; Park, Joong Il; Gu, Yusu; Dalton, Nancy D.; Peterson, Kirk L.; Greenberg, Barry H.

    2014-01-01

    Discoidin domain receptor 2 (DDR2) is a fibrillar collagen receptor that is expressed in mesenchymal cells throughout the body. In the heart, DDR2 is selectively expressed on cardiac fibroblasts. We generated a germline DDR2 knockout mouse and used this mouse to examine the role of DDR2 deletion on heart structure and function. Echocardiographic measurements from null mice were consistent with those from a smaller heart, with reduced left ventricular chamber dimensions and little change in wall thickness. Fractional shortening appeared normal. Left ventricular pressure measurements revealed mild inotropic and lusitropic abnormalities that were accentuated by dobutamine infusion. Both body and heart weights from 10-wk-old male mice were ∼20% smaller in null mice. The reduced heart size was not simply due to reduced body weight, since cardiomyocyte lengths were atypically shorter in null mice. Although normalized cardiac collagen mass (assayed by hydroxyproline content) was not different in null mice, the collagen area fraction was statistically higher, suggesting a reduced collagen density from altered collagen deposition and cross-linking. Cultured cardiac fibroblasts from null mice deposited collagen at a slower rate than wild-type littermates, possibly due to the expression of lower prolyl 4-hydroxylase α-isoform 1 enzyme levels. We conclude that genetic deletion of the DDR2 collagen receptor alters cardiac fibroblast function. The resulting perturbations in collagen deposition can influence the structure and function of mature cardiomyocytes. PMID:24993042

  7. In vivo early retinal structural alterations following laser photocoagulation using three-dimensional spectral domain optical coherence tomography.

    PubMed

    Saxena, Sandeep; Mishra, Nibha; Ruia, Surabhi; Akduman, Levent

    2016-01-01

    To study the retinal structural alterations and surface topography of retinal pigment epithelium (RPE) immediately following laser photocoagulation up to day 7. Cross-sectional retinal imaging and RPE segmentation maps on spectral domain optical coherence tomography were obtained immediately at hour 1, day 1, day 4 and day 7 following 532 nm neodymium:YAG laser photocoagulation in a 56-year-old male patient for branch retinal vein occlusion. Immediately postlaser, loss of reflectivity of all the retinal layers was observed. At hour 1, hyper-reflectivity of outer retinal layers was observed with increase in hyporeflective spaces by day 1. Immediately postlaser, pitting of the RPE was observed on surface topography which regressed at day 1. On day 4, smooth RPE surface topography was observed with the occurrence of small elevated areas on day 7. The present report provides an insight into the in vivo changes in the retinal structure and RPE surface topography after laser photocoagulation. PMID:27402655

  8. Altered intrahemispheric structural connectivity in Gilles de la Tourette syndrome☆☆☆

    PubMed Central

    Cheng, Bastian; Braass, Hanna; Ganos, Christos; Treszl, Andras; Biermann-Ruben, Katja; Hummel, Friedhelm C.; Müller-Vahl, Kirsten; Schnitzler, Alfons; Gerloff, Christian; Münchau, Alexander; Thomalla, Götz

    2013-01-01

    Gilles de la Tourette syndrome (GTS) is a common developmental neuropsychiatric disorder characterized by tics and frequent psychiatric comorbidities, often causing significant disability. Tic generation has been linked to disturbed networks of brain areas involved in planning, controlling and execution of actions, particularly structural and functional disorders in the striatum and cortico–striato–thalamo–cortical loops. We therefore applied structural diffusion tensor imaging (DTI) to characterize changes in intrahemispheric white matter connectivity in cortico-subcortical circuits engaged in motor control in 15 GTS patients without psychiatric comorbidities. White matter connectivity was analyzed by probabilistic fiber tractography between 12 predefined cortical and subcortical regions of interest. Connectivity values were combined with measures of clinical severity rated by the Yale Global Tic Severity Scale (YGTSS). GTS patients showed widespread structural connectivity deficits. Lower connectivity values were found specifically in tracts connecting the supplementary motor areas (SMA) with basal ganglia (pre-SMA–putamen, SMA–putamen) and in frontal cortico-cortical circuits. There was an overall trend towards negative correlations between structural connectivity in these tracts and YGTSS scores. Structural connectivity of frontal brain networks involved in planning, controlling and executing actions is reduced in adult GTS patients which is associated with tic severity. These findings are in line with the concept of GTS as a neurodevelopmental disorder of brain immaturity. PMID:24371800

  9. Bioaugmentation of Hydrogenispora ethanolica LX-B affects hydrogen production through altering indigenous bacterial community structure.

    PubMed

    Yang, Zhiman; Guo, Rongbo; Shi, Xiaoshuang; He, Shuai; Wang, Lin; Dai, Meng; Qiu, Yanling; Dang, Xiaoxiao

    2016-07-01

    Bioaugmentation can facilitate hydrogen production from complex organic substrates, but it still is unknown how indigenous microbial communities respond to the added bacteria. Here, using a Hydrogenispora ethanolica LX-B (named as LX-B) bioaugmentation experiments, the distribution of metabolites and the responses of indigenous bacterial communities were investigated via batch cultivation (BC) and repeated batch cultivation (RBC). In BC the LX-B/sludge ratio of 0.12 achieved substantial high hydrogen yield, which was over twice that of control. In RBC one-time bioaugmentation and repeated batch bioaugmentation of LX-B resulted in the hydrogen yield that was average 1.2-fold and 0.8-fold higher than that in control, respectively. This improved hydrogen production performance mainly benefited from a shift in composition of the indigenous bacterial community caused by LX-B bioaugmentation. The findings represented an important step in understanding the relationship between bioaugmentation, a shift in bacterial communities, and altered bioreactor performance. PMID:27023388

  10. Rapid, Concurrent Alterations in Pre- and Postsynaptic Structure Induced by Soluble Natural Amyloid-β Protein

    PubMed Central

    Calabrese, Barbara; Shaked, Gideon M; Tabarean, Iustin V; Braga, Julia; Koo, Edward H; Halpain, Shelley

    2008-01-01

    In Alzheimer’s disease increasing evidence attributes synaptic and cognitive deficits to soluble oligomers of amyloid β protein (Aβ), even prior to the accumulation of amyloid plaques, neurofibrillary tangles, and neuronal cell death. Here we show that within 1–2 hours picomolar concentrations of cell-derived, soluble Aβ induce specific alterations in pre- and postsynaptic morphology and connectivity in cultured hippocampal neurons. Clusters of presynaptic vesicle markers decreased in size and number at glutamatergic but not GABAergic terminals. Dendritic spines also decreased in number and became dysmorphic, as spine heads collapsed and/or extended long protrusions. Simultaneous time-lapse imaging of axon-dendrite pairs revealed that shrinking spines sometimes became disconnected from their presynaptic varicosity. Concomitantly, miniature synaptic potentials decreased in amplitude and frequency. Spine changes were prevented by blockers of nAChRs and NMDARs. Washout of Aβ within the first day reversed these spine changes. Further, spine changes reversed spontaneously by two days, because neurons acutely developed resistance to continuous Aβ exposure. Thus, rapid Aβ-induced synapse destabilization may underlie transient behavioral impairments in animal models, and early cognitive deficits in Alzheimer’s patients. PMID:17368908

  11. Localisation of Neuregulin 1-{beta}3 to different sub-nuclear structures alters gene expression

    SciTech Connect

    Wang, Ming; Trim, Carol M.; Gullick, William J.

    2011-02-15

    Neuregulins are growth factors that signal via the ErbB3 and ErbB4 receptors. Here we show using immunohistochemistry that they are often expressed in the nucleus of a range of tumour types including soft tissue and breast. The Neuregulin 1 type I-{beta}3 (NRG1-{beta}3) isoform localises to two sub-nuclear compartments in animal cells, nucleoli and spliceosomes. We used NRG1-{beta}3 tagged with photoactivatable GFP and demonstrated that this re-localised from nucleoli to spliceosomes over 90 min. Tyrosine kinase activity was not required for retaining the NRG1-{beta}3 within the nucleus. Mutation of the lysines 14 and 16 or 15 and 16 together prevented nucleolar uptake while four positively charged residues were identified which were required for spliceosome uptake. Molecular modelling suggests that three of these may form a binding site. We showed using a kinome array that NRG1-{beta}3 and a mutant exclusively localising to spliceosomes increased phosphorylation and/or expression of the HER4 and HER2 receptors. Using a transcriptomic analysis the same two constructs induced expression of several messenger RNAs and we confirmed the increased expression at the protein level of the most highly induced, Heat Shock Protein 70B'. These results suggest that Neuregulin activates receptor signalling in spliceosomes leading to altered gene expression.

  12. Structural alterations of the nucleolus in mutants of Saccharomyces cerevisiae defective in RNA polymerase I.

    PubMed Central

    Oakes, M; Nogi, Y; Clark, M W; Nomura, M

    1993-01-01

    We have previously constructed mutants of Saccharomyces cerevisiae in which the gene for the second-largest subunit of RNA polymerase I (Pol I) is deleted. In these mutants, rRNA is synthesized by RNA polymerase II from a hybrid gene consisting of the 35S rRNA coding region fused to the GAL7 promoter on a plasmid. These strains thus grow in galactose but not glucose media. By immunofluorescence microscopy using antibodies against the known nucleolar proteins SSB1 and fibrillarin, we found that the intact crescent-shaped nucleolar structure is absent in these mutants; instead, several granules (called mininucleolar bodies [MNBs]) that stained with these antibodies were seen in the nucleus. Conversion of the intact nucleolar structure to MNBs was also observed in Pol I temperature-sensitive mutants at nonpermissive temperatures. These MNBs may structurally resemble prenucleolar bodies observed in higher eukaryotic cells and may represent a constituent of the normal nucleolus. Furthermore, cells under certain conditions that inhibit rRNA synthesis did not cause conversion of the nucleolus to MNBs. Thus, the role of Pol I in the maintenance of the intact nucleolar structure might include a role as a structural element in addition to (or instead of) a functional role to produce rRNA transcripts. Our study also shows that the intact nucleolar structure is not absolutely required for rRNA processing, ribosome assembly, or cell growth and that MNBs are possibly functional in rRNA processing in the Pol I deletion mutants. Images PMID:8455621

  13. Altered structural connectivity of cortico-striato-pallido-thalamic networks in Gilles de la Tourette syndrome

    PubMed Central

    Marrakchi-Kacem, Linda; Lecomte, Sophie; Valabregue, Romain; Poupon, Fabrice; Guevara, Pamela; Tucholka, Alan; Mangin, Jean-François; Vidailhet, Marie; Lehericy, Stephane; Hartmann, Andreas; Poupon, Cyril

    2015-01-01

    Gilles de la Tourette syndrome is a childhood-onset syndrome characterized by the presence and persistence of motor and vocal tics. A dysfunction of cortico-striato-pallido-thalamo-cortical networks in this syndrome has been supported by convergent data from neuro-pathological, electrophysiological as well as structural and functional neuroimaging studies. Here, we addressed the question of structural integration of cortico-striato-pallido-thalamo-cortical networks in Gilles de la Tourette syndrome. We specifically tested the hypothesis that deviant brain development in Gilles de la Tourette syndrome could affect structural connectivity within the input and output basal ganglia structures and thalamus. To this aim, we acquired data on 49 adult patients and 28 gender and age-matched control subjects on a 3 T magnetic resonance imaging scanner. We used and further implemented streamline probabilistic tractography algorithms that allowed us to quantify the structural integration of cortico-striato-pallido-thalamo-cortical networks. To further investigate the microstructure of white matter in patients with Gilles de la Tourette syndrome, we also evaluated fractional anisotropy and radial diffusivity in these pathways, which are both sensitive to axonal package and to myelin ensheathment. In patients with Gilles de la Tourette syndrome compared to control subjects, we found white matter abnormalities in neuronal pathways connecting the cerebral cortex, the basal ganglia and the thalamus. Specifically, striatum and thalamus had abnormally enhanced structural connectivity with primary motor and sensory cortices, as well as paracentral lobule, supplementary motor area and parietal cortices. This enhanced connectivity of motor cortex positively correlated with severity of tics measured by the Yale Global Tics Severity Scale and was not influenced by current medication status, age or gender of patients. Independently of the severity of tics, lateral and medial orbito

  14. Altered Gray Matter Structural Covariance Networks in Early Stages of Alzheimer's Disease.

    PubMed

    Montembeault, Maxime; Rouleau, Isabelle; Provost, Jean-Sébastien; Brambati, Simona Maria

    2016-06-01

    Clinical symptoms observed in Alzheimer's disease (AD) patients may reflect variations within specific large-scale brain networks, modeling AD as a disconnection syndrome. The present magnetic resonance imaging study aims to compare the organization of gray matter structural covariance networks between 109 cognitively unimpaired controls (CTRL) and 109 AD patients positive to beta-amyloid at the early stages of the disease, using voxel-based morphometry. The default-mode network (DMN; medial temporal lobe subsystem) was less extended in AD patients in comparison with CTRL, with a significant decrease in the structural association between the entorhinal cortex and the medial prefrontal and the dorsolateral prefrontal cortices. The DMN (midline core subsystem) was also less extended in AD patients. Trends toward increased structural association were observed in the salience and executive control networks. The observed changes suggest that early disruptions in structural association between heteromodal association cortices and the entorhinal cortex could contribute to an isolation of the hippocampal formation, potentially giving rise to the clinical hallmark of AD, progressive memory impairment. It also provides critical support to the hypothesis that the reduced connectivity within the DMN in early AD is accompanied by an enhancement of connectivity in the salience and executive control networks. PMID:25994962

  15. Baccharis dracunculifolia-based mouthrinse alters the exopolysaccharide structure in cariogenic biofilms.

    PubMed

    Aires, Carolina P; Sassaki, Guilherme L; Santana-Filho, Arquimedes P; Spadaro, Augusto C C; Cury, Jaime A

    2016-03-01

    Baccharis dracunculifolia is a native plant from Brazil with antimicrobial activity. The purpose of this study was to investigate whether a B. dracunculifolia-based mouthrinse (Bd) changes the structure of insoluble exopolysaccharides (IEPS) in Streptococcus mutans UA159 cariogenic biofilm. Biofilms were grown on glass slides and treated with Bd, its vehicle (VC), chlorhexidine digluconate (CHX), or saline solution (NaCl). Among the treatments, only CHX significantly reduced the biofilm biomass and bacterial viability (p<0.05). Gas chromatography-mass spectrometry and nuclear magnetic resonance analyses revealed that IEPS from the four biofilm samples were α- glucans containing different proportions of (1→6) and (1→3) glycosidic linkages. The structural differences among the four IEPS were compared by principal component analysis (PCA). PCA analysis indicated that IEPS from VC- and NaCl-treated biofilms were structurally similar to each other. Compared with the control, IEPS from Bd- and CHX-treated biofilms were structurally different and had distinct chemical profiles. In summary, the fact that Bd changed the IEPS chemical composition indicates that this mouthrinse may affect the cariogenic properties of the S. mutans biofilm formed. PMID:26691386

  16. Helminth infection alters IgE responses to allergens structurally related to parasite proteins

    PubMed Central

    Santiago, Helton da Costa; Ribeiro-Gomes, Flávia L.; Bennuru, Sasisekhar; Nutman, Thomas B.

    2014-01-01

    Immunological cross-reactivity between environmental allergens and helminth proteins has been demonstrated, though the clinically-related implications of this cross-reactivity have not been addressed. To investigate the impact of molecular similarity among allergens and cross-reactive homologous helminth proteins in IgE-based serologic assessment of allergic disorders in helminth-infected population, we performed Immunocap™ tests in filarial-infected and non-infected individuals for IgE measurements to allergen extracts that contained proteins with high levels of homology with helminth proteins and IgE against representative recombinant allergens with and without helminth homologues were performed. The impact of helminth infection on the levels and function of the IgE to these specific homologous and non-homologous allergens was corroborated in an animal model. We found that having a tissue-invasive filarial infection increased the serological prevalence of Immunocap™ identified IgE directed against house dust mite and cockroach, but not against timothy grass, the latter with few allergens with homologues in helminth infection. IgE ELISA confirmed that filaria-infected individuals had higher IgE prevalences to those recombinant allergens that had homologues in helminths. Mice infected with helminth Heligmosomoides polygyrus displayed increased levels of IgE and positive skin tests to allergens with homologues in the parasite. These results show that cross-reactivity among allergens and helminth proteins can have practical implications altering serologic approaches to allergen testing and brings a new perspective to the Hygiene Hypothesis. PMID:25404363

  17. Helminth infection alters IgE responses to allergens structurally related to parasite proteins.

    PubMed

    Santiago, Helton da Costa; Ribeiro-Gomes, Flávia L; Bennuru, Sasisekhar; Nutman, Thomas B

    2015-01-01

    Immunological cross-reactivity between environmental allergens and helminth proteins has been demonstrated, although the clinically related implications of this cross-reactivity have not been addressed. To investigate the impact of molecular similarity among allergens and cross-reactive homologous helminth proteins in IgE-based serologic assessment of allergic disorders in a helminth-infected population, we performed ImmunoCAP tests in filarial-infected and noninfected individuals for IgE measurements to allergen extracts that contained proteins with high levels of homology with helminth proteins as well as IgE against representative recombinant allergens with and without helminth homologs. The impact of helminth infection on the levels and function of the IgE to these specific homologous and nonhomologous allergens was corroborated in an animal model. We found that having a tissue-invasive filarial infection increased the serological prevalence of ImmunoCAP-identified IgE directed against house dust mite and cockroach, but not against timothy grass, the latter with few allergens with homologs in helminth infection. IgE ELISA confirmed that filaria-infected individuals had higher IgE prevalences to those recombinant allergens that had homologs in helminths. Mice infected with the helminth Heligmosomoides polygyrus displayed increased levels of IgE and positive skin tests to allergens with homologs in the parasite. These results show that cross-reactivity among allergens and helminth proteins can have practical implications, altering serologic approaches to allergen testing and bringing a new perspective to the "hygiene hypothesis." PMID:25404363

  18. Alterations in gill structure in tropical reef fishes as a result of elevated temperatures.

    PubMed

    Bowden, A J; Gardiner, N M; Couturier, C S; Stecyk, J A W; Nilsson, G E; Munday, P L; Rummer, J L

    2014-09-01

    Tropical regions are expected to be some of the most affected by rising sea surface temperatures (SSTs) because seasonal temperature variations are minimal. As temperatures rise, less oxygen dissolves in water, but metabolic requirements of fish and thus, the demand for effective oxygen uptake, increase. Gill remodelling is an acclimation strategy well documented in freshwater cyprinids experiencing large seasonal variations in temperature and oxygen as well as an amphibious killifish upon air exposure. However, no study has investigated whether tropical reef fishes remodel their gills to allow for increased oxygen demands at elevated temperatures. We tested for gill remodelling in five coral reef species (Acanthochromis polyacanthus, Chromis atripectoralis, Pomacentrus moluccensis, Dascyllus melanurus and Cheilodipterus quinquelineatus) from populations in northern Papua New Guinea (2° 35.765' S; 150° 46.193' E). Fishes were acclimated for 12-14 days to 29 and 31°C (representing their seasonal range) and 33 and 34°C to account for end-of-century predicted temperatures. We measured lamellar perimeter, cross-sectional area, base thickness, and length for five filaments on the 2nd gill arches and qualitatively assessed 3rd gill arches via scanning electron microscopy (SEM). All species exhibited significant differences in the quantitative measurements made on the lamellae, but no consistent trends with temperature were observed. SEM only revealed alterations in gill morphology in P. moluccensis. The overall lack of changes in gill morphology with increasing temperature suggests that these near-equatorial reef fishes may fail to maintain adequate O2 uptake under future climate scenarios unless other adaptive mechanisms are employed. PMID:24862962

  19. Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria

    SciTech Connect

    Tseng, Michael T.; Lu, Xiaoqin; Duan, Xiaoxian; Hardas, Sarita S.; Sultana, Rukhsana; Wu, Peng; Unrine, Jason M.; Graham, Uschi; Butterfield, D. Allan; Grulke, Eric A.; Yokel, Robert A.

    2012-04-15

    Beyond the traditional use of ceria as an abrasive, the scope of nanoceria applications now extends into fuel cell manufacturing, diesel fuel additives, and for therapeutic intervention as a putative antioxidant. However, the biological effects of nanoceria exposure have yet to be fully defined, which gave us the impetus to examine its systemic biodistribution and biological responses. An extensively characterized nanoceria (5 nm) dispersion was vascularly infused into rats, which were terminated 1 h, 20 h or 30 days later. Light and electron microscopic tissue characterization was conducted and hepatic oxidative stress parameters determined. We observed acute ceria nanoparticle sequestration by Kupffer cells with subsequent bioretention in parenchymal cells as well. The internalized ceria nanoparticles appeared as spherical agglomerates of varying dimension without specific organelle penetration. In hepatocytes, the agglomerated nanoceria frequently localized to the plasma membrane facing bile canaliculi. Hepatic stellate cells also sequestered nanoceria. Within the sinusoids, sustained nanoceria bioretention was associated with granuloma formations comprised of Kupffer cells and intermingling CD3{sup +} T cells. A statistically significant elevation of serum aspartate aminotransferase (AST) level was seen at 1 and 20 h, but subsided by 30 days after ceria administration. Further, elevated apoptosis was observed on day 30. These findings, together with increased hepatic protein carbonyl levels on day 30, indicate ceria-induced hepatic injury and oxidative stress, respectively. Such observations suggest a single vascular infusion of nanoceria can lead to persistent hepatic retention of particles with possible implications for occupational and therapeutic exposures. -- Highlights: ► Time course study on nanoceria induced hepatic alterations in rats. ► Serum AST elevation indicated acute hepatotoxicity. ► Ceria is retained for up to 30 days in Kupffer cells

  20. 20. Building 202, detail of stand A, rocket test stand ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Building 202, detail of stand A, rocket test stand in test cell. View looking southeast. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  1. Structure alterations in Al-Y-based metallic glasses with La and Ni addition

    NASA Astrophysics Data System (ADS)

    Shi, X. M.; Wang, X. D.; Yu, Q.; Cao, Q. P.; Zhang, D. X.; Zhang, J.; Hu, T. D.; Lai, L. H.; Xie, H. L.; Xiao, T. Q.; Jiang, J. Z.

