Science.gov

Sample records for star color-magnitude diagram

  1. RR Lyrae stars and color-magnitude diagram of the globular cluster NGC 6388

    NASA Technical Reports Server (NTRS)

    Silbermann, N. A.; Smith, Horace A.; Bolte, Michael; Hazen, Martha L.

    1994-01-01

    We present new V, B-V, and V, V-R color-magnitude diagrams for the bulge globular cluster NGC 6388. These diagrams indicate that NGC 6388 is a metal-rich globular cluster with color-magnitude morphology similar to that of 47 Tucanae. We have conducted a search for new variable stars close to NGC 6388, finding three new RR Lyrae stars. The membership of these and previously discovered RR Lyrae stars near NGC 6388 is discussed. There is reason for believing that some of these variables are nonmembers. Others, however, may belong to the cluster and may be similar to the RR Lyrae star V9 in 47 Tuc.

  2. Recovering the Galactic star formation history from color-magnitude diagrams (Review)

    NASA Astrophysics Data System (ADS)

    Cignoni, M.

    2007-01-01

    This paper develops a method for testing the star formation histories of a mixed, resolved population through the use of color-magnitude diagrams (CMDs). The method is applied to the derivation of the local star formation rate, analyzing the observations of the Hipparcos satellite through a comparison with synthetic CMDs, computed for different star formation histories, with an updated stellar evolution library. Parallax and photometric uncertainties are included explicitly and corrected using the Bayesian Richardson-Lucy algorithm. We find that the solar neighborhood star formation rate has a characteristic timescale for variation of about 6 Gyr, with a maximum activity close to 3 Gyr ago.

  3. COMBINED EFFECTS OF BINARIES AND STELLAR ROTATION ON THE COLOR-MAGNITUDE DIAGRAMS OF INTERMEDIATE-AGE STAR CLUSTERS

    SciTech Connect

    Li Zhongmu; Mao Caiyan; Chen Li; Zhang Qian

    2012-12-20

    About 70% of intermediate-age star clusters in the Large Magellanic Clouds have been confirmed to have broad main sequence, multiple or extended turnoffs, and dual red giant clumps. The observed result seems to be at odds with the classical idea that such clusters are simple stellar populations. Although many models have been used to explain the results via factors such as prolonged star formation history, metallicity spread, differential reddening, selection effect, observational uncertainty, stellar rotation, and binary interaction, the reason for the special color-magnitude diagrams is still uncertain. We revisit this question via the combination of stellar rotation and binary effects. As a result, it shows 'golf club' color-magnitude diagrams with broad or multiple turnoffs, dual red clumps, blue stragglers, red stragglers, and extended main sequences. Because both binaries and massive rotators are common, our result suggests that most color-magnitude diagrams, including extended turnoff or multiple turnoffs, can be explained using simple stellar populations including both binary and stellar rotation effects, or composite populations with two components.

  4. Combined Effects of Binaries and Stellar Rotation on the Color-Magnitude Diagrams of Intermediate-age Star Clusters

    NASA Astrophysics Data System (ADS)

    Li, Zhongmu; Mao, Caiyan; Chen, Li; Zhang, Qian

    2012-12-01

    About 70% of intermediate-age star clusters in the Large Magellanic Clouds have been confirmed to have broad main sequence, multiple or extended turnoffs, and dual red giant clumps. The observed result seems to be at odds with the classical idea that such clusters are simple stellar populations. Although many models have been used to explain the results via factors such as prolonged star formation history, metallicity spread, differential reddening, selection effect, observational uncertainty, stellar rotation, and binary interaction, the reason for the special color-magnitude diagrams is still uncertain. We revisit this question via the combination of stellar rotation and binary effects. As a result, it shows "golf club" color-magnitude diagrams with broad or multiple turnoffs, dual red clumps, blue stragglers, red stragglers, and extended main sequences. Because both binaries and massive rotators are common, our result suggests that most color-magnitude diagrams, including extended turnoff or multiple turnoffs, can be explained using simple stellar populations including both binary and stellar rotation effects, or composite populations with two components.

  5. MEASURING GALAXY STAR FORMATION RATES FROM INTEGRATED PHOTOMETRY: INSIGHTS FROM COLOR-MAGNITUDE DIAGRAMS OF RESOLVED STARS

    SciTech Connect

    Johnson, Benjamin D.; Weisz, Daniel R.; Dalcanton, Julianne J.; Johnson, L. C.; Williams, Benjamin F.; Dale, Daniel A.; Dolphin, Andrew E.; Gil de Paz, Armando; Lee, Janice C.; Skillman, Evan D.; Boquien, Mederic

    2013-07-20

    We use empirical star formation histories (SFHs), measured from Hubble-Space-Telescope-based resolved star color-magnitude diagrams, as input into population synthesis codes to model the broadband spectral energy distributions (SEDs) of 50 nearby dwarf galaxies (6.5 < log M{sub *}/M{sub Sun} < 8.5, with metallicities {approx}10% solar). In the presence of realistic SFHs, we compare the modeled and observed SEDs from the ultraviolet (UV) through near-infrared and assess the reliability of widely used UV-based star formation rate (SFR) indicators. In the FUV through i bands, we find that the observed and modeled SEDs are in excellent agreement. In the Spitzer 3.6 {mu}m and 4.5 {mu}m bands, we find that modeled SEDs systematically overpredict observed luminosities by up to {approx}0.2 dex, depending on treatment of the TP-AGB stars in the synthesis models. We assess the reliability of UV luminosity as a SFR indicator, in light of independently constrained SFHs. We find that fluctuations in the SFHs alone can cause factor of {approx}2 variations in the UV luminosities relative to the assumption of a constant SFH over the past 100 Myr. These variations are not strongly correlated with UV-optical colors, implying that correcting UV-based SFRs for the effects of realistic SFHs is difficult using only the broadband SED. Additionally, for this diverse sample of galaxies, we find that stars older than 100 Myr can contribute from <5%-100% of the present day UV luminosity, highlighting the challenges in defining a characteristic star formation timescale associated with UV emission. We do find a relationship between UV emission timescale and broadband UV-optical color, though it is different than predictions based on exponentially declining SFH models. Our findings have significant implications for the comparison of UV-based SFRs across low-metallicity populations with diverse SFHs.

  6. HOT HORIZONTAL BRANCH STARS IN {omega} CENTAURI: CLUES ABOUT THEIR ORIGIN FROM THE CLUSTER COLOR MAGNITUDE DIAGRAM

    SciTech Connect

    Cassisi, Santi; Pietrinferni, Adriano; Salaris, Maurizio; Anderson, Jay; Bellini, Andrea; Bedin, Luigi R.; Piotto, Giampaolo; Milone, Antonino E-mail: pietrinferni@oa-teramo.inaf.it E-mail: jayander@stsci.edu E-mail: bedin@stsci.edu E-mail: antonino.milone@unipd.it

    2009-09-10

    We investigate a peculiar feature at the hottest, blue end of the horizontal branch of Galactic globular cluster {omega} Centauri, using the high-precision and nearly complete catalog that has been constructed from a survey taken with the Advanced Camera for Survey on board the Hubble Space Telescope, that covers the inner 10 x 10 arcmin. It is a densely populated clump of stars with an almost vertical structure in the F435W-(F435W-F625W) plane, that we termed 'blue clump'. A comparison with theoretical models leads to the conclusion that this feature must necessarily harbor either hot flasher stars or canonical He-rich stars-progeny of the blue main sequence (MS) subpopulation observed in this cluster-or a mixture of both types, plus possibly a component from the normal-He population hosted by the cluster. A strong constraint coming from theory is that the mass of the objects in the 'blue clump' has to be very finely tuned, with a spread of at most only {approx}0.03 M{sub sun}. By comparing observed and theoretical star counts along both the H- and He-burning stages we find that at least 15% of the expected He-rich horizontal branch stars are missing from the color-magnitude diagram. This missing population could be the progeny of red giants that failed to ignite central He-burning and have produced He-core white dwarfs (WDs). Our conclusion supports the scenario recently suggested by Calamida et al. for explaining the observed ratio of WDs to MS stars in {omega} Centauri.

  7. The initial mass function for massive stars in the Magellanic Clouds. 1: UBV photometry and color-magnitude diagrams for 14 OB associations

    NASA Technical Reports Server (NTRS)

    Hill, Robert J.; Madore, Barry F.; Freedman, Wendy L.

    1994-01-01

    UBV charge coupled device (CCD) photometry has been obtained for 14 OB associations in the Magellanic Clouds using the University of Toronto's 0.6 m telescope and the Carnegie Institution of Washington's 1.0 m reflector, both on Las Campanas, Chile. The data are presented and used to construct color-magnitude diagrams for the purposes of investigating the massive-star content of the associations.

  8. THE EXTRAGALACTIC DISTANCE DATABASE: COLOR-MAGNITUDE DIAGRAMS

    SciTech Connect

    Jacobs, Bradley A.; Tully, R. Brent; Rizzi, Luca; Shaya, Edward J.; Makarov, Dmitry I.; Makarova, Lidia

    2009-08-15

    The color-magnitude diagrams/tip of the red giant branch (CMDs/TRGB) section of the Extragalactic Distance Database contains a compilation of observations of nearby galaxies from the Hubble Space Telescope. Approximately 250 (and increasing) galaxies in the Local Volume have CMDs and the stellar photometry tables used to produce them available through the Web. Various stellar populations that make up a galaxy are visible in the CMDs, but our primary purpose for collecting and analyzing these galaxy images is to measure the TRGB in each. We can estimate the distance to a galaxy by using stars at the TRGB as standard candles. In this paper, we describe the process of constructing the CMDs and make the results available to the public.

  9. Hubble Space Telescope Observations of M32: The Color-Magnitude Diagram

    NASA Technical Reports Server (NTRS)

    Grillmair, C. J.; Lauer, T. R.; Worthey, G.; Faber, S. M.; Freedman, W. L.; Madore, B. F.; Ajhar, E. A.; Baum, W. A.; Holtzman, J. A.; Lynds, C. R.; O'NeilJr., E. J.; Stetson, P. B.

    1996-01-01

    We present a V--I color-magnitude diagram for a region 1'--2' the center of M32 based on Hubble Space Telescope WFPC2 images. The broad color-luminosity distribution of red giants shows that the stellar population comprises stars with a wide range in metallicity.

  10. Pixel Color Magnitude Diagrams for Semi-resolved Stellar Populations: The Star Formation History of Regions within the Disk and Bulge of M31

    NASA Astrophysics Data System (ADS)

    Conroy, Charlie; van Dokkum, Pieter G.

    2016-08-01

    The analysis of stellar populations has, by and large, been developed for two limiting cases: spatially resolved stellar populations in the color–magnitude diagram, and integrated light observations of distant systems. In between these two extremes lies the semi-resolved regime, which encompasses a rich and relatively unexplored realm of observational phenomena. Here we develop the concept of pixel color–magnitude diagrams (pCMDs) as a powerful technique for analyzing stellar populations in the semi-resolved regime. pCMDs show the distribution of imaging data in the plane of pixel luminosity versus pixel color. A key feature of pCMDs is that they are sensitive to all stars, including both the evolved giants and the unevolved main sequence stars. An important variable in this regime is the mean number of stars per pixel, {N}{{pix}}. Simulated pCMDs demonstrate a strong sensitivity to the star formation history (SFH) and have the potential to break degeneracies between age, metallicity and dust based on two filter data for values of {N}{{pix}} up to at least 104. We extract pCMDs from Hubble Space Telescope optical imaging of M31 and derive SFHs with seven independent age bins from 106 to 1010 year for both the crowded disk and bulge regions (where {N}{{pix}}≈ 30{--}{10}3). From analyzing a small region of the disk we find a SFH that is smooth and consistent with an exponential decay timescale of 4 Gyr. The bulge SFH is also smooth and consistent with a 2 Gyr decay timescale. pCMDs will likely play an important role in maximizing the science returns from next generation ground and space-based facilities.

  11. Some constraints on the color-magnitude diagram of giants in the galactic spheroid

    NASA Technical Reports Server (NTRS)

    Bahcall, J. N.; Soneira, R. M.; Morton, D. C.; Tritton, K. P.

    1983-01-01

    The color-magnitude diagram of giants in the Galactic spheroid is shown to be important in determining the number-color histogram of stars brighter than B = 19 mag. This result is demonstrated by comparing a standard Galaxy model with observations of 391 stars in a field in the direction of Aquarius (l = 36.5 deg, b = -51.1 deg). More than 80 percent of the spheroid stars and 40 percent of all stars in this magnitude range and direction are predicted to be giants. At most, a few percent of the spheroid stars in the current sample can lie on the main sequence bluer than the turn-off onto the giant branch near B - V approximately 0.4. The available observations suggest that the blue tip of the horizontal branch of the spheroid must be sparsely populated about a factor of 10 less than would be expected if the color-magnitude diagram of the spheroid were the same as diagrams for any of the globular clusters M3, M13, or M92. The total dispersion in colors (measurement errors and intrinsic dispersion) has a standard deviation in B - V color that is less than 0.2 mag.

  12. Luminosity functions and color-magnitude diagrams for three OB associations in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Degioia-Eastwood, K.; Meyers, R. P.; Jones, D. P.

    1993-01-01

    Using the point spread function photometry program DAOPHOT, we have used UBV CCD photometry to construct color-magnitude diagrams and luminosity functions for three OB associations in the Large Magellanic Cloud. The region LH 76 appears to be completely coeval; the region LH 13 shows some evidence for noncoevality which will need to be checked with spectra of the stars in question. The region LH 105, which lies on the southern edge of 30 Doradus, shows significant contamination by an underlying older population, possibly from previous star forming events. The luminosity functions, which serve as the first step toward determining the initial mass function in these regions, are calculated.

  13. Color-magnitude diagrams for six metal-rich, low-latitude globular clusters

    NASA Technical Reports Server (NTRS)

    Armandroff, Taft E.

    1988-01-01

    Colors and magnitudes for stars on CCD frames for six metal-rich, low-latitude, previously unstudied globular clusters and one well-studied, metal-rich cluster (47 Tuc) have been derived and color-magnitude diagrams have been constructed. The photometry for stars in 47 Tuc are in good agreement with previous studies, while the V magnitudes of the horizontal-branch stars in the six program clusters do not agree with estimates based on secondary methods. The distances to these clusters are different from prior estimates. Redding values are derived for each program cluster. The horizontal branches of the program clusters all appear to lie entirely redwards of the red edge of the instability strip, as is normal for their metallicities.

  14. CCD photometry of the globular cluster NGC 5897 - Morphology of the color-magnitude diagram

    NASA Technical Reports Server (NTRS)

    Sarajedini, Ata

    1992-01-01

    The paper presents CCD photometry in the B and V bands of the Galactic globular cluster NGC 5897. The color-magnitude diagram (CMD) obtained for this cluster is used to examine the properties of the cluster and to compare the NGC 5897 to the well-known globular cluster M3. It was found that the metallicity of the NGC 5897 is in the range of the metallicity of M3 and that the age of NGC 5897 is about 2 Gyr greater than that of M3. The CMD for NGC 5897 also reveals a significant population of blue straggler stars (BSS) more massive than the cluster subgiant branch stars. A pseudomain sequence is constructed for NGC 5897 and the previously studied (Sarajedini and Da Costa, 1991) global cluster 6101, which includes the BSS and extends to the faintest regions of the unevolved main sequence.

  15. Ultraviolet Properties of Galactic Globular Clusters with GALEX. I. The Color-Magnitude Diagrams

    NASA Astrophysics Data System (ADS)

    Schiavon, Ricardo P.; Dalessandro, Emanuele; Sohn, Sangmo T.; Rood, Robert T.; O'Connell, Robert W.; Ferraro, Francesco R.; Lanzoni, Barbara; Beccari, Giacomo; Rey, Soo-Chang; Rhee, Jaehyon; Rich, R. Michael; Yoon, Suk-Jin; Lee, Young-Wook

    2012-05-01

    We present Galaxy Evolution Explorer (GALEX) data for 44 Galactic globular clusters (GCs) obtained during three GALEX observing cycles between 2004 and 2008. This is the largest homogeneous data set on the UV photometric properties of Galactic GCs ever collected. The sample selection and photometric analysis are discussed, and color-magnitude diagrams (CMDs) are presented. The blue and intermediate-blue horizontal branch is the dominant feature of the UV CMDs of old Galactic GCs. Our sample is large enough to display the remarkable variety of horizontal branch shapes found in old stellar populations. Other stellar types that are obviously detected are blue stragglers and post-core-He burning stars. The main features of UV CMDs of Galactic GCs are briefly discussed. We establish the locus of post-core-He burning stars in the UV CMD and present a catalog of candidate asymptotic giant branch (AGB), AGB-manqué, post early-AGB, and post-AGB stars within our cluster sample. The authors dedicate this paper to the memory of co-author Bob Rood, a pioneer in the theory of the evolution of low-mass stars, and a friend, who sadly passed away on 2011 November 2.

  16. A CCD color-magnitude diagram for the globular cluster IC 4499

    NASA Technical Reports Server (NTRS)

    Sarajedini, Ata

    1993-01-01

    A color-magnitude diagram (CMD) based on CCD observations in B and V is presented for the Galactic globular cluster IC 4499. The CMD reaches the main-sequence turnoff and reveals a horizontal branch (HB) similar to that of M3 in morphology; however, RR Lyrae variables compose 68 percent of the HB stars in IC 4499. We find V(HB) = 17.68 +/- 0.03 mag and, after adopting a metal abundance of (Fe/H)=- 1.65 +/- 0.10, derive a reddening of E(B-V) = 0.15 +/- 0.03 using the color of the red giant branch. We show that the (B-V) color extent of the IC 4499 HB is significantly smaller than that of M3 and NGC 3201. In particular, the red HBs of these clusters appear morphologically indistinguishable, whereas the blue HBs of M3 and NGC 3201 are more extended than that of IC 4499. If this difference is due to a variation in the mass range along the blue HB, we estimate that, in the mean, stars on the blue HB of IC 4499 are at least roughly 0.02 solar mass more massive than similar stars in M3 and NGC 3201.

  17. Restoring color-magnitude diagrams with the Richardson-Lucy algorithm

    NASA Astrophysics Data System (ADS)

    Cignoni, M.; Shore, S. N.

    2006-08-01

    Aims.We present an application of the Richardson-Lucy algorithm to the analysis of color-magnitude diagrams by converting the CMD into an image and using a restoring point spread function function (psf) derived from the known, often complex, sources of error. Methods: .We show numerical experiments that demonstrate good recovery of the original image and establish convergence rates for ideal cases with single Gaussian uncertainties and poisson noise using a χ2 statistic. About 30-50 iterations suffice. As an application, we show the results for a particular case, the Hipparcos sample of the solar neighborhood where the uncertainties are mainly due to parallax which we model with a composite weighted Gaussian using the observed error distributions. The resulting psf has a slightly narrower core and broader wings than a single Gaussian. The reddening and photometric errors are considerably reduced by restricting the sample to within 80 pc and to MV ≤ 3.5. Results: .We find that the recovered "image", which has a narrower, better defined main sequence and a more clearly defined red giant clump, can be used as input to stellar evolution modeling of the star formation rate in the solar vicinity and, with more contributing uncertainties taken into account, for general Galactic and extragalactic structure and population studies.

  18. ON USING THE COLOR-MAGNITUDE DIAGRAM MORPHOLOGY OF M67 TO TEST SOLAR ABUNDANCES

    SciTech Connect

    Magic, Z.; Serenelli, A.; Weiss, A.; Chaboyer, B.

    2010-08-01

    The open cluster M67 has solar metallicity and an age of about 4 Gyr. The turnoff (TO) mass is close to the minimum mass for which solar metallicity stars develop a convective core during main sequence evolution as a result of the development of hydrogen burning through the CNO cycle. The morphology of the color-magnitude diagram (CMD) of M67 around the TO shows a clear hook-like feature, a direct sign that stars close to the TO have convective cores. VandenBerg et al. investigated the possibility of using the morphology of the M67 TO to put constraints on the solar metallicity, particularly CNO elements, for which solar abundances have been revised downward by more than 30% over the last few years. Here, we extend their work, filling the gaps in their analysis. To this aim, we compute isochrones appropriate for M67 using new (low metallicity) and old (high metallicity) solar abundances and study whether the characteristic TO in the CMD of M67 can be reproduced or not. We also study the importance of other constitutive physics on determining the presence of such a hook, particularly element diffusion, overshooting and nuclear reaction rates. We find that using the new solar abundance determinations, with low CNO abundances, makes it more difficult to reproduce the characteristic CMD of M67. This result is in agreement with results by VandenBerg et al. However, changes in the constitutive physics of the models, particularly overshooting, can influence and alter this result to the extent that isochrones constructed with models using low CNO solar abundances can also reproduce the TO morphology in M67. We conclude that only if all factors affecting the TO morphology are completely under control (and this is not the case), M67 could be used to put constraints on solar abundances.

  19. The gap in the color-magnitude diagram of NGC 2420: A test of convective overshoot and cluster age

    NASA Technical Reports Server (NTRS)

    Demarque, Pierre; Sarajedini, Ata; Guo, X.-J.

    1994-01-01

    Theoretical isochrones have been constructed using the OPAL opacities specifically to study the color-magnitude diagram of the open star cluster NGC 2420. This cluster provides a rare test of core convection in intermediate-mass stars. At the same time, its age is of interest because of its low metallicity and relatively high Galactic latitude for an open cluster. The excellent color-magnitude diagram constructed by Anthony-Twarog et al. (1990) allows a detailed fit of the isochrones to the photometric data. We discuss the importance of convective overshoot at the convective core edge in determining the morphology of the gap located near the main-sequence turnoff. We find that given the assumptions made in the models, a modest amount of overshoot (0.23 H(sub p)) is required for the best fit. Good agreement is achieved with all features of the turnoff gap for a cluster age of 2.4 +/- 0.2 Gyr. We note that a photometrically complete luminosity function near the main-sequence turnoff and subgiant branch would also provide an important test of the overshoot models.

  20. An optical and near-infrared color-magnitude diagram for type I Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Palmer, Robert J.; Gibbs, John; Gorjian, Varoujan; Pruett, Lee; Young, Diedre; Boyd, Robert; Byrd, Joy; Cheshier, Jaicie; Chung, Stephanie; Clark, Ruby; Fernandez, Joseph; Gonzales, Elyse; Kumar, Anika; McGinnis, Gillian; Palmer, John; Perrine, Luke; Phelps, Brittney; Reginio, Margaret; Richter, Kristi; Sanchez, Elias; Washburn, Claire

    2016-01-01

    This project is seeking another standard candle for measuring cosmic distances by trying to establish a color-magnitude diagram for active galactic nuclei (AGN). Type I AGN selected from the NASA/IPAC Extragalactic Database (NED) were used to establish a correlation between the color and the luminosity of AGN. This work builds on previous NASA/IPAC Teacher Archive Research Program team attempts to establish such a relationship. This is novel in that it uses both optical and 1-2 micron near-infrared (NIR) wavelengths as a better color discriminator of the transition between accretion-dominated and dust/torus-dominated emission.Photometric data from the Sloan Digital Sky Survey (SDSS) and the Two Micron All Sky Survey (2MASS) was extracted and analyzed for type I AGN with redshifts z < 0.20. Our color-magnitude diagram for the area where the dust vaporizes is analogous to a stellar Hertzsprung-Russell (HR) diagram. Data from SDSS and 2MASS were specifically selected to focus on the sublimation boundary between the coolest part of the accretion disk and the hottest region of the inner edge of the dusty torus surrounding the accretion disk to find the greatest ratio for the color. The more luminous the AGN, the more extended the dust sublimation radius, causing a larger hot dust emitting surface area, which corresponds to a greater NIR luminosity.Our findings suggest that the best correlations correspond to colors associated with the Sloan z band and any of the 2MASS bands with slight variations dependent on redshift. This may result in a tool for using AGN as a standard for cosmic distances. This research was made possible through the NASA/IPAC Teacher Archive Research Program (NITARP) and was funded by NASA Astrophysics Data Program.

  1. Hubble Space Telescope WFPC2 Color-Magnitude Diagrams for Globular Clusters in M31

    NASA Astrophysics Data System (ADS)

    Rich, R. M.; Corsi, C. E.; Cacciari, C.; Federici, L.; Fusi Pecci, F.; Djorgovski, S. G.; Freedman, W. L.

    2005-06-01

    We report new photometry for 10 globular clusters in M31, observed to a uniform depth of four orbits in F555W (V) and F814W (I) using WFPC2 on board the Hubble Space Telescope (HST). In addition, we have reanalyzed HST archival data of comparable quality for two more clusters. A special feature of our analysis is the extraordinary care taken to account for the effects of blended stellar images and the required subtraction of contamination from the field stellar populations in M31 in which the clusters are embedded. We thus reach 1 mag fainter than the horizontal branch (HB), even in unfavorable cases. We also show that an apparent peculiar steep slope of the HB for those clusters with blue HB stars is actually due to blends between blue HB stars and red giants. We present the color-magnitude diagrams (CMDs) and discuss their main features in comparison with the properties of the Galactic globular clusters. This analysis is augmented with CMDs previously obtained and discussed on eight other M31 clusters. We report the following significant results: (1) The loci of the red giant branches give reliable photometric metallicity determinations that generally compare very well with ground-based integrated spectroscopic and photometric measures, as well as giving good reddening estimates. (2) The HB morphologies follow the same behavior with metallicity as the Galactic globular clusters, with indications that the second-parameter effect can be present in some clusters of our sample. However, at [Fe/H]=~-1.7 we observe a number of clusters with red HB morphology such that the HB type versus [Fe/H] relationship is offset from that of the Milky Way (MW) and resembles that of the Fornax dwarf spheroidal galaxy. One explanation for the offset is that the most metal-poor M31 globular clusters are younger than their MW counterparts by 1-2 Gyr; further study is required. (3) The MV(HB) versus [Fe/H] relationship has been redetermined, and the slope (~0.20) is very similar to the

  2. Color Magnitude Diagrams for Quasars Using SDSS, GALEX, and WISE Data

    NASA Astrophysics Data System (ADS)

    Curtis, Wendy; Gorjian, V.; Thompson, P.; Doyle, T.; Blackwell, J.; Llamas, J.; Mauduit, J.; Chanda, R.; Glidden, A.; Gruen, A. E.; Laurence, C.; McGeeney, M.; Majercik, Z.; Mikel, T.; Mohamud, A.; Neilson, A.; Payamps, A.; Robles, R.; Uribe, G.

    2013-01-01

    Data from the Galaxy Evolution Explorer (GALEX), the Wide-Field Infrared Survey Explorer (WISE), and the Sloan Digital Sky Survey (SDSS) was used to construct color-magnitude diagrams for Type I quasars at redshift values of 0.1

  3. Determining Distances for Active Galactic Nuclei using an Optical and Near-Infrared Color-Magnitude Diagram

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Gorjian, V.; Richter, K. L.; Pruett, L.

    2015-12-01

    Active Galactic Nuclei, or AGN, are extremely luminous bodies that emit large quantities of light via accretion onto supermassive black holes at the centers of galaxies. This project investigated the relationship between color (ratio of dust emission to accretion disk emission) and magnitude of AGN in order to establish a predictive correlation between the two, similar to the relationship between the color and magnitude of stars seen in the Hertzsprung-Russell diagram. This relationship will prove beneficial in creating a standard candle for determining interstellar distances between AGN bodies. Photometry data surrounding Type 1 Seyferts and quasars from the 2 Micron All Sky Survey (2MASS) and the Sloan Digital Sky Survey (SDSS) were studied. Using this data, color-magnitude diagrams comparing the ratio of two wavelengths to the absolute magnitude of another were created. Overall, many of the diagrams created indicated a clear correlation between color and luminosity of AGN. Several of the diagrams, focused on portions of the visible and near infrared (NIR) wavelength bands, showed the strongest correlations. When the z-k bands were plotted against the absolute magnitude of the k band, specifically surrounding the bodies with redshifts between 0.1 and 0.15, a strong predictive relationship was seen, with a high slope (0.75) and R2 close to 1 (0.69). Additionally, the diagram comparing the i-j bands to the absolute magnitude of the j band, specifically surrounding the bodies with redshifts between 0.05 and 0.1, also demonstrated a strong predictive relationship with a high slope (0.64) and R2 close to 1 (0.58). These correlations have several real-world applications, as they help determine cosmic distances, and, resultantly, age of the bodies in the universe.

  4. THE DEEPEST HUBBLE SPACE TELESCOPE COLOR-MAGNITUDE DIAGRAM OF M32. EVIDENCE FOR INTERMEDIATE-AGE POPULATIONS

    SciTech Connect

    Monachesi, Antonela; Trager, Scott C.; Lauer, Tod R.; Mighell, Kenneth J.; Freedman, Wendy; Dressler, Alan; Grillmair, Carl

    2011-01-20

    We present the deepest optical color-magnitude diagram (CMD) to date of the local elliptical galaxy M32. We have obtained F435W and F555W photometries based on Hubble Space Telescope (HST) Advanced Camera for Surveys/High-Resolution Channel images for a region 110'' from the center of M32 (F1) and a background field (F2) about 320'' away from M32 center. Due to the high resolution of our Nyquist-sampled images, the small photometric errors, and the depth of our data (the CMD of M32 goes as deep as F435W {approx} 28.5 at 50% completeness level), we obtain the most detailed resolved photometric study of M32 yet. Deconvolution of HST images proves to be superior than other standard methods to derive stellar photometry on extremely crowded HST images, as its photometric errors are {approx}2x smaller than other methods tried. The location of the strong red clump in the CMD suggests a mean age between 8 and 10 Gyr for [Fe/H] = -0.2 dex in M32. We detect for the first time a red giant branch bump and an asymptotic giant branch (AGB) bump in M32 which, together with the red clump, allow us to constrain the age and metallicity of the dominant population in this region of M32. These features indicate that the mean age of M32's population at {approx}2' from its center is between 5 and 10 Gyr. We see evidence of an intermediate-age population in M32 mainly due to the presence of AGB stars rising to M{sub F555W} {approx} -2.0. Our detection of a blue component of stars (blue plume) may indicate for the first time the presence of a young stellar population, with ages of the order of 0.5 Gyr, in our M32 field. However, it is likely that the brighter stars of this blue plume belong to the disk of M31 rather than to M32. The fainter stars populating the blue plume indicate the presence of stars not younger than 1 Gyr and/or BSSs in M32. The CMD of M32 displays a wide color distribution of red giant branch stars indicating an intrinsic spread in metallicity with a peak at [Fe

  5. The development of a color-magnitude diagram for active galactic nuclei (AGN): hope for a new standard candle

    NASA Astrophysics Data System (ADS)

    McGinnis, G.; Chung, S.; Gonzales, E. V.; Gorjian, V.; Pruett, L.

    2015-12-01

    Of the galaxies in our universe, only a small percentage currently have Active Galactic Nuclei (AGN). These galaxies tend to be further out in the universe and older, and are different from inactive galaxies in that they emit high amounts of energy from their central black holes. These AGN can be classified as either Seyferts or quasars, depending on the amount of energy emitted from the center (less or more). We are studying the correlation between the ratio of dust emission and accretion disk emission to luminosities of AGN in order to determine if there is a relationship strong enough to act as a predictive model for distance within the universe. This relationship can be used as a standard candle if luminosity is found to determine distances in space. We have created a color-magnitude diagram depicting this relationship between luminosity and wavelengths, similar to the Hertzsprung-Russell (HR) diagram. The more luminous the AGN, the more dust surface area over which to emit energy, which results in a greater near-infrared (NIR) luminosity. This differs from previous research because we use NIR to differentiate accretion from dust emission. Using data from the Sloan Digital Sky Survey (SDSS) and the Two Micron All Sky Survey (2MASS), we analyzed over one thousand Type 1 Seyferts and quasars. We studied data at different wavelengths in order to show the relationship between color (the ratio of one wavelength to another) and luminosity. It was found that plotting filters i-K (the visible and mid-infrared regions of the electromagnetic spectrum) against the magnitude absolute K (luminosity) showed a strong correlation. Furthermore, the redshift range between 0.14 and 0.15 was the most promising, with an R2 of 0.66.

  6. The UV-Optical Galaxy Color-Magnitude Diagram. III. Constraints on Evolution from the Blue to the Red Sequence

    NASA Astrophysics Data System (ADS)

    Martin, D. Christopher; Wyder, Ted K.; Schiminovich, David; Barlow, Tom A.; Forster, Karl; Friedman, Peter G.; Morrissey, Patrick; Neff, Susan G.; Seibert, Mark; Small, Todd; Welsh, Barry Y.; Bianchi, Luciana; Donas, José; Heckman, Timothy M.; Lee, Young-Wook; Madore, Barry F.; Milliard, Bruno; Rich, R. Michael; Szalay, Alex S.; Yi, Sukyoung K.

    2007-12-01

    We introduce a new quantity, the mass flux density of galaxies evolving from the blue sequence to the red sequence. We propose a simple technique for constraining this mass flux using the volume-corrected number density in the extinction-corrected UV-optical color-magnitude distribution, the stellar age indexes HδA and Dn(4000), and a simple prescription for spectral evolution using a quenched star formation history. We exploit the excellent separation of red and blue sequences in the NUV-r band Hess function. The final value we measure, ρT˙=0.033 Msolar yr-1 Mpc-3, is strictly speaking an upper limit due to the possible contributions of bursting, composite, and extincted galaxies. However, it compares favorably with estimates of the average mass flux that we make based on the red luminosity function evolution derived from the DEEP2 and COMBO-17 surveys, ρ˙R=+0.034 Msolar yr-1 Mpc-3. We find that the blue sequence mass has remained roughly constant since z=1 (ρB˙~=0.01 Msolar yr-1 Mpc-3, but the average on-going star formation of ρ˙SF~=0.037 Msolar yr-1 Mpc-3 over 0

  7. Color/magnitude calibration for National Aeronautics and Space Administration (NASA) standard Fixed-Head Star Trackers (FHST)

    NASA Technical Reports Server (NTRS)

    Landis, J.; Leid, Terry; Garber, A.; Lee, M.

    1994-01-01

    This paper characterizes and analyzes the spectral response of Ball Aerospace fixed-head star trackers, (FHST's) currently in use on some three-axis stabilized spacecraft. The FHST output is a function of the frequency and intensity of the incident light and the position of the star image in the field of view. The FHST's on board the Extreme Ultraviolet Explorer (EUVE) have had occasional problems identifying stars with a high B-V value. These problems are characterized by inaccurate intensity counts observed by the tracker. The inaccuracies are due to errors in the observed star magnitude values. These errors are unique to each individual FHST. For this reason, data were also collected and analyzed from the Upper Atmosphere Research Satellite (UARS). As a consequence of this work, the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) hopes to improve the attitude accuracy on these missions and to adopt better star selection procedures for catalogs.

  8. THE AGES OF 55 GLOBULAR CLUSTERS AS DETERMINED USING AN IMPROVED ΔV{sup HB}{sub TO} METHOD ALONG WITH COLOR-MAGNITUDE DIAGRAM CONSTRAINTS, AND THEIR IMPLICATIONS FOR BROADER ISSUES

    SciTech Connect

    VandenBerg, Don A.; Brogaard, K.; Leaman, R.; Casagrande, L. E-mail: kfb@phys.au.dk E-mail: luca@mso.anu.edu.au

    2013-10-01

    Ages have been derived for 55 globular clusters (GCs) for which Hubble Space Telescope Advanced Camera for Surveys photometry is publicly available. For most of them, the assumed distances are based on fits of theoretical zero-age horizontal-branch (ZAHB) loci to the lower bound of the observed distributions of HB stars, assuming reddenings from empirical dust maps and metallicities from the latest spectroscopic analyses. The age of the isochrone that provides the best fit to the stars in the vicinity of the turnoff (TO) is taken to be the best estimate of the cluster age. The morphology of isochrones between the TO and the beginning part of the subgiant branch (SGB) is shown to be nearly independent of age and chemical abundances. For well-defined color-magnitude diagrams (CMDs), the error bar arising just from the 'fitting' of ZAHBs and isochrones is ≈ ± 0.25 Gyr, while that associated with distance and chemical abundance uncertainties is ∼ ± 1.5-2 Gyr. The oldest GCs in our sample are predicted to have ages of ≈13.0 Gyr (subject to the aforementioned uncertainties). However, the main focus of this investigation is on relative GC ages. In conflict with recent findings based on the relative main-sequence fitting method, which have been studied in some detail and reconciled with our results, ages are found to vary from mean values of ≈12.5 Gyr at [Fe/H] ∼< – 1.7 to ≈11 Gyr at [Fe/H] ∼> –1. At intermediate metallicities, the age-metallicity relation (AMR) appears to be bifurcated: one branch apparently contains clusters with disk-like kinematics, whereas the other branch, which is displaced to lower [Fe/H] values by ≈0.6 dex at a fixed age, is populated by clusters with halo-type orbits. The dispersion in age about each component of the AMR is ∼ ± 0.5 Gyr. There is no apparent dependence of age on Galactocentric distance (R{sub G}) nor is there a clear correlation of HB type with age. As previously discovered in the case of M3 and M13

  9. The Ages of 55 Globular Clusters as Determined Using an Improved \\Delta V^HB_TO Method along with Color-Magnitude Diagram Constraints, and Their Implications for Broader Issues

    NASA Astrophysics Data System (ADS)

    VandenBerg, Don A.; Brogaard, K.; Leaman, R.; Casagrande, L.

    2013-10-01

    Ages have been derived for 55 globular clusters (GCs) for which Hubble Space Telescope Advanced Camera for Surveys photometry is publicly available. For most of them, the assumed distances are based on fits of theoretical zero-age horizontal-branch (ZAHB) loci to the lower bound of the observed distributions of HB stars, assuming reddenings from empirical dust maps and metallicities from the latest spectroscopic analyses. The age of the isochrone that provides the best fit to the stars in the vicinity of the turnoff (TO) is taken to be the best estimate of the cluster age. The morphology of isochrones between the TO and the beginning part of the subgiant branch (SGB) is shown to be nearly independent of age and chemical abundances. For well-defined color-magnitude diagrams (CMDs), the error bar arising just from the "fitting" of ZAHBs and isochrones is ≈ ± 0.25 Gyr, while that associated with distance and chemical abundance uncertainties is ~ ± 1.5-2 Gyr. The oldest GCs in our sample are predicted to have ages of ≈13.0 Gyr (subject to the aforementioned uncertainties). However, the main focus of this investigation is on relative GC ages. In conflict with recent findings based on the relative main-sequence fitting method, which have been studied in some detail and reconciled with our results, ages are found to vary from mean values of ≈12.5 Gyr at [Fe/H] <~ - 1.7 to ≈11 Gyr at [Fe/H] >~ -1. At intermediate metallicities, the age-metallicity relation (AMR) appears to be bifurcated: one branch apparently contains clusters with disk-like kinematics, whereas the other branch, which is displaced to lower [Fe/H] values by ≈0.6 dex at a fixed age, is populated by clusters with halo-type orbits. The dispersion in age about each component of the AMR is ~ ± 0.5 Gyr. There is no apparent dependence of age on Galactocentric distance (R G) nor is there a clear correlation of HB type with age. As previously discovered in the case of M3 and M13, subtle variations have

  10. VizieR Online Data Catalog: HST/ACS color-magnitude diagrams of candidate intermediate-age M 31 globular clusters. The role of blue horizontal branches.

    NASA Astrophysics Data System (ADS)

    Perina, S.; Galleti, S.; Fusi Pecci, F.; Bellazzini, M.; Federici, L.; Buzzoni, A.

    2011-10-01

    Tables b058.dat, b292_531.dat, b350.dat, b336.dat, b337.dat present the photometry of the individual stars of six M31 globular clusters. The observations were carried out with the ACS on board of the HST, employing the WFC+F435W/F606W filters. The data reduction has been performed using the ACS module of DOLPHOT, a point spread function-fitting package specifically devoted to the photometry of HST data, that provides as output the magnitudes and the pixel positions of the detected sources, and a number of quality parameters for a suitable sample selection. The tables present, for the chip holding the cluster, all the stars with valid measurements in both passbands, global quality flag=1, crowding parameter <0.5, chi-square parameter <2.5 and sharpness parameter between -0.3 and 0.3. The x,y coordinates, the magnitudes in the Vegamag system, the errors on the magnitudes and the ACS_WFC chip number are listed for each of the selected stars. (6 data files).

  11. UV-CONTINUUM SLOPES AT z {approx} 4-7 FROM THE HUDF09+ERS+CANDELS OBSERVATIONS: DISCOVERY OF A WELL-DEFINED UV COLOR-MAGNITUDE RELATIONSHIP FOR z {>=} 4 STAR-FORMING GALAXIES

    SciTech Connect

    Bouwens, R. J.; Franx, M.; Labbe, I.; Smit, R.; Illingworth, G. D.; Oesch, P.A.; Gonzalez, V.; Magee, D.; Van Dokkum, P.; Carollo, C. M.

    2012-08-01

    Ultra-deep Advanced Camera for Surveys (ACS) and WFC3/IR HUDF+HUDF09 data, along with the wide-area GOODS+ERS+CANDELS data over the CDF-S GOODS field, are used to measure UV colors, expressed as the UV-continuum slope {beta}, of star-forming galaxies over a wide range of luminosity (0.1L*{sub z=3} to 2L*{sub z=3}) at high redshift (z {approx} 7 to z {approx} 4). {beta} is measured using all ACS and WFC3/IR passbands uncontaminated by Ly{alpha} and spectral breaks. Extensive tests show that our {beta} measurements are only subject to minimal biases. Using a different selection procedure, Dunlop et al. recently found large biases in their {beta} measurements. To reconcile these different results, we simulated both approaches and found that {beta} measurements for faint sources are subject to large biases if the same passbands are used both to select the sources and to measure {beta}. High-redshift galaxies show a well-defined rest-frame UV color-magnitude (CM) relationship that becomes systematically bluer toward fainter UV luminosities. No evolution is seen in the slope of the UV CM relationship in the first 1.5 Gyr, though there is a small evolution in the zero point to redder colors from z {approx} 7 to z {approx} 4. This suggests that galaxies are evolving along a well-defined sequence in the L{sub UV}-color ({beta}) plane (a 'star-forming sequence'?). Dust appears to be the principal factor driving changes in the UV color {beta} with luminosity. These new larger {beta} samples lead to improved dust extinction estimates at z {approx} 4-7 and confirm that the extinction is essentially zero at low luminosities and high redshifts. Inclusion of the new dust extinction results leads to (1) excellent agreement between the star formation rate (SFR) density at z {approx} 4-8 and that inferred from the stellar mass density; and (2) to higher specific star formation rates (SSFRs) at z {approx}> 4, suggesting that the SSFR may evolve modestly (by factors of {approx}2) from

  12. Ages of Extragalactic Intermediate-Age Star Clusters

    NASA Technical Reports Server (NTRS)

    Flower, P. J.

    1983-01-01

    A dating technique for faint, distant star clusters observable in the local group of galaxies with the space telescope is discussed. Color-magnitude diagrams of Magellanic Cloud clusters are mentioned along with the metallicity of star clusters.

  13. The ACS Virgo Cluster Survey. XIV. Analysis of Color-Magnitude Relations in Globular Cluster Systems

    NASA Astrophysics Data System (ADS)

    Mieske, Steffen; Jordán, Andrés; Côté, Patrick; Kissler-Patig, Markus; Peng, Eric W.; Ferrarese, Laura; Blakeslee, John P.; Mei, Simona; Merritt, David; Tonry, John L.; West, Michael J.

    2006-12-01

    We examine the correlation between globular cluster (GC) color and magnitude using HST ACS imaging for a sample of 79 early-type galaxies (-21.7color-magnitude diagram of the three brightest Virgo Cluster galaxies (M49, M87, and M60): brighter GCs are redder than their fainter counterparts. For the single GC systems of M87 and M60, we find similar correlations; M49 does not appear to show a significant trend. There is no correlation between (g-z) and Mz for GCs of the red subpopulation. The correlation γg≡d(g-z)/dg for the blue subpopulation is much weaker than d(g-z)/dz. Using Monte Carlo simulations, we attribute this finding to the fact that the blue subpopulation in Mg extends to higher luminosities than does the red subpopulation, which biases the KMM fit results. The correlation between color and Mz thus is a real effect: this conclusion is supported by biweight fits to the same color distributions. We identify two environmental dependencies that influence the derived color-magnitude relation: (1) the slope decreases in significance with decreasing galaxy luminosity; and (2) the slope is stronger for GC populations located at smaller galactocentric distances. We examine several physical mechanisms that might give rise to the observed color-magnitude relation: (1) presence of contaminators; (2) accretion of GCs from low-mass galaxies; (3) stochastic effects; (4) the capture of field stars by individual GCs; and (5) GC self-enrichment. We conclude that self-enrichment and field-star capture, or a combination of these processes, offer the most promising means of explaining our observations. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope

  14. The Optical-IR Color-Magnitude Sequence Around the Hydrogen Burning Mass Limit: Optical Photometry and Trigonometric Parallaxes for Nearby M and L Dwarfs

    NASA Astrophysics Data System (ADS)

    Dieterich, Sergio; Henry, T. J.; Hosey, A. D.; Jao, W.; Winters, J. G.; RECONS

    2012-01-01

    Accurate placement in an HR diagram is necessary for the characterization of any stellar, or substellar, population. Here we extend the coverage of optical/IR color-magnitude diagrams to provide a continuous sequence for stars like the Sun through the mid L spectral sub-types. We present new trigonometric parallaxes obtained at the CTIO 0.9m telescope through the RECONS (REsearch Consortium On Nearby Stars, www.recons.org) astrometry program, and new VRI photometry obtained at the CTIO 0.9m and SOAR 4m telescopes. We demonstrate how optical/IR color combinations, in particular (V-K), are useful in breaking the degeneracies in color-magnitude diagrams containing only IR colors. One of the key results of this work is a set of improved color-absolute magnitude relations that can be used to make accurate distance estimates for objects straddling the hydrogen-burning limit. We also discuss objects thought to be young, multiple, or metal poor based on their outlying locations in the sequence. This effort is supported by the NSF through grant AST-0908402, via observations made possible by the SMARTS Consortium, and is based in part on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Brazilian Ministry of Science and Technology, the U.S. National Optical Astronomy Observatory, the University of North Carolina at Chapel Hill, and Michigan State University.

