Sample records for stanford linear collider

  1. Pulse-by-pulse energy measurement at the Stanford Linear Collider

    NASA Astrophysics Data System (ADS)

    Blaylock, G.; Briggs, D.; Collins, B.; Petree, M.

    1992-01-01

    The Stanford Linear Collider (SLC) collides a beam of electrons and positrons at 92 GeV. It is the first colliding linac, and produces Z(sup 0) particles for High-Energy Physics measurements. The energy of each beam must be measured to one part in 10(exp 4) on every collision (120 Hz). An Energy Spectrometer in each beam line after the collision produces two stripes of high-energy synchrotron radiation with critical energy of a few MeV. The distance between these two stripes at an imaging plane measures the beam energy. The Wire-Imaging Synchrotron Radiation Detector (WISRD) system comprises a novel detector, data acquisition electronics, readout, and analysis. The detector comprises an array of wires for each synchrotron stripe. The electronics measure secondary emission charge on each wire of each array. A Macintosh II (using THINK C, THINK Class Library) and DSP coprocessor (using ANSI C) acquire and analyze the data, and display and report the results for SLC operation.

  2. Alignment of the Stanford Linear Collider Arcs: Concepts and results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitthan, R.; Bell, B.; Friedsam, H.

    1987-02-01

    The alignment of the Arcs for the Stanford Linear Collider at SLAC has posed problems in accelerator survey and alignment not encountered before. These problems come less from the tight tolerances of 0.1 mm, although reaching such a tight statistically defined accuracy in a controlled manner is difficult enough, but from the absence of a common reference plane for the Arcs. Traditional circular accelerators, including HERA and LEP, have been designed in one plane referenced to local gravity. For the SLC Arcs no such single plane exists. Methods and concepts developed to solve these and other problems, connected with themore » unique design of SLC, range from the first use of satellites for accelerator alignment, use of electronic laser theodolites for placement of components, computer control of the manual adjustment process, complete automation of the data flow incorporating the most advanced concepts of geodesy, strict separation of survey and alignment, to linear principal component analysis for the final statistical smoothing of the mechanical components.« less

  3. Intense beams at the micron level for the Next Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seeman, J.T.

    1991-08-01

    High brightness beams with sub-micron dimensions are needed to produce a high luminosity for electron-positron collisions in the Next Linear Collider (NLC). To generate these small beam sizes, a large number of issues dealing with intense beams have to be resolved. Over the past few years many have been successfully addressed but most need experimental verification. Some of these issues are beam dynamics, emittance control, instrumentation, collimation, and beam-beam interactions. Recently, the Stanford Linear Collider (SLC) has proven the viability of linear collider technology and is an excellent test facility for future linear collider studies.

  4. Proceedings of the 2005 International Linear Collider Workshop (LCWS05)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewett, JoAnne,; /SLAC

    2006-12-18

    was held at Stanford University from 18 March through 22 March, 2005. This workshop was hosted by the Stanford Linear Accelerator Center and sponsored by the World Wide Study for future e+e- linear colliders. It was the eighth in a series of International Workshops (the first was held in Saariselka, Finland in 1991) devoted to the physics and detectors associated with high energy e+e- linear colliders. 397 physicists from 24 countries participated in the workshop. These proceedings represent the presentations and discussions which took place during the workshop. The contributions are comprised of physics studies, detector specifications, and accelerator design for the ILC. These proceedings are organized in two Volumes and include contributions from both the plenary and parallel sessions.« less

  5. Next Linear Collider Home Page

    Science.gov Websites

    Welcome to the Next Linear Collider NLC Home Page If you would like to learn about linear colliders in general and about this next-generation linear collider project's mission, design ideas, and Linear Collider. line | NLC Home | NLC Technical | SLAC | mcdunn Tuesday, February 14, 2006 01:32:11 PM

  6. Towards a Future Linear Collider and The Linear Collider Studies at CERN

    ScienceCinema

    Heuer, Rolf-Dieter

    2018-06-15

    During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERN’s linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.

  7. Towards a Future Linear Collider and The Linear Collider Studies at CERN

    ScienceCinema

    Stapnes, Steinar

    2017-12-18

    During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERN’s linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.

  8. The Next Linear Collider Program

    Science.gov Websites

    text only International Study Group (ISG) Meetings NLC Home Page NLC Technical SLAC Eleventh Linear Collider International Study Group at KEK, December 16 - 19, 2003 Tenth (X) Linear Collider International Study Group at SLAC, June, 2003 Nineth Linear Collider ,International Study Group at KEK, December 10-13

  9. The Next Linear Collider Program-News

    Science.gov Websites

    The Next Linear Collider at SLAC Navbar The Next Linear Collider In The Press The Secretary of Linear Collider is a high-priority goal of this plan. http://www.sc.doe.gov/Sub/Facilities_for_future/20 -term projects in conceputal stages (the Linear Collider is the highest priority project in this

  10. The Next Linear Collider Program

    Science.gov Websites

    The Next Linear Collider at SLAC Navbar NLC Playpen Warning: This page is provided as a place for Comments & Suggestions | Desktop Trouble Call | Linear Collider Group at FNAL || This page was updated

  11. International Workshop on Linear Colliders 2010

    ScienceCinema

    Lebrun, Ph.

    2018-06-20

    IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland). This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options. Contact Workshop Secretariat  IWLC2010 is hosted by CERN.

  12. International Workshop on Linear Colliders 2010

    ScienceCinema

    Yamada, Sakue

    2018-05-24

    IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland) This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options. Contact Workshop Secretariat  IWLC2010 is hosted by CERN

  13. LIONs at the Stanford Linear Accelerator Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constant, T.N.; Zdarko, R.W.; Simmons, R.H.

    1998-01-01

    The term LION is an acronym for Long Ionization Chamber. This is a distributed ion chamber which is used to monitor secondary ionization along the shield walls of a beam line resulting from incorrectly steered charged particle beams in lieu of the use of many discrete ion chambers. A cone of ionizing radiation emanating from a point source as a result of incorrect steering intercepts a portion of 1-5/8 inch Heliax cable (about 100 meters in length) filled with Argon gas at 20 psi and induces a pulsed current which is proportional to the ionizing charge. This signal is transmittedmore » via the cable to an integrator circuit whose output is directed to an electronic comparators, which in turn is used to turn off the accelerated primary beam when preset limits are exceeded. This device is used in the Stanford Linear Accelerator Center (SLAC) Beam Containment System (BCS) to prevent potentially hazardous ionizing radiation resulting from incorrectly steered beams in areas that might be occupied by people. This paper describes the design parameters and experience in use in the Final Focus Test Beam (FFTB) area of the Stanford Linear Accelerator Center.« less

  14. Vanilla technicolor at linear colliders

    NASA Astrophysics Data System (ADS)

    Frandsen, Mads T.; Järvinen, Matti; Sannino, Francesco

    2011-08-01

    We analyze the reach of linear colliders for models of dynamical electroweak symmetry breaking. We show that linear colliders can efficiently test the compositeness scale, identified with the mass of the new spin-one resonances, until the maximum energy in the center of mass of the colliding leptons. In particular we analyze the Drell-Yan processes involving spin-one intermediate heavy bosons decaying either leptonically or into two standard model gauge bosons. We also analyze the light Higgs production in association with a standard model gauge boson stemming also from an intermediate spin-one heavy vector.

  15. The International Linear Collider

    NASA Astrophysics Data System (ADS)

    List, Benno

    2014-04-01

    The International Linear Collider (ILC) is a proposed e+e- linear collider with a centre-of-mass energy of 200-500 GeV, based on superconducting RF cavities. The ILC would be an ideal machine for precision studies of a light Higgs boson and the top quark, and would have a discovery potential for new particles that is complementary to that of LHC. The clean experimental conditions would allow the operation of detectors with extremely good performance; two such detectors, ILD and SiD, are currently being designed. Both make use of novel concepts for tracking and calorimetry. The Japanese High Energy Physics community has recently recommended to build the ILC in Japan.

  16. Possible limits of plasma linear colliders

    NASA Astrophysics Data System (ADS)

    Zimmermann, F.

    2017-07-01

    Plasma linear colliders have been proposed as next or next-next generation energy-frontier machines for high-energy physics. I investigate possible fundamental limits on energy and luminosity of such type of colliders, considering acceleration, multiple scattering off plasma ions, intrabeam scattering, bremsstrahlung, and betatron radiation. The question of energy efficiency is also addressed.

  17. 2009 Linear Collider Workshop of the Americas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidel, Sally

    The 2009 Linear Collider Workshop of the Americas was held on the campus of the University of New Mexico from 29 September to 3 October, 2009. This was a joint meeting of the American Linear Collider Physics Group and the ILC Global Design Effort. Two hundred fifty people attended. The number of scientific contributions was 333. The complete agenda, with links to all of the presentations, is available at physics.unm.edu/LCWA09/. The meeting brought together international experts as well as junior scientists, to discuss the physics potential of the linear collider and advances in detector technology. The validation of detector designsmore » was announced, and the detector design groups planned the next phase of the effort. Detector R&D teams reported on progress on many topics including calorimetry and tracking. Recent accelerator design considerations were discussed in a special session for experimentalists and theorists.« less

  18. Linear Collider Physics Resource Book Snowmass 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronan

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decademore » or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup -} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup -} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup -} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup -} experiments can provide. This last point merits further emphasis. If a new accelerator could be

  19. Luminosity Limitations of Linear Colliders Based on Plasma Acceleration

    DOE PAGES

    Lebedev, Valeri; Burov, Alexey; Nagaitsev, Sergei

    2016-01-01

    Particle acceleration in plasma creates a possibility of exceptionally high accelerating gradients and appears as a very attractive option for future linear electron-positron and/or photon-photon colliders. These high accelerating gradients were already demonstrated in a number of experiments. Furthermore, a linear collider requires exceptionally high beam brightness which still needs to be demonstrated. In this article we discuss major phenomena which limit the beam brightness of accelerated beam and, consequently, the collider luminosity.

  20. The Next Linear Collider Program

    Science.gov Websites

    /graphics.htm Snowmass 2001 http://snowmass2001.org/ Electrical Systems Modulators http://www -project.slac.stanford.edu/lc/local/electrical/e_home.htm DC Magnet Power http://www-project.slac.stanford.edu/lc/local /electrical/e_home.htm Global Systems http://www-project.slac.stanford.edu/lc/local/electrical/e_home.htm

  1. WW Physics at Future e{sup +}e{sup -} Linear Colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barklow, Timothy L

    Measurements of triple gauge boson couplings and strong electroweak symmetry breaking effects at future e{sup +}e{sup -} linear colliders are reviewed. The results expected from a future e{sup +}e{sup -} linear collider are compared with LHC expectations.

  2. LCFIPlus: A framework for jet analysis in linear collider studies

    NASA Astrophysics Data System (ADS)

    Suehara, Taikan; Tanabe, Tomohiko

    2016-02-01

    We report on the progress in flavor identification tools developed for a future e+e- linear collider such as the International Linear Collider (ILC) and Compact Linear Collider (CLIC). Building on the work carried out by the LCFIVertex collaboration, we employ new strategies in vertex finding and jet finding, and introduce new discriminating variables for jet flavor identification. We present the performance of the new algorithms in the conditions simulated using a detector concept designed for the ILC. The algorithms have been successfully used in ILC physics simulation studies, such as those presented in the ILC Technical Design Report.

  3. Alternate approaches to future electron-positron linear colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loew, G.A.

    1998-07-01

    The purpose of this article is two-fold: to review the current international status of various design approaches to the next generation of e{sup +}e{sup {minus}} linear colliders, and on the occasion of his 80th birthday, to celebrate Richard B. Neal`s many contributions to the field of linear accelerators. As it turns out, combining these two tasks is a rather natural enterprise because of Neal`s long professional involvement and insight into many of the problems and options which the international e{sup +}e{sup {minus}} linear collider community is currently studying to achieve a practical design for a future machine.

  4. Development of semiconductor tracking: The future linear collider case

    NASA Astrophysics Data System (ADS)

    Savoy-Navarro, Aurore

    2011-04-01

    An active R&D on silicon tracking for the linear collider, SiLC, is pursued since several years to develop the new generation of large area silicon trackers for the future linear collider(s). The R&D objectives on new sensors, new front end processing of the signal, and the related mechanical and integration challenges for building such large detectors within the proposed detector concepts are described. Synergies and differences with the LHC construction and upgrades are explained. The differences between the linear collider projects, namely the international linear collider, ILC, and the compact linear collider, CLIC, are discussed as well. Two final objectives are presented for the construction of this important sub-detector for the future linear collider experiments: a relatively short term design based on micro-strips combined or not with a gaseous central tracker and a longer term design based on an all-pixel tracker.The R&D objectives on sensors include single sided micro-strips as baseline for the shorter term with the strips from large wafers (at least 6 in), 200 μm thick, 50 μm pitch and the edgeless and alignment friendly options. This work is conducted by SiLC in collaboration with three technical research centers in Italy, Finland, and Spain and HPK. SiLC is studied as well, using advanced Si sensor technologies for higher granularity trackers especially short strips and pixels all based on 3D technology. New Deep Sub-Micron CMOS mix mode (analog and digital) FE and readout electronics are developed to fully process the detector signals currently adapted to the ILC cycle. It is a high-level processing and a fully programmable ASIC; highly fault tolerant. In its latest version, handling 128 channels will equip these next coming years larger size silicon tracking prototypes at test beams. Connection of the FEE chip on the silicon detector especially in the strip case is a major issue. Very preliminary results with inline pitch adapter based on wiring

  5. LINEAR COLLIDER PHYSICS RESOURCE BOOK FOR SNOWMASS 2001.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ABE,T.; DAWSON,S.; HEINEMEYER,S.

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decademore » or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup {minus}} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup {minus}} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup {minus}} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup {minus}} experiments can provide.« less

  6. Linear Collider Physics Resource Book for Snowmass 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peskin, Michael E

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decademore » or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup -} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup -} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup -} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup -} experiments can provide.« less

  7. Laser-plasma-based linear collider using hollow plasma channels

    DOE PAGES

    Schroeder, C. B.; Benedetti, C.; Esarey, E.; ...

    2016-03-03

    A linear electron–positron collider based on laser-plasma accelerators using hollow plasma channels is considered. Laser propagation and energy depletion in the hollow channel is discussed, as well as the overall efficiency of the laser-plasma accelerator. Example parameters are presented for a 1-TeV and 3-TeV center-of-mass collider based on laser-plasma accelerators.

  8. RF pulse compression for future linear colliders

    NASA Astrophysics Data System (ADS)

    Wilson, Perry B.

    1995-07-01

    Future (nonsuperconducting) linear colliders will require very high values of peak rf power per meter of accelerating structure. The role of rf pulse compression in producing this power is examined within the context of overall rf system design for three future colliders at energies of 1.0-1.5 TeV, 5 TeV, and 25 TeV. In order to keep the average AC input power and the length of the accelerator within reasonable limits, a collider in the 1.0-1.5 TeV energy range will probably be built at an x-band rf frequency, and will require a peak power on the order of 150-200 MW per meter of accelerating structure. A 5 TeV collider at 34 GHz with a reasonable length (35 km) and AC input power (225 MW) would require about 550 MW per meter of structure. Two-beam accelerators can achieve peak powers of this order by applying dc pulse compression techniques (induction linac modules) to produce the drive beam. Klystron-driven colliders achieve high peak power by a combination of dc pulse compression (modulators) and rf pulse compression, with about the same overall rf system efficiency (30-40%) as a two-beam collider. A high gain (6.8) three-stage binary pulse compression system with high efficiency (80%) is described, which (compared to a SLED-II system) can be used to reduce the klystron peak power by about a factor of two, or alternatively, to cut the number of klystrons in half for a 1.0-1.5 TeV x-band collider. For a 5 TeV klystron-driven collider, a high gain, high efficiency rf pulse compression system is essential.

  9. Towards TeV-scale electron-positron collisions: the Compact Linear Collider (CLIC)

    NASA Astrophysics Data System (ADS)

    Doebert, Steffen; Sicking, Eva

    2018-02-01

    The Compact Linear Collider (CLIC), a future electron-positron collider at the energy frontier, has the potential to change our understanding of the universe. Proposed to follow the Large Hardron Collider (LHC) programme at CERN, it is conceived for precision measurements as well as for searches for new phenomena.

  10. A plasma lens for a linear collider final focus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norem, J.; Cline, D.B.; Cole, B.

    High density relativistic beams propagating in a plasma are affected by fields induced by plasma motion. We consider the possible use of a plasma cell very close to the interaction point of a linear collider where the self-pinch induced in the relativistic beams can be used to increase the luminosity of colliding beams. We describe the benefits of this self-pinch, as well as some engineering details on the production of the required plasma. 18 refs., 5 figs., 1 tab.

  11. Development work for a superconducting linear collider

    NASA Technical Reports Server (NTRS)

    Matheisen, Axel

    1995-01-01

    For future linear e(+)e(-) colliders in the TeV range several alternatives are under discussion. The TESLA approach is based on the advantages of superconductivity. High Q values of the accelerator structures give high efficiency for converting RF power into beam power. A low resonance frequency for the RF structures can be chosen to obtain a large number of electrons (positrons) per bunch. For a given luminosity the beam dimensions can be chosen conservatively which leads to relaxed beam emittance and tolerances at the final focus. Each individual superconducting accelerator component (resonator cavity) of this linear collider has to deliver an energy gain of 25 MeV/m to the beam. Today s.c. resonators are in use at CEBAF/USA, at DESY/Germany, Darmstadt/Germany KEK/Japan and CERN/Geneva. They show acceleration gradients between 5 MV/m and 10 MV/m. Encouraging experiments at CEA Saclay and Cornell University showed acceleration gradients of 20 MV/m and 25 MV/m in single and multicell structures. In an activity centered at DESY in Hamburg/Germany the TESLA collaboration is constructing a 500 MeV superconducting accelerator test facility (TTF) to demonstrate that a linear collider based on this technique can be built in a cost effective manner and that the necessary acceleration gradients of more than 15 MeV/m can be reached reproducibly. The test facility built at DESY covers an area of 3.000 m2 and is divided into 3 major activity areas: (1) The testlinac, where the performance ofthe modular components with an electron beam passing the 40 m long acceleration section can be demonstrated. (2) The test area, where all individual resonators are tested before installation into a module. (3) The preparation and assembly area, where assembly of cavities and modules take place. We report here on the design work to reach a reduction of costs compared to actual existing superconducting accelerator structures and on the facility set up to reach high acceleration gradients in

  12. Double elementary Goldstone Higgs boson production in future linear colliders

    NASA Astrophysics Data System (ADS)

    Guo, Yu-Chen; Yue, Chong-Xing; Liu, Zhi-Cheng

    2018-03-01

    The Elementary Goldstone Higgs (EGH) model is a perturbative extension of the Standard Model (SM), which identifies the EGH boson as the observed Higgs boson. In this paper, we study pair production of the EGH boson in future linear electron positron colliders. The cross-sections in the TeV region can be changed to about ‑27%, 163% and ‑34% for the e+e‑→ Zhh, e+e‑→ νν¯hh and e+e‑→ tt¯hh processes with respect to the SM predictions, respectively. According to the expected measurement precisions, such correction effects might be observed in future linear colliders. In addition, we compare the cross-sections of double SM-like Higgs boson production with the predictions in other new physics models.

  13. The first colliders: AdA, VEP-1 and Princeton-Stanford

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir

    The idea of exploring collisions in the center-of-mass system to fully exploit the energy of the accelerated particles had been given serious consideration by the Norwegian engineer and inventor Rolf Wideröe, who applied for a patent on the idea in 1943 (and got the patent in 1953 [1]) after considering the kinematic advantage of keeping the center of mass at rest to produce larger momentum transfers. Describing this advantage, G. K. O'Neill, one of the collider pioneers, wrote in 1956 [2]: "... as accelerators of higher and higher energy are built, their usefulness is limited by the fact that the energy available for creating new particles is measured in the center-of-mass system of the target nucleon and the bombarding particle. In the relativistic limit, this energy rises only as the square root of the accelerator energy. However, if two particles of equal energy traveling in opposite directions could be made to collide, the available energy would be twice the whole energy of one particle ... " Therefore, no kinetic energy is wasted by the motion of the center of mass of the system, and the available reaction energy ER = 2Ebeam (while a particle with the same energy Ebeam colliding with another particle of the mass m at rest produces only ER = (2Ebeamm)1/2 in the extreme relativistic case). One can also add that the colliders are "cleaner" machines with respect to the fixed-target ones since the colliding beams do not interact with the target materials. The other advantage is that it is much easier to organize collisions of beams composed of matter-antimatter particles, like in electron-positron and proton-antiproton colliders...

  14. Of Linear Colliders, the GDE Workshop at Bangalore, Mughals, Camels, Elephants and Sundials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loew, Greg

    In this colloquium, the speaker will give a summary of the recent International Linear Collider (ILC) Global Design Effort (GDE) Workshop at Bangalore and how the High Energy Physics community converged to this meeting after many years of electron-positron linear collider design and experimental work. Given that this workshop for the first time took place in India, the speaker will also show a few pictures and talk briefly about what he learned in that fascinating country.

  15. Physics with e{sup +}e{sup -} Linear Colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barklow, Timothy L

    2003-05-05

    We describe the physics potential of e{sup +}e{sup -} linear colliders in this report. These machines are planned to operate in the first phase at a center-of-mass energy of 500 GeV, before being scaled up to about 1 TeV. In the second phase of the operation, a final energy of about 2 TeV is expected. The machines will allow us to perform precision tests of the heavy particles in the Standard Model, the top quark and the electroweak bosons. They are ideal facilities for exploring the properties of Higgs particles, in particular in the intermediate mass range. New vector bosonsmore » and novel matter particles in extended gauge theories can be searched for and studied thoroughly. The machines provide unique opportunities for the discovery of particles in supersymmetric extensions of the Standard Model, the spectrum of Higgs particles, the supersymmetric partners of the electroweak gauge and Higgs bosons, and of the matter particles. High precision analyses of their properties and interactions will allow for extrapolations to energy scales close to the Planck scale where gravity becomes significant. In alternative scenarios, like compositeness models, novel matter particles and interactions can be discovered and investigated in the energy range above the existing colliders up to the TeV scale. Whatever scenario is realized in Nature, the discovery potential of e{sup +}e{sup -} linear colliders and the high-precision with which the properties of particles and their interactions can be analyzed, define an exciting physics programme complementary to hadron machines.« less

  16. Physics at the e⁺e⁻ linear collider

    DOE PAGES

    Moortgat-Picka, G.; Kronfeld, A. S.

    2015-08-14

    A comprehensive review of physics at an e⁺e⁻ linear collider in the energy range of √s = 92 GeV–3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focuses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.

  17. Calorimetry at the International Linear Collider

    NASA Astrophysics Data System (ADS)

    Repond, José

    2007-03-01

    The physics potential of the International Linear Collider depends critically on the jet energy resolution of its detector. Detector concepts are being developed which optimize the jet energy resolution, with the aim of achieving σjet=30%/√{Ejet}. Under the assumption that Particle Flow Algorithms (PFAs), which combine tracking and calorimeter information to reconstruct the energy of hadronic jets, can provide this unprecedented jet energy resolution, calorimeters with very fine granularity are being developed. After a brief introduction outlining the principles of PFAs, the current status of various calorimeter prototype construction projects and their plans for the next few years will be reviewed.

  18. 1995 second modulator-klystron workshop: A modulator-klystron workshop for future linear colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-01

    This second workshop examined the present state of modulator design and attempted an extrapolation for future electron-positron linear colliders. These colliders are currently viewed as multikilometer-long accelerators consisting of a thousand or more RF sources with 500 to 1,000, or more, pulsed power systems. The workshop opened with two introductory talks that presented the current approaches to designing these linear colliders, the anticipated RF sources, and the design constraints for pulse power. The cost of main AC power is a major economic consideration for a future collider, consequently the workshop investigated efficient modulator designs. Techniques that effectively apply the artmore » of power conversion, from the AC mains to the RF output, and specifically, designs that generate output pulses with very fast rise times as compared to the flattop. There were six sessions that involved one or more presentations based on problems specific to the design and production of thousands of modulator-klystron stations, followed by discussion and debate on the material.« less

  19. Linear Collider Physics Resource Book for Snowmass 2001 - Part 3: Studies of Exotic and Standard Model Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, T.; et al.

    This Resource Book reviews the physics opportunities of a next-generation e+e- linear collider and discusses options for the experimental program. Part 3 reviews the possible experiments on that can be done at a linear collider on strongly coupled electroweak symmetry breaking, exotic particles, and extra dimensions, and on the top quark, QCD, and two-photon physics. It also discusses the improved precision electroweak measurements that this collider will make available.

  20. Fourth standard model family neutrino at future linear colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciftci, A.K.; Ciftci, R.; Sultansoy, S.

    2005-09-01

    It is known that flavor democracy favors the existence of the fourth standard model (SM) family. In order to give nonzero masses for the first three-family fermions flavor democracy has to be slightly broken. A parametrization for democracy breaking, which gives the correct values for fundamental fermion masses and, at the same time, predicts quark and lepton Cabibbo-Kobayashi-Maskawa (CKM) matrices in a good agreement with the experimental data, is proposed. The pair productions of the fourth SM family Dirac ({nu}{sub 4}) and Majorana (N{sub 1}) neutrinos at future linear colliders with {radical}(s)=500 GeV, 1 TeV, and 3 TeV are considered.more » The cross section for the process e{sup +}e{sup -}{yields}{nu}{sub 4}{nu}{sub 4}(N{sub 1}N{sub 1}) and the branching ratios for possible decay modes of the both neutrinos are determined. The decays of the fourth family neutrinos into muon channels ({nu}{sub 4}(N{sub 1}){yields}{mu}{sup {+-}}W{sup {+-}}) provide cleanest signature at e{sup +}e{sup -} colliders. Meanwhile, in our parametrization this channel is dominant. W bosons produced in decays of the fourth family neutrinos will be seen in detector as either di-jets or isolated leptons. As an example, we consider the production of 200 GeV mass fourth family neutrinos at {radical}(s)=500 GeV linear colliders by taking into account di-muon plus four jet events as signatures.« less

  1. The Birth of Lepton Colliders in Italy and the United States

    NASA Astrophysics Data System (ADS)

    Paris, Elizabeth

    2003-04-01

    In 1960 the highest center-of-mass energies in particle physics were being achieved via proton synchrotrons utilizing stationary targets. However, efforts were already underway to challenge this hegemony. In addition to Soviet work in Novosibirsk, groups at Stanford University in California and at the Frascati National Laboratories near Rome each had begun original investigation towards one particular type of challenger: colliding beam storage rings. For the group in California, the accomplishment involved creating the potential for feasible experiments. The energetic advantages of the colliding beam configuration had long been accepted - together with its impossibility for realization. The builders of the Princeton-Stanford machine feel that creating usable beams and a reasonable reaction rate is what stood between this concept and its glorious future. For the European builders of AdA, however, the beauty emerges from recognizing the enormous potential inherent in electron-positron annihilations. At least as important for the rise of electron-positron colliders, though, is the role of both of these projects as cultural firsts -- as places where particular sets of physicists got their feet wet associating with beams and beam problems and with the many individuals who were addressing beam problems. The Princeton-Stanford Collider provided experience which its builders would use to move on, functioning as both a technological and political platform for creating what would eventually become SPEAR. For the Roman group, the pursuit of AdA encouraged investigation which applied equally well to their next machine, Adone.

  2. Some Alignment Considerations for the Next Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruland, R

    Next Linear Collider type accelerators require a new level of alignment quality. The relative alignment of these machines is to be maintained in an error envelope dimensioned in micrometers and for certain parts in nanometers. In the nanometer domain our terra firma cannot be considered monolithic but compares closer to jelly. Since conventional optical alignment methods cannot deal with the dynamics and cannot approach the level of accuracy, special alignment and monitoring techniques must be pursued.

  3. The Next Linear Collider Program

    Science.gov Websites

    posted to the new SLAC ILC web site http://www-project.slac.stanford.edu/ilc/. Also, see the new site for . The NLC web site will remain accessible as an archive of important work done on the many systems | Navbar || || Documentation | NLC Playpen | Web Comments & Suggestions | Desktop Trouble Call | LC

  4. Zeroth-order design report for the next linear collider. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raubenheimer, T.O.

    1996-05-01

    This Zeroth Order Design Report (ZDR) for the Next Linear Collider (NLC) has been completed as a feasibility study for a TeV-scale linear collider that incorporates a room-temperature accelerator powered by rf microwaves at 11.424 GHz--similar to that presently used in the SLC, but at four times the rf frequency. The purpose of this study is to examine the complete systems of such a collider, to understand how the parts fit together, and to make certain that every required piece has been included. The design presented here is not fully engineered in any sense, but to be assured that themore » NLC can be built, attention has been given to a number of critical components and issues that present special challenges. More engineering and development of a number of mechanical and electrical systems remain to be done, but the conclusion of this study is that indeed the NLC is technically feasible and can be expected to reach the performance levels required to perform research at the TeV energy scale. Volume one covers the following: the introduction; electron source; positron source; NLC damping rings; bunch compressors and prelinac; low-frequency linacs and compressors; main linacs; design and dynamics; and RF systems for main linacs.« less

  5. The Next Linear Collider Program

    Science.gov Websites

    posted to the new SLAC ILC web site http://www-project.slac.stanford.edu/ilc/. Also, see the new site for . The NLC web site will remain accessible as an archive of important work done on the many systems to be complete by the end of the calendar year. NLC Website Search: Entire SLAC Web | Help Phonebook

  6. Linear polarization of gluons and photons in unpolarized collider experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pisano, Cristian; Boer, Daniël; Brodsky, Stanley J.

    2013-10-01

    We study azimuthal asymmetries in heavy quark pair production in unpolarized electron-proton and proton-proton collisions, where the asymmetries originate from the linear polarization of gluons inside unpolarized hadrons. We provide cross section expressions and study the maximal asymmetries allowed by positivity, for both charm and bottom quark pair production. The upper bounds on the asymmetries are shown to be very large depending on the transverse momentum of the heavy quarks, which is promising especially for their measurements at a possible future Electron-Ion Collider or a Large Hadron electron Collider. We also study the analogous processes and asymmetries in muon pairmore » production as a means to probe linearly polarized photons inside unpolarized protons. For increasing invariant mass of the muon pair the asymmetries become very similar to the heavy quark pair ones. Finally, we discuss the process dependence of the results that arises due to differences in color flow and address the problem with factorization in case of proton-proton collisions.« less

  7. R&D status of linear collider technology at KEK

    NASA Astrophysics Data System (ADS)

    Urakawa, Junji

    1992-02-01

    This paper gives an outline of the Japan Linear Collider (JLC) project, especially JLC-I. The status of the various R&D works is particularly presented for the following topics: (1) electron and positron sources, (2) S-band injector linacs, (3) damping rings, (4) high power klystrons and accelerating structures, (5) the final focus system. Finally, the status of the construction and design studies for the Accelerator Test Facility (ATF) is summarized.

  8. Beam dynamics issues in linear colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seeman, J.T.

    1989-06-01

    The primary goal of present and future linear colliders is to maximize the integrated luminosity for the experimental program. Beam dynamics plays a central role in the maximization of integrated luminosity. It is the major issue in the production of small beam sizes and low experimental backgrounds and is also an important factor in the production of particle numbers, in the acceleration process, and in the number of bunches. The beam dynamics effects on bunches which are extracted from the damping rings, accelerated in the linac, collimated, momentum analyzed, and finally delivered to the final focus are reviewed. The effectsmore » of bunch compression, transverse and longitudinal wakefields, BNS damping, energy definition, dispersion, emittance, bunch aspect ratio, feedback, and stability are all important. 11 refs., 1 tab.« less

  9. Physics at the [Formula: see text] linear collider.

    PubMed

    Moortgat-Pick, G; Baer, H; Battaglia, M; Belanger, G; Fujii, K; Kalinowski, J; Heinemeyer, S; Kiyo, Y; Olive, K; Simon, F; Uwer, P; Wackeroth, D; Zerwas, P M; Arbey, A; Asano, M; Bagger, J; Bechtle, P; Bharucha, A; Brau, J; Brümmer, F; Choi, S Y; Denner, A; Desch, K; Dittmaier, S; Ellwanger, U; Englert, C; Freitas, A; Ginzburg, I; Godfrey, S; Greiner, N; Grojean, C; Grünewald, M; Heisig, J; Höcker, A; Kanemura, S; Kawagoe, K; Kogler, R; Krawczyk, M; Kronfeld, A S; Kroseberg, J; Liebler, S; List, J; Mahmoudi, F; Mambrini, Y; Matsumoto, S; Mnich, J; Mönig, K; Mühlleitner, M M; Pöschl, R; Porod, W; Porto, S; Rolbiecki, K; Schmitt, M; Serpico, P; Stanitzki, M; Stål, O; Stefaniak, T; Stöckinger, D; Weiglein, G; Wilson, G W; Zeune, L; Moortgat, F; Xella, S; Bagger, J; Brau, J; Ellis, J; Kawagoe, K; Komamiya, S; Kronfeld, A S; Mnich, J; Peskin, M; Schlatter, D; Wagner, A; Yamamoto, H

    A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.

  10. GARLIC: GAmma Reconstruction at a LInear Collider experiment

    NASA Astrophysics Data System (ADS)

    Jeans, D.; Brient, J.-C.; Reinhard, M.

    2012-06-01

    The precise measurement of hadronic jet energy is crucial to maximise the physics reach of a future Linear Collider. An important ingredient required to achieve this is the efficient identification of photons within hadronic showers. One configuration of the ILD detector concept employs a highly granular silicon-tungsten sampling calorimeter to identify and measure photons, and the GARLIC algorithm described in this paper has been developed to identify photons in such a calorimeter. We describe the algorithm and characterise its performance using events fully simulated in a model of the ILD detector.

  11. Stanford Online: The Stanford University Experience with Online Education.

    ERIC Educational Resources Information Center

    Schultz, Carolyn Stark; Rouan, Michael

    This paper describes Stanford Online, a distance learning program at Stanford University (California) that utilizes the concept of asynchronous learning and the growth of the Internet to make Stanford courses, seminars, and lectures available anywhere, any time, and on demand in order to address the continuing education needs of busy…

  12. The International Linear Collider Technical Design Report - Volume 2: Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, Howard; Barklow, Tim; Fujii, Keisuke

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carriedmore » out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.« less

  13. The International Linear Collider Technical Design Report - Volume 4: Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behnke, Ties

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carriedmore » out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.« less

  14. HOM-Free Linear Accelerating Structure for e+ e- Linear Collider at C-Band

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubo, Kiyoshi

    2003-07-07

    HOM-free linear acceleration structure using the choke mode cavity (damped cavity) is now under design for e{sup +}e{sup -} linear collider project at C-band frequency (5712 MHz). Since this structure shows powerful damping effect on most of all HOMs, there is no multibunch problem due to long range wakefields. The structure will be equipped with the microwave absorbers in each cells and also the in-line dummy load in the last few cells. The straightness tolerance for 1.8 m long structure is closer than 30 {micro}m for 25% emittance dilution limit, which can be achieved by standard machining and braising techniques.more » Since it has good vacuum pumping conductance through annular gaps in each cell, instabilities due to the interaction of beam with the residual-gas and ions can be minimized.« less

  15. 77 FR 59660 - Notice of Inventory Completion: Stanford University Archaeology Center, Stanford, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... Inventory Completion: Stanford University Archaeology Center, Stanford, CA AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Stanford University Archaeology Center has completed an inventory of... human remains and associated funerary objects may contact the Stanford University Archaeology Center...

  16. 77 FR 59661 - Notice of Inventory Completion: Stanford University Archaeology Center, Stanford, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... Inventory Completion: Stanford University Archaeology Center, Stanford, CA AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Stanford University Archaeology Center has completed an inventory of... contact the Stanford University Archaeology Center. Repatriation of the human remains to the Indian tribe...

  17. Zeroth-order design report for the next linear collider. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raubenheimer, T.O.

    This Zeroth-Order Design Report (ZDR) for the Next Linear Collider (NLC) has been completed as a feasibility study for a TeV-scale linear collider that incorporates a room-temperature accelerator powered by rf microwaves at 11.424 GHz--similar to that presently used in the SLC, but at four times the rf frequency. The purpose of this study is to examine the complete systems of such a collider, to understand how the parts fit together, and to make certain that every required piece has been included. The ``design`` presented here is not fully engineered in any sense, but to be assured that the NLCmore » can be built, attention has been given to a number of critical components and issues that present special challenges. More engineering and development of a number of mechanical and electrical systems remain to be done, but the conclusion of this study is that indeed the NLC is technically feasible and can be expected to reach the performance levels required to perform research at the TeV energy scale. Volume II covers the following: collimation systems; IP switch and big bend; final focus; the interaction region; multiple bunch issues; control systems; instrumentation; machine protection systems; NLC reliability considerations; NLC conventional facilities. Also included are four appendices on the following topics: An RF power source upgrade to the NLC; a second interaction region for gamma-gamma, gamma-electron; ground motion: theory and measurement; and beam-based feedback: theory and implementation.« less

  18. The International Linear Collider Technical Design Report - Volume 1: Executive Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behnke, Ties; Brau, James E.; Foster, Brian

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carriedmore » out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.« less

  19. High Energy Colliders

    NASA Astrophysics Data System (ADS)

    Palmer, R. B.; Gallardo, J. C.

    INTRODUCTION PHYSICS CONSIDERATIONS GENERAL REQUIRED LUMINOSITY FOR LEPTON COLLIDERS THE EFFECTIVE PHYSICS ENERGIES OF HADRON COLLIDERS HADRON-HADRON MACHINES LUMINOSITY SIZE AND COST CIRCULAR e^{+}e^- MACHINES LUMINOSITY SIZE AND COST e^{+}e^- LINEAR COLLIDERS LUMINOSITY CONVENTIONAL RF SUPERCONDUCTING RF AT HIGHER ENERGIES γ - γ COLLIDERS μ ^{+} μ^- COLLIDERS ADVANTAGES AND DISADVANTAGES DESIGN STUDIES STATUS AND REQUIRED R AND D COMPARISION OF MACHINES CONCLUSIONS DISCUSSION

  20. Higgs physics at the CLIC electron-positron linear collider.

    PubMed

    Abramowicz, H; Abusleme, A; Afanaciev, K; Alipour Tehrani, N; Balázs, C; Benhammou, Y; Benoit, M; Bilki, B; Blaising, J-J; Boland, M J; Boronat, M; Borysov, O; Božović-Jelisavčić, I; Buckland, M; Bugiel, S; Burrows, P N; Charles, T K; Daniluk, W; Dannheim, D; Dasgupta, R; Demarteau, M; Díaz Gutierrez, M A; Eigen, G; Elsener, K; Felzmann, U; Firlej, M; Firu, E; Fiutowski, T; Fuster, J; Gabriel, M; Gaede, F; García, I; Ghenescu, V; Goldstein, J; Green, S; Grefe, C; Hauschild, M; Hawkes, C; Hynds, D; Idzik, M; Kačarević, G; Kalinowski, J; Kananov, S; Klempt, W; Kopec, M; Krawczyk, M; Krupa, B; Kucharczyk, M; Kulis, S; Laštovička, T; Lesiak, T; Levy, A; Levy, I; Linssen, L; Lukić, S; Maier, A A; Makarenko, V; Marshall, J S; Martin, V J; Mei, K; Milutinović-Dumbelović, G; Moroń, J; Moszczyński, A; Moya, D; Münker, R M; Münnich, A; Neagu, A T; Nikiforou, N; Nikolopoulos, K; Nürnberg, A; Pandurović, M; Pawlik, B; Perez Codina, E; Peric, I; Petric, M; Pitters, F; Poss, S G; Preda, T; Protopopescu, D; Rassool, R; Redford, S; Repond, J; Robson, A; Roloff, P; Ros, E; Rosenblat, O; Ruiz-Jimeno, A; Sailer, A; Schlatter, D; Schulte, D; Shumeiko, N; Sicking, E; Simon, F; Simoniello, R; Sopicki, P; Stapnes, S; Ström, R; Strube, J; Świentek, K P; Szalay, M; Tesař, M; Thomson, M A; Trenado, J; Uggerhøj, U I; van der Kolk, N; van der Kraaij, E; Vicente Barreto Pinto, M; Vila, I; Vogel Gonzalez, M; Vos, M; Vossebeld, J; Watson, M; Watson, N; Weber, M A; Weerts, H; Wells, J D; Weuste, L; Winter, A; Wojtoń, T; Xia, L; Xu, B; Żarnecki, A F; Zawiejski, L; Zgura, I-S

    2017-01-01

    The Compact Linear Collider (CLIC) is an option for a future [Formula: see text] collider operating at centre-of-mass energies up to [Formula: see text], providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper is the first comprehensive presentation of the Higgs physics reach of CLIC operating at three energy stages: [Formula: see text], 1.4 and [Formula: see text]. The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung ([Formula: see text]) and [Formula: see text]-fusion ([Formula: see text]), resulting in precise measurements of the production cross sections, the Higgs total decay width [Formula: see text], and model-independent determinations of the Higgs couplings. Operation at [Formula: see text] provides high-statistics samples of Higgs bosons produced through [Formula: see text]-fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes [Formula: see text] and [Formula: see text] allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of the precision achievable with Higgs measurements at CLIC and describes the interpretation of these measurements in a global fit.

  1. Staging optics considerations for a plasma wakefield acceleration linear collider

    NASA Astrophysics Data System (ADS)

    Lindstrøm, C. A.; Adli, E.; Allen, J. M.; Delahaye, J. P.; Hogan, M. J.; Joshi, C.; Muggli, P.; Raubenheimer, T. O.; Yakimenko, V.

    2016-09-01

    Plasma wakefield acceleration offers acceleration gradients of several GeV/m, ideal for a next-generation linear collider. The beam optics requirements between plasma cells include injection and extraction of drive beams, matching the main beam beta functions into the next cell, canceling dispersion as well as constraining bunch lengthening and chromaticity. To maintain a high effective acceleration gradient, this must be accomplished in the shortest distance possible. A working example is presented, using novel methods to correct chromaticity, as well as scaling laws for a high energy regime.

  2. Heavy neutrino mixing and single production at linear collider

    NASA Astrophysics Data System (ADS)

    Gluza, J.; Maalampi, J.; Raidal, M.; Zrałek, M.

    1997-02-01

    We study the single production of heavy neutrinos via the processes e- e+ -> νN and e- γ -> W- N at future linear colliders. As a base of our considerations we take a wide class of models, both with vanishing and non-vanishing left-handed Majorana neutrino mass matrix mL. We perform a model independent analyses of the existing experimental data and find connections between the characteristic of heavy neutrinos (masses, mixings, CP eigenvalues) and the mL parameters. We show that with the present experimental constraints heavy neutrino masses almost up to the collision energy can be tested in the future experiments.

  3. Characteristic W-ino signals in a linear collider from anomaly mediated supersymmetry breaking

    NASA Astrophysics Data System (ADS)

    Ghosh, Dilip Kumar; Kundu, Anirban; Roy, Probir; Roy, Sourov

    2001-12-01

    Though the minimal model of anomaly-mediated supersymmetry breaking has been significantly constrained by recent experimental and theoretical work, there are still allowed regions of the parameter space for moderate to large values of tan β. We show that these regions will be comprehensively probed in a s=1 TeV e+e- linear collider. Diagnostic signals to this end are studied by zeroing in on a unique and distinct feature of a large class of models in this genre: a neutral W-ino-like lightest supersymmetric particle closely degenerate in mass with a W-ino-like chargino. The pair production processes e+e--->e+/-Le-/+L, e+/-Re-/+R, e+/-Le-/+R, ν~νbar, χ~01χ~02, χ~02χ~02 are all considered at s=1 TeV corresponding to the proposed DESY TEV Energy Superconducting Linear Accelerator linear collider in two natural categories of mass ordering in the sparticle spectra. The signals analyzed comprise multiple combinations of fast charged leptons (any of which can act as the trigger) plus displaced vertices XD (any of which can be identified by a heavy ionizing track terminating in the detector) and/or associated soft pions with characteristic momentum distributions.

  4. Quadrupole Alignment and Trajectory Correction for Future Linear Colliders: SLC Tests of a Dispersion-Free Steering Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assmann, R

    2004-06-08

    The feasibility of future linear colliders depends on achieving very tight alignment and steering tolerances. All proposals (NLC, JLC, CLIC, TESLA and S-BAND) currently require a total emittance growth in the main linac of less than 30-100% [1]. This should be compared with a 100% emittance growth in the much smaller SLC linac [2]. Major advances in alignment and beam steering techniques beyond those used in the SLC are necessary for the next generation of linear colliders. In this paper, we present an experimental study of quadrupole alignment with a dispersion-free steering algorithm. A closely related method (wakefield-free steering) takesmore » into account wakefield effects [3]. However, this method can not be studied at the SLC. The requirements for future linear colliders lead to new and unconventional ideas about alignment and beam steering. For example, no dipole correctors are foreseen for the standard trajectory correction in the NLC [4]; beam steering will be done by moving the quadrupole positions with magnet movers. This illustrates the close symbiosis between alignment, beam steering and beam dynamics that will emerge. It is no longer possible to consider the accelerator alignment as static with only a few surveys and realignments per year. The alignment in future linear colliders will be a dynamic process in which the whole linac, with thousands of beam-line elements, is aligned in a few hours or minutes, while the required accuracy of about 5 pm for the NLC quadrupole alignment [4] is a factor of 20 higher than in existing accelerators. The major task in alignment and steering is the accurate determination of the optimum beam-line position. Ideally one would like all elements to be aligned along a straight line. However, this is not practical. Instead a ''smooth curve'' is acceptable as long as its wavelength is much longer than the betatron wavelength of the accelerated beam. Conventional alignment methods are limited in accuracy by errors in

  5. CP-violating top quark couplings at future linear e^+e^- colliders

    NASA Astrophysics Data System (ADS)

    Bernreuther, W.; Chen, L.; García, I.; Perelló, M.; Poeschl, R.; Richard, F.; Ros, E.; Vos, M.

    2018-02-01

    We study the potential of future lepton colliders to probe violation of the CP symmetry in the top quark sector. In certain extensions of the Standard Model, such as the two-Higgs-doublet model (2HDM), sizeable anomalous top quark dipole moments can arise, which may be revealed by a precise measurement of top quark pair production. We present results from detailed Monte Carlo studies for the ILC at 500 GeV and CLIC at 380 GeV and use parton-level simulations to explore the potential of high-energy operation. We find that precise measurements in e^+e^- → t\\bar{t} production with subsequent decay to lepton plus jets final states can provide sufficient sensitivity to detect Higgs-boson-induced CP violation in a viable two-Higgs-doublet model. The potential of a linear e^+e^- collider to detect CP-violating electric and weak dipole form factors of the top quark exceeds the prospects of the HL-LHC by over an order of magnitude.

  6. High-yield positron systems for linear colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clendenin, J.E.

    1989-04-01

    Linear colliders, such as the SLC, are among those accelerators for which a high-yield positron source operating at the repetition rate of the accelerator is desired. The SLC, having electron energies up to 50 GeV, presents the possibility of generating positron bunches with useful charge even exceeding that of the initial electron bunch. The exact positron yield to be obtained depends on the particular capture, transport and damping system employed. Using 31 GeV electrons impinging on a W-type converter phase-space at the target to the acceptance of the capture rf section, the SLC source is capable of producing, for everymore » electron, up to two positrons within the acceptance of the positron damping ring. The design of this source and the performance of the positron system as built are described. Also, future prospects and limitations for high-yield positron systems are discussed. 11 refs., 5 figs., 3 tabs.« less

  7. Superstrong Adjustable Permanent Magnet for a Linear Collider Final Focus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihara, T.

    A superstrong permanent magnet quadrupole (PMQ) is one of the candidates for the final focus lens for the linear collider because of its compactness and low power consumption. The first fabricated prototype of our PMQ achieved a 300T/m superstrong field gradient with a 100mm overall magnet radius and a 7mm bore radius, but a drawback is its fixed strength. Therefore, a second prototype of PMQ, whose strength is adjustable, was fabricated. Its strength adjustability is based on the ''double ring structure'', rotating subdivided magnet slices separately. This second prototype is being tested. Some of the early results are presented.

  8. Proceedings of the 22nd Texas Symposium On Relativistic Astrophysics At Stanford University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, P.,; Bloom, Elliott D.,; Madejski, G.,

    2005-09-19

    The XXII Texas Symposium on Relativistic Astrophysics, jointly organized by the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC), the Stanford Linear Accelerator Center, and the Physics Department of Stanford University, was held on December 13-17, 2004. Following the tradition of past Texas Symposia the presentations emphasized recent developments in Cosmology, High Energy Astrophysics and the frontiers between these and Gravitation and Particle Physics.

  9. Static beam-based alignment for the Ring-To-Main-Linac of the Compact Linear Collider

    NASA Astrophysics Data System (ADS)

    Han, Y.; Latina, A.; Ma, L.; Schulte, D.

    2017-06-01

    The Compact Linear Collider (CLIC) is a future multi-TeV collider for the post-Large Hadron Collider era. It features high-gradient acceleration and ultra-low emittance to achieve its ambitious goals of high collision energy and peak luminosity. Beam-based alignment (BBA) techniques are mandatory for CLIC to preserve the ultra-low emittances from the damping rings to the interaction point. In this paper, a detailed study of BBA techniques has been carried out for the entire 27 km long ``Ring-To-Main-Linac'' (RTML) section of the CLIC, to correct realistic static errors such as element position offsets, angle, magnetic strength and dynamic magnetic centre shifts. The correction strategy is proved to be very effective and leads to a relaxation of the pre-alignment tolerances for the component installation in the tunnel. This is the first time such a large scale and complex lattice has been corrected to match the design budgets. The techniques proposed could be applied to similarly sized facilities, such as the International Linear Collider, where a similar RTML section is used, or free-electron lasers, which, being equipped with linacs and bunch compressors, present challenges similar to those of the CLIC RTML. Moreover, a new technique is investigated for the emittance tuning procedure: the direct measurement of the interactions between the beams and a set of a few consecutive laser wires. The speed of this technique can be faster comparing to the traditional techniques based on emittance reconstructed from beam size measurements at several positions.

  10. Parallel computation of transverse wakes in linear colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Xiaowei; Ko, Kwok

    1996-11-01

    SLAC has proposed the detuned structure (DS) as one possible design to control the emittance growth of long bunch trains due to transverse wakefields in the Next Linear Collider (NLC). The DS consists of 206 cells with tapering from cell to cell of the order of few microns to provide Gaussian detuning of the dipole modes. The decoherence of these modes leads to two orders of magnitude reduction in wakefield experienced by the trailing bunch. To model such a large heterogeneous structure realistically is impractical with finite-difference codes using structured grids. The authors have calculated the wakefield in the DSmore » on a parallel computer with a finite-element code using an unstructured grid. The parallel implementation issues are presented along with simulation results that include contributions from higher dipole bands and wall dissipation.« less

  11. The International Linear Collider Technical Design Report - Volume 3.II: Accelerator Baseline Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adolphsen, Chris

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carriedmore » out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.« less

  12. Analysis of b quark pair production signal from neutral 2HDM Higgs bosons at future linear colliders

    NASA Astrophysics Data System (ADS)

    Hashemi, Majid; MahdaviKhorrami, Mostafa

    2018-06-01

    In this paper, the b quark pair production events are analyzed as a source of neutral Higgs bosons of the two Higgs doublet model type I at linear colliders. The production mechanism is e+e- → Z^{(*)} → HA → b{\\bar{b}}b{\\bar{b}} assuming a fully hadronic final state. The analysis aim is to identify both CP-even and CP-odd Higgs bosons in different benchmark points accommodating moderate boson masses. Due to pair production of Higgs bosons, the analysis is most suitable for a linear collider operating at √{s} = 1 TeV. Results show that in selected benchmark points, signal peaks are observable in the b-jet pair invariant mass distributions at integrated luminosity of 500 fb^{-1}.

  13. RF pulse shape control in the compact linear collider test facility

    NASA Astrophysics Data System (ADS)

    Kononenko, Oleksiy; Corsini, Roberto

    2018-07-01

    The Compact Linear Collider (CLIC) is a study for an electron-positron machine aiming at accelerating and colliding particles at the next energy frontier. The CLIC concept is based on the novel two-beam acceleration scheme, where a high-current low-energy drive beam generates RF in series of power extraction and transfer structures accelerating the low-current main beam. To compensate for the transient beam-loading and meet the energy spread specification requirements for the main linac, the RF pulse shape must be carefully optimized. This was recently modelled by varying the drive beam phase switch times in the sub-harmonic buncher so that, when combined, the drive beam modulation translates into the required voltage modulation of the accelerating pulse. In this paper, the control over the RF pulse shape with the phase switches, that is crucial for the success of the developed compensation model, is studied. The results on the experimental verification of this control method are presented and a good agreement with the numerical predictions is demonstrated. Implications for the CLIC beam-loading compensation model are also discussed.

  14. A Cost Analysis and Utilization Study of the Stanford University Library System, Prepared for Stanford University, Stanford, California. Memorandum Report.

    ERIC Educational Resources Information Center

    Densmore, Glen; Bourne, Charles

    This study was conducted to determine what fraction of the total cost of the Stanford University library system can properly be charged to each of the four major groups of users: undergraduate students, graduate students, faculty and staff, and non-Stanford users. Eight separate cost elements were developed for each of the library's cost centers…

  15. Upgrading the Digital Electronics of the PEP-II Bunch Current Monitors at the Stanford Linear Accelerator Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kline, Josh; /SLAC

    2006-08-28

    The testing of the upgrade prototype for the bunch current monitors (BCMs) in the PEP-II storage rings at the Stanford Linear Accelerator Center (SLAC) is the topic of this paper. Bunch current monitors are used to measure the charge in the electron/positron bunches traveling in particle storage rings. The BCMs in the PEP-II storage rings need to be upgraded because components of the current system have failed and are known to be failure prone with age, and several of the integrated chips are no longer produced making repairs difficult if not impossible. The main upgrade is replacing twelve old (1995)more » field programmable gate arrays (FPGAs) with a single Virtex II FPGA. The prototype was tested using computer synthesis tools, a commercial signal generator, and a fast pulse generator.« less

  16. Power supply and pulsing strategies for the future linear colliders

    NASA Astrophysics Data System (ADS)

    Brogna, A. S.; Göttlicher, P.; Weber, M.