    2016-03-01

    The atomic structures of Al89Y11, Al90Y6.5La3.5, and Al82.8Y6.07Ni8La3.13 metallic glasses have been studied by using high energy X-ray diffraction, X-ray absorption fine structure combined with the ab initio molecular dynamics and reverse Monte Carlo simulations. It is demonstrated that the partial replacement of Y atoms by La has limited improvement of the glass forming ability (GFA), although La atoms reduce the ordering around Y atoms and also the fractions of icosahedron-like polyhedra centered by Al atoms. In contrast, Ni atoms can significantly improve the GFA, which are inclined to locate in the shell of polyhedra centered by Al, Y, and La atoms, mainly forming Ni-centered icosahedron-like polyhedra to enhance the spatial connectivity between clusters and suppress the crystallization.

  2. Guitar Strings as Standing Waves: A Demonstration

    NASA Astrophysics Data System (ADS)

    Davis, Michael

    2007-08-01

    An undergraduate student's first exposure to modern atomic theory tends to start with Bohr's model of the atom. This familiar introduction to atomic structure also marks a general chemistry student's first foray into waves. Many popular chemistry textbooks illustrate the concept of a standing wave in the development of the modern quantum model by using the phrase “as seen on a guitar string”. In these illustrations, the wave itself is often small and difficult to discern. The same phenomenon, however, can be easily and audibly observed. This demonstration uses an acoustic guitar to produce three unique harmonic vibrations, each of which is representative of a standing wave and illustrates the concept of quantization. Manipulation of the guitar string to produce a standing wave is pervasive in popular music and is audibly recognizable. Lightly placing a finger on the 12th, 7th, or 5th fret and strumming any one or all six strings can produce an audible example of a standing wave on a guitar. This corresponds to a standing wave with 1, 2, or 3 nodes, respectively. Attempting to induce a node at other points on a guitar string does not generate a standing wave, due to destructive interference, thus no audible tone is produced.

  3. Get up, Stand up

    ERIC Educational Resources Information Center

    Melia, Ed

    2009-01-01

    Ignorance about dyslexia meant a miserable school experience for Barrie Hughes. He was in his 50s when he found the courage to stand up in front of a classroom of learners and admit he couldn't read. Barrie, who is now 59 and works for the parks department of Brighton and Hove Council, only began to learn how to read words in the last three years…

  4. Dominant Driving Forces in Human Telomere Quadruplex Binding-Induced Structural Alterations.

    PubMed

    Bončina, Matjaž; Hamon, Florian; Islam, Barira; Teulade-Fichou, Marie-Paule; Vesnaver, Gorazd; Haider, Shozeb; Lah, Jurij

    2015-06-16

    Recently various pathways of human telomere (ht) DNA folding into G-quadruplexes and of ligand binding to these structures have been proposed. However, the key issue as to the nature of forces driving the folding and recognition processes remains unanswered. In this study, structural changes of 22-mer ht-DNA fragment (Tel22), induced by binding of ions (K(+), Na(+)) and specific bisquinolinium ligands, were monitored by calorimetric and spectroscopic methods and by gel electrophoresis. Using the global model analysis of a wide variety of experimental data, we were able to characterize the thermodynamic forces that govern the formation of stable Tel22 G-quadruplexes, folding intermediates, and ligand-quadruplex complexes, and then predict Tel22 behavior in aqueous solutions as a function of temperature, salt concentration, and ligand concentration. On the basis of the above, we believe that our work sets the framework for better understanding the heterogeneity of ht-DNA folding and binding pathways, and its structural polymorphism. PMID:26083930

  5. Alteration of citrine structure by hydrostatic pressure explains the accompanying spectral shift

    PubMed Central

    Barstow, Buz; Ando, Nozomi; Kim, Chae Un; Gruner, Sol M.

    2008-01-01

    A protein molecule is an intricate system whose function is highly sensitive to small external perturbations. However, no examples that correlate protein function with progressive subangstrom structural perturbations have thus far been presented. To elucidate this relationship, we have investigated a fluorescent protein, citrine, as a model system under high-pressure perturbation. The protein has been compressed to produce deformations of its chromophore by applying a high-pressure cryocooling technique. A closely spaced series of x-ray crystallographic structures reveals that the chromophore undergoes a progressive deformation of up to 0.8 Å at an applied pressure of 500 MPa. It is experimentally demonstrated that the structural motion is directly correlated with the progressive fluorescence shift of citrine from yellow to green under these conditions. This protein is therefore highly sensitive to subangstrom deformations and its function must be understood at the subangstrom level. These results have significant implications for protein function prediction and biomolecule design and engineering, because they suggest methods to tune protein function by modification of the protein scaffold. PMID:18768811

  6. Altered contralateral sensorimotor system organization after experimental hemispherectomy: a structural and functional connectivity study

    PubMed Central

    Otte, Willem M; van der Marel, Kajo; van Meer, Maurits P A; van Rijen, Peter C; Gosselaar, Peter H; Braun, Kees P J; Dijkhuizen, Rick M

    2015-01-01

    Hemispherectomy is often followed by remarkable recovery of cognitive and motor functions. This reflects plastic capacities of the remaining hemisphere, involving large-scale structural and functional adaptations. Better understanding of these adaptations may (1) provide new insights in the neuronal configuration and rewiring that underlies sensorimotor outcome restoration, and (2) guide development of rehabilitation strategies to enhance recovery after hemispheric lesioning. We assessed brain structure and function in a hemispherectomy model. With MRI we mapped changes in white matter structural integrity and gray matter functional connectivity in eight hemispherectomized rats, compared with 12 controls. Behavioral testing involved sensorimotor performance scoring. Diffusion tensor imaging and resting-state functional magnetic resonance imaging were acquired 7 and 49 days post surgery. Hemispherectomy caused significant sensorimotor deficits that largely recovered within 2 weeks. During the recovery period, fractional anisotropy was maintained and white matter volume and axial diffusivity increased in the contralateral cerebral peduncle, suggestive of preserved or improved white matter integrity despite overall reduced white matter volume. This was accompanied by functional adaptations in the contralateral sensorimotor network. The observed white matter modifications and reorganization of functional network regions may provide handles for rehabilitation strategies improving functional recovery following large lesions. PMID:25966942

  7. Dominant Driving Forces in Human Telomere Quadruplex Binding-Induced Structural Alterations

    PubMed Central

    Bončina, Matjaž; Hamon, Florian; Islam, Barira; Teulade-Fichou, Marie-Paule; Vesnaver, Gorazd; Haider, Shozeb; Lah, Jurij

    2015-01-01

    Recently various pathways of human telomere (ht) DNA folding into G-quadruplexes and of ligand binding to these structures have been proposed. However, the key issue as to the nature of forces driving the folding and recognition processes remains unanswered. In this study, structural changes of 22-mer ht-DNA fragment (Tel22), induced by binding of ions (K+, Na+) and specific bisquinolinium ligands, were monitored by calorimetric and spectroscopic methods and by gel electrophoresis. Using the global model analysis of a wide variety of experimental data, we were able to characterize the thermodynamic forces that govern the formation of stable Tel22 G-quadruplexes, folding intermediates, and ligand-quadruplex complexes, and then predict Tel22 behavior in aqueous solutions as a function of temperature, salt concentration, and ligand concentration. On the basis of the above, we believe that our work sets the framework for better understanding the heterogeneity of ht-DNA folding and binding pathways, and its structural polymorphism. PMID:26083930

  8. Molecular structures and metabolic characteristics of protein in brown and yellow flaxseed with altered nutrient traits.

    PubMed

    Khan, Nazir Ahmad; Booker, Helen; Yu, Peiqiang

    2014-07-16

    The objectives of this study were to investigate the chemical profiles; crude protein (CP) subfractions; ruminal CP degradation characteristics and intestinal digestibility of rumen undegraded protein (RUP); and protein molecular structures using molecular spectroscopy of newly developed yellow-seeded flax (Linum usitatissimum L.). Seeds from two yellow flaxseed breeding lines and two brown flaxseed varieties were evaluated. The yellow-seeded lines had higher (P < 0.001) contents of oil (44.54 vs 41.42% dry matter (DM)) and CP (24.94 vs 20.91% DM) compared to those of the brown-seeded varieties. The CP in yellow seeds contained lower (P < 0.01) contents of true protein subfraction (81.31 vs 92.71% CP) and more (P < 0.001) extensively degraded (70.8 vs 64.9% CP) in rumen resulting in lower (P < 0.001) content of RUP (29.2 vs 35.1% CP) than that in the brown-seeded varieties. However, the total supply of digestible RUP was not significantly different between the two seed types. Regression equations based on protein molecular structural features gave relatively good estimation for the contents of CP (R(2) = 0.87), soluble CP (R(2) = 0.92), RUP (R(2) = 0.97), and intestinal digestibility of RUP (R(2) = 0.71). In conclusion, molecular spectroscopy can be used to rapidly characterize feed protein molecular structures and predict their nutritive value. PMID:24931851

  9. Collagen structural alterations contribute to stiffening of tissue after split-thickness skin grafting.

    PubMed

    Rosin, Nicole L; Agabalyan, Natacha; Olsen, Katherine; Martufi, Giampaol; Gabriel, Vincent; Biernaskie, Jeff; Di Martino, Elena S

    2016-03-01

    The gold standard treatment for full thickness injuries of the skin is autologous split-thickness skin grafting. This involves harvesting the epidermis and superficial dermis from healthy skin and transplanting it onto the prepared wound bed. The donor site regenerates spontaneously, but the appendages and cellular components from the dermal layer are excluded from the graft. As a result, the new tissue is inferior; the healed graft site is dry/itchy, has decreased elasticity, increased fragility, and altered sensory function. Because this dermal layer is composed of collagen and other extracellular matrix proteins, the aim was to characterize the changes in the dermal collagen after split thickness grafting that could contribute to a deficit in functionality. This will serve as a baseline for future studies designed to improve skin function using pharmacological or cell-based therapies for skin repair. A xenograft model whereby human split-thickness grafts were implanted into full-thickness defects on immunocompromised (athymic Nu/Nu) mice was used. The grafts were harvested 4 and 8 weeks later. The collagen microstructure was assessed with second harmonic generation with dual-photon microscopy and light polarization analysis. Collagen fiber stiffness and engagement stretch were estimated by fitting the results of biaxial mechanical tensile tests to a histo-mechanical constitutive model. The stiffness of the collagen fibril-proteoglycan complex increased from 682 ± 226 kPa/sr to 1016 ± 324 kPa/sr between 4 and 8 weeks postgrafting. At the microstructural level there were significant decreases in both thickness of collagen fibers (3.60 ± 0.34 μm vs. 2.10 ± 0.27 μm) and waviness ratio (2.04 ± 0.17 vs. 1.43 ± 0.08) of the collagen fibers postgrafting. The decrease of the macroscopic engagement stretch from 1.19 ± 0.11 to 1.09 ± 0.08 over time postgrafting mirrored the decrease in waviness measured at the microscopic level

  10. Structure-Based Alteration of Substrate Specificity and Catalytic Activity of Sulfite Oxidase from Sulfite Oxidation to Nitrate Reduction

    SciTech Connect

    Qiu, James A.; Wilson, Heather L.; Rajagopalan, K.V.

    2012-04-18

    Eukaryotic sulfite oxidase is a dimeric protein that contains the molybdenum cofactor and catalyzes the metabolically essential conversion of sulfite to sulfate as the terminal step in the metabolism of cysteine and methionine. Nitrate reductase is an evolutionarily related molybdoprotein in lower organisms that is essential for growth on nitrate. In this study, we describe human and chicken sulfite oxidase variants in which the active site has been modified to alter substrate specificity and activity from sulfite oxidation to nitrate reduction. On the basis of sequence alignments and the known crystal structure of chicken sulfite oxidase, two residues are conserved in nitrate reductases that align with residues in the active site of sulfite oxidase. On the basis of the crystal structure of yeast nitrate reductase, both positions were mutated in human sulfite oxidase and chicken sulfite oxidase. The resulting double-mutant variants demonstrated a marked decrease in sulfite oxidase activity but gained nitrate reductase activity. An additional methionine residue in the active site was proposed to be important in nitrate catalysis, and therefore, the triple variant was also produced. The nitrate reducing ability of the human sulfite oxidase triple mutant was nearly 3-fold greater than that of the double mutant. To obtain detailed structural data for the active site of these variants, we introduced the analogous mutations into chicken sulfite oxidase to perform crystallographic analysis. The crystal structures of the Mo domains of the double and triple mutants were determined to 2.4 and 2.1 {angstrom} resolution, respectively.

  11. Foam posturography: standing on foam is not equivalent to standing with decreased rapidly adapting mechanoreceptive sensation.

    PubMed

    Patel, M; Fransson, P A; Johansson, R; Magnusson, M

    2011-02-01

    Standing on a foam surface is believed to exaggerate balance deficits by decreasing the reliability of somatosensory information from cutaneous mechanoreceptors on the plantar soles (i.e. base of feet) and by altering the effectiveness of ankle torque. The aim was to further document the nature of foam posturography testing by comparing between standing on foam and standing with decreased Rapidly Adapting Mechanoreceptive Sensation (RAMS). Sixteen healthy adults (mean age 20.8 years) were tested with posturography, standing with eyes open and closed on a solid surface and on foam, with and without decreased plantar RAMS. Standing balance was measured as torque variance and further analyzed by being divided into three spectral categories. Plantar cutaneous hypothermic anesthesia by ice-cooling was used to decrease RAMS. Plantar mechanoreceptive sensation was precisely determined with tactile sensitivity and vibration perception tests. Vibration perception was significantly decreased by hypothermic anesthesia, but tactile sensitivity was not. The anterior-posterior torque variance was significantly larger for frequencies less than 0.1 Hz under eyes closed conditions when standing on a solid surface with decreased RAMS compared to normal sensation. No effect of decreased RAMS was seen with eyes open on a solid surface, nor on foam with eyes open or closed. Decreased RAMS produced body sway responses on a solid surface that were different in spectral composition, amplitude, direction and that responded differently to vision compared with standing on foam. Hence, this study showed that RAMS contributes to postural control but reduction in RAMS does not produce a similar challenge as standing on foam. PMID:21120458

  12. Robust MR-based approaches to quantifying white matter structure and structure/function alterations in Huntington's disease

    PubMed Central

    Steventon, Jessica J.; Trueman, Rebecca C.; Rosser, Anne E.; Jones, Derek K.

    2016-01-01

    Background Huge advances have been made in understanding and addressing confounds in diffusion MRI data to quantify white matter microstructure. However, there has been a lag in applying these advances in clinical research. Some confounds are more pronounced in HD which impedes data quality and interpretability of patient-control differences. This study presents an optimised analysis pipeline and addresses specific confounds in a HD patient cohort. Method 15 HD gene-positive and 13 matched control participants were scanned on a 3T MRI system with two diffusion MRI sequences. An optimised post processing pipeline included motion, eddy current and EPI correction, rotation of the B matrix, free water elimination (FWE) and tractography analysis using an algorithm capable of reconstructing crossing fibres. The corpus callosum was examined using both a region-of-interest and a deterministic tractography approach, using both conventional diffusion tensor imaging (DTI)-based and spherical deconvolution analyses. Results Correcting for CSF contamination significantly altered microstructural metrics and the detection of group differences. Reconstructing the corpus callosum using spherical deconvolution produced a more complete reconstruction with greater sensitivity to group differences, compared to DTI-based tractography. Tissue volume fraction (TVF) was reduced in HD participants and was more sensitive to disease burden compared to DTI metrics. Conclusion Addressing confounds in diffusion MR data results in more valid, anatomically faithful white matter tract reconstructions with reduced within-group variance. TVF is recommended as a complementary metric, providing insight into the relationship with clinical symptoms in HD not fully captured by conventional DTI metrics. PMID:26335798

  13. Gestational exposure to diethylstilbestrol alters cardiac structure/function, protein expression and DNA methylation in adult male mice progeny

    SciTech Connect

    Haddad, Rami; Kasneci, Amanda; Mepham, Kathryn; Sebag, Igal A.; and others

    2013-01-01

    Pregnant women, and thus their fetuses, are exposed to many endocrine disruptor compounds (EDCs). Fetal cardiomyocytes express sex hormone receptors making them potentially susceptible to re-programming by estrogenizing EDCs. Diethylstilbestrol (DES) is a proto-typical, non-steroidal estrogen. We hypothesized that changes in adult cardiac structure/function after gestational exposure to the test compound DES would be a proof in principle for the possibility of estrogenizing environmental EDCs to also alter the fetal heart. Vehicle (peanut oil) or DES (0.1, 1.0 and 10.0 μg/kg/da.) was orally delivered to pregnant C57bl/6n dams on gestation days 11.5–14.5. At 3 months, male progeny were left sedentary or were swim trained for 4 weeks. Echocardiography of isoflurane anesthetized mice revealed similar cardiac structure/function in all sedentary mice, but evidence of systolic dysfunction and increased diastolic relaxation after swim training at higher DES doses. The calcium homeostasis proteins, SERCA2a, phospholamban, phospho-serine 16 phospholamban and calsequestrin 2, are important for cardiac contraction and relaxation. Immunoblot analyses of ventricle homogenates showed increased expression of SERCA2a and calsequestrin 2 in DES mice and greater molecular remodeling of these proteins and phospho-serine 16 phospholamban in swim trained DES mice. DES increased cardiac DNA methyltransferase 3a expression and DNA methylation in the CpG island within the calsequestrin 2 promoter in heart. Thus, gestational DES epigenetically altered ventricular DNA, altered cardiac function and expression, and reduced the ability of adult progeny to cardiac remodel when physically challenged. We conclude that gestational exposure to estrogenizing EDCs may impact cardiac structure/function in adult males. -- Highlights: ► Gestational DES changes cardiac SERCA2a and CASQ2 expression. ► Echocardiography identified systolic dysfunction and increased diastolic relaxation. ► DES

  14. Disturbance alters the phylogenetic composition and structure of plant communities in an old field system.

    PubMed

    Dinnage, Russell

    2009-01-01

    The changes in phylogenetic composition and structure of communities during succession following disturbance can give us insights into the forces that are shaping communities over time. In abandoned agricultural fields, community composition changes rapidly when a field is plowed, and is thought to reflect a relaxation of competition due to the elimination of dominant species which take time to re-establish. Competition can drive phylogenetic overdispersion, due to phylogenetic conservation of 'niche' traits that allow species to partition resources. Therefore, undisturbed old field communities should exhibit higher phylogenetic dispersion than recently disturbed systems, which should be relatively 'clustered' with respect to phylogenetic relationships. Several measures of phylogenetic structure between plant communities were measured in recently plowed areas and nearby 'undisturbed' sites. There was no difference in the absolute values of these measures between disturbed and 'undisturbed' sites. However, there was a difference in the 'expected' phylogenetic structure between habitats, leading to significantly lower than expected phylogenetic diversity in disturbed plots, and no difference from random expectation in 'undisturbed' plots. This suggests that plant species characteristic of each habitat are fairly evenly distributed on the shared species pool phylogeny, but that once the initial sorting of species into the two habitat types has occurred, the processes operating on them affect each habitat differently. These results were consistent with an analysis of correlation between phylogenetic distance and co-occurrence indices of species pairs in the two habitat types. This study supports the notion that disturbed plots are more clustered than expected, rather than 'undisturbed' plots being more overdispersed, suggesting that disturbed plant communities are being more strongly influenced by environmental filtering of conserved niche traits. PMID:19763265

  15. Vestibular dysfunction, altered macular structure and trait localization in A/J inbred mice.

    PubMed

    Vijayakumar, Sarath; Lever, Teresa E; Pierce, Jessica; Zhao, Xing; Bergstrom, David; Lundberg, Yunxia Wang; Jones, Timothy A; Jones, Sherri M

    2015-04-01

    A/J mice develop progressive hearing loss that begins before 1 month of age and is attributed to cochlear hair cell degeneration. Screening tests indicated that this strain also develops early onset vestibular dysfunction and has otoconial deficits. The purpose of this study was to characterize the vestibular dysfunction and macular structural pathology over the lifespan of A/J mice. Vestibular function was measured using linear vestibular evoked potentials (VsEPs). Macular structural pathology was evaluated using light microscopy, scanning electron microscopy, transmission electron microscopy, confocal microscopy and Western blotting. Individually, vestibular functional deficits in mice ranged from mild to profound. On average, A/J mice had significantly reduced vestibular sensitivity (elevated VsEP response thresholds and smaller amplitudes), whereas VsEP onset latency was prolonged compared to age-matched controls (C57BL/6). A limited age-related vestibular functional loss was also present. Structural analysis identified marked age-independent otoconial abnormalities in concert with some stereociliary bundle defects. Macular epithelia were incompletely covered by otoconial membranes with significantly reduced opacity and often contained abnormally large or giant otoconia as well as normal-appearing otoconia. Elevated expression of key otoconins (i.e., otoconin 90, otolin and keratin sulfate proteoglycan) ruled out the possibility of reduced levels contributing to otoconial dysgenesis. The phenotype of A/J was partially replicated in a consomic mouse strain (C57BL/6J-Chr 17(A/J)/NaJ), thus indicating that Chr 17(A/J) contained a trait locus for a new gene variant responsible to some extent for the A/J vestibular phenotype. Quantitative trait locus analysis identified additional epistatic influences associated with chromosomes 1, 4, 9 and X. Results indicate that the A/J phenotype represents a complex trait, and the A/J mouse strain presents a new model for the

