Sample records for starch hydrolyzing enzyme

  1. Effects of granule swelling on starch saccharification by granular starch hydrolyzing enzyme.

    PubMed

    Li, Zhaofeng; Cai, Liming; Gu, Zhengbiao; Shi, Yong-Cheng

    2014-08-13

    The effects of granule swelling on enzymatic saccharification of normal corn starch by granular starch hydrolyzing enzyme were investigated. After swelling, Km values for the saccharification of granular starch decreased compared with native granular starch, indicating that granule swelling caused granular starch hydrolyzing enzyme to have higher affinity for starch granules. The partial swelling of starch granules enhanced starch saccharification. Furthermore, the enhancement at an earlier stage of enzymatic reaction was much more significant than that at later stages. For granular starch pretreated at 67.5 °C for 30 min, conversions to glucose after incubation with the enzyme at 32 °C for 4 and 24 h were approximately 3-fold and 26% higher than for native granular starch, respectively. As a result, proper heat pretreatment of granular starch before simultaneous saccharification and fermentation has great potential to facilitate industrial production of ethanol by use of granular starch hydrolyzing enzyme.

  2. The 53-kDa proteolytic product of precursor starch-hydrolyzing enzyme of Aspergillus niger has Taka-amylase-like activity.

    PubMed

    Ravi-Kumar, K; Venkatesh, K S; Umesh-Kumar, S

    2007-04-01

    The 53-kDa amylase secreted by Aspergillus niger due to proteolytic processing of the precursor starch-hydrolyzing enzyme was resistant to acarbose, a potent alpha-glucosidase inhibitor. The enzyme production was induced when A. niger was grown in starch medium containing the inhibitor. Antibodies against the precursor enzyme cross-reacted with the 54-kDa Taka-amylase protein of A. oryzae. It resembled Taka-amylase in most of its properties and also hydrolyzed starch to maltose of alpha-anomeric configuration. However, it did not degrade maltotriose formed during the reaction and was not inhibited by zinc ions.

  3. Structural properties of hydrolyzed high-amylose rice starch by α-amylase from Bacillus licheniformis.

    PubMed

    Qin, Fengling; Man, Jianmin; Xu, Bin; Hu, Maozhi; Gu, Minghong; Liu, Qiaoquan; Wei, Cunxu

    2011-12-14

    High-amylose cereal starch has a great benefit on human health through its resistant starch (RS) content. Enzyme hydrolysis of native starch is very helpful in understanding the structure of starch granules and utilizing them. In this paper, native starch granules were isolated from a transgenic rice line (TRS) enriched with amylose and RS and hydrolyzed by α-amylase. Structural properties of hydrolyzed TRS starches were studied by X-ray powder diffraction, Fourier transform infrared, and differential scanning calorimetry. The A-type polymorph of TRS C-type starch was hydrolyzed faster than the B-type polymorph, but the crystallinity did not significantly change during enzyme hydrolysis. The degree of order in the external region of starch granule increased with increasing enzyme hydrolysis time. The amylose content decreased at first and then went back up during enzyme hydrolysis. The hydrolyzed starches exhibited increased onset and peak gelatinization temperatures and decreased gelatinization enthalpy on hydrolysis. These results suggested that the B-type polymorph and high amylose that formed the double helices and amylose-lipid complex increased the resistance to BAA hydrolysis. Furthermore, the spectrum results of RS from TRS native starch digested by pancreatic α-amylase and amyloglucosidase also supported the above conclusion.

  4. Thermal properties of partially hydrolyzed starch-glycerophosphatidylcholine complexes with various acyl chains.

    PubMed

    Siswoyo, Tri Agus; Morita, Naofumi

    2003-05-07

    Complexes of starch and monoacyl-sn-glycerophosphatidylcholine (GPC) containing various acyl (myristoyl, palmitoyl, and stearoyl) chains were subjected to hydrolysis with glucoamylase (EC 3.2.1.3). The enzyme hydrolyzed approximately 40% of starch control and 20-28% of starch-GPC complexes. Among the GPCs examined, 1- and 2-monomyristoyl-sn-GPC showed the highest resistance to enzyme hydrolysis, and the hydrolysis rate of starch-GPCs was greater with longer chains. Enzymatic hydrolysis strongly affected the thermal properties of the starch. After enzymatic hydrolysis of starch-GPC complexes for 24 h, their thermograms had broader peaks with lower enthalpies than the corresponding starch without enzyme; however, the starch-GPC complexes showed little change. The surface of starch-GPC granules was less eroded. These results showed that the increasing amount of starch-GPC complexes could be more resistant to hydrolysis.

  5. A novel process for direct production of acetone-butanol-ethanol from native starches using granular starch hydrolyzing enzyme by Clostridium saccharoperbutylacetonicum N1-4.

    PubMed

    Thang, Vu Hong; Kobayashi, Genta

    2014-02-01

    In this work, a new approach for acetone-butanol-ethanol (ABE) production has been proposed. Direct fermentation of native starches (uncooked process) was investigated by using granular starch hydrolyzing enzyme (GSHE) and Clostridium saccharoperbutylacetonicum N1-4. Even the process was carried out under suboptimal condition for activity of GSHE, the production of ABE was similar with that observed in conventional process or cooked process in terms of final solvent concentration (21.3 ± 0.4 to 22.4 ± 0.4 g/L), butanol concentration (17.5 ± 0.4 to 17.8 ± 0.3 g/L) and butanol yield (0.33 to 0.37 g/g). The production of solvents was significantly dependent on the source of starches. Among investigated starches, corn starch was more susceptible to GSHE while cassava starch was the most resistant to this enzyme. Fermentation using native corn starch resulted in the solvent productivity of 0.47 g/L h, which was about 15 % higher than that achieved in cooked process. On the contrary, uncooked process using cassava and wheat starch resulted in the solvent productivity of 0.30 and 0.37 g/L h, which were respectively about 30 % lower than those obtained in cooked process. No contamination was observed during all trials even fermentation media were prepared without sterilization. During the fermentation using native starches, no formation of foam is observed. This uncooked process does not require cooking starchy material; therefore, the thermal energy consumption for solvent production would remarkably be reduced in comparison with cooked process.

  6. EFFECT OF ENDOSPERM HARDNESS ON AN ETHANOL PROCESS USING A GRANULAR STARCH HYDROLYZING ENZYME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, P; W Liu, D B; Johnston, K D

    Granular starch hydrolyzing enzymes (GSHE) can hydrolyze starch at low temperature (32°C). The dry grind process using GSHE (GSH process) has fewer unit operations and no changes in process conditions (pH 4.0 and 32°C) compared to the conventional process because it dispenses with the cooking and liquefaction step. In this study, the effects of endosperm hardness, protease, urea, and GSHE levels on GSH process were evaluated. Ground corn, soft endosperm, and hard endosperm were processed using two GSHE levels (0.1 and 0.4 mL per 100 g ground material) and four treatments of protease and urea addition. Soft and hard endospermmore » materials were obtained by grinding and sifting flaking grits from a dry milling pilot plant; classifications were confirmed using scanning electron microscopy. During 72 h of simultaneous granular starch hydrolysis and fermentation (GSHF), ethanol and glucose profiles were determined using HPLC. Soft endosperm resulted in higher final ethanol concentrations compared to ground corn or hard endosperm. Addition of urea increased final ethanol concentrations for soft and hard endosperm. Protease addition increased ethanol concentrations and fermentation rates for soft endosperm, hard endosperm, and ground corn. The effect of protease addition on ethanol concentrations and fermentation rates was most predominant for soft endosperm, less for hard endosperm, and least for ground corn. Samples (soft endosperm, hard endosperm, or corn) with protease resulted in higher (1.0% to 10.5% v/v) ethanol concentration compared to samples with urea. The GSH process with protease requires little or no urea addition. For fermentation of soft endosperm, GSHE dose can be reduced. Due to nutrients (lipids, minerals, and soluble proteins) present in corn that enhance yeast growth, ground corn fermented faster at the beginning than hard and soft endosperm.« less

  7. Improved production of an enzyme that hydrolyses raw yam starch by Penicillium sp. S-22 using fed-batch fermentation.

    PubMed

    Sun, Hai-Yan; Ge, Xiang-Yang; Zhang, Wei-Guo

    2006-11-01

    A newly isolated strain, Penicillium sp. S-22, was used to produce an enzyme that hydrolyses raw yam starch [raw yam starch digesting enzyme (RYSDE)]. The enzyme activity and overall enzyme productivity were respectively 16 U/ml and 0.19 U/ml h in the batch culture. The enzyme activity increased to 85 U/ml by feeding of partially hydrolyzed raw yam starch. When a mixture containing partially hydrolyzed raw yam starch and peptone was fed by a pH-stat strategy, the enzyme activity reached 366 U/ml, 23-fold of that obtained in the batch culture, and the overall productivity reached 3.4 U/ml h, which was 18-fold of that in the batch culture.

  8. Mucosal C-terminal maltase-glucoamylase hydrolyzes large size starch digestion products that may contribute to rapid postprandial glucose generation.

    PubMed

    Lee, Byung-Hoo; Lin, Amy Hui-Mei; Nichols, Buford L; Jones, Kyra; Rose, David R; Quezada-Calvillo, Roberto; Hamaker, Bruce R

    2014-05-01

    The four mucosal α-glucosidases, which differ in their digestive roles, generate glucose from glycemic carbohydrates and accordingly can be viewed as a control point for rate of glucose delivery to the body. In this study, individual recombinant enzymes were used to understand how α-glucan oligomers are digested by each enzyme, and how intermediate α-amylolyzed starches are hydrolyzed, to elucidate a strategy for moderating the glycemic spike of rapidly digestible starchy foods. The C-terminal maltase-glucoamylase (ctMGAM, commonly termed "glucoamylase") was able to rapidly hydrolyze longer maltooligosaccharides, such as maltotetraose and maltopentaose, to glucose. Moreover, it was found to convert larger size maltodextrins, as would be produced early in α-amylase digestion of starch, efficiently to glucose. It is postulated that ctMGAM has the additional capacity to hydrolyze large α-amylase products that are produced immediately on starch digestion in the duodenum and contribute to the rapid generation of glucose from starch-based meals. The findings suggest that partial inhibition of ctMGAM, such as by natural inhibitors found in foods, might be used to moderate the early stage of high glycemic response, as well as to extend digestion distally; thereby having relevance in regulating glucose delivery to the body. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The relationship between absorbency and density of bioplastic film made from hydrolyzed starch

    NASA Astrophysics Data System (ADS)

    Singan, Grace; Chiang, Liew Kang

    2017-12-01

    Water absorption in polymer blends such as starch-based bioplastic films is important to evaluate the stability characteristics of such films in water that will affect their long-term performance in final products. In this study, the absorbency of starch-based bioplastic films made from potato, cassava, and corn starches that have went through the hydrolysis process first to alter its characteristics and properties in terms of granular swelling and hydrophilicity behaviour. The final results showed that hydrolyzed cassava bioplastic film has the ability to absorb more water compared to hydrolyzed potato and corn bioplastic films. The reading of hydrolyzed cassava bioplastic film on the seventh day of immersion for all ratios were between 87.83 % to 131.29 %, while for hydrolyzed potato bioplastic films was 69.48 % to 92.41 % and hydrolyzed corn bioplastic films was 66.28 % to 74.18 %. Meanwhile, the density analysis was evaluated to determine its physical properties towards moisture condition. The results showed that the hydrolyzed cassava bioplastic films have higher density compared to the other two, which indicated that it is a more favourable raw material to produce biodegradable planting pot due to its ability to absorb more water. Hence, still manage to retain its shape with low brittle surface.

  10. Slow glucose release property of enzyme-synthesized highly branched maltodextrins differs among starch sources.

    PubMed

    Kittisuban, Phatcharee; Lee, Byung-Hoo; Suphantharika, Manop; Hamaker, Bruce R

    2014-07-17

    Seven types of starch (waxy corn, normal corn, waxy rice, normal rice, waxy potato, normal potato, and tapioca) were selected to produce slowly digestible maltodextrins by enzymatic modification using a previously developed procedure. Branching enzyme (BE) alone and in combination with β-amylase (BA) were used to increase the amount of α-1,6 branching points, which are slowly hydrolyzed by mucosal α-glucosidases in the small intestine. The enzymatic treatments of all starches resulted in a reduction of the debranched linear chain length distribution and weight-average molecular weight. After α-amylolysis of the enzymatically synthesized-maltodextrins, the proportion of branched α-limit dextrins increased, and consequently a reduction in rate of glucose release by rat intestinal α-glucosidases in vitro. Among the samples, enzyme-modified waxy starches had a more pronounced effect on an increase in the slow digestion property than normal starches. These enzyme-modified maltodextrins show potential as novel functional foods by slowing digestion rate to attain extended glucose release. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Enzyme-modified starch as an oil delivery system for bake-only chicken nuggets.

    PubMed

    Purcell, Sarah; Wang, Ya-Jane; Seo, Han-Seok

    2014-05-01

    This study investigated the effects of enzyme modification on starch as an effective oil delivery system for bake-only chicken nuggets. Various native starches were hydrolyzed by amyloglucosidase to a hydrolysis degree of 20% to 25% and plated with 50% (w/w, starch dry basis) with canola oil to create a starch-oil matrix. This matrix was then blended into a dry ingredient blend for batter and breader components. Nuggets were prepared by coated with predust, hydrated batter, and breader, and the coated nuggets were steam-baked until fully cooked and then frozen until texture and sensory analyses. The enzyme-modified starches showed a significant decrease in pasting viscosities for all starch types. For textural properties of nuggets, no clear relationship was found between peak force and starch source or amylose content. Sensory attributes related to fried foods (for example, crispness and mouth-coating) did not significantly differ between bake-only nuggets formulated using the enzyme-modified starches and the partially fried and baked ones. The present findings suggest that enzyme-modified starches can deliver sufficient quantity of oil to create sensory attributes similar to those of partially fried chicken nuggets. Further study is needed to optimize the coating formulation of bake-only chicken nugget to become close to the fried one in sensory aspects. The food industry has become increasingly focused on healthier items. Frying imparts several critical and desirable product functionalities, such as developing texture and color, and providing mouth-feel and flavor. The food industry has yet to duplicate all of the unique characteristics of fried chicken nuggets with a baking process. This study investigated the application of enzyme-modified starch as an oil delivery system in bake-only chicken nugget formulation in attempts to provide characteristics of fried items. This information is useful to improve the nutritional value of fried food by eliminating the

  12. The Simultaneous Abolition of Three Starch Hydrolases Blocks Transient Starch Breakdown in Arabidopsis*

    PubMed Central

    Streb, Sebastian; Eicke, Simona; Zeeman, Samuel C.

    2012-01-01

    In this study, we investigated which enzymes are involved in debranching amylopectin during transient starch degradation. Previous studies identified two debranching enzymes, isoamylase 3 (ISA3) and limit dextrinase (LDA), involved in this process. However, plants lacking both enzymes still degrade substantial amounts of starch. Thus, other enzymes/mechanisms must contribute to starch breakdown. We show that the chloroplastic α-amylase 3 (AMY3) also participates in starch degradation and provide evidence that all three enzymes can act directly at the starch granule surface. The isa3 mutant has a starch excess phenotype, reflecting impaired starch breakdown. In contrast, removal of AMY3, LDA, or both enzymes together has no impact on starch degradation. However, removal of AMY3 or LDA in addition to ISA3 enhances the starch excess phenotype. In plants lacking all three enzymes, starch breakdown is effectively blocked, and starch accumulates to the highest levels observed so far. This provides indirect evidence that the heteromultimeric debranching enzyme ISA1-ISA2 is not involved in starch breakdown. However, we illustrate that ISA1-ISA2 can hydrolyze small soluble branched glucans that accumulate when ISA3 and LDA are missing, albeit at a slow rate. Starch accumulation in the mutants correlates inversely with plant growth. PMID:23019330

  13. Structure of waxy maize starch hydrolyzed by maltogenic alpha-amylase in relation to its retrogradation

    USDA-ARS?s Scientific Manuscript database

    Maltogenic a-amylase is widely used as an antistaling agent in bakery foods. The objective of this study was to determine the degree of hydrolysis (DH) and starch structure after maltogenic amylase treatments in relation to its retrogradation. Waxy maize starch was cooked and hydrolyzed to different...

  14. Activity, cloning, and expression of an isoamylase-type starch-debranching enzyme from banana fruit.

    PubMed

    Bierhals, Jacqueline Dettmann; Lajolo, Franco Maria; Cordenunsi, Beatriz Rosana; Oliveira do Nascimento, João Roberto

    2004-12-01

    Unripe bananas have a high content of starch (almost 20%) that is metabolized during fruit ripening with a concomitant synthesis of soluble sugars. Since starch granules are composed of amylose and amylopectin, several enzymes have to be involved in its mobilization during banana ripening, with a necessary participation of one starch-debranching enzyme (DBE) to hydrolyze the alpha-1,6-branches of amylopectin. Banana DBE seems to be an isoamylase-type enzyme, as indicated by substrate specificity and the cloning of a 1575 bp cDNA, similar to the isoamylase sequences from potato, Arabdopsis, and maize. The assays for DBE indicated only minor changes in activity during ripening, and the results of the northern and western blots with antiserum against the recombinant banana isoamylase were in agreement with the steady-state level of activity, since no significant changes in gene expression were observed. The high activity on beta-limit dextrin and the similarity to the potato isoform 3 suggest that during banana ripening the hydrolysis of alpha-1,6-linkage of amylopectin results from the activity of a pre-existing isoamylase-type debranching enzyme in coordination with other amylolitic enzymes. To the best of our knowledge, this is the first evaluation of activity and expression of a DBE from a fruit.

  15. Exploitation of starch industry liquid by-product to produce bioactive peptides from rice hydrolyzed proteins.

    PubMed

    Dei Piu', Lucilla; Tassoni, Annalisa; Serrazanetti, Diana Isabella; Ferri, Maura; Babini, Elena; Tagliazucchi, Davide; Gianotti, Andrea

    2014-07-15

    Small peptides show higher antioxidant capacity than native proteins and may be absorbed in the intestine without further digestion. In our study, a protein by-product from rice starch industry was hydrolyzed with commercial proteolytic enzymes (Alcalase, Neutrase, Flavourzyme) and microbial whole cells of Bacillus spp. and the released peptides were tested for antioxidant activity. Among enzymes, Alcalase was the most performing, while microbial proteolytic activity was less efficient. Conversely, the antioxidant activity was higher in the samples obtained by microbial hydrolysis and particularly with Bacillus pumilus AG1. The sequences of low molecular weight antioxidant peptides were determined and analyzed for aminoacidic composition. The results obtained so far suggest that the hydrolytic treatment of this industrial by-product, with selected enzymes and microbial systems, can allow its exploitation for the production of functional additives and supplements rich in antioxidant peptides, to be used in new food formulas for human consumption. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Starch Biorefinery Enzymes.

    PubMed

    Läufer, Albrecht

    2017-03-07

    Nature uses enzymes to build and convert biomass; mankind uses the same enzymes and produces them on a large scale to make optimum use of biomass in biorefineries. Bacterial α-amylases and fungal glucoamylases have been the workhorses of starch biorefineries for many decades. Pullulanases were introduced in the 1980s. Proteases, cellulases, hemicellulases, and phytases have been on the market for a few years as process aids, improving yields, performance, and costs. Detailed studies of the complex chemical structures of biomass and of the physicochemical limitations of industrial biorefineries have led enzyme developers to produce novel tailor-made solutions for improving yield and profitability in the industry. This chapter reviews the development of enzyme applications in the major starch biorefining processes.

  17. Comparative study on the conventional and non thermal simultaneous saccharification and fermentation of Manihot glaziovii root starch

    NASA Astrophysics Data System (ADS)

    Hargono, Kumoro, Andri Cahyo; Jos, Bakti

    2015-12-01

    Inconventional ethanol production process, starch is converted into dextrins via liquefaction using α-amylase enzyme at high temperature (90-120°C). Then, dextrins are saccharified by glucoamylase to obtain to monomeric sugars (glucose). Recently, a granular starch hydrolyzing enzymes (GSHE), Stargen 002, was developed to convert starch into dextrins at low temperature (< 32°C) and hydrolyzes dextrins into glucose. The subject of this research was to compare ethanol production using a granular starch hydrolyzing enzymes and conventional enzymatic liquefaction and saccharification in cassava starch processing. Starch slurry concentrations were 20% w/v, and dosage of enzymes 0.50, 1.0 and 2%, respectively, were studied. After 48 hr process the final ethanol concentration for the respective enzyme concentration for conventional process were 34.90, 36.16 and 42.10 g/L, whereas for the non-thermal treatment, final ethanol concentration were 46.4, 57.62 and 59.65 g/L, respectively. By implementation of this non thermal process, the use of energy can be saved by carrying out saccharification step at lower temperature (30°C) could be realized.

  18. Structure of Waxy Maize Starch Hydrolyzed by Maltogenic α-Amylase in Relation to Its Retrogradation.

    PubMed

    Grewal, Navneet; Faubion, Jon; Feng, Guohua; Kaufman, Rhett C; Wilson, Jeff D; Shi, Yong-Cheng

    2015-04-29

    Maltogenic α-amylase is widely used as an antistaling agent in bakery foods. The objective of this study was to determine the degree of hydrolysis (DH) and starch structure after maltogenic amylase treatments in relation to its retrogradation. Waxy maize starch was cooked and hydrolyzed to different degrees by a maltogenic amylase. High-performance anion-exchange chromatography and size exclusion chromatography were used to determine saccharides formed and the molecular weight (Mw) distributions of the residual starch structure, respectively. Chain length (CL) distributions of debranched starch samples were further related to amylopectin (AP) retrogradation. Differential scanning calorimetry (DSC) results showed the complete inhibition of retrogradation when starches were hydrolyzed to >20% DH. Mw and CL distributions of residual AP structure indicated that with an increase in %DH, a higher proportion of unit chains with degree of polymerization (DP) ≤9 and a lower proportion of unit chains with DP ≥17 were formed. A higher proportion of short outer AP chains that cannot participate in the formation of double helices supports the decrease in and eventual inhibition of retrogradation observed with the increase in %DH. These results suggest that the maltogenic amylase could play a powerful role in inhibiting the staling of baked products even at limited starch hydrolysis.

  19. Effects of alpha-amylase reaction mechanisms on analysis of resistant-starch contents.

    PubMed

    Moore, Samuel A; Ai, Yongfeng; Chang, Fengdan; Jane, Jay-lin

    2015-01-22

    This study aimed to understand differences in the resistant starch (RS) contents of native and modified starches obtained using two standard methods of RS content analysis: AOAC Method 991.43 and 2002.02. The largest differences were observed in native potato starch, cross-linked wheat distarch phosphate, and high-amylose corn starch stearic-acid complex (RS5) between using AOAC Method 991.43 with Bacillus licheniformis α-amylase (BL) and AOAC Method 2002.02 with porcine pancreatic α-amylase (PPA). To determine possible reasons for these differences, we hydrolyzed raw-starch granules with BL and PPA with equal activity at pH 6.9 and 37°C for up to 84 h and observed the starch granules displayed distinct morphological differences after the hydrolysis. Starches hydrolyzed by BL showed erosion on the surface of the granules; those hydrolyzed by PPA showed pitting on granule surfaces. These results suggested that enzyme reaction mechanisms, including the sizes of the binding sites and the reaction patterns of the two enzymes, contributed to the differences in the RS contents obtained using different methods of RS analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Preparation of hydroxypropyl corn and amaranth starch hydrolyzate and its evaluation as wall material in microencapsulation.

    PubMed

    Kshirsagar, Amol C; Singhal, Rekha S

    2008-06-01

    Hydroxypropylation of starches lends it useful physicochemical and functional properties that are industrially important. The literature on hydroxypropylation using organic solvents for obtaining higher molar substitution (MS) is scantily available. The present work reports on hydroxypropylation of corn and a waxy amaranth starch to different MS with propylene oxide in an alkaline-organic medium (isopropanol). The synthesis was followed in terms of MS. The parameters optimized were starch:isopropanol ratio (w/w), reaction temperature, reaction time and the quantity of alkali required in the process. A maximal MS of 0.180 and 0.162 were obtained for hydroxypropyl corn starch (HPSC) and hydroxypropyl amaranth starch (HPSA), respectively. Enzymatic hydrolysis of the HPSC and HPSA of the above MS was carried out on a 30% (w/v) solution at a pH of 6.5 and 95°C for varying time periods using 0.1% (w/w based on starch) bacterial α-amylase, termamyl. The hydrolysis was terminated by adjusting the pH to 3.5 using 0.1N HCl. The hydrolyzates were characterized in terms of dextrose equivalent and viscosity. The hydrolyzate obtained after 3h of hydrolysis was spray dried and compared to gum arabic with respect to encapsulation of model flavourings, orange oil and lemon oil. Copyright © 2007 Elsevier Ltd. All rights reserved.

  1. Starch phosphorylation in potato tubers is influenced by allelic variation in the genes encoding glucan water dikinase, starch branching enzymes I and II, and starch synthase III

    PubMed Central

    Carpenter, Margaret A.; Joyce, Nigel I.; Genet, Russell A.; Cooper, Rebecca D.; Murray, Sarah R.; Noble, Alasdair D.; Butler, Ruth C.; Timmerman-Vaughan, Gail M.

    2015-01-01

    Starch phosphorylation is an important aspect of plant metabolism due to its role in starch degradation. Moreover, the degree of phosphorylation of starch determines its physicochemical properties and is therefore relevant for industrial uses of starch. Currently, starch is chemically phosphorylated to increase viscosity and paste stability. Potato cultivars with elevated starch phosphorylation would make this process unnecessary, thereby bestowing economic and environmental benefits. Starch phosphorylation is a complex trait which has been previously shown by antisense gene repression to be influenced by a number of genes including those involved in starch synthesis and degradation. We have used an association mapping approach to discover genetic markers associated with the degree of starch phosphorylation. A diverse collection of 193 potato lines was grown in replicated field trials, and the levels of starch phosphorylation at the C6 and C3 positions of the glucosyl residues were determined by mass spectrometry of hydrolyzed starch from tubers. In addition, the potato lines were genotyped by amplicon sequencing and microsatellite analysis, focusing on candidate genes known to be involved in starch synthesis. As potato is an autotetraploid, genotyping included determination of allele dosage. Significant associations (p < 0.001) were found with SNPs in the glucan water dikinase (GWD), starch branching enzyme I (SBEI) and the starch synthase III (SSIII) genes, and with a SSR allele in the SBEII gene. SNPs in the GWD gene were associated with C6 phosphorylation, whereas polymorphisms in the SBEI and SBEII genes were associated with both C6 and C3 phosphorylation and the SNP in the SSIII gene was associated with C3 phosphorylation. These allelic variants have potential as genetic markers for starch phosphorylation in potato. PMID:25806042

  2. Synthetic polyester-hydrolyzing enzymes from thermophilic actinomycetes.

    PubMed

    Wei, Ren; Oeser, Thorsten; Zimmermann, Wolfgang

    2014-01-01

    Thermophilic actinomycetes produce enzymes capable of hydrolyzing synthetic polyesters such as polyethylene terephthalate (PET). In addition to carboxylesterases, which have hydrolytic activity predominantly against PET oligomers, esterases related to cutinases also hydrolyze synthetic polymers. The production of these enzymes by actinomycetes as well as their recombinant expression in heterologous hosts is described and their catalytic activity against polyester substrates is compared. Assays to analyze the enzymatic hydrolysis of synthetic polyesters are evaluated, and a kinetic model describing the enzymatic heterogeneous hydrolysis process is discussed. Structure-function and structure-stability relationships of actinomycete polyester hydrolases are compared based on molecular dynamics simulations and recently solved protein structures. In addition, recent progress in enhancing their activity and thermal stability by random or site-directed mutagenesis is presented. © 2014 Elsevier Inc. All rights reserved.

  3. Characterisation of a starch-hydrolysing enzyme of Aspergillus niger.

    PubMed

    Suresh, C; Dubey, A K; Srikanta, S; Kumar, S U; Karanth, N G

    1999-05-01

    A UV-induced mutant strain of Aspergillus niger (CFTRI-1105-U9) overproduced a starch-hydrolysing enzyme with properties characteristically different from the known amylases of the fungus. The purified enzyme of 4.0 pI had an apparent molecular mass of 125 kDa and it dextrinised starch and then saccharified the dextrins. Patterns of the enzyme activity on starch, resulting in glucose at 60 degrees C and glucose, maltose and maltodextrins at 70 degrees C as primary products, suggested significant applications for the enzyme in starch-processing industries.

  4. Kinetic modeling of simultaneous saccharification and fermentation of corn starch for ethanol production.

    PubMed

    Białas, Wojciech; Czerniak, Adrian; Szymanowska-Powałowska, Daria

    2014-01-01

    Fuel ethanol production, using a simultaneous saccharification and fermentation process (SSF) of native starch from corn flour, has been performed using Saccharomyces cerevisiae and a granular starch hydrolyzing enzyme. The quantitative effects of mash concentration, enzyme dose and pH were investigated with the use of a Box-Wilson central composite design protocol. Proceeding from results obtained in optimal fermentation conditions, a kinetics model relating the utilization rates of starch and glucose as well as the production rates of ethanol and biomass was tested. Moreover, scanning electron microscopy (SEM) was applied to investigate corn starch granule surface after the SFF process. A maximum ethanol concentration of 110.36 g/l was obtained for native corn starch using a mash concentration of 25%, which resulted in ethanol yield of 85.71%. The optimal conditions for the above yield were found with an enzyme dose of 2.05 ml/kg and pH of 5.0. These results indicate that by using a central composite design, it is possible to determine optimal values of the fermentation parameters for maximum ethanol production. The investigated kinetics model can be used to describe SSF process conducted with granular starch hydrolyzing enzymes. The SEM micrographs reveal randomly distributed holes on the surface of granules.

  5. Effect of Hydrolyzed Wheat Gluten and Starch Ratio on the Viscoelastic Properties of Rubber Composites

    USDA-ARS?s Scientific Manuscript database

    The hydrolyzed wheat gluten (WG) and wheat starch (WS) showed substantial reinforcement effects in rubber composites. Due to different abilities of WG and WS to increase the modulus of rubber composites, the composite properties can be adjusted by varying the ratio of WG and WS as a co-filler. The...

  6. Partial purification of saccharifying and cell wall-hydrolyzing enzymes from malt in waste from beer fermentation broth.

    PubMed

    Khattak, Waleed Ahmad; Kang, Minkyung; Ul-Islam, Mazhar; Park, Joong Kon

    2013-06-01

    A number of hydrolyzing enzymes that are secreted from malt during brewing, including cell wall-hydrolyzing, saccharide-hydrolyzing, protein-degrading, lipid-hydrolyzing, and polyphenol and thiol-hydrolyzing enzymes, are expected to exist in an active form in waste from beer fermentation broth (WBFB). In this study, the existence of these enzymes was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis, after which enzyme extract was partially purified through a series of purification steps. The hydrolyzing enzyme activity was then measured under various conditions at each purification step using carboxymethyl cellulose as a substrate. The best hydrolyzing activities of partially purified enzymes were found at pH 4.5 and 50 °C in a citrate buffer system. The enzymes showed highest thermal stability at 30 °C when exposed for prolonged time. As the temperature increased gradually from 25 to 70 °C, yeast cells in the chemically defined medium with enzyme extract lost their cell wall and viability earlier than those without enzyme extract. Cell wall degradation and the release of cell matrix into the culture media at elevated temperature (45-70 °C) in the presence of enzyme extract were monitored through microscopic pictures. Saccharification enzymes from malt were relatively more active in the original WBFB than supernatant and diluted sediments. The presence of hydrolyzing enzymes from malt in WBFB is expected to play a role in bioethanol production using simultaneous saccharification and fermentation without the need for additional enzymes, nutrients, or microbial cells via a cell-free enzyme system.

