Science.gov

Sample records for starch branching isoforms

  1. Two starch-branching-enzyme isoforms occur in different fractions of developing seeds of kidney bean.

    PubMed Central

    Hamada, S; Nozaki, K; Ito, H; Yoshimoto, Y; Yoshida, H; Hiraga, S; Onodera, S; Honma, M; Takeda, Y; Matsui, H

    2001-01-01

    The nature and enzymic properties of starch-branching enzyme (SBE) are two of the dominant factors influencing the fine structure of starch. To understand the role of this enzyme's activity in the formation of starch in kidney bean (Phaseolus vulgaris L.), a study was undertaken to identify the major SBE sequences expressed during seed development and to characterize the enzymic properties of the coded recombinant enzymes. Two SBE cDNA species (designated pvsbe2 and pvsbe1) that displayed significant similarity (more than 70%) to other family A and B SBEs respectively were isolated. Northern blot analysis revealed that pvsbe1 and pvsbe2 were differentially expressed during seed development. pvsbe2 showed maximum steady-state transcript levels at the mid-stage of seed maturation, whereas pvsbe1 reached peak levels at a later stage. Western blot analysis with antisera raised against both recombinant proteins (rPvSBE1 and rPvSBE2) showed that these two SBEs were located in different amyloplast fractions of developing seeds of kidney bean. PvSBE2 was present in the soluble fraction, whereas PvSBE1 was associated with the starch granule fraction. The differences in location suggest that these two SBE isoenzymes have different roles in amylopectin synthesis in kidney bean seeds. rPvSBE1 and rPvSBE2 were purified from Escherichia coli and their kinetic properties were determined. The affinity of rPvSBE2 for amylose (K(m) 1.27 mg/ml) was lower than that of rPvSBE1 (0.46 mg/ml). The activity of rPvSBE2 was stimulated more than 3-fold in the presence of 0.3 M citrate, whereas rPvSBE1 activity was not affected. The implications of the enzymic properties and the distribution of SBEs and amylopectin structure are discussed. PMID:11563966

  2. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism

    PubMed Central

    Shaik, Shahnoor S.; Obata, Toshihiro; Hebelstrup, Kim H.; Schwahn, Kevin; Fernie, Alisdair R.; Mateiu, Ramona V.; Blennow, Andreas

    2016-01-01

    Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro-structure was achieved by decreasing starch branching and increasing starch-bound phosphate content in the barley caryopsis starch by RNAi suppression of all three Starch Branching Enzyme (SBE) isoforms or overexpression of potato Glucan Water Dikinase (GWD). The resulting lines displayed Amylose-Only (AO) and Hyper-Phosphorylated (HP) starch chemotypes, respectively. We studied the influence of these alterations on primary metabolism, grain composition, starch structural features and starch granule morphology over caryopsis development at 10, 20 and 30 days after pollination (DAP) and at grain maturity. While HP showed relatively little effect, AO showed significant reduction in starch accumulation with re-direction to protein and β-glucan (BG) accumulation. Metabolite profiling indicated significantly higher sugar accumulation in AO, with re-partitioning of carbon to accumulate amino acids, and interestingly it also had high levels of some important stress-related metabolites and potentially protective metabolites, possibly to elude deleterious effects. Investigations on starch molecular structure revealed significant increase in starch phosphate and amylose content in HP and AO respectively with obvious differences in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch-bound phosphate as a result of overexpressing GWD. PMID:26891365

  3. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism.

    PubMed

    Shaik, Shahnoor S; Obata, Toshihiro; Hebelstrup, Kim H; Schwahn, Kevin; Fernie, Alisdair R; Mateiu, Ramona V; Blennow, Andreas

    2016-01-01

    Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro-structure was achieved by decreasing starch branching and increasing starch-bound phosphate content in the barley caryopsis starch by RNAi suppression of all three Starch Branching Enzyme (SBE) isoforms or overexpression of potato Glucan Water Dikinase (GWD). The resulting lines displayed Amylose-Only (AO) and Hyper-Phosphorylated (HP) starch chemotypes, respectively. We studied the influence of these alterations on primary metabolism, grain composition, starch structural features and starch granule morphology over caryopsis development at 10, 20 and 30 days after pollination (DAP) and at grain maturity. While HP showed relatively little effect, AO showed significant reduction in starch accumulation with re-direction to protein and β-glucan (BG) accumulation. Metabolite profiling indicated significantly higher sugar accumulation in AO, with re-partitioning of carbon to accumulate amino acids, and interestingly it also had high levels of some important stress-related metabolites and potentially protective metabolites, possibly to elude deleterious effects. Investigations on starch molecular structure revealed significant increase in starch phosphate and amylose content in HP and AO respectively with obvious differences in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch-bound phosphate as a result of overexpressing GWD. PMID:26891365

  4. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    PubMed Central

    2012-01-01

    Background Starch is stored in higher plants as granules composed of semi-crystalline amylopectin and amorphous amylose. Starch granules provide energy for the plant during dark periods and for germination of seeds and tubers. Dietary starch is also a highly glycemic carbohydrate being degraded to glucose and rapidly absorbed in the small intestine. But a portion of dietary starch, termed “resistant starch” (RS) escapes digestion and reaches the large intestine, where it is fermented by colonic bacteria producing short chain fatty acids (SCFA) which are linked to several health benefits. The RS is preferentially derived from amylose, which can be increased by suppressing amylopectin synthesis by silencing of starch branching enzymes (SBEs). However all the previous works attempting the production of high RS crops resulted in only partly increased amylose-content and/or significant yield loss. Results In this study we invented a new method for silencing of multiple genes. Using a chimeric RNAi hairpin we simultaneously suppressed all genes coding for starch branching enzymes (SBE I, SBE IIa, SBE IIb) in barley (Hordeum vulgare L.), resulting in production of amylose-only starch granules in the endosperm. This trait was segregating 3:1. Amylose-only starch granules were irregularly shaped and showed peculiar thermal properties and crystallinity. Transgenic lines retained high-yield possibly due to a pleiotropic upregualtion of other starch biosynthetic genes compensating the SBEs loss. For gelatinized starch, a very high content of RS (65 %) was observed, which is 2.2-fold higher than control (29%). The amylose-only grains germinated with same frequency as control grains. However, initial growth was delayed in young plants. Conclusions This is the first time that pure amylose has been generated with high yield in a living organism. This was achieved by a new method of simultaneous suppression of the entire complement of genes encoding starch branching enzymes. We

  5. Deficiency of maize starch-branching enzyme i results in altered starch fine structure, decreased digestibility and reduced coleoptile growth during germination

    PubMed Central

    2011-01-01

    Background Two distinct starch branching enzyme (SBE) isoforms predate the divergence of monocots and dicots and have been conserved in plants since then. This strongly suggests that both SBEI and SBEII provide unique selective advantages to plants. However, no phenotype for the SBEI mutation, sbe1a, had been previously observed. To explore this incongruity the objective of the present work was to characterize functional and molecular phenotypes of both sbe1a and wild-type (Wt) in the W64A maize inbred line. Results Endosperm starch granules from the sbe1a mutant were more resistant to digestion by pancreatic α-amylase, and the sbe1a mutant starch had an altered branching pattern for amylopectin and amylose. When kernels were germinated, the sbe1a mutant was associated with shorter coleoptile length and higher residual starch content, suggesting that less efficient starch utilization may have impaired growth during germination. Conclusions The present report documents for the first time a molecular phenotype due to the absence of SBEI, and suggests strongly that it is associated with altered physiological function of the starch in vivo. We believe that these results provide a plausible rationale for the conservation of SBEI in plants in both monocots and dicots, as greater seedling vigor would provide an important survival advantage when resources are limited. PMID:21599988

  6. The Characterization of Modified Starch Branching Enzymes: Toward the Control of Starch Chain-Length Distributions

    PubMed Central

    Li, Cheng; Wu, Alex Chi; Go, Rob Marc; Malouf, Jacob; Turner, Mark S.; Malde, Alpeshkumar K.; Mark, Alan E.; Gilbert, Robert G.

    2015-01-01

    Starch is a complex branched glucose polymer whose branch molecular weight distribution (the chain-length distribution, CLD) influences nutritionally important properties such as digestion rate. Chain-stopping in starch biosynthesis is by starch branching enzyme (SBE). Site-directed mutagenesis was used to modify SBEIIa from Zea mays (mSBEIIa) to produce mutants, each differing in a single conserved amino-acid residue. Products at different times from in vitro branching were debranched and the time evolution of the CLD measured by size-exclusion chromatography. The results confirm that Tyr352, Glu513, and Ser349 are important for mSBEIIa activity while Arg456 is important for determining the position at which the linear glucan is cut. The mutant mSBEIIa enzymes have different activities and suggest the length of the transferred chain can be varied by mutation. The work shows analysis of the molecular weight distribution can yield information regarding the enzyme branching sites useful for development of plants yielding starch with improved functionality. PMID:25874689

  7. Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA- and hairpin RNA-mediated RNA silencing

    PubMed Central

    Butardo, Vito M.; Fitzgerald, Melissa A.; Bird, Anthony R.; Gidley, Michael J.; Flanagan, Bernadine M.; Larroque, Oscar; Resurreccion, Adoracion P.; Laidlaw, Hunter K. C.; Jobling, Stephen A.; Morell, Matthew K.; Rahman, Sadequr

    2011-01-01

    The inactivation of starch branching IIb (SBEIIb) in rice is traditionally associated with elevated apparent amylose content, increased peak gelatinization temperature, and a decreased proportion of short amylopectin branches. To elucidate further the structural and functional role of this enzyme, the phenotypic effects of down-regulating SBEIIb expression in rice endosperm were characterized by artificial microRNA (amiRNA) and hairpin RNA (hp-RNA) gene silencing. The results showed that RNA silencing of SBEIIb expression in rice grains did not affect the expression of other major isoforms of starch branching enzymes or starch synthases. Structural analyses of debranched starch showed that the doubling of apparent amylose content was not due to an increase in the relative proportion of amylose chains but instead was due to significantly elevated levels of long amylopectin and intermediate chains. Rices altered by the amiRNA technique produced a more extreme starch phenotype than those modified using the hp-RNA technique, with a greater increase in the proportion of long amylopectin and intermediate chains. The more pronounced starch structural modifications produced in the amiRNA lines led to more severe alterations in starch granule morphology and crystallinity as well as digestibility of freshly cooked grains. The potential role of attenuating SBEIIb expression in generating starch with elevated levels of resistant starch and lower glycaemic index is discussed. PMID:21791436

  8. Molecular Genetic Analysis of Glucan Branching Enzymes from Plants and Bacteria in Arabidopsis Reveals Marked Differences in Their Functions and Capacity to Mediate Starch Granule Formation1[OPEN

    PubMed Central

    Lu, Kuan-Jen; Streb, Sebastian; Meier, Florence; Pfister, Barbara; Zeeman, Samuel C.

    2015-01-01

    The major component of starch is the branched glucan amylopectin, the branching pattern of which is one of the key factors determining its ability to form semicrystalline starch granules. Here, we investigated the functions of different branching enzyme (BE) types by expressing proteins from maize (Zea mays BE2a), potato (Solanum tuberosum BE1), and Escherichia coli (glycogen BE [EcGLGB]) in Arabidopsis (Arabidopsis thaliana) mutant plants that are deficient in their endogenous BEs and therefore, cannot make starch. The expression of each of these three BE types restored starch biosynthesis to differing degrees. Full complementation was achieved using the class II BE ZmBE2a, which is most similar to the two endogenous Arabidopsis isoforms. Expression of the class I BE from potato, StBE1, resulted in partial complementation and high amylose starch. Expression of the glycogen BE EcGLGB restored only minimal amounts of starch production, which had unusual chain length distribution, branch point distribution, and granule morphology. Nevertheless, each type of BE together with the starch synthases and debranching enyzmes were able to create crystallization-competent amylopectin polymers. These data add to the knowledge of how the properties of the BE influence the final composition of starch and fine structure of amylopectin. PMID:26358415

  9. Molecular Genetic Analysis of Glucan Branching Enzymes from Plants and Bacteria in Arabidopsis Reveals Marked Differences in Their Functions and Capacity to Mediate Starch Granule Formation.

    PubMed

    Lu, Kuan-Jen; Streb, Sebastian; Meier, Florence; Pfister, Barbara; Zeeman, Samuel C

    2015-11-01

    The major component of starch is the branched glucan amylopectin, the branching pattern of which is one of the key factors determining its ability to form semicrystalline starch granules. Here, we investigated the functions of different branching enzyme (BE) types by expressing proteins from maize (Zea mays BE2a), potato (Solanum tuberosum BE1), and Escherichia coli (glycogen BE [EcGLGB]) in Arabidopsis (Arabidopsis thaliana) mutant plants that are deficient in their endogenous BEs and therefore, cannot make starch. The expression of each of these three BE types restored starch biosynthesis to differing degrees. Full complementation was achieved using the class II BE ZmBE2a, which is most similar to the two endogenous Arabidopsis isoforms. Expression of the class I BE from potato, StBE1, resulted in partial complementation and high amylose starch. Expression of the glycogen BE EcGLGB restored only minimal amounts of starch production, which had unusual chain length distribution, branch point distribution, and granule morphology. Nevertheless, each type of BE together with the starch synthases and debranching enyzmes were able to create crystallization-competent amylopectin polymers. These data add to the knowledge of how the properties of the BE influence the final composition of starch and fine structure of amylopectin. PMID:26358415

  10. Starch biosynthesis: sucrose as a substrate for the synthesis of a highly branched component found in 12 varieties of starches.

    PubMed

    Mukerjea, Rupendra; Robyt, John F

    2003-09-01

    D-[14C]glucose was incorporated into starch when 12 varieties of starch granules were incubated with [14C]sucrose. Digestion of the 14C-labeled starches with porcine pancreatic alpha amylase showed that a high percentage (16.1-84.1%) of the synthesized starch gave a relatively high molecular weight alpha-limit dextrin. Hydrolysis of the 12 varieties of starch granules by alpha amylase, without sucrose treatment, also gave an alpha-limit dextrin, ranging in amounts from 0.51% (w/w) for amylomaize-7 starch to 8.47% (w/w) for rice starch. These alpha-limit dextrins had relatively high molecular weights, 2.47 kDa for amylomaize-7 starch to 5.75 kDa for waxy maize starch, and a high degree of alpha-(1-->6) branching, ranging from 15.6% for rice starch to 41.1% for shoti starch. ADPGlc and UDPGlc did not synthesize a significant amount (1-2%) of the branched component, suggesting that sucrose is the probable substrate for the in vivo synthesis of the component and that sucrose is not first converted into a nucleotide-glucose diphosphate intermediate. PMID:12932364

  11. Highly branched dextrin prepared from high-amylose maize starch using waxy rice branching enzyme (WRBE).

    PubMed

    Tian, Yaoqi; Chen, Huangli; Zhang, Xiwen; Zhan, Jinling; Jin, Zhengyu; Wang, Jinpeng

    2016-07-15

    Branching enzyme (BE, EC 2.4.1.18) was isolated from the developing waxy rice endosperm and used to prepare a highly branched dextrin based on high-amylose maize starch (HAMS) as a substrate. The molecular mass of the starch initially degraded quickly from 2.5×10(7) to 4.1×10(5)Da, and then stabilized, with a minimal increase during the BE treatment. The resultant branched dextrin had a narrow size distribution, with a mean molecular weight of 5.1×10(5)Da and a polydispersity index (PI) of 1.567. The results of high-performance anion exchange chromatography indicated that the degree of polymerization (DP) of the branched chains ranged from 3 to 27; approximately 75.26% of these chains were short (DP<10). These findings suggest that the isolated BE can cleave long chains into oligosaccharides, subsequently transferring oligosaccharides into highly branched dextrins with a narrow size distribution and short side chains. PMID:26948647

  12. Expression of Escherichia coli glycogen branching enzyme in an Arabidopsis mutant devoid of endogenous starch branching enzymes induces the synthesis of starch-like polyglucans.

    PubMed

    Boyer, Laura; Roussel, Xavier; Courseaux, Adeline; Ndjindji, Ofilia M; Lancelon-Pin, Christine; Putaux, Jean-Luc; Tetlow, Ian J; Emes, Michael J; Pontoire, Bruno; D' Hulst, Christophe; Wattebled, Fabrice

    2016-07-01

    Starch synthesis requires several enzymatic activities including branching enzymes (BEs) responsible for the formation of α(1 → 6) linkages. Distribution and number of these linkages are further controlled by debranching enzymes that cleave some of them, rendering the polyglucan water-insoluble and semi-crystalline. Although the activity of BEs and debranching enzymes is mandatory to sustain normal starch synthesis, the relative importance of each in the establishment of the plant storage polyglucan (i.e. water insolubility, crystallinity and presence of amylose) is still debated. Here, we have substituted the activity of BEs in Arabidopsis with that of the Escherichia coli glycogen BE (GlgB). The latter is the BE counterpart in the metabolism of glycogen, a highly branched water-soluble and amorphous storage polyglucan. GlgB was expressed in the be2 be3 double mutant of Arabidopsis, which is devoid of BE activity and consequently free of starch. The synthesis of a water-insoluble, partly crystalline, amylose-containing starch-like polyglucan was restored in GlgB-expressing plants, suggesting that BEs' origin only has a limited impact on establishing essential characteristics of starch. Moreover, the balance between branching and debranching is crucial for the synthesis of starch, as an excess of branching activity results in the formation of highly branched, water-soluble, poorly crystalline polyglucan. PMID:26715025

  13. Starch phosphorylation in potato tubers is influenced by allelic variation in the genes encoding glucan water dikinase, starch branching enzymes I and II, and starch synthase III

    PubMed Central

    Carpenter, Margaret A.; Joyce, Nigel I.; Genet, Russell A.; Cooper, Rebecca D.; Murray, Sarah R.; Noble, Alasdair D.; Butler, Ruth C.; Timmerman-Vaughan, Gail M.

    2015-01-01

    Starch phosphorylation is an important aspect of plant metabolism due to its role in starch degradation. Moreover, the degree of phosphorylation of starch determines its physicochemical properties and is therefore relevant for industrial uses of starch. Currently, starch is chemically phosphorylated to increase viscosity and paste stability. Potato cultivars with elevated starch phosphorylation would make this process unnecessary, thereby bestowing economic and environmental benefits. Starch phosphorylation is a complex trait which has been previously shown by antisense gene repression to be influenced by a number of genes including those involved in starch synthesis and degradation. We have used an association mapping approach to discover genetic markers associated with the degree of starch phosphorylation. A diverse collection of 193 potato lines was grown in replicated field trials, and the levels of starch phosphorylation at the C6 and C3 positions of the glucosyl residues were determined by mass spectrometry of hydrolyzed starch from tubers. In addition, the potato lines were genotyped by amplicon sequencing and microsatellite analysis, focusing on candidate genes known to be involved in starch synthesis. As potato is an autotetraploid, genotyping included determination of allele dosage. Significant associations (p < 0.001) were found with SNPs in the glucan water dikinase (GWD), starch branching enzyme I (SBEI) and the starch synthase III (SSIII) genes, and with a SSR allele in the SBEII gene. SNPs in the GWD gene were associated with C6 phosphorylation, whereas polymorphisms in the SBEI and SBEII genes were associated with both C6 and C3 phosphorylation and the SNP in the SSIII gene was associated with C3 phosphorylation. These allelic variants have potential as genetic markers for starch phosphorylation in potato. PMID:25806042

  14. Induced mutations in the starch branching enzyme II (SBEII) genes increase amylose and resistant starch content in durum wheat

    PubMed Central

    Hazard, Brittany; Zhang, Xiaoqin; Colasuonno, Pasqualina; Uauy, Cristobal; Beckles, Diane M.; Dubcovsky, Jorge

    2016-01-01

    Starch is the largest component of the wheat (Triticum aestivum L.) grain and consists of approximately 70-80% amylopectin and 20-30% amylose. Amylopectin is a highly-branched, readily digested polysaccharide, whereas amylose has few branches and forms complexes that resist digestion and mimic dietary fiber (resistant starch). Down-regulation of the starch branching enzyme II (SBEII) gene by RNA interference (RNAi) was previously shown to increase amylose content in both hexaploid and tetraploid wheat. We generated ethyl methane sulphonate (EMS) mutants for the SBEIIa-A and SBEIIa-B homoeologs in the tetraploid durum wheat variety Kronos (T. turgidum ssp. durum L.). Single-gene mutants showed non-significant increases in amylose and resistant starch content, but a double mutant combining a SBEIIa-A knock-out mutation with a SBEIIa-B splice-site mutation showed a 22% increase in amylose content (P<0.0001) and a 115% increase in resistant starch content (P<0.0001). In addition, we obtained mutants for the A and B genome copies of the paralogous SBEIIb gene, mapped them 1-2 cM from SBEIIa, and generated double SBEIIa-SBEIIb mutants to study the effect of the SBEIIb gene in the absence of SBEIIa. These mutants are available to those interested in increasing amylose content and resistant starch in durum wheat. PMID:26924849

  15. Compact structure and proteins of pasta retard in vitro digestive evolution of branched starch molecular structure.

    PubMed

    Zou, Wei; Sissons, Mike; Warren, Frederick J; Gidley, Michael J; Gilbert, Robert G

    2016-11-01

    The roles that the compact structure and proteins in pasta play in retarding evolution of starch molecular structure during in vitro digestion are explored, using four types of cooked samples: whole pasta, pasta powder, semolina (with proteins) and extracted starch without proteins. These were subjected to in vitro digestion with porcine α-amylase, collecting samples at different times and characterizing the weight distribution of branched starch molecules using size-exclusion chromatography. Measurement of α-amylase activity showed that a protein (or proteins) from semolina or pasta powder interacted with α-amylase, causing reduced enzymatic activity and retarding digestion of branched starch molecules with hydrodynamic radius (Rh)<100nm; this protein(s) was susceptible to proteolysis. Thus the compact structure of pasta protects the starch and proteins in the interior of the whole pasta, reducing the enzymatic degradation of starch molecules, especially for molecules with Rh>100nm. PMID:27516291

  16. Synergistic amylomaltase and branching enzyme catalysis to suppress cassava starch digestibility.

    PubMed

    Sorndech, Waraporn; Meier, Sebastian; Jansson, Anita M; Sagnelli, Domenico; Hindsgaul, Ole; Tongta, Sunanta; Blennow, Andreas

    2015-11-01

    Starch provides our main dietary caloric intake and over-consumption of starch-containing foods results in escalating life-style disease including diabetes. By increasing the content of α-1,6 branch points in starch, digestibility by human amylolytic enzymes is expected to be retarded. Aiming at generating a soluble and slowly digestible starch by increasing the content and changing the relative positioning of the branch points in the starch molecules, we treated cassava starch with amylomaltase (AM) and branching enzyme (BE). We performed a detailed molecular analysis of the products including amylopectin chain length distribution, content of α-1,6 glucosidic linkages, absolute molecular weight distribution and digestibility. Step-by-step enzyme catalysis was the most efficient treatment, and it generated branch structures even more extreme than those of glycogen. All AM- and BE-treated samples showed increased resistance to degradation by porcine pancreatic α-amylase and glucoamylase as compared to cassava starch. The amylolytic products showed chain lengths and branching patterns similar to the products obtained from glycogen. Our data demonstrate that combinatorial enzyme catalysis provides a strategy to generate potential novel soluble α-glucan ingredients with low dietary digestibility assets. PMID:26256365

  17. Improved yields of cyclic nigerosylnigerose from starch by pretreatment with a thermostable branching enzyme.

    PubMed

    Aga, Hajime; Okamoto, Iwao; Taniguchi, Mituki; Kawashima, Akira; Abe, Hiroko; Chaen, Hiroto; Fukuda, Shigeharu

    2010-04-01

    Cyclic nigerosylnigerose (CNN) is produced enzymatically from starch by the combined action of 6-alpha-glucosyltransferase and 3-alpha-isomaltosyltransferase. In our previous study, alpha-1,6-branching chains found in the structure of amylopectin and glycogen were shown to be favorable for CNN formation by the two enzymes. Therefore, we examined whether the introduction of alpha-1,6-branch points into starch using the action of branching enzyme (BE) could improve the yield of CNN from starch. Thermostable BE from Geobacillus stearothermophilus TC-91 was prepared as a purified recombinant protein. Pretreatment of amylose with BE considerably increased the CNN yield from 5% to 38%. When BE acted on tapioca starch, the CNN yield was elevated from 47% to 60%. Conversely, BE treatment of waxy corn starch containing very little amylose resulted in a negligible increase in CNN yield. In addition, BE exerted a beneficial effect when starch with a lower degree of hydrolysis was used as a substrate. The present results indicate that the addition of alpha-1,6-glucosidic linkages to starch using BE is an effective strategy to improve the yield of CNN from starch. PMID:20226381

  18. Biochemical characterisation of a glycogen branching enzyme from Streptococcus mutans: Enzymatic modification of starch.

    PubMed

    Kim, Eun-Joo; Ryu, Soo-In; Bae, Hyun-Ah; Huong, Nguyen Thi; Lee, Soo-Bok

    2008-10-15

    A gene encoding a putative glycogen branching enzyme (SmGBE) in Streptococcus mutans was expressed in Escherichia coli and purified. The biochemical properties of the purified enzyme were examined relative to its branching specificity for amylose and starch. The activity of the approximately 75kDa enzyme was optimal at pH 5.0, and stable up to 40°C. The enzyme predominantly transferred short maltooligosyl chains with a degree of polymerization (dp) of 6 and 7 throughout the branching process for amylose. When incubated with rice starch, the enzyme modified its optimal branch chain-length from dp 12 to 6 with large reductions in the longer chains, and simultaneously increased its branching points. The results indicate that SmGBE can make a modified starch with much shorter branches and a more branched structure than to native starch. In addition, starch retrogradation due to low temperature storage was significantly retarded along with the enzyme reaction. PMID:26047289

  19. Immunological Comparison of the Starch Branching Enzymes from Potato Tubers and Maize Kernels 1

    PubMed Central

    Vos-Scheperkeuter, Greetje H.; de Wit, Janny G.; Ponstein, Anne S.; Feenstra, Will J.; Witholt, Bernard

    1989-01-01

    Starch branching enzyme was purified from potato (Solanum tuberosum L.) tubers as a single species of 79 kilodaltons and specific antibodies were prepared against both the native enzyme and against the gel-purified, denatured enzyme. The activity of potato branching enzyme could only be neutralized by antinative potato branching enzyme, whereas both types of antibodies reacted with denatured potato branching enzyme. Starch branching enzymes were also isolated from maize (Zea mays L.) kernels. All of the denatured forms of the maize enzyme reacted with antidenatured potato branching enzyme, whereas recognition by antinative potato branching enzyme was limited to maize branching enzymes I and IIb. Antibodies directed against the denatured potato enzyme were unable to neutralize the activity of any of the maize branching enzymes. Antinative potato branching enzyme fully inhibited the activity of maize branching enzyme I; the neutralized maize enzyme was identified as a 82 kilodalton protein. It is concluded that potato branching enzyme (Mr = 79,000) shares a high degree of similarity with maize branching enzyme I (Mr = 82,000), in the native as well as the denatured form. Cross-reactivity between potato branching enzyme and the other forms of maize branching enzyme was observed only after denaturation, which suggests mutual sequence similarities between these species. Images Figure 1 Figure 2 Figure 5 Figure 8 Figure 9 PMID:16666772

  20. Retrogradation behavior of corn starch treated with 1,4-α-glucan branching enzyme.

    PubMed

    Li, Wenwen; Li, Caiming; Gu, Zhengbiao; Qiu, Yijing; Cheng, Li; Hong, Yan; Li, Zhaofeng

    2016-07-15

    The retrogradation behavior of corn starch treated with 1,4-α-glucan branching enzyme (GBE) was investigated using rheometry, pulsed nuclear magnetic resonance (PNMR), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). Dynamic time sweep analysis confirmed that the storage modulus (G') of corn starch stored at 4 °C decreased with increasing GBE treatment time. PNMR analysis demonstrated that the transverse relaxation times (T2) of corn starches treated with GBE were higher than that of control during the storage at 4 °C. DSC results demonstrated that the retrogradation enthalpy (ΔHr) of corn starch was reduced by 22.3% after GBE treatment for 10h. Avrami equation analysis showed that GBE treatment reduced the rate of starch retrogradation. FTIR analysis revealed that GBE treatment led to a decrease in hydrogen bonds within the starch. Overall, these results demonstrate that both short- and long-term retrogradation of corn starch were retarded by GBE treatment. PMID:26948619

  1. Slow glucose release property of enzyme-synthesized highly branched maltodextrins differs among starch sources.

    PubMed

    Kittisuban, Phatcharee; Lee, Byung-Hoo; Suphantharika, Manop; Hamaker, Bruce R

    2014-07-17

    Seven types of starch (waxy corn, normal corn, waxy rice, normal rice, waxy potato, normal potato, and tapioca) were selected to produce slowly digestible maltodextrins by enzymatic modification using a previously developed procedure. Branching enzyme (BE) alone and in combination with β-amylase (BA) were used to increase the amount of α-1,6 branching points, which are slowly hydrolyzed by mucosal α-glucosidases in the small intestine. The enzymatic treatments of all starches resulted in a reduction of the debranched linear chain length distribution and weight-average molecular weight. After α-amylolysis of the enzymatically synthesized-maltodextrins, the proportion of branched α-limit dextrins increased, and consequently a reduction in rate of glucose release by rat intestinal α-glucosidases in vitro. Among the samples, enzyme-modified waxy starches had a more pronounced effect on an increase in the slow digestion property than normal starches. These enzyme-modified maltodextrins show potential as novel functional foods by slowing digestion rate to attain extended glucose release. PMID:24702934

  2. Circadian oscillation of starch branching enzyme gene expression in the sorghum endosperm

    SciTech Connect

    Mutisya, J.; Sun, C.; Jansson, C.

    2009-08-31

    Expression of the three SBE genes, encoding starch branching enzymes, in the sorghum endosperm exhibited a diurnal rhythm during a 24-h cycle. Remarkably, the oscillation in SBE expression was maintained in cultured spikes after a 48-h dark treatment, also when fed a continuous solution of sucrose or abscisic acid. Our findings suggest that the rhythmicity in SBE expression in the endosperm is independent of cues from the photosynthetic source and that the oscillator resides within the endosperm itself.

  3. Enzymatic synthesis and properties of highly branched rice starch amylose and amylopectin cluster.

    PubMed

    Lee, Chang-Kyu; Le, Quang-Tri; Kim, Yung-Hee; Shim, Jae-Hoon; Lee, Seung-Jae; Park, Jin-Hee; Lee, Kang-Pyo; Song, Sang-Hoon; Auh, Joong Hyuck; Lee, Sung-Joon; Park, Kwan-Hwa

    2008-01-01

    We enzymatically modified rice starch to produce highly branched amylopectin and amylose and analyzed the resulting structural changes. To prepare the highly branched amylopectin cluster (HBAPC), we first treated waxy rice starch with Thermus scotoductus alpha-glucanotransferase (TSalphaGT), followed by treatment with Bacillus stearothermophilus maltogenic amylase (BSMA). Highly branched amylose (HBA) was prepared by incubating amylose with Bacillus subtilis 168 branching enzyme (BBE) and subsequently treating it with BSMA. The molecular weight of TSalphaGT-treated waxy rice starch was reduced from 8.9 x 10(8) to 1.2 x 10(5) Da, indicating that the alpha-1,4 glucosidic linkage of the segment between amylopectin clusters was hydrolyzed. Analysis of the amylopectin cluster side chains revealed that a rearrangement in the side-chain length distribution occurred. Furthermore, HBAPC and HBA were found to contain significant numbers of branched maltooligosaccharide side chains. In short, amylopectin molecules of waxy rice starch were hydrolyzed into amylopectin clusters by TSalphaGT in the enzymatic modification process, and then further branched by transglycosylation using BSMA. HBAPC and HBA showed higher water solubility and stability against retrogradation than amylopectin clusters or branched amylose. The hydrolysis rates of HBAPC and HBA by glucoamylase and alpha-amylase greatly decreased. The k cat/ K m value of glucoamylase acting on the amylopectin cluster was 45.94 s(-1)(mg/mL)(-1) and that for glucoamylase acting on HBAPC was 11.10 s(-1)(mg/mL)(-1), indicating that HBAPC was 4-fold less susceptible to glucoamylase. The k cat/ K m value for HBA was 15.90 s(-1)(mg/mL)(-1), or about three times less than that for branched amylose. The k cat/ K m values of porcine pancreatic alpha-amylase for HBAPC and HBA were 496 and 588 s(-1)(mg/mL)(-1), respectively, indicating that HBA and HBAPC are less susceptible to hydrolysis by glucoamylase and alpha-amylase. HBAPC and

  4. Structures of multi-branched dextrins produced by saccharifyiing alpha-amylase from starch.

    PubMed

    Umeki, K; Yamamoto, T

    1975-11-01

    From the digest of beta-limit dextrin (prepared from glutinous rice starch) with saccharifying alpha-amylase of Bacillus subtilis [EC 3.2.1.1] (BSA), two extensibely branched dextrins consisting of nine (No. 6, Fig. 1) and ten (No 7, Fig.1) glucose units were isolated by paper chromatography. Structural analysis using various enzymes revealed that No. 6 and No. 7 were both mixtures of four triply branched dextrins. They had structures which were built up with 63-alpha-glucosylmaltotriose and/or 62-alpha-glucosylmaltose as a linking unit. However, the branching configuration and the minimum alpha-1, 4-glucosidic linkages existing between two branches followed one of the three structures shown below: (see article). PMID:814118

  5. Production of raw-starch-digesting α-amylase isoform from Bacillus sp. under solid-state fermentation and biochemical characterization.

    PubMed

    Božić, Nataša; Slavić, Marinela Šokarda; Gavrilović, Anja; Vujčić, Zoran

    2014-07-01

    α-Amylase production by solid-state fermentation of different Bacillus sp. was studied previously on different fermentation media. However, no study has been reported on the influence of selected media on expression of desired amylase isoforms such as raw-starch-digesting amylase (RSDA). In this paper, the influence of different inexpensive and available agro-resources as solid media (corn, wheat and triticale) on α-amylase isoform induction from three wild-type Bacillus sp., selected among one hundred strains tested, namely 9B, 12B and 24A was investigated. For all three strains, tested amylases were detected in the multiple forms; however, number and intensity of each form differed depending on the solid media used for growth. To determine which isoform from Bacillus sp. 12B was RSDA, the suspected isoform was purified. The optimum pH for the purified α-amylase isoform was 6.0-8.0, while the optimum temperature was 60-90 °C. Isoform was considerably thermostable and Ca(2+)-independent, and actually the only α-amylase active towards raw starch. Purification and characterization of RSDA showed that not all of the solid media tested induced RSDA. From an economic point of view, it might be significant to obtain pure isoenzyme for potential use in the raw-starch hydrolysis, since it was 5 times more efficient in raw corn starch hydrolysis than the crude amylase preparation. PMID:24385152

  6. A short splicing isoform of afadin suppresses the cortical axon branching in a dominant-negative manner.

    PubMed

    Umeda, Kentaro; Iwasawa, Nariaki; Negishi, Manabu; Oinuma, Izumi

    2015-05-15

    Precise wiring patterns of axons are among the remarkable features of neuronal circuit formation, and establishment of the proper neuronal network requires control of outgrowth, branching, and guidance of axons. R-Ras is a Ras-family small GTPase that has essential roles in multiple phases of axonal development. We recently identified afadin, an F-actin-binding protein, as an effector of R-Ras mediating axon branching through F-actin reorganization. Afadin comprises two isoforms--l-afadin, having the F-actin-binding domain, and s-afadin, lacking the F-actin-binding domain. Compared with l-afadin, s-afadin, the short splicing variant of l-afadin, contains RA domains but lacks the F-actin-binding domain. Neurons express both isoforms; however, the function of s-afadin in brain remains unknown. Here we identify s-afadin as an endogenous inhibitor of cortical axon branching. In contrast to the abundant and constant expression of l-afadin throughout neuronal development, the expression of s-afadin is relatively low when cortical axons branch actively. Ectopic expression and knockdown of s-afadin suppress and promote branching, respectively. s-Afadin blocks the R-Ras-mediated membrane translocation of l-afadin and axon branching by inhibiting the binding of l-afadin to R-Ras. Thus s-afadin acts as a dominant-negative isoform in R-Ras-afadin-regulated axon branching. PMID:25808489

  7. Introduction of poly[(2-acryloyloxyethyl trimethyl ammonium chloride)-co-(acrylic acid)] branches onto starch for cotton warp sizing.