  16. Wheat and Rice Growth Stages and Fertilization Regimes Alter Soil Bacterial Community Structure, But Not Diversity

    PubMed Central

    Wang, Jichen; Xue, Chao; Song, Yang; Wang, Lei; Huang, Qiwei; Shen, Qirong

    2016-01-01

    Maintaining soil fertility and the microbial communities that determine fertility is critical to sustainable agricultural strategies, and the use of different organic fertilizer (OF) regimes represents an important practice in attempts to preserve soil quality. However, little is known about the dynamic response of bacterial communities to fertilization regimes across crop growth stages. In this study, we examined microbial community structure and diversity across eight representative growth stages of wheat-rice rotation under four different fertilization treatments: no nitrogen fertilizer (NNF), chemical fertilizer (CF), organic–inorganic mixed fertilizer (OIMF), and OF. Quantitative PCR (QPCR) and high-throughput sequencing of bacterial 16S rRNA gene fragments revealed that growth stage as the best predictor of bacterial community abundance and structure. Additionally, bacterial community compositions differed between wheat and rice rotations. Relative to soils under wheat rotation, soils under rice rotation contained higher relative abundances (RA) of anaerobic and mesophilic microbes and lower RA of aerophilic microbes. With respect to fertilization regime, NNF plots had a higher abundance of nitrogen–fixing Cyanobacteria. OIMF had a lower abundance of ammonia-oxidizing Thaumarchaeota compared with CF. Application of chemical fertilizers (CF and OIMF treatments) significantly increased the abundance of some generally oligotrophic bacteria such those belonging to the Acidobacteria, while more copiotrophic of the phylum Proteobacteria increased with OF application. A high correlation coefficient was found when comparing RA of Acidobacteria based upon QPCR vs. sequence analysis, yet poor correlations were found for the α- and β- Proteobacteria, highlighting the caution required when interpreting these molecular data. In total, crop, fertilization scheme and plant developmental stage all influenced soil microbial community structure, but not total levels of

  17. Wheat and Rice Growth Stages and Fertilization Regimes Alter Soil Bacterial Community Structure, But Not Diversity.

    PubMed

    Wang, Jichen; Xue, Chao; Song, Yang; Wang, Lei; Huang, Qiwei; Shen, Qirong

    2016-01-01

    Maintaining soil fertility and the microbial communities that determine fertility is critical to sustainable agricultural strategies, and the use of different organic fertilizer (OF) regimes represents an important practice in attempts to preserve soil quality. However, little is known about the dynamic response of bacterial communities to fertilization regimes across crop growth stages. In this study, we examined microbial community structure and diversity across eight representative growth stages of wheat-rice rotation under four different fertilization treatments: no nitrogen fertilizer (NNF), chemical fertilizer (CF), organic-inorganic mixed fertilizer (OIMF), and OF. Quantitative PCR (QPCR) and high-throughput sequencing of bacterial 16S rRNA gene fragments revealed that growth stage as the best predictor of bacterial community abundance and structure. Additionally, bacterial community compositions differed between wheat and rice rotations. Relative to soils under wheat rotation, soils under rice rotation contained higher relative abundances (RA) of anaerobic and mesophilic microbes and lower RA of aerophilic microbes. With respect to fertilization regime, NNF plots had a higher abundance of nitrogen-fixing Cyanobacteria. OIMF had a lower abundance of ammonia-oxidizing Thaumarchaeota compared with CF. Application of chemical fertilizers (CF and OIMF treatments) significantly increased the abundance of some generally oligotrophic bacteria such those belonging to the Acidobacteria, while more copiotrophic of the phylum Proteobacteria increased with OF application. A high correlation coefficient was found when comparing RA of Acidobacteria based upon QPCR vs. sequence analysis, yet poor correlations were found for the α- and β- Proteobacteria, highlighting the caution required when interpreting these molecular data. In total, crop, fertilization scheme and plant developmental stage all influenced soil microbial community structure, but not total levels of alpha

  18. Ultrasound evidence of altered lumbar connective tissue structure in human subjects with chronic low back pain

    PubMed Central

    2009-01-01

    Background Although the connective tissues forming the fascial planes of the back have been hypothesized to play a role in the pathogenesis of chronic low back pain (LBP), there have been no previous studies quantitatively evaluating connective tissue structure in this condition. The goal of this study was to perform an ultrasound-based comparison of perimuscular connective tissue structure in the lumbar region in a group of human subjects with chronic or recurrent LBP for more than 12 months, compared with a group of subjects without LBP. Methods In each of 107 human subjects (60 with LBP and 47 without LBP), parasagittal ultrasound images were acquired bilaterally centered on a point 2 cm lateral to the midpoint of the L2-3 interspinous ligament. The outcome measures based on these images were subcutaneous and perimuscular connective tissue thickness and echogenicity measured by ultrasound. Results There were no significant differences in age, sex, body mass index (BMI) or activity levels between LBP and No-LBP groups. Perimuscular thickness and echogenicity were not correlated with age but were positively correlated with BMI. The LBP group had ~25% greater perimuscular thickness and echogenicity compared with the No-LBP group (ANCOVA adjusted for BMI, p < 0.01 and p < 0.001 respectively). Conclusion This is the first report of abnormal connective tissue structure in the lumbar region in a group of subjects with chronic or recurrent LBP. This finding was not attributable to differences in age, sex, BMI or activity level between groups. Possible causes include genetic factors, abnormal movement patterns and chronic inflammation. PMID:19958536

  19. Altered chloroplast structure and function in a mutant of Arabidopsis deficient in plastid glycerol-3-phosphate acyltransferase activity

    SciTech Connect

    Kunst, L.; Somerville, C. ); Browse, J. )

    1989-07-01

    Mutants of Arabidopsis thaliana deficient in plastid glycerol-3-phosphate acyltransferase activity have altered chloroplast membrane lipid composition. This caused an increase in the number of regions of appressed membrane per chloroplast and a decrease in the average number of thylakoid membranes in the appressed regions. The net effect was a significant decrease in the ratio of appressed to nonappressed membranes. A comparison of 77 K fluorescence emission spectra of thylakoid membranes from the mutant and wild type indicated that the ultrastructural changes were associated with an altered distribution of excitation energy transfer from antenna chlorophyll to photosystem II and photosystem I in the mutant. The changes in leaf lipid composition did not significantly affect growth or development of the mutant under standard conditions. However, at temperatures above 28{degree}C the mutant grew slightly more rapidly than the wild type, and measurements of temperature-induced fluorescence yield enhancement suggested an increased thermal stability of the photosynthetic apparatus of the mutant. These effects are consistent with other evidence suggesting that membrane lipid composition is an important determinant of chloroplast structure but has relatively minor direct effects on the function of the membrane proteins associated with photosynthetic electron transport.

  20. Fourier analysis of wing beat signals: assessing the effects of genetic alterations of flight muscle structure in Diptera.

    PubMed Central

    Hyatt, C J; Maughan, D W

    1994-01-01

    A method for determining and analyzing the wing beat frequency in Diptera is presented. This method uses an optical tachometer to measure Diptera wing movement during flight. The resulting signal from the optical measurement is analyzed using a Fast Fourier Transform (FFT) technique, and the dominant frequency peak in the Fourier spectrum is selected as the wing beat frequency. Also described is a method for determining quantitatively the degree of variability of the wing beat frequency about the dominant frequency. This method is based on determination of a quantity called the Hindex, which is derived using data from the FFT analysis. Calculation of the H index allows computer-based selection of the most suitable segment of recorded data for determination of the representative wing beat frequency. Experimental data suggest that the H index can also prove useful in examining wing beat frequency variability in Diptera whose flight muscle structure has been genetically altered. Examples from Drosophila indirect flight muscle studies as well as examples of artificial data are presented to illustrate the method. This method fulfills a need for a standardized method for determining wing beat frequencies and examining wing beat frequency variability in insects whose flight muscles have been altered by protein engineering methods. PMID:7811927

  1. Zearalenone impairs the male reproductive system functions via inducing structural and functional alterations of sertoli cells.

    PubMed

    Zheng, WangLong; Pan, ShunYe; Wang, Guangguang; Wang, Ya Jun; Liu, Qing; Gu, JianHong; Yuan, Yan; Liu, Xue Zhong; Liu, Zong Ping; Bian, Jian Chun

    2016-03-01

    The aim of this study was to investigate the effects of ZEA on the cytoskeletal structure, and factors specifically expressed by Sertoli cells. Primary Sertoli cells from rats aged 18-21 days were exposed to increasing ZEA concentrations (0, 5, 10, 20 μg mL(-1)) for 24 h. The results of immunofluorescence showed disruption of α-tubulin filaments and F-actin bundles, and damage to the nucleus of Sertoli cells on exposure to ZEA. In the control group, the protein level expression of androgen-binding protein (ABP), transferrin, vimentin, N-cadherin, and follicle-stimulating hormone receptor (FSHR) were decreased significantly (p<0.05, p<0.01). The mRNA levels of ABP, transferrin, vimentin, N-cadherin, and FSHR varied significantly in the experimental group (p<0.05). The results of enzyme-linked immunosorbent assay indicated a significant decrease in the levels of inhibin-β and transferrin in the cultural supernatants (p<0.05). Additionally, the ultrastructural analysis indicated the absence of mitochondria and Golgi apparatus, and presence of vacuoles in the cytoplasm. These findings showed that ZEA treatment can damage the cytoskeletal structure and affect specific secretory functions of Sertoli cells, which may be an underlying cause of ZEA-induced reproductive toxicity. PMID:26851377

  2. Osmotically induced cell volume changes alter anterograde and retrograde transport, Golgi structure, and COPI dissociation.

    PubMed

    Lee, T H; Linstedt, A D

    1999-05-01

    Physiological conditions that impinge on constitutive traffic and affect organelle structure are not known. We report that osmotically induced cell volume changes, which are known to occur under a variety of conditions, rapidly inhibited endoplasmic reticulum (ER)-to-Golgi transport in mammalian cells. Both ER export and ER Golgi intermediate compartment (ERGIC)-to-Golgi trafficking steps were blocked, but retrograde transport was active, and it mediated ERGIC and Golgi collapse into the ER. Extensive tubulation and relatively rapid Golgi resident redistribution were observed under hypo-osmotic conditions, whereas a slower redistribution of the same markers, without apparent tubulation, was observed under hyperosmotic conditions. The osmotic stress response correlated with the perturbation of COPI function, because both hypo- and hyperosmotic conditions slowed brefeldin A-induced dissociation of betaCOP from Golgi membranes. Remarkably, Golgi residents reemerged after several hours of sustained incubation in hypotonic or hypertonic medium. Reemergence was independent of new protein synthesis but required PKC, an activity known to mediate cell volume recovery. Taken together these results indicate the existence of a coupling between cell volume and constitutive traffic that impacts organelle structure through independent effects on anterograde and retrograde flow and that involves, in part, modulation of COPI function. PMID:10233155

  3. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot

    NASA Astrophysics Data System (ADS)

    Wernberg, Thomas; Smale, Dan A.; Tuya, Fernando; Thomsen, Mads S.; Langlois, Timothy J.; de Bettignies, Thibaut; Bennett, Scott; Rousseaux, Cecile S.

    2013-01-01

    Extreme climatic events, such as heat waves, are predicted to increase in frequency and magnitude as a consequence of global warming but their ecological effects are poorly understood, particularly in marine ecosystems. In early 2011, the marine ecosystems along the west coast of Australia--a global hotspot of biodiversity and endemism--experienced the highest-magnitude warming event on record. Sea temperatures soared to unprecedented levels and warming anomalies of 2-4°C persisted for more than ten weeks along >2,000km of coastline. We show that biodiversity patterns of temperate seaweeds, sessile invertebrates and demersal fish were significantly different after the warming event, which led to a reduction in the abundance of habitat-forming seaweeds and a subsequent shift in community structure towards a depauperate state and a tropicalization of fish communities. We conclude that extreme climatic events are key drivers of biodiversity patterns and that the frequency and intensity of such episodes have major implications for predictive models of species distribution and ecosystem structure, which are largely based on gradual warming trends.

  4. Osmotically Induced Cell Volume Changes Alter Anterograde and Retrograde Transport, Golgi Structure, and COPI Dissociation

    PubMed Central

    Lee, Tina H.; Linstedt, Adam D.

    1999-01-01

    Physiological conditions that impinge on constitutive traffic and affect organelle structure are not known. We report that osmotically induced cell volume changes, which are known to occur under a variety of conditions, rapidly inhibited endoplasmic reticulum (ER)-to-Golgi transport in mammalian cells. Both ER export and ER Golgi intermediate compartment (ERGIC)-to-Golgi trafficking steps were blocked, but retrograde transport was active, and it mediated ERGIC and Golgi collapse into the ER. Extensive tubulation and relatively rapid Golgi resident redistribution were observed under hypo-osmotic conditions, whereas a slower redistribution of the same markers, without apparent tubulation, was observed under hyperosmotic conditions. The osmotic stress response correlated with the perturbation of COPI function, because both hypo- and hyperosmotic conditions slowed brefeldin A-induced dissociation of βCOP from Golgi membranes. Remarkably, Golgi residents reemerged after several hours of sustained incubation in hypotonic or hypertonic medium. Reemergence was independent of new protein synthesis but required PKC, an activity known to mediate cell volume recovery. Taken together these results indicate the existence of a coupling between cell volume and constitutive traffic that impacts organelle structure through independent effects on anterograde and retrograde flow and that involves, in part, modulation of COPI function. PMID:10233155

  5. Can OCT be sensitive to nanoscale structural alterations in biological tissue?

    PubMed Central

    Yi, Ji; Radosevich, Andrew J.; Rogers, Jeremy D.; Norris, Sam C.P.; Çapoğlu, İlker R.; Taflove, Allen; Backman, Vadim

    2013-01-01

    Exploration of nanoscale tissue structures is crucial in understanding biological processes. Although novel optical microscopy methods have been developed to probe cellular features beyond the diffraction limit, nanometer-scale quantification remains still inaccessible for in situ tissue. Here we demonstrate that, without actually resolving specific geometrical feature, OCT can be sensitive to tissue structural properties at the nanometer length scale. The statistical mass-density distribution in tissue is quantified by its autocorrelation function modeled by the Whittle-Mateŕn functional family. By measuring the wavelength-dependent backscattering coefficient μb(λ) and the scattering coefficient μs, we introduce a technique called inverse spectroscopic OCT (ISOCT) to quantify the mass-density correlation function. We find that the length scale of sensitivity of ISOCT ranges from ~30 to ~450 nm. Although these sub-diffractional length scales are below the spatial resolution of OCT and therefore not resolvable, they are nonetheless detectable. The sub-diffractional sensitivity is validated by 1) numerical simulations; 2) tissue phantom studies; and 3) ex vivo colon tissue measurements cross-validated by scanning electron microscopy (SEM). Finally, the 3D imaging capability of ISOCT is demonstrated with ex vivo rat buccal and human colon samples. PMID:23571994

  6. Can OCT be sensitive to nanoscale structural alterations in biological tissue?

    PubMed

    Yi, Ji; Radosevich, Andrew J; Rogers, Jeremy D; Norris, Sam C P; Çapoğlu, İlker R; Taflove, Allen; Backman, Vadim

    2013-04-01

    Exploration of nanoscale tissue structures is crucial in understanding biological processes. Although novel optical microscopy methods have been developed to probe cellular features beyond the diffraction limit, nanometer-scale quantification remains still inaccessible for in situ tissue. Here we demonstrate that, without actually resolving specific geometrical feature, OCT can be sensitive to tissue structural properties at the nanometer length scale. The statistical mass-density distribution in tissue is quantified by its autocorrelation function modeled by the Whittle-Mateŕn functional family. By measuring the wavelength-dependent backscattering coefficient μb(λ) and the scattering coefficient μs, we introduce a technique called inverse spectroscopic OCT (ISOCT) to quantify the mass-density correlation function. We find that the length scale of sensitivity of ISOCT ranges from ~30 to ~450 nm. Although these sub-diffractional length scales are below the spatial resolution of OCT and therefore not resolvable, they are nonetheless detectable. The sub-diffractional sensitivity is validated by 1) numerical simulations; 2) tissue phantom studies; and 3) ex vivo colon tissue measurements cross-validated by scanning electron microscopy (SEM). Finally, the 3D imaging capability of ISOCT is demonstrated with ex vivo rat buccal and human colon samples. PMID:23571994

  7. Evolutionary ecology of plant-microbe interactions: soil microbial structure alters selection on plant traits.

    PubMed

    Lau, Jennifer A; Lennon, Jay T

    2011-10-01

    • Below-ground microbial communities influence plant diversity, plant productivity, and plant community composition. Given these strong ecological effects, are interactions with below-ground microbes also important for understanding natural selection on plant traits? • Here, we manipulated below-ground microbial communities and the soil moisture environment on replicated populations of Brassica rapa to examine how microbial community structure influences selection on plant traits and mediates plant responses to abiotic environmental stress. • In soils with experimentally simplified microbial communities, plants were smaller, had reduced chlorophyll content, produced fewer flowers, and were less fecund when compared with plant populations grown in association with more complex soil microbial communities. Selection on plant growth and phenological traits also was stronger when plants were grown in simplified, less diverse soil microbial communities, and these effects typically were consistent across soil moisture treatments. • Our results suggest that microbial community structure affects patterns of natural selection on plant traits. Thus, the below-ground microbial community can influence evolutionary processes, just as recent studies have demonstrated that microbial diversity can influence plant community and ecosystem processes. PMID:21658184

  8. Alterations in White Matter Structure in Young Children With Type 1 Diabetes

    PubMed Central

    Barnea-Goraly, Naama; Raman, Mira; Mazaika, Paul; Marzelli, Matthew; Hershey, Tamara; Weinzimer, Stuart A.; Aye, Tandy; Buckingham, Bruce; Mauras, Nelly; White, Neil H.; Fox, Larry A.; Tansey, Michael; Beck, Roy W.; Ruedy, Katrina J.; Kollman, Craig; Cheng, Peiyao; Reiss, Allan L.

    2014-01-01

    OBJECTIVE To investigate whether type 1 diabetes affects white matter (WM) structure in a large sample of young children. RESEARCH DESIGN AND METHODS Children (ages 4 to <10 years) with type 1 diabetes (n = 127) and age-matched nondiabetic control subjects (n = 67) had diffusion weighted magnetic resonance imaging scans in this multisite neuroimaging study. Participants with type 1 diabetes were assessed for HbA1c history and lifetime adverse events, and glucose levels were monitored using a continuous glucose monitor (CGM) device and standardized measures of cognition. RESULTS Between-group analysis showed that children with type 1 diabetes had significantly reduced axial diffusivity (AD) in widespread brain regions compared with control subjects. Within the type 1 diabetes group, earlier onset of diabetes was associated with increased radial diffusivity (RD) and longer duration was associated with reduced AD, reduced RD, and increased fractional anisotropy (FA). In addition, HbA1c values were significantly negatively associated with FA values and were positively associated with RD values in widespread brain regions. Significant associations of AD, RD, and FA were found for CGM measures of hyperglycemia and glucose variability but not for hypoglycemia. Finally, we observed a significant association between WM structure and cognitive ability in children with type 1 diabetes but not in control subjects. CONCLUSIONS These results suggest vulnerability of the developing brain in young children to effects of type 1 diabetes associated with chronic hyperglycemia and glucose variability. PMID:24319123

  9. Regional structural and biomechanical alterations of the ovine main pulmonary artery during postnatal growth.

    PubMed

    Fata, Bahar; Carruthers, Christopher A; Gibson, Gregory; Watkins, Simon C; Gottlieb, Danielle; Mayer, John E; Sacks, Michael S

    2013-02-01

    The engineering foundation for novel approaches for the repair of congenital defects that involve the main pulmonary artery (PA) must rest on an understanding of changes in the structure-function relationship that occur during postnatal maturation. In the present study, we quantified the postnatal growth patterns in structural and biomechanical behavior in the ovine PA in the juvenile and adult stages. The biaxial mechanical properties and collagen and elastin fiber architecture were studied in four regions of the PA wall, with the collagen recruitment of the medial region analyzed using a custom biaxial mechanical-multiphoton microscopy system. Circumferential residual strain was also quantified at the sinotubular junction and bifurcation locations, which delimit the PA. The PA wall demonstrated significant mechanical anisotropy, except in the posterior region where it was nearly isotropic. Overall, we observed only moderate changes in regional mechanical properties with growth. We did observe that the medial and lateral locations experience a moderate increase in anisotropy. There was an average of about 24% circumferential residual stain present at the luminal surface in the juvenile stage that decreased to 16% in the adult stage with a significant decrease at the bifurcation, implying that the PA wall remodels toward the bifurcation with growth. There were no measurable changes in collagen and elastin content of the tunica media with growth. On average, the collagen fiber recruited more rapidly with strain in the adult compared to the juvenile. Interestingly, the PA thickness remained constant with growth. When this fact is combined with the observed stable overall mechanical behavior and increase in vessel diameter with growth, a simple Laplace Law wall stress estimate suggests an increase in effective PA wall stress with postnatal maturation. This observation is contrary to the accepted theory of maintenance of homeostatic stress levels in the regulation of

  10. Progressive alterations of central nervous system structure and function are caused by charged particle radiation

    NASA Astrophysics Data System (ADS)

    Nelson, G. A.; Cns Nscor Team

    A new NASA-sponsored program project (NSCOR) has been organized to conduct the first comprehensive investigation of the response of a mammalian brain structure (mouse hippocampus) to charged-particle radiation. The NSCOR collaboration has three main goals. The first goal is to quantify the time- and dose-dependent changes in cellular composition and architecture. By using stereology on preserved brains, subsets of cells (neurons, glia, endothelia and stem cells) will be quantified out to 2 years after irradiation with accelerated protons and iron ions. To further characterize changes in vasculature architecture a polymer infusion technique will be used to produce a three-dimensional vasculature cast that then will be mapped by x-ray tomography to determine topological changes, and microscopic infarcts associated with amyloid protein deposits. The 2nd goal is to quantify hippocampal function(s). The primary measurement of function will be extracellular electrical recordings from hippocampal ``brain slices'' that reflect underlying functions such as connectivity, action potential generation & conduction, and neurotransmitter formation, secretion, and uptake. Individual nerve membrane properties will be assessed by ``patch clamp'' recordings. Two non-invasive methods will evaluate brain function and the evolution of changes with time. Electroencephalograms will map macroscopic spontaneous electrical activity while two state-of-the-art MRI magnetization sequences will visualize and quantify local oxygen utilization and white matter fiber tracts structural integrity. To quantify the brains' overall performance under stress, animals will receive a systemic shock mediated by the immune system in the form of a reaction to lipopolysaccharide. A second strategy will employ the APP23 transgenic mouse that develops the pathological changes associated with Alzheimer's disease. Measurements of irradiated mice will determine whether radiation exposure affects the latency and