  7. Characterization of the starch-acting MaAmyB enzyme from Microbacterium aurum B8.A representing the novel subfamily GH13_42 with an unusual, multi-domain organization

    PubMed Central

    Valk, Vincent; van der Kaaij, Rachel M.; Dijkhuizen, Lubbert

    2016-01-01

    The bacterium Microbacterium aurum strain B8.A degrades granular starches, using the multi-domain MaAmyA α-amylase to initiate granule degradation through pore formation. This paper reports the characterization of the M. aurum B8.A MaAmyB enzyme, a second starch-acting enzyme with multiple FNIII and CBM25 domains. MaAmyB was characterized as an α-glucan 1,4-α-maltohexaosidase with the ability to subsequently hydrolyze maltohexaose to maltose through the release of glucose. MaAmyB also displays exo-activity with a double blocked PNPG7 substrate, releasing PNP. In M. aurum B8.A, MaAmyB may contribute to degradation of starch granules by rapidly hydrolyzing the helical and linear starch chains that become exposed after pore formation by MaAmyA. Bioinformatics analysis showed that MaAmyB represents a novel GH13 subfamily, designated GH13_42, currently with 165 members, all in Gram-positive soil dwelling bacteria, mostly Streptomyces. All members have an unusually large catalytic domain (AB-regions), due to three insertions compared to established α-amylases, and an aberrant C-region, which has only 30% identity to established GH13 C-regions. Most GH13_42 members have three N-terminal domains (2 CBM25 and 1 FNIII). This is unusual as starch binding domains are commonly found at the C-termini of α-amylases. The evolution of the multi-domain M. aurum B8.A MaAmyA and MaAmyB enzymes is discussed. PMID:27808246

  8. In vitro utilization of amylopectin and high-amylose maize (Amylomaize) starch granules by human colonic bacteria.

    PubMed

    Wang, X; Conway, P L; Brown, I L; Evans, A J

    1999-11-01

    It has been well established that a certain amount of ingested starch can escape digestion in the human small intestine and consequently enters the large intestine, where it may serve as a carbon source for bacterial fermentation. Thirty-eight types of human colonic bacteria were screened for their capacity to utilize soluble starch, gelatinized amylopectin maize starch, and high-amylose maize starch granules by measuring the clear zones on starch agar plates. The six cultures which produced clear zones on amylopectin maize starch- containing plates were selected for further studies for utilization of amylopectin maize starch and high-amylose maize starch granules A (amylose; Sigma) and B (Culture Pro 958N). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to detect bacterial starch-degrading enzymes. It was demonstrated that Bifidobacterium spp., Bacteroides spp., Fusobacterium spp., and strains of Eubacterium, Clostridium, Streptococcus, and Propionibacterium could hydrolyze the gelatinized amylopectin maize starch, while only Bifidobacterium spp. and Clostridium butyricum could efficiently utilize high-amylose maize starch granules. In fact, C. butyricum and Bifidobacterium spp. had higher specific growth rates in the autoclaved medium containing high-amylose maize starch granules and hydrolyzed 80 and 40% of the amylose, respectively. Starch-degrading enzymes were cell bound on Bifidobacterium and Bacteroides cells and were extracellular for C. butyricum. Active staining for starch-degrading enzymes on SDS-PAGE gels showed that the Bifidobacterium cells produced several starch-degrading enzymes with high relative molecular (M(r)) weights (>160,000), medium-sized relative molecular weights (>66,000), and low relative molecular weights (<66,000). It was concluded that Bifidobacterium spp. and C. butyricum degraded and utilized granules of amylomaize starch.

  9. In Vitro Utilization of Amylopectin and High-Amylose Maize (Amylomaize) Starch Granules by Human Colonic Bacteria

    PubMed Central

    Wang, Xin; Conway, Patricia Lynne; Brown, Ian Lewis; Evans, Anthony John

    1999-01-01

    It has been well established that a certain amount of ingested starch can escape digestion in the human small intestine and consequently enters the large intestine, where it may serve as a carbon source for bacterial fermentation. Thirty-eight types of human colonic bacteria were screened for their capacity to utilize soluble starch, gelatinized amylopectin maize starch, and high-amylose maize starch granules by measuring the clear zones on starch agar plates. The six cultures which produced clear zones on amylopectin maize starch- containing plates were selected for further studies for utilization of amylopectin maize starch and high-amylose maize starch granules A (amylose; Sigma) and B (Culture Pro 958N). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to detect bacterial starch-degrading enzymes. It was demonstrated that Bifidobacterium spp., Bacteroides spp., Fusobacterium spp., and strains of Eubacterium, Clostridium, Streptococcus, and Propionibacterium could hydrolyze the gelatinized amylopectin maize starch, while only Bifidobacterium spp. and Clostridium butyricum could efficiently utilize high-amylose maize starch granules. In fact, C. butyricum and Bifidobacterium spp. had higher specific growth rates in the autoclaved medium containing high-amylose maize starch granules and hydrolyzed 80 and 40% of the amylose, respectively. Starch-degrading enzymes were cell bound on Bifidobacterium and Bacteroides cells and were extracellular for C. butyricum. Active staining for starch-degrading enzymes on SDS-PAGE gels showed that the Bifidobacterium cells produced several starch-degrading enzymes with high relative molecular (Mr) weights (>160,000), medium-sized relative molecular weights (>66,000), and low relative molecular weights (<66,000). It was concluded that Bifidobacterium spp. and C. butyricum degraded and utilized granules of amylomaize starch. PMID:10543795

  10. Enhancement of photoassimilate utilization by manipulation of starch regulatory enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okita, Thomas W.

    ADPglucose pyrophosphorylase (AGPase) and the plastidial starch phosphorylase1 (Pho1) are two regulatory enzymes whose catalytic activities are essential for starch granule synthesis. Conversion of the pre-starch granule to the mature form is dependent on AGPase, which produces ADPglucose, the substrate used by starch synthases. The catalytic activity of AGPase is controlled by small effector molecules and a prime goal of this project was to decipher the role of the two subunit types that comprise the heterotetrameric enzyme structure. Extensive genetic and biochemical studies showed that catalysis was contributed mainly by the small subunit although the large subunit was required formore » maximum activity. Both subunits were needed for allosteric regulatory properties. We had also demonstrated that the AGPase catalyzed reaction limits the amount of starch accumulation in developing rice seeds and that carbon flux into rice seed starch can be increased by expression of a cytoplasmic-localized, up-regulated bacterial AGPase enzyme form. Results of subsequent physiological and metabolite studies showed that the AGPase reaction is no longer limiting in the AGPase transgenic rice lines and that one or more downstream processes prevent further increases in starch biosynthesis. Further studies showed that over-production of ADPglucose dramatically alters the gene program during rice seed development. Although the expression of nearly all of the genes are down-regulated, levels of a starch binding domain containing protein (SBDCP) are elevated. This SBDCP was found to bind to and inhibit the catalytic activity of starch synthase III and, thereby preventing maximum starch synthesis from occurring. Surprisingly, repression of SBDCP elevated expression of starch synthase III resulting in increasing rice grain weight. A second phase of this project examined the structure-function of Pho1, the enzyme required during the initial phase of pre-starch granule formation and its

  11. Microbial dextran-hydrolyzing enzymes: fundamentals and applications.

    PubMed

    Khalikova, Elvira; Susi, Petri; Korpela, Timo

    2005-06-01

    Dextran is a chemically and physically complex polymer, breakdown of which is carried out by a variety of endo- and exodextranases. Enzymes in many groups can be classified as dextranases according to function: such enzymes include dextranhydrolases, glucodextranases, exoisomaltohydrolases, exoisomaltotriohydrases, and branched-dextran exo-1,2-alpha-glucosidases. Cycloisomalto-oligosaccharide glucanotransferase does not formally belong to the dextranases even though its side reaction produces hydrolyzed dextrans. A new classification system for glycosylhydrolases and glycosyltransferases, which is based on amino acid sequence similarities, divides the dextranases into five families. However, this classification is still incomplete since sequence information is missing for many of the enzymes that have been biochemically characterized as dextranases. Dextran-degrading enzymes have been isolated from a wide range of microorganisms. The major characteristics of these enzymes, the methods for analyzing their activities and biological roles, analysis of primary sequence data, and three-dimensional structures of dextranases have been dealt with in this review. Dextranases are promising for future use in various scientific and biotechnological applications.

  12. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    PubMed Central

    2012-01-01

    Background Starch is stored in higher plants as granules composed of semi-crystalline amylopectin and amorphous amylose. Starch granules provide energy for the plant during dark periods and for germination of seeds and tubers. Dietary starch is also a highly glycemic carbohydrate being degraded to glucose and rapidly absorbed in the small intestine. But a portion of dietary starch, termed “resistant starch” (RS) escapes digestion and reaches the large intestine, where it is fermented by colonic bacteria producing short chain fatty acids (SCFA) which are linked to several health benefits. The RS is preferentially derived from amylose, which can be increased by suppressing amylopectin synthesis by silencing of starch branching enzymes (SBEs). However all the previous works attempting the production of high RS crops resulted in only partly increased amylose-content and/or significant yield loss. Results In this study we invented a new method for silencing of multiple genes. Using a chimeric RNAi hairpin we simultaneously suppressed all genes coding for starch branching enzymes (SBE I, SBE IIa, SBE IIb) in barley (Hordeum vulgare L.), resulting in production of amylose-only starch granules in the endosperm. This trait was segregating 3:1. Amylose-only starch granules were irregularly shaped and showed peculiar thermal properties and crystallinity. Transgenic lines retained high-yield possibly due to a pleiotropic upregualtion of other starch biosynthetic genes compensating the SBEs loss. For gelatinized starch, a very high content of RS (65 %) was observed, which is 2.2-fold higher than control (29%). The amylose-only grains germinated with same frequency as control grains. However, initial growth was delayed in young plants. Conclusions This is the first time that pure amylose has been generated with high yield in a living organism. This was achieved by a new method of simultaneous suppression of the entire complement of genes encoding starch branching enzymes. We

  13. Synergistic amylomaltase and branching enzyme catalysis to suppress cassava starch digestibility.

    PubMed

    Sorndech, Waraporn; Meier, Sebastian; Jansson, Anita M; Sagnelli, Domenico; Hindsgaul, Ole; Tongta, Sunanta; Blennow, Andreas

    2015-11-05

    Starch provides our main dietary caloric intake and over-consumption of starch-containing foods results in escalating life-style disease including diabetes. By increasing the content of α-1,6 branch points in starch, digestibility by human amylolytic enzymes is expected to be retarded. Aiming at generating a soluble and slowly digestible starch by increasing the content and changing the relative positioning of the branch points in the starch molecules, we treated cassava starch with amylomaltase (AM) and branching enzyme (BE). We performed a detailed molecular analysis of the products including amylopectin chain length distribution, content of α-1,6 glucosidic linkages, absolute molecular weight distribution and digestibility. Step-by-step enzyme catalysis was the most efficient treatment, and it generated branch structures even more extreme than those of glycogen. All AM- and BE-treated samples showed increased resistance to degradation by porcine pancreatic α-amylase and glucoamylase as compared to cassava starch. The amylolytic products showed chain lengths and branching patterns similar to the products obtained from glycogen. Our data demonstrate that combinatorial enzyme catalysis provides a strategy to generate potential novel soluble α-glucan ingredients with low dietary digestibility assets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Dynamic moisture sorption characteristics of enzyme-resistant recrystallized cassava starch.

    PubMed

    Mutungi, Christopher; Schuldt, Stefan; Onyango, Calvin; Schneider, Yvonne; Jaros, Doris; Rohm, Harald

    2011-03-14

    The interaction of moisture with enzyme-resistant recrystallized starch, prepared by heat-moisture treatment of debranched acid-modified or debranched non-acid-modified cassava starch, was investigated in comparison with the native granules. Crystallinities of the powdered products were estimated by X-ray diffraction. Moisture sorption was determined using dynamic vapor sorption analyzer and data fitted to various models. Percent crystallinities of native starch (NS), non-acid-modified recrystallized starch (NAMRS), and acid-modified recrystallized starch (AMRS) were 39.7, 51.9, and 56.1%, respectively. In a(w) below 0.8, sorption decreased in the order NS > NAMRS > AMRS in line with increasing sample crystallinities but did not follow this crystallinity dependence at higher a(w) because of condensation and polymer dissolution effects. Adsorbed moisture became internally absorbed in NS but not in NAMRS and AMRS, which might explain the high resistance of the recrystallized starches to digestion because enzyme and starch cannot approach each other over fairly sufficient surface at the molecular level.

  15. The phosphoglucan phosphatase like sex Four2 dephosphorylates starch at the C3-position in Arabidopsis.

    PubMed

    Santelia, Diana; Kötting, Oliver; Seung, David; Schubert, Mario; Thalmann, Matthias; Bischof, Sylvain; Meekins, David A; Lutz, Andy; Patron, Nicola; Gentry, Matthew S; Allain, Frédéric H-T; Zeeman, Samuel C

    2011-11-01

    Starch contains phosphate covalently bound to the C6-position (70 to 80% of total bound phosphate) and the C3-position (20 to 30%) of the glucosyl residues of the amylopectin fraction. In plants, the transient phosphorylation of starch renders the granule surface more accessible to glucan hydrolyzing enzymes and is required for proper starch degradation. Phosphate also confers desired properties to starch-derived pastes for industrial applications. In Arabidopsis thaliana, the removal of phosphate by the glucan phosphatase Starch Excess4 (SEX4) is essential for starch breakdown. We identified a homolog of SEX4, LSF2 (Like Sex Four2), as a novel enzyme involved in starch metabolism in Arabidopsis chloroplasts. Unlike SEX4, LSF2 does not have a carbohydrate binding module. Nevertheless, it binds to starch and specifically hydrolyzes phosphate from the C3-position. As a consequence, lsf2 mutant starch has elevated levels of C3-bound phosphate. SEX4 can release phosphate from both the C6- and the C3-positions, resulting in partial functional overlap with LSF2. However, compared with sex4 single mutants, the lsf2 sex4 double mutants have a more severe starch-excess phenotype, impaired growth, and a further change in the proportion of C3- and C6-bound phosphate. These findings significantly advance our understanding of the metabolism of phosphate in starch and provide innovative options for tailoring novel starches with improved functionality for industry.

  16. Membrane-bound amylopullulanase is essential for starch metabolism of Sulfolobus acidocaldarius DSM639.

    PubMed

    Choi, Kyoung-Hwa; Cha, Jaeho

    2015-09-01

    Sulfolobus acidocaldarius DSM639 produced an acid-resistant membrane-bound amylopullulanase (Apu) during growth on starch as a sole carbon and energy source. The physiological role of Apu in starch metabolism was investigated by the growth and starch degradation pattern of apu disruption mutant as well as biochemical properties of recombinant Apu. The Δapu mutant lost the ability to grow in minimal medium in the presence of starch, and the amylolytic activity observed in the membrane fraction of the wild-type strain was not detected in the Δapu mutant when the cells were grown in YT medium. The purified membrane-bound Apu initially hydrolyzed starch, amylopectin, and pullulan into various sizes of maltooligosaccharides, and then produced glucose, maltose, and maltotriose in the end, indicating Apu is a typical endo-acting glycoside hydrolase family 57 (GH57) amylopullulanase. The maltose and maltotriose observed in the culture medium during the exponential and stationary phase growth indicates that Apu is the essential enzyme to initially hydrolyze the starch into small maltooligosaccharides to be transported into the cell.

  17. Extrusion induced low-order starch matrices: Enzymic hydrolysis and structure.

    PubMed

    Zhang, Bin; Dhital, Sushil; Flanagan, Bernadine M; Luckman, Paul; Halley, Peter J; Gidley, Michael J

    2015-12-10

    Waxy, normal and highwaymen maize starches were extruded with water as sole plasticizer to achieve low-order starch matrices. Of the three starches, we found that only high-amylose extrudate showed lower digestion rate/extent than starches cooked in excess water. The ordered structure of high-amylose starches in cooked and extruded forms was similar, as judged by NMR, XRD and DSC techniques, but enzyme resistance was much greater for extruded forms. Size exclusion chromatography suggested that longer chains were involved in enzyme resistance. We propose that the local molecular density of packing of amylose chains can control the digestion kinetics rather than just crystallinity, with the principle being that density sufficient to either prevent/limit binding and/or slow down catalysis can be achieved by dense amorphous packing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Expression of Escherichia coli glycogen branching enzyme in an Arabidopsis mutant devoid of endogenous starch branching enzymes induces the synthesis of starch-like polyglucans.

    PubMed

    Boyer, Laura; Roussel, Xavier; Courseaux, Adeline; Ndjindji, Ofilia M; Lancelon-Pin, Christine; Putaux, Jean-Luc; Tetlow, Ian J; Emes, Michael J; Pontoire, Bruno; D' Hulst, Christophe; Wattebled, Fabrice

    2016-07-01

    Starch synthesis requires several enzymatic activities including branching enzymes (BEs) responsible for the formation of α(1 → 6) linkages. Distribution and number of these linkages are further controlled by debranching enzymes that cleave some of them, rendering the polyglucan water-insoluble and semi-crystalline. Although the activity of BEs and debranching enzymes is mandatory to sustain normal starch synthesis, the relative importance of each in the establishment of the plant storage polyglucan (i.e. water insolubility, crystallinity and presence of amylose) is still debated. Here, we have substituted the activity of BEs in Arabidopsis with that of the Escherichia coli glycogen BE (GlgB). The latter is the BE counterpart in the metabolism of glycogen, a highly branched water-soluble and amorphous storage polyglucan. GlgB was expressed in the be2 be3 double mutant of Arabidopsis, which is devoid of BE activity and consequently free of starch. The synthesis of a water-insoluble, partly crystalline, amylose-containing starch-like polyglucan was restored in GlgB-expressing plants, suggesting that BEs' origin only has a limited impact on establishing essential characteristics of starch. Moreover, the balance between branching and debranching is crucial for the synthesis of starch, as an excess of branching activity results in the formation of highly branched, water-soluble, poorly crystalline polyglucan. © 2015 John Wiley & Sons Ltd.

  19. Starch-Branching Enzyme IIa Is Required for Proper Diurnal Cycling of Starch in Leaves of Maize1[OA

    PubMed Central

    Yandeau-Nelson, Marna D.; Laurens, Lieve; Shi, Zi; Xia, Huan; Smith, Alison M.; Guiltinan, Mark J.

    2011-01-01

    Starch-branching enzyme (SBE), a glucosyl transferase, is required for the highly regular pattern of α-1,6 bonds in the amylopectin component of starch. In the absence of SBEIIa, as shown previously in the sbe2a mutant of maize (Zea mays), leaf starch has drastically reduced branching and the leaves exhibit a severe senescence-like phenotype. Detailed characterization of the maize sbe2a mutant revealed that SBEIIa is the primary active branching enzyme in the leaf and that in its absence plant growth is affected. Both seedling and mature sbe2a mutant leaves do not properly degrade starch during the night, resulting in hyperaccumulation. In mature sbe2a leaves, starch hyperaccumulation is greatest in visibly senescing regions but also observed in green tissue and is correlated to a drastic reduction in photosynthesis within the leaf. Starch granules from sbe2a leaves observed via scanning electron microscopy and transmission electron microscopy analyses are larger, irregular, and amorphous as compared with the highly regular, discoid starch granules observed in wild-type leaves. This appears to trigger premature senescence, as shown by an increased expression of genes encoding proteins known to be involved in senescence and programmed cell death processes. Together, these results indicate that SBEIIa is required for the proper diurnal cycling of transitory starch within the leaf and suggest that SBEIIa is necessary in producing an amylopectin structure amenable to degradation by starch metabolism enzymes. PMID:21508184

  20. Kinetic characteristics of polygalacturonase enzymes hydrolyzing galacturonic acid oligomers using isothermal titration calorimetry

    USDA-ARS?s Scientific Manuscript database

    Polygalacturonase enzymes hydrolyze the polygalacturonic acid chains found in pectin. Interest in polygalacturonase enzymes continues as they are useful in a number of industrial processes and conversely, detrimental, as they are involved in maceration of economically important crops. While a good...

  1. The Phosphoglucan Phosphatase Like Sex Four2 Dephosphorylates Starch at the C3-Position in Arabidopsis[W][OA

    PubMed Central

    Santelia, Diana; Kötting, Oliver; Seung, David; Schubert, Mario; Thalmann, Matthias; Bischof, Sylvain; Meekins, David A.; Lutz, Andy; Patron, Nicola; Gentry, Matthew S.; Allain, Frédéric H.-T.; Zeeman, Samuel C.

    2011-01-01

    Starch contains phosphate covalently bound to the C6-position (70 to 80% of total bound phosphate) and the C3-position (20 to 30%) of the glucosyl residues of the amylopectin fraction. In plants, the transient phosphorylation of starch renders the granule surface more accessible to glucan hydrolyzing enzymes and is required for proper starch degradation. Phosphate also confers desired properties to starch-derived pastes for industrial applications. In Arabidopsis thaliana, the removal of phosphate by the glucan phosphatase Starch Excess4 (SEX4) is essential for starch breakdown. We identified a homolog of SEX4, LSF2 (Like Sex Four2), as a novel enzyme involved in starch metabolism in Arabidopsis chloroplasts. Unlike SEX4, LSF2 does not have a carbohydrate binding module. Nevertheless, it binds to starch and specifically hydrolyzes phosphate from the C3-position. As a consequence, lsf2 mutant starch has elevated levels of C3-bound phosphate. SEX4 can release phosphate from both the C6- and the C3-positions, resulting in partial functional overlap with LSF2. However, compared with sex4 single mutants, the lsf2 sex4 double mutants have a more severe starch-excess phenotype, impaired growth, and a further change in the proportion of C3- and C6-bound phosphate. These findings significantly advance our understanding of the metabolism of phosphate in starch and provide innovative options for tailoring novel starches with improved functionality for industry. PMID:22100529

  2. Depolymerization of starch and pectin using superporous matrix supported enzymes.

    PubMed

    Lali, Arvind; Manudhane, Kushal; Motlekar, Nuzhat; Karandikar, Priti

    2002-08-01

    Immobilized enzyme catalyzed biotransformations involving macromolecular substrates and/or products are greatly retarded due to slow diffusion of large substrate molecules in and out of the typical enzyme supports. Slow diffusion of macromolecules into the matrix pores can be speeded up by use of macroporous supports as enzyme carriers. Depolymerization reactions of polysaccharides like starch, pectin, and dextran to their respective low molecular weight products are some of the reactions that can benefit from use of such superporous matrices. In the present work, an indigenously prepared rigid cross-linked cellulose matrix (called CELBEADS) has been used as support for immobilizing alpha amylase (1,4-alpha-D-glucan glucanohydrolase, EC 3.2.1.1.) and pectinase (endo-PG: poly(1,4-alpha-galactouronide) glycanohydrolase, EC 3.2.1.15). The immobilized enzymes were used for starch and pectin hydrolysis respectively, in batch, packed bed and expanded bed modes. The macroporosity of CELBEADS was found to permit through-flow and easy diffusion of substrates pectin and starch to enzyme sites in the porous supports and gave reaction rates comparable to the rates obtained using soluble enzymes.

  3. Starch-Branching Enzymes Preferentially Associated with A-Type Starch Granules in Wheat Endosperm1

    PubMed Central

    Peng, Mingsheng; Gao, Ming; Båga, Monica; Hucl, Pierre; Chibbar, Ravindra N.

    2000-01-01

    Two starch granule-bound proteins (SGP), SGP-140 and SGP-145, were preferentially associated with A-type starch granules (>10 μm) in developing and mature wheat (Triticum aestivum) kernels. Immunoblotting and N-terminal sequencing suggested that the two proteins were different variants of SBEIc, a 152-kD isoform of wheat starch-branching enzyme. Both SGP-140 and SGP-145 were localized to the endosperm starch granules but were not found in the endosperm soluble fraction or pericarp starch granules younger than 15 d post anthesis (DPA). Small-size starch granules (<10 μm) initiated before 15 DPA incorporated SGP-140 and SGP-145 throughout endosperm development and grew into full-size A-type starch granules (>10 μm). In contrast, small-size starch granules harvested after 15 DPA contained only low amounts of SGP-140 and SGP-145 and developed mainly into B-type starch granules (<10 μm). Polypeptides of similar mass and immunologically related to SGP-140 and/or SGP-145 were also preferentially incorporated into A-type starch granules of barley (Hordeum vulgare), rye (Secale cereale), and triticale (× Triticosecale Wittmack) endosperm, which like wheat endosperm have a bimodal starch granule size distribution. PMID:10982441

  4. Effective production of resistant starch using pullulanase immobilized onto magnetic chitosan/Fe3O4 nanoparticles.

    PubMed

    Long, Jie; Zhang, Bao; Li, Xingfei; Zhan, Xiaobei; Xu, Xueming; Xie, Zhengjun; Jin, Zhengyu

    2018-01-15

    In this study, pullulanase was firstly immobilized by covalent bonding onto chitosan/Fe 3 O 4 nanoparticles or encapsulation in sol-gel after bonding onto chitosan/Fe 3 O 4 nanoparticles, and then the immobilized pullulanase was used for the effective production of resistant starch (RS). The highest RS content (35.1%) was obtained under the optimized condition of pH 4.4, enzyme concentration of 10ASPU/g and hydrolysis time of 12h when debranched by free pullulsanase, indicating that RS content was significantly (p<0.05) increased when compared to native starch (4.3%) and autoclaved starch (12.5%). Under these conditions, the immobilized pullulanase (10ASPU/g dry starch) yielded higher RS content compared to free enzyme (10ASPU/g dry starch), especially, the pullulanse immobilized by sol-gel encapsulation yielded the highest RS content (43.4%). Moreover, compared to starches hydrolyzed by free pullulanase, starches hydrolyzed by immobilized pullulanase showed a different saccharide profile of starch hydrolysate, including a stronger peak C (MW=5.0×10 3 ), as well as exhibited an additional absorption peak around 140°C. Reusability results demonstrated that pullulanase immobilized by sol-gel encapsulation had the advantages of producing higher RS content as well as better operational stability compared to pullulanase immobilized by cross-linking. The resulting enhanced RS content generated by the process described in this work could be used as an adjunct in food processing industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A Simple Endpoint Assay for Starch-Degrading Enzymes.

    ERIC Educational Resources Information Center

    Kroen, William K.

    1998-01-01

    Since many of the important energy-transferring pathways involve synthesis or degradation of biological macromolecules, observations of the enzymes responsible for starch breakdown provide a useful case study. Provides a short, one-step assay for the enzymes amylase and amyloglucosidase. Topics covered include goals, preparation, assay procedure,…

  6. Improved Starch Digestion of Sucrase-deficient Shrews Treated With Oral Glucoamylase Enzyme Supplements.

    PubMed

    Nichols, Buford L; Avery, Stephen E; Quezada-Calvillo, Roberto; Kilani, Shadi B; Lin, Amy Hui-Mei; Burrin, Douglas G; Hodges, Benjamin E; Chacko, Shaji K; Opekun, Antone R; Hindawy, Marwa El; Hamaker, Bruce R; Oda, Sen-Ichi

    2017-08-01

    Although named because of its sucrose hydrolytic activity, this mucosal enzyme plays a leading role in starch digestion because of its maltase and glucoamylase activities. Sucrase-deficient mutant shrews, Suncus murinus, were used as a model to investigate starch digestion in patients with congenital sucrase-isomaltase deficiency.Starch digestion is much more complex than sucrose digestion. Six enzyme activities, 2 α-amylases (Amy), and 4 mucosal α-glucosidases (maltases), including maltase-glucoamylase (Mgam) and sucrase-isomaltase (Si) subunit activities, are needed to digest starch to absorbable free glucose. Amy breaks down insoluble starch to soluble dextrins; mucosal Mgam and Si can either directly digest starch to glucose or convert the post-α-amylolytic dextrins to glucose. Starch digestion is reduced because of sucrase deficiency and oral glucoamylase enzyme supplement can correct the starch maldigestion. The aim of the present study was to measure glucogenesis in suc/suc shrews after feeding of starch and improvement of glucogenesis by oral glucoamylase supplements. Sucrase mutant (suc/suc) and heterozygous (+/suc) shrews were fed with C-enriched starch diets. Glucogenesis derived from starch was measured as blood C-glucose enrichment and oral recombinant C-terminal Mgam glucoamylase (M20) was supplemented to improve starch digestion. After feedings, suc/suc and +/suc shrews had different starch digestions as shown by blood glucose enrichment and the suc/suc had lower total glucose concentrations. Oral supplements of glucoamylase increased suc/suc total blood glucose and quantitative starch digestion to glucose. Sucrase deficiency, in this model of congenital sucrase-isomaltase deficiency, reduces blood glucose response to starch feeding. Supplementing the diet with oral recombinant glucoamylase significantly improved starch digestion in the sucrase-deficient shrew.

  7. Use of enzymes to minimize the rheological dough problems caused by high levels of damaged starch in starch-gluten systems.

    PubMed

    Barrera, Gabriela N; León, Alberto E; Ribotta, Pablo D

    2016-05-01

    During wheat milling, starch granules can experience mechanical damage, producing damaged starch. High levels of damaged starch modify the physicochemical properties of wheat flour, negatively affecting the dough behavior as well as the flour quality and cookie and bread making quality. The aim of this work was to evaluate the effect of α-amylase, maltogenic amylase and amyloglucosidase on dough rheology in order to propose alternatives to reduce the issues related to high levels of damaged starch. The dough with a high level of damaged starch became more viscous and resistant to deformations as well as less elastic and extensible. The soluble fraction of the doughs influenced the rheological behavior of the systems. The α-amylase and amyloglucosidase reduced the negative effects of high damaged starch contents, improving the dough rheological properties modified by damaged starch. The rheological behavior of dough with the higher damaged-starch content was related to a more open gluten network arrangement as a result of the large size of the swollen damaged starch granules. We can conclude that the dough rheological properties of systems with high damaged starch content changed positively as a result of enzyme action, particularly α-amylase and amyloglucosidase additions, allowing the use of these amylases and mixtures of them as corrective additives. Little information was reported about amyloglucosidase activity alone or combined with α-amylase. The combinations of these two enzymes are promising to minimize the negative effects caused by high levels of damaged starch on product quality. More research needs to be done on bread quality combining these two enzymes. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  8. Structure, function and regulation of the enzymes in the starch biosynthetic pathway.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geiger, Jim

    Starch is the major reserve polysaccharide in nature and accounts for the majority of the caloric intact of humans. It is also gaining importance as a renewable and biodegradable industrial material. There is burgeoning interest in increasing the amount and altering the properties of the plant starches by plant genetic modification. A rational approach to this effort will require a detailed, atomic-level understanding of the enzymatic processes that produce the starch granule. The starch granule is a complex particle made up of alternating layers of crystalline and amorphous lamellae. It consists of two types of polymer, amylose, a polymer ofmore » relatively long chains of α-1,4-linked glucans that contain virtually no branches, and amylopectin, which is highly branched and contains much shorter chains. This complex structure is synthesized by the coordinate activities of the starch synthases (SS), which elongate the polysaccharide chain by addition of glucose units via α-1,4 linkages using ADP- glucose as a donor, and branching enzymes (BE), which branch the polysaccharide chain by cleavage of α₋1,4 linkages and subsequent re-attachment via α₋1,6 linkages. Several isoforms of both starch synthase (SS) and branching enzyme (BE) are found in plants, including SSI, SSII, SSIII and granule- bound SS (GBSS), and SBEI, SBEIIa and SBEIIb. These isoforms have different activities and substrate and product specificities and play different roles in creating the granule and determining the properties of the resulting starch. The overarching goal of this proposal is to begin to understand the regulation and specificities of these enzymes at the atomic level. High-resolution X-ray structures of these enzymes bound to substrates and products will be determined to visualize the molecular interactions responsible for the properties of the enzymes. Hypotheses regarding these issues will then be tested using mutagenesis and enzyme assays. To date, we have determined the

  9. Application of enzyme-treated corn starches in breakfast cereal coating.

    PubMed

    Luckett, Curtis R; Wang, Ya-Jane

    2012-08-01

    Presently ready-to-eat cereals are coated with high levels of sugar coating to extend the bowl life. Because of health concerns of added sugar, there is a need to identify alternative coating materials. This study was designed to test the efficacy of debranched corn starches with varying amylose contents as a cereal coating. Hylon VII (70% amylose), common, and waxy corn starches were gelatinized and debranched, and then sprayed onto ready-to-eat breakfast cereal flakes. The surface morphology, milk absorption, texture, and digestibility of coated cereals were determined. A starch film with a thickness of 50 to 130 μm was observed with scanning electron microscopy on the surface of the cereals coated with Hylon VII. All starch-coated cereals had a lower milk absorption value than the uncoated and glucose-coated controls. Among starch coatings, common corn starch and Hylon VII resulted in lower milk absorption than did waxy corn starch. After soaking in milk for 3 min, the peak force and work to peak of the cereals coated with corn starches were higher than those of the glucose control and uncoated reference. The cereals coated with Hylon VII were found to have an increase in dietary fiber content. The results suggest that debranched amylose-containing corn starches could extend the bowl-life of ready-to-eat cereals. Currently, many cereals are coated with sugar to keep them from becoming soggy in milk. However, added sugar has been linked to obesity, hyperactivity, and dental caries. This has led to the investigation of alternative coating materials. This study employed the film-forming properties of enzyme-treated corn starch to function as a coating material in breakfast cereal flakes. In addition, the enzyme-treated high amylose corn starch also increased the dietary fiber content of the cereal flakes. © 2012 Institute of Food Technologists®

  10. Specific starch digestion of maize alpha-limit dextrins by recombinant mucosal glucosidase enzymes

    USDA-ARS?s Scientific Manuscript database

    Starch digestion requires two luminal enzymes, salivary and pancreatic alpha-amylase (AMY), and four small intestinal mucosal enzyme activities from the N- and C-terminals of maltase-glucoamylase (MGAM) and sucrose-isomaltase (SI) complexes. AMY is not a requirement for starch digestion to glucose b...

  11. Morphological and physicochemical characterization of porous starches obtained from different botanical sources and amylolytic enzymes.