  15. The bright end of the color-magnitude relation

    NASA Astrophysics Data System (ADS)

    Jiménez, N.; Cora, S. A.; Bassino, L. P.; Smith Castelli, A. V.

    We investigate the origin of the color-magnitude relation (CMR) followed by early-type cluster galaxies by using a combination of cosmological N- body simulations of cluster of galaxies and a semi-analytic model of galaxy formation (Lagos, Cora & Padilla 2008). Results show good agreement be- tween the general trend of the simulated and observed CMR. However, in many clusters, the most luminous galaxies depart from the linear fit to ob- served data displaying almost constant colors. With the aim of understand- ing this behaviour, we analyze the dependence with redshift of the stellar mass contributed to each galaxy by different processes, i.e., quiescent star formation, and starbursts during major/minor and wet/dry merger, and disc instability events. The evolution of the metallicity of the stellar component, contributed by each of these processes, is also investigated. We find that the major contribution of stellar mass at low redshift is due to minor dry merger events, being the metallicity of the stellar mass accreted during this process quite low. Thus, minor dry merger events seem to increase the mass of the more luminous galaxies without changing their colors.

  16. Maxima and O-C Diagrams for 489 Mira Stars

    NASA Astrophysics Data System (ADS)

    Karlsson, T.

    2013-11-01

    Maxima for 489 Mira stars have been compiled. They were computed with data from AAVSO, AFOEV, VSOLJ, and BAA-VSS and collected from published maxima. The result is presented in a mysql database and on web pages with O-C diagrams, periods and some statistical information for each star.

  17. The Color-Magnitude Relation for Metal-Poor Globular Clusters in M87: Confirmation from Deep HST/ACS Imaging

    NASA Astrophysics Data System (ADS)

    Peng, Eric W.; Jordán, Andrés; Blakeslee, John P.; Mieske, Steffen; Côté, Patrick; Ferrarese, Laura; Harris, William E.; Madrid, Juan P.; Meurer, Gerhardt R.

    2009-09-01

    Metal-poor globular clusters (GCs) are our local link to the earliest epochs of star formation and galaxy building. Studies of extragalactic GC systems using deep, high-quality imaging have revealed a small but significant slope to the color-magnitude relation for metal-poor GCs in a number of galaxies. We present a study of the M87 GC system using deep, archival HST/ACS imaging with the F606W and F814W filters, in which we find a significant color-magnitude relation for the metal-poor GCs. The slope of this relation in the I versus V-I color-magnitude diagram (γ I = -0.024 ± 0.006) is perfectly consistent with expectations based on previously published results using data from the ACS Virgo Cluster Survey. The relation is driven by the most luminous GCs, those with MI lsim -10, and its significance is largest when fitting metal-poor GCs brighter than MI = -7.8, a luminosity which is ~1 mag fainter than our fitted Gaussian mean for the luminosity function (LF) of blue, metal-poor GCs (~0.8 mag fainter than the mean for all GCs). These results indicate that there is a mass scale at which the correlation begins, and is consistent with a scenario where self-enrichment drives a mass-metallicity relationship. We show that previously measured half-light radii of M87 GCs from best-fit PSF-convolved King models are consistent with the more accurate measurements in this study, and we also explain how the color-magnitude relation for metal-poor GCs is real and cannot be an artifact of the photometry. We fit Gaussian and evolved Schechter functions to the luminosity distribution of GCs across all colors, as well as divided into blue and red subpopulations, finding that the blue GCs have a brighter mean luminosity and a narrower distribution than the red GCs. Finally, we present a catalog of astrometry and photometry for 2250 M87 GCs. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the

  18. Big Black Holes Mean Bad News for Stars (diagram)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Poster Version Suppression of Star Formation from Supermassive Black Holes

    This diagram illustrates research from NASA's Galaxy Evolution Explorer showing that black holes -- once they reach a critical size -- can put the brakes on new star formation in elliptical galaxies.

    In this graph, galaxies and their supermassive black holes are indicated by the drawings (the black circle at the center of each galaxy represents the black hole). The relative masses of the galaxies and their black holes are reflected in the sizes of the drawings. Blue indicates that the galaxy has new stars, while red means the galaxy does not have any detectable new stars.

    The Galaxy Evolution Explorer observed the following trend: the biggest galaxies and black holes (shown in upper right corner) are more likely to have no observable star formation (red) than the smaller galaxies with smaller black holes. This is evidence that black holes can create environments unsuitable for stellar birth.

    The white line in the diagram illustrates that, for any galaxy no matter what the mass, its black hole must reach a critical size before it can shut down star formation.

  19. Robust automatic photometry of local galaxies from SDSS. Dissecting the color magnitude relation with color profiles

    NASA Astrophysics Data System (ADS)

    Consolandi, Guido; Gavazzi, Giuseppe; Fumagalli, Michele; Dotti, Massimo; Fossati, Matteo

    2016-06-01

    We present an automatic procedure to perform reliable photometry of galaxies on SDSS images. We selected a sample of 5853 galaxies in the Coma and Virgo superclusters. For each galaxy, we derive Petrosian g and i magnitudes, surface brightness and color profiles. Unlike the SDSS pipeline, our procedure is not affected by the well known shredding problem and efficiently extracts Petrosian magnitudes for all galaxies. Hence we derived magnitudes even from the population of galaxies missed by the SDSS which represents ~25% of all local supercluster galaxies and ~95% of galaxies with g < 11 mag. After correcting the g and i magnitudes for Galactic and internal extinction, the blue and red sequences in the color magnitude diagram are well separated, with similar slopes. In addition, we study (i) the color-magnitude diagrams in different galaxy regions, the inner (r ≤ 1 kpc), intermediate (0.2RPet ≤ r ≤ 0.3RPet) and outer, disk-dominated (r ≥ 0.35RPet)) zone; and (ii), we compute template color profiles, discussing the dependences of the templates on the galaxy masses and on their morphological type. The two analyses consistently lead to a picture where elliptical galaxies show no color gradients, irrespective of their masses. Spirals, instead, display a steeper gradient in their color profiles with increasing mass, which is consistent with the growing relevance of a bulge and/or a bar component above 1010 M⊙. Full Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A38

  20. Cool stars in the Hertzsprung-Russell diagram

    NASA Astrophysics Data System (ADS)

    Theodorus van Loon, Jacco

    2015-08-01

    I have been invited to present an introductory review talk about cool stars in the Hertzsprung-Russell diagram, for the Focus meeting on "Stellar Behemoths: Red Supergiants across the local Universe." With the theme of the meeting in mind, I will concentrate on the evolution and behaviour of stars more massive than about 8 solar masses and cooler than about 10,000 Kelvin. I will concentrate on the effects of metal content, rotation, and mass loss on the observable properties and evolution of red and yellow supergiants. I will discuss their roles as supernova progenitors, as well as their roles in the evolution of the galaxies they inhabit. I will attempt to identify the most pressing questions and to suggest strategies to answer them.

  1. ABOUT THE LINEARITY OF THE COLOR-MAGNITUDE RELATION OF EARLY-TYPE GALAXIES IN THE VIRGO CLUSTER

    SciTech Connect

    Smith Castelli, Analia V.; Faifer, Favio R.

    2013-07-20

    We revisit the color-magnitude relation of Virgo Cluster early-type galaxies in order to explore its alleged nonlinearity. To this aim, we reanalyze the relation already published from data obtained within the ACS Virgo Cluster Survey of the Hubble Space Telescope and perform our own photometry and analysis of the images of 100 early-type galaxies observed as part of this survey. In addition, we compare our results with those reported in the literature from data of the Sloan Digital Sky Survey. We have found that when the brightest galaxies and untypical systems are excluded from the sample, a linear relation arises in agreement with what is observed in other groups and clusters. The central regions of the brightest galaxies also follow this relation. In addition, we notice that Virgo contains at least four compact elliptical galaxies besides the well-known object VCC 1297 (NGC 4486B). Their locations in the ({mu}{sub eff})-luminosity diagram define a trend different from that followed by normal early-type dwarf galaxies, setting an upper limit in effective surface brightness and a lower limit in the effective radius for their luminosities. Based on the distribution of different galaxy sub-samples in the color-magnitude and ({mu}{sub eff})-luminosity diagrams, we draw some conclusions on their formation and the history of their evolution.

  2. COLOR-MAGNITUDE RELATIONS OF ACTIVE AND NON-ACTIVE GALAXIES IN THE CHANDRA DEEP FIELDS: HIGH-REDSHIFT CONSTRAINTS AND STELLAR-MASS SELECTION EFFECTS

    SciTech Connect

    Xue, Y. Q.; Brandt, W. N.; Luo, B.; Rafferty, D. A.; Schneider, D. P.; Alexander, D. M.; Lehmer, B. D.; Bauer, F. E.; Silverman, J. D.

    2010-09-01

    We extend color-magnitude relations for moderate-luminosity X-ray active galactic nucleus (AGN) hosts and non-AGN galaxies through the galaxy formation epoch (z {approx} 1-4) in the Chandra Deep Field-North and Chandra Deep Field-South (CDF-N and CDF-S, respectively; jointly CDFs) surveys. This study was enabled by the deepest available X-ray data from the 2 Ms CDF surveys as well as complementary ultradeep multiwavelength data in these regions. We utilized analyses of color-magnitude diagrams (CMDs) to assess the role of moderate-luminosity AGNs in galaxy evolution. First, we confirm some previous results and extend them to higher redshifts, finding, for example, that (1) there is no apparent color bimodality (i.e., the lack of an obvious red sequence and blue cloud) for AGN hosts from z {approx} 0to2, but non-AGN galaxy color bimodality exists up to z {approx} 3 and the relative fraction of red-sequence galaxies generally increases as the redshift decreases (consistent with a blue-to-red migration of galaxies), (2) most AGNs reside in massive hosts and the AGN fraction rises strongly toward higher stellar mass, up to z {approx} 2-3, and (3) the colors of both AGN hosts and non-AGN galaxies become redder as the stellar mass increases, up to z {approx} 2-3. Second, we point out that, in order to obtain a complete and reliable picture, it is critical to use mass-matched samples to examine color-magnitude relations of AGN hosts and non-AGN galaxies. We show that for mass-matched samples up to z {approx} 2-3, AGN hosts lie in the same region of the CMD as non-AGN galaxies; i.e., there is no specific clustering of AGN hosts in the CMD around the red sequence, the top of the blue cloud, or the green valley in between. The AGN fraction ({approx} 10%) is mostly independent of host-galaxy color, providing an indication of the duty cycle of supermassive black hole growth in typical massive galaxies. These results are in contrast to those obtained with non

  3. Analysis of the Petersen Diagram of Double Mode High Amplitude delta Scuti Stars

    NASA Astrophysics Data System (ADS)

    Furgoni, R.

    2016-06-01

    I created the Petersen diagram relative to all the Double Mode High Amplitude ? Scuti stars listed in the AAVSO's International Variable Star Index (Watson et al. 2007-2015) up to date December 29, 2015. For the first time I noticed that the ratio between the two periods P1/P0 seems in evident linear relation with the duration of the period P0, a finding never explicitly described in literature regarding this topic.

  4. The Color-Magnitude Relation of Cluster Galaxies: Observations and Model Predictions

    NASA Astrophysics Data System (ADS)

    Jiménez, N.; Smith Castelli, A. V.; Cora, S. A.; Bassino, L. P.

    We investigate the origin of the color-magnitude relation (CMR) observed in cluster galaxies by using a combination of cosmological N-body/SPH simulations of galaxy clusters, and a semi-analaytic model of galaxy formation (Lagos, Cora & Padilla 2008). Simulated results are compared with the photometric properties of early-type galaxies in the Antlia cluster (Smith Castelli et al. 2008). The good agreement obtained between observations and simulations allows us to use the information provided by the model for unveiling the physical processes that yield the tigh observed CMR.

  5. COLOR-MAGNITUDE RELATIONS OF EARLY-TYPE DWARF GALAXIES IN THE VIRGO CLUSTER: AN ULTRAVIOLET PERSPECTIVE

    SciTech Connect

    Kim, Suk; Rey, Soo-Chang; Lisker, Thorsten; Sohn, Sangmo Tony E-mail: screy@cnu.ac.k

    2010-09-20

    We present ultraviolet (UV) color-magnitude relations (CMRs) of early-type dwarf galaxies in the Virgo cluster, based on Galaxy Evolution Explorer (GALEX) UV and Sloan Digital Sky Survey (SDSS) optical imaging data. We find that dwarf lenticular galaxies (dS0s), including peculiar dwarf elliptical galaxies (dEs) with disk substructures and blue centers, show a surprisingly distinct and tight locus separated from that of ordinary dEs, which is not clearly seen in previous CMRs. The dS0s in UV CMRs follow a steeper sequence than dEs and show bluer UV-optical color at a given magnitude. We also find that the UV CMRs of dEs in the outer cluster region are slightly steeper than that of their counterparts in the inner region, due to the existence of faint, blue dEs in the outer region. We explore the observed CMRs with population models of a luminosity-dependent delayed exponential star formation history. We confirm that the feature of delayed star formation of early-type dwarf galaxies in the Virgo cluster is strongly correlated with their morphology and environment. The observed CMR of dS0s is well matched by models with relatively long delayed star formation. Our results suggest that dS0s are most likely transitional objects at the stage of subsequent transformation of late-type progenitors to ordinary red dEs in the cluster environment. In any case, UV photometry provides a powerful tool to disentangle the diverse subpopulations of early-type dwarf galaxies and uncover their evolutionary histories.

  6. Phase diagram of carbon-oxygen plasma mixtures in white dwarf stars

    NASA Astrophysics Data System (ADS)

    Schneider, A. S.; Horowitz, C. J.; Hughto, J.; Berry, D. K.

    2012-12-01

    The liquid-solid phase-diagram of dense carbon-oxygen plasma mixtures found in white dwarf stars interiors is determined from molecular dynamics (MD) simulations. Our MD simulations consist of boxes with 55296 ions with different carbon to oxygen ratios. Finite size effects are estimated comparing the new MD simulations results to previous smaller simulations. We use bond angle metric to identify whether an ion is in the solid, liquid or interface and study non-equilibrium effects by obtaining the diffusion coefficients in the different phases. Our phase diagram agrees with predictions from Medin and Cumming obtained by an independent method.

  7. Recovering the Star Formation Rate in the Solar Neighborhood

    NASA Astrophysics Data System (ADS)

    Cignoni, M.; Degl'Innocenti, S.; Moroni, P. G. P.; Shore, S. N.

    2007-11-01

    This paper develops a method for obtaining the star formation histories of a mixed, resolved population through the use of color-magnitude diagrams (CMDs). The method is applied to the derivation of the local star formation rate, analyzing the observations of the Hipparcos satellite through a comparison with synthetic CMDs computed for different star formation histories with an updated stellar evolution library. Parallax and photometric uncertainties are included explicitly and corrected using the Bayesian Richardson-Lucy algorithm. We find that the solar neighborhood star formation rate has a characteristic timescale for variation of about 6 Gyr, with a maximum activity close to 3 Gyr ago.

  8. Neutron stars, {beta}-stable ring-diagram equation of state, and Brown-Rho scaling

    SciTech Connect

    Dong, Huan; Kuo, T. T. S.; Machleidt, R.

    2009-12-15

    Neutron star properties, such as mass, radius, and moment of inertia, are calculated by solving the Tolman-Oppenheimer-Volkov (TOV) equations using the ring-diagram equation of state (EOS) obtained from realistic low-momentum NN interactions V{sub low-k}. Several NN potentials (CDBonn, Nijmegen, Argonne V18, and BonnA) have been employed to calculate the ring-diagram EOS where the particle-particle hole-hole ring diagrams are summed to all orders. The proton fractions for different radial regions of a {beta}-stable neutron star are determined from the chemical potential conditions {mu}{sub n}-{mu}{sub p}={mu}{sub e}={mu}{sub {mu}}. The neutron star masses, radii, and moments of inertia given by the aforementioned potentials all tend to be too small compared with the accepted values. Our results are largely improved with the inclusion of a Skyrme-type three-body force based on Brown-Rho scalings where the in-medium meson masses, particularly those of {omega}, {rho}, and {sigma}, are slightly decreased compared with their in-vacuum values. Representative results using such medium-corrected interactions are maximum neutron-star mass M{approx}1.8M{sub {center_dot}} with radius R{approx}9 km and moment of inertia {approx}60M{sub {center_dot}} km{sup 2}, values given by the four NN potentials being nearly the same. The effects of nuclei-crust EOSs on the properties of neutron stars are discussed.

  9. Color-magnitude distribution of face-on nearby galaxies in Sloan digital sky survey DR7

    SciTech Connect

    Jin, Shuo-Wen; Feng, Long-Long; Gu, Qiusheng; Huang, Song; Shi, Yong

    2014-05-20

    We have analyzed the distributions in the color-magnitude diagram (CMD) of a large sample of face-on galaxies to minimize the effect of dust extinctions on galaxy color. About 300,000 galaxies with log (a/b) < 0.2 and redshift z < 0.2 are selected from the Sloan Digital Sky Survey DR7 catalog. Two methods are employed to investigate the distributions of galaxies in the CMD, including one-dimensional (1D) Gaussian fitting to the distributions in individual magnitude bins and two-dimensional (2D) Gaussian mixture model (GMM) fitting to galaxies as a whole. We find that in the 1D fitting, two Gaussians are not enough to fit galaxies with the excess present between the blue cloud and the red sequence. The fitting to this excess defines the center of the green valley in the local universe to be (u – r){sub 0.1} = –0.121M {sub r,} 0{sub .1} – 0.061. The fraction of blue cloud and red sequence galaxies turns over around M {sub r,} {sub 0.1} ∼ –20.1 mag, corresponding to stellar mass of 3 × 10{sup 10} M {sub ☉}. For the 2D GMM fitting, a total of four Gaussians are required, one for the blue cloud, one for the red sequence, and the additional two for the green valley. The fact that two Gaussians are needed to describe the distributions of galaxies in the green valley is consistent with some models that argue for two different evolutionary paths from the blue cloud to the red sequence.

  10. An Atlas of O-C Diagrams of Eclipsing Binary Stars

    NASA Astrophysics Data System (ADS)

    Kreiner, Jerzy M.; Kim, Chun-Hwey; Nha, Il-Seong

    The Atlas contains data for 1,138 eclipsing binaries represented by 91,798 minima timings, collected from the usual international and local journals, observatory publications and unpublished minima. Among this source material there is a considerable representation of amateur astronomers. Some timings were found in the card-index catalogue of the Astronomical Observatory of the Jagiellonian University, Cracow. Stars were included in the Atlas provided that they satisfied 3 criteria: (1) at least 20 minima had been times; (2) these minima spanned at least 2,500 cycles; and (3) the 2,500 cycles represented no fewer than 40 years. Some additional stars not strictly satisfying these criteria were also included if useful information was available. For each star, the Atlas contains the (O-C) diagram calculated by the authors and a table of general information containing: binary characteristics; assorted catalogue numbers; the statistics of the collected minima timings; the light elements (light ephemeris); comments and literature references. All of the data and diagrams in the Atlas are also available in electronic form on the Internet at http://www.as.ap.krakow.pl/o- c".

  11. Stability boundaries for massive stars in the sHR diagram

    NASA Astrophysics Data System (ADS)

    Saio, Hideyuki; Georgy, Cyril; Meynet, Georges

    2015-01-01

    Stability boundaries of radial pulsations in massive stars are compared with positions of variable and non-variable blue-supergiants in the spectroscopic HR (sHR) diagram (Langer & Kudritzki 2014), whose vertical axis is 4 log T eff - log g(= log L/M). Observational data indicate that variables tend to have higher L/M than non-variables in agreement with the theoretical prediction. However, many variable blue-supergiants are found to have values of L/M below the theoretical stability boundary; i.e., surface gravities seem to be too high by around 0.2-0.3 dex.

  12. Self-consistent photometric and spectroscopic Star Formation Histories in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    García-Benito, R.; Pérez, E.; Pérez-Montero, E.; González Delgado, R.; Vílchez, J. M.

    2016-06-01

    This project aims to unify the spectroscopic and stellar photometric views by performing a comprehensive study of a sample of the nearest Blue Compact Dwarf Galaxies (BCDs). We plan to derive Star Formation Histories (SFH) both by means of Color-Magnitude Diagrams (CMDs) from extant Hubble Space Telescope (HST) optical imaging and with spectral fitting methods techniques using MUSE, allowing us to obtain state-of-the-art 2D stellar properties and abundances of the gas in BCDs.

  13. CEPHEID VARIABLE STARS IN THE PEGASUS DWARF IRREGULAR GALAXY: CONSTRAINTS ON THE STAR FORMATION HISTORY

    SciTech Connect

    Meschin, I.; Gallart, C.; Aparicio, A.; Rosenberg, A.; Cassisi, S. E-mail: carme@iac.es E-mail: alf@iac.es

    2009-03-15

    Observations of the resolved stars obtained over a period of 11 years in the Local Group dwarf irregular galaxy Pegasus have been used to search for Cepheid variable stars. Images were obtained in 55 epochs in the V band and in 24 epochs in the I band. We have identified 26 Cepheids and have obtained their light curves and periods. On the basis of their position in the period-luminosity (PL) diagram, we have classified them as 18 fundamental modes and eight first overtone Cepheids. Two PL relations for Cepheids have been used to derive the distance, resulting in 1.07 {+-} 0.05 Mpc. We present the VARFINDER code which finds the variable stars and their predicted periods in a given synthetic color-magnitude diagram computed with IAC-star and we propose the use of the Cepheid population as a constraint of the star formation history of Pegasus.

  14. The brightest stars and the distance to the dwarf galaxy HO IX

    NASA Astrophysics Data System (ADS)

    Georgiev, Ts. B.; Bilkina, B. I.; Tikhonov, N. A.; Karachentsev, I. D.

    1991-09-01

    The magnitudes and colors of the brightest stars in the area of Ho IX were determined from photometric data extracted from the B and V plates obtained with a 6-m telescope. A comparison of the results with data of Sandage (1984), Davidge and Jones (1989), and Hopp and Schulte-Ladbeck (1987) disclosed systematic discrepancies between new and published data. The new color-magnitude diagram was used to select the brightest supergiants. For three red stars and three blue stars of this group, the average values were found to be V(3R) = 19.96 mag and B(3B) = 20.66 mag, respectively.

  15. Recovering star formation histories: Integrated-light analyses vs. stellar colour-magnitude diagrams

    NASA Astrophysics Data System (ADS)

    Ruiz-Lara, T.; Pérez, I.; Gallart, C.; Alloin, D.; Monelli, M.; Koleva, M.; Pompei, E.; Beasley, M.; Sánchez-Blázquez, P.; Florido, E.; Aparicio, A.; Fleurence, E.; Hardy, E.; Hidalgo, S.; Raimann, D.

    2015-11-01

    Context. Accurate star formation histories (SFHs) of galaxies are fundamental for understanding the build-up of their stellar content. However, the most accurate SFHs - those obtained from colour-magnitude diagrams (CMDs) of resolved stars reaching the oldest main-sequence turnoffs (oMSTO) - are presently limited to a few systems in the Local Group. It is therefore crucial to determine the reliability and range of applicability of SFHs derived from integrated light spectroscopy, as this affects our understanding of unresolved galaxies from low to high redshift. Aims: We evaluate the reliability of current full spectral fitting techniques in deriving SFHs from integrated light spectroscopy by comparing SFHs from integrated spectra to those obtained from deep CMDs of resolved stars. Methods: We have obtained a high signal-to-noise (S/N ~ 36.3 per Å) integrated spectrum of a field in the bar of the Large Magellanic Cloud (LMC) using EFOSC2 at the 3.6-metre telescope at La Silla Observatory. For this same field, resolved stellar data reaching the oMSTO are available. We have compared the star formation rate (SFR) as a function of time and the age-metallicity relation (AMR) obtained from the integrated spectrum using STECKMAP, and the CMD using the IAC-star/MinnIAC/IAC-pop set of routines. For the sake of completeness we also use and discuss other synthesis codes (STARLIGHT and ULySS) to derive the SFR and AMR from the integrated LMC spectrum. Results: We find very good agreement (average differences ~4.1%) between the SFR (t) and the AMR obtained using STECKMAP on the integrated light spectrum, and the CMD analysis. STECKMAP minimizes the impact of the age-metallicity degeneracy and has the advantage of preferring smooth solutions to recover complex SFHs by means of a penalized χ2. We find that the use of single stellar populations (SSPs) to recover the stellar content, using for instance STARLIGHT or ULySS codes, hampers the reconstruction of the SFR (t) and AMR

  16. Star formation rate in the solar neighborhood

    NASA Astrophysics Data System (ADS)

    Cignoni, Michele

    2006-08-01

    This thesis develops a method for obtaining the star formation histories of a mixed, resolved population through the use of color-magnitude diagrams (CMDs). The method is applied to the derivation of the local star formation rate, modeling observations of the Hipparcos satellite wigth synthetic CMDs computed for different star formation histories with an updated stellar evolution library. Parallax and photometric uncertainties are included explicitly and corrected using the Bayesian Richardson-Lucy algorithm. We find that the solar neighborhood star formation rate has a characteristic timescale for variation of about 6 Gyr, with a maximum activity close to 3 Gyr ago. This suggests a global, rather than local, star forming event. The summary and conclusions are included here, the full thesis is available at the URL listed above.

  17. PROPERTIES OF LARGE-AMPLITUDE VARIABLE STARS DETECTED WITH TWO MICRON ALL SKY SURVEY PUBLIC IMAGES

    SciTech Connect

    Kouzuma, Shinjirou; Yamaoka, Hitoshi

    2009-11-15

    We present a catalog of variable stars in the near-infrared wavelength detected with overlapping regions of the Two Micron All Sky Survey public images, and discuss their properties. The investigated region is in the direction of the Galactic center (-30 deg. {approx}< l {approx}< 20 deg., |b| {approx}< 20 deg.), which covers the entire bulge. We have detected 136 variable stars, of which six are already known and 118 are distributed in the |b| {<=} 5 deg. region. Additionally, 84 variable stars have optical counterparts in Digitized Sky Survey images. The three diagrams (color-magnitude, light variance, and color-color diagrams) indicate that most of the detected variable stars should be large-amplitude and long-period variables such as Mira variables or OH/IR stars. The number density distribution of the detected variable stars implies that they trace the bar structure of the Galactic bulge.

  18. Multiple Stellar Populations in Star Clusters

    NASA Astrophysics Data System (ADS)

    Piotto, G.

    2013-09-01

    For half a century it had been astronomical dogma that a globular cluster (GC) consists of stars born at the same time out of the same material, and this doctrine has borne rich fruits. In recent years, high resolution spectroscopy and high precision photometry (from space and ground-based observations) have shattered this paradigm, and the study of GC populations has acquired a new life that is now moving it in new directions. Evidence of multiple stellar populations have been identified in the color-magnitude diagrams of several Galactic and Magellanic Cloud GCs where they had never been imagined before.

  19. Deep Near-Infrared Observations of the W3 Main Star-forming Region

    NASA Astrophysics Data System (ADS)

    Ojha, D. K.; Tamura, M.; Nakajima, Y.; Fukagawa, M.; Sugitani, K.; Nagashima, C.; Nagayama, T.; Nagata, T.; Sato, S.; Pickles, A. J.; Ogura, K.

    2004-06-01

    We present a deep JHKs-band imaging survey of the W3 Main star-forming region, using the near-infrared camera SIRIUS mounted on the University of Hawaii 2.2 m telescope. The near-infrared survey covers an area of ~24 arcmin2 with 10 σ limiting magnitudes of ~19.0, 18.1, and 17.3 in the J, H, and Ks bands, respectively. We construct JHK color-color and J versus J-H and K versus H-K color-magnitude diagrams to identify young stellar objects and estimate their masses. Based on these color-color and color-magnitude diagrams, a rich population of young stellar objects is identified that is associated with the W3 Main region. A large number of previously unreported red sources (H-K>2) have also been detected around W3 Main. We argue that these red stars are most probably pre-main-sequence stars with intrinsic color excesses. We find that the slope of the Ks-band luminosity function (KLF) of W3 Main is lower than the typical values reported for young embedded clusters. The derived slope of the KLF is the same as that found in 1996 by Megeath and coworkers, from which analysis indicated that the W3 Main region has an age in the range of 0.3-1 Myr. Based on the comparison between models of pre-main-sequence stars and the observed color-magnitude diagram, we find that the stellar population in W3 Main is primarily composed of low-mass pre-main-sequence stars. We also report the detection of isolated young stars with large infrared excesses that are most probably in their earliest evolutionary phases.

  20. Stellar Properties of Asymptotic Giant Branch Stars in the Dwarf Irregular Galaxy IC 1613

    NASA Astrophysics Data System (ADS)

    Chun, S.-H.; Jung, M. Y.; Kang, M.; Jung, D.; Sohn, Y.-J.

    2015-08-01

    Broadband near-infrared images obtained with the WIRCam array of the Canada-France-Hawaii Telescope are used to investigate the properties of resolved asymptotic giant branch (AGB) stars in the dwarf irregular galaxy IC 1613. Combining our JHKs data with optical photometric data, AGB stars were selected in color-magnitude diagrams covering a wide range of wavelength. We examined the distribution of AGB stars in the (J-Ks, H-Ks) color-color diagram, and distinguished 140 carbon-rich and 306 oxygen-rich M giant AGB stars. The number ratio of C stars to M giants (C/M) was estimated, and the metallicity of IC 1613 was derived using the C/M ratio. We also examined the local C/M ratio as a function of radial distance from the center of the galaxy, and found a small negative gradient.

  1. ANCIENT STARS BEYOND THE LOCAL GROUP: RR LYRAE VARIABLES AND BLUE HORIZONTAL BRANCH STARS IN SCULPTOR GROUP DWARF GALAXIES

    SciTech Connect

    Da Costa, G. S.; Jerjen, H.; Rejkuba, M.; Grebel, E. K.

    2010-01-10

    We have used Hubble Space Telescope Advanced Camera for Surveys images to generate color-magnitude diagrams that reach below the magnitude of the horizontal branch in the Sculptor Group dwarf galaxies ESO294-010 and ESO410-005. In both diagrams, blue horizontal branch stars are unambiguously present, a signature of the existence of an ancient stellar population whose age is comparable to that of the Galactic halo globular clusters. The result is reinforced by the discovery of numerous RR Lyrae variables in both galaxies. The occurrence of these stars is the first direct confirmation of the existence of ancient stellar populations beyond the Local Group and indicates that star formation can occur at the earliest epochs even in low-density environments.

  2. Relating turbulent pressure and macroturbulence across the HR diagram with a possible link to γ Doradus stars

    NASA Astrophysics Data System (ADS)

    Grassitelli, L.; Fossati, L.; Langer, N.; Miglio, A.; Istrate, A. G.; Sanyal, D.

    2015-12-01

    A significant fraction of the envelope of low- and intermediate-mass stars is unstable to convection, leading to sub-surface turbulent motion. Here, we consider and include the effects of turbulence pressure in our stellar evolution calculations. In search of an observational signature, we compare the fractional contribution of turbulent pressure to the observed macroturbulent velocities in stars at different evolutionary stages. We find a strong correlation between the two quantities, similar to what was previously found for massive OB stars. We therefore argue that turbulent pressure fluctuations of finite amplitude may excite high-order, high-angular degree stellar oscillations, which manifest themselves at the surface an additional broadening of the spectral lines, i.e., macroturbulence, across most of the HR diagram. When considering the locations in the HR diagram where we expect high-order oscillations to be excited by stochastic turbulent pressure fluctuations, we find a close match with the observational γ Doradus instability strip, which indeed contains high-order, non-radial pulsators. We suggest that turbulent pressure fluctuations on a percentual level may contribute to the γ Dor phenomenon, calling for more detailed theoretical modeling in this direction. Appendices A and B are available in electronic form at http://www.aanda.org

  3. Cyclic variations in O-C diagrams of field RR Lyrae stars as a result of LiTE

    NASA Astrophysics Data System (ADS)

    Liška, J.; Skarka, M.; Zejda, M.; Mikulášek, Z.; de Villiers, S. N.

    2016-07-01

    This paper presents an extensive overview of known and proposed RR Lyrae stars in binaries. The aim is to revise and extend the list with new Galactic field systems. We utilized maxima timings for 11 RRab type stars with suspicious behaviour from the GEOS data base, and determined maxima timings from data of sky surveys and our own observations. This significantly extended the number of suitable maxima timings. We modelled the proposed Light Time Effect (LiTE) in O-C diagrams to determine orbital parameters for these systems. In contrast to recent studies, our analysis focused on decades-long periods instead of periods in the order of years. Secondary components were found to be predominantly low-mass objects. However, for RZ Cet and AT Ser the mass of the suspected companion of more than one solar mass suggests that it is a massive white dwarf, a neutron star or even a black hole. We found that the semimajor axes of the proposed orbits are between 1 and 20 au. Because the studied stars belong to the closest RR Lyraes, maximal angular distances between components during orbit should at least be between 1 and 13 mas and this improves the chance to detect both stars using current telescopes. However, our interpretation of the O-C diagrams as a consequence of the LiTE should be considered as preliminary without reliable spectroscopic measurements. On the other hand, our models give a prediction of the period and radial velocity evolution which should be sufficient for plausible proof of binarity.

  4. Cyclic variations in O-C diagrams of field RR Lyrae stars as a result of LiTE

    NASA Astrophysics Data System (ADS)

    Liška, J.; Skarka, M.; Zejda, M.; Mikulášek, Z.; de Villiers, S. N.

    2016-04-01

    This paper presents an extensive overview of known and proposed RR Lyrae stars in binaries. The aim is to revise and extend the list with new Galactic field systems. We utilized maxima timings for eleven RRab type stars with suspicious behaviour from the GEOS database, and determined maxima timings from data of sky surveys and our own observations. This significantly extended the number of suitable maxima timings. We modelled the proposed Light Time Effect (LiTE) in O-C diagrams to determine orbital parameters for these systems. In contrast to recent studies, our analysis focused on decades-long periods instead of periods in the order of years. Secondary components were found to be predominantly low-mass objects. However, for RZ Cet and AT Ser the mass of the suspected companion of more than one solar mass suggests that it is a massive white dwarf, a neutron star or even a black hole. We found that the semi-major axes of the proposed orbits are between 1 and 20 au. Because the studied stars belong to the closest RR Lyraes, maximal angular distances between components during orbit should at least be between 1 and 13 mas and this improves the chance to detect both stars using current telescopes. However, our interpretation of the O-C diagrams as a consequence of the LiTE should be considered as preliminary without reliable spectroscopic measurements. On the other hand our models give a prediction of the period and radial velocity evolution which should be sufficient for plausible proof of binarity.

  5. Encoding of the infrared excess in the NUVrK color diagram for star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Arnouts, S.; Le Floc'h, E.; Chevallard, J.; Johnson, B. D.; Ilbert, O.; Treyer, M.; Aussel, H.; Capak, P.; Sanders, D. B.; Scoville, N.; McCracken, H. J.; Milliard, B.; Pozzetti, L.; Salvato, M.

    2013-10-01

    We present an empirical method of assessing the star formation rate (SFR) of star-forming galaxies based on their locations in the rest-frame color-color diagram (NUV - r) vs. (r - K). By using the Spitzer 24 μm sample in the COSMOS field (~16 400 galaxies with 0.2 ≤ z ≤ 1.3) and a local GALEX-SDSS-SWIRE sample (~700 galaxies with z ≤ 0.2), we show that the mean infrared excess ⟨IRX⟩ = ⟨ LIR/LUV ⟩ can be described by a single vector, NRK , that combines the two colors. The calibration between ⟨IRX⟩ and NRK allows us to recover the IR luminosity, LIR, with an accuracy of σ ~ 0.21 for the COSMOS sample and 0.27 dex for the local one. The SFRs derived with this method agree with the ones based on the observed (UV+IR) luminosities and on the spectral energy distribution (SED) fitting for the vast majority (~85%) of the star-forming population. Thanks to a library of model galaxy SEDs with realistic prescriptions for the star formation history, we show that we need to include a two-component dust model (i.e., birth clouds and diffuse ISM) and a full distribution of galaxy inclinations in order to reproduce the behavior of the ⟨IRX⟩ stripes in the NUVrK diagram. In conclusion, the NRK method, based only on the rest-frame UV/optical colors available in most of the extragalactic fields, offers a simple alternative of assessing the SFR of star-forming galaxies in the absence of far-IR or spectral diagnostic observations. Appendices are available in electronic form at http://www.aanda.org

  6. Finding Young Stars in IC417

    NASA Astrophysics Data System (ADS)

    Odden, Caroline; Rebull, Luisa M.; Sanchez, Richard; Hall, Garrison; Dear, AnnaMaria; Hengel, Cassie; LaRocca, Mia; Lin, Samantha; Nix, Sabine; Sweckard, Teaghan; Wilhelm, Katie

    2016-01-01

    IC 417 is a young cluster in the constellation Auriga, towards the Galactic anti-center in the Perseus arm, at a distance of ~2.3 kpc. Previous studies suggested that there are young stars in this region; Camargo et al. (2012) identified several few-Myr-old clusters in this region from 2MASS clustering, and Jose et al. (2008) identified H-alpha excess sources. Since stars form from clouds of interstellar dust and gas, a signature of star formation is excess infrared (IR) emission, which is interpreted as evidence for circumstellar dust around young stars. We identified new candidate young stellar objects (YSOs) in IC 417 by incorporating near- and mid-infrared observations from the Wide-field Infrared Survey Explorer (WISE) and the Two Micron All-Sky Survey (2MASS). Infrared excess sources were identified by using a series of color cuts in various 2MASS/WISE color-magnitude and color-color diagrams following Koenig & Leisawitz (2014). We also assembled a list of OB and H-alpha stars from the literature, including those from Jose et al. (2008), and H-alpha bright stars from the IPHAS survey (Witham et al. 2008). Starting with this compiled list of approximately 200 interesting objects in the region, we then set about checking their reliability in three ways. We inspected the POSS, 2MASS, and WISE images of the sources. We assembled and inspected spectral energy distributions (SEDs) from archival data ranging from wavelengths of 0.7 to 22 um. Finally, we created and inspected color-color and color-magnitude diagrams. We find enough new YSO candidates to more than double the number yet identified in the IC 417 region. This research was made possible through the NASA/IPAC Teacher Archive Research Program (NITARP) and was funded by NASA Astrophysics Data Program.

  7. Phase diagram of Thomas-Fermi systems in the completely ionized regime of neutron star and pulsar crusts

    NASA Astrophysics Data System (ADS)

    Engstrom, Tyler; Crespi, Vincent; Owen, Ben

    2012-02-01

    The crusts of neutron stars in the regime between complete pressure ionization and neutron drip (ρ˜10^4-10^11 g/cc) contain an idealized form of condensed matter. There is simply a relativistic degenerate electron gas perturbed by Coulomb fields from nuclei, which tend to crystallize. Phase stability in these systems may play an important role in observable astrophysical phenomena, such as gravitational wave emission and pulsar period glitches. However, most lattice structure calculations to date have assumed zero dielectric response (nuclear Wigner crystal), or an over-simplified Yukawa pair potential to approximate screening effects. Relativistic Thomas-Fermi models give a reasonably good description of screening in the completely ionized regime, and they can be applied to non-magnetic neutron stars as well as some portions of pulsar and magnetar crusts, which are thought to have fields in excess of the surface dipole fields B˜10^12-10^15 gauss. For the relevant field strengths and temperatures, we present the single-component phase diagram of linear-response Thomas-Fermi systems, calculated using a combination of lattice dynamics and classical molecular dynamics. Possible observable consequences of the phase diagram will be discussed.

  8. Searching for Young Stars in Northern Orion

    NASA Astrophysics Data System (ADS)

    Urban, Laurie; Kraus, A.

    2011-01-01

    The Orion Molecular Cloud contains many known star-forming regions mostly located in the southern parts of the constellation. However, northern Orion is largely unsurveyed outside of a few well-established clusters meaning there could be more sites of ongoing star formation. We have conducted a search for young stars in northern Orion to find new star-forming regions. Using the MG1 Variable Star Survey we identified 2118 variable stars spanning a region of 30 deg2 from R.A.=4h 00m to 6h 30m and Dec=2.9 to 3.7 degrees. These stars’ variability could result from accretion or spots, which are common characteristics of young stars. We use several methods to detect candidate young stars from these data: selection cuts with color-magnitude diagrams (CMDs), measurement of proper motions and visual inspection of the source images. We make cuts to only include stars that have CMD positions consistent with the Orion sequence, have proper motions within 3 sigma of known Orion members, and are not contaminated by other nearby sources. These cuts identify an area between 5h 20m and 5h 52m in R.A. with a significant overdensity of 74 young star candidates. We will discuss in detail our selection cuts and the implication of these discoveries. This work was conducted by a Research Experience for Undergraduates (REU) position at the University of Hawai'i's Institute for Astronomy and funded by the NSF.

  9. CCD photometry of NGC 6101 - Another globular cluster with blue straggler stars

    NASA Technical Reports Server (NTRS)

    Sarajedini, Ata; Da Costa, G. S.

    1991-01-01

    Results are presented on CCD photometric observations of a large sample of stars in the southern globular cluster NGC 6101, and the procedures used to derive the color-magnitude (C-M) diagram of the cluster are described. No indication was found of any difference in age, at the less than 2 Gyr level, between NGC 6101 cluster and other clusters of similar abundance, such as M92. The C-M diagram revealed a significant blue straggler population. It was found that, in NGC 6101, these stars are more centrally concentrated than the cluster subgiants of similar magnitude, indicating that the blue stragglers have larger masses. Results on the magnitude and luminosity function of the sample are consistent with the bianry mass transfer or merger hypotheses for the origin of blue straggler stars.

  10. The structure and evolution of rich star clusters in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Elson, Rebecca A. W.

    1991-01-01

    The present evaluation of surface brightness profiles and color-magnitude diagrams for 18 rich star clusters in the LMC, whose ages range from 10 million to 1 billion years, notes that while the profiles of the older clusters are representable by models with King-like cores, those of many younger clusters resist such modeling in virtue of bumps, sharp 'shoulders', and central dips. If the clusters have undergone violent relaxation, then the small cores of the youngest ones may be indicative of formation from relatively 'cool' initial conditions. The sharp shoulders would then point point toward 'warmer' initial conditions, although they are alternatively explainable as signatures of merging subcondensations.

  11. The Local Group Dwarf Irregular Galaxy NGC 6822: new insight on its star formation history .

    NASA Astrophysics Data System (ADS)

    Fusco, F.; Buonanno, R.; Bono, G.; Cassisi, S.; Monelli, M.; Pietrinferni, A.; Hidalgo, S. L.; Aparicio, A.

    We present a new photometric analysis of the Local Group Dwarf Irregular Galaxy NGC 6822 based on archival Hubble Space Telescope Advanced Camera for Surveys images. The data correspond to three fields covering the south-east region of the galaxy; for each field F475W and F814W HST bands are available. For each field an accurate color magnitude diagram (F814W, F475W-F814W) has been obtained. Preliminary hints on the galaxy star formation history are presented based on the comparison with isochrones from "A Bag of Stellar Tracks and Isochrones" (BaSTI) database.

  12. A SECOND NEUTRON STAR IN M4?

    SciTech Connect

    Kaluzny, J.; Rozanska, A.; Rozyczka, M.; Krzeminski, W.; Thompson, Ian B.

    2012-05-01

    We show that the optical counterpart of the X-ray source CX 1 in M4 is a {approx}20th magnitude star, located in the color-magnitude diagram on (or very close to) the main sequence of the cluster, and exhibiting sinusoidal variations of the flux. We find the X-ray flux to be also periodically variable, with X-ray and optical minima coinciding. Stability of the optical light curve, lack of UV-excess, and unrealistic mean density resulting from period-density relation for semidetached systems speak against the original identification of CX 1 as a cataclysmic variable. We argue that the X-ray active component of this system is a neutron star (probably a millisecond pulsar).