  11. Structural Alterations from Multiple Displacement Amplification of a Human Genome Revealed by Mate-Pair Sequencing

    PubMed Central

    Jiao, Xiang; Rosenlund, Magnus; Hooper, Sean D.; Tellgren-Roth, Christian; He, Liqun; Fu, Yutao; Mangion, Jonathan; Sjöblom, Tobias

    2011-01-01

    Comprehensive identification of the acquired mutations that cause common cancers will require genomic analyses of large sets of tumor samples. Typically, the tissue material available from tumor specimens is limited, which creates a demand for accurate template amplification. We therefore evaluated whether phi29-mediated whole genome amplification introduces false positive structural mutations by massive mate-pair sequencing of a normal human genome before and after such amplification. Multiple displacement amplification led to a decrease in clone coverage and an increase by two orders of magnitude in the prevalence of inversions, but did not increase the prevalence of translocations. While multiple strand displacement amplification may find uses in translocation analyses, it is likely that alternative amplification strategies need to be developed to meet the demands of cancer genomics. PMID:21799804

  12. Prolonged space flight-induced alterations in the structure and function of human skeletal muscle fibres

    PubMed Central

    Fitts, R H; Trappe, S W; Costill, D L; Gallagher, P M; Creer, A C; Colloton, P A; Peters, J R; Romatowski, J G; Bain, J L; Riley, D A

    2010-01-01

    The primary goal of this study was to determine the effects of prolonged space flight (∼180 days) on the structure and function of slow and fast fibres in human skeletal muscle. Biopsies were obtained from the gastrocnemius and soleus muscles of nine International Space Station crew members ∼45 days pre- and on landing day (R+0) post-flight. The main findings were that prolonged weightlessness produced substantial loss of fibre mass, force and power with the hierarchy of the effects being soleus type I > soleus type II > gastrocnemius type I > gastrocnemius type II. Structurally, the quantitatively most important adaptation was fibre atrophy, which averaged 20% in the soleus type I fibres (98 to 79 μm diameter). Atrophy was the main contributor to the loss of peak force (P0), which for the soleus type I fibre declined 35% from 0.86 to 0.56 mN. The percentage decrease in fibre diameter was correlated with the initial pre-flight fibre size (r = 0.87), inversely with the amount of treadmill running (r = 0.68), and was associated with an increase in thin filament density (r = 0.92). The latter correlated with reduced maximal velocity (V0) (r = −0.51), and is likely to have contributed to the 21 and 18% decline in V0 in the soleus and gastrocnemius type I fibres. Peak power was depressed in all fibre types with the greatest loss (∼55%) in the soleus. An obvious conclusion is that the exercise countermeasures employed were incapable of providing the high intensity needed to adequately protect fibre and muscle mass, and that the crew's ability to perform strenuous exercise might be seriously compromised. Our results highlight the need to study new exercise programmes on the ISS that employ high resistance and contractions over a wide range of motion to mimic the range occurring in Earth's 1 g environment. PMID:20660569

  13. A Longitudinal Assessment of Structural and Chemical Alterations in Mixed Martial Arts Fighters.

    PubMed

    Mayer, Andrew R; Ling, Josef M; Dodd, Andrew B; Gasparovic, Charles; Klimaj, Stefan D; Meier, Timothy B

    2015-11-15

    Growing evidence suggests that temporally proximal acute concussions and repetitive subconcussive head injuries may lead to long-term neurological deficits. However, the underlying mechanisms of injury and their relative time-scales are not well documented in human injury models. The current study therefore investigated whether biomarkers of brain chemistry (magnetic resonance [MR] spectroscopy: N-acetylaspartate [NAA], combined glutamate and glutamine [Glx], total creatine [Cre], choline compounds [Cho], and myo-inositol [mI]) and structure (cortical thickness, white matter [WM]/subcortical volume) differed between mixed martial artists (MMA; n = 13) and matched healthy controls (HC) without a history of contact sport participation (HC; n = 14). A subset of participants (MMA = 9; HC = 10) returned for follow-up visits, with MMA (n = 3) with clinician-documented acute concussions also scanned serially. As expected, MMA self-reported a higher incidence of previous concussions and significantly more cognitive symptoms during prior concussion recovery. Fighters also exhibited reduced memory and processing speed relative to controls on neuropsychological testing coupled with cortical thinning in the left posterior cingulate gyrus and right occipital cortex at baseline assessment. Over a 1-year follow-up period, MMA experienced a significant decrease in both WM volume and NAA concentration, as well as relative thinning in the left middle and superior frontal gyri. These longitudinal changes did not correlate with self-reported metrics of injury (i.e., fight diary). In contrast, HC did not exhibit significant longitudinal changes over a 4-month follow-up period (p > 0.05). Collectively, current results provide preliminary evidence of progressive changes in brain chemistry and structure over a relatively short time period in individuals with high exposure to repetitive head hits. These findings require replication in independent samples. PMID

  14. Neonatal hyperoxia alters the pulmonary alveolar and capillary structure of 40-day-old rats.

    PubMed Central

    Randell, S. H.; Mercer, R. R.; Young, S. L.

    1990-01-01

    High inspired oxygen concentrations during the neonatal period profoundly inhibit rat lung development, an effect that is partly reversed during recovery in air. Persistent effects of neonatal hyperoxia on the size and number of alveoli or the structure of pulmonary capillaries have not been well defined. Using light and electron microscopic morphometry plus quantitative three-dimensional reconstructions of alveoli, we examined the lungs of 40-day-old rats that were exposed to more than 95% oxygen for the first 7 days after birth. Neonatal hyperoxia administered to rats resulted in abnormally enlarged air spaces at age 40 days. The fraction of the lung consisting of parenchyma was significantly increased and alveolar surface area was 13% lower than controls. There was an abnormal enlargement of alveolar ducts, which reduced by 24% the relative amount of air in the alveoli, compared to that in the alveolar ducts. The number of alveoli per lung and the mean volume of an alveolus were not different between the groups, but alveolar size class distributions were different, with significantly more very small and very large alveoli in 40-day-old rats after neonatal hyperoxia. By scanning electron microscopy, the alveolar surface of the exposed animals had a corrugated appearance, which was especially evident along alveolar ducts. Transmission electron microscopy revealed a greater density of capillaries, particularly in the alveolar regions close to terminal airways. Based on a random sample of the entire parenchymal region, capillary blood volume per cm2 of alveolar basal lamina was 18% greater. The results demonstrate that neonatal exposure to hyperoxia can cause abnormalities in the pulmonary alveolar and capillary structure of 40-day-old rats, and that these changes are similar to some features of broncho-pulmonary dysplasia. Images Figure 1 Figure 4 Figure 5 PMID:2356858

  15. Taking Stock and Standing down

    ERIC Educational Resources Information Center

    Peeler, Tom

    2009-01-01

    Standing down is an action the military takes to review, regroup, and reorganize. Unfortunately, it often comes after an accident or other tragic event. To stop losses, the military will "stand down" until they are confident they can resume safe operations. Standing down is good for everyone, not just the military. In today's fast-paced world,…

  16. Probing structurally altered and aggregated states of therapeutically relevant proteins using GroEL coupled to bio-layer interferometry

    PubMed Central

    Naik, Subhashchandra; Kumru, Ozan S; Cullom, Melissa; Telikepalli, Srivalli N; Lindboe, Elizabeth; Roop, Taylor L; Joshi, Sangeeta B; Amin, Divya; Gao, Phillip; Middaugh, C Russell; Volkin, David B; Fisher, Mark T

    2014-01-01

    The ability of a GroEL-based bio-layer interferometry (BLI) assay to detect structurally altered and/or aggregated species of pharmaceutically relevant proteins is demonstrated. Assay development included optimizing biotinylated-GroEL immobilization to streptavidin biosensors, combined with biophysical and activity measurements showing native and biotinylated GroEL are both stable and active. First, acidic fibroblast growth factor (FGF-1) was incubated under conditions known to promote (40°C) and inhibit (heparin addition) molten globule formation. Heat exposed (40°C) FGF-1 exhibited binding to GroEL-biosensors, which was significantly diminished in the presence of heparin. Second, a polyclonal human IgG solution containing 6–8% non-native dimer showed an increase in higher molecular weight aggregates upon heating by size exclusion chromatography (SEC). The poly IgG solution displayed binding to GroEL-biosensors initially with progressively increased binding upon heating. Enriched preparations of the IgG dimers or monomers showed significant binding to GroEL-biosensors. Finally, a thermally treated IgG1 monoclonal antibody (mAb) solution also demonstrated increased GroEL-biosensor binding, but with different kinetics. The bound complexes could be partially to fully dissociated after ATP addition (i.e., specific GroEL binding) depending on the protein, environmental stress, and the assay’s experimental conditions. Transmission electron microscopy (TEM) images of GroEL-mAb complexes, released from the biosensor, also confirmed interaction of bound complexes at the GroEL binding site with heat-stressed mAb. Results indicate that the GroEL-biosensor-BLI method can detect conformationally altered and/or early aggregation states of proteins, and may potentially be useful as a rapid, stability-indicating biosensor assay for monitoring the structural integrity and physical stability of therapeutic protein candidates. PMID:25043635

  17. Molecular dynamics simulations highlight structural and functional alterations in deafness-related M34T mutation of connexin 26.

    PubMed

    Zonta, Francesco; Buratto, Damiano; Cassini, Chiara; Bortolozzi, Mario; Mammano, Fabio

    2014-01-01

    Mutations of the GJB2 gene encoding the connexin 26 (Cx26) gap junction protein, which is widely expressed in the inner ear, are the primary cause of hereditary non-syndromic hearing loss in several populations. The deafness-associated single amino acid substitution of methionine 34 (M34) in the first transmembrane helix (TM1) with a threonine (T) ensues in the production of mutant Cx26M34T channels that are correctly synthesized and assembled in the plasma membrane. However, mutant channels overexpressed in HeLa cells retain only 11% of the wild type unitary conductance. Here we extend and rationalize those findings by comparing wild type Cx26 (Cx26WT) and Cx26M34T mutant channels in silico, using molecular dynamics simulations. Our results indicate that the quaternary structure of the Cx26M34T hemichannel is altered at the level of the pore funnel due to the disruption of the hydrophobic interaction between M34 and tryptophan 3 (W3) in the N-terminal helix (NTH). Our simulations also show that external force stimuli applied to the NTHs can detach them from the inner wall of the pore more readily in the mutant than in the wild type hemichannel. These structural alterations significantly increase the free energy barrier encountered by permeating ions, correspondingly decreasing the unitary conductance of the Cx26M34T hemichannel. Our results accord with the proposal that the mutant resides most of the time in a low conductance state. However, the small displacement of the NTHs in our Cx26M34T hemichannel model is not compatible with the formation of a pore plug as in the related Cx26M34A mutant. PMID:24624091

  18. Probing structurally altered and aggregated states of therapeutically relevant proteins using GroEL coupled to bio-layer interferometry.

    PubMed

    Naik, Subhashchandra; Kumru, Ozan S; Cullom, Melissa; Telikepalli, Srivalli N; Lindboe, Elizabeth; Roop, Taylor L; Joshi, Sangeeta B; Amin, Divya; Gao, Phillip; Middaugh, C Russell; Volkin, David B; Fisher, Mark T

    2014-10-01

    The ability of a GroEL-based bio-layer interferometry (BLI) assay to detect structurally altered and/or aggregated species of pharmaceutically relevant proteins is demonstrated. Assay development included optimizing biotinylated-GroEL immobilization to streptavidin biosensors, combined with biophysical and activity measurements showing native and biotinylated GroEL are both stable and active. First, acidic fibroblast growth factor (FGF-1) was incubated under conditions known to promote (40°C) and inhibit (heparin addition) molten globule formation. Heat exposed (40°C) FGF-1 exhibited binding to GroEL-biosensors, which was significantly diminished in the presence of heparin. Second, a polyclonal human IgG solution containing 6-8% non-native dimer showed an increase in higher molecular weight aggregates upon heating by size exclusion chromatography (SEC). The poly IgG solution displayed binding to GroEL-biosensors initially with progressively increased binding upon heating. Enriched preparations of the IgG dimers or monomers showed significant binding to GroEL-biosensors. Finally, a thermally treated IgG1 monoclonal antibody (mAb) solution also demonstrated increased GroEL-biosensor binding, but with different kinetics. The bound complexes could be partially to fully dissociated after ATP addition (i.e., specific GroEL binding) depending on the protein, environmental stress, and the assay's experimental conditions. Transmission electron microscopy (TEM) images of GroEL-mAb complexes, released from the biosensor, also confirmed interaction of bound complexes at the GroEL binding site with heat-stressed mAb. Results indicate that the GroEL-biosensor-BLI method can detect conformationally altered and/or early aggregation states of proteins, and may potentially be useful as a rapid, stability-indicating biosensor assay for monitoring the structural integrity and physical stability of therapeutic protein candidates. PMID:25043635

  19. Structure-Guided Mutations in the Terminal Organelle Protein MG491 Cause Major Motility and Morphologic Alterations on Mycoplasma genitalium.

    PubMed

    Martinelli, Luca; García-Morales, Luis; Querol, Enrique; Piñol, Jaume; Fita, Ignacio; Calisto, Bárbara M

    2016-04-01

    The emergent human pathogen Mycoplasma genitalium, with one of the smallest genomes among cells capable of growing in axenic cultures, presents a flask-shaped morphology due to a protrusion of the cell membrane, known as the terminal organelle, that is involved in cell adhesion and motility and is an important virulence factor of this microorganism. The terminal organelle is supported by a cytoskeleton complex of about 300 nm in length that includes three substructures: the terminal button, the rod and the wheel complex. The crystal structure of the MG491 protein, a proposed component of the wheel complex, has been determined at ~3 Å resolution. MG491 subunits are composed of a 60-residue N-terminus, a central three-helix-bundle spanning about 150 residues and a C-terminal region that appears to be quite flexible and contains the region that interacts with MG200, another key protein of the terminal organelle. The MG491 molecule is a tetramer presenting a unique organization as a dimer of asymmetric pairs of subunits. The asymmetric arrangement results in two very different intersubunit interfaces between the central three-helix-bundle domains, which correlates with the formation of only ~50% of the intersubunit disulfide bridges of the single cysteine residue found in MG491 (Cys87). Moreover, M. genitalium cells with a point mutation in the MG491 gene causing the change of Cys87 to Ser present a drastic reduction in motility (as determined by microcinematography) and important alterations in morphology (as determined by electron microscopy), while preserving normal levels of the terminal organelle proteins. Other variants of MG491, designed also according to the structural information, altered significantly the motility and/or the cell morphology. Together, these results indicate that MG491 plays a key role in the functioning, organization and stabilization of the terminal organelle. PMID:27082435

  20. Molecular dynamics simulations highlight structural and functional alterations in deafness–related M34T mutation of connexin 26

    PubMed Central

    Zonta, Francesco; Buratto, Damiano; Cassini, Chiara; Bortolozzi, Mario; Mammano, Fabio

    2014-01-01

    Mutations of the GJB2 gene encoding the connexin 26 (Cx26) gap junction protein, which is widely expressed in the inner ear, are the primary cause of hereditary non-syndromic hearing loss in several populations. The deafness–associated single amino acid substitution of methionine 34 (M34) in the first transmembrane helix (TM1) with a threonine (T) ensues in the production of mutant Cx26M34T channels that are correctly synthesized and assembled in the plasma membrane. However, mutant channels overexpressed in HeLa cells retain only 11% of the wild type unitary conductance. Here we extend and rationalize those findings by comparing wild type Cx26 (Cx26WT) and Cx26M34T mutant channels in silico, using molecular dynamics simulations. Our results indicate that the quaternary structure of the Cx26M34T hemichannel is altered at the level of the pore funnel due to the disruption of the hydrophobic interaction between M34 and tryptophan 3 (W3) in the N–terminal helix (NTH). Our simulations also show that external force stimuli applied to the NTHs can detach them from the inner wall of the pore more readily in the mutant than in the wild type hemichannel. These structural alterations significantly increase the free energy barrier encountered by permeating ions, correspondingly decreasing the unitary conductance of the Cx26M34T hemichannel. Our results accord with the proposal that the mutant resides most of the time in a low conductance state. However, the small displacement of the NTHs in our Cx26M34T hemichannel model is not compatible with the formation of a pore plug as in the related Cx26M34A mutant. PMID:24624091

  1. Structure-Guided Mutations in the Terminal Organelle Protein MG491 Cause Major Motility and Morphologic Alterations on Mycoplasma genitalium

    PubMed Central

    Querol, Enrique; Piñol, Jaume; Fita, Ignacio; Calisto, Bárbara M.

    2016-01-01

    The emergent human pathogen Mycoplasma genitalium, with one of the smallest genomes among cells capable of growing in axenic cultures, presents a flask-shaped morphology due to a protrusion of the cell membrane, known as the terminal organelle, that is involved in cell adhesion and motility and is an important virulence factor of this microorganism. The terminal organelle is supported by a cytoskeleton complex of about 300 nm in length that includes three substructures: the terminal button, the rod and the wheel complex. The crystal structure of the MG491 protein, a proposed component of the wheel complex, has been determined at ~3 Å resolution. MG491 subunits are composed of a 60-residue N-terminus, a central three-helix-bundle spanning about 150 residues and a C-terminal region that appears to be quite flexible and contains the region that interacts with MG200, another key protein of the terminal organelle. The MG491 molecule is a tetramer presenting a unique organization as a dimer of asymmetric pairs of subunits. The asymmetric arrangement results in two very different intersubunit interfaces between the central three-helix-bundle domains, which correlates with the formation of only ~50% of the intersubunit disulfide bridges of the single cysteine residue found in MG491 (Cys87). Moreover, M. genitalium cells with a point mutation in the MG491 gene causing the change of Cys87 to Ser present a drastic reduction in motility (as determined by microcinematography) and important alterations in morphology (as determined by electron microscopy), while preserving normal levels of the terminal organelle proteins. Other variants of MG491, designed also according to the structural information, altered significantly the motility and/or the cell morphology. Together, these results indicate that MG491 plays a key role in the functioning, organization and stabilization of the terminal organelle. PMID:27082435

  2. Structural characterization of altered nucleoporin Nup153 expression in human cells by thin-section electron microscopy

    PubMed Central

    Duheron, Vincent; Chatel, Guillaume; Sauder, Ursula; Oliveri, Vesna; Fahrenkrog, Birthe

    2014-01-01

    Nuclear pore complexes (NPCs) span the 2 membranes of the nuclear envelope (NE) and facilitate nucleocytoplasmic exchange of macromolecules. NPCs have a roughly tripartite structural organization with the so-called nuclear basket emanating from the NPC scaffold into the nucleoplasm. The nuclear basket is composed of the 3 nucleoporins Nup153, Nup50, and Tpr, but their specific role for the structural organization of this NPC substructure is, however, not well established. In this study, we have used thin-section transmission electron microscopy to determine the structural consequences of altering the expression of Nup153 in human cells. We show that the assembly and integrity of the nuclear basket is not affected by Nup153 depletion, whereas its integrity is perturbed in cells expressing high concentrations of the zinc-finger domain of Nup153. Moreover, even mild over-expression of Nup153 is coinciding with massive changes in nuclear organization and it is the excess of the zinc-finger domain of Nup153 that is sufficient to induce these rearrangements. Our data indicate a central function of Nup153 in the organization of the nucleus, not only at the periphery, but throughout the entire nuclear interior. PMID:25485891

  3. Differential Progression of Structural and Functional Alterations in Distinct Retinal Ganglion Cell Types in a Mouse Model of Glaucoma

    PubMed Central

    Della Santina, Luca; Inman, Denise M.; Lupien, Caroline B.; Horner, Philip J.

    2013-01-01

    Intraocular pressure (IOP) elevation is a principal risk factor for glaucoma. Using a microbead injection technique to chronically raise IOP for 15 or 30 d in mice, we identified the early changes in visual response properties of different types of retinal ganglion cells (RGCs) and correlated these changes with neuronal morphology before cell death. Microbead-injected eyes showed reduced optokinetic tracking as well as cell death. In such eyes, multielectrode array recordings revealed that four RGC types show diverse alterations in their light responses upon IOP elevation. OFF-transient RGCs exhibited a more rapid decline in both structural and functional organizations compared with other RGCs. In contrast, although the light-evoked responses of OFF-sustained RGCs were perturbed, the dendritic arbor of this cell type remained intact. ON-transient and ON-sustained RGCs had normal functional receptive field sizes but their spontaneous and light-evoked firing rates were reduced. ON- and OFF-sustained RGCs lost excitatory synapses across an otherwise structurally normal dendritic arbor. Together, our observations indicate that there are changes in spontaneous activity and light-evoked responses in RGCs before detectable dendritic loss. However, when dendrites retract, we found corresponding changes in receptive field center size. Importantly, the effects of IOP elevation are not uniformly manifested in the structure and function of diverse RGC populations, nor are distinct RGC types perturbed within the same time-frame by such a challenge. PMID:24174678

  4. Differential progression of structural and functional alterations in distinct retinal ganglion cell types in a mouse model of glaucoma.

    PubMed

    Della Santina, Luca; Inman, Denise M; Lupien, Caroline B; Horner, Philip J; Wong, Rachel O L

    2013-10-30

    Intraocular pressure (IOP) elevation is a principal risk factor for glaucoma. Using a microbead injection technique to chronically raise IOP for 15 or 30 d in mice, we identified the early changes in visual response properties of different types of retinal ganglion cells (RGCs) and correlated these changes with neuronal morphology before cell death. Microbead-injected eyes showed reduced optokinetic tracking as well as cell death. In such eyes, multielectrode array recordings revealed that four RGC types show diverse alterations in their light responses upon IOP elevation. OFF-transient RGCs exhibited a more rapid decline in both structural and functional organizations compared with other RGCs. In contrast, although the light-evoked responses of OFF-sustained RGCs were perturbed, the dendritic arbor of this cell type remained intact. ON-transient and ON-sustained RGCs had normal functional receptive field sizes but their spontaneous and light-evoked firing rates were reduced. ON- and OFF-sustained RGCs lost excitatory synapses across an otherwise structurally normal dendritic arbor. Together, our observations indicate that there are changes in spontaneous activity and light-evoked responses in RGCs before detectable dendritic loss. However, when dendrites retract, we found corresponding changes in receptive field center size. Importantly, the effects of IOP elevation are not uniformly manifested in the structure and function of diverse RGC populations, nor are distinct RGC types perturbed within the same time-frame by such a challenge. PMID:24174678

  5. Antisense inhibition of isoamylase alters the structure of amylopectin and the physicochemical properties of starch in rice endosperm.