    2012-02-01

    The concept of the power delivery systems of the future linear colliders exploits the pulsed bunch structure of the beam in order to minimize the average current in the cables and the electronics and thus to reduce the material budget and heat dissipation. Although modern integrated circuit technologies are already available to design a low-power system, the concepts on how to pulse the front-end electronics and further reduce the power are not yet well understood. We propose a possible implementation of a power pulsing system based on a DC/DC converter and we choose the Analog Hadron Calorimeter as a specific example. The model features large switching currents of electronic modules in short time intervals to stimulate the inductive components along the cables and interconnections.

  17. Governance of the International Linear Collider Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, B.; /Oxford U.; Barish, B.

    Governance models for the International Linear Collider Project are examined in the light of experience from similar international projects around the world. Recommendations for one path which could be followed to realize the ILC successfully are outlined. The International Linear Collider (ILC) is a unique endeavour in particle physics; fully international from the outset, it has no 'host laboratory' to provide infrastructure and support. The realization of this project therefore presents unique challenges, in scientific, technical and political arenas. This document outlines the main questions that need to be answered if the ILC is to become a reality. It describesmore » the methodology used to harness the wisdom displayed and lessons learned from current and previous large international projects. From this basis, it suggests both general principles and outlines a specific model to realize the ILC. It recognizes that there is no unique model for such a laboratory and that there are often several solutions to a particular problem. Nevertheless it proposes concrete solutions that the authors believe are currently the best choices in order to stimulate discussion and catalyze proposals as to how to bring the ILC project to fruition. The ILC Laboratory would be set up by international treaty and be governed by a strong Council to whom a Director General and an associated Directorate would report. Council would empower the Director General to give strong management to the project. It would take its decisions in a timely manner, giving appropriate weight to the financial contributions of the member states. The ILC Laboratory would be set up for a fixed term, capable of extension by agreement of all the partners. The construction of the machine would be based on a Work Breakdown Structure and value engineering and would have a common cash fund sufficiently large to allow the management flexibility to optimize the project's construction. Appropriate contingency

  18. Design and system integration of the superconducting wiggler magnets for the Compact Linear Collider damping rings

    NASA Astrophysics Data System (ADS)

    Schoerling, Daniel; Antoniou, Fanouria; Bernhard, Axel; Bragin, Alexey; Karppinen, Mikko; Maccaferri, Remo; Mezentsev, Nikolay; Papaphilippou, Yannis; Peiffer, Peter; Rossmanith, Robert; Rumolo, Giovanni; Russenschuck, Stephan; Vobly, Pavel; Zolotarev, Konstantin

    2012-04-01

    To achieve high luminosity at the collision point of the Compact Linear Collider (CLIC), the normalized horizontal and vertical emittances of the electron and positron beams must be reduced to 500 and 4 nm before the beams enter the 1.5 TeV linear accelerators. An effective way to accomplish ultralow emittances with only small effects on the electron polarization is using damping rings operating at 2.86 GeV equipped with superconducting wiggler magnets. This paper describes a technical design concept for the CLIC damping wigglers.

  19. Characterization of the International Linear Collider damping ring optics

    NASA Astrophysics Data System (ADS)

    Shanks, J.; Rubin, D. L.; Sagan, D.

    2014-10-01

    A method is presented for characterizing the emittance dilution and dynamic aperture for an arbitrary closed lattice that includes guide field magnet errors, multipole errors and misalignments. This method, developed and tested at the Cornell Electron Storage Ring Test Accelerator (CesrTA), has been applied to the damping ring lattice for the International Linear Collider (ILC). The effectiveness of beam based emittance tuning is limited by beam position monitor (BPM) measurement errors, number of corrector magnets and their placement, and correction algorithm. The specifications for damping ring magnet alignment, multipole errors, number of BPMs, and precision in BPM measurements are shown to be consistent with the required emittances and dynamic aperture. The methodology is then used to determine the minimum number of position monitors that is required to achieve the emittance targets, and how that minimum depends on the location of the BPMs. Similarly, the maximum tolerable multipole errors are evaluated. Finally, the robustness of each BPM configuration with respect to random failures is explored.

  20. USLCSG Task Force

    Science.gov Websites

    Unites States Linear Collider Steering Group dot dot dot dot What's New! June 2003 Meeting Welcome to the USLCSG Task Force at the Stanford Linear Accelerator Center [Enter] dot dot SLAC Page Owners

  1. The future of the Large Hadron Collider and CERN.

    PubMed

    Heuer, Rolf-Dieter

    2012-02-28

    This paper presents the Large Hadron Collider (LHC) and its current scientific programme and outlines options for high-energy colliders at the energy frontier for the years to come. The immediate plans include the exploitation of the LHC at its design luminosity and energy, as well as upgrades to the LHC and its injectors. This may be followed by a linear electron-positron collider, based on the technology being developed by the Compact Linear Collider and the International Linear Collider collaborations, or by a high-energy electron-proton machine. This contribution describes the past, present and future directions, all of which have a unique value to add to experimental particle physics, and concludes by outlining key messages for the way forward.

  2. Detectors for Linear Colliders: Calorimetry at a Future Electron-Positron Collider (3/4)

    ScienceCinema

    Thomson, Mark

    2018-04-16

    Calorimetry will play a central role in determining the physics reach at a future e+e- collider. The requirements for calorimetry place the emphasis on achieving an excellent jet energy resolution. The currently favoured option for calorimetry at a future e+e- collider is the concept of high granularity particle flow calorimetry. Here granularity and a high pattern recognition capability is more important than the single particle calorimetric response. In this lecture I will describe the recent progress in understanding the reach of high granularity particle flow calorimetry and the related R&D; efforts which concentrate on test beam demonstrations of the technological options for highly granular calorimeters. I will also discuss alternatives to particle flow, for example the technique of dual readout calorimetry.

  3. Online beam energy measurement of Beijing electron positron collider II linear accelerator

    NASA Astrophysics Data System (ADS)

    Wang, S.; Iqbal, M.; Liu, R.; Chi, Y.

    2016-02-01

    This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.

  4. Online beam energy measurement of Beijing electron positron collider II linear accelerator.

    PubMed

    Wang, S; Iqbal, M; Liu, R; Chi, Y

    2016-02-01

    This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.

  5. 14. Photocopy of 1872 photograph by Eadweard Muybridge in Stanford ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Photocopy of 1872 photograph by Eadweard Muybridge in Stanford University Archives, PC 6. SEWING ROOM ('BIRD ROOM').LEFT TO RIGHT, ANNA MARIA LATHROP (MRS. STANFORD'S SISTER), MRS. JANE ANN (DYER) LATHROP (MRS. STANFORD'S MOTHER), ELIZABETH PHILLIPS (MRS. JOSIAH) STANFORD (GOV. STANFORD'S MOTHER), JANE LATHROP (MRS. LELAND) STANFORD AND HER SON, LELAND, JR. - Leland Stanford House, 800 N Street, Sacramento, Sacramento County, CA

  6. Physics Goals for the Planned Next Linear Collider Engineering Test Facility

    NASA Astrophysics Data System (ADS)

    Raubenheimer, T. O.

    2001-10-01

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well as of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.

  7. Rational Budgeting? The Stanford Case.

    ERIC Educational Resources Information Center

    Chaffee, Ellen Earle

    The budget decision making process at Stanford University, California, from 1970 through 1979 was evaluated in relation to the allocation of general funds to 38 academic departments. Using Simon's theory of bounded rationality and an organizational level of analysis, the Stanford decision process was tested for its rationality through…

  8. The International Linear Collider Technical Design Report - Volume 3.I: Accelerator \\& in the Technical Design Phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adolphsen, Chris

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carriedmore » out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.« less

  9. A Study of the "Stanford Achievement Test Series," Tenth Edition (Stanford 10) Alignment to the Common Core State Standards

    ERIC Educational Resources Information Center

    Pearson Education, Inc., 2011

    2011-01-01

    With the June 2, 2010, release of the Common Core State Standards, state-led education standards developed for K-12 English Language Arts and Mathematics, Pearson Learning Assessments and content experts conducted an in-depth study to analyze how the "Stanford 10 Achievement Test Series," Tenth Edition (Stanford 10) and Stanford 10…

  10. Physics Goals for the Planned Next Linear Collider Engineering Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raubenheimer, Tor O

    2001-10-02

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well asmore » of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.« less

  11. Physics goals for the planned next linear collider engineering test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courtlandt L Bohn et al.

    2001-06-26

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well asmore » of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.« less

  12. Physics goals for the planned next linear collider engineering test facility.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohn, C.; Michelotti, L.; Ostiguy, J.-F.

    2001-07-17

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well asmore » of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.« less

  13. 15. Photocopy of 1872 photograph by Eadweard Muybridge in Stanford ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Photocopy of 1872 photograph by Eadweard Muybridge in Stanford University Archives, PC 6. BASEMENT BILLIARD ROOM, LOOKING SOUTH. LEFT TO RIGHT, LELAND STANFORD, JR., MRS. LELAND STANFORD AND ANNA MARIA LATHROP (MRS. STANFORD'S SISTER) - Leland Stanford House, 800 N Street, Sacramento, Sacramento County, CA

  14. Potential and challenges of the physics measurements with very forward detectors at linear colliders

    NASA Astrophysics Data System (ADS)

    Božović Jelisavčić, Ivanka; Kačarević, G.; Lukić, S.; Poss, S.; Sailer, A.; Smiljanić, I.; FCAL Collaboration

    2016-04-01

    The instrumentation of the very forward region of a detector at a future linear collider (ILC, CLIC) is briefly reviewed. The status of the FCAL R&D activity is given with emphasis on physics and technological challenges. The current status of studies on absolute luminosity measurement, luminosity spectrum reconstruction and high-energy electron identification with the forward calorimeters is given. The impact of FCAL measurements on physics studies is illustrated with an example of the σHWW ṡBR (H →μ+μ-) measurement at 1.4 TeV CLIC.

  15. General, database-driven fast-feedback system for the Stanford Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rouse, F.; Allison, S.; Castillo, S.

    A new feedback system has been developed for stabilizing the SLC beams at many locations. The feedback loops are designed to sample and correct at the 60 Hz repetition rate of the accelerator. Each loop can be distributed across several of the standard 80386 microprocessors which control the SLC hardware. A new communications system, KISNet, has been implemented to pass signals between the microprocessors at this rate. The software is written in a general fashion using the state space formalism of digital control theory. This allows a new loop to be implemented by just setting up the online database andmore » perhaps installing a communications link. 3 refs., 4 figs.« less

  16. 77 FR 59968 - Notice of Intent To Repatriate Cultural Items: Stanford University Archaeology Center, Stanford, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ... sacred object and repatriation to the Indian tribes stated below may occur if no additional claimants... meet the definition of sacred object under 25 U.S.C. 3001. This notice is published as part of the... Stanford, donated the cultural items to the Stanford Museum before her death in 1905. The sacred objects...

  17. Design of 140 MW X-band Relativistic Klystron for Linear Collider

    NASA Astrophysics Data System (ADS)

    Dolbilov, G. V.; Azorsky, N. I.; Shvetsov, V. S.; Balakin, V. E.; Avrakhov, P. V.; Kazakov, S. Yu.; Teryaev, V. E.; Vogel, V. F.

    1997-05-01

    It has been reported at EPAC-96 on successful experimental results on achievement of 100 MW output rf power in a wide aperture (15 mm), high gain (80 dB) 14 GHz VLEPP klystron with distributed suppression of parasitic oscillations (G.V. Dolbilov et al., Proc. EPAC-96, Sitges (Barselona), 10-14 June, 1996, Vol. 3, p. 2143). This report presents design of an electrodynamic structure of the X-band klystron for linear collider with a higher efficiency up to 56 % which will be achieved at the same parameters of the electron beam (U = 1 MeV, I = 250 A, emittance 0.05 π cm\\cdotrad). Design rf output power of the klystron is 140 MW. Experimental investigations of electrodynamic structure of the klystron are planned to perform using the driving beam of the JINR LIA-3000 induction accelerator (E = 1 MeV, I = 250 A, τ = 250 ns).

  18. Detectors for Linear Colliders: Physics Requirements and Experimental Conditions (1/4)

    ScienceCinema

    Battaglia, Marco

    2018-01-12

    How is the anticipated physics program of a future e+e- collider shaping the R&D; for new detectors in collider particle physics ? This presentation will review the main physics requirements and experimental conditions comparing to LHC and LEP. In particular, I shall discuss how e+e- experimentation is expected to change moving from LEP-2 up to multi-TeV energies.

  19. State of the art in electromagnetic modeling for the Compact Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candel, Arno; Kabel, Andreas; Lee, Lie-Quan

    SLAC's Advanced Computations Department (ACD) has developed the parallel 3D electromagnetic time-domain code T3P for simulations of wakefields and transients in complex accelerator structures. T3P is based on state-of-the-art Finite Element methods on unstructured grids and features unconditional stability, quadratic surface approximation and up to 6th-order vector basis functions for unprecedented simulation accuracy. Optimized for large-scale parallel processing on leadership supercomputing facilities, T3P allows simulations of realistic 3D structures with fast turn-around times, aiding the design of the next generation of accelerator facilities. Applications include simulations of the proposed two-beam accelerator structures for the Compact Linear Collider (CLIC) - wakefieldmore » damping in the Power Extraction and Transfer Structure (PETS) and power transfer to the main beam accelerating structures are investigated.« less

  20. High Reliability Prototype Quadrupole for the Next Linear Collider

    NASA Astrophysics Data System (ADS)

    Spencer, C. M.

    2001-01-01

    The Next Linear Collider (NLC) will require over 5600 magnets, each of which must be highly reliable and/or quickly repairable in order that the NLC reach its 85/ overall availability goal. A multidiscipline engineering team was assembled at SLAC to develop a more reliable electromagnet design than historically had been achieved at SLAC. This team carried out a Failure Mode and Effects Analysis (FMEA) on a standard SLAC quadrupole magnet system. They overcame a number of longstanding design prejudices, producing 10 major design changes. This paper describes how a prototype magnet was constructed and the extensive testing carried out on it to prove full functionality with an improvement in reliability. The magnet's fabrication cost will be compared to the cost of a magnet with the same requirements made in the historic SLAC way. The NLC will use over 1600 of these 12.7 mm bore quadrupoles with a range of integrated strengths from 0.6 to 132 Tesla, a maximum gradient of 135 Tesla per meter, an adjustment range of 0 to -20/ and core lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micron during the 20/ adjustment. A magnetic measurement set-up has been developed that can measure sub-micron shifts of a magnetic center. The prototype satisfied the center shift requirement over the full range of integrated strengths.

  1. Federally Sponsored Research: Indirect Costs Charged by Stanford University

    DTIC Science & Technology

    1991-03-13

    controls, or expense vouchers , he did find significant 12 shortcominqg in the CER’s administrative practices at Stanford. Among other things, he found...intensifying its tests of individual transactions and vouchers . In addition, Stanford itself has recognized shortcomings in its accounting system and...long. The V was actually purchased in fiscal year 1988 under what Stanford officials call their "boat donation program." 18 ATTACHMENT 11 ATTACHMENT t

  2. SPIRES (Stanford Public Information Retrieval System) 1970-71 Annual Report.

    ERIC Educational Resources Information Center

    Parker, Edwin B.

    SPIRES (Stanford Public Information REtrieval System) is a computer information storage and retrieval system being developed at Stanford University with funding from the National Science Foundation. SPIRES has two major goals: to provide a user-oriented, interactive, on-line retrieval system for a variety of researchers at Stanford; and to support…

  3. Higgs, SUSY and the standard model at /γγ colliders

    NASA Astrophysics Data System (ADS)

    Hagiwara, Kaoru

    2001-10-01

    In this report, I surveyed physics potential of the γγ option of a linear e +e - collider with the following questions in mind: What new discovery can be expected at a γγ collider in addition to what will be learned at its ' parent' e +e -linear collider? By taking account of the hard energy spectrum and polarization of colliding photons, produced by Compton back-scattering of laser light off incoming e - beams, we find that a γγ collider is most powerful when new physics appears in the neutral spin-zero channel at an invariant mass below about 80% of the c.m. energy of the colliding e -e - system. If a light Higgs boson exists, its properties can be studied in detail, and if its heavier partners or a heavy Higgs boson exists in the above mass range, they may be discovered at a γγ collider. CP property of the scalar sector can be explored in detail by making use of linear polarization of the colliding photons, decay angular correlations of final state particles, and the pattern of interference with the Standard Model amplitudes. A few comments are given for SUSY particle studies at a γγ collider, where a pair of charged spinless particles is produced in the s-wave near the threshold. Squark-onium may be discovered. An e ±γ collision mode may measure the Higgs- Z-γ coupling accurately and probe flavor oscillations in the slepton sector. As a general remark, all the Standard Model background simulation tools should be prepared in the helicity amplitude level, so that simulation can be performed for an arbitrary set of Stokes parameters of the incoming photon beams.

  4. Stanford Conference on Collaborative Library Systems Development. Proceedings of a Conference Held at Stanford University Libraries, October 4-5, 1968.

    ERIC Educational Resources Information Center

    Veaner, Allen B., Ed.; Fasana, Paul J., Ed.

    The conference was convened (1) to disseminate information on the development of Stanford's library automation project, and (2) to disseminate information on the several and joint library automation activities of Chicago, Columbia, and Stanford, and (3) to promote heated discussion and active exchange of ideas and problems between librarians,…

  5. Dynamic imperfections and optimized feedback design in the Compact Linear Collider main linac

    NASA Astrophysics Data System (ADS)

    Eliasson, Peder

    2008-05-01

    The Compact Linear Collider (CLIC) main linac is sensitive to dynamic imperfections such as element jitter, injected beam jitter, and ground motion. These effects cause emittance growth that, in case of ground motion, has to be counteracted by a trajectory feedback system. The feedback system itself will, due to jitter effects and imperfect beam position monitors (BPMs), indirectly cause emittance growth. Fast and accurate simulations of both the direct and indirect effects are desirable, but due to the many elements of the CLIC main linac, simulations may become very time consuming. In this paper, an efficient way of simulating linear (or nearly linear) dynamic effects is described. The method is also shown to facilitate the analytic determination of emittance growth caused by the different dynamic imperfections while using a trajectory feedback system. Emittance growth expressions are derived for quadrupole, accelerating structure, and beam jitter, for ground motion, and for noise in the feedback BPMs. Finally, it is shown how the method can be used to design a feedback system that is optimized for the optics of the machine and the ground motion spectrum of the particular site. This feedback system gives an emittance growth rate that is approximately 10 times lower than that of traditional trajectory feedbacks. The robustness of the optimized feedback system is studied for a number of additional imperfections, e.g., dipole corrector imperfections and faulty knowledge about the machine optics, with promising results.

  6. Stanford's Online Strategy

    ERIC Educational Resources Information Center

    Waters, John K.

    2013-01-01

    Stanford University (CA) is MOOC Central. While the school may not have launched the first massive open online course (MOOC), its efforts have propelled the concept to the forefront of higher education in a matter of months. Starting with Sebastian Thrun's Introduction to Artificial Intelligence course, which enrolled 160,000 students, Stanford…

  7. A Multi-TeV Linear Collider Based on CLIC Technology : CLIC Conceptual Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aicheler, M; Burrows, P.; Draper, M.

    This report describes the accelerator studies for a future multi-TeV e +e - collider based on the Compact Linear Collider (CLIC) technology. The CLIC concept as described in the report is based on high gradient normal-conducting accelerating structures where the RF power for the acceleration of the colliding beams is extracted from a high-current Drive Beam that runs parallel with the main linac. The focus of CLIC R&D over the last years has been on addressing a set of key feasibility issues that are essential for proving the fundamental validity of the CLIC concept. The status of these feasibility studiesmore » are described and summarized. The report also includes a technical description of the accelerator components and R&D to develop the most important parts and methods, as well as a description of the civil engineering and technical services associated with the installation. Several larger system tests have been performed to validate the two-beam scheme, and of particular importance are the results from the CLIC test facility at CERN (CTF3). Both the machine and detector/physics studies for CLIC have primarily focused on the 3 TeV implementation of CLIC as a benchmark for the CLIC feasibility. This report also includes specific studies for an initial 500 GeV machine, and some discussion of possible intermediate energy stages. The performance and operation issues related to operation at reduced energy compared to the nominal, and considerations of a staged construction program are included in the final part of the report. The CLIC accelerator study is organized as an international collaboration with 43 partners in 22 countries. An associated report describes the physics potential and experiments at CLIC and a shorter report in preparation will focus on the CLIC implementation strategy, together with a plan for the CLIC R&D studies 2012–2016. Critical and important implementation issues such as cost, power and schedule will be addressed there.« less

  8. Stanford sets up 100m energy institute

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2009-02-01

    A new institute looking at how to provide for our energy needs while protecting the planet has been set up at Stanford University in the US. Named after one of its founding donors, the Precourt Institute for Energy will incorporate two existing organizations on the Stanford campus and be supported by donations of 100m plus the 30m that the university already spends on energy research each year.

  9. Matter, Energy, Space and Time: The International Linear Collider Physics Prospects and International Aspects

    NASA Astrophysics Data System (ADS)

    Wagner, Albrecht

    2006-04-01

    Over the past century, physicists have sought to explain the character of the matter and energy in our universe, to show how the basic forces of nature and the building blocks of matter come about, and to explore the fabric of space and time. In the past three decades, experiments at laboratories around the world have given us a precise confirmation of the underlying theory called the standard model. These particle physics advances have a direct impact for our understanding of the structure of the universe, both at its inception in the Big Bang, and in its evolution to the present and future. The final synthesis is not yet fully clear, but we know with confidence that major discoveries expanding the standard model framework will occur at the next generation of accelerators. The Large Hadron Collider (LHC) being built at CERN will take us into the discovery realm. The proposed International Linear Collider (ILC) will extend the discoveries and provide a wealth of precision measurements that are essential for giving deeper understanding of their meaning, and pointing the way to further evolution of particle physics in the future. A world-wide consensus has formed for a baseline ILC project at energies of 500 GeV and beyond. The choice of the superconducting technology as basis for the ILC has paved the way for a global design effort which has now taken full speed.

  10. CCD developments for particle colliders

    NASA Astrophysics Data System (ADS)

    Stefanov, Konstantin D.

    2006-09-01

    Charge Coupled Devices (CCDs) have been successfully used in several high-energy physics experiments over the last 20 years. Their small pixel size and excellent precision provide superb tool for studying of short-lived particles and understanding the nature at fundamental level. Over the last years the Linear Collider Flavour Identification (LCFI) collaboration has developed Column-Parallel CCDs (CPCCD) and CMOS readout chips to be used for the vertex detector at the International Linear Collider (ILC). The CPCCDs are very fast devices capable of satisfying the challenging requirements imposed by the beam structure of the superconducting accelerator. First set of prototype devices have been designed, manufactured and successfully tested, with second-generation chips on the way. Another idea for CCD-based device, the In-situ Storage Image Sensor (ISIS) is also under development and the first prototype is in production.

  11. 11. Photocopy of 1872 photograph by Eadweard Muybridge in Stanford ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photocopy of 1872 photograph by Eadweard Muybridge in Stanford University Archives, PC 6. NORTHWEST DOUBLE PARLOR, LOOKING NORTH - Leland Stanford House, 800 N Street, Sacramento, Sacramento County, CA

  12. Analog VS Digital Hadron Calorimetry at a Future Electron-Positron Linear Collider

    NASA Astrophysics Data System (ADS)

    Magill, Stephen R.

    2005-02-01

    Precision jet measurements at a future e+e- linear collider may only be possible using so-called Particle Flow Algorithms (PFAs). While there are many possible implementations of P-flow techniques, they all have in common separation of induced calorimeter showers from charged and neutral hadrons (as well as photons) within a jet. Shower reconstruction in the calorimeter becomes more important than energy measurement of hadrons. The calorimeter cells must be highly granular both transverse to the particle trajectory and in longitudinal segmentation. It is probable that as the cell size decreases, it will be harder to get an energy measure from each cell (analog calorimetry). Using only the hit information (digital calorimetry) may be the best way to measure the neutral hadron energy contribution to jets. In this paper, comparisons of analog and digital methods of measuring the contributions of neutral hadrons to jets are made in simulation and in the context of a particular PFA, indicating that the digital method is at least equal to the analog case in jet energy resolution.

  13. Optical pulse evolution in the Stanford free-electron laser and in a tapered wiggler

    NASA Technical Reports Server (NTRS)

    Colson, W. B.

    1982-01-01

    The Stanford free electron laser (FEL) oscillator is driven by a series of electron pulses from a high-quality superconducting linear accelerator (LINAC). The electrons pass through a transverse and nearly periodic magnetic field, a 'wiggler', to oscillate and amplify a superimposed optical pulse. The rebounding optical pulse must be closely synchronized with the succession of electron pulses from the accelerator, and can take on a range of structures depending on the precise degree of synchronism. Small adjustments in desynchronism can make the optical pulse either much shorter or longer than the electron pulse, and can cause significant subpulse structure. The oscillator start-up from low level incoherent fields is discussed. The effects of desynchronism on coherent pulse propagation are presented and compared with recent Stanford experiments. The same pulse propagation effects are studied for a magnet design with a tapered wavelength in which electrons are trapped in the ponderomotive potential.

  14. 16. Photocopy of 1872 photograph by Eadweard Muybridge in Stanford ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Photocopy of 1872 photograph by Eadweard Muybridge in Stanford University Archives, PC 6. BALLROOM IN NEW SOUTH WING, LOOKING WEST - Leland Stanford House, 800 N Street, Sacramento, Sacramento County, CA

  15. 10. Photocopy of 1872 photograph by Eadweard Muybridge in Stanford ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photocopy of 1872 photograph by Eadweard Muybridge in Stanford University Archives, PC 6. NORTHWEST DOUBLE PARLOR, LOOKING SOUTH (Present Chapel Space) - Leland Stanford House, 800 N Street, Sacramento, Sacramento County, CA

  16. 5. Photocopy of 1872 photograph by Eadweard Muybridge in Stanford ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photocopy of 1872 photograph by Eadweard Muybridge in Stanford University Archives, PC 6. VIEW FROM THE SOUTHWEST, SHOWING NEW SOUTH WING - Leland Stanford House, 800 N Street, Sacramento, Sacramento County, CA

  17. 13. Photocopy of 1872 photograph by Eadweard Muybridge in Stanford ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Photocopy of 1872 photograph by Eadweard Muybridge in Stanford University Archives, PC 6. DINING ROOM IN 'NEW' SOUTH WING, LOOKING WEST - Leland Stanford House, 800 N Street, Sacramento, Sacramento County, CA

  18. 75 FR 41157 - Stanford University Habitat Conservation Plan; Extension of Comment Period

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... Fish and Wildlife Service RIN 0648-XX52 Stanford University Habitat Conservation Plan; Extension of... extending the comment period for our joint request for comments on the Stanford University Habitat... issued Stanford University Habitat Conservation Plan, a DEIS for Authorization of Incidental Take and...

  19. 12. Photocopy of 1872 photograph by Eadweard Muybridge in Stanford ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Photocopy of 1872 photograph by Eadweard Muybridge in Stanford University Archives, PC 6. WEST PARLOR (NEW WING) AND DINING ROOM, LOOKING EAST - Leland Stanford House, 800 N Street, Sacramento, Sacramento County, CA

  20. [Progress and challenge of Stanford type A aortic dissection in China].

    PubMed

    Sun, L Z; Li, J R

    2017-04-01

    In recent 20 years, the rapid development of acute Stanford type A aortic dissection in China has been mainly due to three aspects: (1) the refined classification of aortic dissection based on Stanford classification, (2) right axillary artery canal and selective cerebral perfusion technology become basic cardiopulmonary bypass strategy for Stanford type A aortic dissection, and (3) total aortic arch replacement and descending aortic stent graft surgery (Sun's surgery) become the standard treatment of Stanford type A aortic dissection. However, there are still many problems in the diagnosis and treatment of aortic dissection in China, such as: (1) unstandardized, lack of comprehensive guidelines of aortic dissection, (2) immature, perioperative organ protection and intraoperative blood protection technology remains a big flaw, and (3) it takes a long time to get patient prepared for surgery. In conclusion, as to the issue of the management of acute Stanford type A aortic dissection, there will be a long way for Chinese doctors to go. Peers should pay more attention to this problem and take more efforts, so that the outcome of acute Stanford type A aortic dissection surgical patients can be improved.

  1. 1998 NASA-ASEE-Stanford Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report presents the essential features and highlights of the 1998 Summer Faculty Fellowship Program at Ames Research Center and Dryden Flight Research Center in a comprehensive and concise form. Summary reports describing the fellows' technical accomplishments are enclosed in the attached technical report. The proposal for the 1999 NASA-ASEE-Stanford Summer Faculty Fellowship Program is being submitted under separate cover. Of the 31 participating fellows, 27 were at Ames and 4 were at Dryden. The Program's central feature is the active participation by each fellow in one of the key technical activities currently under way at either the NASA Ames Research Center or the NASA Dryden Flight Research Center. The research topic is carefully chosen in advance to satisfy the criteria of: (1) importance to NASA, (2) high technical level, and (3) a good match to the interests, ability, and experience of the fellow, with the implied possibility of NASA-supported follow-on work at the fellow's home institution. Other features of the Summer Faculty Fellowship Program include participation by the fellows in workshops and seminars at Stanford, the Ames Research Center, and other off-site locations. These enrichment programs take place either directly or remotely, via the Stanford Center for Professional Development, and also involve specific interactions between fellows and Stanford faculty on technical and other academic subjects. A few, brief remarks are in order to summarize the fellows' opinions of the summer program. It is noteworthy that 90% of the fellows gave the NASA-Ames/Dryden- Stanford program an "excellent" rating and the remaining 10%, "good." Also, 100% would recommend the program to their colleagues as an effective means of furthering their professional development as teachers and researchers. Last, but not least, 87% of the fellows stated that a continuing research relationship with their NASA colleagues' organization probably would be maintained. Therefore

  2. A Superstrong Adjustable Permanent Magnet for the Final Focus Quadrupole in a Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihara, T.

    A super strong permanent magnet quadrupole (PMQ) was fabricated and tested. It has an integrated strength of 28.5T with overall length of 10 cm and a 7mm bore radius. The final focus quadrupole of a linear collider needs a variable focal length. This can be obtained by slicing the magnet into pieces along the beamline direction and rotating these slices. But this technique may lead to movement of the magnetic center and introduction of a skew quadrupole component when the strength is varied. A ''double ring structure'' can ease these effects. A second prototype PMQ, containing thermal compensation materials andmore » with a double ring structure, has been fabricated. Worm gear is selected as the mechanical rotating scheme because the double ring structure needs a large torque to rotate magnets. The structure of the second prototype PMQ is shown.« less

  3. The Stanford how things work project

    NASA Technical Reports Server (NTRS)

    Fikes, Richard; Gruber, Tom; Iwasaki, Yumi

    1994-01-01

    We provide an overview of the Stanford How Things Work (HTW) project, an ongoing integrated collection of research activities in the Knowledge Systems Laboratory at Stanford University. The project is developing technology for representing knowledge about engineered devices in a form that enables the knowledge to be used in multiple systems for multiple reasoning tasks and reasoning methods that enable the represented knowledge to be effectively applied to the performance of the core engineering task of simulating and analyzing device behavior. The central new capabilities currently being developed in the project are automated assistance with model formulation and with verification that a design for an electro-mechanical device satisfies its functional specification.

  4. SLC: The End Game

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raimondi, Pantaleo

    The design of the Stanford Linear Collider (SLC) called for a beam intensity far beyond what was practically achievable. This was due to intrinsic limitations in many subsystems and to a lack of understanding of the new physics of linear colliders. Real progress in improving the SLC performance came from precision, non-invasive diagnostics to measure and monitor the beams and from new techniques to control the emittance dilution and optimize the beams. A major contribution to the success of the last 1997-98 SLC run came from several innovative ideas for improving the performance of the Final Focus (FF). This papermore » describes some of the problems encountered and techniques used to overcome them. Building on the SLC experience, we will also present a new approach to the FF design for future high energy linear colliders.« less

  5. A First Assessment of Two-Beam Linear Colliders and Longer-Term Two-Beam R& D Issues at SLAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loew, Greg

    2001-06-05

    The purpose of this document is to summarize the work that has been done at SLAC in the last three or four months to assess the possibilities of two-beam linear colliders proposed by Ron Ruth, and to compare these colliders to the current NLC designs and their costs. The work is based on general discussions with C. Adolphsen, D. Burke, J. Irwin, J. Paterson, R. Ruth, T. Lavine and T. Raubenheimer, with considerable work done by the latter two. Given the complexities of these machines, the fact that the designs are far from complete and that all cost estimates aremore » still in a state of flux, it is clear that the conclusions drawn in this report cannot be cast in concrete. On the other hand, it does not seem too early to present the results that have been gathered so far, even if the facts contain significant uncertainties and the costs have large error bars. Now that R. Ruth has returned to SLAC, he will be able to add his point of view to the discussion. At this time, the conclusions presented here are the sole responsibility of the author.« less

  6. Information Retrieval (SPIRES) and Library Automation (BALLOTS) at Stanford University.

    ERIC Educational Resources Information Center

    Ferguson, Douglas, Ed.

    At Stanford University, two major projects have been involved jointly in library automation and information retrieval since 1968: BALLOTS (Bibliographic Automation of Large Library Operations) and SPIRES (Stanford Physics Information Retrieval System). In early 1969, two prototype applications were activated using the jointly developed systems…

  7. Using Spin Correlations to Distinguish Zh from ZA at the International Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahlon, Gregory; /Penn State U., Mont Alto; Parke, Stephen J.

    2006-06-01

    We investigate how to exploit the spin information imparted to the Z boson in associated Higgs production at a future linear collider as an aid in distinguishing between CP-even and CP-odd Higgs bosons. We apply a generalized spin-basis analysis which allows us to study the possibilities offered by non-traditional choices of spin projection axis. In particular, we find that the Z bosons produced in association with a CP-even Higgs via polarized collisions are in a single transverse spin-state (> 90% purity) when we use the Zh-transverse basis, provided that the Z bosons are not ultra-relativistic (speed < 0.9c). This samemore » basis applied to the associated production of a CP-odd Higgs yields Z's that are an approximately equal mixture of longitudinal and transverse polarizations. We present a decay angular distribution which could be used to distinguish between the CP-even and CP-odd cases. Finally, we make a few brief remarks about how this distribution would be affected if the Higgs boson turns out to not be a CP-eigenstate.« less

  8. A Fast Monte Carlo Simulation for the International Linear Collider Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furse, D.; /Georgia Tech

    2005-12-15

    The following paper contains details concerning the motivation for, implementation and performance of a Java-based fast Monte Carlo simulation for a detector designed to be used in the International Linear Collider. This simulation, presently included in the SLAC ILC group's org.lcsim package, reads in standard model or SUSY events in STDHEP file format, stochastically simulates the blurring in physics measurements caused by intrinsic detector error, and writes out an LCIO format file containing a set of final particles statistically similar to those that would have found by a full Monte Carlo simulation. In addition to the reconstructed particles themselves, descriptionsmore » of the calorimeter hit clusters and tracks that these particles would have produced are also included in the LCIO output. These output files can then be put through various analysis codes in order to characterize the effectiveness of a hypothetical detector at extracting relevant physical information about an event. Such a tool is extremely useful in preliminary detector research and development, as full simulations are extremely cumbersome and taxing on processor resources; a fast, efficient Monte Carlo can facilitate and even make possible detector physics studies that would be very impractical with the full simulation by sacrificing what is in many cases inappropriate attention to detail for valuable gains in time required for results.« less

  9. 76 FR 9752 - Stanford University, et al.; Notice of Consolidated Decision on Applications for Duty-Free Entry...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... DEPARTMENT OF COMMERCE International Trade Administration Stanford University, et al.; Notice of... Constitution Avenue., NW., Washington, DC. Docket Number: 10-070. Applicant: Stanford University, Stanford CA... notice at 76 FR 2647, January 14, 2011. Docket Number: 10-071. Applicant: Stanford University, Stanford...

  10. Cryogenic system configuration for the International Linear Collider (ILC) at mountainous site

    NASA Astrophysics Data System (ADS)

    Nakai, H.; Okamura, T.; Delikaris, D.; Peterson, T.; Yamamoto, A.

    2017-02-01

    The International Linear Collider (ILC) plans to make use of ten cryoplants for its main linacs, each providing 19 kW at 4.5 K equivalent and among of it 3.6 kW at 2 K. Each cryoplant will consist of various cryogenic components such as a 4.5 K refrigerator cold box, a 2 K refrigerator cold box, and helium compressors and so on. In the technical design report (TDR) of the ILC, due to the mountainous topology, almost all cryogenic components would be installed in underground cryogenic caverns next to the main linac tunnels and only cooling towers on surface area. However, we would like to find a more effective and sophisticated configuration of the cryoplant components (cryogenic configuration). Under several constraints of technical, geographical, and environmental points of view, the cryogenic configuration should be considered carefully to satisfy such various conditions. After discussions on this topic conducted at various workshops and conferences, an updated cryogenic configuration is suggested. The proposed updated configuration may affect the total construction cost of the ILC and the entire structure of the ILC conventional facilities. The updated cryogenic configuration is presented and the on-going discussions with the conventional facilities and siting (CFS) colleagues for further improvement of the cryogenic configuration is introduced.

  11. SPIRES (Stanford Public Information REtrieval System). Annual Report (2d, 1968).

    ERIC Educational Resources Information Center

    Parker, Edwin B.; And Others

    During 1968 the name of the project was changed from Stanford Physics Information Retrieval System" to "Stanford Public Information Retrieval System" to reflect the broadening of perspective and goals due to formal collaboration with Project BALLOTS (Bibliographic Automation of Large Library Operations using a Time-Sharing System).…

  12. A CMOS pixel sensor prototype for the outer layers of linear collider vertex detector

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Morel, F.; Hu-Guo, C.; Himmi, A.; Dorokhov, A.; Hu, Y.

    2015-01-01

    The International Linear Collider (ILC) expresses a stringent requirement for high precision vertex detectors (VXD). CMOS pixel sensors (CPS) have been considered as an option for the VXD of the International Large Detector (ILD), one of the detector concepts proposed for the ILC. MIMOSA-31 developed at IPHC-Strasbourg is the first CPS integrated with 4-bit column-level ADC for the outer layers of the VXD, adapted to an original concept minimizing the power consumption. It is composed of a matrix of 64 rows and 48 columns. The pixel concept combines in-pixel amplification with a correlated double sampling (CDS) operation in order to reduce the temporal noise and fixed pattern noise (FPN). At the bottom of the pixel array, each column is terminated with a self-triggered analog-to-digital converter (ADC). The ADC design was optimized for power saving at a sampling frequency of 6.25 MS/s. The prototype chip is fabricated in a 0.35 μm CMOS technology. This paper presents the details of the prototype chip and its test results.

  13. One Hundred Years of History at Stanford University: Thoracic and Cardiovascular Surgery.

    PubMed

    Woo, Y Joseph; Reitz, Bruce A

    2015-01-01

    The history of thoracic and cardiovascular surgery at Stanford spans a century long period, beginning not long after the founding of Stanford University. Pioneering Stanford surgeons have made landmark discoveries and innovations in pulmonary, transplantation, thoracic aortic, mechanical circulatory support, minimally invasive, valvular, and congenital heart surgery. Fundamental research formed the foundation underlying these and many other advances. Educating and training the subsequent leaders of cardiothoracic surgery has throughout this century-long history constituted a mission of the highest merit. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. rf design of a pulse compressor with correction cavity chain for klystron-based compact linear collider

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Zha, Hao; Syratchev, Igor; Shi, Jiaru; Chen, Huaibi

    2017-11-01

    We present an X-band high-power pulse compression system for a klystron-based compact linear collider. In this system design, one rf power unit comprises two klystrons, a correction cavity chain, and two SLAC Energy Doubler (SLED)-type X-band pulse compressors (SLEDX). An rf pulse passes the correction cavity chain, by which the pulse shape is modified. The rf pulse is then equally split into two ways, each deploying a SLEDX to compress the rf power. Each SLEDX produces a short pulse with a length of 244 ns and a peak power of 217 MW to power four accelerating structures. With the help of phase-to-amplitude modulation, the pulse has a dedicated shape to compensate for the beam loading effect in accelerating structures. The layout of this system and the rf design and parameters of the new pulse compressor are described in this work.

  15. Stanford-A acute aortic dissection, inflammation, and metalloproteinases: a review.

    PubMed

    Cifani, Noemi; Proietta, Maria; Tritapepe, Luigi; Di Gioia, Cira; Ferri, Livia; Taurino, Maurizio; Del Porto, Flavia

    2015-01-01

    Acute aortic dissection (AAD) is a life-threatening disease with an incidence of about 2.6-3.6 cases per 100,000/year. Depending on the site of rupture, AAD is classified as Stanford-A when the ascending aortic thoracic tract and/or the arch are involved, and Stanford-B when the descending thoracic aorta and/or aortic abdominal tract are targeted. It was recently shown that inflammatory pathways underlie aortic rupture in both type A and type B Stanford AAD. An immune infiltrate has been found within the middle and outer tunics of dissected aortic specimens. It has also been observed that the recall and activation of macrophages inside the middle tunic are key events in the early phases of AAD. Macrophages are able to release metalloproteinases (MMPs) and pro-inflammatory cytokines which, in turn, give rise to matrix degradation and neoangiogenesis. An imbalance between the production of MMPs and MMP tissue inhibitors is pivotal in the extracellular matrix degradation underlying aortic wall remodelling in dissections occurring both in inherited conditions and in atherosclerosis. Among MMPs, MMP-12 is considered a specific marker of aortic wall disease, whatever the genetic predisposition may be. The aim of this review is, therefore, to take a close look at the immune-inflammatory mechanisms underlying Stanford-A AAD.

  16. Beam-based measurements of long-range transverse wakefields in the Compact Linear Collider main-linac accelerating structure

    DOE PAGES

    Zha, Hao; Latina, Andrea; Grudiev, Alexej; ...

    2016-01-20

    The baseline design of CLIC (Compact Linear Collider) uses X-band accelerating structures for its main linacs. In order to maintain beam stability in multibunch operation, long-range transverse wakefields must be suppressed by 2 orders of magnitude between successive bunches, which are separated in time by 0.5 ns. Such strong wakefield suppression is achieved by equipping every accelerating structure cell with four damping waveguides terminated with individual rf loads. A beam-based experiment to directly measure the effectiveness of this long-range transverse wakefield and benchmark simulations was made in the FACET test facility at SLAC using a prototype CLIC accelerating structure. Furthermore,more » the experiment showed good agreement with the simulations and a strong suppression of the wakefields with an unprecedented minimum resolution of 0.1 V/(pC mm m).« less

  17. Stanford university medical media and information technologies hosts open source surgical simulation workshop.

    PubMed

    Cornelius, Craig W; Heinrichs, Leroy; Youngblood, Patricia; Dev, Parvati

    2007-01-01

    Stanford University Medical Media and Information Technologies's technical workshop "Prototyping of Surgical Simulators using Open Source Simulation Software" was held in August 2006 at Stanford University. The objectives, program, and topics covered are presented in this short report.

  18. A new US-UK diagnostic project: mood elevation and depression in first-year undergraduates at Oxford and Stanford universities.

    PubMed

    Chandler, R A; Wang, P W; Ketter, T A; Goodwin, G M

    2008-07-01

    To investigate differences in prevalence of mood elevation, distress and depression among first-year undergraduates at Oxford and Stanford universities. An online survey was sent to Oxford and Stanford first-year undergraduate students for two consecutive years in the winter of 2005 and 2006. Students completed a survey that assessed mood symptoms and medication use. Both universities had similar rates of distress by General Health Questionnaire (Oxford - 42.4%; Stanford - 38.3%), depression by Primary Care Evaluation of Mental Disorders (Oxford - 6.2%; Stanford - 6.6%), and psychotropic and non-psychotropic medication usage (psychotropic: Oxford - 1.5%; Stanford 3.5%; nonpsychotropic: Oxford - 13.3%; Stanford - 18%). Oxford had higher rates of mood elevation by Mood Disorder Questionnaire (MDQ) (Oxford - 4%; Stanford - 1.7%). Oxford and Stanford students have similar rates of mood distress, depression and general medication usage. Students at Oxford have a higher prevalence of MDQ scores that possibly indicate a bipolar disorder, while Stanford students are prescribed more psychotropics.

  19. Promoting the "Public Welfare" in Wartime: Stanford University during World War II

    ERIC Educational Resources Information Center

    Dorn, Charles

    2005-01-01

    As with many U.S. colleges and universities during World War II, Stanford University responded to the demands of mobilization by increasing its commitment to technical training and adopting a defense research agenda. In a striking departure from this national trend, however, Stanford also established its School of Humanities in 1942. By examining…

  20. Retrograde Ascending Aortic Dissection after Stent Grafting for Stanford Type B Aortic Dissection with Severe Limb Ischemia.

    PubMed

    Higuchi, Yoshiro; Tochii, Masato; Takami, Yoshiyuki; Kobayashi, Akihiro; Yanagisawa, Tsutomu; Amano, Kentaro; Sakurai, Yusuke; Ishida, Michiko; Ishikawa, Hiroshi; Hattori, Koji; Takagi, Yasushi

    2017-03-24

    We report a rare case of retrograde Stanford type A aortic dissection after endovascular repair for complicated Stanford type B aortic dissection. A 45-year-old man presented with a sudden onset of back pain and was transferred to our hospital. Computed tomography demonstrated acute Stanford type B aortic dissection with lower limb ischemia. Emergency endovascular surgery was planned for repair of the Stanford type B aortic dissection. The patient suddenly developed recurrent chest pain 10 days after the initial procedure. Computed tomography revealed retrograde Stanford type A aortic dissection involving the ascending aorta and aortic arch. The patient underwent a successful emergency total aortic arch replacement.

  1. Minimal supersymmetric B - L extension of the standard model, heavy H and light h Higgs boson production and decay at future e + e - linear colliders

    NASA Astrophysics Data System (ADS)

    Ramírez-Sánchez, F.; Gutierrez-Rodríguez, A.; Hernández-Ruiz, M. A.

    2017-10-01

    We study the phenomenology of the light h and heavy H Higgs boson production and decay in the context of a U(1) B - L extension of the standard model with an additional Z´ boson at future e + e - linear colliders with center-of-mass energies of √𝑠 = 500 - 3000 GeV and integrated luminosities of L = 500 - 2000 fb-1. The study includes the processes e + e - → (Z, Z´) → Zh and e + e - → (Z, Z´) → ZH, considering both the resonant and non-resonant effects. We find that the total number of expected Zh and ZH events can reach 106 and 105, respectively, which is a very optimistic scenario allowing us to perform precision measurements for both Higgs bosons h and H, as well as for the Z‧ boson in future high-energy and high-luminosity e + e - colliders.

  2. Academic Employment of Women at Stanford.

    ERIC Educational Resources Information Center

    Miner, Anne S.

    Women in the academic world, as in other types of professions, have traditionally been discriminated against with regard to rank, promotions, and salary. The author or the present document was asked to carry out a special study and analysis of the employment of women at Stanford University; to review the status of women at all levels of…

  3. Relative Humidity in Limited Streamer Tubes for Stanford Linear Accelerator Center's BaBar Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, M.I.; /MIT; Convery, M.

    2005-12-15

    The BABAR Detector at the Stanford Linear Accelerator Center studies the decay of B mesons created in e{sup +}e{sup -} collisions. The outermost layer of the detector, used to detect muons and neutral hadrons created during this process, is being upgraded from Resistive Plate Chambers (RPCs) to Limited Streamer Tubes (LSTs). The standard-size LST tube consists of eight cells, where a silver-plated wire runs down the center of each. A large potential difference is placed between the wires and ground. Gas flows through a series of modules connected with tubing, typically four. LSTs must be carefully tested before installation, asmore » it will be extremely difficult to repair any damage once installed in the detector. In the testing process, the count rate in most modules showed was stable and consistent with cosmic ray rate over an approximately 500 V operating range between 5400 to 5900 V. The count in some modules, however, was shown to unexpectedly spike near the operation point. In general, the modules through which the gas first flows did not show this problem, but those further along the gas chain were much more likely to do so. The suggestion was that this spike was due to higher humidity in the modules furthest from the fresh, dry inflowing gas, and that the water molecules in more humid modules were adversely affecting the modules' performance. This project studied the effect of humidity in the modules, using a small capacitive humidity sensor (Honeywell). The sensor provided a humidity-dependent output voltage, as well as a temperature measurement from a thermistor. A full-size hygrometer (Panametrics) was used for testing and calibrating the Honeywell sensors. First the relative humidity of the air was measured. For the full calibration, a special gas-mixing setup was used, where relative humidity of the LST gas mixture could be varied from almost dry to almost fully saturated. With the sensor calibrated, a set of sensors was used to measure humidity vs

  4. SiD Linear Collider Detector R&D, DOE Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brau, James E.; Demarteau, Marcel

    2015-05-15

    The Department of Energy’s Office of High Energy Physics supported the SiD university detector R&D projects in FY10, FY11, and FY12 with no-cost extensions through February, 2015. The R&D projects were designed to advance the SiD capabilities to address the fundamental questions of particle physics at the International Linear Collider (ILC): • What is the mechanism responsible for electroweak symmetry breaking and the generation of mass? • How do the forces unify? • Does the structure of space-time at small distances show evidence for extra dimensions? • What are the connections between the fundamental particles and forces and cosmology? Siliconmore » detectors are used extensively in SiD and are well-matched to the challenges presented by ILC physics and the ILC machine environment. They are fast, robust against machine-induced background, and capable of very fine segmentation. SiD is based on silicon tracking and silicon-tungsten sampling calorimetry, complemented by powerful pixel vertex detection, and outer hadronic calorimetry and muon detection. Radiation hard forward detectors which can be read out pulse by pulse are required. Advanced calorimetry based on a particle flow algorithm (PFA) provides excellent jet energy resolution. The 5 Tesla solenoid is outside the calorimeter to improve energy resolution. PFA calorimetry requires fine granularity for both electromagnetic and hadronic calorimeters, leading naturally to finely segmented silicon-tungsten electromagnetic calorimetry. Since silicon-tungsten calorimetry is expensive, the detector architecture is compact. Precise tracking is achieved with the large magnetic field and high precision silicon microstrips. An ancillary benefit of the large magnetic field is better control of the e⁺e⁻ pair backgrounds, permitting a smaller radius beampipe and improved impact parameter resolution. Finally, SiD is designed with a cost constraint in mind. Significant advances and new capabilities have been

  5. Hypersonic research at Stanford University

    NASA Technical Reports Server (NTRS)

    Candler, Graham; Maccormack, Robert

    1988-01-01

    The status of the hypersonic research program at Stanford University is discussed and recent results are highlighted. The main areas of interest in the program are the numerical simulation of radiating, reacting and thermally excited flows, the investigation and numerical solution of hypersonic shock wave physics, the extension of the continuum fluid dynamic equations to the transition regime between continuum and free-molecule flow, and the development of novel numerical algorithms for efficient particulate simulations of flowfields.

  6. Risk factors for postoperative hypoxemia in patients undergoing Stanford A aortic dissection surgery.

    PubMed

    Wang, Yinghua; Xue, Song; Zhu, Hongsheng

    2013-04-30

    The purpose of this study is to identify the risk factors for postoperative hypoxemia in patients with Stanford A aortic dissection surgery and their relation to clinical outcomes. Clinical records of 186 patients with postoperative hypoxemia in Stanford A aortic dissection were analyzed retrospectively. The patients were divided into two groups by postoperative oxygen fraction (PaO2/FiO2):hypoxemia group (N=92) and non-hypoxemia group (N=94). We found that the incidence of postoperative hypoxemia was 49.5%. Statistical analysis by t-test and χ2 indicated that acute onset of the aortic dissection (p=0.000), preoperative oxygen fraction (PaO2/FiO2) ≤200 mmHg(p=0.000), body mass index (p=0.008), circulatory arrest (CA) time (p=0.000) and transfusion more than 3000 ml(p=0.000) were significantly associated with postoperative hypoxemia. Multiple logistic regression analysis showed that preoperative hypoxemia, CA time and transfusion more than 3000 ml were independently associated with postoperative hypoxemia in Stanford A aortic dissection. Our results suggest that postoperative hypoxemia is a common complication in patients treated by Stanford A aortic dissection surgery. Preoperative oxygen fraction lower than 200 mmHg, longer CA time and transfusion more than 3000 ml are predictors of postoperative hypoxemia in Stanford A aortic dissection.

  7. Stanford V program for locally extensive and advanced Hodgkin lymphoma: the Memorial Sloan-Kettering Cancer Center experience.

    PubMed

    Edwards-Bennett, S M; Jacks, L M; Moskowitz, C H; Wu, E J; Zhang, Z; Noy, A; Portlock, C S; Straus, D J; Zelenetz, A D; Yahalom, J

    2010-03-01

    The Stanford group has reported excellent results with the Stanford V regimen for patients with bulky and/or advanced Hodgkin lymphoma (HL). However, Gobbi reported markedly inferior failure-free survival (FFS) comparing Stanford V to other regimens but included major deviations from the original program. We retrospectively examined whether treatment at our institution carefully following Stanford V guidelines would confirm the original Stanford outcome data. From June 1995 to May 2002, 126 patients with either locally extensive or advanced HL were treated with the 12-week Stanford V chemotherapy program followed by 36-Gy involved-field radiotherapy to sites initially > or =5 cm and/or to macroscopic splenic disease. Overall, 26% had stage IV disease and 20% had international prognostic score (IPS) > or =4. Overall survival (OS), disease-specific survival, progression-free survival (PFS), FFS, and freedom from second relapse (FF2R) were determined. The 5- and 7-year OS were 90% and 88%, respectively. The 5-year FFS was 78%. IPS > or =4 was a significant independent predictor of worse OS and PFS. The FF2R was 64% at 3 years. Stanford V with appropriate radiotherapy is a highly effective regimen for locally extensive and advanced HL.