    PubMed

    Shen, Shiqi; Zhu, Zhifeng; Liu, Fengdan

    2016-03-15

    An attempt has been made to reveal the effect of amphoteric poly(2-acryloyloxyethyl trimethyl ammonium chloride-co-acrylic acid) [P(ATAC-co-AA)] branches grafted onto the backbones of starch upon the adhesion-to-cotton, film properties, and desizability of maize starch for cotton warp sizing. Starch-g-poly[(2-acryloyloxyethyl trimethyl ammonium chloride)-co-(acrylic acid) [S-g-P(ATAC-co-AA)] was prepared by the graft copolymerization of 2-acryloyloxyethyl trimethyl ammonium chloride (ATAC) and acrylic acid (AA) with acid-converted starch (ACS) in aqueous medium using Fe(2+)-H2O2 initiator. The adhesion was evaluated in term of bonding strength according to the FZ/T 15001-2008 whereas the film properties considered included tensile strength, work and percentage elongation at break. The evaluation was undertaken through the comparison of S-g-P(ATAC-co-AA) with ACS, starch-g-poly(acrylic acid), and starch-g-poly(2-acryloyloxyethyl trimethyl ammonium chloride). It was found that the amphoteric branch was able to significantly improve the adhesion and mitigate the brittleness of starch film. Zeta potential of cooked S-g-P(ATAC-co-AA) paste, depending on the mole ratio of ATAC to AA units on P(ATAC-co-AA) branches, had substantial effect on the adhesion and desizability. Increasing the mole ratio raised the potential, which favored the adhesion but disfavored the removal of S-g-P(ATAC-co-AA) from sized cotton warps. Electroneutral S-g-P(ATAC-co-AA) was superior to negatively grafted starch in adhesion and to positively grafted starch in desizability. Generally, it showed better sizing property than ACS, starch-g-poly(acrylic acid), and starch-g-poly(2-acryloyloxyethyl trimethyl ammonium chloride), and had potential in the application of cotton warp sizing. PMID:26794764

  8. The Conversion of Starch and Sugars into Branched C10 and C11 Hydrocarbons.

    PubMed

    Sutton, Andrew D; Kim, Jin K; Wu, Ruilian; Hoyt, Caroline B; Kimball, David B; Silks, Louis A; Gordon, John C

    2016-09-01

    Oligosaccharides, such as starch, cellulose, and hemicelluloses, are abundant and easily obtainable bio-derived materials that can potentially be used as precursors for fuels and chemical feedstocks. To access the pertinent molecular building blocks (i.e., 5- or 6-carbon containing sugar units) located within these biopolymers and transform them into useful fuel precursors, oligosaccharide depolymerization followed by chain extension is required. This chain extension can readily be performed via a Garcia-Gonzalez-like approach using β-diketones under mild conditions to provide fuel precursors containing an increased carbon atom content that meets fuel requirements. In a subsequent step, ring opening and hydrodeoxygenation chemistry of these species allows for the preparation of branched alkanes under relatively mild conditions. This approach can be applied to monomeric sugars (glucose and xylose), oligosaccharides (starch), and potentially to hydrolyzed dedicated energy crops to allow the conversion of real biomass into fuel type molecules. PMID:27428812

  9. Allelic Analysis of the Maize amylose-extender Locus Suggests That Independent Genes Encode Starch-Branching Enzymes IIa and IIb.

    PubMed Central

    Fisher, D. K.; Gao, M.; Kim, K. N.; Boyer, C. D.; Guiltinan, M. J.

    1996-01-01

    Starch branching enzymes (SBE) catalyze the formation of [alpha]-1,6-glucan linkages in the biosynthesis of starch. Three distinct SBE isoforms have been identified in maize (Zea mays L.) endosperm, SBEI, IIa, and IIb. Independent genes have been identified that encode maize SBEI and IIb; however, it has remained controversial as to whether SBEIIa and IIb result from posttranscriptional processes acting on the product of a single gene or whether they are encoded by separate genes. To investigate this question, we analyzed 16 isogenic lines carrying independent alleles of the maize amylose-extender (ae) locus, the structural gene for SBEIIb. We show that 22 d after pollination ae-B1 endosperm expressed little Sbe2b (ae)-hybridizing transcript, and as expected, ae-B1 endosperm also lacked detectable SBEIIb enzymatic activity. Significantly, we show that ae-B1 endosperm contained SBEIIa enzymatic activity, strongly supporting the hypothesis that endosperm SBEIIa and IIb are encoded by separate genes. Furthermore, we show that in addition to encoding the predominant Sbe2b-hybridizing message expressed in endosperm, the ae gene also encodes the major Sbe2b-like transcript expressed in developing embryos and tassels. PMID:12226207

  10. Structure of branching enzyme- and amylomaltase modified starch produced from well-defined amylose to amylopectin substrates.

    PubMed

    Sorndech, Waraporn; Sagnelli, Domenico; Meier, Sebastian; Jansson, Anita M; Lee, Byung-Hoo; Hamaker, Bruce R; Rolland-Sabaté, Agnès; Hebelstrup, Kim H; Tongta, Sunanta; Blennow, Andreas

    2016-11-01

    Thermostable branching enzyme (BE, EC 2.4.1.18) from Rhodothermus obamensis in combination with amylomaltase (AM, EC 2.4.1.25) from Thermus thermophilus was used to modify starch structure exploring potentials to extensively increase the number of branch points in starch. Amylose is an important constituent in starch and the effect of amylose on enzyme catalysis was investigated using amylose-only barley starch (AO) and waxy maize starch (WX) in well-defined ratios. All products were analysed for amylopectin chain length distribution, α-1,6 glucosidic linkages content, molar mass distribution and digestibility by using rat intestinal α-glucosidases. For each enzyme treatment series, increased AO content resulted in a higher rate of α-1,6 glucosidic linkage formation but as an effect of the very low initial branching of the AO, the final content of α-1,6 glucosidic linkages was slightly lower as compared to the high amylopectin substrates. However, an increase specifically in short chains was produced at high AO levels. The molar mass distribution for the enzyme treated samples was lower as compared with substrate WX and AO, indicating the presence of hydrolytic activity as well as cyclisation of the substrate. For all samples, increased amylose substrate showed decreased α- and β-amylolysis. Surprisingly, hydrolysis with rat intestinal α-glucosidases was higher with increasing α-1,6 glucosidic linkage content and decreasing M¯w indicating that steric hindrance towards the α-glucosidases was directed by the molar mass rather that the branching density of the glucan per se. Our data demonstrate that a higher amylose content in the substrate starch efficiently produces α-1,6 glucosidic linkages and that the present of amylose generates a higher M¯w and more resistant product than amylopectin. The combination of BE→AM→BE provided somewhat more resistant α-glucan products as compared to BE alone. PMID:27516249

  11. Characterization of the reactions of starch branching enzymes from rice endosperm.

    PubMed

    Nakamura, Yasunori; Utsumi, Yoshinori; Sawada, Takayuki; Aihara, Satomi; Utsumi, Chikako; Yoshida, Mayumi; Kitamura, Shinichi

    2010-05-01

    To our knowledge the present paper shows for the first time the kinetic parameters of all the three starch branching enzyme (BE) isozymes, BEI, BEIIa and BEIIb, from rice with both amylopectin and synthetic amylose as glucan substrate. The activities of these BE isozymes with a linear glucan amylose decreased with a decrease in the molar size of amylose, and no activities of BEIIa and BEIIb were found when the degree of polymerization (DP) of amylose was lower than at least 80, whereas BEI had an activity with amylose of a DP higher than approximately 50. Detailed analyses of debranched products from BE reactions revealed the distinct chain length preferences of the individual BE isozymes. BEIIb almost exclusively transferred chains of DP7 and DP6 while BEIIa formed a wide range of short chains of DP6 to around DP15 from outer chains of amylopectin and amylose. On the other hand, BEI formed a variety of short chains and intermediate chains of a DP branched glucan while BEIIa or BEIIb could only scarcely or could not attack inner chains, respectively. The comprehensive in vitro studies revealed different enzymatic characteristics of the three BE isozymes and give a new insight into the distinct roles of individual BE isozymes in amylopectin biosynthesis in the endosperm. Based on these results, the functional distinction and interaction of BE isozymes during amylopectin biosynthesis in cereal endosperm is discussed. PMID:20305271

  12. Branch pattern of starch internal structure influences the glucogenesis by mucosal Nt-maltase-glucoamylase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To produce sufficient amounts of glucose from food starch, both alpha-amylase and mucosal alpha-glucosidases are required. We found previously that the digestion rate of starch is influenced by its susceptibility to mucosal alpha-glucosidases. In the present study, six starches and one glycogen were...

  13. Identification of Multiple Phosphorylation Sites on Maize Endosperm Starch Branching Enzyme IIb, a Key Enzyme in Amylopectin Biosynthesis

    PubMed Central

    Makhmoudova, Amina; Williams, Declan; Brewer, Dyanne; Massey, Sarah; Patterson, Jenelle; Silva, Anjali; Vassall, Kenrick A.; Liu, Fushan; Subedi, Sanjeena; Harauz, George; Siu, K. W. Michael; Tetlow, Ian J.; Emes, Michael J.

    2014-01-01

    Starch branching enzyme IIb (SBEIIb) plays a crucial role in amylopectin biosynthesis in maize endosperm by defining the structural and functional properties of storage starch and is regulated by protein phosphorylation. Native and recombinant maize SBEIIb were used as substrates for amyloplast protein kinases to identify phosphorylation sites on the protein. A multidisciplinary approach involving bioinformatics, site-directed mutagenesis, and mass spectrometry identified three phosphorylation sites at Ser residues: Ser649, Ser286, and Ser297. Two Ca2+-dependent protein kinase activities were partially purified from amyloplasts, termed K1, responsible for Ser649 and Ser286 phosphorylation, and K2, responsible for Ser649 and Ser297 phosphorylation. The Ser286 and Ser297 phosphorylation sites are conserved in all plant branching enzymes and are located at opposite openings of the 8-stranded parallel β-barrel of the active site, which is involved with substrate binding and catalysis. Molecular dynamics simulation analysis indicates that phospho-Ser297 forms a stable salt bridge with Arg665, part of a conserved Cys-containing domain in plant branching enzymes. Ser649 conservation appears confined to the enzyme in cereals and is not universal, and is presumably associated with functions specific to seed storage. The implications of SBEIIb phosphorylation are considered in terms of the role of the enzyme and the importance of starch biosynthesis for yield and biotechnological application. PMID:24550386

  14. Phylogeny and expression pattern of starch branching enzyme family genes in cassava (Manihot esculenta Crantz) under diverse environments.

    PubMed

    Pei, Jinli; Wang, Huijun; Xia, Zhiqiang; Liu, Chen; Chen, Xin; Ma, Pingan; Lu, Cheng; Wang, Wenquan

    2015-08-01

    Starch branching enzyme (SBE) is one of the key enzymes involved in starch biosynthetic metabolism. In this study, six SBE family genes were identified from the cassava genome. Phylogenetic analysis divided the MeSBE family genes into dicot family A, B, C, and the new group. Tissue-specific analysis showed that MeSBE2.2 was strongly expressed in leaves, stems cortex, and root stele, and MeSBE3 had high expression levels in stem cortex and root stele of plants in the rapid growth stage under field condition, whereas the expression levels of MeSBE2.1, MeSBE4, and MeSBE5 were low except for in stems cortex. The transcriptional activity of MeSBE2.2 and MeSBE3 was higher compared with other members and gradually increased in the storage roots during root growth process, while the other MeSBE members normally remained low expression levels. Expression of MeSBE2.2 could be induced by salt, drought, exogenous abscisic acid, jasmonic acid, and salicylic acid signals, while MeSBE3 had positive response to drought, salt, exogenous abscisic acid, and salicylic acid in leaves but not in storage root, indicating that they might be more important in starch biosynthesis pathway under diverse environments. PMID:25981533

  15. Different evolutionary patterns of hypoxia-inducible factor α (HIF-α) isoforms in the basal branches of Actinopterygii and Sarcopterygii.

    PubMed

    Chi, Wei; Gan, Xiaoni; Xiao, Wuhan; Wang, Wen; He, Shunping

    2013-01-01

    Hypoxia-inducible factor (HIF) is a crucial regulator of cellular and systemic responses to low oxygen levels. Here we firstly cloned three HIF-α isoforms from the basal branches of Osteichthyes and used computational tools to characterise the molecular change underlying the functional divergence of HIF-α isoforms in different lineages. Only the HIF-1α and HIF-2α in African lungfish and amphibians were found under positive selection. HIF-1α and -2α were less functionally divergent in basal ray-finned fish than in teleosts, and showed conserved but different transcriptional activity towards specific target genes. PMID:24265980

  16. Cecropia peltata Accumulates Starch or Soluble Glycogen by Differentially Regulating Starch Biosynthetic Genes[W][OA

    PubMed Central

    Bischof, Sylvain; Umhang, Martin; Eicke, Simona; Streb, Sebastian; Qi, Weihong; Zeeman, Samuel C.

    2013-01-01

    The branched glucans glycogen and starch are the most widespread storage carbohydrates in living organisms. The production of semicrystalline starch granules in plants is more complex than that of small, soluble glycogen particles in microbes and animals. However, the factors determining whether glycogen or starch is formed are not fully understood. The tropical tree Cecropia peltata is a rare example of an organism able to make either polymer type. Electron micrographs and quantitative measurements show that glycogen accumulates to very high levels in specialized myrmecophytic structures (Müllerian bodies), whereas starch accumulates in leaves. Compared with polymers comprising leaf starch, glycogen is more highly branched and has shorter branches—factors that prevent crystallization and explain its solubility. RNA sequencing and quantitative shotgun proteomics reveal that isoforms of all three classes of glucan biosynthetic enzyme (starch/glycogen synthases, branching enzymes, and debranching enzymes) are differentially expressed in Müllerian bodies and leaves, providing a system-wide view of the quantitative programming of storage carbohydrate metabolism. This work will prompt targeted analysis in model organisms and cross-species comparisons. Finally, as starch is the major carbohydrate used for food and industrial applications worldwide, these data provide a basis for manipulating starch biosynthesis in crops to synthesize tailor-made polyglucans. PMID:23632447

  17. A putative gene sbe3-rs for resistant starch mutated from SBE3 for starch branching enzyme in rice (Oryza sativa L.).

    PubMed

    Yang, Ruifang; Sun, Chunlong; Bai, Jianjiang; Luo, Zhixiang; Shi, Biao; Zhang, Jianming; Yan, Wengui; Piao, Zhongze

    2012-01-01

    Foods high in resistant starch (RS) are beneficial to prevent various diseases including diabetes, colon cancers, diarrhea and chronic renal or hepatic diseases. Elevated RS in rice is important for public health since rice is a staple food for half of the world population. A japonica mutant 'Jiangtangdao 1' (RS = 11.67%) was crossed with an indica cultivar 'Miyang 23' (RS = 0.41%). The mutant sbe3-rs that explained 60.4% of RS variation was mapped between RM6611 and RM13366 on chromosome 2 (LOD = 36) using 178 F(2) plants genotyped with 106 genome-wide polymorphic SSR markers. Using 656 plants from four F(3:4) families, sbe3-rs was fine mapped to a 573.3 Kb region between InDel 2 and InDel 6 using one STS, five SSRs and seven InDel markers. SBE3 which codes for starch branching enzyme was identified as a candidate gene within the putative region. Nine pairs of primers covering 22 exons were designed to sequence genomic DNA of the wild type for SBE3 and the mutant for sbe3-rs comparatively. Sequence analysis identified a missense mutation site where Leu-599 of the wild was changed to Pro-599 of the mutant in the SBE3 coding region. Because the point mutation resulted in the loss of a restriction enzyme site, sbe3-rs was not digested by a CAPS marker for SpeI site while SBE3 was. Co-segregation of the digestion pattern with RS content among 178 F(2) plants further supported sbe3-rs responsible for RS in rice. As a result, the CAPS marker could be used in marker-assisted breeding to develop rice cultivars with elevated RS which is otherwise difficult to accurately assess in crops. Transgenic technology should be employed for a definitive conclusion of the sbe3-rs. PMID:22937009

  18. Loss of the two major leaf isoforms of sucrose-phosphate synthase in Arabidopsis thaliana limits sucrose synthesis and nocturnal starch degradation but does not alter carbon partitioning during photosynthesis

    PubMed Central

    Volkert, Kathrin; Debast, Stefan; Voll, Lars M.; Voll, Hildegard; Schießl, Ingrid; Hofmann, Jörg; Schneider, Sabine; Börnke, Frederik

    2014-01-01

    Sucrose (Suc)-phosphate synthase (SPS) catalyses one of the rate-limiting steps in the synthesis of Suc in plants. The Arabidopsis genome contains four annotated SPS genes which can be grouped into three different families (SPSA1, SPSA2, SPSB, and SPSC). However, the functional significance of this multiplicity of SPS genes is as yet only poorly understood. All four SPS isoforms show enzymatic activity when expressed in yeast although there is variation in sensitivity towards allosteric effectors. Promoter–reporter gene analyses and quantitative real-time reverse transcription–PCR studies indicate that no two SPS genes have the same expression pattern and that AtSPSA1 and AtSPSC represent the major isoforms expressed in leaves. An spsa1 knock-out mutant showed a 44% decrease in leaf SPS activity and a slight increase in leaf starch content at the end of the light period as well as at the end of the dark period. The spsc null mutant displayed reduced Suc contents towards the end of the photoperiod and a concomitant 25% reduction in SPS activity. In contrast, an spsa1/spsc double mutant was strongly impaired in growth and accumulated high levels of starch. This increase in starch was probably not due to an increased partitioning of carbon into starch, but was rather caused by an impaired starch mobilization during the night. Suc export from excised petioles harvested from spsa1/spsc double mutant plants was significantly reduced under illumination as well as during the dark period. It is concluded that loss of the two major SPS isoforms in leaves limits Suc synthesis without grossly changing carbon partitioning in favour of starch during the light period but limits starch degradation during the dark period. PMID:24994761

  19. Crystal structure of the Chlamydomonas starch debranching enzyme isoamylase ISA1 reveals insights into the mechanism of branch trimming and complex assembly.

    PubMed

    Sim, Lyann; Beeren, Sophie R; Findinier, Justin; Dauvillée, David; Ball, Steven G; Henriksen, Anette; Palcic, Monica M

    2014-08-15

    The starch debranching enzymes isoamylase 1 and 2 (ISA1 and ISA2) are known to exist in a large complex and are involved in the biosynthesis and crystallization of starch. It is suggested that the function of the complex is to remove misplaced branches of growing amylopectin molecules, which would otherwise prevent the association and crystallization of adjacent linear chains. Here, we investigate the function of ISA1 and ISA2 from starch producing alga Chlamydomonas. Through complementation studies, we confirm that the STA8 locus encodes for ISA2 and sta8 mutants lack the ISA1·ISA2 heteromeric complex. However, mutants retain a functional dimeric ISA1 that is able to partly sustain starch synthesis in vivo. To better characterize ISA1, we have overexpressed and purified ISA1 from Chlamydomonas reinhardtii (CrISA1) and solved the crystal structure to 2.3 Å and in complex with maltoheptaose to 2.4 Å. Analysis of the homodimeric CrISA1 structure reveals a unique elongated structure with monomers connected end-to-end. The crystal complex reveals details about the mechanism of branch binding that explains the low activity of CrISA1 toward tightly spaced branches and reveals the presence of additional secondary surface carbohydrate binding sites. PMID:24993830

  20. Chemoenzymatic syntheses of linear and branched hemithiomaltodextrins as potential inhibitors for starch-debranching enzymes.

    PubMed

    Greffe, Lionel; Jensen, Morten T; Chang-Pi-Hin, Florent; Fruchard, Sandra; O'Donohue, Michael J; Svensson, Birte; Driguez, Hugues

    2002-12-01

    Oligosaccharides embodying the S-maltosyl-6-thiomaltosyl structure have been readily synthesised by using convergent chemoenzymatic approaches. The key steps for the preparation of these molecules involved: 1) transglycosylation reactions of maltosyl fluorides onto suitable acceptors catalysed by the bacterial transglycosylase, cyclodextrin glycosyltransferase (CGTase), and 2) the SN2-type displacement of a 6-halide from acetylated acceptors by activated 1-thioglycoses. The target molecules, which were obtained in good overall yields, proved to be useful for investigating substrate binding in the active sites of several enzymes that act upon the alpha-1,6-linkage of pullulan and/or amylopectin. The compounds exhibit Ki values in the 2.5-1350 microM range with the different enzymes, and the highest affinity found by using these molecules was seen for the pullulanase from Bacillus acidopullulyticus. Both barley-malt limit dextrinase and pullulanase type II from Thermococcus hydrothermalis only recognised the longest linear thiooligosaccharide, while a branched heptasaccharide was the strongest inhibitor of pullulanase from Klebsiella planticola. PMID:12561317

  1. Characterization of the Butyrivibrio fibrisolvens glgB gene, which encodes a glycogen-branching enzyme with starch-clearing activity.

    PubMed Central

    Rumbak, E; Rawlings, D E; Lindsey, G G; Woods, D R

    1991-01-01

    A Butyrivibrio fibrisolvens H17c glgB gene, was isolated by direct selection for colonies that produced clearing on starch azure plates. The gene was expressed in Escherichia coli from its own promoter. The glgB gene consisted of an open reading frame of 1,920 bp encoding a protein of 639 amino acids (calculated Mr, 73,875) with 46 to 50% sequence homology with other branching enzymes. A limited region of 12 amino acids showed sequence similarity to amylases and glucanotransferases. The B. fibrisolvens branching enzyme was not able to hydrolyze starch but stimulated phosphorylase alpha-mediated incorporation of glucose into alpha-1,4-glucan polymer 13.4-fold. The branching enzyme was purified to homogeneity by a simple two-step procedure; N-terminal sequence and amino acid composition determinations confirmed the deduced translational start and amino acid sequence of the open reading frame. The enzymatic properties of the purified enzyme were investigated. The enzyme transferred chains of 5 to 10 (optimum, 7) glucose units, using amylose and amylopetin as substrates, to produce a highly branched polymer. Images FIG. 1 FIG. 4 FIG. 7 PMID:1938880

  2. A Putative Gene sbe3-rs for Resistant Starch Mutated from SBE3 for Starch Branching Enzyme in Rice (Oryza sativa L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foods high in resistant starch (RS) are beneficial to prevent various diseases including diabetes, colon cancer, diarrhea and chronic renal or hepatic diseases. Elevated RS in rice is important for public health since rice is a staple food for half of the world’s population. A japonica mutant ‘Jiang...

  3. Characterization of multiple SPS knockout mutants reveals redundant functions of the four Arabidopsis sucrose phosphate synthase isoforms in plant viability, and strongly indicates that enhanced respiration and accelerated starch turnover can alleviate the blockage of sucrose biosynthesis.

    PubMed

    Bahaji, Abdellatif; Baroja-Fernández, Edurne; Ricarte-Bermejo, Adriana; Sánchez-López, Ángela María; Muñoz, Francisco José; Romero, Jose M; Ruiz, María Teresa; Baslam, Marouane; Almagro, Goizeder; Sesma, María Teresa; Pozueta-Romero, Javier

    2015-09-01

    We characterized multiple knock-out mutants of the four Arabidopsis sucrose phosphate synthase (SPSA1, SPSA2, SPSB and SPSC) isoforms. Despite their reduced SPS activity, spsa1/spsa2, spsa1/spsb, spsa2/spsb, spsa2/spsc, spsb/spsc, spsa1/spsa2/spsb and spsa2/spsb/spsc mutants displayed wild type (WT) vegetative and reproductive morphology, and showed WT photosynthetic capacity and respiration. In contrast, growth of rosettes, flowers and siliques of the spsa1/spsc and spsa1/spsa2/spsc mutants was reduced compared with WT plants. Furthermore, these plants displayed a high dark respiration phenotype. spsa1/spsb/spsc and spsa1/spsa2/spsb/spsc seeds poorly germinated and produced aberrant and sterile plants. Leaves of all viable sps mutants, except spsa1/spsc and spsa1/spsa2/spsc, accumulated WT levels of nonstructural carbohydrates. spsa1/spsc leaves possessed high levels of metabolic intermediates and activities of enzymes of the glycolytic and tricarboxylic acid cycle pathways, and accumulated high levels of metabolic intermediates of the nocturnal starch-to-sucrose conversion process, even under continuous light conditions. Results presented in this work show that SPS is essential for plant viability, reveal redundant functions of the four SPS isoforms in processes that are important for plant growth and nonstructural carbohydrate metabolism, and strongly indicate that accelerated starch turnover and enhanced respiration can alleviate the blockage of sucrose biosynthesis in spsa1/spsc leaves. PMID:26259182

  4. Replacement of the Endogenous Starch Debranching Enzymes ISA1 and ISA2 of Arabidopsis with the Rice Orthologs Reveals a Degree of Functional Conservation during Starch Synthesis

    PubMed Central

    Streb, Sebastian; Zeeman, Samuel C.

    2014-01-01

    This study tested the interchangeability of enzymes in starch metabolism between dicotyledonous and monocotyledonous plant species. Amylopectin - a branched glucose polymer - is the major component of starch and is responsible for its semi-crystalline property. Plants synthesize starch with distinct amylopectin structures, varying between species and tissues. The structure determines starch properties, an important characteristic for cooking and nutrition, and for the industrial uses of starch. Amylopectin synthesis involves at least three enzyme classes: starch synthases, branching enzymes and debranching enzymes. For all three classes, several enzyme isoforms have been identified. However, it is not clear which enzyme(s) are responsible for the large diversity of amylopectin structures. Here, we tested whether the specificities of the debranching enzymes (ISA1 and ISA2) are major determinants of species-dependent differences in amylopectin structure by replacing the dicotyledonous Arabidopsis isoamylases (AtISA1 and AtISA2) with the monocotyledonous rice (Oryza sativa) isoforms. We demonstrate that the ISA1 and ISA2 are sufficiently well conserved between these species to form heteromultimeric chimeric Arabidopsis/rice isoamylase enzymes. Furthermore, we were able to reconstitute the endosperm-specific rice OsISA1 homomultimeric complex in Arabidopsis isa1isa2 mutants. This homomultimer was able to facilitate normal rates of starch synthesis. The resulting amylopectin structure had small but significant differences in comparison to wild-type Arabidopsis amylopectin. This suggests that ISA1 and ISA2 have a conserved function between plant species with a major role in facilitating the crystallization of pre-amylopectin synthesized by starch synthases and branching enzymes, but also influencing the final structure of amylopectin. PMID:24642810

  5. Modification of starch metabolism in transgenic Arabidopsis thaliana increases plant biomass and triples oilseed production.

    PubMed

    Liu, Fushan; Zhao, Qianru; Mano, Noel; Ahmed, Zaheer; Nitschke, Felix; Cai, Yinqqi; Chapman, Kent D; Steup, Martin; Tetlow, Ian J; Emes, Michael J

    2016-03-01

    We have identified a novel means to achieve substantially increased vegetative biomass and oilseed production in the model plant Arabidopsis thaliana. Endogenous isoforms of starch branching enzyme (SBE) were substituted by either one of the endosperm-expressed maize (Zea mays L.) branching isozymes, ZmSBEI or ZmSBEIIb. Transformants were compared with the starch-free background and with the wild-type plants. Each of the maize-derived SBEs restored starch biosynthesis but both morphology and structure of starch particles were altered. Altered starch metabolism in the transformants is associated with enhanced biomass formation and more-than-trebled oilseed production while maintaining seed oil quality. Enhanced oilseed production is primarily due to an increased number of siliques per plant whereas oil content and seed number per silique are essentially unchanged or even modestly decreased. Introduction of cereal starch branching isozymes into oilseed plants represents a potentially useful strategy to increase biomass and oilseed production in related crops and manipulate the structure and properties of leaf starch. PMID:26285603

  6. A study on starch profile of rajma bean (Phaseolus vulgaris) incorporated noodle dough and its functional characteristics.

    PubMed

    Kumar, S Bharath; Prabhasankar, P

    2015-08-01

    Starch profile reflects functional characteristics like digestibility and product quality. A study was aimed to incorporate rajma in noodle processing to improve product and nutritional quality and also to reduce starch digestibility. It is known that some of the pulses like Kidney beans have an isoforms of Starch-Branching-Enzyme (SBE) helps in converting amylose to amylopectin. Rajma flour was incorporated at 10%, 20% and 30% with Triticumdurum and subjected to rheological, physico-chemical and amylose/amylopectin determination using High-Performance-Size-Exclusion-Chromatography (HPSEC). Results revealed that rajma flour decreased peak-viscosity from 954 to 683 BU and increased water absorption. Protein and dietary fiber content increased significantly. Sensory profile showed higher overall quality (>8.5). In vitro starch digestibility reduced from 65% to 49%. Starch profile from HPSEC showed changes in amylose:amylopectin peak, this may be because of the presence of SBE, further studies may be required to support the hypothesis. PMID:25766809

  7. Mutation of the maize sbe1a and ae genes alters morphology and physical behavior of wx-type endosperm starch granules.

    PubMed

    Li, Ji-Hong; Guiltinan, Mark J; Thompson, Donald B

    2007-12-10

    In maize, three isoforms of starch-branching enzyme, SBEI, SBEIIa, and SBEIIb, are encoded by the Sbe1a, Sbe2a, and Amylose extender (Ae) genes, respectively. The objective of this research was to explore the effects of null mutations in the Sbe1a and Ae genes alone and in combination in wx background on kernel characteristics and on the morphology and physical behavior of endosperm starch granules. Differences in kernel morphology and weight, starch accumulation, starch granule size and size distribution, starch microstructure, and thermal properties were observed between the ae wx and sbe1a ae wx plants but not between the sbe1a wx mutants when compared to wx. Starch from sbe1a ae wx plants exhibited a larger granule size with a wider gelatinization temperature range and a lower endotherm enthalpy than ae wx. Microscopy shows weaker iodine staining in sbe1a ae wx starch granules. X-ray diffraction revealed A-type crystallinity in wx and sbe1a wx starches and B-type in sbe1a ae wx and ae wx. This study suggests that, while the SBEIIb isoform plays a dominant role in maize endosperm starch synthesis, SBEI also plays a role, which is only observable in the presence of the ae mutation. PMID:17765880

  8. Starch metabolism in leaves.

    PubMed

    Orzechowski, Sławomir

    2008-01-01

    Starch is the most abundant storage carbohydrate produced in plants. The initiation of transitory starch synthesis and degradation in plastids depends mainly on diurnal cycle, post-translational regulation of enzyme activity and starch phosphorylation. For the proper structure of starch granule the activities of all starch synthase isoenzymes, branching enzymes and debranching enzymes are needed. The intensity of starch biosynthesis depends mainly on the activity of AGPase (adenosine 5'-diphosphate glucose pyrophosphorylase). The key enzymes in starch degradation are beta-amylase, isoamylase 3 and disproportionating enzyme. However, it should be underlined that there are some crucial differences in starch metabolism between heterotrophic and autotrophic tissues, e.g. is the ability to build multiprotein complexes responsible for biosynthesis and degradation of starch granules in chloroplasts. The observed huge progress in understanding of starch metabolism was possible mainly due to analyses of the complete Arabidopsis and rice genomes and of numerous mutants with altered starch metabolism in leaves. The aim of this paper is to review current knowledge on transient starch metabolism in higher plants. PMID:18787712

  9. Isolation, identification and characterisation of starch-interacting proteins by 2-D affinity electrophoresis.

    PubMed

    Kosar-Hashemi, Behjat; Irwin, Jennifer A; Higgins, Jody; Rahman, Sadequr; Morell, Matthew K

    2006-05-01

    A 2-D affinity electrophoretic technique (2-DAE) has been used to isolate proteins that interact with various starch components from total barley endosperm extracts. In the first dimension, proteins are separated by native PAGE. The second-dimensional gel contains polysaccharides such as amylopectin and glycogen. The migration of starch-interacting proteins in this dimension is determined by their affinity towards a particular polysaccharide and these proteins are therefore spatially separated from the bulk of proteins in the crude extract. Four distinct proteins demonstrate significant affinity for amylopectin and have been identified as starch branching enzyme I (SBEI), starch branching enzyme IIa (SBEIIa), SBEIIb and starch phosphorylase using polyclonal antibodies and zymogram activity analysis. In the case of starch phosphorylase, a protein spot was excised from a 2-DAE polyacrylamide gel and analysed using Q-TOF MS/MS, resulting in the alignment of three internal peptide sequences with the known sequence of the wheat plastidic starch phosphorylase isoform. This assignment was confirmed by the determination of the enzyme's function using zymogram analysis. Dissociation constants (Kd) were calculated for the three enzymes at 4 degrees C and values of 0.20, 0.21 and 1.3 g/L were determined for SBEI, SBEIIa and starch phosphorylase, respectively. Starch synthase I could also be resolved from the other proteins in the presence of glycogen and its identity was confirmed using a polyclonal antibody and by activity analysis. The 2-DAE method described here is simple, though powerful, enabling protein separation from crude extracts on the basis of function. PMID:16645949

  10. Characterization of starch nanoparticles

    NASA Astrophysics Data System (ADS)

    Szymońska, J.; Targosz-Korecka, M.; Krok, F.

    2009-01-01

    Nanomaterials already attract great interest because of their potential applications in technology, food science and medicine. Biomaterials are biodegradable and quite abundant in nature, so they are favoured over synthetic polymer based materials. Starch as a nontoxic, cheap and renewable raw material is particularly suitable for preparation of nanoparticles. In the paper, the structure and some physicochemical properties of potato and cassava starch particles of the size between 50 to 100 nm, obtained by mechanical treatment of native starch, were presented. We demonstrated, with the aim of the Scanning Electron Microscopy (SEM) and the non-contact Atomic Force Microscopy (nc-AFM), that the shape and dimensions of the obtained nanoparticles both potato and cassava starch fit the blocklets - previously proposed as basic structural features of native starch granules. This observation was supported by aqueous solubility and swelling power of the particles as well as their iodine binding capacity similar to those for amylopectin-type short branched polysaccharide species. Obtained results indicated that glycosidic bonds of the branch linkage points in the granule amorphous lamellae might be broken during the applied mechanical treatment. Thus the released amylopectin clusters could escape out of the granules. The starch nanoparticles, for their properties qualitatively different from those of native starch granules, could be utilized in new applications.

  11. Structure, function and regulation of the enzymes in the starch biosynthetic pathway.

    SciTech Connect

    Geiger, Jim

    2013-11-30

    Starch is the major reserve polysaccharide in nature and accounts for the majority of the caloric intact of humans. It is also gaining importance as a renewable and biodegradable industrial material. There is burgeoning interest in increasing the amount and altering the properties of the plant starches by plant genetic modification. A rational approach to this effort will require a detailed, atomic-level understanding of the enzymatic processes that produce the starch granule. The starch granule is a complex particle made up of alternating layers of crystalline and amorphous lamellae. It consists of two types of polymer, amylose, a polymer of relatively long chains of α-1,4-linked glucans that contain virtually no branches, and amylopectin, which is highly branched and contains much shorter chains. This complex structure is synthesized by the coordinate activities of the starch synthases (SS), which elongate the polysaccharide chain by addition of glucose units via α-1,4 linkages using ADP- glucose as a donor, and branching enzymes (BE), which branch the polysaccharide chain by cleavage of α−1,4 linkages and subsequent re-attachment via α−1,6 linkages. Several isoforms of both starch synthase (SS) and branching enzyme (BE) are found in plants, including SSI, SSII, SSIII and granule- bound SS (GBSS), and SBEI, SBEIIa and SBEIIb. These isoforms have different activities and substrate and product specificities and play different roles in creating the granule and determining the properties of the resulting starch. The overarching goal of this proposal is to begin to understand the regulation and specificities of these enzymes at the atomic level. High-resolution X-ray structures of these enzymes bound to substrates and products will be determined to visualize the molecular interactions responsible for the properties of the enzymes. Hypotheses regarding these issues will then be tested using mutagenesis and enzyme assays. To date, we have determined the

  12. Starch poisoning

    MedlinePlus

    Cooking starch poisoning; Laundry starch poisoning ... Cooking and laundry starch are both made from vegetable products, most commonly: Corn Potatoes Rice Wheat Both are usually considered nonpoisonous (nontoxic), but ...