    PubMed

    Fujita, Naoko; Kubo, Akiko; Suh, Dong-Soon; Wong, Kit-Sum; Jane, Jay-Lin; Ozawa, Kenjiro; Takaiwa, Fumio; Inaba, Yumiko; Nakamura, Yasunori

    2003-06-01

    This is the first report on regulation of the isoamylase1 gene to modify the structure of amylopectin and properties of starch by using antisense technology in plants. The reduction of isoamylase1 protein by about 94% in rice endosperm changed amylopectin into a water-insoluble modified amylopectin and a water-soluble polyglucan (WSP). As compared with wild-type amylopectin, the modified amylopectin had more short chains with a degree of polymerization of 5-12, while their molecular sizes were similar. The WSP, which structurally resembled the phytoglycogen in isoamylase-deficient sugary-1 mutants, accounted for about 16% of the total alpha-polyglucans in antisense endosperm, and it was distributed throughout the whole endosperm unlike in sugary-1 mutant. The reduction of isoamylase activity markedly lowered the gelatinization temperature from 54 to 43 degrees C and the viscosity, and modified X-ray diffraction pattern and the granule morphology of the starch. The activity of pullulanase, the other type of starch debranching enzyme, in the antisense endosperm was similar to that in wild-type, whereas it is deficient in sugary-1 mutants. These results indicate that the isoamylase1 is essential for amylopectin biosynthesis in rice endosperm, and that alteration of the isoamylase activity is an effective means to modify the physicochemical properties and granular structure of starch. PMID:12826626

  6. Altered Brain Structure-Function Relationships Underlie Executive Dysfunction in 22q11.2 Deletion Syndrome.

    PubMed

    Jonas, Rachel K; Jalbrzikowski, Maria; Montojo, Caroline A; Patel, Arati; Kushan, Leila; Chow, Carolyn C; Vesagas, Therese; Bearden, Carrie E

    2015-12-01

    22q11.2 deletion syndrome (22q11DS) is a neurogenetic disorder associated with elevated rates of developmental neuropsychiatric disorders and impaired executive function (EF). Disrupted brain structure-function relationships may underlie EF deficits in 22q11DS. We administered the Behavior Rating Inventory of Executive Function (BRIEF) to assess real-world EF in patients with 22q11DS and matched controls (n = 86; age 6-17 years), along with cognitive measures that tap behavioral regulation and metacognition aspects of EF. Using FreeSurfer's whole-brain vertex cortical thickness pipeline, we investigated brain structure-EF relationships in patients with 22q11DS and controls. Behaviorally, patients with 22q11DS were impaired on multiple EF measures. Right orbitofrontal cortical thickness showed a differential relationship between real-world EF in patients with 22q11DS and controls. We also observed a group difference in the relationship between behavioral regulation and metacognition measures with thickness of ventral and dorsolateral prefrontal regions, respectively. Our findings suggest that executive dysfunction characteristic of 22q11DS is underscored by altered prefrontal cortical structure. PMID:27606315

  7. Altered olfactory epithelial structure and function in feline models of mucopolysaccharidoses I and VI

    PubMed Central

    Lischka, Fritz W.; Gomez, George; Yee, Karen K.; Dankulich-Nagrudny, Luba; Lo, Leen; Haskins, Mark E.; Rawson, Nancy E.

    2008-01-01

    The mucopolysaccharidoses (MPS) are a family of lysosomal storage diseases resulting in developmental defects and, in some types, mental retardation and other neurological symptoms. To gain insight into the neurological dysfunction in MPS, we examined the morphology of olfactory epithelia (OE) and physiology of olfactory receptor neurons (ORNs) in cat models of MPS I, a type in which neuronal lesions are prominent, and MPS VI, in which they are essentially absent. Histopathology showed that both groups of MPS-affected cats had significantly thinner olfactory epithelia than controls. While immature and mature ORNs were present in both MPS I and VI affected OE, the OE of MPS I-affected cats was structurally disorganized. ORN function was assessed with calcium imaging and patch-clamp recording. Few viable ORNs were recovered from MPS VI cats, but these exhibited normal responses to odors and pharmacological stimuli. In contrast, viable ORNs were as prevalent in MPS I as in controls, but were significantly less likely to respond to odor stimuli, although other responses were normal. Disrupted OE organization and impaired ORN function in MPS I, but not MPS VI, corresponds to the central nervous system (CNS) lesions found in MPS I but not MPS VI. These data represent the first neurophysiological correlate of this correspondence and have implications for understanding both the role of glycosaminoglycans in maintenance of the OE, as well as for targeting further research into the basis for and treatment of the neurological consequences of MPS disorders. PMID:18803239

  8. Modulating Cellular Recombination Potential through Alterations in RecA Structure and Regulation

    PubMed Central

    Bakhlanova, Irina V.; Dudkina, Alexandra V.; Baitin, Dima M.; Knight, Kendall L.; Cox, Michael M.; Lanzov, Vladislav A.

    2010-01-01

    The wild type E. coli RecA protein is a recombinase platform with unrealized recombination potential. We have explored the factors affecting recombination during conjugation with a quantitative assay. Regulatory proteins that affect RecA function have the capacity to increase or decrease recombination frequencies by factors up to 6 fold. Autoinhibition by the RecA C-terminus can affect recombination frequency by factors up to 4 fold. The greatest changes in recombination frequency measured here are brought about by point mutations in the recA gene. RecA variants can increase recombination frequencies by more than 50 fold. The RecA protein thus possesses an inherently broad functional range. The RecA protein of Escherichia coli (EcRecA) is not optimized for recombination function. Instead, much of the recombination potential of EcRecA is structurally suppressed, probably reflecting cellular requirements. One point mutation in EcRecA with a particularly dramatic effect on recombination frequency, D112R, exhibits an enhanced capacity to load onto SSB-coated ssDNA, overcome the effects of regulatory proteins such as PsiB and RecX, and to pair homologous DNAs. Comparisons of key RecA protein mutants reveal two components to RecA recombination function – filament formation and the inherent DNA pairing activity of the formed filaments. PMID:21143322

  9. Altered lumbar spine structure, biochemistry and biomechanical properties in a canine model of mucopolysaccharidosis type VII

    PubMed Central

    Smith, Lachlan J; Martin, John T; Szczesny, Spencer E; Ponder, Katherine P; Haskins, Mark E; Elliott, Dawn M

    2010-01-01

    Mucopolysaccharidosis VII (MPS VII) is a lysosomal storage disorder characterized by a deficiency in β-glucuronidase activity, leading to systemic accumulation of poorly degraded glycosaminoglycans (GAG). Along with other morbidities, MPS VII is associated with paediatric spinal deformity. The objective of this study was to examine potential associations between abnormal lumbar spine matrix structure and composition in MPS VII, and spine segment and tissue-level mechanical properties, using a naturally occurring canine model with a similar clinical phenotype to the human form of the disorder. Segments from juvenile MPS VII and unaffected dogs were allocated to: radiography, gross morphology, histology, biochemistry, and mechanical testing. MPS VII spines had radiolucent lesions in the vertebral body epiphyses. Histologically, this corresponded to a GAG-rich cartilaginous region in place of bone, and elevated GAG staining was seen in the annulus fibrosus. Biochemically, MPS VII samples had elevated GAG in the outer annulus fibrosus and epiphyses, low calcium in the epiphyses, and high water content in all regions except the nucleus pulposus. MPS VII spine segments had higher range of motion and lower stiffness than controls. Endplate indentation stiffness and failure loads were significantly lower in MPS VII samples, while annulus fibrosus tensile mechanical properties were normal. Vertebral body lesions in MPS VII spines suggest a failure to convert cartilage to bone during development. Low stiffness in these regions likely contributes to mechanical weakness in motion segments and is a potential factor in the progression of spinal deformity. PMID:19918911

  10. Structural and functional alterations of two multidomain oxidoreductases induced by guanidine hydrochloride.

    PubMed

    Jiao, Ming; Zhou, Yu-Ling; Li, Hong-Tao; Zhang, De-Ling; Chen, Jie; Liang, Yi

    2010-01-01

    The unfolding and refolding of two multidomain oxidoreductases, bovine liver catalase and flavoprotein bovine milk xanthine oxidase (XO), have been analyzed by fluorescence spectroscopy, circular dichroism, and activity measurements. Two intermediates, a partially folded active dimer disassembled from the native tetramer and a partially folded inactivated monomer, are found to exist in the conformational changes of catalase induced by guanidine hydrochloride (GdnHCl). Similarly, two intermediates, an active, compacted intermediate bound by flavin adenine dinucleotide (FAD) partially and an inactive flexible intermediate with FAD completely dissociated, exist in the conformational changes of XO induced by GdnHCl. The activity regains completely and an enhancement in activity compared with the native catalase or native XO is observed by dilution of catalase or XO incubated with GdnHCl at concentrations not >0.5 or 1.8 M into the refolding buffer, but the yield of reactivation for catalase or XO is zero when the concentration of GdnHCl is >1.5 or 3.0 M. The addition of FAD provides a remarkable protection against the inactivation of XO by GdnHCl under mild denaturing conditions, and the conformational change of XO is irreversible after FAD has been removed in the presence of a strong denaturing agent. These findings provide impetus for exploring the influences of cofactors such as FAD on the structure-function relationship of xanthine oxidoreductases. PMID:20043044

  11. Elevated atmospheric CO{sub 2} alters root-microbe interactions and belowground trophic structure

    SciTech Connect

    Klironomos, J.N.; Rillig, M.C.; Allen, M.F.

    1995-09-01

    Various aspects of plant and ecosystem responses to elevated atmospheric carbon dioxide have been described. However, very little is known about the fate of carbon allocated belowground, microbial activity, and trophic structure in the rhizosphere. Rhizosphere microbes are fed primarily by root-derived substrates, fulfill functions such as mineralization, immobilization, decomposition, pathogeneity, and improvement of plant nutrition, and form the base of the below-ground food web. Belowground processes have so far been monitored using a black-box approach, thereby ignoring effects of global change at a finer (functional group) level of resolution. This study is the first to describe shifts in the activity and dominance between microbial functional groups, and the results of this on higher trophic levels. We observed that, in a nutrient-rich soil, carbon flow in the plant-soil system was shunted from a mutualistic-closed, mycorrhizal dominated flow to an opportunist-open, saprobe/pathogen dominated one. This indicates that elevated atmospheric CO{sub 2} may lead to far less predictable consequences than previously thought.

  12. Mutations in the gene encoding starch synthase II profoundly alter amylopectin structure in pea embryos.

    PubMed Central

    Craig, J; Lloyd, J R; Tomlinson, K; Barber, L; Edwards, A; Wang, T L; Martin, C; Hedley, C L; Smith, A M

    1998-01-01

    Mutations at the rug5 (rugosus5) locus have been used to elucidate the role of the major soluble isoform of starch synthase II (SSII) in amylopectin synthesis in the developing pea embryo. The SSII gene maps to the rug5 locus, and the gene in one of three rug5 mutant lines has been shown to carry a base pair substitution that introduces a stop codon into the open reading frame. All three mutant alleles cause a dramatic reduction or loss of the SSII protein. The mutations have pleiotropic effects on the activities of other isoforms of starch synthase but apparently not on those of other enzymes of starch synthesis. These mutations result in abnormal starch granule morphology and amylopectin structure. Amylopectin contains fewer chains of intermediate length (B2 and B3 chains) and more very short and very long chains than does amylopectin from wild-type embryos. The results suggest that SSII may play a specific role in the synthesis of B2 and B3 chains of amylopectin. The extent to which these findings can be extrapolated to other species is discussed. PMID:9501114

  13. Structural alterations in the rat brain and behavioral impairment after status epilepticus: An MRI study.

    PubMed

    Suleymanova, E M; Gulyaev, M V; Abbasova, K R

    2016-02-19

    Temporal lobe epilepsy (TLE) is one of the most common neurologic disorders often associated with behavioral impairments and cognitive deficit. Lithium-pilocarpine model of seizures in rodents reproduces many features of human convulsive status epilepticus (SE) and subsequent TLE. In this study, we have investigated changes in the rat brain after lithium-pilocarpine SE using a high-field MRI system for small animals in early and chronic periods after SE. We have studied the relationship between T2 relaxation time measured in these periods and the development of behavioral exploratory response to novelty and habituation in the open field test. A significant increase in T2 in the hippocampus and associated structures was found 2 days after SE and practically resolved by day seven, while an increase in T2 in the parietal and prefrontal cortex appeared 30 days after SE. High T2 values in the parietal cortex and thalamus on day two after SE were associated with an increased mortality risk. A substantial variability in T2 relaxation time was observed in the hippocampus and amygdala 30 days after SE. Rats survived after SE showed locomotor hyperactivity and disruption of long-term habituation in the open field test carried out 5 weeks after the seizures. Interestingly, T2 in the amygdala 30 days after SE had a strong correlation with hyperactivity in the novel open field. Therefore, the amygdala damage may be an important factor in the development of hyperactivity in the chronic period after SE. PMID:26674057

  14. Altered Structural Correlates of Impulsivity in Adolescents with Internet Gaming Disorder

    PubMed Central

    Du, Xin; Qi, Xin; Yang, Yongxin; Du, Guijin; Gao, Peihong; Zhang, Yang; Qin, Wen; Li, Xiaodong; Zhang, Quan

    2016-01-01

    Recent studies suggested that internet gaming disorder (IGD) was associated with impulsivity and structural abnormalities in brain gray matter (GM). However, no morphometric study has examined the association between GM and impulsivity in IGD individuals. In this study, 25 adolescents with IGD and 27 healthy controls (HCs) were recruited, and the relationship between Barratt impulsiveness scale-11 (BIS) score and gray matter volume (GMV) was investigated with the voxel-based morphometric (VBM) correlation analysis. Then, the intergroup differences in correlation between BIS score and GMV were tested across all GM voxels. Our results showed that the correlations between BIS score and GMV of the right dorsomedial prefrontal cortex (dmPFC), the bilateral insula and the orbitofrontal cortex (OFC), the right amygdala and the left fusiform gyrus decreased in the IGD group compared to the HCs. Region-of-interest (ROI) analysis revealed that GMV in all these clusters showed significant positive correlations with BIS score in the HCs, while no significant correlation was found in the IGD group. Our findings demonstrated that dysfunction of these brain areas involved in the behavior inhibition, attention and emotion regulation might contribute to impulse control problems in IGD adolescents. PMID:26858620

  15. Altered Leaf Structure and Function in Triazine-Resistant Common Groundsel (Senecio vulgaris) 1

    PubMed Central

    Holt, Jodie Sims; Goffner, Deborah P.

    1985-01-01

    Anatomical and physiological characteristics of leaves of triazinesusceptible and -resistant biotypes of common groundsel (Senecio vulgaris L.) were studied in order to explain the differences in light-saturated photosynthetic rates previously reported. Leaves were of uniform leaf plastochron index from greenhouse-grown plants. Susceptible plants had greater leaf fresh and dry weights and leaf areas, while resistant plants had greater specific leaf mass (mg fresh weight/cm2). Susceptible plants had greater amounts of total chlorophyll per unit leaf weight and a higher chlorophyll a/b ratio. Soluble protein in leaves was higher in susceptible chloroplasts on a weight and area basis, but similar to resistant chloroplasts on a unit chlorophyll basis. Activity of ribulose 1,5-bisphosphate carboxylase was higher in resistant plants on a fresh weight, leaf area, and milligram chlorophyll basis. Stomatal frequency, length, and arrangement were similar between biotypes, as were transpiration and conductance. Resistant leaves had less air space (v/v), more cells in palisade and spongy mesophyll, and a greater volume of palisade tissue than spongy, when compared to susceptible leaves. Differences in leaf structure and function between biotypes are probably due to a complex of developmental adaptations which may be only indirectly related to modified photosystem II in resistant plants. These results indicate that the consistently lower rates of net photosynthesis and yield in resistant plants cannot be explained solely on the basis of these leaf characteristics. Several possible mechanisms to account for reduced productivity are suggested. Images Fig. 1 PMID:16664476

  16. Investigating natural organic carbon removal and structural alteration induced by pulsed ultrasound.

    PubMed

    Al-Juboori, Raed A; Yusaf, Talal; Aravinthan, Vasantha; Bowtell, Leslie

    2016-01-15

    The application of pulsed ultrasound for DOC removal from natural water samples has been thoroughly investigated in this work. Natural water samples were treated with ultrasound at power levels of 48 and 84 W with treatment times of 5 and 15 min. Chemical fractionation was conducted for both untreated and treated samples to clearly identify the change in DOC structure caused by ultrasonic treatments. Statistical analyses applying 2(3) factorial design were performed to study the behaviour of the response (i.e. DOC removal) under different operating conditions. Overall, ultrasonic treatments resulted in DOC removal of 7-15% depending on the applied operating conditions. The treated water had high microbial loading that interfered with DOC removal due primarily to the release of microbial products when exposed to ultrasound. Pulse ultrasound was found to be more effective than the continuous mode for DOC removal at the same effective power level. A regression model was developed and tested for DOC removal prediction. The model was adequate in predicting DOC removal with a maximum deviation from the experimental data of <11%. Pulsed ultrasound at low power levels and short treatment times was found to be the most energy efficient treatment for DOC removal. PMID:26473704

  17. Altered Structural Correlates of Impulsivity in Adolescents with Internet Gaming Disorder.

    PubMed

    Du, Xin; Qi, Xin; Yang, Yongxin; Du, Guijin; Gao, Peihong; Zhang, Yang; Qin, Wen; Li, Xiaodong; Zhang, Quan

    2016-01-01

    Recent studies suggested that internet gaming disorder (IGD) was associated with impulsivity and structural abnormalities in brain gray matter (GM). However, no morphometric study has examined the association between GM and impulsivity in IGD individuals. In this study, 25 adolescents with IGD and 27 healthy controls (HCs) were recruited, and the relationship between Barratt impulsiveness scale-11 (BIS) score and gray matter volume (GMV) was investigated with the voxel-based morphometric (VBM) correlation analysis. Then, the intergroup differences in correlation between BIS score and GMV were tested across all GM voxels. Our results showed that the correlations between BIS score and GMV of the right dorsomedial prefrontal cortex (dmPFC), the bilateral insula and the orbitofrontal cortex (OFC), the right amygdala and the left fusiform gyrus decreased in the IGD group compared to the HCs. Region-of-interest (ROI) analysis revealed that GMV in all these clusters showed significant positive correlations with BIS score in the HCs, while no significant correlation was found in the IGD group. Our findings demonstrated that dysfunction of these brain areas involved in the behavior inhibition, attention and emotion regulation might contribute to impulse control problems in IGD adolescents. PMID:26858620

  18. Sit-to-Stand and Stand-to-Sit Control Mechanisms of Two-Wheeled Wheelchair.

    PubMed

    Abdul Ghani, N M; Tokhi, M O

    2016-04-01

    This paper presents a mechanism for standing and sitting transformation of a wheelchair using a two-wheeled inverted pendulum concept with reduced torque requirement, in simulation studies. The motivation of this work is to design a compact standing mechanism to help an elderly/disabled person with functional limitation in lower extremities to maneuver in small and confined spaces and enable them to perform standard daily life routines independently. The wheelchair system at the upright standing position is tested with different travel distances, and the challenge is to control both sit-to-stand and stand-to-sit operations in a stable manner using flexible-joint humanoid. An additional spring/damping element is incorporated at each wheel to provide a comfortable ride for the user especially during stand-to-sit transformation task. A PD-fuzzy control with modular structure is implemented, and the performance of the system is observed through visual nastran 4d (vn4d) visualization software and simulation in matlab. The stand-to-sit performance tests have shown more than 38% reduction in tilt and back seat angles fluctuation in linear travel motion using a suspension system, while the initial tilt torque needed is 50% less than the amount required in previous designs. PMID:26902396

  19. High Brightness Test Stand

    SciTech Connect

    Birx, D.L.; Caporaso, G.J.; Boyd, J.K.; Hawkins, S.A.; Poor, S.E.; Reginato, L.L.; Rogers, D. Jr.; Smith, M.W.

    1985-08-07

    The High Brightness Test Stand is a 2 MeV, less than or equal to 10 kA electron accelerator module. This accelerator module, designed as an upgrade prototype for the Advanced Test Accelerator (ATA), combines solid state nonlinear magnetic drives with state-of-the-art induction linac technology. The facility serves a dual role, as it not only provides a test bed for this new technology, but is used to develop high brightness electron optics. We will both further describe the accelerator, as well as present some of the preliminary electron optics measurements.