  8. Implementation of GenePattern within the Stanford Microarray Database.

    PubMed

    Hubble, Jeremy; Demeter, Janos; Jin, Heng; Mao, Maria; Nitzberg, Michael; Reddy, T B K; Wymore, Farrell; Zachariah, Zachariah K; Sherlock, Gavin; Ball, Catherine A

    2009-01-01

    Hundreds of researchers across the world use the Stanford Microarray Database (SMD; http://smd.stanford.edu/) to store, annotate, view, analyze and share microarray data. In addition to providing registered users at Stanford access to their own data, SMD also provides access to public data, and tools with which to analyze those data, to any public user anywhere in the world. Previously, the addition of new microarray data analysis tools to SMD has been limited by available engineering resources, and in addition, the existing suite of tools did not provide a simple way to design, execute and share analysis pipelines, or to document such pipelines for the purposes of publication. To address this, we have incorporated the GenePattern software package directly into SMD, providing access to many new analysis tools, as well as a plug-in architecture that allows users to directly integrate and share additional tools through SMD. In this article, we describe our implementation of the GenePattern microarray analysis software package into the SMD code base. This extension is available with the SMD source code that is fully and freely available to others under an Open Source license, enabling other groups to create a local installation of SMD with an enriched data analysis capability.

  9. 75 FR 27708 - Stanford University Habitat Conservation Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration DEPARTMENT OF THE INTERIOR Fish and Wildlife Service RIN 0648-XV36 Stanford University Habitat Conservation Plan AGENCIES... University Habitat Conservation Plan (Plan), the Draft Environmental Impact Statement (DEIS) for...

  10. Testing the scalar sector of the twin Higgs model at colliders

    NASA Astrophysics Data System (ADS)

    Chacko, Zackaria; Kilic, Can; Najjari, Saereh; Verhaaren, Christopher B.

    2018-03-01

    We consider mirror twin Higgs models in which the breaking of the global symmetry is realized linearly. In this scenario, the radial mode in the Higgs potential is present in the spectrum and constitutes a second portal between the twin and SM sectors. We show that a study of the properties of this particle at colliders, when combined with precision measurements of the light Higgs, can be used to overdetermine the form of the scalar potential, thereby confirming that it possesses an enhanced global symmetry as dictated by the twin Higgs mechanism. We find that, although the reach of the LHC for this state is limited, future linear colliders will be able to explore a significant part of the preferred parameter space, allowing the possibility of directly testing the twin Higgs framework.

  11. Experimental Verification of Predicted Oscillations near a Spin Resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolanoski, Hermann; /Humboldt U., Berlin

    2011-12-05

    The E166 experiment at the Stanford Linear Accelerator Center (SLAC) has demonstrated a scheme for the production of polarized positrons which is suitable for implementation in a future Linear Collider. A multi-GeV electron beam passed through a helical undulator to generate multi-MeV, circularly polarized photons which were then converted in a thin target to produce positrons (and electrons) with longitudinal polarization above 80% at 6 MeV. The results are in agreement with GEANT4 simulations that include the dominant polarization-dependent interactions of electrons, positrons and photons in matter.

  12. Design of a 6 TeV muon collider

    DOE PAGES

    Wang, M-H.; Nosochkov, Y.; Cai, Y.; ...

    2016-09-09

    Here, a preliminary design of a muon collider ring with the center of mass (CM) energy of 6 TeV is presented. The ring circumference is 6.3 km, and themore » $$\\beta$$ functions at collision point are 1 cm in each plane. The ring linear optics, the non-linear chromaticity compensation in the Interaction Region (IR), and the additional non-linear orthogonal correcting knobs are described. Magnet specifications are based on the maximum pole-tip field of 20T in dipoles and 15T in quadrupoles. Careful compensation of the non-linear chromatic and amplitude dependent effects provide a sufficiently large dynamic aperture for the momentum range of up to $$\\pm$$0.5% without considering magnet errors.« less

  13. Measurement of the B0 ---> Psi (2S) Lambda0 Branching Fraction on BaBar at the Stanford Linear Accelerator Center (Abstract Only)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivas, Alexander Raymond, Jr.; /Colorado U.

    2005-11-16

    The decays of B{sup 0} mesons to hadronic final states remains a rich area of physics on BaBar. Not only do the c{bar c}-K final states (e.g. B{sup 0} {yields} {psi}(2S)K{sup 0}) allow for the measurement of CP Violation, but the branching fractions provide a sensitive test of the theoretical methods used to account for low energy non-perturbative QCD effects. They present the measurement of the branching fraction for the decay B{sup 0} {yields} {psi}(2S)K{sub s}. The data set consists of 88.8 {+-} 1.0 x 10{sup 6} B{bar b} pairs collected on the e{sup +}e{sup -} {yields} {Upsilon}(4S) resonance onmore » BaBar/PEP-II at the Stanford Linear Accelerator Center (SLAC). This analysis features a modification of present cuts, with respect to those published so far on BaBar, on the K{sub S} {yields} {pi}{sup +}{pi}{sup -} and {psi}(2S) {yields} J/{psi}{pi}{sup +}{pi}{sup -} which aim at reducing the background while keeping the signal intact. Various data selection criteria are studied for the lepton modes (e{sup +}e{sup -} and {mu}{sup +}{mu}{sup -}) of the J/{psi} and {psi}(2S) to improve signal purity as well as study the stability of the resultant branching fractions.« less

  14. The Stanford Nutrition Action Program: a dietary fat intervention for low-literacy adults.

    PubMed Central

    Howard-Pitney, B; Winkleby, M A; Albright, C L; Bruce, B; Fortmann, S P

    1997-01-01

    OBJECTIVES: This study was undertaken to test the effectiveness of the Stanford Nutrition Action Program, an experimental trial to reduce dietary fat intake among low-literacy, low-income adults. METHODS: Twenty-four paired adult education classes (351 participants, 85% women, mean age = 31 years) were randomly assigned to receive a newly developed dietary fat curriculum (the Stanford Nutrition Action Program) or an existing general nutrition curriculum. Food frequency and nutrition-related data, body mass index, and capillary blood cholesterol were collected at baseline and at two postintervention follow-ups. RESULTS: The Stanford Nutrition Action Program classes showed significantly greater net improvements in nutrition knowledge (+7.7), attitudes (/0.2), and self-efficacy (-0.2) than the general nutrition classes; they also showed significantly greater reductions in the percentage of calories from total (-2.3%) and saturated (-0.9%) fat. There were no significant differences in body mass index or blood cholesterol. All positive intervention effects were maintained for 3 months postintervention. CONCLUSIONS: The Stanford Nutrition Action Program curriculum, tailored to the cultural, economic, and learning needs of low-literacy, low-income adults, was significantly more effective in achieving fat-related nutritional changes than the general nutrition curriculum. PMID:9431286

  15. Relationships Between the 1960 Stanford-Binet Scale and Group Measures of Intelligence and Achievement

    ERIC Educational Resources Information Center

    Churchill, William D.; Smith, Stuart E.

    1974-01-01

    This study is concerned with the determination of relationships between the 1960 Revised Stanford-Binet Intelligence Scale, the Lorge-Thorndike Intelligence Test, and the Iowa Tests of Basic Skills. The primary objective of the investigation was to determine the predictive validity of the 1960 Stanford-Binet over a period of eight years. (Author)

  16. Low power signal processing research at Stanford

    NASA Technical Reports Server (NTRS)

    Burr, J.; Williamson, P. R.; Peterson, A.

    1991-01-01

    This paper gives an overview of the research being conducted at Stanford University's Space, Telecommunications, and Radioscience Laboratory in the area of low energy computation. It discusses the work we are doing in large scale digital VLSI neural networks, interleaved processor and pipelined memory architectures, energy estimation and optimization, multichip module packaging, and low voltage digital logic.

  17. The diagnostic accuracy of the mediastinal width on supine anteroposterior chest radiographs with nontraumatic Stanford type A acute aortic dissection.

    PubMed

    Funakoshi, Hiraku; Mizobe, Michiko; Homma, Yosuke; Nakashima, Yoshiyuki; Takahashi, Jin; Shiga, Takashi

    2018-03-01

    Nontraumatic Stanford type A acute aortic dissection is a life-threatening condition; thus, the ability to make a precise diagnosis of nontraumatic Stanford type A acute aortic dissection is essential for the emergency physician. Several reports have shown that the mediastinal widening on a chest radiograph is useful for the diagnosis of nontraumatic Stanford type A acute aortic dissection; however, the exact cutoff value of the mediastinal width on plain radiographs is rarely defined. A single-center retrospective case-control study was conducted between October 1, 2013, and March 31, 2015. We evaluated the maximal mediastinal width of the anteroposterior chest X-ray at the level of the aortic knob in the supine position between patient groups with and without nontraumatic Stanford type A acute aortic dissection. We enrolled 72 patients (36 patients with nontraumatic Stanford type A acute aortic dissection and 36 patients without nontraumatic Stanford type A acute aortic dissection). The median mediastinal width of patients with nontraumatic Stanford type A acute aortic dissection was significantly larger than that of patients without nontraumatic Stanford type A acute aortic dissection (100.7 mm vs 77.7 mm, P  < .01). The optimal cutoff level was 87 mm (sensitivity, 81%; specificity, 89%). Using multivariable logistic regression, the odds ratio of a mediastinal width of >87 mm for a diagnosis nontraumatic Stanford type A acute aortic dissection was 57.1 (95% confidence interval, 11.2-290.2). A mediastinal width of >87 mm showed high sensitivity in the diagnosis of probable nontraumatic Stanford type A acute aortic dissection.

  18. Testing the scalar sector of the twin Higgs model at colliders

    DOE PAGES

    Chacko, Zackaria; Kilic, Can; Najjari, Saereh; ...

    2018-03-22

    We consider Mirror Twin Higgs models in which the breaking of the global symmetry is realized linearly. In this scenario, the radial mode in the Higgs potential is present in the spectrum, and constitutes a second portal between the twin and SM sectors. We show that a study of the properties of this particle at colliders, when combined with precision measurements of the light Higgs, can be used to overdetermine the form of the scalar potential, thereby confirming that it possesses an enhanced global symmetry as dictated by the Twin Higgs mechanism. We find that, although the reach of themore » LHC for this state is limited, future linear colliders will be able to explore a significant part of the preferred parameter space, allowing the possibility of directly testing the Twin Higgs framework.« less

  19. Testing the scalar sector of the twin Higgs model at colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacko, Zackaria; Kilic, Can; Najjari, Saereh

    We consider Mirror Twin Higgs models in which the breaking of the global symmetry is realized linearly. In this scenario, the radial mode in the Higgs potential is present in the spectrum, and constitutes a second portal between the twin and SM sectors. We show that a study of the properties of this particle at colliders, when combined with precision measurements of the light Higgs, can be used to overdetermine the form of the scalar potential, thereby confirming that it possesses an enhanced global symmetry as dictated by the Twin Higgs mechanism. We find that, although the reach of themore » LHC for this state is limited, future linear colliders will be able to explore a significant part of the preferred parameter space, allowing the possibility of directly testing the Twin Higgs framework.« less

  20. Prospects for colliders and collider physics to the 1 PeV energy scale

    NASA Astrophysics Data System (ADS)

    King, Bruce J.

    2000-08-01

    A review is given of the prospects for future colliders and collider physics at the energy frontier. A proof-of-plausibility scenario is presented for maximizing our progress in elementary particle physics by extending the energy reach of hadron and lepton colliders as quickly and economically as might be technically and financially feasible. The scenario comprises 5 colliders beyond the LHC—one each of e+e- and hadron colliders and three μ+μ- colliders — and is able to hold to the historical rate of progress in the log-energy reach of hadron and lepton colliders, reaching the 1 PeV constituent mass scale by the early 2040's. The technical and fiscal requirements for the feasibility of the scenario are assessed and relevant long-term R&D projects are identified. Considerations of both cost and logistics seem to strongly favor housing most or all of the colliders in the scenario in a new world high energy physics laboratory.

  1. A concept of a wide aperture klystron with RF absorbing drift tubes for a linear collider

    NASA Astrophysics Data System (ADS)

    Dolbilov, G. V.; Azorsky, N. I.; Fateev, A. A.; Lebedev, N. I.; Petrov, V. A.; Shvetsov, V. S.; Yurkov, M. V.; Balakin, V. E.; Avrakhov, P. V.; Kazakov, S. Yu.; Solyak, N. A.; Teryaev, V. E.; Vogel, V. F.

    1996-02-01

    This paper is devoted to a problem of the optimal design of the electrodynamic structure of the X-band klystron for a linear collider. It is shown that the optimal design should provide a large aperture and a high power gain, about 80 dB. The most severe problem arising here is that of parasitic self-excitation of the klystron, which becomes more complicated at increasing aperture and power gain. Our investigations have shown that traditional methods for suppressing the self-excitation become ineffective at the desired technical parameters of the klystron. In this paper we present a novel concept of a wide aperture klystron with distributed suppression of parasitic oscillations. Results of an experimental study of the wide-aperture relativistic klystron for VLEPP are presented. Investigations have been performed using the driving beam of the JINR LIA-3000 induction accelerator ( E = 1 MeV, I = 250 A, τ = 250 ns). To suppress self-excitation parasitic modes we have used the technique of RF absorbing drift tubes. As a result, we have obtained design output parameters of the klystron and achieved a level of 100 MW output power.

  2. Stanford's 1990 Graduates Didn't Wait Long To Give Back in a Big Way.

    ERIC Educational Resources Information Center

    Carr, Sarah

    2000-01-01

    Reports that the class of 1990 of Stanford University (California) has pledged a record total for a class 10 years out of college. Suggests that Stanford's close relationship to Silicon Valley is responsible but that the volatility of the stock market illustrates the risks involved in fund raising from young Internet entrepreneurs. The $7.5…

  3. Application of thoracic endovascular aortic repair (TEVAR) in treating dwarfism with Stanford B aortic dissection

    PubMed Central

    Qiu, Jian; Cai, Wenwu; Shu, Chang; Li, Ming; Xiong, Qinggen; Li, Quanming; Li, Xin

    2018-01-01

    Abstract Rationale: To apply thoracic endovascular aortic repair (TEVAR) to treat dwarfism complicated with Stanford B aortic dissection. Patient concerns: In this report, we presented a 63-year-old male patient of dwarfism complicated with Stanford B aortic dissection successfully treated with TEVAR. Diagnoses: He was diagnosed with dwarfism complicated with Stanford B aortic dissection. Interventions: After conservative treatment, the male patient underwent TEVAR at 1 week after hospitalization. After operation, he presented with numbness and weakness of his bilateral lower extremities, and these symptoms were significantly mitigated after effective treatment. At 1- and 3-week after TEVAR, the aorta status was maintained stable and restored. Outcomes: The patient obtained favorable clinical prognosis and was smoothly discharged. During subsequent follow-up, he remained physically stable. Lessons: TEVAR is probably an option for treating dwarfism complicated with Stanford B aortic dissection, which remains to be validated by subsequent studies with larger sample size. PMID:29703033

  4. Design study of an optical cavity for a future photon collider at ILC

    NASA Astrophysics Data System (ADS)

    Klemz, G.; Mönig, K.; Will, I.

    2006-08-01

    Hard photons well above 100 GeV have to be generated in a future photon collider which essentially will be based on the infrastructure of the planned International Linear Collider (ILC). The energy of near-infrared laser photons will be boosted by Compton backscattering against a high-energy relativistic electron beam. For high effectiveness, a very powerful laser system is required that exceeds today's state-of-the-art capabilities. In this paper a design of an auxiliary passive cavity is discussed that resonantly enhances the peak-power of the laser. The properties and prospects of such a cavity are addressed on the basis of the specifications for the European TeV Energy Superconducting Linear Accelerator (TESLA) proposal. Those of the ILC are expected to be similar.

  5. Stanford University: The Building Energy Retrofit Programs. Green Revolving Funds in Action: Case Study Series

    ERIC Educational Resources Information Center

    Flynn, Emily

    2011-01-01

    Stanford University's Energy Retrofit Program was created in 1993 to target resource reduction and conservation focused projects on campus. Fahmida Ahmed, Associate Director of the Department of Sustainability and Energy Management, says that Stanford has been investing in sustainability and energy-efficiency since the late 1970s, longer than many…

  6. Stanford Chronic Disease Self-Management Program in myotonic dystrophy: New opportunities for occupational therapists: Stanford Chronic Disease Self-Management Program dans la dystrophie myotonique : De nouvelles opportunités pour les ergothérapeutes.

    PubMed

    Raymond, Kateri; Levasseur, Mélanie; Chouinard, Maud-Christine; Mathieu, Jean; Gagnon, Cynthia

    2016-06-01

    Chronic disease self-management is a priority in health care. Personal and environmental barriers for populations with neuromuscular disorders might diminish the efficacy of self-management programs, although they have been shown to be an effective intervention in many populations. Owing to their occupational expertise, occupational therapists might optimize self-management program interventions. This study aimed to adapt the Stanford Chronic Disease Self-Management Program (CDSMP) for people with myotonic dystrophy type 1 (DM1) and assess its acceptability and feasibility in this population. Using an adapted version of the Stanford CDSMP, a descriptive pilot study was conducted with 10 participants (five adults with DM1 and their caregivers). A semi-structured interview and questionnaires were used. The Stanford CDSMP is acceptable and feasible for individuals with DM1. However, improvements are required, such as the involvement of occupational therapists to help foster concrete utilization of self-management strategies into day-to-day tasks using their expertise in enabling occupation. Although adaptations are needed, the Stanford CDSMP remains a relevant intervention with populations requiring the application of self-management strategies. © CAOT 2016.

  7. University Residences and Campus Life. The Study of Education at Stanford. Report to the University.

    ERIC Educational Resources Information Center

    Stanford Univ., CA.

    This report, the third in a series of ten, was prepared by the Steering Committee, the Study of Education, at Stanford. The series, based on the concept that education should be a continuous process of discovery throughout life, sets forth recommendations for strengthening the academic enterprise of Stanford University. Focusing on housing…

  8. Generating Cultures of Writing: Collaborations between the Stanford Writing Center and High School Writing Centers

    ERIC Educational Resources Information Center

    Tinker, John

    2006-01-01

    For several years, the author has been working with colleagues in the Northern California Writing Centers Association (NCWCA) and the Stanford Writing Center to build bridges between college and high school writing centers. The writing center at Stanford defines one of its central goals as "celebrating a culture of writing" for all…

  9. An investigation of ground-based observations of solar oscillations at Stanford

    NASA Technical Reports Server (NTRS)

    Henning, Harald M. J.

    1987-01-01

    Data obtained in the last 8 years of solar differential Doppler observations at Stanford were considered. The four best time series of data were examined in detail. The sources of error in the data were investigated and removed where possible. In particular, the contribution resulting from transparency variations in the sky was examined. Detection method applicable to data with low signal to noise ratio and low filling factor were developed and utilized for the investigation of global solar modes of oscillations in the data. The frequencies of p-modes were measured and identified. The presence of g-modes were also determined in the Stanford data.

  10. Survey of beam instrumentation used in SLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ecklund, S.D.

    A survey of beam instruments used at SLAC in the SLC machine is presented. The basic utility and operation of each device is briefly described. The various beam instruments used at the Stanford Linear Collider (SLC), can be classified by the function they perform. Beam intensity, position and size are typical of the parameters of beam which are measured. Each type of parameter is important for adjusting or tuning the machine in order to achieve optimum performance. 39 refs.

  11. Follow the Money: Engineering at Stanford and UC Berkeley during the Rise of Silicon Valley

    ERIC Educational Resources Information Center

    Adams, Stephen B.

    2009-01-01

    A comparison of the engineering schools at UC Berkeley and Stanford during the 1940s and 1950s shows that having an excellent academic program is necessary but not sufficient to make a university entrepreneurial (an engine of economic development). Key factors that made Stanford more entrepreneurial than Cal during this period were superior…

  12. Information Systems to Support a Decision Process at Stanford.

    ERIC Educational Resources Information Center

    Chaffee, Ellen Earle

    1982-01-01

    When a rational decision process is desired, information specialists can contribute information and also contribute to the process in which that information is used, thereby promoting rational decision-making. The contribution of Stanford's information specialists to rational decision-making is described. (MLW)

  13. Stanford Type A Acute Aortic Dissection with Intimal Intussusception.

    PubMed

    Yanase, Yohsuke; Ohkawa, Akihito; Inoue, Satomi; Niida, Yukihiro

    2018-03-17

    In case of complete circumferential dissection of the ascending aorta, the dissected flap has the potential to fold backwards, causing several complications. We report two cases of Stanford type A acute aortic dissection (AAD) whose intimal flaps intussuscepted into the left ventricular outflow tract.Case 1: A 41-year-old man with AAD in whom transthoracic echocardiography (TTE) showed the dissected flap as folded back into the left ventricular outflow tract, causing severe aortic regurgitation (AR) with rapidly progressing acute pulmonary edema. Despite performing salvage surgery, the patient could not be rescued.Case 2: An 81-year-old man with annuloaortic ectasia developed Stanford type A AAD. TTE showed an extremely mobile intimal flap intussuscepting into the left ventricular outflow tract. However, AR was not severe as it was prevented by the flap itself. The patient was rescued by performance of the modified Bentall procedure.

  14. Computer-Assisted Instruction: Stanford's 1965-66 Arithmetic Program.

    ERIC Educational Resources Information Center

    Suppes, Patrick; And Others

    A review of the possibilities and challenges of computer-assisted instruction (CAI), and a brief history of CAI projects at Stanford serve to give the reader the context of the particular program described and analyzed in this book. The 1965-66 arithmetic drill-and-practice program is described, summarizing the curriculum and project operation. An…

  15. Detector Outline Document for the Fourth Concept Detector ("4th") at the International Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbareschi, Daniele; et al.

    We describe a general purpose detector ( "Fourth Concept") at the International Linear Collider (ILC) that can measure with high precision all the fundamental fermions and bosons of the standard model, and thereby access all known physics processes. The 4th concept consists of four basic subsystems: a pixel vertex detector for high precision vertex definitions, impact parameter tagging and near-beam occupancy reduction; a Time Projection Chamber for robust pattern recognition augmented with three high-precision pad rows for precision momentum measurement; a high precision multiple-readout fiber calorimeter, complemented with an EM dual-readout crystal calorimeter, for the energy measurement of hadrons, jets,more » electrons, photons, missing momentum, and the tagging of muons; and, an iron-free dual-solenoid muon system for the inverse direction bending of muons in a gas volume to achieve high acceptance and good muon momentum resolution. The pixel vertex chamber, TPC and calorimeter are inside the solenoidal magnetic field. All four subsytems separately achieve the important scientific goal to be 2-to-10 times better than the already excellent LEP detectors, ALEPH, DELPHI, L3 and OPAL. All four basic subsystems contribute to the identification of standard model partons, some in unique ways, such that consequent physics studies are cogent. As an integrated detector concept, we achieve comprehensive physics capabilities that puts all conceivable physics at the ILC within reach.« less

  16. SPIRES (STANFORD PHYSICS INFORMATION RETRIEVAL SYSTEM). ANNUAL REPORT.

    ERIC Educational Resources Information Center

    PARKER, EDWIN B.

    SPIRES WAS PLANNED AS A FIVE-YEAR EFFORT TO DEVELOP AND STUDY AN EXPERIMENTAL SYSTEM FOR PROVIDING FOR THE SCIENTIFIC INFORMATION NEEDS OF PHYSICISTS AT STANFORD. THERE ARE TWO COMPONENTS TO THE SPIRES PROJECT. ONE IS TO STUDY THE INFORMATION NEEDS AND INFORMATION-SEEKING BEHAVIOR OF A USER POPULATION OF ABOUT 100 HIGH- ENERGY PHYSICISTS. DETAILS…

  17. Long bunch trains measured using a prototype cavity beam position monitor for the Compact Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cullinan, F. J.; Boogert, S. T.; Farabolini, W.

    2015-11-19

    The Compact Linear Collider (CLIC) requires beam position monitors (BPMs) with 50 nm spatial resolution for alignment of the beam line elements in the main linac and beam delivery system. Furthermore, the BPMs must be able to make multiple independent measurements within a single 156 ns long bunch train. A prototype cavity BPM for CLIC has been manufactured and tested on the probe beam line at the 3rd CLIC Test Facility (CTF3) at CERN. The transverse beam position is determined from the electromagnetic resonant modes excited by the beam in the two cavities of the pickup, the position cavity and the referencemore » cavity. The mode that is measured in each cavity resonates at 15 GHz and has a loaded quality factor that is below 200. Analytical expressions for the amplitude, phase and total energy of signals from long trains of bunches have been derived and the main conclusions are discussed. The results of the beam tests are presented. The variable gain of the receiver electronics has been characterized using beam excited signals and the form of the signals for different beam pulse lengths with the 2/3 ns bunch spacing has been observed. The sensitivity of the reference cavity signal to charge and the horizontal position signal to beam offset have been measured and are compared with theoretical predictions based on laboratory measurements of the BPM pickup and the form of the resonant cavity modes as determined by numerical simulation. Lastly, the BPM was calibrated so that the beam position jitter at the BPM location could be measured. It is expected that the beam jitter scales linearly with the beam size and so the results are compared to predicted values for the latter.« less

  18. Long bunch trains measured using a prototype cavity beam position monitor for the Compact Linear Collider

    NASA Astrophysics Data System (ADS)

    Cullinan, F. J.; Boogert, S. T.; Farabolini, W.; Lefevre, T.; Lunin, A.; Lyapin, A.; Søby, L.; Towler, J.; Wendt, M.

    2015-11-01

    The Compact Linear Collider (CLIC) requires beam position monitors (BPMs) with 50 nm spatial resolution for alignment of the beam line elements in the main linac and beam delivery system. Furthermore, the BPMs must be able to make multiple independent measurements within a single 156 ns long bunch train. A prototype cavity BPM for CLIC has been manufactured and tested on the probe beam line at the 3rd CLIC Test Facility (CTF3) at CERN. The transverse beam position is determined from the electromagnetic resonant modes excited by the beam in the two cavities of the pickup, the position cavity and the reference cavity. The mode that is measured in each cavity resonates at 15 GHz and has a loaded quality factor that is below 200. Analytical expressions for the amplitude, phase and total energy of signals from long trains of bunches have been derived and the main conclusions are discussed. The results of the beam tests are presented. The variable gain of the receiver electronics has been characterized using beam excited signals and the form of the signals for different beam pulse lengths with the 2 /3 ns bunch spacing has been observed. The sensitivity of the reference cavity signal to charge and the horizontal position signal to beam offset have been measured and are compared with theoretical predictions based on laboratory measurements of the BPM pickup and the form of the resonant cavity modes as determined by numerical simulation. Finally, the BPM was calibrated so that the beam position jitter at the BPM location could be measured. It is expected that the beam jitter scales linearly with the beam size and so the results are compared to predicted values for the latter.

  19. Initial developments in the Stanford SQUIRT program

    NASA Astrophysics Data System (ADS)

    Kitts, Christopher A.; Twiggs, Robert J.

    1995-01-01

    Stanford University's Department of Aeronautics and Astronautics has commenced full scale development of a new microsatellite initiative. Known as the satellite quick research testbed (SQUIRT) program, the project's goal is to produce student engineered satellites capable of servicing state-of-the-art research payloads on a yearly basis. This program is specifically designed to meet the education and research goals of the department's Satellite Systems Development Laboratory. SQUIRT vehicles are envisioned to consist of a 25 pound, 9 inch tall, 16 inch diameter hexagonal structure with complete processor, communications, power, thermal, and attitude subsystems. These spacecraft cater to low power, volume, and mass research experiments and student developed educational packages. Mission lifetimes of up to one year are considered. Through student participation, voluntary mentoring from the academic and industrial communities, and the extensive use of off-the-shelf components, the cash outlay target for SQUIRT class vehicles is $50,000. This paper discusses the educational and research issues surrounding the development of Stanford's spacecraft design curriculum and the formulation of the SQUIRT program. A technical review of the first SQUIRT satellite, named SAPPHIRE, and an outline of the conceptual plans for other missions is also presented. Additionally, initiatives concerning partner academic institutions and public domain design information are featured.

  20. Towards future circular colliders

    NASA Astrophysics Data System (ADS)

    Benedikt, Michael; Zimmermann, Frank

    2016-09-01

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) presently provides proton-proton collisions at a center-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics program will extend through the second half of the 2030's. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ˜100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCCee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3 S n superconductor, for the FCC-hh hadron collider, and a highly-efficient superconducting radiofrequency system for the FCC-ee lepton collider. Following the FCC concept, the Institute of High Energy Physics (IHEP) in Beijing has initiated a parallel design study for an e + e - Higgs factory in China (CEPC), which is to be succeeded by a high-energy hadron collider (SPPC). At present a tunnel circumference of 54 km and a hadron collider c.m. energy of about 70 TeV are being considered. After a brief look at the LHC, this article reports the motivation and the present status of the FCC study, some of the primary design challenges and R&D subjects, as well as the emerging global collaboration.

  1. The rotation of the sun - Observations at Stanford

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.; Wilcox, J. M.; Svalgaard, L.

    1980-01-01

    Daily observations of the photospheric rotation rate using the Doppler effect have been made at the Stanford Solar Observatory since May 1976. These observations show no daily or long-period variations in the rotation rate that exceed the observational error of about 1%. The average rotation rate is the same as that of the sunspots and the large-scale magnetic field structures.

  2. Stanford Achievement Tests and Students with Special Needs.

    ERIC Educational Resources Information Center

    Burke, Dawn; Lombardi, Thomas P.

    West Virginia Bill 300 (Jobs Through Education Act) requires all students in grades 1-11 to take the Stanford Achievement Test. A minimum of 50 percent of a school's students in grades 3-11 must perform in the third quartile or the school will be considered deficient. A clause in the bill states that all students will be tested except those…

  3. Pair Production of the Doubly Charged Leptons Associated with a Gauge Boson γ or Z in e+e- and γγ Collisions at Future Linear Colliders

    NASA Astrophysics Data System (ADS)

    Zeng, Qing-Guo; Ji, Li; Yang, Shuo

    2015-03-01

    In this paper, we investigate the production of a pair of doubly charged leptons associated with a gauge boson V(γ or Z) at future linear colliders via e+e- and γγ collisions. The numerical results show that the possible signals of the doubly charged leptons may be detected via the processes e+e- → VX++X-- and γγ → VX++X-- at future ILC or CLIC experiments. Supported in part by the National Natural Science Foundation of China under Grants Nos. 11275088, 11205023, 11375248 and the Program for Liaoning Excellent Talents in University under Grant No. LJQ2014135

  4. Stanford-Binet & WAIS IQ Differences and Their Implications for Adults with Intellectual Disability (aka Mental Retardation).

    PubMed

    Silverman, Wayne; Miezejeski, Charles; Ryan, Robert; Zigman, Warren; Krinsky-McHale, Sharon; Urv, Tiina

    2010-03-01

    Stanford-Binet and Wechsler Adult Intelligence Scale (WAIS) IQs were compared for a group of 74 adults with intellectual disability (ID). In every case, WAIS Full Scale IQ was higher than the Stanford-Binet Composite IQ, with a mean difference of 16.7 points. These differences did not appear to be due to the lower minimum possible score for the Stanford-Binet. Additional comparisons with other measures suggested that the WAIS might systematically underestimate severity of intellectual impairment. Implications of these findings are discussed regarding determination of disability status, estimating prevalence of ID, assessing dementia and aging-related cognitive declines, and diagnosis of ID in forensic cases involving a possible death penalty.

  5. Stanford-Binet & WAIS IQ Differences and Their Implications for Adults with Intellectual Disability (aka Mental Retardation)

    PubMed Central

    Silverman, Wayne; Miezejeski, Charles; Ryan, Robert; Zigman, Warren; Krinsky-McHale, Sharon; Urv, Tiina

    2010-01-01

    Stanford-Binet and Wechsler Adult Intelligence Scale (WAIS) IQs were compared for a group of 74 adults with intellectual disability (ID). In every case, WAIS Full Scale IQ was higher than the Stanford-Binet Composite IQ, with a mean difference of 16.7 points. These differences did not appear to be due to the lower minimum possible score for the Stanford-Binet. Additional comparisons with other measures suggested that the WAIS might systematically underestimate severity of intellectual impairment. Implications of these findings are discussed regarding determination of disability status, estimating prevalence of ID, assessing dementia and aging-related cognitive declines, and diagnosis of ID in forensic cases involving a possible death penalty. PMID:20401180

  6. The Stanford University Medical Center and the Federal Government.

    ERIC Educational Resources Information Center

    Rosenzweig, Robert M.; And Others

    The Stanford University Medical Center consists of three main units: a medical school, a set of outpatient clinics, and a hospital. Financing of the center's functions cannot be carried out without federal support, and a network of relationships with government agencies has emerged. The impact of these relationships was discussed with key…

  7. False positive computed tomographic angiography for Stanford type A aortic dissection.

    PubMed

    Bandali, Murad F; Hatem, Muhammed A; Appoo, Jehangir J; Hutchison, Stuart J; Wong, Jason K

    2015-12-01

    Computed tomographic angiography (CTA) has emerged as the defacto imaging test to rule out acute aortic dissection; however, it is not without flaws. We report a case of a false-positive CTA with respect to Stanford Type A aortic dissection. A 52 year-old male presented with sudden onset shortness of breath. He denied chest pain. Due to severe hypertension and an Emergency Department bedside ultrasound suggesting an intimal flap in the aorta, CTA was requested to better assess the ascending aorta and was interpreted as consistent with Stanford Type A aortic dissection with thrombosis of the false lumen in the ascending aorta. However, intra-operative imaging (TEE and epi-aortic scanning) did not identify an intimal flap or dissection, and neither did definitive surgical inspection of the aorta. The suspected aortic dissection and thrombosed false lumen were not visualized on repeat CTA two days later. False positive diagnosis of Stanford Type A aortic dissection on CTA can be the result of technical factors, streak artifacts, motion artifacts, and periaortic structures. In this case, non-uniform arterial contrast enhancement secondary to unrecognized biventricular dysfunction resulted in the false positive CTA appearance of an intimal flap and mural thrombus. Intra-operative TEE and epi-aortic scanning were proven correct in excluding aortic dissection by the standard of definitive surgical inspection of the aorta.

  8. Application of thoracic endovascular aortic repair (TEVAR) in treating dwarfism with Stanford B aortic dissection: A case report.

    PubMed

    Qiu, Jian; Cai, Wenwu; Shu, Chang; Li, Ming; Xiong, Qinggen; Li, Quanming; Li, Xin

    2018-04-01

    To apply thoracic endovascular aortic repair (TEVAR) to treat dwarfism complicated with Stanford B aortic dissection. In this report, we presented a 63-year-old male patient of dwarfism complicated with Stanford B aortic dissection successfully treated with TEVAR. He was diagnosed with dwarfism complicated with Stanford B aortic dissection. After conservative treatment, the male patient underwent TEVAR at 1 week after hospitalization. After operation, he presented with numbness and weakness of his bilateral lower extremities, and these symptoms were significantly mitigated after effective treatment. At 1- and 3-week after TEVAR, the aorta status was maintained stable and restored. The patient obtained favorable clinical prognosis and was smoothly discharged. During subsequent follow-up, he remained physically stable. TEVAR is probably an option for treating dwarfism complicated with Stanford B aortic dissection, which remains to be validated by subsequent studies with larger sample size.

  9. Design, development and evaluation of Stanford/Ames EVA prehensors

    NASA Technical Reports Server (NTRS)

    Leifer, Larry J.; Aldrich, J.; Leblanc, M.; Sabelman, E.; Schwandt, D.

    1988-01-01

    Space Station operations and maintenance are expected to make unprecedented demands on astronaut EVA. With Space Station expected to operate with an 8 to 10 psi atmosphere (4 psi for Shuttle operations), the effectivness of pressurized gloves is called into doubt at the same time that EVA activity levels are to be increased. To address the need for more frequent and complex EVA missions and also to extend the dexterity, duration, and safety of EVA astronauts, NASA Ames and Stanford University have an ongoing cooperative agreement to explore and compare alternatives. This is the final Stanford/Ames report on manually powered Prehensors, each of which consists of a shroud forming a pressure enclosure around the astronaut's hand, and a linkage system to transfer the motions and forces of the hand to mechanical digits attached to the shroud. All prehensors are intended for attachment to a standard wrist coupling, as found on the AX-5 hard suit prototype, so that realistic tests can be performed under normal and reduced gravity as simulated by water flotation.

  10. Unique Identification of Lee-Wick Gauge Bosons at Linear Colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizzo, Thomas G.

    2007-12-14

    Grinstein, O'Connell and Wise have recently presented an extension of the Standard Model (SM), based on the ideas of Lee and Wick (LW), which demonstrates an interesting way to remove the quadratically divergent contributions to the Higgs mass induced by radiative corrections. This model predicts the existence of negative-norm copies of the usual SM fields at the TeV scale with ghost-like propagators and negative decay widths, but with otherwise SM-like couplings. In earlier work, it was demonstrated that the LW states in the gauge boson sector of these models, though easy to observe, cannot be uniquely identified as such atmore » the LHC. In this paper, we address the issue of whether or not this problem can be resolved at an e{sup +}e{sup -} collider with a suitable center of mass energy range. We find that measurements of the cross section and the left-right polarization asymmetry associated with Bhabha scattering can lead to a unique identification of the neutral electroweak gauge bosons of the Lee-Wick type.« less

  11. Big Machines and Big Science: 80 Years of Accelerators at Stanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loew, Gregory

    2008-12-16

    Longtime SLAC physicist Greg Loew will present a trip through SLAC's origins, highlighting its scientific achievements, and provide a glimpse of the lab's future in 'Big Machines and Big Science: 80 Years of Accelerators at Stanford.'

  12. Early Geologic Education in California--Berkeley and Stanford Show the Way.

    ERIC Educational Resources Information Center

    Norris, Robert M.

    1981-01-01

    Traces the early history of geological education in California universities, with emphasis upon programs at Berkeley and Stanford. Among the pioneers in the field were Joseph LeConte, Andrew C. Lawson, and John C. Branner. (WB)

  13. Aortic wrapping for stanford type A acute aortic dissection: short and midterm outcome.

    PubMed

    Demondion, Pierre; Ramadan, Ramzi; Azmoun, Alexandre; Raoux, François; Angel, Claude; Nottin, Rémi; Deleuze, Philippe

    2014-05-01

    Conventional surgical treatment of Stanford type A acute aortic dissection (AAD) is associated with considerable in-hospital mortality. As regards very elderly or high-risk patients with type A AAD, some may meet the criteria for less invasive surgery likely to prevent the complications associated with aortic replacement. We have retrospectively analyzed a cohort of patients admitted to our center for Stanford type A AAD and having undergone surgery between 2008 and 2012. The outcomes of the patients having had an aortic replacement under cardiopulmonary bypass (group A) have been compared with the outcomes of the patients who underwent off-pump wrapping of the ascending aorta (group B). Among the 54 patients admitted for Stanford type A AAD, 15 with a mean age of 77 years [46 to 94] underwent wrapping of the aorta. Regarding the new standard European system for cardiac operative risk evaluation (EuroSCORE II), the median result in our group B patients was 10.47 [5.02 to 30.07]. In-hospital mortality was 12.80% in group A and 6.6% in group B (p=0.66). For patients who underwent external wrapping of the ascending aorta, follow-up mortality rate was 13.3% with a median follow-up of 15 months [range 0 to 47]. The gold standard in cases of Stanford type A AAD consists of emergency surgical replacement of the dissected ascending aorta. In some cases in which the aortic root is not affected a less invasive surgical approach consisting of wrapping the dissected ascending aorta can be suggested as an alternative. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  14. Coverage of the Stanford Prison Experiment in Introductory Psychology Courses

    ERIC Educational Resources Information Center

    Bartels, Jared M.; Milovich, Marilyn M.; Moussier, Sabrina

    2016-01-01

    The present study examined the coverage of Stanford prison experiment (SPE), including criticisms of the study, in introductory psychology courses through an online survey of introductory psychology instructors (N = 117). Results largely paralleled those of the recently published textbook analyses with ethical issues garnering the most coverage,…

  15. Brief Report: Data on the Stanford-Binet Intelligence Scales (5th Ed.) in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Coolican, Jamesie; Bryson, Susan E.; Zwaigenbaum, Lonnie

    2008-01-01

    The Fifth Edition of the Stanford-Binet Intelligence Scales (SB5; Roid, G. H. (2003). "Stanford Binet intelligence scales" (5th ed.). Itasca, IL: Riverside Publishing) is relatively new, with minimal published research on general populations and none with special populations. The present study provides information on the cognitive profiles of…

  16. Accelerator Science: Circular vs. Linear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Don

    Particle accelerator are scientific instruments that allow scientists to collide particles together at incredible energies to study the secrets of the universe. However, there are many manners in which particle accelerators can be constructed. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of circular and linear accelerators.

  17. Stanford-Binet and WAIS IQ Differences and Their Implications for Adults with Intellectual Disability (aka Mental Retardation)

    ERIC Educational Resources Information Center

    Silverman, Wayne; Miezejeski, Charles; Ryan, Robert; Zigman, Warren; Krinsky-McHale, Sharon; Urv, Tiina

    2010-01-01

    Stanford-Binet and Wechsler Adult Intelligence Scale (WAIS) IQs were compared for a group of 74 adults with intellectual disability (ID). In every case, WAIS Full Scale IQ was higher than the Stanford-Binet Composite IQ, with a mean difference of 16.7 points. These differences did not appear to be due to the lower minimum possible score for the…

  18. Review of Nichole E. Stanford's "Good God but You Smart!: Language Prejudice and Upwardly Mobile Cajuns"

    ERIC Educational Resources Information Center

    Sladek, Amanda

    2017-01-01

    In "Good God but You Smart!" Nichole E. Stanford provides an account of how attitudes toward Cajun English (CE) perpetuate and are perpetuated by an economic system designed to maintain unequal power relations. While non-Cajun Americans are interested in what they see as Cajun culture, Stanford explains that most misunderstand what…

  19. Accelerator Science: Circular vs. Linear

    ScienceCinema

    Lincoln, Don

    2018-06-12

    Particle accelerator are scientific instruments that allow scientists to collide particles together at incredible energies to study the secrets of the universe. However, there are many manners in which particle accelerators can be constructed. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of circular and linear accelerators.

  20. Coverage of the Stanford Prison Experiment in Introductory Psychology Textbooks

    ERIC Educational Resources Information Center

    Griggs, Richard A.

    2014-01-01

    Zimbardo's 1971 Stanford Prison Experiment (SPE), one of the most famous studies in psychology, is discussed in most introductory textbooks. The present study is concerned with the nature of this coverage, given that there have been myriad criticisms, especially recently, of the SPE. These criticisms concern both Zimbardo's situationist…

  1. SPIRES (Stanford Physics Information REtrieval System) 1969-70 Annual Report.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. Inst. for Communication Research.

    For those unfamiliar with the Stanford Physics Information Retrieval System (SPIRES) an introduction and background section is provided in this 1969-70 annual report. This is followed by: (1) the SPIRES I prototype, (2) developing a production system--SPIRES II and (3) system scope and requirements analysis. The appendices present: (1) Stanford…

  2. Translation, adaptation, and validation of the Stanford Hypnotic Clinical Scale in Puerto Rico.

    PubMed

    Deynes-Exclusa, Yazmin; Sayers-Montalvo, Sean K; Martinez-Taboas, Alfonso

    2011-04-01

    The only hypnotizability scale that has been translated and validated for the Puerto Rican population is the Barber Suggestibility Scale (BSS). In this article, the Stanford Hypnotic Clinical Scale (SHCS) was translated and validated for this population. The translated SHCS ("Escala Stanford de Hipnosis Clinica" [ESHC]) was administered individually to 100 Puerto Rican college students. There were no significant differences found between the norms of the original SHCS samples and the Spanish version of the SHCS. Both samples showed similar distributions. The Spanish version's internal reliability as well as the item discrimination index were adequate. The authors conclude that the ESHC is an adequate instrument to measure hypnotizability in the Puerto Rican population.

  3. SLC injector modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanerfeld, H; Herrmannsfeldt, W.B.; James, M.B.

    1985-03-01

    The injector for the Stanford Linear Collider is being studied using the fully electromagnetic particle-in-cell program MASK. The program takes account of cylindrically symmetrical rf fields from the external source, as well as fields produced by the beam and dc magnetic fields. It calculates the radial and longitudinal motion of electrons and plots their positions in various planes in phase space. Bunching parameters can be optimized and insights into the bunching process and emittance growth have been gained. The results of the simulations are compared to the experimental results.

  4. Implications of the 750 GeV γγ Resonance as a Case Study for the International Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujii, Keisuke; Grojean, Christophe; Peskin, Michael E.

    If the γγ resonance at 750 GeV suggested by 2015 LHC data turns out to be a real effect, what are the implications for the physics case and upgrade path of the International Linear Collider? Whether or not the resonance is confirmed, this question provides an interesting case study testing the robustness of the ILC physics case. In this note, we address this question with two points: (1) Almost all models proposed for the new 750 GeV particle require additional new particles with electroweak couplings. The key elements of the 500 GeV ILC physics program - precision measurements of themore » Higgs boson, the top quark, and 4-fermion interactions - will powerfully discriminate among these models. This information will be important in conjunction with new LHC data, or alone, if the new particles accompanying the 750 GeV resonance are beyond the mass reach of the LHC. (2) Over a longer term, the energy upgrade of the ILC to 1 TeV already discussed in the ILC TDR will enable experiments in γγ and e +e - collisions to directly produce and study the 750 GeV particle from these unique initial states.« less

  5. [Endovascular repair of primary retrograde Stanford type A aortic dissection].

    PubMed

    Wu, H W; Sun, L; Li, D M; Jing, H; Xu, B; Wang, C T; Zhang, L

    2016-10-01

    Objective: To summarize the short- and mid-term results on endovascular repair of primary retrograde Stanford type A aortic dissection with an entry tear in distal aortic arch or descending aorta. Methods: Between December 2009 and December 2014, 21 male patients of primary retrograde Stanford type A aortic dissection with a mean age of (52±9) years received endovascular repair in Department of Cardiothoracic Surgery, Jinling Hospital. Among the 21 cases, 17 patients were presented as ascending aortic intramural hematoma, 4 patients as active blood flow in false lumen and partial thrombosis, 8 patients as ulcer on descending aorta combined intramural hematoma in descending aorta, and 13 patients as typical dissection changes. All patients received endovascular stent-graft repair successfully, with 15 cases in acute phase and 6 cases in chronic phase. Results: Cone stent was implanted in 13 cases, while straight stent in 8 cases, including 1 case of left common carotid-left subclavian artery bypass surgery and 1 case of restrictive bare-metal stent implantation. No perioperative stroke, paraplegia, stent fracture or displacement, limbs or abdominal organ ischemia or other severe complications occured, except for tracheotomy in 2 patients. Active blood flow in ascending aorta or aortic arch disappeared, and intramural hematoma started being absorbed on CT angiography images before discharge. All patients were alive during follow-up (6 to 72 months), and intramural hematoma in ascending aorta and aortic arch was absorbed thoroughly. Type Ⅰ endoleak and ulcer expansion were found in 1 patient, and type Ⅳ endoleak in distal stent was found in another one patient. Secondary ascending aortic dissection was found in 1 case two years later, which was cured by hybrid procedure with cardiopulmonary bypass. Conclusion: Endovascular repair of primary retrograde Stanford type A aortic dissection was safe and effective, which correlated with favorable short- and mid

  6. Working Paper on the Future of Library Automation at Stanford.

    ERIC Educational Resources Information Center

    Weber, David C.

    A number of important factors require Stanford University to review the progress and future implications of technological innovations in the library for the community of scholars which it serves. These factors include: The general economic climate of the University in 1971 and in the immediate years ahead; The problem of future funding of the…

  7. THE GREEN DORM: A SUSTAINABLE RESIDENCE AND LIVING LABORATORY FOR STANFORD UNIVERSITY

    EPA Science Inventory

    The Lotus Living Laboratory at Stanford University is exploring sustainable building technologies and sustainable living habits through the design, construction and operation of The Green Dorm, an innovative facility containing residential, laboratory and commons space. Both ...

  8. The Stanford Prison Experiment in Introductory Psychology Textbooks: A Content Analysis

    ERIC Educational Resources Information Center

    Bartels, Jared M.

    2015-01-01

    The present content analysis examines the coverage of theoretical and methodological problems with the Stanford prison experiment (SPE) in a sample of introductory psychology textbooks. Categories included the interpretation and replication of the study, variance in guard behavior, participant selection bias, the presence of demand characteristics…

  9. The Stanford Automated Mounter: Pushing the limits of sample exchange at the SSRL macromolecular crystallography beamlines

    DOE PAGES

    Russi, Silvia; Song, Jinhu; McPhillips, Scott E.; ...

    2016-02-24

    The Stanford Automated Mounter System, a system for mounting and dismounting cryo-cooled crystals, has been upgraded to increase the throughput of samples on the macromolecular crystallography beamlines at the Stanford Synchrotron Radiation Lightsource. This upgrade speeds up robot maneuvers, reduces the heating/drying cycles, pre-fetches samples and adds an air-knife to remove frost from the gripper arms. As a result, sample pin exchange during automated crystal quality screening now takes about 25 s, five times faster than before this upgrade.

  10. The Stanford Automated Mounter: Pushing the limits of sample exchange at the SSRL macromolecular crystallography beamlines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russi, Silvia; Song, Jinhu; McPhillips, Scott E.

    The Stanford Automated Mounter System, a system for mounting and dismounting cryo-cooled crystals, has been upgraded to increase the throughput of samples on the macromolecular crystallography beamlines at the Stanford Synchrotron Radiation Lightsource. This upgrade speeds up robot maneuvers, reduces the heating/drying cycles, pre-fetches samples and adds an air-knife to remove frost from the gripper arms. As a result, sample pin exchange during automated crystal quality screening now takes about 25 s, five times faster than before this upgrade.

  11. Case study: the Stanford University School of Medicine and its teaching hospitals.

    PubMed

    Pizzo, Philip A

    2008-09-01

    There is wide variation in the governance and organization of academic health centers (AHCs), often prompted by or associated with changes in leadership. Changes at AHCs are influenced by institutional priorities, economic factors, competing needs, and the personality and performance of leaders. No organizational model has uniform applicability, and it is important for each AHC to learn what works or does not on the basis of its experiences. This case study of the Stanford University School of Medicine and its teaching hospitals--which constitute Stanford's AHC, the Stanford University Medical Center--reflects responses to the consequences of a failed merger of the teaching hospitals and related clinical enterprises with those of the University of California-San Francisco School of Medicine that required a new definition of institutional priorities and directions. These were shaped by a strategic plan that helped define goals and objectives in education, research, patient care, and the necessary financial and administrative underpinnings needed. A governance model was created that made the medical school and its two major affiliated teaching hospitals partners; this arrangement requires collaboration and coordination that is highly dependent on the shared objectives of the institutional leaders involved. The case study provides the background factors and issues that led to these changes, how they were envisioned and implemented, the current status and challenges, and some lessons learned. Although the current model is working, future changes may be needed to respond to internal and external forces and changes in leadership.

  12. [Surgical management of pregnancy-associated acute Stanford type A aortic dissection: analysis of 5 cases].

    PubMed

    Li, Xin; Zhang, Hong-Yu; Han, Feng-Zhen; Yu, Chang-Jiang; Fan, Xiao-Ping; Fan, Rui-Xin; Zhuang, Jian

    2017-11-20

    To explore the diagnosis and treatment of pregnancy-associated acute Stanford type A aortic dissection to improve the maternal and fetal outcomes. We analyzed the perioperative data of 5 pregnant women with acute Stanford type A aortic dissection treated between June, 2009 and February, 2017. The median age of the women was 30 years (range, 22-34 years) with gestational weeks of 23-38 weeks upon diagnosis. All the 5 patients received surgical interventions. Three patients underwent caesarean delivery and hysterectomy, and the fetuses survived after the surgery; 2 patients chose to continue pregnancy following the surgery, among whom one died due to postoperative complications and the other underwent termination of pregnancy. During follow-up, the surviving patients showed no endoleak in the descending aorta stent and the distal dissection remained stable. The maternal and fetal outcomes of pregnancy-associated acute Stanford type A aortic dissection can be improved by multidisciplinary cooperation and optimization of the surgical approaches according to the time of pregnancy, fetal development and conditions of the aortic lesions.

  13. Stanford-Based HighWire Press Transforms the Publication of Scientific Journals.

    ERIC Educational Resources Information Center

    Young, Jeffrey R.

    1997-01-01

    In two years, HighWire Press at Stanford University (California) has revolutionized online scientific publishing; electronic journals are reaching readers faster, are easier to search, and are entering new foreign markets. The largest scientific publishers will put about 200 journals online in 1997. Other changes foreseen include immediate rather…

  14. The Stanford Medical Youth Science Program: Educational and Science-Related Outcomes

    ERIC Educational Resources Information Center

    Crump, Casey; Ned, Judith; Winkleby, Marilyn A.

    2015-01-01

    Biomedical preparatory programs (pipeline programs) have been developed at colleges and universities to better prepare youth for entering science- and health-related careers, but outcomes of such programs have seldom been rigorously evaluated. We conducted a matched cohort study to evaluate the Stanford Medical Youth Science Program's Summer…

  15. Redefining Scientist-Educator Partnerships: Science in Service at Stanford

    NASA Astrophysics Data System (ADS)

    Beck, K.

    2005-05-01

    The Stanford Solar Observatories Group and Haas Center for Public Service have created an innovative model for scientist-educator partnerships in which science students are trained and mentored by public service education professionals to create outreach events for local communities. The program, Science in Service, is part of the EPO plan for the Solar Group's participation in NASA's Solar Dynamics Observatory mission. Based on the principles of service learning, the Science in Service Program mentors college science students in best practices for communicating science and engages these students in public service projects that center on teaching solar science. The program goals are to - Enhance and expand the learning experiences that pre-college students, from underserved and underrepresented groups in particular, have in science and technology. - Promote leadership in community service in the area of science and engineering among the next generation of scientists and engineers, today's undergraduate students. - Encourage science and engineering faculty to think creatively about their outreach requirements and to create a community of faculty committed to quality outreach programs. This talk will describe the unique advantages and challenges of a research-public service partnership, explain the structure of Stanford's Science in Service Program, and present the experiences of the undergraduates and the outreach communities that have been involved in the program.