  13. OCAAT: automated analysis of star cluster colour-magnitude diagrams for gauging the local distance scale

    NASA Astrophysics Data System (ADS)

    Perren, Gabriel I.; Vázquez, Ruben A.; Piatti, Andrés E.; Moitinho, André

    2014-05-01

    Star clusters are among the fundamental astrophysical objects used in setting the local distance scale. Despite its crucial importance, the accurate determination of the distances to the Magellanic Clouds (SMC/LMC) remains a fuzzy step in the cosmological distance ladder. The exquisite astrometry of the recently launched ESA Gaia mission is expected to deliver extremely accurate statistical parallaxes, and thus distances, to the SMC/LMC. However, an independent SMC/LMC distance determination via main sequence fitting of star clusters provides an important validation check point for the Gaia distances. This has been a valuable lesson learnt from the famous Hipparcos Pleiades distance discrepancy problem. Current observations will allow hundreds of LMC/SMC clusters to be analyzed in this light. Today, the most common approach for star cluster main sequence fitting is still by eye. The process is intrinsically subjective and affected by large uncertainties, especially when applied to poorly populated clusters. It is also, clearly, not an efficient route for addressing the analysis of hundreds, or thousands, of star clusters. These concerns, together with a new attitude towards advanced statistical techniques in astronomy and the availability of powerful computers, have led to the emergence of software packages designed for analyzing star cluster photometry. With a few rare exceptions, those packages are not publicly available. Here we present OCAAT (Open Cluster Automated Analysis Tool), a suite of publicly available open source tools that fully automatises cluster isochrone fitting. The code will be applied to a large set of hundreds of open clusters observed in the Washington system, located in the Milky Way and the Magellanic Clouds. This will allow us to generate an objective and homogeneous catalog of distances up to ~ 60 kpc along with its associated reddening, ages and metallicities and uncertainty estimates.

  14. VARIABILITY AND STAR FORMATION IN LEO T, THE LOWEST LUMINOSITY STAR-FORMING GALAXY KNOWN TODAY

    SciTech Connect

    Clementini, Gisella; Cignoni, Michele; Ramos, Rodrigo Contreras; Federici, Luciana; Tosi, Monica; Ripepi, Vincenzo; Marconi, Marcella; Musella, Ilaria E-mail: rodrigo.contreras@oabo.inaf.it E-mail: monica.tosi@oabo.inaf.it E-mail: ripepi@na.astro.it E-mail: ilaria@na.astro.it

    2012-09-10

    We present results from the first combined study of variable stars and star formation history (SFH) of the Milky Way 'ultra-faint' dwarf (UFD) galaxy Leo T, based on F606W and F814W multi-epoch archive observations obtained with the Wide Field Planetary Camera 2 on board the Hubble Space Telescope. We have detected 14 variable stars in the galaxy. They include one fundamental-mode RR Lyrae star and 11 Anomalous Cepheids with periods shorter than 1 day, thus suggesting the occurrence of multiple star formation episodes in this UFD, of which one about 10 Gyr ago produced the RR Lyrae star. A new estimate of the distance to Leo T of 409{sup +29}{sub -27} kpc (distance modulus of 23.06 {+-} 0.15 mag) was derived from the galaxy's RR Lyrae star. Our V, V - I color-magnitude diagram (CMD) of Leo T reaches V {approx} 29 mag and shows features typical of a galaxy in transition between dwarf irregular and dwarf spheroidal types. A quantitative analysis of the SFH, based on the comparison of the observed V, V - I CMD with the expected distribution of stars for different evolutionary scenarios, confirms that Leo T has a complex SFH dominated by two enhanced periods about 1.5 and 9 Gyr ago, respectively. The distribution of stars and gas shows that the galaxy has a fairly asymmetric structure.

  15. The Optical Gravitational Lensing Experiment. The OGLE-III Catalog of Variable Stars. II.Type II Cepheids and Anomalous Cepheids in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Soszyński, I.; Udalski, A.; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Wyrzykowski, Ł.; Szewczyk, O.; Ulaczyk, K.; Poleski, R.

    2008-12-01

    In the second part of the OGLE-III Catalog of Variable Stars (OIII-CVS) we present 197 type II Cepheids and 83 anomalous Cepheids in the Large Magellanic Cloud (LMC). The sample of type II Cepheids consists of 64 BL Her stars, 96 W Vir stars and 37 RV Tau stars. Anomalous Cepheids are divided into 62 fundamental-mode and 21 first-overtone pulsators. These are the largest samples of such types of variable stars detected anywhere outside the Galaxy. We present the period-luminosity and color-magnitude diagrams of stars in the sample. If the boundary period between BL Her and W Vir stars is adopted at 4 days, both groups differ significantly in (V-I) colors. We identify a group of 16 peculiar W Vir stars with different appearance of the light curves, brighter and bluer than ordinary stars of that type. Four of these peculiar W Vir stars show additional eclipsing modulation superimposed on the pulsation light curves. Four other stars of that type show long-period secondary variations which may be ellipsoidal modulations. It suggests that peculiar W Vir subgroup may be related to binarity. In total, we identified seven type II Cepheids simultaneously exhibiting eclipsing variations which is a very large fraction compared to classical Cepheids in the LMC. We discuss diagrams showing Fourier parameters of the light curve decomposition against periods. Three sharp features interpreted as an effect of resonances between radial modes are detectable in these diagrams for type II Cepheids.

  16. On the Role Played by Lines in Radiatively Driven Stellar Winds Depending on the Position of the Stars in the HR Diagram

    NASA Technical Reports Server (NTRS)

    Migozzi, M. C.; Lafon, J. P. J.

    1985-01-01

    The radiative force due to transfer in ultraviolet lines is always an important mechanism in hot star wind dynamics. However, it is not clear when it is the dominant mechanism and which are the noise parameters. To investigate the efficiency of purely radiative momentum/energy transfer in hot star winds and in various regions of the HR diagram, the Leroy and Lafon model was improved and put to its limits; correlations between the mass loss rate, the luminosity and other parameters and the theoretical and the observational results, looking for observed stars violating the model were compared. It is concluded that in widespread region of the HR diagram, line driven models are consistent with observations, the radiative equilibrium physics is relevant throughout the expanding atmospheres and the mass loss rate is quasilinearly correlated with the luminosity.

  17. New Galactic star clusters discovered in the VVV survey

    NASA Astrophysics Data System (ADS)

    Borissova, J.; Bonatto, C.; Kurtev, R.; Clarke, J. R. A.; Peñaloza, F.; Sale, S. E.; Minniti, D.; Alonso-García, J.; Artigau, E.; Barbá, R.; Bica, E.; Baume, G. L.; Catelan, M.; Chenè, A. N.; Dias, B.; Folkes, S. L.; Froebrich, D.; Geisler, D.; de Grijs, R.; Hanson, M. M.; Hempel, M.; Ivanov, V. D.; Kumar, M. S. N.; Lucas, P.; Mauro, F.; Moni Bidin, C.; Rejkuba, M.; Saito, R. K.; Tamura, M.; Toledo, I.

    2011-08-01

    Context. VISTA Variables in the Vía Láctea (VVV) is one of the six ESO Public Surveys operating on the new 4-m Visible and Infrared Survey Telescope for Astronomy (VISTA). VVV is scanning the Milky Way bulge and an adjacent section of the disk, where star formation activity is high. One of the principal goals of the VVV Survey is to find new star clusters of differentages. Aims: In order to trace the early epochs of star cluster formation we concentrated our search in the directions to those of known star formation regions, masers, radio, and infrared sources. Methods: The disk area covered by VVV was visually inspected using the pipeline processed and calibrated KS-band tile images for stellar overdensities. Subsequently, we examined the composite JHKS and ZJKS color images of each candidate. PSF photometry of 15 × 15 arcmin fields centered on the candidates was then performed on the Cambridge Astronomy Survey Unit reduced images. After statistical field-star decontamination, color-magnitude and color-color diagrams were constructed and analyzed. Results: We report the discovery of 96 new infrared open clusters and stellar groups. Most of the new cluster candidates are faint and compact (with small angular sizes), highly reddened, and younger than 5 Myr. For relatively well populated cluster candidates we derived their fundamental parameters such as reddening, distance, and age by fitting the solar-metallicity Padova isochrones to the color-magnitude diagrams. Based on observations gathered with VIRCAM, VISTA of the ESO as part of observing programs 172.B-2002Appendix A is available in electronic form at http://www.aanda.orgTable 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/532/A131

  18. A Near-Infrared Study of the NGC 7538 Star-forming Region

    NASA Astrophysics Data System (ADS)

    Ojha, D. K.; Tamura, M.; Nakajima, Y.; Fukagawa, M.; Sugitani, K.; Nagashima, C.; Nagayama, T.; Nagata, T.; Sato, S.; Vig, S.; Ghosh, S. K.; Pickles, A. J.; Momose, M.; Ogura, K.

    2004-12-01

    We present subarcsecond (FWHM~0.7"), near-infrared (NIR) JHKs-band images and a high-sensitivity radio continuum image at 1280 MHz, using SIRIUS on the University of Hawaii 88 inch (2.2 m) telescope and the Giant Metrewave Radio Telescope (GMRT). The NIR survey covers an area of ~24 arcmin2 with 10 σ limiting magnitudes of ~19.5, 18.4, and 17.3 in the J, H, and Ks bands, respectively. Our NIR images are deeper than any JHK surveys to date for the larger area of the NGC 7538 star-forming region. We construct JHK color-color and J-H/J and H-K/K color-magnitude diagrams to identify young stellar objects (YSOs) and to estimate their masses. Based on these color-color and color-magnitude diagrams, we identified a rich population of YSOs (Class I and Class II) associated with the NGC 7538 region. A large number of red sources (H-K>2) have also been detected around NGC 7538. We argue that these red stars are most probably pre-main-sequence stars with intrinsic color excesses. Most of the YSOs in NGC 7538 are arranged from the northwest toward the southeast regions, forming a sequence in age: a diffuse H II region (northwest and oldest, where most of the Class II and Class I sources are detected), a compact IR core (center), and regions with an extensive IR reflection nebula and a cluster of red young stars (southeast and south). We find that the slope of the Ks-band luminosity function of NGC 7538 is lower than the typical values reported for young embedded clusters, although equally low values have also been reported in the W3 Main star-forming region. From the slope of the Ks-band luminosity function and the analysis by Megeath and coworkers, we infer that the embedded stellar population is composed of YSOs with an age of ~1 Myr. Based on the comparison of models of pre-main-sequence stars with the observed color-magnitude diagram, we find that the stellar population in NGC 7538 is primarily composed of low-mass pre-main-sequence stars similar to those observed in the

  19. Ages of intermediate-age Magellanic Cloud star clusters

    NASA Technical Reports Server (NTRS)

    Flower, P. J.

    1984-01-01

    Ages of intermediate-age Large Magellanic Cloud star clusters have been estimated without locating the faint, unevolved portion of cluster main sequences. Six clusters with established color-magnitude diagrams were selected for study: SL 868, NGC 1783, NGC 1868, NGC 2121, NGC 2209, and NGC 2231. Since red giant photometry is more accurate than the necessarily fainter main-sequence photometry, the distributions of red giants on the cluster color-magnitude diagrams were compared to a grid of 33 stellar evolutionary tracks, evolved from the main sequence through core-helium exhaustion, spanning the expected mass and metallicity range for Magellanic Cloud cluster red giants. The time-dependent behavior of the luminosity of the model red giants was used to estimate cluster ages from the observed cluster red giant luminosities. Except for the possibility of SL 868 being an old globular cluster, all clusters studied were found to have ages less than 10 to the 9th yr. It is concluded that there is currently no substantial evidence for a major cluster population of large, populous clusters greater than 10 to the 9th yr old in the Large Magellanic Cloud.

  20. Dissecting 30 Doradus: Optical and Near Infrared Star Formation History of the starburst cluster NGC2070 from the Hubble Tarantula Treasury Project

    NASA Astrophysics Data System (ADS)

    Cignoni, Michele

    2015-08-01

    I will present new results on the star formation history of 30 Doradus in the Large Magellanic Cloud based on the panchromatic imaging survey Hubble Tarantula Treasury Project (HTTP). Here the focus is on the starburst cluster NGC2070. The star formation history is derived by comparing the deepest ever optical and NIR color-magnitude diagrams (CMDs) with state-of-the-art synthetic CMDs generated with the latest PARSEC models, which include all stellar phases from pre-main sequence (PMS) to post-main sequence. For the first time in this region we are able to measure the star formation using intermediate and low mass stars simultaneously. Our results suggest that NGC2070 experienced a prolonged activity. I will discuss the detailed star formation history, initial mass function and reddening distribution and how these relate to previous studies of this starburst region.

  1. CAN WE PREDICT THE GLOBAL MAGNETIC TOPOLOGY OF A PRE-MAIN-SEQUENCE STAR FROM ITS POSITION IN THE HERTZSPRUNG-RUSSELL DIAGRAM?

    SciTech Connect

    Gregory, S. G.; Hillenbrand, L. A.; Donati, J.-F.; Morin, J.; Hussain, G. A. J.; Mayne, N. J.; Jardine, M.

    2012-08-20

    Zeeman-Doppler imaging studies have shown that the magnetic fields of T Tauri stars can be significantly more complex than a simple dipole and can vary markedly between sources. We collect and summarize the magnetic field topology information obtained to date and present Hertzsprung-Russell (H-R) diagrams for the stars in the sample. Intriguingly, the large-scale field topology of a given pre-main-sequence (PMS) star is strongly dependent upon the stellar internal structure, with the strength of the dipole component of its multipolar magnetic field decaying rapidly with the development of a radiative core. Using the observational data as a basis, we argue that the general characteristics of the global magnetic field of a PMS star can be determined from its position in the H-R diagram. Moving from hotter and more luminous to cooler and less luminous stars across the PMS of the H-R diagram, we present evidence for four distinct magnetic topology regimes. Stars with large radiative cores, empirically estimated to be those with a core mass in excess of {approx}40% of the stellar mass, host highly complex and dominantly non-axisymmetric magnetic fields, while those with smaller radiative cores host axisymmetric fields with field modes of higher order than the dipole dominant (typically, but not always, the octupole). Fully convective stars above {approx}> 0.5 M{sub Sun} appear to host dominantly axisymmetric fields with strong (kilo-Gauss) dipole components. Based on similarities between the magnetic properties of PMS stars and main-sequence M-dwarfs with similar internal structures, we speculate that a bistable dynamo process operates for lower mass stars ({approx}< 0.5 M{sub Sun} at an age of a few Myr) and that they will be found to host a variety of magnetic field topologies. If the magnetic topology trends across the H-R diagram are confirmed, they may provide a new method of constraining PMS stellar evolution models.

  2. Homogeneous photometry and star counts in the field of 9 Galactic star clusters

    NASA Astrophysics Data System (ADS)

    Seleznev, A. F.; Carraro, G.; Costa, E.; Loktin, A. V.

    2010-01-01

    We present homogeneous V, I CCD photometry of nine stellar fields in the two inner quadrants of the Galactic plane. The lines-of-view to most of these fields aim in the direction of the very inner Galaxy, where the Galactic field is very dense, and extinction is high and patchy. Our nine fields are, according to several catalogs, centred on Galactic star clusters, namely Trumpler 13, Trumpler 20, Lynga 4, Hogg 19, Lynga 12, Trumpler 25, Trumpler 26, Ruprecht 128, and Trumpler 34. Apart from their coordinates, and in some cases additional basic data (mainly from the 2MASS archive), their properties are poorly known. By means of star count techniques and field star decontaminated Color Magnitude diagrams, the nature and size of these visual over-densities has been established; and, when possible, new cluster fundamental parameters have been derived. To strengthen our findings, we complement our data-set with JHKs photometry from the 2MASS archive, that we analyze using a suitably defined Q-parameter. Most clusters are projected towards the Carina-Sagittarium spiral arm. Because of that, we detect in the Color Magnitude diagrams of most of the other fields several distinctive sequences produced by young population within the arm. All the clusters are of intermediate or old age. The most interesting cases detected by our study are, perhaps, that of Trumpler 20, which seems to be much older than previously believed, as indicated by its prominent - and double - red clump; and that of Hogg 19, a previously overlooked old open cluster, whose existence in such regions of the Milky Way is puzzling.

  3. THE FIRST DETECTION OF BLUE STRAGGLER STARS IN THE MILKY WAY BULGE

    SciTech Connect

    Clarkson, W. I.; Rich, R. Michael; Sahu, Kailash C.; Anderson, Jay; Smith, T. Ed.; Brown, Thomas M.; Bond, Howard E.; Livio, Mario; Minniti, Dante; Zoccali, Manuela; Renzini, Alvio

    2011-07-01

    We report the first detections of Blue Straggler Stars (BSS) in the bulge of the Milky Way. Proper motions from extensive space-based observations along a single sight line allow us to separate a sufficiently clean and well-characterized bulge sample such that we are able to detect a small population of bulge objects in the region of the color-magnitude diagram commonly occupied by young objects and blue stragglers. Variability measurements of these objects clearly establish that a fraction of them are blue stragglers. Out of the 42 objects found in this region of the color-magnitude diagram, we estimate that at least 18 are genuine BSS. We normalize the BSS population by our estimate of the number of horizontal branch stars in the bulge in order to compare the bulge to other stellar systems. The BSS fraction is clearly discrepant from that found in stellar clusters. The blue straggler population of dwarf spheroidals remains a subject of debate; some authors claim an anticorrelation between the normalized blue straggler fraction and integrated light. If this trend is real, then the bulge may extend it by three orders of magnitude in mass. Conversely, we find that the genuinely young (<5 Gyr) population in the bulge, must be at most 3.4% under the most conservative scenario for the BSS population.

  4. Binary Origin of Blue Straggler Stars in Star Clusters

    NASA Astrophysics Data System (ADS)

    Xin, Yu

    2015-08-01

    Close-binary evolution is one of the major formation channels of blue straggler stars (BSSs). We present binary evolution models, including case-A and/or case-B mass transfer (MT) in the intermediate- and low-mass stars, to try to understand the binary origin of BSS populations in star clusters. With the help of Monte-Carlo simulations, we compared the distribution of our synthetic MT BSSs with observations in the color-magnitude diagram (CMD) of M67 and M30. The current results show that primordial binary MT can only contribute to a small part of BSSs in M67, and it can credibly explain the formation of the red-BSS sequence observed in the CMD of M30. We also analyzed the spectral properties of BSS populations in open clusters (OCs) based on the LAMOST data, and a small part of BSSs indeed present Carbon depletion compared with the main sequence stars, which indicate their binary origin. Unfortunately, a statistical resfult of how much the binary MT can contribute to BSS fomation in OCs still requires larger working sample.

  5. Probing the faintest stars in a globular star cluster.

    PubMed

    Richer, Harvey B; Anderson, Jay; Brewer, James; Davis, Saul; Fahlman, Gregory G; Hansen, Brad M S; Hurley, Jarrod; Kalirai, Jasonjot S; King, Ivan R; Reitzel, David; Rich, R Michael; Shara, Michael M; Stetson, Peter B

    2006-08-18

    NGC 6397 is the second closest globular star cluster to the Sun. Using 5 days of time on the Hubble Space Telescope, we have constructed an ultradeep color-magnitude diagram for this cluster. We see a clear truncation in each of its two major stellar sequences. Faint red main-sequence stars run out well above our observational limit and near to the theoretical prediction for the lowest mass stars capable of stable hydrogen burning in their cores. We also see a truncation in the number counts of faint blue stars, namely white dwarfs. This reflects the limit to which the bulk of the white dwarfs can cool over the lifetime of the cluster. There is also a turn toward bluer colors in the least luminous of these objects. This was predicted for the very coolest white dwarfs with hydrogen-rich atmospheres as the formation of H(2) and the resultant collision-induced absorption cause their atmospheres to become largely opaque to infrared radiation. PMID:16917054

  6. Milky Way demographics with the VVV survey. I. The 84-million star colour-magnitude diagram of the Galactic bulge

    NASA Astrophysics Data System (ADS)

    Saito, R. K.; Minniti, D.; Dias, B.; Hempel, M.; Rejkuba, M.; Alonso-García, J.; Barbuy, B.; Catelan, M.; Emerson, J. P.; Gonzalez, O. A.; Lucas, P. W.; Zoccali, M.

    2012-08-01

    Context. The Milky Way (MW) bulge is a fundamental Galactic component for understanding the formation and evolution of galaxies, in particular our own. The ESO Public Survey VISTA Variables in the Vía Láctea is a deep near-IR survey mapping the Galactic bulge and southern plane. Particularly for the bulge area, VVV is covering ~315 deg2. Data taken during 2010 and 2011 covered the entire bulge area in the JHKs bands. Aims: We used VVV data for the whole bulge area as a single and homogeneous data set to build for the first time a single colour - magnitude diagram (CMD) for the entire Galactic bulge. Methods: Photometric data in the JHKs bands were combined to produce a single and huge data set containing 173 150 467 sources in the three bands, for the ~315 deg2 covered by VVV in the bulge. Selecting only the data points flagged as stellar, the total number of sources is 84 095 284. Results: We built the largest colour-magnitude diagrams published up to date, containing 173.1+ million sources for all data points, and more than 84.0 million sources accounting for the stellar sources only. The CMD has a complex shape, mostly owing to the complexity of the stellar population and the effects of extinction and reddening towards the Galactic centre. The red clump (RC) giants are seen double in magnitude at b ~ -8° -10°, while in the inner part (b ~ -3°) they appear to be spreading in colour, or even splitting into a secondary peak. Stellar population models show the predominance of main-sequence and giant stars. The analysis of the outermost bulge area reveals a well-defined sequence of late K and M dwarfs, seen at (J - Ks) ~ 0.7-0.9 mag and Ks ≳ 14 mag. Conclusions: The interpretation of the CMD yields important information about the MW bulge, showing the fingerprint of its structure and content. We report a well-defined red dwarf sequence in the outermost bulge, which is important for the planetary transit searches of VVV. The double RC in magnitude seen in the

  7. Photometric binary stars in Praesepe and the search for globular cluster binaries

    NASA Technical Reports Server (NTRS)

    Bolte, Michael

    1991-01-01

    A radial velocity study of the stars which are located on a second sequence above the single-star zero-age main sequence at a given color in the color-magnitude diagram of the open cluster Praesepe, (NGC 2632) shows that 10, and possibly 11, of 17 are binary systems. Of the binary systems, five have full amplitudes for their velocity variations that are greater than 50 km/s. To the extent that they can be applied to globular clusters, these results suggests that (1) observations of 'second-sequence' stars in globular clusters would be an efficient way of finding main-sequence binary systems in globulars, and (2) current instrumentation on large telescopes is sufficient for establishing unambiguously the existence of main-sequence binary systems in nearby globular clusters.

  8. Not-so-simple stellar populations in the intermediate-age Large Magellanic Cloud star clusters NGC 1831 and NGC 1868

    SciTech Connect

    Li, Chengyuan; De Grijs, Richard; Deng, Licai E-mail: grijs@pku.edu.cn

    2014-04-01

    Using a combination of high-resolution Hubble Space Telescope/Wide-Field and Planetary Camera-2 observations, we explore the physical properties of the stellar populations in two intermediate-age star clusters, NGC 1831 and NGC 1868, in the Large Magellanic Cloud based on their color-magnitude diagrams. We show that both clusters exhibit extended main-sequence turn offs. To explain the observations, we consider variations in helium abundance, binarity, age dispersions, and the fast rotation of the clusters' member stars. The observed narrow main sequence excludes significant variations in helium abundance in both clusters. We first establish the clusters' main-sequence binary fractions using the bulk of the clusters' main-sequence stellar populations ≳ 1 mag below their turn-offs. The extent of the turn-off regions in color-magnitude space, corrected for the effects of binarity, implies that age spreads of order 300 Myr may be inferred for both clusters if the stellar distributions in color-magnitude space were entirely due to the presence of multiple populations characterized by an age range. Invoking rapid rotation of the population of cluster members characterized by a single age also allows us to match the observed data in detail. However, when taking into account the extent of the red clump in color-magnitude space, we encounter an apparent conflict for NGC 1831 between the age dispersion derived from that based on the extent of the main-sequence turn off and that implied by the compact red clump. We therefore conclude that, for this cluster, variations in stellar rotation rate are preferred over an age dispersion. For NGC 1868, both models perform equally well.

  9. The Dearth of UV-bright Stars in M32: Implications for Stellar Evolution Theory

    NASA Technical Reports Server (NTRS)

    Sweigart, Allen V.; Kimble, Randy A.; Bowers, Charles W.

    2008-01-01

    Using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope, we have obtained deep far ultraviolet images of the compact elliptical galaxy M32. When combined with earlier near-ultraviolet images of the same field, these data enable the construction of an ultraviolet color-magnitude diagram of the hot horizontal branch (HB) population and other hot stars in late phases of stellar evolution. We find few post-asymptotic giant branch (PAGB) stars in the galaxy, implying that these stars either cross the HR diagram more rapidly than expected, and/or that they spend a significant fraction of their time enshrouded in circumstellar material. The predicted luminosity gap between the hot HB and its AGB-Manque (AGBM) progeny is less pronounced than expected, especially when compared to evolutionary tracks with enhanced helium abundances, implying that the presence of hot HB stars in this metal-rich population is not due to (Delta)Y/(Delta)Z greater than or approx. 4. Only a small fraction (approx. 2%) of the HB population is hot enough to produce significant UV emission, yet most of the W emission in this galaxy comes from the hot HB and AGBM stars, implying that PAGB stars are not a significant source of W emission even in those elliptical galaxies with a weak W excess. Subject headings: galaxies: evolution - galaxies: stellar content - galaxies: individual (M32) - stars: evolution - stars: horizontal branch

  10. A SIMPLE NONLINEAR MODEL FOR THE ROTATION OF MAIN-SEQUENCE COOL STARS. I. INTRODUCTION, IMPLICATIONS FOR GYROCHRONOLOGY, AND COLOR-PERIOD DIAGRAMS

    SciTech Connect

    Barnes, Sydney A.

    2010-10-10

    We here introduce a simple nonlinear model to describe the rotational evolution of cool stars on the main sequence. It is formulated only in terms of the Rossby number (Ro = P/{tau}), its inverse, and two dimensionless constants which we specify using solar and open-cluster data. The model has two limiting cases of stellar rotation, previously called C and I, that correspond to two observed sequences of fast and slowly rotating stars in young open clusters. The model describes the evolution of stars from C-type, with particular mass and age dependencies, to I-type, with different mass and age dependencies, through the rotational gap, g, separating them. The proposed model explains various aspects of stellar rotation, and provides an exact expression for the age of a rotating cool star in terms of P and {tau}, thereby generalizing gyrochronology. Using it, we calculate the time interval required for stars to reach the rotational gap-a monotonically increasing, mildly nonlinear function of {tau}. Beginning with the range of initial periods indicated by observations, we show that the (mass-dependent) dispersion in rotation period initially increases, and then decreases rapidly with the passage of time. The initial dispersion in period contributes up to 128 Myr to the gyro-age errors of solar-mass field stars. Finally, we transform to color-period space, calculate appropriate isochrones, and show that this model explains some detailed features in the observed color-period diagrams of open clusters, including the positions and shapes of the sequences, and the observed density of stars across these diagrams.

  11. Spitzer SAGE-Spec: Near Infrared Spectroscopy, Dust Shells, and Cool Envelopes in Extreme Large Magellanic Cloud Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Blum, R. D.; Srinivasan, S.; Kemper, F.; Ling, B.; Volk, K.

    2014-11-01

    K-band spectra are presented for a sample of 39 Spitzer Infrared Spectrograph (IRS) SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near-infrared—Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near-infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars was chosen from the luminous and red extreme ``tip" of the color-magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich ``stellar" cores. Modest amounts of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near-infrared and mid-infrared colors. One object in our sample, HV 915, a known post-asymptotic giant branch star of the RV Tau type, exhibits CO 2.3 μm band head emission consistent with previous work that demonstrates that the object has a circumstellar disk. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  12. Spitzer SAGE-Spec: Near infrared spectroscopy, dust shells, and cool envelopes in extreme Large Magellanic Cloud asymptotic giant branch stars

    SciTech Connect

    Blum, R. D.; Srinivasan, S.; Kemper, F.; Ling, B.

    2014-11-01

    K-band spectra are presented for a sample of 39 Spitzer Infrared Spectrograph (IRS) SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near-infrared—Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near-infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars was chosen from the luminous and red extreme ''tip'' of the color-magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich ''stellar'' cores. Modest amounts of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near-infrared and mid-infrared colors. One object in our sample, HV 915, a known post-asymptotic giant branch star of the RV Tau type, exhibits CO 2.3 μm band head emission consistent with previous work that demonstrates that the object has a circumstellar disk.

  13. AN INFRARED CENSUS OF STAR FORMATION IN THE HORSEHEAD NEBULA

    SciTech Connect

    Bowler, Brendan P.; Waller, William H.; Megeath, S. Thomas; Patten, Brian M.; Tamura, Motohide E-mail: william.waller@tufts.edu E-mail: bpatten@nsf.gov

    2009-03-15

    At {approx} 400 pc, the Horsehead Nebula (B33) is the closest radiatively sculpted pillar to the Sun, but the state and extent of star formation in this structure is not well understood. We present deep near-infrared (IRSF/SIRIUS JHK {sub S}) and mid-infrared (Spitzer/IRAC) observations of the Horsehead Nebula to characterize the star-forming properties of this region and to assess the likelihood of triggered star formation. Infrared color-color and color-magnitude diagrams are used to identify young stars based on infrared excess emission and positions to the right of the zero-age main sequence, respectively. Of the 45 sources detected at both near- and mid-infrared wavelengths, three bona fide and five candidate young stars are identified in this 7' x 7' region. Two bona fide young stars have flat infrared spectral energy distributions and are located at the western irradiated tip of the pillar. The spatial coincidence of the protostars at the leading edge of this elephant trunk is consistent with the radiation-driven implosion model of triggered star formation. There is no evidence, however, for sequential star formation within the immediate {approx} 1.'5 (0.17 pc) region from the cloud/H II region interface.

  14. The Problem of Hipparcos Distances to Open Clusters. II. Constraints from Nearby Field Theory. Report 2; ClustersConstraints from nearly Field Stars

    NASA Technical Reports Server (NTRS)

    Soderblom, David R.; King, Jeremy R.; Hanson, Robert B.; Jones, Burton F.; Fischer, Debra; Stauffer, John R.; Pinsonneault, Marc H.

    1998-01-01

    This paper examines the discrepancy between distances to nearby open clusters as determined by parallaxes from Hipparcos compared to traditional main-sequence fitting. The biggest difference is seen for the Pleiades, and our hypothesis is that if the Hipparcos distance to the Pleiades is correct, then similar subluminous zero-age main-sequence (ZAMS) stars should exist elsewhere, including in the immediate solar neighborhood. We examine a color-magnitude diagram of very young and nearby solar-type stars and show that none of them lie below the traditional ZAMS, despite the fact that the Hipparcos Pleiades parallax would place its members 0.3 mag below that ZAMS. We also present analyses and observations of solar-type stars that do lie below the ZAMS, and we show that they are subluminous because of low metallicity and that they have the kinematics of old stars.

  15. Hertzsprung-Russell Diagram

    NASA Astrophysics Data System (ADS)

    Chiosi, C.; Murdin, P.

    2000-11-01

    The Hertzsprung-Russell diagram (HR-diagram), pioneered independently by EJNAR HERTZSPRUNG and HENRY NORRIS RUSSELL, is a plot of the star luminosity versus the surface temperature. It stems from the basic relation for an object emitting thermal radiation as a black body: ...

  16. The Hertzsprung-Russell Diagram.

    ERIC Educational Resources Information Center

    Woodrow, Janice

    1991-01-01

    Describes a classroom use of the Hertzsprung-Russell diagram to infer not only the properties of a star but also the star's probable stage in evolution, life span, and age of the cluster in which it is located. (ZWH)

  17. SPITZER SAGE-SMC INFRARED PHOTOMETRY OF MASSIVE STARS IN THE SMALL MAGELLANIC CLOUD

    SciTech Connect

    Bonanos, A. Z.; Lennon, D. J.; Massa, D. L. E-mail: lennon@stsci.ed

    2010-08-15

    We present a catalog of 5324 massive stars in the Small Magellanic Cloud (SMC), with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 3654 of these stars, with the goal of exploring their infrared properties. The photometric catalog consists of stars with infrared counterparts in the Spitzer SAGE-SMC survey database, for which we present uniform photometry from 0.3to24 {mu}m in the UBVIJHK{sub s} +IRAC+MIPS24 bands. We compare the color-magnitude diagrams and color-color diagrams to those of stars in the Large Magellanic Cloud (LMC), finding that the brightest infrared sources in the SMC are also the red supergiants, supergiant B[e] (sgB[e]) stars, luminous blue variables, and Wolf-Rayet stars, with the latter exhibiting less infrared excess, the red supergiants being less dusty and the sgB[e] stars being on average less luminous. Among the objects detected at 24 {mu}m in the SMC are a few very luminous hypergiants, four B-type stars with peculiar, flat spectral energy distributions, and all three known luminous blue variables. We detect a distinct Be star sequence, displaced to the red, and suggest a novel method of confirming Be star candidates photometrically. We find a higher fraction of Oe and Be stars among O and early-B stars in our SMC catalog, respectively, when compared to the LMC catalog, and that the SMC Be stars occur at higher luminosities. We estimate mass-loss rates for the red supergiants, confirming the correlation with luminosity even at the metallicity of the SMC. Finally, we confirm the new class of stars displaying composite A and F type spectra, the sgB[e] nature of 2dFS1804 and find the F0 supergiant 2dFS3528 to be a candidate luminous blue variable with cold dust.

  18. The Main-Sequence Stars of the Sagittarius Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Fahlman, G. G.; Mandushev, G.; Richer, H. B.; Thompson, I. B.; Sivaramakrishnan, A.

    1996-03-01

    The Sagittarius dwarf galaxy (SDG) is visible in the background field of the globular cluster M55. We present a deep VI color-magnitude diagram (CMD) of M55, which shows a prominent sequence of stars some 3.5 mag below the cluster main sequence. Through a comparison with a similar CMD for the globular cluster M4, we show that the M55 background field is not the Galactic bulge or spheroid. The SDG main sequence is almost as blue as that of M55 and thus, if it is metal rich, it must be younger than M55, a typical old Galactic globular cluster. The results from isochrone fitting indicate that the age of the SDG is 10--14 Gyr, similar to the ages inferred for the two associated globular clusters Ter 7 and Arp 2.

  19. The Star Formation History of the Leo I Dwarf Spheroidal Galaxy

    NASA Astrophysics Data System (ADS)

    Smecker-Hane, Tammy A.; Marsteller, B.; Cole, A.; Bullock, J.; Gallagher, J. S.

    2009-01-01

    We report on results of new deep imaging obtained with the Hubble Space Telescope (HST) Advance Camera for Surveys (ACS) that show the Leo I dwarf Spheroidal (dSph) galaxy has a much larger population of ancient (>10 Gyr old) stars than previously determined with shallower WFPC2 imaging (Gallart et al. 1999, Dolphin 2003), as well as the previously identified component of intermediate-aged stars. Our new imaging is much deeper, which allows us to unambiguously identify the main sequence turnoffs of the ancient population and constrain the star formation rate at the epoch of the formation of the "first stars” in this galaxy. We will determine the galaxy's star formation rate as a function of time from the observed density of stars in the color-magnitude diagram by comparing with Padova stellar evolutionary models (Girardi et al. 2000). We compare and contrast the star formation histories of the Leo I dSph, which is currently devoid of any gas, with that of the gas-rich Leo A dIrr galaxy. The two are very different in that the dSph formed most of its stars early and the dIrr formed most of its stars later, however both have been actively forming stars over most of the age of the universe.

  20. A long history of star formation in a low mass stellar system, Leo T

    NASA Astrophysics Data System (ADS)

    Cignoni, M.; Clementini, G.; Contreras Ramos, R.; Federici, L.; Ripepi, V.; Marconi, M.; Tosi, M.; Musella, I.

    Nearby star-forming dwarf galaxies with small masses and low metallicity offer insights into the cosmic history of galaxy assembly. In this framework, we present results from the first combined study of variable stars and star formation history of the Milky Way (MW) "Ultra-Faint" dwarf (UFD) galaxy Leo T, based on F606W and F814W multi-epoch archive observations obtained with the Wide Field Planetary Camera 2 on board the Hubble Space Telescope. We have detected 14 variable stars in the galaxy, including one fundamental-mode RR Lyrae star and 10 Anomalous Cepheids with periods shorter than 1 day, thus suggesting the occurrence of multiple star formation episodes in this UFD, one of which about 10 Gyr ago produced the RR Lyrae star. A quantitative analysis of the star formation history, based on the comparison of the observed color-magnitude diagram (CMD) with a library of artificially generated CMDs, confirms that Leo T has experienced a complex star formation history dominated by two enhanced periods about 1.5 and 8 Gyr ago, respectively.

  1. The Spatially-Resolved Star Formation History of the M31 Disk from Resolved Stellar Populations

    NASA Astrophysics Data System (ADS)

    Lewis, Alexia R.; Dalcanton, Julianne J.; Dolphin, Andrew E.; Weisz, Daniel R.; Williams, Benjamin F.

    2015-02-01

    The Panchromatic Hubble Andromeda Treasury (PHAT) is an HST multi-cycle treasury program that has mapped the resolved stellar populations of ~1/3 of the disk of M31 from the UV through the near-IR. This data provides color and luminosity information for more than 150 million stars. Using stellar evolution models, we model the optical color-magnitude diagram to derive spatially-resolved recent star formation histories (SFHs) over large areas of M31 with 100 pc resolution. These include individual star-forming regions as well as quiescent portions of the disk. With these gridded SFHs, we create movies of star formation activity to study the evolution of individual star-forming events across the disk. We analyze the structure of star formation and examine the relation between star formation and gas throughout the disk and particularly in the 10-kpc star-forming ring. We find that the ring has been continuously forming stars for at least 500 Myr. As the only large disk galaxy that is close enough to obtain the photometry for this type of spatially-resolved SFH mapping, M31 plays an important role in our understanding of the evolution of an L* galaxy.

  2. Dissecting star formation in N159

    NASA Astrophysics Data System (ADS)

    Indebetouw, Remy

    2013-10-01

    We propose to investigate star formation as a function of time, space, and mass in the Large Magellanic Cloud star formation region N159. We will combine HST photometry in V, I, J, H, and Halpha equivalent filters with our already scheduled Atacama Large {sub} Millimeter Array {ALMA; PI Fukui} and our existing Australia Telescope Compact Array {ATCA; PI Seale and PI Chen} observations. These datasets will allow us for the first time to completely characterize protostars, HII regions, and molecular gas in this reduced-metallicity region. The region is a remarkable laboratory, containing at once a spontaneously cluster-forming giant molecular cloud {GMC}, an arguably triggered star-forming GMC, and a more quiescent GMC.We will use color-magnitude diagram {CMD} and spectral energy distribution {SED} modeling to separate redenning, circumstellar dust emission, and pre-main-sequence spectral type for each star, mapping not only current star formation activity but its history {over the last 50Myr using pre-main-sequence stars, and over a Hubble time using classical CMD fitting}. We will use Halpha excess to further characterize the HII regions and all currently accreting protostars with ages up to 50 Myr. We will resolve many limitations of previous Spitzer-based star formation studies, and search for variations in the stellar initial mass function. We will test whether there is a gas density threshold for star formation, and investigate the extent to which environment and feedback also play a role in how galaxies evolve by turning gas into stars.

  3. Unexpected Series of Regular Frequency Spacing of δ Scuti Stars in the Non-asymptotic Regime. II. Sample–Echelle Diagrams and Rotation

    NASA Astrophysics Data System (ADS)

    Paparó, M.; Benkő, J. M.; Hareter, M.; Guzik, J. A.

    2016-06-01

    A sequence search method was developed for searching for regular frequency spacing in δ Scuti stars by visual inspection (VI) and algorithmic search. The sample contains 90 δ Scuti stars observed by CoRoT. An example is given to represent the VI. The algorithm (SSA) is described in detail. The data treatment of the CoRoT light curves, the criteria for frequency filtering, and the spacings derived by two methods (i.e., three approaches: VI, SSA, and FT) are given for each target. Echelle diagrams are presented for 77 targets for which at least one sequence of regular spacing was identified. Comparing the spacing and the shifts between pairs of echelle ridges revealed that at least one pair of echelle ridges is shifted to midway between the spacing for 22 stars. The estimated rotational frequencies compared to the shifts revealed rotationally split doublets, triplets, and multiplets not only for single frequencies, but for the complete echelle ridges in 31 δ Scuti stars. Using several possible assumptions for the origin of the spacings, we derived the large separation ({{Δ }}ν ) that are distributed along the mean density versus large separations relation derived from stellar models.

  4. Unexpected series of regular frequency spacing of δ Scuti stars in the non-asymptotic regime. II. Sample-Echelle diagrams and rotation

    DOE PAGESBeta

    Paparo, M.; Benko, J. M.; Hareter, M.; Guzik, J. A.

    2016-06-17

    A sequence search method was developed for searching for regular frequency spacing in δ Scuti stars by visual inspection (VI) and algorithmic search. The sample contains 90 δ Scuti stars observed by CoRoT. An example is given to represent the VI. The algorithm (SSA) is described in detail. The data treatment of the CoRoT light curves, the criteria for frequency filtering, and the spacings derived by two methods (i.e., three approaches: VI, SSA, and FT) are given for each target. Echelle diagrams are presented for 77 targets for which at least one sequence of regular spacing was identified. Comparing the spacing and the shifts between pairs of echelle ridges revealed that at least one pair of echelle ridges is shifted to midway between the spacing for 22 stars. The estimated rotational frequencies compared to the shifts revealed rotationally split doublets, triplets, and multiplets not only for single frequencies, but for the complete echelle ridges in 31 δ Scuti stars. Furthermore, using several possible assumptions for the origin of the spacings, we derived the large separation (more » $${\\rm{\\Delta }}\

  5. Near Infrared Spectroscopy and Imaging of Star Cluster Mercer 17

    NASA Astrophysics Data System (ADS)

    Moreau, Julie May; Clemens, D.; Jameson, K.; Pavel, M.; Pinnick, A.

    2010-01-01

    Mercer 17 is a recently discovered and as yet unstudied candidate star cluster located in the inner disk of the Milky Way (Mercer et al. 2005 ApJ 635, 560). Follow up studies are necessary to test the validity of proposed star clusters identified by imaging. The majority of well studied star clusters are outer galaxy clusters because of decreased extinction there. Using infrared enables probing into the inner galaxy to larger distances and to younger environments. Determining the basic properties of these newly discovered star cluster candidates, like Mercer 17, provides new insight into their formation. We obtained medium resolution (R=560-780) H- and K-band spectroscopy for eight of the brightest stars using the Mimir near-infrared instrument on the Perkins 1.83m telescope outside Flagstaff, Arizona. In addition to the spectroscopy observations, deep JHK band photometry was obtained for the cluster. Using these imaging and spectroscopic data, we present classified spectra and derived magnitudes of the stars in Mercer 17. Combining color magnitude diagrams and spectroscopy, we estimate basic cluster properties including age, distance, and total mass. Partially funded by an Undergraduate Research Opportunities Program (UROP) Award as a Clare Boothe Luce Summer Undergraduate Research Fellow and NSF grants AST 06-07500 and AST 09-07790

  6. MIDCOURSE SPACE EXPERIMENT VERSUS IRAS TWO-COLOR DIAGRAMS AND THE CIRCUMSTELLAR ENVELOPE-SEQUENCE OF OXYGEN-RICH LATE-TYPE STARS

    SciTech Connect

    Sjouwerman, Lorant O.; Capen, Stephanie M.; Claussen, Mark J. E-mail: stephanie.m.capen@enc.ed

    2009-11-10

    We present Midcourse Space Experiment (MSX) two-color diagrams that can be used to characterize circumstellar environments of sources with good quality MSX colors in terms of IRAS color regions for oxygen-rich stars. With these diagrams, we aim to provide a new tool that can be used to study circumstellar environments and to improve detection rates for targeted surveys for circumstellar maser emission similar to the IRAS two-color diagram. This new tool is especially useful for regions in the sky where IRAS was confused, in particular in the Galactic plane and bulge region. Unfortunately, using MSX colors alone does not allow one to distinguish between carbon-rich and oxygen-rich objects. An application of this tool on 86 GHz SiO masers shows that for this type of masers an instantaneous detection rate of 60% to 80% can be achieved if target sources are selected according to MSX color (region). Our investigations may have revealed an error in the MSX point source catalog version 2.3. That is, the photometry of the 21.3 mum (MSX E filter) band for most weak 8.28 mum (or MSX A filter) band sources seems off by about a factor 2 (0.5-1 mag too bright).

  7. WIDE-FIELD SURVEY OF EMISSION-LINE STARS IN IC 1396

    SciTech Connect

    Nakano, M.; Sugitani, K.; Watanabe, M.; Fukuda, N.; Ishihara, D.; Ueno, M.

    2012-03-15

    We have made an extensive survey of emission-line stars in the IC 1396 H II region to investigate the low-mass population of pre-main-sequence (PMS) stars. A total of 639 H{alpha} emission-line stars were detected in an area of 4.2 deg{sup 2} and their i' photometry was measured. Their spatial distribution exhibits several aggregates near the elephant trunk globule (Rim A) and bright-rimmed clouds at the edge of the H II region (Rim B and SFO 37, 38, 39, 41), and near HD 206267, which is the main exciting star of the H II region. Based on the extinction estimated from the near-infrared color-color diagram, we have selected PMS star candidates associated with IC 1396. The age and mass were derived from the extinction-corrected color-magnitude diagram and theoretical PMS tracks. Most of our PMS candidates have ages of <3 Myr and masses of 0.2-0.6 M{sub Sun }. Although it appears that only a few stars were formed in the last 1 Myr in the east region of the exciting star, the age difference among subregions in our surveyed area is not clear from the statistical test. Our results may suggest that massive stars were born after the continuous formation of low-mass stars for 10 Myr. The birth of the exciting star could be the late stage of slow but contiguous star formation in the natal molecular cloud. It may have triggered the formation of many low-mass stars at the dense inhomogeneity in and around the H II region by a radiation-driven implosion.