    PubMed

    Benavent-Gil, Yaiza; Rosell, Cristina M

    2017-10-01

    Porous starches might offer an attractive alternative as bio-adsorbents of a variety of compounds. However, morphology and physicochemical properties of starches must be understood before exploring their applications. Objective was to study the action of different amylolytic enzymes for producing porous starches. Wheat, rice, potato and cassava starches were treated with Amyloglucosidase (AMG), α-amylase (AM) and cyclodextrin-glycosyltransferase (CGTase). Morphological characteristics, chemical composition, adsorptive capacity and pasting/thermal properties were assessed. Scanning Electron Microscopy (SEM) showed porous structures with diverse pore size distribution, which was dependent on the enzyme type and starch source, but no differences were observed in the total granule surface occupied by pores. The adsorptive capacity analysis revealed that modified starches had high water absorptive capacity and showed different oil adsorptive capacity depending on the enzyme type. Amylose content analysis revealed different hydrolysis pattern of the amylases, suggesting that AMG mainly affected crystalline region meanwhile AM and CGTase attacked amorphous area. A heatmap illustrated the diverse pasting properties of the different porous starches, which also showed significant different thermal properties, with different behavior between cereal and tuber starches. Therefore, it is possible to modulate the properties of starches through the use of different enzymes. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Starch source influences dietary glucose generation at the mucosal α-glucosidase level.

    PubMed

    Lin, Amy Hui-Mei; Lee, Byung-Hoo; Nichols, Buford L; Quezada-Calvillo, Roberto; Rose, David R; Naim, Hassan Y; Hamaker, Bruce R

    2012-10-26

    The quality of starch digestion, related to the rate and extent of release of dietary glucose, is associated with glycemia-related problems such as diabetes and other metabolic syndrome conditions. Here, we found that the rate of glucose generation from starch is unexpectedly associated with mucosal α-glucosidases and not just α-amylase. This understanding could lead to a new approach to regulate the glycemic response and glucose-related physiologic responses in the human body. There are six digestive enzymes for starch: salivary and pancreatic α-amylases and four mucosal α-glucosidases, including N- and C-terminal subunits of both maltase-glucoamylase and sucrase-isomaltase. Only the mucosal α-glucosidases provide the final hydrolytic activities to produce substantial free glucose. We report here the unique and shared roles of the individual α-glucosidases for α-glucans persisting after starch is extensively hydrolyzed by α-amylase (to produce α-limit dextrins (α-LDx)). All four α-glucosidases share digestion of linear regions of α-LDx, and three can hydrolyze branched fractions. The α-LDx, which were derived from different maize cultivars, were not all equally digested, revealing that the starch source influences glucose generation at the mucosal α-glucosidase level. We further discovered a fraction of α-LDx that was resistant to the extensive digestion by the mucosal α-glucosidases. Our study further challenges the conventional view that α-amylase is the only rate-determining enzyme involved in starch digestion and better defines the roles of individual and collective mucosal α-glucosidases. Strategies to control the rate of glucogenesis at the mucosal level could lead to regulation of the glycemic response and improved glucose management in the human body.

  13. EndoSd: an IgG glycan hydrolyzing enzyme in Streptococcus dysgalactiae subspecies dysgalactiae.

    PubMed

    Shadnezhad, Azadeh; Naegeli, Andreas; Sjögren, Jonathan; Adamczyk, Barbara; Leo, Fredrik; Allhorn, Maria; Karlsson, Niclas G; Jensen, Anders; Collin, Mattias

    2016-06-01

    The aim of this study was to identify and characterize EndoS-like enzymes in Streptococcus dysgalactiae subspecies dysgalactiae (SDSD). PCR, DNA sequencing, recombinant protein expression, lectin blot, ultra high performance liquid chromatography analysis and a chitinase assay were used to identify ndoS-like genes and characterize EndoSd. EndoSd were found in four SDSD strains. EndoSd hydrolyzes the chitobiose core of the glycan on IgG. The amino acid sequence of EndoSd is 70% identical to EndoS in S. pyogenes, but it has a unique C-terminal sequence. EndoSd secretion is influenced by the carbohydrate composition of the growth medium. Our findings indicate that IgG glycan hydrolyzing activity is present in SDSD, and that the activity can be attributed to the here identified enzyme EndoSd.

  14. A novel raw starch digesting alpha-amylase from a newly isolated Bacillus sp. YX-1: purification and characterization.

    PubMed

    Liu, Xu Dong; Xu, Yan

    2008-07-01

    This study reports the purification and characterization of a novel raw starch digesting alpha-amylase from a newly isolated Bacillus sp. YX-1. Maximum alpha-amylase activity (53 U mL(-1)) was obtained at 45 degrees C after 44 h of incubation. The enzyme was purified using ammonium sulfate precipitation, ion exchange and gel filtration chromatography, and showed a molecular weight of 56 kDa by SDS-PAGE. This enzyme exhibited maximum activity at pH 5.0, performed stability over a broad range of pH 4.5-11.0, and was optimally active at 40-50 degrees C. The enzyme preparation had a strong digesting ability towards various raw starches and efficiently hydrolyzed raw corn starch at a concentration of 20% and pH 5.0, which were normally used in the starch industries, in a period of 12h. By analyzing its partial amino acid sequences, the enzyme was proposed to be a novel alpha-amylase.

  15. Replacement of the Endogenous Starch Debranching Enzymes ISA1 and ISA2 of Arabidopsis with the Rice Orthologs Reveals a Degree of Functional Conservation during Starch Synthesis

    PubMed Central

    Streb, Sebastian; Zeeman, Samuel C.

    2014-01-01

    This study tested the interchangeability of enzymes in starch metabolism between dicotyledonous and monocotyledonous plant species. Amylopectin - a branched glucose polymer - is the major component of starch and is responsible for its semi-crystalline property. Plants synthesize starch with distinct amylopectin structures, varying between species and tissues. The structure determines starch properties, an important characteristic for cooking and nutrition, and for the industrial uses of starch. Amylopectin synthesis involves at least three enzyme classes: starch synthases, branching enzymes and debranching enzymes. For all three classes, several enzyme isoforms have been identified. However, it is not clear which enzyme(s) are responsible for the large diversity of amylopectin structures. Here, we tested whether the specificities of the debranching enzymes (ISA1 and ISA2) are major determinants of species-dependent differences in amylopectin structure by replacing the dicotyledonous Arabidopsis isoamylases (AtISA1 and AtISA2) with the monocotyledonous rice (Oryza sativa) isoforms. We demonstrate that the ISA1 and ISA2 are sufficiently well conserved between these species to form heteromultimeric chimeric Arabidopsis/rice isoamylase enzymes. Furthermore, we were able to reconstitute the endosperm-specific rice OsISA1 homomultimeric complex in Arabidopsis isa1isa2 mutants. This homomultimer was able to facilitate normal rates of starch synthesis. The resulting amylopectin structure had small but significant differences in comparison to wild-type Arabidopsis amylopectin. This suggests that ISA1 and ISA2 have a conserved function between plant species with a major role in facilitating the crystallization of pre-amylopectin synthesized by starch synthases and branching enzymes, but also influencing the final structure of amylopectin. PMID:24642810

  16. Identification and expression analysis of starch branching enzymes involved in starch synthesis during the development of chestnut (Castanea mollissima Blume) cotyledons

    PubMed Central

    Li, Zhi; Zhao, Yanyan; Jiang, Yichen; Zhang, Qing; Cao, Qingqin; Fang, Kefeng; Xing, Yu; Qin, Ling

    2017-01-01

    Chinese chestnut (Castanea mollissima Blume) is native to China and distributes widely in arid and semi-arid mountain area with barren soil. As a perennial crop, chestnut is an alternative food source and acts as an important commercial nut tree in China. Starch is the major metabolite in nuts, accounting for 46 ~ 64% of the chestnut dry weight. The accumulation of total starch and amylopectin showed a similar increasing trend during the development of nut. Amylopectin contributed up to 76% of the total starch content at 80 days after pollination (DAP). The increase of total starch mainly results from amylopectin synthesis. Among genes associated with starch biosynthesis, CmSBEs (starch branching enzyme) showed significant increase during nut development. Two starch branching enzyme isoforms, CmSBE I and CmSBE II, were identified from chestnut cotyledon using zymogram analysis. CmSBE I and CmSBE II showed similar patterns of expression during nut development. The accumulations of CmSBE transcripts and proteins in developing cotyledons were characterized. The expressions of two CmSBE genes increased from 64 DAP and reached the highest levels at 77 DAP, and SBE activity reached its peak at 74 DAP. These results suggested that the CmSBE enzymes mainly contributed to amylopectin synthesis and influenced the amylopectin content in the developing cotyledon, which would be beneficial to chestnut germplasm selection and breeding. PMID:28542293

  17. Effects on starch and amylolytic enzymes during Lepidium meyenii Walpers root storage.

    PubMed

    Rondán-Sanabria, Gerby Giovanna; Valcarcel-Yamani, Beatriz; Finardi-Filho, Flavio

    2012-10-01

    The high water content in maca (Lepidium meyenii W.) roots combined with the damage produced during or after harvest makes them vulnerable to attack by enzymes and microorganisms. Although starch degradation has been extensively studied, in maca roots there is a paucity of research regarding the starch reserves. In this paper, parameters of starch degradation are shown to be related to the action of amylolytic enzymes during storage at room temperature. Over the course of three weeks, the starch and protein content, soluble sugar, total amylolytic activity, and α- and β-amylase activity were measured. In addition, the integrity of starch granules was observed by scanning electron microscopy. Despite the evidence of dehydration, there were no significant differences (p ≤ 0.5) in the total starch content or in the activities of α- and β-amylase. After the third week the roots remained suitable for consumption. The results indicate a postharvest latency that can lead to sprout or to senescence, depending on the environmental conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Characterization of Inulin Hydrolyzing Enzyme(s) in Oleaginous Yeast Trichosporon cutaneum in Consolidated Bioprocessing of Microbial Lipid Fermentation.

    PubMed

    Wang, Juan; Zhang, Huizhan; Bao, Jie

    2015-11-01

    Oleaginous yeast Trichosporon cutaneum CGMCC 2.1374 was found to utilize inulin directly for microbial lipid fermentation without a hydrolysis step. The potential inulinase-like enzyme(s) in T. cutaneum CGMCC 2.1374 were characterized and compared with other inulinase enzymes produced by varied yeast strains. The consolidated bioprocessing (CBP) for lipid accumulated using inulin was optimized with 4.79 g/L of lipid produced from 50 g/L inulin with the lipid content of 33.6% in dry cells. The molecular weight of the enzyme was measured which was close to invertase in Saccharomyces cerevisiae. The study provided information for inulin hydrolyzing enzyme(s) in oleaginous yeasts, as well as a preliminary CBP process for lipid production from inulin feedstock.

  19. Starch Source Influences Dietary Glucose Generation at the Mucosal α-Glucosidase Level*

    PubMed Central

    Lin, Amy Hui-Mei; Lee, Byung-Hoo; Nichols, Buford L.; Quezada-Calvillo, Roberto; Rose, David R.; Naim, Hassan Y.; Hamaker, Bruce R.

    2012-01-01

    The quality of starch digestion, related to the rate and extent of release of dietary glucose, is associated with glycemia-related problems such as diabetes and other metabolic syndrome conditions. Here, we found that the rate of glucose generation from starch is unexpectedly associated with mucosal α-glucosidases and not just α-amylase. This understanding could lead to a new approach to regulate the glycemic response and glucose-related physiologic responses in the human body. There are six digestive enzymes for starch: salivary and pancreatic α-amylases and four mucosal α-glucosidases, including N- and C-terminal subunits of both maltase-glucoamylase and sucrase-isomaltase. Only the mucosal α-glucosidases provide the final hydrolytic activities to produce substantial free glucose. We report here the unique and shared roles of the individual α-glucosidases for α-glucans persisting after starch is extensively hydrolyzed by α-amylase (to produce α-limit dextrins (α-LDx)). All four α-glucosidases share digestion of linear regions of α-LDx, and three can hydrolyze branched fractions. The α-LDx, which were derived from different maize cultivars, were not all equally digested, revealing that the starch source influences glucose generation at the mucosal α-glucosidase level. We further discovered a fraction of α-LDx that was resistant to the extensive digestion by the mucosal α-glucosidases. Our study further challenges the conventional view that α-amylase is the only rate-determining enzyme involved in starch digestion and better defines the roles of individual and collective mucosal α-glucosidases. Strategies to control the rate of glucogenesis at the mucosal level could lead to regulation of the glycemic response and improved glucose management in the human body. PMID:22988246

  20. Overexpression of STARCH BRANCHING ENZYME II increases short-chain branching of amylopectin and alters the physicochemical properties of starch from potato tuber.

    PubMed

    Brummell, David A; Watson, Lyn M; Zhou, Jun; McKenzie, Marian J; Hallett, Ian C; Simmons, Lyall; Carpenter, Margaret; Timmerman-Vaughan, Gail M

    2015-04-29

    Starch is biosynthesised by a complex of enzymes including various starch synthases and starch branching and debranching enzymes, amongst others. The role of all these enzymes has been investigated using gene silencing or genetic knockouts, but there are few examples of overexpression due to the problems of either cloning large genomic fragments or the toxicity of functional cDNAs to bacteria during cloning. The aim of this study was to investigate the function of potato STARCH BRANCHING ENZYME II (SBEII) using overexpression in potato tubers. A hybrid SBEII intragene consisting of potato cDNA containing a fragment of potato genomic DNA that included a single intron was used in order to prevent bacterial translation during cloning. A population of 20 transgenic potato plants exhibiting SBEII overexpression was generated. Compared with wild-type, starch from these tubers possessed an increased degree of amylopectin branching, with more short chains of degree of polymerisation (DP) 6-12 and particularly of DP6. Transgenic lines expressing a GRANULE-BOUND STARCH SYNTHASE (GBSS) RNAi construct were also generated for comparison and exhibited post-transcriptional gene silencing of GBSS and reduced amylose content in the starch. Both transgenic modifications did not affect granule morphology but reduced starch peak viscosity. In starch from SBEII-overexpressing lines, the increased ratio of short to long amylopectin branches facilitated gelatinisation, which occurred at a reduced temperature (by up to 3°C) or lower urea concentration. In contrast, silencing of GBSS increased the gelatinisation temperature by 4°C, and starch required a higher urea concentration for gelatinisation. In lines with a range of SBEII overexpression, the magnitude of the increase in SBEII activity, reduction in onset of gelatinisation temperature and increase in starch swollen pellet volume were highly correlated, consistent with reports that starch swelling is greatly dependent upon the

  1. Characterization of a thermostable raw-starch hydrolyzing α-amylase from deep-sea thermophile Geobacillus sp.

    PubMed

    Jiang, Tao; Cai, Menghao; Huang, Mengmeng; He, Hao; Lu, Jian; Zhou, Xiangshan; Zhang, Yuanxing

    2015-10-01

    A deep-sea thermophile, Geobacillus sp. 4j, was identified to grow on starch and produce thermostable amylase. N-terminally truncated form of Geobacillus sp. 4j α-amylase (Gs4j-amyA) was fused at its N-terminal end with the signal peptide of outer membrane protein A (OmpA) of Escherichia coli. The enzyme was over-expressed in E. coli BL21 with a maximum extracellular production of 130U/ml in shake flask. The yield of the transformant increased 22-fold as compared with that of the wild strain. The recombinant enzyme purified to apparent homogeneity by metal-affinity chromatography, exhibited a molecular mass of 62kDa. It displayed the maximal activity at 60-65°C and pH 5.5. Its half-life (t1/2) at 80°C was 4.25h with a temperature deactivation energy of 166.3kJ/mol. Compared to three commonly used commercial α-amylases, the Gs4j-amyA exhibited similar thermostable performance to BLA but better than BAA and BSA. It also showed a universally efficient raw starch hydrolysis performance superior to commercial α-amylases at an acidic pH approaching nature of starch slurry. As a new acidic-resistant thermostable α-amylase, it has the potential to bypass the industrial gelatinization step in raw starch hydrolysis. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Engineering Saccharomyces cerevisiae for direct conversion of raw, uncooked or granular starch to ethanol.

    PubMed

    Görgens, Johann F; Bressler, David C; van Rensburg, Eugéne

    2015-01-01

    The production of raw starch-degrading amylases by recombinant Saccharomyces cerevisiae provides opportunities for the direct hydrolysis and fermentation of raw starch to ethanol without cooking or exogenous enzyme addition. Such a consolidated bioprocess (CBP) for raw starch fermentation will substantially reduce costs associated with energy usage and commercial granular starch hydrolyzing (GSH) enzymes. The core purpose of this review is to provide comprehensive insight into the physiological impact of recombinant amylase production on the ethanol-producing yeast. Key production parameters, based on outcomes from modifications to the yeast genome and levels of amylase production, were compared to key benchmark data. In turn, these outcomes are of significance from a process point of view to highlight shortcomings in the current state of the art of raw starch fermentation yeast compared to a set of industrial standards. Therefore, this study provides an integrated critical assessment of physiology, genetics and process aspects of recombinant raw starch fermenting yeast in relation to presently used technology. Various approaches to strain development were compared on a common basis of quantitative performance measures, including the extent of hydrolysis, fermentation-hydrolysis yield and productivity. Key findings showed that levels of α-amylase required for raw starch hydrolysis far exceeded enzyme levels for soluble starch hydrolysis, pointing to a pre-requisite for excess α-amylase compared to glucoamylase for efficient raw starch hydrolysis. However, the physiological limitations of amylase production by yeast, requiring high biomass concentrations and long cultivation periods for sufficient enzyme accumulation under anaerobic conditions, remained a substantial challenge. Accordingly, the fermentation performance of the recombinant S. cerevisiae strains reviewed in this study could not match the performance of conventional starch fermentation processes

  3. Transcriptome wide identification and characterization of starch branching enzyme in finger millet.

    PubMed

    Tyagi, Rajhans; Tiwari, Apoorv; Garg, Vijay Kumar; Gupta, Sanjay

    2017-01-01

    Starch-branching enzymes (SBEs) are one of the four major enzyme classes involved in starch biosynthesis in plants and play an important role in determining the structure and physical properties of starch granules. Multiple SBEs are involved in starch biosynthesis in plants. Finger millet is calcium rich important serial crop belongs to grass family and the transcriptome data of developing spikes is available on NCBI. In this study it was try to find out the gene sequence of starch branching enzyme and annotate the sequence and submit the sequence for further use. Rice SBE sequence was taken as reference and for characterization of the sequence different in silico tools were used. Four domains were found in the finger millet Starch branching enzyme like alpha amylase catalytic domain from 925 to2172 with E value 0, N-terminal Early set domain from 634 to 915 with E value 1.62 e-42, Alpha amylase, C-terminal all-beta domain from 2224 to 2511 with E value 5.80e-24 and 1,4-alpha-glucan-branching enzyme from 421 to 2517 with E value 0. Major binding interactions with the GLC (alpha-d-glucose), CA (calcium ion), GOL (glycerol), TRS (2-amino-2-hydroxymethylpropane- 1, 3-diol), MG (magnesium ion) and FLC (citrate anion) are fond with different residues. It was found in the phylogenetic study of the finger millet SBE with the 6 species of grass family that two clusters were form A and B. In cluster A, finger millet showed closeness with Oryzasativa and Setariaitalica, Sorghum bicolour and Zea mays while cluster B was formed with Triticumaestivum and Brachypodium distachyon. The nucleotide sequence of Finger millet SBE was submitted to NCBI with the accession no KY648913 and protein structure of SBE of finger millet was also submitted in PMDB with the PMDB id - PM0080938. This research presents a comparative overview of Finger millet SBE and includes their properties, structural and functional characteristics, and recent developments on their post-translational regulation.

  4. Regulating unfolded protein response activator HAC1p for production of thermostable raw-starch hydrolyzing α-amylase in Pichia pastoris.

    PubMed

    Huang, Mengmeng; Gao, Yanyun; Zhou, Xiangshan; Zhang, Yuanxing; Cai, Menghao

    2017-03-01

    Unfolded protein response (UPR) usually happens when expressing heterologous proteins in high level, which may help cells to facilitate protein processing. Here, we evaluated the effects of the UPR activator HAC1p on a raw-starch hydrolyzing α-amylase (Gs4j-amyA), so as to improve heterologous production of the enzyme in Pichia pastoris. The gene (amyA) encoding Gs4j-amyA was first codon-optimized and expressed in P. pastoris under the control of the AOX1 promoter. A high gene dosage (12 copies) of amyA facilitated amylase expression which produced an enzyme activity of 305 U/ml. A spliced HAC1 encoding an UPR activator HAC1p was then co-expressed and the dosage effects of HAC1 on amylase expression was investigated. Six copies of HAC1 driven by AOX1 promoter produced a high amylase activity of 2200 U/ml, further increasing by 621%. However, excessive gene dosages driven by the same promoter led to a titration effect of its transcription factors and decreased the amount of amyA transcripts. Thus, constitutive expression of HAC1 by GAP promotor was further involved and Gs4j-amyA activity reached 3700 U/ml finally, which was further increased by 68.2%. Moreover, Gs4j-amyA was glycosylated in P. pastoris which generated higher enzyme activity than that in E. coli. Generally, regulating HAC1p expression by different strategies enhanced amylase production by 11.1 folds, indicating a reference for expression of other proteins in P. pastoris.

  5. Branching patterns in leaf starches from Arabidopsis mutants deficient in diverse starch synthases.

    PubMed

    Zhu, Fan; Bertoft, Eric; Szydlowski, Nicolas; d'Hulst, Christophe; Seetharaman, Koushik

    2015-01-12

    This is the first report on the cluster structure of transitory starch from Arabidopsis leaves. In addition to wild type, the molecular structures of leaf starch from mutants deficient in starch synthases (SS) including single enzyme mutants ss1-, ss2-, or ss3-, and also double mutants ss1-ss2- and ss1-ss3- were characterized. The mutations resulted in increased amylose content. Clusters from whole starch were isolated by partial hydrolysis using α-amylase of Bacillus amyloliquefaciens. The clusters were then further hydrolyzed with concentrated α-amylase of B. amyloliquefaciens to produce building blocks (α-limit dextrins). Structures of the clusters and their building blocks were characterized by chromatography of samples before and after debranching treatment. While the mutations increased the size of clusters, the reasons were different as reflected by the composition of their unit chains and building blocks. In general, all mutants contained more of a-chains that preferentially increased the number of small building blocks with only two chains. The clusters of the double mutant ss1-ss3- were very large and possessed also more of large building blocks with four or more chains. The results from transitory starch are compared with those from agriculturally important crops in the context that to what extent the Arabidopsis can be a true biotechnological reflection for starch modifications through genetic means. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Novel Bioengineered Cassava Expressing an Archaeal Starch Degradation System and a Bacterial ADP-Glucose Pyrophosphorylase for Starch Self-Digestibility and Yield Increase.

    PubMed

    Ligaba-Osena, Ayalew; Jones, Jenna; Donkor, Emmanuel; Chandrayan, Sanjeev; Pole, Farris; Wu, Chang-Hao; Vieille, Claire; Adams, Michael W W; Hankoua, Bertrand B

    2018-01-01

    To address national and global low-carbon fuel targets, there is great interest in alternative plant species such as cassava ( Manihot esculenta ), which are high-yielding, resilient, and are easily converted to fuels using the existing technology. In this study the genes encoding hyperthermophilic archaeal starch-hydrolyzing enzymes, α-amylase and amylopullulanase from Pyrococcus furiosus and glucoamylase from Sulfolobus solfataricus , together with the gene encoding a modified ADP-glucose pyrophosphorylase ( glgC ) from Escherichia coli , were simultaneously expressed in cassava roots to enhance starch accumulation and its subsequent hydrolysis to sugar. A total of 13 multigene expressing transgenic lines were generated and characterized phenotypically and genotypically. Gene expression analysis using quantitative RT-PCR showed that the microbial genes are expressed in the transgenic roots. Multigene-expressing transgenic lines produced up to 60% more storage root yield than the non-transgenic control, likely due to glgC expression. Total protein extracted from the transgenic roots showed up to 10-fold higher starch-degrading activity in vitro than the protein extracted from the non-transgenic control. Interestingly, transgenic tubers released threefold more glucose than the non-transgenic control when incubated at 85°C for 21-h without exogenous application of thermostable enzymes, suggesting that the archaeal enzymes produced in planta maintain their activity and thermostability.

  7. Effect of enzyme concentration, addition of water and incubation time on increase in yield of starch from potato.

    PubMed

    Sit, Nandan; Agrawal, U S; Deka, Sankar C

    2014-05-01

    Enzymatic treatment process for starch extraction from potato was investigated using cellulase enzyme and compared with conventional process. The effects of three parameters, cellulase enzyme concentration, incubation time and addition of water were evaluated for increase in starch yield as compared to the conventional process i.e., without using enzyme. A two-level full factorial design was used to study the process. The results indicated that all the main parameters and their interactions are statistically significant. Enzyme concentration and incubation time had a positive effect on the increase in starch yield while addition of water had a negative effect. The increase in starch yield ranged from 1.9% at low enzyme concentration and incubation time and high addition of water to a maximum of 70% increase from conventional process in starch yield was achieved when enzyme concentration and incubation time were high and addition of water was low suggesting water present in the ground potato meal is sufficient for access to the enzyme with in the slurry ensuring adequate contact with the substrate.

  8. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism

    PubMed Central

    Shaik, Shahnoor S.; Obata, Toshihiro; Hebelstrup, Kim H.; Schwahn, Kevin; Fernie, Alisdair R.; Mateiu, Ramona V.; Blennow, Andreas

    2016-01-01

    Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro-structure was achieved by decreasing starch branching and increasing starch-bound phosphate content in the barley caryopsis starch by RNAi suppression of all three Starch Branching Enzyme (SBE) isoforms or overexpression of potato Glucan Water Dikinase (GWD). The resulting lines displayed Amylose-Only (AO) and Hyper-Phosphorylated (HP) starch chemotypes, respectively. We studied the influence of these alterations on primary metabolism, grain composition, starch structural features and starch granule morphology over caryopsis development at 10, 20 and 30 days after pollination (DAP) and at grain maturity. While HP showed relatively little effect, AO showed significant reduction in starch accumulation with re-direction to protein and β-glucan (BG) accumulation. Metabolite profiling indicated significantly higher sugar accumulation in AO, with re-partitioning of carbon to accumulate amino acids, and interestingly it also had high levels of some important stress-related metabolites and potentially protective metabolites, possibly to elude deleterious effects. Investigations on starch molecular structure revealed significant increase in starch phosphate and amylose content in HP and AO respectively with obvious differences in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch-bound phosphate as a result of overexpressing GWD. PMID:26891365

  9. Enzyme characteristics of aminotransferase FumI of Sphingopyxis sp. MTA144 for deamination of hydrolyzed fumonisin B₁.

    PubMed

    Hartinger, Doris; Schwartz, Heidi; Hametner, Christian; Schatzmayr, Gerd; Haltrich, Dietmar; Moll, Wulf-Dieter

    2011-08-01

    Fumonisins are carcinogenic mycotoxins that are frequently found as natural contaminants in maize from warm climate regions around the world. The aminotransferase FumI is encoded as part of a gene cluster of Sphingopyxis sp. MTA144, which enables this bacterial strain to degrade fumonisin B(1) and related fumonisins. FumI catalyzes the deamination of the first intermediate of the catabolic pathway, hydrolyzed fumonisin B(1). We used a preparation of purified, His-tagged FumI, produced recombinantly in Escherichia coli in soluble form, for enzyme characterization. The structure of the reaction product was studied by NMR and identified as 2-keto hydrolyzed fumonisin B(1). Pyruvate was found to be the preferred co-substrate and amino group receptor (K (M) = 490 μM at 10 μM hydrolyzed fumonisin B(1)) of FumI, but other α-keto acids were also accepted as co-substrates. Addition of the co-enzyme pyridoxal phosphate to the enzyme preparation enhanced activity, and saturation was already reached at the lowest tested concentration of 10 μM. The enzyme showed activity in the range of pH 6 to 10 with an optimum at pH 8.5, and in the range of 6°C to 50°C with an optimum at 35°C. The aminotransferase worked best at low salt concentration. FumI activity could be recovered after preincubation at pH 4.0 or higher, but not lower. The aminotransferase was denatured after preincubation at 60°C for 1 h, and the residual activity was also reduced after preincubation at lower temperatures. At optimum conditions, the kinetic parameters K (M) = 1.1 μM and k (cat) = 104/min were determined with 5 mM pyruvate as co-substrate. Based on the enzyme characteristics, a technological application of FumI, in combination with the fumonisin carboxylesterase FumD for hydrolysis of fumonisins, for deamination and detoxification of hydrolyzed fumonisins seems possible, if the enzyme properties are considered.

  10. Identification of Multiple Phosphorylation Sites on Maize Endosperm Starch Branching Enzyme IIb, a Key Enzyme in Amylopectin Biosynthesis

    PubMed Central

    Makhmoudova, Amina; Williams, Declan; Brewer, Dyanne; Massey, Sarah; Patterson, Jenelle; Silva, Anjali; Vassall, Kenrick A.; Liu, Fushan; Subedi, Sanjeena; Harauz, George; Siu, K. W. Michael; Tetlow, Ian J.; Emes, Michael J.

    2014-01-01

    Starch branching enzyme IIb (SBEIIb) plays a crucial role in amylopectin biosynthesis in maize endosperm by defining the structural and functional properties of storage starch and is regulated by protein phosphorylation. Native and recombinant maize SBEIIb were used as substrates for amyloplast protein kinases to identify phosphorylation sites on the protein. A multidisciplinary approach involving bioinformatics, site-directed mutagenesis, and mass spectrometry identified three phosphorylation sites at Ser residues: Ser649, Ser286, and Ser297. Two Ca2+-dependent protein kinase activities were partially purified from amyloplasts, termed K1, responsible for Ser649 and Ser286 phosphorylation, and K2, responsible for Ser649 and Ser297 phosphorylation. The Ser286 and Ser297 phosphorylation sites are conserved in all plant branching enzymes and are located at opposite openings of the 8-stranded parallel β-barrel of the active site, which is involved with substrate binding and catalysis. Molecular dynamics simulation analysis indicates that phospho-Ser297 forms a stable salt bridge with Arg665, part of a conserved Cys-containing domain in plant branching enzymes. Ser649 conservation appears confined to the enzyme in cereals and is not universal, and is presumably associated with functions specific to seed storage. The implications of SBEIIb phosphorylation are considered in terms of the role of the enzyme and the importance of starch biosynthesis for yield and biotechnological application. PMID:24550386

  11. Characteristics of Raw Starch-Digesting α-Amylase of Streptomyces badius DB-1 with Transglycosylation Activity and Its Applications.

    PubMed

    Shivlata, L; Satyanarayana, T

    2017-04-01

    Streptomyces badius DB-1 produces α-amylase extracellularly, and its production was enhanced 5.1-fold (from 9.47 ± 0.51 to 48.23 ± 1.45 U mL -1 ) due to optimization by one-variable-at-a-time and statistical approaches. Soluble starch emerged as the most influential factor that strongly affected enzyme production. The purified enzyme is a monomer with a molecular mass of ~57 kDa and optimally active at 50 °C and pH 6.0. The enzyme hydrolyzes soluble as well as raw starches into simpler sugars with a high proportion (>40.0 %) of maltotetraose. It is optimally active at moderate temperature and generates maltooligosaccharides from starch, thus, useful as an antistale in bread making. It also plays a role in increasing the formation of maltooligosaccharides due to transglycosylation activity, thus, finds application in functional foods. This is the first report on the production of raw starch-digesting α-amylase by S. badius with transglycosylation activity.

  12. Improved starch digestion of sucrase deficient shrews treated with oral glucoamylase enzyme supplements

    USDA-ARS?s Scientific Manuscript database

    Although named because of its sucrose hydrolytic activity, this mucosal enzyme plays a leading role in starch digestion because of its maltase and glucoamylase activities. Sucrase deficient mutant shrews, Suncus murinus, were used as a model to investigate starch digestion in patients with Congenita...

  13. Novel Bioengineered Cassava Expressing an Archaeal Starch Degradation System and a Bacterial ADP-Glucose Pyrophosphorylase for Starch Self-Digestibility and Yield Increase

    PubMed Central

    Ligaba-Osena, Ayalew; Jones, Jenna; Donkor, Emmanuel; Chandrayan, Sanjeev; Pole, Farris; Wu, Chang-Hao; Vieille, Claire; Adams, Michael W. W.; Hankoua, Bertrand B.