  16. Type IIB Colliding Plane Waves

    NASA Astrophysics Data System (ADS)

    Gutperle, M.; Pioline, B.

    2003-09-01

    Four-dimensional colliding plane wave (CPW) solutions have played an important role in understanding the classical non-linearities of Einstein's equations. In this note, we investigate CPW solutions in 2n+2-dimensional Einstein gravity with a n+1-form flux. By using an isomorphism with the four-dimensional problem, we construct exact solutions analogous to the Szekeres vacuum solution in four dimensions. The higher-dimensional versions of the Khan-Penrose and Bell-Szekeres CPW solutions are studied perturbatively in the vicinity of the light-cone. We find that under small perturbations, a curvature singularity is generically produced, leading to both space-like and time-like singularities. For n = 4, our results pertain to the collision of two ten-dimensional type-IIB Blau-Figueroa o'Farrill-Hull-Papadopoulos plane waves.

  17. Coverage of the Stanford Prison Experiment in Introductory Social Psychology Textbooks

    ERIC Educational Resources Information Center

    Griggs, Richard A.; Whitehead, George I., III

    2014-01-01

    This study is concerned with the nature of the coverage in introductory social psychology textbooks of the Stanford prison experiment (SPE), given the many criticisms, especially recently, of the SPE. These criticisms concern both the study's methodology and the situationist explanation of the outcome. Ten textbooks were analyzed for coverage of…

  18. Adapting Stanford's Chronic Disease Self-Management Program to Hawaii's Multicultural Population

    ERIC Educational Resources Information Center

    Tomioka, Michiyo; Braun, Kathryn L.; Compton, Merlita; Tanoue, Leslie

    2012-01-01

    Purpose of the Study: Stanford's Chronic Disease Self-Management Program (CDSMP) has been proven to increase patients' ability to manage distress. We describe how we replicated CDSMP in Asian and Pacific Islander (API) communities. Design and Methods: We used the "track changes" tool to deconstruct CDSMP into its various components…

  19. Colliding impulsive gravitational waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutku, Y.; Halil, M.

    1977-11-28

    We formulate the problem of colliding plane gravitational waves with two polarizations as the harmonic mappings of Riemannian manifolds and construct an exact solution of the vacuum Einstein field equations describing the interaction of colliding impulsive gravitational waves which in the limit of collinear polarization reduces to the solution of Khan and Penrose.

  20. Stanford-Binet Fourth Edition: Useful for Young Children with Language Impairment?

    ERIC Educational Resources Information Center

    Vig, Susan; Jedrysek, Eleanora

    1996-01-01

    Reviewed clinical records and test data for 103 children ages 4 to 5 years old who had been tested with the Stanford-Binet Intelligence Scale, Fourth Edition. Children were tested for multidisciplinary evaluation of developmental problems. Results suggest need for caution in using area score differences or subtest strengths or weaknesses to…

  1. The Muon Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zisman, Michael S

    2010-05-17

    We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.

  2. The Muon Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zisman, Michael S.

    2011-01-05

    We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.

  3. The Diversity Myth. "Multiculturalism" and the Politics of Intolerance at Stanford.

    ERIC Educational Resources Information Center

    Sacks, David O.; Thiel, Peter A.

    This book chronicles, from the point of view of students who are unwilling participants in the process, the transformation of Stanford University from an institution committed to preserving the values of Western civilization to one intent on engineering social change on campus to promote the dogmas of multiculturalism. The book is an insider's…

  4. Model-independent determination of the triple Higgs coupling at e+e- colliders

    NASA Astrophysics Data System (ADS)

    Barklow, Tim; Fujii, Keisuke; Jung, Sunghoon; Peskin, Michael E.; Tian, Junping

    2018-03-01

    The observation of Higgs pair production at high-energy colliders can give evidence for the presence of a triple Higgs coupling. However, the actual determination of the value of this coupling is more difficult. In the context of general models for new physics, double Higgs production processes can receive contributions from many possible beyond-Standard-Model effects. This dependence must be understood if one is to make a definite statement about the deviation of the Higgs field potential from the Standard Model. In this paper, we study the extraction of the triple Higgs coupling from the process e+e-→Z h h . We show that, by combining the measurement of this process with other measurements available at a 500 GeV e+e- collider, it is possible to quote model-independent limits on the effective field theory parameter c6 that parametrizes modifications of the Higgs potential. We present precise error estimates based on the anticipated International Linear Collider physics program, studied with full simulation. Our analysis also gives new insight into the model-independent extraction of the Higgs boson coupling constants and total width from e+e- data.

  5. Black Holes Collide

    NASA Image and Video Library

    2017-12-08

    When two black holes collide, they release massive amounts of energy in the form of gravitational waves that last a fraction of a second and can be "heard" throughout the universe - if you have the right instruments. Today we learned that the #LIGO project heard the telltale chirp of black holes colliding, fulfilling Einstein's General Theory of Relativity. NASA's LISA mission will look for direct evidence of gravitational waves. go.nasa.gov/23ZbqoE This video illustrates what that collision might look like.

  6. Enhancing the Training of Internal Medicine Residents at Stanford by Establishing a Model Group Practice and Raising Its Clinical Educators' Status.

    ERIC Educational Resources Information Center

    Jacobs, Michael B.; Tower, Donald

    1992-01-01

    Stanford Medical Group, a model group practice in internal medicine, was established at Stanford University (California) within the academic medical center. Clinical faculty status was raised by developing a separate faculty track for the practice. The approach has been well-received and successful in attaining training and patient care goals.…

  7. Precise attitude control of the Stanford relativity satellite.

    NASA Technical Reports Server (NTRS)

    Bull, J. S.; Debra, D. B.

    1973-01-01

    A satellite being designed by the Stanford University to measure (with extremely high precision) the effect of General Relativity is described. Specifically, the satellite will measure two relativistic precessions predicted by the theory: the geodetic effect (6.9 arcsec/yr), due solely to motion about the earth, and the motional effect (0.05 arcsec/yr), due to rotation of the earth. The gyro design requirements, including the requirement for precise attitude control and a dynamic model for attitude control synthesis, are discussed. Closed loop simulation of the satellite's natural dynamics on an analog computer is described.

  8. Numerical Calculations of Short-Range Wakefields of Collimators

    NASA Astrophysics Data System (ADS)

    Ng, C. K.

    2001-12-01

    The performance of future linear colliders are limited by the effect of short-range collimator wakefields on the beam. The beam quality is sensitive to the positioning of collimators at the end of the linac. The determination of collimator wakefields has been difficult, largely because of the scarcity of measurement data, and of the limitation of applicability of analytical results to realistic structures. In this paper, numerical methods using codes such as MAFIA are used to determine a series of tapered collimators with rectangular apertures that have been built for studies at SLAC (Stanford Linear Accelerator Center). We will study the dependences of the wakefield on the collimator taper angle, the collimator gap as well as the bunch length. Calculations are also compared with measurements.

  9. Muon Colliders: The Next Frontier

    ScienceCinema

    Tourun, Yagmur

    2017-12-22

    Muon Colliders provide a path to the energy frontier in particle physics but have been regarded to be "at least 20 years away" for 20 years. I will review recent progress in design studies and hardware R&D and show that a Muon Collider can be established as a real option for the post-LHC era if the current vigorous R&D effort revitalized by the Muon Collider Task Force at Fermilab can be supported to its conclusion. All critical technologies are being addressed and no show-stoppers have emerged. Detector backgrounds have been studied in detail and appear to be manageable and the physics can be done with existing detector technology. A muon facility can be built through a staged scenario starting from a low-energy muon source with unprecedented intensity for exquisite reach for rare processes, followed by a Neutrino Factory with ultrapure neutrino beams with unparalleled sensitivity for disentangling neutrino mixing, leading to an energy frontier Muon Collider with excellent energy resolution.

  10. CSOLNP: Numerical Optimization Engine for Solving Non-linearly Constrained Problems.

    PubMed

    Zahery, Mahsa; Maes, Hermine H; Neale, Michael C

    2017-08-01

    We introduce the optimizer CSOLNP, which is a C++ implementation of the R package RSOLNP (Ghalanos & Theussl, 2012, Rsolnp: General non-linear optimization using augmented Lagrange multiplier method. R package version, 1) alongside some improvements. CSOLNP solves non-linearly constrained optimization problems using a Sequential Quadratic Programming (SQP) algorithm. CSOLNP, NPSOL (a very popular implementation of SQP method in FORTRAN (Gill et al., 1986, User's guide for NPSOL (version 4.0): A Fortran package for nonlinear programming (No. SOL-86-2). Stanford, CA: Stanford University Systems Optimization Laboratory), and SLSQP (another SQP implementation available as part of the NLOPT collection (Johnson, 2014, The NLopt nonlinear-optimization package. Retrieved from http://ab-initio.mit.edu/nlopt)) are three optimizers available in OpenMx package. These optimizers are compared in terms of runtimes, final objective values, and memory consumption. A Monte Carlo analysis of the performance of the optimizers was performed on ordinal and continuous models with five variables and one or two factors. While the relative difference between the objective values is less than 0.5%, CSOLNP is in general faster than NPSOL and SLSQP for ordinal analysis. As for continuous data, none of the optimizers performs consistently faster than the others. In terms of memory usage, we used Valgrind's heap profiler tool, called Massif, on one-factor threshold models. CSOLNP and NPSOL consume the same amount of memory, while SLSQP uses 71 MB more memory than the other two optimizers.

  11. Optimizing integrated luminosity of future hadron colliders

    NASA Astrophysics Data System (ADS)

    Benedikt, Michael; Schulte, Daniel; Zimmermann, Frank

    2015-10-01

    The integrated luminosity, a key figure of merit for any particle-physics collider, is closely linked to the peak luminosity and to the beam lifetime. The instantaneous peak luminosity of a collider is constrained by a number of boundary conditions, such as the available beam current, the maximum beam-beam tune shift with acceptable beam stability and reasonable luminosity lifetime (i.e., the empirical "beam-beam limit"), or the event pileup in the physics detectors. The beam lifetime at high-luminosity hadron colliders is largely determined by particle burn off in the collisions. In future highest-energy circular colliders synchrotron radiation provides a natural damping mechanism, which can be exploited for maximizing the integrated luminosity. In this article, we derive analytical expressions describing the optimized integrated luminosity, the corresponding optimum store length, and the time evolution of relevant beam parameters, without or with radiation damping, while respecting a fixed maximum value for the total beam-beam tune shift or for the event pileup in the detector. Our results are illustrated by examples for the proton-proton luminosity of the existing Large Hadron Collider (LHC) at its design parameters, of the High-Luminosity Large Hadron Collider (HL-LHC), and of the Future Circular Collider (FCC-hh).

  12. The gender gap in academic medicine: comparing results from a multifaceted intervention for stanford faculty to peer and national cohorts.

    PubMed

    Valantine, Hannah A; Grewal, Daisy; Ku, Manwai Candy; Moseley, Julie; Shih, Mei-Chiung; Stevenson, David; Pizzo, Philip A

    2014-06-01

    To assess whether the proportion of women faculty, especially at the full professor rank, increased from 2004 to 2010 at Stanford University School of Medicine after a multifaceted intervention. The authors surveyed gender composition and faculty satisfaction five to seven years after initiating a multifaceted intervention to expand recruitment and development of women faculty. The authors assessed pre/post relative change and rates of increase in women faculty at each rank, and faculty satisfaction; and differences in pre/post change and estimated rate of increase between Stanford and comparator cohorts (nationally and at peer institutions). Post intervention, women faculty increased by 74% (234 to 408), with assistant, associate, and full professors increasing by 66% (108 to 179), 87% (74 to 138), and 75% (52 to 91), respectively. Nationally and at peer institutions, women faculty increased by about 30% (30,230 to 39,200 and 4,370 to 5,754, respectively), with lower percentages at each rank compared with Stanford. Estimated difference (95% CI) in annual rate of increase was larger for Stanford versus the national cohort: combined ranks 0.36 (0.17 to 0.56), P = .001; full professor 0.40 (0.18 to 0.62), P = .001; and versus the peer cohort: combined ranks 0.29 (0.07 to 0.51), P = .02; full professor 0.37 (0.14 to 0.60), P = .003. Stanford women faculty satisfaction increased from 48% (2003) to 71% (2008). Increased satisfaction and proportion of women faculty, especially full professors, suggest that the intervention may ameliorate the gender gap in academic medicine.

  13. Muon collider interaction region design

    DOE PAGES

    Alexahin, Y. I.; Gianfelice-Wendt, E.; Kashikhin, V. V.; ...

    2011-06-02

    Design of a muon collider interaction region (IR) presents a number of challenges arising from low β* < 1 cm, correspondingly large beta-function values and beam sizes at IR magnets, as well as the necessity to protect superconducting magnets and collider detectors from muon decay products. As a consequence, the designs of the IR optics, magnets and machine-detector interface are strongly interlaced and iterative. A consistent solution for the 1.5 TeV center-of-mass muon collider IR is presented. It can too provide an average luminosity of 10 34 cm -2s -1 with an adequate protection of magnet and detector components.

  14. Samurai cannulation (direct true-lumen cannulation) for acute Stanford Type A aortic dissection.

    PubMed

    Kitamura, Tadashi; Torii, Shinzo; Kobayashi, Kensuke; Tanaka, Yuki; Sasahara, Akihiro; Ohtomo, Yuki; Horikoshi, Rihito; Miyaji, Kagami

    2018-02-27

    In this study, we investigated early outcomes of patients who underwent surgical aortic repair for acute Stanford Type A aortic dissection at the Kitasato University Hospital and compared the results of Samurai cannulation (direct true-lumen cannulation) with other cannulation options. Inpatient and outpatient records were retrospectively reviewed. Among the 100 patients who were operated on for acute Type A aortic dissection between April 2011 and April 2017, sole Samurai cannulation was used in 61 patients (Group S) and other cannulation options were used in the remaining 39 patients (Group O). No significant difference was observed in preoperative demographics between the groups. True-lumen cannulation was successful in all Group S patients, whereas 3 cannulation-related complications were observed in Group O patients. In Group S, the 30-day and in-hospital mortality occurred in 3 (5%) and 4 (7%) patients, respectively, and in Group O, these occurred in 3 (8%), and 6 (15%) patients, respectively. Four patients in each group (7% and 10%) experienced disabling or fatal strokes. Early mortality or stroke rate between the groups were not significantly different. During follow-up, there was no statistically significant difference between the groups in terms of survival, freedom from aorta-related death or freedom from aortic events. Early outcomes of the initial series of surgery for Stanford Type A aortic dissection with Samurai cannulation was favourable with acceptable mortality and stroke rates without cannulation-related complications. Samurai cannulation represents an easy, safe and reasonable option for cardiopulmonary bypass in surgery for acute Stanford Type A aortic dissection.

  15. Model-independent determination of the triple Higgs coupling at e + e – colliders

    DOE PAGES

    Barklow, Tim; Fujii, Keisuke; Jung, Sunghoon; ...

    2018-03-20

    Here, the observation of Higgs pair production at high-energy colliders can give evidence for the presence of a triple Higgs coupling. However, the actual determination of the value of this coupling is more difficult. In the context of general models for new physics, double Higgs production processes can receive contributions from many possible beyond-Standard-Model effects. This dependence must be understood if one is to make a definite statement about the deviation of the Higgs field potential from the Standard Model. In this paper, we study the extraction of the triple Higgs coupling from the process e +e –→Zhh. We showmore » that, by combining the measurement of this process with other measurements available at a 500 GeV e +e – collider, it is possible to quote model-independent limits on the effective field theory parameter c 6 that parametrizes modifications of the Higgs potential. We present precise error estimates based on the anticipated International Linear Collider physics program, studied with full simulation. Our analysis also gives new insight into the model-independent extraction of the Higgs boson coupling constants and total width from e +e – data.« less

  16. Model-independent determination of the triple Higgs coupling at e + e – colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barklow, Tim; Fujii, Keisuke; Jung, Sunghoon

    Here, the observation of Higgs pair production at high-energy colliders can give evidence for the presence of a triple Higgs coupling. However, the actual determination of the value of this coupling is more difficult. In the context of general models for new physics, double Higgs production processes can receive contributions from many possible beyond-Standard-Model effects. This dependence must be understood if one is to make a definite statement about the deviation of the Higgs field potential from the Standard Model. In this paper, we study the extraction of the triple Higgs coupling from the process e +e –→Zhh. We showmore » that, by combining the measurement of this process with other measurements available at a 500 GeV e +e – collider, it is possible to quote model-independent limits on the effective field theory parameter c 6 that parametrizes modifications of the Higgs potential. We present precise error estimates based on the anticipated International Linear Collider physics program, studied with full simulation. Our analysis also gives new insight into the model-independent extraction of the Higgs boson coupling constants and total width from e +e – data.« less

  17. Sun-Earth Day WEBCAST - NASA TV; Host Paul Mortfield, Astronomer Stanford Solar Center and visiting

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Sun-Earth Day WEBCAST - NASA TV; Host Paul Mortfield, Astronomer Stanford Solar Center and visiting students from San Francisco Bay Area Schools Documentation Technology Branch Video communications van (code-JIT)

  18. A Rare Complication of TEVAR Performed for Complex Acute Stanford B Aortic Dissection.

    PubMed

    Awad, George; Zardo, Patrick; Baraki, Hassina; Kutschka, Ingo

    2017-01-01

    Management of aortic dissection with a novel endovascular technique known as thoracic endovascular aortic repair (TEVAR) paired with surgical debranching as a less invasive alternative to conventional repair has gained widespread acceptance. However, experience for complicated, Stanford type B dissection involving the aortic arch is still limited.

  19. One-stage hybrid surgery for acute Stanford type A aortic dissection with David operation, aortic arch debranching, and endovascular graft: a case report.

    PubMed

    Liu, Lulu; Qin, Chaoyi; Hou, Jianglong; Zhu, Da; Zhang, Bengui; Ma, Hao; Guo, Yingqiang

    2016-12-01

    Acute Stanford type A aortic dissection requires an extremely complex surgical strategy and presents high risk of complications. Although many different procedures were reported to treat this aortic dissection, high mortality rate and incidences of complications still exist. This study presents a 59-year-old lady with acute Stanford type A aortic dissection, which originated from the aortic root to proximal part of right external iliac artery and involved the brachiocephalic trunk, left carotid artery, celiac trunk, and left renal artery. The patient underwent one-stage hybrid surgery of David procedures, debranching, and endovascular aortic repair under ultrasound-guided aortic arch cannulation cardiopulmonary bypass (CPB). The surgery was successfully performed, and the patient showed no post-operative complication. The one-staged hybrid surgery of David procedures, debranching, and endovascular aortic repair provides novel and well-designed combined techniques for treating complex acute Stanford type A aortic dissection. Our techniques significantly lowered the risks, thereby expanding the indications of surgical intervention for acute Stanford type A aortic dissection.

  20. Revisiting the Stanford Prison Experiment: A Lesson in the Power of Situation

    ERIC Educational Resources Information Center

    Zimbardo, Philip G.

    2007-01-01

    When he conducted the Stanford prison experiment, Philip G. Zimbardo wanted to know who would win--good people or an evil situation--when they were brought into direct confrontation. The situation won; humanity lost. Out the window went the moral upbringings of the young men involved in the experiment, as well as their middle-class civility. Power…

  1. Beyond the Large Hadron Collider: A First Look at Cryogenics for CERN Future Circular Colliders

    NASA Astrophysics Data System (ADS)

    Lebrun, Philippe; Tavian, Laurent

    Following the first experimental discoveries at the Large Hadron Collider (LHC) and the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study, conducted with the collaborative participation of interested institutes world-wide, considers several options for very high energy hadron-hadron, electron-positron and hadron-electron colliders to be installed in a quasi-circular underground tunnel in the Geneva basin, with a circumference of 80 km to 100 km. All these machines would make intensive use of advanced superconducting devices, i.e. high-field bending and focusing magnets and/or accelerating RF cavities, thus requiring large helium cryogenic systems operating at 4.5 K or below. Based on preliminary sets of parameters and layouts for the particle colliders under study, we discuss the main challenges of their cryogenic systems and present first estimates of the cryogenic refrigeration capacities required, with emphasis on the qualitative and quantitative steps to be accomplished with respect to the present state-of-the-art.

  2. Electrons and Mirror Symmetry

    ScienceCinema

    Kumar, Krishna

    2017-12-09

    The neutral weak force between an electron and a target particle, mediated by the Z boson, can be isolated by measuring the fractional change under a mirror reflection of the scattering probability of relativistic longitudinally polarized electrons off unpolarized targets. This technique yields neutral weak force measurements at a length scale of 1 femtometer, in contrast to high energy collider measurements that probe much smaller length scales. Study of the variation of the weak force over a range of length scales provides a stringent test of theory, complementing collider measurements. We describe a recent measurement of the neutral weak force between two electrons by the E158 experiment at the Stanford Linear Accelerator Center. While the weak force between an electron and positron has been extensively studied, that between two electrons had never directly been measured. We conclude by discussing prospects for even more precise measurements at future facilities.

  3. Nuclotron-Based Ion Collider Facility (nica)

    NASA Astrophysics Data System (ADS)

    Meshkov, I.; Sissakian, A.; Sorin, A.

    2008-09-01

    The project of an ion collider accelerator complex NICA that is under development at JINR is presented. The article is based on the Conceptual Design Report (CDR)1 of the NICA project delivered in January 2008. The article contains NICA facility scheme, the facility operation scenario, its elements parameters, the proposed methods of intense ion beam acceleration and achievement of the required luminosity of the collider. The symmetric mode of the collider operation is considered here and most attention is concentrated on the luminosity provision in collisions of uranium ions (nuclei).

  4. Early and long-term effect of thoracic endovascular aortic repair for Stanford B aortic dissection.

    PubMed

    Ruan, Zhong-Bao; Zhu, Li; Chen, Ge-Cai; Yin, Yi-Gang

    2015-03-01

    Uncomplicated Stanford B acute aortic dissection (AAD) is generally treated with medical management; whereas complicated dissections require surgery or thoracic endovascular aortic repair (TEVAR). Studies have demonstrated that long-term outcomes with medical management are suboptimal. Therefore, we sought to investigate the early and long-term clinical efficacy of TEVAR for Stanford B AAD. From March 2004 to January 2008, 63 consecutive patients were treated and retrospectively placed into either one of the two groups, the TEVAR group (n = 42) and the medicine group (n = 21). All TEVAR procedures were performed in the acute phase. The changes of true and false lumen diameter were monitored with computed tomography angiography examinations in the thoracic aorta at the level of the stented segment at long-term follow-up. As compared with the medicine group, the age at intervention in the TEVAR group was higher (p < 0.05), and they also had more patent false lumen in this group. Patients in the TEVAR group had significantly longer hospital stays than those in the medicine group (p < 0.01). The incidence of the early events was not significantly different between the two groups. The incidence of aortic-related late events and late death were significantly higher in the medicine group than those in the TEVAR group. Log-rank tests demonstrated that patients treated with medical management had significantly more late adverse events than did those treated with TEVAR (p < 0.01). At 1-year follow-up, the true lumen diameter in the thoracic aorta at the level of the stented segment increased significantly after TEVAR, and the mean reduction of false lumen diameter was highly significant. The remodeling was stable at 3 and 5 years after TEVAR. Patients with Stanford B AAD treated with TEVAR experienced fewer late adverse events than those treated with medical management, TEVAR could be an effective treatment for Stanford B AAD. Georg Thieme Verlag KG Stuttgart · New York.

  5. [Clinical analysis of different root treatment methods in acute Stanford type A aortic dissection].

    PubMed

    Xue, Y X; Zhou, Q; Pan, J; Wang, Q; Cao, H L; Fan, F D; Wang, D J

    2017-04-01

    Objective: To discuss the perioperative and follow-up results of different surgical methods for acute Stanford type A aortic dissection patients and analyzed the results. Methods: The clinic data of 351 acute Stanford type A aortic dissection patients received surgical therapy at Department of Thoracic and Cardiovascular Surgery, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital from January 2008 to December 2015 were analyzed retrospectively. There were 272 male and 79 female patients, aging from 22 to 83 years with a mean age of (52±13) years. According to root size, aortic valve structure and the status of dissection involvement, these patients were devided into three major groups: 218 cases with root reconstruction using Dacron felts, 34 cases with root reconstruction concomitant with aortic valve resuspension repair and 99 cases in with Bentall procedure. Proper shape based on the status of dissection involvement of Dacron patch was cut and put between the middle and outerlayer of aorta, then inside the inner layerone band Dacron felt was sutured with the aorta and the new middle layer with Dacron patch as mentioned above. In some cases the prolapsed aortic valve was re-suspended to the aortic cusp. Clinical outcomes among the 3 procedures were compared by χ(2) test, Fisher's exact test, t test and analysis of variance. Results: Cardiopulmonary bypass, cross-clamp, and circulatory arrest times of all the patients were (250±78), (171±70) and (31±10) minutes, respectively. The 30-day mortality was 9.2%(33/351), while no difference among the 3 procedures (9.6%, 8.8% and 9.1%). In the average follow-up time of (26.0±23.0) months (range from 0.5 to 90.0 months), survival rates were similar among the 3 procedures (77.7%, 77.4% and 77.8%). Only one patient received redo Bentall procedure because of severe aortic regurgitation and dilated aortic root (diameter of 50 mm). Conclusions: The indication of root management of acute Stanford type

  6. Utility of the Stanford-Binet Intelligence Scales, Fifth Edition, with Ethnically Diverse Preschoolers

    ERIC Educational Resources Information Center

    Dale, Brittany A.; Finch, Maria HernÁndez; Mcintosh, David E.; Rothlisberg, Barbara A.; Finch, W. Holmes

    2014-01-01

    Current research on the use of revisions of intelligence measures with ethnically diverse populations and younger children is limited. The present study investigated the utility of the Stanford-Binet Intelligence Scales, Fifth Edition (SB5), with an ethnically diverse preschool sample. African American and Caucasian preschoolers, matched on age,…

  7. Standard Model Background of the Cosmological Collider.

    PubMed

    Chen, Xingang; Wang, Yi; Xianyu, Zhong-Zhi

    2017-06-30

    The inflationary universe can be viewed as a "cosmological collider" with an energy of the Hubble scale, producing very massive particles and recording their characteristic signals in primordial non-Gaussianities. To utilize this collider to explore any new physics at very high scales, it is a prerequisite to understand the background signals from the particle physics standard model. In this Letter we describe the standard model background of the cosmological collider.

  8. Hadron Collider Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Incandela, J.R.

    2000-03-07

    Experiments are being prepared at the Fermilab Tevatron and the CERN Large Hadron Collider that promise to deliver extraordinary insights into the nature of spontaneous symmetry breaking, and the role of supersymmetry in the universe. This article reviews the goals, challenges, and designs of these experiments. The first hadron collider, the ISR at CERN, has to overcome two initial obstacles. The first was low luminosity, which steadily improved over time. The second was the broad angular spread of interesting events. In this regard Maurice Jacob noted (1): The answer is ... sophisticated detectors covering at least the whole central regionmore » (45{degree} {le} {theta} {le} 135{degree}) and full azimuth. This statement, while obvious today, reflects the major revelation of the ISR period that hadrons have partonic substructure. The result was an unexpectedly strong hadronic yield at large transverse momentum (p{sub T}). Partly because of this, the ISR missed the discovery of the J/{psi} and later missed the {Upsilon}. The ISR era was therefore somewhat less auspicious than it might have been. It did however make important contributions in areas such as jet production and charm excitation and it paved the way for the SPS collider, also at CERN.« less

  9. Considerations on Energy Frontier Colliders after LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiltsev, Vladimir

    2016-11-15

    Since 1960’s, particle colliders have been in the forefront of particle physics, 29 total have been built and operated, 7 are in operation now. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). The future of the world-wide HEP community critically depends on the feasibility of possible post-LHC colliders. The concept of the feasibility is complex and includes at least three factors: feasibility of energy, feasibility of luminosity and feasibility of cost. Here wemore » overview all current options for post-LHC colliders from such perspective (ILC, CLIC, Muon Collider, plasma colliders, CEPC, FCC, HE-LHC) and discuss major challenges and accelerator R&D required to demonstrate feasibility of an energy frontier accelerator facility following the LHC. We conclude by taking a look into ultimate energy reach accelerators based on plasmas and crystals, and discussion on the perspectives for the far future of the accelerator-based particle physics. This paper largely follows previous study [1] and the presenta ion given at the ICHEP’2016 conference in Chicago [2].« less

  10. STAR FORMATION IN TURBULENT MOLECULAR CLOUDS WITH COLLIDING FLOW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, Tomoaki; Dobashi, Kazuhito; Shimoikura, Tomomi, E-mail: matsu@hosei.ac.jp

    2015-03-10

    Using self-gravitational hydrodynamical numerical simulations, we investigated the evolution of high-density turbulent molecular clouds swept by a colliding flow. The interaction of shock waves due to turbulence produces networks of thin filamentary clouds with a sub-parsec width. The colliding flow accumulates the filamentary clouds into a sheet cloud and promotes active star formation for initially high-density clouds. Clouds with a colliding flow exhibit a finer filamentary network than clouds without a colliding flow. The probability distribution functions (PDFs) for the density and column density can be fitted by lognormal functions for clouds without colliding flow. When the initial turbulence ismore » weak, the column density PDF has a power-law wing at high column densities. The colliding flow considerably deforms the PDF, such that the PDF exhibits a double peak. The stellar mass distributions reproduced here are consistent with the classical initial mass function with a power-law index of –1.35 when the initial clouds have a high density. The distribution of stellar velocities agrees with the gas velocity distribution, which can be fitted by Gaussian functions for clouds without colliding flow. For clouds with colliding flow, the velocity dispersion of gas tends to be larger than the stellar velocity dispersion. The signatures of colliding flows and turbulence appear in channel maps reconstructed from the simulation data. Clouds without colliding flow exhibit a cloud-scale velocity shear due to the turbulence. In contrast, clouds with colliding flow show a prominent anti-correlated distribution of thin filaments between the different velocity channels, suggesting collisions between the filamentary clouds.« less

  11. The prototype design of the Stanford Relativity Gyro Experiment

    NASA Technical Reports Server (NTRS)

    Parkinson, Bradford W.; Everitt, C. W. Francis; Turneaure, John P.; Parmley, Richard T.

    1987-01-01

    The Stanford Relativity Gyroscope Experiment constitutes a fundamental test of Einstein's General Theory of Relativity, probing such heretofore untested aspects of the theory as those that relate to spin by means of drag-free satellite-borne gyroscopes. General Relativity's prediction of two orthogonal precessions (motional and geodetic) for a perfect Newtonian gyroscope in polar orbit has not yet been experimentally assessed, and will mark a significant advancement in experimental gravitation. The technology employed in the experiment has been under development for 25 years at NASA's Marshall Space Flight Center. Four fused quartz gyroscopes will be used.

  12. Proton-Proton and Proton-Antiproton Colliders

    NASA Astrophysics Data System (ADS)

    Scandale, Walter

    In the last five decades, proton-proton and proton-antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion-ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.

  13. Proton-Proton and Proton-Antiproton Colliders

    NASA Astrophysics Data System (ADS)

    Scandale, Walter

    2014-04-01

    In the last five decades, proton-proton and proton-antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion-ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.

  14. Proton-Proton and Proton-Antiproton Colliders

    NASA Astrophysics Data System (ADS)

    Scandale, Walter

    2015-02-01

    In the last five decades, proton-proton and proton-antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion-ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.

  15. [Late reoperations after repaired Stanford type A aortic dissection].

    PubMed

    Huang, F H; Li, L P; Su, C H; Qin, W; Xu, M; Wang, L M; Jiang, Y S; Qiu, Z B; Xiao, L Q; Zhang, C; Shi, H W; Chen, X

    2017-04-01

    Objective: To summarize the experience of reoperations on patients who had late complications related to previous aortic surgery for Stanford type A dissection. Methods: From August 2008 to October 2016, 14 patients (10 male and 4 female patients) who underwent previous cardiac surgery for Stanford type A aortic dissection accepted reoperations on the late complications at Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University. The range of age was from 41 to 76 years, the mean age was (57±12) years. In these patients, first time operations were ascending aorta replacement procedure in 3 patients, ascending aorta combined with partial aortic arch replacement in 4 patients, aortic root replacement (Bentall) associated with Marfan syndrome in 3 patients, aortic valve combined with ascending aorta replacement (Wheat) in 1 patient, ascending aorta combined with Sun's procedure in 1 patient, Wheat combined with Sun's procedure in 1 patient, Bentall combined with Sun's procedure in 1 patient. The interval between two operations averaged 0.3 to 10.0 years with a mean of (4.8±3.1) years. The reasons for reoperations included part anastomotic split, aortic valve insufficiency, false aneurysm formation, enlargement of remant aortal and false cavity. The selection of reoperation included anastomotic repair, aortic valve replacement, total arch replacement and Sun's procedure. Results: Of the 14 patients, the cardiopulmonary bypass times were 107 to 409 minutes with a mean of (204±51) minutes, cross clamp times were 60 to 212 minutes with a mean of (108±35) minutes, selective cerebral perfusion times were 16 to 38 minutes with a mean of (21±11) minutes. All patients survived from the operation, one patient died from severe pulmonary infection 50 days after operation. Three patients had postoperative complications, including acute renal failure of 2 patients and pulmonary infection of 1 patient, and these patients were

  16. Status of the Future Circular Collider Study

    NASA Astrophysics Data System (ADS)

    Benedikt, Michael

    2016-03-01

    Following the 2013 update of the European Strategy for Particle Physics, the international Future Circular Collider (FCC) Study has been launched by CERN as host institute, to design an energy frontier hadron collider (FCC-hh) in a new 80-100 km tunnel with a centre-of-mass energy of about 100 TeV, an order of magnitude beyond the LHC's, as a long-term goal. The FCC study also includes the design of a 90-350 GeV high-luminosity lepton collider (FCC-ee) installed in the same tunnel, serving as Higgs, top and Z factory, as a potential intermediate step, as well as an electron-proton collider option (FCC-he). The physics cases for such machines will be assessed and concepts for experiments will be developed in time for the next update of the European Strategy for Particle Physics by the end of 2018. The presentation will summarize the status of machine designs and parameters and discuss the essential technical components to be developed in the frame of the FCC study. Key elements are superconducting accelerator-dipole magnets with a field of 16 T for the hadron collider and high-power, high-efficiency RF systems for the lepton collider. In addition the unprecedented beam power presents special challenges for the hadron collider for all aspects of beam handling and machine protection. First conclusions of geological investigations and implementation studies will be presented. The status of the FCC collaboration and the further planning for the study will be outlined.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clancey, P.; Logg, C.

    DEPOT has been developed to provide tracking for the Stanford Linear Collider (SLC) control system equipment. For each piece of equipment entered into the database, complete location, service, maintenance, modification, certification, and radiation exposure histories can be maintained. To facilitate data entry accuracy, efficiency, and consistency, barcoding technology has been used extensively. DEPOT has been an important tool in improving the reliability of the microsystems controlling SLC. This document describes the components of the DEPOT database, the elements in the database records, and the use of the supporting programs for entering data, searching the database, and producing reports from themore » information.« less

  18. One-stage hybrid surgery for acute Stanford type A aortic dissection with David operation, aortic arch debranching, and endovascular graft: a case report

    PubMed Central

    Liu, Lulu; Qin, Chaoyi; Hou, Jianglong; Zhu, Da; Zhang, Bengui; Ma, Hao

    2016-01-01

    Acute Stanford type A aortic dissection requires an extremely complex surgical strategy and presents high risk of complications. Although many different procedures were reported to treat this aortic dissection, high mortality rate and incidences of complications still exist. This study presents a 59-year-old lady with acute Stanford type A aortic dissection, which originated from the aortic root to proximal part of right external iliac artery and involved the brachiocephalic trunk, left carotid artery, celiac trunk, and left renal artery. The patient underwent one-stage hybrid surgery of David procedures, debranching, and endovascular aortic repair under ultrasound-guided aortic arch cannulation cardiopulmonary bypass (CPB). The surgery was successfully performed, and the patient showed no post-operative complication. The one-staged hybrid surgery of David procedures, debranching, and endovascular aortic repair provides novel and well-designed combined techniques for treating complex acute Stanford type A aortic dissection. Our techniques significantly lowered the risks, thereby expanding the indications of surgical intervention for acute Stanford type A aortic dissection. PMID:28149590

  19. The Stanford Automated Mounter: Enabling High-Throughput Protein Crystal Screening at SSRL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, C.A.; Cohen, A.E.

    2009-05-26

    The macromolecular crystallography experiment lends itself perfectly to high-throughput technologies. The initial steps including the expression, purification, and crystallization of protein crystals, along with some of the later steps involving data processing and structure determination have all been automated to the point where some of the last remaining bottlenecks in the process have been crystal mounting, crystal screening, and data collection. At the Stanford Synchrotron Radiation Laboratory, a National User Facility that provides extremely brilliant X-ray photon beams for use in materials science, environmental science, and structural biology research, the incorporation of advanced robotics has enabled crystals to be screenedmore » in a true high-throughput fashion, thus dramatically accelerating the final steps. Up to 288 frozen crystals can be mounted by the beamline robot (the Stanford Auto-Mounting System) and screened for diffraction quality in a matter of hours without intervention. The best quality crystals can then be remounted for the collection of complete X-ray diffraction data sets. Furthermore, the entire screening and data collection experiment can be controlled from the experimenter's home laboratory by means of advanced software tools that enable network-based control of the highly automated beamlines.« less

  20. Validation of the Italian version of the Stanford Presenteeism Scale in nurses.

    PubMed

    Cicolini, Giancarlo; Della Pelle, Carlo; Cerratti, Francesca; Franza, Marcello; Flacco, Maria E

    2016-07-01

    To ascertain the validity and reliability of the Italian version of the Stanford Presenteeism Scale (SPS-6). Presenteeism has been associated with a work productivity reduction, a lower quality of work and an increased risk of developing health disorders. It is particularly high among nurses and needs valid tools to be assessed. A validation study was carried out from July to September 2014. A three-section tool, made of a demographic form, the Stanford Presenteeism Scale (SPS-6) and the Perceived Stress Scale (PSS-10) was administered to a sample of nurses, enrolled in three Italian hospitals. Cronbach's α for the entire sample (229 nurses) was found to be 0.72. A significant negative correlation between SPS and perceived stress scores evidenced the external validity. The factor analysis showed a two-component solution, accounting for 71.2% of the variance. The confirmatory factor analysis showed an adequate fit. The Italian SPS-6 is a valid and reliable tool for workplace surveys. Since the validity and reliability of SPS-6 has been confirmed for the Italian version, we have now a valid tool that can measure the levels of presenteeism among Italian nurses. © 2016 John Wiley & Sons Ltd.

  1. The Stanford equivalence principle program

    NASA Technical Reports Server (NTRS)

    Worden, Paul W., Jr.; Everitt, C. W. Francis; Bye, M.

    1989-01-01

    The Stanford Equivalence Principle Program (Worden, Jr. 1983) is intended to test the uniqueness of free fall to the ultimate possible accuracy. The program is being conducted in two phases: first, a ground-based version of the experiment, which should have a sensitivity to differences in rate of fall of one part in 10(exp 12); followed by an orbital experiment with a sensitivity of one part in 10(exp 17) or better. The ground-based experiment, although a sensitive equivalence principle test in its own right, is being used for technology development for the orbital experiment. A secondary goal of the experiment is a search for exotic forces. The instrument is very well suited for this search, which would be conducted mostly with the ground-based apparatus. The short range predicted for these forces means that forces originating in the Earth would not be detectable in orbit. But detection of Yukawa-type exotic forces from a nearby large satellite (such as Space Station) is feasible, and gives a very sensitive and controllable test for little more effort than the orbiting equivalence principle test itself.

  2. Light flavon signals at electron-photon colliders

    NASA Astrophysics Data System (ADS)

    Muramatsu, Yu; Nomura, Takaaki; Shimizu, Yusuke; Yokoya, Hiroshi

    2018-01-01

    Flavor symmetries are useful to realize fermion flavor structures in the standard model (SM). In particular, the discrete A4 symmetry is used to realize lepton flavor structures, and some scalars—called flavons—are introduced to break this symmetry. In many models, flavons are assumed to be much heavier than the electroweak scale. However, our previous work showed that a flavon mass around 100 GeV is allowed by experimental constraints in the A4 symmetric model with a residual Z3 symmetry. In this paper, we discuss collider searches for such a light flavon φT. We find that electron-photon collisions at the International Linear Collider have advantages for searching for these signals. In electron-photon collisions, flavons are produced as e-γ →l-φT and decay into two charged leptons. Then, we analyze signals of the flavor-conserving final state τ+τ-e- and the flavor-violating final states τ+μ-μ- and μ+τ-τ- by carrying out numerical simulations. For the former final state, SM background can be strongly suppressed by imposing cuts on the invariant masses of final-state leptons. For the latter final states, SM background is extremely small, because in the SM there are no such flavor-violating final states. We then find that sufficient discovery significance can be obtained, even if flavons are heavier than the lower limits from flavor physics.

  3. Impact of hypertension on early outcomes and long-term survival of patients undergoing aortic repair with Stanford A dissection.

    PubMed

    Merkle, Julia; Sabashnikov, Anton; Deppe, Antje-Christin; Zeriouh, Mohamed; Eghbalzadeh, Kaveh; Weber, Carolyn; Rahmanian, Parwis; Kuhn, Elmar; Madershahian, Navid; Kroener, Axel; Choi, Yeong-Hoon; Kuhn-Régnier, Ferdinand; Liakopoulos, Oliver; Wahlers, Thorsten

    2018-04-01

    Stanford A acute aortic dissection (AAD) is a life-threatening emergency, typically occurring in hypertensive patients, requiring immediate surgical repair. The aim of this study was to evaluate early outcomes and long-term survival of hypertensive patients in comparison to normotensive patients suffering from Stanford A AAD. In our center, 240 patients with Stanford A AAD underwent aortic surgical repair from January 2006 to April 2015. After statistical and logistic regression analysis, Kaplan-Meier survival estimation was performed, with up to 9-year follow-up. The proportion of hypertensive patients suffering from Stanford A AAD was 75.4% (n=181). There were only few statistically significant differences in terms of basic demographics, comorbidities, preoperative baseline and clinical characteristics of hypertensive patients in comparison to normotensive patients. Hypertensive patients were significantly older (p=0.008), more frequently received hemi-arch repair (p=0.028) and selective brain perfusion (p=0.001). Our study showed similar statistical results in terms of 30-day mortality (p=0.196), long-term overall cumulative survival of patients (Log-Rank p=0.506) and survival of patients free from cerebrovascular events (Log-Rank p=0.186). Furthermore, subgroup analysis for long-term survival in terms of men (Log-Rank p=0.853), women (Log-Rank p=0.227), patients under and above 65 years of age (Log-Rank p=0.188 and Log-Rank p=0.602, respectively) and patients undergoing one of the three types of aortic repair surgery showed similar results for normotensive and hypertensive patient groups. Subgroup analysis for long-term survival of patients free from cerebrovascular events for women, patients under 65 years of age and patients undergoing aortic arch repair showed significant differences between the two groups in favor of hypertensive patients. Hypertensive patients suffering from Stanford A AAD were older, more frequently received hemi-arch replacement and were

  4. The rotation of the Sun: Observations at Stanford. [using the Doppler effect

    NASA Technical Reports Server (NTRS)

    Scherrer, J. M.; Wilcox, J. M.; Svalgaard, L.

    1980-01-01

    Daily observations of the photospheric rotation rate using the Doppler effect made at the Stanford Solar Observatory since May 1976 are analyzed. Results show that these observations show no daily or long period variations in the rotation rate that exceed the observational error of about one percent. The average rotation rate is the same as that of the sunspot and the large-scale magnetic field structures.

  5. Rethinking the Relationship Between Academia and Industry: Qualitative Case Studies of MIT and Stanford.

    PubMed

    Zhu, Fengliang; Hawk, Soaring

    2016-10-01

    As knowledge has become more closely tied to economic development, the interrelationship between academia and industry has become stronger. The result has been the emergence of what Slaughter and Leslie call academic capitalism. Inevitably, tensions between academia and industry arise; however, universities such as MIT and Stanford with long traditions of industry interaction have been able to achieve a balance between academic and market values. This paper describes the strategies adopted by MIT and Stanford to achieve this balance. The results indicate that implicit culture is a stronger determinant of balance than are explicit rules. Finally, the author proposes a concept of balance to reconsider the relationship between academia and industry: today's universities, particularly those with strengths in engineering and management, are both symbiotic and interdependent with industry. A reasonable attitude toward the university-industry relationship is that of balance rather than strict separation. Universities can thus establish effective mechanisms to reach a balance between conflicting values.

  6. Efficacy of abbreviated Stanford V chemotherapy and involved-field radiotherapy in early-stage Hodgkin lymphoma: mature results of the G4 trial.

    PubMed

    Advani, R H; Hoppe, R T; Baer, D; Mason, J; Warnke, R; Allen, J; Daadi, S; Rosenberg, S A; Horning, S J

    2013-04-01

    To assess the efficacy of an abbreviated Stanford V regimen in patients with early-stage Hodgkin lymphoma (HL). PATIENTS AND METHODS PATIENTS: with untreated nonbulky stage I-IIA supradiaphragmatic HL were eligible for the G4 study. Stanford V chemotherapy was administered for 8 weeks followed by radiation therapy (RT) 30 Gy to involved fields (IF). Freedom from progression (FFP), disease-specific survival (DSS) and overall survival (OS) were estimated. All 87 enrolled patients completed the abbreviated regimen. At a median follow-up of 10 years, FFP, DSS and OS are 94%, 99% and 94%, respectively. Therapy was well tolerated with no treatment-related deaths. Mature results of the abbreviated Stanford V regimen in nonbulky early-stage HL are excellent and comparable to the results from other contemporary therapies.

  7. Bringing Faith to Campus: Religious and Spiritual Space, Time, and Practice at Stanford University

    ERIC Educational Resources Information Center

    Karlin-Neumann, Patricia; Sanders, Joanne

    2013-01-01

    This essay examines how Stanford University, secular in its origins, yet with a church at its center, addresses the religious and spiritual concerns of current students, whether from traditional or innovative religious backgrounds. Identified religious and spiritual needs prompt questions about the balance between the spiritual health and…

  8. Engineering aspects of the Stanford relativity gyro experiment

    NASA Technical Reports Server (NTRS)

    Everitt, C. W. F.; Debra, D. B.

    1981-01-01

    According to certain theoretical predictions, the Newtonian laws of motion must be corrected for the effect of a gravitational field. Schiff (1960) proposed an experiment which would demonstrate the effect predicted by Einstein's Theory of General Relativity on a gyroscope. The experiment has been under development at Stanford University since 1961. The requirements involved make it necessary that the test be performed in a satellite to take advantage of weightlessness in space. In a discussion of engineering developments related to the experiment, attention is given to the development of proportional helium thrusters, the simulation of the attitude control system, aspects of inner loop control, the mechanization of the two-loop attitude control system, the effects of helium slosh on spacecraft pointing, and the data instrumentation system.

  9. Risk factors of early and late mortality after thoracic endovascular aortic repair for complicated stanford B acute aortic dissection.

    PubMed

    Ruan, Zhong-Bao; Zhu, Li; Yin, Yi-Gang; Chen, Ge-Cai

    2014-07-01

    The risk factors associated with death in complicated Stanford B acute aortic dissection (AAD) after thoracic endovascular aortic repair (TEVAR) are poorly understood. The aim of this study was to evaluate the early and late events and mortality of complicated Stanford B AAD associated with TEVAR. Sixty-two patients with complicated Stanford B AAD undergoing TEVAR were included in this study. Primary technical success of TEVAR was achieved in 61 (98.39%) cases. The early mortality rate was 9.68%. Procedural type I endoleak (p = 0.007, OR = 7.71, 95% CI: 1.75-34.01) and cardiac tamponade (p = 0.010, OR = 8.86, 95% CI: 1.70-4 6.14) were the significant predictors of early death in the multivariate model. The late mortality was 16.07%. Cox regression analysis revealed rupture of false lumen (p = 0.001, hazard ratio = 21.96, 95% CI: 3.02-82.12), postoperative myocardial infarction (p = 0.001, hazard ratio = 9.86, 95% CI: 2.12-39.64), and acute renal failure (p = 0.024, hazard ratio = 3.98, 95% CI: 1.26-12.11) to be independent risk factors of late mortality. Type I procedural endoleak and cardiac tamponade were the significant predictors of early death in patients of complicated Stanford B AAD undergoing TEVAR. Rupture of false lumen, postoperative myocardial infarction, and acute renal failure were the independent risk factors for late death after TEVAR. © 2014 Wiley Periodicals, Inc.

  10. Implementation of Epic Beaker Clinical Pathology at Stanford University Medical Center.

    PubMed

    Tan, Brent T; Fralick, Jennifer; Flores, William; Schrandt, Cary; Davis, Vicki; Bruynell, Tom; Wilson, Lisa; Christopher, John; Weber, Shirley; Shah, Neil

    2017-03-01

    To provide an account of implementation of the Epic Beaker 2014 clinical pathology module at Stanford University Medical Center and highlight strengths and weaknesses of the system. Based on a formal selection process, Stanford selected Epic Beaker to replace Sunquest as the clinical laboratory information system (LIS). The rationale included integration between the LIS and already installed Epic electronic medical record (EMR), reduction in the number of systems and interfaces, and positive patient identification (PPID). The build was significantly customized and included a first of its kind Epic-to-Epic interface. This was due to the clinical laboratory serving two hospitals (pediatric and adult) with independent instances of Epic. Test turnaround times showed improvement from historical baselines, mostly because of the implementation of PPID. PPID also resulted in significant reduction in mislabeled specimens. Epic 2014 Beaker clinical pathology is a viable LIS with adequate functionality for a large academic center. Strengths include PPID and integration with the EMR. Integration provides laboratory users with ready access to the patient's relevant clinical history to assist releasing of results and gives physician and nurse providers sophisticated add-on ordering and specimen collection workflows. Areas that could use further development include specimen aliquoting, quality control reporting, and maintenance tools. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  11. Requirements for SPIRES II. An External Specification for the Stanford Public Information Retrieval System.

    ERIC Educational Resources Information Center

    Parker, Edwin B.

    SPIRES (Stanford Public Information Retrieval System) is a computerized information storage and retrieval system intended for use by students and faculty members who have little knowledge of computers but who need rapid and sophisticated retrieval and analysis. The functions and capabilities of the system from the user's point of view are…

  12. Physics at high energy photon photon colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chanowitz, M.S.

    I review the physic prospects for high energy photon photon colliders, emphasizing results presented at the LBL Gamma Gamma Collider Workshop. Advantages and difficulties are reported for studies of QCD, the electroweak gauge sector, supersymmetry, and electroweak symmetry breaking.

  13. Recurrence quantification analysis of electroencephalograph signals during standard tasks of Waterloo-Stanford group scale of hypnotic susceptibility.

    PubMed

    Yargholi, Elahe'; Nasrabadi, Ali Motie

    2015-01-01

    The purpose of this study was to apply RQA (recurrence quantification analysis) on hypnotic electroencephalograph (EEG) signals recorded after hypnotic induction while subjects were doing standard tasks of the Waterloo-Stanford Group Scale (WSGS) of hypnotic susceptibility. Then recurrence quantifiers were used to analyse the influence of hypnotic depth on EEGs. By the application of this method, the capability of tasks to distinguish subjects of different hypnotizability levels was determined. Besides, medium hypnotizable subjects showed the highest disposition to be inducted by hypnotizer. Similarities between brain governing dynamics during tasks of the same type were also observed. The present study demonstrated two remarkable innovations; investigating the EEGs of the hypnotized as doing mental tasks of Waterloo-Stanford Group Scale (WSGS) and applying RQA on hypnotic EEGs.

  14. What Do Universities Really Owe Industry? The Case of Solid State Electronics at Stanford

    ERIC Educational Resources Information Center

    Lecuyer, Christophe

    2005-01-01

    It is widely argued that, in the United States, the Department of Defense dictated the intellectual contours of academic science and engineering during the Cold War. However, in important ways, American science was also deeply influenced by industry. Between 1955 and 1985, Stanford University embraced three waves of industrial innovation in solid…

  15. Compensatable muon collider calorimeter with manageable backgrounds

    DOEpatents

    Raja, Rajendran

    2015-02-17

    A method and system for reducing background noise in a particle collider, comprises identifying an interaction point among a plurality of particles within a particle collider associated with a detector element, defining a trigger start time for each of the pixels as the time taken for light to travel from the interaction point to the pixel and a trigger stop time as a selected time after the trigger start time, and collecting only detections that occur between the start trigger time and the stop trigger time in order to thereafter compensate the result from the particle collider to reduce unwanted background detection.

  16. Dark spectroscopy at lepton colliders

    NASA Astrophysics Data System (ADS)

    Hochberg, Yonit; Kuflik, Eric; Murayama, Hitoshi

    2018-03-01

    Rich and complex dark sectors are abundant in particle physics theories. Here, we propose performing spectroscopy of the mass structure of dark sectors via mono-photon searches at lepton colliders. The energy of the mono-photon tracks the invariant mass of the invisible system it recoils against, which enables studying the resonance structure of the dark sector. We demonstrate this idea with several well-motivated models of dark sectors. Such spectroscopy measurements could potentially be performed at Belle II, BES-III and future low-energy lepton colliders.