  8. A census of variable stars in the young cluster NGC 2282

    NASA Astrophysics Data System (ADS)

    Dutta, Somnath; Mondal, Soumen; Das, Ramkrishna; Joshi, Santosh; Jose, Jessy; Ghosh, Supriyo

    2016-07-01

    We report the results of CCD I time series photometry of the young (2-5 Myr) cluster NGC 2282 using 2m Himalayan Chandra Telescope (HCT), India and 1.3m Devasthal Fast Optical Telescope, Aries, Nainital, India. The deep I-band (˜20.5 mag) analysis enables us to probe the study of variability towards low-mass end of pre-main sequence (PMS) stars. The technique of differential photometry has been used to identify photometric variable stars, which provides high photometric precision, even in the central crowded nebulous region. Additionally, large rms deviation of magnitudes from normal trends and significant periods in a Lomb-Scargle analysis were also considered as signatures of variable stars. A total of 65 stars were found as photometric variable. The PMS members associated with the region were identified using infrared (IR) data from UKIDSS and Spitzer-IRAC. Based on the optical and NIR color-magnitude diagram analyses, the age of the probable PMS variable sources has been estimated to be in the range of 1-5 Myr. Masses of these PMS variable stars were found to be ˜0.15-3.0 Msun these could be T Tauri stars. Majority of the variable T Tauri stars have periods less than 15 days, such periodic variability are proposed to be the results of rotational modulation by hot or cool stellar spots on the star surface.

  9. The PAndAS View of the Andromeda Satellite System. I. A Bayesian Search for Dwarf Galaxies Using Spatial and Color-Magnitude Information

    NASA Astrophysics Data System (ADS)

    Martin, Nicolas F.; Ibata, Rodrigo A.; McConnachie, Alan W.; Mackey, A. Dougal; Ferguson, Annette M. N.; Irwin, Michael J.; Lewis, Geraint F.; Fardal, Mark A.

    2013-10-01

    We present a generic algorithm to search for dwarf galaxies in photometric catalogs and apply it to the Pan-Andromeda Archaeological Survey (PAndAS). The algorithm is developed in a Bayesian framework and, contrary to most dwarf galaxy search codes, makes use of both the spatial and color-magnitude information of sources in a probabilistic approach. Accounting for the significant contamination from the Milky Way foreground and from the structured stellar halo of the Andromeda galaxy, we recover all known dwarf galaxies in the PAndAS footprint with high significance, even for the least luminous ones. Some Andromeda globular clusters are also recovered and, in one case, discovered. We publish a list of the 143 most significant detections yielded by the algorithm. The combined properties of the 39 most significant isolated detections show hints that at least some of these trace genuine dwarf galaxies, too faint to be individually detected. Follow-up observations by the community are mandatory to establish which are real members of the Andromeda satellite system. The search technique presented here will be used in an upcoming contribution to determine the PAndAS completeness limits for dwarf galaxies. Although here tuned to the search of dwarf galaxies in the PAndAS data, the algorithm can easily be adapted to the search for any localized overdensity whose properties can be modeled reliably in the parameter space of any catalog.

  10. THE PAndAS VIEW OF THE ANDROMEDA SATELLITE SYSTEM. I. A BAYESIAN SEARCH FOR DWARF GALAXIES USING SPATIAL AND COLOR-MAGNITUDE INFORMATION

    SciTech Connect

    Martin, Nicolas F.; Ibata, Rodrigo A.; McConnachie, Alan W.; Mackey, A. Dougal; Ferguson, Annette M. N.; Irwin, Michael J.; Lewis, Geraint F.; Fardal, Mark A.

    2013-10-20

    We present a generic algorithm to search for dwarf galaxies in photometric catalogs and apply it to the Pan-Andromeda Archaeological Survey (PAndAS). The algorithm is developed in a Bayesian framework and, contrary to most dwarf galaxy search codes, makes use of both the spatial and color-magnitude information of sources in a probabilistic approach. Accounting for the significant contamination from the Milky Way foreground and from the structured stellar halo of the Andromeda galaxy, we recover all known dwarf galaxies in the PAndAS footprint with high significance, even for the least luminous ones. Some Andromeda globular clusters are also recovered and, in one case, discovered. We publish a list of the 143 most significant detections yielded by the algorithm. The combined properties of the 39 most significant isolated detections show hints that at least some of these trace genuine dwarf galaxies, too faint to be individually detected. Follow-up observations by the community are mandatory to establish which are real members of the Andromeda satellite system. The search technique presented here will be used in an upcoming contribution to determine the PAndAS completeness limits for dwarf galaxies. Although here tuned to the search of dwarf galaxies in the PAndAS data, the algorithm can easily be adapted to the search for any localized overdensity whose properties can be modeled reliably in the parameter space of any catalog.

  11. The Formation and Evolution of the Large Magellanic Cloud from Selected Clusters and Star Fields

    NASA Astrophysics Data System (ADS)

    Olsen, Knut Anders Grova

    We have obtained deep Hubble Space Telescope color-magnitude diagrams of fields centered on the six old LMC globular clusters NGC 1754, NGC 1835, WGC 1898, NGC 1916, NGC 2005, and NGC 2019. The data have been carefully calibrated and the effects of crowding on the photometric accuracy have been thoroughly investigated. The observations have been used to produce V-I,V color-magnitude diagrams of the clusters and of the background field stars, which we have separated from each other through a statistical cleaning technique. The cluster color-magnitude diagrams show that the clusters are old, with main sequence turnoffs at V~ 22.5 and well-developed horizontal branches. We used the slopes of the red giant branches to measure the abundances, which we find to be 0.3 dex higher, on average, than previously measured spectroscopic abundances. In two cases there is significant variable reddening across at least part of the image, but only for NGC 1916 does differential reddening preclude accurate measurements of the CMD characteristics. The mean reddenings of the clusters, measured both from the color of the red giant branch and through comparison with Milky Way clusters, are <=0.10 magnitudes in E(B-V) in all cases. By matching tbe color-magnitude diagrams of the clusters to fiducial sequences of the Milky Way globular clusters M3, M5, and M55, we find that the mean difference of the LMC and Milky Way cluster ages is 1.0 ± 1.2 Gyr, calculated such that a positive difference indicates that the LMC clusters are older. Through Monte Carlo simulations, errors in the individual measurements of the ages relative to Milky Way clusters are found to be ~<1.0 Gyr. We find a similar chronology by comparing the horizontal branch morphologies and abundances with HB evolutionary tracks, assuming that age is the 'second parameter'. These results imply that the LMC formed at the same time as the Milky Way Galaxy. The evolution of the LMC following its formation has been studied through

  12. Hubble Space Telescope/NICMOS Observations of I Zw 18: A Population of Old Asymptotic Giant Branch Stars Revealed.

    PubMed

    Östlin

    2000-06-01

    I present the first results from a Hubble Space Telescope/NICMOS imaging study of the most metal-poor blue compact dwarf galaxy, I Zw 18. The near-infrared color-magnitude diagram (CMD) is dominated by two populations, one 10-20 Myr population of red supergiants and one 0.1-5 Gyr population of asymptotic giant branch stars. Stars older than 1 Gyr are required to explain the observed CMD at the adopted distance of 12.6 Mpc, showing that I Zw 18 is not a young galaxy. The results hold also if the distance to I Zw 18 is significantly larger. This rules out the possibility that I Zw 18 is a truly young galaxy formed recently in the local universe. PMID:10835308

  13. Definition and empirical structure of the range of stellar chromospheres-coronae across the H-R diagram: Cool stars

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.

    1986-01-01

    Major advances in our understanding of non-radiative heating and other activity in stars cooler than T sub eff = 10,000K has occured in the last few years. This observational evidence is reviewed and the trends that are now becoming apparent are discussed. The evidence for non-radiatively heated outer atmospheric layers (chromospheres, transition regions, and coronae) in dwarf stars cooler than spectral type A7, in F and G giants, pre-main sequence stars, and close bindary systems is unambiguous, as is the evidence for chromospheres in the K and M giants and supergiants. The existence of non-radiative heating in the outer layers of the A stars remains undetermined despite repeated searches at all wavelengths. Two important trends in the data are the decrease in plasma emission measure with age on the main sequence and decreasing rotational velocity. Variability and atmospheric inhomogeneity are commonly seen, and there is considerable evidence that magnetic fields define the geometry and control the energy balance in the outer atmospheric layers. In addition, the microwave observations imply that non-thermal electrons are confined in coronal magnetic flux tubes in at least the cool dwarfs and RS CVn systems. The chromospheres in the K and M giants and supergiants are geometrically extended, as are the coronae in the RS CVn systems and probably also in other stars.

  14. WFPC2 Observations of Star Clusters in the Magellanic Clouds. Report 2; The Oldest Star Clusters in the Small Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Mighell, Kenneth J.; Sarajedini, Ata; French, Rica S.

    1998-01-01

    We present our analysis of archival Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) observations in F45OW ( approximately B) and F555W (approximately V) of the intermediate-age populous star clusters NGC 121, NGC 339, NGC 361, NGC 416, and Kron 3 in the Small Magellanic Cloud. We use published photometry of two other SMC populous star clusters, Lindsay 1 and Lindsay 113, to investigate the age sequence of these seven populous star clusters in order to improve our understanding of the formation chronology of the SMC. We analyzed the V vs B-V and M(sub V) vs (B-V)(sub 0) color-magnitude diagrams of these populous Small Magellanic Cloud star clusters using a variety of techniques and determined their ages, metallicities, and reddenings. These new data enable us to improve the age-metallicity relation of star clusters in the Small Magellanic Cloud. In particular, we find that a closed-box continuous star-formation model does not reproduce the age-metallicity relation adequately. However, a theoretical model punctuated by bursts of star formation is in better agreement with the observational data presented herein.

  15. Deep HST/ACS Photometry of an Arc of Young Stars in the Southern Halo of M82

    NASA Astrophysics Data System (ADS)

    Suwannajak, Chutipong

    2016-01-01

    We present deep HST/ACS photometry of an arclike, overdense region of stars in the southern halo of M82, located approximately 5 kpc from its disk. This arc feature was originally identified about a decade ago. The early ground-based studies suggested that it contains young stars with ages and metallicities similar to those that formed in the tidal tails between M81, M82, and NGC3077 during their interactions. The arc is clearly presented in the spatial distribution of stars in our field with significantly higher stellar density than the background M82 halo stars. The location of the tip of the red giant branch (RGB) reveals the arc to have a similar distance to M81 and M82, therefore confirming that it belongs to this interacting system. Combining our data with those from the ACS Nearby Galaxy Survey Treasury (ANGST), we construct a color-magnitude diagram (CMD) for the arc. A sequence of young stars is clearly presented on its CMD. This young main sequence is not seen in other parts of the M82 halo. Single-metallicity isochrones are used to derive the age of the young stars in the arc. We confirm that these stars exhibit ages consistent with young stars found in the HI bridges between M81, M82 and NGC3077. Furthermore, the mean metallicity of the RGB stars is also derived from their metallicity distribution function and found to be similar to that found in the HI bridges.

  16. Recovering the star formation rate in the solar neighborhood

    NASA Astrophysics Data System (ADS)

    Cignoni, M.; Degl'Innocenti, S.; Prada Moroni, P. G.; Shore, S. N.

    2006-12-01

    Aims.This paper develops a method for obtaining the star formation histories of a mixed, resolved population through the use of color-magnitude diagrams (CMDs). The method provides insight into the local star formation rate, analyzing the observations of the Hipparcos satellite through a comparison with synthetic CMDs computed for different histories with an updated stellar evolution library. Methods: .Parallax and photometric uncertainties are included explicitly and corrected using the Bayesian Richardson-Lucy algorithm. We first describe our verification studies using artificial data sets. From this sensitivity study, the critical factors determining the success of a recovery for a known star formation rate are a partial knowledge of the IMF and the age-metallicity relation, and sample contamination by clusters and moving groups (special populations whose histories are different than that of the whole sample). Unresolved binaries are less important impediments. We highlight how these limit the method. Results: .For the real field sample, complete to MV < 3.5, we find that the solar neighborhood star formation rate has a characteristic timescale for variation of about 6 Gyr, with a maximum activity close to 3 Gyr ago. The similarity of this finding with column integrated star formation rates may indicate a global origin, possibly a collision with a satellite galaxy. We also discuss applications of this technique to general photometric surveys of other complex systems (e.g. Local Group dwarf galaxies) where the distances are well known.

  17. Evolution of long-lived globular cluster stars. III. Effect of the initial helium spread on the position of stars in a synthetic Hertzsprung-Russell diagram

    NASA Astrophysics Data System (ADS)

    Chantereau, W.; Charbonnel, C.; Meynet, G.

    2016-08-01

    Context. Globular clusters host multiple populations of long-lived low-mass stars whose origin remains an open question. Several scenarios have been proposed to explain the associated photometric and spectroscopic peculiarities. They differ, for instance, in the maximum helium enrichment they predict for stars of the second population, which these stars can inherit at birth as the result of the internal pollution of the cluster by different types of stars of the first population. Aims: We present the distribution of helium-rich stars in present-day globular clusters as it is expected in the original framework of the fast-rotating massive stars scenario (FRMS) as first-population polluters. We focus on NGC 6752. Methods: We completed a grid of 330 stellar evolution models for globular cluster low-mass stars computed with different initial chemical compositions corresponding to the predictions of the original FRMS scenario for [Fe/H] = -1.75. Starting from the initial helium-sodium relation that allows reproducing the currently observed distribution of sodium in NGC 6752, we deduce the helium distribution expected in that cluster at ages equal to 9 and 13 Gyr. We distinguish the stars that are moderately enriched in helium from those that are very helium-rich (initial helium mass fraction below and above 0.4, respectively), and compare the predictions of the FRMS framework with other scenarios for globular cluster enrichment. Results: The effect of helium enrichment on the stellar lifetime and evolution reduces the total number of very helium-rich stars that remain in the cluster at 9 and 13 Gyr to only 12% and 10%, respectively, from an initial fraction of 21%. Within this age range, most of the stars still burn their hydrogen in their core, which widens the MS band significantly in effective temperature. The fraction of very helium-rich stars drops in the more advanced evolution phases, where the associated spread in effective temperature strongly decreases. These

  18. Know the Star, Know the Planet. III. Discovery of Late-Type Companions to Two Exoplanet Host Stars

    NASA Astrophysics Data System (ADS)

    Roberts, Lewis C., Jr.; Tokovinin, Andrei; Mason, Brian D.; Riddle, Reed L.; Hartkopf, William I.; Law, Nicholas M.; Baranec, Christoph

    2015-04-01

    We discuss two multiple star systems that host known exoplanets: HD 2638 and 30 Ari B. Adaptive optics imagery revealed an additional stellar companion to both stars. We collected multi-epoch images of the systems with Robo-AO and the PALM-3000 adaptive optics systems at Palomar Observatory and provide relative photometry and astrometry. The astrometry indicates that the companions share common proper motion with their respective primaries. Both of the new companions have projected separations less than 30 AU from the exoplanet host star. Using the projected separations to compute orbital periods of the new stellar companions, HD 2638 has a period of 130 yr and 30 Ari B has a period of 80 yr. Previous studies have shown that the true period is most likely within a factor of three of these estimated values. The additional component to 30 Ari makes it the second confirmed quadruple system known to host an exoplanet. HD 2638 hosts a hot Jupiter and the discovery of a new companion strengthens the connection between hot Jupiters and binary stars. We place the systems on a color-magnitude diagram and derive masses for the companions which turn out to be roughly 0.5 solar mass stars.

  19. Color-magnitude relations within globular cluster systems of giant elliptical galaxies: The effects of globular cluster mass loss and the stellar initial mass function

    SciTech Connect

    Goudfrooij, Paul; Kruijssen, J. M. Diederik E-mail: kruijssen@mpa-garching.mpg.de

    2014-01-01

    Several recent studies have provided evidence for a 'bottom-heavy' stellar initial mass function (IMF) in massive elliptical galaxies. Here we investigate the influence of the IMF shape on the recently discovered color-magnitude relation (CMR) among globular clusters (GCs) in such galaxies. To this end we use calculations of GC mass loss due to stellar and dynamical evolution to evaluate (1) the shapes of stellar mass functions in GCs after 12 Gyr of evolution as a function of current GC mass along with their effects on integrated-light colors and mass-to-light ratios, and (2) their impact on the effects of GC self-enrichment using the 2009 'reference' model of Bailin and Harris. As to the class of metal-poor GCs, we find the observed shape of the CMR (often referred to as the 'blue tilt') to be very well reproduced by Bailin and Harris's reference self-enrichment model once 12 Gyr of GC mass loss is taken into account. The influence of the IMF on this result is found to be insignificant. However, we find that the observed CMR among the class of metal-rich GCs (the 'red tilt') can only be adequately reproduced if the IMF was bottom-heavy (–3.0 ≲ α ≲ –2.3 in dN/dM∝M{sup α}), which causes the stellar mass function at subsolar masses to depend relatively strongly on GC mass. This constitutes additional evidence that the metal-rich stellar populations in giant elliptical galaxies were formed with a bottom-heavy IMF.

  20. THE CURIOUS RADIAL DISTRIBUTIONS OF HORIZONTAL BRANCH STARS IN NGC 6441

    SciTech Connect

    Krogsrud, David A.; Sandquist, Eric L.; Kato, Tadafumi E-mail: erics@sciences.sdsu.edu

    2013-04-20

    NGC 6441 is one of the most massive and most metal-rich globular clusters in the galaxy, and is noted for an unusual extended horizontal branch that reaches past the instability strip. We find evidence that there are two different populations of stars within the heavily populated red clump. Once a differential reddening correction is applied, a large but compact group of stars is found at the faint red end of the clump in the color-magnitude diagram. Brighter, bluer stars in the clump are found to be more centrally concentrated within the cluster at a very high level of significance. Curiously, the blue horizontal branch stars show a more complex distribution and are not more centrally concentrated than the brighter red clump stars. The spatial distributions of clump stars are in agreement with the idea that the brighter bluer part of the clump is a helium-enriched second generation. The blue horizontal branch stars may be showing evidence that they are being dynamically evaporated.

  1. THE STRUCTURE OF THE STAR-FORMING CLUSTER RCW 38

    SciTech Connect

    Winston, E.; Wolk, S. J.; Bourke, T. L.; Spitzbart, B.; Megeath, S. T.; Gutermuth, R.

    2011-12-20

    We present a study of the structure of the high-mass star-forming region RCW 38 and the spatial distribution of its young stellar population. Spitzer Infrared Array Camera (IRAC) photometry (3-8 {mu}m) is combined with Two Micron All Sky Survey near-IR data to identify young stellar objects (YSOs) by IR-excess emission from their circumstellar material. Chandra X-ray data are used to identify class III pre-main-sequence stars lacking circumstellar material. We identify 624 YSOs: 23 class 0/I and 90 flat spectrum protostars, 437 class II stars, and 74 class III stars. We also identify 29 (27 new) O star candidates over the IRAC field. Seventy-two stars exhibit IR-variability, including 7 class 0/I and 12 flat spectrum YSOs. A further 177 tentative candidates are identified by their location in the IRAC [3.6] versus [3.6]-[5.8] color-magnitude diagram. We find strong evidence of subclustering in the region. Three subclusters were identified surrounding the central cluster, with massive and variable stars in each subcluster. The central region shows evidence of distinct spatial distributions of the protostars and pre-main-sequence stars. A previously detected IR cluster, DB2001{sub O}bj36, has been established as a subcluster of RCW 38. This suggests that star formation in RCW 38 occurs over a more extended area than previously thought. The gas-to-dust ratio is examined using the X-ray derived hydrogen column density, N{sub H} and the K-band extinction, and found to be consistent with the diffuse interstellar medium, in contrast with Serpens and NGC 1333. We posit that the high photoionizing flux of massive stars in RCW 38 affects the agglomeration of the dust grains.

  2. Keck Observations of the UV-Bright Star Barnard 29 in the Globular Cluster M13 (NGC 6205)

    NASA Astrophysics Data System (ADS)

    Dixon, William Van Dyke; Chayer, Pierre; Reid, Iain N.

    2016-06-01

    In color-magnitude diagrams of globular clusters, stars brighter than the horizontal branch and bluer than the red-giant branch are known as UV-bright stars. Most are evolving from the asymptotic giant branch (AGB) to the tip of the white-dwarf cooling curve. To better understand this important phase of stellar evolution, we have analyzed a Keck HIRES echelle spectrum of the UV-bright star Barnard 29 in M13. We begin by fitting the star's H I (Hα, Hβ, and Hγ) and He I lines with a grid of synthetic spectra generated from non-LTE H-He models computed using the TLUSTY code. We find that the shape of the star's Hα profile is not well reproduced with these models. Upgrading from version 200 to version 204M of TLUSTY solves this problem: the Hα profile is now well reproduced. TLUSTY version 204 includes improved calculations for the Stark broadening of hydrogen line profiles. Using these models, we derive stellar parameters of Teff = 21,100 K, log g = 3.05, and log (He/H) = -0.87, values consistent with those of previous authors. The star's Keck spectrum shows photospheric absorption from N II, O II, Mg II, Al III, Si II, Si III, S II, Ar II, and Fe III. The abundances of these species are consistent with published values for the red-giant stars in M13, suggesting that the star's chemistry has changed little since it left the AGB.

  3. Variable Stars and Stellar Populations in Andromeda XXI. II. Another Merged Galaxy Satellite of M31?

    NASA Astrophysics Data System (ADS)

    Cusano, Felice; Garofalo, Alessia; Clementini, Gisella; Cignoni, Michele; Federici, Luciana; Marconi, Marcella; Musella, Ilaria; Ripepi, Vincenzo; Speziali, Roberto; Sani, Eleonora; Merighi, Roberto

    2015-06-01

    B and V time-series photometry of the M31 dwarf spheroidal satellite Andromeda XXI (And XXI) was obtained with the Large Binocular Cameras at the Large Binocular Telescope. We have identified 50 variables in And XXI, of which 41 are RR Lyrae stars (37 fundamental-mode—RRab, and 4 first-overtone-RRc, pulsators) and 9 are Anomalous Cepheids (ACs). The average period of the RRab stars (< {P}{ab}> =0.64 days) and the period-amplitude diagram place And XXI in the class of Oosterhoff II—Oosterhoff-Intermediate objects. From the average luminosity of the RR Lyrae stars we derived the galaxy distance modulus of (m - M)0 = 24.40 ± 0.17 mag, which is smaller than previous literature estimates, although still consistent with them within 1σ. The galaxy color-magnitude diagram shows evidence for the presence of three different stellar generations in And XXI: (1) an old (˜12 Gyr) and metal-poor ([Fe/H] = -1.7 dex) component traced by the RR Lyrae stars; (2) a slightly younger (10-6 Gyr) and more metal-rich ([Fe/H] = -1.5 dex) component populating the red horizontal branch, and (3) an intermediate age (˜1 Gyr) component with the same metallicity that produced the ACs. Finally, we provide hints that And XXI could be the result of a minor merging event between two dwarf galaxies. Based on data collected with the LBC at the LBT.

  4. A DEEP UBVRI CCD PHOTOMETRY OF SIX OPEN STAR CLUSTERS IN THE GALACTIC ANTICENTER REGION

    SciTech Connect

    Lata, Sneh; Pandey, Anil K.; Kumar, Brijesh; Bhatt, Himali; Pace, Giancarlo; Sharma, Saurabh

    2010-02-15

    We present deep UBVRI CCD photometry of six open star clusters situated in the Galactic anticenter region (l{approx} 120-200 deg.). The sample includes three unstudied (Be 6, Be 77, King 17) and three partly studied open clusters (Be 9, NGC 2186, and NGC 2304). The fundamental parameters have been determined by comparing color-color and color-magnitude diagrams with the theoretical models. The structural parameters and morphology of the clusters were discussed on the basis of radial density profiles and isodensity contours, respectively. The isodensity contours show that all the clusters have asymmetric shapes. An investigation of structural parameters indicates that the evolution of core and corona of the clusters is mainly controlled by internal relaxation processes.

  5. Proceedings of the Workshop on the Spectrophotometric Dating of Stars and Galaxies

    NASA Technical Reports Server (NTRS)

    Hubeny, Ivan; Heap, Sara; Cornett, Robert

    1999-01-01

    In the past decade, we have seen an avalanche of new observational results from space observatories and ground-based observatories. These observations have revealed young globular clusters in the cores of merger galaxies, elliptical galaxies at redshifts up to z=1.5, and starburst galaxies at high redshift. Analyses of the detailed spectra or color- magnitude diagrams of these systems promise to give a new understanding of evolutionary processes and to provide a check on cosmological ages. At the same time, these new spectro-photometric data present new challenges to current methods of spectral analysis and modeling.At the Workshop, we will discuss these new opportunities and challenges on spectro-photometric dating of stars and galaxies.

  6. The Star Formation History and Extended Structure of the Hercules Milky Way Satellite

    NASA Astrophysics Data System (ADS)

    Sand, David J.; Olszewski, Edward W.; Willman, Beth; Zaritsky, Dennis; Seth, Anil; Harris, Jason; Piatek, Slawomir; Saha, Abi

    2009-10-01

    We present imaging of the recently discovered Hercules Milky Way satellite and its surrounding regions to study its structure, star formation history and to thoroughly search for signs of disruption. We robustly determine the distance, luminosity, size, and morphology of Hercules utilizing a bootstrap approach to characterize our uncertainties. We derive a distance to Hercules via a comparison to empirical and theoretical isochrones, finding a best match with the isochrone of M92, which yields a distance of 133 ± 6 kpc. As previous studies have found, Hercules is very elongated, with epsilon = 0.67 ± 0.03 and a half-light radius of rh sime 230 pc. Using the color-magnitude-fitting package StarFISH, we determine that Hercules is old (>12 Gyr) and metal-poor ([Fe/H] ~ -2.0), with a spread in metallicity, in agreement with previous spectroscopic work. This result is robust with respect to slight variations in the distance to Hercules and mismatches between the observed Hercules color-magnitude diagram and theoretical isochrones. We infer a total absolute magnitude of MV = -6.2 ± 0.4. Our innovative search for external Hercules structure both in the plane of the sky and along the line of sight yields some evidence that Hercules is embedded in a larger stream of stars. A clear stellar extension is seen to the northwest with several additional candidate stellar overdensities along the position angle of Hercules out to ~35' (~1.3 kpc). While the association of any of the individual stellar overdensities with Hercules is difficult to determine, we do show that the summed color-magnitude diagram of all three is consistent with Hercules' stellar population. Finally, we estimate that any change in the distance to Hercules across its face is at most ~6 kpc, and the data are consistent with Hercules being at the same distance throughout. Based on data acquired using the Large Binocular Telescope (LBT). The LBT is an international collaboration among institutions in the US

  7. The Magellanic Cloud's Star Cluster Populations: The SMC

    NASA Astrophysics Data System (ADS)

    Piatti, A. E.

    2015-05-01

    We present results based on observations carried out with the CTIO 4-m Blanco telescope and the attached MOSAIC II camera of a large sample of unstudied or poorly studied candidate star clusters in the Small Magellanic Cloud (SMC). We first cleaned the color-magnitude diagrams (CMDs) of the unavoidable stellar field contamination by taking advantage of a procedure that makes use of variable size CMD cells. In this way, stochastic effects in the cluster CMDs caused by the presence of isolated bright stars and numerous relatively faint field stars, have successfully been eliminated. Our results suggest that a percentage of the studied candidate star clusters do appear to be genuine physical systems. However, the ages previously derived for some of the studied candidate clusters mostly reflect those of the composite stellar populations of the SMC field. Finally, by using the spatial distribution in the SMC of possible non-clusters, we statistically decontaminated the SMC cluster system. We found that there is no clear difference between the expected and observed cluster spatial distributions, but a difference at a 2 sigma level in the central regions would become visible if non-clusters are assumed to be ≍ 20% of the cataloged sample.

  8. New Young Star Candidates in BRC 27

    NASA Astrophysics Data System (ADS)

    Novatne, Lauren J.; Mattrocce, G.; Milan, T.; Quinonez, A.; Rebull, L. M.; Barge, J.; Amayo, R.; Bieber, H.; Block, L.; Cheung, E.; Cruz, A.; Elkin, D.; Figueroa, A.; Jakus, M.; Kelo, A.; Larson, O.; Lemma, B.; Li, Y.; Loe, C.; Maciag, V.; Moreno, N.; Nevels, M.; Pezanoski-Cohen, G.; Short, M.; Skatchke, K.; Tur-Kaspa, A.; Zegeye, D.; Armstrong, J.; Bonadurer, R.; French, D.; Free, B.; Miller, C.; Scherich, H.; Willis, T.; Koenig, X.; Laher, R.; Padgett, D.; Piper, M.; Pavlak, A.; Piper, M.; Venezio, E.; Ali, B.

    2013-01-01

    All stars originate from clouds of interstellar gas that collapse either under their own gravity or with external help. In triggered star formation, the collapse of a cloud is initiated by pressure, e.g., from nearby star(s). When the external source is bright stars, it can illuminate the rims of the cloud, creating bright-rimmed clouds (BRCs) to be visible at optical and infrared (IR) wavelengths. We searched for new candidate young stellar objects (YSOs) primarily using the March 2012 all-sky release of Wide-field Infrared Survey Explorer (WISE) data in BRC 27, which is part of CMa R1, a region of known star formation. Spitzer data of a 5’x5’ region centered on BRC 27 were presented by Johnson et al. 2012 and Rebull et al. 2012. We investigated WISE data within a 20 arcminute radius of BRC 27 0.35 sq. deg), combining it with Spitzer data serendipitously obtained in this region, 2MASS data, and optical data. We started from nearly 4000 WISE sources and identified about 200 candidate YSOs via a series of color cuts (Koenig et al. 2012) to identify objects with WISE colors consistent with other YSOs, e.g., having an apparent IR excess. There are about 100 objects in this region already identified in the literature as possible YSOs, about 40 of which we recovered with the color cuts. We investigated these literature YSOs and YSO candidates in all available images, and created spectral energy distributions (SEDs) and color-magnitude diagrams for further analysis of each object. We will present an analysis of our selected sub-sample of YSO candidates. This research was made possible through the NASA/IPAC Teacher Archive Research Project (NITARP) and was funded by NASA Astrophysics Data Program and Archive Outreach funds. Our education results are described in a companion education poster, Bonadurer et al.

  9. Infrared study of new star cluster candidates associated to dusty globules

    NASA Astrophysics Data System (ADS)

    Soto King, P.; Barbá, R.; Roman-Lopes, A.; Jaque, M.; Firpo, V.; Nilo, J. L.; Soto, M.; Minniti, D.

    2014-10-01

    We present results from a study of a sample of small star clusters associated to dusty globules and bright-rimmed clouds that have been observed under ESO/Chile public infrared survey Vista Variables in the Vía Láctea (VVV). In this short communication, we analyse the near-infrared properties of a set of four small clusters candidates associated to dark clouds. This sample of clusters associated to dusty globules are selected from the new VVV stellar cluster candidates developed by members of La Serena VVV Group (Barbá et al. 2014). Firstly, we are producing color-color and color-magnitude diagrams for both, cluster candidates and surrounding areas for comparison through PSF photometry. The cluster positions are determined from the morphology on the images and also from the comparison of the observed luminosity function for the cluster candidates and the surrounding star fields. Now, we are working in the procedures to establish the full sample of clusters to be analyzed and methods for subtraction of the star field contamination. These clusters associated to dusty globules are simple laboratories to study the star formation relatively free of the influence of large star-forming regions and populous clusters, and they will be compared with those clusters associated to bright-rimmed globules, which are influenced by the energetic action of nearby O and B massive stars.

  10. Evidence for two discrete epochs of star formation in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Frogel, J. A.; Blanco, V. M.

    1983-11-01

    An infrared color-magnitude diagram for an unbiased sample of M giants in a 0.12 sq deg field of the Large Magellanic Cloud (LMC) shows the existence of two distinct asymptotic giant branches (AGBs), one of which is 1.5 mag brighter than the other. Stars on the bright AGB are quite similar in color and luminosity to giants in LMC clusters which have ages of about 10 to the 8th yr; those on the faint AGB look like giants in clusters with ages of a few Gyr. The faint AGB is identified with the star-forming episode found by Butcher and Stryker (1981). The bright AGB is taken to be evidence for a second, discrete episode of star formation corresponding in age to the blue globular clusters in the LMC. At least for main-sequence stars near the turnoff, this recent episode has been only one-tenth as efficient at making stars as was the older episode. The rate of star formation between these two episodes appears to have been significantly lower than in either.

  11. Coronagraphic imaging of pre-main-sequence stars: Remnant evvelopes of star formation seen in reflection

    NASA Technical Reports Server (NTRS)

    Nakajima, Tadashi; Golimowski, David A.

    1995-01-01

    star/disk system. These three-reflection nebulae may trace the surfaces of pseudodisks from which matter accretes onto the stars or the inner circumstellar disks. 19 stellar objects brighter than I = 19 were detected around 9 program stars. Using a color-magnitude diagram, we have identified three new PMS candidates aroun Z CMa and one previously known PMS candidate, GG Tau/c.

  12. Near-infrared properties of asymptotic giant branch stars in nearby dwarf elliptical galaxy NGC 205

    NASA Astrophysics Data System (ADS)

    Jung, M. Y.; Ko, J.; Kim, J.-W.; Chun, S.-H.; Kim, H.-I.; Sohn, Y.-J.

    2012-07-01

    Aims: We investigated the distribution of resolved asymptotic giant branch (AGB) stars over a much larger area than covered by previous near-infrared studies in the nearby dwarf elliptical galaxy NGC 205. Methods: Using data obtained with the WIRCam near-infrared imager of the CFHT, we selected the AGB stars in the JHKs color - magnitude diagrams, and separated the C stars from M-giant stars in the JHKs color - color diagram. Results: We identified 1,550 C stars in NGC 205 with a mean absolute magnitude of ⟨ MKs ⟩ = -7.49 ± 0.54, and colors of ⟨ (J - Ks)0 ⟩ = 1.81 ± 0.41 and ⟨ (H - Ks)0 ⟩ = 0.76 ± 0.24. The ratio of C stars to M-giant stars was estimated to be 0.15 ± 0.01 in NGC 205, and the local C/M ratios for the southern region are somewhat lower than those for the northern region. The (J - Ks) color distributions of AGB stars contain the main peak of the M-giant stars and the red tail of the C stars. A comparison of the theoretical isochrone models with the observed color distribution indicates that most of the bright M-giant stars in NGC 205 were formed at log (tyr) ~ 9.0-9.7. The logarithmic slope of the MKs luminosity function for M-giant stars was estimated to be 0.84 ± 0.01, which is comparable with dwarf elliptical galaxies NGC 147 and NGC 185. Furthermore, we found that the logarithmic slopes of the MKs luminosity function for C and M-giant stars are different to places, implying a different star formation history within NGC 205. The bolometric luminosity function for M-giant stars extends to Mbol = -6.0 mag, and that for C stars spans -5.6 < Mbol < -3.0. The bolometric luminosity function of C stars is unlikely to be a Gaussian distribution and the mean bolometric magnitude of C stars is estimated to be Mbol = -4.24 ± 0.55, which is consistent with our results for dwarf elliptical galaxies NGC 147 and NGC 185. Based on observations carried out at the Canada-France-Hawaii Telescope, operated by the National Research Council of Canada

  13. Delayed star formation in isolated dwarf galaxies: Hubble space telescope star formation history of the Aquarius dwarf irregular

    SciTech Connect

    Cole, Andrew A.; Weisz, Daniel R.; Dolphin, Andrew E.; Skillman, Evan D.; McConnachie, Alan W.; Brooks, Alyson M.; Leaman, Ryan E-mail: drw@ucsc.edu E-mail: skillman@astro.umn.edu E-mail: abrooks@physics.rutgers.edu

    2014-11-01

    We have obtained deep images of the highly isolated (d = 1 Mpc) Aquarius dwarf irregular galaxy (DDO 210) with the Hubble Space Telescope Advanced Camera for Surveys. The resulting color-magnitude diagram (CMD) reaches more than a magnitude below the oldest main-sequence turnoff, allowing us to derive the star formation history (SFH) over the entire lifetime of the galaxy with a timing precision of ≈10% of the lookback time. Using a maximum likelihood fit to the CMD we find that only ≈10% of all star formation in Aquarius took place more than 10 Gyr ago (lookback time equivalent to redshift z ≈ 2). The star formation rate increased dramatically ≈6-8 Gyr ago (z ≈ 0.7-1.1) and then declined until the present time. The only known galaxy with a more extreme confirmed delay in star formation is Leo A, a galaxy of similar M {sub H} {sub I}/M {sub *}, dynamical mass, mean metallicity, and degree of isolation. The delayed stellar mass growth in these galaxies does not track the mean dark matter accretion rate from CDM simulations. The similarities between Leo A and Aquarius suggest that if gas is not removed from dwarf galaxies by interactions or feedback, it can linger for several gigayears without cooling in sufficient quantity to form stars efficiently. We discuss possible causes for the delay in star formation including suppression by reionization and late-time mergers. We find reasonable agreement between our measured SFHs and select cosmological simulations of isolated dwarfs. Because star formation and merger processes are both stochastic in nature, delayed star formation in various degrees is predicted to be a characteristic (but not a universal) feature of isolated small galaxies.

  14. Near-infrared studies of embedded star clusters

    NASA Astrophysics Data System (ADS)

    Park, Chan

    The Fan Mountain Near-Infrared Camera, FanCam, features an 8.7'x8.7' field of view on a 1024x1024 Teledyne Imaging Sensors HAWAII-1 detector array. The instrument mounts at the f/15.5 focus of the 31 inch telescope. Its seeing-limited optical design, optimized for the JHK atmospheric bands, includes a field stop at the telescope focus, a doublet collimator, two 8-position filterwheels straddling a Lyot stop, and a doublet reimager. The 0.51''pixel-1 plate scale leads to a slightly oversampled point spread function for the typical seeing of 1.5''. The entire optical train is encased in a cryogenic dewar cooled by a closed-loop cooling system. Chapter 2 describes the camera design and some early results of camera performance test. Long term near-infrared, J, H, and Ks, photometric monitoring of the embedded cluster NGC 1333 is presented in Chapter 3. We employ the Stetson variability index and reduced chi 2 to identify variable objects. Color-magnitude and color-color diagrams demonstrate that NGC 1333 is extremely young and highly extincted. Light curves in all three bands are well correlated. The spatial distribution of variable stars shows a strong correlation with the peak of the extinction map while non-variable stars are evenly spread over the whole field of view. Spitzer-2MASS-identified IR excess YSOs and Chandra X-ray sources were compared with our variable stars. A total of 25 previously-unknown member candidates are presented, with 15 objects in the mass range of brown dwarfs. The IMF and mass distribution of the cluster are presented. We discuss the implication of Ks vs. H--Ks color-magnitude diagram slope statistics in view of the evolutionary sequence of young star-forming embedded clusters. Another long term near-infrared, J, H, and Ks, photometric monitoring performed with FanCam for the embedded cluster NGC 7129 is presented in Chapter 4.

  15. Properties of Red Giant Branches of Star Clusters in the Magellanic Clouds and Their Relation with Cluster Metallicity

    NASA Astrophysics Data System (ADS)

    Kučinskas, A.; Dobrovolskas, V.; Černiauskas, A.; Tanabé, T.

    We derive a new calibration that relates the observed cluster RGB slope in the Ks vs. J--Ks color-magnitude diagram with cluster metallicity. The new calibration is derived using a sample of intermediate age (1--8 Gyr) clusters in the Large and Small Magellanic Clouds with precise JHKs photometry available from the SIRIUS photometric survey of the Magellanic Clouds. Cluster metallicities are literature data obtained either from high resolution or infrared calcium triplet spectroscopy of individual cluster RGB stars. We find systematic differences between the RGB slope vs. metallicity relation derived in this work and that of Valenti et al. (2004), the latter obtained using a sample of old Galactic globular clusters. The possible origin of the discrepancies is discussed briefly.

  16. PHAT Star Clusters in M31: Insight on Environmental Dependence of Star & Cluster Formation

    NASA Astrophysics Data System (ADS)

    Johnson, Lent C.; Dalcanton, Julianne; Seth, Anil; Beerman, Lori; Lewis, Alexia; Fouesneau, Morgan; Weisz, Daniel R.; Andromeda Project Team, PHAT Team

    2015-01-01

    Theoretical studies of star cluster formation suggest that the star formation efficiency (SFE) of a cluster's progenitor cloud dictates whether or not a gravitationally bound grouping will emerge from an embedded region after gas expulsion. I measure the fraction of stars formed in long-lived clusters relative to unbound field stars on a spatial resolved basis in the Andromeda galaxy. These observations test theoretical predictions that star clusters are formed within a hierarchical interstellar medium at peaks in the gas density where local SFEs are enhanced and regions become stellar dominated. Using data from the Panchromatic Hubble Andromeda Treasury (PHAT) survey and ancillary observations of M31's gas phase, I investigate how cluster formation correlates with galactic environment and galaxy-scale properties of the star formation. We construct a sample of >2700 star clusters through a crowd-sourced visual search of the high spatial resolution HST imaging data. Our catalog uses ~2 million image classifications collected by the Andromeda Project citizen science website to provide an unparalleled census of clusters that spans ~4 orders of magnitude in mass (50% completeness at ~500 M⊙ at <100 Myr) and increases the number of known clusters within the PHAT survey footprint by a factor of ~6. Cluster ages and masses are obtained by fitting to color-magnitude diagrams (CMDs) of individually resolved stars within each cluster. Furthermore, we insure our ability to accurately interpret cluster age and mass distributions through careful catalog completeness characterization, made possible by thousands of synthetic cluster tests included during catalog construction work. We combine our high quality cluster sample with spatially resolved star formation histories, derived from CMD fitting of PHAT's photometry of ~117 million resolved field stars. We derived the fraction of stars formed in long-lived clusters and show that only a few percent of coeval stars are found in

  17. STAR FORMATION HISTORY IN TWO FIELDS OF THE SMALL MAGELLANIC CLOUD BAR

    SciTech Connect

    Cignoni, M.; Cole, A. A.; Tosi, M.; Gallagher, J. S.; Sabbi, E.; Anderson, J.; Nota, A.; Grebel, E. K.

    2012-08-01

    The Bar is the most productive region of the Small Magellanic Cloud in terms of star formation but also the least studied one. In this paper, we investigate the star formation history of two fields located in the SW and in the NE portion of the Bar using two independent and well-tested procedures applied to the color-magnitude diagrams of their stellar populations resolved by means of deep Hubble Space Telescope photometry. We find that the Bar experienced a negligible star formation activity in the first few Gyr, followed by a dramatic enhancement from 6 to 4 Gyr ago and a nearly constant activity since then. The two examined fields differ both in the rate of star formation and in the ratio of recent over past activity, but share the very low level of initial activity and its sudden increase around 5 Gyr ago. The striking similarity between the timing of the enhancement and the timing of the major episode in the Large Magellanic Cloud is suggestive of a close encounter triggering star formation.

  18. Dust around evolved stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Reid, B.; Speck, A.; Dijkstra, R.

    2005-05-01

    We present newly reduced ISO mid-IR spectra of a selection of (Small and Large) Magellanic Cloud evolved stars and derive their mineralogies. The spectra are classified according to the morphology of the observed spectral features and their derive mineralogies. Sequences in this classification scheme can then be used to determine the effects of density, chemistry and metallicity on dust formation mechanisms. Correlating the observed spectral trends with previously determined mass-loss rates for these evolved stars allows us to assess the effect of the density of the circumstellar shell on dust formation processes. Furthermore, the mineralogical sequences will be compared with the positions of these stars in color-color and color-magnitude diagrams in order to assess the effect of the chemistry in the circumstellar shells on dust formation. Finally, we will compare the results of these studies for the LMC and SMC, as well as with Milky Way objects, to determine the effect of metallicity on dust formation processes.

  19. An Evolving Trio of Hybrid Stars: C 111

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald (Technical Monitor); Dupree, Andrea K.

    2004-01-01

    Our goal is to understand the behavior of the outer atmosphere in this intermediate stage to create a comprehensive picture of atmospheric evolution. In the hybrid phase, the large-scale magnetic dynamo activity decays and hydrodynamic processes assume importance. Some hot plasma is still confined close to the star by magnetic loops, yet the confining field is breaking open, the atmosphere can escape through these open field lines, and the diffuse corona may be warm. There may well be a more extended and variable transition process. It remains for FUSE to identify the controlling parameters of the hybrid stars. It shows the positions of our 3 targets in the color-magnitude diagram where it is seen that they are at the extreme end of the hybrid region. Originally we had been awarded the hybrid star Iota Aur, but due to newly imposed pointing constraints of FUSE, that target was not accessible. And so we substituted Iota Dra, a giant of mass similar to our other targets but less evolved. In addition, Iota Dra was recently found to harbor a sub-stellar objects, possibly a planet, and so it could reveal the stellar environment of the planet. This substitution was accepted.