    2018-01-01

    To address national and global low-carbon fuel targets, there is great interest in alternative plant species such as cassava (Manihot esculenta), which are high-yielding, resilient, and are easily converted to fuels using the existing technology. In this study the genes encoding hyperthermophilic archaeal starch-hydrolyzing enzymes, α-amylase and amylopullulanase from Pyrococcus furiosus and glucoamylase from Sulfolobus solfataricus, together with the gene encoding a modified ADP-glucose pyrophosphorylase (glgC) from Escherichia coli, were simultaneously expressed in cassava roots to enhance starch accumulation and its subsequent hydrolysis to sugar. A total of 13 multigene expressing transgenic lines were generated and characterized phenotypically and genotypically. Gene expression analysis using quantitative RT-PCR showed that the microbial genes are expressed in the transgenic roots. Multigene-expressing transgenic lines produced up to 60% more storage root yield than the non-transgenic control, likely due to glgC expression. Total protein extracted from the transgenic roots showed up to 10-fold higher starch-degrading activity in vitro than the protein extracted from the non-transgenic control. Interestingly, transgenic tubers released threefold more glucose than the non-transgenic control when incubated at 85°C for 21-h without exogenous application of thermostable enzymes, suggesting that the archaeal enzymes produced in planta maintain their activity and thermostability. PMID:29541080

  14. Mechanism for starch granule ghost formation deduced from structural and enzyme digestion properties.

    PubMed

    Zhang, Bin; Dhital, Sushil; Flanagan, Bernadine M; Gidley, Michael J

    2014-01-22

    After heating in excess water under little or no shear, starch granules do not dissolve completely but persist as highly swollen fragile forms, commonly termed granule "ghosts". The macromolecular architecture of these ghosts has not been defined, despite their importance in determining characteristic properties of starches. In this study, amylase digestion of isolated granule ghosts from maize and potato starches is used as a probe to study the mechanism of ghost formation, through microstructural, mesoscopic, and molecular scale analyses of structure before and after digestion. Digestion profiles showed that neither integral nor surface proteins/lipids were crucial for control of either ghost digestion or integrity. On the basis of the molecular composition and conformation of enzyme-resistant fractions, it was concluded that the condensed polymeric surface structure of ghost particles is mainly composed of nonordered but entangled amylopectin (and some amylose) molecules, with limited reinforcement through partially ordered enzyme-resistant structures based on amylose (for maize starch; V-type order) or amylopectin (for potato starch; B-type order). The high level of branching and large molecular size of amylopectin is proposed to be the origin for the unusual stability of a solid structure based primarily on temporary entanglements.

  15. Physicochemical properties and starch digestibility of Chinese noodles in relation to optimal cooking time.

    PubMed

    Ye, Xiaoting; Sui, Zhongquan

    2016-03-01

    Changes in the physicochemical properties and starch digestibility of white salted noodles (WSN) at different cooking stage were investigated. The noodles were dried in fresh air and then cooked for 2-12 min by boiling in distilled water to determine the properties of cooking quality, textural properties and optical characteristic. For starch digestibility, dry noodles were milled and sieved into various particle size classes ranging from 0.5 mm to 5.0 mm, and hydrolyzed by porcine pancreatic α-amylase. The optimal cooking time of WSN determined by squeezing between glasses was 6 min. The results showed that the kinetics of solvation of starch and protein molecules were responsible for changes of the physicochemical properties of WSN during cooking. The susceptibility of starch to α-amylase was influenced by the cooking time, particle size and enzyme treatment. The greater value of rapidly digestible starch (RDS) and lower value of slowly digestible starch (SDS) and resistant starch (RS) were reached at the optimal cooking stage ranging between 63.14-71.97%, 2.47-10.74% and 23.94-26.88%, respectively, indicating the susceptibility on hydrolysis by enzyme was important in defining the cooked stage. The study suggested that cooking quality and digestibility were not correlated but the texture greatly controls the digestibility of the noodles. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Performance of Granular Starch with Controlled Pore Size during Hydrolysis with Digestive Enzymes.

    PubMed

    Benavent-Gil, Yaiza; Rosell, Cristina M

    2017-12-01

    Studies on porous starch have been directed to explore different industrial applications as bio-adsorbents of a variety of compounds. However, the analysis of starch digestibility is essential for food application. The objective of this study was to determine the impact of porous structure on in vitro starch digestibility. Porous starches were obtained using a range of concentrations of amyloglucosidase (AMG), α-amylase (AM), cyclodextrin-glycosyltransferase (CGTase) or branching enzyme (BE). Porous starches exhibited major content of digestible starch (DS) that increased with the intensity of the enzymatic treatment, and very low amount of resistant starch (RS). Porous starches behaved differently during in vitro hydrolysis depending on their enzymatic treatment. AMG was the unique treatment that increased the digestive amylolysis and estimated glycemic index, whereas AM, CGTase and BE reduced them. A significant relationship was found between the pore size and the severity of the amylolysis, suggesting that a specific pore size is required for the accessibility of the digestive amylase. Therefore, pore size in the starch surface was a limiting factor for digestion of starch granules.

  17. The synthesis of starch from carbon dioxide using isolubilized stabilized enzymes

    NASA Technical Reports Server (NTRS)

    Bassham, J. A.; Bearden, L.; Wilke, C.; Carroad, P.; Mitra, G.; Ige, R.

    1972-01-01

    Systems for artificial manufacture of starch and for delineation of technological areas, and the rationale for studying them are considered. A discussion of the enzyme-catalyzed routes of synthesis available and a choice as to the most promising route are presented. A discussion of the enzymes involved, of enzyme insolubilization technology, and of possible engineering approaches, with examples in the form of model calculations for both reactors and separators, are also presented.

  18. Characteristics of enzyme hydrolyzing natural covalent bond between RNA and protein VPg of encephalomyocarditis virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drygin, Yu.F.; Siyanova, E.Yu.

    1986-08-10

    The isolation and a preliminary characterization of the enzyme specifically hydrolyzing the phosphodiester bond between protein VPg and the RNA of encephalomyocarditis virus was the goal of the present investigation. The enzyme was isolated from a salt extract of Krebs II mouse ascites carcinoma cells by ion-exchange and affinity chromatography. It was found that the enzyme actually specifically cleaves the covalent bond between the RNA and protein, however, the isolation procedure does not free the enzyme from impurities which partially inhibit it. The enzyme cleaves the RNA-protein VPg complex of polio virus at a high rate, it is completely inactivatedmore » at 55/sup 0/C, and is partially inhibited by EDTA.« less

  19. Some Nutritional Characteristics of Enzymatically Resistant Maltodextrin from Cassava (Manihot esculenta Crantz) Starch.

    PubMed

    Toraya-Avilés, Rocío; Segura-Campos, Maira; Chel-Guerrero, Luis; Betancur-Ancona, David

    2017-06-01

    Cassava (Manihot esculenta Crantz) native starch was treated with pyroconversion and enzymatic hydrolysis to produce a pyrodextrin and an enzyme-resistant maltodextrin. Some nutritional characteristics were quantified for both compounds. Pyroconversion was done using a 160:1 (p/v) starch:HCl ratio, 90 °C temperature and 3 h reaction time. The resulting pyrodextrin contained 46.21% indigestible starch and 78.86% dietary fiber. Thermostable α-amylase (0.01%) was used to hydrolyze the pyrodextrin at 95 °C for 5 min. The resulting resistant maltodextrin contained 24.45% dextrose equivalents, 56.06% indigestible starch and 86.62% dietary fiber. Compared to the cassava native starch, the pyrodextrin exhibited 56% solubility at room temperature and the resistant maltodextrin 100%. The glycemic index value for the resistant maltodextrin was 59% in healthy persons. Its high indigestible starch and dietary fiber contents, as well as its complete solubility, make the resistant maltodextrin a promising ingredient for raising dietary fiber content in a wide range of foods, especially in drinks, dairy products, creams and soups.

  20. Individual Differences in AMY1 Gene Copy Number, Salivary α-Amylase Levels, and the Perception of Oral Starch

    PubMed Central

    Mandel, Abigail L.; Peyrot des Gachons, Catherine; Plank, Kimberly L.; Alarcon, Suzanne; Breslin, Paul A. S.

    2010-01-01

    Background The digestion of dietary starch in humans is initiated by salivary α-amylase, an endo-enzyme that hydrolyzes starch into maltose, maltotriose and larger oligosaccharides. Salivary amylase accounts for 40 to 50% of protein in human saliva and rapidly alters the physical properties of starch. Importantly, the quantity and enzymatic activity of salivary amylase show significant individual variation. However, linking variation in salivary amylase levels with the oral perception of starch has proven difficult. Furthermore, the relationship between copy number variations (CNVs) in the AMY1 gene, which influence salivary amylase levels, and starch viscosity perception has not been explored. Principal Findings Here we demonstrate that saliva containing high levels of amylase has sufficient activity to rapidly hydrolyze a viscous starch solution in vitro. Furthermore, we show with time-intensity ratings, which track the digestion of starch during oral manipulation, that individuals with high amylase levels report faster and more significant decreases in perceived starch viscosity than people with low salivary amylase levels. Finally, we demonstrate that AMY1 CNVs predict an individual's amount and activity of salivary amylase and thereby, ultimately determine their perceived rate of oral starch viscosity thinning. Conclusions By linking genetic variation and its consequent salivary enzymatic differences to the perceptual sequellae of these variations, we show that AMY1 copy number relates to salivary amylase concentration and enzymatic activity level, which, in turn, account for individual variation in the oral perception of starch viscosity. The profound individual differences in salivary amylase levels and salivary activity may contribute significantly to individual differences in dietary starch intake and, consequently, to overall nutritional status. PMID:20967220

  1. EMF radiations (1800 MHz)-inhibited early seedling growth of maize (Zea mays) involves alterations in starch and sucrose metabolism.

    PubMed

    Kumar, Arvind; Singh, Harminder Pal; Batish, Daizy R; Kaur, Shalinder; Kohli, Ravinder Kumar

    2016-07-01

    The present study investigated the impact of 1800-MHz electromagnetic field radiations (EMF-r), widely used in mobile communication, on the growth and activity of starch-, sucrose-, and phosphate-hydrolyzing enzymes in Zea mays seedlings. We exposed Z. mays to modulated continuous wave homogenous EMF-r at specific absorption rate (SAR) of 1.69±0.0 × 10(-1) W kg(-1) for ½, 1, 2, and 4 h. The analysis of seedlings after 7 days revealed that short-term exposure did not induce any significant change, while longer exposure of 4 h caused significant growth and biochemical alterations. There was a reduction in the root and coleoptile length with more pronounced effect on coleoptile growth (23 % reduction on 4-h exposure). The contents of photosynthetic pigments and total carbohydrates declined by 13 and 18 %, respectively, in 4-h exposure treatments compared to unexposed control. The activity of starch-hydrolyzing enzymes-α- and β-amylases-increased by ∼92 and 94 %, respectively, at an exposure duration of 4 h, over that in the control. In response to 4-h exposure treatment, the activity of sucrolytic enzymes-acid invertases and alkaline invertases-was increased by 88 and 266 %, whereas the specific activities of phosphohydrolytic enzymes (acid phosphatases and alkaline phosphatases) showed initial increase up to ≤2 h duration and then declined at >2 h exposure duration. The study concludes that EMF-r-inhibited seedling growth of Z. mays involves interference with starch and sucrose metabolism.

  2. Lytic polysaccharide monooxygenases and other oxidative enzymes are abundantly secreted by Aspergillus nidulans grown on different starches.

    PubMed

    Nekiunaite, Laura; Arntzen, Magnus Ø; Svensson, Birte; Vaaje-Kolstad, Gustav; Abou Hachem, Maher

    2016-01-01

    Starch is the second most abundant plant-derived biomass and a major feedstock in non-food industrial applications and first generation biofuel production. In contrast to lignocellulose, detailed insight into fungal degradation of starch is currently lacking. This study explores the secretomes of Aspergillus nidulans grown on cereal starches from wheat and high-amylose (HA) maize, as well as legume starch from pea for 5 days. Aspergillus nidulans grew efficiently on cereal starches, whereas growth on pea starch was poor. The secretomes at days 3-5 were starch-type dependent as also reflected by amylolytic activity measurements. Nearly half of the 312 proteins in the secretomes were carbohydrate-active enzymes (CAZymes), mostly glycoside hydrolases (GHs) and oxidative auxiliary activities (AAs). The abundance of the GH13 α-amylase (AmyB) decreased with time, as opposed to other starch-degrading enzymes, e.g., the GH13 AmyF, GH15 glucoamylases (GlaA and GlaB), and the GH31 α-glucosidase (AgdE). Two AA13 LPMOs displayed similar secretion patterns as amylolytic hydrolases and were among the most abundant CAZymes. The starch-active AnLPMO13A that possesses a CBM20 carbohydrate-binding module dominated the starch-binding secretome fraction. A striking observation is the co-secretion of several redox-active enzymes with the starch-active AA13 LPMOs and GHs, some at high abundance. Notably nine AA9 LPMOs, six AA3 sub-family 2 (AA_2) oxidoreductases, and ten AA7 glyco-oligosaccharide oxidases were identified in the secretomes in addition to other non-CAZyme oxidoreductases. The co-secretion and high abundance of AA13 LPMOs are indicative of a key role in starch granule deconstruction. The increase in AA13 LPMO abundance with culture time may reflect accumulation of a more resistant starch fraction towards the later stages of the culture. The identification of AmyR sites upstream AA13 LPMOs unveils co-regulation of LPMOs featuring in starch utilization. Differential

  3. Modeling fixed and fluidized reactors for cassava starch Saccharification with immobilized enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanin, G.M.; De Moraes, F.F.

    1997-12-31

    Cassava starch saccharification in fixed-and fluidized-bed reactors using immobilized enzyme was modeled in a previous paper using a simple model in which all dextrins were grouped in a single substrate. In that case, although good fit of the model to experimental data was obtained, physical inconsistency appeared as negative kinetic constants. In this work, a multisubstrate model, developed earlier for saccharification with free enzyme, is adapted for immobilized enzyme. This latter model takes into account the formation of intermediate substrates, which are dextrins competing for the catalytic site of the enzyme, reversibility of some reactions, inhibition by substrate and product,more » and the formation of isomaltose. Kinetic parameters to be used with this model were obtained from initial velocity saccharification tests using the immobilized enzyme and different liquefied starch concentrations. The new model was found to be valid for modeling both fixed- and fluidized-bed reactors. It did not present inconsistencies as the earlier one had and has shown that apparent glucose inhibition is about seven times higher in the fixed-bed than in fluidized-bed reactor. 13 refs., 5 figs., 1 tab.« less

  4. Effect of seasonality and Cr(VI) on starch-sucrose partitioning and related enzymes in floating leaves of Salvinia minima.

    PubMed

    Rosa, Mariana; Prado, Carolina; Chocobar-Ponce, Silvana; Pagano, Eduardo; Prado, Fernando

    2017-09-01

    Effects of seasonality and increasing Cr(VI) concentrations on leaf starch-sucrose partitioning, sucrose- and starch-related enzyme activities, and carbon allocation toward leaf development were analyzed in fronds (floating leaves) of the floating fern Salvinia minima. Carbohydrates and enzyme activities of Cr-exposed fronds showed different patterns in winter and summer. Total soluble sugars, starch, glucose and fructose increased in winter fronds, while sucrose was higher in summer ones. Starch and soluble carbohydrates, except glucose, increased under increasing Cr(VI) concentrations in winter fronds, while in summer ones only sucrose increased under Cr(VI) treatment. In summer fronds starch, total soluble sugars, fructose and glucose practically stayed without changes in all assayed Cr(VI) concentrations. Enzyme activities related to starch and sucrose metabolisms (e.g. ADPGase, SPS, SS and AI) were higher in winter fronds than in summer ones. Total amylase and cFBPase activities were higher in summer fronds. Cr(VI) treatment increased enzyme activities, except ADPGase, in both winter and summer fronds but no clear pattern changes were observed. Data of this study show clearly that carbohydrate metabolism is differently perturbed by both seasonality and Cr(VI) treatment in summer and winter fronds, which affects leaf starch-sucrose partitioning and specific leaf area (SLA) in terms of carbon investment. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Characterization of the functional interactions of plastidial starch phosphorylase and starch branching enzymes from rice endosperm during reserve starch biosynthesis.

    PubMed

    Nakamura, Yasunori; Ono, Masami; Sawada, Takayuki; Crofts, Naoko; Fujita, Naoko; Steup, Martin

    2017-11-01

    Functional interactions of plastidial phosphorylase (Pho1) and starch branching enzymes (BEs) from the developing rice endosperm are the focus of this study. In the presence of both Pho1 and BE, the same branched primer molecule is elongated and further branched almost simultaneously even at very low glucan concentrations present in the purified enzyme preparations. By contrast, in the absence of any BE, glucans are not, to any significant extent, elongated by Pho1. Based on our in vitro data, in the developing rice endosperm, Pho1 appears to be weakly associated with any of the BE isozymes. By using fluorophore-labeled malto-oligosaccharides, we identified maltose as the smallest possible primer for elongation by Pho1. Linear dextrins act as carbohydrate substrates for BEs. By functionally interacting with a BE, Pho1 performs two essential functions during the initiation of starch biosynthesis in the rice endosperm: First, it elongates maltodextrins up to a degree of polymerization of at least 60. Second, by closely interacting with BEs, Pho1 is able to elongate branched glucans efficiently and thereby synthesizes branched carbohydrates essential for the initiation of amylopectin biosynthesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effect of temperature and mixing speed on immobilization of crude enzyme from Aspergillus niger on chitosan for hydrolyzing cellulose

    NASA Astrophysics Data System (ADS)

    Hamzah, Afan; Gek Ela Kumala, P.; Ramadhani, Dwi; Maziyah, Nurul; Rahmah, Laila Nur; Soeprijanto, Widjaja, Arief

    2017-05-01

    Conversion of cellulose into reducing sugar through enzymatic hydrolysis has advantageous because it produces greater product yield, higher selectivity, require less energy, more moderate operating conditions and environment friendly. However, the nature of the enzyme that is difficult to separate and its expensive price become an obstacle. These obstacles can be overcome by immobilizing the enzyme on chitosan material so that the enzyme can be reused. Chitosan is chosen because it is cheap, inert, hydrophilic, and biocompatible. In this research, we use covalent attachment and combination between covalent attachment and cross-linking method for immobilizing crude enzyme. This research was focusing in study of Effect of temperature and mixing speed on Immobilization Enzyme From Aspergillus Niger on Chitosan For Hydrolyzing both soluble (Carboxymethylcellulose) and insoluble Cellulose (coconut husk). This Research was carried out by three main step. First, coconut husk was pre-treated mechanically and chemically, Second, Crude enzyme from Aspergillus niger strain was immobilized on chitosan in various immobilization condition. At last, the pre-treated coconut husk and Carboxymetylcellulose (CMC) were hydrolyzed by immobilized cellulose on chitosan for reducing sugar production. The result revealed that the most reducing sugar produced by immobilized enzyme on chitosan+GDA with immobilization condition at 30 °C and 125 rpm. Enzyme immobilized on chitosan cross-linked with GDA produced more reducing sugar from preteated coconut husk than enzyme immobilized on chitosan.

  7. Enzymatic method for measuring starch gelatinization in dry products in situ

    USDA-ARS?s Scientific Manuscript database

    An enzymatic method based on hydrolysis of starch by amyloglucosidase and measurement of D-glucose released by glucose oxidase-peroxidase was developed to measure both gelatinized starch and hydrolyzable starch in situ of dried starchy products. Efforts focused on the development of sample handling ...

  8. Enzyme-resistant dextrins from potato starch for potential application in the beverage industry.

    PubMed

    Jochym, Kamila Kapusniak; Nebesny, Ewa

    2017-09-15

    The objective of this study was to produce soluble enzyme-resistant dextrins by microwave heating of potato starch acidified with small amounts of hydrochloric and citric acids and to characterize their properties. Twenty five samples were initially made and their solubility was determined. Three samples with the highest water solubility were selected for physico-chemical (dextrose equivalent, molecular weight distribution, pasting characteristics, retrogradation tendency), total dietary fiber (TDF) analysis, and stability tests. TDF content averaged 25%. Enzyme-resistant dextrins practically did not paste, even at 20% samples concentration, and were characterized by low retrogradation tendency. The stability of the samples, expressed as a percentage increase of initial and final reducing sugar content, at low pH and during heating at low pH averaged 10% and 15% of the initial value, respectively. The results indicate that microwave heating could be an effective and efficient method of producing highly-soluble, low-viscous, and enzyme-resistant potato starch dextrins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Modelling the Effects of Ageing Time of Starch on the Enzymatic Activity of Three Amylolytic Enzymes

    PubMed Central

    Guerra, Nelson P.; Pastrana Castro, Lorenzo

    2012-01-01

    The effect of increasing ageing time (t) of starch on the activity of three amylolytic enzymes (Termamyl, San Super, and BAN) was investigated. Although all the enzymatic reactions follow michaelian kinetics, v max decreased significantly (P < 0.05) and K M increased (although not always significantly) with the increase in t. The conformational changes produced in the starch chains as a consequence of the ageing seemed to affect negatively the diffusivity of the starch to the active site of the enzymes and the release of the reaction products to the medium. A similar effect was observed when the enzymatic reactions were carried out with unaged starches supplemented with different concentrations of gelatine [G]. The inhibition in the amylolytic activities was best mathematically described by using three modified forms of the Michaelis-Menten model, which included a term to consider, respectively, the linear, exponential, and hyperbolic inhibitory effects of t and [G]. PMID:22666116

  10. Ergot Alkaloids in Fattening Chickens (Broilers): Toxic Effects and Carry over Depending on Dietary Fat Proportion and Supplementation with Non-Starch-Polysaccharide (NSP) Hydrolyzing Enzymes.

    PubMed

    Dänicke, Sven

    2017-03-28

    Ergot alkaloids (EA) are mycotoxins produced by Claviceps purpurea . EA-toxicity is poorly characterized for fattening chickens. Therefore, a dose-response study was performed to identify the lowest, and no observed adverse effect levels (LOAEL and NOAEL, respectively) based on several endpoints. Non-starch-polysaccharide (NSP) cleaving enzyme addition and dietary fat content were additionally considered as factors potentially influencing EA-toxicity. Feed intake was proven to respond most sensitively to the EA presence in the diets. This sensitivity appeared to be time-dependent. While LOAEL corresponded to a total dietary EA content of 5.7 mg/kg until Day 14 of age, it decreased to 2.03 mg/kg when birds were exposed for a period of 35 days. Consequently, NOAEL corresponded to an EA content of 2.49 mg/kg diet until Day 14 of age, while 1.94 mg/kg diet applied until Day 35 of age. Liver lesions indicating enzyme activities in serum were increased after 14 days of exposure. Dietary fat content and NSP-enzyme supplementation modified EA toxicity in an interactive manner. The EA residues in serum, bile, liver and breast meat were <5 ng/g suggesting a negligible carry over of intact EA.

  11. Ergot Alkaloids in Fattening Chickens (Broilers): Toxic Effects and Carry over Depending on Dietary Fat Proportion and Supplementation with Non-Starch-Polysaccharide (NSP) Hydrolyzing Enzymes

    PubMed Central

    Dänicke, Sven

    2017-01-01

    Ergot alkaloids (EA) are mycotoxins produced by Claviceps purpurea. EA-toxicity is poorly characterized for fattening chickens. Therefore, a dose–response study was performed to identify the lowest, and no observed adverse effect levels (LOAEL and NOAEL, respectively) based on several endpoints. Non-starch-polysaccharide (NSP) cleaving enzyme addition and dietary fat content were additionally considered as factors potentially influencing EA-toxicity. Feed intake was proven to respond most sensitively to the EA presence in the diets. This sensitivity appeared to be time-dependent. While LOAEL corresponded to a total dietary EA content of 5.7 mg/kg until Day 14 of age, it decreased to 2.03 mg/kg when birds were exposed for a period of 35 days. Consequently, NOAEL corresponded to an EA content of 2.49 mg/kg diet until Day 14 of age, while 1.94 mg/kg diet applied until Day 35 of age. Liver lesions indicating enzyme activities in serum were increased after 14 days of exposure. Dietary fat content and NSP-enzyme supplementation modified EA toxicity in an interactive manner. The EA residues in serum, bile, liver and breast meat were <5 ng/g suggesting a negligible carry over of intact EA. PMID:28350362

  12. Relationships between starch synthase I and branching enzyme isozymes determined using double mutant rice lines

    PubMed Central

    2014-01-01

    Background Starch is the most important carbohydrate in plant storage tissues. Multiple isozymes in at least four enzyme classes are involved in starch biosynthesis. Some of these isozymes are thought to interact and form complexes for efficient starch biosynthesis. Of these enzyme classes, starch synthases (SSs) and branching enzymes (BEs) play particularly central roles. Results We generated double mutant lines (ss1/be1 and ss1 L /be2b) between SSI (the largest component of total soluble SS activity) and BEI or BEIIb (major BEs in developing rice endosperm) to explore the relationships among these isozymes. The seed weight of ss1/be1 was comparable to that of wild type, although most ss1/be2b seeds were sterile and no double recessive plants were obtained. The seed weight of the double recessive mutant line ss1 L /be2b, derived from the leaky ss1 mutant (ss1 L ) and be2b, was higher than that of the single be2b mutant. Analyses of the chain-length distribution of amylopectin in ss1/be1 endosperm revealed additive effects of SSI and BEI on amylopectin structure. Chain-length analysis indicated that the BEIIb deficiency significantly reduced the ratio of short chains in amylopectin of ss1 L /be2b. The amylose content of endosperm starch of ss1/be1 and ss1 L /be2b was almost the same as that of wild type, whereas the endosperm starch of be2b contained more amylose than did that of wild type. SSI, BEI, and BEIIb deficiency also affected the extent of binding of other isozymes to starch granules. Conclusions Analysis of the chain-length distribution in amylopectin of the double mutant lines showed that SSI and BEI or BEIIb primarily function independently, and branching by BEIIb is followed by SSI chain elongation. The increased amylose content in be2b was because of reduced amylopectin biosynthesis; however, the lower SSI activity in this background may have enhanced amylopectin biosynthesis as a result of a correction of imbalance between the branching and

  13. Relationships between starch synthase I and branching enzyme isozymes determined using double mutant rice lines.

    PubMed

    Abe, Natsuko; Asai, Hiroki; Yago, Hikari; Oitome, Naoko F; Itoh, Rumiko; Crofts, Naoko; Nakamura, Yasunori; Fujita, Naoko

    2014-03-26

    Starch is the most important carbohydrate in plant storage tissues. Multiple isozymes in at least four enzyme classes are involved in starch biosynthesis. Some of these isozymes are thought to interact and form complexes for efficient starch biosynthesis. Of these enzyme classes, starch synthases (SSs) and branching enzymes (BEs) play particularly central roles. We generated double mutant lines (ss1/be1 and ss1L/be2b) between SSI (the largest component of total soluble SS activity) and BEI or BEIIb (major BEs in developing rice endosperm) to explore the relationships among these isozymes. The seed weight of ss1/be1 was comparable to that of wild type, although most ss1/be2b seeds were sterile and no double recessive plants were obtained. The seed weight of the double recessive mutant line ss1L/be2b, derived from the leaky ss1 mutant (ss1L) and be2b, was higher than that of the single be2b mutant. Analyses of the chain-length distribution of amylopectin in ss1/be1 endosperm revealed additive effects of SSI and BEI on amylopectin structure. Chain-length analysis indicated that the BEIIb deficiency significantly reduced the ratio of short chains in amylopectin of ss1L/be2b. The amylose content of endosperm starch of ss1/be1 and ss1L/be2b was almost the same as that of wild type, whereas the endosperm starch of be2b contained more amylose than did that of wild type. SSI, BEI, and BEIIb deficiency also affected the extent of binding of other isozymes to starch granules. Analysis of the chain-length distribution in amylopectin of the double mutant lines showed that SSI and BEI or BEIIb primarily function independently, and branching by BEIIb is followed by SSI chain elongation. The increased amylose content in be2b was because of reduced amylopectin biosynthesis; however, the lower SSI activity in this background may have enhanced amylopectin biosynthesis as a result of a correction of imbalance between the branching and elongation found in the single mutant. The fact

  14. Starch Spherulites Prepared by a Combination of Enzymatic and Acid Hydrolysis of Normal Corn Starch.

    PubMed

    Shang, Yaqian; Chao, Chen; Yu, Jinglin; Copeland, Les; Wang, Shuo; Wang, Shujun

    2018-06-13

    This paper describes a new method to prepare spherulites from normal corn starch by a combination of enzymatic (mixtures of α-amylase and amyloglucosidase) and acid hydrolysis followed by recrystallization of the hydrolyzed products. The resulting spherulites contained a higher proportion of chains with a degree of polymerization (DP) of 6-12 and a lower proportion of chains with DP of 25-36, compared to those of native starch. The spherulites had an even particle size of about 2 μm and a typical B-type crystallinity. The amounts of long- and short-range molecular order of double helices in starch spherulites were larger, but the quality of starch crystallites was poorer, compared to that of native starch. This study showed an efficient method for preparing starch spherulites with uniform granule morphology and small particle size from normal corn starch. The ratios of α-amylase and amyloglucosidase in enzymatic hydrolysis had little effect on the structure of the starch spherulites.

  15. Efficient dark fermentative hydrogen production from enzyme hydrolyzed rice straw by Clostridium pasteurianum (MTCC116).

    PubMed

    Srivastava, Neha; Srivastava, Manish; Kushwaha, Deepika; Gupta, Vijai Kumar; Manikanta, Ambepu; Ramteke, P W; Mishra, P K

    2017-08-01

    In the present work, production of hydrogen via dark fermentation has been carried out using the hydrolyzed rice straw and Clostridium pasteurianum (MTCC116). The hydrolysis reaction of 1.0% alkali pretreated rice straw was performed at 70°C and 10% substrate loading via Fe 3 O 4 /Alginate nanocomposite (Fe 3 O 4 /Alginate NCs) treated thermostable crude cellulase enzyme following the previously established method. It is noticed that under the optimized conditions, at 70°C the Fe 3 O 4 /Alginate NCs treated cellulase has produced around 54.18g/L sugars as the rice straw hydrolyzate. Moreover, the efficiency of the process illustrates that using this hydrolyzate, Clostridium pasteurianum (MTCC116) could produce cumulative hydrogen of 2580ml/L in 144h with the maximum production rate of 23.96ml/L/h in 96h. In addition, maximum dry bacterial biomass of 1.02g/L and 1.51g/L was recorded after 96h and 144h, respectively with corresponding initial pH of 6.6 and 3.8, suggesting higher hydrogen production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The interplay of α-amylase and amyloglucosidase activities on the digestion of starch in in vitro enzymic systems.

    PubMed

    Warren, Frederick J; Zhang, Bin; Waltzer, Gina; Gidley, Michael J; Dhital, Sushil

    2015-03-06

    In vitro hydrolysis assays are a key tool in understanding differences in rate and extent of digestion of starchy foods. They offer a greater degree of simplicity and flexibility than dynamic in vitro models or in vivo experiments for quantifiable, mechanistic exploration of starch digestion. In the present work the influence of α-amylase and amyloglucosidase activities on the digestion of maize and potato starch granules was measured using both glucose and reducing sugar assays. Data were analysed through initial rates of digestion, and by 1st order kinetics, utilising logarithm of slope (LOS) plots. The rate and extent of starch digestion was dependent on the activities of both enzymes and the type of starch used. Potato required more enzyme than maize to achieve logarithmic reaction curves, and complete digestion. The results allow targeted design of starch digestion experiments through a thorough understanding of the contributions of α-amylase and amyloglucosidase to digestion rates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Characterization of the endosperm starch and the pleiotropic effects of biosynthetic enzymes on their properties in novel mutant rice lines with high resistant starch and amylose content.

    PubMed

    Itoh, Yuuki; Crofts, Naoko; Abe, Misato; Hosaka, Yuko; Fujita, Naoko

    2017-05-01

    Resistant starch (RS) is beneficial to human health. In order to reduce the current prevalence of diabetes and obesity, several transgenic and mutant crops containing high RS content are being developed. RS content of steamed rice with starch-branching enzyme (BE)IIb-deficient mutant endosperms is considerably high. To understand the mechanisms of RS synthesis and to increase RS content, we developed novel mutant rice lines by introducing the gene encoding starch synthase (SS)IIa and/or granule-bound starch synthase (GBSS)I from an indica rice cultivar into a japonica rice-based BEIIb-deficient mutant line, be2b. Introduction of SSIIa from an indica rice cultivar produced higher levels of amylopectin chains with degree of polymerization (DP) 11-18 than those in be2b; the extent of the change was slight due to the shortage of donor chains for SSIIa (DP 6-12) owing to BEIIb deficiency. The introduction of GBSSI from an indica rice cultivar significantly increased amylose content (by approximately 10%) in the endosperm starch. RS content of the new mutant lines was the same as or slightly higher than that of the be2b parent line. The relationship linking starch structure, RS content, and starch biosynthetic enzymes in the new mutant lines has also been discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Study of starch fermentation at low pH by Lactobacillus fermentum Ogi E1 reveals uncoupling between growth and alpha-amylase production at pH 4.0.

    PubMed

    Calderon Santoyo, M; Loiseau, G; Rodriguez Sanoja, R; Guyot, J P

    2003-01-15

    Lactobacillus fermentum Ogi E1 is an amylolytic heterofermentative lactic acid bacterium previously isolated from ogi, a Benin maize sourdough. In the present study, the effect of different pH between 3.5 and 6.0 on starch fermentation products and alpha-amylase production was investigated. Whereas a pH of 5.0 was optimum for specific growth rate and lactic acid production, growth was only slightly affected at suboptimal pH of 4.0 and 6.0. Over a pH range of 6.0 to 3.5, yields of product formation from substrate and of biomass relative to ATP were constant. These results showed that L. fermentum Ogi E1 was particularly acid tolerant, and well adapted to the acid conditions that develop during natural fermentation of cereal doughs. This acid tolerance may partly explain the dominance of L. fermentum in various traditional African sourdoughs. Surprisingly, alpha-amylase production, unlike growth, dropped dramatically when the strain was cultivated at pH 4.0 with starch. With maltose as substrate, the yield of alpha-amylase relative to biomass remained unchanged at pH 4.0 and 5.0, unlike that observed with starch. Based on the distribution of enzyme activity between extra- and intracellular fractions and fermentation kinetics, it appears that starch was first hydrolyzed into dextrins by alpha-amylase activity, and maltose was produced from dextrins by extracellular enzyme activity, transferred into the cell and then hydrolyzed into glucose by intracellular alpha-glucosidase.