  20. Overexpression of the OsERF71 Transcription Factor Alters Rice Root Structure and Drought Resistance.

    PubMed

    Lee, Dong-Keun; Jung, Harin; Jang, Geupil; Jeong, Jin Seo; Kim, Youn Shic; Ha, Sun-Hwa; Do Choi, Yang; Kim, Ju-Kon

    2016-09-01

    Plant responses to drought stress require the regulation of transcriptional networks via drought-responsive transcription factors, which mediate a range of morphological and physiological changes. AP2/ERF transcription factors are known to act as key regulators of drought resistance transcriptional networks; however, little is known about the associated molecular mechanisms that give rise to specific morphological and physiological adaptations. In this study, we functionally characterized the rice (Oryza sativa) drought-responsive AP2/ERF transcription factor OsERF71, which is expressed predominantly in the root meristem, pericycle, and endodermis. Overexpression of OsERF71, either throughout the entire plant or specifically in roots, resulted in a drought resistance phenotype at the vegetative growth stage, indicating that overexpression in roots was sufficient to confer drought resistance. The root-specific overexpression was more effective in conferring drought resistance at the reproductive stage, such that grain yield was increased by 23% to 42% over wild-type plants or whole-body overexpressing transgenic lines under drought conditions. OsERF71 overexpression in roots elevated the expression levels of genes related to cell wall loosening and lignin biosynthetic genes, which correlated with changes in root structure, the formation of enlarged aerenchyma, and high lignification levels. Furthermore, OsERF71 was found to directly bind to the promoter of OsCINNAMOYL-COENZYME A REDUCTASE1, a key gene in lignin biosynthesis. These results indicate that the OsERF71-mediated drought resistance pathway recruits factors involved in cell wall modification to enable root morphological adaptations, thereby providing a mechanism for enhancing drought resistance. PMID:27382137

  1. Alterations of functional and structural connectivity of freezing of gait in Parkinson's disease.

    PubMed

    Wang, Min; Jiang, Siming; Yuan, Yongsheng; Zhang, Li; Ding, Jian; Wang, Jianwei; Zhang, Jiejin; Zhang, Kezhong; Wang, Jie

    2016-08-01

    This study assessed the patterns of functional and structural connectivity abnormalities in patients with Parkinson's disease with freezing of gait (PD FOG+) compared with those without freezing (PD FOG-) and healthy controls (HCs). Resting state functional MRI (rs-fMRI) and diffusion tensor imaging (DTI) scans were obtained from 14 PD FOG+, 16 PD FOG- and 16HCs. Between-group difference in pedunculopontine nucleus (PPN) functional connectivity (FC) was performed to assess FC dysfunction. Tract-based spatial statistics (TBSS) was applied to compare white matter (WM) impairment across the whole brain between groups. PD FOG+ patients exhibited abnormal PPN FC, compared with HCs and with PD FOG-, mainly in the corticopontine-cerebellar pathways (in the bilateral cerebellum and in the pons), as well as the visual temporal areas (in the right middle temporal gyrus and in the right inferior temporal gyrus). Moreover, PD FOG+ patients, showed more pronounced WM abnormalities, relative to controls, including the interhemispheric connections of corpus callosum, the cortico-cortical WM tracts of the cingulum, the superior longitudinal fasciculus and inferior fronto-occipital fasciculus, the corticofugal tract (cerebral peduncles, internal capsule, corona radiata), as well as tracts connecting the thalamus (thalamic radiation). This study suggests that FOG in PD is associated with abnormal PPN FC network, mainly affecting the corticopontine-cerebellar pathways as well as visual temporal areas involved in visual processing, and with diffuse WM deficits extending to motor, sensory and cognitive regions. Combining rs-fMRI and DTI method, our study should advance the understanding of neural mechanisms underlying FOG in PD. PMID:27230857

  2. Structural and Functional Vascular Alterations and Incident Hypertension in Normotensive Adults

    PubMed Central

    Peralta, Carmen A.; Adeney, Kathryn L.; Shlipak, Michael G.; Jacobs, David; Duprez, Daniel; Bluemke, David; Polak, Joseph; Psaty, Bruce; Kestenbaum, Bryan R.

    2010-01-01

    Vascular abnormalities may exist before clinical hypertension. Using Poisson regression, the authors studied the association of coronary artery calcium (CAC), common carotid intima-media thickness (CIMT), aortic distensibility, and large and small arterial elasticity with incident hypertension among 2,512 normotensive US adults free of cardiovascular disease. Incidence rate ratios for incident hypertension (blood pressure ≥140/90 mm Hg or new antihypertensive medication) were calculated. Increased CAC was associated with incident hypertension in demographics-adjusted models (incidence rate ratio (IRR) = 1.35, 95% confidence interval (CI): 1.04, 1.75; IRR = 1.35, 95% CI: 1.02, 1.78; and IRR = 1.59, 95% CI: 1.12, 2.25 for CAC scores of 30–99, 100–399, and ≥400, respectively) but was attenuated after further adjustment. Increased common CIMT was associated with incident hypertension (IRR = 1.77, 95% CI: 1.28, 2.46 for quintile 4; IRR = 1.80, 95% CI: 1.28, 2.53 for quintile 5). Participants with the lowest, compared with the highest, aortic distensibility had an increased risk of hypertension (IRR = 1.75, 95% CI: 1.10, 2.79), as did those with the lowest large arterial elasticity (IRR = 1.49, 95% CI: 1.11, 1.99). Lower small arterial elasticity was incrementally associated with incident hypertension starting at quintile 2 (IRR = 2.01, 95% CI: 1.39, 2.91; IRR = 2.47, 95% CI: 1.71, 3.57; IRR = 2.73, 95% CI: 1.88, 3.95; and IRR = 2.85, 95% CI: 1.95, 4.16). Structural and functional vascular abnormalities are independent predictors of incident hypertension. These findings are important for understanding the pathogenesis of hypertension. PMID:19951938

  3. Alteration of lipid membrane structure and dynamics by diacylglycerols with unsaturated chains.

    PubMed

    Alwarawrah, Mohammad; Hussain, Fazle; Huang, Juyang

    2016-02-01

    Diacylglycerols (DAGs) with unsaturated acyl chains play many important roles in biomembranes, such as a second messenger and activator for protein kinase C. In this study, three DAGs of distinctly different chain unsaturations (i.e. di16:0DAG (DPG), 16:0-18:1DAG (POG), and di18:1DAG (DOG)) are studied using atomistic MD simulation to compare their roles in the structure and dynamics of 16:0-18:1phosphatidylcholine (POPC) membranes. All three DAGs are able to produce the so-called 'condensing effect' in POPC membranes: decreasing area-per-lipid, and increasing acyl chain order and bilayer thickness. Our visual and quantitative analyses clearly show that DAG with unsaturated chains induce larger spacing between POPC headgroups, compared with DAG with saturated chains; this particular effect has long been hypothesized to be crucial for activating enzymes and receptors in cell membranes. DAGs with unsaturated chains are also located closer to the bilayer/aqueous interface than DPG and are more effective in slowing down lateral diffusion of molecules. We show that DAG molecules seek the "umbrella coverage" from neighboring phospholipid headgroups - similar to cholesterol. Unlike cholesterol, DAGs also hide their chains from water by laterally inserting their chains into the surrounding. Thus, acyl chains of DAG are more spread and disordered than those of PC due to the insertion. By calculating the potential of mean force (PMF) for POPC in POPC/DAG bilayers, we found that all three DAGs can significantly increase the free energy barrier for POPC to flip-flop, but only DAGs with unsaturated chains can additionally increase the free energy of POPC desorption. PMID:26607007

  4. Triclocarban Influences Antibiotic Resistance and Alters Anaerobic Digester Microbial Community Structure.

    PubMed

    Carey, Daniel E; Zitomer, Daniel H; Hristova, Krassimira R; Kappell, Anthony D; McNamara, Patrick J

    2016-01-01

    Triclocarban (TCC) is one of the most abundant organic micropollutants detected in biosolids. Lab-scale anaerobic digesters were amended with TCC at concentrations ranging from the background concentration of seed biosolids (30 mg/kg) to toxic concentrations of 850 mg/kg to determine the effect on methane production, relative abundance of antibiotic resistance genes, and microbial community structure. Additionally, the TCC addition rate was varied to determine the impacts of acclimation time. At environmentally relevant TCC concentrations (max detect = 440 mg/kg), digesters maintained function. Digesters receiving 450 mg/kg of TCC maintained function under gradual TCC addition, but volatile fatty acid concentrations increased, pH decreased, and methane production ceased when immediately fed this concentration. The concentrations of the mexB gene (encoding for a multidrug efflux pump) were higher with all concentrations of TCC compared to a control, but higher TCC concentrations did not correlate with increased mexB abundance. The relative abundance of the gene tet(L) was greater in the digesters that no longer produced methane, and no effect on the relative abundance of the class 1 integron integrase encoding gene (intI1) was observed. Illumina sequencing revealed substantial community shifts in digesters that functionally failed from increased levels of TCC. More subtle, yet significant, community shifts were observed in digesters amended with TCC levels that did not inhibit function. This research demonstrates that TCC can select for a multidrug resistance encoding gene in mixed community anaerobic environments, and this selection occurs at concentrations (30 mg/kg) that can be found in full-scale anaerobic digesters (U.S. median concentration = 22 mg/kg, mean = 39 mg/kg). PMID:26588246

  5. Huanglongbing alters the structure and functional diversity of microbial communities associated with citrus rhizosphere.

    PubMed

    Trivedi, Pankaj; He, Zhili; Van Nostrand, Joy D; Albrigo, Gene; Zhou, Jizhong; Wang, Nian

    2012-02-01

    The diversity and stability of bacterial communities present in the rhizosphere heavily influence soil and plant quality and ecosystem sustainability. The goal of this study is to understand how 'Candidatus Liberibacter asiaticus' (known to cause Huanglongbing, HLB) influences the structure and functional potential of microbial communities associated with the citrus rhizosphere. Clone library sequencing and taxon/group-specific quantitative real-time PCR results showed that 'Ca. L. asiaticus' infection restructured the native microbial community associated with citrus rhizosphere. Within the bacterial community, phylum Proteobacteria with various genera typically known as successful rhizosphere colonizers were significantly greater in clone libraries from healthy samples, whereas phylum Acidobacteria, Actinobacteria and Firmicutes, typically more dominant in the bulk soil were higher in 'Ca. L. asiaticus'-infected samples. A comprehensive functional microarray GeoChip 3.0 was used to determine the effects of 'Ca. L. asiaticus' infection on the functional diversity of rhizosphere microbial communities. GeoChip analysis showed that HLB disease has significant effects on various functional guilds of bacteria. Many genes involved in key ecological processes such as nitrogen cycling, carbon fixation, phosphorus utilization, metal homeostasis and resistance were significantly greater in healthy than in the 'Ca. L. asiaticus'-infected citrus rhizosphere. Our results showed that the microbial community of the 'Ca. L. asiaticus'-infected citrus rhizosphere has shifted away from using more easily degraded sources of carbon to the more recalcitrant forms. Overall, our study provides evidence that the change in plant physiology mediated by 'Ca. L. asiaticus' infection could elicit shifts in the composition and functional potential of rhizosphere microbial communities. In the long term, these fluctuations might have important implications for the productivity and sustainability

  6. Potential Activity, Size, and Structure of Sulfate-Reducing Microbial Communities in an Exposed, Grazed and a Sheltered, Non-Grazed Mangrove Stand at the Red Sea Coast

    PubMed Central

    Balk, Melike; Keuskamp, Joost A.; Laanbroek, Hendrikus J.

    2015-01-01

    After oxygen, sulfate is the most important oxidant for the oxidation of organic matter in mangrove forest soils. As sulfate reducers are poor competitors for common electron donors, their relative success depends mostly on the surplus of carbon that is left by aerobic organisms due to oxygen depletion. We therefore hypothesized that sulfate-cycling in mangrove soils is influenced by the size of net primary production, and hence negatively affected by mangrove degradation and exploitation, as well as by carbon-exporting waves. To test this, we compared quantitative and qualitative traits of sulfate-reducing communities in two Saudi-Arabian mangrove stands near Jeddah, where co-occurring differences in camel-grazing pressure and tidal exposure led to a markedly different stand height and hence primary production. Potential sulfate reduction rates measured in anoxic flow-through reactors in the absence and presence of additional carbon sources were significantly higher in the samples from the non-grazed site. Near the surface (0–2 cm depth), numbers of dsrB gene copies and culturable cells also tended to be higher in the non-grazed sites, while these differences were not detected in the sub-surface (4–6 cm depth). It was concluded that sulfate-reducing microbes at the surface were indeed repressed at the low-productive site as could be expected from our hypothesis. At both sites, sulfate reduction rates as well as numbers of the dsrB gene copies and viable cells increased with depth suggesting repression of sulfate reduction near the surface in both irrespective of production level. Additionally, sequence analysis of DNA bands obtained from DGGE gels based on the dsrB gene, showed a clear difference in dominance of sulfate-reducing genera belonging to the Deltaproteobacteria and the Firmicutes between sampling sites and depths. PMID:26733999

  7. Potential Activity, Size, and Structure of Sulfate-Reducing Microbial Communities in an Exposed, Grazed and a Sheltered, Non-Grazed Mangrove Stand at the Red Sea Coast.

    PubMed

    Balk, Melike; Keuskamp, Joost A; Laanbroek, Hendrikus J

    2015-01-01

    After oxygen, sulfate is the most important oxidant for the oxidation of organic matter in mangrove forest soils. As sulfate reducers are poor competitors for common electron donors, their relative success depends mostly on the surplus of carbon that is left by aerobic organisms due to oxygen depletion. We therefore hypothesized that sulfate-cycling in mangrove soils is influenced by the size of net primary production, and hence negatively affected by mangrove degradation and exploitation, as well as by carbon-exporting waves. To test this, we compared quantitative and qualitative traits of sulfate-reducing communities in two Saudi-Arabian mangrove stands near Jeddah, where co-occurring differences in camel-grazing pressure and tidal exposure led to a markedly different stand height and hence primary production. Potential sulfate reduction rates measured in anoxic flow-through reactors in the absence and presence of additional carbon sources were significantly higher in the samples from the non-grazed site. Near the surface (0-2 cm depth), numbers of dsrB gene copies and culturable cells also tended to be higher in the non-grazed sites, while these differences were not detected in the sub-surface (4-6 cm depth). It was concluded that sulfate-reducing microbes at the surface were indeed repressed at the low-productive site as could be expected from our hypothesis. At both sites, sulfate reduction rates as well as numbers of the dsrB gene copies and viable cells increased with depth suggesting repression of sulfate reduction near the surface in both irrespective of production level. Additionally, sequence analysis of DNA bands obtained from DGGE gels based on the dsrB gene, showed a clear difference in dominance of sulfate-reducing genera belonging to the Deltaproteobacteria and the Firmicutes between sampling sites and depths. PMID:26733999

  8. The Skinny on Success: Body Mass, Gender and Occupational Standing Across the Life Course

    PubMed Central

    Glass, Christy M.; Haas, Steven A.; Reither, Eric N.

    2010-01-01

    Several studies have analyzed the impact of obesity on occupational standing. This study extends previous research by estimating the influence of body mass on occupational attainment over three decades of the career using data from the Wisconsin Longitudinal Study. In a series of covariance structure analyses, we considered three mechanisms that may alter the career trajectories of heavy individuals: (1. employment-based discrimination, (2. educational attainment, and (3. marriage market processes. Unlike previous studies, we found limited evidence that employment-based discrimination impaired the career trajectories of either men or women. Instead, we found that heavy women received less post-secondary schooling than their thinner peers, which in turn adversely affected their occupational standing at each point in their careers. PMID:20936045

  9. Isotropic 3D Nuclear Morphometry of Normal, Fibrocystic and Malignant Breast Epithelial Cells Reveals New Structural Alterations

    PubMed Central

    Nandakumar, Vivek; Kelbauskas, Laimonas; Hernandez, Kathryn F.; Lintecum, Kelly M.; Senechal, Patti; Bussey, Kimberly J.; Davies, Paul C. W.; Johnson, Roger H.; Meldrum, Deirdre R.

    2012-01-01

    Background Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D, assess its variation with malignancy, and investigate whether such variation correlates with standard nuclear grading criteria. Methodology We applied micro-optical computed tomographic imaging and automated 3D nuclear morphometry to quantify and compare morphological variations between human cell lines derived from normal, benign fibrocystic or malignant breast epithelium. To reproduce the appearance and contrast in clinical cytopathology images, we stained cells with hematoxylin and eosin and obtained 3D images of 150 individual stained cells of each cell type at sub-micron, isotropic resolution. Applying volumetric image analyses, we computed 42 3D morphological and textural descriptors of cellular and nuclear structure. Principal Findings We observed four distinct nuclear shape categories, the predominant being a mushroom cap shape. Cell and nuclear volumes increased from normal to fibrocystic to metastatic type, but there was little difference in the volume ratio of nucleus to cytoplasm (N/C ratio) between the lines. Abnormal cell nuclei had more nucleoli, markedly higher density and clumpier chromatin organization compared to normal. Nuclei of non-tumorigenic, fibrocystic cells exhibited larger textural variations than metastatic cell nuclei. At p<0.0025 by ANOVA and Kruskal-Wallis tests, 90% of our computed descriptors statistically differentiated control from abnormal cell populations, but only 69% of these features statistically differentiated the fibrocystic from the metastatic cell populations. Conclusions Our results provide a new perspective on nuclear structure variations

  10. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil.

    PubMed

    Tian, Jing; Wang, Jingyuan; Dippold, Michaela; Gao, Yang; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2016-06-15

    The application of biochar (BC) in conjunction with mineral fertilizers is one of the most promising management practices recommended to improve soil quality. However, the interactive mechanisms of BC and mineral fertilizer addition affecting microbial communities and functions associated with soil organic matter (SOM) cycling are poorly understood. We investigated the SOM in physical and chemical fractions, microbial community structure (using phospholipid fatty acid analysis, PLFA) and functions (by analyzing enzymes involved in C and N cycling and Biolog) in a 6-year field experiment with BC and NPK amendment. BC application increased total soil C and particulate organic C for 47.4-50.4% and 63.7-74.6%, respectively. The effects of BC on the microbial community and C-cycling enzymes were dependent on fertilization. Addition of BC alone did not change the microbial community compared with the control, but altered the microbial community structure in conjunction with NPK fertilization. SOM fractions accounted for 55% of the variance in the PLFA-related microbial community structure. The particulate organic N explained the largest variation in the microbial community structure. Microbial metabolic activity strongly increased after BC addition, particularly the utilization of amino acids and amines due to an increase in the activity of proteolytic (l-leucine aminopeptidase) enzymes. These results indicate that microorganisms start to mine N from the SOM to compensate for high C:N ratios after BC application, which consequently accelerate cycling of stable N. Concluding, BC in combination with NPK fertilizer application strongly affected microbial community composition and functions, which consequently influenced SOM cycling. PMID:26974565

  11. Therapeutic Approaches in Mitochondrial Dysfunction, Proteolysis, and Structural Alterations of Diaphragm and Gastrocnemius in Rats With Chronic Heart Failure.

    PubMed

    Barreiro, Esther; Puig-Vilanova, Ester; Marin-Corral, Judith; Chacón-Cabrera, Alba; Salazar-Degracia, Anna; Mateu, Xavier; Puente-Maestu, Luis; García-Arumí, Elena; Andreu, Antoni L; Molina, Luis

    2016-07-01

    Patients with chronic heart failure (CHF) experience exercise intolerance, fatigue and muscle wasting, which negatively influence their survival. We hypothesized that treatment with either the antioxidant N-acetyl cysteine (NAC) or the proteasome inhibitor bortezomib of rats with monocrotaline-induced CHF may restore inspiratory and limb muscle mass, function, and structure through several molecular mechanisms involved in protein breakdown and metabolism in the diaphragm and gastrocnemius. In these muscles of CHF-cachectic rats with and without treatment with NAC or bortezomib (N = 10/group) and non-cachectic controls, proteolysis (tyrosine release, proteasome activities, ubiquitin-proteasome markers), oxidative stress, inflammation, mitochondrial function, myosin, NF-κB transcriptional activity, muscle structural abnormalities, and fiber morphometry were analyzed together with muscle and cardiac functions. In diaphragm and gastrocnemius of CHF-cachectic rats, tyrosine release, proteasome activity, protein ubiquitination, atrogin-1, MURF-1, NF-κB activity, oxidative stress, inflammation, and structural abnormalities were increased, while muscle and cardiac functions, myosin content, slow- and fast-twitch fiber sizes, and mitochondrial activity were decreased. Concomitant treatment of CHF-cachectic rats with NAC or bortezomib improved protein catabolism, oxidative stress, inflammation, muscle fiber sizes, function and damage, superoxide dismutase and myosin levels, mitochondrial function (complex I, gastrocnemius), cardiac function and decreased NF-κB transcriptional activity in both muscles. Treatment of CHF-cachectic animals with NAC or bortezomib attenuated the functional (heart, muscles), biological, and structural alterations in muscles. Nonetheless, future studies conducted in actual clinical settings are warranted in order to assess the potential beneficial effects and safety concerns of these pharmacological agents on muscle mass loss and wasting in

  12. A-3 Test Stand construction update

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The concrete foundation placed Dec. 18 (foreground) for Stennis Space Center's future A-3 Test Stand has almost completely cured by early January, according to Bo Clarke, NASA's contracting officer technical representative for the foundation contract. By late December, construction on foundations for many of the test stand's support structures - diffuser, liquid oxygen, isopropyl alcohol and water tanks and gaseous nitrogen bottle battery - had begun with the installation of (background) `mud slabs.' The slabs provide a working surface for the reinforcing steel and foundation forms.

  13. The structure of divalent cation-induced aggregates of PIP2 and their alteration by gelsolin and tau.

    PubMed Central

    Flanagan, L A; Cunningham, C C; Chen, J; Prestwich, G D; Kosik, K S; Janmey, P A

    1997-01-01

    Phosphatidylinositol bisphosphate (PIP2) serves as a precursor for diacylglycerol and inositol trisphosphate in signal transduction cascades and regulates the activities of several actin binding proteins that influence the organization of the actin cytoskeleton. Molecules of PIP2 form 6-nm diameter micelles in water, but aggregate into larger, multilamellar structures in physiological concentrations of divalent cations. Electron microscopic analysis of these aggregates reveals that they are clusters of striated filaments, suggesting that PIP2 aggregates form stacks of discoid micelles rather than multilamellar vesicles or inverted hexagonal arrays as previously inferred from indirect observations. The distance between striations within the filaments varies from 4.2 to 5.4 nm and the diameter of the filaments depends on the dehydrated ionic radius of the divalent cation, with average diameters of 19, 12, and 10 nm for filaments formed by Mg2+, Ca2+, and Ba2+, respectively. The structure of the divalent cation-induced aggregates can be altered by PIP2 binding proteins. Gelsolin and the microtubule associated protein tau both affect the formation of aggregates, indicating that tau acts as a PIP2 binding protein in a manner similar to gelsolin. In contrast, another PIP2 binding protein, profilin, does not modify the aggregates. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 PMID:9284311

  14. Effect of pH on Structural Changes in Perch Hemoglobin that Can Alter Redox Stability and Heme Affinity

    SciTech Connect

    Richards, Mark P.; Aranda, IV, Roman; He, Cai; Phillips, Jr., George N.