  20. Chemical abundances of massive stars in Local Group galaxies

    NASA Astrophysics Data System (ADS)

    Venn, Kim A.; Kaufer, Andreas; Tolstoy, Eline; Kudritzki, Rolf-Peter; Przybilla, Norbert; Smartt, Stephen J.; Lennon, Daniel J.

    The relative abundances of elements in galaxies can provide valuable information on the stellar and chemical evolution of a galaxy. While nebulae can provide abundances for a variety of light elements, stars are the only way to directly determine the abundances of iron-group and s-process and r-process elements in a galaxy. The new 8m and 10m class telescopes and high-efficiency spectrographs now make high-quality spectral observations of bright supergiants possible in dwarf galaxies in the Local Group. We have been concentrating on elemental abundances in the metal-poor dwarf irregular galaxies, NGC 6822, WLM, Sextants A, and GR 8. Comparing abundance ratios to those predicted from their star formation histories, determined from color-magnitude diagrams, and comparing those ratios between these galaxies can give us new insights into the evolution of these dwarf irregular galaxies. Iron-group abundances also allow us to examine the metallicities of the stars in these galaxies directly, which affects their inferred mass loss rates and predicted stellar evolution properties.

  1. JOINT ANALYSIS OF NEAR-INFRARED PROPERTIES AND SURFACE BRIGHTNESS FLUCTUATIONS OF LARGE MAGELLANIC CLOUD STAR CLUSTERS

    SciTech Connect

    Raimondo, G.

    2009-08-01

    Surface brightness fluctuations (SBFs) have been proved to be a very powerful technique to determine the distance and characterize the stellar content in extragalactic systems. Nevertheless, before facing the problem of stellar content in distant galaxies, we need to calibrate the method onto nearby well known systems. In this paper we analyze the properties at the J and K{sub s} bands of a sample of 19 star clusters in the Large Magellanic Cloud, for which accurate near-infrared (NIR) resolved star photometry and integrated photometry are available. For the same sample, we derive the SBF measurements in the J and K{sub s} bands. We use the multipurpose stellar population code SPoT (Stellar POpulations Tools) to simulate the color-magnitude diagram, stellar counts, integrated magnitudes, colors, and SBFs of each cluster. The present procedure allows us to estimate the age and metallicity of the clusters in a consistent way, and provides a new calibration of the empirical s-parameter. We take advantage of the high sensitivity of NIR SBFs to thermally pulsing asymptotic (TP-AGB) stars to test different mass-loss rates affecting the evolution of such stars. We argue that NIR-SBFs can contribute to the disentangling of the observable properties of TP-AGB stars, especially in galaxies, where a large number of these stars are present.

  2. New BVI {sub C} photometry of low-mass pleiades stars: Exploring the effects of rotation on broadband colors

    SciTech Connect

    Kamai, Brittany L.; Stassun, Keivan G.; Vrba, Frederick J.; Stauffer, John R.

    2014-08-01

    We present new BVI{sub C} photometry for 350 Pleiades proper motion members with 9 < V ≲ 17. Importantly, our new catalog includes a large number of K- and early M-type stars, roughly doubling the number of low-mass stars with well-calibrated Johnson/Cousins photometry in this benchmark cluster. We combine our new photometry with existing photometry from the literature to define a purely empirical isochrone at Pleiades age (≈100 Myr) extending from V = 9 to 17. We use the empirical isochrone to identify 48 new probable binaries and 14 likely nonmembers. The photometrically identified single stars are compared against their expected positions in the color-magnitude diagram (CMD). At 100 Myr, the mid K and early M stars are predicted to lie above the zero-age main sequence (ZAMS) having not yet reached the ZAMS. We find in the B – V versus V CMD that mid K and early M dwarfs are instead displaced below (or blueward of) the ZAMS. Using the stars' previously reported rotation periods, we find a highly statistically significant correlation between rotation period and CMD displacement, in the sense that the more rapidly rotating stars have the largest displacements in the B – V CMD.

  3. THE MASSIVE STAR POPULATION IN M101. I. THE IDENTIFICATION AND SPATIAL DISTRIBUTION OF THE VISUALLY LUMINOUS STARS

    SciTech Connect

    Grammer, Skyler; Humphreys, Roberta M. E-mail: roberta@umn.edu

    2013-11-01

    An increasing number of non-terminal giant eruptions are being observed by modern supernova and transient surveys. But very little is known about the origin of these giant eruptions and their progenitors, many of which are presumably very massive, evolved stars. Motivated by the small number of progenitors positively associated with these giant eruptions, we have begun a survey of the evolved massive star populations in nearby galaxies. The nearby, nearly face-on, giant spiral M101 is an excellent laboratory for studying a large population of very massive stars. In this paper, we present BVI photometry obtained from archival HST/ACS Wide Field Camera images of M101. We have produced a catalog of luminous stars with photometric errors <10% for V < 24.5 and 50% completeness down to V ∼ 26.5 even in regions of high stellar crowding. Using color and luminosity criteria, we have identified candidate luminous OB-type stars and blue supergiants, yellow supergiants, and red supergiants for future observation. We examine their spatial distributions across the face of M101 and find that the ratio of blue to red supergiants decreases by two orders of magnitude over the radial extent of M101 corresponding to 0.5 dex in metallicity. We discuss the resolved stellar content in the giant star-forming complexes NGC 5458, 5453, 5461, 5451, 5462, and 5449 and discuss their color-magnitude diagrams in conjunction with the spatial distribution of the stars to determine their spatio-temporal formation histories.

  4. Deep Hubble Space Telescope Imaging of Sextans A. III. The Star Formation History

    NASA Astrophysics Data System (ADS)

    Dolphin, Andrew E.; Saha, A.; Skillman, Evan D.; Dohm-Palmer, R. C.; Tolstoy, Eline; Cole, A. A.; Gallagher, J. S.; Hoessel, J. G.; Mateo, Mario

    2003-07-01

    We present a measurement of the star formation history of Sextans A, based on WFPC2 photometry that is 50% complete to V=27.5 (MV~+1.9) and I=27.0. The star formation history and chemical enrichment history have been measured through modeling of the color-magnitude diagram (CMD). We find evidence for increased reddening in the youngest stellar populations and an intrinsic metallicity spread at all ages. Sextans A has been actively forming stars at a high rate for ~2.5 Gyr ago, with an increased rate beginning ~0.1 Gyr ago. We find a nonzero number of stars older than 2.5 Gyr, but because of the limited depth of the photometry, a detailed star formation history at intermediate and older ages has considerable uncertainties. The mean metallicity was found to be [M/H]~-1.4 over the measured history of the galaxy, with most of the enrichment happening at ages of at least 10 Gyr. We also find that an rms metallicity spread of 0.15 dex at all ages allows the best fits to the observed CMD. We revisit our determination of the recent star formation history (age<=0.7 Gyr) using blue helium-burning (BHeB) stars and find good agreement for all but the last 25 Myr, a discrepancy resulting primarily from different distances used in the two analyses and the differential extinction in the youngest populations. This indicates that star formation histories determined solely from BHeB stars should be confined to CMD regions where no contamination from reddened main-sequence stars is present. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with proposal ID 7496.

  5. From clouds to stars. Protostellar collapse and the evolution to the pre-main sequence I. Equations and evolution in the Hertzsprung-Russell diagram

    NASA Astrophysics Data System (ADS)

    Wuchterl, G.; Tscharnuter, W. M.

    2003-02-01

    We present the first study of early stellar evolution with ``cloud'' initial conditions utilizing a system of equations that comprises a solar model solution. All previous studies of protostellar collapse either make numerous assumptions specifically tailored for different parts of the flow and different parts of the evolution or they do not reach the pre-main sequence phase. We calculate the pre-main sequence properties of marginally gravitationally unstable, isothermal, equilibrium ``Bonnor-Ebert'' spheres with an initial temperature of 10 K and masses of 0.05 to 10 Msun. The mass accretion rate is determined by the solution of the flow equations rather than being prescribed or neglected. In our study we determine the protostar's radii and the thermal structure together with the mass and mass accretion rate, luminosity and effective temperature during its evolution to a stellar pre-main sequence object. We calculate the time needed to accrete the final stellar masses, the corresponding mean mass accretion rates and median luminosities, and the corresponding evolutionary tracks in the theoretical Hertzsprung-Russell diagram. We derive these quantities from the gas flow resulting from cloud collapse. We do not assume a value for an ``initial'' stellar radius and an ``initial'' stellar thermal structure at the ``top of the track'', the Hayashi-line or any other instant of the evolution. Instead we solve the flow equations for a cloud fragment with spherical symmetry. The system of equations we use contains the equations of stellar structure and evolution as a limiting case and has been tested by a standard solar model and by classical stellar pulsations (Wuchterl & Feuchtinger \\cite{Wuchterl1998}; Feuchtinger \\cite{Feuchtinger1999a}; Dorfi & Feuchtinger \\cite{Dorfi1999}). When dynamical accretion effects have become sufficiently small so that a comparison to existing hydrostatic stellar evolution calculations for corresponding masses can be made, young stars of 2

  6. B, V photometry for ∼19,000 stars in and around the Magellanic Cloud globular clusters NGC 1466, NGC 1841, NGC 2210, NGC 2257, and reticulum

    SciTech Connect

    Jeon, Young-Beom; Nemec, James M.; Walker, Alistair R.; Kunder, Andrea M. E-mail: nemec@camosun.ca E-mail: awalker@ctio.noao.edu

    2014-06-01

    Homogeneous B, V photometry is presented for 19,324 stars in and around 5 Magellanic Cloud globular clusters: NGC 1466, NGC 1841, NGC 2210, NGC 2257, and Reticulum. The photometry is derived from eight nights of CCD imaging with the Cerro Tololo Inter-American Observatory 0.9 m SMARTS telescope. Instrumental magnitudes were transformed to the Johnson B, V system using accurate calibration relations based on a large sample of Landolt-Stetson equatorial standard stars, which were observed on the same nights as the cluster stars. Residual analysis of the equatorial standards used for the calibration, and validation of the new photometry using Stetson's sample of secondary standards in the vicinities of the five Large Magellanic Cloud clusters, shows excellent agreement with our values in both magnitudes and colors. Color-magnitude diagrams reaching to the main-sequence turnoffs at V ∼ 22 mag, sigma-magnitude diagrams, and various other summaries are presented for each cluster to illustrate the range and quality of the new photometry. The photometry should prove useful for future studies of the Magellanic Cloud globular clusters, particularly studies of their variable stars.

  7. The star formation histories of local group dwarf galaxies. II. Searching for signatures of reionization

    SciTech Connect

    Weisz, Daniel R.; Dolphin, Andrew E.; Skillman, Evan D.; Holtzman, Jon; Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F.

    2014-07-10

    We search for signatures of reionization in the star formation histories (SFHs) of 38 Local Group dwarf galaxies (10{sup 4} < M{sub *} < 10{sup 9} M{sub ☉}). The SFHs are derived from color-magnitude diagrams using archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. Only five quenched galaxies (And V, And VI, And XIII, Leo IV, and Hercules) are consistent with forming the bulk of their stars before reionization, when full uncertainties are considered. Observations of 13 of the predicted 'true fossils' identified by Bovill and Ricotti show that only two (Hercules and Leo IV) indicate star formation quenched by reionization. However, both are within the virial radius of the Milky Way and evidence of tidal disturbance complicates this interpretation. We argue that the late-time gas capture scenario posited by Ricotti for the low mass, gas-rich, and star-forming fossil candidate Leo T is observationally indistinguishable from simple gas retention. Given the ambiguity between environmental effects and reionization, the best reionization fossil candidates are quenched low mass field galaxies (e.g., KKR 25).

  8. On the Star-Formation History of the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Cole, A. A.; Smecker-Hane, T. A.; Gallagher, J. S., III

    1999-12-01

    Using WFPC2, we have obtained deep images in the V and I passbands of two fields in the central Large Magellanic Cloud. From these data, we have constructed high-quality color-magnitude diagrams that extend to I 27 and contain 70,000 stars each. Our CMDs extend over 2.5 magnitudes below the oldest main-sequence turnoff, which will allow us to determine the complete star-formation history of the two LMC fields with unprecedented accuracy. The fields are near the star clusters SL 336 (disk) and HS 275 (bar). We present our first analysis, focusing on the distance, age, and metallicity of the two fields as derived from the red clump and the red giant, asymptotic giant, and horizontal branches. There is evidence for differing histories of star-formation and/or chemical enrichment between the bar and the inner disk. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. Partial funding provided by NSF grant AST-9619460 to TSH.

  9. Investigation of the open star cluster NGC 6800

    NASA Astrophysics Data System (ADS)

    Ananjevskaja, Yu. K.; Frolov, V. N.; Polyakov, E. V.

    2015-07-01

    The results of a comprehensive study of the Galactic open cluster NGC 6800 are presented. The positions of stars to a limiting magnitude B ≃ 16{./ m }5 in an 80' × 80' field centered at the cluster were measured on eight plates from the Pulkovo normal astrograph with a maximum epoch difference of 57 years. The measurements were performed with the Pulkovo "Fantasy" automated measuring system. The corresponding field from the 2MASS catalogue was used as an additional plate. As a result, the relative proper motions of stars were obtained with a root-mean-square error of 3.0 mas yr-1. A catalogue of BV and JHK magnitudes for objects in the investigated region was compiled from available published resources. The astrometric selection of cluster members was made by the maximum likelihood method. An individual cluster membership probability of a star P ≥ 60% served as the first selection criterion. The position of a star on the photometric color-magnitude ( V ~ B - V, J ~ J - K s ) diagrams was considered as the second selection criterion. On the basis of these criteria, it was established that 109 stars are members of NGC 6800, These data were used to refine the physical parameters of the cluster: the mean reddening E( B - V) = 0 m . 40, the true distance modulus ( V - M V )0 = 10{./ m }05, and the cluster age ~250 Myr. The luminosity and mass functions were constructed. The position of the center of the cluster NGC 6800 was improved: α = 19h27m11{./s}2 and δ = +25°07'24〃(2000). The catalogue of relative proper motions for stars in the field is available in electronic form only.

  10. Variable Stars in the Sextans Dwarf Spheroidal Galaxy

    NASA Astrophysics Data System (ADS)

    Mateo, Mario; Fischer, Philippe; Krzeminski, Wojtek

    1995-11-01

    We describe a survey for variable stars in the Sextans dwarf spheroidal (dSph) galaxy based on the analysis of 113 B and 48 V CCD images of four fields covering a total area of 18' x 18'. We have identified 44 variables: 36 RR Lyr star, 6 anomalous Cepheids, one long-period red variable, all probable members of Sextans, and one foreground contact binary. We have used the pulsating stars to derive a true distance modulus of 19.67 +/- 0.15 for Sextans (or D = 86 +/-6 kpc), where the error is primarily due to uncertainties in the luminosity-metallicity relation for RR Lyr stars. Based on our new data we conclude that [Fe/H]_Sex_ = -1.6 +/- 0.2, somewhat higher than the value from Suntzeff et al. (ApJ, 418,208(1993)] obtained from the analysis of fiber spectroscopy of the near-IR Calcium triplet. We present a new deep color- magnitude diagram for Sextans which reveals the presence of a metal-poor population containing stars as young as 2-4 Gyr, consistent with the presence of anomalous Cepheids in the galaxy. This young population may represent as much as 25% of the total stellar content of Sextans. We find a surprisingly strong correlation between the frequency of anomalous Cepheids in dSph galaxies and galaxian luminosity and speculate on the possible origin of this strange effect. The RR Lyr stars in Sextans do not exhibit the Oosterhoff dichotomy observed in globular clusters and in the Galactic halo field.

  11. An all-sky sample of intermediate-mass star-forming regions

    SciTech Connect

    Lundquist, Michael J.; Kobulnicky, Henry A.; Alexander, Michael J.; Kerton, Charles R.; Arvidsson, Kim

    2014-04-01

    We present an all-sky sample of 984 candidate intermediate-mass Galactic star-forming regions that are color selected from the Infrared Astronomical Satellite (IRAS) Point Source Catalog and morphologically classify each object using mid-infrared Wide-field Infrared Survey Explorer (WISE) images. Of the 984 candidates, 616 are probable star-forming regions (62.6%), 128 are filamentary structures (13.0%), 39 are point-like objects of unknown nature (4.0%), and 201 are galaxies (20.4%). We conduct a study of four of these regions, IRAS 00259+5625, IRAS 00420+5530, IRAS 01080+5717, and IRAS 05380+2020, at Galactic latitudes |b| > 5° using optical spectroscopy from the Wyoming Infrared Observatory, along with near-infrared photometry from the Two-Micron All Sky Survey, to investigate their stellar content. New optical spectra, color-magnitude diagrams, and color-color diagrams reveal their extinctions, spectrophotometric distances, and the presence of small stellar clusters containing 20-78 M {sub ☉} of stars. These low-mass diffuse star clusters contain ∼65-250 stars for a typical initial mass function, including one or more mid-B stars as their most massive constituents. Using infrared spectral energy distributions we identify young stellar objects near each region and assign probable masses and evolutionary stages to the protostars. The total infrared luminosity lies in the range 190-960 L {sub ☉}, consistent with the sum of the luminosities of the individually identified young stellar objects.

  12. Star Formation Activity in the Galactic H II Region Sh2-297

    NASA Astrophysics Data System (ADS)

    Mallick, K. K.; Ojha, D. K.; Samal, M. R.; Pandey, A. K.; Bhatt, B. C.; Ghosh, S. K.; Dewangan, L. K.; Tamura, M.

    2012-11-01

    We present a multiwavelength study of the Galactic H II region Sh2-297, located in the Canis Major OB1 complex. Optical spectroscopic observations are used to constrain the spectral type of ionizing star HD 53623 as B0V. The classical nature of this H II region is affirmed by the low values of electron density and emission measure, which are calculated to be 756 cm-3 and 9.15 × 105 cm-6 pc using the radio continuum observations at 610 and 1280 MHz, and Very Large Array archival data at 1420 MHz. To understand local star formation, we identified the young stellar object (YSO) candidates in a region of area ~7farcm5 × 7farcm5 centered on Sh2-297 using grism slitless spectroscopy (to identify the Hα emission line stars), and near infrared (NIR) observations. NIR YSO candidates are further classified into various evolutionary stages using color-color and color-magnitude (CM) diagrams, giving 50 red sources (H - K > 0.6) and 26 Class II-like sources. The mass and age range of the YSOs are estimated to be ~0.1-2 M ⊙ and 0.5-2 Myr using optical (V/V-I) and NIR (J/J-H) CM diagrams. The mean age of the YSOs is found to be ~1 Myr, which is of the order of dynamical age of 1.07 Myr of the H II region. Using the estimated range of visual extinction (1.1-25 mag) from literature and NIR data for the region, spectral energy distribution models have been implemented for selected YSOs which show masses and ages to be consistent with estimated values. The spatial distribution of YSOs shows an evolutionary sequence, suggesting triggered star formation in the region. The star formation seems to have propagated from the ionizing star toward the cold dark cloud LDN1657A located west of Sh2-297.

  13. VLT/MUSE discovers a jet from the evolved B[e] star MWC 137

    NASA Astrophysics Data System (ADS)

    Mehner, A.; de Wit, W. J.; Groh, J. H.; Oudmaijer, R. D.; Baade, D.; Rivinius, T.; Selman, F.; Boffin, H. M. J.; Martayan, C.

    2016-01-01

    Aims: Not all stars exhibiting the optical spectral characteristics of B[e] stars are in the same evolutionary stage. The Galactic B[e] star MWC 137 is a prime example of an object with uncertain classification, where previous work has suggested either a pre- or a post-main sequence classification. Our goal is to settle this debate and provide a reliable evolutionary classification. Methods: Integral field spectrograph observations with the Very Large Telescope Multi Unit Spectroscopic Explorer (VLT MUSE) of the cluster SH 2-266 are used to analyze the nature of MWC 137. Results: A collimated outflow is discovered that is geometrically centered on MWC 137. The central position of MWC 137 in the cluster SH 2-266 within the larger nebula suggests strongly that it is a member of this cluster and that it is the origin of both the nebula and the newly discovered jet. Comparison of the color-magnitude diagram of the brightest cluster stars with stellar evolutionary models results in a distance of about 5.2 ± 1.4 kpc. We estimate that the cluster is at least 3 Myr old. The jet emanates from MWC 137 at a position angle of 18-20°. The jet extends over 66'' (1.7 pc) projected on the plane of the sky, shows several knots, and has electron densities of about 103 cm-1 and projected velocities of up to ± 450 km s-1. From the Balmer emission line decrement of the diffuse intracluster nebulosity, we determine E(B-V) = 1.4 mag for the inner 1' cluster region. The spectral energy distribution of the brightest cluster stars yields a slightly lower extinction of E(B-V) ~ 1.2 mag for the inner region and E(B-V) ~ 0.4-0.8 mag for the outer region. The extinction toward MWC 137 is estimated to be E(B-V) ~ 1.8 mag (AV ~ 5.6 mag). Conclusions: Our analysis of the optical and near-infrared color-magnitude and color-color diagrams suggests a post-main sequence stage for MWC 137. The existence of a jet in this object implies the presence of an accretion disk. Several possibilities for MWC

  14. Thermodynamic Diagrams

    NASA Astrophysics Data System (ADS)

    Chaston, Scot

    1999-02-01

    Thermodynamic data such as equilibrium constants, standard cell potentials, molar enthalpies of formation, and standard entropies of substances can be a very useful basis for an organized presentation of knowledge in diverse areas of applied chemistry. Thermodynamic data can become particularly useful when incorporated into thermodynamic diagrams that are designed to be easy to recall, to serve as a basis for reconstructing previous knowledge, and to determine whether reactions can occur exergonically or only with the help of an external energy source. Few students in our chemistry-based courses would want to acquire the depth of knowledge or rigor of professional thermodynamicists. But they should nevertheless learn how to make good use of thermodynamic data in their professional occupations that span the chemical, biological, environmental, and medical laboratory fields. This article discusses examples of three thermodynamic diagrams that have been developed for this purpose. They are the thermodynamic energy account (TEA), the total entropy scale, and the thermodynamic scale diagrams. These diagrams help in the teaching and learning of thermodynamics by bringing the imagination into the process of developing a better understanding of abstract thermodynamic functions, and by allowing the reader to keep track of specialist thermodynamic discourses in the literature.

  15. SURVEYING THE AGENTS OF GALAXY EVOLUTION IN THE TIDALLY STRIPPED, LOW METALLICITY SMALL MAGELLANIC CLOUD (SAGE-SMC). II. COOL EVOLVED STARS

    SciTech Connect

    Boyer, Martha L.; Meixner, Margaret; Gordon, Karl D.; Shiao, Bernie; Srinivasan, Sundar; Van Loon, Jacco Th.; McDonald, Iain; Kemper, F.; Zaritsky, Dennis; Block, Miwa; Engelbracht, Charles W.; Misselt, Karl; Babler, Brian; Bracker, Steve; Meade, Marilyn; Whitney, Barbara; Hora, Joe; Robitaille, Thomas; Indebetouw, Remy; Sewilo, Marta

    2011-10-15

    We investigate the infrared (IR) properties of cool, evolved stars in the Small Magellanic Cloud (SMC), including the red giant branch (RGB) stars and the dust-producing red supergiant (RSG) and asymptotic giant branch (AGB) stars using observations from the Spitzer Space Telescope Legacy program entitled 'Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity SMC', or SAGE-SMC. The survey includes, for the first time, full spatial coverage of the SMC bar, wing, and tail regions at IR wavelengths (3.6-160 {mu}m). We identify evolved stars using a combination of near-IR and mid-IR photometry and point out a new feature in the mid-IR color-magnitude diagram that may be due to particularly dusty O-rich AGB stars. We find that the RSG and AGB stars each contribute {approx}20% of the global SMC flux (extended + point-source) at 3.6 {mu}m, which emphasizes the importance of both stellar types to the integrated flux of distant metal-poor galaxies. The equivalent SAGE survey of the higher-metallicity Large Magellanic Cloud (SAGE-LMC) allows us to explore the influence of metallicity on dust production. We find that the SMC RSG stars are less likely to produce a large amount of dust (as indicated by the [3.6] - [8] color). There is a higher fraction of carbon-rich stars in the SMC, and these stars appear to reach colors as red as their LMC counterparts, indicating that C-rich dust forms efficiently in both galaxies. A preliminary estimate of the dust production in AGB and RSG stars reveals that the extreme C-rich AGB stars dominate the dust input in both galaxies, and that the O-rich stars may play a larger role in the LMC than in the SMC.

  16. ON THE ESTIMATION OF RANDOM UNCERTAINTIES OF STAR FORMATION HISTORIES

    SciTech Connect

    Dolphin, Andrew E.

    2013-09-20

    The standard technique for measurement of random uncertainties of star formation histories (SFHs) is the bootstrap Monte Carlo, in which the color-magnitude diagram (CMD) is repeatedly resampled. The variation in SFHs measured from the resampled CMDs is assumed to represent the random uncertainty in the SFH measured from the original data. However, this technique systematically and significantly underestimates the uncertainties for times in which the measured star formation rate is low or zero, leading to overly (and incorrectly) high confidence in that measurement. This study proposes an alternative technique, the Markov Chain Monte Carlo (MCMC), which samples the probability distribution of the parameters used in the original solution to directly estimate confidence intervals. While the most commonly used MCMC algorithms are incapable of adequately sampling a probability distribution that can involve thousands of highly correlated dimensions, the Hybrid Monte Carlo algorithm is shown to be extremely effective and efficient for this particular task. Several implementation details, such as the handling of implicit priors created by parameterization of the SFH, are discussed in detail.

  17. An Infrared Examination of Young Stars in Upper Centaurus Lupus

    NASA Astrophysics Data System (ADS)

    Johnson, Chelen H.; Linahan, M.; Barge, J.; Rebull, L. M.; Aranda, D.; Canlas, N. G.; Donahoe, K. E.; Ernst, M. K.; Ford, S.; Fox, M. E.; Gutierrez, E.; Haecker, L. W.; Hibbs, C. A.; Maddaus, M. R.; Martin, T. A.; Ng, E.; Niedbalec, A. P.; O'Bryan, S. E.; Searls, E. F.; Zeidner, A. B.; Zegeye, D.

    2014-01-01

    Optical studies of the Upper Centaurus Lupus (UCL) region of the Scorpius-Centaurus (Sco-Cen) complex have found many young stellar objects. The nearby G/K/M Sco-Cen members have been estimated to be much younger 10 Myr) than similar star associations (Song, et al 2012). We have assembled infrared data for the objects thought to be members of UCL by mining various archives including the 2-Micron All-Sky Survey (2MASS), the Spitzer Heritage Archive (SHA), specifically the Spitzer Enhanced Imaging Products Source List, and the Wide-field Infrared Survey Explorer (WISE) all-sky source catalog. We created spectral energy distributions (SEDs) and color-magnitude diagrams (CMDs) with multiple wavelengths to identify infrared excesses and determine what fraction of these stars have circumstellar disks. Students from three high schools collaborated on this project, which is a follow-up project made possible through the NASA/IPAC Teacher Archive Research Project (NITARP; http://nitarp.ipac.caltech.edu).

  18. Are We Correctly Measuring the Star Formation in Galaxies?

    NASA Astrophysics Data System (ADS)

    McQuinn, K. B. W.; Skillman, E. D.; Dolphin, A. E.; Mitchell, N. P.

    2016-06-01

    Integrating our knowledge of star formation (SF) traced by observations at different wavelengths is essential for correctly interpreting and comparing SF activity in a variety of systems and environments. This study compares extinction corrected integrated ultraviolet (UV) emission from resolved galaxies with color-magnitude diagram (CMD) based star formation rates (SFRs) derived from resolved stellar populations and CMD fitting techniques in 19 nearby starburst and post-starburst dwarf galaxies. The data sets are from the panchromatic Starburst Irregular Dwarf Survey and include deep legacy GALEX UV imaging, Hubble Space Telescope optical imaging, and Spitzer MIPS imaging. For the majority of the sample, the integrated near-UV fluxes predicted from the CMD-based SFRs—using four different models—agree with the measured, extinction corrected, integrated near-UV fluxes from GALEX images, but the far-UV (FUV) predicted fluxes do not. Furthermore, we find a systematic deviation between the SFRs based on integrated FUV luminosities and existing scaling relations, and the SFRs based on the resolved stellar populations. This offset is not driven by different SF timescales, variations in SFRs, UV attenuation, nor stochastic effects. This first comparison between CMD-based SFRs and an integrated FUV emission SFR indicator suggests that the most likely cause of the discrepancy is the theoretical FUV-SFR calibration from stellar evolutionary libraries and/or stellar atmospheric models. We present an empirical calibration of the FUV-based SFR relation for dwarf galaxies, with uncertainties, which is 53% larger than previous relations.

  19. HST/COS Observations of the UV-Bright Star Y453 in the Globular Cluster M4 (NGC 6121)

    NASA Astrophysics Data System (ADS)

    Dixon, William V. D.; Chayer, Pierre; Benjamin, Robert A.

    2016-01-01

    Post-AGB stars represent a short-lived phase of stellar evolution during which stars cross the optical color-magnitude diagram from the cool, red tip of the assymptotic giant branch (AGB) to the hot, blue tip of the white-dwarf cooling curve. Their surface chemistry reflects the nuclear-shell burning, mixing, and mass-loss processes characteristic of AGB stars, and their high effective temperatures allow the detection of elements that are unobservable in cool giants. Post-AGB stars in globular clusters offer the additional advantages of known distance, age, and initial chemistry. To better understand the AGB evolution of low-mass stars, we have observed the post-AGB star Y453 in the globular cluster M4 (NGC 6121) with the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope. The star, which has an effective temperature of at least 60,000 K, shows absorption from He, C, N, O, Ne, Si, S, Ti, Cr, Mn, Fe, Co, Ni, and Ga. While the star's C and O abundances are consistent with those measured in a sample of nitrogen-poor RGB stars in M4, its N abundance is considerably enhanced. The star's low C abundance suggests that it left the AGB before the onset of third dredge-up.This work was supported by NASA grant HST-GO-13721.001-A to the University of Wisconsin, Whitewater. P.C. is supported by the Canadian Space Agency under a contract with NRC Herzberg Astronomy and Astrophysics.

  20. SPATIAL DISTRIBUTION AND EVOLUTION OF THE STELLAR POPULATIONS AND CANDIDATE STAR CLUSTERS IN THE BLUE COMPACT DWARF I ZWICKY 18

    SciTech Connect

    Contreras Ramos, R.; Annibali, F.; Fiorentino, G.; Tosi, M.; Clementini, G.; Aloisi, A.; Van der Marel, R. P.; Marconi, M.; Musella, I.; Saha, A.

    2011-10-01

    The evolutionary properties and spatial distribution of I Zwicky 18 (IZw18) stellar populations are analyzed by means of Hubble Space Telescope/Advanced Camera for Surveys deep and accurate photometry. A comparison of the resulting color-magnitude diagrams (CMDs) with stellar evolution models indicates that stars of all ages are present in all the system's components, including objects possibly up to 13 Gyr old, intermediate-age stars, and very young ones. The CMDs show evidence of thermally pulsing asymptotic giant branch and carbon stars. classical and ultra-long-period Cepheids as well as long-period variables have been measured. About 20 objects could be unresolved star clusters; these are mostly concentrated in the northwest (NW) portion of the main body (MB). If interpreted with simple stellar population models, these objects indicate a particularly active star formation over the past 100 Myr in IZw18. The stellar spatial distribution shows that the younger ones are more centrally concentrated, while old and intermediate-age stars are distributed homogeneously over the two bodies, although they are more easily detectable at the system's periphery. The oldest stars are most visible in the secondary body (SB) and in the southeast (SE) portion of the MB, where crowding is less severe, but are also present in the rest of the MB, where they are measured with larger uncertainties. The youngest stars are a few Myr old, are located predominantly in the MB, and are mostly concentrated in its NW portion. The SE portion of the MB appears to be in a similar, but not as young, evolutionary stage as the NW, while the SB stars are older than at least 10 Myr. There is then a sequence of decreasing age of the younger stars from the SB to the SE portion of the MB to the NW portion. All our results suggest that IZw18 is not atypical compared to other blue compact dwarfs.

  1. Updated census of RR Lyrae stars in the globular cluster ω Centauri (NGC 5139)

    NASA Astrophysics Data System (ADS)

    Navarrete, C.; Contreras Ramos, R.; Catelan, M.; Clement, C. M.; Gran, F.; Alonso-García, J.; Angeloni, R.; Hempel, M.; Dékány, I.; Minniti, D.

    2015-05-01

    Aims: ω Centauri (NGC 5139) contains many variable stars of different types and, in particular, more than one hundred RR Lyrae stars. This enabled gathering a homogeneous sample (in terms of instrument, image quality, and time coverage) of high-quality near-infrared (NIR) RR Lyrae light curves by performing an extensive time-series campaign aimed at this object. We have conducted a variability survey of ω Cen in the NIR, using ESO's 4.1 m Visible and Infrared Survey Telescope for Astronomy (VISTA). This is the first paper of a series describing our results. Methods: ω Cen was observed using VIRCAM mounted on VISTA. A total of 42 epochs in J and 100 epochs in KS were obtained, distributed over a total timespan of 352 days. Point-spread function photometry was performed using DAOPHOT in the inner and DoPhot in the outer regions of the cluster. Periods of the known variable stars were improved when necessary using an ANOVA analysis. Results: We collected an unprecedented homogeneous and complete NIR catalog of RR Lyrae stars in the field of ω Cen, allowing us to study for the first time all the RR Lyrae stars associated with the cluster, except for four stars that are located far away from the cluster center. We derived membership status, subclassifications between RRab and RRc subtypes, periods, amplitudes, and mean magnitudes for all the stars in our sample. Additionally, four new RR Lyrae stars were discovered, two of which are very likely cluster members. We also discuss here the distribution of ω Cen stars in the Bailey (period-amplitude) diagram. We provide reference lines in this plane for both Oosterhoff Type I (OoI) and Oosterhoff Type II (OoII) components in J and KS. Conclusions: We clarify the status of many (candidate) RR Lyrae stars that have been reported as unclear in previous studies. This includes stars with anomalous positions in the color-magnitude diagram, uncertain periods or/and variability types, and possible field interlopers. We conclude

  2. Chemical Compositions of Field Red Horizontal Branch Stars

    NASA Astrophysics Data System (ADS)

    Afsar, Melike; Sneden, C.; For, B.

    2011-01-01

    Field Red Horizontal Branch stars (RHBs) are alleged to be members of the thick disk of our Galaxy and are an important evolutionary link between horizontal and asymptotic giant branch evolution. They are easy to identify in globular clusters through their color-magnitude diagram positions. However, they are harder to identify as single stars in the general field; thus they have received lesser attention to date. In this study, we composed a large catalog of RHB candidates and performed the first large-sample high-resolution spectroscopic survey of these stars. We have obtained high resolution spectra of a number of candidate field RHBs. The high resolution spectra of these stars were taken with the 2.7m Harlan J. Smith Telescope and Tull 2Dcoude (R=60000) spectrometer at McDonald Observatory. We have derived the metallicities and relative abundance ratios for some of the alpha (Ca and Si) and neutron capture (La and Eu) elements along with the fundamental stellar parameters. We have also determined CNO abundances in order to gain insight into the evolutionary states of the candidates. In particular, we have investigated the 12C/13C ratio using the CN features present in the 8000-8040 A region, which we have also used to obtain the N abundances of the candidates. Plausible RHB stars, members of the thick disk, found in our study, can shed light into Galactic evolutionary models. This project has benefitted from the financial support of NSF (AST-0908978), the Rex G. Baker endowment to the University of Texas Astronomy Dept., and The Scientific and Technological Research Council of Turkey (TUBITAK).

  3. Massive Stars and the Ionization of the Diffuse Medium

    NASA Astrophysics Data System (ADS)

    Kahre, Lauren E.; Walterbos, Rene A. M.

    2015-08-01

    Diffuse ionized Gas (DIG, sometimes called the warm ionized medium or WIM) has been recognized as a major component of the interstellar medium (ISM) in disk galaxies. A general understanding of the characteristics of the DIG is emerging, but several questions remain unanswered. One of these is the ionization mechanism for this gas, believed to be connected to OB stars and HII regions. Using 5-band (NUV (2750 A), U, V, B, and I) photometric imaging data from the Hubble Space Telescope (HST) Legacy Extragalactic Ultraviolet Survey (LEGUS) and ground-based Halpha data from the Local Volume Legacy (LVL) survey and HST Halpha data from LEGUS, we will investigate the photoionization of HII regions and DIG in nearly 50 galaxies. The 5-band photometry will enable us to determine properties of the most massive stars and reddening corrections for specific regions within a galaxy. Luminosities and ages for groups and clusters will be obtained from SED-fitting of photometric data. For individual stars ages will be determined from isochrone-fitting using reddening-corrected color-magnitude diagrams. We can then obtain estimates of the ionizing luminosities by matching these photometric properties for massive stars and clusters to various stellar atmosphere models. We will compare these predictions to the inferred Lyman continuum production rates from reddening-corrected ground- and HST-based Halpha data for HII regions and DIG. This particular presentation will demonstrate the above process for a set of selected regions in galaxies within the LEGUS sample. It will subsequently be expanded to cover the full LEGUS sample, with the overall goals of obtaining a better understanding of the radiative energy feedback from massive stars on the ISM, particularly their ability to ionize the surrounding ISM over a wide range of spatial scales and SFR surface densities, and to connect the ionization of the ISM to HII region morphologies.

  4. Early-type Galaxies at z = 1.3. I. The Lynx Supercluster: Cluster and Groups at z = 1.3. Morphology and Color-Magnitude Relation

    NASA Astrophysics Data System (ADS)

    Mei, Simona; Stanford, S. Adam; Holden, Brad P.; Raichoor, Anand; Postman, Marc; Nakata, Fumiaki; Finoguenov, Alexis; Ford, Holland C.; Illingworth, Garth D.; Kodama, Tadayuki; Rosati, Piero; Tanaka, Masayuki; Huertas-Company, Marc; Rettura, Alessandro; Shankar, Francesco; Carrasco, Eleazar R.; Demarco, Ricardo; Eisenhardt, Peter; Jee, Myungkook J.; Koyama, Yusei; White, Richard L.

    2012-08-01

    We confirm the detection of three groups in the Lynx supercluster, at z ≈ 1.3, through spectroscopic follow-up and X-ray imaging, and we give estimates for their redshifts and masses. We study the properties of the group galaxies compared to the two central clusters, RX J0849+4452 and RX J0848+4453. Using spectroscopic follow-up and multi-wavelength photometric redshifts, we select 89 galaxies in the clusters, of which 41 are spectroscopically confirmed, and 74 galaxies in the groups, of which 25 are spectroscopically confirmed. We morphologically classify galaxies by visual inspection, noting that our early-type galaxy (ETG) sample would have been contaminated at the 30%-40% level by simple automated classification methods (e.g., based on Sérsic index). In luminosity-selected samples, both clusters and groups show high fractions of bulge-dominated galaxies with a diffuse component that we visually identified as a disk and which we classified as bulge-dominated spirals, e.g., Sas. The ETG fractions never rise above ≈50% in the clusters, which is low compared to the fractions observed in other massive clusters at z ≈ 1. In the groups, ETG fractions never exceed ≈25%. However, overall bulge-dominated galaxy fractions (ETG plus Sas) are similar to those observed for ETGs in clusters at z ~ 1. Bulge-dominated galaxies visually classified as spirals might also be ETGs with tidal features or merger remnants. They are mainly red and passive, and span a large range in luminosity. Their star formation seems to have been quenched before experiencing a morphological transformation. Because their fraction is smaller at lower redshifts, they might be the spiral population that evolves into ETGs. For mass-selected samples of galaxies with masses M > 1010.6 M ⊙ within Σ > 500 Mpc-2, the ETG and overall bulge-dominated galaxy fractions show no significant evolution with respect to local clusters, suggesting that morphological transformations might occur at lower masses

  5. EARLY-TYPE GALAXIES AT z = 1.3. I. THE LYNX SUPERCLUSTER: CLUSTER AND GROUPS AT z = 1.3. MORPHOLOGY AND COLOR-MAGNITUDE RELATION

    SciTech Connect

    Mei, Simona; Raichoor, Anand; Huertas-Company, Marc; Adam Stanford, S.; Rettura, Alessandro; Jee, Myungkook J.; Holden, Brad P.; Illingworth, Garth D.; Nakata, Fumiaki; Kodama, Tadayuki; Finoguenov, Alexis; Ford, Holland C.; Rosati, Piero; Tanaka, Masayuki; Koyama, Yusei; Shankar, Francesco; Carrasco, Eleazar R.; Demarco, Ricardo; Eisenhardt, Peter; and others

    2012-08-01

    We confirm the detection of three groups in the Lynx supercluster, at z Almost-Equal-To 1.3, through spectroscopic follow-up and X-ray imaging, and we give estimates for their redshifts and masses. We study the properties of the group galaxies compared to the two central clusters, RX J0849+4452 and RX J0848+4453. Using spectroscopic follow-up and multi-wavelength photometric redshifts, we select 89 galaxies in the clusters, of which 41 are spectroscopically confirmed, and 74 galaxies in the groups, of which 25 are spectroscopically confirmed. We morphologically classify galaxies by visual inspection, noting that our early-type galaxy (ETG) sample would have been contaminated at the 30%-40% level by simple automated classification methods (e.g., based on Sersic index). In luminosity-selected samples, both clusters and groups show high fractions of bulge-dominated galaxies with a diffuse component that we visually identified as a disk and which we classified as bulge-dominated spirals, e.g., Sas. The ETG fractions never rise above Almost-Equal-To 50% in the clusters, which is low compared to the fractions observed in other massive clusters at z Almost-Equal-To 1. In the groups, ETG fractions never exceed Almost-Equal-To 25%. However, overall bulge-dominated galaxy fractions (ETG plus Sas) are similar to those observed for ETGs in clusters at z {approx} 1. Bulge-dominated galaxies visually classified as spirals might also be ETGs with tidal features or merger remnants. They are mainly red and passive, and span a large range in luminosity. Their star formation seems to have been quenched before experiencing a morphological transformation. Because their fraction is smaller at lower redshifts, they might be the spiral population that evolves into ETGs. For mass-selected samples of galaxies with masses M > 10{sup 10.6} M{sub Sun} within {Sigma} > 500 Mpc{sup -2}, the ETG and overall bulge-dominated galaxy fractions show no significant evolution with respect to local

  6. Stars

    NASA Astrophysics Data System (ADS)

    Capelato, Hugo Vicente

    1999-01-01

    We will begin our study with a more or less superficial inspection of the "forest" of stars that we see in the skies. The first thing we notice is that, as sources of light, they are much weaker than the Sun. Second, their apparent colors vary; from a bluish-white in most of them to a reddish-yellow, which is rarer. There is also a third aspect, though it is not very obvious to the naked eye: most of the stars group themselves in small families of two, three or more members. A good example is the Alpha Centauri, the closest star to us, which, in fact, is a triple system of stars. Another is the group of 7 stars that make up the Pleiades, which will be discussed later on. In fact, almost half of the stars are double systems with only two members, called binary stars. Most of these double stars, though together, are separated by several astronomical units (one astronomical unit, AU, is the distance from Earth to the sun: see Chapter 1), and revolve around each other over periods of several years. And yet the revolutions of some binary stars, separated by much smaller distances, occur in only a few hours! These stars are so close to each other that they can share enveloping material. Often this exchange occurs in a somewhat violent manner. Local explosions may occur, expelling matter away from the system. In other binary systems, where one of the components is a very compact, dense star, companion material flows more calmly, making up a light disk around the compact star.

  7. First Hubble Space Telescope observations of the brightest stars in the Virgo galaxy M100 = NGC 4321

    NASA Technical Reports Server (NTRS)

    Freedman, Wendy L.; Madore, Barry F.; Stetson, Peter B.; Hughes, Shaun M. G.; Holtzman, Jon A.; Mould, Jeremy R.; Trauger, John T.; Gallagher, John S., III; Ballester, Gilda E.; Burrows, Christopher J.

    1994-01-01

    As part of both the Early Release Observations from the Hubble Space Telescope (HST) and the Key Project on the Extragalactic Distance Scale, we have obtained multiwavelength BVR Wide Field/Planetary Camera-2 (WFPC2) images for the face-on Virgo cluster spiral galaxy M100 = NGC 4321. We report here preliminary results from those observations, in the form of a color-magnitude diagram for approximately 11,500 stars down to V approximately 27 mag and a luminosity function for the brightest blue stars which is found to have a slope of 0.7, in excellent agreement with previous results obtained for significantly nearer galaxies. With the increased resolution now available using WFPC2, the number of galaxies in which we can directly measure Population I stars and thereby quantify the recent evolution, as well as test stellar evolution theory, has dramatically increased by at least a factor of 100. Finally, we find that the stars are present in M100 at the colors and luminosities expected for the brightest Cepheid variables in galaxies.

  8. THE STAR FORMATION HISTORY OF THE VERY METAL-POOR BLUE COMPACT DWARF I Zw 18 FROM HST/ACS DATA

    SciTech Connect

    Annibali, F.; Cignoni, M.; Tosi, M.; Clementini, G.; Contreras Ramos, R.; Fiorentino, G.; Van der Marel, R. P.; Aloisi, A.; Marconi, M.; Musella, I.