  19. Understanding the Role of Physical Properties of Cellulose on Its Hydrolyzability by Cellulases

    NASA Astrophysics Data System (ADS)

    O'Dell, Patrick Jonathan

    Cellulose has long been explored as a potential feedstock for biofuel, however the recalcitrance of cellulose makes its conversion into biofuel much more challenging and economically unfavorable compared to well-established processes for converting starch or sugar feedstocks into biofuel. Enzymes capable of hydrolyzing cellulose into soluble sugars, glucose and cellobiose, have been found to work processively along cellulose microfibrils starting from reducing end groups. For this study, cellulose was produced and purified in-house from Gluconacetobacter xylinum cultures, and characterized by quantifying functional groups (aldehyde, ketone, and carboxyl groups) to determine the extent of oxidation of cellulose due to the processing steps. The main goal of this study was to look at the impacts of ultrasonication on cellulose's structure and the enzymatic hydrolyzability of cellulose. A completely randomized experimental design was used to test the effect of ultrasonication time and amplitude (intensity) on changes in cellulose fibril length, degree of polymerization, and rates and extents of hydrolysis. Results indicated that sonication time does significantly impact both the fibril length and average degree of polymerization of cellulose. The impact of ultrasonication on the hydrolyzability of cellulose by commercial cellulase and beta-glucosidase preparations could not be effectively resolved due to high variability in the experimental results. These studies serve as a basis for future studies understanding the role of cellulose microstructure in the mechanism of cellulase hydrolysis of cellulose.

  20. Enzyme-Synthesized Highly Branched Maltodextrins Have Slow Glucose Generation at the Mucosal α-Glucosidase Level and Are Slowly Digestible In Vivo

    PubMed Central

    Lee, Byung-Hoo; Yan, Like; Phillips, Robert J.; Reuhs, Bradley L.; Jones, Kyra; Rose, David R.; Nichols, Buford L.; Quezada-Calvillo, Roberto; Yoo, Sang-Ho; Hamaker, Bruce R.

    2013-01-01

    For digestion of starch in humans, α-amylase first hydrolyzes starch molecules to produce α-limit dextrins, followed by complete hydrolysis to glucose by the mucosal α-glucosidases in the small intestine. It is known that α-1,6 linkages in starch are hydrolyzed at a lower rate than are α-1,4 linkages. Here, to create designed slowly digestible carbohydrates, the structure of waxy corn starch (WCS) was modified using a known branching enzyme alone (BE) and an in combination with β-amylase (BA) to increase further the α-1,6 branching ratio. The digestibility of the enzymatically synthesized products was investigated using α-amylase and four recombinant mammalian mucosal α-glucosidases. Enzyme-modified products (BE-WCS and BEBA-WCS) had increased percentage of α-1,6 linkages (WCS: 5.3%, BE-WCS: 7.1%, and BEBA-WCS: 12.9%), decreased weight-average molecular weight (WCS: 1.73×108 Da, BE-WCS: 2.76×105 Da, and BEBA-WCS 1.62×105 Da), and changes in linear chain distributions (WCS: 21.6, BE-WCS: 16.9, BEBA-WCS: 12.2 DPw). Hydrolysis by human pancreatic α-amylase resulted in an increase in the amount of branched α-limit dextrin from 26.8% (WCS) to 56.8% (BEBA-WCS). The α-amylolyzed samples were hydrolyzed by the individual α-glucosidases (100 U) and glucogenesis decreased with all as the branching ratio increased. This is the first report showing that hydrolysis rate of the mammalian mucosal α-glucosidases is limited by the amount of branched α-limit dextrin. When enzyme-treated materials were gavaged to rats, the level of postprandial blood glucose at 60 min from BEBA-WCS was significantly higher than for WCS or BE-WCS. Thus, highly branched glucan structures modified by BE and BA had a comparably slow digesting property both in vitro and in vivo. Such highly branched α-glucans show promise as a food ingredient to control postprandial glucose levels and to attain extended glucose release. PMID:23565164

  1. Enzyme-synthesized highly branched maltodextrins have slow glucose generation at the mucosal α-glucosidase level and are slowly digestible in vivo.

    PubMed

    Lee, Byung-Hoo; Yan, Like; Phillips, Robert J; Reuhs, Bradley L; Jones, Kyra; Rose, David R; Nichols, Buford L; Quezada-Calvillo, Roberto; Yoo, Sang-Ho; Hamaker, Bruce R

    2013-01-01

    For digestion of starch in humans, α-amylase first hydrolyzes starch molecules to produce α-limit dextrins, followed by complete hydrolysis to glucose by the mucosal α-glucosidases in the small intestine. It is known that α-1,6 linkages in starch are hydrolyzed at a lower rate than are α-1,4 linkages. Here, to create designed slowly digestible carbohydrates, the structure of waxy corn starch (WCS) was modified using a known branching enzyme alone (BE) and an in combination with β-amylase (BA) to increase further the α-1,6 branching ratio. The digestibility of the enzymatically synthesized products was investigated using α-amylase and four recombinant mammalian mucosal α-glucosidases. Enzyme-modified products (BE-WCS and BEBA-WCS) had increased percentage of α-1,6 linkages (WCS: 5.3%, BE-WCS: 7.1%, and BEBA-WCS: 12.9%), decreased weight-average molecular weight (WCS: 1.73×10(8) Da, BE-WCS: 2.76×10(5) Da, and BEBA-WCS 1.62×10(5) Da), and changes in linear chain distributions (WCS: 21.6, BE-WCS: 16.9, BEBA-WCS: 12.2 DPw). Hydrolysis by human pancreatic α-amylase resulted in an increase in the amount of branched α-limit dextrin from 26.8% (WCS) to 56.8% (BEBA-WCS). The α-amylolyzed samples were hydrolyzed by the individual α-glucosidases (100 U) and glucogenesis decreased with all as the branching ratio increased. This is the first report showing that hydrolysis rate of the mammalian mucosal α-glucosidases is limited by the amount of branched α-limit dextrin. When enzyme-treated materials were gavaged to rats, the level of postprandial blood glucose at 60 min from BEBA-WCS was significantly higher than for WCS or BE-WCS. Thus, highly branched glucan structures modified by BE and BA had a comparably slow digesting property both in vitro and in vivo. Such highly branched α-glucans show promise as a food ingredient to control postprandial glucose levels and to attain extended glucose release.

  2. Effect of high temperature on grain filling period, yield, amylose content and activity of starch biosynthesis enzymes in endosperm of basmati rice.

    PubMed

    Ahmed, Nisar; Tetlow, Ian J; Nawaz, Sehar; Iqbal, Ahsan; Mubin, Muhammad; Nawaz ul Rehman, Muhammad Shah; Butt, Aisha; Lightfoot, David A; Maekawa, Masahiko

    2015-08-30

    High temperature during grain filling affects yield, starch amylose content and activity of starch biosynthesis enzymes in basmati rice. To investigate the physiological mechanisms underpinning the effects of high temperature on rice grain, basmati rice was grown under two temperature conditions - 32 and 22 °C - during grain filling. High temperature decreased the grain filling period from 32 to 26 days, reducing yield by 6%, and caused a reduction in total starch (3.1%) and amylose content (22%). Measurable activities of key enzymes involved in sucrose to starch conversion, sucrose synthase, ADP-glucose pyrophosphorylase, starch phosphorylase and soluble starch synthase in endosperms developed at 32 °C were lower than those at 22 °C compared with similar ripening stage on an endosperm basis. In particular, granule-bound starch synthase (GBSS) activity was significantly lower than corresponding activity in endosperms developing at 22 °C during all developmental stages analyzed. Results suggest changes in amylose/amylopectin ratio observed in plants grown at 32 °C was attributable to a reduction in activity of GBSS, the sole enzyme responsible for amylose biosynthesis. © 2014 Society of Chemical Industry.

  3. Saccharification and liquefaction of cassava starch: an alternative source for the production of bioethanol using amylolytic enzymes by double fermentation process

    PubMed Central

    2014-01-01

    Background Cassava starch is considered as a potential source for the commercial production of bioethanol because of its availability and low market price. It can be used as a basic source to support large-scale biological production of bioethanol using microbial amylases. With the progression and advancement in enzymology, starch liquefying and saccharifying enzymes are preferred for the conversion of complex starch polymer into various valuable metabolites. These hydrolytic enzymes can selectively cleave the internal linkages of starch molecule to produce free glucose which can be utilized to produce bioethanol by microbial fermentation. Results In the present study, several filamentous fungi were screened for production of amylases and among them Aspergillus fumigatus KIBGE-IB33 was selected based on maximum enzyme yield. Maximum α-amylase, amyloglucosidase and glucose formation was achieved after 03 days of fermentation using cassava starch. After salt precipitation, fold purification of α-amylase and amyloglucosidase increased up to 4.1 and 4.2 times with specific activity of 9.2 kUmg-1 and 393 kUmg-1, respectively. Concentrated amylolytic enzyme mixture was incorporated in cassava starch slurry to give maximum glucose formation (40.0 gL-1), which was further fermented using Saccharomyces cerevisiae into bioethanol with 84.0% yield. The distillate originated after recovery of bioethanol gave 53.0% yield. Conclusion An improved and effective dual enzymatic starch degradation method is designed for the production of bioethanol using cassava starch. The technique developed is more profitable due to its fast liquefaction and saccharification approach that was employed for the formation of glucose and ultimately resulted in higher yields of alcohol production. PMID:24885587

  4. Deficiency of maize starch-branching enzyme i results in altered starch fine structure, decreased digestibility and reduced coleoptile growth during germination

    PubMed Central

    2011-01-01

    Background Two distinct starch branching enzyme (SBE) isoforms predate the divergence of monocots and dicots and have been conserved in plants since then. This strongly suggests that both SBEI and SBEII provide unique selective advantages to plants. However, no phenotype for the SBEI mutation, sbe1a, had been previously observed. To explore this incongruity the objective of the present work was to characterize functional and molecular phenotypes of both sbe1a and wild-type (Wt) in the W64A maize inbred line. Results Endosperm starch granules from the sbe1a mutant were more resistant to digestion by pancreatic α-amylase, and the sbe1a mutant starch had an altered branching pattern for amylopectin and amylose. When kernels were germinated, the sbe1a mutant was associated with shorter coleoptile length and higher residual starch content, suggesting that less efficient starch utilization may have impaired growth during germination. Conclusions The present report documents for the first time a molecular phenotype due to the absence of SBEI, and suggests strongly that it is associated with altered physiological function of the starch in vivo. We believe that these results provide a plausible rationale for the conservation of SBEI in plants in both monocots and dicots, as greater seedling vigor would provide an important survival advantage when resources are limited. PMID:21599988

  5. Microscopic Analysis of Corn Fiber Using Corn Starch- and Cellulose-Specific Molecular Probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, S. E.; Donohoe, B. S.; Beery, K. E.

    Ethanol is the primary liquid transportation fuel produced from renewable feedstocks in the United States today. The majority of corn grain, the primary feedstock for ethanol production, has been historically processed in wet mills yielding products such as gluten feed, gluten meal, starch, and germ. Starch extracted from the grain is used to produce ethanol in saccharification and fermentation steps; however the extraction of starch is not 100% efficient. To better understand starch extraction during the wet milling process, we have developed fluorescent probes that can be used to visually localize starch and cellulose in samples using confocal microscopy. Thesemore » probes are based on the binding specificities of two types of carbohydrate binding modules (CBMs), which are small substrate-specific protein domains derived from carbohydrate degrading enzymes. CBMs were fused, using molecular cloning techniques, to a green fluorescent protein (GFP) or to the red fluorescent protein DsRed (RFP). Using these engineered probes, we found that the binding of the starch-specific probe correlates with starch content in corn fiber samples. We also demonstrate that there is starch internally localized in the endosperm that may contribute to the high starch content in corn fiber. We also surprisingly found that the cellulose-specific probe did not bind to most corn fiber samples, but only to corn fiber that had been hydrolyzed using a thermochemical process that removes the residual starch and much of the hemicellulose. Our findings should be of interest to those working to increase the efficiency of the corn grain to ethanol process.« less

  6. Synthesis and characterization of rice starch laurate as food-grade emulsifier for canola oil-in-water emulsions.

    PubMed

    García-Tejeda, Y V; Leal-Castañeda, E J; Espinosa-Solis, V; Barrera-Figueroa, V

    2018-08-15

    The effect of esterification on hydrolyzed rice starch was analyzed, for this aim rice starch was hydrolyzed and subsequently esterified with lauroyl chloride at three modification levels. Starch derivatives were characterized regarding their degree of substitution (DS), water solubility index, z-potential, gelatinization, and digestibility properties. DS of derivatives of rice starch laurate ranged from 0.042 to 1.86. It was determined that after esterification the water solubility index increased from 3.44 to 53.61%, the z-potential decreased from -3.18 to -11.27, and the content of slowly digestible starch (SDS) decreased from 26.22 to 5.13%. Different emulsions with starch concentrations ranging from 6 to 30 wt% were evaluated. The most stable emulsions were those having 20 and 30 wt% of rice starch laurate. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Immobilization of BSA, enzymes and cells of Bacillus stearothermophilus onto cellulose polygalacturonic acid and starch based graft copolymers containing maleic arhydride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beddows, C.G.; Gil, M.H.; Guthrie, J.T.

    1986-01-01

    Poly(maleic anhydride styrene) graft copolymers of cellulose, pectin polygalacturonic acid salt, calcium polygalacturonate, and starch were prepared and used to immobilize proteins. The cellulose grafts coupled quite appreciable quantities of acid phosphatase, glucose oxidase, and trypsin. However, the general retention of activity was somewhat disappointing. Further investigation with acid phosphatase showed that the amount of enzyme immobilized increased as the amount of anhydride in the graft copolymer increased but no such relationship existed for the enzymic activity. The cellulose graft copolymers were hydrolyzed and it appeared that the carboxyl group aided adsorption of the enzyme. Attempts to couple acid phosphatasemore » using CMC through the free carboxyl groups, created by hydrolysis, gave only a small increase in the extent of protein coupling. However, the unhydrolyzed system gave a useful degree of immobilization of cells of Bacillus stearothermophilus, as did a poly(maleic anhydride/styrene)-cocellulose system. Attempts to improve the activity by using grafts based on other polysaccharide supports met with mixed success. Pectin products were soluble. Polygalacturonic acid products were partially soluble and extremely high levels of enzymic activity were obtained. This was probably due in part to the hydrophilic nature of the system, which also encouraged absorption of the enzyme. Attempts were made to reduce the solubility by using the calcium pectinate salt. Immobilization of acid phosphatase and trypsin resulted in increased protein coupling but relatively poor activities were attained. Calcium polygalacturonate was used to prepare an insoluble graft copolymeric system containing acrylonitrile-comaleic anhydride. The resulting gels gave excellent coupling with acid phosphatase which had a very good retention of activity.« less

  8. Utilization of α-amylase enzyme from Bacillus stearothermophilus RSAII1B for maltodextrin production from sago starch

    NASA Astrophysics Data System (ADS)

    Arfah, R. A.; Ahmad, A.; Dali, S.; Djide, M. N.; Mahdalia; Arif, A. R.

    2018-03-01

    The dried sago flour derived from Palopo contains 28.80% amylose and 91.23% total carbohydrate. Based on the data, sago starch has the potential to become an alternative raw material for themaltodextrin production. Maltodextrin is one of the starch derivative products produced by hydrolysis process using the α-amylase enzyme with amaximum DE (dextrose equivalent) value of 20. The use of maltodextrin for food and pharmaceutical industries is increasing because of maltodextrin is widely used as thickener filler, surfactant and sugar substitute in milk powder. The aims of this study are to optimize the addition of enzyme concentration and hydrolysis time of α -amylase enzyme to obtain high quality ofmaltodextrin This study also aimed to characterization the obtained maltodextrin. The first step was isolation and purification α-amylase from the isolate of Bacillus stearothermophilus RSAII1B, followed by determination of the α-amylase concentration (0.05%, 0.07% and 0.09%) in 2.0% starch substrate, and the hydrolysis time ofα-amilase (60, 90, 120, 240 minutes). Maltodextrin characters observed were dextrose equivalent (DE), reducing sugar, moisture content, pH changes, color, solubility, viscosity, and total plate count (TPC). The results showed that the value of DE was 12.31, reducing sugar was 11.4%; water content was 10.92%; pH was 4.85; The color of maltodextrin powder was white bone color; solubility was 153.2 g/L; Viscositywas 210-240 cps, TPCwas 380 cfu/g. Maltodextrins produced from sago starch using the α-amylase enzyme from B.stearothermophillus RSAIIm met the quality requirements of SNI 7599: 2010.

  9. An In Vitro Enzyme System for the Production of myo-Inositol from Starch

    PubMed Central

    Fujisawa, Tomoko; Fujinaga, Shohei

    2017-01-01

    ABSTRACT We developed an in vitro enzyme system to produce myo-inositol from starch. Four enzymes were used, maltodextrin phosphorylase (MalP), phosphoglucomutase (PGM), myo-inositol-3-phosphate synthase (MIPS), and inositol monophosphatase (IMPase). The enzymes were thermostable: MalP and PGM from the hyperthermophilic archaeon Thermococcus kodakarensis, MIPS from the hyperthermophilic archaeon Archaeoglobus fulgidus, and IMPase from the hyperthermophilic bacterium Thermotoga maritima. The enzymes were individually produced in Escherichia coli and partially purified by subjecting cell extracts to heat treatment and removing denatured proteins. The four enzyme samples were incubated at 90°C with amylose, phosphate, and NAD+, resulting in the production of myo-inositol with a yield of over 90% at 2 h. The effects of varying the concentrations of reaction components were examined. When the system volume was increased and NAD+ was added every 2 h, we observed the production of 2.9 g myo-inositol from 2.9 g amylose after 7 h, achieving gram-scale production with a molar conversion of approximately 96%. We further integrated the pullulanase from T. maritima into the system and observed myo-inositol production from soluble starch and raw potato with yields of 73% and 57 to 61%, respectively. IMPORTANCE myo-Inositol is an important nutrient for human health and provides a wide variety of benefits as a dietary supplement. This study demonstrates an alternative method to produce myo-inositol from starch with an in vitro enzyme system using thermostable maltodextrin phosphorylase (MalP), phosphoglucomutase (PGM), myo-inositol-3-phosphate synthase, and myo-inositol monophosphatase. By utilizing MalP and PGM to generate glucose 6-phosphate, we can avoid the addition of phosphate donors such as ATP, the use of which would not be practical for scaled-up production of myo-inositol. myo-Inositol was produced from amylose on the gram scale with yields exceeding 90%. Conversion

  10. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization.

    PubMed

    Wang, Xuchu; Chang, Lili; Tong, Zheng; Wang, Dongyang; Yin, Qi; Wang, Dan; Jin, Xiang; Yang, Qian; Wang, Liming; Sun, Yong; Huang, Qixing; Guo, Anping; Peng, Ming

    2016-01-21

    Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement.

  11. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization

    PubMed Central

    Wang, Xuchu; Chang, Lili; Tong, Zheng; Wang, Dongyang; Yin, Qi; Wang, Dan; Jin, Xiang; Yang, Qian; Wang, Liming; Sun, Yong; Huang, Qixing; Guo, Anping; Peng, Ming

    2016-01-01

    Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement. PMID:26791570

  12. Enzyme-Catalyzed Regioselective Modification of Starch Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Soma; Sahoo, Bishwabhusan; Teraoka, Iwao

    The selective esterification of starch nanoparticles was performed using as catalyst Candida antartica Lipase B (CAL-B) in its immobilized (Novozym 435) and free (SP-525) forms. The starch nanoparticles were made accessible for acylation reactions by formation of Aerosol-OT (AOT, bis(2-ethylhexyl)sodium sulfosuccinate) stabilized microemulsions. Starch nanoparticles in microemulsions were reacted with vinyl stearate, ε-caprolactone, and maleic anhydride at 40 °C for 48 h to give starch esters with degrees of substitution (DS) of 0.8, 0.6, and 0.4, respectively. Substitution occurred regioselectively at the C-6 position of the glucose repeat units. Infrared microspectroscopy (IRMS) revealed that AOT-coated starch nanoparticles diffuse into themore » outer 50 μm shell of catalyst beads. Thus, even though CAL-B is immobilized within a macroporous resin, CAL-B is sufficiently accessible to the starch nanoparticles. When free CAL-B was incorporated along with starch within AOT-coated reversed micelles, CAL-B was also active and catalyzed the acylation with vinyl stearate (24 h, 40 °C) to give DS = 0.5. After removal of surfactant from the modified starch nanoparticles, they were dispersed in DMSO or water and were shown to retain their nanodimensions.« less

  13. Antarctic marine bacterium Pseudoalteromonas sp. KNOUC808 as a source of cold-adapted lactose hydrolyzing enzyme

    PubMed Central

    Nam, EunSook; Ahn, JongKun

    2011-01-01

    Psychrophilic bacteria, which grow on lactose as a carbon source, were isolated from Antarctic polar sea water. Among the psychrophilic bacteria isolated, strain KNOUC808 was able to grow on lactose at below 5°C, and showed 0.867 unit of o-nitrophenyl β-D-galactopyranoside(ONPG) hydrolyzing activity at 4°C. The isolate was gram-negative, rod, aerobic, catalase positive and oxidase positive. Optimum growth was done at 20°C, pH 6.8–7.2. The composition of major fatty acids in cell of KNOUC801 was C12:0 (5.48%), C12:0 3OH (9.21%), C16:0 (41.83%), C17:0 ω8 (7.24%) and C18:1 ω7 (7.04%). All these results together suggest that it is affiliated with Pseudoalteromonas genus. The 16S rDNA sequence corroborate the phenotypic tests and the novel strain was designated as Pseudoalteromonas sp. KNOUC808. The optimum temperature and pH for lactose hydrolyzing enzyme was 20°C and 7.8, respectively. The enzyme was stable at 4°C for 7 days, but its activity decreased to about 50% of initial activity at 37°C in 7 days. PMID:24031708

  14. Paraformaldehyde-Resistant Starch-Fermenting Bacteria in “Starch-Base” Drilling Mud

    PubMed Central

    Myers, G. E.

    1962-01-01

    Starch-fermenting bacteria were found in each of 12 samples of nonfermenting starch-base drilling mud examined. Of the 12 samples, 3 contained very active starch-fermenting gram-positive spore-bearing bacilli closely resembling Bacillus subtilis. Similar active starch-fermenting bacteria were found in fermenting starch-base drilling mud and in corn starch and slough water used to prepare such mud. The active starch-fermenting microorganisms completely hydrolyzed 1% (w/v) corn starch within 24 hr at 37.5 C. The active starch-fermenting bacteria isolated from fermenting drilling mud were capable of surviving 12 hr of continuous exposure to 0.1% (w/w) paraformaldehyde or 1 hr of continuous exposure to 0.5% (w/w) paraformaldehyde, with no diminution in starch-fermenting ability. The same organisms fermented starch after 3 hr of continuous exposure to 0.5% (w/w) paraformaldehyde, but not after 4 hr of exposure. The phenomenon of rapid disappearance of paraformaldehyde from fermenting drilling mud was observed in the laboratory using a modified sodium sulfite test. Paraformaldehyde, initially present in a concentration of 0.192 lb per barrel of mud, completely disappeared in 9 hr at 22 to 23 C. A significant decrease in paraformaldehyde concentration was detected 0.5 hr after preparation of the mud. It is suggested that the presence of relatively high concentrations of ammonia and chloride in the mud may facilitate the disappearance of paraformaldehyde. The failure of 0.1% (w/w) paraformaldehyde to inhibit the strong starch-fermenting microorganisms isolated from fermenting drilling mud, and the rapid disappearance of paraformaldehyde from the mud, explains the fermentation of starch which occurred in this mud, despite the addition of paraformaldehyde. PMID:13936949

  15. Enzymatic transformation of nonfood biomass to starch

    PubMed Central

    You, Chun; Chen, Hongge; Myung, Suwan; Sathitsuksanoh, Noppadon; Ma, Hui; Zhang, Xiao-Zhou; Li, Jianyong; Zhang, Y.-H. Percival

    2013-01-01

    The global demand for food could double in another 40 y owing to growth in the population and food consumption per capita. To meet the world’s future food and sustainability needs for biofuels and renewable materials, the production of starch-rich cereals and cellulose-rich bioenergy plants must grow substantially while minimizing agriculture’s environmental footprint and conserving biodiversity. Here we demonstrate one-pot enzymatic conversion of pretreated biomass to starch through a nonnatural synthetic enzymatic pathway composed of endoglucanase, cellobiohydrolyase, cellobiose phosphorylase, and alpha-glucan phosphorylase originating from bacterial, fungal, and plant sources. A special polypeptide cap in potato alpha-glucan phosphorylase was essential to push a partially hydrolyzed intermediate of cellulose forward to the synthesis of amylose. Up to 30% of the anhydroglucose units in cellulose were converted to starch; the remaining cellulose was hydrolyzed to glucose suitable for ethanol production by yeast in the same bioreactor. Next-generation biorefineries based on simultaneous enzymatic biotransformation and microbial fermentation could address the food, biofuels, and environment trilemma. PMID:23589840

  16. Carbohydrate-binding module 74 is a novel starch-binding domain associated with large and multidomain α-amylase enzymes.

    PubMed

    Valk, Vincent; Lammerts van Bueren, Alicia; van der Kaaij, Rachel M; Dijkhuizen, Lubbert

    2016-06-01

    Microbacterium aurum B8.A is a bacterium that originates from a potato starch-processing plant and employs a GH13 α-amylase (MaAmyA) enzyme that forms pores in potato starch granules. MaAmyA is a large and multi-modular protein that contains a novel domain at its C terminus (Domain 2). Deletion of Domain 2 from MaAmyA did not affect its ability to degrade starch granules but resulted in a strong reduction in granular pore size. Here, we separately expressed and purified this Domain 2 in Escherichia coli and determined its likely function in starch pore formation. Domain 2 independently binds amylose, amylopectin, and granular starch but does not have any detectable catalytic (hydrolytic or oxidizing) activity on α-glucan substrates. Therefore, we propose that this novel starch-binding domain is a new carbohydrate-binding module (CBM), the first representative of family CBM74 that assists MaAmyA in efficient pore formation in starch granules. Protein sequence-based BLAST searches revealed that CBM74 occurs widespread, but in bacteria only, and is often associated with large and multi-domain α-amylases containing family CBM25 or CBM26 domains. CBM74 may specifically function in binding to granular starches to enhance the capability of α-amylase enzymes to degrade resistant starches (RSs). Interestingly, the majority of family CBM74 representatives are found in α-amylases originating from human gut-associated Bifidobacteria, where they may assist in resistant starch degradation. The CBM74 domain thus may have a strong impact on the efficiency of RS digestion in the mammalian gastrointestinal tract. © 2016 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  17. Characterizations of substrate and enzyme specificity of glucoamylase assays of mucosal starch digestion with determinations of group and single biopsy reference values

    USDA-ARS?s Scientific Manuscript database

    Carbohydrate digesting enzyme activities are measured in duodenal biopsies to detect deficiencies of lactase and sucrase activities, however glucoamylase (GA) assays for starch digestion are not included. Because food starch represents half of energy intake in the human diet, assays for starch diges...

  18. Characteristic hydrolyzing of megalosaccharide by human salivary α-amylase and small intestinal enzymes, and its bioavailability in healthy subjects.

    PubMed

    Nakamura, Sadako; Takami, Masayuki; Tanabe, Kenichi; Oku, Tsuneyuki

    2014-09-01

    The digestibility of Megalosaccharide® (newly developed carbohydrate comprising α-1,4-glucosaccharide) was investigated in vitro and in vivo. Isomaltosyl-megalosaccharide® (IMS) and nigerosyl-megalosaccharide® (NMS) contain 20% and 50% of the megalosaccharide fraction (degree of polymerization (DP) 10-35), respectively. IMS was hydrolyzed readily by α-amylase to oligosaccharides (DP ≤ 7), and a small amount of glucose was produced from oligosaccharides by small intestinal enzymes (SIEs). NMS was partially hydrolyzed by α-amylase to oligosaccharides, and a small amount of glucose produced by SIEs. When IMS and NMS were treated by SIEs after treatment with human saliva α-amylase for a few minutes, IMS and NMS were hydrolyzed readily to glucose. Plasma levels of glucose and insulin upon ingestion of 50 g of IMS or NMS were elevated the same as those for 50 g of glucose, and breath hydrogen was not excreted. These results suggest that IMS and NMS are digestible carbohydrates.

  19. Fermentation Methods for Protein Enrichment of Cassava and Corn with Candida tropicalis

    PubMed Central

    Azoulay, Edgard; Jouanneau, Françoise; Bertrand, Jean-Claude; Raphael, Alain; Janssens, Jacques; Lebeault, Jean Michel

    1980-01-01

    Candida tropicalis grows on soluble starch, corn, and cassava powders without requiring that these substrates be previously hydrolyzed. C. tropicalis possesses the enzyme needed to hydrolyze starch, namely, an α-amylase. That property has been used to develop a fermentation process whereby C. tropicalis can be grown directly on corn or cassava powders so that the resultant mixture of biomass and residual corn or cassava contains about 20% protein, which represents a balanced diet for either animal fodder or human food. The fact that no extra enzymes are required to hydrolyze starch results in a particularly efficient way of improving the nutritional value of amylaceous products, through a single-step fermentation process. PMID:16345495

  20. Regulation of hydantoin-hydrolyzing enzyme expression in Agrobacterium tumefaciens strain RU-AE01.

    PubMed

    Jiwaji, Meesbah; Dorrington, Rosemary Ann

    2009-10-01

    Optically pure D-: amino acids, like D-: hydroxyphenylglycine, are used in the semi-synthetic production of pharmaceuticals. They are synthesized industrially via the biocatalytic hydrolysis of p-hydroxyphenylhydantoin using enzymes derived from Agrobacterium tumefaciens strains. The reaction proceeds via a three-step pathway: (a) the ring-opening cleavage of the hydantoin ring by a D-: hydantoinase (encoded by hyuH), (b) conversion of the resultant D-: N-carbamylamino acid to the corresponding amino acid by a D-: N-carbamoylase (encoded by hyuC), and (c) chemical or enzymatic racemization of the un-reacted hydantoin substrate. While the structure and biochemical properties of these enzymes are well understood, little is known about their origin, their function, and their regulation in the native host. We investigated the mechanisms involved in the regulation of expression of the hydantoinase and N-carbamoylase enzyme activity in A. tumefaciens strain RU-AE01. We present evidence for a complex regulatory network that responds to the growth status of the cells, the presence of inducer, and nitrogen catabolite repression. Deletion analysis and site-directed mutagenesis were used to identify regulatory elements involved in transcriptional regulation of hyuH and hyuC expression. Finally, a comparison between the hyu gene clusters in several Agrobacterium strains provides insight into the function of D-: selective hydantoin-hydrolyzing enzyme systems in Agrobacterium species.

  1. Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA- and hairpin RNA-mediated RNA silencing

    PubMed Central

    Butardo, Vito M.; Fitzgerald, Melissa A.; Bird, Anthony R.; Gidley, Michael J.; Flanagan, Bernadine M.; Larroque, Oscar; Resurreccion, Adoracion P.; Laidlaw, Hunter K. C.; Jobling, Stephen A.; Morell, Matthew K.; Rahman, Sadequr

    2011-01-01

    The inactivation of starch branching IIb (SBEIIb) in rice is traditionally associated with elevated apparent amylose content, increased peak gelatinization temperature, and a decreased proportion of short amylopectin branches. To elucidate further the structural and functional role of this enzyme, the phenotypic effects of down-regulating SBEIIb expression in rice endosperm were characterized by artificial microRNA (amiRNA) and hairpin RNA (hp-RNA) gene silencing. The results showed that RNA silencing of SBEIIb expression in rice grains did not affect the expression of other major isoforms of starch branching enzymes or starch synthases. Structural analyses of debranched starch showed that the doubling of apparent amylose content was not due to an increase in the relative proportion of amylose chains but instead was due to significantly elevated levels of long amylopectin and intermediate chains. Rices altered by the amiRNA technique produced a more extreme starch phenotype than those modified using the hp-RNA technique, with a greater increase in the proportion of long amylopectin and intermediate chains. The more pronounced starch structural modifications produced in the amiRNA lines led to more severe alterations in starch granule morphology and crystallinity as well as digestibility of freshly cooked grains. The potential role of attenuating SBEIIb expression in generating starch with elevated levels of resistant starch and lower glycaemic index is discussed. PMID:21791436

  2. Physicochemical properties and starch digestibility of whole grain sorghums, millet, quinoa and amaranth flours, as affected by starch and non-starch constituents.