  17. System Scope for Library Automation and Generalized Information Storage and Retrieval at Stanford University.

    ERIC Educational Resources Information Center

    Cady, Glee; And Others

    The scope of a manual-automated system serving the 40 libraries and the teaching and research community of Stanford University is defined. Also defined are the library operations to be supported and the bibliographic information storage and retrieval capabilities to be provided in the system. Two major projects have been working jointly on library…

  18. Hierarchical Confirmatory Analysis of the Stanford-Binet Fourth Edition: Testing the Theory--Test Match.

    ERIC Educational Resources Information Center

    Keith, Timothy Z.; And Others

    The Stanford-Binet Intelligence Scale: Fourth Edition is a conceptually new version of this traditional intelligence scale. The new scale has a solid basis in theory, but there is little evidence that the Binet matches its intended theory. This study was designed to determine whether the Binet corresponds to the theory that guided its…

  19. Space-charge limitations in a collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedotov, A.; Heimerle, M.

    Design of several projects which envision hadron colliders operating at low energies such as NICA at JINR [1] and Electron-Nucleon Collider at FAIR [2] is under way. In Brookhaven National Laboratory (BNL), a new physics program requires operation of Relativistic Heavy Ion Collider (RHIC) with heavy ions at low energies at g=2.7-10 [3]. In a collider, maximum achievable luminosity is typically limited by beam-beam effects. For heavy ions significant luminosity degradation, driving bunch length and transverse emittance growth, comes from Intrabeam Scattering (IBS). At these low energies, IBS growth can be effectively counteracted, for example, with cooling techniques. If IBSmore » were the only limitation, one could achieve small hadron beam emittance and bunch length with the help of cooling, resulting in a dramatic luminosity increase. However, as a result of low energies, direct space-charge force from the beam itself is expected to become the dominant limitation. Also, the interplay of both beambeam and space-charge effects may impose an additional limitation on achievable maximum luminosity. Thus, understanding at what values of space-charge tune shift one can operate in the presence of beam-beam effects in a collider is of great interest for all of the above projects. Operation of RHIC for Low-Energy physics program started in 2010 which allowed us to have a look at combined impact of beam-beam and space-charge effects on beam lifetime experimentally. Here we briefly discuss expected limitation due to these effects with reference to recent RHIC experience.« less

  20. Will there be energy frontier colliders after LHC?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiltsev, Vladimir

    2016-09-15

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). The future of the world-wide HEP community critically depends on the feasibility of possible post-LHC colliders. The concept of the feasibility is complex and includes at least three factors: feasibility of energy, feasibility of luminosity and feasibility of cost. Here we overview all current options for post-LHC collidersmore » from such perspective (ILC, CLIC, Muon Collider, plasma colliders, CEPC, FCC, HE-LHC) and discuss major challenges and accelerator R&D required to demonstrate feasibility of an energy frontier accelerator facility following the LHC. We conclude by taking a look into ultimate energy reach accelerators based on plasmas and crystals, and discussion on the perspectives for the far future of the accelerator-based particle physics.« less

  1. Branon search in hadronic colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cembranos, J.A.R.; Departamento de Fisica Teorica, Universidad Complutense de Madrid, 28040 Madrid; Dobado, A.

    2004-11-01

    In the context of the brane-world scenarios with compactified extra dimensions, we study the production of brane fluctuations (branons) in hadron colliders (pp, pp, and e{sup {+-}}p) in terms of the brane tension parameter f, the branon mass M, and the number of branons N. From the absence of monojet events at HERA and Tevatron (run I), we set bounds on these parameters and we also study how such bounds could be improved at Tevatron (run II) and the future LHC. The single-photon channel is also analyzed for the two last colliders.

  2. Research in free-flying robots and flexible manipulators at the Stanford Aerospace Robotics Laboratory

    NASA Technical Reports Server (NTRS)

    Ballhaus, W. L.; Alder, L. J.; Chen, V. W.; Dickson, W. C.; Ullman, M. A.; Wilson, E.

    1993-01-01

    Over the last ten years, the Stanford Aerospace Robotics Laboratory (ARL) has developed a hardware facility in which a number of space robotics issues have been, and continue to be addressed. This paper reviews two of the current ARL research areas: navigation and control of free flying space robots, and modeling and control of extremely flexible space structures.

  3. Artist rendering of dust grains colliding at low speeds

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Clues to the formation of planets and planetary rings -- like Saturn's dazzling ring system -- may be found by studying how dust grains interact as they collide at low speeds. To study the question of low-speed dust collisions, NASA sponsored the COLLisions Into Dust Experiment (COLLIDE) at the University of Colorado. It was designed to spring-launch marble-size projectiles into trays of powder similar to space or lunar dust. COLLIDE-1 (1998) discovered that collisions below a certain energy threshold eject no material. COLLIDE-2 was designed to identify where the threshold is. In COLLIDE-2, scientists nudged small projectiles into dust beds and recorded how the dust splashed outward (video frame at top; artist's rendering at bottom). The slowest impactor ejected no material and stuck in the target. The faster impactors produced ejecta; some rebounded while others stuck in the target.

  4. Biomarkers Investigation for In-Hospital Death in Patients With Stanford Type A Acute Aortic Dissection.

    PubMed

    Zhang, Ruoxi; Chen, Shuyuan; Zhang, Hui; Wang, Wei; Xing, Jianpang; Wang, Yu; Yu, Bo; Hou, Jingbo

    2016-09-28

    This retrospective study aimed to investigate the predictive value of biomarkers for in-hospital mortality of patients with Stanford type A acute aortic dissection (AAD).AAD is a life-threatening disease with an incidence of about 2.6-3.6 cases per 100,000/year.A total of 67 consecutive Stanford type A AAD patients admitted to hospital were divided into a deceased group and survival group. The baseline information of the patients between two groups was systematically compared, followed by examination of the electrocardiograms (ECG). Based on the follow-up during hospitalization, we investigated the simultaneous assessment of indexes like fragmented QRS complex (fQRS), admission systolic blood pressure (SBP), aortic diameter, surgical management, troponin I (TnI), white blood cell (WBC) count, N-terminal pro-brain natriuretic peptide (NT-proBNP), and D-dimer.The levels of TnI and NT-proBNP, WBC counts, and rate of fQRS (+) in patients of the deceased group were significantly higher than those in the survival group. The male sex (hazard ratio, 10.88; P = 0.001), admission SBP (hazard ratio, 0.98; P = 0.012), NT-proBNP (hazard ratio, 1.00; P = 0.001), and WBC count (hazard ratio, 1.10; P = 0.033) were independently related with in-hospital death. As a single marker, WBC count had the highest sensitivity at 84.6% (specificity 65.9%).Admission SBP, NT-proBNP, and WBC count were potential independent risk factors of in-hospital death in Stanford type A AAD patients. WBC count may be a more accurate predictor of type A AAD than either alone.

  5. Les Houches ''Physics at TeV Colliders 2003'' Beyond the Standard Model Working Group: Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allanach, B

    2004-03-01

    The work contained herein constitutes a report of the ''Beyond the Standard Model'' working group for the Workshop ''Physics at TeV Colliders'', Les Houches, France, 26 May-6 June, 2003. The research presented is original, and was performed specifically for the workshop. Tools for calculations in the minimal supersymmetric standard model are presented, including a comparison of the dark matter relic density predicted by public codes. Reconstruction of supersymmetric particle masses at the LHC and a future linear collider facility is examined. Less orthodox supersymmetric signals such as non-pointing photons and R-parity violating signals are studied. Features of extra dimensional modelsmore » are examined next, including measurement strategies for radions and Higgs', as well as the virtual effects of Kaluza Klein modes of gluons. Finally, there is an update on LHC Z' studies.« less

  6. Characteristics of W-26% Re Target Material(LCC-0103)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunwoo, A.

    2003-10-07

    The W-26 wt-% Re alloy was selected as a Stanford Linear Collider (SLC) target material for its exceptional physics properties and for the high strength and good ductility at the anticipated target operating temperatures, above the DBTT. After several years of operation, the target failed catastrophically. A detailed microstructural and mechanical characterization of the non-irradiated disk indicates that the material has been PM processed, nonuniformly mechanically worked and stress relieved. As a result, the ductility of the material varies through the thickness of the disk, making it difficult to determine the DBTT. The results of tensile and fatigue properties aremore » reported with the corresponding fractography of the fracture surfaces.« less

  7. Photon collider: a four-channel autoguider solution

    NASA Astrophysics Data System (ADS)

    Hygelund, John C.; Haynes, Rachel; Burleson, Ben; Fulton, Benjamin J.

    2010-07-01

    The "Photon Collider" uses a compact array of four off axis autoguider cameras positioned with independent filtering and focus. The photon collider is two way symmetric and robustly mounted with the off axis light crossing the science field which allows the compact single frame construction to have extremely small relative deflections between guide and science CCDs. The photon collider provides four independent guiding signals with a total of 15 square arc minutes of sky coverage. These signals allow for simultaneous altitude, azimuth, field rotation and focus guiding. Guide cameras read out without exposure overhead increasing the tracking cadence. The independent focus allows the photon collider to maintain in focus guide stars when the main science camera is taking defocused exposures as well as track for telescope focus changes. Independent filters allow auto guiding in the science camera wavelength bandpass. The four cameras are controlled with a custom web services interface from a single Linux based industrial PC, and the autoguider mechanism and telemetry is built around a uCLinux based Analog Devices BlackFin embedded microprocessor. Off axis light is corrected with a custom meniscus correcting lens. Guide CCDs are cooled with ethylene glycol with an advanced leak detection system. The photon collider was built for use on Las Cumbres Observatory's 2 meter Faulks telescopes and currently used to guide the alt-az mount.

  8. Dynamic Pricing Criteria in Linear Programming

    DTIC Science & Technology

    1988-07-01

    DTICE’ECTE h QSEPO08 19880 Department of Operations Researchs Stanford University Stanford, CA 94305 Fl . dommd lum b dLvulbcjasa Im %ailmft@d.I &~ T...information about positive ones. 38 C- M .9 ~ ,~- - ~ fl .’ %’% ’ % % .,h.] However, this rule works extremely well on the PILOT set, achieving...34 .r " .:." ," "e .-r".’.€ .-,N., N REFERENCES [1] Adler, I., Resende, M.G. and Veiga , G. (1986). An implementation of Karmax- kar’s algorithm for

  9. Numerical calculation of ion polarization in the NICA collider

    NASA Astrophysics Data System (ADS)

    Kovalenko, A. D.; Butenko, A. V.; Kekelidze, V. D.; Mikhaylov, V. A.; Kondratenko, M. A.; Kondratenko, A. M.; Filatov, Yu N.

    2016-02-01

    The NICA Collider with two solenoid Siberian snakes is “transparent” to the spin. The collider transparent to the spin provides a unique capability to control any polarization direction of protons and deuterons using additional weak solenoids without affecting orbital parameters of the beam. The spin tune induced by the control solenoids must significantly exceed the strength of the zero-integer spin resonance, which contains a coherent part associated with errors in the collider's magnetic structure and an incoherent part associated with the beam emittances. We present calculations of the coherent part of the resonance strength in the NICA collider for proton and deuteron beams.

  10. Protection of xenon against postoperative oxygen impairment in adults undergoing Stanford Type-A acute aortic dissection surgery

    PubMed Central

    Jin, Mu; Cheng, Yi; Yang, Yanwei; Pan, Xudong; Lu, Jiakai; Cheng, Weiping

    2017-01-01

    Abstract Objectives: The available evidence shows that hypoxemia after Stanford Type-A acute aortic dissection (AAD) surgery is a frequent cause of several adverse consequences. The pathogenesis of postoperative hypoxemia after AAD surgery is complex, and ischemia/reperfusion and inflammation are likely to be underlying risk factors. Xenon, recognized as an ideal anesthetic and anti-inflammatory treatment, might be a possible treatment for these adverse effects. Methods/Design: The trial is a prospective, double-blind, 4-group, parallel, randomized controlled, a signal-center clinical trial. We will recruit 160 adult patients undergoing Stanford type-A AAD surgery. Patients will be allocated a study number and will be randomized on a 1:1:1:1 basis to receive 1 of the 3 treatment options (pulmonary inflated with 50% xenon, 75% xenon, or 100% xenon) or no treatment (control group, pulmonary inflated with 50% nitrogen). The aims of this study are to clarify the lung protection capability of xenon and its possible mechanisms in patients undergoing the Stanford type-A AAD surgery. Discussion: This trial uses an innovative design to account for the xenon effects of postoperative oxygen impairment, and it also delineates the mechanism for any benefit from xenon. The investigational xenon group is considered a treatment intervention, as it includes 3 groups of pulmonary static inflation with 50%, 75%, and 100% xenon. It is suggested that future trials might define an appropriate concentration of xenon for the best practice intervention. PMID:28834897

  11. Linear momentum, angular momentum and energy in the linear collision between two balls

    NASA Astrophysics Data System (ADS)

    Hanisch, C.; Hofmann, F.; Ziese, M.

    2018-01-01

    In an experiment of the basic physics laboratory, kinematical motion processes were analysed. The motion was recorded with a standard video camera having frame rates from 30 to 240 fps the videos were processed using video analysis software. Video detection was used to analyse the symmetric one-dimensional collision between two balls. Conservation of linear and angular momentum lead to a crossover from rolling to sliding directly after the collision. By variation of the rolling radius the system could be tuned from a regime in which the balls move away from each other after the collision to a situation in which they re-collide.

  12. Galvanizing medical students in the administration of influenza vaccines: the Stanford Flu Crew.

    PubMed

    Rizal, Rachel E; Mediratta, Rishi P; Xie, James; Kambhampati, Swetha; Hills-Evans, Kelsey; Montacute, Tamara; Zhang, Michael; Zaw, Catherine; He, Jimmy; Sanchez, Magali; Pischel, Lauren

    2015-01-01

    Many national organizations call for medical students to receive more public health education in medical school. Nonetheless, limited evidence exists about successful servicelearning programs that administer preventive health services in nonclinical settings. The Flu Crew program, started in 2001 at the Stanford University School of Medicine, provides preclinical medical students with opportunities to administer influenza immunizations in the local community. Medical students consider Flu Crew to be an important part of their medical education that cannot be learned in the classroom. Through delivering vaccines to where people live, eat, work, and pray, Flu Crew teaches medical students about patient care, preventive medicine, and population health needs. Additionally, Flu Crew allows students to work with several partners in the community in order to understand how various stakeholders improve the delivery of population health services. Flu Crew teaches students how to address common vaccination myths and provides insights into implementing public health interventions. This article describes the Stanford Flu Crew curriculum, outlines the planning needed to organize immunization events, shares findings from medical students' attitudes about population health, highlights the program's outcomes, and summarizes the lessons learned. This article suggests that Flu Crew is an example of one viable service-learning modality that supports influenza vaccinations in nonclinical settings while simultaneously benefiting future clinicians.

  13. Galvanizing medical students in the administration of influenza vaccines: the Stanford Flu Crew

    PubMed Central

    Rizal, Rachel E; Mediratta, Rishi P; Xie, James; Kambhampati, Swetha; Hills-Evans, Kelsey; Montacute, Tamara; Zhang, Michael; Zaw, Catherine; He, Jimmy; Sanchez, Magali; Pischel, Lauren

    2015-01-01

    Many national organizations call for medical students to receive more public health education in medical school. Nonetheless, limited evidence exists about successful servicelearning programs that administer preventive health services in nonclinical settings. The Flu Crew program, started in 2001 at the Stanford University School of Medicine, provides preclinical medical students with opportunities to administer influenza immunizations in the local community. Medical students consider Flu Crew to be an important part of their medical education that cannot be learned in the classroom. Through delivering vaccines to where people live, eat, work, and pray, Flu Crew teaches medical students about patient care, preventive medicine, and population health needs. Additionally, Flu Crew allows students to work with several partners in the community in order to understand how various stakeholders improve the delivery of population health services. Flu Crew teaches students how to address common vaccination myths and provides insights into implementing public health interventions. This article describes the Stanford Flu Crew curriculum, outlines the planning needed to organize immunization events, shares findings from medical students’ attitudes about population health, highlights the program’s outcomes, and summarizes the lessons learned. This article suggests that Flu Crew is an example of one viable service-learning modality that supports influenza vaccinations in nonclinical settings while simultaneously benefiting future clinicians. PMID:26170731

  14. Slepton Pair Production at Hadron Colliders

    NASA Astrophysics Data System (ADS)

    Fuks, B.

    2007-04-01

    In R-parity conserving supersymmetric models, sleptons are produced in pairs at hadron colliders. We show that measurements of the longitudinal single-spin asymmetry at possible polarization upgrades of existing colliders allow for a direct extraction of the slepton mixing angle. A calculation of the transverse-momentum spectrum shows the importance of resummed contributions at next-to-leading logarithmic accuracy in the small and intermediate transverse-momentum regions and little dependence on unphysical scales and non-perturbative contributions.

  15. CERN Collider, France-Switzerland

    NASA Image and Video Library

    2013-08-23

    This image, acquired by NASA Terra spacecraft, is of the CERN Large Hadron Collider, the world largest and highest-energy particle accelerator laying beneath the French-Swiss border northwest of Geneva yellow circle.

  16. Cognitive Development and Down Syndrome: Age-Related Change on the Stanford-Binet Test (Fourth Edition)

    ERIC Educational Resources Information Center

    Couzens, Donna; Cuskelly, Monica; Haynes, Michele

    2011-01-01

    Growth models for subtests of the Stanford-Binet Intelligence Scale, 4th edition (R. L. Thorndike, E. P. Hagen, & J. M. Sattler, 1986a, 1986b) were developed for individuals with Down syndrome. Models were based on the assessments of 208 individuals who participated in longitudinal and cross-sectional research between 1987 and 2004. Variation…

  17. EDITORIAL: Proceedings of the 8th International LISA Symposium, Stanford University, California, USA, 28 June-2 July 2010 Proceedings of the 8th International LISA Symposium, Stanford University, California, USA, 28 June-2 July 2010

    NASA Astrophysics Data System (ADS)

    Buchman, Sasha; Sun, Ke-Xun

    2011-05-01

    The international research community interested in the Laser Interferometric Space Antenna (LISA) program meets every two years to exchange scientific and technical information. From 28 June-2 July 2010, Stanford University hosted the 8th International LISA Symposium. The symposium was held on the campus of the SLAC National Accelerator Laboratory. Many of the foremost scientific and technological researchers in LISA and gravitational wave theory and detection presented their work and ideas. Over one hundred engineers and graduate students attended the meeting. The leadership from NASA and ESA research centers and programs joined the symposium. A total of 280 delegates participated in the 8th LISA Symposium, and enjoyed the scientific and social programs. The scientific program included 46 invited plenary lectures, 44 parallel talks, and 77 posters, totaling 167 presentations. The one-slide introduction presentation of the posters is a new format in this symposium and allowed graduate students the opportunity to talk in front of a large audience of scientists. The topics covered included LISA Science, LISA Interferometry, LISA PathFinder (LPF), LISA and LPF Data Analysis, Astrophysics, Numerical Relativity, Gravitational Wave Theory, GRS Technologies, Other Space Programs, and Ground Detectors. Large gravitational wave detection efforts, DECIGO, and LIGO were presented, as well as a number of other fundamental physics space experiments, with GP-B and STEP being examples. A public evening lecture was also presented at the symposium. Professor Bernard Schutz from the Albert Einstein Institute gave a general audience, multimedia presentation on `Gravitational waves: Listening to the music of spheres'. For more detailed information about the symposium and many presentation files, please browse through the website: http://www.stanford.edu/group/lisasymposium The Proceedings of the 8th International LISA Symposium are jointly published by Classical and Quantum Gravity

  18. Collaboration and Community Building in Summer Undergraduate Research Programs in the School of Earth Sciences at Stanford University

    NASA Astrophysics Data System (ADS)

    Nevle, R. J.; Watson Nelson, T.; Harris, J. M.; Klemperer, S. L.

    2012-12-01

    In 2012, the School of Earth Sciences (SES) at Stanford University sponsored two summer undergraduate research programs. Here we describe these programs and efforts to build a cohesive research cohort among the programs' diverse participants. The two programs, the Stanford School of Earth Sciences Undergraduate Research (SESUR) Program and Stanford School of Earth Sciences Summer Undergraduate Research in Geoscience and Engineering (SURGE) Program, serve different undergraduate populations and have somewhat different objectives, but both provide students with opportunities to work on strongly mentored yet individualized research projects. In addition to research, enrichment activities co-sponsored by both programs support the development of community within the combined SES summer undergraduate research cohort. Over the course of 6 to 9 months, the SESUR Program engages Stanford undergraduates, primarily rising sophomores and juniors, with opportunities to deeply explore Earth sciences research while learning about diverse areas of inquiry within SES. Now in its eleventh year, the SESUR experience incorporates the breadth of the scientific endeavor: finding an advisor, proposal writing, obtaining funding, conducting research, and presenting results. Goals of the SESUR program include (1) providing a challenging and rewarding research experience for undergraduates who wish to explore the Earth sciences; (2) fostering interdisciplinary study in the Earth sciences among the undergraduate population; and (3) encouraging students to major or minor in the Earth sciences and/or to complete advanced undergraduate research in one of the departments or programs within SES. The SURGE Program, now in its second year, draws high performing students, primarily rising juniors and seniors, from 14 colleges and universities nationwide, including Stanford. Seventy percent of SURGE students are from racial/ethnic backgrounds underrepresented in STEM fields, and approximately one

  19. Chaos-chaos transition of left hemisphere EEGs during standard tasks of Waterloo-Stanford Group Scale of hypnotic susceptibility.

    PubMed

    Yargholi, Elahe'; Nasrabadi, Ali Motie

    2015-01-01

    A recent study, recurrence quantification analysis of EEG signals during standard tasks of Waterloo-Stanford Group Scale of hypnotic susceptibility investigated recurrence quantifiers (RQs) of hypnotic electroencephalograph (EEG) signals recorded after hypnotic induction while subjects were doing standard tasks of Waterloo-Stanford Group Scale (WSGS) of hypnotic susceptibility to distinguish subjects of different hypnotizability levels. Following the same analysis, the current study determines the capability of different RQs to distinguish subjects of low, medium and high hypnotizability level and studies the influence of hypnotizability level on underlying dynamic of tasks. Besides, EEG channels were sorted according to the number of their RQs, which differed significantly among subjects of different hypnotizability levels. Another valuable result was determination of major brain regions in observing significant differences in various task types (ideomotors, hallucination, challenge and memory).

  20. Skyshine from the SSC (superconducting super collider) interaction regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cossairt, J.D.

    1987-04-01

    This report calculates the neutron fluence from collisions at the superconducting super collider. The motivation for these calculations is shielding considerations in the collision halls of the collider. (JDH)

  1. 2009: A Colliding-Wind Odyssey

    NASA Astrophysics Data System (ADS)

    Fahed, R.; Moffat, A. F. J.; Zorec, J.; Eversberg, T.; Chené, A. N.; Alves, F.; Arnold, W.; Bergmann, T.; Corcoran, M. F.; Correia Viegas, N. G.; Dougherty, S. M.; Fernando, A.; Frémat, Y.; Gouveia Carreira, L. F.; Hunger, T.; Knapen, J. H.; Leadbeater, R.; Marques Dias, F.; Martayan, C.; Morel, T.; Pittard, J. M.; Pollock, A. M. T.; Rauw, G.; Reinecke, N.; Ribeiro, J.; Romeo, N.; Sánchez-Gallego, J. R.; dos Santos, E. M.; Schanne, L.; Stahl, O.; Stober, Ba.; Stober, Be.; Vollmann, K.; Williams, P. M.

    2012-12-01

    We present the results from two optical spectroscopic campaigns on colliding-wind binaries (CWB) which both occurred in 2009. The first one was on WR 140 (WC7pd + O5.5fc), the archetype of CWB, which experienced periastron passage of its highly elliptical 8-year orbit in January. The WR 140 campaign consisted of a unique and constructive collaboration between amateur and professional astronomers and took place at half a dozen locations, including Teide Observatory, Observatoire de Haute Provence, Dominion Astrophysical Observatory, Observatoire du Mont-Mégantic and at several small private observatories. The second campaign was on a selection of 5 short-period WR + O binaries not yet studied for colliding-wind effects: WR 12 (WN8h), WR 21 (WN5o + O7 V), WR 30 (WC6 + O7.5 V), WR 31 (WN4o + O8), and WR 47 (WN6o + O5). The campaign took place at Leoncito Observatory, Argentina, during 1 month. We provide updated values of most of these systems for the orbital parameters, new estimates for the WR and O star masses and new constraints on the mass-loss rates and colliding wind geometry.

  2. College Writing, Identification, and the Production of Intellectual Property: Voices from the Stanford Study of Writing

    ERIC Educational Resources Information Center

    Lunsford, Andrea A.; Fishman, Jenn; Liew, Warren M.

    2013-01-01

    When, why, and how do college students come to value their writing as intellectual property? How do their conceptions of intellectual property reflect broader understandings and personal engagements with concepts of authorship, collaboration, identification, and capital? We address these questions based on findings from the Stanford Study of…

  3. Linear beam dynamics and ampere class superconducting RF cavities at RHIC

    NASA Astrophysics Data System (ADS)

    Calaga, Rama R.

    The Relativistic Heavy Ion Collider (RHIC) is a hadron collider designed to collide a range of ions from protons to gold. RHIC operations began in 2000 and has successfully completed five physics runs with several species including gold, deuteron, copper, and polarized protons. Linear optics and coupling are fundamental issues affecting the collider performance. Measurement and correction of optics and coupling are important to maximize the luminosity and sustain stable operation. A numerical approach, first developed at SLAC, was implemented to measure linear optics from coherent betatron oscillations generated by ac dipoles and recorded at multiple beam position monitors (BPMs) distributed around the collider. The approach is extended to a fully coupled 2D case and equivalence relationships between Hamiltonian and matrix formalisms are derived. Detailed measurements of the transverse coupling terms are carried out at RHIC and correction strategies are applied to compensate coupling both locally and globally. A statistical approach to determine BPM reliability and performance over the past three runs and future improvements also discussed. Aiming at a ten-fold increase in the average heavy-ion luminosity, electron cooling is the enabling technology for the next luminosity upgrade (RHIC II). Cooling gold ion beams at 100 GeV/nucleon requires an electron beam of approximately 54 MeV and a high average current in the range of 50-200 mA. All existing e-Coolers are based on low energy DC accelerators. The only viable option to generate high current, high energy, low emittance CW electron beam is through a superconducting energy-recovery linac (SC-ERL). In this option, an electron beam from a superconducting injector gun is accelerated using a high gradient (˜ 20 MV/m) superconducting RF (SRF) cavity. The electrons are returned back to the cavity with a 180° phase shift to recover the energy back into the cavity before being dumped. A design and development of a half

  4. Design of beam optics for the future circular collider e + e - collider rings

    DOE PAGES

    Oide, Katsunobu; Aiba, M.; Aumon, S.; ...

    2016-11-21

    A beam optics scheme has been designed for the future circular collider- e +e - (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [P. Raimondi, D. Shatilov, and M. Zobov, arXiv:physics/0702033; P. Raimondi, M. Zobov, and D. Shatilov, in Proceedings of the 22nd Particle Accelerator Conference, PAC-2007, Albuquerque, NM (IEEE, New York, 2007), p. TUPAN037.] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system withoutmore » additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So-called “tapering” of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout near the interaction region reduces the critical energy of SR photons on the incoming side of the IP to values below 100 keV, while matching the geometry to the beam line of the FCC proton collider (FCC-hh) [A. Chancé et al., Proceedings of IPAC’16, 9–13 May 2016, Busan, Korea, TUPMW020 (2016).] as closely as possible. Sufficient transverse/longitudinal dynamic aperture (DA) has been obtained, including major dynamical effects, to assure an adequate beam lifetime in the presence of beamstrahlung and top-up injection. In particular, a momentum acceptance larger than ±2% has been obtained, which is better than the momentum acceptance of typical collider rings by about a factor of 2. The effects of the detector solenoids including their compensation elements are taken into account as well as synchrotron radiation in all magnets. The optics presented in this study is a step toward a full conceptual design for the collider. Finally, a number of issues have

  5. Design of beam optics for the future circular collider e + e - collider rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oide, Katsunobu; Aiba, M.; Aumon, S.

    A beam optics scheme has been designed for the future circular collider- e +e - (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [P. Raimondi, D. Shatilov, and M. Zobov, arXiv:physics/0702033; P. Raimondi, M. Zobov, and D. Shatilov, in Proceedings of the 22nd Particle Accelerator Conference, PAC-2007, Albuquerque, NM (IEEE, New York, 2007), p. TUPAN037.] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system withoutmore » additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So-called “tapering” of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout near the interaction region reduces the critical energy of SR photons on the incoming side of the IP to values below 100 keV, while matching the geometry to the beam line of the FCC proton collider (FCC-hh) [A. Chancé et al., Proceedings of IPAC’16, 9–13 May 2016, Busan, Korea, TUPMW020 (2016).] as closely as possible. Sufficient transverse/longitudinal dynamic aperture (DA) has been obtained, including major dynamical effects, to assure an adequate beam lifetime in the presence of beamstrahlung and top-up injection. In particular, a momentum acceptance larger than ±2% has been obtained, which is better than the momentum acceptance of typical collider rings by about a factor of 2. The effects of the detector solenoids including their compensation elements are taken into account as well as synchrotron radiation in all magnets. The optics presented in this study is a step toward a full conceptual design for the collider. Finally, a number of issues have

  6. Design of beam optics for the future circular collider e+e- collider rings

    NASA Astrophysics Data System (ADS)

    Oide, K.; Aiba, M.; Aumon, S.; Benedikt, M.; Blondel, A.; Bogomyagkov, A.; Boscolo, M.; Burkhardt, H.; Cai, Y.; Doblhammer, A.; Haerer, B.; Holzer, B.; Jowett, J. M.; Koop, I.; Koratzinos, M.; Levichev, E.; Medina, L.; Ohmi, K.; Papaphilippou, Y.; Piminov, P.; Shatilov, D.; Sinyatkin, S.; Sullivan, M.; Wenninger, J.; Wienands, U.; Zhou, D.; Zimmermann, F.

    2016-11-01

    A beam optics scheme has been designed for the future circular collider-e+e- (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [P. Raimondi, D. Shatilov, and M. Zobov, arXiv:physics/0702033; P. Raimondi, M. Zobov, and D. Shatilov, in Proceedings of the 22nd Particle Accelerator Conference, PAC-2007, Albuquerque, NM (IEEE, New York, 2007), p. TUPAN037.] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system without additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So-called "tapering" of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout near the interaction region reduces the critical energy of SR photons on the incoming side of the IP to values below 100 keV, while matching the geometry to the beam line of the FCC proton collider (FCC-hh) [A. Chancé et al., Proceedings of IPAC'16, 9-13 May 2016, Busan, Korea, TUPMW020 (2016).] as closely as possible. Sufficient transverse/longitudinal dynamic aperture (DA) has been obtained, including major dynamical effects, to assure an adequate beam lifetime in the presence of beamstrahlung and top-up injection. In particular, a momentum acceptance larger than ±2 % has been obtained, which is better than the momentum acceptance of typical collider rings by about a factor of 2. The effects of the detector solenoids including their compensation elements are taken into account as well as synchrotron radiation in all magnets. The optics presented in this paper is a step toward a full conceptual design for the collider. A number of issues have been identified for further

  7. Liver transplantation for fulminant hepatitis at Stanford University.

    PubMed

    Lu, Amy; Monge, Humberto; Drazan, Kenneth; Millan, Maria; Esquivel, Carlos O

    2002-01-01

    To review the clinical characteristics and outcomes of 26 patients evaluated for liver transplantation for fulminant hepatic failure at Stanford University and Lucile Packard Children's Hospital in an attempt to identify risk factors and prognostic predictors of survival. A retrospective review of the records of 26 consecutive patients who were evaluated for possible liver transplantation for acute liver failure from May 1, 1995, to January 1, 2000. Pretransplant patient demographics and clinical characteristics were collected, and the data were analyzed by univariate and multivariate analysis. Clinical assessment of encephalopathy did not predict outcome. Patients with abnormal computed tomography (CT) of the brain had a twofold increase in mortality compared with those patients with normal studies (p = 0.03). Patients requiring mechanical ventilation and continuous venovenous hemofiltration (CVVH) also had a poor prognosis. Predictors of poor outcome after fulminant hepatic failure include abnormal CT scan, mechanical ventilation, and requirement for hemofiltration.

  8. Heavy Higgs boson production at colliders in the singlet-triplet scotogenic dark matter model

    NASA Astrophysics Data System (ADS)

    Díaz, Marco Aurelio; Rojas, Nicolás; Urrutia-Quiroga, Sebastián; Valle, José W. F.

    2017-08-01

    We consider the possibility that the dark matter particle is a scalar WIMP messenger associated to neutrino mass generation, made stable by the same symmetry responsible for the radiative origin of neutrino mass. We focus on some of the implications of this proposal as realized within the singlet-triplet scotogenic dark matter model. We identify parameter sets consistent both with neutrino mass and the observed dark matter abundance. Finally we characterize the expected phenomenological profile of heavy Higgs boson physics at the LHC as well as at future linear Colliders.

  9. [Value of bedside echocardiography in diagnosis and risk assessment of in-hospital death for patients with Stanford type A aortic dissection].

    PubMed

    Wang, H J; Xiao, Z Y; Gu, G R; Xue, Y; Shao, M; Deng, Z; Tao, Z G; Yao, C L; Tong, C Y

    2017-11-24

    Objective: To investigate the value of bedside echocardiography in diagnosis and risk assessment of in-hospital death of patients with Stanford type A aortic dissection. Methods: The clinical data of 229 patients with Stanford type A aortic dissection diagnosed by CT angiography in Zhongshan Hospital affiliated to Fudan University between January 2009 and January 2016 were retrospectively analyzed. The patients were divided into survival group(191 cases)and non-survival group(38 cases)according to presence or absence of in-hospital death. The bedside echocardiography features were analyzed, and influence factors of in-hospital death were determined by multivariate logistic regression analysis. Results: (1) Compared with the survival group, the non-survival group had lower surgery rate (60.52%(23/38) vs. 85.34%(163/191), P <0.01). Age, gender and Debakey classification were similar between survival group and death group (all P >0.05). (2) The bedside echocardiography results showed that prevalence of aortic valve involvement(65.79%(25/38) vs.34.03%(65/191), P <0.01) and severe aortic regurgitation (44.74%(17/38) vs. 14.14%(27/191), P <0.01) were significantly higher in non-survival group than in survival group. The non-survival group had larger aortic root diameter than the survival group ((55.5±6.4)mm vs. (42.3±7.8)mm, P <0.01). There were no significant differences in pericardial effusion, expansion of aortic sinus, and left ventricular ejection fraction between survival group and non-survival group (all P >0.05). (3) The multivariate logistic regression analysis showed that aortic valve involvement( OR =3.275, 95% CI 1.290-8.313, P <0.05), aortic root diameter( OR =1.202, 95% CI 1.134-1.275, P <0.01), and surgery ( OR =0.224, 95% CI 0.079-0.629, P <0.01) were independent risk factors for in-hospital death in patients with Stanford type A aortic dissection. Conclusions: Bedside echocardiography has significant diagnostic value for Stanford type A aortic

  10. Radiative return capabilities of a high-energy, high-luminosity e + e - collider

    DOE PAGES

    Karliner, Marek; Low, Matthew; Rosner, Jonathan L.; ...

    2015-08-14

    An electron-positron collider operating at a center-of-mass energy E CM can collect events at all lower energies through initial-state radiation (ISR or radiative return). We explore the capabilities for radiative return studies by a proposed high-luminosity collider at E CM = 250 or 90 GeV, to fill in gaps left by lower-energy colliders such as PEP, PETRA, TRISTAN, and LEP. These capabilities are compared with those of the lower-energy e +e - colliders as well as hadron colliders such as the Tevatron and the CERN Large Hadron Collider (LHC). Some examples of accessible questions in dark photon searches and heavymore » flavor spectroscopy are given.« less

  11. Collider and Detector Protection at Beam Accidents

    NASA Astrophysics Data System (ADS)

    Rakhno, I. L.; Mokhov, N. V.; Drozhdin, A. I.

    2003-12-01

    Dealing with beam loss due to abort kicker prefire is considered for hadron colliders. The prefires occured at Tevatron (Fermilab) during Run I and Run II are analyzed and a protection system implemented is described. The effect of accidental beam loss in the Large Hadron Collider (LHC) at CERN on machine and detector components is studied via realistic Monte Carlo calculations. The simulations show that beam loss at an unsynchronized beam abort would result in severe heating of conventional and superconducting magnets and possible damage to the collider detector elements. A proposed set of collimators would reduce energy deposition effects to acceptable levels. Special attention is paid to reducing peak temperature rise within the septum magnet and minimizing quench region length downstream of the LHC beam abort straight section.

  12. Excellence in Research: Creative Organizational Responses at Berkeley, Harvard, MIT, and Stanford. ASHE 1985 Annual Meeting Paper.

    ERIC Educational Resources Information Center

    Gardiner, John J.

    Research environments of four leading universities were studied: University of California at Berkeley (UC-Berkeley), Harvard University, Massachusetts Institute of Technology (MIT), and Stanford University. Attention was directed to organizational responses for encouraging collaboration in research at these leading universities, as well as to…

  13. Randomized controlled trial of moderate hypothermia versus deep hypothermia anesthesia on brain injury during Stanford A aortic dissection surgery.

    PubMed

    Sun, Xufang; Yang, Hua; Li, Xinyu; Wang, Yue; Zhang, Chuncheng; Song, Zhimin; Pan, Zhenxiang

    2018-01-01

    This study aimed to compare the effects of moderate versus deep hypothermia anesthesia for Stanford A aortic dissection surgery on brain injury. A total of 82 patients who would undergo Stanford A aortic dissection surgery were randomized into two groups: moderate hypothermia group (MH, n = 40, nasopharyngeal temperature 25 °C, and rectal temperature 28 °C) and deep hypothermia group (DH, n = 42, nasopharyngeal temperature 20 °C, and rectal temperature 25 °C). Different vascular replacement techniques including aortic root replacement, Bentall, and Wheat were used. The intraoperative and postoperative indicators of these patients were recorded. There were no differences in intraoperative and postoperative measures between MH and DH groups. The concentrations of neuron-specific enolase and S-100β increased with operation time, and were significantly lower in MH group than those in the DH group (P < 0.05). The occurrence rates of complications including chenosis, postoperative agitation, and neurological complications in MH group were significantly lower than in DH group. The recovery time, postoperative tube, and ICU intubation stay were significantly shorter in MH group than those in DH group (P < 0.05). There were no significant differences revealed in hospital stay and death rate. MH exhibited better cerebral protective effects, less complications, and shorter tube time than DH in surgery for Stanford A aortic dissection.

  14. Top quark studies at hadron colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinervo, P.K.

    1997-01-01

    The techniques used to study top quarks at hadron colliders are presented. The analyses that discovered the top quark are described, with emphasis on the techniques used to tag b quark jets in candidate events. The most recent measurements of top quark properties by the CDF and DO Collaborations are reviewed, including the top quark cross section, mass, branching fractions, and production properties. Future top quark studies at hadron colliders are discussed, and predictions for event yields and uncertainties in the measurements of top quark properties are presented.

  15. Risk of therapy-related secondary leukemia in Hodgkin lymphoma: the Stanford University experience over three generations of clinical trials.

    PubMed

    Koontz, Michael Zach; Horning, Sandra J; Balise, Raymond; Greenberg, Peter L; Rosenberg, Saul A; Hoppe, Richard T; Advani, Ranjana H

    2013-02-10

    To assess therapy-related acute myeloid leukemia/myelodysplastic syndrome (t-AML/MDS) risk in patients treated for Hodgkin lymphoma (HL) on successive generations of Stanford clinical trials. Patients with HL treated at Stanford with at least 5 years of follow-up after completing therapy were identified from our database. Records were reviewed for outcome and development of t-AML/MDS. Seven hundred fifty-four patients treated from 1974 to 2003 were identified. Therapy varied across studies. Radiotherapy evolved from extended fields (S and C studies) to involved fields (G studies). Primary chemotherapy was mechlorethamine, vincristine, procarbazine, and prednisone (MOPP) or procarbazine, mechlorethamine, and vinblastine (PAVe) in S studies; MOPP, PAVe, vinblastine, bleomycin, and methotrexate (VBM), or doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD) in C studies; and VbM (reduced dose of bleomycin compared with VBM) or mechlorethamine, doxorubicin, vinblastine, vincristine, bleomycin, etoposide, and prednisone (Stanford V) in G studies. Cumulative exposure to alkylating agent (AA) was notably lower in the G studies compared with the S and C studies, with a 75% to 83% lower dose of nitrogen mustard in addition to omission of procarbazine and melphalan. Twenty-four (3.2%) of 754 patients developed t-AML/MDS, 15 after primary chemotherapy and nine after salvage chemotherapy for relapsed HL. The incidence of t-AML/MDS was significantly lower in the G studies (0.3%) compared with the S (5.7%) or C (5.2%) studies (P < .001). Additionally, in the G studies, no t-AML/MDS was noted after primary therapy, and the only patient who developed t-AML/MDS did so after second-line therapy. Our data demonstrate the relationship between the cumulative AA dose and t-AML/MDS. Limiting the dose of AA and decreased need for secondary treatments have significantly reduced the incidence of t-AML/MDS, which was extremely rare in the G studies (Stanford V era).

  16. Dark matter with flavor symmetry and its collider signature

    DOE PAGES

    Ma, Ernest; Natale, Alexander

    2014-11-20

    The notion that dark matter and standard-model matter are connected through flavor implies a generic collider signature of the type . We discuss the theoretical basis of this proposal and its verifiability at the Large Hadron Collider.

  17. Mechanism and early intervention research on ALI during emergence surgery of Stanford type-A AAD: Study protocol for a prospective, double-blind, clinical trial.

    PubMed

    Cheng, Yi; Jin, Mu; Dong, Xiuhua; Sun, Lizhong; Liu, Jing; Wang, Rong; Yang, Yanwei; Lin, Peirong; Hou, Siyu; Ma, Yuehua; Wang, Yuefeng; Pan, Xudong; Lu, Jiakai; Cheng, Weiping

    2016-10-01

    Stanford type-A acute aortic dissection (AAD) is a severe cardiovascular disease demonstrating the characteristics of acute onset and rapid development, with high morbidity and mortality. The available evidence shows that preoperative acute lung injury (ALI) induced by Stanford type-A AAD is a frequent and important cause for a number of untoward consequences. However, there is no study assessing the incidence of preoperative ALI and its independent determinants before Standford type-A AAD surgery in Chinese adult patients. This is a prospective, double-blind, signal-center clinical trial. We will recruit 130 adult patients undergoing Stanford type-A AAD surgery. The incidence of preoperative ALI will be evaluated. Perioperative clinical baselines and serum variables including coagulation, fibrinolysis, inflammatory, reactive oxygen species, and endothelial cell function will be assayed. The independent factors affecting the occurrence of preoperative ALI will be identified by multiple logistic regression analysis. ClinicalTrials.gov (https://register.clinicaltrials.gov/), Registration number NCT01894334.

  18. Accelerators for America's Future

    NASA Astrophysics Data System (ADS)

    Bai, Mei

    2016-03-01

    Particle accelerator, a powerful tool to energize beams of charged particles to a desired speed and energy, has been the working horse for investigating the fundamental structure of matter and fundermental laws of nature. Most known examples are the 2-mile long Stanford Linear Accelerator at SLAC, the high energy proton and anti-proton collider Tevatron at FermiLab, and Large Hadron Collider that is currently under operation at CERN. During the less than a century development of accelerator science and technology that led to a dazzling list of discoveries, particle accelerators have also found various applications beyond particle and nuclear physics research, and become an indispensible part of the economy. Today, one can find a particle accelerator at almost every corner of our lives, ranging from the x-ray machine at the airport security to radiation diagnostic and therapy in hospitals. This presentation will give a brief introduction of the applications of this powerful tool in fundermental research as well as in industry. Challenges in accelerator science and technology will also be briefly presented

  19. Quality of Life after Surgery for Stanford Type A Aortic Dissection: Influences of Different Operative Strategies.

    PubMed

    Ghazy, Tamer; Eraqi, Mohamed; Mahlmann, Adrian; Hegelmann, Helena; Matschke, Klaus; Kappert, Utz; Weiss, Norbert

    2017-06-22

    Outcome of surgery for acute Stanford type A aortic dissection extends beyond mortality and morbidity. More than one operative strategy is available but little is known regarding their influence on quality of life. This study analyzes the influence of defensive and aggressive operative strategies on the patients' midterm quality of life (QoL). From July 2007 to July 2010, 95 patients underwent surgery for acute Stanford type A aortic dissection in our institution. Patients who survived the procedure, gave consent to inclusion in the institution prospective registry, completed at least 2-years of follow-up protocol, and answered two quality of life questionnaires (SF-36 and WHO-QOL-BREF) were included in the study. Patients were divided into two groups according to operative strategy: defensive (DS) with replacement of the ascending aorta only, and aggressive (AS) with replacement of the ascending aorta, aortic arch with/out a frozen elephant trunk procedure. The preoperative, operative, postoperative and the midterm QoL were analyzed and compared. 39 patients were included in the study. The DS group had a shorter operative time (184 ± 54 versus 276 ± 110 minutes respectively, P = .001). The AS group had higher incidence of dialysis (31% versus 4% respectively, P = .038). The midterm QoL analysis showed a collective lower value than the normal population. In the SF-36, DS performed better in all categories but with no statistical significance. In the WHO-QOL-BREF, DS performed significantly better in the global life quality and psychological health categories (P = .038 and .049 respectively). In Stanford type A aortic dissection, adopting an aggressive surgical strategy does not improve the quality of life in midterm follow-up compared to a defensive strategy. Unless the clinical setting dictates an aggressive management strategy, a defensive strategy can be safely adopted.

  20. Performance Characteristics of Middle-Class and Lower-Class Preschool Children on the Stanford-Binet, 1960 Revision.

    ERIC Educational Resources Information Center

    Meyer, William J.; Goldstein, David

    The relative difficulty levels of Stanford-Binet items between the ages of four and six among prekindergarten Head Start children were studied. A comparison sample of prekindergarten white middle class children was included to evaluate the age norms on a culturally typical sample of children and to assess performance on the Binet as it might…

  1. Scanning Synchronization of Colliding Bunches for MEIC Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derbenev, Yaroslav S.; Popov, V. P.; Chernousov, Yu D.

    2015-09-01

    Synchronization of colliding beams is one of the major issues of an electron-ion collider (EIC) design because of sensitivity of ion revolution frequency to beam energy. A conventional solution for this trouble is insertion of bent chicanes in the arcs space. In our report we consider a method to provide space coincidence of encountering bunches in the crab-crossing orbits Interaction Region (IR) while repetition rates of two beams do not coincide. The method utilizes pair of fast kickers realizing a bypass for the electron bunches as the way to equalize positions of the colliding bunches at the Interaction Point (IP).more » A dipole-mode warm or SRF cavities fed by the magnetron transmitters are used as fast kickers, allowing a broad-band phase and amplitude control. The proposed scanning synchronization method implies stabilization of luminosity at a maximum via a feedback loop. This synchronization method is evaluated as perspective for the Medium Energy Electron-Ion collider (MEIC) project of JLab with its very high bunch repetition rate.« less

  2. The SLAC linac as used in the SLC collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seeman, J.T.; Abrams, G.; Adolphsen, C.

    The linac of the SLAC Linear Collider (SLC) must accelerate three high intensity bunches on each linac pulse from 1.2 GeV to 50 GeV with minimal increase of the small transverse emittance. The procedures and adjustments used to obtain this goal are outlined. Some of the accelerator parameters and components which interact are the beam energy, transverse position, component alignment, RF manipulation, feedback systems, quadrupole lattice, BNS damping, energy spectra, phase space matching, collimation, instrumentation and modelling. The method to bring these interdependent parameters collectively into specification has evolved over several years. This review is ordered in the sequence whichmore » is used to turn on the linac from a cold start and produce acceptable beams for the final focus and collisions. Approximate time estimates for the various activities are given. 21 refs.« less

  3. Likelihood of women vs. men to receive bachelor's degrees in physics at Stanford, 1900-1929.

    NASA Astrophysics Data System (ADS)

    Nero, Anthony

    2005-04-01

    Work by K. Tolley indicates that girls in mid to late 19th century U.S. high schools were more likely to study mathematics and natural philosophy (i.e., physics and astronomy) than were boys (who pursued the classics).* She also found that after the turn of the century women were more likely than men to receive bachelor's degrees in math and biological sciences at Stanford, but her sampling of every fifth year yielded too few data to be conclusive about physics. Reexamination of graduation lists at Stanford, yielding data for each year from 1900 to 1929, shows that, while absolute numbers were small, women were as likely as men to receive bachelor's degrees in physics during the first decade of the century, in the second decade they were notably more likely, and in the third their likelihood decreased substantially, while that of men rose to exceed that of women. (Women were much more likely to receive bachelor's degrees in math, exceeding the likelihood for men by an order of magnitude during the second and third decades.) *K. Tolley, The Science Education of American Girls: A Historical Perspective (Routledge, N.Y.), 2003.

  4. Accelerator physics and technology challenges of very high energy hadron colliders

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir D.

    2015-08-01

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton-proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This paper briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  5. Accelerator physics and technology challenges of very high energy hadron colliders

    DOE PAGES

    Shiltsev, Vladimir D.

    2015-08-20

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton–proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This article briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  6. Correlations between the Stanford-Binet, 4th Edition, and the WISC-R with a Learning Disabled Population.

    ERIC Educational Resources Information Center

    Phelps, LeAdelle; And Others

    1988-01-01

    Compared Stanford-Binet (Fourth Edition) and the Wechsler Intelligence Scale for Children-Revised as instruments for assessing the intellectual strengths and weaknesses of students (N=35) classified as learning disabled in elementary and secondary grades. Results suggest the tests will yield similar intelligence quotients for the learning disabled…

  7. The mean magnetic field of the sun: Observations at Stanford

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.; Wilcox, J. M.; Svalgaard, L.; Duvall, T. L., Jr.; Dittmer, P. H.; Gustafson, E. K.

    1977-01-01

    A solar telescope was built at Stanford University to study the organization and evolution of large-scale solar magnetic fields and velocities. The observations are made using a Babcock-type magnetograph which is connected to a 22.9 m vertical Littrow spectrograph. Sun-as-a-star integrated light measurements of the mean solar magnetic field were made daily since May 1975. The typical mean field magnitude is about 0.15 gauss with typical measurement error less than 0.05 gauss. The mean field polarity pattern is essentially identical to the interplanetary magnetic field sector structure (seen near the earth with a 4 day lag). The differences in the observed structures can be understood in terms of a warped current sheet model.

  8. Crabbing system for an electron-ion collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castilla, Alejandro

    2017-05-01

    As high energy and nuclear physicists continue to push further the boundaries of knowledge using colliders, there is an imperative need, not only to increase the colliding beams' energies, but also to improve the accuracy of the experiments, and to collect a large quantity of events with good statistical sensitivity. To achieve the latter, it is necessary to collect more data by increasing the rate at which these processes are being produced and detected in the machine. This rate of events depends directly on the machine's luminosity. The luminosity itself is proportional to the frequency at which the beams aremore » being delivered, the number of particles in each beam, and inversely proportional to the cross-sectional size of the colliding beams. There are several approaches that can be considered to increase the events statistics in a collider other than increasing the luminosity, such as running the experiments for a longer time. However, this also elevates the operation expenses, while increasing the frequency at which the beams are delivered implies strong physical changes along the accelerator and the detectors. Therefore, it is preferred to increase the beam intensities and reduce the beams cross-sectional areas to achieve these higher luminosities. In the case where the goal is to push the limits, sometimes even beyond the machines design parameters, one must develop a detailed High Luminosity Scheme. Any high luminosity scheme on a modern collider considers|in one of their versions|the use of crab cavities to correct the geometrical reduction of the luminosity due to the beams crossing angle. In this dissertation, we present the design and testing of a proof-of-principle compact superconducting crab cavity, at 750 MHz, for the future electron-ion collider, currently under design at Jefferson Lab. In addition to the design and validation of the cavity prototype, we present the analysis of the first order beam dynamics and the integration of the crabbing

  9. Crabbing System for an Electron-Ion Collider

    NASA Astrophysics Data System (ADS)

    Castilla, Alejandro

    As high energy and nuclear physicists continue to push further the boundaries of knowledge using colliders, there is an imperative need, not only to increase the colliding beams' energies, but also to improve the accuracy of the experiments, and to collect a large quantity of events with good statistical sensitivity. To achieve the latter, it is necessary to collect more data by increasing the rate at which these pro- cesses are being produced and detected in the machine. This rate of events depends directly on the machine's luminosity. The luminosity itself is proportional to the frequency at which the beams are being delivered, the number of particles in each beam, and inversely proportional to the cross-sectional size of the colliding beams. There are several approaches that can be considered to increase the events statistics in a collider other than increasing the luminosity, such as running the experiments for a longer time. However, this also elevates the operation expenses, while increas- ing the frequency at which the beams are delivered implies strong physical changes along the accelerator and the detectors. Therefore, it is preferred to increase the beam intensities and reduce the beams cross-sectional areas to achieve these higher luminosities. In the case where the goal is to push the limits, sometimes even beyond the machines design parameters, one must develop a detailed High Luminosity Scheme. Any high luminosity scheme on a modern collider considers--in one of their versions--the use of crab cavities to correct the geometrical reduction of the luminosity due to the beams crossing angle. In this dissertation, we present the design and testing of a proof-of-principle compact superconducting crab cavity, at 750 MHz, for the future electron-ion collider, currently under design at Jefferson Lab. In addition to the design and validation of the cavity prototype, we present the analysis of the first order beam dynamics and the integration of the crabbing

  10. Physics and Analysis at a Hadron Collider - An Introduction (1/3)

    ScienceCinema

    None

    2018-05-11

    This is the first lecture of three which together discuss the physics of hadron colliders with an emphasis on experimental techniques used for data analysis. This first lecture provides a brief introduction to hadron collider physics and collider detector experiments as well as offers some analysis guidelines. The lectures are aimed at graduate students.

  11. COLLIDE: Collisions into Dust Experiment

    NASA Technical Reports Server (NTRS)

    Colwell, Joshua E.