  13. Allelic variants of the amylose extender mutation of maize demonstrate phenotypic variation in starch structure resulting from modified protein–protein interactions

    PubMed Central

    Liu, Fushan; Ahmed, Zaheer; Lee, Elizabeth A.; Donner, Elizabeth; Liu, Qiang; Ahmed, Regina; Morell, Matthew K.; Emes, Michael J.; Tetlow, Ian J.

    2012-01-01

    amylose extender (ae−) starches characteristically have modified starch granule morphology resulting from amylopectin with reduced branch frequency and longer glucan chains in clusters, caused by the loss of activity of the major starch branching enzyme (SBE), which in maize endosperm is SBEIIb. A recent study with ae− maize lacking the SBEIIb protein (termed ae1.1 herein) showed that novel protein–protein interactions between enzymes of starch biosynthesis in the amyloplast could explain the starch phenotype of the ae1.1 mutant. The present study examined an allelic variant of the ae− mutation, ae1.2, which expresses a catalytically inactive form of SBEIIb. The catalytically inactive SBEIIb in ae1.2 lacks a 28 amino acid peptide (Val272–Pro299) and is unable to bind to amylopectin. Analysis of starch from ae1.2 revealed altered granule morphology and physicochemical characteristics distinct from those of the ae1.1 mutant as well as the wild-type, including altered apparent amylose content and gelatinization properties. Starch from ae1.2 had fewer intermediate length glucan chains (degree of polymerization 16–20) than ae1.1. Biochemical analysis of ae1.2 showed that there were differences in the organization and assembly of protein complexes of starch biosynthetic enzymes in comparison with ae1.1 (and wild-type) amyloplasts, which were also reflected in the composition of starch granule-bound proteins. The formation of stromal protein complexes in the wild-type and ae1.2 was strongly enhanced by ATP, and broken by phosphatase treatment, indicating a role for protein phosphorylation in their assembly. Labelling experiments with [γ-32P]ATP showed that the inactive form of SBEIIb in ae1.2 was phosphorylated, both in the monomeric form and in association with starch synthase isoforms. Although the inactive SBEIIb was unable to bind starch directly, it was strongly associated with the starch granule, reinforcing the conclusion that its presence in the

  14. The Heteromultimeric Debranching Enzyme Involved in Starch Synthesis in Arabidopsis Requires Both Isoamylase1 and Isoamylase2 Subunits for Complex Stability and Activity

    PubMed Central

    Sundberg, Maria; Pfister, Barbara; Fulton, Daniel; Bischof, Sylvain; Delatte, Thierry; Eicke, Simona; Stettler, Michaela; Smith, Steven M.; Streb, Sebastian; Zeeman, Samuel C.

    2013-01-01

    Isoamylase-type debranching enzymes (ISAs) play an important role in determining starch structure. Amylopectin – a branched polymer of glucose – is the major component of starch granules and its architecture underlies the semi-crystalline nature of starch. Mutants of several species lacking the ISA1-subclass of isoamylase are impaired in amylopectin synthesis. Consequently, starch levels are decreased and an aberrant soluble glucan (phytoglycogen) with altered branch lengths and branching pattern accumulates. Here we use TAP (tandem affinity purification) tagging to provide direct evidence in Arabidopsis that ISA1 interacts with its homolog ISA2. No evidence for interaction with other starch biosynthetic enzymes was found. Analysis of the single mutants shows that each protein is destabilised in the absence of the other. Co-expression of both ISA1 and ISA2 Escherichia coli allowed the formation of the active recombinant enzyme and we show using site-directed mutagenesis that ISA1 is the catalytic subunit. The presence of the active isoamylase alters glycogen biosynthesis in E. coli, resulting in colonies that stain more starch-like with iodine. However, analysis of the glucans reveals that rather than producing an amylopectin like substance, cells expressing the active isoamylase still accumulate small amounts of glycogen together with a population of linear oligosaccharides that stain strongly with iodine. We conclude that for isoamylase to promote amylopectin synthesis it needs to act on a specific precursor (pre-amylopectin) generated by the combined actions of plant starch synthase and branching enzyme isoforms and when presented with an unsuitable substrate (i.e. E. coli glycogen) it simply degrades it. PMID:24098685

  15. [Gene expression of the key enzymes controlling starch synthesis and metabolism in rice grain endosperm under effects of high temperature after anthesis].

    PubMed

    Zhong, Lian-Jin; Dong, Hu; Cai, Xiao-Bo; Feng, Yan-Ning; Ren, Ping; Cheng, Fang-Min

    2012-03-01

    Taking an early-season indica cultivar 'Jiazao 935' whose grain quality was sensitive to temperature as test material, and by using artificial climatic chamber and real-time fluorescence quantitative PCR (FQ-PCR), this paper studied the relative expression amount and its dynamic changes of ten isoform genes of the key enzymes controlling starch synthesis and metabolism in rice grain endosperm, including sbe1, sbe3, and sbe4 of starch branching enzyme (SBE), isal, isa2, isa3, and pul of starch debranching enzyme (DBE), and Wx, sss1, and sss2a of starch synthase (SS), at the mean daily temperature 22 and 32 degrees C after anthesis. There existed obvious differences in the expression patterns of these genes under the high temperature stress, and the expression patterns were isoform-dependent. The relative expression amount of sbe1 and sbe3 under high temperature decreased significantly, and both of the genes were the sensitive isoform genes of SBE to high temperature stress. Among the DBE genes, pul was the isoform gene with high expression level, being more sensitive to high temperature stress than isa1, isa2, and isa3. Among the SS genes, sss2a had a significantly lower relative expression amount than sss1 and Wx, but sss2a and sss1 were more sensitive to high temperature than Wx, suggesting that sss2a and sss1 could be the important genes that adjusted the starch structure in rice endosperm under high temperature stress, especially at the middle and late grain filling stages. PMID:22720620

  16. Structure Function Relationships of ADP-Glucose Pyrophosphorylase and Branching Enzyme: Manipulation of Their Genes for Alteration of Starch Quanlity and Quantity

    SciTech Connect

    Jack Preiss

    2006-02-16

    Conversion of the Potato tuber ADP-glucose Pyrophopshorylase Regulatory Subunit into a Catalytic Subunit. ADP-glucose synthesis, a rate-limiting reaction in starch synthesis, is catalyzed by ADP-glucose pyrophosphorylase (ADPGlc PPase). The enzyme in plants is allosterically activated by 3-phosphoglycerate (3PGA) and inhibited by inorganic phosphate (Pi) and is composed of two subunits as a heterotetramer, a2b2. Subunit a is the catalytic subunit and subunit b is designated as the regulatory subunit.The b subunit increases the affinty of the activator for the catalytic subunit. Recent results have shown that the subunits are derived from the same ancestor subunit as the regulatory subunit can be converted to a catalytically subunit via mutation of just two amino acids. Lys44 and Thr54 in the large subunit from potato tuber were converted to the homologous catalytic subunit residues, Arg33 and Lys43. The activity of the large subunit mutants cannot be readily tested with a co-expressed wild-type small (catalytic) subunit because of the intrinsic activity of the latter. We co-expressed the regulatory-subunit mutants with SmallD145N, an inactive S subunit in which the catalytic Asp145 was mutated. The activity of the small (catalytic) subunit was reduced more than three orders of magnitude. Coexpression of the L subunit double mutant LargeK44R/T54K with SmallD145N generated an enzyme with considerable activity, 10% and 18% of the wildtype enzyme, in the ADP-glucose synthetic and pyrophosphorolytic direction, respectively. Replacement of those two residues in the small subunit by the homologous amino acids in the L subunits (mutations R33K and K43T) decreased the activity one and two orders of magnitude. The wild-type enzyme and SmallD145NLargeK44R/T54K had very similar kinetic properties indicating that the substrate site has been conserved. The fact that only two mutations in the L subunit restored enzyme activity is very strong evidence that the large subunit is

  17. A Parameterized Model of Amylopectin Synthesis Provides Key Insights into the Synthesis of Granular Starch

    PubMed Central

    Wu, Alex Chi; Morell, Matthew K.; Gilbert, Robert G.

    2013-01-01

    A core set of genes involved in starch synthesis has been defined by genetic studies, but the complexity of starch biosynthesis has frustrated attempts to elucidate the precise functional roles of the enzymes encoded. The chain-length distribution (CLD) of amylopectin in cereal endosperm is modeled here on the basis that the CLD is produced by concerted actions of three enzyme types: starch synthases, branching and debranching enzymes, including their respective isoforms. The model, together with fitting to experiment, provides four key insights. (1) To generate crystalline starch, defined restrictions on particular ratios of enzymatic activities apply. (2) An independent confirmation of the conclusion, previously reached solely from genetic studies, of the absolute requirement for debranching enzyme in crystalline amylopectin synthesis. (3) The model provides a mechanistic basis for understanding how successive arrays of crystalline lamellae are formed, based on the identification of two independent types of long amylopectin chains, one type remaining in the amorphous lamella, while the other propagates into, and is integral to the formation of, an adjacent crystalline lamella. (4) The model provides a means by which a small number of key parameters defining the core enzymatic activities can be derived from the amylopectin CLD, providing the basis for focusing studies on the enzymatic requirements for generating starches of a particular structure. The modeling approach provides both a new tool to accelerate efforts to understand granular starch biosynthesis and a basis for focusing efforts to manipulate starch structure and functionality using a series of testable predictions based on a robust mechanistic framework. PMID:23762422

  18. Position of modifying groups on starch chains of octenylsuccinic anhydride-modified waxy maize starch.

    PubMed

    Bai, Yanjie; Kaufman, Rhett C; Wilson, Jeff D; Shi, Yong-Cheng

    2014-06-15

    Octenylsuccinic anhydride (OSA)-modified starches with a low (0.018) and high (0.092) degree of substitution (DS) were prepared from granular native waxy maize starch in aqueous slurry. The position of OS substituents along the starch chains was investigated by enzyme hydrolysis followed by chromatographic analysis. Native starch and two OS starches with a low and high DS had β-limit values of 55.9%, 52.8%, and 34.4%, respectively. The weight-average molecular weight of the β-limit dextrin from the OS starch with a low DS was close to that of the β-limit dextrin from native starch but lower than that of the β-limit dextrin from the OS starch with a high DS. Debranching of OS starches was incomplete compared with native starch. OS groups in the OS starch with a low DS were located on the repeat units near the branching points, whereas the OS substituents in the OS starch with a high DS occurred both near the branching points and the non-reducing ends. PMID:24491720

  19. Starch Applications for Delivery Systems

    NASA Astrophysics Data System (ADS)

    Li, Jason

    2013-03-01

    Starch is one of the most abundant and economical renewable biopolymers in nature. Starch molecules are high molecular weight polymers of D-glucose linked by α-(1,4) and α-(1,6) glycosidic bonds, forming linear (amylose) and branched (amylopectin) structures. Octenyl succinic anhydride modified starches (OSA-starch) are designed by carefully choosing a proper starch source, path and degree of modification. This enables emulsion and micro-encapsulation delivery systems for oil based flavors, micronutrients, fragrance, and pharmaceutical actives. A large percentage of flavors are encapsulated by spray drying in today's industry due to its high throughput. However, spray drying encapsulation faces constant challenges with retention of volatile compounds, oxidation of sensitive compound, and manufacturing yield. Specialty OSA-starches were developed suitable for the complex dynamics in spray drying and to provide high encapsulation efficiency and high microcapsule quality. The OSA starch surface activity, low viscosity and film forming capability contribute to high volatile retention and low active oxidation. OSA starches exhibit superior performance, especially in high solids and high oil load encapsulations compared with other hydrocolloids. The submission is based on research and development of Ingredion

  20. Amylose Content in Tuber Starch of Wild Potato Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Approximately 20% of potato tuber fresh weight is starch, which is composed of amylose (straight chains of glucose) and amylopectin (branched chains). Potato starch is low in amylose (~25%), but high amylose starch has superior nutritional qualities. Amylose content has been determined in tuber samp...

  1. The Simultaneous Abolition of Three Starch Hydrolases Blocks Transient Starch Breakdown in Arabidopsis*

    PubMed Central

    Streb, Sebastian; Eicke, Simona; Zeeman, Samuel C.

    2012-01-01

    In this study, we investigated which enzymes are involved in debranching amylopectin during transient starch degradation. Previous studies identified two debranching enzymes, isoamylase 3 (ISA3) and limit dextrinase (LDA), involved in this process. However, plants lacking both enzymes still degrade substantial amounts of starch. Thus, other enzymes/mechanisms must contribute to starch breakdown. We show that the chloroplastic α-amylase 3 (AMY3) also participates in starch degradation and provide evidence that all three enzymes can act directly at the starch granule surface. The isa3 mutant has a starch excess phenotype, reflecting impaired starch breakdown. In contrast, removal of AMY3, LDA, or both enzymes together has no impact on starch degradation. However, removal of AMY3 or LDA in addition to ISA3 enhances the starch excess phenotype. In plants lacking all three enzymes, starch breakdown is effectively blocked, and starch accumulates to the highest levels observed so far. This provides indirect evidence that the heteromultimeric debranching enzyme ISA1-ISA2 is not involved in starch breakdown. However, we illustrate that ISA1-ISA2 can hydrolyze small soluble branched glucans that accumulate when ISA3 and LDA are missing, albeit at a slow rate. Starch accumulation in the mutants correlates inversely with plant growth. PMID:23019330

  2. High throughput screening of starch structures using carbohydrate microarrays.

    PubMed

    Tanackovic, Vanja; Rydahl, Maja Gro; Pedersen, Henriette Lodberg; Motawia, Mohammed Saddik; Shaik, Shahnoor Sultana; Mikkelsen, Maria Dalgaard; Krunic, Susanne Langgaard; Fangel, Jonatan Ulrik; Willats, William George Tycho; Blennow, Andreas

    2016-01-01

    In this study we introduce the starch-recognising carbohydrate binding module family 20 (CBM20) from Aspergillus niger for screening biological variations in starch molecular structure using high throughput carbohydrate microarray technology. Defined linear, branched and phosphorylated maltooligosaccharides, pure starch samples including a variety of different structures with variations in the amylopectin branching pattern, amylose content and phosphate content, enzymatically modified starches and glycogen were included. Using this technique, different important structures, including amylose content and branching degrees could be differentiated in a high throughput fashion. The screening method was validated using transgenic barley grain analysed during development and subjected to germination. Typically, extreme branching or linearity were detected less than normal starch structures. The method offers the potential for rapidly analysing resistant and slowly digested dietary starches. PMID:27468930

  3. High throughput screening of starch structures using carbohydrate microarrays

    PubMed Central

    Tanackovic, Vanja; Rydahl, Maja Gro; Pedersen, Henriette Lodberg; Motawia, Mohammed Saddik; Shaik, Shahnoor Sultana; Mikkelsen, Maria Dalgaard; Krunic, Susanne Langgaard; Fangel, Jonatan Ulrik; Willats, William George Tycho; Blennow, Andreas

    2016-01-01

    In this study we introduce the starch-recognising carbohydrate binding module family 20 (CBM20) from Aspergillus niger for screening biological variations in starch molecular structure using high throughput carbohydrate microarray technology. Defined linear, branched and phosphorylated maltooligosaccharides, pure starch samples including a variety of different structures with variations in the amylopectin branching pattern, amylose content and phosphate content, enzymatically modified starches and glycogen were included. Using this technique, different important structures, including amylose content and branching degrees could be differentiated in a high throughput fashion. The screening method was validated using transgenic barley grain analysed during development and subjected to germination. Typically, extreme branching or linearity were detected less than normal starch structures. The method offers the potential for rapidly analysing resistant and slowly digested dietary starches. PMID:27468930

  4. [Starch aspiration].

    PubMed

    Volk, O; Neidhöfer, M; Schregel, W

    1999-06-01

    Starch is a white, neutral smelling, insoluble and harmless powder. The case of a 24-year old worker with a pronounced bronchospasm and arterial hypoxaemia after a collapse and aspiration during working in a silo filled with corn starch will be reported. Medication consisted mainly in mucolytics. Intensive airway clearing consisted of repeated bronchoscopies, bedding, tapotement and vibration massage. The patient has made a complete recovery in 3 days. PMID:10429779

  5. The diurnal metabolism of leaf starch.

    PubMed

    Zeeman, Samuel C; Smith, Steven M; Smith, Alison M

    2007-01-01

    Starch is a primary product of photosynthesis in leaves. In most plants, a large fraction of the carbon assimilated during the day is stored transiently in the chloroplast as starch for use during the subsequent night. Photosynthetic partitioning into starch is finely regulated, and the amount of carbohydrate stored is dependent on the environmental conditions, particularly day length. This regulation is applied at several levels to control the flux of carbon from the Calvin cycle into starch biosynthesis. Starch is composed primarily of branched glucans with an architecture that allows the formation of a semi-crystalline insoluble granule. Biosynthesis has been most intensively studied in non-photosynthetic starch-storing organs, such as developing seeds and tubers. Biosynthesis in leaves has received less attention, but recent reverse-genetic studies of Arabidopsis (thale cress) have produced data generally consistent with what is known for storage tissues. The pathway involves starch synthases, which elongate the glucan chains, and branching enzymes. Remarkably, enzymes that partially debranch glucans are also required for normal amylopectin synthesis. In the last decade, our understanding of starch breakdown in leaves has advanced considerably. Starch is hydrolysed to maltose and glucose at night via a pathway that requires recently discovered proteins in addition to well-known enzymes. These sugars are exported from the plastid to support sucrose synthesis, respiration and growth. In the present review we provide an overview of starch biosynthesis, starch structure and starch degradation in the leaves of plants. We focus on recent advances in each area and highlight outstanding questions. PMID:17150041

  6. Granule-bound starch synthase I in isolated starch granules elongates malto-oligosaccharides processively.

    PubMed Central

    Denyer, K; Waite, D; Motawia, S; Møller, B L; Smith, A M

    1999-01-01

    Isoforms of starch synthase belonging to the granule-bound starch synthase I (GBSSI) class synthesize the amylose component of starch in plants. Other granule-bound isoforms of starch synthase, such as starch synthase II (SSII), are unable to synthesize amylose. The kinetic properties of GBSSI and SSII that are responsible for these functional differences have been investigated using starch granules from embryos of wild-type peas and rug5 and lam mutant peas, which contain, respectively, both GBSSI and SSII, GBSSI but not SSII and SSII but not GBSSI. We show that GBSSI in isolated granules elongates malto-oligosaccharides processively, adding more than one glucose molecule for each enzyme-glucan encounter. Granule-bound SSII can elongate malto-oligosaccharides, but has a lower affinity for these than GBSSI and does not elongate processively. As a result of these properties GBSSI synthesizes longer malto-oligosaccharides than SSII. The significance of these results with respect to the roles of GBSSI and SSII in vivo is discussed. PMID:10229673

  7. Starch synthase 4 is essential for coordination of starch granule formation with chloroplast division during Arabidopsis leaf expansion.

    PubMed

    Crumpton-Taylor, Matilda; Pike, Marilyn; Lu, Kuan-Jen; Hylton, Christopher M; Feil, Regina; Eicke, Simona; Lunn, John E; Zeeman, Samuel C; Smith, Alison M

    2013-12-01

    Arabidopsis thaliana mutants lacking the SS4 isoform of starch synthase have strongly reduced numbers of starch granules per chloroplast, suggesting that SS4 is necessary for the normal generation of starch granules. To establish whether it plays a direct role in this process, we investigated the circumstances in which granules are formed in ss4 mutants. Starch granule numbers and distribution and the accumulation of starch synthase substrates and products were investigated during ss4 leaf development, and in ss4 mutants carrying mutations or transgenes that affect starch turnover or chloroplast volume. We found that immature ss4 leaves have no starch granules, but accumulate high concentrations of the starch synthase substrate ADPglucose. Granule numbers are partially restored by elevating the capacity for glucan synthesis (via expression of bacterial glycogen synthase) or by increasing the volumes of individual chloroplasts (via introduction of arc mutations). However, these granules are abnormal in distribution, size and shape. SS4 is an essential component of a mechanism that coordinates granule formation with chloroplast division during leaf expansion and determines the abundance and the flattened, discoid shape of leaf starch granules. PMID:23952675

  8. Starch synthase 4 is essential for coordination of starch granule formation with chloroplast division during Arabidopsis leaf expansion

    PubMed Central

    Crumpton-Taylor, Matilda; Pike, Marilyn; Lu, Kuan-Jen; Hylton, Christopher M; Feil, Regina; Eicke, Simona; Lunn, John E; Zeeman, Samuel C; Smith, Alison M

    2013-01-01

    Arabidopsis thaliana mutants lacking the SS4 isoform of starch synthase have strongly reduced numbers of starch granules per chloroplast, suggesting that SS4 is necessary for the normal generation of starch granules. To establish whether it plays a direct role in this process, we investigated the circumstances in which granules are formed in ss4 mutants. Starch granule numbers and distribution and the accumulation of starch synthase substrates and products were investigated during ss4 leaf development, and in ss4 mutants carrying mutations or transgenes that affect starch turnover or chloroplast volume. We found that immature ss4 leaves have no starch granules, but accumulate high concentrations of the starch synthase substrate ADPglucose. Granule numbers are partially restored by elevating the capacity for glucan synthesis (via expression of bacterial glycogen synthase) or by increasing the volumes of individual chloroplasts (via introduction of arc mutations). However, these granules are abnormal in distribution, size and shape. SS4 is an essential component of a mechanism that coordinates granule formation with chloroplast division during leaf expansion and determines the abundance and the flattened, discoid shape of leaf starch granules. PMID:23952675

  9. Plantain and banana starches: granule structural characteristics explain the differences in their starch degradation patterns.

    PubMed

    Soares, Claudinéia Aparecida; Peroni-Okita, Fernanda Helena Gonçalves; Cardoso, Mateus Borba; Shitakubo, Renata; Lajolo, Franco Maria; Cordenunsi, Beatriz Rosana

    2011-06-22

    Different banana cultivars were used to investigate the influences of starch granule structure and hydrolases on degradation. The highest degrees of starch degradation were observed in dessert bananas during ripening. Scanning electron microscopy images revealed smooth granule surface in the green stage in all cultivars, except for Mysore. The small and round granules were preferentially degraded in all of the cultivars. Terra demonstrated a higher degree of crystallinity and a short amylopectin chain length distribution, resulting in high starch content in the ripe stage. Amylose content and the crystallinity index were more strongly correlated than the distribution of amylopectin branch chain lengths in banana starches. α- and β-amylase activities were found in both forms, soluble in the pulp and associated with the starch granule. Starch-phosphorylase was not found in Mysore. On the basis of the profile of α-amylase in vitro digestion and the structural characteristics, it could be concluded that the starch of plantains has an arrangement of granules more resistant to enzymes than the starch of dessert bananas. PMID:21591784

  10. Enzymatic properties and regulation of ZPU1, the maize pullulanase-type starch debranching enzyme.

    PubMed

    Wu, Chunyuan; Colleoni, Christophe; Myers, Alan M; James, Martha G

    2002-10-01

    Starch debranching enzymes (DBE) are required for mobilization of carbohydrate reserves and for the normal structural organization of storage glucan polymers. Two isoforms, the pullulanase-type DBEs and the isoamylase-type DBEs, are both highly conserved in plants. To address DBE functions in starch assembly and breakdown, this study characterized the biochemical activity of ZPU1, a pullulanase-type DBE that is the product of the maize Zpu1 gene. Assays showed directly that recombinant ZPU1 (ZPU1r) expressed in Escherichia coli functions as a pullulanase-type enzyme, and 1H-NMR spectroscopy demonstrated that ZPU1r specifically hydrolyzes alpha(1-->6) branch linkages. Preferred substrates for ZPU1r hydrolytic activity were determined, as were pH, temperature, and thermal stability optima. Kinetic properties of ZPU1r with respect to two substrates, beta-limit dextrin and pullulan, were determined. ZPU1 activity was increased by incubation with thioredoxin h, and native activity was decreased in mutants that accumulate soluble sugars, suggesting potential regulatory mechanisms. PMID:12234486

  11. Optical characterization of CdS nanorods capped with starch

    NASA Astrophysics Data System (ADS)

    Roy, J. S.; Pal Majumder, T.; Schick, C.

    2015-05-01

    Well crystalline uniform CdS nanorods were grown by changing the concentration of maize starch. The highly polymeric (branched) structure of starch enhances the growth of CdS nanorods. The average diameter of the nanorods is 20-25 nm while length is of 500-600 nm as verified from SEM and XRD observations. The optical band gaps of the CdS nanorods are varying from 2.66 eV to 2.52 eV depending on concentration of maize starch. The photoluminescence (PL) emission bands are shifted from 526 nm to 529 nm with concentration of maize starch. We have also observed the enhanced PL intensity in CdS nanorods capped with starch. The Fourier transform infrared (FTIR) spectroscopy shows the significant effect of starch on CdS nanorods.

  12. Tropomyosin isoforms and reagents

    PubMed Central

    Schevzov, Galina; Whittaker, Shane P; Fath, Thomas; Lin, Jim JC

    2011-01-01

    Tropomyosins are rod-like dimers which form head-to-tail polymers along the length of actin filaments and regulate the access of actin binding proteins to the filaments.1 The diversity of tropomyosin isoforms, over 40 in mammals, and their role in an increasing number of biological processes presents a challenge both to experienced researchers and those new to this field. The increased appreciation that the role of these isoforms expands beyond that of simply stabilizing actin filaments has lead to a surge of reagents and techniques to study their function and mechanisms of action. This report is designed to provide a basic guide to the genes and proteins and the availability of reagents which allow effective study of this family of proteins. We highlight the value of combining multiple techniques to better evaluate the function of different tm isoforms and discuss the limitations of selected reagents. Brief background material is included to demystify some of the unfortunate complexity regarding this multi-gene family of proteins including the unconventional nomenclature of the isoforms and the evolutionary relationships of isoforms between species. Additionally, we present step-by-step detailed experimental protocols used in our laboratory to assist new comers to the field and experts alike. PMID:22069507

  13. The future of starch bioengineering: GM microorganisms or GM plants?

    PubMed Central

    Hebelstrup, Kim H.; Sagnelli, Domenico; Blennow, Andreas

    2015-01-01

    Plant starches regularly require extensive modification to permit subsequent applications. Such processing is usually done by the use of chemical and/or physical treatments. The use of recombinant enzymes produced by large-scale fermentation of GM microorganisms is increasingly used in starch processing and modification, sometimes as an alternative to chemical or physical treatments. However, as a means to impart the modifications as early as possible in the starch production chain, similar recombinant enzymes may also be expressed in planta in the developing starch storage organ such as in roots, tubers and cereal grains to provide a GM crop as an alternative to the use of enzymes from GM microorganisms. We here discuss these techniques in relation to important structural features and modifications of starches such as: starch phosphorylation, starch hydrolysis, chain transfer/branching and novel concepts of hybrid starch-based polysaccharides. In planta starch bioengineering is generally challenged by yield penalties and inefficient production of the desired product. However, in some situations, GM crops for starch bioengineering without deleterious effects have been achieved. PMID:25954284

  14. Proteomic Dissection of Endosperm Starch Granule Associated Proteins Reveals a Network Coordinating Starch Biosynthesis and Amino Acid Metabolism and Glycolysis in Rice Endosperms.

    PubMed

    Yu, Huatao; Wang, Tai

    2016-01-01

    Starch biosynthesis and starch granule packaging in cereal endosperms involve a coordinated action of starch biosynthesis enzymes and coordination with other metabolisms. Because directly binding to starch granules, starch granule-associated proteins (SGAPs) are essential to understand the underlying mechanisms, however the information on SGAPs remains largely unknown. Here, we dissected developmentally changed SGAPs from developing rice endosperms from 10 to 20 days after flowering (DAF). Starch granule packaging was not completed at 10 DAF, and was finished in the central endosperm at 15 DAF and in the whole endosperm at 20 DAF. Proteomic analysis with two-dimensional differential in-gel electrophoresis and mass spectrometry revealed 115 developmentally changed SGAPs, representing 37 unique proteins. 65% of the unique proteins had isoforms. 39% of the identified SGAPs were involved in starch biosynthesis with main functions in polyglucan elongation and granule structure trimming. Almost all proteins involved in starch biosynthesis, amino acid biosynthesis, glycolysis, protein folding, and PPDK pathways increased abundance as the endosperm developed, and were predicted in an interaction network. The network represents an important mechanism to orchestrate carbon partitioning among starch biosynthesis, amino acid biosynthesis and glycolysis for efficient starch and protein storage. These results provide novel insights into mechanisms of starch biosynthesis and its coordination with amino acid metabolisms and glycolysis in cereal endosperms. PMID:27252723

  15. Proteomic Dissection of Endosperm Starch Granule Associated Proteins Reveals a Network Coordinating Starch Biosynthesis and Amino Acid Metabolism and Glycolysis in Rice Endosperms

    PubMed Central

    Yu, Huatao; Wang, Tai

    2016-01-01

    Starch biosynthesis and starch granule packaging in cereal endosperms involve a coordinated action of starch biosynthesis enzymes and coordination with other metabolisms. Because directly binding to starch granules, starch granule-associated proteins (SGAPs) are essential to understand the underlying mechanisms, however the information on SGAPs remains largely unknown. Here, we dissected developmentally changed SGAPs from developing rice endosperms from 10 to 20 days after flowering (DAF). Starch granule packaging was not completed at 10 DAF, and was finished in the central endosperm at 15 DAF and in the whole endosperm at 20 DAF. Proteomic analysis with two-dimensional differential in-gel electrophoresis and mass spectrometry revealed 115 developmentally changed SGAPs, representing 37 unique proteins. 65% of the unique proteins had isoforms. 39% of the identified SGAPs were involved in starch biosynthesis with main functions in polyglucan elongation and granule structure trimming. Almost all proteins involved in starch biosynthesis, amino acid biosynthesis, glycolysis, protein folding, and PPDK pathways increased abundance as the endosperm developed, and were predicted in an interaction network. The network represents an important mechanism to orchestrate carbon partitioning among starch biosynthesis, amino acid biosynthesis and glycolysis for efficient starch and protein storage. These results provide novel insights into mechanisms of starch biosynthesis and its coordination with amino acid metabolisms and glycolysis in cereal endosperms. PMID:27252723

  16. Shoot branching.

    PubMed

    Ward, Sally P; Leyser, Ottoline

    2004-02-01

    The mature form of a plant shoot system is an expression of several genetically controlled traits, many of which are also environmentally regulated. A major component of this architectural variation is the degree of shoot branching. Recent results indicate conserved mechanisms for shoot branch development across the monocots and eudicots. The existence of a novel long-range branch-inhibiting signal has been inferred from studies of branching mutants in pea and Arabidopsis. PMID:14732444

  17. PROTEIN TARGETING TO STARCH Is Required for Localising GRANULE-BOUND STARCH SYNTHASE to Starch Granules and for Normal Amylose Synthesis in Arabidopsis

    PubMed Central

    Seung, David; Soyk, Sebastian; Coiro, Mario; Maier, Benjamin A.; Eicke, Simona; Zeeman, Samuel C.

    2015-01-01

    The domestication of starch crops underpinned the development of human civilisation, yet we still do not fully understand how plants make starch. Starch is composed of glucose polymers that are branched (amylopectin) or linear (amylose). The amount of amylose strongly influences the physico-chemical behaviour of starchy foods during cooking and of starch mixtures in non-food manufacturing processes. The GRANULE-BOUND STARCH SYNTHASE (GBSS) is the glucosyltransferase specifically responsible for elongating amylose polymers and was the only protein known to be required for its biosynthesis. Here, we demonstrate that PROTEIN TARGETING TO STARCH (PTST) is also specifically required for amylose synthesis in Arabidopsis. PTST is a plastidial protein possessing an N-terminal coiled coil domain and a C-terminal carbohydrate binding module (CBM). We discovered that Arabidopsis ptst mutants synthesise amylose-free starch and are phenotypically similar to mutants lacking GBSS. Analysis of granule-bound proteins showed a dramatic reduction of GBSS protein in ptst mutant starch granules. Pull-down assays with recombinant proteins in vitro, as well as immunoprecipitation assays in planta, revealed that GBSS physically interacts with PTST via a coiled coil. Furthermore, we show that the CBM domain of PTST, which mediates its interaction with starch granules, is also required for correct GBSS localisation. Fluorescently tagged Arabidopsis GBSS, expressed either in tobacco or Arabidopsis leaves, required the presence of Arabidopsis PTST to localise to starch granules. Mutation of the CBM of PTST caused GBSS to remain in the plastid stroma. PTST fulfils a previously unknown function in targeting GBSS to starch. This sheds new light on the importance of targeting biosynthetic enzymes to sub-cellular sites where their action is required. Importantly, PTST represents a promising new gene target for the biotechnological modification of starch composition, as it is exclusively involved

  18. Effect of Microwave Irradiation on the Physicochemical and Digestive Properties of Lotus Seed Starch.

    PubMed

    Zeng, Shaoxiao; Chen, Bingyan; Zeng, Hongliang; Guo, Zebin; Lu, Xu; Zhang, Yi; Zheng, Baodong

    2016-03-30

    The objective of this study is to investigate the effect of microwave irradiation on the physicochemical and digestive properties of lotus seed starch. The physicochemical properties of lotus seed starch were characterized by light microscopy, (1)H NMR, FT-IR spectroscopy, and HPSEC-MALLS-RI. The starch-water interaction and crystalline region increased due to the changed water distribution of starch granules and the increase of the double-helix structure. The swelling power, amylose leaching, molecular properties, and radius of gyration reduced with the increasing microwave power, which further affected the sensitivity of lotus seed starch to enzymatic degradation. Furthermore, the resistant starch and slowly digestible starch increased with the increasing microwave irradiation, which further resulted in their decreasing hydrolysis index and glycemic index. The digestive properties of lotus seed starch were mainly influenced by the reduced branching degree of amylopectin and the strong amylose-amylose interaction. PMID:26912092

  19. [Advances in studying microbial GH13 starch debranching enzyme--a review].