    PubMed

    Srichuwong, Sathaporn; Curti, Delphine; Austin, Sean; King, Roberto; Lamothe, Lisa; Gloria-Hernandez, Hugo

    2017-10-15

    Minor grains such as sorghum, millet, quinoa and amaranth can be alternatives to wheat and corn as ingredients for whole grain and gluten-free products. In this study, influences of starch structures and other grain constituents on physicochemical properties and starch digestibility of whole flours made from these grains were investigated. Starches were classified into two groups according to their amylopectin branch chain-length: (i) quinoa, amaranth, wheat (shorter chains); and (ii) sorghum, millet, corn (longer chains). Such amylopectin features and amylose content contributed to the differences in thermal and pasting properties as well as starch digestibility of the flours. Non-starch constituents had additional impacts; proteins delayed starch gelatinization and pasting, especially in sorghum flours, and high levels of soluble fibre retarded starch retrogradation in wheat, quinoa and amaranth flours. Enzymatic hydrolysis of starch was restricted by the presence of associated protein matrix and enzyme inhibitors, but accelerated by endogenous amylolytic enzymes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Ability of resveratrol to inhibit advanced glycation end product formation and carbohydrate-hydrolyzing enzyme activity, and to conjugate methylglyoxal.

    PubMed

    Shen, Yixiao; Xu, Zhimin; Sheng, Zhanwu

    2017-02-01

    Glycation can generate advanced glycation end products (AGE) and its intermediates methylglyoxal (MGO) and glyoxal in foods, which increase the risk of developing diabetes diseases. In this study, the effect of resveratrol against AGE formation, carbohydrate-hydrolyzing enzyme activity and trapping MGO capability were evaluated. Resveratrol showed a significant inhibition capability against AGE formation in bovine serum albumin (BSA)-fructose, BSA-MGO and arginine-MGO models with inhibition percentages of 57.94, 85.95 and 99.35%, respectively. Furthermore, resveratrol acted as a competitive inhibitor for α-amylase with IC50 3.62μg/ml, while it behaved in an uncompetitive manner for α-glucosidase with an IC50 of 17.54μg/l. A prevention of BSA protein glycation was observed in the BSA-fructose model with addition of resveratrol. Three types of resveratrol-MGO adducts were identified in the model consisting of MGO and resveratrol. The results demonstrated that resveratrol has potential in reducing glycation in foods and retarding carbohydrate-hydrolyzing enzyme activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Detoxification of corn stover and corn starch pyrolysis liquors by ligninolytic enzymes of Phanerochaete chrysosporium.

    PubMed

    Khiyami, Mohammad A; Pometto, Anthony L; Brown, Robert C

    2005-04-20

    Phanerochaete chrysosporium (ATCC 24725) shake flask culture with 3 mM veratryl alcohol addition on day 3 was able to grow and detoxify different concentrations of diluted corn stover (Dcs) and diluted corn starch (Dst) pyrolysis liquors [10, 25, and 50% (v/v)] in defined media. GC-MS analysis of reaction products showed a decrease and change in some compounds. In addition, the total phenolic assay with Dcs samples demonstrated a decrease in the phenolic compounds. A bioassay employing Lactobacillus casei growth and lactic acid production was developed to confirm the removal of toxic compounds from 10 and 25% (v/v) Dcs and Dst by the lignolytic enzymes, but not from 50% (v/v) Dcs and Dst. The removal did not occur when sodium azide or cycloheximide was added to Ph. chrysosporium culture media, confirming the participation of lignolytic enzymes in the detoxification process. A concentrated enzyme preparation decreased the phenolic compounds in 10% (v/v) corn stover and corn starch pyrolysis liquors to the same extent as the fungal cultures.

  5. Enzyme-synthesized highly branched maltodextrins have slow glucose generation at the mucosal alpha-glucosidase level and are slowly digestible "in vivo"

    USDA-ARS?s Scientific Manuscript database

    For digestion of starch in humans, alpha-amylase first hydrolyzes starch molecules to produce alpha-limit dextrins, followed by complete hydrolysis to glucose by the mucosal alpha-glucosidases in the small intestine. It is known that alpha-1,6 linkages in starch are hydrolyzed at a lower rate than a...

  6. Processing of poultry feathers by alkaline keratin hydrolyzing enzyme from Serratia sp. HPC 1383.

    PubMed

    Khardenavis, Anshuman A; Kapley, Atya; Purohit, Hemant J

    2009-04-01

    The present study describes the production and characterization of a feather hydrolyzing enzyme by Serratia sp. HPC 1383 isolated from tannery sludge, which was identified by the ability to form clear zones around colonies on milk agar plates. The proteolytic activity was expressed in terms of the micromoles of tyrosine released from substrate casein per ml per min (U/mL min). Induction of the inoculum with protein was essential to stimulate higher activity of the enzyme, with 0.03% feathermeal in the inoculum resulting in increased enzyme activity (45U/mL) that further increased to 90U/mL when 3d old inoculum was used. The highest enzyme activity, 130U/mL, was observed in the presence of 0.2% yeast extract. The optimum assay temperature and pH for the enzyme were found to be 60 degrees C and 10.0, respectively. The enzyme had a half-life of 10min at 60 degrees C, which improved slightly to 18min in presence of 1mM Ca(2+). Inhibition of the enzyme by phenylmethyl sulfonyl fluoride (PMSF) indicated that the enzyme was a serine protease. The enzyme was also partially inhibited (39%) by the reducing agent beta-mercaptoethanol and by divalent metal ions such as Zn(2+) (41% inhibition). However, Ca(2+) and Fe(2+) resulted in increases in enzyme activity of 15% and 26%, respectively. The kinetic constants of the keratinase were found to be 3.84 microM (K(m)) and 108.7 microM/mLmin (V(max)). These results suggest that this extracellular keratinase may be a useful alternative and eco-friendly route for handling the abundant amount of waste feathers or for applications in other industrial processes.

  7. Physical structure and absorption properties of tailor-made porous starch granules produced by selected amylolytic enzymes

    PubMed Central

    Jung, Yi-seul; Lee, Byung-Hoo

    2017-01-01

    Porous starch granules (PSGs) with various pores and cavity sizes were prepared by amylolysis enzymes. The greatest hydrolysis rate on corn starch granule was observed with α-amylase, followed by gluco- and β-amylases. Temperature increase enhanced glucoamylase reaction rate more drastically than other enzyme treatments. Final hydrolysis level with glucoamylase reached to 66.9%, close to 67.5% of α-amylolysis. The α-amylase-treated PSGs displayed the greatest pore size and ratio of cavity-to-granule diameters. Gelatinization onset temperatures of PSGs increased to 72.1 (α-), 68.7 (β-), and 68.1°C (gluco-amylolysis) after 8 h; enthalpy changes of β- and gluco-amylase-treated PSGs increased to 13.4, and 13.1 J/g but α-amylase-treated one showed slightly reduced value of 8.5 J/g. Water holding capacities of PSGs were 209.7 (α-), 94.6 (β-), and 133.8% (gluco-amylolysis), and the untreated control had 89.1%; oil holding capacities of them showed 304.5, 182.7, and 211.5%, respectively, while the untreated control had 161.8%. Thus, enzyme types and their reaction conditions can be applied to generate desirable cavity and pore sizes in starch granules. This biocatalytic approach could contribute to develop tailor-made PSGs with distinct internal structure for specific uses in wide range of food, pharmaceutical and other industrial applications. PMID:28727742

  8. Production of raw starch-degrading enzyme by Aspergillus sp. and its use in conversion of inedible wild cassava flour to bioethanol.

    PubMed

    Moshi, Anselm P; Hosea, Ken M M; Elisante, Emrode; Mamo, Gashaw; Önnby, Linda; Nges, Ivo Achu

    2016-04-01

    The major bottlenecks in achieving competitive bioethanol fuel are the high cost of feedstock, energy and enzymes employed in pretreatment prior to fermentation. Lignocellulosic biomass has been proposed as an alternative feedstock, but because of its complexity, economic viability is yet to be realized. Therefore, research around non-conventional feedstocks and deployment of bioconversion approaches that downsize the cost of energy and enzymes is justified. In this study, a non-conventional feedstock, inedible wild cassava was used for bioethanol production. Bioconversion of raw starch from the wild cassava to bioethanol at low temperature was investigated using both a co-culture of Aspergillus sp. and Saccharomyces cerevisiae, and a monoculture of the later with enzyme preparation from the former. A newly isolated strain of Aspergillus sp. MZA-3 produced raw starch-degrading enzyme which displayed highest activity of 3.3 U/mL towards raw starch from wild cassava at 50°C, pH 5.5. A co-culture of MZA-3 and S. cerevisiae; and a monoculture of S. cerevisiae and MZA-3 enzyme (both supplemented with glucoamylase) resulted into bioethanol yield (percentage of the theoretical yield) of 91 and 95 at efficiency (percentage) of 84 and 96, respectively. Direct bioconversion of raw starch to bioethanol was achieved at 30°C through the co-culture approach. This could be attractive since it may significantly downsize energy expenses. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Production of raw cassava starch-degrading enzyme by Penicillium and its use in conversion of raw cassava flour to ethanol.

    PubMed

    Lin, Hai-Juan; Xian, Liang; Zhang, Qiu-Jiang; Luo, Xue-Mei; Xu, Qiang-Sheng; Yang, Qi; Duan, Cheng-Jie; Liu, Jun-Liang; Tang, Ji-Liang; Feng, Jia-Xun

    2011-06-01

    A newly isolated strain Penicillium sp. GXU20 produced a raw starch-degrading enzyme which showed optimum activity towards raw cassava starch at pH 4.5 and 50 °C. Maximum raw cassava starch-degrading enzyme (RCSDE) activity of 20 U/ml was achieved when GXU20 was cultivated under optimized conditions using wheat bran (3.0% w/v) and soybean meal (2.5% w/v) as carbon and nitrogen sources at pH 5.0 and 28 °C. This represented about a sixfold increment as compared with the activity obtained under basal conditions. Starch hydrolysis degree of 95% of raw cassava flour (150 g/l) was achieved after 72 h of digestion by crude RCSDE (30 U/g flour). Ethanol yield reached 53.3 g/l with fermentation efficiency of 92% after 48 h of simultaneous saccharification and fermentation of raw cassava flour at 150 g/l using the RCSDE (30 U/g flour), carried out at pH 4.0 and 40 °C. This strain and its RCSDE have potential applications in processing of raw cassava starch to ethanol.

  10. Cecropia peltata Accumulates Starch or Soluble Glycogen by Differentially Regulating Starch Biosynthetic Genes[W][OA

    PubMed Central

    Bischof, Sylvain; Umhang, Martin; Eicke, Simona; Streb, Sebastian; Qi, Weihong; Zeeman, Samuel C.

    2013-01-01

    The branched glucans glycogen and starch are the most widespread storage carbohydrates in living organisms. The production of semicrystalline starch granules in plants is more complex than that of small, soluble glycogen particles in microbes and animals. However, the factors determining whether glycogen or starch is formed are not fully understood. The tropical tree Cecropia peltata is a rare example of an organism able to make either polymer type. Electron micrographs and quantitative measurements show that glycogen accumulates to very high levels in specialized myrmecophytic structures (Müllerian bodies), whereas starch accumulates in leaves. Compared with polymers comprising leaf starch, glycogen is more highly branched and has shorter branches—factors that prevent crystallization and explain its solubility. RNA sequencing and quantitative shotgun proteomics reveal that isoforms of all three classes of glucan biosynthetic enzyme (starch/glycogen synthases, branching enzymes, and debranching enzymes) are differentially expressed in Müllerian bodies and leaves, providing a system-wide view of the quantitative programming of storage carbohydrate metabolism. This work will prompt targeted analysis in model organisms and cross-species comparisons. Finally, as starch is the major carbohydrate used for food and industrial applications worldwide, these data provide a basis for manipulating starch biosynthesis in crops to synthesize tailor-made polyglucans. PMID:23632447

  11. Antibacterial activity and mechanical properties of partially hydrolyzed sago starch-alginate edible film containing lemongrass oil.

    PubMed

    Maizura, M; Fazilah, A; Norziah, M H; Karim, A A

    2007-08-01

    Edible films were prepared from a mixture of partially hydrolyzed sago starch and alginate (SA). Lemongrass oil (0.1% to 0.4%, v/w) and glycerol (0% and 20%, w/w) were incorporated in the films to act as natural antimicrobial agent and plasticizer, respectively. The films were characterized for antimicrobial activity, water vapor permeability (WVP), tensile strength (TS), percent elongation at break (%E), and water solubility (WS). Fourier transform infrared (FTIR) spectroscopy was conducted to determine functional group interactions between the matrix and lemongrass oil. The zone of inhibition was increased significantly (P < 0.05) by addition of lemongrass oil at all levels in the presence and the absence of glycerol. This indicates that the film containing lemongrass oil was effective against Escherichia coli O157:H7 at all levels. In the absence of glycerol, the tensile strength of film decreased as the oil content increased, but there was no significant (P > 0.05) difference in percent elongation. The percent elongation at break and WVP values for film with 20% glycerol was found to be increased significantly (P < 0.05) with an increase in lemongrass oil content. Addition of lemongrass oil did not have any interaction with the functional groups of films as measured by FTIR.

  12. Resistant starch in Micronesian banana cultivars offers health benefits.

    PubMed

    Thakorlal, J; Perera, C O; Smith, B; Englberger, L; Lorens, A

    2010-04-01

    Resistant Starch (RS) is a type of starch that is resistant to starch hydrolyzing enzymes in the stomach and thus behaves more like dietary fibre. RS has been shown to have beneficial effects in disease prevention including modulation of glycaemic index diabetes, cholesterol lowering capability and weight management, which are critically important for many people in the Federated States of Micronesia. Green bananas are known to contain substantial concentrations of RS and are a common part of the Micronesian diet. Therefore the aim of this study was to determine the RS content in banana cultivars from Pohnpei, Micronesia: Daiwang, Inahsio, Karat, Utin Kerenis and Utin Ruk, for which no such information was available. Utin Kerenis, Inahsio and Utin Ruk were found to contain the highest amounts of RS. The fate of RS after incorporation into a food product (i.e., pancakes) was also studied and a significant reduction in the RS content was found for each cultivar after cooking. Microscopy of the banana samples indicated that the overall morphology of the cultivars was similar. In conclusion, green banana, including these varieties, should be promoted in Micronesia and other places for their rich RS content and related health benefits including diabetes control. Further research is needed to more clearly determine the effects of cooking and food processing on RS.

  13. THE SYNTHESIS OF THE STARCH GRANULE.

    PubMed

    Smith, A. M.; Denyer, K.; Martin, C.

    1997-06-01

    This review describes and discusses the implications of recent discoveries about how starch polymers are synthesized and organized to form a starch granule. Three issues are highlighted. 1. The role and importance of ADPglucose pyrophosphorylase in the generation of ADPglucose as the substrate for polymer synthesis. 2. The contributions of isoforms of starch-branching enzyme, starch synthase, and debranching enzyme to the synthesis and ordered packing of amylopectin molecules. 3. The requirements for and regulation of the synthesis of amylose.

  14. Synthesis, Surface Modification and Optical Properties of Thioglycolic Acid-Capped ZnS Quantum Dots for Starch Recognition at Ultralow Concentration

    NASA Astrophysics Data System (ADS)

    Tayebi, Mahnoush; Tavakkoli Yaraki, Mohammad; Ahmadieh, Mahnaz; Mogharei, Azadeh; Tahriri, Mohammadreza; Vashaee, Daryoosh; Tayebi, Lobat

    2016-11-01

    In this research, water-soluble thioglycolic acid-capped ZnS quantum dots (QDs) are synthesized by the chemical precipitation method. The prepared QDs are characterized using x-ray diffraction and transmission electron microscopy. Results revealed that ZnS QDs have a 2.73 nm crystallite size, cubic zinc blende structure, and spherical morphology with a diameter less than 10 nm. Photoluminescence (PL) spectroscopy is performed to determine the presence of low concentrations of starch. Four emission peaks are observed at 348 nm, 387 nm, 422 nm, and 486 nm and their intensities are quenched by increasing concentration of starch. PL intensity variations in the studied concentrations range (0-100 ppm) are best described by a Michaelis-Menten model. The Michaelis constant ( K m) for immobilized α-amylase in this system is about 101.07 ppm. This implies a great tendency for the enzyme to hydrolyze the starch as substrate. Finally, the limit of detection is found to be about 6.64 ppm.

  15. Enzymatic digestibility and ethanol fermentability of AFEX-treated starch-rich lignocellulosics such as corn silage and whole corn plant

    PubMed Central

    2010-01-01

    Background Corn grain is an important renewable source for bioethanol production in the USA. Corn ethanol is currently produced by steam liquefaction of starch-rich grains followed by enzymatic saccharification and fermentation. Corn stover (the non-grain parts of the plant) is a potential feedstock to produce cellulosic ethanol in second-generation biorefineries. At present, corn grain is harvested by removing the grain from the living plant while leaving the stover behind on the field. Alternatively, whole corn plants can be harvested to cohydrolyze both starch and cellulose after a suitable thermochemical pretreatment to produce fermentable monomeric sugars. In this study, we used physiologically immature corn silage (CS) and matured whole corn plants (WCP) as feedstocks to produce ethanol using ammonia fiber expansion (AFEX) pretreatment followed by enzymatic hydrolysis (at low enzyme loadings) and cofermentation (for both glucose and xylose) using a cellulase-amylase-based cocktail and a recombinant Saccharomyces cerevisiae 424A (LNH-ST) strain, respectively. The effect on hydrolysis yields of AFEX pretreatment conditions and a starch/cellulose-degrading enzyme addition sequence for both substrates was also studied. Results AFEX-pretreated starch-rich substrates (for example, corn grain, soluble starch) had a 1.5-3-fold higher enzymatic hydrolysis yield compared with the untreated substrates. Sequential addition of cellulases after hydrolysis of starch within WCP resulted in 15-20% higher hydrolysis yield compared with simultaneous addition of hydrolytic enzymes. AFEX-pretreated CS gave 70% glucan conversion after 72 h of hydrolysis for 6% glucan loading (at 8 mg total enzyme loading per gram glucan). Microbial inoculation of CS before ensilation yielded a 10-15% lower glucose hydrolysis yield for the pretreated substrate, due to loss in starch content. Ethanol fermentation of AFEX-treated (at 6% w/w glucan loading) CS hydrolyzate (resulting in 28 g/L ethanol

  16. Simultaneous saccharification and viscosity reduction of cassava pulp using a multi-component starch- and cell-wall degrading enzyme for bioethanol production.

    PubMed

    Poonsrisawat, Aphisit; Paemanee, Atchara; Wanlapatit, Sittichoke; Piyachomkwan, Kuakoon; Eurwilaichitr, Lily; Champreda, Verawat

    2017-10-01

    In this study, an efficient ethanol production process using simultaneous saccharification and viscosity reduction of raw cassava pulp with no prior high temperature pre-gelatinization/liquefaction step was developed using a crude starch- and cell wall-degrading enzyme preparation from Aspergillus aculeatus BCC17849. Proteomic analysis revealed that the enzyme comprised a complex mixture of endo- and exo-acting amylases, cellulases, xylanases, and pectina ses belonging to various glycosyl hydrolase families. Enzymatic hydrolysis efficiency was dependent on the initial solid loading in the reaction. Reduction in mixture viscosity was observed with a rapid decrease in complex viscosity from 3785 to 0.45 Pa s with the enzyme dosage of 2.19 mg/g on a dried weight basis within the first 2 h, which resulted from partial destruction of the plant cell wall fiber and degradation of the released starch granules by the enzymes as shown by scanning electron microscopy. Saccharification of cassava pulp at an initial solid of 16% (w/v) in a bench-scale bioreactor resulted in 736.4 mg glucose/g, which is equivalent to 82.92% glucose yield based on the total starch and glucan in the substrate, after 96 h at 40 °C. Simultaneous saccharification and fermentation of cassava pulp by Saccharomyces cerevisiae with the uncooked enzymatic process led to a final ethanol concentration of 6.98% w/v, equivalent to 96.7% theoretical yield based on the total starch and cellulose content. The results demonstrated potential of the enzyme for low-energy processing of cassava pulp in biofuel industry.

  17. Autophagy Contributes to Leaf Starch Degradation[C][W

    PubMed Central

    Wang, Yan; Yu, Bingjie; Zhao, Jinping; Guo, Jiangbo; Li, Ying; Han, Shaojie; Huang, Lei; Du, Yumei; Hong, Yiguo; Tang, Dingzhong; Liu, Yule

    2013-01-01

    Transitory starch, a major photosynthetic product in the leaves of land plants, accumulates in chloroplasts during the day and is hydrolyzed to maltose and Glc at night to support respiration and metabolism. Previous studies in Arabidopsis thaliana indicated that the degradation of transitory starch only occurs in the chloroplasts. Here, we report that autophagy, a nonplastidial process, participates in leaf starch degradation. Excessive starch accumulation was observed in Nicotiana benthamiana seedlings treated with an autophagy inhibitor and in autophagy-related (ATG) gene-silenced N. benthamiana and in Arabidopsis atg mutants. Autophagic activity in the leaves responded to the dynamic starch contents during the night. Microscopy showed that a type of small starch granule-like structure (SSGL) was localized outside the chloroplast and was sequestered by autophagic bodies. Moreover, an increased number of SSGLs was observed during starch depletion, and disruption of autophagy reduced the number of vacuole-localized SSGLs. These data suggest that autophagy contributes to transitory starch degradation by sequestering SSGLs to the vacuole for their subsequent breakdown. PMID:23564204

  18. Effect of acid hydrolysis on morphology, structure and digestion property of starch from Cynanchum auriculatum Royle ex Wight.

    PubMed

    Wang, Xingchi; Wen, Fanting; Zhang, Shurong; Shen, Ruru; Jiang, Wei; Liu, Jun

    2017-03-01

    Effect of acid hydrolysis on the morphology, structure and digestion property of starch from Cynanchum auriculatum Royle ex Wight was investigated in this study. The hydrolysis degree of C. auriculatum starch rapidly increased to 63.69% after 4days and reached 78.67% at the end of 9days. Morphology observation showed that the starch granules remained intact during the first 4days of hydrolysis. However, serious erosion phenomenon was observed after 5days and starch granules completely fell into pieces after 7days. During acid hydrolysis process, the crystal type of hydrolyzed starch changed from original C B -type to final A-type. Small-angle X-ray scattering patterns showed the semi-crystalline growth rings started to be hydrolyzed after 4days. The proportions of single helix and amorphous components as well as amylose content in starch gradually decreased, whereas the proportion of double helix components continuously increased during acid hydrolysis. However, the contents of rapidly digestible starch, slowly digestible starch and resistant starch were almost constant during acid hydrolysis process, indicating the in vitro digestion property of C. auriculatum starch was not affected by acid hydrolysis. Our results provided novel information on the inner structure of C. auriculatum starch granules. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Catalytic Properties of Amylolytic Enzymes Produced by Gongronella butleri Using Agroindustrial Residues on Solid-State Fermentation

    PubMed Central

    Cavalheiro, Gabriéla Finoto; Sanguine, Isadora Stranieri; Santos, Flávia Regina da Silva; da Costa, Ana Carolina; Fernandes, Matheus; da Paz, Marcelo Fossa; Fonseca, Gustavo Graciano

    2017-01-01

    Amylases catalyze the hydrolysis of starch, a vegetable polysaccharide abundant in nature. These enzymes can be utilized in the production of syrups, alcohol, detergent, pharmaceutical products, and animal feed formulations. The aim of this study was to optimize the production of amylases by the filamentous fungus Gongronella butleri by solid-state fermentation and to evaluate the catalytic properties of the obtained enzymatic extract. The highest amylase production, 63.25 U g−1 (or 6.32 U mL−1), was obtained by culturing the fungus in wheat bran with 55% of initial moisture, cultivated for 96 h at 25°C. The enzyme presented optimum activity at pH 5.0 and 55°C. The amylase produced was stable in a wide pH range (3.5–9.5) and maintained its catalytic activity for 1 h at 40°C. Furthermore, the enzymatic extract hydrolyzed starches from different vegetable sources, presenting predominant dextrinizing activity for all substrates evaluated. However, the presence of glucose was observed in a higher concentration during hydrolysis of corn starch, indicating the synergistic action of endo- and exoamylases, which enables the application of this enzymatic extract to produce syrups from different starch sources. PMID:29376074

  20. Effects of microbial enzymes on starch and hemicellulose degradation in total mixed ration silages.

    PubMed

    Ning, Tingting; Wang, Huili; Zheng, Mingli; Niu, Dongze; Zuo, Sasa; Xu, Chuncheng

    2017-02-01

    This study investigated the association of enzyme-producing microbes and their enzymes with starch and hemicellulose degradation during fermentation of total mixed ration (TMR) silage. The TMRs were prepared with soybean curd residue, alfalfa hay (ATMR) or Leymus chinensis hay (LTMR), corn meal, soybean meal, vitamin-mineral supplements, and salt at a ratio of 25:40:30:4:0.5:0.5 on a dry matter basis. Laboratory-scale bag silos were randomly opened after 1, 3, 7, 14, 28, and 56 days of ensiling and subjected to analyses of fermentation quality, carbohydrates loss, microbial amylase and hemicellulase activities, succession of dominant amylolytic or hemicellulolytic microbes, and their microbial and enzymatic properties. Both ATMR and LTMR silages were well preserved, with low pH and high lactic acid concentrations. In addition to the substantial loss of water soluble carbohydrates, loss of starch and hemicellulose was also observed in both TMR silages with prolonged ensiling. The microbial amylase activity remained detectable throughout the ensiling in both TMR silages, whereas the microbial hemicellulase activity progressively decreased until it was inactive at day 14 post-ensiling in both TMR silages. During the early stage of fermentation, the main amylase-producing microbes were Bacillus amyloliquefaciens ( B. amyloliquefaciens ), B. cereus , B. licheniformis , and B. subtilis in ATMR silage and B. flexus , B. licheniformis , and Paenibacillus xylanexedens ( P. xylanexedens ) in LTMR silage, whereas Enterococcus faecium was closely associated with starch hydrolysis at the later stage of fermentation in both TMR silages. B. amyloliquefaciens , B. licheniformis , and B. subtilis and B. licheniformis , B. pumilus , and P. xylanexedens were the main source of microbial hemicellulase during the early stage of fermentation in ATMR and LTMR silages, respectively. The microbial amylase contributes to starch hydrolysis during the ensiling process in both TMR silages

  1. A debranching enzyme IsoM of Corallococcus sp. strain EGB with potential in starch processing.

    PubMed

    Li, Zhoukun; Ji, Kai; Zhou, Jie; Ye, Xianfeng; Wang, Ting; Luo, Xue; Huang, Yan; Cao, Hui; Cui, Zhongli; Kong, Yi

    2017-12-01

    Interest in use of resistant starch and maltooligosaccharides as functional foods and biopreservatives has grown in recent years. In this research, a novel debranching enzyme IsoM from Corallococcus sp. strain EGB was identified and expressed in P. pastoris GS115. Sequence alignments showed that IsoM was typical isoamylase with the specific activity up to 70,600U/mg, which belongs to glycoside hydrolase family 13 (GH 13). Enzymatic reaction pattern demonstrated that IsoM has high debranching efficiency against α-1,6-glycosidic bond of branched starch, and exhibited no activity towards α-1,4-glycosidic bond. The potential application of IsoM in starch processing was determined. IsoM was a potential candidate for the production of RS (70.9%) from raw starch, which was comparable with the commercial pullulanase (Promozyme ® D2). IsoM also improved the maltohexaose yield in combination with maltohexaose-producing α-amylase AmyM (KM114206), the maltohexaose yield was improved by 63.3% compared with 21.9% improvement of Promozyme ® D2. The results of RS production and combination with other amylases suggesting that IsoM is a potential candidate for the efficient conversion of starch. Copyright © 2017. Published by Elsevier B.V.

  2. Influence of a diet rich in resistant starch on the degradation of non-starch polysaccharides in the large intestine of pigs.

    PubMed

    Jonathan, Melliana C; Haenen, Daniëlle; Souza da Silva, Carol; Bosch, Guido; Schols, Henk A; Gruppen, Harry

    2013-03-01

    To investigate the effect of resistant starch to the degradation of other non-starch polysaccharides (NSPs) in the large intestine of pigs, two groups of pigs were fed either a diet containing digestible starch (DS) or a diet containing resistant starch (RS). Both diets contained NSPs from wheat and barley. Digesta from different parts of the large intestine were collected and analysed for sugar composition and carbohydrate-degrading-enzyme activities. Resistant starch, as well as β-glucans and soluble arabinoxylan, was utilised mainly in the caecum. The utilisation of β-glucans and soluble arabinoxylan in the caecum was higher in DS-fed pigs than in RS-fed pigs. Analyses on carbohydrate-degrading-enzyme activities demonstrated that microbial enzyme production was stimulated according to the diet composition, and the enzyme profile throughout the large intestine of RS-fed pigs indicated that the presence of resistant starch shifted the utilisation of NSPs to more distal parts of the colon. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Engineering yeasts for raw starch conversion.

    PubMed

    van Zyl, W H; Bloom, M; Viktor, M J

    2012-09-01

    Next to cellulose, starch is the most abundant hexose polymer in plants, an import food and feed source and a preferred substrate for the production of many industrial products. Efficient starch hydrolysis requires the activities of both α-1,4 and α-1,6-debranching hydrolases, such as endo-amylases, exo-amylases, debranching enzymes, and transferases. Although amylases are widely distributed in nature, only about 10 % of amylolytic enzymes are able to hydrolyse raw or unmodified starch, with a combination of α-amylases and glucoamylases as minimum requirement for the complete hydrolysis of raw starch. The cost-effective conversion of raw starch for the production of biofuels and other important by-products requires the expression of starch-hydrolysing enzymes in a fermenting yeast strain to achieve liquefaction, hydrolysis, and fermentation (Consolidated Bioprocessing, CBP) by a single organism. The status of engineering amylolytic activities into Saccharomyces cerevisiae as fermentative host is highlighted and progress as well as challenges towards a true CBP organism for raw starch is discussed. Conversion of raw starch by yeast secreting or displaying α-amylases and glucoamylases on their surface has been demonstrated, although not at high starch loading or conversion rates that will be economically viable on industrial scale. Once efficient conversion of raw starch can be demonstrated at commercial level, engineering of yeast to utilize alternative substrates and produce alternative chemicals as part of a sustainable biorefinery can be pursued to ensure the rightful place of starch converting yeasts in the envisaged bio-economy of the future.

  4. Kernel Composition, Starch Structure, and Enzyme Digestibility of Opaque-2 Maize and Quality Protein Maize

    USDA-ARS?s Scientific Manuscript database

    Objectives of this study were to understand how opaque-2 (o2) mutation and quality protein maize (QPM) affect maize kernel composition and starch structure, property, and enzyme digestibility. Kernels of o2 maize contained less protein (9.6−12.5%) than those of the wild-type (WT) counterparts (12...

  5. Circadian oscillation of starch branching enzyme gene expression in the sorghum endosperm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mutisya, J.; Sun, C.; Jansson, C.

    2009-08-31

    Expression of the three SBE genes, encoding starch branching enzymes, in the sorghum endosperm exhibited a diurnal rhythm during a 24-h cycle. Remarkably, the oscillation in SBE expression was maintained in cultured spikes after a 48-h dark treatment, also when fed a continuous solution of sucrose or abscisic acid. Our findings suggest that the rhythmicity in SBE expression in the endosperm is independent of cues from the photosynthetic source and that the oscillator resides within the endosperm itself.

  6. Porous starch extracted from Chinese rice wine vinasse: characterization and adsorption properties.

    PubMed

    Li, Hongyan; Jiao, Aiquan; Wei, Benxi; Wang, Yong; Wu, Chunsen; Jin, Zhengyu; Tian, Yaoqi

    2013-10-01

    Chinese rice wine vinasse (the fermentation residue after removal of the crude wine or beer) contains 20-30% residual native starch. These starches are partly hydrolyzed by amylase and glucoamylase during rice wine fermentation, indicating that it is a potential source of porous starch, which is a value-added material. In the present study, morphological, short-range order, crystalline, and thermal studies were determined to characterize the structural and chemical properties of vinasse starch. The results showed that vinasse starch granule had a rough and porous shape and was much more ordered than native starch. Vinasse starch also could tolerate a higher temperature than native starch. The water and oil adsorptive capacities of vinasse starch were 1.89 and 4.14 times higher than that of native rice starch. These results suggest that vinasse is an effective and economical source of porous starch for using as adsorbent. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  7. Structural transformation of crystallized debranched cassava starch during dual hydrothermal treatment in relation to enzyme digestibility.