    1999-01-01

    The Collisions Into Dust Experiment (COLLIDE) was completed and flew on STS-90 in April and May of 1998. After the experiment was returned to Earth, the data and experiment were analyzed. Some anomalies occurred during the flight which prevented a complete set of data from being obtained. However, the experiment did meet its criteria for scientific success and returned surprising results on the outcomes of very low energy collisions into powder. The attached publication, "Low Velocity Microgravity Impact Experiments into Simulated Regolith," describes in detail the scientific background, engineering, and scientific results of COLLIDE. Our scientific conclusions, along with a summary of the anomalies which occurred during flight, are contained in that publication. We offer it as our final report on this grant.

  12. The Quirky Collider Signals of Folded Supersymmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burdman, Gustavo; Chacko, Z.; Goh, Hock-Seng

    2008-08-01

    We investigate the collider signals associated with scalar quirks ('squirks') in folded supersymmetric models. As opposed to regular superpartners in supersymmetric models these particles are uncolored, but are instead charged under a new confining group, leading to radically different collider signals. Due to the new strong dynamics, squirks that are pair produced do not hadronize separately, but rather form a highly excited bound state. The excited 'squirkonium' loses energy to radiation before annihilating back into Standard Model particles. We calculate the branching fractions into various channels for this process, which is prompt on collider time-scales. The most promising annihilation channelmore » for discovery is W+photon which dominates for squirkonium near its ground state. We demonstrate the feasibility of the LHC search, showing that the mass peak is visible above the SM continuum background and estimate the discovery reach.« less

  13. Final muon cooling for a muon collider

    NASA Astrophysics Data System (ADS)

    Acosta Castillo, John Gabriel

    To explore the new energy frontier, a new generation of particle accelerators is needed. Muon colliders are a promising alternative if muon cooling can be made to work. Muons are 200 times heavier than electrons, so they produce less synchrotron radiation, and they behave like point particles. However, they have a short lifetime of 2.2 mus and the beam is more difficult to cool than an electron beam. The Muon Accelerator Program (MAP) was created to develop concepts and technologies required by a muon collider. An important effort has been made in the program to design and optimize a muon beam cooling system. The goal is to achieve the small beam emittance required by a muon collider. This work explores a final ionization cooling system using magnetic quadrupole lattices with a low enough beta* region to cool the beam to the required limit with available low Z absorbers.

  14. Orthogonal Higher Order Factor Structure of the Stanford-Binet Intelligence Scales--Fifth Edition for Children and Adolescents

    ERIC Educational Resources Information Center

    Canivez, Gary L.

    2008-01-01

    Orthogonal higher-order factor structure of the Stanford-Binet Intelligence Scales-Fifth Edition (SB-5; Roid, 2003a) for child and adolescent samples is reported. Multiple criteria for factor extraction unanimously supported extraction of only one dimension and a unidimensional model. However, following results from DiStefano and Dombrowski (2006)…

  15. Exploring triplet-quadruplet fermionic dark matter at the LHC and future colliders

    NASA Astrophysics Data System (ADS)

    Wang, Jin-Wei; Bi, Xiao-Jun; Xiang, Qian-Fei; Yin, Peng-Fei; Yu, Zhao-Huan

    2018-02-01

    We study the signatures of the triplet-quadruplet dark matter model at the LHC and future colliders, including the 100 TeV Super Proton-Proton Collider and the 240 GeV Circular Electron Positron Collider. The dark sector in this model contains one fermionic electroweak triplet and two fermionic quadruplets, which have two kinds of Yukawa couplings to the Higgs doublet. Electroweak production signals of the dark sector fermions in the monojet+ ET, disappearing track, and multilepton+ET channels at the LHC and the Super Proton-Proton Collider are investigated. Moreover, we study the loop effects of this model on the Circular Electron Positron Collider precision measurements of e+e-→Z h and h →γ γ . We find that most of the parameter regions allowed by the observed dark matter relic density will be well explored by such direct and indirect searches at future colliders.

  16. Linear Collider project database

    Science.gov Websites

    &D projects circa 2005 List of who is thinking of working on what. At present this includes non SLAC, FNAL, and Cornell meetings. Ordered list of who is thinking of working on what. At present this

  17. Physics Opportunity with an Electron-Ion Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossi, Patrizia

    2016-12-01

    Understanding the emergence of nucleons and nuclei and their interactions from the properties and dynamics of quarks and gluons in Quantum Chromodynamics (QCD) is a fundamental and compelling goal of nuclear science. A high-energy, high-luminosity polarized electron-ion collider (EIC) will be needed to explore and advance many aspects of QCD studies in the gluon dominated regions in nucleon and nuclei. The federal Nuclear Science Advisory Committee unanimously approved a high-energy electro-ion collider to explore a new frontier in physics research. In fact, the committee calls the collider the country's next "highest priority" in new facility construction, and is one ofmore » four main recommendations contained in its 2015 Long Range Plan for Nuclear Science. Two proposals for the EIC are being considered in the U.S.: one each at Jefferson Laboratory (JLab) and at Brookhaven National Laboratory (BNL). An overview of the physics opportunities an EIC presents to the nuclear science community in future decades is presented.« less

  18. Linear microbunching analysis for recirculation machines

    DOE PAGES

    Tsai, C. -Y.; Douglas, D.; Li, R.; ...

    2016-11-28

    Microbunching instability (MBI) has been one of the most challenging issues in designs of magnetic chicanes for short-wavelength free-electron lasers or linear colliders, as well as those of transport lines for recirculating or energy-recovery-linac machines. To quantify MBI for a recirculating machine and for more systematic analyses, we have recently developed a linear Vlasov solver and incorporated relevant collective effects into the code, including the longitudinal space charge, coherent synchrotron radiation, and linac geometric impedances, with extension of the existing formulation to include beam acceleration. In our code, we semianalytically solve the linearized Vlasov equation for microbunching amplification factor formore » an arbitrary linear lattice. In this study we apply our code to beam line lattices of two comparative isochronous recirculation arcs and one arc lattice preceded by a linac section. The resultant microbunching gain functions and spectral responses are presented, with some results compared to particle tracking simulation by elegant (M. Borland, APS Light Source Note No. LS-287, 2002). These results demonstrate clearly the impact of arc lattice design on the microbunching development. Lastly, the underlying physics with inclusion of those collective effects is elucidated and the limitation of the existing formulation is also discussed.« less

  19. Future hadron colliders: From physics perspectives to technology R&D

    NASA Astrophysics Data System (ADS)

    Barletta, William; Battaglia, Marco; Klute, Markus; Mangano, Michelangelo; Prestemon, Soren; Rossi, Lucio; Skands, Peter

    2014-11-01

    High energy hadron colliders have been instrumental to discoveries in particle physics at the energy frontier and their role as discovery machines will remain unchallenged for the foreseeable future. The full exploitation of the LHC is now the highest priority of the energy frontier collider program. This includes the high luminosity LHC project which is made possible by a successful technology-readiness program for Nb3Sn superconductor and magnet engineering based on long-term high-field magnet R&D programs. These programs open the path towards collisions with luminosity of 5×1034 cm-2 s-1 and represents the foundation to consider future proton colliders of higher energies. This paper discusses physics requirements, experimental conditions, technological aspects and design challenges for the development towards proton colliders of increasing energy and luminosity.

  20. The Stanford-U.S. Geological Survey SHRIMP ion microprobe--a tool for micro-scale chemical and isotopic analysis

    USGS Publications Warehouse

    Bacon, Charles R.; Grove, Marty; Vazquez, Jorge A.; Coble, Matthew A.

    2012-01-01

    Answers to many questions in Earth science require chemical analysis of minute volumes of minerals, volcanic glass, or biological materials. Secondary Ion Mass Spectrometry (SIMS) is an extremely sensitive analytical method in which a 5–30 micrometer diameter "primary" beam of charged particles (ions) is focused on a region of a solid specimen to sputter secondary ions from 1–5 nanograms of the sample under high vacuum. The elemental abundances and isotopic ratios of these secondary ions are determined with a mass spectrometer. These results can be used for geochronology to determine the age of a region within a crystal thousands to billions of years old or to precisely measure trace abundances of chemical elements at concentrations as low as parts per billion. A partnership of the U.S. Geological Survey and the Stanford University School of Earth Sciences operates a large SIMS instrument, the Sensitive High-Resolution Ion Microprobe with Reverse Geometry (SHRIMP–RG) on the Stanford campus.

  1. 1996 NASA-ASEE-Stanford Summer Faculty Fellowship Program. Part 1

    NASA Technical Reports Server (NTRS)

    1996-01-01

    As is customary, the final technical report for the NASA-ASEE Summer Faculty Fellowship Program at the Ames Research Center, Dryden Flight Research Center and Stanford University essentially consists of a compilation of the summary technical reports of all the fellows. More extended versions done either as NASA publications, archival papers, or other laboratory reports are not included here. The reader will note that the areas receiving emphasis were the life sciences, astronomy, remote sensing, aeronautics, fluid dynamics/aerophysics, and computer science. Of course, the areas of emphasis vary somewhat from year to year depending on the interests of the most qualified applicants. Once again, the work is of especially high quality. The reports of the first and second year fellows are grouped separately and are arranged alphabetically within each group.

  2. Impact of Different Aortic Entry Tear Sites on Early Outcomes and Long-Term Survival in Patients with Stanford A Acute Aortic Dissection.

    PubMed

    Merkle, Julia; Sabashnikov, Anton; Deppe, Antje Christin; Weber, Saskia; Mader, Navid; Choi, Yeong-Hoon; Liakopoulos, Oliver; Kuhn-Régnier, Ferdinand; Wahlers, Thorsten

    2018-06-13

    Stanford A acute aortic dissection (AAD) is a life-threatening emergency. The aim of this study was to compare the impact of three different aortic entry tear sites on early outcomes and long-term survival of patients with Stanford A AAD.  From January 2006 to April 2015, a total of 240 consecutive patients with diagnosed Stanford A AAD underwent emergent, isolated surgical aortic repair in our center. Patients were divided into three groups comprising isolated ascending aorta, proximal aortic arch, and distal aortic arch entry tear site and were followed up for up to 9 years.  Thirty-day mortality as well as major cerebrovascular events were significantly different between the three groups ( p  = 0.007 and p  = 0.048, respectively). Overall cumulative short- and long-term survival of all patients revealed significant differences (Log-Rank p  = 0.002), whereas survival of all patients free from major cerebrovascular events was similar (Log-Rank p  = 0.780). Subgroup analysis of short- and long-term survival of patients showed significant differences in terms of men (Log-Rank p  = 0.043), women (Log-Rank p  = 0.004), patients over 65 years of age (Log-Rank p  = 0.007), and hypertensive patients (Log-Rank p  = 0.003). Kaplan-Meier survival estimation plots significantly showed poorest survival for distal aortic arch entry tear site group.  The location of the primary entry tear in patients with Stanford A AAD significantly influences early outcomes, short- and long-term survival of patients, whereas survival of patients free from major cerebrovascular events showed similar results among the three groups. Distal aortic entry tear site showed poorest outcomes and survival. Georg Thieme Verlag KG Stuttgart · New York.

  3. Anisotropic flow of thermal photons at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Chatterjee, Rupa; Dasgupta, Pingal; Srivastava, Dinesh K.

    2017-07-01

    We calculate elliptic and triangular flow parameters of thermal photons using an event-by-event hydrodynamic model with fluctuating initial conditions at 200 A GeV Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and at 2.76 A TeV Pb+Pb collisions at the Cern Large Hadron Collider (LHC) for three different centrality bins. The photon elliptic flow shows strong centrality dependence where v2(pT) increases towards peripheral collisions both at RHIC and at the LHC energies. However, the triangular flow parameter does not show significant dependence on the collision centrality. The elliptic as well as the triangular flow parameters found to underestimate the PHENIX data at RHIC by a large margin for all three centrality bins. We calculate pT spectrum and anisotropic flow of thermal photons from 200 A GeV Cu+Cu collisions at RHIC for a 0-20% centrality bin and compare with the results with those from Au+Au collisions. The production of thermal photons is found to decrease significantly for Cu+Cu collisions compared to Au+Au collisions. However, the effect of initial state fluctuation is found to be more pronounced for anisotropic flow, resulting in larger v2 and v3 for Cu+Cu collisions. We study the correlation between the anisotropic flow parameters and the corresponding initial spatial anisotropies from their event-by-event distributions at RHIC and at the LHC energies. The linear correlation between v2 and ɛ2 is found be stronger compared to the correlation between v3 and ɛ3. In addition, the correlation coefficient is found to be larger at LHC than at RHIC.

  4. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abeyratne, S; Ahmed, S; Barber, D

    2012-08-01

    Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectivelymore » utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the

  5. Symposium on electron linear accelerators in honor of Richard B. Neal's 80th birthday: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siemann, R.H.

    The papers presented at the conference are: (1) the construction of SLAC and the role of R.B. Neal; (2) symposium speech; (3) lessons learned from the SLC; (4) alternate approaches to future electron-positron linear colliders; (5) the NLC technical program; (6) advanced electron linacs; (7) medical uses of linear accelerators; (8) linac-based, intense, coherent X-ray source using self-amplified spontaneous emission. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  6. Concurrent Validity of the Stanford-Binet: Fourth Edition and Kaufman Assessment Battery for Children with Learning-Disabled Students.

    ERIC Educational Resources Information Center

    Knight, B. Caleb; And Others

    1990-01-01

    Examined the concurrent validity of the composite and area scores of the Stanford-Binet Intelligence Scale: Fourth Edition (SBIV) and the Mental Processing Composite and global scale scores of the Kaufman Assessment Battery for Children in Black, learning-disabled elementary school students (N=30). Findings demonstrated adequate concurrent…

  7. Changing Community Health Behaviors with a Health Promotion Computer Network: Preliminary Findings from Stanford Health-Net

    PubMed Central

    Robinson, Thomas N.; Walters, Paul A.

    1987-01-01

    Computer-based health education has been employed in many settings. However, data on resultant behavior change are lacking. A randomized, controlled, prospective study was performed to test the efficacy of Stanford Health-Net in changing community health behaviors. Graduate and undergraduate students (N=1003) were randomly assigned to treatment and control conditions. The treatment group received access to Health-Net, a health promotion computer network emphasizing specific self-care and preventive strategies. Over a four month intervention period, 26% of the treatment group used Health-Net an average of 6.4 times each (range 1 to 97). Users rated Health-Net favorably. The mean number of ambulatory medical visits decreesed 22.5% more in the treatment group than in the control group (P<.05), while hospitalizations did not differ significantly between groups. In addition, perceived self-efficacy for preventing the acquisition of a STD and herpes increased 577% (P<.05) and 261% (P<.01) more, respectively, in the treatment group than in the control group. These findings suggest that access to Stanford Health-Net can result in significant health behavior change. The advantages of the network approach make it a potential model for other communities.

  8. Lepton jets and low-mass sterile neutrinos at hadron colliders

    NASA Astrophysics Data System (ADS)

    Dube, Sourabh; Gadkari, Divya; Thalapillil, Arun M.

    2017-09-01

    Sterile neutrinos, if they exist, are potential harbingers for physics beyond the Standard Model. They have the capacity to shed light on our flavor sector, grand unification frameworks, dark matter sector and origins of baryon antibaryon asymmetry. There have been a few seminal studies that have broached the subject of sterile neutrinos with low, electroweak-scale masses (i.e. ΛQCD≪mNR≪mW± ) and investigated their reach at hadron colliders using lepton jets. These preliminary studies nevertheless assume background-free scenarios after certain selection criteria which are overly optimistic and untenable in realistic situations. These lead to incorrect projections. The unique signal topology and challenging hadronic environment also make this mass-scale regime ripe for a careful investigation. With the above motivations, we attempt to perform the first systematic study of low, electroweak-scale, right-handed neutrinos at hadron colliders, in this unique signal topology. There are currently no active searches at hadron colliders for sterile neutrino states in this mass range, and we frame the study in the context of the 13 TeV high-luminosity Large Hadron Collider and the proposed FCC-hh/SppC 100 TeV p p -collider.

  9. Finite element analyses of a linear-accelerator electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iqbal, M., E-mail: muniqbal.chep@pu.edu.pk, E-mail: muniqbal@ihep.ac.cn; Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049; Wasy, A.

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gunmore » is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.« less

  10. Finite element analyses of a linear-accelerator electron gun

    NASA Astrophysics Data System (ADS)

    Iqbal, M.; Wasy, A.; Islam, G. U.; Zhou, Z.

    2014-02-01

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.

  11. Finite element analyses of a linear-accelerator electron gun.

    PubMed

    Iqbal, M; Wasy, A; Islam, G U; Zhou, Z

    2014-02-01

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.

  12. Comparison of H-alpha synoptic charts with the large-scale solar magnetic field as observed at Stanford

    NASA Technical Reports Server (NTRS)

    Duvall, T. L., Jr.; Wilcox, J. M.; Svalgaard, L.; Scherrer, P. H.; Mcintosh, P. S.

    1977-01-01

    Two methods of observing the neutral line of the large-scale photospheric magnetic field are compared: neutral line positions inferred from H-alpha photographs (McIntosh and Nolte, 1975) and observations of the photospheric magnetic field made with low spatial resolution (three minutes) and high sensitivity using the Stanford magnetograph. The comparison is found to be very favorable.

  13. Deciphering the MSSM Higgs mass at future hadron colliders

    DOE PAGES

    Agrawal, Prateek; Fan, JiJi; Reece, Matthew; ...

    2017-06-06

    Here, future hadron colliders will have a remarkable capacity to discover massive new particles, but their capabilities for precision measurements of couplings that can reveal underlying mechanisms have received less study. In this work we study the capability of future hadron colliders to shed light on a precise, focused question: is the higgs mass of 125 GeV explained by the MSSM? If supersymmetry is realized near the TeV scale, a future hadron collider could produce huge numbers of gluinos and electroweakinos. We explore whether precision measurements of their properties could allow inference of the scalar masses and tan β withmore » sufficient accuracy to test whether physics beyond the MSSM is needed to explain the higgs mass. We also discuss dark matter direct detection and precision higgs physics as complementary probes of tan β. For concreteness, we focus on the mini-split regime of MSSM parameter space at a 100 TeV pp collider, with scalar masses ranging from 10s to about 1000 TeV.« less

  14. The Muon Collider as a $H/A$ factory

    DOE PAGES

    Eichten, Estia; Martin, Adam; Univ. of Notre Dame, IN

    2013-11-22

    We show that a muon collider is ideally suited for the study of heavy H/A scalars, cousins of the Higgs boson found in two-Higgs doublet models and required in supersymmetric models. The key aspects of H/A are: (1) they are narrow, yet have a width-to-mass ratio far larger than the expected muon collider beam-energy resolution, and (2) the larger muon Yukawa allows efficient s-channel production. We study in detail a representative Natural Supersymmetry model which has a 1.5 Tev H/A withmore » $$m_H$$- $$m_A$$ = 10 Gev. The large event rates at resonant peak allow the determination of the individual H and A resonance parameters (including CP) and the decays into electroweakinos provides a wealth of information unavailable to any other present or planned collider.« less

  15. Structure and Dynamics of Colliding Plasma Jets

    DOE PAGES

    Li, C.; Ryutov, D.; Hu, S.; ...

    2013-12-01

    Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions. The observations compare favorably with results from 2D hydrodynamic simulations of multistream plasma jets, and also with results from an analytic treatment of electron flow and magnetic field advection. In collisions of two noncollinear jets, the observed flow structure is similar to the analytic model’s prediction of a characteristic feature with a narrow structure pointing in one direction and a much thicker one pointing in the opposite direction. Spontaneous magnetic fields, largely azimuthal around the colliding jets and generatedmore » by the well-known ∇T e ×∇n e Biermann battery effect near the periphery of the laser spots, are demonstrated to be “frozen in” the plasma (due to high magnetic Reynolds number R M ~5×10⁴) and advected along the jet streamlines of the electron flow. These studies provide novel insight into the interactions and dynamics of colliding plasma jets.« less

  16. Terahertz-driven linear electron acceleration

    PubMed Central

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-01-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m−1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. PMID:26439410

  17. Terahertz-driven linear electron acceleration

    DOE PAGES

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; ...

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm -1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/protonmore » accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.« less

  18. Cosmic bubble and domain wall instabilities II: fracturing of colliding walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braden, Jonathan; Bond, J. Richard; Mersini-Houghton, Laura, E-mail: j.braden@ucl.ac.uk, E-mail: bond@cita.utoronto.ca, E-mail: mersini@physics.unc.edu

    2015-08-01

    We study collisions between nearly planar domain walls including the effects of small initial nonplanar fluctuations. These perturbations represent the small fluctuations that must exist in a quantum treatment of the problem. In a previous paper, we demonstrated that at the linear level a subset of these fluctuations experience parametric amplification as a result of their coupling to the planar symmetric background. Here we study the full three-dimensional nonlinear dynamics using lattice simulations, including both the early time regime when the fluctuations are well described by linear perturbation theory as well as the subsequent stage of fully nonlinear evolution. Wemore » find that the nonplanar fluctuations have a dramatic effect on the overall evolution of the system. Specifically, once these fluctuations begin to interact nonlinearly the split into a planar symmetric part of the field and the nonplanar fluctuations loses its utility. At this point the colliding domain walls dissolve, with the endpoint of this being the creation of a population of oscillons in the collision region. The original (nearly) planar symmetry has been completely destroyed at this point and an accurate study of the system requires the full three-dimensional simulation.« less

  19. Cosmic bubble and domain wall instabilities II: fracturing of colliding walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braden, Jonathan; Department of Physics, University of Toronto,60 St. George Street, Toronto, ON, M5S 3H8; Department of Physics and Astronomy, University College London,Gower Street, London, WC1E 6BT

    2015-08-26

    We study collisions between nearly planar domain walls including the effects of small initial nonplanar fluctuations. These perturbations represent the small fluctuations that must exist in a quantum treatment of the problem. In a previous paper, we demonstrated that at the linear level a subset of these fluctuations experience parametric amplification as a result of their coupling to the planar symmetric background. Here we study the full three-dimensional nonlinear dynamics using lattice simulations, including both the early time regime when the fluctuations are well described by linear perturbation theory as well as the subsequent stage of fully nonlinear evolution. Wemore » find that the nonplanar fluctuations have a dramatic effect on the overall evolution of the system. Specifically, once these fluctuations begin to interact nonlinearly the split into a planar symmetric part of the field and the nonplanar fluctuations loses its utility. At this point the colliding domain walls dissolve, with the endpoint of this being the creation of a population of oscillons in the collision region. The original (nearly) planar symmetry has been completely destroyed at this point and an accurate study of the system requires the full three-dimensional simulation.« less

  20. Un-collided-flux preconditioning for the first order transport equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigley, M.; Koebbe, J.; Drumm, C.

    2013-07-01

    Two codes were tested for the first order neutron transport equation using finite element methods. The un-collided-flux solution is used as a preconditioner for each of these methods. These codes include a least squares finite element method and a discontinuous finite element method. The performance of each code is shown on problems in one and two dimensions. The un-collided-flux preconditioner shows good speedup on each of the given methods. The un-collided-flux preconditioner has been used on the second-order equation, and here we extend those results to the first order equation. (authors)

  1. Molecular formation in the stagnation region of colliding laser-produced plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Shboul, K. F.; Hassan, S. M.; Harilal, S. S.

    2016-10-27

    The laser-produced colliding plasmas have numerous attractive applications and stagnation layer formed during collisions between plasmas is a useful system for understanding particle collisions and molecular formation in a controlled way. In this article, we explore carbon dimer formation and its evolutionary paths in a stagnation layer formed during the interaction of two laser-produced plasmas. Colliding laser produced plasmas are generated by splitting a laser beam into two sub-beams and then focus them into either a single flat (laterally colliding plasmas) or a V-shaped graphite targets (orthogonally colliding plasmas). The C2 formation in the stagnation region of both colliding plasmamore » schemes is investigated using optical spectroscopic means and compared with emission features from single seed plasma. Our results show that the collisions among the plasmas followed by the stagnation layer formation lead to rapid cooling causing enhanced carbon dimer formation. In addition, plasma electron temperature, density and C2 molecular temperature were measured for the stagnation zone and compared with seed plasma.« less

  2. Comparison of Stanford B aortic dissection patients who received TEVAR combined with or without sleep apnea syndrome.

    PubMed

    Li, Xin; Cai, Wenwu; Zhang, Ping; Fang, Kun; Zhu, Jieting; Shu, Chang

    2018-05-18

    Patients with Stanford B aortic dissection usually complicated with sleep apnea syndrome. This condition always threatens the patients' respiration situation. In this study, we collected and analysis data of patients' peri-operative managements of Thoracic Endovascular Aortic Repair (TEVAR) for Stanford B Aortic Dissection (AD) complicated with Sleep Apnea Syndrome (SAS). Comparison has been made between these SAS patients and those who without SAS. Between June 2013 and June 2014, the clinical data and outcomes of the Stanford B AD patients in the department of vascular surgery in the Second Xiangya Hospital were retrospectively reviewed and studied. According to the result of intentionally polysomonography by using portable Polysomnography monitor (Nox T3, Nox Medical Co. Iceland) in TEVAR candidates, patients has been divided to SAS positive and SAS negative group. Comparison has been made in various variables between these two groups. 134 patients, with Stanford B AD and treated by TEVAR in our center, were enrolled in this study. Patients' mean age was 52.46±10.84 years old. Gender ratio is 114:20, including male 85.07% (114/134) and female 14.93% (20/134). 71.64% (96/134) patients had been performed TEVAR under general anesthesia (GA) and 38 patients were under local anesthesia (LA).The mean body mass index (BMI) was 23.5±4.2, and the longest follow-up time was 46 months. The patients were divided into SAS-positive group (n=23) and SAS-negative group (n=111). Compared with the SAS-negative group, patients in the SAS-positive group were younger (54.36±0.97 vs 43.3±1.84 p<0.0001) but in higher BMI (25.48±0.71 vs 22.24±0.23, p<0.0001 ), with longer hospitalization time (25.52±0.59 vs 15.68±0.27; p<0.0001) but without significant differences of ICU stay time (54.87±12.57 vs 40.27±8.10; p=0.3369). Furthermore, the complication rate of both pulmonary infection (65.22% vs 13.51%; p<0.0001), respiratory failure (26.09% vs 1.80%; p=0.003), heart failure ( 26

  3. Some Evaluative Comments Based on a Review of the Curriculum Development Processes Operating in the Stanford Program on International and Cross Cultural Education. [and] A Review of the Curriculum. Development Processes Operating in the Stanford Program on International and Cross-Cultural Education.

    ERIC Educational Resources Information Center

    Kennedy, Kerry J.

    The processes of instructional materials development and dissemination used in four Stanford Program on International and Cross Cultural Education (SPICE) projects dealing with Latin America, Africa, China, and Japan are described, and evaluative comments based on a review of the curriculum development process are made. The major purpose of the…

  4. Measurement of IR optics with linear coupling's action-angle parametrization

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Bai, M.; Pilat, F.; Satogata, T.; Trbojevic, D.

    2005-08-01

    Linear coupling’s action-angle parametrization is convenient for interpretation of turn-by-turn beam position monitor (BPM) data. We demonstrate how to apply this parametrization to extract Twiss and coupling parameters in interaction regions (IRs), using BPMs on each side of a long IR drift region. Example data were acquired at the Relativistic Heavy Ion Collider, using an ac dipole to excite a single transverse eigenmode. We have measured the waist of the β function and its Twiss and coupling parameters.

  5. Drell-Yan process as an avenue to test a noncommutative standard model at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    J, Selvaganapathy; Das, Prasanta Kumar; Konar, Partha

    2016-06-01

    We study the Drell-Yan process at the Large Hadron Collider in the presence of the noncommutative extension of the standard model. Using the Seiberg-Witten map, we calculate the production cross section to first order in the noncommutative parameter Θμ ν . Although this idea has been evolving for a long time, only a limited amount of phenomenological analysis has been completed, and this was mostly in the context of the linear collider. An outstanding feature from this nonminimal noncommutative standard model not only modifies the couplings over the SM production channel but also allows additional nonstandard vertices which can play a significant role. Hence, in the Drell-Yan process, as studied in the present analysis, one also needs to account for the gluon fusion process at the tree level. Some of the characteristic signatures, such as oscillatory azimuthal distributions, are an outcome of the momentum-dependent effective couplings. We explore the noncommutative scale ΛNC≥0.4 TeV , considering different machine energy ranging from 7 to 13 TeV.

  6. Quartified leptonic color, bound states, and future electron–positron collider

    DOE PAGES

    Kownacki, Corey; Ma, Ernest; Pollard, Nicholas; ...

    2017-04-04

    The [SU(3)] 4 quartification model of Babu, Ma, and Willenbrock (BMW), proposed in 2003, predicts a confining leptonic color SU(2)gauge symmetry, which becomes strong at the keV scale. Also, it predicts the existence of three families of half-charged leptons (hemions) below the TeV scale. These hemions are confined to form bound states which are not so easy to discover at the Large Hadron Collider (LHC). But, just as J/ψand Υ appeared as sharp resonances in e -e +colliders of the 20th century, the corresponding ‘hemionium’ states are expected at a future e -e +collider of the 21st century.

  7. MOOCs and the AI-Stanford Like Courses: Two Successful and Distinct Course Formats for Massive Open Online Courses

    ERIC Educational Resources Information Center

    Rodriguez, C. Osvaldo

    2012-01-01

    Open online courses (OOC) with a massive number of students have represented an important development for online education in the past years. A course on artificial intelligence, CS221, at the University of Stanford was offered in the fall of 2011 free and online which attracted 160,000 registered students. It was one of three offered as an…

  8. Flavorful leptoquarks at hadron colliders

    NASA Astrophysics Data System (ADS)

    Hiller, Gudrun; Loose, Dennis; Nišandžić, Ivan

    2018-04-01

    B -physics data and flavor symmetries suggest that leptoquarks can have masses as low as a few O (TeV ) , predominantly decay to third generation quarks, and highlight p p →b μ μ signatures from single production and p p →b b μ μ from pair production. Abandoning flavor symmetries could allow for inverted quark hierarchies and cause sizable p p →j μ μ and j j μ μ cross sections, induced by second generation couplings. Final states with leptons other than muons including lepton flavor violation (LFV) ones can also arise. The corresponding couplings can also be probed by precision studies of the B →(Xs,K*,ϕ )e e distribution and LFV searches in B -decays. We demonstrate sensitivity in single leptoquark production for the large hadron collider (LHC) and extrapolate to the high luminosity LHC. Exploration of the bulk of the parameter space requires a hadron collider beyond the reach of the LHC, with b -identification capabilities.

  9. Report on the Stanford/Ames direct-link space suit prehensor

    NASA Technical Reports Server (NTRS)

    Jameson, J. W.; Leifer, Larry

    1987-01-01

    Researchers at the Center for Design Research at Stanford University, in collaboration with NASA Ames at Moffet Field, California, are developing hand-powered mechanical prehensors to replace gloves for EVA spacesuits. The design and functional properties of the first version Direct Link Prehensor (DLP) is discussed. It has a total of six degrees-of-freedom and is the most elaborate of three prehensors being developed for the project. The DLP has a robust design and utilizes only linkages and revolute joints for the drive system. With its anthropomorphic configuration of two fingers and a thumb, it is easy to control and is capable of all of the basic prehension patterns such as cylindrical or lateral pinch grasps. Kinematic analysis reveals that, assuming point contacts, a grasped object can be manipulated with three degrees-of-freedom. Yet, in practice more degrees-of-freedom are possible.

  10. Beam-Beam Study on the Upgrade of Beijing Electron Positron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S.; /Beijing, Inst. High Energy Phys.; Cai, Y.

    2006-02-10

    It is an important issue to study the beam-beam interaction in the design and performance of such a high luminosity collider as BEPCII, the upgrade of Beijing Electron Positron Collider. The weak-strong simulation is generally used during the design of a collider. For performance a large scale tune scan, the weak-strong simulation studies on beam-beam interaction were done, and the geometry effects were taken into account. The strong-strong simulation studies were done for investigating the luminosity goal and the dependence of the luminosity on the beam parameters.

  11. Stanford Aerospace Research Laboratory research overview

    NASA Technical Reports Server (NTRS)

    Ballhaus, W. L.; Alder, L. J.; Chen, V. W.; Dickson, W. C.; Ullman, M. A.

    1993-01-01

    Over the last ten years, the Stanford Aerospace Robotics Laboratory (ARL) has developed a hardware facility in which a number of space robotics issues have been, and continue to be, addressed. This paper reviews two of the current ARL research areas: navigation and control of free flying space robots, and modelling and control of extremely flexible space structures. The ARL has designed and built several semi-autonomous free-flying robots that perform numerous tasks in a zero-gravity, drag-free, two-dimensional environment. It is envisioned that future generations of these robots will be part of a human-robot team, in which the robots will operate under the task-level commands of astronauts. To make this possible, the ARL has developed a graphical user interface (GUI) with an intuitive object-level motion-direction capability. Using this interface, the ARL has demonstrated autonomous navigation, intercept and capture of moving and spinning objects, object transport, multiple-robot cooperative manipulation, and simple assemblies from both free-flying and fixed bases. The ARL has also built a number of experimental test beds on which the modelling and control of flexible manipulators has been studied. Early ARL experiments in this arena demonstrated for the first time the capability to control the end-point position of both single-link and multi-link flexible manipulators using end-point sensing. Building on these accomplishments, the ARL has been able to control payloads with unknown dynamics at the end of a flexible manipulator, and to achieve high-performance control of a multi-link flexible manipulator.

  12. Disambiguating seesaw models using invariant mass variables at hadron colliders

    DOE PAGES

    Dev, P. S. Bhupal; Kim, Doojin; Mohapatra, Rabindra N.

    2016-01-19

    Here, we propose ways to distinguish between different mechanisms behind the collider signals of TeV-scale seesaw models for neutrino masses using kinematic endpoints of invariant mass variables. We particularly focus on two classes of such models widely discussed in literature: (i) Standard Model extended by the addition of singlet neutrinos and (ii) Left-Right Symmetric Models. Relevant scenarios involving the same "smoking-gun" collider signature of dilepton plus dijet with no missing transverse energy differ from one another by their event topology, resulting in distinctive relationships among the kinematic endpoints to be used for discerning them at hadron colliders. Furthermore, these kinematic endpoints are readily translated to the mass parameters of the on-shell particles through simple analytic expressions which can be used for measuring the masses of the new particles. We also conducted a Monte Carlo simulation with detector effects in order to test the viability of the proposed strategy in a realistic environment. Finally, we discuss the future prospects of testing these scenarios at themore » $$\\sqrt{s}$$ = 14 and 100TeV hadron colliders.« less

  13. Disambiguating seesaw models using invariant mass variables at hadron colliders

    NASA Astrophysics Data System (ADS)

    Dev, P. S. Bhupal; Kim, Doojin; Mohapatra, Rabindra N.

    2016-01-01

    We propose ways to distinguish between different mechanisms behind the collider signals of TeV-scale seesaw models for neutrino masses using kinematic endpoints of invariant mass variables. We particularly focus on two classes of such models widely discussed in literature: (i) Standard Model extended by the addition of singlet neutrinos and (ii) Left-Right Symmetric Models. Relevant scenarios involving the same "smoking-gun" collider signature of dilepton plus dijet with no missing transverse energy differ from one another by their event topology, resulting in distinctive relationships among the kinematic endpoints to be used for discerning them at hadron colliders. These kinematic endpoints are readily translated to the mass parameters of the on-shell particles through simple analytic expressions which can be used for measuring the masses of the new particles. A Monte Carlo simulation with detector effects is conducted to test the viability of the proposed strategy in a realistic environment. Finally, we discuss the future prospects of testing these scenarios at the √{s}=14 and 100 TeV hadron colliders.

  14. Endovascular Stent-Graft Placement in Patients with Stanford Type B Aortic Dissection in China: A Systematic Review.

    PubMed

    Wang, Junwei; Li, Yonghui; Li, Yongxin; Ren, Zefang; Chen, Peng; Qian, Xueke; Wang, Shenming; Wang, Jinsong

    2016-10-01

    Improvements in stent-graft devices and increasing clinical experience with the technique have improved outcomes and expanded clinical indications in patients with Stanford type B aortic dissection (AD) in China. However, the evolution of and modifications to stent grafts have not been reviewed. The aim of this study was to summarize all available published data on technical success, potential benefits, complications, stent evolution, and survival rates associated with endovascular stent-graft placements in patients with Stanford type B AD in China. We performed comprehensive searches of the Chinese-language medical literature in Chinese Biomedical Database, China National Knowledge Infrastructure, and Wanfang Data and of the English-language medical literature in PubMed, Web of Science, and the Cochrane Library. This systematic review was based on all retrospective studies assessing outcomes of Stanford type B AD treated with endovascular stent-graft placement in China. A total of 153 retrospective studies that included 8,694 cases were analyzed in this study. Procedure success was reported in 99.7 ± 0.1% of patients. Overall complications were reported in 19.1 ± 0.6% of patients. Postoperative endoleaks occurred in 7.2 ± 0.3% of patients. Major complications were reported in 3.2 ± 0.2% of patients, with a neurological complication rate of 1.3 ± 0.1%. Periprocedural stroke occurred more frequently than did paraplegia (0.8 ± 0.1% vs. 0.1 ± 0.04%). Overall complications were significantly greater in patients treated with first-generation stents than in those treated with second-generation stents (25.1 ± 1.2% vs. 9.5 ± 0.9%, P < 0.001). The in-hospital mortality rate was 1.6 ± 0.1%. In addition, 1.8 ± 0.2% of patients died during a mean follow-up period of 29.4 ± 13.5 months. The Kaplan-Meier estimates of the overall survival rate were 99.0 ± 0.1% at 30 days, 98.5 ± 0.2% at 6 months, 98.4 ± 0.2% at 1 year, 98.1

  15. [Expression profiles and clinical implication of plasma chemokines in patients with Stanford type A aortic dissection].

    PubMed

    Fan, F D; Xu, Z J; Zhou, Q; Wang, D J

    2017-04-24

    Objective: To explore the plasma chemokines expressions and related clinical implication in patients with Stanford type A aortic dissection (AD). Methods: We retrospectively analyzed the data of 65 patients with Stanford type A aortic dissection, hypertensive patients and 11 healthy subjects admitted in our department from October 2013 to December 2014, they were divided into four groups: NH-CON group (11 healthy subjects), H-AD group (29 AD patients with hypertension), NH-AD group (21 AD patients without hypertension), and H-CON group (14 hypertension patients). Four plasma samples from AD patients and 4 plasma samples from healthy subjects were collected randomly with random numbers table, and the levels of different chemokines were examined by protein array analysis. Then, plasma levels of chemokines including macrophage inflammatory protein 1β(MIP-1β), epithelial neutrophil activating peptide 78(ENA-78), interleukin 16(IL-16), interferon inducible protein 10(IP-10) and FMS-like tyrosine kinase 3(Flt-3) ligand were analyzed by luminex. Pearson analysis was used to determine the correlations between the chemokines and serum C reactive protein (CRP) levels. Results: Plasma levels of MIP-1β(34.0(29.3, 47.2) ng/L vs. 51.0(28.2, 80.7) ng/L, P <0.05) and ENA-78(110.5(59.1, 161.4) ng/L vs. 475.7(299.3, 837.3) ng/L, P <0.05) were significantly lower in H-AD group, while plasma IL-16 level was significantly higher in H-AD group(54.7(16.3, 187.8) ng/L vs. 17.5(11.9, 20.8) ng/L, P <0.05) than in H-CON group. Plasma levels of MIP-1β(48.3(26.4, 62.1) ng/L, P <0.05) were significantly lower in H-AD patients than in NH-AD patients. Plasma level of ENA-78 was significantly lower in NH-AD group than in NH-CON group (95.0(58.0, 155.0) ng/L vs. 257.7(85.2, 397.8) ng/L, P <0.05). The levels of IP-10 and Flt-3 ligand were similar among the 4 groups (all P >0.05). Pearson analysis showed that there were no correlation between MIP-1β( r (2)=0.01, P >0.05), ENA-78( r (2)=0.02, P

  16. Analysis of the Laser Calibration System for the CMS HCAL at CERN's Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Lebolo, Luis

    2005-11-01

    The European Organization for Nuclear Physics' (CERN) Large Hadron Collider uses the Compact Muon Solenoid (CMS) detector to measure collision products from proton-proton interactions. CMS uses a hadron calorimeter (HCAL) to measure the energy and position of quarks and gluons by reconstructing their hadronic decay products. An essential component of the detector is the calibration system, which was evaluated in terms of its misalignment, linearity, and resolution. In order to analyze the data, the authors created scripts in ROOT 5.02/00 and C++. The authors also used Mathematica 5.1 to perform complex mathematics and AutoCAD 2006 to produce optical ray traces. The misalignment of the optical components was found to be satisfactory; the Hybrid Photodiodes (HPDs) were confirmed to be linear; the constant, noise and stochastic contributions to its resolution were analyzed; and the quantum efficiency of most HPDs was determined to be approximately 40%. With a better understanding of the laser calibration system, one can further understand and improve the HCAL.

  17. Microwave and Electron Beam Computer Programs

    DTIC Science & Technology

    1988-06-01

    Research (ONR). SCRIBE was adapted by MRC from the Stanford Linear Accelerator Center Beam Trajectory Program, EGUN . oTIC NSECE Acc !,,o For IDL1C I...achieved with SCRIBE. It is a ver- sion of the Stanford Linear Accelerator (SLAC) code EGUN (Ref. 8), extensively modified by MRC for research on

  18. Using Linear Gluon Polarization Inside an Unpolarized Proton to Determine the Higgs Spin and Parity

    NASA Astrophysics Data System (ADS)

    den Dunnen, Wilco J.

    2014-06-01

    Gluons inside an unpolarized proton are in general linearly polarized in the direction of their transverse momentum, rendering the LHC effectively a polarized gluon collider. This polarization can be utilized in the determination of the spin and parity of the newly found Higgs-like boson. We focus here on the determination of the spin using the azimuthal Collins-Soper angle distribution.

  19. Item Fairness of the Nonverbal Subtests of the Stanford-Binet Intelligence Test, Fifth Edition, in a Latina/o Sample

    ERIC Educational Resources Information Center

    Harlow, Simone C.

    2011-01-01

    Every widely used psychological assessment instrument is under scrutiny in terms of cultural fairness. The expectation of the reduced-language (Nonverbal) section of the Stanford-Binet Intelligence Scales, Fifth Edition (SB5; Roid, 2003) is that language ought not to be a modifying factor in terms of final score. The purpose of the present study…

  20. Modal interaction in linear dynamic systems near degenerate modes

    NASA Technical Reports Server (NTRS)

    Afolabi, D.

    1991-01-01

    In various problems in structural dynamics, the eigenvalues of a linear system depend on a characteristic parameter of the system. Under certain conditions, two eigenvalues of the system approach each other as the characteristic parameter is varied, leading to modal interaction. In a system with conservative coupling, the two eigenvalues eventually repel each other, leading to the curve veering effect. In a system with nonconservative coupling, the eigenvalues continue to attract each other, eventually colliding, leading to eigenvalue degeneracy. Modal interaction is studied in linear systems with conservative and nonconservative coupling using singularity theory, sometimes known as catastrophe theory. The main result is this: eigenvalue degeneracy is a cause of instability; in systems with conservative coupling, it induces only geometric instability, whereas in systems with nonconservative coupling, eigenvalue degeneracy induces both geometric and elastic instability. Illustrative examples of mechanical systems are given.

  1. The Stanford Prison Experiment: Implications for the Care of the "Difficult" Patient.

    PubMed

    Onishi, So L; Hebert, Randy S

    2016-02-01

    Approximately 15% of patients are perceived by clinicians as "difficult." Early theories about difficult patients focused on patients' and clinicians' characteristics, often underemphasizing the influence of the environment on patients' behavior. The Stanford Prison Experiment, a classic experiment in the psychology of human behavior, provides a broader systems approach for understanding the environmental influences on patient behavior. A systems approach to the care of the difficult patient takes into consideration not only the patient's characteristics but also the health care environment and the more distal environments (ie, familial, societal, and cultural). Clinicians who are aware of the multilevel impact of these various environments on the behavior of patients are better equipped to understand, address, and hopefully even prevent difficult patient encounters. © The Author(s) 2014.

  2. X-ray observations of the colliding wind binary WR 25

    NASA Astrophysics Data System (ADS)

    Arora, Bharti; Pandey, Jeewan Chandra

    2018-04-01

    Using the archival data obtained from Chandra and Suzaku spanning over '8 years, we present an analysis of a WN6h+O4f Wolf-Rayet binary, WR 25. The X-ray light curves folded over a period of '208 d in the 0.3 - 10.0 keV energy band showed phase-locked variability where the count rates were found to be maximum near the periastron passage. The X-ray spectra of WR 25 were well explained by a two-temperature plasma model with temperatures of 0.64 ± 0.01 and 2.96 ± 0.05 keV and are consistent with previous results. The orbital phase dependent local hydrogen column density was found to be maximum just after the periastron passage, when the WN type star is in front of the O star. The hard (2.0 - 10.0 keV) X-ray luminosity was linearly dependent on the inverse of binary separation which confirms that WR 25 is a colliding wind binary.

  3. Temporal Trends in Clinical and Pathological Characteristics for Men Undergoing Radical Prostatectomy Between 1995 and 2013 at Rigshospitalet, Copenhagen, Denmark, and Stanford University Hospital, United States.

    PubMed

    Loft, Mathias Dyrberg; Berg, Kasper Drimer; Kjaer, Andreas; Iversen, Peter; Ferrari, Michelle; Zhang, Chiyuan A; Brasso, Klaus; Brooks, James D; Røder, Martin Andreas

    2017-09-06

    To analyze how prostate-specific antigen (PSA) screening and practice patterns has affected trends in tumor characteristics in men undergoing radical prostatectomy (RP) in the United States and Denmark. Unlike in the United States, PSA screening has not been recommended in Denmark. We performed an observational register study using pre- and postoperative data on 2168 Danish patients from Rigshospitalet, Copenhagen, Denmark, and 2236 patients from Stanford University Hospital, Stanford, CA, who underwent RP between 1995 and 2013. Patients were stratified according to Cancer of the Prostate Risk Assessment-Postsurgical (CAPRA-S) risk groups and D'Amico risk classification and were clustered into 4 time periods (1995-1999, 2000-2004, 2005-2009, and 2010-2013). Temporal trends in the proportions of patients of a given variable at the 2 institutions were evaluated with Cochran-Armitage test for trends and chi-square testing. A total of 4404 patients were included. Temporal changes in preoperative PSA, age, grade, and stage was found in both cohorts. Median preoperative PSA declined in both cohorts, while median age increased, with the Danish cohort showing the greatest changes in both PSA and age. In both cohorts, there was a trend for higher-risk preoperative features before RP over time. In 2010-2013, 27.7% and 21.8% of the patients were in the D'Amico high-risk group at Copenhagen and Stanford, respectively. Despite recommendation against PSA screening in Denmark, Danish men undergoing RP at Rigshospitalet to a considerable extent now resemble American men undergoing RP at Stanford. At both sites, there is continued trend to reduce the number of men undergoing RP for low-risk prostate cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Design of a High Luminosity 100 TeV Proton-Antiproton Collider

    NASA Astrophysics Data System (ADS)

    Oliveros Tautiva, Sandra Jimena

    Currently new physics is being explored with the Large Hadron Collider at CERN and with Intensity Frontier programs at Fermilab and KEK. The energy scale for new physics is known to be in the multi-TeV range, signaling the need for a future collider which well surpasses this energy scale. A 10 34 cm-2 s-1 luminosity 100 TeV proton-antiproton collider is explored with 7x the energy of the LHC. The dipoles are 4.5 T to reduce cost. A proton-antiproton collider is selected as a future machine for several reasons. The cross section for many high mass states is 10 times higher in pp than pp collisions. Antiquarks for production can come directly from an antiproton rather than indirectly from gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets and the number of events per bunch crossing, because lower beam currents can produce the same rare event rates. Events are also more centrally produced, allowing a more compact detector with less space between quadrupole triplets and a smaller beta* for higher luminosity. To adjust to antiproton beam losses (burn rate), a Fermilab-like antiproton source would be adapted to disperse the beam into 12 different momentum channels, using electrostatic septa, to increase antiproton momentum capture 12 times. At Fermilab, antiprotons were stochastically cooled in one Debuncher and one Accumulator ring. Because the stochastic cooling time scales as the number of particles, two options of 12 independent cooling systems are presented. One electron cooling ring might follow the stochastic cooling rings for antiproton stacking. Finally antiprotons in the collider ring would be recycled during runs without leaving the collider ring, by joining them to new bunches with snap bunch coalescence and synchrotron damping. These basic ideas are explored in this work on a future 100 TeV proton-antiproton collider and the main parameters are presented.

  5. Design of a High Luminosity 100 TeV Proton Antiproton Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveros Tuativa, Sandra Jimena

    2017-04-01

    Currently new physics is being explored with the Large Hadron Collider at CERN and with Intensity Frontier programs at Fermilab and KEK. The energy scale for new physics is known to be in the multi-TeV range, signaling the need for a future collider which well surpasses this energy scale. A 10more » $$^{\\,34}$$ cm$$^{-2}$$ s$$^{-1}$$ luminosity 100 TeV proton-antiproton collider is explored with 7$$\\times$$ the energy of the LHC. The dipoles are 4.5\\,T to reduce cost. A proton-antiproton collider is selected as a future machine for several reasons. The cross section for many high mass states is 10 times higher in $$p\\bar{p}$$ than $pp$ collisions. Antiquarks for production can come directly from an antiproton rather than indirectly from gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets and the number of events per bunch crossing, because lower beam currents can produce the same rare event rates. Events are also more centrally produced, allowing a more compact detector with less space between quadrupole triplets and a smaller $$\\beta^{*}$$ for higher luminosity. To adjust to antiproton beam losses (burn rate), a Fermilab-like antiproton source would be adapted to disperse the beam into 12 different momentum channels, using electrostatic septa, to increase antiproton momentum capture 12 times. At Fermilab, antiprotons were stochastically cooled in one Debuncher and one Accumulator ring. Because the stochastic cooling time scales as the number of particles, two options of 12 independent cooling systems are presented. One electron cooling ring might follow the stochastic cooling rings for antiproton stacking. Finally antiprotons in the collider ring would be recycled during runs without leaving the collider ring, by joining them to new bunches with snap bunch coalescence and synchrotron damping. These basic ideas are explored in this work on a future 100 TeV proton-antiproton collider and the main parameters

  6. The Sound Games: Introducing Gamification into Stanford's Orientation on Emergency Ultrasound.

    PubMed

    Lobo, Viveta; Stromberg, Andrew Q; Rosston, Peter

    2017-09-18

    Point-of-care ultrasound is a critical component of graduate medical training in emergency medicine. Innovation in ultrasound teaching methods is greatly needed to keep up with a changing medical landscape. A field-wide trend promoting simulation and technology-enhanced learning is underway in an effort to improve patient care, as well as patient safety. In an effort to both motivate students and increase their skill retention, training methods are shifting towards a friendly competition model and are gaining popularity nationwide. In line with this emerging trend, Stanford incorporated the Sound Games - an educational ultrasound event with a distinctly competitive thread - within its existing two-day point-of-care ultrasound orientation course for emergency medicine interns. In this study, we demonstrate successful implementation of the orientation program, significant learning gains in participants, and overall student satisfaction with the course.

  7. Effects of Compounded Stanford Modified Oral Rinse (MucoLox) on the Survival and Migration of Oral Keratinocytes and Fibroblasts: Implications for Wound Healing.

    PubMed

    Song, Guiyun; Banov, Daniel; Bassani, August S

    2018-01-01

    Several oral rinses are commercially available to alleviate the symptoms of oral mucositis. Prolonged retention of active pharmaceutical ingredients in the oral cavity is a major problem. In this study, we modified the Stanford oral rinse by including a proprietary mucoadhesive polymer called MucoLox, which we hypothesized would improve active pharmaceutical ingredient mucoadhesion. Characterization of this newly compounded oral rinse showed absence of cytotoxicity in human oral keratinocyte and fibroblast cell lines. The compounded formulation significantly stimulated the migration of these two cell lines in Oris Cell Migration Assay plates, better than the reference commercial product Magic mouthwash. Based on this in vitro study, the new Stanford modified oral rinse with MucoLox is safe and may promote healing of oral mucositis. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  8. SPIRES (Stanford Physics Information REtrieval System) 1969-70 Annual Report to the National Science Foundation (Office of Science Information Service).

    ERIC Educational Resources Information Center

    Parker, Edwin B.

    The third annual report (covering the 18-month period from January 1969 to June 1970) of the Stanford Physics Information REtrieval System (SPIRES) project, which is developing an augmented bibliographic retrieval capability, is presented in this document. A first section describes the background of the project and its association with Project…

  9. The Impact of the Stanford Math Intervention Program and School Climate on Mathematics Achievement Levels of Female Middle School Students

    ERIC Educational Resources Information Center

    Carwell, Tamika L.

    2012-01-01

    The study's focus was to determine whether or not there was a significant statistical relationship between improved student performance scores from the Education Program for Gifted Youth (EPGY) Stanford Math Intervention Program and Discovery Formative Assessment mathematics mean scores of female middle school students. An additional focus of…

  10. Flight test evaluation of the Stanford University/United Airlines differential GPS Category 3 automatic landing system

    NASA Technical Reports Server (NTRS)

    Kaufmann, David N.; Ncnally, B. David

    1995-01-01

    Test flights were conducted to evaluate the capability of Differential Global Positioning System (DGPS) to provide the accuracy and integrity required for International Civil Aviation Organization (ICAO) Category (CAT) 3 precision approach and landings. These test flights were part of a Federal Aviation Administration (FAA) program to evaluate the technical feasibility of using DGPS based technology for CAT 3 precision approach and landing applications. A United Airlines Boeing 737-300 (N304UA) was equipped with DGPS receiving equipment and additional computing capability provided by Stanford University. The test flights were conducted at NASA Ames Research Center's Crows Landing Flight Facility, Crows Landing, California. The flight test evaluation was based on completing 100 approaches and autolandings; 90 touch and go, and 10 terminating with a full stop. Two types of accuracy requirements were evaluated: 1) Total system error, based on the Required Navigation Performance (RNP), and 2) Navigation sensor error, based on ICAO requirements for the Microwave Landing System (MLS). All of the approaches and autolandings were evaluated against ground truth reference data provided by a laser tracker. Analysis of these approaches and autolandings shows that the Stanford University/United Airlines system met the requirements for a successful approach and autolanding 98 out of 100 approaches and autolandings, based on the total system error requirements as specified in the FAA CAT 3 Level 2 Flight Test Plan.