    PubMed

    Duan, Xuguo; Wu, Jing

    2013-07-01

    Pullulanase and isoamylase belong to the GH13 family (glycoside hydrolase family 13) with similar sequence, catalytic mechanism and three-dimensional fold ((beta/alpha)8-barrel structure). Starch debranching enzymes can hydrolyze the alpha-1,6-glucosidic bonds at the branch sites of starch, and improve raw material utilization and production efficiency in the starch industry. In this review, the substrate specificity, protein structure, advances and new trends in the study of microbial GH13 starch debranching enzyme were systematically introduced. In addition, some opinions on the research status and prospect for starch debranching enzyme were discussed. PMID:24195371

  20. Regulation of starch accumulation by granule-associated plant 14-3-3 proteins.

    PubMed

    Sehnke, P C; Chung, H J; Wu, K; Ferl, R J

    2001-01-16

    In higher plants the production of starch is orchestrated by chloroplast-localized biosynthetic enzymes, namely starch synthases, ADP-glucose pyrophosphorylase, and starch branching and debranching enzymes. Diurnal regulation of these enzymes, as well as starch-degrading enzymes, influences both the levels and composition of starch, and is dependent in some instances upon phosphorylation-linked regulation. The phosphoserine/threonine-binding 14-3-3 proteins participate in environmentally responsive phosphorylation-related regulatory functions in plants, and as such are potentially involved in starch regulation. We report here that reduction of the epsilon subgroup of Arabidopsis 14-3-3 proteins by antisense technology resulted in a 2- to 4-fold increase in leaf starch accumulation. Dark-governed starch breakdown was unaffected in these "antisense plants," indicating an unaltered starch-degradation pathway and suggesting a role for 14-3-3 proteins in regulation of starch synthesis. Absorption spectra and gelatinization properties indicate that the starch from the antisense plants has an altered branched glucan composition. Biochemical characterization of protease-treated starch granules from both Arabidopsis leaves and maize endosperm showed that 14-3-3 proteins are internal intrinsic granule proteins. These data suggest a direct role for 14-3-3 proteins in starch accumulation. The starch synthase III family is a possible target for 14-3-3 protein regulation because, uniquely among plastid-localized starch metabolic enzymes, all members of the family contain the conserved 14-3-3 protein phosphoserine/threonine-binding consensus motif. This possibility is strengthened by immunocapture using antibodies to DU1, a maize starch synthase III family member, and direct interaction with biotinylated 14-3-3 protein, both of which demonstrated an association between 14-3-3 proteins and DU1 or DU1-like proteins. PMID:11149942

  1. Characterization and development mechanism of Apios americana tuber starch.

    PubMed

    Yangcheng, Hanyu; Belamkar, Vikas; Cannon, Steven B; Jane, Jay-Lin

    2016-10-20

    Apios americana is a wild legume-bearing plant with edible tubers. Domestication of Apios is in progress because of the superior nutritional value and health benefits of the tuber. Objectives of this study were to: (1) characterize physicochemical properties of the Apios tuber starch; and (2) understand differences in starch structures and properties between the mother (seed) and child (progeny) tubers and the mechanism of starch development. Granules of the Apios tuber starch displayed ellipsoidal, rod, or kidney shape with diameter ranges of 1-30μm. The mother tuber starches displayed greater percentage crystallinity, larger gelatinization enthalpy-changes, longer branch-chain lengths of amylopectin, and lower pasting viscosity than their counterpart child tuber starches. The mother tuber starch of Apios 2127 displayed distinct two peaks of gelatinization, which were attributed to starch granules located at different regions of the tuber having different structures and properties. The mother tuber displayed more active starch biosynthesis in the periphery than in the center of the tuber. PMID:27474558

  2. Starch: Structure, Properties, Chemistry, and Enzymology

    NASA Astrophysics Data System (ADS)

    Robyt, John F.

    Starch is a very important and widely distributed natural product, occurring in the leaves of green plants, seeds, fruits, stems, roots, and tubers. It serves as the chemical storage form of the energy of the sun and is the primary source of energy for the organisms on the Earth. Starch is composed of two kinds of polysaccharides, amylose and amylopectin, exclusively composed of D-glucose residues with α-(1→4) linkages in a linear amylose and α-(1→4) linkages and ˜5% α-(1→6) branch linkages in amylopectin, both combined in a water-insoluble granule that is partially crystalline and whose size, shape, and morphology are dependent on its biological source. The properties, isolation, fractionation, enzymatic degradation, biosynthesis, chemical modification, and specific methods of analysis of starch are presented.

  3. On the molecular structure of the amylopectin fraction isolated from "high-amylose" ae maize starches.

    PubMed

    Peymanpour, Ghazal; Marcone, Massimo; Ragaee, Sanaa; Tetlow, Ian; Lane, Christopher C; Seetharaman, Koushik; Bertoft, Eric

    2016-10-01

    The amylopectin fractions from starch of a series of amylose-extender (ae) maize samples (HYLON(®) V, VII and VIII starches) were isolated and analysed for their molecular composition and structure. The fractions from all samples contained both a high and a low molecular weight fraction (HMF and LMF), of which LMF increased with the amylose content of the starch and appeared to have substantially more of long chains than HMF. A normal amylose-containing maize starch (NMS), which served as a reference sample, contained very little LMF, which suggested that LMF was the inherent result of the effect of the loss of starch branching enzyme IIb activity in the ae mutants. Clusters were isolated from the amylopectin fractions using Bacillus amyloliquefaciens α-amylase, which effectively hydrolyses long internal chain segments between clusters. During the hydrolysis process, clearly more of small dextrins were released from the ae starches in comparison to NMS. It appeared that some of these small dextrins did not precipitate in methanol together with the majority of the clusters. Nevertheless, isolated clusters from the HYLON starch samples were smaller than in NMS and the clusters possessed a lower density of branches with longer chains. The composition of small, branched building blocks was also clearly different: HYLON starch samples possessed much more of single-branched blocks and less multiple-branched blocks than NMS. PMID:27296443

  4. Effects of amylosucrase treatment on molecular structure and digestion resistance of pre-gelatinised rice and barley starches.

    PubMed

    Kim, Bum-Su; Kim, Hyun-Seok; Hong, Jung-Sun; Huber, Kerry C; Shim, Jae-Hoon; Yoo, Sang-Ho

    2013-06-01

    Structural modification of rice and barley starches with Neisseria polysaccharea amylosucrase (NpAS) was conducted, and relationship between structural characteristics and resistant starch (RS) contents of NpAS-treated starches was investigated. Pre-gelatinised rice and barley starches were treated with NpAS. NpAS-treated starches were characterised with respect to morphology, X-ray diffraction pattern, amylopectin branch-chain distribution, and RS content, and their structural characteristics were correlated to RS contents. Regardless of amylose contents of native starches, NpAS-treated (relative to native) starches possessed lower and higher proportions of shorter (DP 6-12) and intermediate (DP 13-36) amylopectin (AP) branch-chains, respectively. RS contents were higher for NpAS-treated starches relative to native starches, and maximum RS contents were obtained for NpAS-treated starches of waxy rice and barley genotypes. Amylose contents were not associated with RS contents of NpAS-treated starches. However, shorter and intermediate AP branch-chain portions were negatively and positively correlated to RS contents of NpAS-treated starches, respectively. PMID:23411202

  5. DNA signals at isoform promoters

    PubMed Central

    Dai, Zhiming; Xiong, Yuanyan; Dai, Xianhua

    2016-01-01

    Transcriptional heterogeneity is extensive in the genome, and most genes express variable transcript isoforms. However, whether variable transcript isoforms of one gene are regulated by common promoter elements remain to be elucidated. Here, we investigated whether isoform promoters of one gene have separated DNA signals for transcription and translation initiation. We found that TATA box and nucleosome-disfavored DNA sequences are prevalent in distinct transcript isoform promoters of one gene. These DNA signals are conserved among species. Transcript isoform has a RNA-determined unstructured region around its start site. We found that these DNA/RNA features facilitate isoform transcription and translation. These results suggest a DNA-encoded mechanism by which transcript isoform is generated. PMID:27353836

  6. DNA signals at isoform promoters.

    PubMed

    Dai, Zhiming; Xiong, Yuanyan; Dai, Xianhua

    2016-01-01

    Transcriptional heterogeneity is extensive in the genome, and most genes express variable transcript isoforms. However, whether variable transcript isoforms of one gene are regulated by common promoter elements remain to be elucidated. Here, we investigated whether isoform promoters of one gene have separated DNA signals for transcription and translation initiation. We found that TATA box and nucleosome-disfavored DNA sequences are prevalent in distinct transcript isoform promoters of one gene. These DNA signals are conserved among species. Transcript isoform has a RNA-determined unstructured region around its start site. We found that these DNA/RNA features facilitate isoform transcription and translation. These results suggest a DNA-encoded mechanism by which transcript isoform is generated. PMID:27353836

  7. Inhibition of the expression of the starch synthase II gene leads to lower pasting temperature in sweetpotato starch.

    PubMed

    Takahata, Yasuhiro; Tanaka, Masaru; Otani, Motoyasu; Katayama, Kenji; Kitahara, Kanefumi; Nakayachi, Osamu; Nakayama, Hiroki; Yoshinaga, Masaru

    2010-06-01

    The sweetpotato cultivar Quick Sweet (QS) with a lower pasting temperature of starch is a unique breeding material, but the biochemical background of this property has been unknown. To assess the physiological impact of the reduced isoform II activity of starch synthase (SSII) on the starch properties in sweetpotato storage root, transgenic sweetpotato plants with reduced expressions of the SSII gene were generated and evaluated. All of the starches from transgenic plants showed lower pasting temperatures and breakdown measured by a Rapid Visco Analyzer. The pasting temperatures in transgenic plants were approximately 10-15 degrees C lower than in wild-type plants. Distribution of the amylopectin chain length of the transgenic lines showed marked differences compared to that in wild-type plants: more chains with degree of polymerization (DP) 6-11 and fewer chains with DP 13-25. The starch granules from the storage root of transgenic plants showed cracking on the hilum, while those from wild-type plants appeared to be typical sweetpotato starch. In accordance with these observations, the expression of SSII in the storage roots of the sweetpotato cultivar with low pasting temperature starch (QS) was notably lower than in cultivars with normal starch. Moreover, nucleotide sequence analysis suggested that most of the SSII transcripts in the cultivar with low pasting temperature starch were inactive alleles. These results clearly indicate that the activity of SSII in sweetpotato storage roots, like those in other plants, affects the pasting properties of starch through alteration of the amylopectin structure. PMID:20306051

  8. Preparation of slowly digestible sweet potato Daeyumi starch by dual enzyme modification.

    PubMed

    Jo, A Ra; Kim, Ha Ram; Choi, Seung Jun; Lee, Joon Seol; Chung, Mi Nam; Han, Seon Kyeong; Park, Cheon-Seok; Moon, Tae Wha

    2016-06-01

    Sweet potato Daeyumi starch was dually modified using glycogen branching enzyme (BE) from Streptococcus mutans and amylosucrase (AS) from Neisseria polysaccharea to prepare slowly digestible starch (SDS). Dually modified starches had higher SDS and resistant starch (RS) contents than control starch. The branched chain length distributions of the BE-modified starches indicated an increase in short side-chains [degree of polymerization (DP)≤12] compared with native starch. AS treatment of the BE-modified starches decreased the proportion of short side-chains and increased the proportion of long side-chains (DP≥25) and molecular mass. It also resulted in a B-type X-ray diffraction pattern and an increased relative crystallinity. Regarding thermal properties, the BE-modified starches showed no endothermic peak, whereas the BEAS-modified starches had a broader melting temperature range and lower melting enthalpy compared to native starch. The combined enzymatic treatment resulted in novel glucan polymers with slow digestion properties. PMID:27083356

  9. Identification and Phylogenetic Analysis of a Novel Starch Synthase in Maize

    PubMed Central

    Liu, Hanmei; Yu, Guiling; Wei, Bin; Wang, Yongbin; Zhang, Junjie; Hu, Yufeng; Liu, Yinghong; Yu, Guowu; Zhang, Huaiyu; Huang, Yubi

    2015-01-01

    Starch is an important reserve of carbon and energy in plants, providing the majority of calories in the human diet and animal feed. Its synthesis is orchestrated by several key enzymes, and the amount and structure of starch, affecting crop yield and quality, are determined mainly by starch synthase (SS) activity. To date, five SS isoforms, including SSI-IV and Granule Bound Starch Synthase (GBSS) have been identified and their physiological functions have been well characterized. Here, we report the identification of a new SS isoform in maize, designated SSV. By searching sequenced genomes, SSV has been found in all green plants with conserved sequences and gene structures. Our phylogenetic analysis based on 780 base pairs has suggested that SSIV and SSV resulted from a gene duplication event, which may have occurred before the algae formation. An expression profile analysis of SSV in maize has indicated that ZmSSV is mainly transcribed in the kernel and ear leaf during the grain filling stage, which is partly similar to other SS isoforms. Therefore, it is likely that SSV may play an important role in starch biosynthesis. Subsequent analysis of SSV function may facilitate understanding the mechanism of starch granules formation, number and structure. PMID:26635839

  10. Identification and Phylogenetic Analysis of a Novel Starch Synthase in Maize.

    PubMed

    Liu, Hanmei; Yu, Guiling; Wei, Bin; Wang, Yongbin; Zhang, Junjie; Hu, Yufeng; Liu, Yinghong; Yu, Guowu; Zhang, Huaiyu; Huang, Yubi

    2015-01-01

    Starch is an important reserve of carbon and energy in plants, providing the majority of calories in the human diet and animal feed. Its synthesis is orchestrated by several key enzymes, and the amount and structure of starch, affecting crop yield and quality, are determined mainly by starch synthase (SS) activity. To date, five SS isoforms, including SSI-IV and Granule Bound Starch Synthase (GBSS) have been identified and their physiological functions have been well characterized. Here, we report the identification of a new SS isoform in maize, designated SSV. By searching sequenced genomes, SSV has been found in all green plants with conserved sequences and gene structures. Our phylogenetic analysis based on 780 base pairs has suggested that SSIV and SSV resulted from a gene duplication event, which may have occurred before the algae formation. An expression profile analysis of SSV in maize has indicated that ZmSSV is mainly transcribed in the kernel and ear leaf during the grain filling stage, which is partly similar to other SS isoforms. Therefore, it is likely that SSV may play an important role in starch biosynthesis. Subsequent analysis of SSV function may facilitate understanding the mechanism of starch granules formation, number and structure. PMID:26635839

  11. The deposition and characterization of starch in Brachypodium distachyon.

    PubMed

    Tanackovic, Vanja; Svensson, Jan T; Jensen, Susanne L; Buléon, Alain; Blennow, Andreas

    2014-10-01

    Brachypodium distachyon is a non-domesticated cereal. Nonetheless, Brachypodium was recently introduced as a model plant for temperate cereals. This study compares grain starch metabolism in Brachypodium and barley (Hordeum vulgare). In Brachypodium, we identified and annotated 28 genes involved in starch metabolism and identified important motifs including transit peptides and putative carbohydrate-binding modules (CBMs) of the families CBM20, CBM45, CBM48, and CBM53. Starch content was markedly lower in Brachypodium grains (12%) compared to barley grains (47%). Brachypodium starch granules were doughnut shaped and bimodally distributed into distinct small B-type (2.5-10 µm) and very small C-type (0.5-2.5 µm) granules. Large A-type granules, typical of cereals, were absent. Starch-bound phosphate, important for starch degradation, was 2-fold lower in Brachypodium compared with barley indicating different requirements for starch mobilization. The amylopectin branch profiles were similar and the amylose content was only slightly higher compared with barley cv. Golden Promise. The crystallinity of Brachypodium starch granules was low (10%) compared to barley (20%) as determined by wide-angle X-ray scattering (WAXS) and molecular disorder was confirmed by differential scanning calorimetry (DSC). The expression profiles in grain for most genes were distinctly different for Brachypodium compared to barley, typically showing earlier decline during the course of development, which can explain the low starch content and differences in starch molecular structure and granule characteristics. High transitory starch levels were observed in leaves of Brachypodium (2.8% after 14h of light) compared to barley (1.9% after 14h of light). The data suggest important pre-domesticated features of cereals. PMID:25056772

  12. The deposition and characterization of starch in Brachypodium distachyon

    PubMed Central

    Tanackovic, Vanja; Svensson, Jan T.; Jensen, Susanne L.; Buléon, Alain; Blennow, Andreas

    2014-01-01

    Brachypodium distachyon is a non-domesticated cereal. Nonetheless, Brachypodium was recently introduced as a model plant for temperate cereals. This study compares grain starch metabolism in Brachypodium and barley (Hordeum vulgare). In Brachypodium, we identified and annotated 28 genes involved in starch metabolism and identified important motifs including transit peptides and putative carbohydrate-binding modules (CBMs) of the families CBM20, CBM45, CBM48, and CBM53. Starch content was markedly lower in Brachypodium grains (12%) compared to barley grains (47%). Brachypodium starch granules were doughnut shaped and bimodally distributed into distinct small B-type (2.5–10 µm) and very small C-type (0.5–2.5 µm) granules. Large A-type granules, typical of cereals, were absent. Starch-bound phosphate, important for starch degradation, was 2-fold lower in Brachypodium compared with barley indicating different requirements for starch mobilization. The amylopectin branch profiles were similar and the amylose content was only slightly higher compared with barley cv. Golden Promise. The crystallinity of Brachypodium starch granules was low (10%) compared to barley (20%) as determined by wide-angle X-ray scattering (WAXS) and molecular disorder was confirmed by differential scanning calorimetry (DSC). The expression profiles in grain for most genes were distinctly different for Brachypodium compared to barley, typically showing earlier decline during the course of development, which can explain the low starch content and differences in starch molecular structure and granule characteristics. High transitory starch levels were observed in leaves of Brachypodium (2.8% after 14h of light) compared to barley (1.9% after 14h of light). The data suggest important pre-domesticated features of cereals. PMID:25056772

  13. Starch nanoparticles: a review.

    PubMed

    Le Corre, Déborah; Bras, Julien; Dufresne, Alain

    2010-05-10

    Starch is a natural, renewable, and biodegradable polymer produced by many plants as a source of stored energy. It is the second most abundant biomass material in nature. The starch structure has been under research for years, and because of its complexity, an universally accepted model is still lacking (Buleon, A.; et al. Int. J. Biol. Macromol. 1998, 23, 85-112). However, the predominant model for starch is a concentric semicrystalline multiscale structure that allows the production of new nanoelements: (i) starch nanocrystals resulting from the disruption of amorphous domains from semicrystalline granules by acid hydrolysis and (ii) starch nanoparticles produced from gelatinized starch. This paper intends to give a clear overview of starch nanoparticle preparation, characterization, properties, and applications. Recent studies have shown that they could be used as fillers to improve mechanical and barrier properties of biocomposites. Their use for industrial packaging, continuously looking for innovative solutions for efficient and sustainable systems, is being investigated. Therefore, recently, starch nanoparticles have been the focus of an exponentially increasing number of works devoted to develop biocomposites by blending starch nanoparticles with different biopolymeric matrices. To our knowledge, this topic has never been reviewed, despite several published strategies and conclusions. PMID:20405913

  14. Slowly digestible state of starch: mechanism of slow digestion property of gelatinized maize starch.

    PubMed

    Zhang, Genyi; Sofyan, Maghaydah; Hamaker, Bruce R

    2008-06-25

    The mechanism underlying the previously reported parabolic relationship between amylopectin fine structure, represented by the weight ratio of linear short chains [degree of polymerization (DP < 13) to long chains (DP >/= 13], and slowly digestible starch (SDS) content was investigated from the viewpoint of starch retrogradation and substrate susceptibility to enzyme hydrolysis. A maize mutant sample, termed "highest long-chain starch" (HLCS) representing group I samples with a higher proportion of long chains, showed a bell-shaped SDS pattern with retrogradation time, whereas insignificant changes in SDS were found for the sample termed "highest short-chain starch" (HSCS) representing group II samples with a higher proportion of short chains. This corresponded to results from X-ray powder diffraction and differential scanning calorimetry that showed a rapid increase of crystallinity and enthalpy for HLCS during retrogradation, but negligible changes for sample HSCS. Therefore, retrogradation was associated with SDS content for group I samples, but not for group II samples. Analysis of amylopectin fine structure, SDS content, retrogradation enthalpy, SDS material debranching profile, and hydrolysis pattern demonstrated, for group I samples, that linear branched chains of DP 9-30 of amylopectin may act as anchor points to slow the digestion of branced-chain fractions of DP > 30, which constitute the major slowly digestible portion, whereas for group II samples, it is the inherent molecular structure of amylopectin with a higher amount of branches and shorter chains that is not favorable for rapid enzyme digestion. The concept of a slowly digestible starch state (SDS state) that could be a chemical or physical entity is proposed to better describe the mechanistic underpinning of the slow digestion property of starches. PMID:18512933

  15. The evolution of putative starch-binding domains.

    PubMed

    Machovic, Martin; Janecek, Stefan

    2006-11-27

    The present bioinformatics analysis was focused on the starch-binding domains (SBDs) and SBD-like motifs sequentially related to carbohydrate-binding module (CBM) families CBM20 and CBM21. Originally, these SBDs were known from microbial amylases only. At present homologous starch- and glycogen-binding domains (or putative SBD sequences) have been recognised in various plant and animal proteins. The sequence comparison clearly showed that the SBD-like sequences in genethonin-1, starch synthase III and glucan branching enzyme should possess the real SBD function since the two tryptophans (or at least two aromatics) of the typical starch-binding site 1 are conserved in their sequences. The same should apply also for the sequences corresponding with the so-called KIS-domain of plant AKINbetagamma protein that is a homologue of the animal AMP-activated protein kinase (AMPK). The evolutionary tree classified the compared SBDs into three distinct groups: (i) the family CBM20 (the motifs from genethonins, laforins, starch excess 4 protein, beta-subunits of the animal AMPK and all plant and yeast homologues, and eventually from amylopullulanases); (ii) the family CBM21 (the motifs from regulatory subunits of protein phosphatase 1 together with those from starch synthase III); and (iii) the (CBM20+CBM21)-related group (the motifs from the pullulanase subfamily consisting of pullulanase, branching enzyme, isoamylase and maltooligosyl trehalohydrolase). PMID:17084392

  16. Starch biosynthetic genes and enzymes are expressed and active in the absence of starch accumulation in sugar beet tap-root

    PubMed Central

    2014-01-01

    Background Starch is the predominant storage compound in underground plant tissues like roots and tubers. An exception is sugar beet tap-root (Beta vulgaris ssp altissima) which exclusively stores sucrose. The underlying mechanism behind this divergent storage accumulation in sugar beet is currently not fully known. From the general presence of starch in roots and tubers it could be speculated that the lack in sugar beet tap-roots would originate from deficiency in pathways leading to starch. Therefore with emphasis on starch accumulation, we studied tap-roots of sugar beet using parsnip (Pastinaca sativa) as a comparator. Results Metabolic and structural analyses of sugar beet tap-root confirmed sucrose as the exclusive storage component. No starch granules could be detected in tap-roots of sugar beet or the wild ancestor sea beet (Beta vulgaris ssp. maritima). Analyses of parsnip showed that the main storage component was starch but tap-root tissue was also found to contain significant levels of sugars. Surprisingly, activities of four main starch biosynthetic enzymes, phosphoglucomutase, ADP-glucose pyrophosphorylase, starch synthase and starch branching enzyme, were similar in sugar beet and parsnip tap-roots. Transcriptional analysis confirmed expression of corresponding genes. Additionally, expression of genes involved in starch accumulation such as for plastidial hexose transportation and starch tuning functions could be determined in tap-roots of both plant species. Conclusion Considering underground storage organs, sugar beet tap-root upholds a unique property in exclusively storing sucrose. Lack of starch also in the ancestor sea beet indicates an evolved trait of biological importance. Our findings in this study show that gene expression and enzymatic activity of main starch biosynthetic functions are present in sugar beet tap-root during storage accumulation. In view of this, the complete lack of starch in sugar beet tap-roots is enigmatic. PMID

  17. Structural characteristics of slowly digestible starch and resistant starch isolated from heat-moisture treated waxy potato starch.

    PubMed

    Lee, Chang Joo; Moon, Tae Wha

    2015-07-10

    The objective of this study was to investigate the structural characteristics of slowly digestible starch (SDS) and resistant starch (RS) fractions isolated from heat-moisture treated waxy potato starch. The waxy potato starch with 25.7% moisture content was heated at 120°C for 5.3h. Scanning electron micrographs of the cross sections of RS and SDS+RS fractions revealed a growth ring structure. The branch chain-length distribution of debranched amylopectin from the RS fraction had a higher proportion of long chains (DP ≥ 37) than the SDS+RS fraction. The X-ray diffraction intensities of RS and SDS+RS fractions were increased compared to the control. The SDS+RS fraction showed a lower gelatinization enthalpy than the control while the RS fraction had a higher value than the SDS+RS fraction. In this study we showed the RS fraction is composed mainly of crystalline structure and the SDS fraction consists of weak crystallites and amorphous regions. PMID:25857975

  18. Analysis of starch in food systems by high-performance size exclusion chromatography.

    PubMed

    Ovando-Martínez, Maribel; Whitney, Kristin; Simsek, Senay

    2013-02-01

    Starch has unique physicochemical characteristics among food carbohydrates. Starch contributes to the physicochemical attributes of food products made from roots, legumes, cereals, and fruits. It occurs naturally as distinct particles, called granules. Most starch granules are a mixture of 2 sugar polymers: a highly branched polysaccharide named amylopectin and a basically linear polysaccharide named amylose. The starch contained in food products undergoes changes during processing, which causes changes in the starch molecular weight and amylose to amylopectin ratio. The objective of this study was to develop a new, simple, 1-step, and accurate method for simultaneous determination of amylose and amylopectin ratio as well as weight-averaged molecular weights of starch in food products. Starch from bread flour, canned peas, corn flake cereal, snack crackers, canned kidney beans, pasta, potato chips, and white bread was extracted by dissolving in KOH, urea, and precipitation with ethanol. Starch samples were solubilized and analyzed on a high-performance size exclusion chromatography (HPSEC) system. To verify the identity of the peaks, fractions were collected and soluble starch and beta-glucan assays were performed additional to gas chromatography analysis. We found that all the fractions contain only glucose and soluble starch assay is correlated to the HPSEC fractionation. This new method can be used to determine amylose amylopectin ratio and weight-averaged molecular weight of starch from various food products using as low as 25 mg dry samples. PMID:23330715

  19. Starch Metabolism in Arabidopsis

    PubMed Central

    Streb, Sebastian; Zeeman, Samuel C.

    2012-01-01

    Starch is the major non-structural carbohydrate in plants. It serves as an important store of carbon that fuels plant metabolism and growth when they are unable to photosynthesise. This storage can be in leaves and other green tissues, where it is degraded during the night, or in heterotrophic tissues such as roots, seeds and tubers, where it is stored over longer time periods. Arabidopsis accumulates starch in many of its tissues, but mostly in its leaves during the day. It has proven to be a powerful genetic system for discovering how starch is synthesised and degraded, and new proteins and processes have been discovered. Such work has major significance for our starch crops, whose yield and quality could be improved by the application of this knowledge. Research into Arabidopsis starch metabolism has begun to reveal how its daily turnover is integrated into the rest of metabolism and adapted to the environmental conditions. Furthermore, Arabidopsis mutant lines deficient in starch metabolism have been employed as tools to study other biological processes ranging from sugar sensing to gravitropism and flowering time control. This review gives a detailed account of the use of Arabidopsis to study starch metabolism. It describes the major discoveries made and presents an overview of our understanding today, together with some as-yet unresolved questions. PMID:23393426

  20. Molecular and supra-molecular structure of waxy starches developed from cassava (Manihot esculenta Crantz).

    PubMed

    Rolland-Sabaté, Agnès; Sanchez, Teresa; Buléon, Alain; Colonna, Paul; Ceballos, Hernan; Zhao, Shan-Shan; Zhang, Peng; Dufour, Dominique

    2013-02-15

    The aim of this work was to characterize the amylopectin of low amylose content cassava starches obtained from transgenesis comparatively with a natural waxy cassava starch (WXN) discovered recently in CIAT (International Center for Tropical Agriculture). Macromolecular features, starch granule morphology, crystallinity and thermal properties of these starches were determined. M¯(w) of amylopectin from the transgenic varieties are lower than WXN. Branched and debranched chain distributions analyses revealed slight differences in the branching degree and structure of these amylopectins, principally on DP 6-9 and DP>37. For the first time, a deep structural characterization of a series of transgenic lines of waxy cassava was carried out and the link between structural features and the mutated gene expression approached. The transgenesis allows to silenced partially or totally the GBSSI, without changing deeply the starch granule ultrastructure and allows to produce clones with similar amylopectin as parental cassava clone. PMID:23399176

  1. Enzymatic acylation of starch.

    PubMed

    Alissandratos, Apostolos; Halling, Peter J

    2012-07-01

    Starch a cheap, abundant and renewable natural material has been chemically modified for many years. The popular modification acylation has been used to adjust rheological properties as well as deliver polymers with internal plasticizers and other potential uses. However the harsh reaction conditions required to produce these esters may limit their use, especially in sensitive applications (foods, pharmaceuticals, etc.). The use of enzymes to catalyse acylation may provide a suitable alternative due to high selectivities and mild reaction conditions. Traditional hydrolase-catalysed synthesis in non-aqueous apolar media is hard due to lack of polysaccharide solubility. However, acylated starch derivatives have recently been successfully produced in other non-conventional systems: (a) surfactant-solubilised subtilisin and suspended amylose in organic media; (b) starch nanoparticles dispersed in organic medium with immobilised lipase; (c) aqueous starch gels with lipase and dispersed fatty acids. We attempt a systematic review that draws parallels between the seemingly unrelated approaches described. PMID:22138593

  2. Resistant starches and health.

    PubMed

    Kendall, Cyril W C; Emam, Azadeh; Augustin, Livia S A; Jenkins, David J A

    2004-01-01

    It was initially hypothesized that resistant starches, i.e., starch that enters the colon, would have protective effects on chronic colonic diseases, including reduction of colon cancer risk and in the treatment of ulcerative colitis. Recent studies have confirmed the ability of resistant starch to increase fecal bulk, increase the molar ratio of butyrate in relation to other short-chain fatty acids, and dilute fecal bile acids. However the ability of resistant starch to reduce luminal concentrations of compounds that are damaging to the colonic mucosa, including fecal ammonia, phenols, and N-nitroso compounds, still requires clear demonstration. As such, the effectiveness of resistant starch in preventing or treating colonic diseases remains to be assessed. Nevertheless, there is a fraction of what has been termed resistant (RS1) starch, which enters the colon and acts as slowly digested or lente carbohydrate in the small intestine. Foods in this class are low glycemic index and have been shown to reduce the risk of chronic disease. They have been associated with systemic physiological effects such as reduced postprandial insulin levels and higher HDL cholesterol levels. Consumption of low glycemic index foods has been shown to be related to reductions in risk of coronary heart disease and Type 2 diabetes. Type 2 diabetes has in turn been related to a higher risk of colon cancer. If carbohydrates have a protective role in colon cancer prevention this may lie partly in the systemic effects of low glycemic index foods. The colonic advantages of different carbohydrates, varying in their glycemic index and resistant starch content, therefore, remain to be determined. However, as recent positive research findings continue to mount, there is reason for optimism over the possible health advantages of those resistant starches, which are slowly digested in the small intestine. PMID:15287678

  3. Differentiation of the properties of the branching isozymes from maize (Zea mays)

    SciTech Connect

    Guan, H.P.; Preiss, J. )

    1993-08-01

    The multiple forms of branching enzyme (BE) from developing maize (Zea mays) endosperm were purified by modification of previous procedures such that amylase activity could be eliminated completely from the BE preparation. Three distinct assays for BE activity (phosphorylase a stimulation assay, BE linkage assay, and iodine stain assay) were used to characterize and differentiate that properties of the BE isoforms. This study present s the first evidence that the BE isoforms differ in their action on amylopectin. BEI has the highest activity in branching amylose, but its rate of branching amylopectin was less than 5% of that of branching amylose. Conversely, BEII isoforms had lower rates in branching amylose (about 9--12% of that of BEI) and had higher rates of branching amylopectin (about 6-fold) than BEI. The implication of these findings to the mechanism of amylopectin synthesis in vivo are discussed. 21 refs., 1 figs., 5 tabs.

  4. Physicochemical properties of Venezuelan breadfruit (Artocarpus altilis) starch.

    PubMed

    Rincón, Alicia Mariela; Padilla, Fanny C

    2004-12-01

    Artocarpus altilis, seedless variety, is a fruit-producing plant which is cultived in Margarita Island, Venezuela, and is consumed by the inhabitants of the region. Its chemical composition and physical characteristics were determined. The chemical (AOAC and AACC methods), physicochemical, morphometric characteristics, viscoamylographic properties and digestibility in vitro of starch from Artocarpus were studied. The starch yield was 18.5 g/100 g (dw)w with a purity of 98.86%, 27.68 and 72.32% of amylose and amylopectin, respectively. Scanning electron microscopy showed irregular-rounded granules. Swelling power, water absorption and solubility values were determined and found to be higher than that of corn and amaranth starch. The amylographic study showed a gelatinization temperature at 73.3 degrees C, with high stability during heating and cooling cycles. Artocarpus starch could also be categorized in the group of mixed short chain branched/long chain branched glucan starches, this agrees with digestibility results that showed a high degree of digestibility in vitro. These results might be advantageous in medical and food use. PMID:15969272

  5. Overexpression of the Starch Phosphorylase-Like Gene (PHO3) in Lotus japonicus has a Profound Effect on the Growth of Plants and Reduction of Transitory Starch Accumulation

    PubMed Central

    Qin, Shanshan; Tang, Yuehui; Chen, Yaping; Wu, Pingzhi; Li, Meiru; Wu, Guojiang; Jiang, Huawu

    2016-01-01

    Two isoforms of starch phosphorylase (PHO; EC 2.4.1.1), plastidic PHO1 and cytosolic PHO2, have been found in all plants studied to date. Another starch phosphorylase-like gene, PHO3, which is an ortholog of Chlamydomonas PHOB, has been detected in some plant lineages. In this study, we identified three PHO isoform (LjPHO) genes in the Lotus japonicus genome. Expression of the LjPHO3 gene was observed in all tissues tested in L. japonicus, and the LjPHO3 protein was located in the chloroplast. Overexpression of LjPHO3 in L. japonicus resulted in a drastic decline in starch granule sizes and starch content in leaves. The LjPHO3 overexpression transgenic seedlings were smaller, and showed decreased pollen fertility and seed set rate. Our results suggest that LjPHO3 may participate in transitory starch metabolism in L. japonicus leaves, but its catalytic properties remain to be studied.

  6. Centrifugally spun starch-based fibers from amylopectin rich starches.

    PubMed

    Li, Xianglong; Chen, Huanhuan; Yang, Bin

    2016-02-10

    Centrifugal spinning and electrospinning have proved to be effective techniques for fabricating micro-to-nanofibers. However, starches of amylopectin content above 65% cannot be fabricated to fiber by electrospinning. This paper is focus on the centrifugal spinnability of amylopectin rich starches. We investigated the amylopectin content of starches by Dual-wavelength colorimetry, studied the rheological properties of starch dopes to determine entanglement concentration (ce) by rotary rheometer. Results indicated that amylopectin rich native corn and potato starches, which with amylopectin content higher than 65%, were suitable for centrifugal spinning to micro-to-nanofibers. Additionally, starch-based fibers were successfully fabricated from the amylose rich corn starch as well. Rheological studies showed that the entanglement concentration (ce) of starch solution was crucial for successful centrifugal spinning. PMID:26686151

  7. Characterization of enzymatically modified rice and barley starches with amylosucrase at scale-up production.

    PubMed

    Kim, Bum-Su; Kim, Hyun-Seok; Yoo, Sang-Ho

    2015-07-10

    Physicochemical properties of Neisseria polysaccharea amylosucrase (NpAS)-treated rice and barley starches were investigated at scale-up production. Pre-gelatinized rice and barley starches were treated with significantly lower NpAS dose (0.1 U/mL) but 100 times larger reaction volume (3500 mL), compared to the analytical scale (35 mL) used in the previous study. NpAS-treated starches in this scale-up production were characterized with respect to reaction efficiency (RE), resistant starch (RS) content, amylopectin (AP) branch-chain length distribution, solubility, swelling power, pasting viscosity, and thermal transition properties. The RE enhanced up to 1.8 times by increasing the reaction volume, which improved the RS content and AP branch-chain lengths of NpAS-treated starches. Compared with the native starch, NpAS-treated starches exhibited lower solubility and swelling power, lower pasting viscosity, and a large increase in the melting peak temperature. Consequently, NpAS treatment of pre-gelatinized starches in this study would be a potential way of replacing commercial RS production. PMID:25857960

  8. Characterization of SU1 isoamylase, a determinant of storage starch structure in maize.

    PubMed

    Rahman, A; Wong, K s; Jane, J l; Myers, A M; James, M G

    1998-06-01

    Function of the maize (Zea mays) gene sugary1 (su1) is required for normal starch biosynthesis in endosperm. Homozygous su1- mutant endosperms accumulate a highly branched polysaccharide, phytoglycogen, at the expense of the normal branched component of starch, amylopectin. These data suggest that both branched polysaccharides share a common precursor, and that the product of the su1 gene, designated SU1, participates in kernel starch biosynthesis. SU1 is similar in sequence to alpha-(1-->6) glucan hydrolases (starch-debranching enzymes [DBEs]). Specific antibodies were produced and used to demonstrate that SU1 is a 79-kD protein that accumulates in endosperm coincident with the time of starch biosynthesis. Nearly full-length SU1 was expressed in Escherichia coli and purified to apparent homogeneity. Two biochemical assays confirmed that SU1 hydrolyzes alpha-(1-->6) linkages in branched polysaccharides. Determination of the specific activity of SU1 toward various substrates enabled its classification as an isoamylase. Previous studies had shown, however, that su1- mutant endosperms are deficient in a different type of DBE, a pullulanase (or R enzyme). Immunoblot analyses revealed that both SU1 and a protein detected by antibodies specific for the rice (Oryza sativa) R enzyme are missing from su1- mutant kernels. These data support the hypothesis that DBEs are directly involved in starch biosynthesis. PMID:9625695

  9. Characterization of SU1 Isoamylase, a Determinant of Storage Starch Structure in Maize1

    PubMed Central

    Rahman, Afroza; Wong, Kit-sum; Jane, Jay-lin; Myers, Alan M.; James, Martha G.