    PubMed

    Boonna, Sureeporn; Tongta, Sunanta

    2018-07-01

    Structural transformation of crystallized debranched cassava starch prepared by temperature cycling (TC) treatment and then subjected to annealing (ANN), heat-moisture treatment (HMT) and dual hydrothermal treatments of ANN and HMT was investigated. The relative crystallinity, lateral crystal size, melting temperature and resistant starch (RS) content increased for all hydrothermally treated samples, but the slowly digestible starch (SDS) content decreased. The RS content followed the order: HMT → ANN > HMT > ANN → HMT > ANN > TC, respectively. The HMT → ANN sample showed a larger lateral crystal size with more homogeneity, whereas the ANN → HMT sample had a smaller lateral crystal size with a higher melting temperature. After cooking at 50% moisture, the increased RS content of samples was observed, particularly for the ANN → HMT sample. These results suggest that structural changes of crystallized debranched starch during hydrothermal treatments depend on initial crystalline characteristics and treatment sequences, influencing thermal stability, enzyme digestibility, and cooking stability. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. The N-terminal Part of Arabidopsis thaliana Starch Synthase 4 Determines the Localization and Activity of the Enzyme.

    PubMed

    Raynaud, Sandy; Ragel, Paula; Rojas, Tomás; Mérida, Ángel

    2016-05-13

    Starch synthase 4 (SS4) plays a specific role in starch synthesis because it controls the number of starch granules synthesized in the chloroplast and is involved in the initiation of the starch granule. We showed previously that SS4 interacts with fibrillins 1 and is associated with plastoglobules, suborganelle compartments physically attached to the thylakoid membrane in chloroplasts. Both SS4 localization and its interaction with fibrillins 1 were mediated by the N-terminal part of SS4. Here we show that the coiled-coil region within the N-terminal portion of SS4 is involved in both processes. Elimination of this region prevents SS4 from binding to fibrillins 1 and alters SS4 localization in the chloroplast. We also show that SS4 forms dimers, which depends on a region located between the coiled-coil region and the glycosyltransferase domain of SS4. This region is highly conserved between all SS4 enzymes sequenced to date. We show that the dimerization seems to be necessary for the activity of the enzyme. Both dimerization and the functionality of the coiled-coil region are conserved among SS4 proteins from phylogenetically distant species, such as Arabidopsis and Brachypodium This finding suggests that the mechanism of action of SS4 is conserved among different plant species. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Granular starch hydrolysis for fuel ethanol production

    NASA Astrophysics Data System (ADS)

    Wang, Ping

    Granular starch hydrolyzing enzymes (GSHE) convert starch into fermentable sugars at low temperatures (≤48°C). Use of GSHE in dry grind process can eliminate high temperature requirements during cooking and liquefaction (≥90°C). In this study, GSHE was compared with two combinations of commercial alpha-amylase and glucoamylase (DG1 and DG2, respectively). All three enzyme treatments resulted in comparable ethanol concentrations (between 14.1 to 14.2% v/v at 72 hr), ethanol conversion efficiencies and ethanol and DDGS yields. Sugar profiles for the GSHE treatment were different from DG1 and DG2 treatments, especially for glucose. During simultaneous saccharification and fermentation (SSF), the highest glucose concentration for the GSHE treatment was 7% (w/v); for DG1 and DG2 treatments, maximum glucose concentration was 19% (w/v). GSHE was used in one of the fractionation technologies (enzymatic dry grind) to improve recovery of germ and pericarp fiber prior to fermentation. The enzymatic dry grind process with GSHE was compared with the conventional dry grind process using GSHE with the same process parameters of dry solids content, pH, temperature, time, enzyme and yeast usages. Ethanol concentration (at 72 hr) of the enzymatic process was 15.5% (v/v), which was 9.2% higher than the conventional process (14.2% v/v). Distillers dried grains with solubles (DDGS) generated from the enzymatic process (9.8% db) was 66% less than conventional process (28.3% db). Three additional coproducts, germ 8.0% (db), pericarp fiber 7.7% (db) and endosperm fiber 5.2% (db) were produced. Costs and amounts of GSHE used is an important factor affecting dry grind process economics. Proteases can weaken protein matrix to aid starch release and may reduce GSHE doses. Proteases also can hydrolyze protein into free amino nitrogen (FAN), which can be used as a yeast nutrient during fermentation. Two types of proteases, exoprotease and endoprotease, were studied; protease and urea

  10. Comparative Characterization of Complete and Truncated Forms of Lactobacillus amylovorus α-Amylase and Role of the C-Terminal Direct Repeats in Raw-Starch Binding

    PubMed Central

    Rodriguez Sanoja, R.; Morlon-Guyot, J.; Jore, J.; Pintado, J.; Juge, N.; Guyot, J. P.

    2000-01-01

    Two constructs derived from the α-amylase gene (amyA) of Lactobacillus amylovorus were expressed in Lactobacillus plantarum, and their expression products were purified, characterized, and compared. These products correspond to the complete (AmyA) and truncated (AmyAΔ) forms of α-amylase; AmyAΔ lacks the 66-kDa carboxyl-terminal direct-repeating-unit region. AmyA and AmyAΔ exhibit similar amylase activities towards a range of soluble substrates (amylose, amylopectin and α-cyclodextrin, and soluble starch). The specific activities of the enzymes towards soluble starch are similar, but the KM and Vmax values of AmyAΔ were slightly higher than those of AmyA, whereas the thermal stability of AmyAΔ was lower than that of AmyA. In contrast to AmyA, AmyAΔ is unable to bind to β-cyclodextrin and is only weakly active towards glycogen. More striking is the fact that AmyAΔ cannot bind or hydrolyze raw starch, demonstrating that the carboxyl-terminal repeating-unit domain of AmyA is required for raw-starch binding activity. PMID:10919790

  11. Effect of modification with 1,4-α-glucan branching enzyme on the rheological properties of cassava starch.

    PubMed

    Li, Yadi; Li, Caiming; Gu, Zhengbiao; Hong, Yan; Cheng, Li; Li, Zhaofeng

    2017-10-01

    Steady and dynamic shear measurements were used to investigate the rheological properties of cassava starches modified using the 1,4-α-glucan branching enzyme (GBE) from Geobacillus thermoglucosidans STB02. GBE treatment lowered the hysteresis loop areas, the activation energy (E a ) values and the parameters in rheological models of cassava starch pastes. Moreover, GBE treatment increased its storage (G') and loss (G″) moduli, and decreased their tan δ (ratio of G″/G') values and frequency-dependencies. Scanning electron microscopic studies showed the selective and particular attack of GBE on starch granules, and X-ray diffraction analyses showed that GBE treatment produces significant structural changes in amylose and amylopectin. These changes demonstrate that GBE modification produces cassava starch with a more structured network and improved stability towards mechanical processing. Differential scanning calorimetric analysis and temperature sweeps indicated greater resistance to granule rupture, higher gel rigidity, and a large decrease in the rate of initial conformational ordering with increasing GBE treatment time. Pronounced changes in rheological parameters revealed that GBE modification enhances the stability of cassava starch and its applicability in the food processing industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Gradually Decreasing Starch Branching Enzyme Expression Is Responsible for the Formation of Heterogeneous Starch Granules1[OPEN

    PubMed Central

    Hu, Pan; Chen, Zichun

    2018-01-01

    Rice (Oryza sativa) endosperm is mainly occupied by homogeneous polygonal starch from inside to outside. However, morphologically different (heterogeneous) starches have been identified in some rice mutants. How these heterogeneous starches form remains unknown. A high-amylose rice line (TRS) generated through the antisense inhibition of starch branching synthase I (SBEI) and SBEIIb contains four heterogeneous starches: polygonal, aggregate, elongated, and hollow starch; these starches are regionally distributed in the endosperm from inside to outside. Here, we investigated the relationship between SBE dosage and the morphological architecture of heterogeneous starches in TRS endosperm from the view of the molecular structure of starch. The results indicated that their molecular structures underwent regular changes, including gradually increasing true amylose content but decreasing amylopectin content and gradually increasing the ratio of amylopectin long chain but decreasing the ratio of amylopectin short chain. Granule-bound starch synthase I (GBSSI) amounts in the four heterogeneous starches were not significantly different from each other, but SBEI, SBEIIa, and SBEIIb showed a gradually decreasing trend. Further immunostaining analysis revealed that the gradually decreasing SBEs acting on the formation of the four heterogeneous granules were mainly due to the spatial distribution of the three SBEs in the endosperm. It was suggested that the decreased amylopectin in starch might remove steric hindrance and provide extra space for abundant amylose accumulation when the GBSSI amount was not elevated. Furthermore, extra amylose coupled with altered amylopectin structure possibly led to morphological changes in heterogeneous granules. PMID:29133372

  13. Non-starch polysaccharide-degrading enzymes increase the performance of broiler chickens fed wheat of low apparent metabolizable energy.

    PubMed

    Choct, M; Hughes, R J; Trimble, R P; Angkanaporn, K; Annison, G

    1995-03-01

    The effect of a commercial glycanase product (Avizyme TX) on the performance of 4-wk-old broiler chickens fed wheats with low and normal apparent metabolizable energy values was studied. Controls were fed a corn-based diet. Supplementation with the enzyme product significantly (P < 0.01) increased the apparent metabolizable energy of the low metabolizable energy wheat from 12.02 to 14.94 MJ/kg dry matter. The apparent metabolizable energy value of the normal wheat was increased from 14.52 to 14.83 MJ/kg dry matter; this was, however, not significant. Birds fed the low metabolizable energy wheat diet had significantly (P < 0.01) higher digesta viscosity and lower small intestinal starch and protein digestibilities than birds fed the normal wheat diet. Chickens fed the low metabolizable energy wheat tended to grow less than those fed the normal wheat diet. When the low metabolizable energy wheat+enzyme diet was fed, digesta viscosity was significantly (P < 0.01) lower (20.28 vs. 10.36 mPa.s), and small intestinal digestibility coefficient of starch was significantly (P < 0.01) greater (0.584 vs. 0.861) relative to values in birds fed the low metabolizable energy wheat diet alone. Although the protein digestibility coefficient also increased from 0.689 to 0.745, the difference was not significant. Weight gain and feed efficiency of birds fed the low metabolizable energy wheat+enzyme equaled those of controls. The enzyme product significantly (P < 0.01) increased the solubilization of non-starch polysaccharides within the gastrointestinal tract of birds fed both types of wheat diets.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Protein-protein interactions among enzymes of starch biosynthesis in high-amylose barley genotypes reveal differential roles of heteromeric enzyme complexes in the synthesis of A and B granules.

    PubMed

    Ahmed, Zaheer; Tetlow, Ian J; Ahmed, Regina; Morell, Matthew K; Emes, Michael J

    2015-04-01

    The present study investigated the role of protein phosphorylation, and protein complex formation between key enzymes of amylopectin synthesis, in barley genotypes exhibiting "high amylose" phenotypes. Starch branching enzyme (SBE) down-regulated lines (ΔSBEIIa and ΔSBEIIb), starch synthase (SS)IIa (ssiia(-), sex6) and SSIII (ssiii(-), amo1) mutants were compared to a reference genotype, OAC Baxter. Down-regulation of either SBEIIa or IIb caused pleiotropic effects on SSI and starch phosphorylase (SP) and resulted in formation of novel protein complexes in which the missing SBEII isoform was substituted by SBEI and SP. In the ΔSBEIIb down-regulated line, soluble SP activity was undetectable. Nonetheless, SP was incorporated into a heteromeric protein complex with SBEI and SBEIIa and was readily detected in starch granules. In amo1, unlike other mutants, the data suggest that both SBEIIa and SBEIIb are in a protein complex with SSI and SSIIa. In the sex6 mutant no protein complexes involving SBEIIa or SBEIIb were detected in amyloplasts. Studies with Pro-Q Diamond revealed that GBSS, SSI, SSIIa, SBEIIb and SP are phosphorylated in their granule bound state. Alteration in the granule proteome in ΔSBEIIa and ΔSBEIIb lines, suggests that different protein complexes are involved in the synthesis of A and B granules. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Application of enzyme-hydrolyzed cassava dregs as a carbon source in aquaculture.

    PubMed

    Shang, Qian; Tang, Haifang; Wang, Yinghui; Yu, Kefu; Wang, Liwei; Zhang, Ruijie; Wang, Shaopeng; Xue, Rui; Wei, Chaoshuai

    2018-02-15

    As a kind of tropical agricultural solid waste, cassava dregs had become a thorny nonpoint source pollution problem. This study investigated the feasibility of applying cassava dregs as a substitute for sucrose in biofloc technology (BFT) systems. Three types of biofloc systems (using three different carbon sources sucrose (BFT1), cassava dregs (BFT2) and enzyme-hydrolyzed cassava dregs (BFT3) respectively), and the control were constructed in this experiment in 200L tanks with a C/N ratio of 20/1. The comparison of the water quality indicators (The total ammonia nitrogen (TAN), nitrite (NO 2 - -N), nitrate (NO 3 - -N), chemical oxygen demand (COD)), biofloc for the above four groups was performed, and the results indicated that BFT3 showed greater potential to the formation of biofloc, which was beneficial for the water quality control. So the shrimp survival rate was the highest and the feed conversion rate was the lowest in BFT3. Besides, the high-throughput sequencing results showed that the relative abundance of heterotrophic bacteria in the top 30 dominant microbial communities in BFT3 was higher than those in BFT1 and BFT2 by 20.70% and 1.19%, respectively, which could decrease TAN to improve the water quality. Overall, the results had proved that the cassava dregs of enzymes hydrolysis could be used as an ideal and cheap carbon source in BFT. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Improved bread-baking process using Saccharomyces cerevisiae displayed with engineered cyclodextrin glucanotransferase.

    PubMed

    Shim, Jae-Hoon; Seo, Nam-Seok; Roh, Sun-Ah; Kim, Jung-Wan; Cha, Hyunju; Park, Kwan-Hwa

    2007-06-13

    A bread-baking process was developed using a potential novel enzyme, cyclodextrin glucanotransferase[3-18] (CGTase[3-18]), that had previously been engineered to have enhanced hydrolyzing activity with little cyclodextrin (CD) formation activity toward starch. CGTase[3-18] was primarily manipulated to be displayed on the cell surface of Saccharomyces cerevisiae. S. cerevisiae carrying pdeltaCGT integrated into the chromosome exhibited starch-hydrolyzing activity at the same optimal pH and temperature as the free enzyme. Volumes of the bread loaves and rice cakes prepared using S. cerevisiae/pdeltaCGT increased by 20% and 45%, respectively, with no detectable CD. Retrogradation rates of the bread and rice cakes decreased significantly during storage. In comparison to the wild type, S. cerevisiae/pdeltaCGT showed improved viability during four freeze-thaw cycles. The results indicated that CGTase[3-18] displayed on the surface of yeast hydrolyzed starch to glucose and maltose that can be used more efficiently for yeast fermentation. Therefore, display of an antistaling enzyme on the cell surface of yeast has potential for enhancing the baking process.

  17. Phylogeny and expression pattern of starch branching enzyme family genes in cassava (Manihot esculenta Crantz) under diverse environments.

    PubMed

    Pei, Jinli; Wang, Huijun; Xia, Zhiqiang; Liu, Chen; Chen, Xin; Ma, Pingan; Lu, Cheng; Wang, Wenquan

    2015-08-01

    Starch branching enzyme (SBE) is one of the key enzymes involved in starch biosynthetic metabolism. In this study, six SBE family genes were identified from the cassava genome. Phylogenetic analysis divided the MeSBE family genes into dicot family A, B, C, and the new group. Tissue-specific analysis showed that MeSBE2.2 was strongly expressed in leaves, stems cortex, and root stele, and MeSBE3 had high expression levels in stem cortex and root stele of plants in the rapid growth stage under field condition, whereas the expression levels of MeSBE2.1, MeSBE4, and MeSBE5 were low except for in stems cortex. The transcriptional activity of MeSBE2.2 and MeSBE3 was higher compared with other members and gradually increased in the storage roots during root growth process, while the other MeSBE members normally remained low expression levels. Expression of MeSBE2.2 could be induced by salt, drought, exogenous abscisic acid, jasmonic acid, and salicylic acid signals, while MeSBE3 had positive response to drought, salt, exogenous abscisic acid, and salicylic acid in leaves but not in storage root, indicating that they might be more important in starch biosynthesis pathway under diverse environments.

  18. Physicochemical properties of kiwifruit starch.

    PubMed

    Li, Dongxing; Zhu, Fan

    2017-04-01

    Three varieties of golden kiwifruit (Actinidia chinensis) (Gold3, Gold9 and Hort16A) were collected at the commercial harvesting time, and physicochemical properties of starches from core and outer pericarp were studied. Starch contents (dry weight basis) in outer pericarp and core tissues ranged from 38.6 to 51.8% and 34.6 to 40.7%, respectively. All the kiwifruit starches showed B-type polymorph. Compared to the outer pericarp starches, amylose content and enzyme susceptibility of core starches were higher, and the degree of crystallinity, granule size and gelatinization parameters of core starches were somewhat lower. This suggests different biosynthetic properties between these two starches. The enthalpy changes of gelatinization of outer pericarp starches were high (∼21J/g). Rheological properties of outer pericarp starches were compared with normal maize and potato starches showed high yield stress of flow properties. This study revealed the unique properties of kiwifruit starch among various types of starches. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Modulation of Starch Digestion for Slow Glucose Release through “Toggling” of Activities of Mucosal α-Glucosidases*

    PubMed Central

    Lee, Byung-Hoo; Eskandari, Razieh; Jones, Kyra; Reddy, Kongara Ravinder; Quezada-Calvillo, Roberto; Nichols, Buford L.; Rose, David R.; Hamaker, Bruce R.; Pinto, B. Mario

    2012-01-01

    Starch digestion involves the breakdown by α-amylase to small linear and branched malto-oligosaccharides, which are in turn hydrolyzed to glucose by the mucosal α-glucosidases, maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI). MGAM and SI are anchored to the small intestinal brush-border epithelial cells, and each contains a catalytic N- and C-terminal subunit. All four subunits have α-1,4-exohydrolytic glucosidase activity, and the SI N-terminal subunit has an additional exo-debranching activity on the α-1,6-linkage. Inhibition of α-amylase and/or α-glucosidases is a strategy for treatment of type 2 diabetes. We illustrate here the concept of “toggling”: differential inhibition of subunits to examine more refined control of glucogenesis of the α-amylolyzed starch malto-oligosaccharides with the aim of slow glucose delivery. Recombinant MGAM and SI subunits were individually assayed with α-amylolyzed waxy corn starch, consisting mainly of maltose, maltotriose, and branched α-limit dextrins, as substrate in the presence of four different inhibitors: acarbose and three sulfonium ion compounds. The IC50 values show that the four α-glucosidase subunits could be differentially inhibited. The results support the prospect of controlling starch digestion rates to induce slow glucose release through the toggling of activities of the mucosal α-glucosidases by selective enzyme inhibition. This approach could also be used to probe associated metabolic diseases. PMID:22851177

  20. Reduced starch granule number per chloroplast in the dpe2/phs1 mutant is dependent on initiation of starch degradation

    PubMed Central

    Malinova, Irina

    2017-01-01

    An Arabidopsis double knock-out mutant lacking cytosolic disproportionating enzyme 2 (DPE2) and the plastidial phosphorylase (PHS1) revealed a dwarf-growth phenotype, reduced starch content, an uneven distribution of starch within the plant rosette, and a reduced number of starch granules per chloroplast under standard growth conditions. In contrast, the wild type contained 5–7 starch granules per chloroplast. Mature and old leaves of the double mutant were essentially starch free and showed plastidial disintegration. Several analyses revealed that the number of starch granules per chloroplast was affected by the dark phase. So far, it was unclear if it was the dark phase per se or starch degradation in the dark that was connected to the observed decrease in the number of starch granules per chloroplast. Therefore, in the background of the double mutant dpe2/phs1, a triple mutant was generated lacking the initial starch degrading enzyme glucan, water dikinase (GWD). The triple mutant showed improved plant growth, a starch-excess phenotype, and a homogeneous starch distribution. Furthermore, the number of starch granules per chloroplast was increased and was similar to wild type. However, starch granule morphology was only slightly affected by the lack of GWD as in the triple mutant and, like in dpe2/phs1, more spherical starch granules were observed. The characterized triple mutant was discussed in the context of the generation of starch granules and the formation of starch granule morphology. PMID:29155859

  1. Reduced starch granule number per chloroplast in the dpe2/phs1 mutant is dependent on initiation of starch degradation.

    PubMed

    Malinova, Irina; Fettke, Joerg

    2017-01-01

    An Arabidopsis double knock-out mutant lacking cytosolic disproportionating enzyme 2 (DPE2) and the plastidial phosphorylase (PHS1) revealed a dwarf-growth phenotype, reduced starch content, an uneven distribution of starch within the plant rosette, and a reduced number of starch granules per chloroplast under standard growth conditions. In contrast, the wild type contained 5-7 starch granules per chloroplast. Mature and old leaves of the double mutant were essentially starch free and showed plastidial disintegration. Several analyses revealed that the number of starch granules per chloroplast was affected by the dark phase. So far, it was unclear if it was the dark phase per se or starch degradation in the dark that was connected to the observed decrease in the number of starch granules per chloroplast. Therefore, in the background of the double mutant dpe2/phs1, a triple mutant was generated lacking the initial starch degrading enzyme glucan, water dikinase (GWD). The triple mutant showed improved plant growth, a starch-excess phenotype, and a homogeneous starch distribution. Furthermore, the number of starch granules per chloroplast was increased and was similar to wild type. However, starch granule morphology was only slightly affected by the lack of GWD as in the triple mutant and, like in dpe2/phs1, more spherical starch granules were observed. The characterized triple mutant was discussed in the context of the generation of starch granules and the formation of starch granule morphology.

  2. Enhanced production of raw starch degrading enzyme using agro-industrial waste mixtures by thermotolerant Rhizopus microsporus for raw cassava chip saccharification in ethanol production.

    PubMed

    Trakarnpaiboon, Srisakul; Srisuk, Nantana; Piyachomkwan, Kuakoon; Sakai, Kenji; Kitpreechavanich, Vichien

    2017-09-14

    In the present study, solid-state fermentation for the production of raw starch degrading enzyme was investigated by thermotolerant Rhizopus microsporus TISTR 3531 using a combination of agro-industrial wastes as substrates. The obtained crude enzyme was applied for hydrolysis of raw cassava starch and chips at low temperature and subjected to nonsterile ethanol production using raw cassava chips. The agro-industrial waste ratio was optimized using a simplex axial mixture design. The results showed that the substrate mixture consisting of rice bran:corncob:cassava bagasse at 8 g:10 g:2 g yielded the highest enzyme production of 201.6 U/g dry solid. The optimized condition for solid-state fermentation was found as 65% initial moisture content, 35°C, initial pH of 6.0, and 5 × 10 6 spores/mL inoculum, which gave the highest enzyme activity of 389.5 U/g dry solid. The enzyme showed high efficiency on saccharification of raw cassava starch and chips with synergistic activities of commercial α-amylase at 50°C, which promotes low-temperature bioethanol production. A high ethanol concentration of 102.2 g/L with 78% fermentation efficiency was achieved from modified simultaneous saccharification and fermentation using cofermentation of the enzymatic hydrolysate of 300 g raw cassava chips/L with cane molasses.

  3. Soluble Starch Synthase III-1 in Amylopectin Metabolism of Banana Fruit: Characterization, Expression, Enzyme Activity, and Functional Analyses

    PubMed Central

    Miao, Hongxia; Sun, Peiguang; Liu, Qing; Jia, Caihong; Liu, Juhua; Hu, Wei; Jin, Zhiqiang; Xu, Biyu

    2017-01-01

    Soluble starch synthase (SS) is one of the key enzymes involved in amylopectin biosynthesis in plants. However, no information is currently available about this gene family in the important fruit crop banana. Herein, we characterized the function of MaSSIII-1 in amylopectin metabolism of banana fruit and described the putative role of the other MaSS family members. Firstly, starch granules, starch and amylopectin content were found to increase during banana fruit development, but decline during storage. The SS activity started to increase later than amylopectin and starch content. Secondly, four putative SS genes were cloned and characterized from banana fruit. Among them, MaSSIII-1 showed the highest expression in banana pulp during fruit development at transcriptional levels. Further Western blot analysis suggested that the protein was gradually increased during banana fruit development, but drastically reduced during storage. This expression pattern was highly consistent with changes in starch granules, amylopectin content, and SS activity at the late phase of banana fruit development. Lastly, overexpression of MaSSIII-1 in tomato plants distinctly changed the morphology of starch granules and significantly increased the total starch accumulation, amylopectin content, and SS activity at mature-green stage in comparison to wild-type. The findings demonstrated that MaSSIII-1 is a key gene expressed in banana fruit and responsible for the active amylopectin biosynthesis, this is the first report in a fresh fruit species. Such a finding may enable the development of molecular markers for banana breeding and genetic improvement of nutritional value and functional properties of banana fruit. PMID:28424724

  4. Position of modifying groups on starch chains of octenylsuccinic anhydride-modified waxy maize starch

    USDA-ARS?s Scientific Manuscript database

    Octenylsuccinic anhydride (OSA)-modified starches with degree of substitution of 0.018 (OS-S-L) and 0.092 (OS-S-H) were prepared from granular native waxy maize starch in an aqueous slurry system. The substitution distribution of OS groups was investigated by enzyme hydrolysis followed by chromatogr...

  5. Characterisation of three starch degrading enzymes: thermostable β-amylase, maltotetraogenic and maltogenic α-amylases.

    PubMed

    Derde, L J; Gomand, S V; Courtin, C M; Delcour, J A

    2012-11-15

    Maltogenic α-amylase from Bacillus stearothermophilus (BStA) is widely used as bread crumb anti-firming enzyme. A maltotetraose-forming α-amylase from Pseudomonas saccharophila (PSA) was recently proposed as alternative, hence the need to compare both exo-acting enzymes with some endo-action component. A purely exo-acting thermostable β-amylase from Clostridium thermosulfurogenes (CTB) was included for reference purposes. Under the experimental conditions used, temperature optima of the enzymes are rather similar (60-65 °C), but temperature stability decreased in the order BStA, PSA and CTB. The action of the enzymes on different substrates and their impact on the rheological behaviour of maize starch suspensions demonstrated that, while CTB acts exclusively through an exo-action mechanism, BStA displayed limited endo-action which became more pronounced at higher temperatures. PSA has more substantial endo-action than BStA, which is rather temperature independent. This is important for their impact in processes such as breadmaking, where temperature is gradually increased. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. The role of N1 domain on the activity, stability, substrate specificity and raw starch binding of amylopullulanase of the extreme thermophile Geobacillus thermoleovorans.

    PubMed

    Nisha, M; Satyanarayana, T

    2015-07-01

    In order to understand the role of N1 domain (1-257 aa) in the amylopullulanase (gt-apu) of the extremely thermophilic bacterium Geobacillus thermoleovorans NP33, N1 deletion construct (gt-apuΔN) has been generated and expressed in Escherichia coli. The truncated amylopullulanase (gt-apuΔN) exhibits similar pH and temperature optima like gt-apu, but enhanced thermostability. The gt-apuΔN has greater hydrolytic action and specific activity on pullulan than gt-apu. The k cat (starch and pullulan) and K m (starch) values of gt-apuΔN increased, while K m (pullulan) decreased. The enzyme upon N1 deletion hydrolyzed maltotetraose as the smallest substrate in contrast to maltopentaose of gt-apu. The role of N1 domain of gt-apu in raw starch binding has been confirmed, for the first time, based on deletion and Langmuir-Hinshelwood kinetics. Furthermore, N1 domain appears to exert a negative influence on the thermostability of gt-apu because N1 truncation significantly improves thermostability.

  7. Branch pattern of starch internal structure influences the glucogenesis by mucosal Nt-maltase-glucoamylase.

    PubMed

    Lin, Amy Hui-Mei; Ao, Zihua; Quezada-Calvillo, Roberto; Nichols, Buford L; Lin, Chi-Tien; Hamaker, Bruce R

    2014-10-13

    To produce sufficient amounts of glucose from food starch, both α-amylase and mucosal α-glucosidases are required. We found previously that the digestion rate of starch is influenced by its susceptibility to mucosal α-glucosidases. In the present study, six starches and one glycogen were pre-hydrolyzed by α-amylase for various time periods, and then further hydrolyzed with the mucosal α-glucosidase, the N-terminal subunit of maltase-glucoamylase (Nt-MGAM), to generate free glucose. Results showed that α-amylase amplified the Nt-MGAM glucogenesis, and that the amplifications differed in various substrates. The amount of branches within α-amylase hydrolysate substrates was highly related to the rate of Nt-MGAM glucogenesis. After de-branching, the hydrolysates showed three fractions, Fraction 1, 2, and 3, in size exclusion chromatographs. We found that the α-amylase hydrolysates with higher quantity of the Fraction 3 (molecules with relatively short chain-length) and shorter average chain-length of this fraction had lower rates of Nt-MGAM glucogenesis. This study revealed that the branch pattern of α-amylase hydrolysates modulates glucose release by Nt-MGAM. It further supported the hypothesis that the internal structure of starch affects its digestibility at the mucosal α-glucosidase level. Published by Elsevier Ltd.

  8. Process development of starch hydrolysis using mixing characteristics of Taylor vortices.

    PubMed

    Masuda, Hayato; Horie, Takafumi; Hubacz, Robert; Ohmura, Naoto; Shimoyamada, Makoto

    2017-04-01

    In food industries, enzymatic starch hydrolysis is an important process that consists of two steps: gelatinization and saccharification. One of the major difficulties in designing the starch hydrolysis process is the sharp change in its rheological properties. In this study, Taylor-Couette flow reactor was applied to continuous starch hydrolysis process. The concentration of reducing sugar produced via enzymatic hydrolysis was evaluated by varying operational variables: rotational speed of the inner cylinder, axial velocity (reaction time), amount of enzyme, and initial starch content in the slurry. When Taylor vortices were formed in the annular space, efficient hydrolysis occurred because Taylor vortices improved the mixing of gelatinized starch with enzyme. Furthermore, a modified inner cylinder was proposed, and its mixing performance was numerically investigated. The modified inner cylinder showed higher potential for enhanced mixing of gelatinized starch and the enzyme than the conventional cylinder.

  9. Starch digestibility: past, present, and future.

    PubMed

    Bello-Perez, Luis A; Flores-Silva, Pamela C; Agama-Acevedo, Edith; Tovar, Juscelino

    2018-02-10

    In the last century, starch present in foods was considered to be completely digested. However, during the 1980s, studies on starch digestion started to show that besides digestible starch, which could be rapidly or slowly hydrolysed, there was a variable fraction that resisted hydrolysis by digestive enzymes. That fraction was named resistant starch (RS) and it encompasses those forms of starch that are not accessible to human digestive enzymes but can be fermented by the colonic microbiota, producing short-chain fatty acids. RS has been classified into five types, depending on the mechanism governing its resistance to enzymatic hydrolysis. Early research on RS was focused on the methods to determine its content in foods and its physiological effects, including fermentability in the large intestine. Later on, due to the interest of the food industry, methods to increase the RS content of isolated starches were developed. Nowadays, the influence of RS on the gut microbiota is a relevant research topic owing to its potential health-related benefits. This review summarizes over 30 years of investigation on starch digestibility, its relationship with human health, the methods to produce RS and its impact on the microbiome. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  10. Iron oxide/cassava starch-supported Ziegler-Natta catalysts for in situ ethylene polymerization.

    PubMed

    Chancharoenrith, Sittikorn; Kamonsatikul, Choavarit; Namkajorn, Montree; Kiatisevi, Supavadee; Somsook, Ekasith

    2015-03-06

    Iron oxide nanoparticles were used as supporters for in situ polymerization to produce polymer nanocomposites with well-dispersed fillers in polymer matrix. Iron oxide could be sustained as colloidal solutions by cassava starch to produce a good dispersion of iron oxide in the matrix. New supports based on iron oxide/cassava starch or cassava starch for Ziegler-Natta catalysts were utilized as heterogeneous supporters for partially hydrolyzed triethylaluminum. Then, TiCl4 was immobilized on the supports as catalysts for polymerization of ethylene. High-density polyethylene (HDPE) composites were obtained by the synthesized catalysts. A good dispersion of iron oxide/cassava starch particles was observed in the synthesized polymer matrix promoting to good mechanical properties of HDPE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Function of isoamylase-type starch debranching enzymes ISA1 and ISA2 in the Zea mays leaf.

    PubMed

    Lin, Qiaohui; Facon, Maud; Putaux, Jean-Luc; Dinges, Jason R; Wattebled, Fabrice; D'Hulst, Christophe; Hennen-Bierwagen, Tracie A; Myers, Alan M

    2013-12-01

    Conserved isoamylase-type starch debranching enzymes (ISAs), including the catalytic ISA1 and noncatalytic ISA2, are major starch biosynthesis determinants. Arabidopsis thaliana leaves require ISA1 and ISA2 for physiological function, whereas endosperm starch is near normal with only ISA1. ISA functions were characterized in maize (Zea mays) leaves to determine whether species-specific distinctions in ISA1 primary structure, or metabolic differences in tissues, are responsible for the differing ISA2 requirement. Genetic methods provided lines lacking ISA1 or ISA2. Biochemical analyses characterized ISA activities in mutant tissues. Starch content, granule morphology, and amylopectin fine structure were determined. Three ISA activity forms were observed in leaves, two ISA1/ISA2 heteromultimers and one ISA1 homomultimer. ISA1 homomultimer activity existed in mutants lacking ISA2. Mutants without ISA2 differed in leaf starch content, granule morphology, and amylopectin structure compared with nonmutants or lines lacking both ISA1 and ISA2. The data imply that both the ISA1 homomultimer and ISA1/ISA2 heteromultimer function in the maize leaf. The ISA1 homomultimer is present and functions in the maize leaf. Evolutionary divergence between monocots and dicots probably explains the ability of ISA1 to function as a homomultimer in maize leaves, in contrast to other species where the ISA1/ISA2 heteromultimer is the only active form. No claim to original US goverment works. New Phytologist © 2013 New Phytologist Trust.