  11. Charge recombination in the muon collider cooling channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernow, R. C.; Palmer, R. B.

    2012-12-21

    The final stage of the ionization cooling channel for the muon collider must transversely recombine the positively and negatively charged bunches into a single beam before the muons can be accelerated. It is particularly important to minimize any emittance growth in this system since no further cooling takes place before the bunches are collided. We have found that emittance growth could be minimized by using symmetric pairs of bent solenoids and careful matching. We show that a practical design can be found that has transmission {approx}99%, emittance growth less than 0.1%, and minimal dispersion in the recombined bunches.

  12. Multiplicity fluctuations and collective flow in small colliding systems

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Koji; Murase, Koichi; Hirano, Tetsufumi

    2017-11-01

    Recent observation of collective-flow-like behaviours in small colliding systems attracts significant theoretical and experimental interests. In large colliding systems, large collective flow has been interpreted as manifestation of almost-perfect fluidity of the quark gluon plasma (QGP). So it is quite intriguing to explore how small the QGP can be as a fluid. Multiplicity fluctuations play a crucial role in centrality definition of the events in small colliding systems since the fluctuations are, in general, more important as the system size is getting smaller. To consider the correct multiplicity fluctuations, we employ PYTHIA which naturally describes multiplicity distribution in p+p collisions. We superpose p+p collisions by taking into account the number of participants and that of binary collisions from Monte-Carlo version of Glauber model and evaluate initial entropy density distributions which contain not only multiplicity fluctuations but also fluctuations of longitudinal profiles. Solving hydrodynamic equations followed by the hadronic afterburner, we calculate transverse momentum spectra, elliptic and triangular flow parameters in p+Au, d+Au and 3He+Au collisions at the RHIC energy and p+Pb collisions at the LHC energy. Although a large fraction of final anisotropic flow parameters comes from the fluid-dynamical stage, the effects of hadronic rescatterings turn out to be also important as well in understanding of the flow data in small colliding systems.

  13. Signatures of doubly-charged Higgsinos at colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demir, D. A.; Deutsches Elektronen-Synchrotron, DESY, D-22603 Hamburg; Frank, M.

    2008-11-23

    Several supersymmetric models with extended gauge structures predict light doubly-charged Higgsinos. Their distinctive signature at the large hadron collider is highlighted by studying its production and decay characteristics.

  14. Imaging hadron calorimetry for future Lepton Colliders

    NASA Astrophysics Data System (ADS)

    Repond, José

    2013-12-01

    To fully exploit the physics potential of a future Lepton Collider requires detectors with unprecedented jet energy and dijet-mass resolution. To meet these challenges, detectors optimized for the application of Particle Flow Algorithms (PFAs) are being designed and developed. The application of PFAs, in turn, requires calorimeters with very fine segmentation of the readout, so-called imaging calorimeters. This talk reviews progress in imaging hadron calorimetry as it is being developed for implementation in a detector at a future Lepton Collider. Recent results from the large prototypes built by the CALICE Collaboration, such as the Scintillator Analog Hadron Calorimeter (AHCAL) and the Digital Hadron Calorimeters (DHCAL and SDHCAL) are being presented. In addition, various R&D efforts beyond the present prototypes are being discussed.

  15. The magnet system of the Relativistic Heavy Ion Collider (RHIC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, A.; Anerella, M.; Cozzolino, J.

    1995-07-01

    The Relativistic Heavy Ion Collider now under construction at Brookhaven National Laboratory (BNL) is a colliding ring accelerator to be completed in 1999. Through collisions of heavy ions it is hoped to observe the creation of matter at extremely high temperatures and densities, similar to what may have occurred in the original ``Big Bang.`` The collider rings will consist of 1740 superconducting magnet elements. Some of elements are being manufactured by industrial partners (Northrop Grumman and Everson Electric). Others are being constructed or assembled at BNL. A description is given of the magnet designs, the plan for manufacturing and testmore » results. In the manufacturing of the magnets, emphasis has been placed on uniformity of their performance and on quality. Results so far indicate that this emphasis has been very successful.« less

  16. Nuclear physics with a medium-energy Electron-Ion Collider

    NASA Astrophysics Data System (ADS)

    Accardi, A.; Guzey, V.; Prokudin, A.; Weiss, C.

    2012-06-01

    A polarized ep/ eA collider (Electron-Ion Collider, or EIC) with variable center-of-mass energy √ s ˜ 20-70 GeV and luminosity ˜1034 cm-2 s-1 would be uniquely suited to address several outstanding questions of Quantum Chromodynamics (QCD) and the microscopic structure of hadrons and nuclei: i) the three-dimensional structure of the nucleon in QCD (sea quark and gluon spatial distributions, orbital motion, polarization, correlations); ii) the fundamental color fields in nuclei (nuclear parton densities, shadowing, coherence effects, color transparency); iii) the conversion of color charge to hadrons (fragmentation, parton propagation through matter, in-medium jets). We briefly review the conceptual aspects of these questions and the measurements that would address them, emphasizing the qualitatively new information that could be obtained with the collider. Such a medium-energy EIC could be realized at Jefferson Lab after the 12GeV Upgrade (MEIC), or at Brookhaven National Lab as the low-energy stage of eRHIC.

  17. Linear and non-linear flow mode in Pb-Pb collisions at √{sNN} = 2.76 TeV

    NASA Astrophysics Data System (ADS)

    Acharya, S.; Adamová, D.; Adolfsson, J.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Alba, J. L. B.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altenkamper, L.; Altsybeev, I.; Alves Garcia Prado, C.; An, M.; Andrei, C.; Andreou, D.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Chandra, S.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Chowdhury, T.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Concas, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovská, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Doremalen, L. V. V.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, J.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hassan, H.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hills, C.; Hippolyte, B.; Hladky, J.; Hohlweger, B.; Horak, D.; Hornung, S.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Iga Buitron, S. A.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jaelani, S.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Ketzer, B.; Khabanova, Z.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, D.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Konyushikhin, M.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lai, Y. S.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lim, B.; Lindal, S.; Lindenstruth, V.; Lindsay, S. W.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Masson, E.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D.; Mihaylov, D. L.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Mohisin Khan, M.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Myrcha, J. W.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Narayan, A.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao de Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nobuhiro, A.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Parmar, S.; Passfeld, A.; Pathak, S. P.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pliquett, F.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Rokita, P. S.; Ronchetti, F.; Rosas, E. D.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rueda, O. V.; Rui, R.; Russo, R.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shahoyan, R.; Shaikh, W.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, S.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Tropp, L.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wenzel, S. C.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Willsher, E.; Windelband, B.; Witt, W. E.; Yalcin, S.; Yamakawa, K.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zmeskal, J.; Zou, S.; Alice Collaboration

    2017-10-01

    The second and the third order anisotropic flow, V2 and V3, are mostly determined by the corresponding initial spatial anisotropy coefficients, ε2 and ε3, in the initial density distribution. In addition to their dependence on the same order initial anisotropy coefficient, higher order anisotropic flow, Vn (n > 3), can also have a significant contribution from lower order initial anisotropy coefficients, which leads to mode-coupling effects. In this Letter we investigate the linear and non-linear modes in higher order anisotropic flow Vn for n = 4, 5, 6 with the ALICE detector at the Large Hadron Collider. The measurements are done for particles in the pseudorapidity range | η | < 0.8 and the transverse momentum range 0.2

  18. Linear and non-linear flow mode in Pb–Pb collisions at s NN = 2.76  TeV

    DOE PAGES

    Acharya, S.; Adamová, D.; Adolfsson, J.; ...

    2017-08-04

    The second and the third order anisotropic flow, V 2 and V 3, are mostly determined by the corresponding initial spatial anisotropy coefficients, and , in the initial density distribution. In addition to their dependence on the same order initial anisotropy coefficient, higher order anisotropic flow, V n (n > 3), can also have a significant contribution from lower order initial anisotropy coefficients, which leads to mode-coupling effects. In this Letter we investigate the linear and non-linear modes in higher order anisotropic flow V n for n = 4, 5, 6 with the ALICE detector at the Large Hadron Collider.more » The measurements are done for particles in the pseudorapidity range |η| < 0.8 and the transverse momentum range 0.2 < p T < 5.0 GeV/c as a function of collision centrality. The results are compared with theoretical calculations and provide important constraints on the initial conditions, including initial spatial geometry and its fluctuations, as well as the ratio of the shear viscosity to entropy density of the produced system.« less

  19. Linear and non-linear flow mode in Pb–Pb collisions at s NN = 2.76  TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acharya, S.; Adamová, D.; Adolfsson, J.

    The second and the third order anisotropic flow, V 2 and V 3, are mostly determined by the corresponding initial spatial anisotropy coefficients, and , in the initial density distribution. In addition to their dependence on the same order initial anisotropy coefficient, higher order anisotropic flow, V n (n > 3), can also have a significant contribution from lower order initial anisotropy coefficients, which leads to mode-coupling effects. In this Letter we investigate the linear and non-linear modes in higher order anisotropic flow V n for n = 4, 5, 6 with the ALICE detector at the Large Hadron Collider.more » The measurements are done for particles in the pseudorapidity range |η| < 0.8 and the transverse momentum range 0.2 < p T < 5.0 GeV/c as a function of collision centrality. The results are compared with theoretical calculations and provide important constraints on the initial conditions, including initial spatial geometry and its fluctuations, as well as the ratio of the shear viscosity to entropy density of the produced system.« less

  20. Scaling behavior of circular colliders dominated by synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Talman, Richard

    2015-08-01

    The scaling formulas in this paper — many of which involve approximation — apply primarily to electron colliders like CEPC or FCC-ee. The more abstract “radiation dominated” phrase in the title is intended to encourage use of the formulas — though admittedly less precisely — to proton colliders like SPPC, for which synchrotron radiation begins to dominate the design in spite of the large proton mass. Optimizing a facility having an electron-positron Higgs factory, followed decades later by a p, p collider in the same tunnel, is a formidable task. The CEPC design study constitutes an initial “constrained parameter” collider design. Here the constrained parameters include tunnel circumference, cell lengths, phase advance per cell, etc. This approach is valuable, if the constrained parameters are self-consistent and close to optimal. Jumping directly to detailed design makes it possible to develop reliable, objective cost estimates on a rapid time scale. A scaling law formulation is intended to contribute to a “ground-up” stage in the design of future circular colliders. In this more abstract approach, scaling formulas can be used to investigate ways in which the design can be better optimized. Equally important, by solving the lattice matching equations in closed form, as contrasted with running computer programs such as MAD, one can obtain better intuition concerning the fundamental parametric dependencies. The ground-up approach is made especially appropriate by the seemingly impossible task of simultaneous optimization of tunnel circumference for both electrons and protons. The fact that both colliders will be radiation dominated actually simplifies the simultaneous optimization task. All GeV scale electron accelerators are “synchrotron radiation dominated”, meaning that all beam distributions evolve within a fraction of a second to an equilibrium state in which “heating” due to radiation fluctuations is canceled by the “cooling” in

  1. Structure of bicomponent particles synthesized from colliding metal clusters

    NASA Astrophysics Data System (ADS)

    Kryzhevich, D. S.; Zolnikov, K. P.; Korchuganov, A. V.; Psakhie, S. G.

    2017-12-01

    Here, based on a molecular dynamics simulation with many-body interaction potentials, we consider several scenarios of the formation of bicomponent particles from colliding clusters in an electrical explosion of Cu and Ni wires. The data suggest that the structure of bicomponent particles depends largely on the explosion time of one wire with respect to the other and on the phase state of colliding clusters. Diagrams are presented demonstrating the dynamics of bicomponent particles with block structure synthesized from crystalline Ni and molten Cu clusters.

  2. Non-resonant collider signatures of a singlet-driven electroweak phase transition

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Yi; Kozaczuk, Jonathan; Lewis, Ian M.

    2017-08-01

    We analyze the collider signatures of the real singlet extension of the Standard Model in regions consistent with a strong first-order electroweak phase transition and a singlet-like scalar heavier than the Standard Model-like Higgs. A definitive correlation exists between the strength of the phase transition and the trilinear coupling of the Higgs to two singlet-like scalars, and hence between the phase transition and non-resonant scalar pair production involving the singlet at colliders. We study the prospects for observing these processes at the LHC and a future 100 TeV pp collider, focusing particularly on double singlet production. We also discuss correlations between the strength of the electroweak phase transition and other observables at hadron and future lepton colliders. Searches for non-resonant singlet-like scalar pair production at 100 TeV would provide a sensitive probe of the electroweak phase transition in this model, complementing resonant di-Higgs searches and precision measurements. Our study illustrates a strategy for systematically exploring the phenomenologically viable parameter space of this model, which we hope will be useful for future work.

  3. Signals of doubly-charged Higgsinos at the CERN Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demir, Durmus A.; Deutsches Elektronen--Synchrotron, DESY, D-22603 Hamburg; Frank, Mariana

    2008-08-01

    Several supersymmetric models with extended gauge structures, motivated by either grand unification or by neutrino mass generation, predict light doubly-charged Higgsinos. In this work we study productions and decays of doubly-charged Higgsinos present in left-right supersymmetric models, and show that they invariably lead to novel collider signals not found in the minimal supersymmetric model or in any of its extensions motivated by the {mu} problem or even in extra dimensional theories. We investigate their distinctive signatures at the Large Hadron Collider in both pair- and single-production modes, and show that they are powerful tools in determining the underlying model viamore » the measurements at the Large Hadron Collider experiments.« less

  4. LHC collider phenomenology of minimal universal extra dimensions

    NASA Astrophysics Data System (ADS)

    Beuria, Jyotiranjan; Datta, AseshKrishna; Debnath, Dipsikha; Matchev, Konstantin T.

    2018-05-01

    We discuss the collider phenomenology of the model of Minimal Universal Extra Dimensions (MUED) at the Large hadron Collider (LHC). We derive analytical results for all relevant strong pair-production processes of two level 1 Kaluza-Klein partners and use them to validate and correct the existing MUED implementation in the fortran version of the PYTHIA event generator. We also develop a new implementation of the model in the C++ version of PYTHIA. We use our implementations in conjunction with the CHECKMATE package to derive the LHC bounds on MUED from a large number of published experimental analyses from Run 1 at the LHC.

  5. Colliding nuclei to colliding galaxies: Illustrations using a simple colliding liquid-drop apparatus

    NASA Astrophysics Data System (ADS)

    Becchetti, F. D.; Mack, S. L.; Robinson, W. R.; Ojaruega, M.

    2015-10-01

    A simple apparatus suitable for observing the collisions between drops of fluids of various properties is described. Typical results are shown for experiments performed by undergraduate students using various types of fluids. The collisions take place under free-fall (zero-g) conditions, with analysis employing digital video. Two specific types of collisions are examined in detail, head-on collisions and peripheral, grazing collisions. The collisions for certain fluids illustrate many types of nuclear collisions and provide useful insight into these processes, including both fusion and non-fusion outcomes, often with the formation of exotic shapes or emission of secondary fragments. Collisions of other liquids show a more chaotic behavior, often resembling galactic collisions. As expected, the Weber number associated with a specific collision impact parameter is found to be the important quantity in determining the initial outcome of these colliding systems. The features observed resemble those reported by others using more elaborate experimental techniques.

  6. The influence of orbit selection on the accuracy of the Stanford Relativity gyroscope experiment

    NASA Technical Reports Server (NTRS)

    Vassar, R.; Everitt, C. W. F.; Vanpatten, R. A.; Breakwell, J. V.

    1980-01-01

    This paper discusses an error analysis for the Stanford Relativity experiment, designed to measure the precession of a gyroscope's spin-axis predicted by general relativity. Measurements will be made of the spin-axis orientations of 4 superconducting spherical gyroscopes carried by an earth-satellite. Two relativistic precessions are predicted: a 'geodetic' precession associated with the satellite's orbital motion and a 'motional' precession due to the earth's rotation. Using a Kalman filter covariance analysis with a realistic error model we have computed the error in determining the relativistic precession rates. Studies show that a slightly off-polar orbit is better than a polar orbit for determining the 'motional' drift.

  7. The Next Linear Collider Program

    Science.gov Websites

    Navbar Other Address Books: Laboratory Phone/Email Web Directory SLAC SLAC Phonebook Entire SLAC Web FNAL Telephone Directory Fermilab Search LLNL Phone Book LLNL Web Servers LBNL Directory Services Web Search: A-Z Index KEK E-mail Database Research Projects NLC Website Search: Entire SLAC Web | Help

  8. The Next Linear Collider Program

    Science.gov Websites

    . Records including program management records, financial records, technical and R&D data needed to international collaboration including BINP (Protvino), DESY, FNAL, KEK, LAL d'Orsay, MPI (Munich) and SLAC. SLAC scientific records for proper NLC documentation. Both paper and electronic files are archived in conjunction

  9. Relic neutralino surface at a 100 TeV collider

    DOE PAGES

    Bramante, Joseph; Fox, Patrick J.; Martin, Adam; ...

    2015-03-11

    We map the parameter space for minimal supersymmetric Standard Model neutralino dark matter which freezes out to the observed relic abundance, in the limit that all superpartners except the neutralinos and charginos are decoupled. In this space of relic neutralinos, we show the dominant dark matter annihilation modes, the mass splittings among the electroweakinos, direct detection rates, and collider cross sections. The mass difference between the dark matter and the next-to-lightest neutral and charged states is typically much less than electroweak gauge boson masses. With these small mass differences, the relic neutralino surface is accessible to a future 100 TeVmore » hadron collider, which can discover interneutralino mass splittings down to 1 GeV and thermal relic dark matter neutralino masses up to 1.5 TeV with a few inverse attobarns of luminosity. This coverage is a direct consequence of the increased collider energy: in the Standard Model events with missing transverse momentum in the TeV range have mostly hard electroweak radiation, distinct from the soft radiation shed in compressed electroweakino decays. As a result, we exploit this kinematic feature in final states including photons and leptons, tailored to the 100 TeV collider environment.« less

  10. Illuminating dark photons with high-energy colliders

    NASA Astrophysics Data System (ADS)

    Curtin, David; Essig, Rouven; Gori, Stefania; Shelton, Jessie

    2015-02-01

    High-energy colliders offer a unique sensitivity to dark photons, the mediators of a broken dark U(1) gauge theory that kinetically mixes with the Standard Model (SM) hypercharge. Dark photons can be detected in the exotic decay of the 125 GeV Higgs boson, h→ ZZ D →4 ℓ, and in Drell-Yan events, pp→ Z D → ℓℓ. If the dark U(1) is broken by a hidden-sector Higgs mechanism, then mixing between the dark and SM Higgs bosons also allows the exotic decay h → Z D Z D → 4 ℓ. We show that the 14 TeV LHC and a 100 TeV proton-proton collider provide powerful probes of both exotic Higgs decay channels. In the case of kinetic mixing alone, direct Drell-Yan production offers the best sensitivity to Z D , and can probe ɛ ≳ 9 × 10-4 (4 × 10-4) at the HL-LHC (100 TeV pp collider). The exotic Higgs decay h → ZZ D offers slightly weaker sensitivity, but both measurements are necessary to distinguish the kinetically mixed dark photon from other scenarios. If Higgs mixing is also present, then the decay h → Z D Z D can allow sensitivity to the Z D for ɛ ≳ 10-9 - 10-6 (10-10 - 10-7) for the mass range by searching for displaced dark photon decays. We also compare the Z D sensitivity at pp colliders to the indirect, but model-independent, sensitivity of global fits to electroweak precision observables. We perform a global electroweak fit of the dark photon model, substantially updating previous work in the literature. Electroweak precision measurements at LEP, Tevatron, and the LHC exclude ɛ as low as 3 × 10-2. Sensitivity can be improved by up to a factor of ˜ 2 with HL-LHC data, and an additional factor of ˜ 4 with ILC/GigaZ data.

  11. The magnet system of the Relativistic Heavy Ion Collider (RHIC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, A.; Anerella, M.; Cozzolino, J.

    1996-07-01

    The Relativistic Heavy Ion Collider now under construction at Brookhaven National Laboratory (BNL) is a colliding ring accelerator to be completed in 1999. Through collisions of heavy ions it is hoped to observe the creation of matter at extremely high temperatures and densities, similar to what may have occurred in the original ``Big Bang``. The collider rings will consist of 1,740 superconducting magnet elements. Some of these elements are being manufactured by industrial partners (Northrop Grumman and Everson Electric). Others are being constructed or assembled at BNL. A description is given of the magnet designs, the plan for manufacturing andmore » test results. In the manufacturing of the magnets, emphasis has been placed on uniformity of their performance and on quality. Results so far indicate that this emphasis has been very successful.« less

  12. Collider signatures of flavorful Higgs bosons

    DOE PAGES

    Altmannshofer, Wolfgang; Eby, Joshua; Gori, Stefania; ...

    2016-12-30

    Motivated by our limited knowledge of the Higgs couplings to the first two generation fermions, we analyze the collider phenomenology of a class of two Higgs doublet models (2HDMs) with a nonstandard Yukawa sector. One Higgs doublet is mainly responsible for the masses of the weak gauge bosons and the third-generation fermions, while the second Higgs doublet provides mass for the lighter fermion generations. The characteristic collider signatures of this setup differ significantly from well-studied 2HDMs with natural flavor conservation, flavor alignment, or minimal flavor violation. New production mechanisms for the heavy scalar, pseudoscalar, and charged Higgs involving second-generation quarksmore » can become dominant. The most interesting decay modes include H/A → cc,tc,μμ,τμ and H ± → cb,cs,μν. As a result, searches for low-mass dimuon resonances are currently among the best probes of the heavy Higgs bosons in this setup.« less

  13. Laser ion source for isobaric heavy ion collider experiment.

    PubMed

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is (96)Ru + (96)Zr. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions.

  14. Collider shot setup for Run 2 observations and suggestions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annala, J.; Joshel, B.

    1996-01-31

    This note is intended to provoke discussion on Collider Run II shot setup. We hope this is a start of activities that will converge on a functional description of what is needed for shot setups in Collider Run II. We will draw on observations of the present shot setup to raise questions and make suggestions for the next Collider run. It is assumed that the reader has some familiarity with the Collider operational issues. Shot setup is defined to be the time between the end of a store and the time the Main Control Room declares colliding beams. This ismore » the time between Tevatron clock events SCE and SCB. This definition does not consider the time experiments use to turn on their detectors. This analysis was suggested by David Finley. The operational scenarios for Run II will require higher levels of reliability and speed for shot setup. See Appendix I and II. For example, we estimate that a loss of 3 pb{sup {minus}1}/week (with 8 hour stores) will occur if shot setups take 90 minutes instead of 30 minutes. In other words: If you do 12 shots for one week and accept an added delay of one minute in each shot, you will loose more than 60 nb{sup {minus}1} for that week alone (based on a normal shot setup of 30 minutes). These demands should lead us to be much more pedantic about all the factors that affect shot setups. Shot setup will be viewed as a distinct process that is composed of several inter- dependent `components`: procedures, hardware, controls, and sociology. These components don`t directly align with the different Accelerator Division departments, but are topical groupings of the needed accelerator functions. Defining these components, and categorizing our suggestions within them, are part of the goal of this document. Of course, some suggestions span several of these components.« less

  15. Assessing Giftedness in Children: Comparing the Accuracy of Three Shortened Measures of Intelligence to the Stanford-Binet Intelligence Scales, Fifth Edition

    ERIC Educational Resources Information Center

    Newton, Jocelyn H.; McIntosh, David E.; Dixon, Felicia; Williams, Tasha; Youman, Elizabeth

    2008-01-01

    This study examined the accuracy of three shortened measures of intelligence: the Woodcock-Johnson Tests of Cognitive Ability, Third Edition Brief Intellectual Ability (WJ III COG BIA) score; the Stanford-Binet Intelligence Scale, Fifth Edition Abbreviated IQ (SB5 ABIQ); and the Kaufman Brief Intelligence Test IQ Composite (K-BIT) in predicting…

  16. Molecular cloud formation in high-shear, magnetized colliding flows

    NASA Astrophysics Data System (ADS)

    Fogerty, E.; Frank, A.; Heitsch, F.; Carroll-Nellenback, J.; Haig, C.; Adams, M.

    2016-08-01

    The colliding flows (CF) model is a well-supported mechanism for generating molecular clouds. However, to-date most CF simulations have focused on the formation of clouds in the normal-shock layer between head-on colliding flows. We performed simulations of magnetized colliding flows that instead meet at an oblique-shock layer. Oblique shocks generate shear in the post-shock environment, and this shear creates inhospitable environments for star formation. As the degree of shear increases (I.e. the obliquity of the shock increases), we find that it takes longer for sink particles to form, they form in lower numbers, and they tend to be less massive. With regard to magnetic fields, we find that even a weak field stalls gravitational collapse within forming clouds. Additionally, an initially oblique collision interface tends to reorient over time in the presence of a magnetic field, so that it becomes normal to the oncoming flows. This was demonstrated by our most oblique shock interface, which became fully normal by the end of the simulation.

  17. Collider detection of dark matter electromagnetic anapole moments

    NASA Astrophysics Data System (ADS)

    Alves, Alexandre; Santos, A. C. O.; Sinha, Kuver

    2018-03-01

    Dark matter that interacts with the Standard Model by exchanging photons through higher multipole interactions occurs in a wide range of both strongly and weakly coupled hidden sector models. We study the collider detection prospects of these candidates, with a focus on Majorana dark matter that couples through the anapole moment. The study is conducted at the effective field theory level with the mono-Z signature incorporating varying levels of systematic uncertainties at the high-luminosity LHC. The projected collider reach on the anapole moment is then compared to the reach coming from direct detection experiments like LZ. Finally, the analysis is applied to a weakly coupled completion with leptophilic dark matter.

  18. Hadron-collider limits on new electroweak interactions from the heterotic string

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    del Aguila, F.; Moreno, J.M.; Quiros, M.

    1990-01-01

    We evaluate the {ital Z}{prime}{r arrow}{ital l}{sup +}l{sup {minus}} cross section at present and future hadron colliders, for the minimal (E{sub 6}) extended electroweak models inspired by superstrings (including renormalization effects on new gauge couplings and new mixing angles). Popular models are discussed for comparison. Analytical expressions for the bounds on the mass of a new gauge boson, {ital M}{sub {ital Z}{prime}}, as a function of the bound on the ratio {ital R}{equivalent to}{sigma}({ital Z}{prime}){ital B}(Z{prime}{r arrow}l{sup +}{ital l}{sup {minus}})/{sigma}({ital Z}){ital B} ({ital Z}{r arrow}{ital l}{sup +}{ital l}{sup {minus}}), are given for the CERN S{ital p {bar p}}S, Fermilab Teva-more » tron, Serpukhov UNK, CERN Large Hadron Collider, and Superconducting Super Collider for the different models. In particular, the {ital M}{sub {ital Z}{prime}} bounds from the present {ital R} limit at CERN, as well as from the eventually available {ital R} limits at Fermilab and at the future hadron colliders (after three months of running at the expected luminosity), are given explicitly.« less

  19. Non-resonant collider signatures of a singlet-driven electroweak phase transition

    DOE PAGES

    Chen, Chien-Yi; Kozaczuk, Jonathan; Lewis, Ian M.

    2017-08-22

    We analyze the collider signatures of the real singlet extension of the Standard Model in regions consistent with a strong first-order electroweak phase transition and a singlet-like scalar heavier than the Standard Model-like Higgs. A definitive correlation exists between the strength of the phase transition and the trilinear coupling of the Higgs to two singlet-like scalars, and hence between the phase transition and non-resonant scalar pair production involving the singlet at colliders. We study the prospects for observing these processes at the LHC and a future 100 TeV pp collider, focusing particularly on double singlet production. We also discuss correlationsmore » between the strength of the electroweak phase transition and other observables at hadron and future lepton colliders. Searches for non-resonant singlet-like scalar pair production at 100 TeV would provide a sensitive probe of the electroweak phase transition in this model, complementing resonant di-Higgs searches and precision measurements. Our study illustrates a strategy for systematically exploring the phenomenologically viable parameter space of this model, which we hope will be useful for future work.« less

  20. COLLIDE-2: Collisions Into Dust Experiment-2

    NASA Technical Reports Server (NTRS)

    Colwell, Joshua E.

    2002-01-01

    The Collisions Into Dust Experimental (COLLIDE-2) was the second flight of the COLLIDE payload. The payload performs six low-velocity impact experiments to study the collisions that are prevalent in planetary ring systems and in the early stages of planet formation. Each impact experiment is into a target of granular material, and the impacts occur at speeds between 1 and 100 cm/s in microgravity and in a vacuum. The experiments are recorded on digital videotape which is later analyzed. During the period of performance a plan was developed to address some of the technical issues that prevented the first flight of COLLIDE from being a complete success, and also to maximize the scientific return based on the science results from the first flight. The experiment was modified following a series of reviews of the design plan, and underwent extensive testing. The data from the experiment show that the primary goal of identifying transition regimes for low-velocity impacts based on cratering versus accretion was achieved. Following a brief period of storage, the experiment flew regimes for low-velocity impacts based on cratering versus accretion was achieved. as a Hitchhiker payload on the MACH-1 Hitchhiker bridge on STS-108 in December 2001. These data have been analyzed and submitted for publication. That manuscript is attached to this report. The experiment was retrieved in January 2002, and all six impact experiments functioned nominally. Preliminary results were reported at the Lunar and Planetary Science Conference.

  1. Children with chronic lung diseases have cognitive dysfunction as assessed by event-related potential (auditory P300) and Stanford-Binet IQ (SB-IV) test.

    PubMed

    Kamel, Terez Boshra; Abd Elmonaem, Mahmoud Tarek; Khalil, Lobna Hamed; Goda, Mona Hamdy; Sanyelbhaa, Hossam; Ramzy, Mourad Alfy

    2016-10-01

    Chronic lung disease (CLD) in children represents a heterogeneous group of many clinico-pathological entities with risk of adverse impact of chronic or intermittent hypoxia. So far, few researchers have investigated the cognitive function in these children, and the role of auditory P300 in the assessment of their cognitive function has not been investigated yet. This study was designed to assess the cognitive functions among schoolchildren with different chronic pulmonary diseases using both auditory P300 and Stanford-Binet test. This cross-sectional study included 40 school-aged children who were suffering from chronic chest troubles other than asthma and 30 healthy children of similar age, gender and socioeconomic state as a control group. All subjects were evaluated through clinical examination, radiological evaluation and spirometry. Audiological evaluation included (basic otological examination, pure-tone, speech audiometry and immittancemetry). Cognitive function was assessed by auditory P300 and psychological evaluation using Stanford-Binet test (4th edition). Children with chronic lung diseases had significantly lower anthropometric measures compared to healthy controls. They had statistically significant lower IQ scores and delayed P300 latencies denoting lower cognitive abilities. Cognitive dysfunction correlated to severity of disease. P300 latencies were prolonged among hypoxic patients. Cognitive deficits in children with different chronic lung diseases were best detected using both Stanford-Binet test and auditory P300. P300 is an easy objective tool. P300 is affected early with hypoxia and could alarm subtle cognitive dysfunction.

  2. High Luminosity 100 TeV Proton-Antiproton Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveros, S. J.; Acosta, J. G.; Cremaldi, L. M.

    2016-10-01

    The energy scale for new physics is known to be in the multi-TeV range, signaling the potential need for a collider beyond the LHC. Amore » $$10^{34}$$ cm$$^{-2}$$ s$$^{-1}$$ luminosity 100 TeV proton-antiproton collider is explored. Prior engineering studies for 233 and 270 km circumference tunnels were done for Illinois dolomite and Texas chalk signaling manageable tunneling costs. At a $$p\\bar{p}$$ the cross section for high mass states is of order 10x higher with antiproton collisions, where antiquarks are directly present rather than relying on gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets, because lower beam currents can produce the same rare event rates. In our design the increased momentum acceptance (11 $$\\pm$$ 2.6 GeV/c) in a Fermilab-like antiproton source is used with septa to collect 12x more antiprotons in 12 channels. For stochastic cooling, 12 cooling systems would be used, each with one debuncher/momentum equalizer ring and two accumulator rings. One electron cooling ring would follow. Finally antiprotons would be recycled during runs without leaving the collider ring, by joining them to new bunches with synchrotron damping.« less

  3. Complicating Culture and Difference: Situating Asian American Youth Identities in Lisa Yee's "Millicent Min," "Girl Genius" and "Stanford Wong Flunks Big-Time"

    ERIC Educational Resources Information Center

    Endo, Rachel

    2009-01-01

    This review situates how culture, difference, and identity are discursively constructed in "Millicent Min, Girl Genius" and "Stanford Wong Flunks Big-Time," two award-winning books written by critically acclaimed Asian American author Lisa Yee. Using contextual literacy approaches, the characters, cultural motifs, and physical settings in these…

  4. Two-photon production of leptons at hadron colliders in semielastic and elastic cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manko, A. Yu., E-mail: andrej.j.manko@gmail.com; Shulyakovsky, R. G., E-mail: shul@ifanbel.bas-net.by, E-mail: shulyakovsky@iaph.bas-net.by

    The mechanism of two-photon dilepton production is studied in the equivalent-photon (Weizsäcker–Williams) approximation. This approximation is shown to describe well experimental data from hadron accelerators. The respective total and differential cross sections were obtained for the LHC and for the Tevatron collider at various energies of colliding hadrons. The differential cross sections were studied versus the dilepton invariant mass, transverse momentum, and emission angle in the reference frame comoving with the center of mass of colliding hadrons. The cases of semielastic and inelastic collisions were examined.

  5. Selection of the elastic scattering events in interactions of the NICA colliding proton (deuteron) beams

    NASA Astrophysics Data System (ADS)

    Sharov, Vasily

    2017-03-01

    The features of the kinematics of elastic pp (dd) scattering in the collider system, as well as some issues concerning registration and selection of elastic scattering events in the NICA colliding beams are considered. Equality and the opposite direction of the scattered particle momenta provide a powerful selection criterion for elastic collisions. Variants of the organization of the trigger signal for recording tracks of secondary particles and DAQ system are given. The estimates of the characteristics of elastic NN processes are obtained from available dσ/dΩCM data for the elastic pp and np scattering. The paper presents examples of simulations using the Monte-Carlo of elastic pp scattering in the colliding proton beams and quasi-elastic np scattering in the colliding deuteron beams and evaluates the outputs of these processes at the NICA collider.

  6. R&D Toward a Neutrino Factory and Muon Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zisman, Michael S

    2011-03-20

    Significant progress has been made in recent years in R&D towards a neutrino factory and muon collider. The U.S. Muon Accelerator Program (MAP) has been formed recently to expedite the R&D efforts. This paper will review the U.S. MAP R&D programs for a neutrino factory and muon collider. Muon ionization cooling research is the key element of the program. The first muon ionization cooling demonstration experiment, MICE (Muon Ionization Cooling Experiment), is under construction now at RAL (Rutherford Appleton Laboratory) in the UK. The current status of MICE will be described.

  7. Evaluation of Parallel Authentic Research-Based Courses in Human Biology on Student Experiences at Stanford University and the University of Gothenburg

    ERIC Educational Resources Information Center

    Lindh, Jacob; Annerstedt, Claes; Besier, Thor; Matheson, Gordon O.; Rydmark, Martin

    2016-01-01

    Under a previous grant (2005-08), researchers and teachers at Stanford University (SU) and the University of Gothenburg (GU) co-designed a ten-week interdisciplinary, research-based laboratory course in human biology to be taught online to undergraduate students. Essentials in the subject were taught during the first four weeks of this course.…

  8. Probing triple-Higgs productions via 4 b 2 γ decay channel at a 100 TeV hadron collider

    DOE PAGES

    Chen, Chien-Yi; Yan, Qi-Shu; Zhao, Xiaoran; ...

    2016-01-11

    We report that the quartic self-coupling of the Standard Model Higgs boson can only be measured by observing the triple-Higgs production process, but it is challenging for the LHC Run 2 or International Linear Collider (ILC) at a few TeV because of its extremely small production rate. In this paper, we present a detailed Monte Carlo simulation study of the triple-Higgs production through gluon fusion at a 100 TeV hadron collider and explore the feasibility of observing this production mode. We focus on the decay channel HHH →more » $$b\\bar{b}$$$b\\bar{b}$$γγ, investigating detector effects and optimizing the kinematic cuts to discriminate the signal from the backgrounds. Our study shows that, in order to observe the Standard Model triple-Higgs signal, the integrated luminosity of a 100 TeV hadron collider should be greater than 1.8×10 4 ab ₋1. We also explore the dependence of the cross section upon the trilinear (λ 3) and quartic (λ 4) self-couplings of the Higgs. Ultimately, we find that, through a search in the triple-Higgs production, the parameters λ 3 and λ 4 can be restricted to the ranges [₋1,5] and [₋20,30], respectively. We also examine how new physics can change the production rate of triple-Higgs events. For example, in the singlet extension of the Standard Model, we find that the triple-Higgs production rate can be increased by a factor of O(10).« less

  9. Progress towards next generation hadron colliders: FCC-hh, HE-LHC, and SPPC

    NASA Astrophysics Data System (ADS)

    Zimmermann, Frank; EuCARD-2 Extreme Beams Collaboration; Future Circular Collider (FCC) Study Collaboration

    2017-01-01

    A higher-energy circular proton collider is generally considered to be the only path available in this century for exploring energy scales well beyond the reach of the Large Hadron Collider (LHC) presently in operation at CERN. In response to the 2013 Update of the European Strategy for Particle Physics and aligned with the 2014 US ``P5'' recommendations, the international Future Circular Collider (FCC) study, hosted by CERN, is designing such future frontier hadron collider. This so-called FCC-hh will provide proton-proton collisions at a centre-of-mass energy of 100 TeV, with unprecedented luminosity. The FCC-hh energy goal is reached by combining higher-field, 16 T magnets, based on Nb3Sn superconductor, and a new 100 km tunnel connected to the LHC complex. In addition to the FCC-hh proper, the FCC study is also exploring the possibility of a High-Energy LHC (HE-LHC), with a centre-of-mass energy of 25-27 TeV, as could be achieved in the existing 27 km LHC tunnel using the FCC-hh magnet technology. A separate design effort centred at IHEP Beijing aims at developing and constructing a similar collider in China, with a smaller circumference of about 54 km, called SPPC. Assuming even higher-field 20 T magnets, by relying on high-temperature superconductor, the SPPC could reach a c.m. energy of about 70 TeV. This presentation will report the motivation and the present status of the R&D for future hadron colliders, a comparison of the three designs under consideration, the major challenges, R&D topics, the international technology programs, and the emerging global collaboration. Work supported by the European Commission under Capacities 7th Framework Programme project EuCARD-2, Grant Agreement 312453, and the HORIZON 2020 project EuroCirCol, Grant Agreement 654305.

  10. Soviet Hadron Collider

    NASA Astrophysics Data System (ADS)

    Kotchetkov, Dmitri

    2017-01-01

    Rapid growth of the high energy physics program in the USSR during 1960s-1970s culminated with a decision to build the Accelerating and Storage Complex (UNK) to carry out fixed target and colliding beam experiments. The UNK was to have three rings. One ring was to be built with conventional magnets to accelerate protons up to the energy of 600 GeV. The other two rings were to be made from superconducting magnets, each ring was supposed to accelerate protons up to the energy of 3 TeV. The accelerating rings were to be placed in an underground tunnel with a circumference of 21 km. As a 3 x 3 TeV collider, the UNK would make proton-proton collisions with a luminosity of 4 x 1034 cm-1s-1. Institute for High Energy Physics in Protvino was a project leading institution and a site of the UNK. Accelerator and detector research and development studies were commenced in the second half of 1970s. State Committee for Utilization of Atomic Energy of the USSR approved the project in 1980, and the construction of the UNK started in 1983. Political turmoil in the Soviet Union during late 1980s and early 1990s resulted in disintegration of the USSR and subsequent collapse of the Russian economy. As a result of drastic reduction of funding for the UNK, in 1993 the project was restructured to be a 600 GeV fixed target accelerator only. While the ring tunnel and proton injection line were completed by 1995, and 70% of all magnets and associated accelerator equipment were fabricated, lack of Russian federal funding for high energy physics halted the project at the end of 1990s.

  11. Physics at a 100 TeV pp Collider: Standard Model Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangano, M. L.; Zanderighi, G.; Aguilar Saavedra, J. A.

    This report summarises the properties of Standard Model processes at the 100 TeV pp collider. We document the production rates and typical distributions for a number of benchmark Standard Model processes, and discuss new dynamical phenomena arising at the highest energies available at this collider. We discuss the intrinsic physics interest in the measurement of these Standard Model processes, as well as their role as backgrounds for New Physics searches.

  12. Development of High-Gradient Dielectric Laser-Driven Particle Accelerator Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byer, Robert L.

    2013-11-07

    The thrust of Stanford's program is to conduct research on high-gradient dielectric accelerator structures driven with high repetition-rate, tabletop infrared lasers. The close collaboration between Stanford and SLAC (Stanford Linear Accelerator Center) is critical to the success of this project, because it provides a unique environment where prototype dielectric accelerator structures can be rapidly fabricated and tested with a relativistic electron beam.

  13. Earthquake recording at the Stanford DAS Array with fibers in existing telecomm conduits

    NASA Astrophysics Data System (ADS)

    Biondi, B. C.; Martin, E. R.; Yuan, S.; Cole, S.; Karrenbach, M. H.

    2017-12-01

    The Stanford Distributed Acoustic Sensing Array (SDASA-1) has been continuously recording seismic data since September 2016 on 2.5 km of single mode fiber optics in existing telecommunications conduits under Stanford's campus. The array is figure-eight shaped and roughly 600 m along its widest side with a channel spacing of roughly 8 m. This array is easy to maintain and is nonintrusive, making it well suited to urban environments, but it sacrifices some cable-to-ground coupling compared to more traditional seismometers. We have been testing its utility for earthquake recording, active seismic, and ambient noise interferometry. This talk will focus on earthquake observations. We will show comparisons between the strain rates measured throughout the DAS array and the particle velocities measured at the nearby Jasper Ridge Seismic Station (JRSC). In some of these events, we will point out directionality features specific to DAS that can require slight modifications in data processing. We also compare repeatability of DAS and JRSC recordings of blasts from a nearby quarry. Using existing earthquake databases, we have created a small catalog of DAS earthquake observations by pulling records of over 700 Northern California events spanning Sep. 2016 to Jul. 2017 from both the DAS data and JRSC. On these events we have tested common array methods for earthquake detection and location including beamforming and STA/LTA analysis in time and frequency. We have analyzed these events to approximate thresholds on what distances and magnitudes are clearly detectible by the DAS array. Further analysis should be done on detectability with methods tailored to small events (for example, template matching). In creating this catalog, we have developed open source software available for free download that can manage large sets of continuous seismic data files (both existing files, and files as they stream in). This software can both interface with existing earthquake networks, and

  14. Energy Dependence of Elliptic Flow over a Large Pseudorapidity Range in Au+Au Collisions at the BNL Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Seals, H.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2005-04-01

    This Letter describes the measurement of the energy dependence of elliptic flow for charged particles in Au+Au collisions using the PHOBOS detector at the Relativistic Heavy Ion Collider. Data taken at collision energies of √(sNN)=19.6, 62.4, 130, and 200 GeV are shown over a wide range in pseudorapidity. These results, when plotted as a function of η'=|η|-ybeam, scale with approximate linearity throughout η', implying no sharp changes in the dynamics of particle production as a function of pseudorapidity or increasing beam energy.

  15. Energy dependence of elliptic flow over a large pseudorapidity range in Au+Au collisions at the BNL relativistic heavy ion collider.

    PubMed

    Back, B B; Baker, M D; Ballintijn, M; Barton, D S; Betts, R R; Bickley, A A; Bindel, R; Budzanowski, A; Busza, W; Carroll, A; Chai, Z; Decowski, M P; García, E; Gburek, T; George, N; Gulbrandsen, K; Gushue, S; Halliwell, C; Hamblen, J; Hauer, M; Heintzelman, G A; Henderson, C; Hofman, D J; Hollis, R S; Hołyński, R; Holzman, B; Iordanova, A; Johnson, E; Kane, J L; Katzy, J; Khan, N; Kucewicz, W; Kulinich, P; Kuo, C M; Lin, W T; Manly, S; McLeod, D; Mignerey, A C; Nouicer, R; Olszewski, A; Pak, R; Park, I C; Pernegger, H; Reed, C; Remsberg, L P; Reuter, M; Roland, C; Roland, G; Rosenberg, L; Sagerer, J; Sarin, P; Sawicki, P; Seals, H; Sedykh, I; Skulski, W; Smith, C E; Stankiewicz, M A; Steinberg, P; Stephans, G S F; Sukhanov, A; Tang, J-L; Tonjes, M B; Trzupek, A; Vale, C; van Nieuwenhuizen, G J; Vaurynovich, S S; Verdier, R; Veres, G I; Wenger, E; Wolfs, F L H; Wosiek, B; Woźniak, K; Wuosmaa, A H; Wysłouch, B

    2005-04-01

    This Letter describes the measurement of the energy dependence of elliptic flow for charged particles in Au+Au collisions using the PHOBOS detector at the Relativistic Heavy Ion Collider. Data taken at collision energies of square root of s(NN)=19.6, 62.4, 130, and 200 GeV are shown over a wide range in pseudorapidity. These results, when plotted as a function of eta(')=|eta|-y(beam), scale with approximate linearity throughout eta('), implying no sharp changes in the dynamics of particle production as a function of pseudorapidity or increasing beam energy.

  16. Promising diphoton signals of the little radion at hadron colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davoudiasl, H.; McElmurry, T; Soni, A.

    2010-12-28

    In little Randall-Sundrum models, the bulk couplings of the radion to massless gauge fields can yield a greatly enhanced diphoton signal at hadron colliders. We examine the implications of the Tevatron data for the little radion and also show that the 7 TeV run at the Large Hadron Collider will have an impressive reach in this channel. The diphoton signal is crucial in the search for a light radion, or the dual dilaton, and can potentially probe the ultraviolet scale of the theory.

  17. Studies for a Dedicated B Detector at the Fermilab Collider

    NASA Astrophysics Data System (ADS)

    McBride, Patricia

    1996-06-01

    The observation of CP violation in the B system is one of the great experimental challenges of the next decade. Several B factories are already planned, however, there will be many interesting measurements awaiting a second generation of B exeriments. Studies are being carried out to design a dedicated collider B experiment for the Tevatron at Fermilab. A dedicated B detector at a hadron collider will have a physics reach beyond that of experiments scheduled to begin operation before the end of the decade.

  18. Radiation therapy for primary squamous cell carcinoma of the vagina: Stanford University experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spirtos, N.M.; Doshi, B.P.; Kapp, D.S.

    1989-10-01

    A retrospective analysis of 38 patients with primary squamous cell carcinoma of the vagina seen at Stanford University Medical Center from 1958 to 1984 was undertaken. Patients were analyzed with regard to symptoms, stage, treatment techniques, survival, patterns of failure, and complications. Eighteen patients were classified as FIGO Stage I, 5 as Stage II, 10 as Stage III, and 5 as Stage IV. The 5-year disease-free survival was 94% in Stage I, 80% in Stage II, 50% in Stage III, and 0% in Stage IV. Five patients (13%) had eight major complications secondary to treatment. Only 2 of 23 patientsmore » with Stage I or Stage II disease developed a recurrence. There was a significant correlation between dose and response in patients treated with radiotherapy.« less

  19. Colliding Winds in Symbiotic Binary Systems. I. Analytic and Numerical Solutions

    NASA Astrophysics Data System (ADS)

    Kenny, H. T.; Taylor, A. R.

    2005-01-01

    We present new formulations of binary colliding wind models appropriate to symbiotic star systems. The derived models differ from previous formulations in assuming mixing of the shocked material from both incoming streams, rather than postulating a self-sustaining contact discontinuity. The CWb model (colliding winds, binary) extends the work of Girard and Willson by the derivation of an adiabatic temperature, the consideration of radiative cooling, the inclusion of thermal pressures in the incoming winds, and the treatment of interaction shells of finite thickness and density. The finite thickness of the interaction shell allows for calculation of its radiative intensity distribution. The CWc model (colliding winds, concentric) is a similar extension of the model of Kwok, Purton, and Fitzgerald. It is derived in a manner parallel to that of the CWb model, thereby facilitating a unification of the two models. A unified model is desired since wind collisions in symbiotic systems should include aspects of both CWb and CWc interactions. Two examples of model applications are presented: a comparison of the flux densities arising from colliding winds (CWb model) with those arising from the ionization of the surrounding medium (STB model) in the galactic population of symbiotic stars, and model imaging of the symbiotic nova HM Sge.

  20. New collider scheme at LBL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pugh, H.G.

    1984-07-01

    This paper presents current ideas from Berkeley concerning a possible new facility for studying the phase transition from hadronic matter to quark matter. The physics ideas have evolved over a period of more than five years, the VENUS concept for a 25 GeV/nucleon colliding beam facility having been presented in 1979. The concept for the Minicollider has been, like that of VENUS, the work of Hermann Grunder and Christoph Leemann.

  1. Collider study on the loop-induced dark matter mediation

    NASA Astrophysics Data System (ADS)

    Tsai, Yuhsin

    2016-06-01

    Collider experiments are one of the most promising ways to constrain Dark Matter (DM) interactions. For DM couplings involving light mediators, especially for the loop-mediated interactions, a meaningful interpretation of the results requires to go beyond effective field theory. In this note we discuss the study of the magnetic dipole interacting DM, focusing on a model with anarchic dark flavor structure. By including the momentum-dependent form factors that mediate the coupling - given by the Dark Penguin - in collider processes, we study bounds from monophoton, diphoton, and non-pointing photon searches at the LHC. We also compare our results to constraints from the direct detection experiments.

  2. Hadron collider tests of neutrino mass-generating mechanisms

    NASA Astrophysics Data System (ADS)

    Ruiz, Richard Efrain

    The Standard Model of particle physics (SM) is presently the best description of nature at small distances and high energies. However, with tiny but nonzero neutrino masses, a Higgs boson mass unstable under radiative corrections, and little guidance on understanding the hierarchy of fermion masses, the SM remains an unsatisfactory description of nature. Well-motivated scenarios that resolve these issues exist but also predict extended gauge (e.g., Left-Right Symmetric Models), scalar (e.g., Supersymmetry), and/or fermion sectors (e.g., Seesaw Models). Hence, discovering such new states would have far-reaching implications. After reviewing basic tenets of the SM and collider physics, several beyond the SM (BSM) scenarios that alleviate these shortcomings are investigated. Emphasis is placed on the production of a heavy Majorana neutrinos at hadron colliders in the context of low-energy, effective theories that simultaneously explain the origin of neutrino masses and their smallness compared to other elementary fermions, the so-called Seesaw Mechanisms. As probes of new physics, rare top quark decays to Higgs bosons in the context of the SM, the Types I and II Two Higgs Doublet Model (2HDM), and the semi-model independent framework of Effective Field Theory (EFT) have also been investigated. Observation prospects and discovery potentials of these models at current and future collider experiments are quantified.

  3. Randomized Phase III Trial Comparing ABVD Plus Radiotherapy With the Stanford V Regimen in Patients With Stages I or II Locally Extensive, Bulky Mediastinal Hodgkin Lymphoma: A Subset Analysis of the North American Intergroup E2496 Trial.

    PubMed

    Advani, Ranjana H; Hong, Fangxin; Fisher, Richard I; Bartlett, Nancy L; Robinson, K Sue; Gascoyne, Randy D; Wagner, Henry; Stiff, Patrick J; Cheson, Bruce D; Stewart, Douglas A; Gordon, Leo I; Kahl, Brad S; Friedberg, Jonathan W; Blum, Kristie A; Habermann, Thomas M; Tuscano, Joseph M; Hoppe, Richard T; Horning, Sandra J

    2015-06-10

    The phase III North American Intergroup E2496 Trial (Combination Chemotherapy With or Without Radiation Therapy in Treating Patients With Hodgkin's Lymphoma) compared doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD) with mechlorethamine, doxorubicin, vincristine, bleomycin, vinblastine, etoposide, and prednisone (Stanford V). We report results of a planned subgroup analysis in patients with stage I or II bulky mediastinal Hodgkin lymphoma (HL). Patients were randomly assigned to six to eight cycles of ABVD every 28 days or Stanford V once per week for 12 weeks. Two to 3 weeks after completion of chemotherapy, all patients received 36 Gy of modified involved field radiotherapy (IFRT) to the mediastinum, hila, and supraclavicular regions. Patients on the Stanford V arm received IFRT to additional sites ≥ 5 cm at diagnosis. Primary end points were failure-free survival (FFS) and overall survival (OS). Of 794 eligible patients, 264 had stage I or II bulky disease, 135 received ABVD, and 129 received Stanford V. Patient characteristics were matched. The overall response rate was 83% with ABVD and 88% with Stanford V. At a median follow-up of 6.5 years, the study excluded a difference of more than 21% in 5-year FFS and more than 16% in 5-year OS between ABVD and Stanford V (5-year FFS: 85% v 79%; HR, 0.68; 95% CI, 0.37 to 1.25; P = .22; 5-year OS: 96% v 92%; HR, 0.49; 95% CI, 0.16 to 1.47; P = .19). In-field relapses occurred in < 10% of the patients in each arm. For patients with stage I or II bulky mediastinal HL, no substantial statistically significant differences were detected between the two regimens, although power was limited. To the best of our knowledge, this is the first prospective trial reporting outcomes specific to this subgroup, and it sets a benchmark for comparison of ongoing and future studies. © 2015 by American Society of Clinical Oncology.