    1998-01-01

    Function of the maize (Zea mays) gene sugary1 (su1) is required for normal starch biosynthesis in endosperm. Homozygous su1- mutant endosperms accumulate a highly branched polysaccharide, phytoglycogen, at the expense of the normal branched component of starch, amylopectin. These data suggest that both branched polysaccharides share a common precursor, and that the product of the su1 gene, designated SU1, participates in kernel starch biosynthesis. SU1 is similar in sequence to α-(1→6) glucan hydrolases (starch-debranching enzymes [DBEs]). Specific antibodies were produced and used to demonstrate that SU1 is a 79-kD protein that accumulates in endosperm coincident with the time of starch biosynthesis. Nearly full-length SU1 was expressed in Escherichia coli and purified to apparent homogeneity. Two biochemical assays confirmed that SU1 hydrolyzes α-(1→6) linkages in branched polysaccharides. Determination of the specific activity of SU1 toward various substrates enabled its classification as an isoamylase. Previous studies had shown, however, that su1- mutant endosperms are deficient in a different type of DBE, a pullulanase (or R enzyme). Immunoblot analyses revealed that both SU1 and a protein detected by antibodies specific for the rice (Oryza sativa) R enzyme are missing from su1- mutant kernels. These data support the hypothesis that DBEs are directly involved in starch biosynthesis. PMID:9625695

  10. Differential Roles of PML Isoforms.

    PubMed

    Nisole, Sébastien; Maroui, Mohamed Ali; Mascle, Xavier H; Aubry, Muriel; Chelbi-Alix, Mounira K

    2013-01-01

    The tumor suppressor promyelocytic leukemia (PML) protein is fused to the retinoic acid receptor alpha in patients suffering from acute promyelocytic leukemia (APL). Treatment of APL patients with arsenic trioxide (As2O3) reverses the disease phenotype by a process involving the degradation of the fusion protein via its PML moiety. Several PML isoforms are generated from a single PML gene by alternative splicing. They share the same N-terminal region containing the RBCC/tripartite motif but differ in their C-terminal sequences. Recent studies of all the PML isoforms reveal the specific functions of each. Here, we review the nomenclature and structural organization of the PML isoforms in order to clarify the various designations and classifications found in different databases. The functions of the PML isoforms and their differential roles in antiviral defense also are reviewed. Finally, the key players involved in the degradation of the PML isoforms in response to As2O3 or other inducers are discussed. PMID:23734343

  11. Development of maize starch granules

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize kernels of self-pollinated inbred line B73 harvested on various days after pollination (DAP) were subjected for starch granule development studies. Starch in endosperms was first observed on 6 DAP. A small amount of starch granules (<2% of dry weight) was found in the endosperm on 12 DAP. S...

  12. SURFACE PROPERTIES OF WATER SOLUBLE STARCH, STARCH ACETATES AND STARCH ACETATES/ALKENYLSUCCINATES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface and interfacial tensions with hexadecane were measured for starch and water soluble starch ester solutions in order to determine their potential as stabilizers or emulsifiers. The surface tension for an acid hydrolysed starch (maltodextrin) initially declined with concentration and then rea...

  13. The impact of elevated CO2 concentration on the quality of algal starch as a potential biofuel feedstock.

    PubMed

    Tanadul, Orn-U-Ma; VanderGheynst, Jean S; Beckles, Diane M; Powell, Ann L T; Labavitch, John M

    2014-07-01

    Cultured microalgae are viewed as important producers of lipids and polysaccharides, both of which are precursor molecules for the production of biofuels. This study addressed the impact of elevated carbon dioxide (CO2) on Chlorella sorokiniana production of starch and on several properties of the starch produced. The production of C. sorokiniana biomass, lipid and starch were enhanced when cultures were supplied with 2% CO2. Starch granules from algae grown in ambient air and 2% CO2 were analyzed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The granules from algae grown in 2% CO2 were disk-shaped and contained mainly stromal starch; granules from cultures grown in ambient air were cup-shaped with primarily pyrenoid starch. The granules from cells grown in 2% CO2 had a higher proportion of the accumulated starch as the highly branched, amylopectin glucan than did granules from cells grown in air. The rate of hydrolysis of starch from 2% CO2-grown cells was 1.25 times greater than that from air-grown cells and 2-11 times higher than the rates of hydrolysis of starches from cereal grains. These data indicate that culturing C. sorokiniana in elevated CO2 not only increases biomass yield but also improves the structure and composition of starch granules for use in biofuel generation. These modifications in culture conditions increase the hydrolysis efficiency of the starch hydrolysis, thus providing potentially important gains for biofuel production. PMID:24474069

  14. Cell wall degradation is required for normal starch mobilisation in barley endosperm.

    PubMed

    Andriotis, Vasilios M E; Rejzek, Martin; Barclay, Elaine; Rugen, Michael D; Field, Robert A; Smith, Alison M

    2016-01-01

    Starch degradation in barley endosperm provides carbon for early seedling growth, but the control of this process is poorly understood. We investigated whether endosperm cell wall degradation is an important determinant of the rate of starch degradation. We identified iminosugar inhibitors of enzymes that degrade the cell wall component arabinoxylan. The iminosugar 1,4-dideoxy-1, 4-imino-l-arabinitol (LAB) inhibits arabinoxylan arabinofuranohydrolase (AXAH) but does not inhibit the main starch-degrading enzymes α- and β-amylase and limit dextrinase. AXAH activity in the endosperm appears soon after the onset of germination and resides in dimers putatively containing two isoforms, AXAH1 and AXAH2. Upon grain imbibition, mobilisation of arabinoxylan and starch spreads across the endosperm from the aleurone towards the crease. The front of arabinoxylan degradation precedes that of starch degradation. Incubation of grains with LAB decreases the rate of loss of both arabinoxylan and starch, and retards the spread of both degradation processes across the endosperm. We propose that starch degradation in the endosperm is dependent on cell wall degradation, which permeabilises the walls and thus permits rapid diffusion of amylolytic enzymes. AXAH may be of particular importance in this respect. These results provide new insights into the mobilization of endosperm reserves to support early seedling growth. PMID:27622597

  15. Impact of molecular and crystalline structures on in vitro digestibility of waxy rice starches.

    PubMed

    You, Su-Yeon; Lim, Seung-Taik; Lee, Ju Hun; Chung, Hyun-Jung

    2014-11-01

    The in vitro digestibility, molecular structure and crystalline structure of waxy rice starches isolated from six Korean cultivars (Shinsun, Dongjin, Baekok, Whasun, Chungbaek, and Bosuk) were investigated. The molecular weight (M(w)) of waxy rice starches ranged from 1.1 × 10(8)g/mol to 2.2 × 10(8)g/mol. Chungbaek waxy rice starch had the highest average chain length (24.3) and proportion (20.7%) of long branch chains (DP ≥ 37), and the lowest proportion (19.0%) of short branch chains (DP 6-12) among the tested six waxy rice starches. The relative crystallinity and intensity ratio of 1047/1022 ranged from 38.9% to 41.1% and from 0.691 to 0.707, respectively. Chungbaek had the highest gelatinization temperature and enthalpy. Chungbaek had the highest pasting temperature (70.7 °C), setback (324 cP) and final viscosity (943 cP), whereas Baekok showed the highest peak viscosity (1576 cP) and breakdown (1031 cP). Chungbaek had lower rapidly digestible starch (RDS) content and expected glycemic index (eGI), and higher resistant starch (RS) content, whereas Whasun exhibited higher RDS content and eGI. The slowly digestible starch (SDS) content of Shinsun (38.3%) and Bokok (32.0%) was significantly higher than that of other cultivars (11.3-22.0%). PMID:25129802

  16. RHEOLOGY OF STARCH-LIPID COMPOSITES YOGURTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yogurt is traditionally made by fermenting liquid milk. The ability of starches to thicken, gel, and hold water has been exploited in yogurt manufacture. The addition of starch increases the viscosity of yogurt, but some starches impart an undesirable taste and promote phase separation. Starch-li...

  17. The molecular structure of waxy maize starch nanocrystals.

    PubMed

    Angellier-Coussy, Hélène; Putaux, Jean-Luc; Molina-Boisseau, Sonia; Dufresne, Alain; Bertoft, Eric; Perez, Serge

    2009-08-17

    The insoluble residues obtained by submitting amylopectin-rich native starch granules from waxy maize to a mild acid hydrolysis consist of polydisperse platelet nanocrystals that have retained the allomorphic type of the parent granules. The present investigation is a detailed characterization of their molecular composition. Two major groups of dextrins were found in the nanocrystals and were isolated. Each group was then structurally characterized using beta-amylase and debranching enzymes (isoamylase and pullulanase) in combination with anion-exchange chromatography. The chain lengths of the dextrins in both groups corresponded with the thickness of the crystalline lamellae in the starch granules. Only approximately 62 mol% of the group of smaller dextrins with an average degree of polymerization (DP) 12.2 was linear, whereas the rest consisted of branched dextrins. The group of larger dextrins (DP 31.7) apparently only consisted of branched dextrins, several of which were multiply branched molecules. It was shown that many of the branch linkages were resistant to the action of the debranching enzymes. The distribution of branched molecules in the two populations of dextrins suggested that the nanocrystals possessed a regular and principally homogeneous molecular structure. PMID:19414173

  18. β-amylase 1 (BAM1) degrades transitory starch to sustain proline biosynthesis during drought stress.

    PubMed

    Zanella, Martina; Borghi, Gian Luca; Pirone, Claudia; Thalmann, Matthias; Pazmino, Diana; Costa, Alex; Santelia, Diana; Trost, Paolo; Sparla, Francesca

    2016-03-01

    During photosynthesis of higher plants, absorbed light energy is converted into chemical energy that, in part, is accumulated in the form of transitory starch within chloroplasts. In the following night, transitory starch is mobilized to sustain the heterotrophic metabolism of the plant. β-amylases are glucan hydrolases that cleave α-1,4-glycosidic bonds of starch and release maltose units from the non-reducing end of the polysaccharide chain. In Arabidopsis, nocturnal degradation of transitory starch involves mainly β-amylase-3 (BAM3). A second β-amylase isoform, β-amylase-1 (BAM1), is involved in diurnal starch degradation in guard cells, a process that sustains stomata opening. However, BAM1 also contributes to diurnal starch turnover in mesophyll cells under osmotic stress. With the aim of dissecting the role of β-amylases in osmotic stress responses in Arabidopsis, mutant plants lacking either BAM1 or BAM3 were subject to a mild (150mM mannitol) and prolonged (up to one week) osmotic stress. We show here that leaves of osmotically-stressed bam1 plants accumulated more starch and fewer soluble sugars than both wild-type and bam3 plants during the day. Moreover, bam1 mutants were impaired in proline accumulation and suffered from stronger lipid peroxidation, compared with both wild-type and bam3 plants. Taken together, these data strongly suggest that carbon skeletons deriving from BAM1 diurnal degradation of transitory starch support the biosynthesis of proline required to face the osmotic stress. We propose the transitory-starch/proline interplay as an interesting trait to be tackled by breeding technologies aimingto improve drought tolerance in relevant crops. PMID:26792489

  19. Starch Suspensions with Different Fluids

    NASA Astrophysics Data System (ADS)

    Lim, Melody; Melville, Audrey; Dijksman, Joshua; Behringer, Robert

    2014-03-01

    A suspension made of starch particles dispersed in water displays significant non-Newtonian behavior for high enough particulate concentration. This surprising behavior has recently inspired a series of experiments that have shed much light on the possible mechanism behind this phenomenon. In our studies we assess the role of the fluid phase in these suspensions. We find that using fluids other than water can significantly alter the behavior of starch suspensions. Through mechanical tests of various kinds, we assess the interaction between starch particles and different liquids, and how this interaction affects the non-Newtonian behavior of starch suspensions.

  20. Inference of Isoforms from Short Sequence Reads

    NASA Astrophysics Data System (ADS)

    Feng, Jianxing; Li, Wei; Jiang, Tao

    Due to alternative splicing events in eukaryotic species, the identification of mRNA isoforms (or splicing variants) is a difficult problem. Traditional experimental methods for this purpose are time consuming and cost ineffective. The emerging RNA-Seq technology provides a possible effective method to address this problem. Although the advantages of RNA-Seq over traditional methods in transcriptome analysis have been confirmed by many studies, the inference of isoforms from millions of short sequence reads (e.g., Illumina/Solexa reads) has remained computationally challenging. In this work, we propose a method to calculate the expression levels of isoforms and infer isoforms from short RNA-Seq reads using exon-intron boundary, transcription start site (TSS) and poly-A site (PAS) information. We first formulate the relationship among exons, isoforms, and single-end reads as a convex quadratic program, and then use an efficient algorithm (called IsoInfer) to search for isoforms. IsoInfer can calculate the expression levels of isoforms accurately if all the isoforms are known and infer novel isoforms from scratch. Our experimental tests on known mouse isoforms with both simulated expression levels and reads demonstrate that IsoInfer is able to calculate the expression levels of isoforms with an accuracy comparable to the state-of-the-art statistical method and a 60 times faster speed. Moreover, our tests on both simulated and real reads show that it achieves a good precision and sensitivity in inferring isoforms when given accurate exon-intron boundary, TSS and PAS information, especially for isoforms whose expression levels are significantly high.

  1. Mutations in the gene encoding starch synthase II profoundly alter amylopectin structure in pea embryos.

    PubMed Central

    Craig, J; Lloyd, J R; Tomlinson, K; Barber, L; Edwards, A; Wang, T L; Martin, C; Hedley, C L; Smith, A M

    1998-01-01

    Mutations at the rug5 (rugosus5) locus have been used to elucidate the role of the major soluble isoform of starch synthase II (SSII) in amylopectin synthesis in the developing pea embryo. The SSII gene maps to the rug5 locus, and the gene in one of three rug5 mutant lines has been shown to carry a base pair substitution that introduces a stop codon into the open reading frame. All three mutant alleles cause a dramatic reduction or loss of the SSII protein. The mutations have pleiotropic effects on the activities of other isoforms of starch synthase but apparently not on those of other enzymes of starch synthesis. These mutations result in abnormal starch granule morphology and amylopectin structure. Amylopectin contains fewer chains of intermediate length (B2 and B3 chains) and more very short and very long chains than does amylopectin from wild-type embryos. The results suggest that SSII may play a specific role in the synthesis of B2 and B3 chains of amylopectin. The extent to which these findings can be extrapolated to other species is discussed. PMID:9501114

  2. Starch-filled polymer composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report describes the development of degradable polymer composites that can be made at room temperature without special equipments. The developed composites are made from ethyl cyanoacrylate and starch. The polymer composites produced by this procedure contain 60 wt% of starch with compressive s...

  3. Responsive starch-based materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch, a low-cost, annually renewable resource, is naturally hydrophilic and its properties change with relative humidity. Starch’s hygroscopic nature can be used to develop materials which change shape or volume in response to environmental changes (e.g. humidity). For example, starch-based graf...

  4. Starch-Lignin Baked Foams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch-kraft lignin foams were prepared by a baking process. Replacing up to 20% of the starch with lignin has no effect on foam density or overall morphology. At 10% replacement, lignin marginally increases water resistance and modulus of elasticity but decreases strain at maximum stress. At 20% re...

  5. Brucite nanoplate reinforced starch bionanocomposites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper the mechanical reinforcement in a series of bionanocomposites films based on starch and nano-sized brucite, Mg(OH)2, was investigated. Brucite nanoplates with an aspect ratio of 9.25 were synthesized by wet precipitation and incorporated into starch matrices at different concentrations...

  6. Molecular fractionation of starch by density-gradient ultracentrifugation.

    PubMed

    Yoon, Jae Wook; Lim, Seung Taik

    2003-03-28

    Amylose and amylopectin in corn and potato starches were fractionated by centrifugation at 124,000g for 3-72 h at 40 degrees C in a gradient media, Nycodenz, based on their sedimentation rate differences. The fractions were collected from a centrifuge tube, and then analyzed by the phenol-sulfuric acid method and iodine-binding test. Amylopectin, a large and highly branched starch molecule, migrated faster than amylose and quickly reached its isopycnic point with a buoyant density of about 1.25 g/mL, exhibiting a sharp and stable carbohydrate peak. Amylose, which is a relatively small and linear molecule, however, migrated slowly in a broad density range and continued moving to higher density regions, eventually overlapping with amylopectin peak as the centrifugation continued. This could indicate that the buoyant density of amylose is similar to that of amylopectin. Under centrifugal conditions of 3 h and 124,000g, amylose and amylopectin molecules were clearly separated, and the presence of intermediate starch molecules (11.5 and 7.7% for corn and potato starch, respectively) was also observed between amylose and amylopectin fractions. The amylose content of corn and potato starches was 22.6 and 21.1%, respectively, based on the total carbohydrate analysis after the ultracentrifugation for 3 h. In alkaline gradients (pH 11 or 12.5), the sedimentation rate of starch molecules and the buoyant density of amylopectin were reduced, possibly due to the structural changes induced by alkali. PMID:12644374

  7. Dosage effects of Waxy gene on the structures and properties of corn starch.

    PubMed

    Yangcheng, Hanyu; Blanco, Michael; Gardner, Candice; Li, Xuehong; Jane, Jay-Lin

    2016-09-20

    The objective of this study was to understand dosage effects of the Waxy gene on the structures of amylose and amylopectin and on the properties of corn starch. Reciprocal crossing of isogenic normal and waxy corn lines was conducted to develop hybrids with different dosages (0, 1, 2, 3) of Waxy gene in the endosperm. The amylose content of starch and proportions of branch chains of DP 17-30 and extra-long branch chains (DP>100) of amylopectin were positively correlated with the Waxy-gene dosage. Proportions of short (DP<17) and long branch-chains (DP 30-80), however, were negatively correlated with the Waxy-gene dosage. The gelatinization conclusion-temperature and temperature-range of the starch were negatively correlated with the Waxy-gene dosage, indicating that amylose facilitated dissociation of the surrounding crystalline regions. These results helped us understand the function of granule-bound starch synthase I in the biosynthesis of amylose and amylopectin and impacts of Waxy-gene dosages on the properties of corn starch. PMID:27261752

  8. Encapsulating fatty acid esters of bioactive compounds in starch

    NASA Astrophysics Data System (ADS)

    Lay Ma, Ursula Vanesa

    Interest in the use of many bioactive compounds in foods is growing in large part because of the apparent health benefits of these molecules. However, many of these compounds can be easily degraded during processing, storage, or their passage through the gastrointestinal tract before reaching the target site. In addition, they can be bitter, acrid, or astringent, which may negatively affect the sensory properties of the product. Encapsulation of these molecules may increase their stability during processing, storage, and in the gastrointestinal tract, while providing controlled release properties. The ability of amylose to form inclusion complexes and spherulites while entrapping certain compounds has been suggested as a potential method for encapsulation of certain molecules. However, complex formation and spherulitic crystallization are greatly affected by the type of inclusion molecules, type of starch, and processing conditions. The objectives of the present investigation were to: (a) study the effect of amylose, amylopectin, and intermediate material on spherulite formation and its microstructure; (b) investigate the formation of amylose and high amylose starch inclusion complexes with ascorbyl palmitate, retinyl palmitate, and phytosterol esters; (c) evaluate the ability of spherulites to form in the presence of fatty acid esters and to entrap ascorbyl palmitate, retinyl palmitate, and phytosterol esters; and (d) evaluate the effect of processing conditions on spherulite formation and fatty acid ester entrapment. Higher ratios of linear to branched molecules resulted in the formation of more and rounder spherulites with higher heat stability. In addition to the presence of branches, it appears that spherulitic crystallization is also affected by other factors, such as degree of branching, chain length, and chain length distribution. Amylose and Hylon VII starch formed inclusion complexes with fatty acid esters of ascorbic acid, retinol, or phytosterols

  9. Starches, Sugars and Obesity

    PubMed Central

    Aller, Erik E. J. G.; Abete, Itziar; Astrup, Arne; Martinez, J. Alfredo; van Baak, Marleen A.

    2011-01-01

    The rising prevalence of obesity, not only in adults but also in children and adolescents, is one of the most important public health problems in developed and developing countries. As one possible way to tackle obesity, a great interest has been stimulated in understanding the relationship between different types of dietary carbohydrate and appetite regulation, body weight and body composition. The present article reviews the conclusions from recent reviews and meta-analyses on the effects of different starches and sugars on body weight management and metabolic disturbances, and provides an update of the most recent studies on this topic. From the literature reviewed in this paper, potential beneficial effects of intake of starchy foods, especially those containing slowly-digestible and resistant starches, and potential detrimental effects of high intakes of fructose become apparent. This supports the intake of whole grains, legumes and vegetables, which contain more appropriate sources of carbohydrates associated with reduced risk of cardiovascular and other chronic diseases, rather than foods rich in sugars, especially in the form of sugar-sweetened beverages. PMID:22254101

  10. Substituent distribution changes the pasting and emulsion properties of octenylsuccinate starch.

    PubMed

    Wang, Chan; He, Xiaowei; Fu, Xiong; Huang, Qiang; Zhang, Bin

    2016-01-01

    An improved preparation method of octenylsuccinate (OS) starch under high shear condition was described in this study. The distribution of OS substituents at the granular and molecular levels was assessed by confocal laser scanning microscopy (CLSM), β-amylase hydrolysis, chromatographic and (1)H NMR techniques. We found that the OS group distribution could change the pasting and emulsion properties of OS starches. Specifically, more uniform OS group distribution was identified in the central region of OS starch granules prepared under high shear condition (H-OS-starch), and OS groups were located both near the branching points and the non-reducing ends. More OS groups exposed outside of non-reducing ends would access the interface between oil and water and give more stabilized emulsion. PMID:26453852

  11. Regulation of Leaf Starch Degradation by Abscisic Acid Is Important for Osmotic Stress Tolerance in Plants[OPEN

    PubMed Central

    Thalmann, Matthias; Pazmino, Diana; Seung, David; Horrer, Daniel; Nigro, Arianna; Meier, Tiago; Zeeman, Samuel C.; Santelia, Diana

    2016-01-01

    Starch serves functions that range over a timescale of minutes to years, according to the cell type from which it is derived. In guard cells, starch is rapidly mobilized by the synergistic action of β-AMYLASE1 (BAM1) and α-AMYLASE3 (AMY3) to promote stomatal opening. In the leaves, starch typically accumulates gradually during the day and is degraded at night by BAM3 to support heterotrophic metabolism. During osmotic stress, starch is degraded in the light by stress-activated BAM1 to release sugar and sugar-derived osmolytes. Here, we report that AMY3 is also involved in stress-induced starch degradation. Recently isolated Arabidopsis thaliana amy3 bam1 double mutants are hypersensitive to osmotic stress, showing impaired root growth. amy3 bam1 plants close their stomata under osmotic stress at similar rates as the wild type but fail to mobilize starch in the leaves. 14C labeling showed that amy3 bam1 plants have reduced carbon export to the root, affecting osmolyte accumulation and root growth during stress. Using genetic approaches, we further demonstrate that abscisic acid controls the activity of BAM1 and AMY3 in leaves under osmotic stress through the AREB/ABF-SnRK2 kinase-signaling pathway. We propose that differential regulation and isoform subfunctionalization define starch-adaptive plasticity, ensuring an optimal carbon supply for continued growth under an ever-changing environment. PMID:27436713

  12. Starch modification with microbial alpha-glucanotransferase enzymes.

    PubMed

    van der Maarel, Marc J E C; Leemhuis, Hans

    2013-03-01

    Starch is an agricultural raw material used in many food and industrial products. It is present in granules that vary in shape in the form of amylose and amylopectin. Starch-degrading enzymes are used on a large scale in the production of sweeteners (high fructose corn syrup) and concentrated glucose syrups as substrate for the fermentative production of bioethanol and basic chemicals. Over the last two decades α-glucanotransferases (EC 2.4.1.xx), such as branching enzyme (EC 2.4.1.18) and 4-α-glucanotransferase (EC 2.4.1.25), have received considerable attention. These enzymes do not hydrolyze the starch as amylases do. Instead, α-glucanotransferases remodel parts of the amylose and amylopectin molecules by cleaving and reforming α-1,4- and α-1,6-glycosidic bond. Here we review the properties of α-glucanotransferases and discuss the emerging use of these enzymes in the generation of novel starch derivatives. PMID:23465909

  13. Molecular details of a starch utilization pathway in the human gut symbiont Eubacterium rectale

    PubMed Central

    Cockburn, Darrell W.; Orlovsky, Nicole I.; Foley, Matthew H.; Kwiatkowski, Kurt J.; Bahr, Constance M.; Maynard, Mallory; Demeler, Borries; Koropatkin, Nicole M.

    2015-01-01

    Summary Eubacterium rectale is a prominent human gut symbiont yet little is known about the molecular strategies this bacterium has developed to acquire nutrients within the competitive gut ecosystem. Starch is one of the most abundant glycans in the human diet, and E. rectale increases in vivo when the host consumes a diet rich in resistant starch, although it is not a primary degrader of this glycan. Here we present the results of a quantitative proteomics study in which we identify two glycoside hydrolase 13 family enzymes, and three ABC transporter solute-binding proteins that are abundant during growth on starch and, we hypothesize, work together at the cell surface to degrade starch and capture the released maltooligosaccharides. EUR_21100 is a multidomain cell wall anchored amylase that preferentially targets starch polysaccharides, liberating maltotetraose, while the membrane associated maltogenic amylase EUR_01860 breaks down maltooligosaccharides longer than maltotriose. The three solute-binding proteins display a range of glycan-binding specificities that ensure the capture of glucose through maltoheptaose and some α1,6-branched glycans. Taken together, we describe a pathway for starch utilization by E. rectale DSM 17629 that may be conserved among other starch-degrading Clostridium cluster XIVa organisms in the human gut. PMID:25388295

  14. Physicochemical properties and digestibility of common bean (Phaseolus vulgaris L.) starches.

    PubMed

    Du, Shuang-Kui; Jiang, Hongxin; Ai, Yongfeng; Jane, Jay-Lin

    2014-08-01

    Physicochemical properties and digestibility of pinto bean, red kidney bean, black bean and navy bean starches were analyzed. All the common bean starches had oval and spherical granules with average diameter of 25.3-27.4 μm. Amylose contents were 32.0-45.4%. Black bean starch showed the highest peak viscosity, breakdown, final viscosity and setback, whereas red kidney bean starch showed the lowest pasting temperature, peak viscosity, breakdown, and setback. Pinto bean starch showed the highest onset and peak gelatinization temperatures, and the lowest gelatinization temperature range; whereas navy bean starch exhibited the lowest values. Amylopectin of red kidney bean had the highest molecular weight (Mw) and z-average gyration radius (Rz), whereas black bean amylopectin had the lowest values of Mw and Rz. The proportions of DP 6-12, DP 13-24, DP 25-36, and DP ≥ 37 and average branch-chain lengths were 23.30-35.21%, 47.79-53.53%, 8.99-12.65%, 6.39-13.49%, and 17.91-21.56, respectively. All the native bean starches were highly resistant to enzyme digestion. PMID:24751265

  15. Horse chestnut (Aesculus hippocastanum L.) starch: Basic physico-chemical characteristics and use as thermoplastic material.

    PubMed

    Castaño, J; Rodríguez-Llamazares, S; Contreras, K; Carrasco, C; Pozo, C; Bouza, R; Franco, C M L; Giraldo, D

    2014-11-01

    Starch isolated from non-edible Aesculus hippocastanum seeds was characterized and used for preparing starch-based materials. The apparent amylose content of the isolated starch was 33.1%. The size of starch granules ranged from 0.7 to 35 μm, and correlated with the shape of granules (spherical, oval and irregular). The chain length distribution profile of amylopectin showed two peaks, at polymerization degree (DP) of 12 and 41-43. Around 53% of branch unit chains had DP in the range of 11-20. A. hippocastanum starch displayed a typical C-type pattern and the maximum decomposition temperature was 317 °C. Thermoplastic starch (TPS) prepared from A. hippocastanum with glycerol and processed by melt blending exhibited adequate mechanical and thermal properties. In contrast, plasticized TPS with glycerol:malic acid (1:1) showed lower thermal stability and a pasty and sticky behavior, indicating that malic acid accelerates degradation of starch during processing. PMID:25129797

  16. Mixed biopolymer systems based on starch.

    PubMed

    Abd Elgadir, M; Akanda, Md Jahurul Haque; Ferdosh, Sahena; Mehrnoush, Amid; Karim, Alias A; Noda, Takahiro; Sarker, Md Zaidul Islam

    2012-01-01

    A binary mixture of starch-starch or starch with other biopolymers such as protein and non-starch polysaccharides could provide a new approach in producing starch-based food products. In the context of food processing, a specific adjustment in the rheological properties plays an important role in regulating production processing and optimizing the applicability, stability, and sensory of the final food products. This review examines various biopolymer mixtures based on starch and the influence of their interaction on physicochemical and rheological properties of the starch-based foods. It is evident that the physicochemical and rheological characteristics of the biopolymers mixture are highly dependent on the type of starch and other biopolymers that make them up mixing ratios, mixing procedure and presence of other food ingredients in the mixture. Understanding these properties will lead to improve the formulation of starch-based foods and minimize the need to resort to chemically modified starch. PMID:22231495

  17. Powder and compaction characteristics of pregelatinized starches.

    PubMed

    Rojas, J; Uribe, Y; Zuluaga, A

    2012-06-01

    Pregelatinized starch is widely used as a pharmaceutical aid, especially as a filler-binder. It is known that the tableting performance of excipients could be affected by their source. The aim of this study was to evaluate the powder and tableting properties of pregelatinized starches obtained from yucca, corn and rice and compare those properties with those of Starch 1500. This material had the lowest particle size, and porosity and largest density and best flow. However, yucca starch and corn starch showed an irregular granule morphology, better compactibility and compressibility than Starch 1500. Their onset of plastic deformation and their strain rate sensitivity was comparable to that of Starch 1500. These two materials showed compact disintegration slower that Starch 1500. Conversely, rice starch showed a high elasticity, and friability, low compactibility, which are undesirable for direct compression. This study demonstrated the potential use of pregelatinized starches, especially those obtained from yucca and corn as direct compression filler-binders. PMID:22822539

  18. The Effect of Cropping Systems on Starch Structure, Chemistry and Functionality in Developing Sorghum Kernels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch, the largest component of cereal grains, consists of two types of polymer. These polymers are deposited into granules by amyloplast organelles as amylose, a near linear molecule and amylopectin, a highly branched molecule. The objective of this study was to determine if sorghum grown under ...

  19. Starch waxiness in hexaploid wheat (Triticum aestivum L.) by NIR reflectance spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch, the primary energy storage component of plants, consists of two large macromolecules, amylose and amylopectin. Each molecule is composed of long chains of alpha-D-glucopyranosyl units, with branching present in amylopectin and absent in amylose. The relative abundance of these two molecules ...

  20. Effects of granule swelling on starch saccharification by granular starch hydrolyzing enzyme.

    PubMed

    Li, Zhaofeng; Cai, Liming; Gu, Zhengbiao; Shi, Yong-Cheng

    2014-08-13

    The effects of granule swelling on enzymatic saccharification of normal corn starch by granular starch hydrolyzing enzyme were investigated. After swelling, Km values for the saccharification of granular starch decreased compared with native granular starch, indicating that granule swelling caused granular starch hydrolyzing enzyme to have higher affinity for starch granules. The partial swelling of starch granules enhanced starch saccharification. Furthermore, the enhancement at an earlier stage of enzymatic reaction was much more significant than that at later stages. For granular starch pretreated at 67.5 °C for 30 min, conversions to glucose after incubation with the enzyme at 32 °C for 4 and 24 h were approximately 3-fold and 26% higher than for native granular starch, respectively. As a result, proper heat pretreatment of granular starch before simultaneous saccharification and fermentation has great potential to facilitate industrial production of ethanol by use of granular starch hydrolyzing enzyme. PMID:25039418

  1. Characterizing Branched Flow

    NASA Astrophysics Data System (ADS)

    Drury, Byron; Klales, Anna; Heller, Eric

    2014-03-01

    Branched flow appears in a variety of physical systems spanning length scales from microns to thousands of kilometers. For instance, it plays an important role in both electron transport in two dimensional electron gases and the propagation of tsunamis in the ocean. Branches have typically been identified with caustics in the theoretical literature, but concentrations of flux recognizable as branches can arise from other mechanisms. We propose a generalized definition of branching based on a local measure of the stability of trajectories. We analytically and numerically study the characteristics of Hamiltonian flow in phase space and characterize the relationship between branch formation and trajectory stability.

  2. Comparative transcriptome analysis to investigate the high starch accumulation of duckweed (Landoltia punctata) under nutrient starvation

    PubMed Central

    2013-01-01

    -regulated the global metabolic status, redirects metabolic flux of fixed CO2 into starch synthesis branch resulting in starch accumulation in L. punctata. PMID:23651472

  3. Starch-degrading polysaccharide monooxygenases.

    PubMed

    Vu, Van V; Marletta, Michael A

    2016-07-01

    Polysaccharide degradation by hydrolytic enzymes glycoside hydrolases (GHs) is well known. More recently, polysaccharide monooxygenases (PMOs, also known as lytic PMOs or LPMOs) were found to oxidatively degrade various polysaccharides via a copper-dependent hydroxylation. PMOs were previously thought to be either GHs or carbohydrate binding modules (CBMs), and have been re-classified in carbohydrate active enzymes (CAZY) database as auxiliary activity (AA) families. These enzymes include cellulose-active fungal PMOs (AA9, formerly GH61), chitin- and cellulose-active bacterial PMOs (AA10, formerly CBM33), and chitin-active fungal PMOs (AA11). These PMOs significantly boost the activity of GHs under industrially relevant conditions, and thus have great potential in the biomass-based biofuel industry. PMOs that act on starch are the latest PMOs discovered (AA13), which has expanded our perspectives in PMOs studies and starch degradation. Starch-active PMOs have many common structural features and biochemical properties of the PMO superfamily, yet differ from other PMO families in several important aspects. These differences likely correlate, at least in part, to the differences in primary and higher order structures of starch and cellulose, and chitin. In this review we will discuss the discovery, structural features, biochemical and biophysical properties, and possible biological functions of starch-active PMOs, as well as their potential application in the biofuel, food, and other starch-based industries. Important questions regarding various aspects of starch-active PMOs and possible economical driving force for their future studies will also be highlighted. PMID:27170366

  4. Isoform Specificity of Protein Kinase Cs in Synaptic Plasticity

    ERIC Educational Resources Information Center

    Sossin, Wayne S.

    2007-01-01

    Protein kinase Cs (PKCs) are implicated in many forms of synaptic plasticity. However, the specific isoform(s) of PKC that underlie(s) these events are often not known. We have used "Aplysia" as a model system in order to investigate the isoform specificity of PKC actions due to the presence of fewer isoforms and a large number of documented…

  5. Rheological properties of reactive extrusion modified waxy starch and waxy starch-polyacrylamide copolymer gels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rheological properties of modified waxy starch and waxy starch-polyacrylamide graft copolymers prepared by reactive extrusion were investigated. Both materials can absorb huge amount of water and form gels. The modified waxy starch and waxy starch-polyacrylamide graft copolymer gels all exhibite...

  6. Comparison of Cationic and Unmodified Starches in Reactive Extrusion of Starch-Polyacrylamide Graft Copolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Graft copolymers of starch and polyacrylamide (PAAm) were prepared using reactive extrusion in a corotating twin screw extruder. The effect of cationic starch modification was examined using unmodified and cationic dent starch (approximately 23% amylose) and waxy maize starch (approximately 2% amyl...