    2013-12-01

    We have derived the star formation history (SFH) of the blue compact dwarf galaxy I Zw 18 through comparison of deep HST/ACS data with synthetic color-magnitude diagrams (CMDs). A statistical analysis was implemented for the identification of the best-fit SFH and relative uncertainties. We confirm that I Zw 18 is not a truly young galaxy, having started forming stars earlier than ∼1 Gyr ago, and possibly at epochs as old as a Hubble time. In I Zw 18's main body we infer a lower limit of ≈2 × 10{sup 6} M {sub ☉} for the mass locked up in old stars. I Zw 18's main body has been forming stars very actively during the last ∼10 Myr, with an average star formation rate (SFR) as high as ≈1 M {sub ☉} yr{sup –1} (or ≈2 × 10{sup –5} M {sub ☉} yr{sup –1} pc{sup –2}). On the other hand, the secondary body was much less active at these epochs, in agreement with the absence of significant nebular emission. The high current SFR can explain the very blue colors and the high ionized gas content in I Zw 18, resembling primeval galaxies in the early universe. Detailed chemical evolution models are required to quantitatively check whether the SFH from the synthetic CMDs can explain the low measured element abundances, or if galactic winds with loss of metals are needed.

  9. IAC-POP: FINDING THE STAR FORMATION HISTORY OF RESOLVED GALAXIES

    SciTech Connect

    Aparicio, Antonio E-mail: shidalgo@iac.es

    2009-08-15

    IAC-pop is a code designed to solve the star formation history (SFH) of a complex stellar population system, like a galaxy, from the analysis of the color-magnitude diagram (CMD). It uses a genetic algorithm to minimize a {chi}{sup 2} merit function comparing the star distributions in the observed CMD and the CMD of a synthetic stellar population. A parameterization of the CMDs is used, which is the main input of the code. In fact, the code can be applied to any problem in which a similar parameterization of an experimental set of data and models can be made. The method's internal consistency and robustness against several error sources, including observational effects, data sampling, and stellar evolution library differences, are tested. It is found that the best stability of the solution and the best way to estimate errors are obtained by several runs of IAC-pop with varying the input data parameterization. The routine MinnIAC is used to control this process. IAC-pop is offered for free use and can be downloaded from the site http://iac-star.iac.es/iac-pop. The routine MinnIAC is also offered under request, but support cannot be provided for its use. The only requirement for the use of IAC-pop and MinnIAC is referencing this paper and crediting as indicated in the site.

  10. A Search for X-ray Emitting Binary Stars in the Globular Cluster Omega Centauri

    NASA Astrophysics Data System (ADS)

    Deveny, Sarah; Gallien, Michael; Rickards Vaught, Ryan; Waters, Miranda; Cool, Adrienne; Bellini, Andrea; Anderson, Jay; Henleywillis, Simon; Haggard, Daryl; Heinke, Craig O.

    2016-06-01

    Omega Centauri is one of the most widely studied globular clusters, and is expected to harbor a significant population of binary stars. Binaries play a crucial role in determining the progression of stellar dynamics within globular clusters, and as such are relevant to questions concerning the possible formation of intermediate black holes at their centers. One effective way to identify certain classes of binary systems is to first locate X-ray sources in the cluster and then to search for their optical counterparts. Using Chandra X-ray Observatory's ACIS-I instrument we have identified 275 X-ray sources in and toward Omega Cen, more than 50 of which lie within the cluster's core radius. Here we present a search for the optical counterparts of these core sources using an extensive database of archival Hubble Space Telescope images. Using WFC3/UVIS data from 11 different filters, we construct color-magnitude diagrams that reveal a diverse array of objects, including (in addition to background and foreground objects) cataclysmic variables, coronally active binaries, and, interestingly, stars that lie on Omega Cen's anomalous giant branch. We discuss the significance of these results in the context of studies of the formation and evolution of binary stars in globular clusters.

  11. Weighing Stars: The Identification of an Evolved Blue Straggler Star in the Globular Cluster 47 Tucanae

    NASA Astrophysics Data System (ADS)

    Ferraro, F. R.; Lapenna, E.; Mucciarelli, A.; Lanzoni, B.; Dalessandro, E.; Pallanca, C.; Massari, D.

    2016-01-01

    Globular clusters are known to host peculiar objects named blue straggler stars (BSSs), significantly heavier than the normal stellar population. While these stars can be easily identified during their core hydrogen-burning phase, they are photometrically indistinguishable from their low-mass sisters in advanced stages of the subsequent evolution. A clear-cut identification of these objects would require the direct measurement of the stellar mass. We used the detailed comparison between chemical abundances derived from neutral and from ionized spectral lines as a powerful stellar “weighing device” to measure stellar mass and to identify an evolved BSS in 47 Tucanae. In particular, high-resolution spectra of three bright stars, located slightly above the level of the “canonical” horizontal branch (HB) sequence in the color-magnitude diagram of 47 Tucanae, have been obtained with the UVES spectrograph. The measurements of iron and titanium abundances performed separately from neutral and ionized lines reveal that two targets have stellar parameters fully consistent with those expected for low-mass post-HB objects, while for the other target the elemental ionization balance is obtained only by assuming a mass of ˜ 1.4{M}⊙ , which is significantly larger than the main sequence turn-off mass of the cluster (˜ 0.85{M}⊙ ). The comparison with theoretical stellar tracks suggests that this is a BSS descendant possibly experiencing its core helium-burning phase. The large applicability of the proposed method to most of the globular clusters in our Galaxy opens the possibility to initiate systematic searches for evolved BSSs, thus giving access to still unexplored phases of their evolution. Based on UVES-FLAMES observations collected under Program 193.D-0232.

  12. SPITZER SAGE INFRARED PHOTOMETRY OF MASSIVE STARS IN THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Bonanos, A. Z.; Massa, D. L.; Sewilo, M. E-mail: massa@stsci.edu

    2009-10-15

    We present a catalog of 1750 massive stars in the Large Magellanic Cloud (LMC), with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 1268 of these stars, with the goal of exploring their infrared properties. The photometric catalog consists of stars with infrared counterparts in the Spitzer SAGE survey database, for which we present uniform photometry from 0.3 to 24 {mu}m in the UBVIJHK{sub s} +IRAC+MIPS24 bands. The resulting infrared color-magnitude diagrams illustrate that the supergiant B[e], red supergiant, and luminous blue variable (LBV) stars are among the brightest infrared point sources in the LMC, due to their intrinsic brightness, and at longer wavelengths, due to dust. We detect infrared excesses due to free-free emission among {approx}900 OB stars, which correlate with luminosity class. We confirm the presence of dust around 10 supergiant B[e] stars, finding the shape of their spectral energy distributions (SEDs) to be very similar, in contrast to the variety of SED shapes among the spectrally variable LBVs. The similar luminosities of B[e] supergiants (log L/L {sub sun} {>=} 4) and the rare, dusty progenitors of the new class of optical transients (e.g., SN 2008S and NGC 300 OT), plus the fact that dust is present in both types of objects, suggests a common origin for them. We find the infrared colors for Wolf-Rayet stars to be independent of spectral type and their SEDs to be flatter than what models predict. The results of this study provide the first comprehensive roadmap for interpreting luminous, massive, resolved stellar populations in nearby galaxies at infrared wavelengths.

  13. Hubble Space Telescope imaging of super-star clusters in NGC 1569 and NGC 1705

    NASA Technical Reports Server (NTRS)

    O'Connell, Robert W.; Gallagher, John S., III; Hunter, Deidre A.

    1994-01-01

    We examine the structural properties of three super-star clusters in the nearby, H I-rich galaxies NGC 1569 and NGC 1705. The clusters, which have total absolute V magnitudes between -13.3 and -14.1, appear to be point sources on ground-based images but are partially resolved in new images obtained with the Hubble Space Telescope (HST) Planetary Camera. From deconvolved V- and I-band images we find that the three clusters have very compact cores with extended halos that are partially resolved into individual stars. Using new distances to the galaxies derived from color-magnitude diagrams for field stars, we find that the half-light radii are 2.2-3.4 pc. The cluster in NGC 1705 is barely resolved in the HST images. The clusters in NGC 1569, on the other hand, show significant substructure in their cores and ellipticities that are comparable to the flattenings seen in young clusters in the Large Magellanic Cloud (LMC). The clusters show internal (V-I) color gradients. The properties of these clusters are similar to R136, the core of the luminous star-forming complex 30 Doradus in the LMC, except that R136 has a lower luminosity and central surface brightness. The half-light surface brightness of the brightest cluster (NGC 1569 A) is 1.3 x 10(exp 6) L(sub v) solar/ sq cm, which is over 65 times higher than R136 and 1200 times higher than the mean rich LMC star cluster other than R136 after allowing for aging effects. The next brightest clusters in each of these galaxies are greater than or = 2 mag fainter. Thus, the super-star clusters represent an extreme but uncommon mode of star formation. In terms of luminosity and size, they appear to be good analogs of young globular clusters.

  14. Mass Loss in Massive Stars Across the H-R Diagram: Transients, Dust Production, and the End Stages of Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Levesque, Emily

    2015-08-01

    Mass loss is a critical ingredient in the evolution of massive stars. Effects on massive stellar evolution from parameters such as metallicity and rotation are often the consequence of these parameters’ direct impact on mass loss mechanisms. For moderately massive (10-25Mo) stars, mass loss processes are vital to their late-time evolution as red supergiants and Wolf-Rayet stars as well as the nature and classification of their core-collapse deaths. For more massive stars, extreme or eruptive mass loss episodes can be observed as transient phenomena in their own right and are a defining characteristic of luminous blue variables (LBVs). Mass loss is also vital to our understanding of dust production by massive stars, which can dominate the dust content of the ISM in young galaxies and give rise to objects such as OH/IR stars. In this talk I will discuss recent observational and theoretical work on mass loss in massive stars, including its critical role in transient astronomy, dust production, and stellar evolution.

  15. The Range of the Star Formation Rate in Local BCDs

    NASA Astrophysics Data System (ADS)

    Hopp, U.

    We will compare the star formation rate (SFR) obtained for the emission line galaxy sample (ELGS) of Popescu et al (1999, 2000) and of very nearby Blue Compact Dwarf Galaxies (BCD) which were resolved into individual stars with HST. For the ELGS, the SFR was derived from the Balmer line flux applying standard calibration. The new metal-depend calibrations of Weilbacher & Fritze-von Alvensleben (2001) will be considered. The galaxies of the ELGS are distributed in intermediate to very low environment galaxy densities. About half a dozen nearby (D <= 7 Mpc) BCDs in similar density regimes have been resolved into individual stars using either WFPC2 or NIC2 aboard HST. Analysing their color-magnitude diagrams yield clues on the recent and past SFR (e. g. Schulte-Ladbeck et al., 2001, Hopp, 2001). From both samples, we found that the SFR of BCDs is, on average, surprisingly low. For the ELGS, the values range from 2.2 Msolar yr-1 down to 0.01 Msolar yr-1, with two third of them below 0.3 Msolar yr-1. BCDs with high, star-burst like SFR (>= 0.8 Msolar yr-1) are rare (<= 10%). References: Hopp, U., 2001, in: K. de Boer, Proc. of ``Dwarf Galaxies and their Environment'', January 2001, Shacker Verlag, in press Popescu, C.C., Hopp, U., 2000, A&AS, 142, 247 Popescu, C.C., Hopp, U., Rosa, M., 1999, A&A, 350, 414 Schulte-Ladbeck, R.E., Hopp, U., Greggio, L., Crone, M., Drozdovsky, I.O., 2001, AJ (June), in press Weilbacher, P.M., Fritze-von Alvensleben, U., 2001, A&A, in press (astro-ph/0105282)

  16. THE CONTRIBUTIONS OF INTERACTIVE BINARY STARS TO DOUBLE MAIN-SEQUENCE TURNOFFS AND DUAL RED CLUMP OF INTERMEDIATE-AGE STAR CLUSTERS

    SciTech Connect

    Yang Wuming; Bi Shaolan; Tian Zhijia; Li Tanda; Liu Kang; Meng Xiangcun E-mail: woomyang@gmail.com

    2011-04-20

    Double or extended main-sequence turnoffs (DMSTOs) and dual red clump (RC) were observed in intermediate-age clusters, such as in NGC 1846 and 419. The DMSTOs are interpreted as that the cluster has two distinct stellar populations with differences in age of about 200-300 Myr but with the same metallicity. The dual RC is interpreted as a result of a prolonged star formation. Using a stellar population-synthesis method, we calculated the evolution of a binary-star stellar population. We found that binary interactions and merging can reproduce the dual RC in the color-magnitude diagrams of an intermediate-age cluster, whereas in actuality only a single population exists. Moreover, the binary interactions can lead to an extended main-sequence turnoff (MSTO) rather than DMSTOs. However, the rest of the main sequence, subgiant branch, and first giant branch are hardly spread by the binary interactions. Part of the observed dual RC and extended MSTO may be the results of binary interactions and mergers.

  17. The Small Magellanic Cloud Investigation of Dust and Gas Evolution (SMIDGE): Young, Low-mass Stars in the SW Bar of the SMC

    NASA Astrophysics Data System (ADS)

    Johnson, Lent C.; Sandstrom, Karin; SMIDGE Team

    2016-06-01

    We identify young, pre-main sequence stars in the SW Bar region of the Small Magellanic Cloud (SMC) using color magnitude diagrams obtained by the Hubble Space Telescope as part of the SMIDGE survey. Deep, panchromatic, high spatial resolution Hubble imaging provides an excellent dataset for studying young, low-mass (~2-0.5 M⊙) stellar populations. The SW Bar region observed by SMIDGE contains multiple low mass star forming regions in various stages of evolution. These regions provide contrast to massive regions previously surveyed by Hubble in the SMC (e.g., NGC346, NGC602), and allow us to explore the evolution from quiescent clouds to HII regions. We analyze the spatial distribution of these young stars and their association with the local ISM, inferred from observations of molecular gas and dust emission. Additionally, we use Hα imaging to constrain accretion rates for the pre-MS stars. Finally, we analyze the characteristics and multiplicity of Spitzer YSO detections as revealed by high spatial resolution imaging.

  18. ON THE LAST 10 BILLION YEARS OF STELLAR MASS GROWTH IN STAR-FORMING GALAXIES

    SciTech Connect

    Leitner, Samuel N.

    2012-02-01

    The star formation rate-stellar mass relation (SFR-M{sub *}) and its evolution (i.e., the SFR main sequence) describe the growth rate of galaxies of a given stellar mass and at a given redshift. Assuming that present-day star-forming galaxies (SFGs) were always star forming in the past, these growth rate observations can be integrated to calculate average star formation histories (SFHs). Using this Main Sequence Integration (MSI) approach, we trace present-day massive SFGs back to when they were 10%-20% of their current stellar mass. The integration is robust throughout those epochs: the SFR data underpinning our calculations are consistent with the evolution of stellar mass density in this regime. Analytic approximations to these SFHs are provided. Integration-based results reaffirm previous suggestions that current SFGs formed virtually all of their stellar mass at z < 2. It follows that massive galaxies observed at z > 2 are not the typical progenitors of SFGs today. We also check MSI-based SFHs against those inferred from analysis of the fossil record-from spectral energy distributions (SEDs) of SFGs in the Sloan Digital Sky Survey and color-magnitude diagrams (CMDs) of resolved stars in dwarf irregular galaxies. Once stellar population age uncertainties are accounted for, the main sequence is in excellent agreement with SED-based SFHs (from VESPA). Extrapolating SFR main sequence observations to dwarf galaxies, we find differences between MSI results and SFHs from CMD analysis of Advanced Camera for Surveys Nearby Galaxy Survey Treasury and Local Group galaxies. Resolved dwarfs appear to grow much slower than main sequence trends imply, and also slower than slightly higher mass SED-analyzed galaxies. This difference may signal problems with SFH determinations, but it may also signal a shift in star formation trends at the lowest stellar masses.

  19. K{sub s} -BAND LUMINOSITY EVOLUTION OF THE ASYMPTOTIC GIANT BRANCH POPULATION BASED ON STAR CLUSTERS IN THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Ko, Youkyung; Lee, Myung Gyoon; Lim, Sungsoon E-mail: mglee@astro.snu.ac.kr

    2013-11-10

    We present a study of K{sub s} -band luminosity evolution of the asymptotic giant branch (AGB) population in simple stellar systems using star clusters in the Large Magellanic Cloud (LMC). We determine physical parameters of LMC star clusters including center coordinates, radii, and foreground reddenings. Ages of 83 star clusters are derived from isochrone fitting with the Padova models, and those of 19 star clusters are taken from the literature. The AGB stars in 102 star clusters with log(age) = 7.3-9.5 are selected using near-infrared color-magnitude diagrams based on Two Micron All Sky Survey photometry. Then we obtain the K{sub s} -band luminosity fraction of AGB stars in these star clusters as a function of ages. The K{sub s} -band luminosity fraction of AGB stars increases, on average, as age increases from log(age) ∼ 8.0, reaching a maximum at log(age) ∼ 8.5, and it decreases thereafter. There is a large scatter in the AGB luminosity fraction for given ages, which is mainly due to stochastic effects. We discuss this result in comparison with five simple stellar population models. The maximum K{sub s} -band AGB luminosity fraction for bright clusters is reproduced by the models that expect the value of 0.7-0.8 at log(age) = 8.5-8.7. We discuss the implication of our results with regard to the study of size and mass evolution of galaxies.

  20. Hubble Tarantula Treasury Project. II. The Star-formation History of the Starburst Region NGC 2070 in 30 Doradus

    NASA Astrophysics Data System (ADS)

    Cignoni, M.; Sabbi, E.; van der Marel, R. P.; Tosi, M.; Zaritsky, D.; Anderson, J.; Lennon, D. J.; Aloisi, A.; de Marchi, G.; Gouliermis, D. A.; Grebel, E. K.; Smith, L. J.; Zeidler, P.

    2015-10-01

    We present a study of the recent star formation (SF) of 30 Doradus in the Large Magellanic Cloud (LMC) using the panchromatic imaging survey Hubble Tarantula Treasury Project. In this paper we focus on the stars within 20 pc of the center of 30 Doradus, the starburst region NGC 2070. We recovered the SF history by comparing deep optical and near-infrared color-magnitude diagrams (CMDs) with state-of-the-art synthetic CMDs generated with the latest PAdova and TRieste Stellar Evolution Code (PARSEC) models, which include all stellar phases from pre-main-sequence to post-main-sequence. For the first time in this region we are able to measure the SF using intermediate- and low-mass stars simultaneously. Our results suggest that NGC 2070 experienced prolonged activity. In particular, we find that the SF in the region (1) exceeded the average LMC rate ≈ 20 Myr ago, (2) accelerated dramatically ≈ 7 Myr ago, and (3) reached a peak value 1-3 Myr ago. We did not find significant deviations from a Kroupa initial mass function down to 0.5 {M}⊙ . The average internal reddening E(B-V) is found to be between 0.3 and 0.4 mag. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc., under NASA contract NAS 5-26555.

  1. Journeys on the H-R diagram

    SciTech Connect

    Kaler, J.B.

    1988-05-01

    The evolution of various types of stars along the H-R diagram is discussed. Star birth and youth is addressed, and the events that occur due to core contraction, shell burning, and double-shell burning are described. The evolutionary courses of planetary nebulae, white dwarfs, and supernovas are examined.

  2. THE CLUSTERED NATURE OF STAR FORMATION. PRE-MAIN-SEQUENCE CLUSTERS IN THE STAR-FORMING REGION NGC 602/N90 IN THE SMALL MAGELLANIC CLOUD

    SciTech Connect

    Gouliermis, Dimitrios A.; Gennaro, Mario; Schmeja, Stefan; Dolphin, Andrew E.; Tognelli, Emanuele; Prada Moroni, Pier Giorgio

    2012-03-20

    Located at the tip of the wing of the Small Magellanic Cloud (SMC), the star-forming region NGC 602/N90 is characterized by the H II nebular ring N90 and the young cluster of pre-main-sequence (PMS) and early-type main-sequence stars NGC 602, located in the central area of the ring. We present a thorough cluster analysis of the stellar sample identified with Hubble Space Telescope/Advanced Camera for Surveys in the region. We show that apart from the central cluster low-mass PMS stars are congregated in 13 additional small, compact sub-clusters at the periphery of NGC 602, identified in terms of their higher stellar density with respect to the average background density derived from star counts. We find that the spatial distribution of the PMS stars is bimodal, with an unusually large fraction ({approx}60%) of the total population being clustered, while the remaining is diffusely distributed in the intercluster area, covering the whole central part of the region. From the corresponding color-magnitude diagrams we disentangle an age difference of {approx}2.5 Myr between NGC 602 and the compact sub-clusters, which appear younger, on the basis of comparison of the brighter PMS stars with evolutionary models, which we accurately calculated for the metal abundance of the SMC. The diffuse PMS population appears to host stars as old as those in NGC 602. Almost all detected PMS sub-clusters appear to be centrally concentrated. When the complete PMS stellar sample, including both clustered and diffused stars, is considered in our cluster analysis, it appears as a single centrally concentrated stellar agglomeration, covering the whole central area of the region. Considering also the hot massive stars of the system, we find evidence that this agglomeration is hierarchically structured. Based on our findings, we propose a scenario according to which the region NGC 602/N90 experiences an active clustered star formation for the last {approx}5 Myr. The central cluster NGC 602 was

  3. HST/ACS PHOTOMETRY OF OLD STARS IN NGC 1569: THE STAR FORMATION HISTORY OF A NEARBY STARBURST

    SciTech Connect

    Grocholski, Aaron J.; Van der Marel, Roeland P.; Aloisi, Alessandra E-mail: marel@stsci.edu; and others

    2012-05-15

    We used Hubble Space Telescope/Advanced Camera for Surveys to obtain deep V- and I-band images of NGC 1569, one of the closest and strongest starburst galaxies in the universe. These data allowed us to study the underlying old stellar population, aimed at understanding NGC 1569's evolution over a full Hubble time. We focus on the less-crowded outer region of the galaxy, for which the color-magnitude diagram (CMD) shows predominantly a red giant branch (RGB) that reaches down to the red clump/horizontal branch feature (RC/HB). A simple stellar population analysis gives clear evidence for a more complicated star formation history (SFH) in the outer region. We derive the full SFH using a newly developed code, SFHMATRIX, which fits the CMD Hess diagram by solving a non-negative least-squares problem. Our analysis shows that the relative brightnesses of the RGB tip and RC/HB, along with the curvature and color of the RGB, provide enough information to ameliorate the age-metallicity-extinction degeneracy. The distance/reddening combination that best fits the data is E(B - V) = 0.58 {+-} 0.03 and D = 3.06 {+-} 0.18 Mpc. Star formation began {approx}13 Gyr ago, and this accounts for the majority of the mass in the outer region. However, the initial burst was followed by a relatively low, but constant, rate of star formation until {approx}0.5-0.7 Gyr ago when there may have been a short, low intensity burst of star formation. Stellar metallicity increases over time, consistent with chemical evolution expectations. The dominant old population shows a considerable spread in metallicity, similar to the Milky Way halo. However, the star formation in NGC 1569's outer region lasted much longer than in the Milky Way. The distance and line-of-sight velocity of NGC 1569 indicate that it has moved through the IC 342 group of galaxies, which may have caused this extended star formation. Comparison with other recent work provides no evidence for radial population gradients in the old

  4. THE ADVANCED CAMERA FOR SURVEYS NEARBY GALAXY SURVEY TREASURY. IV. THE STAR FORMATION HISTORY OF NGC 2976

    SciTech Connect

    Williams, Benjamin F.; Dalcanton, Julianne J.; Stilp, Adrienne; Gilbert, Karoline M.; Roskar, Rok; Gogarten, Stephanie M.; Seth, Anil C.; Weisz, Daniel; Skillman, Evan; Dolphin, Andrew; Holtzman, Jon E-mail: jd@astro.washington.ed E-mail: stephanie@astro.washington.ed E-mail: dweisz@astro.umn.ed E-mail: dolphin@raytheon.co

    2010-01-20

    We present resolved stellar photometry of NGC 2976 obtained with the Advanced Camera for Surveys (ACS) as part of the ACS Nearby Galaxy Survey Treasury (ANGST) program. The data cover the radial extent of the major axis of the disk out to 6 kpc, or approx6 scale lengths. The outer disk was imaged to a depth of M{sub F606W} approx 1, and an inner field was imaged to the crowding limit at a depth of M{sub F606W} approx -1. Through detailed analysis and modeling of the resulting color-magnitude diagrams, we have reconstructed the star formation history (SFH) of the stellar populations currently residing in these portions of the galaxy, finding similar ancient populations at all radii but significantly different young populations at increasing radii. In particular, outside of the well-measured break in the disk surface brightness profile, the age of the youngest population increases with distance from the galaxy center, suggesting that star formation is shutting down from the outside-in. We use our measured SFH, along with H I surface density measurements, to reconstruct the surface density profile of the disk during previous epochs. Comparisons between the recovered star formation rates and reconstructed gas densities at previous epochs are consistent with star formation following the Schmidt law during the past 0.5 Gyr, but with a drop in star formation efficiency at low gas densities, as seen in local galaxies at the present day. The current rate and gas density suggest that rapid star formation in NGC 2976 is currently in the process of ceasing from the outside-in due to gas depletion. This process of outer disk gas depletion and inner disk star formation was likely triggered by an interaction with the core of the M81 group approx>1 Gyr ago that stripped the gas from the galaxy halo and/or triggered gas inflow from the outer disk toward the galaxy center.

  5. Variable Stars in the Globular Clusters 47 Tucanae and Terzan 5

    NASA Astrophysics Data System (ADS)

    Edmonds, P. D.; Gilliland, R. L.; Bailyn, C. D.; Cohn, H. N.; Cool, A. M.; Fruchter, A. S.; Grindlay, J. E.; Lugger, P. M.

    1999-12-01

    We have made searches for variable stars in two metal-rich globular clusters, 47 Tucanae and Terzan 5. Using extensive CTIO observations in UBVI we have detected low amplitude, relatively short period variability among the red giants in 47 Tuc, probably caused by pulsations. This confirms the earlier detection of K giant variability in this cluster by Edmonds and Gilliland using HST observations. Although K giant variability has been studied in field stars, our CTIO work represents the first detailed study of such variability in a globular cluster. We discuss the period and amplitude distribution of these variable K giants, their positions in the color magnitude diagram and the implications of this variability for stellar astrophysics. We have also detected several other cluster variables including long-period variables, an eclipsing binary and a pulsating blue straggler, plus a number of SMC variables including two RR Lyrae variables. Our shorter Terzan 5 observations, using NICMOS, have detected a RR Lyrae variable in this highly reddened, solar metallicity cluster, adding to the class of long period RR Lyraes found in metal-rich clusters. No evidence has been found for variability from the low-mass X-ray binary and millisecond pulsar known in Terzan 5. This work was partially supported by HST grant GO-7889.

  6. THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. X. ULTRAVIOLET TO INFRARED PHOTOMETRY OF 117 MILLION EQUIDISTANT STARS

    SciTech Connect

    Williams, Benjamin F.; Dalcanton, Julianne J.; Weisz, Daniel R.; Byler, Nell; Johnson, L. C. E-mail: jd@astro.washington.edu E-mail: lcjohnso@astro.washington.edu; and others

    2014-11-01

    We have measured stellar photometry with the Hubble Space Telescope Wide Field Camera 3 (WFC3) and Advanced Camera for Surveys in near ultraviolet (F275W, F336W), optical (F475W, F814W), and near infrared (F110W, F160W) bands for 117 million resolved stars in M31. As part of the Panchromatic Hubble Andromeda Treasury survey, we measured photometry with simultaneous point-spread function (PSF) fitting across all bands and at all source positions after precise astrometric image alignment (<5-10 mas accuracy). In the outer disk, the photometry reaches a completeness-limited depth of F475W ∼ 28, while in the crowded, high surface brightness bulge, the photometry reaches F475W ∼ 25. We find that simultaneous photometry and optimized measurement parameters significantly increase the detection limit of the lowest-resolution filters (WFC3/IR) providing color-magnitude diagrams (CMDs) that are up to 2.5 mag deeper when compared with CMDs from WFC3/IR photometry alone. We present extensive analysis of the data quality including comparisons of luminosity functions and repeat measurements, and we use artificial star tests to quantify photometric completeness, uncertainties and biases. We find that the largest sources of systematic error in the photometry are due to spatial variations in the PSF models and charge transfer efficiency corrections. This stellar catalog is the largest ever produced for equidistant sources, and is publicly available for download by the community.

  7. Chemical Abundances of Red Giant Branch Stars in the Globular Cluster NGC 288

    NASA Astrophysics Data System (ADS)

    Hsyu, Tiffany; Johnson, C. I.; Pilachowski, C. A.; Lee, Y.; Rich, R. M.

    2013-01-01

    We present chemical abundances and radial velocities for ~30 red giant branch (RGB) stars in the globular cluster NGC 288. The results are based on moderate resolution (R≈18,000) and moderate signal-to-noise ratio 50-75) obtained with the Hydra multi-object spectrograph on the Blanco 4m telescope. NGC 288 has been shown to exhibit two separate RGBs and we investigate possible differences in metallicity and/or light element abundances between stars on each branch. We present a new filter tracing for the CTIO Calcium HK narrow band filter and explore its effects on previous globular cluster color-magnitude diagrams. We also compare the light element abundance patterns of NGC 288 to those of other similar metallicity halo clusters. This material is based upon work supported by the National Science Foundation under award No.AST-1003201 to C.I.J. C.A.P. gratefully acknowledges support from the Daniel Kirkwood Research Fund at Indiana University. R.M.R. acknowledges support from NSF grants AST-0709479 and AST-121120995.

  8. The Panchromatic Hubble Andromeda Treasury. X. Ultraviolet to Infrared Photometry of 117 Million Equidistant Stars

    NASA Astrophysics Data System (ADS)

    Williams, Benjamin F.; Lang, Dustin; Dalcanton, Julianne J.; Dolphin, Andrew E.; Weisz, Daniel R.; Bell, Eric F.; Bianchi, Luciana; Byler, Nell; Gilbert, Karoline M.; Girardi, Léo; Gordon, Karl; Gregersen, Dylan; Johnson, L. C.; Kalirai, Jason; Lauer, Tod R.; Monachesi, Antonela; Rosenfield, Philip; Seth, Anil; Skillman, Eva

    2014-11-01

    We have measured stellar photometry with the Hubble Space Telescope Wide Field Camera 3 (WFC3) and Advanced Camera for Surveys in near ultraviolet (F275W, F336W), optical (F475W, F814W), and near infrared (F110W, F160W) bands for 117 million resolved stars in M31. As part of the Panchromatic Hubble Andromeda Treasury survey, we measured photometry with simultaneous point-spread function (PSF) fitting across all bands and at all source positions after precise astrometric image alignment (<5-10 mas accuracy). In the outer disk, the photometry reaches a completeness-limited depth of F475W ~ 28, while in the crowded, high surface brightness bulge, the photometry reaches F475W ~ 25. We find that simultaneous photometry and optimized measurement parameters significantly increase the detection limit of the lowest-resolution filters (WFC3/IR) providing color-magnitude diagrams (CMDs) that are up to 2.5 mag deeper when compared with CMDs from WFC3/IR photometry alone. We present extensive analysis of the data quality including comparisons of luminosity functions and repeat measurements, and we use artificial star tests to quantify photometric completeness, uncertainties and biases. We find that the largest sources of systematic error in the photometry are due to spatial variations in the PSF models and charge transfer efficiency corrections. This stellar catalog is the largest ever produced for equidistant sources, and is publicly available for download by the community.

  9. Calibrating the Optical Luminosity of Red Clump Stars: An Archival Study of Star Clusters

    NASA Astrophysics Data System (ADS)

    Grocholski, Aaron

    2010-09-01

    The core helium burning stars of the red clump {RC} are a conspicuous feature in the color-magnitude diagram of many stellar populations. Its ease of identification, along with its relative brightness {M_I 0} make the RC a popular feature for HST studies of stellar populations in galaxies out to a few Mpc. Such studies generally interpret the data through comparison to theoretical isochrones. For accurate results, the theoretical predictions must be calibrated to match the RC properties of observed populations of known age and metallicity. However, no large scale studies of the luminosity of the RC currently exist in the optical bands. We propose to remedy this situation with an archival study of RC properties in star clusters in the Milky Way, LMC, and SMC. We will focus on HST images of globular clusters, but we will augment the sample with ground-based open cluster observations to extend the coverage of parameter space. The goal is to build a large and homogeneous database, through new analysis and incorporation of literature data, of cluster ages, abundances, distances, and RC photometry. This database will allow us to explore the variations in the RC luminosity as a function of age and [Fe/H] over the full range of parameter space where the RC exists, for both the V and I bands. The results will provide a fundamental calibration for all future HST studies of stellar populations and distances of nearby galaxies using the RC. They will also allow for verification or improvement of theoretical models for red giant phase evolution. This in turn will help many subjects, from stellar modeling to population synthesis and fitting of spectral energy distributions of distant galaxies.

  10. The Massive Star Population in M101

    NASA Astrophysics Data System (ADS)

    Grammer, Skyler H.

    An increasing number of non-terminal giant eruptions are being observed by modern supernova and transient surveys. Very little is known about the origin of these giant eruptions and their progenitors which are presumably very-massive, evolved stars such as luminous blue variables, hypergiants, and supergiants. Motivated by the small number of progenitors positively associated with these giant eruptions, we have begun a survey of the luminous and evolved massive star populations in several nearby galaxies. We aim to identify the likely progenitors of the giant eruptions, study the spatial variations in the stellar populations, and examine the relationship between massive star populations and their environment. The work presented here is focused on stellar populations in the relatively nearby, giant, spiral galaxy M101 from sixteen archival BVI HST/ACS images. We create a catalog of stars in the direction to M101 with photometric errors < 10% for V < 24.5 and 50% completeness down to V ˜ 26.5 even in regions of high stellar crowding. Using color and magnitude criteria we have identified candidate luminous OB type stars and blue supergiants, yellow supergiants, and red supergiants for future observation. We examine their spatial distributions across the face of M101 and find that the ratio of blue to red supergiants decreases by two orders of magnitude over the radial extent. From our catalog, we derive the star formation history (SFH) for the stellar populations in five 2' wide annuli by fitting the color-magnitude diagrams. Binning the SFH into time frames corresponding to populations traced by Halpha, far ultraviolet (FUV), and near ultraviolet (NUV) emission, we show that the fraction of stellar populations young enough to contribute in Halpha is 15% " 35% in the inner regions, compared to less than 5% in the outer regions. This provides a sufficient explanation for the lack of Halpha emission at large radii. We also model the blue to red supergiant ratio in our

  11. VARIABLE STARS IN THE ULTRA-FAINT DWARF SPHEROIDAL GALAXY URSA MAJOR I

    SciTech Connect

    Garofalo, Alessia; Moretti, Maria Ida; Cusano, Felice; Clementini, Gisella; Ripepi, Vincenzo; Dall'Ora, Massimo; Coppola, Giuseppina; Musella, Ilaria; Marconi, Marcella E-mail: fcusano@na.astro.it E-mail: ripepi@na.astro.it E-mail: imoretti@na.astro.it E-mail: ilaria@na.astro.it

    2013-04-10

    We have performed the first study of the variable star population of Ursa Major I (UMa I), an ultra-faint dwarf satellite recently discovered around the Milky Way (MW) by the Sloan Digital Sky Survey. Combining time series observations in the B and V bands from four different telescopes, we have identified seven RR Lyrae stars in UMa I, of which five are fundamental-mode (RRab) and two are first-overtone pulsators (RRc). Our V, B - V color-magnitude diagram of UMa I reaches V {approx} 23 mag (at a signal-to-noise ratio of {approx}6) and shows features typical of a single old stellar population. The mean pulsation period of the RRab stars (P{sub ab}) = 0.628, {sigma} = 0.071 days (or (P{sub ab}) = 0.599, {sigma} = 0.032 days, if V4, the longest period and brightest variable, is discarded) and the position on the period-amplitude diagram suggest an Oosterhoff-intermediate classification for the galaxy. The RR Lyrae stars trace the galaxy horizontal branch (HB) at an average apparent magnitude of (V(RR)) = 20.43 {+-} 0.02 mag (average on six stars and discarding V4), giving in turn a distance modulus for UMa I of (m - M){sub 0} = 19.94 {+-} 0.13 mag, distance d = 97.3{sup +6.0}{sub -5.7} kpc, in the scale where the distance modulus of the Large Magellanic Cloud is 18.5 {+-} 0.1 mag. Isodensity contours of UMa I red giants and HB stars (including the RR Lyrae stars identified in this study) show that the galaxy has an S-shaped structure, which is likely caused by the tidal interaction with the MW. Photometric metallicities were derived for six of the UMa I RR Lyrae stars from the parameters of the Fourier decomposition of the V-band light curves, leading to an average metal abundance of [Fe/H] = -2.29 dex ({sigma} = 0.06 dex, average on six stars) on the Carretta et al. metallicity scale.

  12. A NEW MILKY WAY HALO STAR CLUSTER IN THE SOUTHERN GALACTIC SKY

    SciTech Connect

    Balbinot, E.; Santiago, B. X.; Da Costa, L.; Maia, M. A. G.; Rocha-Pinto, H. J.; Majewski, S. R.; Nidever, D.; Thomas, D.; Wechsler, R. H.; Yanny, B.

    2013-04-20

    We report on the discovery of a new Milky Way (MW) companion stellar system located at ({alpha}{sub J2000,}{delta}{sub J2000}) = (22{sup h}10{sup m}43{sup s}.15, 14 Degree-Sign 56 Prime 58 Double-Prime .8). The discovery was made using the eighth data release of SDSS after applying an automated method to search for overdensities in the Baryon Oscillation Spectroscopic Survey footprint. Follow-up observations were performed using Canada-France-Hawaii-Telescope/MegaCam, which reveal that this system is comprised of an old stellar population, located at a distance of 31.9{sup +1.0}{sub -1.6} kpc, with a half-light radius of r{sub h}= 7.24{sup +1.94}{sub -1.29} pc and a concentration parameter of c = log{sub 10}(r{sub t} /r{sub c} ) = 1.55. A systematic isochrone fit to its color-magnitude diagram resulted in log (age yr{sup -1}) = 10.07{sup +0.05}{sub -0.03} and [Fe/H] = -1.58{sup +0.08}{sub -0.13}. These quantities are typical of globular clusters in the MW halo. The newly found object is of low stellar mass, whose observed excess relative to the background is caused by 95 {+-} 6 stars. The direct integration of its background decontaminated luminosity function leads to an absolute magnitude of M{sub V} = -1.21 {+-} 0.66. The resulting surface brightness is {mu}{sub V} = 25.90 mag arcsec{sup -2}. Its position in the M{sub V} versus r{sub h} diagram lies close to AM4 and Koposov 1, which are identified as star clusters. The object is most likely a very faint star cluster-one of the faintest and lowest mass systems yet identified.

  13. Dwarf spheroidal satellites of M31. I. Variable stars and stellar populations in Andromeda XIX

    SciTech Connect

    Cusano, Felice; Clementini, Gisella; Garofalo, Alessia; Federici, Luciana E-mail: gisella.clementini@oabo.inaf.it E-mail: alessia.garofalo@studio.unibo.it; and others

    2013-12-10

    We present B, V time-series photometry of Andromeda XIX (And XIX), the most extended (half-light radius of 6.'2) of Andromeda's dwarf spheroidal companions, which we observed with the Large Binocular Cameras at the Large Binocular Telescope. We surveyed a 23' × 23' area centered on And XIX and present the deepest color-magnitude diagram (CMD) ever obtained for this galaxy, reaching, at V ∼ 26.3 mag, about one magnitude below the horizontal branch (HB). The CMD shows a prominent and slightly widened red giant branch, along with a predominantly red HB, which extends to the blue to significantly populate the classical instability strip. We have identified 39 pulsating variable stars, of which 31 are of RR Lyrae type and 8 are Anomalous Cepheids (ACs). Twelve of the RR Lyrae variables and three of the ACs are located within And XIX's half light radius. The average period of the fundamental mode RR Lyrae stars ((P {sub ab}) = 0.62 days, σ = 0.03 days) and the period-amplitude diagram qualify And XIX as an Oosterhoff-Intermediate system. From the average luminosity of the RR Lyrae stars ((V(RR)) = 25.34 mag, σ = 0.10 mag), we determine a distance modulus of (m – M){sub 0} = 24.52 ± 0.23 mag in a scale where the distance to the Large Magellanic Cloud (LMC) is 18.5 ± 0.1 mag. The ACs follow a well-defined Period-Wesenheit (PW) relation that appears to be in very good agreement with the PW relationship defined by the ACs in the LMC.

  14. Optical and Near-Infrared UBVRIJHK Photometry for the RR Lyrae Stars in the Nearby Globular Cluster M4 (NGC 6121)

    NASA Astrophysics Data System (ADS)

    Stetson, P. B.; Braga, V. F.; Dall'Ora, M.; Bono, G.; Buonanno, R.; Ferraro, I.; Iannicola, G.; Marengo, M.; Neeley, J.

    2014-06-01

    We present optical and near-infrared UBVRIJHK photometry of stars in the Galactic globular cluster M4 (NGC 6121) based upon a large corpus of observations obtained mainly from public astronomical archives. We concentrate on the RR Lyrae variable stars in the cluster, and make a particular effort to accurately reidentify the previously discovered variables. We have also discovered two new probable RR Lyrae variables in the M4 field: one of them by its position on the sky and its photometric properties is a probable member of the cluster, and the second is a probable background (bulge?) object. We provide accurate equatorial coordinates for all 47 stars identified as RR Lyraes, new photometric measurements for 46 of them, and new period estimates for 45. We have also derived accurate positions and mean photometry for 34 more stars previously identified as variable stars of other types, and for an additional five non-RR Lyrae variable stars identified for the first time here. We present optical and near-infrared color-magnitude diagrams for the cluster and show the locations of the variable stars in them. We present the Bailey (period-amplitude) diagrams and the period-frequency histogram for the RR Lyrae stars in M4 and compare them to the corresponding diagrams for M5 (NGC 5904). We conclude that the RR Lyrae populations in the two clusters are quite similar in all the relevant properties that we have considered. The mean periods, pulsation-mode ratios, and Bailey diagrams of these two clusters show support for the recently proposed "Oosterhoff-neutral" classification. Based in part on data obtained from the ESO Science Archive Facility under multiple requests by the authors; in part on data obtained from the Isaac Newton Group Archive, which is maintained as part of the CASU Astronomical Data Centre at the Institute of Astronomy, Cambridge; and in part upon data distributed by the NOAO Science Archive. NOAO is operated by the Association of Universities for

  15. Star Formation in NGC 6531-Evidence From the age Spread and Initial Mass Function

    NASA Astrophysics Data System (ADS)

    Forbes, Douglas

    1996-09-01

    The results of a photometric UBV study of the young open cluster NGC 6531 are presented. The cluster is found to have a mean reddening E(B-V)=0.28±0.04 (s.d.) and distance modulus (V0-Mv)=10.70±0.13 (s.e.), and 105±11 likely cluster members have been identified within the cluster coronal radius of 9 arcmin. A comparison of the high-luminosity end of the cluster color-magnitude diagram to the evolutionary models by Maeder & Meynet [A&AS, 76, 411(1988)] suggests a nuclear age of (8±2) Myr. The very clear gap in the distribution of stars with 0≤(B-V)0≤0.20, corresponding to the "burn-off" of 3He in stars contracting to the main sequence [Ulrich, ApJ, 168, 57 (1971)], implies a contraction age of (8±3) Myr. There would seem to be no evidence of a spread in the ages of cluster stars, as has been observed in several other young open clusters [Herbst & Miller, AJ, 87, 1478 (1982)]. The initial mass function (IMF) constructed from the cluster luminosity function and the mass-luminosity relation given by Scab (1986) shows good agreement with the field star IMF, and with the IMFS of a number of clusters of similar age and richness. The relative deficiency of low-mass stars seen by Herbst and Miller in NGC 3293 (a cluster of quite similar age and reddening) is not evident in NGC 6531.

  16. Variable Stars in the Fields of the Globular Clusters M10 and M12

    NASA Astrophysics Data System (ADS)

    von Braun, K.; Mateo, M.; Chiboucas, K.; Athey, A.; Hurley-Keller, D.

    2001-12-01

    We present the photometry results of our extensive monitoring study of the Globular Clusters (GCs) M10 and M12. These two clusters are part of our survey of 11 Galactic GCs in which we search for eclipsing binary (EB) stars around the main-sequence turnoff by means of photometrically detecting brightness variations. The straightforward, though data-intensive, task of simply detecting EBs in GCs and confirming their cluster membership increases the presently low number of known EB systems in GCs. A statistical evaluation of this number may shed light on the influence of binaries in the dynamical evolution of GCs. Ultimately, the simultaneous photometric and spectroscopic analysis of these systems may be used to directly determine distances to the clusters and to calculate turnoff masses for GC stars. The distance determination, free of intermediate steps, can provide distances out to tens of kpc and may be used to calibrate other, indirect distance determination methods. Values for main-sequence masses of GC stars provide a fundamental, low metallicity check of stellar models. In order to obtain zero-age mass-estimates for the components in a binary system, one needs to take into account the mass transfer history between the two stars, which demonstrates the value of detecting unevolved, detached binaries where no mass transfer has taken place. Our observing strategy consists of repeated observations of the entire cluster field. The first results of this approach are high-quality, deep color-magnitude diagrams (CMDs) of the clusters. In this presentation we show the phased lightcurves of all variable star candidates in the fields of the two cluster along with their locations in the respective CMD and positions in the clusters. In addition, we provide our estimates for cluster membership of the binary systems based on their CMD locations and the Rucinski method for calculating absolute magnitudes of contact binaries.