    2010-01-07

    pH can be manipulated to alter the oxidative stability of fish-based foods during storage. X-ray diffraction was used to investigate the ability of reduced pH to cause structural changes in fish hemoglobins that lead to enhanced oxidative degradation. Decreasing pH from 8.0 to 6.3 and 5.7 created a large channel for solvent entry into the heme crevice of perch hemoglobin beta chains. The proton-induced opening of this channel occurred between site CD3 and the heme-6-propionate. Solvent entry into the heme crevice can enhance metHb formation and hemin loss, processes that accelerate lipid oxidation. Reduced pH also decreased the distance between Ile at E11 in one of the alpha chains and the ligand above the heme iron atom. This sterically displaces O{sub 2} and protonated O{sub 2} which increases metHb formation. These studies demonstrate that pH reduction causes structural changes in perch hemoglobin which increase oxidative degradation of the heme pigment.

  15. Exposure to N-Ethyl-N-Nitrosourea in Adult Mice Alters Structural and Functional Integrity of Neurogenic Sites

    PubMed Central

    Capilla-Gonzalez, Vivian; Gil-Perotin, Sara; Ferragud, Antonio; Bonet-Ponce, Luis; Canales, Juan Jose; Garcia-Verdugo, Jose Manuel

    2012-01-01

    Background Previous studies have shown that prenatal exposure to the mutagen N-ethyl-N-nitrosourea (ENU), a N-nitroso compound (NOC) found in the environment, disrupts developmental neurogenesis and alters memory formation. Previously, we showed that postnatal ENU treatment induced lasting deficits in proliferation of neural progenitors in the subventricular zone (SVZ), the main neurogenic region in the adult mouse brain. The present study is aimed to examine, in mice exposed to ENU, both the structural features of adult neurogenic sites, incorporating the dentate gyrus (DG), and the behavioral performance in tasks sensitive to manipulations of adult neurogenesis. Methodology/Principal Findings 2-month old mice received 5 doses of ENU and were sacrificed 45 days after treatment. Then, an ultrastructural analysis of the SVZ and DG was performed to determine cellular composition in these regions, confirming a significant alteration. After bromodeoxyuridine injections, an S-phase exogenous marker, the immunohistochemical analysis revealed a deficit in proliferation and a decreased recruitment of newly generated cells in neurogenic areas of ENU-treated animals. Behavioral effects were also detected after ENU-exposure, observing impairment in odor discrimination task (habituation-dishabituation test) and a deficit in spatial memory (Barnes maze performance), two functions primarily related to the SVZ and the DG regions, respectively. Conclusions/Significance The results demonstrate that postnatal exposure to ENU produces severe disruption of adult neurogenesis in the SVZ and DG, as well as strong behavioral impairments. These findings highlight the potential risk of environmental NOC-exposure for the development of neural and behavioral deficits. PMID:22238669

  16. Alterations in the expression of atrial calpains in electrical and structural remodeling during aging and atrial fibrillation.

    PubMed

    Xu, Guo-Jun; Gan, Tian-Yi; Tang, Bao-Peng; Chen, Zu-Heng; Mahemuti, Ailiman; Jiang, Tao; Song, Jian-Guo; Guo, Xia; Li, Yao-Dong; Zhou, Xian-Hui; Zhang, Yu; Li, Jin-Xin

    2013-11-01

    The aim of this study was to investigate the correlation between the change in the expression of atrial calpains and electrical, molecular and structural remodeling during aging and atrial fibrillation (AF). Adult and aged canines in sinus rhythm (SR) and with persistent AF (induced by rapid atrial pacing) were investigated. A whole-cell patch clamp was used to measure the L-type Ca2+ current (ICa-L) in cells in the left atrium. The mRNA and protein expression of the L-type calcium channel alc subunit (LVDCCa1c) and calpains were measured by quantitative (q)PCR and western blot analysis. Histopathological and ultrastructural changes were analyzed via light and electron microscopy. The quantity of apoptotic myocytes was determined by a terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling (TUNEL) assay. In SR groups, atrial cells of the aged canines exhibited a longer action potential (AP) duration to 90% repolarization (APD90), lower AP plateau potential and peak ICa-L current densities (P<0.05). In the adult and aged groups, AF led to a higher maximum diastolic potential, an increase in AP amplitude and decreases in APD90, AP plateau potential and peak ICa-L densities (P<0.05). Compared with the control group, the mRNA and protein expression levels of LVDCCa1c were decreased in the aged groups; however, the mRNA and protein expression of calpain 1 was increased in the adult and the aged groups with AF (P<0.05). Samples of atrial tissue exhibited abnormal histopathological and ultrastructural changes, such as accelerated fibrosis and apoptosis with aging and in AF. Age-related alterations in atrial tissues were attributed to the increased expression of calpain 1. The general pathophysiological alterations in normal aged atria may therefore produce a substrate that is conducive to AF. PMID:24043247

  17. Prenatal hypoxia impairs memory function but does not result in overt structural alterations in the postnatal chick brain.

    PubMed

    Camm, Emily J; Gibbs, Marie E; Harding, Richard; Mulder, Twan; Rees, Sandra M

    2005-11-01

    We showed previously that hypoxia in ovo impairs memory consolidation in the chick tested 2 days after hatching. Our present aim was to investigate whether we could detect any morphological effects of the same prenatal hypoxia. Hypoxia was induced by half-wrapping the egg with an impermeable membrane from either days 10-18 (W10-18 chicks) or days 14-18 (W14-18 chicks) of incubation (hatching approximately 21 days). Measurement of blood gases showed that reducing the surface area of the egg for gas exchange resulted in reduced pO2 and increased pCO2 2 days after wrapping. Although this hypoxia was sufficient to impair cognitive processing in the postnatal chick, our data suggest that it did not produce overt structural alterations or changes in the number of neurons, glutamine synthetase-immunoreactive cells or immunoreactivity to synaptophysin in the presynaptic vesicles in the multimodal integration (cortical) area compared to controls. Hence, we found no differences in the astrocyte to neuron ratio, synaptic density and/or vesicle number. Analysis of the ontogeny of astrocytes during the prenatal period of hypoxia showed them to be present at embryonic day 12, but not at the earlier ages examined. Although we found cognitive deficits in chicks from embryos made hypoxic during incubation, our regimen of prenatal hypoxia did not alter any of the parameters measured in the brains. This does not preclude the possibility that changes have occurred at the cellular or molecular levels or in specific neurotransmitter systems. PMID:16154638

  18. The A31P missense mutation in cardiac myosin binding protein C alters protein structure but does not cause haploinsufficiency.

    PubMed

    van Dijk, Sabine J; Bezold Kooiker, Kristina; Mazzalupo, Stacy; Yang, Yuanzhang; Kostyukova, Alla S; Mustacich, Debbie J; Hoye, Elaine R; Stern, Joshua A; Kittleson, Mark D; Harris, Samantha P

    2016-07-01

    Mutations in MYBPC3, the gene encoding cardiac myosin binding protein C (cMyBP-C), are a major cause of hypertrophic cardiomyopathy (HCM). While most mutations encode premature stop codons, missense mutations causing single amino acid substitutions are also common. Here we investigated effects of a single proline for alanine substitution at amino acid 31 (A31P) in the C0 domain of cMyBP-C, which was identified as a natural cause of HCM in cats. Results using recombinant proteins showed that the mutation disrupted C0 structure, altered sensitivity to trypsin digestion, and reduced recognition by an antibody that preferentially recognizes N-terminal domains of cMyBP-C. Western blots detecting A31P cMyBP-C in myocardium of cats heterozygous for the mutation showed a reduced amount of A31P mutant protein relative to wild-type cMyBP-C, but the total amount of cMyBP-C was not different in myocardium from cats with or without the A31P mutation indicating altered rates of synthesis/degradation of A31P cMyBP-C. Also, the mutant A31P cMyBP-C was properly localized in cardiac sarcomeres. These results indicate that reduced protein expression (haploinsufficiency) cannot account for effects of the A31P cMyBP-C mutation and instead suggest that the A31P mutation causes HCM through a poison polypeptide mechanism that disrupts cMyBP-C or myocyte function. PMID:26777460

  19. Alzheimer's-associated A{beta} oligomers show altered structure, immunoreactivity and synaptotoxicity with low doses of oleocanthal

    SciTech Connect

    Pitt, Jason Roth, William; Lacor, Pascale; Smith, Amos B.; Blankenship, Matthew; Velasco, Pauline; De Felice, Fernanda; Breslin, Paul Klein, William L.

    2009-10-15

    It now appears likely that soluble oligomers of amyloid-{beta}{sub 1-42} peptide, rather than insoluble fibrils, act as the primary neurotoxin in Alzheimer's disease (AD). Consequently, compounds capable of altering the assembly state of these oligomers (referred to as ADDLs) may have potential for AD therapeutics. Phenolic compounds are of particular interest for their ability to disrupt A{beta} oligomerization and reduce pathogenicity. This study has focused on oleocanthal (OC), a naturally-occurring phenolic compound found in extra-virgin olive oil. OC increased the immunoreactivity of soluble A{beta} species, when assayed with both sequence- and conformation-specific A{beta} antibodies, indicating changes in oligomer structure. Analysis of oligomers in the presence of OC showed an upward shift in MW and a ladder-like distribution of SDS-stable ADDL subspecies. In comparison with control ADDLs, oligomers formed in the presence of OC (A{beta}-OC) showed equivalent colocalization at synapses but exhibited greater immunofluorescence as a result of increased antibody recognition. The enhanced signal at synapses was not due to increased synaptic binding, as direct detection of fluorescently-labeled ADDLs showed an overall reduction in ADDL signal in the presence of OC. Decreased binding to synapses was accompanied by significantly less synaptic deterioration assayed by drebrin loss. Additionally, treatment with OC improved antibody clearance of ADDLs. These results indicate oleocanthal is capable of altering the oligomerization state of ADDLs while protecting neurons from the synaptopathological effects of ADDLs and suggest OC as a lead compound for development in AD therapeutics.

  20. Unsupported standing with minimized ankle muscle fatigue.

    PubMed

    Mihelj, Matjaz; Munih, Marko

    2004-08-01

    In the past, limited unsupported standing has been restored in patients with thoracic spinal cord injury through open-loop functional electrical stimulation of paralyzed knee extensor muscles and the support of intact arm musculature. Here an optimal control system for paralyzed ankle muscles was designed that enables the subject to stand without hand support in a sagittal plane. The paraplegic subject was conceptualized as an underactuated double inverted pendulum structure with an active degree of freedom in the upper trunk and a passive degree of freedom in the paralyzed ankle joints. Control system design is based on the minimization of a cost function that estimates the effort of ankle joint muscles via observation of the ground reaction force position, relative to ankle joint axis. Furthermore, such a control system integrates voluntary upper trunk activity and artificial control of ankle joint muscles, resulting in a robust standing posture. Figures are shown for the initial simulation study, followed by disturbance tests on an intact volunteer and several laboratory trials with a paraplegic person. Benefits of the presented methodology are prolonged standing sessions and in the fact that the subject is able to maintain voluntary control over upper body orientation in space, enabling simple functional standing. PMID:15311817

  1. Study on the Explainable Ability by Using Airborne LIDAR in Stand Value and Stand Competition

    NASA Astrophysics Data System (ADS)

    Huang, S. C.; Yeh, J. Y.; Chen, C. T.; Chen, J. C.

    2016-06-01

    Forest canopy structure is composed by the various species. Sun light is a main factor to affect the crown structures after tree competition. However, thinning operation is an appropriate way to control canopy density, which can adjust the competition conditions in the different crown structures. Recently, Airborne Light Detection and Ranging (LiDAR), has been established as a standard technology for high precision three dimensional forest data acquisition; it could get stand characteristics with three-dimensional information that had develop potential for the structure characteristics of forest canopy. The 65 years old, different planting density of Cryptomeria japonica experiment area was selected for this study in Nanytou, Taiwan. Use the LiDAR image to estimate LiDAR characteristic values by constructed CHM, voxel-based LiDAR, mu0ltiple echoes, and assess the accuracy of stand characteristics with intensity values and field data. The competition index was calculated with field data, and estimate competition index of LiDAR via multiple linear regression. The results showed that the highest accuracy with stand characteristics was stand high which estimate by LiDAR, its average accuracy of 91.03%. LiDAR raster grid size was 20 m × 20 m for the correlation was the best, however, the higher canopy density will reduce the accuracy of the LiDAR characteristic values to estimate the stand characteristics. The significantly affect canopy thickness and the degree of competition in different planting distances.

  2. Altered physiological function, not structure, drives increased radiation-use efficiency of soybean grown at elevated CO2.

    PubMed

    Rascher, Uwe; Biskup, Bernhard; Leakey, Andrew D B; McGrath, Justin M; Ainsworth, Elizabeth A

    2010-07-01

    Previous studies of elevated carbon dioxide concentration ([CO(2)]) on crop canopies have found that radiation-use efficiency is increased more than radiation-interception efficiency. It is assumed that increased radiation-use efficiency is due to changes in leaf-level physiology; however, canopy structure can affect radiation-use efficiency if leaves are displayed in a manner that optimizes their physiological capacity, even though the canopy intercepts the same amount of light. In order to determine the contributions of physiology and canopy structure to radiation-use and radiation-interception efficiency, this study relates leaf-level physiology and leaf display to photosynthetic rate of the outer canopy. We used a new imaging approach that delivers three-dimensional maps of the outer canopy during the growing season. The 3D data were used to model leaf orientation and mean photosynthetic electron transport of the outer canopy to show that leaf orientation changes did not contribute to increased radiation-use; i.e. leaves of the outer canopy showed similar diurnal leaf movements and leaf orientation in both treatments. Elevated [CO(2)] resulted in an increased maximum electron transport rate (ETR(max)) of light reactions of photosynthesis. Modeling of canopy light interception showed that stimulated leaf-level electron transport at elevated [CO(2)], and not alterations in leaf orientation, was associated with stimulated radiation-use efficiency and biomass production in elevated [CO(2)]. This study provides proof of concept of methodology to quantify structure-function relationships in combination, allowing a quantitative estimate of the contribution of both effects to canopy energy conversion under elevated [CO(2)]. PMID:20407832

  3. Chemical-shift X-ray standing wavefield determination of the local structure of methanethiolate phases on Ni( 1 1 1 )

    NASA Astrophysics Data System (ADS)

    Fisher, C. J.; Woodruff, D. P.; Jones, R. G.; Cowie, B. C. C.; Formoso, V.

    2002-01-01

    By monitoring the X-ray absorption through the chemically-shifted components of the S 1s photoemission signal, normal-incidence X-ray standing wavefield absorption at the (1 1 1) and ( 1¯ 1 1) scatterer planes has been used to determine the local adsorption geometry of the two distinct methanethiolate (CH 3S-) species which occur on Ni(1 1 1) following exposure to methanethiol. The species which is favoured at low temperatures is found to occupy either mixed hollow or bridge sites on a non-reconstructed Ni(1 1 1) surface, whereas that seen at higher temperatures is shown to involve Ni surface layer reconstruction and the data are consistent with hollow site adsorption on a reduced density outermost Ni layer. The relative merits of alternative reconstruction models based on that which occurs due to methanethiolate adsorption on Cu(1 1 1), or the (5√3×2)rect. phase formed by atomic S on Ni(1 1 1), are discussed. Both of these models are based on local square or `pseudo-(1 0 0)' outermost Ni layers. Co-adsorbed atomic sulphur, to which the methanethiolate species decompose at higher temperatures, appears to occupy mainly fcc hollow sites at low temperatures, but is partially converted to the local geometry of the ordered reconstructed (5√3×2)rect.-S phase after higher temperature annealing.

  4. 21. Building 202, underside of test stand A, detail of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Building 202, underside of test stand A, detail of junction of scrubber structure and test stand with water pipes and valves visible. View looking southeast. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  5. CLOSEUP VIEW LOOKING SOUTH AT THE SATURN I TEST STAND, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CLOSE-UP VIEW LOOKING SOUTH AT THE SATURN I TEST STAND, NOTE THE INTERPRETIVE SIGN EXPLAINING THE HISTORIC NATURE OF THE SATURN I TEST STAND. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL

  6. Modifications in high-density lipoprotein lipid composition and structure alter the plasma distribution of free and liposomal annamycin.

    PubMed

    Wasan, K M; Ng, S; Cassidy, S M

    1997-07-01

    Recent studies have shown that changes in lipoprotein cholesterol and triglyceride concentration alters the plasma distribution of free (Ann.) and liposomal annamycin (LAnn) and that the majority of Ann. is associated with high-density lipoproteins (HDL) following the incubation in plasma of LAnn. To demonstrate that alterations in HDL lipid composition and HDL structure may influence the plasma distribution of Ann. and LAnn, Ann. and LAnn (20 micrograms/mL) were incubated in plasma pretreated with dithionitrobenzoate (DTNB, a compound which inhibits the conversion of free cholesterol to esterified cholesterol) 18 h prior to the experiment or in untreated plasma for 60 min at 37 degrees C. In addition, Ann. and LAnn were co-incubated with DTNB in plasma for 60 min at 37 degrees C. Following incubation the plasma was separated into its HDL, low-density lipoprotein (LDL), very-low-density lipoprotein (VLDL), and lipoprotein-deficient plasma (LPDP) fractions by ultracentrifugation and assayed for Ann. by fluorimetry. The HDL plasma cholesterol:triglyceride concentration ratio was significantly decreased following 18 h of DTNB pretreatment compared to untreated plasma controls. No significant differences in LDL/VLDL plasma cholesterol:triglyceride concentration ratio following 18 h of DTNB pretreatment was observed. An increased number of discoidal HDL particles were observed following 18 h of DTNB pretreatment. When Ann. was incubated in plasma pretreated with DTNB for 18 h the percentage of Ann. recovered in the HDL, LDL, and VLDL fractions significantly increased. However, the percentage of Ann. recovered within the LPDP fraction was significantly decreased. When LAnn was incubated in plasma pretreated with DTNB for 18 h the percentage of Ann. recovered in the HDL fraction significantly decreased. The percentage of Ann. recovered in the LPDP fraction significantly increased when LAnn was incubated in plasma pretreated with DTNB for 18 h. No significant differences

  7. Alteration of a second putative fusion peptide of structural glycoprotein E2 of Classical Swine Fever Virus alters virus replication and virulence in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    E2, the major envelope glycoprotein of Classical Swine Fever Virus (CSFV), is involved in several critical virus functions including cell attachment, host range susceptibility, and virulence in natural hosts. Functional structural analysis of E2 based on Wimley-White interfacial hydrophobicity dis...

  8. In vivo binding of trimethylpsoralen detects DNA structural alterations associated with transcribing regions in the human beta-globin cluster.

    PubMed

    Jiménez-Ruiz, A; Zhang, Q; Shen, C K

    1995-12-01

    In order to increase our knowledge about the mechanisms that regulate expression of human beta-like globin genes, we have used a novel technique to analyze the chromatin structure in living cells. This approach allowed us to detect specific DNA regions in vivo where nucleosome folding or unconstrained DNA supercoiling in erythroid cells differs from that in non-erythroid cells. In this method, we use 4,5',8-trimethylpsoralen (TMP) as a probe capable of detecting altered chromatin conformations. Our results show that TMP binds to DNA with a higher affinity over the regions in the locus that are actively expressed, including both the promoter and the transcribed region. This higher affinity detected when comparing erythroid cells with non-erythroid cells does not extend to other regions inside the beta-globin cluster. Our data suggest that the observed effect is likely due to nucleosome displacement. Alternatively, it could result from localized DNA supercoiling, but not from widespread torsional stress across the entire beta-like globin locus as hypothesized previously. PMID:7499429

  9. A histological study of the effect of exogenous melatonin on gentamicin induced structural alterations of proximal tubules in rats

    PubMed Central

    Kapić, Dina; Mornjaković, Zakira; Ćosović, Esad; Šahinović, Maida

    2014-01-01

    The aim of this research was to assess the reactive changes of rat proximal tubules caused by gentamicin and the effect of relatively low doses of melatonin. 48 adult male Wistar rats were distributed into six groups of equal size which all received one of the following daily intraperitoneal injections: vehicle (5% ethanol in Ringer solution) during 11 days (C); gentamicin (80 mg/kg) during 8 days (G), two groups which concomitantly received gentamicin (80 mg/kg) during 8 days and melatonin in two different test doses (5 or 20 mg/kg) during 11 days (GM1, GM2) and two groups treated only with melatonin in two different doses (5 or 20 mg/kg) during 11 days (M1, M2). Histological analysis included qualitative and semi-quantitative light microscopy analysis of proximal tubules. Exogenous melatonin had no significant effect on the microstructure, independently of dosis. The changes of proximal tubules microstructure induced by gentamicin were expressed in the form of granulovacuolar degeneration, necrosis and desquamation. The grade of proximal tubular changes was smaller in animals who besides gentamicin received melatonin. Melatonin has a dose dependent protective effect on the structural alterations of proximal tubules of the kidney induced by gentamicin. PMID:24579968

  10. Enhanced Bio-hydrogen Production from Protein Wastewater by Altering Protein Structure and Amino Acids Acidification Type

    PubMed Central

    Xiao, Naidong; Chen, Yinguang; Chen, Aihui; Feng, Leiyu

    2014-01-01

    Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type via pH control was investigated. The hydrogen production reached 205.2 mL/g-protein when protein wastewater was pretreated at pH 12 and then fermented at pH 10. The mechanism studies showed that pH 12 pretreatment significantly enhanced protein bio-hydrolysis during the subsequent fermentation stage as it caused the unfolding of protein, damaged the protein hydrogen bonding networks, and destroyed the disulfide bridges, which increased the susceptibility of protein to protease. Moreover, pH 10 fermentation produced more acetic but less propionic acid during the anaerobic fermentation of amino acids, which was consistent with the theory of fermentation type affecting hydrogen production. Further analyses of the critical enzymes, genes, and microorganisms indicated that the activity and abundance of hydrogen producing bacteria in the pH 10 fermentation reactor were greater than those in the control. PMID:24495932

  11. Tumor-associated mutations in a conserved structural motif alter physical and biochemical properties of human RAD51 recombinase

    PubMed Central

    Chen, Jianhong; Morrical, Milagros D.; Donigan, Katherine A.; Weidhaas, Joanne B.; Sweasy, Joann B.; Averill, April M.; Tomczak, Jennifer A.; Morrical, Scott W.