  7. PKC Isoform Expression in Modeled Microgravity

    NASA Technical Reports Server (NTRS)

    Risin, Diana; Sundaresan, Alamelu; Pellis, Neal R.; Dawson, David L. (Technical Monitor)

    1999-01-01

    Our previous studies showed that modeled (MMG) and true (USA Space Shuttle Missions STS-54 and STS-56) microgravity (MG) inhibit human lymphocyte locomotion, Modeled MG also suppressed polyclonal and antigen-specific lymphocyte activation. Activation of PKC by phorbol myristate acetate (PMA) restored the microgravity-inhibited lymphocyte locomotion as well as activation by phytohaemagglutinin (PHA), whereas calcium ionophore (ionomycin) was unable to restore these functions. Based on these results we hypothesized that MG-induced changes in lymphocyte functions are caused by a fundamental defect in signal transduction mechanism. This defect may be localized either at the PKC level or upstream of PKC, most likely, at the cell membrane level. In this study we examined the expression of PKC isoforms alpha, epsilon and delta in PBMC cultured in rotating wall vessel bioreactor, developed at NASA JSC, which models microgravity by sustaining cells in continuous free fall. The assessment of the isoforms was performed by FACS analysis following cell permeabilization. A decrease in the expression of isoforms epsilon and delta, but not isoform a, was observed in PBMC cultured in microgravity conditions. These data suggest that MMG might selectively affect the expression of Ca2+ independent isoforms of PKC Molecular analysis confirm selective suppression of Ca2+ independent isoforms of PKC.

  8. Starch phosphorylation: insights and perspectives.

    PubMed

    Mahlow, Sebastian; Orzechowski, Sławomir; Fettke, Joerg

    2016-07-01

    During starch metabolism, the phosphorylation of glucosyl residues of starch, to be more precise of amylopectin, is a repeatedly observed process. This phosphorylation is mediated by dikinases, the glucan, water dikinase (GWD) and the phosphoglucan, water dikinase (PWD). The starch-related dikinases utilize ATP as dual phosphate donor transferring the terminal γ-phosphate group to water and the β-phosphate group selectively to either C6 position or C3 position of a glucosyl residue within amylopectin. By the collaborative action of both enzymes, the initiation of a transition of α-glucans from highly ordered, water-insoluble state to a less order state is realized and thus the initial process of starch degradation. Consequently, mutants lacking either GWD or PWD reveal a starch excess phenotype as well as growth retardation. In this review, we focus on the increased knowledge collected over the last years related to enzymatic properties, the precise definition of the substrates, the physiological implications, and discuss ongoing questions. PMID:27147464

  9. Quality of Spelt Wheat and its Starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flours from 5 spelt cultivars grown over 3 years were evaluated as to their bread baking quality and isolated starch properties. The starch properties included amylose contents, gelatinization temperatures (differential scanning calorimetry), granule size distributions and pasting properties. Mill...

  10. Studies of Amylose Content in Potato Starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato starch is typically low in amylose (~20-25%), but high amylose starch has superior nutritional qualities. The ratio between amylose and amylopectin is the most important property influencing the physical properties of starch. There is a strong case to be made for the development of food crops...

  11. Starch in the Wet-End

    NASA Astrophysics Data System (ADS)

    de Clerck, Peter

    Starch has been used in papermaking almost since the invention of paper. The global paper industry consumes almost 5 million tonnes of starch per year, making starch the third most important raw material in papermaking. Roughly 20% of this is used in the wet-end.

  12. Starch Granule Variability in Wild Solanum Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because most of the dry matter of potato tubers is starch, an understanding of starch properties is important in potato improvement programs. Starch granule size is considered to influence tuber processing quality parameters such as gelatinization temperature, viscosity, and water holding capacity. ...

  13. TRIBOLOGICAL PROPERTIES OF CHEMICALLY MODIFIED STARCH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch is one of the most abundantly available plant-based biopolymer. It is a major component of such high volume commodity crops as corn, potato, and rice. Starch is a highly crystalline, high molecular weight poly(glucose) biopolymer. Starch is insoluble in water in its native state. Various ...

  14. Esterification of Starch in Ionic Liquids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We shall discuss the use of various ionic liquids in the preparation of starch esters. Starch was reacted with vinyl acetate in different 1-butyl-3-methylimidazolium (bmim) salts as solvents in an effort to produce starches with different acetylation patterns. Overall degree of substitution (DS) w...

  15. Rice functionality, starch structure and the genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Through collaborative efforts among USDA scientists at Beaumont, Texas, we have gained in-depth knowledge of how rice functionality, i.e. the texture of the cooked rice, rice processing properties, and starch gelatinization temperature, are associated with starch-synthesis genes and starch structure...

  16. Structure of Porous Starch Microcellular Foam Particles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A relatively new starch product with various novel applications is a porous microcellular foam. The foam product is made by dehydrating a starch hydrogel in a solvent such as ethanol and then removing the solvent to form a foam product. The process involves heating an aqueous slurry of starch (8% w/...

  17. Melons are Branched Polymers

    NASA Astrophysics Data System (ADS)

    Gurau, Razvan; Ryan, James P.

    2014-11-01

    Melonic graphs constitute the family of graphs arising at leading order in the 1/N expansion of tensor models. They were shown to lead to a continuum phase, reminiscent of branched polymers. We show here that they are in fact precisely branched polymers, that is, they possess Hausdorff dimension 2 and spectral dimension 4/3.

  18. Properties of retrograded and acetylated starch produced via starch extrusion or starch hydrolysis with pullulanase.

    PubMed

    Kapelko, M; Zięba, T; Gryszkin, A; Styczyńska, M; Wilczak, A

    2013-09-12

    The aim of the present study was to determine the impact of serial modifications of starch, including firstly starch extrusion or hydrolysis with pullulanase, followed by retrogradation (through freezing and defrosting of pastes) and acetylation (under industrial conditions), on its susceptibility to amylolysis. The method of production had a significant effect on properties of the resultant preparations, whilst the direction and extent of changes depended on the type of modification applied. In the produced starch esters, the degree of substitution, expressed by the per cent of acetylation, ranged from 3.1 to 4.4 g/100 g. The acetylation had a significant impact on contents of elements determined with the atomic emission spectrometry, as it contributed to an increased Na content and decreased contents of Ca and K. The DSC thermal characteristics enabled concluding that the modifications caused an increase in temperatures and a decrease in heat of transition (or its lack). The acetylation of retrograded starch preparations increased their solubility in water and water absorbability. The modifications were found to exert various effects on the rheological properties of pastes determined based on the Brabender's pasting characteristics and flow curves determined with the use of an oscillatory-rotating viscosimeter. All starch acetates produced were characterized by ca. 40% resistance to amylolysis. PMID:23911484

  19. Pullulanase: Role in Starch Hydrolysis and Potential Industrial Applications

    PubMed Central

    Hii, Siew Ling; Tan, Joo Shun; Ling, Tau Chuan; Ariff, Arbakariya Bin

    2012-01-01

    The use of pullulanase (EC 3.2.1.41) has recently been the subject of increased applications in starch-based industries especially those aimed for glucose production. Pullulanase, an important debranching enzyme, has been widely utilised to hydrolyse the α-1,6 glucosidic linkages in starch, amylopectin, pullulan, and related oligosaccharides, which enables a complete and efficient conversion of the branched polysaccharides into small fermentable sugars during saccharification process. The industrial manufacturing of glucose involves two successive enzymatic steps: liquefaction, carried out after gelatinisation by the action of α-amylase; saccharification, which results in further transformation of maltodextrins into glucose. During saccharification process, pullulanase has been used to increase the final glucose concentration with reduced amount of glucoamylase. Therefore, the reversion reaction that involves resynthesis of saccharides from glucose molecules is prevented. To date, five groups of pullulanase enzymes have been reported, that is, (i) pullulanase type I, (ii) amylopullulanase, (iii) neopullulanase, (iv) isopullulanase, and (v) pullulan hydrolase type III. The current paper extensively reviews each category of pullulanase, properties of pullulanase, merits of applying pullulanase during starch bioprocessing, current genetic engineering works related to pullulanase genes, and possible industrial applications of pullulanase. PMID:22991654

  20. Molecular Basis of the Waxy Endosperm Starch Phenotype in Broomcorn Millet (Panicum miliaceum L.)

    PubMed Central

    Hunt, Harriet V.; Denyer, Kay; Packman, Len C.; Jones, Martin K.; Howe, Christopher J.

    2010-01-01

    Waxy varieties of the tetraploid cereal broomcorn millet (Panicum miliaceum L.) have endosperm starch granules lacking detectable amylose. This study investigated the basis of this phenotype using molecular and biochemical methods. Iodine staining of starch granules in 72 plants from 38 landrace accessions found 58 nonwaxy and 14 waxy phenotype plants. All waxy types were in plants from Chinese and Korean accessions, a distribution similar to that of the waxy phenotype in other cereals. Granule-bound starch synthase I (GBSSI) protein was present in the endosperm of both nonwaxy and waxy individuals, but waxy types had little or no granule-bound starch synthase activity compared with the wild types. Sequencing of the GBSSI (Waxy) gene showed that this gene is present in two different forms (L and S) in P. miliaceum, which probably represent homeologues derived from two distinct diploid ancestors. Protein products of both these forms are present in starch granules. We identified three polymorphisms in the exon sequence coding for mature GBSSI peptides. A 15-bp deletion has occurred in the S type GBSSI, resulting in the loss of five amino acids from glucosyl transferase domain 1 (GTD1). The second GBSSI type (L) shows two sequence polymorphisms. One is the insertion of an adenine residue that causes a reading frameshift, and the second causes a cysteine–tyrosine amino acid polymorphism. These mutations appear to have occurred in parallel from the ancestral allele, resulting in three GBSSI-L alleles in total. Five of the six possible genotype combinations of the S and L alleles were observed. The deletion in the GBSSI-S gene causes loss of protein activity, and there was 100% correspondence between this deletion and the waxy phenotype. The frameshift mutation in the L gene results in the loss of L-type protein from starch granules. The L isoform with the tyrosine residue is present in starch granules but is nonfunctional. This loss of function may result from the

  1. Starch characteristics influencing resistant starch content of cooked buckwheat groats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enzyme resistant starch (RS), owing to its health benefits such as colon cancer inhibition, reduced glycemic response, reduced cholesterol level, prevention of gall stone formation and obesity, has received an increasing attention from consumers and food manufacturers, whereas intrinsic and extrinsi...

  2. Antiangiogenic VEGF Isoform in Inflammatory Myopathies

    PubMed Central

    Volpi, Nila; Pecorelli, Alessandra; Lorenzoni, Paola; Di Lazzaro, Francesco; Belmonte, Giuseppe; Aglianò, Margherita; Giannini, Fabio; Grasso, Giovanni

    2013-01-01

    Objective. To investigate expression of vascular endothelial growth factor (VEGF) antiangiogenic isoform A-165b on human muscle in idiopathic inflammatory myopathies (IIM) and to compare distribution of angiogenic/antiangiogenic VEGFs, as isoforms shifts are described in other autoimmune disorders. Subjects and Methods. We analyzed VEGF-A165b and VEGF-A by western blot and immunohistochemistry on skeletal muscle biopsies from 21 patients affected with IIM (polymyositis, dermatomyositis, and inclusion body myositis) and 6 control muscle samples. TGF-β, a prominent VEGF inductor, was analogously evaluated. Intergroup differences of western blot bands density were statistically examined. Endomysial vascularization, inflammatory score, and muscle regeneration, as pathological parameters of IIM, were quantitatively determined and their levels were confronted with VEGF expression. Results. VEGF-A165b was significantly upregulated in IIM, as well as TGF-β. VEGF-A was diffusely expressed on unaffected myofibers, whereas regenerating/atrophic myofibres strongly reacted for both VEGF-A isoforms. Most inflammatory cells and endomysial vessels expressed both isoforms. VEGF-A165b levels were in positive correlation to inflammatory score, endomysial vascularization, and TGF-β. Conclusions. Our findings indicate skeletal muscle expression of antiangiogenic VEGF-A165b and preferential upregulation in IIM, suggesting that modulation of VEGF-A isoforms may occur in myositides. PMID:23840094

  3. Convergent Evolution of Polysaccharide Debranching Defines a Common Mechanism for Starch Accumulation in Cyanobacteria and Plants[W

    PubMed Central

    Cenci, Ugo; Chabi, Malika; Ducatez, Mathieu; Tirtiaux, Catherine; Nirmal-Raj, Jennifer; Utsumi, Yoshinori; Kobayashi, Daiki; Sasaki, Satoshi; Suzuki, Eiji; Nakamura, Yasunori; Putaux, Jean-Luc; Roussel, Xavier; Durand-Terrasson, Amandine; Bhattacharya, Debashish; Vercoutter-Edouart, Anne-Sophie; Maes, Emmanuel; Arias, Maria Cecilia; Palcic, Monica; Sim, Lyann; Ball, Steven G.; Colleoni, Christophe

    2013-01-01

    Starch, unlike hydrosoluble glycogen particles, aggregates into insoluble, semicrystalline granules. In photosynthetic eukaryotes, the transition to starch accumulation occurred after plastid endosymbiosis from a preexisting cytosolic host glycogen metabolism network. This involved the recruitment of a debranching enzyme of chlamydial pathogen origin. The latter is thought to be responsible for removing misplaced branches that would otherwise yield a water-soluble polysaccharide. We now report the implication of starch debranching enzyme in the aggregation of semicrystalline granules of single-cell cyanobacteria that accumulate both glycogen and starch-like polymers. We show that an enzyme of analogous nature to the plant debranching enzyme but of a different bacterial origin was recruited for the same purpose in these organisms. Remarkably, both the plant and cyanobacterial enzymes have evolved through convergent evolution, showing novel yet identical substrate specificities from a preexisting enzyme that originally displayed the much narrower substrate preferences required for glycogen catabolism. PMID:24163312

  4. Further evidence for the mandatory nature of polysaccharide debranching for the aggregation of semicrystalline starch and for overlapping functions of debranching enzymes in Arabidopsis leaves.

    PubMed

    Wattebled, Fabrice; Planchot, Véronique; Dong, Ying; Szydlowski, Nicolas; Pontoire, Bruno; Devin, Aline; Ball, Steven; D'Hulst, Christophe

    2008-11-01

    Four isoforms of debranching enzymes are found in the genome of Arabidopsis (Arabidopsis thaliana): three isoamylases (ISA1, ISA2, and ISA3) and a pullulanase (PU1). Each isoform has a specific function in the starch pathway: synthesis and/or degradation. In this work we have determined the levels of functional redundancy existing between these isoforms by producing and analyzing different combinations of mutations: isa3-1 pu1-1, isa1-1 isa3-1, and isa1-1 isa3-1 pu1-1. While the starch content strongly increased in the isa3-1 pu1-1 double mutant, the latter decreased by over 98% in the isa1-1 isa3-1 genotype and almost vanished in triple mutant combination. In addition, whereas the isa3-1 pu1-1 double mutant synthesizes starch very similar to that of the wild type, the structure of the residual starch present either in isa1-1 isa3-1 or in isa1-1 isa3-1 pu1-1 combination is deeply affected. In the same way, water-soluble polysaccharides that accumulate in the isa1-1 isa3-1 and isa1-1 isa3-1 pu1-1 genotypes display strongly modified structure compared to those found in isa1-1. Taken together, these results show that in addition to its established function in polysaccharide degradation, the activity of ISA3 is partially redundant to that of ISA1 for starch synthesis. Our results also reveal the dual function of pullulanase since it is partially redundant to ISA3 for degradation and to ISA1 for synthesis. Finally, x-ray diffraction analyses suggest that the crystallinity and the presence of the 9- to 10-nm repetition pattern in starch precisely depend on the level of debranching enzyme activity. PMID:18815382

  5. Materials Test Branch

    NASA Technical Reports Server (NTRS)

    Gordon, Gail

    2012-01-01

    The Materials Test Branch resides at Marshall Space Flight Center's Materials and Processing laboratory and has a long history of supporting NASA programs from Mercury to the recently retired Space Shuttle. The Materials Test Branch supports its customers by supplying materials testing expertise in a wide range of applications. The Materials Test Branch is divided into three Teams, The Chemistry Team, The Tribology Team and the Mechanical Test Team. Our mission and goal is to provide world-class engineering excellence in materials testing with a special emphasis on customer service.

  6. Mechanical properties and solubility in water of corn starch-collagen composite films: Effect of starch type and concentrations.

    PubMed

    Wang, Kun; Wang, Wenhang; Ye, Ran; Liu, Anjun; Xiao, Jingdong; Liu, Yaowei; Zhao, Yana

    2017-02-01

    This study investigated the possibility of enhancing the properties of collagen with three different maize starches: waxy maize starch, normal starch, and high amylose starch. Scanning electron microscopy images revealed that starch-collagen films had a rougher surface compared to pure collagen films which became smoother upon heating. Amylose starch and normal starch increased the tensile strength of unheated collagen films in both dry and wet states, while all starches increased tensile strength of collagen film by heating. Depending upon the amylose content and starch concentrations, film solubility in water decreased with the addition of starch. DSC thermograms demonstrated that addition of all starches improved the thermal stability of the collagen film. Moreover, X-ray diffraction results indicated that except for high amylose starch, the crystallinity of both starch and collagen was significantly decreased when subject to heating. FTIR spectra indicated that intermolecular interactions between starch and collagen were enhanced upon heating. PMID:27596411

  7. Properties of baked foams from citric acid modified cassava starch and native cassava starch blends.

    PubMed

    Pornsuksomboon, Kanlaya; Holló, Berta Barta; Szécsényi, Katalin Mészáros; Kaewtatip, Kaewta

    2016-01-20

    Starch foams from native cassava starch (NS) and citric acid modified cassava starch (CNS) were prepared using baking processes with blend ratios of 80/20, 60/40, 50/50, 40/60 and 20/80. The density, thickness, morphology, thermal stability and water absorption of the NS, CNS and blended starch foams were determined. The ratio of the two starch components had a significant influence on the density and thickness of the blended starch foams. All blended starch foams showed good water resistance. Moreover, the morphology of the blended starch foam with the NS/CNS ratio of 50/50 showed a more ordered distribution of cell sizes with thicker cell walls than for the NS and CNS foams. The thermal stability of the blended starch foams was somewhat lower than the stability of the NS foam but not to the extent that it affected any potential practical applications. PMID:26572335

  8. Annealing properties of rice starch.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal properties of starch can be modified by annealing, i.e., a pre-treatment in excessive amounts of water at temperatures below the gelatinization temperatures. This treatment is known to improve the crystalline properties, and is a useful tool to gain a better control of the functional proper...

  9. Starch composites with aconitic acid.

    PubMed

    Gilfillan, William Neil; Doherty, William O S

    2016-05-01

    The aim of this project is to examine the effectiveness of using aconitic acid (AcA), a tricarboxylic acid which contains a carbon/carbon double bond (CC), to enhance the properties of starch-based films. Starch/glycerol cast films were prepared with 0, 2, 5, 10 and 15wt% AcA (starch wt% basis) and the properties analysed. It was shown that AcA acted as both a cross-linking agent and also a strong plasticising agent. The 5wt% AcA derived starch films were the most effectively cross-linked having the lowest solubility (28wt%) and decreased swelling coefficient (35vol.%) by approximately 3 times and 2.4 times respectively compared to the control film submerged in water (23°C). There was also a significant increase in the film elongation at break by approximately 35 times (compared to the control) with the addition of 15wt% AcA, emphasising the plasticising effect of AcA. However, generally there was a reduced tensile strength, softening of the film, and reduced thermal stability with increased amounts of AcA. PMID:26876996

  10. Modulation of starch digestion for slow glucose release through "toggling" of activities of mucosal "alpha"-glucosidases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch digestion involves the breakdown by alpha-amylase to small linear and branched malto-oligosaccharides, which are in turn hydrolyzed to glucose by the mucosal alpha-glucosidases, maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI). MGAM and SI are anchored to the small intestinal brush-bor...

  11. Autoclave and beta-amylolysis lead to reduced in vitro digestibility of starch.

    PubMed

    Hickman, B Elliot; Janaswamy, Srinivas; Yao, Yuan

    2009-08-12

    In this study, a combination of autoclave and beta-amylolysis was used to modulate the digestibility of normal corn starch (NCS) and wheat starch (WS). The modification procedure comprised three cycles of autoclave at 35% moisture content and 121 degrees C, beta-amylolysis, and one additional cycle of autoclave. Starch materials were sampled at each stage and characterized. The fine structure of starch was determined using high-performance size-exclusion chromatography, the micromorphology of starch dispersion was imaged using cryo-SEM, the crystalline pattern was evaluated using wide-angle X-ray powder diffraction, and the digestibility was measured using Englyst assay. After beta-amylolysis, amylose was enriched (from 25.4 to 33.2% for NCS and from 27.5 to 32.8% for WS) and the branch density was increased (from 5.2 to 7.7% for NCS and from 5.3 to 7.9% for WS). Cryo-SEM images showed that the autoclave treatment led to the formation of a low-swelling, high-density gel network, whereas beta-amylolysis nearly demolished the network structure. The loss of A-type crystalline structure and the formation of B- and V-type structures resulted from autoclave, which suggests the formation of amylose-based ordered structure. Englyst assay indicated that, due to beta-amylolysis, the resistant starch (RS) content was increased to 30 from 11% of native NCS and to 23 from 9% of native WS. In contrast, autoclave showed only minor impact on RS levels. The increase of RS observed in this study is associated with enhanced branch density, which is different from the four types of RS commonly defined. PMID:19572519

  12. Phylogenomic analysis of glycogen branching and debranching enzymatic duo

    PubMed Central

    2014-01-01

    Background Branched polymers of glucose are universally used for energy storage in cells, taking the form of glycogen in animals, fungi, Bacteria, and Archaea, and of amylopectin in plants. Some enzymes involved in glycogen and amylopectin metabolism are similarly conserved in all forms of life, but some, interestingly, are not. In this paper we focus on the phylogeny of glycogen branching and debranching enzymes, respectively involved in introducing and removing of the α(1–6) bonds in glucose polymers, bonds that provide the unique branching structure to glucose polymers. Results We performed a large-scale phylogenomic analysis of branching and debranching enzymes in over 400 completely sequenced genomes, including more than 200 from eukaryotes. We show that branching and debranching enzymes can be found in all kingdoms of life, including all major groups of eukaryotes, and thus were likely to have been present in the last universal common ancestor (LUCA) but have been lost in seemingly random fashion in numerous single-celled eukaryotes. We also show how animal branching and debranching enzymes evolved from their LUCA ancestors by acquiring additional domains. Furthermore, we show that enzymes commonly perceived as orthologous, such as human branching enzyme GBE1 and E. coli branching enzyme GlgB, are in fact related by a gene duplication and consequently paralogous. Conclusions Despite being usually associated with animal liver glycogen and plant starch, energy storage in the form of branched glucose polymers is clearly an ancient process and has probably been present in the last universal common ancestor of all present life. The evolution of the enzymes enabling this form of energy storage is more complex than previously thought and illustrates the need for explicit phylogenomic analysis in the study of even seemingly “simple” metabolic enzymes. Patterns of conservation in the evolution of the glycogen/starch branching and debranching enzymes hint at

  13. The Olive Branch Awards.

    ERIC Educational Resources Information Center

    Harnack, William

    1984-01-01

    The first annual Olive Branch Awards, sponsored by the Writers' and Publishers Alliance and the Editors' Organizing Committee, were given to ten magazines, out of 60 that submitted entries. Winning entries are described briefly. (IM)

  14. Branch retinal vein occlusion.

    PubMed

    Hamid, Sadaf; Mirza, Sajid Ali; Shokh, Ishrat

    2008-01-01

    Retinal vein occlusions (RVO) are the second commonest sight threatening vascular disorder. Branch retinal vein occlusion (BRVO) and central retinal vein occlusion (CRVO) are the two basic types of vein occlusion. Branch retinal vein occlusion is three times more common than central retinal vein occlusion and- second only to diabetic retinopathy as the most common retinal vascular cause of visual loss. The origin of branch retinal vein occlusion undoubtedly includes both systemic factors such as hypertension and local anatomic factors such as arteriovenous crossings. Branch retinal vein occlusion causes a painless decrease in vision, resulting in misty or distorted vision. Current treatment options don't address the underlying aetiology of branch retinal vein occlusion. Instead they focus on treating sequelae of the occluded venous branch, such as macular oedema, vitreous haemorrhage and traction retinal detachment from neovascularization. Evidences suggest that the pathogenesis of various types of retinal vein occlusion, like many other ocular vascular occlusive disorders, is a multifactorial process and there is no single magic bullet that causes retinal vein occlusion. A comprehensive management of patients with retinal vascular occlusions is necessary to correct associated diseases or predisposing abnormalities that could lead to local recurrences or systemic event. Along with a review of the literature, a practical approach for the management of retinal vascular occlusions is required, which requires collaboration between the ophthalmologist and other physicians: general practitioner, cardiologist, internist etc. as appropriate according to each case. PMID:19385476

  15. Physicochemical and functional properties of ozone-oxidized starch.

    PubMed

    Chan, Hui T; Bhat, Rajeev; Karim, Alias A

    2009-07-01

    The effects of oxidation by ozone gas on some physicochemical and functional properties of starch (corn, sago, and tapioca) were investigated. Starch in dry powder form was exposed to ozone for 10 min at different ozone generation times (OGTs). Carboxyl and carbonyl contents increased markedly in all starches with increasing OGTs. Oxidation significantly decreased the swelling power of oxidized sago and tapioca starches but increased that of oxidized corn starch. The solubility of tapioca starch decreased and sago starch increased after oxidation. However, there was an insignificant changed in the solubility of oxidized corn starch. Intrinsic viscosity [eta] of all oxidized starches decreased significantly, except for tapioca starch oxidized at 5 min OGT. Pasting properties of the oxidized starches followed different trends as OGTs increased. These results show that under similar conditions of ozone treatment, the extent of starch oxidation varies among different types of starch. PMID:19489606

  16. The effect of baking and enzymatic treatment on the structural properties of wheat starch.

    PubMed

    Fuentes, Catalina; Zielke, Claudia; Prakash, Manish; Kumar, Puneeth; Peñarrieta, J Mauricio; Eliasson, Ann-Charlotte; Nilsson, Lars

    2016-12-15

    In this study, bread was baked with and without the addition of α-amylase. Starch was extracted from the baked bread and its molecular properties were characterized using (1)H NMR and asymmetric flow field-flow fractionation (AF4) connected to multi-angle light scattering (MALS) and other detectors. The approach allows determination of molar mass, root- mean-square radius and apparent density as well as the average degree of branching of amylopectin. The results show that starch size and structure is affected as a result of the baking process. The effect is larger when α-amylase is added. The changes include both a decrease molar mass and size as well as an increase in apparent density. Moreover, an increase in average degree of branching and the number of reducing ends H-1(β-r) and H-1(α-r) can be observed. PMID:27451246

  17. Rheological and textural properties of pulse starch gels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The properties of starch gels from black beans, chickpeas, lentils and navy beans were investigated. Differences were shown between starch sources, and effect of starch concentration was studied. Navy bean starch had the highest peak and final viscosities in pasting tests, while black bean starch h...

  18. Physicochemical Properties of Starch Isolated from Bracken (Pteridium aquilinim) Rhizome.

    PubMed

    Yu, Xurun; Wang, Jin; Zhang, Jing; Wang, Leilei; Wang, Zhong; Xiong, Fei

    2015-12-01

    Bracken (Pteridium aquilinum) is an important wild plant starch resource worldwide. In this work, starch was separated from bracken rhizome, and the physicochemical properties of this starch were systematically investigated and compared with 2 other common starches, that is, starches from waxy maize and potato. There were significant differences in shape, birefringence patterns, size distribution, and amylose content between bracken and the 2 other starches. X-ray diffraction analysis revealed that bracken starch exhibited a typical C-type crystalline structure. Bracken starch presented, respectively, lower and higher relative degree of crystallinity than waxy maize and potato starches. Ordered structures in particle surface differed among these 3 starches. The swelling power tendency of bracken starch in different temperature intervals was very similar to that of potato starch. The viscosity parameters during gelatinization were the lowest in waxy maize, followed by bracken and potato starches. The contents of 3 nutritional components, that is, rapidly digestible, slowly digestible, and resistant starches in native, gelatinized, and retrograded starch from bracken rhizome presented more similarities with potato starch than waxy maize starch. These finding indicated that physicochemical properties of bracken starch showed more similarities with potato starch than waxy maize starch. PMID:26551243

  19. Apolipoprotein E isoform-dependent microglia migration

    PubMed Central

    Cudaback, Eiron; Li, Xianwu; Montine, Kathleen S.; Montine, Thomas J.; Keene, C. Dirk

    2011-01-01

    Complement component C5a and ATP are potent effectors of microglial movement and are increased in diverse neurodegenerative diseases and at sites of injury. Apolipoprotein E (apoE) influences microglial function, and different human apoE isoforms confer variable risk for development of neurodegenerative disorders, especially Alzheimer's disease. The purpose of this investigation was to test the hypothesis that mouse apoE and human apoE isoforms influence microglial migration. Using primary wild-type and apoE-deficient microglia, we show that C5a- and ATP-stimulated chemotaxis are largely apoE-dependent processes with different molecular bases. Although the C5a-dependent chemotaxis of wild-type microglia was completely blocked by receptor-associated protein (RAP), suggesting apoE receptor involvement, ATP-stimulated migration was unaffected by RAP but was associated with differential ERK phosphorylation. Studies using primary microglia derived from targeted replacement mice “humanized” for the coding exons (protein isoform) of human ε2 (apoE2), ε3 (apoE3), or ε4 (apoE4) allele of APOE revealed that primary mouse microglia expressing apoE4 or apoE2 exhibited significantly reduced C5a- and ATP-stimulated migration compared with microglia expressing human apoE3. This study, for the first time, demonstrates apoE dependence and apoE isoform-specific modulation of microglial migration in response to distinct chemotactic stimuli commonly associated with neurodegenerative disease.—Cudaback, E., Li, X., Montine, K. S., Montine, T. J., Keene, C. D. Apolipoprotein E isoform-dependent microglia migration. PMID:21385991

  20. Aggregate and emulsion properties of enzymatically-modified octenylsuccinylated waxy starches.

    PubMed

    Sweedman, Michael C; Schäfer, Christian; Gilbert, Robert G

    2014-10-13

    Sorghum and maize waxy starches were hydrophobically modified with octenylsuccinic anhydride (OSA) and treated with enzymes before being used to emulsify β-carotene (beta,beta-carotene) and oil in water. Enzyme treatment with β-amylase resulted in emulsions that were broken (separated) earlier and suffered increased degradation of β-carotene, whereas treatment with pullulanase had little effect on emulsions. Combinations of surfactants with high and low hydrodynamic volume (V(h)) indicated that there is a relationship between V(h) and emulsion stability. Degree of branching (DB) had little direct influence on emulsions, though surfactants with the highest DB were poor emulsifiers due to their reduced molecular size. Results indicate that V(h) and branch length (including linear components) are the primary influences on octenylsuccinylated starches forming stable emulsions, due to the increased steric hindrance from short amphiphilic branches, consistent with current understanding of electrosteric stabilization. The success of OSA-modified sorghum starch points to possible new products of interest in arid climates. PMID:25037432

  1. Biosynthesis of starch in chloroplasts.

    PubMed

    Nomura, T; Nakayama, N; Murata, T; Akazawa, T

    1967-03-01

    The enzymic synthesis of ADP-glucose and UDP-glucose by chloroplastic pyrophosphorylase of bean and rice leaves has been demonstrated by paper chromatographic techniques. In both tissues, the activity of UDP-glucose-pyrophosphorylase was much higher than ADP-glucose-pyrophosphorylase. Glycerate-3-phosphate, phosphoenolpyruvate and fructose-1,6-diphosphate did not stimulate ADP-glucose formation by a pyrophosphorylation reaction. The major metabolic pathway for UDP-glucose utilization appears to be the synthesis of either sucrose or sucrose-P. On the other hand, a specific precursor role of ADP-glucose for synthesizing chloroplast starch by the ADP-glucose-starch transglucosylase reaction is supported by the coupled enzyme system of ADP-glucose-pyrophosphorylase and transglucosylase, isolated from chloroplasts. None of the glycolytic intermediates stimulated the glucose transfer in the enzyme sequence of reaction system employed. PMID:4292567

  2. Physicochemical properties of quinoa starch.

    PubMed

    Li, Guantian; Wang, Sunan; Zhu, Fan

    2016-02-10

    Physicochemical properties of quinoa starches isolated from 26 commercial samples from a wide range of collection were studied. Swelling power (SP), water solubility index (WSI), amylose leaching (AML), enzyme susceptibility, pasting, thermal and textural properties were analyzed. Apparent amylose contents (AAM) ranged from 7.7 to 25.7%. Great variations in the diverse physicochemical properties were observed. Correlation analysis showed that AAM was the most significant factor related to AML, WSI, and pasting parameters. Correlations among diverse physicochemical parameters were analyzed. Principal component analysis using twenty three variables were used to visualize the difference among samples. Six principal components were extracted which could explain 88.8% of the total difference. The wide variations in physicochemical properties could contribute to innovative utilization of quinoa starch for food and non-food applications. PMID:26686137

  3. Formation of nanoporous aerogels from wheat starch.

    PubMed

    Ubeyitogullari, Ali; Ciftci, Ozan N

    2016-08-20

    Biodegradable nanoporous aerogels were obtained from wheat starch using a simple and green method based on supercritical carbon dioxide (SC-CO2) drying. Effects of processing parameters (temperature, wheat starch concentration and mixing rate during gelatinization; temperature, pressure, and flow rate of CO2, during SC-CO2 drying) on the aerogel formation were investigated, and optimized for the highest surface area and smallest pore size of the aerogels. At the optimized conditions, wheat starch aerogels had surface areas between 52.6-59.7m(2)/g and densities ranging between 0.05-0.29g/cm(3). The average pore size of the starch aerogels was 20nm. Starch aerogels were stable up to 280°C. Due to high surface area and nanoporous structure, wheat starch aerogels are promising carrier systems for bioactives and drugs in food and pharmaceutical industries. PMID:27178916

  4. Damage Tolerance Assessment Branch

    NASA Technical Reports Server (NTRS)

    Walker, James L.

    2013-01-01

    The Damage Tolerance Assessment Branch evaluates the ability of a structure to perform reliably throughout its service life in the presence of a defect, crack, or other form of damage. Such assessment is fundamental to the use of structural materials and requires an integral blend of materials engineering, fracture testing and analysis, and nondestructive evaluation. The vision of the Branch is to increase the safety of manned space flight by improving the fracture control and the associated nondestructive evaluation processes through development and application of standards, guidelines, advanced test and analytical methods. The Branch also strives to assist and solve non-aerospace related NDE and damage tolerance problems, providing consultation, prototyping and inspection services.

  5. Pen Branch delta expansion

    SciTech Connect

    Nelson, E.A.; Christensen, E.J.; Mackey, H.E.; Sharitz, R.R.; Jensen, J.R.; Hodgson, M.E.

    1984-02-01

    Since 1954, cooling water discharges from K Reactor ({anti X} = 370 cfs {at} 59 C) to Pen Branch have altered vegetation and deposited sediment in the Savannah River Swamp forming the Pen Branch delta. Currently, the delta covers over 300 acres and continues to expand at a rate of about 16 acres/yr. Examination of delta expansion can provide important information on environmental impacts to wetlands exposed to elevated temperature and flow conditions. To assess the current status and predict future expansion of the Pen Branch delta, historic aerial photographs were analyzed using both basic photo interpretation and computer techniques to provide the following information: (1) past and current expansion rates; (2) location and changes of impacted areas; (3) total acreage presently affected. Delta acreage changes were then compared to historic reactor discharge temperature and flow data to see if expansion rate variations could be related to reactor operations.