  17. THE STAR FORMATION HISTORY OF LEO T FROM HUBBLE SPACE TELESCOPE IMAGING

    SciTech Connect

    Weisz, Daniel R.; Dalcanton, Julianne J.; Gilbert, Karoline M.; Williams, Benjamin F.; Zucker, Daniel B.; Dolphin, Andrew E.; Martin, Nicolas F.; De Jong, Jelte T. A.; Holtzman, Jon A.; Bell, Eric F.; Belokurov, Vasily; Evans, N. Wyn

    2012-04-01

    We present the star formation history (SFH) of the faintest known star-forming galaxy, Leo T, based on deep imaging taken with the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC2). The HST/WFPC2 color-magnitude diagram (CMD) of Leo T is exquisitely deep, extending {approx}2 mag below the oldest main-sequence turnoff, permitting excellent constraints on star formation at all ages. We use a maximum likelihood CMD fitting technique to measure the SFH of Leo T assuming three different sets of stellar evolution models: Padova (solar-scaled metallicity) and BaSTI (both solar-scaled and {alpha}-enhanced metallicities). The resulting SFHs are remarkably consistent at all ages, indicating that our derived SFH is robust to the choice of stellar evolution model. From the lifetime SFH of Leo T, we find that 50% of the total stellar mass formed prior to z {approx} 1 (7.6 Gyr ago). Subsequent to this epoch, the SFH of Leo T is roughly constant until the most recent {approx}25 Myr, where the SFH shows an abrupt drop. This decrease could be due to a cessation of star formation or stellar initial mass function sampling effects, but we are unable to distinguish between the two scenarios. Overall, our measured SFH is consistent with previously derived SFHs of Leo T. However, the HST-based solution provides improved age resolution and reduced uncertainties at all epochs. The SFH, baryonic gas fraction, and location of Leo T are unlike any of the other recently discovered faint dwarf galaxies in the Local Group, and instead bear strong resemblance to gas-rich dwarf galaxies (irregular or transition), suggesting that gas-rich dwarf galaxies may share common modes of star formation over a large range of stellar mass ({approx}10{sup 5}-10{sup 9} M{sub Sun }).

  18. Delayed Star Formation in Isolated Dwarf galaxies: Hubble Space Telescope Star Formation History of the Aquarius Dwarf Irregular

    NASA Astrophysics Data System (ADS)

    Cole, Andrew A.; Weisz, Daniel R.; Dolphin, Andrew E.; Skillman, Evan D.; McConnachie, Alan W.; Brooks, Alyson M.; Leaman, Ryan

    2014-11-01

    We have obtained deep images of the highly isolated (d = 1 Mpc) Aquarius dwarf irregular galaxy (DDO 210) with the Hubble Space Telescope Advanced Camera for Surveys. The resulting color-magnitude diagram (CMD) reaches more than a magnitude below the oldest main-sequence turnoff, allowing us to derive the star formation history (SFH) over the entire lifetime of the galaxy with a timing precision of ≈10% of the lookback time. Using a maximum likelihood fit to the CMD we find that only ≈10% of all star formation in Aquarius took place more than 10 Gyr ago (lookback time equivalent to redshift z ≈ 2). The star formation rate increased dramatically ≈6-8 Gyr ago (z ≈ 0.7-1.1) and then declined until the present time. The only known galaxy with a more extreme confirmed delay in star formation is Leo A, a galaxy of similar M H I /M sstarf, dynamical mass, mean metallicity, and degree of isolation. The delayed stellar mass growth in these galaxies does not track the mean dark matter accretion rate from CDM simulations. The similarities between Leo A and Aquarius suggest that if gas is not removed from dwarf galaxies by interactions or feedback, it can linger for several gigayears without cooling in sufficient quantity to form stars efficiently. We discuss possible causes for the delay in star formation including suppression by reionization and late-time mergers. We find reasonable agreement between our measured SFHs and select cosmological simulations of isolated dwarfs. Because star formation and merger processes are both stochastic in nature, delayed star formation in various degrees is predicted to be a characteristic (but not a universal) feature of isolated small galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations were obtained under program GO

  19. Investigation of the open star cluster NGC 2323 (M50) based on the proper motions and photometry of its constituent stars

    NASA Astrophysics Data System (ADS)

    Frolov, V. N.; Ananjevskaja, Yu. K.; Polyakov, E. V.

    2012-02-01

    The results of a comprehensive study of the Galactic open cluster NGC 2323 (M50) are presented. The positions of stars to a limiting magnitude {ie74-1} in a {ie74-2} area centered on the cluster were measured on six plates from the Pulkovo normal astrograph with a maximum epoch difference of 60 yr. The measurements were performed with the Pulkovo "Fantasy" automated measuring system upgraded in 2010. The corresponding areas from the USNO-A2.0, USNO-B1, and 2MASS catalogues were used as additional plates. As a result, the relative proper motions of stars were obtained with a root-mean-square error of 5.85 mas yr-1. A catalogue of UBV and JHK magnitudes for objects in the investigated area was compiled from available published resources. The astrometric selection of cluster members was made by the maximum likelihood method. A high individual cluster membership probability of a star ( P ≥ 80%) served as the first selection criterion. The position of a star on the photometric color-magnitude ( V ∝ ( B-V), J ∝ ( J-K)) diagrams of the cluster was considered as the second criterion. The position of an object on the color-color (( U-B)-( B-V), ( J-H)-( J-K)) diagrams served as the third criterion. On the basis of these criteria, it was established that 508 stars are members of NGC 2323. These data were used to refine the physical parameters of the cluster: the mean reddening {ie74-3}, the true distance modulus {ie74-4}, and the cluster age of about 140 Myr from the grid of isochrones computed by the Padova group for solar chemical composition. Two tables contain the catalogues of proper motions and photometry for stars in the area. The luminosity and mass functions were constructed. The cluster membership of red and blue giants, variable, double, and multiple stars was considered. The position of the cluster center was improved: {ie74-5}, δ = -08°20'16″(2000.0).

  20. FAKE STAR FORMATION BURSTS: BLUE HORIZONTAL BRANCH STARS MASQUERADE AS YOUNG MASSIVE STARS IN OPTICAL INTEGRATED LIGHT SPECTROSCOPY

    SciTech Connect

    Ocvirk, P.

    2010-01-20

    Model color-magnitude diagrams of low-metallicity globular clusters (GCs) usually show a deficit of hot evolved stars with respect to observations. We investigate quantitatively the impact of such modeling inaccuracies on the significance of star formation history reconstructions obtained from optical integrated spectra. To do so, we analyze the sample of spectra of galactic globular clusters of Schiavon et al. with STECKMAP (Ocvirk et al.), and the stellar population models of Vazdekis et al. and Bruzual and Charlot, and focus on the reconstructed stellar age distributions. First, we show that background/foreground contamination correlates with E(B - V), which allows us to define a clean subsample of uncontaminated GCs, on the basis of an E(B - V) filtering. We then identify a 'confusion zone' where fake young bursts of star formation pop up in the star formation history although the observed population is genuinely old. These artifacts appear for 70%-100% of cases depending on the population model used, and contribute up to 12% of the light in the optical. Their correlation with the horizontal branch (HB) ratio indicates that the confusion is driven by HB morphology: red HB clusters are well fitted by old stellar population models while those with a blue HB require an additional hot component. The confusion zone extends over [Fe/H] = [ - 2, - 1.2], although we lack the data to probe extreme high and low metallicity regimes. As a consequence, any young starburst superimposed on an old stellar population in this metallicity range could be regarded as a modeling artifact, if it weighs less than 12% of the optical light, and if no emission lines typical of an H II region are present. This work also provides a practical method for constraining HB morphology from high signal to noise integrated light spectroscopy in the optical. This will allow post-asymptotic giant branch evolution studies in a range of environments and at distances where resolving stellar populations

  1. THE ASYMPTOTIC GIANT BRANCH AND THE TIP OF THE RED GIANT BRANCH AS PROBES OF STAR FORMATION HISTORY: THE NEARBY DWARF IRREGULAR GALAXY KKH 98

    SciTech Connect

    Melbourne, J.; Williams, B.; Dalcanton, J.; Ammons, S. M.; Max, C.; Koo, D. C.; Dolphin, A. E-mail: ben@astro.washington.ed E-mail: ammons@ucolick.or E-mail: koo@ucolick.or E-mail: adolphin@raytheon.co

    2010-03-20

    We investigate the utility of the asymptotic giant branch (AGB) and the red giant branch (RGB) as probes of the star formation history (SFH) of the nearby (D = 2.5 Mpc) dwarf irregular galaxy, KKH 98. Near-infrared (near-IR) Keck Laser Guide Star Adaptive Optics (AO) images resolve 592 IR-bright stars reaching over 1 mag below the tip of the RGB. Significantly deeper optical (F475W and F814W) Hubble Space Telescope images of the same field contain over 2500 stars, reaching to the red clump and the main-sequence turnoff for 0.5 Gyr old populations. Compared to the optical color-magnitude diagram (CMD), the near-IR CMD shows significantly tighter AGB sequences, providing a good probe of the intermediate-age (0.5-5 Gyr) populations. We match observed CMDs with stellar evolution models to recover the SFH of KKH 98. On average, the galaxy has experienced relatively constant low-level star formation (5 x 10{sup -4} M{sub sun} yr{sup -1}) for much of cosmic time. Except for the youngest main-sequence populations (age <0.1 Gyr), which are typically fainter than the AO data flux limit, the SFH estimated from the 592 IR-bright stars is a reasonable match to that derived from the much larger optical data set. Differences between the optical- and IR-derived SFHs for 0.1-1 Gyr populations suggest that current stellar evolution models may be overproducing the AGB by as much as a factor of 3 in this galaxy. At the depth of the AO data, the IR-luminous stars are not crowded. Therefore, these techniques can potentially be used to determine the stellar populations of galaxies at significantly further distances.

  2. GalevNB: a conversion from N-BODY simulations to observations—its application on the study of UV-excess in star clusters

    NASA Astrophysics Data System (ADS)

    Pang, Xiaoying; Olczak, Christoph; Guo, Difeng; Spurzem, Rainer

    2015-08-01

    We present GalevNB (Galev for N-body simulations), an utility that converts fundamental stellar properties of N-body simulations into observational properties using the GALEV (GAlaxy EVolutionary synthesis models) package, and thus allowing direct comparisons between observations and N-body simulations. It works by converting fundamental stellar properties, such as stellar mass, temperature, luminosity and metallicity into observational magnitudes for a variety of filters of mainstream instruments/telescopes, such as HST, ESO, SDSS, 2MASS, etc., and into spectra that spans from far-UV (90 Å) to near-IR (160 μm). As an application, we use GalevNB to investigate the secular evolution of spectral energy distribution (SED) and color-magnitude diagram (CMD) of a simulated star cluster over a few hundred million years. The model cluster in this work is evolved using the most recent version of NBODY6++ utilizing many GPU cores in parallel to accelerate multi-node multi-core simulations (Wang et al. 2015), which is the MPI parallel version based on the state-of-the-art direct N-body integrator NBODY6GPU. With the results given by GalevNB, we discover an UV-excess in the integrated SED of the cluster over the whole simulation time. We also identify four candidates that contribute to the FUV peak, core helium burning stars, thermal pulsing asymptotic giant branch (TPAGB) stars, white dwarfs and naked helium stars. Among them, TAGB is a favorable candidate from theoretical point of view (O’connell 1999). On the contrary, white dwarf’s candidate position is controversial (Magris & Bruzual 1993, Landsman et al. 1998) because of low luminosity. The life time of massive star descendants: core helium burning stars and naked helium stars, is very short. Though both of they are very bright at the UV at the early age, their short-term emission makes them become insignificant candidates.

  3. THE ADVANCED CAMERA FOR SURVEYS NEARBY GALAXY SURVEY TREASURY. VI. THE ANCIENT STAR-FORMING DISK OF NGC 404

    SciTech Connect

    Williams, Benjamin F.; Dalcanton, Julianne J.; Gilbert, Karoline M.; Stilp, Adrienne; Dolphin, Andrew; Seth, Anil C.; Weisz, Daniel; Skillman, Evan E-mail: jd@astro.washington.ed E-mail: roskar@astro.washington.ed E-mail: aseth@cfa.harvard.ed E-mail: skillman@astro.umn.ed

    2010-06-10

    We present HST/WFPC2 observations across the disk of the nearby isolated dwarf S0 galaxy NGC 404, which hosts an extended gas disk. The locations of our fields contain a roughly equal mixture of bulge and disk stars. All of our resolved stellar photometry reaches m {sub F814W} = 26 (M {sub F814W} = -1.4), which covers 2.5 mag of the red giant branch and main-sequence stars with ages <300 Myr. Our deepest field reaches m {sub F814W} = 27.2 (M {sub F814W} = -0.2), sufficient to resolve the red clump and main-sequence stars with ages <500 Myr. Although we detect trace amounts of star formation at times more recent than 10 Gyr ago for all fields, the proportion of red giant stars to asymptotic giants and main-sequence stars suggests that the disk is dominated by an ancient (>10 Gyr) population. Detailed modeling of the color-magnitude diagram suggests that {approx}70% of the stellar mass in the NGC 404 disk formed by z {approx} 2 (10 Gyr ago) and at least {approx}90% formed prior to z {approx} 1 (8 Gyr ago). These results indicate that the stellar populations of the NGC 404 disk are on average significantly older than those of other nearby disk galaxies, suggesting that early- and late-type disks may have different long-term evolutionary histories, not simply differences in their recent star formation rates. Comparisons of the spatial distribution of the young stellar mass and FUV emission in Galaxy Evolution Explorer images show that the brightest FUV regions contain the youngest stars, but that some young stars (<160 Myr) lie outside of these regions. FUV luminosity appears to be strongly affected by both age and stellar mass within individual regions. Finally, we use our measurements to infer the relationship between the star formation rate and the gas density of the disk at previous epochs. We find that most of the history of the NGC 404 disk is consistent with star formation that has decreased with the gas density according to the Schmidt law. However, {approx} 0

  4. The evolution of massive stars

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The hypotheses underlying theoretical studies of the evolution of massive model stars with and without mass loss are summarized. The evolutionary tracks followed by the models across theoretical Hertzsprung-Russell (HR) diagrams are compared with the observed distribution of B stars in an HR diagram. The pulsational properties of models of massive star are also described.

  5. Polarimetric Variations of Binary Stars. VI. Orbit-Induced Variations in the Pre-Main-Sequence Binary AK Scorpii

    NASA Astrophysics Data System (ADS)

    Manset, N.; Bastien, P.; Bertout, C.

    2005-01-01

    We present simultaneous UBV polarimetric and photometric observations of the pre-main-sequence binary AK Sco, obtained over 12 nights, slightly less than the orbital period of 13.6 days. The polarization is a sum of interstellar and intrinsic polarization, with a significant intrinsic polarization of 1% at 5250 Å, indicating the presence of circumstellar matter distributed in an asymmetric geometry. The polarization and its position angle are clearly variable on timescales of hours and nights in all three wavelengths, with a behavior related to the orbital motion. The variations have the highest amplitudes seen so far for pre-main-sequence binaries (~1% and ~30°) and are sinusoidal with periods similar to the orbital period and half of it. The polarization variations are generally correlated with the photometric ones: when the star gets fainter, it also gets redder, and its polarization increases. The (B-V, V) color-magnitude diagram exhibits a ratio of total to selective absorption R=4.3, higher than in normal interstellar clouds (R=3.1). The interpretation of the simultaneous photometric and polarimetric observations is that a cloud of circumstellar matter passes in front of the star, decreasing the amount of direct, unpolarized light and hence increasing the contribution of scattered (blue) light. We show that the large amplitude of the polarization variations cannot be reproduced with a single-scattering model and axially symmetric circumbinary or circumstellar disks. Based on observations made with the ESO telescopes at the La Silla Observatory.

  6. CCD Washington photometry of three highly field star contaminated open clusters in the third Galactic quadrant

    NASA Astrophysics Data System (ADS)

    Piatti, A. E.; Clariá, J. J.; Parisi, M. C.; Ahumada, A. V.

    2009-01-01

    We present CCD photometry in the Washington system C and T1 passbands down to T1 ˜ 19.5 magnitudes in the fields of Czernik 26, Czernik 30, and Haffner 11, three poorly studied open clusters located in the third Galactic quadrant. We measured T1 magnitudes and C - T1 colors for a total of 6472 stars distributed throughout cluster areas of 13.6' × 13.6' each. Cluster radii were estimated from star counts in appropriate-sized boxes distributed throughout the entire observed fields. Based on the best fits of isochrones computed by the Padova group to the ( C - T1, T1) color-magnitude diagrams (CMDs), we derived color excesses, heliocentric distances and ages for the three clusters. These are characterized by a relatively small angular size and by a high field star contamination. We performed a firm analysis of the field star contamination of the CMDs and examined different relationships between the position in the Galaxy of known open clusters located within 1 kpc around the three studied ones, their age and their interstellar visual absorption. We confirm previous results in the sense that the closer the cluster birthplace to the Galactic plane, the higher the interstellar visual absorption. We also found that the space velocity dispersion perpendicular to the Galactic plane diminishes as the clusters are younger. The positions, interstellar visual absorptions, ages, and metallicities of the three studied clusters favor the hypothesis that they were not born in the recently discovered Canis major (CMa) dwarf galaxy before it was accreted by the Milky Way.

  7. Nonthermal Radio Emission and the HR Diagram

    NASA Technical Reports Server (NTRS)

    Gibson, D. M.

    1985-01-01

    Perhaps the most reliable indicator of non-radiative heating/momentum in a stellar atmosphere is the presence of nonthermal radio emission. To date, 77 normal stellar objects have been detected and identified as nonthermal sources. These stellar objects are tabulated herein. It is apparent that non-thermal radio emission is not ubiquitous across the HR diagram. This is clearly the case for the single stars; it is not as clear for the binaries unless the radio emission is associated with their late-type components. Choosing to make this association, the single stars and the late-type components are plotted together. The following picture emerges: (1) there are four locations on the HR diagram where non-thermal radio stars are found; (2) the peak incoherent 5 GHz luminosities show a suprisingly small range for stars within each class; (3) the fraction of stellar energy that escapes as radio emission can be estimated by comparing the integrated maximum radio luminosity to the bolometric luminosity; (4) there are no apparent differences in L sub R between binaries with two cool components, binaries with one hot and one cool component, and single stars for classes C and D; and (5) The late-type stars (classes B, C, and D) are located in parts of the HR diagram where there is reason to suspect that the surfaces of the stars are being braked with respect to their interiors.

  8. The Origin of Hot Subluminous Horizontal-Branch Stars in (omega) Centauri and NGC 2808

    NASA Technical Reports Server (NTRS)

    Sweigart, Allen V.; Brown, Thomas M.; Lanz, Thierry; Landsman, Wayne B.; Hubeny, Ivan

    2001-01-01

    Hot subluminous stars lying up to 0.7 mag below the extreme horizontal branch (EHB) are found in the ultraviolet (UV) color magnitude diagrams of both (omega) Cen and NGC 2808. In order to explore the evolutionary status of these subluminous stars, we have evolved a set of low-mass stars continuously from the main sequence through the helium-core flash to the HB (horizontal branch) for a wide range in the mass loss along the red-giant branch (RGB). Stars with the largest mass loss evolve off the RGB to high effective temperatures before igniting helium in their cores. Our results indicate that the subluminous EHB stars, as well as the gap within the EHB of NGC 2808, can be explained if these stars undergo a late helium-core flash while descending the white-dwarf cooling curve. Under these conditions the convection zone produced by the helium flash will penetrate into the stellar envelope, thereby mixing most, if not all, of the envelope hydrogen into the hot helium-burning interior, where it is rapidly consumed. This phenomenon is analogous to the 'born-again' scenario for producing hydrogen-deficient stars following a very late helium-shell flash. This 'flash mixing' of the stellar envelope greatly enhances the envelope helium and carbon abundances and, as a result, leads to a discontinuous jump in the HB effective temperature. We argue that the EHB gap in NGC 2808 is associated with this theoretically predicted dichotomy in the HB morphology. Using new helium- and carbon-rich stellar atmospheres, we show that these changes in the envelope abundances of the flash-mixed stars will suppress the UV flux by the amount needed to explain the hot subluminous EHB stars in (omega) Cen and NGC 2808. Moreover, we demonstrate that models without flash mixing lie, at most, only approximately 0.1 mag below the EHB, and hence fail to explain the observations. Flash mixing may also provide a new evolutionary channel for producing the high gravity, helium-rich sdO and sdB stars.

  9. Calibrating UV Star Formation Rates for Dwarf Galaxies from STARBIRDS

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Dolphin, Andrew E.; Mitchell, Noah P.

    2015-08-01

    Integrating our knowledge of star formation (SF) traced by observations at different wavelengths is essential for correctly interpreting and comparing SF activity in a variety of systems and environments. This study compares extinction corrected integrated ultraviolet (UV) emission from resolved galaxies with color-magnitude diagram (CMD) based star formation rates (SFRs) derived from resolved stellar populations and CMD fitting techniques in 19 nearby starburst and post-starburst dwarf galaxies. The data sets are from the panchromatic Starburst Irregular Dwarf Survey and include deep legacy GALEX UV imaging, Hubble Space Telescope optical imaging, and Spitzer MIPS imaging. For the majority of the sample, the integrated near-UV fluxes predicted from the CMD-based SFRs—using four different models—agree with the measured, extinction corrected, integrated near-UV fluxes from GALEX images, but the far-UV (FUV) predicted fluxes do not. Furthermore, we find a systematic deviation between the SFRs based on integrated FUV luminosities and existing scaling relations, and the SFRs based on the resolved stellar populations. This offset is not driven by different SF timescales, variations in SFRs, UV attenuation, nor stochastic effects. This first comparison between CMD-based SFRs and an integrated FUV emission SFR indicator suggests that the most likely cause of the discrepancy is the theoretical FUV-SFR calibration from stellar evolutionary libraries and/or stellar atmospheric models. We present an empirical calibration of the FUV-based SFR relation for dwarf galaxies, with uncertainties, which is ˜53% larger than previous relations. Based on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA), and the Canadian Astronomy Data Centre (CADC/NRC/CSA).

  10. Fundamental Parameters of a Large, Unbiased Sample of Massive, Young, Embedded Star Clusters in the Milky Way

    NASA Astrophysics Data System (ADS)

    Dallilar, Yigit; Barnes, Peter; Lada, Elizabeth; Ryder, Stuart

    2015-08-01

    Massive star cluster formation in our Galaxy is still a mystery. Unlike studies on nearby star formation regions (Pleiades, Orion Nebula), there is no unbiased sample of massive young star clusters except the CHaMP survey, which is focused on the Carina Arm (Barnes et al. 2011, ApJS, 196, 12). In this project, we examine properties of young clusters identified in the CHaMP survey through infrared photometry. Near infrared (J,H,K) imaging was obtained with the Australian Astronomical Telescope and deep mid infrared (IRAC bands 1,2) imaging was obtained with the Spitzer Space Telescope during the warm mission. Photometric analysis was performed with a combination of Sextrac- tor and Psfex software. Photometric calibration for NIR data was handled exploiting 2Mass coverage for our fields. For MIR data, photometric calibration was obtained using GLIMPSE coverage for a small number of our images, then bootstrapping this to calibrate other images, since all images are obtained with the same pipeline. To identify cluster members, we provide constraints on the source classification using field AGB stars and faint background galaxies, which have similar characteristics as reddened young stellar objects. Predicted locations of these objects on color-magnitude and color-color diagrams are used as a guide, as are the stellar classification parameter from Sextractor and faint galaxy catalogs covering our fields. We also examine extinction properties towards these young clusters, exploiting well known properties of AGB star population in our fields. Combining the IR data with existing mm-wave specroscopy, we compute values for the gas to dust ratio of these young clusters using extinction properties plus differential H-K color maps and NH column density measurements, all obtained as a part of the CHaMP survey. These results help us to identify evolutionary stages of these young clusters. Eventually, we will constrain cluster properties like age, distance and metallicity with

  11. THE EFFECTS OF ROTATION ON THE MAIN-SEQUENCE TURNOFF OF INTERMEDIATE-AGE MASSIVE STAR CLUSTERS

    SciTech Connect

    Yang, Wuming; Bi, Shaolan; Liu, Zhie; Meng, Xiangcun E-mail: yangwuming@ynao.ac.cn

    2013-10-20

    The double or extended main-sequence turnoffs (MSTOs) in the color-magnitude diagram (CMD) of intermediate-age massive star clusters in the Large Magellanic Cloud are generally interpreted as age spreads of a few hundred Myr. However, such age spreads do not exist in younger clusters (i.e., 40-300 Myr), which challenges this interpretation. The effects of rotation on the MSTOs of star clusters have been studied in previous works, but the results obtained are conflicting. Compared with previous works, we consider the effects of rotation on the main-sequence lifetime of stars. Our calculations show that rotating models have a fainter and redder MSTO with respect to non-rotating counterparts with ages between about 0.8 and 2.2 Gyr, but have a brighter and bluer MSTO when age is larger than 2.4 Gyr. The spread of the MSTO caused by a typical rotation rate is equivalent to the effect of an age spread of about 200 Myr. Rotation could lead to the double or extended MSTOs in the CMD of the star clusters with ages between about 0.8 and 2.2 Gyr. However, the extension is not significant, and it does not even exist in younger clusters. If the efficiency of the mixing were high enough, the effects of the mixing would counteract the effect of the centrifugal support in the late stage of evolution, and the rotationally induced extension would disappear in the old intermediate-age star clusters, but younger clusters would have an extended MSTO. Moreover, the effects of rotation might aid in understanding the formation of some 'multiple populations' in globular clusters.

  12. Luminosity functions of YSO clusters in Sh-2 255, W3 Main and NGC 7538 star forming regions

    NASA Astrophysics Data System (ADS)

    Ojha, Devendra; Tamura, Motohide

    We have conducted deep near-infrared surveys of the Sh-2 255, W3 Main and NGC 7538 massive star forming regions using simultaneous observations of the JHKs-band with the near-infrared camera SIRIUS on the UH 88-inch telescope and with SUBARU. The near-infrared surveys cover a total area of ~72 square arcmin of three regions with 10-sigma limiting magnitudes of ~19.5, 18.4 and 17.3 in J, H and Ks-band, respectively. Based on the color-color and color-magnitude diagrams and their clustering properties, the candidate young stellar objects are identified and their luminosity functions are constructed in Sh-2 255, W3 Main and NGC 7538. A large number of previously unreported red sources (H-K > 2) have also been detected around these regions. We argue that these red stars are most probably pre-main sequence stars with intrinsic color excesses. The detected young stellar objects show a clear clustering pattern in each region: the Class I-like sources are mostly clustered in molecular cloud region, while the Class II-like sources in or around more evolved optical HII regions. We find that the slopes of the Ks-band luminosity functions of Sh-2 255, W3 Main and NGC 7538 are lower than the typical values reported for the young embedded clusters and their stellar populations are primarily composed of low mass pre-main sequence stars. From the slopes of the Ks-band luminosity functions, we infer that Sh-2 255, W3 Main and NGC 7538 star forming regions are rather young (age <=1 Myr).

  13. VARIABLE STARS IN THE GLOBULAR CLUSTER NGC 2808

    SciTech Connect

    Kunder, Andrea; Walker, Alistair R.; Stetson, Peter B.; Catelan, Marcio; Amigo, Pia E-mail: mcatelan@astro.puc.cl

    2013-02-01

    The first calibrated broadband BVI time-series photometry is presented for the variable stars in NGC 2808, with observations spanning a range of 28 years. We have also redetermined the variability types and periods for the variable stars identified previously by Corwin et al., revising the number of probable fundamental-mode RR Lyrae variables (RR0) to 11 and the number of first-overtone variables (RR1) to five. Our observations were insufficient to discern the nature of the previously identified RR1 star, V24, and the tentatively identified RR1 star, V13. These two variables are {approx}0.8 mag brighter than the RR Lyrae variables, appear to have somewhat erratic period and/or luminosity changes, and lie inside the RR Lyrae instability strip. Curiously, all but one of the RR Lyrae stars studied in this relatively metal-rich cluster exhibit the Blazhko phenomenon, an effect thought to occur with higher frequency in metal-poor environments. The mean periods of the RR0 and RR1 variables are (P){sub RR0} = 0.56 {+-} 0.01 d and

    {sub RR1} = 0.30 {+-} 0.02 d, respectively, supporting an Oosterhoff I classification of the cluster. On the other hand, the number ratio of RR1-to-RR0-type variables is high, though not unprecedented, for an Oosterhoff I cluster. The RR Lyrae variables have no period shifts at a given amplitude compared to the M3 variables, making it unlikely that these variables are He enhanced. Using the recent recalibration of the RR Lyrae luminosity scale by Catelan and Cortes, a mean distance modulus of (m - M){sub V} = 15.57 {+-} 0.13 mag for NGC 2808 is obtained, in good agreement with that determined here from its type II Cepheid and SX Phoenicis population. Our data have also allowed the discovery of two new candidate SX Phoenicis stars and an eclipsing binary in the blue straggler region of the NGC 2808 color-magnitude diagram.

  14. On the kinematic separation of field and cluster stars across the bulge globular NGC 6528

    SciTech Connect

    Lagioia, E. P.; Bono, G.; Buonanno, R.; Milone, A. P.; Stetson, P. B.; Prada Moroni, P. G.; Dall'Ora, M.; Aparicio, A.; Monelli, M.; Calamida, A.; Ferraro, I.; Iannicola, G.; Gilmozzi, R.; Matsunaga, N.; Walker, A.

    2014-02-10

    We present deep and precise multi-band photometry of the Galactic bulge globular cluster NGC 6528. The current data set includes optical and near-infrared images collected with ACS/WFC, WFC3/UVIS, and WFC3/IR on board the Hubble Space Telescope. The images cover a time interval of almost 10 yr, and we have been able to carry out a proper-motion separation between cluster and field stars. We performed a detailed comparison in the m {sub F814W}, m {sub F606W} – m {sub F814W} color-magnitude diagram with two empirical calibrators observed in the same bands. We found that NGC 6528 is coeval with and more metal-rich than 47 Tuc. Moreover, it appears older and more metal-poor than the super-metal-rich open cluster NGC 6791. The current evidence is supported by several diagnostics (red horizontal branch, red giant branch bump, shape of the sub-giant branch, slope of the main sequence) that are minimally affected by uncertainties in reddening and distance. We fit the optical observations with theoretical isochrones based on a scaled-solar chemical mixture and found an age of 11 ± 1 Gyr and an iron abundance slightly above solar ([Fe/H] = +0.20). The iron abundance and the old cluster age further support the recent spectroscopic findings suggesting a rapid chemical enrichment of the Galactic bulge.

  15. Lighting up stars in chemical evolution models: the CMD of Sculptor

    NASA Astrophysics Data System (ADS)

    Vincenzo, F.; Matteucci, F.; de Boer, T. J. L.; Cignoni, M.; Tosi, M.

    2016-08-01

    We present a novel approach to draw the synthetic color-magnitude diagram of galaxies, which can provide - in principle - a deeper insight in the interpretation and understanding of current observations. In particular, we `light up' the stars of chemical evolution models, according to their initial mass, metallicity and age, to eventually understand how the assumed underlying galaxy formation and evolution scenario affects the final configuration of the synthetic CMD. In this way, we obtain a new set of observational constraints for chemical evolution models beyond the usual photospheric chemical abundances. The strength of our method resides in the very fine grid of metallicities and ages of the assumed database of stellar isochrones. In this work, we apply our photo-chemical model to reproduce the observed CMD of the Sculptor dSph and find that we can reproduce the main features of the observed CMD. The main discrepancies are found at fainter magnitudes in the main sequence turn-off and sub-giant branch, where the observed CMD extends towards bluer colors than the synthetic one; we suggest that this is a signature of metal-poor stellar populations in the data, which cannot be captured by our assumed one-zone chemical evolution model.

  16. Constraints on Galaxy Formation from Stars in the Far Outer Disk of M31

    NASA Astrophysics Data System (ADS)

    Ferguson, Annette M. N.; Johnson, Rachel A.

    2001-09-01

    Numerical simulations of galaxy formation within the cold dark matter (CDM) hierarchical clustering framework are unable to produce large disk galaxies without invoking some form of feedback to suppress gas cooling and collapse until a redshift of unity or below. An important observational consequence of delaying the epoch of disk formation until relatively recent times is that the stellar populations in the extended disk should be of predominantly young-to-intermediate age. We use a deep Hubble Space Telescope/Wide Field Planetary Camera 2 archival pointing to investigate the mean age and metallicity of the stellar population in a disk-dominated field at 30 kpc along the major axis of M31. Our analysis of the color-magnitude diagram reveals the dominant population to have a significant mean age (>~8 Gyr) and a moderately high mean metallicity ([Fe/H]~-0.7) tentative evidence is also presented for a trace population of ancient (>=10 Gyr) metal-poor stars. These characteristics are unexpected in CDM models, and we discuss the possible implications of this result as well as alternative interpretations. Based on observations with the NASA/ESA Hubble Space Telescope, obtained from the data archive of the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  17. Deep Washington Photometry of Inconspicuous Star Cluster Candidates in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Choudhury, Samyaday; Subramaniam, Annapurni; Piatti, Andrés E.

    2015-02-01

    We present deep Washington photometry of 45 poorly populated star cluster candidates in the Large Magellanic Cloud (LMC). We have performed a systematic study to estimate the parameters of the cluster candidates by matching theoretical isochrones to the cleaned and dereddened cluster color-magnitude diagrams. We were able to estimate the basic parameters for 33 clusters, out of which 23 are identified as single clusters and 10 are found to be members of double clusters. The other 12 cluster candidates have been classified as possible clusters/asterisms. About 50% of the true clusters are in the 100-300 Myr age range, whereas some are older or younger. We have discussed the distribution of age, location, and reddening with respect to field, as well as the size of true clusters. The sizes and masses of the studied sample are found to be similar to that of open clusters in the Milky Way. Our study adds to the lower end of cluster mass distribution in the LMC, suggesting that the LMC, apart from hosting rich clusters, also has formed small, less massive open clusters in the 100-300 Myr age range.

  18. The Origin of Hot Subluminous Horizontal-Branch Stars in Omega Centauri and NGC 2808

    NASA Technical Reports Server (NTRS)

    Sweigart, Allen V.; Brown, T. M.; Lanz, T.; Landsman, W. B.; Hubeny, I.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Hot subluminous stars lying up to 0.7 mag below the extreme horizontal branch (EHB) are found in the ultraviolet color-magnitude diagrams of both omega Cen (DCruz et.al. 2000) and NGC 2808 (Brown et al. 2001). In order to investigate the origin of these subluminous stars, we have constructed a detailed set of evolutionary sequences that follow the evolution of low-mass stars continuously from the zero-age main sequence through the helium-core flash to the HB for a wide range in the mass loss along the red-giant branch (RGB). Stars with the largest mass loss evolve off the RGB to high effective temperatures before igniting helium in their cores (Castellani & Castellani 1993). Our results indicate that the location of the subluminous EHB stars, as well as the high temperature gap along the EHB of NGC 2808, can be explained if these stars undergo a late helium-core flash while descending the white-dwarf cooling curve. Under these conditions the convection zone produced by the main helium flash will penetrate into the stellar envelope, thereby mixing most, if not all, of the envelope hydrogen into the hot helium-burning interior, where it is rapidly consumed (Sweigart 1997). This phenomenon is analogous to the "born-again" scenario for producing hydrogen-deficient stars following a very late helium-shell flash. This "flash mixing" of the envelope during a late helium-core flash greatly enhances the envelope helium and carbon abundances and, as a result, leads to a discontinuous increase in the HB effective temperature. We argue that the hot HB gap observed in NGC 2808 is associated with this theoretically predicted dichotomy in the HB properties. Using new helium- and carbon-rich stellar atmospheres, we show that the changes in the envelope abundances due to flash mixing will suppress the ultraviolet flux in the spectra of hot EHB stars. We suggest that such changes in the emergent spectral energy distribution are primarily responsible for explaining the hot

  19. A New Formation Mechanism for the Hottest Horizontal-Branch Stars

    NASA Technical Reports Server (NTRS)

    Sweigart, Allen V.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    Hot subluminous stars lying up to 0.7 mag below the extreme horizontal branch (EHB) are found in the ultraviolet color-magnitude diagrams (CMDs) of both omega Cen and NGC 2808. In order to investigate the origin of these subluminous stars, we have constructed a detailed set of evolutionary sequences that follow the evolution of low-mass stars continuously from the zero-age main sequence through the helium-core flash to the HB for a wide range in the mass loss along the red-giant branch (RGB). Stars with the largest mass loss evolve off the RGB to high effective temperatures before igniting helium in their cores. Our results indicate that the subluminous EHB stars, as well as the high temperature gap along the EHB of NGC 2808, can be explained if these stars undergo a late helium-core flash while descending the white-dwarf cooling curve. Under these conditions the convection zone produced by the main helium flash will penetrate into the stellar envelope, thereby mixing most, if not all, of the envelope hydrogen into the hot helium-burning interior, where it is rapidly consumed. This phenomenon is analogous to the 'born-again' scenario for producing hydrogen-deficient stars following a very late helium-shell flash. This 'flash mixing' of the envelope during a late helium-core flash greatly enhances the envelope helium and carbon abundances and, as a result, leads to a discontinuous increase in the HB effective temperature. We argue that the hot HB gap observed in NGC 2808 is associated with this theoretically predicted dichotomy in the RB properties. Using new helium- and carbon-rich stellar atmospheres, we show that the changes in the envelope abundances due to flash mixing will suppress the ultraviolet flux in the spectra of hot EHB stars. We suggest that such changes in the emergent spectral energy distribution are primarily responsible for explaining the hot subluminous EHB stars in omega Cen and NGC 2808. Moreover, we demonstrate that models without flash mixing

  20. Extended main sequence turnoffs in intermediate-age star clusters: a correlation between turnoff width and early escape velocity

    SciTech Connect

    Goudfrooij, Paul; Kozhurina-Platais, Vera; Kalirai, Jason S.; Correnti, Matteo E-mail: verap@stsci.edu E-mail: correnti@stsci.edu; and others

    2014-12-10

    We present a color-magnitude diagram analysis of deep Hubble Space Telescope imaging of a mass-limited sample of 18 intermediate-age (1-2 Gyr old) star clusters in the Magellanic Clouds, including eight clusters for which new data were obtained. We find that all star clusters in our sample feature extended main-sequence turnoff (eMSTO) regions that are wider than can be accounted for by a simple stellar population (including unresolved binary stars). FWHM widths of the MSTOs indicate age spreads of 200-550 Myr. We evaluate the dynamical evolution of clusters with and without initial mass segregation. Our main results are (1) the fraction of red clump (RC) stars in secondary RCs in eMSTO clusters scales with the fraction of MSTO stars having pseudo-ages of ≲1.35 Gyr; (2) the width of the pseudo-age distributions of eMSTO clusters is correlated with their central escape velocity v {sub esc}, both currently and at an age of 10 Myr. We find that these two results are unlikely to be reproduced by the effects of interactive binary stars or a range of stellar rotation velocities. We therefore argue that the eMSTO phenomenon is mainly caused by extended star formation within the clusters; and (3) we find that v {sub esc} ≥ 15 km s{sup –1} out to ages of at least 100 Myr for all clusters featuring eMSTOs, and v {sub esc} ≤ 12 km s{sup –1} at all ages for two lower-mass clusters in the same age range that do not show eMSTOs. We argue that eMSTOs only occur for clusters whose early escape velocities are higher than the wind velocities of stars that provide material from which second-generation stars can form. The threshold of 12-15 km s{sup –1} is consistent with wind velocities of intermediate-mass asymptotic giant branch stars and massive binary stars in the literature.

  1. The Small Magellanic Cloud Investigation of Dust and Gas Evolution (SMIDGE): The Dust Extinction Curve in the Small Magellanic Cloud from Red Clump Stars

    NASA Astrophysics Data System (ADS)

    Yanchulova Merica-Jones, Petia; Sandstrom, Karin; Johnson, Lent C.; SMIDGE Team

    2016-06-01

    We present preliminary measurements of the average dust extinction curve in a 200 pc x 100 pc region in the Small Magellanic Cloud (SMC) using multi-band Hubble Space Telescope observations of resolved stellar populations from SMIDGE. Extinction curve determinations from a fully-sampled region of the SMC are of great interest. SMC-like extinction is widely used to correct for the effects of dust in low metallicity or high redshift galaxies, however, there are currently very few extinction curve measurements in the SMC. We measure the extinction curve using color-magnitude diagrams of red clump stars experiencing reddening by dust along a vector from which the curve shape can theoretically be directly measured. In addition, our analysis of the extincted and unextincted red clump stars shows a substantial line-of-sight depth for the stellar distribution of the SMC, consistent with recent observations of Cepheids. With the deep multi-band photometry from SMIDGE we are able to separate these two effects and measure both the extinction curve and the line-of-sight depth. Our study implies that extinction curve measurements in nearby galaxies need to take into account the impact of an extended galactic structure on dust extinction along the line of sight.

  2. THE INFRARED EYE OF THE WIDE-FIELD CAMERA 3 ON THE HUBBLE SPACE TELESCOPE REVEALS MULTIPLE MAIN SEQUENCES OF VERY LOW MASS STARS IN NGC 2808

    SciTech Connect

    Milone, A. P.; Aparicio, A.; Monelli, M. E-mail: aparicio@iac.es; and others

    2012-08-01

    We use images taken with the infrared channel of the Wide Field Camera 3 on the Hubble Space Telescope to study the multiple main sequences (MSs) of NGC 2808. Below the turnoff, the red, the middle, and the blue MS, previously detected from visual-band photometry, are visible over an interval of about 3.5 F160W magnitudes. The three MSs merge together at the level of the MS bend. At fainter magnitudes, the MS again splits into two components containing {approx}65% and {approx}35% of stars, with the most-populated MS being the bluest one. Theoretical isochrones suggest that the latter is connected to the red MS discovered in the optical color-magnitude diagram (CMD) and hence corresponds to the first stellar generation, having primordial helium and enhanced carbon and oxygen abundances. The less-populated MS in the faint part of the near-IR CMD is helium-rich and poor in carbon and oxygen, and it can be associated with the middle and the blue MS of the optical CMD. The finding that the photometric signature of abundance anti-correlation is also present in fully convective MS stars reinforces the inference that they have a primordial origin.

  3. Phase Equilibria Diagrams Database

    National Institute of Standards and Technology Data Gateway

    SRD 31 NIST/ACerS Phase Equilibria Diagrams Database (PC database for purchase)   The Phase Equilibria Diagrams Database contains commentaries and more than 21,000 diagrams for non-organic systems, including those published in all 21 hard-copy volumes produced as part of the ACerS-NIST Phase Equilibria Diagrams Program (formerly titled Phase Diagrams for Ceramists): Volumes I through XIV (blue books); Annuals 91, 92, 93; High Tc Superconductors I & II; Zirconium & Zirconia Systems; and Electronic Ceramics I. Materials covered include oxides as well as non-oxide systems such as chalcogenides and pnictides, phosphates, salt systems, and mixed systems of these classes.

  4. Is the massive star cluster Westerlund 2 double? - A high resolution multi-band survey with the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Zeidler, Peter; Nota, Antonella; Sabbi, Elena; Grebel, Eva K.; Bonanos, Alceste; Christian, Carol A.; de Mink, Selma; Tosi, Monica; Ubeda, Leonardo; Pasquali, Anna

    2015-08-01

    Westerlund 2 is one of the most massive young star clusters known in the Milky Way. Located in the Carina-Sagittarius spiral arm, and containing more than 80 O-Type stars, Westerlund 2 is a perfect target to study the star formation process and feedback in the presence of massive stars as well as the possible triggering of star formation in the surrounding clouds. The close proximity (4.16 kpc) to the Sun, as well as the young age (<2.0 Myr) allow us to study star formation in detail at a high spatial resolution and makes it possible to determine the mass function of the cluster close to its initial state.We present results from our recent multi-band survey in the optical and near-infrared obtained with the Advanced Camera for Surveys and the Wide Field Camera 3 on board of the Hubble Space Telescope, covering an area of ~20 arcsec2.Combining Hα and Paβ line observations we were able to create a high resolution pixel-to-pixel map of the color excess E(B-V)g of the gas. We demonstrated that, as expected, the region is affected by significant differential reddening with a median value of E(B-V)g=1.87 mag, which is caused by the still present gas and dust of the HII region RCW49.After separating the cluster members from foreground contaminants we obtained for Westerlund 2 a pronounced pre-main-sequence population including a distinct turn-on region. The distance was inferred from the dereddened color-magnitude diagrams using Padova isochrones. It is in good agreement with the literature value of 4.16±0.33 kpc determined with spectroscopic data. By fitting the zero-age-main-sequence to two-color-diagrams we derived a value for the total-to-selective extinction of RV=3.78±0.125.Analyzing the spatial distribution of stars using a spatial number density map, we found that Westerlund 2 most likely consists of two clumps, namely the main body of Westerlund 2 and a less well populated one located to the North. We estimated the same age of 0.5-2.0 Myr for both clumps

  5. The luminosities of horizontal branches and RR Lyrae stars in globular clusters

    NASA Astrophysics Data System (ADS)

    McNamara, D. H.; Rose, M. B.; Brown, P. J.; Ketcheson, D. I.; Maxwell, J. E.; Smith, K. M.; Wooley, R. C.