  4. Thoracic Endovascular Aortic Repair Combined with Assistant Techniques and Devices for the Treatment of Acute Complicated Stanford Type B Aortic Dissections Involving Aortic Arch.

    PubMed

    Zhang, Tianhua; Jiang, Weiliang; Lu, Haitao; Liu, Jianfeng

    2016-04-01

    The present study retrospectively reviewed and evaluated the effectiveness of thoracic endovascular aortic repair (TEVAR) combined with assistant techniques and devices for the treatment of acute complicated Stanford type B aortic dissections involving aortic arch. Fifty-six patients with acute complicated Stanford type B aortic dissection involving aortic arch were treated with TEVAR combined with hybrid procedure, chimney-graft technique, and branched stent grafts from January 2009 to March 2014. Seventeen patients undergone TEVAR combined with hybrid technique. Technical success was achieved in 94.1% with 5.8% of early mortality. Strokes occurred in a patient developing paraplegia, who completely recovered after lumbar drainage. Cardiocirculatory and pulmonary complications, bypass dysfunction or severe endoleak was not observed. Thirty patients undergone TEVAR combined with chimney technique with 100% technical success rate. Chimney-stent compression was observed in 1 patient, and another bare stent was deployed inside the first one. Three patients (10%) died during the study period. Immediate postoperative type I endoleak was detected in 4 cases (13.3%). TEVAR assisted by Castor branched aortic stent grafts in 9 patients was successful. Mortality during perioperative period and 30 days after TEVAR was null. No serious complications such as strokes, acute myocardial infarction, and ischemia of arms occurred. The results indicate that TEVAR combined with hybrid technique, chimney technique, and branched stent grafts is proven to be a technically feasible and effective treatment for acute complicated Stanford type B aortic dissection involving aortic arch in small cohort. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Sterile neutrino searches at future e-e+, pp and e-p colliders

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Cazzato, Eros; Fischer, Oliver

    2017-05-01

    Sterile neutrinos are among the most attractive extensions of the SM to generate the light neutrino masses observed in neutrino oscillation experiments. When the sterile neutrinos are subject to a protective symmetry, they can have masses around the electroweak scale and potentially large neutrino Yukawa couplings, which makes them testable at planned future particle colliders. We systematically discuss the production and decay channels at electron-positron, proton-proton and electron-proton colliders and provide a complete list of the leading order signatures for sterile neutrino searches. Among other things, we discuss several novel search channels, and present a first look at the possible sensitivities for the active-sterile mixings and the heavy neutrino masses. We compare the performance of the different collider types and discuss their complementarity.

  6. The Longhorn Array Database (LAD): An Open-Source, MIAME compliant implementation of the Stanford Microarray Database (SMD)

    PubMed Central

    Killion, Patrick J; Sherlock, Gavin; Iyer, Vishwanath R

    2003-01-01

    Background The power of microarray analysis can be realized only if data is systematically archived and linked to biological annotations as well as analysis algorithms. Description The Longhorn Array Database (LAD) is a MIAME compliant microarray database that operates on PostgreSQL and Linux. It is a fully open source version of the Stanford Microarray Database (SMD), one of the largest microarray databases. LAD is available at Conclusions Our development of LAD provides a simple, free, open, reliable and proven solution for storage and analysis of two-color microarray data. PMID:12930545

  7. Error Correction for the JLEIC Ion Collider Ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Guohui; Morozov, Vasiliy; Lin, Fanglei

    2016-05-01

    The sensitivity to misalignment, magnet strength error, and BPM noise is investigated in order to specify design tolerances for the ion collider ring of the Jefferson Lab Electron Ion Collider (JLEIC) project. Those errors, including horizontal, vertical, longitudinal displacement, roll error in transverse plane, strength error of main magnets (dipole, quadrupole, and sextupole), BPM noise, and strength jitter of correctors, cause closed orbit distortion, tune change, beta-beat, coupling, chromaticity problem, etc. These problems generally reduce the dynamic aperture at the Interaction Point (IP). According to real commissioning experiences in other machines, closed orbit correction, tune matching, beta-beat correction, decoupling, andmore » chromaticity correction have been done in the study. Finally, we find that the dynamic aperture at the IP is restored. This paper describes that work.« less

  8. A collider observable QCD axion

    DOE PAGES

    Dimopoulos, Savas; Hook, Anson; Huang, Junwu; ...

    2016-11-09

    Here, we present a model where the QCD axion is at the TeV scale and visible at a collider via its decays. Conformal dynamics and strong CP considerations account for the axion coupling strongly enough to the standard model to be produced as well as the coincidence between the weak scale and the axion mass. The model predicts additional pseudoscalar color octets whose properties are completely determined by the axion properties rendering the theory testable.

  9. Polarized muon beams for muon collider

    NASA Astrophysics Data System (ADS)

    Skrinsky, A. N.

    1996-11-01

    An option for the production of intense and highly polarized muon beams, suitable for a high-luminosity muon collider, is described briefly. It is based on a multi-channel pion-collection system, narrow-band pion-to-muon decay channels, proper muon spin gymnastics, and ionization cooling to combine all of the muon beams into a single bunch of ultimately low emittance.

  10. Commissioning of the Electron-Positron Collider VEPP-2000 after the Upgrade

    NASA Astrophysics Data System (ADS)

    Shatunov, Yu.; Belikov, O.; Berkaev, D.; Gorchakov, K.; Zharinov, Yu.; Zemlyanskii, I.; Kasaev, A.; Kirpotin, A.; Koop, I.; Lysenko, A.; Motygin, S.; Perevedentsev, E.; Prosvetov, V.; Rabusov, D.; Rogovskii, Yu.; Senchenko, A.; Timoshenko, M.; Shatilov, D.; Shatunov, P.; Shvarts, D.

    2018-05-01

    The VEPP-2000 electron-positron collider has been operating at BINP since 2010. Applying the concept of round colliding beams allows us to reach the record value of the beam-beam parameter, ξ 0.12. The VEPP-2000 upgrade, including the connection to the new BINP Injection Complex, the improvement of the BEP booster, and the BEP-VEPP-2000 transfer channels for operation at 1 GeV, substantially increases the installation luminosity. Data collection is in progress.

  11. Optics measurement and correction for the Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Shen, Xiaozhe

    The quality of beam optics is of great importance for the performance of a high energy accelerator like the Relativistic Heavy Ion Collider (RHIC). The turn-by-turn (TBT) beam position monitor (BPM) data can be used to derive beam optics. However, the accuracy of the derived beam optics is often limited by the performance and imperfections of instruments as well as measurement methods and conditions. Therefore, a robust and model-independent data analysis method is highly desired to extract noise-free information from TBT BPM data. As a robust signal-processing technique, an independent component analysis (ICA) algorithm called second order blind identification (SOBI) has been proven to be particularly efficient in extracting physical beam signals from TBT BPM data even in the presence of instrument's noise and error. We applied the SOBI ICA algorithm to RHIC during the 2013 polarized proton operation to extract accurate linear optics from TBT BPM data of AC dipole driven coherent beam oscillation. From the same data, a first systematic estimation of RHIC BPM noise performance was also obtained by the SOBI ICA algorithm, and showed a good agreement with the RHIC BPM configurations. Based on the accurate linear optics measurement, a beta-beat response matrix correction method and a scheme of using horizontal closed orbit bumps at sextupoles for arc beta-beat correction were successfully applied to reach a record-low beam optics error at RHIC. This thesis presents principles of the SOBI ICA algorithm and theory as well as experimental results of optics measurement and correction at RHIC.

  12. Extra dimension searches at hadron colliders to next-to-leading order-QCD

    NASA Astrophysics Data System (ADS)

    Kumar, M. C.; Mathews, Prakash; Ravindran, V.

    2007-11-01

    The quantitative impact of NLO-QCD corrections for searches of large and warped extra dimensions at hadron colliders are investigated for the Drell-Yan process. The K-factor for various observables at hadron colliders are presented. Factorisation, renormalisation scale dependence and uncertainties due to various parton distribution functions are studied. Uncertainties arising from the error on experimental data are estimated using the MRST parton distribution functions.

  13. Probing 6D operators at future e - e + colliders

    NASA Astrophysics Data System (ADS)

    Chiu, Wen Han; Leung, Sze Ching; Liu, Tao; Lyu, Kun-Feng; Wang, Lian-Tao

    2018-05-01

    We explore the sensitivities at future e - e + colliders to probe a set of six-dimensional operators which can modify the SM predictions on Higgs physics and electroweak precision measurements. We consider the case in which the operators are turned on simultaneously. Such an analysis yields a "conservative" interpretation on the collider sensitivities, complementary to the "optimistic" scenario where the operators are individually probed. After a detail analysis at CEPC in both "conservative" and "optimistic" scenarios, we also considered the sensitivities for FCC-ee and ILC. As an illustration of the potential of constraining new physics models, we applied sensitivity analysis to two benchmarks: holographic composite Higgs model and littlest Higgs model.

  14. Collider study on the loop-induced dark matter mediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Yuhsin, E-mail: yhtsai@umd.edu

    2016-06-21

    Collider experiments are one of the most promising ways to constrain Dark Matter (DM) interactions. For DM couplings involving light mediators, especially for the loop-mediated interactions, a meaningful interpretation of the results requires to go beyond effective field theory. In this note we discuss the study of the magnetic dipole interacting DM, focusing on a model with anarchic dark flavor structure. By including the momentum-dependent form factors that mediate the coupling – given by the Dark Penguin – in collider processes, we study bounds from monophoton, diphoton, and non-pointing photon searches at the LHC. We also compare our results tomore » constraints from the direct detection experiments.« less

  15. Testing B-violating signatures from exotic instantons in future colliders

    NASA Astrophysics Data System (ADS)

    Addazi, Andrea; Kang, Xian-Wei; Khlopov, Maxim Yu.

    2017-09-01

    We discuss possible implications of exotic stringy instantons for baryon-violating signatures in future colliders. In particular, we discuss high-energy quark collisions and transitions. In principle, the process can be probed by high-luminosity electron-positron colliders. However, we find that an extremely high luminosity is needed in order to provide a (somewhat) stringent bound compared to the current data on NN → ππ,KK. On the other hand, (exotic) instanton-induced six-quark interactions can be tested in near future high-energy colliders beyond LHC, at energies around 20-100 TeV. The Super proton-proton Collider (SppC) would be capable of such measurement given the proposed energy level of 50-90 TeV. Comparison with other channels is made. In particular, we show the compatibility of our model with neutron-antineutron and NN → ππ,KK bounds. A. A.’s work was Supported in part by the MIUR research grant “Theoretical Astroparticle Physics" PRIN 2012CPPYP7. XWK's work is partly Supported by the DFG and the NSFC through funds provided to the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD” when he was in Jülich, and by MOST, Taiwan, (104-2112-M-001-022) from April 2017. The work by MK was performed within the framework of the Center FRPP Supported by MEPhI Academic Excellence Project (contract 02.03.21.0005, 27.08.2013), Supported by the Ministry of Education and Science of Russian Federation, project 3.472.2014/K and grant RFBR 14-22-03048

  16. Performance Analysis of the Ironless Inductive Position Sensor in the Large Hadron Collider Collimators Environment

    PubMed Central

    Danisi, Alessandro; Masi, Alessandro; Losito, Roberto

    2015-01-01

    The Ironless Inductive Position Sensor (I2PS) has been introduced as a valid alternative to Linear Variable Differential Transformers (LVDTs) when external magnetic fields are present. Potential applications of this linear position sensor can be found in critical systems such as nuclear plants, tokamaks, satellites and particle accelerators. This paper analyzes the performance of the I2PS in the harsh environment of the collimators of the Large Hadron Collider (LHC), where position uncertainties of less than 20 µm are demanded in the presence of nuclear radiation and external magnetic fields. The I2PS has been targeted for installation for LHC Run 2, in order to solve the magnetic interference problem which standard LVDTs are experiencing. The paper describes in detail the chain of systems which belong to the new I2PS measurement task, their impact on the sensor performance and their possible further optimization. The I2PS performance is analyzed evaluating the position uncertainty (on 30 s), the magnetic immunity and the long-term stability (on 7 days). These three indicators are assessed from data acquired during the LHC operation in 2015 and compared with those of LVDTs. PMID:26569259

  17. Very large hadron collider (VLHC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-09-01

    A VLHC informal study group started to come together at Fermilab in the fall of 1995 and at the 1996 Snowmass Study the parameters of this machine took form. The VLHC as now conceived would be a 100 TeV hadron collider. It would use the Fermilab Main Injector (now nearing completion) to inject protons at 150 GeV into a new 3 TeV Booster and then into a superconducting pp collider ring producing 100 TeV c.m. interactions. A luminosity of {approximately}10{sup 34} cm{sup -2}s{sup -1} is planned. Our plans were presented to the Subpanel on the Planning for the Future ofmore » US High- Energy Physics (the successor to the Drell committee) and in February 1998 their report stated ``The Subpanel recommends an expanded program of R&D on cost reduction strategies, enabling technologies, and accelerator physics issues for a VLHC. These efforts should be coordinated across laboratory and university groups with the aim of identifying design concepts for an economically and technically viable facility`` The coordination has been started with the inclusion of physicists from Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), and Cornell University. Clearly, this collaboration must expanded internationally as well as nationally. The phrase ``economically and technically viable facility`` presents the real challenge.« less

  18. Protection of xenon against postoperative oxygen impairment in adults undergoing Stanford Type-A acute aortic dissection surgery: Study protocol for a prospective, randomized controlled clinical trial.

    PubMed

    Jin, Mu; Cheng, Yi; Yang, Yanwei; Pan, Xudong; Lu, Jiakai; Cheng, Weiping

    2017-08-01

    The available evidence shows that hypoxemia after Stanford Type-A acute aortic dissection (AAD) surgery is a frequent cause of several adverse consequences. The pathogenesis of postoperative hypoxemia after AAD surgery is complex, and ischemia/reperfusion and inflammation are likely to be underlying risk factors. Xenon, recognized as an ideal anesthetic and anti-inflammatory treatment, might be a possible treatment for these adverse effects. The trial is a prospective, double-blind, 4-group, parallel, randomized controlled, a signal-center clinical trial. We will recruit 160 adult patients undergoing Stanford type-A AAD surgery. Patients will be allocated a study number and will be randomized on a 1:1:1:1 basis to receive 1 of the 3 treatment options (pulmonary inflated with 50% xenon, 75% xenon, or 100% xenon) or no treatment (control group, pulmonary inflated with 50% nitrogen). The aims of this study are to clarify the lung protection capability of xenon and its possible mechanisms in patients undergoing the Stanford type-A AAD surgery. This trial uses an innovative design to account for the xenon effects of postoperative oxygen impairment, and it also delineates the mechanism for any benefit from xenon. The investigational xenon group is considered a treatment intervention, as it includes 3 groups of pulmonary static inflation with 50%, 75%, and 100% xenon. It is suggested that future trials might define an appropriate concentration of xenon for the best practice intervention.

  19. ISR effects for resonant Higgs production at future lepton colliders

    DOE PAGES

    Greco, Mario; Han, Tao; Liu, Zhen

    2016-11-04

    We study the effects of the initial state radiation on themore » $s$-channel Higgs boson resonant production at $$\\mu^+\\mu^-$$ and $e^+e^-$ colliders by convoluting with the beam energy spread profile of the collider and the Breit-Wigner resonance profile of the signal. We assess their impact on both the Higgs signal and SM backgrounds for the leading decay channels $$h\\rightarrow b\\bar b,\\ WW^*$$. In conclusion, our study improves the existing analyses of the proposed future resonant Higgs factories and provides further guidance for the accelerator designs with respect to the physical goals.« less

  20. Top-Off Injection and Higher Currents at the Stanford Synchrotron Radiation Lightsource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Johannes M.; Liu, James C.; Prinz, Alyssa A.

    2011-04-05

    The Stanford Synchrotron Radiation Lightsource (SSRL) at the SLAC National Accelerator Laboratory is a 234 m circumference storage ring for 3 GeV electrons with its synchrotron radiation serving currently 13 beamlines with about 27 experimental stations. It operated for long time with 100 mA peak current provided by usually three injections per day. In July 2009, the maximum beam current was raised to 200 mA. Over the period from June 2009 to March 2010, Top-Off operation started at every beamline. Top-Off, i.e., the injection of electrons into the storage ring with injection stoppers open, is necessary for SSRL to reachmore » its design current of 500 mA. In the future, the maximal power of the injection current will also soon be raised from currently 1.5 W to 5 W. The Radiation Protection Department at SLAC worked with SSRL on the specifications for the safety systems for operation with Top-Off injection and higher beam currents.« less

  1. Comparison of the Leiter International Performance Scale-Revised and the Stanford-Binet Intelligence Scales, 5th Edition, in Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Grondhuis, Sabrina Nicole; Mulick, James A.

    2013-01-01

    A review of hospital records was conducted for children evaluated for autism spectrum disorders who completed both the Leiter International Performance Scale-Revised (Leiter-R) and Stanford-Binet Intelligence Scales, 5th Edition (SB5). Participants were between 3 and 12 years of age. Diagnoses were autistic disorder (n = 26, 55%) and pervasive…

  2. The VEPP-2000 electron-positron collider: First experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berkaev, D. E., E-mail: D.E.Berkaev@inp.nsk.su; Shwartz, D. B.; Shatunov, P. Yu.

    2011-08-15

    In 2007, at the Institute of Nuclear Physics (Novosibirsk), the construction of the VEPP-2000 electron-positron collider was completed. The first electron beam was injected into the accelerator structure with turned-off solenoids of the final focus. This mode was used to tune all subsystems of the facility and to train the vacuum chamber using synchrotron radiation at electron currents of up to 150 mA. The VEPP-2000 structure with small beta functions and partially turned-on solenoids was used for the first testing of the 'round beams' scheme at an energy of 508 MeV. Beam-beam effects were studied in strong-weak and strong-strong modes.more » Measurements of the beam sizes in both cases showed a dependence corresponding to model predictions for round colliding beams. Using a modernized SND (spherical neutral detector), the first energy calibration of the VEPP-2000 collider was performed by measuring the excitation curve of the phimeson resonance; the phi-meson mass is known with high accuracy from previous experiments at VEEP-2M. In October 2009, a KMD-3 (cryogenic magnetic detector) was installed at the VEPP-2000 facility, and the physics program with both the SND and LMD-3 particle detectors was started in the energy range of 1-1.9 GeV. This first experimental season was completed in summer 2010 with precision energy calibration by resonant depolarization.« less

  3. Challenges for MSSM Higgs searches at hadron colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carena, Marcela S.; /Fermilab; Menon, A.

    2007-04-01

    In this article we analyze the impact of B-physics and Higgs physics at LEP on standard and non-standard Higgs bosons searches at the Tevatron and the LHC, within the framework of minimal flavor violating supersymmetric models. The B-physics constraints we consider come from the experimental measurements of the rare B-decays b {yields} s{gamma} and B{sub u} {yields} {tau}{nu} and the experimental limit on the B{sub s} {yields} {mu}{sup +}{mu}{sup -} branching ratio. We show that these constraints are severe for large values of the trilinear soft breaking parameter A{sub t}, rendering the non-standard Higgs searches at hadron colliders less promising.more » On the contrary these bounds are relaxed for small values of A{sub t} and large values of the Higgsino mass parameter {mu}, enhancing the prospects for the direct detection of non-standard Higgs bosons at both colliders. We also consider the available ATLAS and CMS projected sensitivities in the standard model Higgs search channels, and we discuss the LHC's ability in probing the whole MSSM parameter space. In addition we also consider the expected Tevatron collider sensitivities in the standard model Higgs h {yields} b{bar b} channel to show that it may be able to find 3 {sigma} evidence in the B-physics allowed regions for small or moderate values of the stop mixing parameter.« less

  4. Higgs Boson Searches at Hadron Colliders (1/4)

    ScienceCinema

    Jakobs, Karl

    2018-05-21

    In these Academic Training lectures, the phenomenology of Higgs bosons and search strategies at hadron colliders are discussed. After a brief introduction on Higgs bosons in the Standard Model and a discussion of present direct and indirect constraints on its mass the status of the theoretical cross section calculations for Higgs boson production at hadron colliders is reviewed. In the following lectures important experimental issues relevant for Higgs boson searches (trigger, measurements of leptons, jets and missing transverse energy) are presented. This is followed by a detailed discussion of the discovery potential for the Standard Model Higgs boson for both the Tevatron and the LHC experiments. In addition, various scenarios beyond the Standard Model, primarily the MSSM, are considered. Finally, the potential and strategies to measured Higgs boson parameters and the investigation of alternative symmetry breaking scenarios are addressed.

  5. High Energy Colliders and Hidden Sectors

    NASA Astrophysics Data System (ADS)

    Dror, Asaf Jeff

    This thesis explores two dominant frontiers of theoretical physics, high energy colliders and hidden sectors. The Large Hadron Collider (LHC) is just starting to reach its maximum operational capabilities. However, already with the current data, large classes of models are being put under significant pressure. It is crucial to understand whether the (thus far) null results are a consequence of a lack of solution to the hierarchy problem around the weak scale or requires expanding the search strategy employed at the LHC. It is the duty of the current generation of physicists to design new searches to ensure that no stone is left unturned. To this end, we study the sensitivity of the LHC to the couplings in the Standard Model top sector. We find it can significantly improve the measurements on ZtRtR coupling by a novel search strategy, making use of an implied unitarity violation in such models. Analogously, we show that other couplings in the top sector can also be measured with the same technique. Furthermore, we critically analyze a set of anomalies in the LHC data and how they may appear from consistent UV completions. We also propose a technique to measure lifetimes of new colored particles with non-trivial spin. While the high energy frontier will continue to take data, it is likely the only collider of its kind for the next couple decades. On the other hand, low-energy experiments have a promising future with many new proposed experiments to probe the existence of particles well below the weak scale but with small couplings to the Standard Model. In this work we survey the different possibilities, focusingon the constraints as well as possible new hidden sector dynamics. In particular, we show that vector portals which couple to an anomalous current, e.g., baryon number, are significantly constrained from flavor changing meson decays and rare Z decays. Furthermore, we present a new mechanism for dark matter freezeout which depletes the dark sector through an

  6. Annotating Socio-Cultural Structures in Text

    DTIC Science & Technology

    2012-10-31

    parts of speech (POS) within text, using the Stanford Part of Speech Tagger (Stanford Log-Linear, 2011). The ERDC-CERL taxonomy is then used to...annotated NP/VP Pane: Shows the sentence parsed using the Parts of Speech tagger Document View Pane: Specifies the document (being annotated) in three...first parsed using the Stanford Parts of Speech tagger and converted to an XML document both components which are done through the Import function

  7. Impact of gender on long-term outcomes after surgical repair for acute Stanford A aortic dissection: a propensity score matched analysis.

    PubMed

    Sabashnikov, Anton; Heinen, Stephanie; Deppe, Antje Christin; Zeriouh, Mohamed; Weymann, Alexander; Slottosch, Ingo; Eghbalzadeh, Kaveh; Popov, Aron-Frederik; Liakopoulos, Oliver; Rahmanian, Parwis B; Madershahian, Navid; Kroener, Axel; Choi, Yeong-Hoon; Kuhn-Régnier, Ferdinand; Simon, André R; Wahlers, Thorsten; Wippermann, Jens

    2017-05-01

    Previous research suggests that female gender is associated with increased mortality rates after surgery for Stanford A acute aortic dissection (AAD). However, women with AAD usually present with different clinical symptoms that may bias outcomes. Moreover, there is a lack of long-term results regarding overall mortality and freedom from major cerebrovascular events. We analysed the impact of gender on long-term outcomes after surgery for Stanford A AAD by comparing genders with similar risk profiles using propensity score matching. A total of 240 patients operated for Stanford A AAD were included in this study. To control for selection bias and other confounders, propensity score matching was applied to gender groups. After propensity score matching, the gender groups were well balanced in terms of risk profiles. There were no statistically significant differences regarding duration of cardiopulmonary bypass ( P  = 0.165) and duration of aortic cross-clamp time ( P  = 0.111). Female patients received less fresh frozen plasma ( P  = 0.021), had shorter stays in the intensive care unit ( P  = 0.031), lower incidence of temporary neurological dysfunction ( P  < 0.001) and lower incidence of dialysis ( P  = 0.008). There were no significant differences regarding intraoperative mortality ( P  = 1.000), 30-day mortality ( P  = 0.271), long-term overall cumulative survival ( P  = 0.954) and long-term freedom from cerebrovascular events ( P  = 0.235) with up to a 9-year follow-up. Considering patients with similar risk profiles, female gender per se is not associated with worse long-term survival and freedom from stroke after surgical aortic repair. Moreover, female patients might even benefit from a smoother early postoperative course and lower incidence of early postoperative complications. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights

  8. A 15-year review of the Stanford Internal Medicine Residency Program: predictors of resident satisfaction and dissatisfaction.

    PubMed

    Kahn, James S; Witteles, Ronald M; Mahaffey, Kenneth W; Desai, Sumbul A; Ozdalga, Errol; Heidenreich, Paul A

    2017-01-01

    Satisfaction with training and with educational experiences represents important internal medicine (IM) programmatic goals. Graduates from IM residency programs are uniquely poised to provide insights into their educational and training experiences and to assess whether these experiences were satisfactory and relevant to their current employment. We surveyed former IM residents from the training program held during the years 2000-2015 at the Department of Medicine, Stanford University. The first part of the survey reviewed the IM residency program and the second part sought identifying data regarding gender, race, ethnicity, work, relationships, and financial matters. The primary outcome was satisfaction with the residency experience. Of the 405 individuals who completed the Stanford IM residency program in the study period, we identified 384 (95%) former residents with a known email address. Two hundred and one (52%) former residents responded to the first part and 185 (48%) answered both the parts of the survey. The mean age of the respondents was 36.9 years; 44% were female and the mean time from IM residency was 6.1 (±4.3) years. Fifty-eight percent reported extreme satisfaction with their IM residency experience. Predictors associated with being less than extremely satisfied included insufficient outpatient experience, insufficient international experience, insufficient clinical research experience, and insufficient time spent with family and peers. The residents expressed an overall high satisfaction rate with their IM training. The survey results provided insights for improving satisfaction with IM residency training that includes diversifying and broadening IM training experiences.

  9. A 15-year review of the Stanford Internal Medicine Residency Program: predictors of resident satisfaction and dissatisfaction

    PubMed Central

    Kahn, James S; Witteles, Ronald M; Mahaffey, Kenneth W; Desai, Sumbul A; Ozdalga, Errol; Heidenreich, Paul A

    2017-01-01

    Introduction Satisfaction with training and with educational experiences represents important internal medicine (IM) programmatic goals. Graduates from IM residency programs are uniquely poised to provide insights into their educational and training experiences and to assess whether these experiences were satisfactory and relevant to their current employment. Methods We surveyed former IM residents from the training program held during the years 2000–2015 at the Department of Medicine, Stanford University. The first part of the survey reviewed the IM residency program and the second part sought identifying data regarding gender, race, ethnicity, work, relationships, and financial matters. The primary outcome was satisfaction with the residency experience. Results Of the 405 individuals who completed the Stanford IM residency program in the study period, we identified 384 (95%) former residents with a known email address. Two hundred and one (52%) former residents responded to the first part and 185 (48%) answered both the parts of the survey. The mean age of the respondents was 36.9 years; 44% were female and the mean time from IM residency was 6.1 (±4.3) years. Fifty-eight percent reported extreme satisfaction with their IM residency experience. Predictors associated with being less than extremely satisfied included insufficient outpatient experience, insufficient international experience, insufficient clinical research experience, and insufficient time spent with family and peers. Conclusion The residents expressed an overall high satisfaction rate with their IM training. The survey results provided insights for improving satisfaction with IM residency training that includes diversifying and broadening IM training experiences. PMID:28814910

  10. NSAC Recommends a Relativistic Heavy-Ion Collider.

    ERIC Educational Resources Information Center

    Physics Today, 1984

    1984-01-01

    Describes the plan submitted by the Nuclear Science Advisory Committee to the Department of Energy and National Science Foundation urging construction of an ultrarelativistic heavy-ion collider designed to accelerate nucleon beams of ions as heavy as uranium. Discusses the process of selecting the type of facility as well as siting. (JM)

  11. Nuclear structure functions at a future electron-ion collider

    DOE PAGES

    Aschenauer, E. C.; Fazio, S.; Lamont, M. A. C.; ...

    2017-12-07

    The quantitative knowledge of heavy nuclei's partonic structure is currently limited to rather large values of momentum fraction x { robust experimental constraints below x ~ 10 -2 at low resolution scale Q 2 are particularly scarce. This is in sharp contrast to the free proton's structure which has been probed in deep inelastic scattering (DIS) measurements down to x ~ 10 -5 at perturbative resolution scales. The construction of an Electron-Ion Collider (EIC) with a possibility to operate with a wide variety of nuclei, will allow one to explore the low-x region in much greater detail. In the presentmore » paper we simulate the extraction of the nuclear structure functions from measurements of inclusive and charm reduced cross sections at an EIC. The potential constraints are studied by analyzing simulated data directly in a next-to-leading order global fit of nuclear parton distribution functions based on the recent EPPS16 analysis. A special emphasis is placed on studying the impact an EIC would have on extracting the nuclear gluon PDF, the partonic component most prone to non-linear e ects at low Q 2. In comparison to the current knowledge, we find that the gluon PDF can be measured at an EIC with significantly reduced uncertainties.« less

  12. Nuclear structure functions at a future electron-ion collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aschenauer, E. C.; Fazio, S.; Lamont, M. A. C.

    The quantitative knowledge of heavy nuclei's partonic structure is currently limited to rather large values of momentum fraction x { robust experimental constraints below x ~ 10 -2 at low resolution scale Q 2 are particularly scarce. This is in sharp contrast to the free proton's structure which has been probed in deep inelastic scattering (DIS) measurements down to x ~ 10 -5 at perturbative resolution scales. The construction of an Electron-Ion Collider (EIC) with a possibility to operate with a wide variety of nuclei, will allow one to explore the low-x region in much greater detail. In the presentmore » paper we simulate the extraction of the nuclear structure functions from measurements of inclusive and charm reduced cross sections at an EIC. The potential constraints are studied by analyzing simulated data directly in a next-to-leading order global fit of nuclear parton distribution functions based on the recent EPPS16 analysis. A special emphasis is placed on studying the impact an EIC would have on extracting the nuclear gluon PDF, the partonic component most prone to non-linear e ects at low Q 2. In comparison to the current knowledge, we find that the gluon PDF can be measured at an EIC with significantly reduced uncertainties.« less

  13. A Tale of Three Campuses: Planning and Design in Response to the Cultural Heritages at Mills College, the University of California, Berkeley, and Stanford University

    ERIC Educational Resources Information Center

    Fiene, Karen; Sabbatini, Robert

    2011-01-01

    How do forward-looking institutions with rich landscape and architectural heritages integrate contemporary programming and design? This article explores the evolution of the Mills College campus and compares it with two larger western universities: the University of California, Berkeley (UCB) and Leland Stanford, Jr., University (Stanford…

  14. High baryon densities in heavy ion collisions at energies attainable at the BNL Relativistic Heavy-Ion Collider and the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Li, Ming; Kapusta, Joseph I.

    2017-01-01

    In very high-energy collisions nuclei are practically transparent to each other but produce very hot nearly baryon-free matter in the so-called central rapidity region. The energy in the central rapidity region comes from the kinetic energy of the colliding nuclei. We calculate the energy and rapidity loss of the nuclei using the color glass condensate model. This model also predicts the excitation energy of the nuclear fragments. Using a space-time picture of the collision we calculate the baryon and energy densities of the receding baryonic fireballs. For central collisions of gold nuclei at the highest energy attainable at the Relativistic Heavy-Ion Collider, for example, we find baryon densities more than ten times that of atomic nuclei over a large volume.

  15. DEPFET detectors for future electron-positron colliders

    NASA Astrophysics Data System (ADS)

    Marinas, C.

    2015-11-01

    The DEPFET Collaboration develops highly granular, ultra-thin pixel detectors for outstanding vertex reconstruction at future electron-positron collider experiments. A DEPFET sensor, by the integration of a field effect transistor on a fully depleted silicon bulk, provides simultaneous position sensitive detector capabilities and in pixel amplification. The characterization of the latest DEPFET prototypes has proven that a adequate signal-to-noise ratio and excellent single point resolution can be achieved for a sensor thickness of 50 micrometers. The close to final auxiliary ASICs have been produced and found to operate a DEPFET pixel detector of the latest generation with the required read-out speed. A complete detector concept is being developed for the Belle II experiment at the new Japanese super flavor factory. DEPFET is not only the technology of choice for the Belle II vertex detector, but also a prime candidate for the ILC. Therefore, in this contribution, the status of DEPFET R&D project is reviewed in the light of the requirements of the vertex detector at a future electron-positron collider.

  16. A review of turbulent-boundary-layer heat transfer research at Stanford, 1958-1983

    NASA Technical Reports Server (NTRS)

    Moffat, R. J.; Kays, W. M.

    1984-01-01

    For the past 25 years, there has existed in the Thermosciences Laboratory of the Mechanical Engineering Department of Stanford University a research program, primarily experimental, concerned with heat transfer through turbulent boundary layers. In the early phases of the program, the topics considered were the simple zero-pressure-gradient turbulent boundary layer with constant and with varying surface temperature, and the accelerated boundary layer. Later equilibrium boundary layers were considered along with factors affecting the boundary layer, taking into account transpired flows, flows with axial pressure gradients, transpiration, acceleration, deceleration, roughness, full-coverage film cooling, surface curvature, free convection, and mixed convection. A description is provided of the apparatus and techniques used, giving attention to the smooth plate rig, the rough plate rig, the full-coverage film cooling rig, the curvature rig, the concave wall rig, the mixed convection tunnel, and aspects of data reduction and uncertainty analysis.

  17. Acceleration of polarized protons and deuterons in the ion collider ring of JLEIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondratenko, A.; Kondratenko, M.; Filatov, Yu. N.

    2017-07-01

    The figure-8-shaped ion collider ring of Jefferson Lab Electron-Ion Collider (JLEIC) is transparent to the spin. It allows one to preserve proton and deuteron polarizations using weak stabilizing solenoids when accelerating the beam up to 100 GeV/c. When the stabilizing solenoids are introduced into the collider's lattice, the particle spins precess about a spin field, which consists of the field induced by the stabilizing solenoids and the zero-integer spin resonance strength. During acceleration of the beam, the induced spin field is maintained constant while the resonance strength experiences significant changes in the regions of "interference peaks". The beam polarization dependsmore » on the field ramp rate of the arc magnets. Its component along the spin field is preserved if acceleration is adiabatic. We present the results of our theoretical analysis and numerical modeling of the spin dynamics during acceleration of protons and deuterons in the JLEIC ion collider ring. We demonstrate high stability of the deuteron polarization in figure-8 accelerators. We analyze a change in the beam polarization when crossing the transition energy.« less

  18. Tracking colliding cells in vivo microscopy.

    PubMed

    Nguyen, Nhat H; Keller, Steven; Norris, Eric; Huynh, Toan T; Clemens, Mark G; Shin, Min C

    2011-08-01

    Leukocyte motion represents an important component in the innate immune response to infection. Intravital microscopy is a powerful tool as it enables in vivo imaging of leukocyte motion. Under inflammatory conditions, leukocytes may exhibit various motion behaviors, such as flowing, rolling, and adhering. With many leukocytes moving at a wide range of speeds, collisions occur. These collisions result in abrupt changes in the motion and appearance of leukocytes. Manual analysis is tedious, error prone,time consuming, and could introduce technician-related bias. Automatic tracking is also challenging due to the noise inherent in in vivo images and abrupt changes in motion and appearance due to collision. This paper presents a method to automatically track multiple cells undergoing collisions by modeling the appearance and motion for each collision state and testing collision hypotheses of possible transitions between states. The tracking results are demonstrated using in vivo intravital microscopy image sequences.We demonstrate that 1)71% of colliding cells are correctly tracked; (2) the improvement of the proposed method is enhanced when the duration of collision increases; and (3) given good detection results, the proposed method can correctly track 88% of colliding cells. The method minimizes the tracking failures under collisions and, therefore, allows more robust analysis in the study of leukocyte behaviors responding to inflammatory conditions.

  19. Black Holes and the Large Hadron Collider

    ERIC Educational Resources Information Center

    Roy, Arunava

    2011-01-01

    The European Center for Nuclear Research or CERN's Large Hadron Collider (LHC) has caught our attention partly due to the film "Angels and Demons." In the movie, an antimatter bomb attack on the Vatican is foiled by the protagonist. Perhaps just as controversial is the formation of mini black holes (BHs). Recently, the American Physical Society…

  20. Anomalous quartic couplings in W+W- gamma production at e+e- colliders

    NASA Astrophysics Data System (ADS)

    Leil, G. A.; Stirling, W. J.

    1995-04-01

    We study the process $e^+e^- \\rightarrow W^+W^- \\gamma$ at high-energy $e^+ e^-$ colliders to investigate the effect of genuine quartic $W^+W^-\\gamma\\gamma$ and $W^+W^- Z\\gamma$ anomalous couplings on the cross section. Deviations from the Standard Model predictions are quantified. We show how bounds on the anomalous couplings can be improved by choosing specific initial state helicity combinations. The dependence of the anomalous contributions on the collider energy is studied.

  1. Higgs boson production at hadron colliders at N3LO in QCD

    NASA Astrophysics Data System (ADS)

    Mistlberger, Bernhard

    2018-05-01

    We present the Higgs boson production cross section at Hadron colliders in the gluon fusion production mode through N3LO in perturbative QCD. Specifically, we work in an effective theory where the top quark is assumed to be infinitely heavy and all other quarks are considered to be massless. Our result is the first exact formula for a partonic hadron collider cross section at N3LO in perturbative QCD. Furthermore, our result is an analytic computation of a hadron collider cross section involving elliptic integrals. We derive numerical predictions for the Higgs boson cross section at the LHC. Previously this result was approximated by an expansion of the cross section around the production threshold of the Higgs boson and we compare our findings. Finally, we study the impact of our new result on the state of the art prediction for the Higgs boson cross section at the LHC.

  2. Bethany Frew | NREL

    Science.gov Websites

    Research/Teaching Assistant, Stanford University, Stanford, CA (2007-2014) Research Intern, Battelle Analysis Center. Areas of Expertise Energy systems modeling and analysis Linear programming Research Memorial Institute, Columbus, OH (2006-2007) Research Assistant, The Ohio State University, Columbus, OH

  3. Colliding droplets: A short film presentation

    NASA Astrophysics Data System (ADS)

    Hendricks, C. D.

    1981-12-01

    A series of experiments were performed in which liquid droplets were caused to collide. Impact velocities to several meters per second and droplet diameters up to 600 micrometers were used. The impact parameters in the collisions vary from zero to greater than the sum of the droplet radii. Photographs of the collisions were taken with a high speed framing camera in order to study the impacts and subsequent behavior of the droplets.

  4. Computed Tomography Imaging Features in Acute Uncomplicated Stanford Type-B Aortic Dissection Predict Late Adverse Events.

    PubMed

    Sailer, Anna M; van Kuijk, Sander M J; Nelemans, Patricia J; Chin, Anne S; Kino, Aya; Huininga, Mark; Schmidt, Johanna; Mistelbauer, Gabriel; Bäumler, Kathrin; Chiu, Peter; Fischbein, Michael P; Dake, Michael D; Miller, D Craig; Schurink, Geert Willem H; Fleischmann, Dominik

    2017-04-01

    Medical treatment of initially uncomplicated acute Stanford type-B aortic dissection is associated with a high rate of late adverse events. Identification of individuals who potentially benefit from preventive endografting is highly desirable. The association of computed tomography imaging features with late adverse events was retrospectively assessed in 83 patients with acute uncomplicated Stanford type-B aortic dissection, followed over a median of 850 (interquartile range 247-1824) days. Adverse events were defined as fatal or nonfatal aortic rupture, rapid aortic growth (>10 mm/y), aneurysm formation (≥6 cm), organ or limb ischemia, or new uncontrollable hypertension or pain. Five significant predictors were identified using multivariable Cox regression analysis: connective tissue disease (hazard ratio [HR] 2.94, 95% confidence interval [CI]: 1.29-6.72; P =0.01), circumferential extent of false lumen in angular degrees (HR 1.03 per degree, 95% CI: 1.01-1.04, P =0.003), maximum aortic diameter (HR 1.10 per mm, 95% CI: 1.02-1.18, P =0.015), false lumen outflow (HR 0.999 per mL/min, 95% CI: 0.998-1.000; P =0.055), and number of intercostal arteries (HR 0.89 per n, 95% CI: 0.80-0.98; P =0.024). A prediction model was constructed to calculate patient specific risk at 1, 2, and 5 years and to stratify patients into high-, intermediate-, and low-risk groups. The model was internally validated by bootstrapping and showed good discriminatory ability with an optimism-corrected C statistic of 70.1%. Computed tomography imaging-based morphological features combined into a prediction model may be able to identify patients at high risk for late adverse events after an initially uncomplicated type-B aortic dissection. © 2017 American Heart Association, Inc.

  5. Variable millimetre radiation from the colliding-wind binary Cygnus OB2 #8A

    NASA Astrophysics Data System (ADS)

    Blomme, R.; Fenech, D. M.; Prinja, R. K.; Pittard, J. M.; Morford, J. C.

    2017-12-01

    Context. Massive binaries have stellar winds that collide. In the colliding-wind region, various physically interesting processes occur, leading to enhanced X-ray emission, non-thermal radio emission, as well as non-thermal X-rays and gamma-rays. Non-thermal radio emission (due to synchrotron radiation) has so far been observed at centimetre wavelengths. At millimetre wavelengths, the stellar winds and the colliding-wind region emit more thermal free-free radiation, and it is expected that any non-thermal contribution will be difficult or impossible to detect. Aims: We aim to determine if the material in the colliding-wind region contributes substantially to the observed millimetre fluxes of a colliding-wind binary. We also try to distinguish the synchrotron emission from the free-free emission. Methods: We monitored the massive binary Cyg OB2 #8A at 3 mm with the NOrthern Extended Millimeter Array (NOEMA) interferometer of the Institut de Radioastronomie Millimétrique (IRAM). The data were collected in 14 separate observing runs (in 2014 and 2016), and provide good coverage of the orbital period. Results: The observed millimetre fluxes range between 1.1 and 2.3 mJy, and show phase-locked variability, clearly indicating that a large part of the emission is due to the colliding-wind region. A simple synchrotron model gives fluxes with the correct order of magnitude, but with a maximum that is phase-shifted with respect to the observations. Qualitatively this phase shift can be explained by our neglect of orbital motion on the shape of the colliding-wind region. A model using only free-free emission results in only a slightly worse explanation of the observations. Additionally, on the map of our observations we also detect the O6.5 III star Cyg OB2 #8B, for which we determine a 3 mm flux of 0.21 ± 0.033 mJy. Conclusions: The question of whether synchrotron radiation or free-free emission dominates the millimetre fluxes of Cyg OB2 #8A remains open. More detailed

  6. High Resolution BPM for Linear Colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, C.; Chel, S.; Luong, M.

    2006-11-20

    A high resolution Beam Position Monitor (BPM) is necessary for the beam-based alignment systems of high energy and low emittance electron linacs. Such a monitor is developed in the framework of the European CARE/SRF programme, in a close collaboration between DESY and CEA/DSM/DAPNIA. This monitor is a radiofrequency re-entrant cavity, which can be used either at room or cryogenic temperature, in an environment where dust particle contamination has to be avoided, such as superconducting cavities in a cryomodule. A first prototype of a re-entrant BPM has already delivered measurements at 2K. inside the first cryomodule (ACC1) on the TESLA Testmore » Facility 2 (TTF2). The performances of this BPM are analyzed both experimentally and theoretically, and the limitations of this existing system clearly identified. A new cavity and new electronics have been designed in order to improve the position resolution down to 1 {mu}m and the damping time down to 10 ns.« less

  7. International Linear Collider Reference Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brau, James,; Okada, Yasuhiro,; Walker, Nicholas J.,

    2007-08-13

    {lg_bullet} What is the universe? How did it begin? {lg_bullet} What are matter and energy? What are space and time? These basic questions have been the subject of scientific theories and experiments throughout human history. The answers have revolutionized the enlightened view of the world, transforming society and advancing civilization. Universal laws and principles govern everyday phenomena, some of them manifesting themselves only at scales of time and distance far beyond everyday experience. Particle physics experiments using particle accelerators transform matter and energy, to reveal the basic workings of the universe. Other experiments exploit naturally occurring particles, such as solarmore » neutrinos or cosmic rays, and astrophysical observations, to provide additional insights.« less

  8. Jet Topics: Disentangling Quarks and Gluons at Colliders

    NASA Astrophysics Data System (ADS)

    Metodiev, Eric M.; Thaler, Jesse

    2018-06-01

    We introduce jet topics: a framework to identify underlying classes of jets from collider data. Because of a close mathematical relationship between distributions of observables in jets and emergent themes in sets of documents, we can apply recent techniques in "topic modeling" to extract jet topics from the data with minimal or no input from simulation or theory. As a proof of concept with parton shower samples, we apply jet topics to determine separate quark and gluon jet distributions for constituent multiplicity. We also determine separate quark and gluon rapidity spectra from a mixed Z -plus-jet sample. While jet topics are defined directly from hadron-level multidifferential cross sections, one can also predict jet topics from first-principles theoretical calculations, with potential implications for how to define quark and gluon jets beyond leading-logarithmic accuracy. These investigations suggest that jet topics will be useful for extracting underlying jet distributions and fractions in a wide range of contexts at the Large Hadron Collider.

  9. Experiments in advanced control concepts for space robotics - An overview of the Stanford Aerospace Robotics Laboratory

    NASA Technical Reports Server (NTRS)

    Hollars, M. G.; Cannon, R. H., Jr.; Alexander, H. L.; Morse, D. F.

    1987-01-01

    The Stanford University Aerospace Robotics Laboratory is actively developing and experimentally testing advanced robot control strategies for space robotic applications. Early experiments focused on control of very lightweight one-link manipulators and other flexible structures. The results are being extended to position and force control of mini-manipulators attached to flexible manipulators and multilink manipulators with flexible drive trains. Experimental results show that end-point sensing and careful dynamic modeling or adaptive control are key to the success of these control strategies. Free-flying space robot simulators that operate on an air cushion table have been built to test control strategies in which the dynamics of the base of the robot and the payload are important.

  10. Revisiting the Stanford prison experiment: could participant self-selection have led to the cruelty?

    PubMed

    Carnahan, Thomas; McFarland, Sam

    2007-05-01

    The authors investigated whether students who selectively volunteer for a study of prison life possess dispositions associated with behaving abusively. Students were recruited for a psychological study of prison life using a virtually identical newspaper ad as used in the Stanford Prison Experiment (SPE; Haney, Banks & Zimbardo, 1973) or for a psychological study, an identical ad minus the words of prison life. Volunteers for the prison study scored significantly higher on measures of the abuse-related dispositions of aggressiveness, authoritarianism, Machiavellianism, narcissism, and social dominance and lower on empathy and altruism, two qualities inversely related to aggressive abuse. Although implications for the SPE remain a matter of conjecture, an interpretation in terms of person-situation interactionism rather than a strict situationist account is indicated by these findings. Implications for interpreting the abusiveness of American military guards at Abu Ghraib Prison also are discussed.

  11. Dynamics of a class of vortex rings. Ph.D. Thesis - Stanford Univ.

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Leonard, Anthony; Ferziger, Joel H.

    1989-01-01

    The contour dynamics method is extended to vortex rings with vorticity varying linearly from the symmetry axis. An elliptic core model is also developed to explain some of the basic physics. Passage and collisions of two identical rings are studied focusing on core deformation, sound generation and stirring of fluid elements. With respect to core deformation, not only the strain rate but how rapidly it varies is important and accounts for greater susceptibility to vortex tearing than in two dimensions. For slow strain, as a passage interaction is completed and the strain relaxes, the cores return to their original shape while permanent deformations remain for rapidly varying strain. For collisions, if the strain changes slowly the core shapes migrate through a known family of two-dimensional steady vortex pairs up to the limiting member of the family. Thereafter energy conservation does not allow the cores to maintain a constant shape. For rapidly varying strain, core deformation is severe and a head-tail structure in good agreement with experiments is formed. With respect to sound generation, good agreement with the measured acoustic signal for colliding rings is obtained and a feature previously thought to be due to viscous effects is shown to be an effect of inviscid core deformation alone. For passage interactions, a component of high frequency is present. Evidence for the importance of this noise source in jet noise spectra is provided. Finally, processes of fluid engulfment and rejection for an unsteady vortex ring are studied using the stable and unstable manifolds. The unstable manifold shows excellent agreement with flow visualization experiments for leapfrogging rings suggesting that it may be a good tool for numerical flow visualization in other time periodic flows.

  12. Gravitational wave, collider and dark matter signals from a scalar singlet electroweak baryogenesis

    NASA Astrophysics Data System (ADS)

    Beniwal, Ankit; Lewicki, Marek; Wells, James D.; White, Martin; Williams, Anthony G.

    2017-08-01

    We analyse a simple extension of the SM with just an additional scalar singlet coupled to the Higgs boson. We discuss the possible probes for electroweak baryogenesis in this model including collider searches, gravitational wave and direct dark matter detection signals. We show that a large portion of the model parameter space exists where the observation of gravitational waves would allow detection while the indirect collider searches would not.

  13. Gravitational wave, collider and dark matter signals from a scalar singlet electroweak baryogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beniwal, Ankit; Lewicki, Marek; Wells, James D.

    We analyse a simple extension of the SM with just an additional scalar singlet coupled to the Higgs boson. Here, we discuss the possible probes for electroweak baryogenesis in this model including collider searches, gravitational wave and direct dark matter detection signals. We show that a large portion of the model parameter space exists where the observation of gravitational waves would allow detection while the indirect collider searches would not.

  14. Gravitational wave, collider and dark matter signals from a scalar singlet electroweak baryogenesis

    DOE PAGES

    Beniwal, Ankit; Lewicki, Marek; Wells, James D.; ...

    2017-08-23

    We analyse a simple extension of the SM with just an additional scalar singlet coupled to the Higgs boson. Here, we discuss the possible probes for electroweak baryogenesis in this model including collider searches, gravitational wave and direct dark matter detection signals. We show that a large portion of the model parameter space exists where the observation of gravitational waves would allow detection while the indirect collider searches would not.

  15. DOE New Technology. Sharing New Frontiers.

    DTIC Science & Technology

    1992-11-01

    Simpson Mr. Philip W. Krey Stanford Linear Accelerator Center U.S. Department of Energy P.O. Box 4349 Environmental Measurements Laboratory Stanford, CA...Washington, DC (United netic field controller. Kotler , D.K.; Rankin, R.A.; Morgan, States). USA Patent 5,026,154/A/. 25 Jun 1991. Filed date J.P. To

  16. Effects of bulk viscosity and hadronic rescattering in heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Sangwook; Paquet, Jean-Francois; Shen, Chun

    Here, we describe ultrarelativistic heavy ion collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider with a hybrid model using the IP-Glasma model for the earliest stage and viscous hydrodynamics and microscopic transport for the later stages of the collision. We demonstrate that within this framework the bulk viscosity of the plasma plays an important role in describing the experimentally observed radial flow and azimuthal anisotropy simultaneously. Finally, we further investigate the dependence of observables on the temperature below which we employ the microscopic transport description.

  17. Effects of bulk viscosity and hadronic rescattering in heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Ryu, Sangwook; Paquet, Jean-François; Shen, Chun; Denicol, Gabriel; Schenke, Björn; Jeon, Sangyong; Gale, Charles

    2018-03-01

    We describe ultrarelativistic heavy ion collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider with a hybrid model using the IP-Glasma model for the earliest stage and viscous hydrodynamics and microscopic transport for the later stages of the collision. We demonstrate that within this framework the bulk viscosity of the plasma plays an important role in describing the experimentally observed radial flow and azimuthal anisotropy simultaneously. We further investigate the dependence of observables on the temperature below which we employ the microscopic transport description.

  18. Effects of bulk viscosity and hadronic rescattering in heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    DOE PAGES

    Ryu, Sangwook; Paquet, Jean-Francois; Shen, Chun; ...

    2018-03-15

    Here, we describe ultrarelativistic heavy ion collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider with a hybrid model using the IP-Glasma model for the earliest stage and viscous hydrodynamics and microscopic transport for the later stages of the collision. We demonstrate that within this framework the bulk viscosity of the plasma plays an important role in describing the experimentally observed radial flow and azimuthal anisotropy simultaneously. Finally, we further investigate the dependence of observables on the temperature below which we employ the microscopic transport description.

  19. Effects of university affiliation and "school spirit" on color preferences: Berkeley versus Stanford.

    PubMed

    Schloss, Karen B; Poggesi, Rosa M; Palmer, Stephen E

    2011-06-01

    The ecological valence theory (EVT) posits that preference for a color is determined by people's average affective response to everything associated with it (Palmer & Schloss, Proceedings of the National Academy of Sciences, 107, 8877-8882, 2010). The EVT thus implies the existence of sociocultural effects: Color preference should increase with positive feelings (or decrease with negative feelings) toward an institution strongly associated with a color. We tested this prediction by measuring undergraduates' color preferences at two rival universities, Berkeley and Stanford, to determine whether students liked their university's colors better than their rivals did. Students not only preferred their own colors more than their rivals did, but the degree of their preference increased with self-rated positive affect ("school spirit") for their university. These results support the EVT's claim that color preference is caused by learned affective responses to associated objects and institutions, because it is unlikely that students choose their university or develop their degree of school spirit on the basis of preexisting color preferences.

  20. The Role of Stanford Achievement Test 10[TM] Subtests in Sixth Grade as a Predictor of Success on ACT's Eighth Grade Explore Exam[TM

    ERIC Educational Resources Information Center

    Potts, Jeffrey D.

    2011-01-01

    The purpose of this study was to determine if there was a predictive correlation between a specific sixth grade achievement test known as the Stanford Achievement Test 10 and the eighth grade college readiness assessment instrument known as the Explore Exam for a group of North Texas students. Following an assessment during sixth grade, via the…