  6. Structural and functional properties of C-type starches.

    PubMed

    Cai, Jinwen; Cai, Canhui; Man, Jianmin; Zhou, Weidong; Wei, Cunxu

    2014-01-30

    This study investigated the structural and functional properties of C-type starches from pea seeds, faba bean seeds, yam rhizomes and water chestnut corms. These starches were mostly oval in shape with significantly different sizes and contents of amylose, damaged starch and phosphorus. Pea, faba bean and water chestnut starches had central hila, and yam starch had eccentric hilum. Water chestnut and yam starches had higher amylopectin short and long chain, respectively. Water chestnut and faba bean starches showed CA-type crystallinities, and pea and yam starches had C-type crystallinities. Water chestnut starch had the highest swelling power, granule swelling and pasting viscosity, lowest gelatinization temperatures and enthalpy. Faba bean starch had the lowest pasting viscosity, whereas yam starch had the highest gelatinization temperatures. Water chestnut and yam starches possessed significantly higher and lower susceptibility to acid and enzyme hydrolysis, the highest and lowest RDS contents, and the lowest and highest RS contents, respectively. PMID:24299776

  7. Branch classification: A new mechanism for improving branch predictor performance

    SciTech Connect

    Chang, P.Y.; Hao, E.; Patt, Y.; Yeh, T.Y.

    1996-04-01

    There is wide agreement that one of the most significant impediments to the performance of current and future pipelined superscalar processors is the presence of conditional branches in the instruction stream. Speculative execution is one solution to the branch problem, but speculative work is discarded if a branch is mispredicted. For it to be effective, speculative work is discarded if a branch is mispredicted. For it to be effective, speculative execution requires a very accurate branch predictor; 95% accuracy is not good enough. This paper proposes branch classification, a methodology for building more accurate branch predictors. Branch classification allows an individual branch instruction to be associated with the branch predictor best suited to predict its direction. Using this approach, a hybrid branch predictor can be constructed such that each component branch predictor predicts those branches for which it is best suited. To demonstrate the usefulness of branch classification, an example classification scheme is given and a new hybrid predictor is built based on this scheme which achieves a higher prediction accuracy than any branch predictor previously reported in the literature.

  8. Sucrose-to-Starch Metabolism in Tomato Fruit Undergoing Transient Starch Accumulation.

    PubMed Central

    Schaffer, A. A.; Petreikov, M.

    1997-01-01

    Immature green tomato (Lycopersicon esculentum) fruits undergo a period of transient starch accumulation characterized by developmental changes in the activities of key enzymes in the sucrose (Suc)-to-starch metabolic pathway. Activities of Suc synthase, fructokinase, ADP-glucose (Glc) pyrophosphorylase, and soluble and insoluble starch synthases decline dramatically in parallel to the decrease in starch levels in the developing fruit. Comparison of "maximal" in vitro activities of the enzymes in the Suc-to-starch pathway suggests that these same enzymes are limiting to the rate of starch accumulation. In contrast, activities of invertase, UDP-Glc pyrophosphorylase, nucleoside diphosphate kinase, phosphoglucoisomerase, and phosphoglucomutase do not exhibit dramatic decreases in activity and appear to be in excess of starch accumulation rates. Starch accumulation is spatially localized in the inner and radial pericarp and columella, whereas the outer pericarp and seed locule contain little starch. The seed locule is characterized by lower activities of Suc synthase, UDP-Glc pyrophosphorylase, phosphoglucomutase, ADP-Glc pyrophosphorylase, and soluble and insoluble starch synthases. The outer pericarp exhibits comparatively lower activities of ADP-Glc pyrophosphorylase and insoluble starch synthase only. These data are discussed in terms of the developmental and tissue-specific coordinated control of Suc-to-starch metabolism. PMID:12223639

  9. Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch.

    PubMed

    Wokadala, Obiro Cuthbert; Emmambux, Naushad Mohammad; Ray, Suprakas Sinha

    2014-11-01

    In this study, waxy and high amylose starches were modified through butyl-etherification to facilitate compatibility with polylactide (PLA). Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy and wettability tests showed that hydrophobic butyl-etherified waxy and high amylose starches were obtained with degree of substitution values of 2.0 and 2.1, respectively. Differential scanning calorimetry, tensile testing, and scanning electron microscopy (SEM) demonstrated improved PLA/starch compatibility for both waxy and high amylose starch after butyl-etherification. The PLA/butyl-etherified waxy and high amylose starch composite films had higher tensile strength and elongation at break compared to PLA/non-butyl-etherified composite films. The morphological study using SEM showed that PLA/butyl-etherified waxy starch composites had a more homogenous microstructure compared to PLA/butyl-etherified high amylose starch composites. Thermogravimetric analysis showed that PLA/starch composite thermal stability decreased with starch butyl-etherification for both waxy and high amylose starches. This study mainly demonstrates that PLA/starch compatibility can be improved through starch butyl-etherification. PMID:25129738

  10. Starch-Soybean Oil Composites with High Oil: Starch Ratios Prepared by Steam Jet Cooking

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aqueous mixtures of soybean oil and starch were jet cooked at oil:starch ratios ranging from 0.5:1 to 4:1 to yield dispersions of micron-sized oil droplets that were coated with a thin layer of starch at the oil-water interface. The jet cooked dispersions were then centrifuged at 2060 and 10,800 x ...

  11. Starch aerogel beads obtained from inclusion complexes prepared from high amylose starch and sodium palmitate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch aerogels are a class of low density highly porous renewable materials currently prepared from retrograded starch gels and are of interest for their good surface area, porosity, biocompatibility, and biodegradability. Recently, we have reported on starches containing amylose-fatty acid salt h...

  12. Issues of Starch in Sugarcane Processing and Prospects of Breeding for Low Starch Content in Sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch is a sugarcane impurity that adversely affects the quantity and quality of sugar processes and products. The increased production of combine and green harvested sugarcane has increased delivery of starch to sugarcane factories. Starch occurs as granules composed of amylose and amylopectin p...

  13. Degradation of Native Starch Granules by Barley α-Glucosidases 1

    PubMed Central

    Sun, Zhuotao; Henson, Cynthia A.

    1990-01-01

    The initial hydrolysis of native (unboiled) starch granules in germinating cereal kernels is considered to be due to α-amylases. We report that barley (Hordeum vulgare L.) seed α-glucosidases (EC 3.2.1.20) can hydrolyze native starch granules isolated from barley kernels and can do so at rates comparable to those of the predominant α-amylase isozymes. Two α-glucosidase charge isoforms were used individually and in combination with purified barley α-amylases to study in vitro starch digestion. Dramatic synergism, as much as 10.7-fold, of native starch granule hydrolysis, as determined by reducing sugar production, occurred when high pl α-glucosidase was combined with either high or low pl α-amylase. Synergism was also found when low pl α-glucosidase was combined with α-amylases. Scanning electron micrographs revealed that starch granule degradation by α-amylases alone occurred specifically at the equatorial grooves of lenticular granules. Granules hydrolyzed by combinations of α-glucosidases and α-amylases exhibited larger and more numerous holes on granule surfaces than did those granules attacked by α-amylase alone. As the presence of α-glucosidases resulted in more areas being susceptible to hydrolysis, we propose that this synergism is due, in part, to the ability of the α-glucosidases to hydrolyze glucosidic bonds other than α-1,4- and α-1,6- that are present at the granule surface, thereby eliminating bonds which were barriers to hydrolysis by α-amylases. Since both α-glucosidase and α-amylase are synthesized in aleurone cells during germination and secreted to the endosperm, the synergism documented here may function in vivo as well as in vitro. Images Figure 1 Figure 3 Figure 4 PMID:16667704

  14. Microalgae--novel highly efficient starch producers.

    PubMed

    Brányiková, Irena; Maršálková, Barbora; Doucha, Jiří; Brányik, Tomáš; Bišová, Kateřina; Zachleder, Vilém; Vítová, Milada

    2011-04-01

    The freshwater alga Chlorella, a highly productive source of starch, might substitute for starch-rich terrestrial plants in bioethanol production. The cultivation conditions necessary for maximizing starch content in Chlorella biomass, generated in outdoor scale-up solar photobioreactors, are described. The most important factor that can affect the rate of starch synthesis, and its accumulation, is mean illumination resulting from a combination of biomass concentration and incident light intensity. While 8.5% DW of starch was attained at a mean light intensity of 215 µmol/(m2 s1), 40% of DW was synthesized at a mean light intensity 330 µmol/(m2 s1). Another important factor is the phase of the cell cycle. The content of starch was highest (45% of DW) prior to cell division, but during the course of division, its cellular level rapidly decreased to about 13% of DW in cells grown in light, or to about 4% in those kept in the dark during the division phase. To produce biomass with high starch content, it is necessary to suppress cell division events, but not to disturb synthesis of starch in the chloroplast. The addition of cycloheximide (1 mg/L), a specific inhibitor of cytoplasmic protein synthesis, and the effect of element limitation (nitrogen, sulfur, phosphorus) were tested. The majority of the experiments were carried out in laboratory-scale photobioreactors, where culture treatments increased starch content to up to about 60% of DW in the case of cycloheximide inhibition or sulfur limitation. When the cells were limited by phosphorus or nitrogen supply, the cellular starch content increased to 55% or 38% of DW, respectively, however, after about 20 h, growth of the cultures stopped producing starch, and the content of starch again decreased. Sulfur limited and cycloheximide-treated cells maintained a high content of starch (60% of DW) for up to 2 days. Sulfur limitation, the most appropriate treatment for scaled-up culture of starch-enriched biomass

  15. Improved method for detection of starch hydrolysis

    SciTech Connect

    Ohawale, M.R.; Wilson, J.J.; Khachatourians, G.G.; Ingledew, W.M.

    1982-09-01

    A new starch hydrolysis detection method which does not rely on iodine staining or the use of color-complexed starch is described. A linear relationship was obtained with agar-starch plates when net clearing zones around colonies of yeasts were plotted against enzyme levels (semilogarithm scale) produced by the same yeast strains in liquid medium. A similar relationship between starch clearing zones and alpha-amylase levels from three different sources was observed. These observations suggest that the method is useful in mutant isolations, strain improvement programs, and the prediction of alpha-amylase activities in culture filtrates or column effluents. (Refs. 18).

  16. Size-exclusion chromatography (SEC) of branched polymers and polysaccharides.

    PubMed

    Gaborieau, Marianne; Castignolles, Patrice

    2011-02-01

    Branched polymers are among the most important polymers, ranging from polyolefins to polysaccharides. Branching plays a key role in the chain dynamics. It is thus very important for application properties such as mechanical and adhesive properties and digestibility. It also plays a key role in viscous properties, and thus in the mechanism of the separation of these polymers in size-exclusion chromatography (SEC). Critically reviewing the literature, particularly on SEC of polyolefins, polyacrylates and starch, we discuss common pitfalls but also highlight some unexplored possibilities to characterize branched polymers. The presence of a few long-chain branches has been shown to lead to a poor separation in SEC, as evidenced by multiple-detection SEC or multidimensional liquid chromatography. The local dispersity can be large in that case, and the accuracy of molecular weight determination achieved by current methods is poor, although hydrodynamic volume distributions offer alternatives. In contrast, highly branched polymers do not suffer from this extensive incomplete separation in terms of molecular weight. PMID:20967430

  17. Structural and molecular basis of starch viscosity in hexaploid wheat.

    PubMed

    Ral, J-P; Cavanagh, C R; Larroque, O; Regina, A; Morell, M K

    2008-06-11

    Wheat starch is considered to have a low paste viscosity relative to other starches. Consequently, wheat starch is not preferred for many applications as compared to other high paste viscosity starches. Increasing the viscosity of wheat starch is expected to increase the functionality of a range of wheat flour-based products in which the texture is an important aspect of consumer acceptance (e.g., pasta, and instant and yellow alkaline noodles). To understand the molecular basis of starch viscosity, we have undertaken a comprehensive structural and rheological analysis of starches from a genetically diverse set of wheat genotypes, which revealed significant variation in starch traits including starch granule protein content, starch-associated lipid content and composition, phosphate content, and the structures of the amylose and amylopectin fractions. Statistical analysis highlighted the association between amylopectin chains of 18-25 glucose residues and starch pasting properties. Principal component analysis also identified an association between monoesterified phosphate and starch pasting properties in wheat despite the low starch-phosphate level in wheat as compared to tuber starches. We also found a strong negative correlation between the phosphate ester content and the starch content in flour. Previously observed associations between internal starch granule fatty acids and the swelling peak time and pasting temperature have been confirmed. This study has highlighted a range of parameters associated with increased starch viscosity that could be used in prebreeding/breeding programs to modify wheat starch pasting properties. PMID:18459791

  18. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization.

    PubMed

    Wang, Xuchu; Chang, Lili; Tong, Zheng; Wang, Dongyang; Yin, Qi; Wang, Dan; Jin, Xiang; Yang, Qian; Wang, Liming; Sun, Yong; Huang, Qixing; Guo, Anping; Peng, Ming

    2016-01-01

    Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement. PMID:26791570

  19. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization

    PubMed Central

    Wang, Xuchu; Chang, Lili; Tong, Zheng; Wang, Dongyang; Yin, Qi; Wang, Dan; Jin, Xiang; Yang, Qian; Wang, Liming; Sun, Yong; Huang, Qixing; Guo, Anping; Peng, Ming

    2016-01-01

    Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement. PMID:26791570

  20. Radioiodinated branched carbohydrates

    DOEpatents

    Goodman, Mark M.; Knapp, Jr., Furn F.

    1989-01-01

    A radioiodinated branched carbohydrate for tissue imaging. Iodine-123 is stabilized in the compound by attaching it to a vinyl functional group that is on the carbohydrate. The compound exhibits good uptake and retention and is promising in the development of radiopharmaceuticals for brain, heart and tumor imaging.

  1. Front Range Branch Officers

    NASA Astrophysics Data System (ADS)

    The Front Range Branch of AGU has installed officers for 1990: Ray Noble, National Center for Atmospheric Research, chair; Sherry Oaks, U.S. Geological Survey, chair-elect; Howard Garcia, NOAA, treasurer; Catharine Skokan, Colorado School of Mines, secretary. JoAnn Joselyn of NOAA is past chair. Members at large are Wallace Campbell, NOAA; William Neff, USGS; and Stephen Schneider, NCAR.

  2. Molecular evolution accompanying functional divergence of duplicated genes along the plant starch biosynthesis pathway

    PubMed Central

    2014-01-01

    Background Starch is the main source of carbon storage in the Archaeplastida. The starch biosynthesis pathway (sbp) emerged from cytosolic glycogen metabolism shortly after plastid endosymbiosis and was redirected to the plastid stroma during the green lineage divergence. The SBP is a complex network of genes, most of which are members of large multigene families. While some gene duplications occurred in the Archaeplastida ancestor, most were generated during the sbp redirection process, and the remaining few paralogs were generated through compartmentalization or tissue specialization during the evolution of the land plants. In the present study, we tested models of duplicated gene evolution in order to understand the evolutionary forces that have led to the development of SBP in angiosperms. We combined phylogenetic analyses and tests on the rates of evolution along branches emerging from major duplication events in six gene families encoding sbp enzymes. Results We found evidence of positive selection along branches following cytosolic or plastidial specialization in two starch phosphorylases and identified numerous residues that exhibited changes in volume, polarity or charge. Starch synthases, branching and debranching enzymes functional specializations were also accompanied by accelerated evolution. However, none of the sites targeted by selection corresponded to known functional domains, catalytic or regulatory. Interestingly, among the 13 duplications tested, 7 exhibited evidence of positive selection in both branches emerging from the duplication, 2 in only one branch, and 4 in none of the branches. Conclusions The majority of duplications were followed by accelerated evolution targeting specific residues along both branches. This pattern was consistent with the optimization of the two sub-functions originally fulfilled by the ancestral gene before duplication. Our results thereby provide strong support to the so-called “Escape from Adaptive Conflict

  3. Cell mediated immunity to corn starch in starch-induced granulomatous peritonitis.

    PubMed

    Goodacre, R L; Clancy, R L; Davidson, R A; Mullens, J E

    1976-03-01

    Two patients with histologically diagnosed starch induced granulomatous peritonitis (SGP) have been shown to have cell mediated immunity to corn starch using the techniques of macrophage migration inhibition and lymphocyte DNA synthesis. Control groups of normal subjects, patients with uncomplicated laparotomy, and patients with Crohn's disease were negative in both tests. Lymphocytes from two patients with band adhesions, one of whom had biopsy evidence of a granulomatous reaction to starch, were sensitized to starch. Cell mediated immunity to starch may contribute to the pathogenesis of SGP, and some band adhesions may be a chronic low grade manifestation of this disorder. PMID:1269987

  4. GMFβ controls branched actin content and lamellipodial retraction in fibroblasts

    PubMed Central

    Haynes, Elizabeth M.; Asokan, Sreeja B.; King, Samantha J.; Johnson, Heath E.; Haugh, Jason M.

    2015-01-01

    The lamellipodium is an important structure for cell migration containing branched actin nucleated via the Arp2/3 complex. The formation of branched actin is relatively well studied, but less is known about its disassembly and how this influences migration. GMF is implicated in both Arp2/3 debranching and inhibition of Arp2/3 activation. Modulation of GMFβ, a ubiquitous GMF isoform, by depletion or overexpression resulted in changes in lamellipodial dynamics, branched actin content, and migration. Acute pharmacological inhibition of Arp2/3 by CK-666, coupled to quantitative live-cell imaging of the complex, showed that depletion of GMFβ decreased the rate of branched actin disassembly. These data, along with mutagenesis studies, suggest that debranching (not inhibition of Arp2/3 activation) is a primary activity of GMFβ in vivo. Furthermore, depletion or overexpression of GMFβ disrupted the ability of cells to directionally migrate to a gradient of fibronectin (haptotaxis). These data suggest that debranching by GMFβ plays an important role in branched actin regulation, lamellipodial dynamics, and directional migration. PMID:26101216

  5. Changes in the activities of starch metabolism enzymes in rice grains in response to elevated CO2 concentration.

    PubMed

    Xie, Li-Yong; Lin, Er-Da; Zhao, Hong-Liang; Feng, Yong-Xiang

    2016-05-01

    The global atmospheric CO(2) concentration is currently (2012) 393.1 μmol mol(-1), an increase of approximately 42 % over pre-industrial levels. In order to understand the responses of metabolic enzymes to elevated CO(2) concentrations, an experiment was conducted using the Free Air CO(2) Enrichment (FACE )system. Two conventional japonica rice varieties (Oryza sativa L. ssp. japonica) grown in North China, Songjing 9 and Daohuaxiang 2, were used in this study. The activities of ADPG pyrophosphorylase, soluble and granule-bound starch synthases, and soluble and granule-bound starch branching enzymes were measured in rice grains, and the effects of elevated CO(2) on the amylose and protein contents of the grains were analyzed. The results showed that elevated CO(2) levels significantly increased the activity of ADPG pyrophosphorylase at day 8, 24, and 40 after flower, with maximum increases of 56.67 % for Songjing 9 and 21.31 % for Daohuaxiang 2. Similarly, the activities of starch synthesis enzymes increased significantly from the day 24 after flower to the day 40 after flower, with maximum increases of 36.81 % for Songjing 9 and 66.67 % for Daohuaxiang 2 in soluble starch synthase (SSS), and 25.00 % for Songjing 9 and 36.44 % for Daohuaxiang 2 in granule-bound starch synthase (GBSS), respectively. The elevated CO(2) concentration significantly increased the activity of soluble starch branching enzyme (SSBE) at day 16, 32, and 40 after flower, and also significantly increased the activity of granule-bound starch branching enzyme (GBSBE) at day 8, 32, and 40 after flower. The elevated CO(2) concentration increased the peak values of enzyme activity, and the timing of the activity peaks for SSS and GBSBE were earlier in Songjing 9 than in Daohuaxiang 2. There were obvious differences in developmental stages between the two varieties of rice, which indicated that the elevated CO(2) concentration increased enzyme activity expression and starch synthesis, affecting the

  6. Changes in the activities of starch metabolism enzymes in rice grains in response to elevated CO2 concentration

    NASA Astrophysics Data System (ADS)

    Xie, Li-Yong; Lin, Er-Da; Zhao, Hong-Liang; Feng, Yong-Xiang

    2016-05-01

    The global atmospheric CO2 concentration is currently (2012) 393.1 μmol mol-1, an increase of approximately 42 % over pre-industrial levels. In order to understand the responses of metabolic enzymes to elevated CO2 concentrations, an experiment was conducted using the Free Air CO2 Enrichment (FACE )system. Two conventional japonica rice varieties ( Oryza sativa L. ssp. japonica) grown in North China, Songjing 9 and Daohuaxiang 2, were used in this study. The activities of ADPG pyrophosphorylase, soluble and granule-bound starch synthases, and soluble and granule-bound starch branching enzymes were measured in rice grains, and the effects of elevated CO2 on the amylose and protein contents of the grains were analyzed. The results showed that elevated CO2 levels significantly increased the activity of ADPG pyrophosphorylase at day 8, 24, and 40 after flower, with maximum increases of 56.67 % for Songjing 9 and 21.31 % for Daohuaxiang 2. Similarly, the activities of starch synthesis enzymes increased significantly from the day 24 after flower to the day 40 after flower, with maximum increases of 36.81 % for Songjing 9 and 66.67 % for Daohuaxiang 2 in soluble starch synthase (SSS), and 25.00 % for Songjing 9 and 36.44 % for Daohuaxiang 2 in granule-bound starch synthase (GBSS), respectively. The elevated CO2 concentration significantly increased the activity of soluble starch branching enzyme (SSBE) at day 16, 32, and 40 after flower, and also significantly increased the activity of granule-bound starch branching enzyme (GBSBE) at day 8, 32, and 40 after flower. The elevated CO2 concentration increased the peak values of enzyme activity, and the timing of the activity peaks for SSS and GBSBE were earlier in Songjing 9 than in Daohuaxiang 2. There were obvious differences in developmental stages between the two varieties of rice, which indicated that the elevated CO2 concentration increased enzyme activity expression and starch synthesis, affecting the final contents

  7. Rheology and pressurised gyration of starch and starch-loaded poly(ethylene oxide).

    PubMed

    Mahalingam, S; Ren, G G; Edirisinghe, M J

    2014-12-19

    This work investigates the rheology and spinning of starch and starch-loaded poly(ethylene oxide) (PEO) by pressurised gyration in order to prepare nanofibres. The spinning dope's rheological properties played a crucial role in fibre formation. Newtonian behaviour is observed in 1-20 wt% starch suspensions and non-Newtonian behaviour is found in all the PEO-starch mixtures. Pressurised gyration of the starch suspensions produced beads only but PEO-starch mixtures generated fibres. The fibre diameter of the PEO-starch samples is shown to be a function of polymer concentration and rotating speed of the gyration system. Fibre formation can only be facilitated below a certain working pressure. The concentration of starch in the PEO-starch mixtures is crucial in defining whether beaded or continuous fibres were generated and this is related to the composition of the spinning dope. FT-IR, XRD and microscopy studies indicated very good miscibility of starch and PEO in the nanofibres. The storage modulus of the PEO-starch were also studied as a function of temperature (30-150°C) and showed interesting results but it was not possible to deduce general trends valid for the entire temperature range. PMID:25263892

  8. Characterisation of corn starch-based films reinforced with taro starch nanoparticles.

    PubMed

    Dai, Lei; Qiu, Chao; Xiong, Liu; Sun, Qingjie

    2015-05-01

    Taro starch nanoparticles (TSNPs) obtained by hydrolysis with pullulanase and the recrystallisation of gelatinised starch were used as reinforcing agents in corn starch films. The influence of TSNPs contents (0.5-15%) on the physical, mechanical, thermal, and structural properties of starch films was investigated. An increase in the concentration of TSNPs led to a significant decrease in the water vapour permeability (WVP) of films. The addition of TSNPs increased the tensile strength (TS) of films from 1.11 MPa to 2.87 MPa. Compared with pure starch films, the surfaces of nanocomposite films became uneven. The onset temperature (To) and melting temperature (Tm) of films containing TSNPs were higher than those of pure starch films. The addition of TSNPs improved the thermal stability of starch films. PMID:25529655

  9. Impact on molecular organization of amylopectin in starch granules upon annealing.

    PubMed

    Vamadevan, Varatharajan; Bertoft, Eric; Soldatov, Dmitriy V; Seetharaman, Koushik

    2013-10-15

    This study investigated the influence of the internal structure of amylopectin on annealing (3h, 24h) of starches from four different types of amylopectin (Bertoft, Koch, & Aman, 2012; Bertoft, Piyachomkwan, Chatakanonda, & Sriroth, 2008). Regardless of the starch source and incubation time, annealing significantly increased the onset gelatinization temperature (To) and narrowed and deepened the amylopectin endotherm. However, the extent of the change in the melting temperature (Tm) and the enthalpy of gelatinization (ΔH) differed among the types. In terms of the To and Tm, starches from type 1 (oat, rye, barley, and waxy barley) showed the most significant response to annealing. The Tm of starches belonging to type 2 (waxy maize, rice, waxy rice, and sago) remained unchanged after 3h of annealing. Type 1 and type 2 starches with the lowest gelatinization temperatures showed the greatest increase in melting temperature after annealing. However, type 3 (tapioca, mung bean, and arrowroot) and type 4 (potato, waxy potato, canna, and yam) starches were not in line with these observations. Instead, starches from type 3 and type 4 showed a pronounced increase in the ΔH. The inter-block chain length (IB-CL) (distance between tightly branched units within a cluster) correlated positively (r=0.93, p<0.01) with the change in enthalpy after 24h of annealing. These data indicate that a short IB-CL affects the optimum registration of double helices within the crystalline lamellae. The relationship between the gelatinization parameters before and after annealing suggests that type 1 and 2 starches might possess a high number of unpacked double helices (type 1>type 2) compared to other types. Longer IB-CLs, which facilitate the parallel packing of splayed double helices, and the lengthening of double helices likely increased the ΔH in type 3 and type 4 starches. It is concluded that annealing can be used as a probe for visualizing the organization of glucan chains (alignment

  10. Structural Basis of Dscam Isoform Specificity

    SciTech Connect

    Meijers,R.; Puettmann-Holgado, R.; Skiniotis, G.; Liu, J.; Walz, T.; Wang, J.; Schmucker, D.

    2007-01-01

    The Dscam gene gives rise to thousands of diverse cell surface receptors1 thought to provide homophilic and heterophilic recognition specificity for neuronal wiring and immune responses. Mutually exclusive splicing allows for the generation of sequence variability in three immunoglobulin ecto-domains, D2, D3 and D7. We report X-ray structures of the amino-terminal four immunoglobulin domains (D1-D4) of two distinct Dscam isoforms. The structures reveal a horseshoe configuration, with variable residues of D2 and D3 constituting two independent surface epitopes on either side of the receptor. Both isoforms engage in homo-dimerization coupling variable domain D2 with D2, and D3 with D3. These interactions involve symmetric, antiparallel pairing of identical peptide segments from epitope I that are unique to each isoform. Structure-guided mutagenesis and swapping of peptide segments confirm that epitope I, but not epitope II, confers homophilic binding specificity of full-length Dscam receptors. Phylogenetic analysis shows strong selection of matching peptide sequences only for epitope I. We propose that peptide complementarity of variable residues in epitope I of Dscam is essential for homophilic binding specificity.

  11. Mechanistic information from analysis of molecular weight distributions of starch.

    PubMed

    Castro, Jeffrey V; Dumas, Céline; Chiou, Herbert; Fitzgerald, Melissa A; Gilbert, Robert G

    2005-01-01

    A methodology is developed for interpreting the molecular weight distributions of debranched amylopectin, based on techniques developed for quantitatively and qualitatively finding mechanistic information from the molecular weight distributions of synthetic polymers. If the only events occurring are random chain growth and stoppage (i.e., the rates are independent of degree of polymerization over the range in question), then the number of chains of degree of polymerization N, P(N), is linear in ln P(N) with a negative slope, where the slope gives the ratio of the stoppage and growth rates. This starting point suggests that mechanistic inferences can be made from a plot of lnP against N. Application to capillary electrophoresis data for the P(N) of debranched starch from across the major taxa, from bacteria (Escherichia coli), green algae (Chlamydomonas reinhardtii), mammals (Bos), and flowering plants (Oryza sativa, rice; Zea mays, maize; Triticum aestivum, wheat; Hordeum vulgare, barley; and Solanum tuberosum, potato), gives insights into the biosynthetic pathways, showing the differences and similarities of the alpha-1,4-glucans produced by the various species. Four characteristic regions for storage starch from the higher plants are revealed: (1) an initial increasing region corresponding to the formation of new branches, (2) a linear ln P region with negative slope, indicating random growth and stoppage, (3) a region corresponding to the formation of the crystalline lamellae and subsequent elongation of chains, and (4) a second linear ln P with negative slope region. Each region can be assigned to specific enzymatic processes in starch synthesis, including determining the ranges of degrees of polymerization which are subject to random and nonrandom processes. PMID:16004469

  12. Functional properties of yam bean (Pachyrhizus erosus) starch.

    PubMed

    Mélo, E A; Stamford, T L M; Silva, M P C; Krieger, N; Stamford, N P

    2003-08-01

    The study was carried out in order to determine and establish the functional characters of starch extracted from yam bean (Pachyrhizus erosus (L) Urban) compared with cassava starch. Yam bean is a tropical tuber legume easily grown and holds a great potential as a new source of starch. Yam bean starch shows functional properties which are peculiar to those of most starch root crops. Gelatinization temperature (53-63 degrees C) and the pasting temperature (64.5 degrees C) are less than those of cereal starch, however, the swelling power is high (54.4 g gel/g dried starch). Yam bean starch paste presents a high viscosity profile, high retrogradation tendency and low stability on cooking. The functional properties of yam bean starch, similar to those of cassava starch, allows yam bean to be used as a potential new source of starch. PMID:12676508

  13. Friction Properties of Chemically Modified Starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch is a high molecular weight polyglucose biopolymer that, in its native state, is insoluble in water at room temperature. One way of improving its water solubility is by esterification of its free hydroxyl groups. Waxy maize, normal corn, and high amylose corn starches were esterified with ac...

  14. Pasting characteristics of starch-lipid composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch-lipid composites (SLC) have been used as fat replacers and stabilizers in beef patties, dairy products, and baked goods. The SLC are produced by mixing aqueous starch slurry with a lipid source, and steam jet-cooking. The SLC may be dried using a drum drier and then milled in a Retch mill. ...

  15. Production of PLA-Starch Fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Composites of polylactic acid (PLA) with starch have been prepared previously in an effort to reduce cost as well as to modify other properties such as biodegradation rate. However, strength and elongation both decrease on addition of starch due to poor adhesion and stress concentration at the inte...

  16. Antimicrobial nanostructured starch based films for packaging.

    PubMed

    Abreu, Ana S; Oliveira, M; de Sá, Arsénio; Rodrigues, Rui M; Cerqueira, Miguel A; Vicente, António A; Machado, A V

    2015-09-20

    Montmorillonite modified with a quaternary ammonium salt C30B/starch nanocomposite (C30B/ST-NC), silver nanoparticles/starch nanocomposite (Ag-NPs/ST-NC) and both silver nanoparticles/C30B/starch nanocomposites (Ag-NPs/C30B/ST-NC) films were produced. The nanoclay (C30B) was dispersed in a starch solution using an ultrasonic probe. Different concentrations of Ag-NPs (0.3, 0.5, 0.8 and 1.0mM) were synthesized directly in starch and in clay/starch solutions via chemical reduction method. Dispersion of C30B silicate layers and Ag-NPs in ST films characterized by X-ray and scanning electron microscopy showed that the presence of Ag-NPs enhanced clay dispersion. Color and opacity measurements, barrier properties (water vapor and oxygen permeabilities), dynamic mechanical analysis and contact angle were evaluated and related with the incorporation of C30B and Ag-NPs. Films presented antimicrobial activity against Staphylococcus aureus, Escherichia coli and Candida albicans without significant differences between Ag-NPs concentrations. The migration of components from the nanostructured starch films, assessed by food contact tests, was minor and under the legal limits. These results indicated that the starch films incorporated with C30B and Ag-NPs have potential to be used as packaging nanostructured material. PMID:26050897

  17. A high amylose (amylomaize) starch raises proximal large bowel starch and increases colon length in pigs.

    PubMed

    Topping, D L; Gooden, J M; Brown, I L; Biebrick, D A; McGrath, L; Trimble, R P; Choct, M; Illman, R J

    1997-04-01

    Young male pigs consumed a diet of fatty minced beef, safflower oil, skim milk powder, sucrose, cornstarch and wheat bran. Starch provided 50% of total daily energy either as low amylose cornstarch, high amylose (amylomaize) cornstarch or as a 50/50 mixture of corn and high amylose starch. Neither feed intake nor body weight gain as affected by dietary starch. Final plasma cholesterol concentrations were significantly higher than initial values in pigs fed the 50/50 mixture of corn and high amylose starch. Biliary concentrations of lithocholate and deoxycholate were lower in pigs fed high amylose starch. Large bowel length correlated positively with the dietary content of high amylose starch. Concentrations of butyrate in portal venous plasma were significantly lower in pigs fed high amylose starch than in those fed cornstarch. Neither large bowel digesta mass nor the concentrations of total or individual volatile fatty acids were affected by diet. However, the pool of propionate in the proximal colon and the concentration of propionate in feces were higher in pigs fed amylose starch. Concentrations of starch were uniformly low along the large bowel and were unaffected by starch type. In pigs with cecal cannula, digesta starch concentrations were higher with high amylose starch than with cornstarch. Electron micrographic examination of high amylose starch granules from these animals showed etching patterns similar to those of granules obtained from human ileostomy effluent. It appears that high amylose starch contributes to large bowel bacterial fermentation in the pig but that its utilization may be relatively rapid. PMID:9109613

  18. Impact of dual-enzyme treatment on the octenylsuccinic anhydride esterification of soluble starch nanoparticle.

    PubMed

    Lu, Keyu; Miao, Ming; Ye, Fan; Cui, Steve W; Li, Xingfeng; Jiang, Bo

    2016-08-20

    The hypothesis of improving the esterification of sugary maize soluble starch through dual-enzyme pretreatment was investigated. Native starch nanoparticle (NSP) was enzymatically pretreated using β-amylase and transglucosidase (ESP) and then esterified with octenylsuccinic anhydride (OSA). The degree of substitution (DS), reaction efficiency (RE), molecular weight (Mw), molecular density (ρ) and in vitro digestibility were determined. Fourier transform infrared spectroscopy and confocal laser scanning microscopy were used to analyze starch particle and its OS derivatives. The emulsification properties of OS-NSP and OS-ESP were also compared. The results showed that dual-enzyme modification increased the DS and RE of OSA modified starch particle compared with the control. Enzymatic modification had a thinning effect at the surface of starch particle, resulting in lower Mw. The extent of reduction in ρ of OS-ESP was greater than that of OS-NSP. At equivalent DS, OSA modification of EPS was more effective than that of NPS in reducing digestibility. Also, there was brighter fluorescence spheres of OS-ESP in comparison to OS-NSP at equivalent DS, suggesting more OS groups were substituted on the chains near the branch points at less density areas. OS-ESP with higher DS (0.0197) had lower zeta-potential and average particle size for superior emulsion stabilization properties with high stability. The results revealed the OS-starch prepared under dual-enzyme pretreatment was a Pickering particle stabilizer for potential application in encapsulation and delivery of bioactive components. PMID:27178945

  19. Atomic branching in molecules

    NASA Astrophysics Data System (ADS)

    Estrada, Ernesto; Rodríguez-Velázquez, Juan A.; Randić, Milan

    A graph theoretic measure of extended atomic branching is defined that accounts for the effects of all atoms in the molecule, giving higher weight to the nearest neighbors. It is based on the counting of all substructures in which an atom takes part in a molecule. We prove a theorem that permits the exact calculation of this measure based on the eigenvalues and eigenvectors of the adjacency matrix of the graph representing a molecule. The definition of this measure within the context of the Hückel molecular orbital (HMO) and its calculation for benzenoid hydrocarbons are also studied. We show that the extended atomic branching can be defined using any real symmetric matrix, as well as any Hermitian (self-adjoint) matrix, which permits its calculation in topological, geometrical, and quantum chemical contexts.