    2015-01-01

    Human RAD51 protein catalyzes DNA pairing and strand exchange reactions that are central to homologous recombination and homology-directed DNA repair. Successful recombination/repair requires the formation of a presynaptic filament of RAD51 on ssDNA. Mutations in BRCA2 and other proteins that control RAD51 activity are associated with human cancer. Here we describe a set of mutations associated with human breast tumors that occur in a common structural motif of RAD51. Tumor-associated D149N, R150Q and G151D mutations map to a Schellman loop motif located on the surface of the RecA homology domain of RAD51. All three variants are proficient in DNA strand exchange, but G151D is slightly more sensitive to salt than wild-type (WT). Both G151D and R150Q exhibit markedly lower catalytic efficiency for adenosine triphosphate hydrolysis compared to WT. All three mutations alter the physical properties of RAD51 nucleoprotein filaments, with G151D showing the most dramatic changes. G151D forms mixed nucleoprotein filaments with WT RAD51 that have intermediate properties compared to unmixed filaments. These findings raise the possibility that mutations in RAD51 itself may contribute to genome instability in tumor cells, either directly through changes in recombinase properties, or indirectly through changes in interactions with regulatory proteins. PMID:25539919

  12. Environmental enrichment alters structural plasticity of the adolescent brain but does not remediate the effects of prenatal nicotine exposure.

    PubMed

    Mychasiuk, Richelle; Muhammad, Arif; Kolb, Bryan

    2014-07-01

    Exposure to both drugs of abuse and environmental enrichment (EE) are widely studied experiences that induce large changes in dendritic morphology and synaptic connectivity. As there is an abundance of literature using EE as a treatment strategy for drug addiction, we sought to determine whether EE could remediate the effects of prenatal nicotine (PN) exposure. Using Golgi-Cox staining, we examined eighteen neuroanatomical parameters in four brain regions [medial prefrontal cortex (mPFC), orbital frontal cortex (OFC), nucleus accumben, and Par1] of Long-Evans rats. EE in adolescence dramatically altered structural plasticity in the male and female brain, modifying 60% of parameters investigated. EE normalized three parameters (OFC spine density and dendritic branching and mPFC dendritic branching) in male offspring exposed to nicotine prenatally but did not remediate any measures in female offspring. PN exposure interfered with adolescent EE-induced changes in five neuroanatomical measurements (Par1 spine density and dendritic branching in both male and female offspring, and mPFC spine density in male offspring). And in four neuroanatomical parameters examined, PN exposure and EE combined to produce additive effects [OFC spine density in females and mPFC dendritic length (apical and basilar) and branching in males]. Despite demonstrated efficacy in reversing drug addiction, EE was not able to reverse many of the PN-induced changes in neuronal morphology, indicating that modifications in neural circuitry generated in the prenatal period may be more resistant to change than those generated in the adult brain. PMID:24616009

  13. Enhanced Bio-hydrogen Production from Protein Wastewater by Altering Protein Structure and Amino Acids Acidification Type

    NASA Astrophysics Data System (ADS)

    Xiao, Naidong; Chen, Yinguang; Chen, Aihui; Feng, Leiyu

    2014-02-01

    Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type via pH control was investigated. The hydrogen production reached 205.2 mL/g-protein when protein wastewater was pretreated at pH 12 and then fermented at pH 10. The mechanism studies showed that pH 12 pretreatment significantly enhanced protein bio-hydrolysis during the subsequent fermentation stage as it caused the unfolding of protein, damaged the protein hydrogen bonding networks, and destroyed the disulfide bridges, which increased the susceptibility of protein to protease. Moreover, pH 10 fermentation produced more acetic but less propionic acid during the anaerobic fermentation of amino acids, which was consistent with the theory of fermentation type affecting hydrogen production. Further analyses of the critical enzymes, genes, and microorganisms indicated that the activity and abundance of hydrogen producing bacteria in the pH 10 fermentation reactor were greater than those in the control.

  14. Evaluation of changes in macrobenthic standing stock and polychaete community structure along the south eastern Arabian Sea shelf during the monsoon trawl-ban

    NASA Astrophysics Data System (ADS)

    Abdul Jaleel, K. U.; Parameswaran, Usha V.; Gopal, Aiswarya; Khader, Chippy; Ganesh, T.; Sanjeevan, V. N.; Shunmugaraj, T.; Vijayan, Anil Kumar; Gupta, G. V. M.

    2015-07-01

    The south eastern Arabian Sea is characterized by moderate coastal upwelling, high biological production and subsurface oxygen depletion during the southwest monsoon (June-September). Concurrently, a seasonal closure to trawling activities (15th June-31st July) is implemented here, as a sustainable ecosystem management practise. The effects of monsoon driven environmental changes and consequences of trawling cessation on macrofauna were assessed, based on surveys at 12 sites (30-200 m) preceding and during different phases of the southwest monsoon. Macrofaunal density and biomass increased considerably towards the mid and late monsoon along the inner shelf (30-50 m) where trawling is intense, while no temporal changes were observed along the outer shelf (100-200 m). Density increased four-folds at the 30 m contour and three-folds at 50 m, while biomass nearly doubled at both depths, reflecting a marked increase in density of polychaetes (61-87% of macrofauna). The disproportionate increase in faunal density and biomass along the inner shelf (30-50 m) was due to abundance of juvenile polychaetes and dominance of small-sized opportunists towards late monsoon (August-September). A concurrent hike in nominal species count of polychaetes was also observed in the study area. The increase in polychaete standing stock and high density of planktonic larvae during onset and peak monsoon, coupled with occurrence of juveniles as well as gamete-bearing adults in sediments, indicates that the southwest monsoon is a peak breeding season for the dominant polychaetes in the region. The trawl-ban during this period facilitates the recoupment of benthos by maximising spawning success and larval settlement, thereby enhancing overall ecosystem integrity.

  15. 15. ELEVATED CAMERA STAND, SHOWING LINE OF CAMERA STANDS PARALLEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. ELEVATED CAMERA STAND, SHOWING LINE OF CAMERA STANDS PARALLEL TO SLED TRACK. Looking west southwest down Camera Road. - Edwards Air Force Base, South Base Sled Track, Edwards Air Force Base, North of Avenue B, between 100th & 140th Streets East, Lancaster, Los Angeles County, CA

  16. Relation of Carlin-type gold mineralization to lithology, structure and alteration: Screamer zone, Betze-Post deposit, Nevada

    NASA Astrophysics Data System (ADS)

    Ye, Zaojun; Kesler, Stephen E.; Essene, Eric J.; Zohar, Pamela B.; Borhauer, Jeffrey L.

    2003-01-01

    An evaluation of the relation between geologic features and gold grade has been undertaken in the Screamer zone of the Betze-Post deposit, the largest Carlin-type gold deposit in the world. Screamer, which forms the western end of Betze-Post, is a stratiform ore zone that is hosted almost entirely by the wispy member of the Popovich Formation. The wispy member is overlain by the planar member of the same formation and underlain by the Roberts Mountains Formation, both of which contain much smaller amounts of gold mineralization in the Screamer zone. Geologic features recognized at Screamer reflect the long history of events that have affected the area since mid-Paleozoic time. The two earliest events at Screamer were probably sulfidation and formation of flat fractures, and the two latest events were pyritization and formation of kaolinite-filled fractures, which took place at least partly during gold mineralization. Gold mineralization at Screamer shows ambiguous relations to most lithologic, alteration and structural features. For instance, gold grades in the wispy member of the Popovich Formation are slightly higher in rock units that contain the largest proportion of debris flow material, but this relation does not account for most ore. The correlation of gold grades with fracture density is also generally poor, but gold grades are slightly higher in samples containing vertical and/or kaolinite-bearing fractures, particularly those with a northeasterly trend. Most early veins at Screamer are horizontal and most later veins are vertical, suggesting that the long-term trend of fluid pressures in the area has been from lithostatic to hydrostatic. Finally, gold grades correlate poorly with silicification and decarbonatization, and although some gold appears to be associated with rock containing kaolinite, much is not. The only rock feature that shows a direct relation to gold grade is pyrite. Some pyrite formed by sulfidation of the original rock, but much of it

  17. Structural Alterations of Segmented Macular Inner Layers in Aquaporin4-Antibody-Positive Optic Neuritis Patients in a Chinese Population

    PubMed Central

    Peng, Chunxia; Wang, Wei; Xu, Quangang; Zhao, Shuo; Li, Hongyang; Yang, Mo; Cao, Shanshan; Zhou, Huanfen; Wei, Shihui

    2016-01-01

    Objectives This study aimed to analyse the structural injury of the peripapillary retinal nerve fibre layer (pRNFL) and segmented macular layers in optic neuritis (ON) in aquaporin4-antibody (AQP4-Ab) seropositivity(AQP4-Ab-positiveON) patients and in AQP4-Ab seronegativity (AQP4-Ab-negative ON) patients in order to evaluate their correlations with the best-corrected visual acuity (BCVA) and the value of the early diagnosis of neuromyelitis optica (NMO). Design This is a retrospective, cross-sectional and control observational study. Methods In total, 213 ON patients (291 eyes) and 50 healthy controls (HC) (100 eyes) were recruited in this study. According to a serum AQP4-Ab assay, 98 ON patients (132 eyes) were grouped as AQP4-Ab-positive ON and 115 ON patients (159 eyes) were grouped as AQP4-Ab-negative ON cohorts. All subjects underwent scanning with spectralis optical coherence tomography (OCT) and BCVA tests. pRNFL and segmented macular layer measurements were analysed. Results The pRNFL thickness in AQP4-Ab-positive ON eyes showed a more serious loss during 0–2 months (-27.61μm versus -14.47 μm) and ≥6 months (-57.91μm versus -47.19μm) when compared with AQP4-Ab-negative ON eyes. AQP4-Ab-positive ON preferentially damaged the nasal lateral pRNFL. The alterations in the macular ganglion cell layer plus the inner plexiform layer (GCIP) in AQP4-Ab-positive ON eyes were similar to those in AQP4-Ab-negative ON eyes. AQP4-Ab-positive ON eyes had entirely different injury patterns in the inner nuclear layer (INL) compared with AQP4-Ab-negative ON eyes during the first 6 months after the initial ON attack. These differences were as follows: the INL volume of AQP4-Ab-positive ON eyes had a gradual growing trend compared with AQP4-Ab-negative ON eyes, and it increased rapidly during 0–2 months, reached its peak during 2–4 months, and then decreased gradually. The pRNFL and GCIP in AQP4-Ab-positive ON eyes had positive correlations with BCVA. When the p

  18. Structural alterations in mutant precursors of the yeast tRNALeu3 gene which behave as defective substrates for a highly purified splicing endoribonuclease.

    PubMed Central

    Attardi, D G; Margarit, I; Tocchini-Valentini, G P

    1985-01-01

    We have produced a highly purified preparation of the Xenopus laevis splicing endonuclease (XlaI RNase). The purified enzyme correctly cleaves tRNA precursors, creating substrates for subsequent ligation. The 5'-half molecules have a 2',3' cyclic phosphate at their 3' termini. Assuming that splicing enzymes recognize primarily structural elements in the 'mature domain', we have been studying the conformation of three splicing-defective precursors made from mutants of the yeast tRNALeu3 gene. The mutations alter base-pairing in the D-stem region and two of the mutants are absolute defectives. Enzymatic probing of the structures of the altered tRNA precursors shows that the structural perturbations in these mutants are localized on the 'inside' of the 'L'-shaped three-dimensional structure. The implications of this finding for the recognition process are discussed. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:3937725

  19. OH Module Assembly Stand

    SciTech Connect

    Bolan, P.J.; /Fermilab

    1990-10-16

    There is an OR module assembly stand in use at IB4. This design has been approved by safety, as presented by Mike Foley, and has been successfully used. Another one is needed at the D-zero assembly building, but some modifications need to be made. This report will show that the new modified design is at least as strong, if not stronger, than the older IB4 design in every aspect. Since the weight distribution of the OR modules on the sling is indeterminate, this report compares three cases of support for the entire assembly: the lowest two beams only, the lowest four beams only, and all six beams. In each of these cases, the new design is stronger than the old design in maximum allowable weight. The ability of the the cradle to support the weight is also shown. For all of the failure conditions except for two, the cradle is stronger than the beams that it supports. In the two excepted situations, the calculated limit of the cradle is less than the beams it supports. This is because no credit is taken for the sling and strongback, which in reality will relieve much of the horizontal load.

  20. EUV Engineering Test Stand

    SciTech Connect

    Tichenor, D.A.; Kubiak, G.D.; Replogle, W.C.; Klebanoff, L.E.; Wronosky, J.B.; Hale, L.C.; Chapman, H.N.; Taylor, J.S.; Folta, J.A.; Montcalm, C.; Hudyma, R.M.

    2000-02-14

    The Engineering Test Stand (ETS) is an EUV laboratory lithography tool. The purpose of the ETS is to demonstrate EUV full-field imaging and provide data required to support production-tool development. The ETS is configured to separate the imaging system and stages from the illumination system. Environmental conditions can be controlled independently in the two modules to maximize EUV throughput and environmental control. A source of 13.4 nm radiation is provided by a laser plasma source in which a YAG laser beam is focused onto a xenon-cluster target. A condenser system, comprised of multilayer-coated mirrors and grazing-incidence mirrors, collects the EUV radiation and directs it onto a-reflecting reticle. A four-mirror, ring-field optical system, having a numerical aperture of 0.1, projects a 4x-reduction image onto the wafer plane. This design corresponds to a resolution of 70nm at a k{sub 1} of 0.52. The ETS is designed to produce full-field images in step: and-scan mode using vacuum-compatible, one-dimension-long-travel magnetically levitated stages for both reticle and wafer. Reticle protection is incorporated into the ETS design. This paper provides a system overview of the ETS design and specifications.

  1. Chronic alterations in growth hormone/insulin-like growth factor-I signaling lead to changes in mouse tendon structure.

    PubMed

    Nielsen, R H; Clausen, N M; Schjerling, P; Larsen, J O; Martinussen, T; List, E O; Kopchick, J J; Kjaer, M; Heinemeier, K M

    2014-02-01

    The growth hormone/insulin-like growth factor-I (GH/IGF-I) axis is an important stimulator of collagen synthesis in connective tissue, but the effect of chronically altered GH/IGF-I levels on connective tissue of the muscle-tendon unit is not known. We studied three groups of mice; 1) giant transgenic mice that expressed bovine GH (bGH) and had high circulating levels of GH and IGF-I, 2) dwarf mice with a disrupted GH receptor gene (GHR-/-) leading to GH resistance and low circulating IGF-I, and 3) a wild-type control group (CTRL). We measured the ultra-structure, collagen content and mRNA expression (targets: GAPDH, RPLP0, IGF-IEa, IGF-IR, COL1A1, COL3A1, TGF-β1, TGF-β2, TGF-β3, versican, scleraxis, tenascin C, fibronectin, fibromodulin, decorin) in the Achilles tendon, and the mRNA expression was also measured in calf muscle (same targets as tendon plus IGF-IEb, IGF-IEc). We found that GHR-/- mice had significantly lower collagen fibril volume fraction in Achilles tendon, as well as decreased mRNA expression of IGF-I isoforms and collagen types I and III in muscle compared to CTRL. In contrast, the mRNA expression of IGF-I isoforms and collagens in bGH mice was generally high in both tendon and muscle compared to CTRL. Mean collagen fibril diameter was significantly decreased with both high and low GH/IGF-I signaling, but the GHR-/- mouse tendons were most severely affected with a total loss of the normal bimodal diameter distribution. In conclusion, chronic manipulation of the GH/IGF-I axis influenced both morphology and mRNA levels of selected genes in the muscle-tendon unit of mice. Whereas only moderate structural changes were observed with up-regulation of GH/IGF-I axis, disruption of the GH receptor had pronounced effects upon tendon ultra-structure. PMID:24080228

  2. Mineralogic and isotopic constraints on impact related clay mineral alteration, in the Woodleigh impact structure, Western Australia

    NASA Astrophysics Data System (ADS)

    Uysal, I. T.; Golding, S. D.; Mory, A. J.; Glikson, A. Y.

    2003-04-01

    Clay mineral fractions from one of the largest Phanerozoic impact structures, the Woodleigh impact structure were investigated by XRD, electron microscopy and K-Ar and stable isotopic studies. Samples were collected from the central uplifted Precambrian basement granitoid, conglomeratic rocks derived from reworked impact rocks, and from the Ordovician-Devonian sandstones located ˜30 km west of the central uplift. There are remarkable lateral and vertical variations in authigenic clay mineral compositions and illite crystallinity (IC) values (Kübler index). Clay minerals from shocked granitoid basement rocks are mainly smectite-rich (>75%) mixed-layer illite-smectite with some discrete illite formed as an alteration-product (replacement) of biotite. Clay minerals in the conglomeratic rocks consist of mainly illite and Fe-rich chlorite, and in the lower part of the section, chlorite-rich (>50%) mixed-layer chlorite-smectite. Smectite in the oxidised upper part of the conglomeratic section is probably a weathering- product. Clay minerals from the Ordovician-Devonian sandstones further away from the central part of the impact structure include illite, less chlorite, and in the Devonian strata smectite. IC values of the <2 mm grain-size fraction in the conglomeratic rocks range from 0.51 to 0.56 ^oΔ 2θ in the upper part and from 0.75 to 0.82 ^oΔ 2θ in the lower part of the section. Illites from the Ordovician-Devonian sandstones show significantly higher IC values ranging from 0.75 to 1.45 ^oΔ 2θ. Results of the clay mineralogy suggest that variations of clay mineral compositions and IC values are related to the changes in rock lithology and the variable effects of impact-induced hydrothermal processes. K-Ar dating of the authigenic illites of the coarser size-fractions (2-1 μm and 0.5-0.2 μm) containing no smectite yield concordant ages around 365 Ma. These K-Ar age data are consistent with previous results (Uysal et al., 2001;EPSL, 192:281--289) and

  3. Structural and magnetic characterization of large area, free-standing thin films of magnetic ion intercalated dichalcogenides Mn0.25TaS2 and Fe0.25TaS2.

    PubMed

    Danz, Th; Liu, Q; Zhu, X D; Wang, L H; Cheong, S W; Radu, I; Ropers, C; Tobey, R I

    2016-09-01

    Free-standing thin films of magnetic ion intercalated transition metal dichalcogenides are produced using ultramicrotoming techniques. Films of thicknesses ranging from 30 nm to 250 nm were achieved and characterized using transmission electron diffraction and x-ray magnetic circular dichroism. Diffraction measurements visualize the long range crystallographic ordering of the intercalated ions, while the dichroism measurements directly assess the orbital contributions to the total magnetic moment. We thus verify the unquenched orbital moment in Fe0.25TaS2 and measure the fully quenched orbital contribution in Mn0.25TaS2. Such films can be used in a wide variety of ultrafast x-ray and electron techniques that benefit from transmission geometries, and allow measurements of ultrafast structural, electronic, and magnetization dynamics in space and time. PMID:27382929

  4. Structural and magnetic characterization of large area, free-standing thin films of magnetic ion intercalated dichalcogenides Mn0.25TaS2 and Fe0.25TaS2

    NASA Astrophysics Data System (ADS)

    Danz, Th; Liu, Q.; Zhu, X. D.; Wang, L. H.; Cheong, S. W.; Radu, I.; Ropers, C.; Tobey, R. I.

    2016-09-01

    Free-standing thin films of magnetic ion intercalated transition metal dichalcogenides are produced using ultramicrotoming techniques. Films of thicknesses ranging from 30 nm to 250 nm were achieved and characterized using transmission electron diffraction and x-ray magnetic circular dichroism. Diffraction measurements visualize the long range crystallographic ordering of the intercalated ions, while the dichroism measurements directly assess the orbital contributions to the total magnetic moment. We thus verify the unquenched orbital moment in Fe0.25TaS2 and measure the fully quenched orbital contribution in Mn0.25TaS2. Such films can be used in a wide variety of ultrafast x-ray and electron techniques that benefit from transmission geometries, and allow measurements of ultrafast structural, electronic, and magnetization dynamics in space and time.

  5. Structural and Functional Alterations in Right Dorsomedial Prefrontal and Left Insular Cortex Co-Localize in Adolescents with Aggressive Behaviour: An ALE Meta-Analysis

    PubMed Central

    Raschle, Nora Maria; Menks, Willeke Martine; Fehlbaum, Lynn Valérie; Tshomba, Ebongo; Stadler, Christina

    2015-01-01

    Recent neuroimaging work has suggested that aggressive behaviour (AB) is associated with structural and functional brain abnormalities in processes subserving emotion processing and regulation. However, most neuroimaging studies on AB to date only contain relatively small sample sizes. To objectively investigate the consistency of previous structural and functional research in adolescent AB, we performed a systematic literature review and two coordinate-based activation likelihood estimation meta-analyses on eight VBM and nine functional neuroimaging studies in a total of 783 participants (408 [224AB/184 controls] and 375 [215 AB/160 controls] for structural and functional analysis respectively). We found 19 structural and eight functional foci of significant alterations in adolescents with AB, mainly located within the emotion processing and regulation network (including orbitofrontal, dorsomedial prefrontal and limbic cortex). A subsequent conjunction analysis revealed that functional and structural alterations co-localize in right dorsomedial prefrontal cortex and left insula. Our results are in line with meta-analytic work as well as structural, functional and connectivity findings to date, all of which make a strong point for the involvement of a network of brain areas responsible for emotion processing and regulation, which is disrupted in AB. Increased knowledge about the behavioural and neuronal underpinnings of AB is crucial for the development of novel and implementation of existing treatment strategies. Longitudinal research studies will have to show whether the observed alterations are a result or primary cause of the phenotypic characteristics in AB. PMID:26339798

  6. Construction Progress of the F-1 Engine Test Stand

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the S-IC test stand, related facilities were built during this time. Built to the north of the massive S-IC test stand, was the F-1 Engine test stand. The F-1 test stand, a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, was designed to assist in the development of the F-1 Engine. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of

  7. Construction Progress of the F-1 Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the S-IC test stand, related facilities were constructed during this time frame. Built just north of the massive S-IC test stand was the F-1 Engine test stand. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and was designed to assist in the development of the F-1 Engine. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the

  8. Construction Progress of the F-1 Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F

  9. Construction Progress of the F-1 Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F

  10. Construction Progress of the F-1 Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Northeast of the massive S-IC test stand, the F-1 Engine test stand was built. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and was designed to assist in the development of the F-1 Engine. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the

  11. Construction Progress of the F-1 Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of th