    2004-05-01

    We have utilized the latest stellar models of the Y2 (Yonsei-Yale) collaborators and color-magnitude diagrams of globular clusters to infer ages and absolute magnitudes of their horizontal branches (HB). The intrinsic (B - V), color indices of the turn-offs, (B - V)TO0,of the globular clusters were used to find ages. For 47 clusters that appear to be coeval (within ± 0.7 Gyr), we find an average age of 12.5 Gyr. We adopt this age and infer the absolute magnitudes of the turn-offs, MTOV, from the clusters [Fe/H] values. The absolute magnitudes of the horizontal branches or RR Lyrae stars are the n determined from the difference between the apparent magnitudes of the horizontal branches (or RR Lyrae stars) and the apparent magnitude of the turn-offd, VTO. We conclude: 1) the slope of the MV(HB), [Fe/H] relation is ~0.3 for clusters with [Fe/H] values between -0.5 to -1.5. The relation has zero slope for [Fe/H] values smaller than -1.5. 2) For [Fe/H] < -1.3, the MV(HB) or MV values of RR Lyrae stars are not only a function of [Fe/H], but the horizontal-branch type in the sense that the clusters with the blue horizontal branches have more luminous horizontal branches than clusters with red horizontal branches. The same results are found by inferring the luminosities of the HBs from pulsating blue stragglers.

  6. WFPC2 Observations of the Intermediate-Age Populous Star Cluster Terzan 7

    NASA Astrophysics Data System (ADS)

    Robinson, S. E.; Mighell, K. J.

    2001-12-01

    We present our analysis of archival Hubble Space Telescope WFPC2 observations in the F555W (V) and F814W (I) filters of the intermediate-age metal-rich populous star cluster Terzan 7. We compare our VI color-magnitude diagram with the theoretical Y2 isochrones of Yi et al. and Padua 2000 isochrones of Girardi et al. We find that the Y2 theoretical isochrones with the Lejeune color transformations are able to replicate the morphological features present in our HST photometry from the main-sequence turnoff to just below the horizontal branch, which is the brightest limit of our data. The Y2 theoretical isochrones with the Green color transformations are able to reproduce the morphology of the lower main-sequence of Terzan 7, but only after being shifted by a small blueward offset of 0.02 mag. Comparing the Y2 isochrones with the Padua 2000 models at a metallicity of z=0.004 and an age of 10 Gyr, we find that the Padua 2000 models systematically predict hotter effective temperatures for main-sequence turnoff stars and cooler effective temperatures for stars at the lower end of the red giant branch. We determine that Terzan 7 is 8 +/- 0.5 Gyr old with a metallicity of Z=0.007 ([Fe/H]=-0.43 +/- 0.12 dex), which is in agreement with spectroscopic estimates based on the calcium II triplet lines, but is significantly more metal-rich than previously determined from photometric methods. Sarah Robinson's research was supported by the NOAO/KPNO REU Program, funded by the National Science Foundation. Mighell was supported by a grant from the National Aeronautics and Space Administration (NASA), S-67046-F, awarded by the Long-Term Space Astrophysics program of NASA's Office of Space Science.

  7. TRIGGERED STAR FORMATION IN A BRIGHT-RIMMED CLOUD (BRC 5) OF IC 1805

    SciTech Connect

    Fukuda, Naoya; Miao, Jingqi; Sugitani, Koji; Kawahara, Kentaro; Watanabe, Makoto; Nakano, Makoto; Pickles, Andrew J.

    2013-08-20

    We report recent optical, near-infrared (NIR), and millimeter observations which have revealed some new features of the bright-rimmed cloud BRC 5 associated with W4. With slitless spectroscopy, we detected 17 H{alpha} emission stars around the cloud; 4 are near the surface of the cloud, and 1 is toward IRAS 02252+6120. NIR photometry shows that the central H{alpha} emission star, together with one bright infrared source, has large NIR excesses and Class I spectral energy distributions. These two Class I objects are associated with the 2.9 mm continuum peaks and with a bipolar outflow, and are in between two separate, elongated C{sup 18}O(J = 1-0) cores. The C{sup 18}O cores and the two Class I sources are aligned along a line at position angle {approx}240 Degree-Sign , somewhat less than perpendicular to the direction of UV radiation from the OB stars. Most of the detected H{alpha} emission stars, all T Tauri candidates, are located within {approx}3' of the cloud on the exciting star side. An estimate of the age of the stars based on a color-magnitude diagram suggests that these T Tauri candidates have ages of {approx}1 Myr or less, but are more evolved objects than the central young stellar objects. This age sequence suggests sequential star formation within the BRC 5 cloud. The {sup 13}CO(J = 1-0) emission shows three elongated structures, which indicates the asymmetric structure toward the UV incident axis. We present our exploratory simulation results by using a smoothed particle hydrodynamic code that suggests that the asymmetrical BRC 5 structure could possibly result from the evolution of a preexisting prolate molecular cloud subject to radiation-driven implosion (RDI). Our best-fit prolate cloud has an initial mass of {approx}400 M{sub Sun }, an axial ratio of {approx}1.7, and a semi-major axis of {approx}1.6 pc, pointing away from the ionization flux by an angle of 15 Degree-Sign . The simulated cloud structure not only closely matches the observed

  8. THE INITIAL MASS FUNCTION AND YOUNG BROWN DWARF CANDIDATES IN NGC 2264. IV. THE INITIAL MASS FUNCTION AND STAR FORMATION HISTORY

    SciTech Connect

    Sung, Hwankyung; Bessell, Michael S. E-mail: bessell@mso.anu.edu.a

    2010-12-15

    We have studied the star formation history and the initial mass function (IMF) using the age and mass derived from spectral energy distribution (SED) fitting and from color-magnitude diagrams (CMDs). We also examined the physical and structural parameters of more than 1000 pre-main-sequence stars in NGC 2264 using the online SED fitting tool (SED fitter) of Robitaille et al. We have compared the physical parameters of central stars from SED fitter and other methods. The temperature of the central star is, in many cases, much higher than that expected from its spectral type. The mass and age from SED fitter are not well matched with those from CMDs. We have made some suggestions to improve the accuracy of temperature estimates in the SED fitter. In most cases, these parameters of individual stars from the SED fitter in a star-forming region (SFR) or in the whole cluster showed nearly no systematic variation with age or with any other relevant parameter. On the other hand, the median properties of stars in NGC 2264 SFRs showed an evident evolutionary effect and were interrelated to each other. Such differences are caused by a larger age spread within an SFR than between them. The cumulative distribution of stellar ages showed a distinct difference among SFRs. A Kolmogorov-Smirnov test gave a very low probability of them being from the same population. The results indicate that star formation in NGC 2264 started at the surface region (Halo and Field regions) about 6-7 Myr ago, propagated into the molecular cloud and finally triggered the recent star formation in the Spokes cluster. The kind of sequential star formation that started in the low-density surface region (Halo and Field regions) implies that star formation in NGC 2264 was triggered by an external source. The IMF of NGC 2264 was determined in two different ways. One method used the stellar mass from the SED fitting tool, the other used the stellar mass from CMDs. The first IMF showed a distinct peak at m

  9. ULTRA-DEEP HUBBLE SPACE TELESCOPE IMAGING OF THE SMALL MAGELLANIC CLOUD: THE INITIAL MASS FUNCTION OF STARS WITH M {approx}< 1 M {sub Sun}

    SciTech Connect

    Kalirai, Jason S.; Anderson, Jay; Dotter, Aaron; Reid, I. Neill; Richer, Harvey B.; Fahlman, Gregory G.; Hansen, Brad M. S.; Rich, R. Michael; Hurley, Jarrod; Shara, Michael M. E-mail: jayander@stsci.edu E-mail: richer@astro.ubc.ca E-mail: hansen@astro.ucla.edu E-mail: jhurley@swin.edu.au

    2013-02-15

    We present a new measurement of the stellar initial mass function (IMF) based on ultra-deep, high-resolution photometry of >5000 stars in the outskirts of the Small Magellanic Cloud (SMC) galaxy. The Hubble Space Telescope (HST) Advanced Camera for Surveys observations reveal this rich, cospatial population behind the foreground globular cluster 47 Tuc, which we targeted for 121 HST orbits. The stellar main sequence of the SMC is measured in the F606W, F814W color-magnitude diagram down to {approx}30th magnitude, and is cleanly separated from the foreground star cluster population using proper motions. We simulate the SMC population by extracting stellar masses (single and unresolved binaries) from specific IMFs and converting those masses to luminosities in our bandpasses. The corresponding photometry for these simulated stars is drawn directly from a rich cloud of 4 million artificial stars, thereby accounting for the real photometric scatter and completeness of the data. Over a continuous and well-populated mass range of M = 0.37-0.93 M {sub Sun} (e.g., down to a {approx}75% completeness limit at F606W = 28.7), we demonstrate that the IMF is well represented by a single power-law form with slope {alpha} = -1.90 ({sup +0.15} {sub -0.10}) (3{sigma} error) (e.g., dN/dM{proportional_to} M {sup {alpha}}). This is shallower than the Salpeter slope of {alpha} = -2.35, which agrees with the observed stellar luminosity function at higher masses. Our results indicate that the IMF does not turn over to a more shallow power-law form within this mass range. We discuss implications of this result for the theory of star formation, the inferred masses of galaxies, and the (lack of a) variation of the IMF with metallicity.

  10. A WASHINGTON PHOTOMETRIC SURVEY OF THE LARGE MAGELLANIC CLOUD FIELD STAR POPULATION

    SciTech Connect

    Piatti, Andres E.; Geisler, Doug; Mateluna, Renee

    2012-10-01

    We present photometry for an unprecedented database of some 5.5 million stars distributed throughout the Large Magellanic Cloud main body, from 21 fields covering a total area of 7.6 deg{sup 2}, obtained from Washington CT{sub 1} T{sub 2} CTIO 4 m MOSAIC data. Extensive artificial star tests over the whole mosaic image data set and the observed behavior of the photometric errors with magnitude demonstrate the accuracy of the morphology and clearly delineate the position of the main features in the color-magnitude diagrams (CMDs). The representative T{sub 1}(MS TO) mags are on average {approx}0.5 mag brighter than the T{sub 1} mags for the 100% completeness level of the respective field, allowing us to derive an accurate age estimate. We have analyzed the CMD Hess diagrams and used the peaks in star counts at the main sequence turnoff and red clump (RC) locations to age date the most dominant sub-population (or 'representative' population) in the stellar population mix. The metallicity of this representative population is estimated from the locus of the most populous red giant branch track. We use these results to derive age and metallicity estimates for all of our fields. The analyzed fields span age and metallicity ranges covering most of the galaxy's lifetime and chemical enrichment, i.e., ages and metallicities between {approx}1 and 13 Gyr and {approx}-0.2 and -1.2 dex, respectively. We show that the dispersions associated with the mean ages and metallicities represent in general a satisfactory estimate of the age/metallicity spread ({approx}1-3 Gyr/0.2-0.3 dex), although a few subfields have a slightly larger age/metallicity spread. Finally, we revisit the study of the vertical structure (VS) phenomenon, a striking feature composed of stars that extend from the bottom, bluest end of the RC to {approx}0.45 mag fainter. We confirm that the VS phenomenon is not clearly seen in most of the studied fields and suggest that its occurrence is linked to some other

  11. Phase Diagrams of Nuclear Pasta

    NASA Astrophysics Data System (ADS)

    Caplan, Matthew; Horowitz, Chuck; Berry, Don; da Silva Schneider, Andre

    2016-03-01

    In the inner crust of neutrons stars, where matter is near the saturation density, protons and neutrons arrange themselves into complex structures called nuclear pasta. Early theoretical work predicted a simple graduated hierarchy of pasta phases, consisting of spheres, cylinders, slabs, and uniform matter with voids. Previous work has simulated these phases with a simple classical model and has shown that the formation of these structures is dependent on the temperature, density, and proton fraction. However, previous work only studied a limited range of these parameters due to computational limitations. Thanks to recent advances in computing it is now possible to survey the structure of nuclear pasta for a larger range of parameters. By simulating nuclear pasta with constant temperature and proton fraction in an expanding simulation volume we are able to study the phase transitions in nuclear pasta, and thus produce a set of phase diagrams. We report on these phase diagrams as well as newly identified phases of nuclear pasta and discuss their implications for neutron star observables.

  12. Gravity wave transmission diagram

    NASA Astrophysics Data System (ADS)

    Tomikawa, Yoshihiro

    2016-07-01

    A possibility of gravity wave propagation from a source region to the airglow layer around the mesopause has been discussed based on the gravity wave blocking diagram taking into account the critical level filtering alone. This paper proposes a new gravity wave transmission diagram in which both the critical level filtering and turning level reflection of gravity waves are considered. It shows a significantly different distribution of gravity wave transmissivity from the blocking diagram.

  13. THE BLUE STRAGGLER STAR POPULATION IN NGC 1261: EVIDENCE FOR A POST-CORE-COLLAPSE BOUNCE STATE

    SciTech Connect

    Simunovic, Mirko; Puzia, Thomas H.; Sills, Alison E-mail: tpuzia@astro.puc.cl

    2014-11-01

    We present a multi-passband photometric study of the Blue Straggler Star (BSS) population in the Galactic globular cluster (GC) NGC 1261, using available space- and ground-based survey data. The inner BSS population is found to have two distinct sequences in the color-magnitude diagram (CMD), similar to double BSS sequences detected in other GCs. These well defined sequences are presumably linked to single short-lived events such as core collapse, which are expected to boost the formation of BSSs. In agreement with this, we find a BSS sequence in NGC 1261 which can be well reproduced individually by a theoretical model prediction of a 2 Gyr old population of stellar collision products, which are expected to form in the denser inner regions during short-lived core contraction phases. Additionally, we report the occurrence of a group of BSSs with unusually blue colors in the CMD, which are consistent with a corresponding model of a 200 Myr old population of stellar collision products. The properties of the NGC 1261 BSS populations, including their spatial distributions, suggest an advanced dynamical evolutionary state of the cluster, but the core of this GC does not show the classical signatures of core collapse. We argue that these apparent contradictions provide evidence for a post-core-collapse bounce state seen in dynamical simulations of old GCs.

  14. The Slow Death (Or Rebirth?) of Extended Star Formation in z ~ 0.1 Green Valley Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Fang, Jerome J.; Faber, S. M.; Salim, Samir; Graves, Genevieve J.; Rich, R. Michael

    2012-12-01

    UV observations in the local universe have uncovered a population of early-type galaxies with UV flux consistent with low-level recent or ongoing star formation. Understanding the origin of such star formation remains an open issue. We present resolved UV-optical photometry of a sample of 19 Sloan Digital Sky Survey (SDSS) early-type galaxies at z ~ 0.1 drawn from the sample originally selected by Salim & Rich to lie in the bluer part of the green valley in the UV-optical color-magnitude diagram as measured by the Galaxy Evolution Explorer (GALEX). Utilizing high-resolution Hubble Space Telescope (HST) far-UV imaging provides unique insight into the distribution of UV light in these galaxies, which we call "extended star-forming early-type galaxies" (ESF-ETGs) because of extended UV emission that is indicative of recent star formation. The UV-optical color profiles of all ESF-ETGs show red centers and blue outer parts. Their outer colors require the existence of a significant underlying population of older stars in the UV-bright regions. An analysis of stacked SDSS spectra reveals weak LINER-like emission in their centers. Using a cross-matched SDSS DR7/GALEX GR6 catalog, we search for other green valley galaxies with similar properties to these ESF-ETGs and estimate that ≈13% of dust-corrected green valley galaxies of similar stellar mass and UV-optical color are likely ESF-candidates, i.e., ESF-ETGs are not rare. Our results are consistent with star formation that is gradually declining in existing disks, i.e., the ESF-ETGs are evolving onto the red sequence for the first time, or with rejuvenated star formation due to accreted gas in older disks provided that the gas does not disrupt the structure of the galaxy and the resulting star formation is not too recent and bursty. ESF-ETGs may typify an important subpopulation of galaxies that can linger in the green valley for up to several Gyrs, based on their resemblance to nearby gas-rich green valley galaxies

  15. Globular cluster photometry with the Hubble Space Telescope. 3: Blue stragglers and variable stars in the core of M3

    NASA Technical Reports Server (NTRS)

    Guhathakurta, Puragra; Yanny, Brian; Bahcall, John N.; Schneider, Donald P.

    1994-01-01

    This paper describes Hubble Space Telescope (HST)/Planetary Camera-I images of the core of the dense globular cluster M3 (NGC 5272). Stellar photometry in the F555W (V) and F785LP (I) bands, with a 1-sigma photometric accuracy of about 0.1 mag, has been used to construct color-magnitude diagrams of about 4700 stars above the main-sequence turnoff within r less than or approximately equal to 1 min of the cluster center. We have also analyzed archival HST F336W (U) images of M3 obtained by the Wide Field/Planetary Camera-I Instrument Definition Team. The UVI data are used to identify 28 blue straggler (BS) stars within the central 0.29 sq. arcmin. The specific frequency of BSs in this region of M3, N(sub BS)/N(sub V less than (V(HB)+2)) = 0.094 +/- 0.019, is about a factor of 2 - 3 higher than that found by Bolte et al. in a recent ground-based study of the same region, but comparable to that seen in the sparse outer parts of the same cluster and in HST observations of the core of the higher density cluster 47 Tuc. The BSs in M3 are slightly more centrally concentrated than red giant branch stars while horizontal branch stars are somewhat less concentrated red giants. The radial distribution of V-selected subgiant and turnoff stars is well fit by a King model with a core radius r(sub core) = 28 arcmin +/- 2 arcmin (90% confidence limits), which corresponds to 1.4 pc. Red giant and horizontal branch stars selected in the ultraviolet data (U less than 18) have a somewhat more compact distribution (r(sub core) = 22.5 arcmin). The HST U data consist of 17 exposures acquired over a span of three days. We have used these data to isolate 40 variable stars for which relative astrometry, brightnesses, colors, and light curves are presented. A Kolmogorov-Smirnov test indicates that, typically, the variability for each star is significant at the 95% level. We identify two variable BS candidates (probably of the SX Phe type), out of a sample of approximately 25 BSs in which

  16. Model atmospheres broad-band colors, bolometric corrections and temperature calibrations for O - M stars

    NASA Astrophysics Data System (ADS)

    Bessell, M. S.; Castelli, F.; Plez, B.

    1998-05-01

    Broad band colors and bolometric corrections in the Johnson-Cousins-Glass system (Bessell, 1990; Bessell & Brett, 1988) have been computed from synthetic spectra from new model atmospheres of Kurucz (1995a), Castelli (1997), Plez, Brett & Nordlund (1992), Plez (1995-97), and Brett (1995a,b). These atmospheres are representative of larger grids that are currently being completed. We discuss differences between the different grids and compare theoretical color-temperature relations and the fundamental color temperature relations derived from: (a) the infrared-flux method (IRFM) for A-K stars (Blackwell & Lynas-Gray 1994; Alonso et al. 1996) and M dwarfs (Tsuji et al. 1996a); (b) lunar occultations (Ridgway et al. 1980) and (c) Michelson interferometry (Di Benedetto & Rabbia 1987; Dyck et al. 1996; Perrin et al. 1997) for K-M giants, and (d) eclipsing binaries for M dwarfs. We also compare color - color relations and color - bolometric correction relations and find good agreement except for a few colors. The more realistic fluxes and spectra of the new model grids should enable accurate population synthesis models to be derived and permit the ready calibration of non-standard photometric passbands. As well, the theoretical bolometric corrections and temperature - color relations will permit reliable transformation from observed color magnitude diagrams to theoretical HR diagrams. Tables 1-6 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  17. VizieR Online Data Catalog: O-M stars model atmospheres (Bessell+ 1998)

    NASA Astrophysics Data System (ADS)

    Bessell, M. S.; Castelli, F.; Plez, B.

    1998-03-01

    Broad band colors and bolometric corrections in the Johnson-Cousins-Glass system (Bessell, 1990PASP..102.1181B; Bessell & Brett, 1988PASP..100.1134B) have been computed from synthetic spectra from new model atmospheres of Kurucz (1995a, priv. comm.), Castelli (1997, priv. comm.), Plez, Brett & Nordlund (1992A&A...256..551P), Plez (1995-97, priv. comm.), and Brett (1995A&A...295..736B, 1995A&AS..109..263B). These atmospheres are representative of larger grids that are currently being completed. We discuss differences between the different grids and compare theoretical color-temperature relations and the fundamental color temperature relations derived from: (a) the infrared-flux method (IRFM) for A-K stars (Blackwell & Lynas-Gray 1994A&A...282..899B; Alonso et al. 1996A&AS..117..227A) and M dwarfs (Tsuji et al. 1996A&A...305L...1T); (b) lunar occultations (Ridgway et al. 1980ApJ...235..126R) and (c) Michelson interferometry (Di Benedetto & Rabbia 1987A&A...188..114D; Dyck et al. 1996AJ....111.1705D; Perrin et al. 1998A&A...331..619P) for K-M giants, and (d) eclipsing binaries for M dwarfs. We also compare color-color relations and color-bolometric correction relations and find good agreement except for a few colors. The more realistic fluxes and spectra of the new model grids should enable accurate population synthesis models to be derived and permit the ready calibration of non-standard photometric passbands. As well, the theoretical bolometric corrections and temperature-color relations will permit reliable transformation from observed color magnitude diagrams to theoretical HR diagrams. (6 data files).

  18. Photometric study of open star clusters in II quadrant: Teutsch 1 and Riddle 4

    NASA Astrophysics Data System (ADS)

    Bisht, D.; Yadav, R. K. S.; Durgapal, A. K.

    2016-01-01

    We present the broad band UBVI CCD photometry in the region of two open star clusters Teutsch 1 and Riddle 4 located in the second Galactic quadrant. The optical CCD data for these clusters are obtained for the first time. Radii of the clusters are estimated as 3‧.5 for both the clusters. Using two color (U - B) versus (B - V) diagram we determined the reddening as E(B - V) = 0.40 ± 0.05 mag for Teutsch 1 and 1.10 ± 0.05 mag for Riddle 4. Using 2MASS JHK and optical data, we estimated E(J - K) = 0.24 ± 0.05 mag and E(V - K) = 1.40 ± 0.05 mag for Teutsch 1 and E(J - K) = 0.47 ± 0.06 mag and E(V - K) = 2.80 ± 0.06 mag for Riddle 4. Color-excess ratio indicates normal interstellar extinction law in the direction of both the clusters. We estimated distance as 4.3 ± 0.5 Kpc for Teutsch 1 and 2.8 ± 0.2 Kpc for Riddle 4 by comparing the color-magnitude diagram of the clusters with theoretical isochrones. The age of the clusters has been estimated as 200 ± 20 Myr for Teutsch 1 and 40 ± 10 Myr for Riddle 4 using the stellar isochrones of metallicity Z = 0.02 . The Mass function slope has been derived 1.89 ± 0.43 and 1.41 ± 0.70 for Teutsch 1 and Riddle 4 respectively. Our analysis indicates that both the clusters are dynamically relaxed. A slight bend of Galactic disc towards the southern latitude is found in the longitude range l = 130-180°.

  19. Multicolor Photometry of the Merging Galaxy Cluster A2319: Dynamics and Star Formation Properties

    NASA Astrophysics Data System (ADS)

    Yan, Peng-Fei; Yuan, Qi-Rong; Zhang, Li; Zhou, Xu

    2014-05-01

    Asymmetric X-ray emission and a powerful cluster-scale radio halo indicate that A2319 is a merging cluster of galaxies. This paper presents our multicolor photometry for A2319 with 15 optical intermediate filters in the Beijing-Arizona-Taiwan-Connecticut (BATC) system. There are 142 galaxies with known spectroscopic redshifts within the viewing field of 58' × 58' centered on this rich cluster, including 128 member galaxies (called sample I). A large velocity dispersion in the rest frame, 1622^{+91}_{-70} km s-1, suggests merger dynamics in A2319. The contour map of projected density and localized velocity structure confirm the so-called A2319B substructure, at ~10' northwest to the main concentration A2319A. The spectral energy distributions (SEDs) of more than 30,000 sources are obtained in our BATC photometry down to V ~ 20 mag. A u-band (~3551 Å) image with better seeing and spatial resolution, obtained with the Bok 2.3 m telescope at Kitt Peak, is taken to make star-galaxy separation and distinguish the overlapping contamination in the BATC aperture photometry. With color-color diagrams and photometric redshift technique, 233 galaxies brighter than h BATC = 19.0 are newly selected as member candidates after an exclusion of false candidates with contaminated BATC SEDs by eyeball-checking the u-band Bok image. The early-type galaxies are found to follow a tight color-magnitude correlation. Based on sample I and the enlarged sample of member galaxies (called sample II), subcluster A2319B is confirmed. The star formation properties of cluster galaxies are derived with the evolutionary synthesis model, PEGASE, assuming a Salpeter initial mass function and an exponentially decreasing star formation rate (SFR). A strong environmental effect on star formation histories is found in the manner that galaxies in the sparse regions have various star formation histories, while galaxies in the dense regions are found to have shorter SFR time scales, older stellar ages, and

  20. Multicolor photometry of the merging galaxy cluster A2319: Dynamics and star formation properties

    SciTech Connect

    Yan, Peng-Fei; Yuan, Qi-Rong; Zhang, Li; Zhou, Xu E-mail: yuanqirong@njnu.edu.cn

    2014-05-01

    Asymmetric X-ray emission and a powerful cluster-scale radio halo indicate that A2319 is a merging cluster of galaxies. This paper presents our multicolor photometry for A2319 with 15 optical intermediate filters in the Beijing-Arizona-Taiwan-Connecticut (BATC) system. There are 142 galaxies with known spectroscopic redshifts within the viewing field of 58' × 58' centered on this rich cluster, including 128 member galaxies (called sample I). A large velocity dispersion in the rest frame, 1622{sub −70}{sup +91} km s{sup –1}, suggests merger dynamics in A2319. The contour map of projected density and localized velocity structure confirm the so-called A2319B substructure, at ∼10' northwest to the main concentration A2319A. The spectral energy distributions (SEDs) of more than 30,000 sources are obtained in our BATC photometry down to V ∼ 20 mag. A u-band (∼3551 Å) image with better seeing and spatial resolution, obtained with the Bok 2.3 m telescope at Kitt Peak, is taken to make star-galaxy separation and distinguish the overlapping contamination in the BATC aperture photometry. With color-color diagrams and photometric redshift technique, 233 galaxies brighter than h {sub BATC} = 19.0 are newly selected as member candidates after an exclusion of false candidates with contaminated BATC SEDs by eyeball-checking the u-band Bok image. The early-type galaxies are found to follow a tight color-magnitude correlation. Based on sample I and the enlarged sample of member galaxies (called sample II), subcluster A2319B is confirmed. The star formation properties of cluster galaxies are derived with the evolutionary synthesis model, PEGASE, assuming a Salpeter initial mass function and an exponentially decreasing star formation rate (SFR). A strong environmental effect on star formation histories is found in the manner that galaxies in the sparse regions have various star formation histories, while galaxies in the dense regions are found to have shorter SFR time

  1. The Critical Importance of Russell's Diagram

    NASA Astrophysics Data System (ADS)

    Gingerich, O.

    2013-04-01

    The idea of dwarf and giants stars, but not the nomenclature, was first established by Eijnar Hertzsprung in 1905; his first diagrams in support appeared in 1911. In 1913 Henry Norris Russell could demonstrate the effect far more strikingly because he measured the parallaxes of many stars at Cambridge, and could plot absolute magnitude against spectral type for many points. The general concept of dwarf and giant stars was essential in the galactic structure work of Harlow Shapley, Russell's first graduate student. In order to calibrate the period-luminosity relation of Cepheid variables, he was obliged to fall back on statistical parallax using only 11 Cepheids, a very sparse sample. Here the insight provided by the Russell diagram became critical. The presence of yellow K giant stars in globular clusters credentialed his calibration of the period-luminosity relation by showing that the calibrated luminosity of the Cepheids was comparable to the luminosity of the K giants. It is well known that in 1920 Shapley did not believe in the cosmological distances of Heber Curtis' spiral nebulae. It is not so well known that in 1920 Curtis' plot of the period-luminosity relation suggests that he didn't believe it was a physical relation and also he failed to appreciate the significance of the Russell diagram for understanding the large size of the Milky Way.

  2. Roche-lobe overflow systems powered by black holes in young star clusters: the importance of dynamical exchanges

    SciTech Connect

    Mapelli, Michela; Zampieri, Luca

    2014-10-10

    We have run 600 N-body simulations of intermediate-mass (∼3500 M {sub ☉}) young star clusters (SCs; with three different metallicities (Z = 0.01, 0.1, and 1 Z {sub ☉}). The simulations include the dependence of stellar properties and stellar winds on metallicity. Massive stellar black holes (MSBHs) with mass >25 M {sub ☉} are allowed to form through direct collapse of very massive metal-poor stars (Z < 0.3 Z {sub ☉}). We focus on the demographics of black hole (BH) binaries that undergo mass transfer via Roche lobe overflow (RLO). We find that 44% of all binaries that undergo an RLO phase (RLO binaries) formed through dynamical exchange. RLO binaries that formed via exchange (RLO-EBs) are powered by more massive BHs than RLO primordial binaries (RLO-PBs). Furthermore, the RLO-EBs tend to start the RLO phase later than the RLO-PBs. In metal-poor SCs (0.01-0.1 Z {sub ☉}), >20% of all RLO binaries are powered by MSBHs. The vast majority of RLO binaries powered by MSBHs are RLO-EBs. We have produced optical color-magnitude diagrams of the simulated RLO binaries, accounting for the emission of both the donor star and the irradiated accretion disk. We find that RLO-PBs are generally associated with bluer counterparts than RLO-EBs. We compare the simulated counterparts with the observed counterparts of nine ultraluminous X-ray sources. We discuss the possibility that IC 342 X-1, Ho IX X-1, NGC 1313 X-2, and NGC 5204 X-1 are powered by an MSBH.

  3. The star formation histories of local group dwarf galaxies. I. Hubble space telescope/wide field planetary camera 2 observations

    SciTech Connect

    Weisz, Daniel R.; Dolphin, Andrew E.; Skillman, Evan D.; Holtzman, Jon; Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F.

    2014-07-10

    We present uniformly measured star formation histories (SFHs) of 40 Local Group (LG) dwarf galaxies based on color-magnitude diagram (CMD) analysis from archival Hubble Space Telescope imaging. We demonstrate that accurate SFHs can be recovered from CMDs that do not reach the oldest main sequence turn-off (MSTO), but emphasize that the oldest MSTO is critical for precisely constraining the earliest epochs of star formation. We find that: (1) the average lifetime SFHs of dwarf spheroidals (dSphs) can be approximated by an exponentially declining SFH with τ ∼ 5 Gyr; (2) lower luminosity dSphs are less likely to have extended SFHs than more luminous dSphs; (3) the average SFHs of dwarf irregulars (dIrrs), transition dwarfs, and dwarf ellipticals can be approximated by the combination of an exponentially declining SFH (τ ∼ 3-4 Gyr) for lookback ages >10-12 Gyr ago and a constant SFH thereafter; (4) the observed fraction of stellar mass formed prior to z = 2 ranges considerably (80% for galaxies with M < 10{sup 5} M{sub ☉} to 30% for galaxies with M > 10{sup 7} M{sub ☉}) and is largely explained by environment; (5) the distinction between 'ultra-faint' and 'classical' dSphs is arbitrary; (6) LG dIrrs formed a significantly higher fraction of stellar mass prior to z = 2 than the Sloan Digital Sky Survey galaxies from Leitner and the SFHs from the abundance matching models of Behroozi et al. This may indicate higher than expected star formation efficiencies at early times in low mass galaxies. Finally, we provide all the SFHs in tabulated electronic format for use by the community.

  4. THE ADVANCED CAMERA FOR SURVEYS NEARBY GALAXY SURVEY TREASURY. V. RADIAL STAR FORMATION HISTORY OF NGC 300

    SciTech Connect

    Gogarten, Stephanie M.; Dalcanton, Julianne J.; Williams, Benjamin F.; Roskar, Rok; Gilbert, Karoline M.; Quinn, Thomas R.; Holtzman, Jon; Seth, Anil C.; Dolphin, Andrew; Weisz, Daniel; Skillman, Evan; Cole, Andrew; Debattista, Victor P.; Olsen, Knut; De Jong, Roelof S.; Karachentsev, Igor D.

    2010-04-01

    We present new Hubble Space Telescope (HST) observations of NGC 300 taken as part of the Advanced Camera for Surveys Nearby Galaxy Survey Treasury (ANGST). Individual stars are resolved in these images down to an absolute magnitude of M{sub F814W} = 1.0 (below the red clump). We determine the star formation history of the galaxy in six radial bins by comparing our observed color-magnitude diagrams (CMDs) with synthetic CMDs based on theoretical isochrones. We find that the stellar disk out to 5.4 kpc is primarily old, in contrast with the outwardly similar galaxy M33. We determine the scale length as a function of age and find evidence for inside-out growth of the stellar disk: the scale length has increased from 1.1 +- 0.1 kpc 10 Gyr ago to 1.3 +- 0.1 kpc at present, indicating a buildup in the fraction of young stars at larger radii. As the scale length of M33 has recently been shown to have increased much more dramatically with time, our results demonstrate that two galaxies with similar sizes and morphologies can have very different histories. With an N-body simulation of a galaxy designed to be similar to NGC 300, we determine that the effects of radial migration should be minimal. We trace the metallicity gradient as a function of time and find a present-day metallicity gradient consistent with that seen in previous studies. Consistent results are obtained from archival images covering the same radial extent but differing in placement and filter combination.

  5. Hubble Tarantula Treasury Project. III. Photometric Catalog and Resulting Constraints on the Progression of Star Formation in the 30 Doradus Region

    NASA Astrophysics Data System (ADS)

    Sabbi, E.; Lennon, D. J.; Anderson, J.; Cignoni, M.; van der Marel, R. P.; Zaritsky, D.; De Marchi, G.; Panagia, N.; Gouliermis, D. A.; Grebel, E. K.; Gallagher, J. S., III; Smith, L. J.; Sana, H.; Aloisi, A.; Tosi, M.; Evans, C. J.; Arab, H.; Boyer, M.; de Mink, S. E.; Gordon, K.; Koekemoer, A. M.; Larsen, S. S.; Ryon, J. E.; Zeidler, P.

    2016-01-01

    We present and describe the astro-photometric catalog of more than 800,000 sources found in the Hubble Tarantula Treasury Project (HTTP). HTTP is a Hubble Space Telescope Treasury program designed to image the entire 30 Doradus region down to the sub-solar (˜0.5 M⊙) mass regime using the Wide Field Camera 3 and the Advanced Camera for Surveys. We observed 30 Doradus in the near-ultraviolet (F275W, F336W), optical (F555W, F658N, F775W), and near-infrared (F110W, F160W) wavelengths. The stellar photometry was measured using point-spread function fitting across all bands simultaneously. The relative astrometric accuracy of the catalog is 0.4 mas. The astro-photometric catalog, results from artificial star experiments, and the mosaics for all the filters are available for download. Color-magnitude diagrams are presented showing the spatial distributions and ages of stars within 30 Dor as well as in the surrounding fields. HTTP provides the first rich and statistically significant sample of intermediate- and low-mass pre-main sequence candidates and allows us to trace how star formation has been developing through the region. The depth and high spatial resolution of our analysis highlight the dual role of stellar feedback in quenching and triggering star formation on the giant H ii region scale. Our results are consistent with stellar sub-clustering in a partially filled gaseous nebula that is offset toward our side of the Large Magellanic Cloud. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc., under NASA contract NAS 5-26555.

  6. Implications for the Formation of Blue Straggler Stars from HST Ultraviolet Observations of NGC 188

    NASA Astrophysics Data System (ADS)

    Gosnell, Natalie M.; Mathieu, Robert D.; Geller, Aaron M.; Sills, Alison; Leigh, Nathan; Knigge, Christian

    2015-12-01

    We present results of a Hubble Space Telescope (HST) far-ultraviolet (FUV) survey searching for white dwarf (WD) companions to blue straggler stars (BSSs) in open cluster NGC 188. The majority of NGC 188 BSSs (15 of 21) are single-lined binaries with properties suggestive of mass-transfer formation via Roche lobe overflow, specifically through an asymptotic giant branch star transferring mass to a main sequence secondary, yielding a BSS binary with a WD companion. In NGC 188, a BSS formed by this mechanism within the past 400 Myr will have a WD companion that is hot and luminous enough to be directly detected as a FUV photometric excess with HST. Comparing expected BSS FUV emission to observed photometry reveals four BSSs with WD companions above 12,000 K (younger than 250 Myr) and three WD companions with temperatures between 11,000 and 12,000 K. These BSS+WD binaries all formed through recent mass transfer. The location of the young BSSs in an optical color-magnitude diagram (CMD) indicates that distance from the zero-age main sequence does not necessarily correlate with BSS age. There is no clear CMD separation between mass transfer-formed BSSs and those likely formed through other mechanisms, such as collisions. The seven detected WD companions place a lower limit on the mass-transfer formation frequency of 33%. We consider other possible formation mechanisms by comparing properties of the BSS population to theoretical predictions. We conclude that 14 BSS binaries likely formed from mass transfer, resulting in an inferred mass-transfer formation frequency of approximately 67%. WIYN Open Cluster Study LXX.

  7. THE NATURE OF STARBURSTS. I. THE STAR FORMATION HISTORIES OF EIGHTEEN NEARBY STARBURST DWARF GALAXIES

    SciTech Connect

    McQuinn, Kristen B. W.; Skillman, Evan D.; Stark, David; Weisz, Daniel; Cannon, John M.; Dalcanton, Julianne; Williams, Benjamin; Dolphin, Andrew; Hidalgo-RodrIguez, Sebastian

    2010-09-20

    We use archival Hubble Space Telescope observations of resolved stellar populations to derive the star formation histories (SFHs) of 18 nearby starburst dwarf galaxies. In this first paper, we present the observations, color-magnitude diagrams (CMDs), and the SFHs of the 18 starburst galaxies, based on a homogeneous approach to the data reduction, differential extinction, and treatment of photometric completeness. We adopt a star formation rate (SFR) threshold normalized to the average SFR of the individual system as a metric for classifying starbursts in SFHs derived from resolved stellar populations. This choice facilitates finding not only the currently bursting galaxies but also 'fossil' bursts increasing the sample size of starburst galaxies in the nearby (D < 8 Mpc) universe. Thirteen of the eighteen galaxies are experiencing ongoing bursts and five galaxies show fossil bursts. From our reconstructed SFHs, it is evident that the elevated SFRs of a burst are sustained for hundreds of Myr with variations on small timescales. A long >100 Myr temporal baseline is thus fundamental to any starburst definition or identification method. The longer lived bursts rule out rapid 'self-quenching' of starbursts on global scales. The bursting galaxies' gas consumption timescales are shorter than the Hubble time for all but one galaxy confirming the short-lived nature of starbursts based on fuel limitations. Additionally, we find that the strength of the H{alpha} emission usually correlates with the CMD-based SFR during the last 4-10 Myr. However, in four cases, the H{alpha} emission is significantly less than what is expected for models of starbursts; the discrepancy is due to the SFR changing on timescales of a few Myr. The inherently short timescale of the H{alpha} emission limits identifying galaxies as starbursts based on the current characteristics which may or may not be representative of the recent SFH of a galaxy.

  8. Age determination of 15 old to intermediate-age small Magellanic cloud star clusters

    SciTech Connect

    Parisi, M. C.; Clariá, J. J.; Piatti, A. E.; Geisler, D.; Leiton, R.; Carraro, G.; Costa, E.; Grocholski, A. J.; Sarajedini, A. E-mail: claria@oac.uncor.edu E-mail: dgeisler@astro-udec.cl E-mail: gcarraro@eso.org E-mail: grocholski@phys.lsu.edu

    2014-04-01

    We present color-magnitude diagrams in the V and I bands for 15 star clusters in the Small Magellanic Cloud (SMC) based on data taken with the Very Large Telescope (VLT, Chile). We selected these clusters from our previous work, wherein we derived cluster radial velocities and metallicities from calcium II infrared triplet (CaT) spectra also taken with the VLT. We discovered that the ages of six of our clusters have been appreciably underestimated by previous studies, which used comparatively small telescopes, graphically illustrating the need for large apertures to obtain reliable ages of old and intermediate-age SMC star clusters. In particular, three of these clusters, L4, L6, and L110, turn out to be among the oldest SMC clusters known, with ages of 7.9 ± 1.1, 8.7 ± 1.2, and 7.6 ± 1.0 Gyr, respectively, helping to fill a possible 'SMC cluster age gap'. Using the current ages and metallicities from Parisi et al., we analyze the age distribution, age gradient, and age-metallicity relation (AMR) of a sample of SMC clusters measured homogeneously. There is a suggestion of bimodality in the age distribution but it does not show a constant slope for the first 4 Gyr, and we find no evidence for an age gradient. Due to the improved ages of our cluster sample, we find that our AMR is now better represented in the intermediate/old period than we had derived in Parisi et al., where we simply took ages available in the literature. Additionally, clusters younger than ∼4 Gyr now show better agreement with the bursting model of Pagel and Tautvaišienė, but we confirm that this model is not a good representation of the AMR during the intermediate/old period. A more complicated model is needed to explain the SMC chemical evolution in that period.

  9. Age Determination of 15 Old to Intermediate-age Small Magellanic Cloud Star Clusters

    NASA Astrophysics Data System (ADS)

    Parisi, M. C.; Geisler, D.; Carraro, G.; Clariá, J. J.; Costa, E.; Grocholski, A. J.; Sarajedini, A.; Leiton, R.; Piatti, A. E.

    2014-04-01

    We present color-magnitude diagrams in the V and I bands for 15 star clusters in the Small Magellanic Cloud (SMC) based on data taken with the Very Large Telescope (VLT, Chile). We selected these clusters from our previous work, wherein we derived cluster radial velocities and metallicities from calcium II infrared triplet (CaT) spectra also taken with the VLT. We discovered that the ages of six of our clusters have been appreciably underestimated by previous studies, which used comparatively small telescopes, graphically illustrating the need for large apertures to obtain reliable ages of old and intermediate-age SMC star clusters. In particular, three of these clusters, L4, L6, and L110, turn out to be among the oldest SMC clusters known, with ages of 7.9 ± 1.1, 8.7 ± 1.2, and 7.6 ± 1.0 Gyr, respectively, helping to fill a possible "SMC cluster age gap." Using the current ages and metallicities from Parisi et al., we analyze the age distribution, age gradient, and age-metallicity relation (AMR) of a sample of SMC clusters measured homogeneously. There is a suggestion of bimodality in the age distribution but it does not show a constant slope for the first 4 Gyr, and we find no evidence for an age gradient. Due to the improved ages of our cluster sample, we find that our AMR is now better represented in the intermediate/old period than we had derived in Parisi et al., where we simply took ages available in the literature. Additionally, clusters younger than ~4 Gyr now show better agreement with the bursting model of Pagel & Tautvaišienė, but we confirm that this model is not a good representation of the AMR during the intermediate/old period. A more complicated model is needed to explain the SMC chemical evolution in that period.

  10. Distinguishing the Least Massive Stars from the Most Massive Brown Dwarfs -- Parallaxes, Photometry, and Luminosities for Objects Near the Stellar/Substellar Boundary

    NASA Astrophysics Data System (ADS)

    Dieterich, Sergio; Henry, T. J.; Jao, W.; Winters, J. G.; RECONS

    2013-01-01

    We present the results of a large survey of nearby (d < 25) very low mass stars and brown dwarfs with spectral types ranging from M6V to L5. This spectral type range is thought to encompass the end of the stellar main sequence. We obtained trigonometric parallaxes for 71 targets and optical (VRI) photometry for 115 targets, 44 of which already had parallaxes in the literature. We combine our VRI photometry with near and mid infrared photometry from 2MASS and WISE to compute new bolometric corrections and luminosities. We estimate effective temperatures based on the latest atmospheric models and use these data to create a real HR diagram mapping the bottom of the main sequence. We discuss the location of several benchmark binaries with dynamical masses in the HR diagram, and how they constrain the mass-luminosity relation. Our new HR diagram hints at the existence of two photometric sequences that overlap in color, but are distinct in luminosity. Could this be the overlap of the stellar main sequence and a new brown dwarf sequence? The trends in color-magnitude space also indicate that the stellar main sequence may end at an earlier spectral subtype than previously thought. This work is based in part on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Brazilian Ministry of Science and Technology, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU). Additional observations obtained with the CTIO 0.9m telescope, which is operated by the SMARTS Consortium under the auspices of NOAO and the National Science Foundation. This work is funded by NSF grant AST-0908402.