  20. Identification of a Novel C-Terminal Truncated WT1 Isoform with Antagonistic Effects against Major WT1 Isoforms

    PubMed Central

    Tatsumi, Naoya; Hojo, Nozomi; Sakamoto, Hiroyuki; Inaba, Rena; Moriguchi, Nahoko; Matsuno, Keiko; Fukuda, Mari; Matsumura, Akihide; Hayashi, Seiji; Morimoto, Soyoko; Nakata, Jun; Fujiki, Fumihiro; Nishida, Sumiyuki; Nakajima, Hiroko; Tsuboi, Akihiro; Oka, Yoshihiro; Hosen, Naoki; Sugiyama, Haruo; Oji, Yusuke

    2015-01-01

    The Wilms’ tumor gene WT1 consists of 10 exons and encodes a zinc finger transcription factor. There are four major WT1 isoforms resulting from alternative splicing at two sites, exon 5 (17AA) and exon 9 (KTS). All major WT1 isoforms are overexpressed in leukemia and solid tumors and play oncogenic roles such as inhibition of apoptosis, and promotion of cell proliferation, migration and invasion. In the present study, a novel alternatively spliced WT1 isoform that had an extended exon 4 (designated as exon 4a) with an additional 153 bp (designated as 4a sequence) at the 3’ end was identified and designated as an Ex4a(+)WT1 isoform. The insertion of exon 4a resulted in the introduction of premature translational stop codons in the reading frame in exon 4a and production of C-terminal truncated WT1 proteins lacking zinc finger DNA-binding domain. Overexpression of the truncated Ex4a(+)WT1 isoform inhibited the major WT1-mediated transcriptional activation of anti-apoptotic Bcl-xL gene promoter and induced mitochondrial damage and apoptosis. Conversely, suppression of the Ex4a(+)WT1 isoform by Ex4a-specific siRNA attenuated apoptosis. These results indicated that the Ex4a(+)WT1 isoform exerted dominant negative effects on anti-apoptotic function of major WT1 isoforms. Ex4a(+)WT1 isoform was endogenously expressed as a minor isoform in myeloid leukemia and solid tumor cells and increased regardless of decrease in major WT1 isoforms during apoptosis, suggesting the dominant negative effects on anti-apoptotic function of major WT1 isoforms. These results indicated that Ex4a(+)WT1 isoform had an important physiological function that regulated oncogenic function of major WT1 isoforms. PMID:26090994

  1. Underwater branch connection study

    SciTech Connect

    Not Available

    1992-06-01

    This report was prepared with the object of developing guidelines for designing underwater connections of branch pipelines to main lines at existing tap valves and with hot taps in diver accessible water depths. The report considers ANSI Classes 600 and 900 branch pipelines of up to twelve inches in diameter that conform to API Specification 5L minimum. Loads due to gravity, buoyancy, intemal and external pressure, thermal expansion, hydrodynamics and random events are considered. External corrosion, temperature, cover, bottom conditions, stability, testing, commissioning, trenching, and pigging are also addressed. A general discussion of these issues is included in the body of the report. Methods of analysis are included in the appendices and in various references. Lotus 123'' spreadsheets that compute the expansion stresses resulting from pressure and temperature at points on a generic piping geometry are presented. A program diskette is included with the report. The report summarizes, and draws from, the results of a survey of the relevant practice and experience of fifteen gas pipeline operating companies. The survey indicates that most existing branch connections do not provide for pigging of the lateral lines, but that there is a growing consensus that cleaning and inspection pigging of lateral lines is desirable or necessary.

  2. Starch Origin and Thermal Processing Affect Starch Digestion in a Minipig Model of Pancreatic Exocrine Insufficiency.

    PubMed

    Mößeler, Anne; Vagt, Sandra; Beyerbach, Martin; Kamphues, Josef

    2015-01-01

    Although steatorrhea is the most obvious symptom of pancreatic exocrine insufficiency (PEI), enzymatic digestion of protein and starch is also impaired. Low praecaecal digestibility of starch causes a forced microbial fermentation accounting for energy losses and meteorism. To optimise dietetic measures, knowledge of praecaecal digestibility of starch is needed but such information from PEI patients is rare. Minipigs fitted with an ileocaecal fistula with (n = 3) or without (n = 3) pancreatic duct ligation (PL) were used to estimate the rate of praecaecal disappearance (pcD) of starch. Different botanical sources of starch (rice, amaranth, potato, and pea) were fed either raw or cooked. In the controls (C), there was an almost complete pcD (>92%) except for potato starch (61.5%) which was significantly lower. In PL pcD of raw starch was significantly lower for all sources of starch except for amaranth (87.9%). Thermal processing increased pcD in PL, reaching values of C for starch from rice, potato, and pea. This study clearly underlines the need for precise specification of starch used for patients with specific dietetic needs like PEI. Data should be generated in suitable animal models or patients as tests in healthy individuals would not have given similar conclusions. PMID:26064101

  3. Starch Origin and Thermal Processing Affect Starch Digestion in a Minipig Model of Pancreatic Exocrine Insufficiency

    PubMed Central

    Mößeler, Anne; Vagt, Sandra; Beyerbach, Martin; Kamphues, Josef

    2015-01-01

    Although steatorrhea is the most obvious symptom of pancreatic exocrine insufficiency (PEI), enzymatic digestion of protein and starch is also impaired. Low praecaecal digestibility of starch causes a forced microbial fermentation accounting for energy losses and meteorism. To optimise dietetic measures, knowledge of praecaecal digestibility of starch is needed but such information from PEI patients is rare. Minipigs fitted with an ileocaecal fistula with (n = 3) or without (n = 3) pancreatic duct ligation (PL) were used to estimate the rate of praecaecal disappearance (pcD) of starch. Different botanical sources of starch (rice, amaranth, potato, and pea) were fed either raw or cooked. In the controls (C), there was an almost complete pcD (>92%) except for potato starch (61.5%) which was significantly lower. In PL pcD of raw starch was significantly lower for all sources of starch except for amaranth (87.9%). Thermal processing increased pcD in PL, reaching values of C for starch from rice, potato, and pea. This study clearly underlines the need for precise specification of starch used for patients with specific dietetic needs like PEI. Data should be generated in suitable animal models or patients as tests in healthy individuals would not have given similar conclusions. PMID:26064101

  4. Molecular disassembly of rice and lotus starches during thermal processing and its effect on starch digestibility.

    PubMed

    Wang, Shujun; Sun, Yue; Wang, Jinrong; Wang, Shuo; Copeland, Les

    2016-02-01

    The molecular disassembly of starch during thermal processing is a major determinant for the susceptibility of starch to enzymatic digestion. In the present study, the effects of thermal processing on the disassembly of the granular structure and the in vitro enzymatic digestibility of rice and lotus starches were investigated. After heating at 50 °C, rice and lotus starches did not show significant changes in granular morphology, long-range crystallinity and short-range molecular order. As the temperature increased to 60 °C, rice starch underwent a partial gelatinization followed by an incomplete disruption of granular morphology, crystallites and molecular order. In contrast, lotus starch was almost completely gelatinized at 60 °C. At 70 °C or higher, both starches were fully gelatinized with complete disruption of the micro and macro structures. Our results show that gelatinization greatly increased the in vitro enzymatic digestibility of both starches, but that the degree of disassembly of the starch structure during thermal processing was not a major determinant of the digestibility of gelatinized starch. PMID:26829664

  5. Adsorption of Polyethylene from Solution onto Starch Film Surfaces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since starch adsorbs onto polyethylene (PE) surfaces from cooled solutions of jet cooked starch, this study was carried out to determine whether adsorption of PE onto hydrophilic starch film surfaces would also take place if starch films were placed in hot solutions of PE in organic solvents, and th...

  6. 21 CFR 178.3520 - Industrial starch-modified.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Industrial starch-modified. 178.3520 Section 178... § 178.3520 Industrial starch-modified. Industrial starch-modified may be safely used as a component of..., transporting, or holding food, subject to the provisions of this section. (a) Industrial starch-modified...

  7. Formation of Elongated Starch Granules in High-amylose Maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    GEMS-0067 maize starch contains up to 32% elongated starch granules much higher than amylose-extender (ae) single-mutant maize starch (~7%) and normal (non-mutant) maize starch (0%). These elongated granules are highly resistant to enzymatic hydrolysis at 95-100 C, which function as resistant starc...

  8. Alpha actin isoforms expression in human and rat adult cardiac conduction system.

    PubMed

    Orlandi, Augusto; Hao, Hiroyuki; Ferlosio, Amedeo; Clément, Sophie; Hirota, Seiichi; Spagnoli, Luigi Giusto; Gabbiani, Giulio; Chaponnier, Christine

    2009-04-01

    In the adult heart, cardiac muscle comprises the working myocardium and the conduction system (CS). The latter includes the sinoatrial node (SAN), the internodal tract or bundle (IB), the atrioventricular node (AVN), the atrioventricular bundle (AVB), the bundle branches (BB) and the peripheral Purkinje fibers (PF). Most of the information concerning the phenotypic features of CS tissue derives from the characterization of avian and rodent developing hearts; data concerning the expression of actin isoforms in adult CS cardiomyocytes are scarce. Using specific antibodies, we investigated the distribution of alpha-skeletal (alpha-SKA), alpha-cardiac (alpha-CA), alpha-smooth muscle (alpha-SMA) actin isoforms and other muscle-typical proteins in the CS of human and rat hearts at different ages. SAN and IB cardiomyocytes were characterized by the presence of alpha-SMA, alpha-CA, calponin and caldesmon, whereas alpha-SKA and vimentin were absent. Double immunofluorescence demonstrated the co-localisation of alpha-SMA and alpha-CA in I-bands of SAN cardiomyocytes. AVN, AVB, BB and PF cardiomyocytes were alpha-SMA, calponin, caldesmon and vimentin negative, and alpha-CA and alpha-SKA positive. No substantial differences in actin isoform distribution were observed in human and rat hearts, except for the presence of isolated subendocardial alpha-SMA positive cardiomyocytes co-expressing alpha-CA in the ventricular septum of the rat. Aging did not influence CS cardiomyocyte actin isoform expression profile. These findings support the concept that cardiomyocytes of SAN retain the phenotype of a developing myogenic cell throughout the entire life span. PMID:19281784

  9. Improving the glycosyltransferase activity of Agrobacterium tumefaciens glycogen synthase by fusion of N-terminal starch binding domains (SBDs).

    PubMed

    Martín, Mariana; Wayllace, Nahuel Z; Valdez, Hugo A; Gomez-Casati, Diego F; Busi, María V

    2013-10-01

    Glycogen and starch, the major storage carbohydrate in most living organisms, result mainly from the action of starch or glycogen synthases (SS or GS, respectively, EC 2.4.1.21). SSIII from Arabidopsis thaliana is an SS isoform with a particular modular organization: the C-terminal highly conserved glycosyltransferase domain is preceded by a unique specific region (SSIII-SD) which contains three in tandem starch binding domains (SBDs, named D1, D2 and D3) characteristic of polysaccharide degrading enzymes. N-terminal SBDs have a probed regulatory role in SSIII activity, showing starch binding ability and modulating the catalytic properties of the enzyme. On the other hand, GS from Agrobacterium tumefaciens has a simple primary structure organization, characterized only by the highly conserved glycosyltransferase domain and lacking SBDs. To further investigate the functional role of A. thaliana SSIII-SD, three chimeric proteins were constructed combining the SBDs from A. thaliana with the GS from A. tumefaciens. Recombinant proteins were expressed in and purified to homogeneity from Escherichia coli cells in order to be kinetically characterized. Furthermore, we tested the ability to restore in vivo glycogen biosynthesis in transformed E. coli glgA(-) cells, deficient in GS. Results show that the D3-GS chimeric enzyme showed increased capacity of glycogen synthesis in vivo with minor changes in its kinetics parameters compared to GS. PMID:23796574

  10. Properties of starch subjected to partial gelatinization and beta-amylolysis.

    PubMed

    Hickman, B Elliot; Janaswamy, Srinivas; Yao, Yuan

    2009-01-28

    The overall objective of this research is to understand the impact of partial gelatinization and beta-amylase hydrolysis (beta-amylolysis) on the physicochemical properties of starch. Three starches (normal corn, waxy corn, and wheat) were chosen as test examples and thermally treated at 40% moisture content to up to 95 degrees C and then subjected to beta-amylolysis. The enzyme treatment resulted in over 10% maltose yield. Subsequent debranching analysis showed the production of chain stubs as short as having the degree of polymerization of 2 and 3, suggesting a thorough beta-amylolysis at certain branch locations. For starch samples subjected to partial gelatinization, polarized light microscopy shows reduced intensity of birefringence and differential scanning calorimetry shows reduced enthalpy change associated with gelatinization. Both indicate the reduced chain organization due to the treatment. Further, a substantial transformation of initial A-type crystalline structure to B- and V-types upon treatments is noticed from X-ray powder diffraction measurements. In addition, the rapid viscosity analysis (RVA) indicated a drastic viscosity reduction, increased peak temperature, and improved stability of pasting behavior due to hydrothermal treatments and beta-amylolysis. Overall, our results point out the possibility of obtaining modified starches having desirable stable pasting behavior by using a combined partial gelatinization and beta-amylolysis approach. PMID:19154167

  11. Suggested alternative starch utilization system from the human gut bacterium Bacteroides thetaiotaomicron.

    PubMed

    Chaudet, Marcia M; Rose, David R

    2016-06-01

    The human digestive system is host to a highly populated ecosystem of bacterial species that significantly contributes to our assimilation of dietary carbohydrates. Bacteroides thetaiotaomicron is a member of this ecosystem, and participates largely in the role of the gut microbiome by breaking down dietary complex carbohydrates. This process of acquiring glycans from the colon lumen is predicted to rely on the mechanisms of proteins that are part of a classified system known as polysaccharide utilization loci (PUL). These loci are responsible for binding substrates at the cell outer membrane, internalizing them, and then hydrolyzing them within the periplasm into simple sugars. Here we report our investigation into specific components of a PUL, and suggest an alternative starch utilization system in B. thetaiotaomicron. Our analysis of an outer membrane binding protein, a SusD homolog, highlights its contribution to this PUL by acquiring starch-based sugars from the colon lumen. Through our structural characterization of two Family GH31 α-glucosidases, we reveal the flexibility of this bacterium with respect to utilizing a range of starch-derived glycans with an emphasis on branched substrates. With these results we demonstrate the predicted function of a gene locus that is capable of contributing to starch hydrolysis in the human colon. PMID:27093479

  12. Sugar-mediated semidian oscillation of gene expression in the cassava storage root regulates starch synthesis

    SciTech Connect

    Jansson, Christer; Baguma, Yona; Sun, Chuanxin; Boren, Mats; Olsson, Helena; Rosenqvist, Sara; Mutisya, Joel; Rubaihayo, Patrick R.; Jansson, Christer

    2008-01-15

    Starch branching enzyme (SBE) activity in the cassava storage root exhibited a diurnal fluctuation, dictated by a transcriptional oscillation of the corresponding SBE genes. The peak of SBE activity coincided with the onset of sucrose accumulation in the storage, and we conclude that the oscillatory mechanism keeps the starch synthetic apparatus in the storage root sink in tune with the flux of sucrose from the photosynthetic source. When storage roots were uncoupled from the source, SBE expression could be effectively induced by exogenous sucrose. Turanose, a sucrose isomer that cannot be metabolized by plants, mimicked the effect of sucrose, demonstrating that downstream metabolism of sucrose was not necessary for signal transmission. Also glucose and glucose-1-P induced SBE expression. Interestingly, induction by sucrose, turanose and glucose but not glucose-1-P sustained an overt semidian (12-h) oscillation in SBE expression and was sensitive to the hexokinase (HXK) inhibitor glucosamine. These results suggest a pivotal regulatory role for HXK during starch synthesis. Abscisic acid (ABA) was another potent inducer of SBE expression. Induction by ABA was similar to that of glucose-1-P in that it bypassed the semidian oscillator. Both the sugar and ABA signaling cascades were disrupted by okadaic acid, a protein phosphatase inhibitor. Based on these findings, we propose a model for sugar signaling in regulation of starch synthesis in the cassava storage root.

  13. Structural modification and characterisation of a sugary maize soluble starch particle after double enzyme treatment.

    PubMed

    Miao, Ming; Li, Rong; Huang, Chao; Ye, Fan; Jiang, Bo; Zhang, Tao

    2015-05-20

    Sugary maize soluble starch particles were modified by using a combined β-amylase and transglucosidase reaction, and their molecular fine structure and susceptibility to digestive enzymes were investigated. After the dual enzyme treatment, the molecular weight of starch particle decreased from 2.08 × 10(7) to 0.96 × 10(7)g/mol accompanied by the appearance of DP 2-5 chains and the degradation of DP > 12 chains, and the percentage of α-1,6 linkages increased from 8.1 to 21.7%. The digestion behaviour of enzyme-treated starch was correlated with the quantity of shorter chains and increased α-1,6 linkages. The data revealed that maize soluble starches subjected to a combined β-amylase and transglucosidase treatment for 60 min or greater, produced novel, highly branched nano-particles with slow digestion and resistance characteristics, which could be used as a potential delivery carrier for functional food components. PMID:25817648

  14. Epimorphin is a novel regulator of the progesterone receptor isoform-a.

    PubMed

    Bascom, Jamie L; Radisky, Derek C; Koh, Eileen; Fata, Jimmie E; Lo, Alvin; Mori, Hidetoshi; Roosta, Neda; Hirai, Yohei; Bissell, Mina J

    2013-09-15

    Epimorphin/syntaxin-2 is a membrane-tethered protein localized extracellularly (Epim) and intracellularly (Stx-2). The extracellular form Epim stimulates morphogenic processes in a range of tissues, including in murine mammary glands where its overexpression in luminal epithelial cells is sufficient to drive hyperplasia and neoplasia. We analyzed WAP-Epim transgenic mice to gain insight into how Epim promotes malignancy. Ectopic overexpression of Epim during postnatal mammary gland development led to early side-branching onset, precocious bud formation, and increased proliferation of mammary epithelial cells. Conversely, peptide-based inhibition of Epim function reduced side branching. Because increased side branching and hyperplasia occurs similarly in mice upon overexpression of the progesterone receptor isoform-a (Pgr-a), we investigated whether Epim exhibits these phenotypes through Pgr modulation. Epim overexpression indeed led to a steep upregulation of both total Pgr mRNA and Pgr-a protein levels. Notably, the Pgr antagonist RU486 abrogated Epim-induced ductal side branching, mammary epithelial cell proliferation, and bud formation. Evaluation of Epim signaling in a three-dimensional ex vivo culture system showed that its action was dependent on binding to its extracellular receptor, integrin-αV, and on matrix metalloproteinase 3 activity downstream of Pgr-a. These findings elucidate a hitherto unknown transcriptional regulator of Pgr-a, and shed light on how overexpression of Epim leads to malignancy. PMID:23867473

  15. Oligosaccharide and substrate binding in the starch debranching enzyme barley limit dextrinase.

    PubMed

    Møller, Marie S; Windahl, Michael S; Sim, Lyann; Bøjstrup, Marie; Abou Hachem, Maher; Hindsgaul, Ole; Palcic, Monica; Svensson, Birte; Henriksen, Anette

    2015-03-27

    Complete hydrolytic degradation of starch requires hydrolysis of both the α-1,4- and α-1,6-glucosidic bonds in amylopectin. Limit dextrinase (LD) is the only endogenous barley enzyme capable of hydrolyzing the α-1,6-glucosidic bond during seed germination, and impaired LD activity inevitably reduces the maltose and glucose yields from starch degradation. Crystal structures of barley LD and active-site mutants with natural substrates, products and substrate analogues were sought to better understand the facets of LD-substrate interactions that confine high activity of LD to branched maltooligosaccharides. For the first time, an intact α-1,6-glucosidically linked substrate spanning the active site of a LD or pullulanase has been trapped and characterized by crystallography. The crystal structure reveals both the branch and main-chain binding sites and is used to suggest a mechanism for nucleophilicity enhancement in the active site. The substrate, product and analogue complexes were further used to outline substrate binding subsites and substrate binding restraints and to suggest a mechanism for avoidance of dual α-1,6- and α-1,4-hydrolytic activity likely to be a biological necessity during starch synthesis. PMID:25562209

  16. Increasing the energy density of vegetative tissues by diverting carbon from starch to oil biosynthesis in transgenic Arabidopsis.

    PubMed

    Sanjaya; Durrett, Timothy P; Weise, Sean E; Benning, Christoph

    2011-10-01

    Increasing the energy density of biomass by engineering the accumulation of triacylglycerols (TAGs) in vegetative tissues is synergistic with efforts to produce biofuels by conversion of lignocellulosic biomass. Typically, TAG accumulates in developing seeds, and little is known about the regulatory mechanisms and control factors preventing oil biosynthesis in vegetative tissues in most plants. Here, we engineered Arabidopsis thaliana to ectopically overproduce the transcription factor WRINKLED1 (WRI1) involved in the regulation of seed oil biosynthesis. Furthermore, we reduced the expression of APS1 encoding a major catalytic isoform of the small subunit of ADP-glucose pyrophosphorylase involved in starch biosynthesis using an RNAi approach. The resulting AGPRNAi-WRI1 lines accumulated less starch and more hexoses. In addition, these lines produced 5.8-fold more oil in vegetative tissues than plants with WRI1 or AGPRNAi alone. Abundant oil droplets were visible in vegetative tissues. TAG molecular species contained long-chain fatty acids, similar to those found in seed oils. In AGPRNAi-WRI1 lines, the relative expression level of sucrose synthase 2 was considerably elevated and correlated with the level of sugars. The relative expression of the genes encoding plastidic proteins involved in de novo fatty acid synthesis, biotin carboxyl carrier protein isoform 2 and acyl carrier protein 1, was also elevated. The relative contribution of TAG compared to starch to the overall energy density increased 9.5-fold in one AGPRNAi-WRI1 transgenic line consistent with altered carbon partitioning from starch to oil. PMID:22003502

  17. Tumorigenic properties of alternative osteopontin isoforms in mesothelioma

    SciTech Connect

    Ivanov, Sergey V.; Ivanova, Alla V.; Goparaju, Chandra M.V.; Chen, Yuanbin; Beck, Amanda; Pass, Harvey I.

    2009-05-08

    Osteopontin (SPP1) is an inflammatory cytokine that we previously characterized as a diagnostic marker in patients with asbestos-induced malignant mesothelioma (MM). While SPP1 shows both pro- and anti-tumorigenic biological effects, little is known about the molecular basis of these activities. In this study, we demonstrate that while healthy pleura possesses all three differentially spliced SPP1 isoforms (A-C), in clinical MM specimens isoform A is markedly up-regulated and predominant. To provide a clue to possible functions of the SPP1 isoforms we next performed their functional evaluation via transient expression in MM cell lines. As a result, we report that isoforms A-C demonstrate different activities in cell proliferation, wound closure, and invasion assays. These findings suggest different functions for SPP1 isoforms and underline pro-tumorigenic properties of isoforms A and B.

  18. Plant-crafted starches for bioplastics production.

    PubMed

    Sagnelli, Domenico; Hebelstrup, Kim H; Leroy, Eric; Rolland-Sabaté, Agnès; Guilois, Sophie; Kirkensgaard, Jacob J K; Mortensen, Kell; Lourdin, Denis; Blennow, Andreas

    2016-11-01

    Transgenically-produced amylose-only (AO) starch was used to manufacture bioplastic prototypes. Extruded starch samples were tested for crystal residues, elasticity, glass transition temperature, mechanical properties, molecular mass and microstructure. The AO starch granule crystallinity was both of the B- and Vh-type, while the isogenic control starch was mainly A-type. The first of three endothermic transitions was attributed to gelatinization at about 60°C. The second and third peaks were identified as melting of the starch and amylose-lipid complexes, respectively. After extrusion, the AO samples displayed Vh- and B-type crystalline structures, the B-type polymorph being the dominant one. The AO prototypes demonstrated a 6-fold higher mechanical stress at break and 2.5-fold higher strain at break compared to control starch. Dynamic mechanical analysis showed a significant increase in the storage modulus (E') for AO samples compared to the control. The data support the use of pure starch-based bioplastics devoid of non-polysaccharide fillers. PMID:27516287

  19. 75 FR 879 - National Starch and Chemical Company Specialty Starches Division Including On-Site Leased Workers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-06

    ..., applicable to workers of National Starch and Chemical Company, Specialty Starches Division, Island Falls, Maine. The notice was published in the Federal Register on December 31, 2007 (72 FR 74343). At the... Employment and Training Administration National Starch and Chemical Company Specialty Starches...

  20. Expression of Contractile Protein Isoforms in Microgravity

    NASA Technical Reports Server (NTRS)

    Anderson, Page A. W.

    1996-01-01

    The general objective of this experiment is to determine the effect of space flight parameters, including microgravity, on ontogenesis and embryogenesis of Japanese quail. Nine U.S. and two Russian investigators are cooperating in this study. Specific objectives of the participating scientists include assessing the gross and microscopic morphological and histological development of the embryo, as well as the temporal and spacial development of specific cells, tissues, and organs. Temporally regulated production of specific proteins is also being investigated. Our objective is to determine the effects of microgravity on developmentally programmed expression of Troponin T and I isoforms known to regulate cardiac and skeletal muscle contraction.

  1. Combustion Branch Website Development

    NASA Technical Reports Server (NTRS)

    Bishop, Eric

    2004-01-01

    The NASA combustion branch is a leader in developing and applying combustion science to focused aerospace propulsion systems concepts. It is widely recognized for unique facilities, analytical tools, and personnel. In order to better communicate the outstanding research being done in this Branch to the public and other research organization, a more substantial website was desired. The objective of this project was to build an up-to-date site that reflects current research in a usable and attractive manner. In order to accomplish this, information was requested from all researchers in the Combustion branch, on their professional skills and on the current projects. This information was used to fill in the Personnel and Research sections of the website. A digital camera was used to photograph all personnel and these photographs were included in the personnel section as well. The design of the site was implemented using the latest web standards: xhtml and external css stylesheets. This implementation conforms to the guidelines recommended by the w3c. It also helps to ensure that the web site is accessible by disabled users, and complies with Section 508 Federal legislation (which mandates that all Federal websites be accessible). Graphics for the new site were generated using the gimp (www.gimp.org) an open-source graphics program similar to Adobe Photoshop. Also, all graphics on the site were of a reasonable size (less than 20k, most less than 2k) so that the page would load quickly. Technologies such as Macromedia Flash and Javascript were avoided, as these only function on some clients which have the proper software installed or enabled. The website was tested on different platforms with many different browsers to ensure there were no compatibility issues. The website was tested on windows with MS IE 6, MSIE 5 , Netscape 7, Mozilla and Opera. On a Mac, the site was tested with MS IE 5 , Netscape 7 and Safari.

  2. [Masquerading bundle branch block].

    PubMed

    Kukla, Piotr; Baranchuk, Adrian; Jastrzębski, Marek; Bryniarski, Leszek

    2014-01-01

    We here describe a surface 12-lead electrocardiogram (ECG) of a 72-year-old female with a prior history of breast cancer and chemotherapy-induced cardiomyopathy. An echocardiogram revealed left ventricular dysfunction, ejection fraction of 23%, with mild enlarged left ventricle. The 12-lead ECG showed atrial fibrillation with a mean heart rate of about 100 bpm, QRS duration 160 ms, QT interval 400 ms, right bundle branch block (RBBB) and left anterior fascicular block (LAFB). The combination of RBBB features in the precordial leads and LAFB features in the limb leads is known as ''masquerading bundle branch block''. In most cases of RBBB and LAFB, the QRS axis deviation is located between - 80 to -120 degrees. Rarely, when predominant left ventricular forces are present, the QRS axis deviation is near about -90 degrees, turning the pattern into an atypical form. In a situation of RBBB associated with LAFB, the S wave can be absent or very small in lead I. Such a situation is the result of not only purely LAFB but also with left ventricular hypertrophy and/or focal block due to scar (extensive anterior myocardial infarction) or fibrosis (cardiomyopathy). Sometimes, this specific ECG pattern is mistaken for LBBB. RBBB with LAFB may imitate LBBB either in the limb leads (known as 'standard masquerading' - absence of S wave in lead I), or in the precordial leads (called 'precordial masquerading' - absence of S wave in leads V₅ and V₆). Our ECG showed both these types of masquerading bundle branch block - absence of S wave in lead I and in leads V₅ and V₆. PMID:24469750

  3. Thermal Energy Conversion Branch

    NASA Technical Reports Server (NTRS)

    Bielozer, Matthew C.; Schreiber, Jeffrey, G.; Wilson, Scott D.

    2004-01-01

    The Thermal Energy Conversion Branch (5490) leads the way in designing, conducting, and implementing research for the newest thermal systems used in space applications at the NASA Glenn Research Center. Specifically some of the most advanced technologies developed in this branch can be broken down into four main areas: Dynamic Power Systems, Primary Solar Concentrators, Secondary Solar Concentrators, and Thermal Management. Work was performed in the Dynamic Power Systems area, specifically the Stirling Engine subdivision. Today, the main focus of the 5490 branch is free-piston Stirling cycle converters, Brayton cycle nuclear reactors, and heat rejection systems for long duration mission spacecraft. All space exploring devices need electricity to operate. In most space applications, heat energy from radioisotopes is converted to electrical power. The Radioisotope Thermoelectric Generator (RTG) already supplies electricity for missions such as the Cassini Spacecraft. The focus of today's Stirling research at GRC is aimed at creating an engine that can replace the RTG. The primary appeal of the Stirling engine is its high system efficiency. Because it is so efficient, the Stirling engine will significantly reduce the plutonium fuel mission requirements compared to the RTG. Stirling is also being considered for missions such as the lunar/Mars bases and rovers. This project has focused largely on Stirling Engines of all types, particularly the fluidyne liquid piston engine. The fluidyne was developed by Colin D. West. This engine uses the same concepts found in any type of Stirling engine, with the exception of missing mechanical components. All the working components are fluid. One goal was to develop and demonstrate a working Stirling Fluidyne Engine at the 2nd Annual International Energy Conversion Engineering Conference in Providence, Rhode Island.

  4. Decoding RAS isoform and codon-specific signalling

    PubMed Central

    Newlaczyl, Anna U.; Hood, Fiona E.; Coulson, Judy M.; Prior, Ian A.

    2014-01-01

    RAS proteins are key signalling hubs that are oncogenically mutated in 30% of all cancer cases. Three genes encode almost identical isoforms that are ubiquitously expressed, but are not functionally redundant. The network responses associated with each isoform and individual oncogenic mutations remain to be fully characterized. In the present article, we review recent data defining the differences between the RAS isoforms and their most commonly mutated codons and discuss the underlying mechanisms. PMID:25109951

  5. Applicability, Commercial Utility and Recent Patents on Starch and Starch Derivative as Pharmaceutical Drug Delivery Carrier.

    PubMed

    Pandey, Shreya; Malviya, Rishabha; Sharma, Pramod K

    2015-01-01

    Natural polymers are widely utilized in pharmaceutical and food industries. Starch, a major carbohydrate is a staple food in human and animal diets which is simply extractable from various sources, like potato, maize, corn, wheat, etc. It is widely used as a raw material in various food and non food industries as well as in paper, textile and other industries. This article summarizes the starch and modification of starch and to produce a novel molecule with various applications in industries including number of advances in pharmaceutical industry. The unique characteristics of starch and their modified form can be successfully used as drug delivery carriers in various pharmaceutical preparations. It is widely used as controlled and sustained release polymer, tablet disintegrant, drug delivery carrier, plasma volume expander and also finds its applicability in bone tissue engineering and in artificial red cells. It also includes the patents related to starch and modified starch based products and their commercial utility. PMID:26205680

  6. Scanning probe acoustic microscopy of extruded starch materials: direct visual evidence of starch crystal.

    PubMed

    Liu, Zhongdong; Liu, Boxiang; Li, Mengxing; Wei, Min; Li, Hua; Liu, Peng; Wan, Tuo

    2013-10-15

    Scanning probe acoustic microscopy (SPAM) has been successfully used to study inorganic and keratin biomaterials. However, few studies have attempted to apply SPAM to structural study of non-keratin organic materials such as starch based materials. This study investigated hardness and surface finish to establish sample preparation method suitable for SPAM imaging and acquired clear acoustic images of extruded starch materials. Acquired acoustic images directly exhibited certain structure of starch materials and provided visual evidence of starch material components and aggregates. In addition, through correlating acoustic images with X-ray diffraction data, crystal-structural information in nano-scale was obtained and acoustic image contrast showed a linear relationship with starch amylose content in extruded starch materials. PMID:23987357

  7. Effects of salts on the gelatinization and retrogradation properties of maize starch and waxy maize starch.

    PubMed

    Wang, Wei; Zhou, Hongxian; Yang, Hong; Zhao, Siming; Liu, Youming; Liu, Ru

    2017-01-01

    The objective of this study was to evaluate the effects of salts on the gelatinization and retrogradation of maize and waxy maize starch. Experimental results showed that the salting-out or structure-making ions, such as F(-) and SO4(2-), decreased the swelling power, solubility and transparency of both starches, but increased the gelatinization temperature, enthalpy, and syneresis, due to the tendency of these ions to protect the hydrogen bond links among starch molecules. On the other hand, the salting-in or structure-breaking ions, such as I(-) and SCN(-), exhibited the opposite effects. Microscopic observations confirmed such effects of salts on both starches. Furthermore, the effects of salts were more significant on waxy maize and on normal maize starch. Generally, salts could significantly influence on the gelatinization and retrogradation of maize and waxy maize starch, following the order of the Hofmeister series. PMID:27507481

  8. Flight Dynamics Analysis Branch

    NASA Technical Reports Server (NTRS)

    Stengle, Tom; Flores-Amaya, Felipe

    2000-01-01

    This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 572, in support of flight projects and technology development initiatives in fiscal year 2000. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics, spacecraft trajectory, attitude analysis, and attitude determination and control. The FDAB currently provides support for missions and technology development projects involving NASA, government, university, and private industry.

  9. Crystal structures of Escherichia coli branching enzyme in complex with cyclodextrins.

    PubMed

    Feng, Lei; Fawaz, Remie; Hovde, Stacy; Sheng, Fang; Nosrati, Meisam; Geiger, James H

    2016-05-01

    Branching enzyme (BE) is responsible for the third step in glycogen/starch biosynthesis. It catalyzes the cleavage of α-1,4 glucan linkages and subsequent reattachment to form α-1,6 branch points. These branches are crucial to the final structure of glycogen and starch. The crystal structures of Escherichia coli BE (EcBE) in complex with α-, β- and γ-cyclodextrin were determined in order to better understand substrate binding. Four cyclodextrin-binding sites were identified in EcBE; they were all located on the surface of the enzyme, with none in the vicinity of the active site. While three of the sites were also identified as linear polysaccharide-binding sites, one of the sites is specific for cyclodextrins. In previous work three additional binding sites were identified as exclusively binding linear malto-oligosaccharides. Comparison of the binding sites shed light on this apparent specificity. Binding site IV is located in the carbohydrate-binding module 48 (CBM48) domain of EcBE and superimposes with the cyclodextrin-binding site found in the CBM48 domain of 5'-AMP-activated protein kinase (AMPK). Comparison of these sites shows the similarities and differences in the two binding modes. While some of the binding sites were found to be conserved between branching enzymes of different organisms, some are quite divergent, indicating both similarities and differences between oligosaccharide binding in branching enzymes from various sources. PMID:27139627

  10. Separation of plasmid DNA isoforms using centrifugal ultrafiltration.

    PubMed

    Borujeni, Ehsan Espah; Zydney, Andrew L

    2012-07-01

    Centrifugal ultrafiltration is a well-established method for concentrating and purifying DNA. Here, we describe the use of centrifugal ultrafiltration for the separation of plasmid DNA isoforms based on differences in elongational flexibility of the supercoiled, open-circular, and linear plasmids. Transmission of each isoform is minimal below a critical value of the filtration velocity, which is directly related to the magnitude of the centrifugal speed and the system geometry. A discontinuous diafiltration process was used to enrich the desired isoform, as determined by agarose gel electrophoresis. The simplicity and efficacy of this membrane-based separation are attractive for multiple applications requiring the use of separated DNA isoforms. PMID:22780319