  12. The features that distinguish lichenases from other polysaccharide-hydrolyzing enzymes and the relevance of lichenases for biotechnological applications.

    PubMed

    Goldenkova-Pavlova, Irina V; Tyurin, Alexander А; Mustafaev, Orkhan N

    2018-05-01

    The main specific features of β-1,3-1,4-glucanases (or lichenases, EC 3.2.1.73), the enzymes that in a strictly specific manner hydrolyze β-glucans of many cereal species and lichens containing β-1,3 and β-1,4 bonds, are reviewed as well as the current strategies used for their protein design, which have been successfully applied to make lichenases more attractive and promising for biocatalytic conversion of biomass, in particular, in the areas of their biotechnological application, such as brewing industry, animal feed manufacture, and biofuel production, which will in future allow these technologies to be economically and ecologically beneficial.

  13. Mammalian mucosal α-glucosidases coordinate with α-amylase in the initial starch hydrolysis stage to have a role in starch digestion beyond glucogenesis.

    PubMed

    Dhital, Sushil; Lin, Amy Hui-Mei; Hamaker, Bruce R; Gidley, Michael J; Muniandy, Anbuhkani

    2013-01-01

    Starch digestion in the human body is typically viewed in a sequential manner beginning with α-amylase and followed by α-glucosidase to produce glucose. This report indicates that the two enzyme types can act synergistically to digest granular starch structure. The aim of this study was to investigate how the mucosal α-glucosidases act with α-amylase to digest granular starch. Two types of enzyme extracts, pancreatic and intestinal extracts, were applied. The pancreatic extract containing predominantly α-amylase, and intestinal extract containing a combination of α-amylase and mucosal α-glucosidase activities, were applied to three granular maize starches with different amylose contents in an in vitro system. Relative glucogenesis, released maltooligosaccharide amounts, and structural changes of degraded residues were examined. Pancreatic extract-treated starches showed a hydrolysis limit over the 12 h incubation period with residues having a higher gelatinization temperature than the native starch. α-Amylase combined with the mucosal α-glucosidases in the intestinal extract showed higher glucogenesis as expected, but also higher maltooligosaccharide amounts indicating an overall greater degree of granular starch breakdown. Starch residues after intestinal extract digestion showed more starch fragmentation, higher gelatinization temperature, higher crystallinity (without any change in polymorph), and an increase of intermediate-sized or small-sized fractions of starch molecules, but did not show preferential hydrolysis of either amylose or amylopectin. Direct digestion of granular starch by mammalian recombinant mucosal α-glucosidases was observed which shows that these enzymes may work either independently or together with α-amylase to digest starch. Thus, mucosal α-glucosidases can have a synergistic effect with α-amylase on granular starch digestion, consistent with a role in overall starch digestion beyond their primary glucogenesis function.

  14. Mammalian Mucosal α-Glucosidases Coordinate with α-Amylase in the Initial Starch Hydrolysis Stage to Have a Role in Starch Digestion beyond Glucogenesis

    PubMed Central

    Dhital, Sushil; Lin, Amy Hui-Mei; Hamaker, Bruce R.; Gidley, Michael J.; Muniandy, Anbuhkani

    2013-01-01

    Starch digestion in the human body is typically viewed in a sequential manner beginning with α-amylase and followed by α-glucosidase to produce glucose. This report indicates that the two enzyme types can act synergistically to digest granular starch structure. The aim of this study was to investigate how the mucosal α-glucosidases act with α-amylase to digest granular starch. Two types of enzyme extracts, pancreatic and intestinal extracts, were applied. The pancreatic extract containing predominantly α-amylase, and intestinal extract containing a combination of α-amylase and mucosal α-glucosidase activities, were applied to three granular maize starches with different amylose contents in an in vitro system. Relative glucogenesis, released maltooligosaccharide amounts, and structural changes of degraded residues were examined. Pancreatic extract-treated starches showed a hydrolysis limit over the 12 h incubation period with residues having a higher gelatinization temperature than the native starch. α-Amylase combined with the mucosal α-glucosidases in the intestinal extract showed higher glucogenesis as expected, but also higher maltooligosaccharide amounts indicating an overall greater degree of granular starch breakdown. Starch residues after intestinal extract digestion showed more starch fragmentation, higher gelatinization temperature, higher crystallinity (without any change in polymorph), and an increase of intermediate-sized or small-sized fractions of starch molecules, but did not show preferential hydrolysis of either amylose or amylopectin. Direct digestion of granular starch by mammalian recombinant mucosal α-glucosidases was observed which shows that these enzymes may work either independently or together with α-amylase to digest starch. Thus, mucosal α-glucosidases can have a synergistic effect with α-amylase on granular starch digestion, consistent with a role in overall starch digestion beyond their primary glucogenesis function. PMID

  15. Characterization of Function of the GlgA2 Glycogen/Starch Synthase in Cyanobacterium sp. Clg1 Highlights Convergent Evolution of Glycogen Metabolism into Starch Granule Aggregation.

    PubMed

    Kadouche, Derifa; Ducatez, Mathieu; Cenci, Ugo; Tirtiaux, Catherine; Suzuki, Eiji; Nakamura, Yasunori; Putaux, Jean-Luc; Terrasson, Amandine Durand; Diaz-Troya, Sandra; Florencio, Francisco Javier; Arias, Maria Cecilia; Striebeck, Alexander; Palcic, Monica; Ball, Steven G; Colleoni, Christophe

    2016-07-01

    At variance with the starch-accumulating plants and most of the glycogen-accumulating cyanobacteria, Cyanobacterium sp. CLg1 synthesizes both glycogen and starch. We now report the selection of a starchless mutant of this cyanobacterium that retains wild-type amounts of glycogen. Unlike other mutants of this type found in plants and cyanobacteria, this mutant proved to be selectively defective for one of the two types of glycogen/starch synthase: GlgA2. This enzyme is phylogenetically related to the previously reported SSIII/SSIV starch synthase that is thought to be involved in starch granule seeding in plants. This suggests that, in addition to the selective polysaccharide debranching demonstrated to be responsible for starch rather than glycogen synthesis, the nature and properties of the elongation enzyme define a novel determinant of starch versus glycogen accumulation. We show that the phylogenies of GlgA2 and of 16S ribosomal RNA display significant congruence. This suggests that this enzyme evolved together with cyanobacteria when they diversified over 2 billion years ago. However, cyanobacteria can be ruled out as direct progenitors of the SSIII/SSIV ancestral gene found in Archaeplastida. Hence, both cyanobacteria and plants recruited similar enzymes independently to perform analogous tasks, further emphasizing the importance of convergent evolution in the appearance of starch from a preexisting glycogen metabolism network. © 2016 American Society of Plant Biologists. All Rights Reserved.

  16. Fuel ethanol production from granular corn starch using Saccharomyces cerevisiae in a long term repeated SSF process with full stillage recycling.

    PubMed

    Białas, Wojciech; Szymanowska, Daria; Grajek, Włodzimierz

    2010-05-01

    A major problem with fermentative ethanol production is the formation of large amounts of numerous organic pollutants. In an industrial distillery, stillage, fermenter and condenser cooling water are the main sources of wastewater. However, the selection of a proper technology makes it possible to almost completely avoid emissions of such kind of wastewater to the environment. This study examines the effect of stillage recirculation on fuel ethanol production. It is based on the use of Saccharomyces cerevisiae and a granular starch hydrolyzing enzyme in a simultaneous saccharification and fermentation process using a native starch obtained from corn flour. It was shown that the yield of the ethanol production was not influenced by the recycled stillage, a mean yield being 83.38% of the theoretical value. No significant trend for change in the ethanol concentration or in the residual starch was observed during any particular run, even after the 75% of fresh water was replaced with stillage. Thus, by applying this new clean technology it is possible to significantly reduce the rate of water consumption and in this way the production of by-products such as stillage. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. Novel, Starch-Like Polysaccharides Are Synthesized by an Unbound Form of Granule-Bound Starch Synthase in Glycogen-Accumulating Mutants of Chlamydomonas reinhardtii1

    PubMed Central

    Dauvillée, David; Colleoni, Christophe; Shaw, Eudean; Mouille, Gregory; D'Hulst, Christophe; Morell, Matthew; Samuel, Michael S.; Bouchet, Brigitte; Gallant, Daniel J.; Sinskey, Anthony; Ball, Steven

    1999-01-01

    In vascular plants, mutations leading to a defect in debranching enzyme lead to the simultaneous synthesis of glycogen-like material and normal starch. In Chlamydomonas reinhardtii comparable defects lead to the replacement of starch by phytoglycogen. Therefore, debranching was proposed to define a mandatory step for starch biosynthesis. We now report the characterization of small amounts of an insoluble, amylose-like material found in the mutant algae. This novel, starch-like material was shown to be entirely dependent on the presence of granule-bound starch synthase (GBSSI), the enzyme responsible for amylose synthesis in plants. However, enzyme activity assays, solubilization of proteins from the granule, and western blots all failed to detect GBSSI within the insoluble polysaccharide matrix. The glycogen-like polysaccharides produced in the absence of GBSSI were proved to be qualitatively and quantitatively identical to those produced in its presence. Therefore, we propose that GBSSI requires the presence of crystalline amylopectin for granule binding and that the synthesis of amylose-like material can proceed at low levels without the binding of GBSSI to the polysaccharide matrix. Our results confirm that amylopectin synthesis is completely blocked in debranching-enzyme-defective mutants of C. reinhardtii. PMID:9880375

  18. Polymeric amylase nanoparticles as a new semi-synthetic enzyme system for hydrolysis of starch.

    PubMed

    Say, R; Şenay, R Hilal; Biçen, Özlem; Ersöz, Arzu; Şişman Yılmaz, Filiz; Akgöl, Sinan; Denizli, Adil

    2013-05-01

    α-Amylase (EC 3.2.1.1; α-D-1,4,glucan glucanohydrolase) catalyzes the hydrolysis of α-D-(1,4)-glucosidic linkages in starch, glycogen, and various malto-oligosaccharides, by releasing α-anomeric products. In this study, a novel method has been developed to prepare nanoprotein particles that carry α-amylase as a monomer by using a photosensitive microemulsion polymerization process. The nanostructured α-amylase with photosensitive features have been characterized by fluorescence spectroscopy, transmission electron microscopy (TEM) and Zeta Sizer. The fluorescence intensity of amylase nanoparticles was determined to be 658 a.u. at 610 nm and the average particle size of nanoamylase was found to be about 71.8 nm. Both free α-amylase and nanoparticles were used in the hydrolysis of starch under varying reaction conditions such as pH and temperature that affect enzyme activity and the results were compared to each other. Km values were 0.26 and 0.87 mM and Vmax values were 0.36 IU mg(-1) and 22.32 IU mg(-1) for nanoenzyme and free enzyme, respectively. Then, thermal stability, storage stability and reusability were investigated and according to the results, activity was preserved 60% at 60 °C; 20% at 70-80 °C temperature values and 80% after 105 days storage. Finally after 10 cycles, the activity was preserved 90% and this novel enzymatic polymeric amylase nanoparticle has showed considerable potential as reusable catalyst. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Angiotensin converting enzyme (ACE) and neprilysin hydrolyze neuropeptides: a brief history, the beginning and follow-ups to early studies.

    PubMed

    Skidgel, Randal A; Erdös, Ervin G

    2004-03-01

    Our investigations started when synthetic bradykinin became available and we could characterize two enzymes that cleaved it: kininase I or plasma carboxypeptidase N and kininase II, a peptidyl dipeptide hydrolase that we later found to be identical with the angiotensin I converting enzyme (ACE). When we noticed that ACE can cleave peptides without a free C-terminal carboxyl group (e.g., with a C-terminal nitrobenzylamine), we investigated inactivation of substance P, which has a C-terminal Met(11)-NH(2). The studies were extended to the hydrolysis of the neuropeptide, neurotensin and to compare hydrolysis of the same peptides by neprilysin (neutral endopeptidase 24.11, CD10, NEP). Our publication in 1984 dealt with ACE and NEP purified to homogeneity from human kidney. NEP cleaved substance P (SP) at Gln(6)-Phe(7), Phe(7)[see text]-Phe(8), and Gly(9)-Leu(10) and neurotensin (NT) at Pro(10)-Tyr(11) and Tyr(11)-Ile(12). Purified ACE also rapidly inactivated SP as measured in bioassay. HPLC analysis showed that ACE cleaved SP at Phe(8)-Gly(9) and Gly(9)-Leu(10) to release C-terminal tri- and dipeptide (ratio = 4:1). The hydrolysis was Cl(-) dependent and inhibited by captopril. ACE released only dipeptide from SP free acid. ACE hydrolyzed NT at Tyr(11)-Ile(12) to release Ile(12)-Leu(13). Then peptide substrates were used to inhibit ACE hydrolyzing Fa-Phe-Gly-Gly and NEP cleaving Leu(5)-enkephalin. The K(i) values in microM were as follows: for ACE, bradykinin = 0.4, angiotensin I = 4, SP = 25, SP free acid = 2, NT = 14, and Met(5)-enkephalin = 450, and for NEP, bradykinin = 162, angiotensin I = 36, SP = 190, NT = 39, Met(5)-enkephalin = 22. These studies showed that ACE and NEP, two enzymes widely distributed in the body, are involved in the metabolism of SP and NT. Below we briefly survey how NEP and ACE in two decades have gained the reputation as very important factors in health and disease. This is due to the discovery of more endogenous substrates of the enzymes

  20. Scopolin-hydrolyzing beta-glucosidases in roots of Arabidopsis.

    PubMed

    Ahn, Young Ock; Shimizu, Bun-ichi; Sakata, Kanzo; Gantulga, Dashzeveg; Zhou, Changhe; Zhou, Zhanghe; Bevan, David R; Esen, Asim

    2010-01-01

    Three beta-glucosidases (At1g66270-BGLU21, At1g66280-BGLU22, and At3g09260-BGLU23) were purified from the roots of Arabidopsis and their cDNAs were expressed in insect cells. In addition, two beta-glucosidase binding protein cDNAs (At3g16420; PBPI and At3g16430; PBPII) were expressed in Escherichia coli and their protein products purified. These binding proteins interact with beta-glucosidases and activate them. BGLU21, 22 and 23 hydrolyzed the natural substrate scopolin specifically and also hydrolyzed to some extent substrates whose aglycone moiety is similar to scopolin (e.g. esculin and 4-MU-glucoside). In contrast, they hydrolyzed poorly DIMBOA-glucoside and did not hydrolyze pNP- and oNP-glucosides. We determined the physicochemical properties of native and recombinant BGLUs, and found no differences between them. They were stable in a narrow pH range (5-7.5) and had temperature and pH optima for activity at 35 degrees C and pH 5.5, respectively. As for thermostability, >95% of their activity was retained at 40 degrees C but dramatically decreased at >50 degrees C. The apparent K(m) of native and recombinant enzymes for scopolin was 0.73 and 0.81 mM, respectively, and it was 5.8 and 9.7 mM, respectively, for esculin. Western blot analysis showed that all three enzymes were exclusively expressed in roots of seedlings but not in any other plant part or organ under normal conditions. Furthermore, spatial expression patterns of all eight genes belonging to subfamily 3 were investigated at the transcription level by RT-PCR.

  1. Individual mammalian mucosal glucosidase subunits digest various starch structures differently

    USDA-ARS?s Scientific Manuscript database

    Starch digestion in the human body requires two luminal enzymes,salivary and pancreatic alpha-amylase (AMY), and four small intestinal mucosal enzyme activities related to the maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI) complexes. Starch consists of two polysaccharides, amylose (AM) and ...

  2. Characterization of Function of the GlgA2 Glycogen/Starch Synthase in Cyanobacterium sp. Clg1 Highlights Convergent Evolution of Glycogen Metabolism into Starch Granule Aggregation1

    PubMed Central

    Kadouche, Derifa; Arias, Maria Cecilia

    2016-01-01

    At variance with the starch-accumulating plants and most of the glycogen-accumulating cyanobacteria, Cyanobacterium sp. CLg1 synthesizes both glycogen and starch. We now report the selection of a starchless mutant of this cyanobacterium that retains wild-type amounts of glycogen. Unlike other mutants of this type found in plants and cyanobacteria, this mutant proved to be selectively defective for one of the two types of glycogen/starch synthase: GlgA2. This enzyme is phylogenetically related to the previously reported SSIII/SSIV starch synthase that is thought to be involved in starch granule seeding in plants. This suggests that, in addition to the selective polysaccharide debranching demonstrated to be responsible for starch rather than glycogen synthesis, the nature and properties of the elongation enzyme define a novel determinant of starch versus glycogen accumulation. We show that the phylogenies of GlgA2 and of 16S ribosomal RNA display significant congruence. This suggests that this enzyme evolved together with cyanobacteria when they diversified over 2 billion years ago. However, cyanobacteria can be ruled out as direct progenitors of the SSIII/SSIV ancestral gene found in Archaeplastida. Hence, both cyanobacteria and plants recruited similar enzymes independently to perform analogous tasks, further emphasizing the importance of convergent evolution in the appearance of starch from a preexisting glycogen metabolism network. PMID:27208262

  3. Study on the preparation process of cross-linked porous cassava starch

    NASA Astrophysics Data System (ADS)

    Yin, Xiulian; You, Qinghong; Wan, Miaomiao; Zhang, Xuejuan; Dai, Chunhua

    2017-04-01

    Using cassava starch as raw material, preparation process of porous cross-linked cassava starch was studied. Using TSTP as cross-linking agents, Orthogonal design was applied for the optimization of cross-linked porous starch preparation process. The results showed that the opitmal conditions of cross-linked porous cassava starch were as follows: reaction temperature 45°C, reaction time 20 h, 1% of the amount of the enzyme, the enzyme ratio of 1:5, pH 5.50, substrate concentration of 40%.

  4. Glucose transporters and enzymes related to glucose synthesis in small intestinal mucosa of mid-lactation dairy cows fed 2 levels of starch.

    PubMed

    Lohrenz, A-K; Duske, K; Schönhusen, U; Losand, B; Seyfert, H M; Metges, C C; Hammon, H M

    2011-09-01

    Diets containing corn starch may improve glucose supply by providing significant amounts of intestinal starch and increasing intestinal glucose absorption in dairy cows. Glucose absorption in the small intestine requires specific glucose transporters; that is, sodium-dependent glucose co-transporter-1 (SGLT1) and facilitated glucose transporter (GLUT2), which are usually downregulated in the small intestine of functional ruminants but are upregulated when luminal glucose is available. We tested the hypothesis that mRNA and protein expression of intestinal glucose transporters and mRNA expression of enzymes related to gluconeogenesis are affected by variable starch supply. Dairy cows (n=9/group) were fed for 4 wk total mixed rations (TMR) containing either high (HS) or low (LS) starch levels in the diet. Feed intake and milk yield were measured daily. After slaughter, tissue samples of the small intestinal mucosa (mid-duodenum and mid-jejunum) were taken for determination of mRNA concentrations of SGLT1 and GLUT2 as well as pyruvate carboxylase, cytosolic phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase by real-time reverse transcription PCR relative to a housekeeping gene. Protein expression of GLUT2 in crude mucosal membranes and of SGLT1 and GLUT2 in brush-border membrane vesicles was quantified by sodium dodecyl sulfate-PAGE and immunoblot. A mixed model was used to examine feeding and time-related changes on feed intake and milk yield and to test feeding and gut site effects on gene or protein expression of glucose transporters and enzymes in the intestinal mucosa. Dry matter intake, but not energy intake, was higher in cows fed HS compared with LS. Abundance of SGLT1 mRNA tended to be higher in duodenal than in jejunal mucosa, and mRNA abundances of pyruvate carboxylase tended to be higher in jejunal than in duodenal mucosa. In brush-border membrane vesicles, SGLT1 and GLUT2 protein expression could be demonstrated. No diet-dependent differences

  5. Effects of grain development on formation of resistant starch in rice.

    PubMed

    Shu, Xiaoli; Sun, Jian; Wu, Dianxing

    2014-12-01

    Three rice mutants with different contents of resistant starch (RS) were selected to investigate the effects of grain filling process on the formation of resistant starch. During grain development, the content of RS was increased with grain maturation and showed negative correlations with the grain weight and the starch molecular weight (Mn, Mw) and a positive correlation with the distribution of molecular mass (polydispersity, Pd). The morphologies of starch granules in high-RS rice were almost uniform in single starch granules and exhibited different proliferation modes from common rice. The lower activities of ADP-glucose pyrophosphorylase and starch branching enzyme and the higher activity of starch synthase and starch de-branching enzyme observed in high-RS rice might be responsible for the formation of small irregular starch granules with large spaces between them. In addition, the lower molecular weight and the broad distribution of molecular weights lead to differences in the physiochemical properties of starch. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Combining mutations at genes encoding key enzymes involved in starch synthesis affects the amylose content, carbohydrate allocation and hardness in the wheat grain.

    PubMed

    Botticella, Ermelinda; Sestili, Francesco; Sparla, Francesca; Moscatello, Stefano; Marri, Lucia; Cuesta-Seijo, Jose A; Falini, Giuseppe; Battistelli, Alberto; Trost, Paolo; Lafiandra, Domenico

    2018-03-02

    Modifications to the composition of starch, the major component of wheat flour, can have a profound effect on the nutritional and technological characteristics of the flour's end products. The starch synthesized in the grain of conventional wheats (Triticum aestivum) is a 3:1 mixture of the two polysaccharides amylopectin and amylose. Altering the activity of certain key starch synthesis enzymes (GBSSI, SSIIa and SBEIIa) has succeeded in generating starches containing a different polysaccharide ratio. Here, mutagenesis, followed by a conventional marker-assisted breeding exercise, has been used to generate three mutant lines that produce starch with an amylose contents of 0%, 46% and 79%. The direct and pleiotropic effects of the multiple mutation lines were identified at both the biochemical and molecular levels. Both the structure and composition of the starch were materially altered, changes which affected the functionality of the starch. An analysis of sugar and nonstarch polysaccharide content in the endosperm suggested an impact of the mutations on the carbon allocation process, suggesting the existence of cross-talk between the starch and carbohydrate synthesis pathways. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Preparation and characterization of resistant starch III from elephant foot yam (Amorphophallus paeonifolius) starch.

    PubMed

    Reddy, Chagam Koteswara; Haripriya, Sundaramoorthy; Noor Mohamed, A; Suriya, M

    2014-07-15

    The purpose of this study was to assess the properties of resistant starch (RS) III prepared from elephant foot yam starch using pullulanase enzyme. Native and gelatinized starches were subjected to enzymatic hydrolysis (pullulanase, 40 U/g per 10h), autoclaved (121°C/30 min), stored under refrigeration (4°C/24h) and then lyophilized. After preparation of resistant starch III, the morphological, physical, chemical and functional properties were assessed. The enzymatic and retrogradation process increased the yield of resistant starch III from starch with a concomitant increase increase in its water absorption capacity and water solubility index. A decrease in swelling power was observed due to the hydrolysis and thermal process. Te reduced pasting properties and hardness of resistant starch III were associated with the disintegration of starch granules due to the thermal process. The viscosity was found to be inversely proportional to the RS content in the sample. The thermal properties of RS increased due to retrogradation and recrystallization (P<0.05). Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. New perspectives on the role of α- and β-amylases in transient starch synthesis.

    PubMed

    Wu, Alex Chi; Ral, Jean-Philippe; Morell, Matthew K; Gilbert, Robert G

    2014-01-01

    Transient starch in leaves is synthesized by various biosynthetic enzymes in the chloroplasts during the light period. This paper presents the first mathematical model for the (bio)synthesis of the chain-length distribution (CLD) of transient starch to aid the understanding of this synthesis. The model expresses the rate of change of the CLD in terms of the actions of the enzymes involved. Using this to simulate the experimental CLD with different enzyme combinations is a new means to test for enzymes that are significant to the rate of change of the CLD during synthesis. Comparison between the simulated CLD from different enzyme combinations and the experimental CLD in the leaves of the model plant Arabidopsis thaliana indicate α-amylase, in addition to the core starch biosynthetic enzymes, is also involved in the modification of glucans for the synthesis of insoluble starch granules. The simulations suggest involvement of β-amylase, in the absence of α-amylase in mutants, slows the rate of attaining a crystalline-competent CLD for crystallization of glucans to form insoluble starch. This suggests a minor role of β-amylase in shaping normal starch synthesis. The model simulation predicts that debranching of glucans is an efficient mechanism for the attainment of crystalline-competent CLD; however, attaining this is still possible, albeit slower, through combinations of α- and β-amylase in the absence of isoamylase-type debranching enzyme. In Arabidopsis defective in one of the isoamylase-type debranching enzymes, the impact of α-amylase in starch synthesis is reduced, while β-amylase becomes significantly involved, slowing the rate of synthesis in this mutant. Modeling of transient starch CLD brings to light previously unrecognized but significant effects of α- and β-amylase on the rate of transient starch synthesis.

  9. New Perspectives on the Role of α- and β-Amylases in Transient Starch Synthesis

    PubMed Central

    Wu, Alex Chi; Ral, Jean-Philippe; Morell, Matthew K.; Gilbert, Robert G.

    2014-01-01

    Transient starch in leaves is synthesized by various biosynthetic enzymes in the chloroplasts during the light period. This paper presents the first mathematical model for the (bio)synthesis of the chain-length distribution (CLD) of transient starch to aid the understanding of this synthesis. The model expresses the rate of change of the CLD in terms of the actions of the enzymes involved. Using this to simulate the experimental CLD with different enzyme combinations is a new means to test for enzymes that are significant to the rate of change of the CLD during synthesis. Comparison between the simulated CLD from different enzyme combinations and the experimental CLD in the leaves of the model plant Arabidopsis thaliana indicate α-amylase, in addition to the core starch biosynthetic enzymes, is also involved in the modification of glucans for the synthesis of insoluble starch granules. The simulations suggest involvement of β-amylase, in the absence of α-amylase in mutants, slows the rate of attaining a crystalline-competent CLD for crystallization of glucans to form insoluble starch. This suggests a minor role of β-amylase in shaping normal starch synthesis. The model simulation predicts that debranching of glucans is an efficient mechanism for the attainment of crystalline-competent CLD; however, attaining this is still possible, albeit slower, through combinations of α- and β-amylase in the absence of isoamylase-type debranching enzyme. In Arabidopsis defective in one of the isoamylase-type debranching enzymes, the impact of α-amylase in starch synthesis is reduced, while β-amylase becomes significantly involved, slowing the rate of synthesis in this mutant. Modeling of transient starch CLD brings to light previously unrecognized but significant effects of α- and β-amylase on the rate of transient starch synthesis. PMID:24971464

  10. Effect of partially hydrolyzed guar gum on pasting, thermo-mechanical and rheological properties of wheat dough.

    PubMed

    Mudgil, Deepak; Barak, Sheweta; Khatkar, B S

    2016-12-01

    Partially hydrolyzed guar gum was prepared using enzymatic hydrolysis of native guar gum that can be utilized as soluble fiber source. The effect of partially hydrolyzed guar gum (PHGG) on pasting, thermo-mechanical and rheological properties of wheat flour was investigated using rapid visco-analyzer, Mixolab and Microdoughlab. Wheat flour was replaced with 1-5g PHGG per 100g of wheat flour on weight basis. PHGG addition decreased the peak, trough, breakdown, setback and final viscosity of wheat flour. Water absorption and amylase activity of wheat dough were increased whereas starch gelatinization and protein weakening of wheat dough were reduced as a result of PHGG addition to wheat flour. PHGG addition also increased the peak dough height, arrival time, dough development time, dough stability and peak energy of wheat dough system. However, dough softening was decreased after PHGG addition to wheat flour dough. Overall, it can be assumed that PHGG has influenced the properties of wheat flour dough system by decreasing the RVA viscosities and increasing the water absorption and starch gelatinization of wheat dough system. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Biochemical Characterization of the Lactobacillus reuteri Glycoside Hydrolase Family 70 GTFB Type of 4,6-α-Glucanotransferase Enzymes That Synthesize Soluble Dietary Starch Fibers.

    PubMed

    Bai, Yuxiang; van der Kaaij, Rachel Maria; Leemhuis, Hans; Pijning, Tjaard; van Leeuwen, Sander Sebastiaan; Jin, Zhengyu; Dijkhuizen, Lubbert

    2015-10-01

    4,6-α-Glucanotransferase (4,6-α-GTase) enzymes, such as GTFB and GTFW of Lactobacillus reuteri strains, constitute a new reaction specificity in glycoside hydrolase family 70 (GH70) and are novel enzymes that convert starch or starch hydrolysates into isomalto/maltopolysaccharides (IMMPs). These IMMPs still have linear chains with some α1→4 linkages but mostly (relatively long) linear chains with α1→6 linkages and are soluble dietary starch fibers. 4,6-α-GTase enzymes and their products have significant potential for industrial applications. Here we report that an N-terminal truncation (amino acids 1 to 733) strongly enhances the soluble expression level of fully active GTFB-ΔN (approximately 75-fold compared to full-length wild type GTFB) in Escherichia coli. In addition, quantitative assays based on amylose V as the substrate are described; these assays allow accurate determination of both hydrolysis (minor) activity (glucose release, reducing power) and total activity (iodine staining) and calculation of the transferase (major) activity of these 4,6-α-GTase enzymes. The data show that GTFB-ΔN is clearly less hydrolytic than GTFW, which is also supported by nuclear magnetic resonance (NMR) analysis of their final products. From these assays, the biochemical properties of GTFB-ΔN were characterized in detail, including determination of kinetic parameters and acceptor substrate specificity. The GTFB enzyme displayed high conversion yields at relatively high substrate concentrations, a promising feature for industrial application. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Design starch: stochastic modeling of starch granule biogenesis.

    PubMed

    Raguin, Adélaïde; Ebenhöh, Oliver

    2017-08-15

    Starch is the most widespread and abundant storage carbohydrate in plants and the main source of carbohydrate in the human diet. Owing to its remarkable properties and commercial applications, starch is still of growing interest. Its unique granular structure made of intercalated layers of amylopectin and amylose has been unraveled thanks to recent progress in microscopic imaging, but the origin of such periodicity is still under debate. Both amylose and amylopectin are made of linear chains of α-1,4-bound glucose residues, with branch points formed by α-1,6 linkages. The net difference in the distribution of chain lengths and the branching pattern of amylose (mainly linear), compared with amylopectin (racemose structure), leads to different physico-chemical properties. Amylose is an amorphous and soluble polysaccharide, whereas amylopectin is insoluble and exhibits a highly organized structure of densely packed double helices formed between neighboring linear chains. Contrarily to starch degradation that has been investigated since the early 20th century, starch production is still poorly understood. Most enzymes involved in starch growth (elongation, branching, debranching, and partial hydrolysis) are now identified. However, their specific action, their interplay (cooperative or competitive), and their kinetic properties are still largely unknown. After reviewing recent results on starch structure and starch growth and degradation enzymatic activity, we discuss recent results and current challenges for growing polysaccharides on granular surface. Finally, we highlight the importance of novel stochastic models to support the analysis of recent and complex experimental results, and to address how macroscopic properties emerge from enzymatic activity and structural rearrangements. © 2017 The Author(s).

  13. Degradation of Granular Starch by the Bacterium Microbacterium aurum Strain B8.A Involves a Modular α-Amylase Enzyme System with FNIII and CBM25 Domains.

    PubMed

    Valk, Vincent; Eeuwema, Wieger; Sarian, Fean D; van der Kaaij, Rachel M; Dijkhuizen, Lubbert

    2015-10-01

    The bacterium Microbacterium aurum strain B8.A, originally isolated from a potato plant wastewater facility, is able to degrade different types of starch granules. Here we report the characterization of an unusually large, multidomain M. aurum B8.A α-amylase enzyme (MaAmyA). MaAmyA is a 1,417-amino-acid (aa) protein with a predicted molecular mass of 148 kDa. Sequence analysis of MaAmyA showed that its catalytic core is a family GH13_32 α-amylase with the typical ABC domain structure, followed by a fibronectin (FNIII) domain, two carbohydrate binding modules (CBM25), and another three FNIII domains. Recombinant expression and purification yielded an enzyme with the ability to degrade wheat and potato starch granules by introducing pores. Characterization of various truncated mutants of MaAmyA revealed a direct relationship between the presence of CBM25 domains and the ability of MaAmyA to form pores in starch granules, while the FNIII domains most likely function as stable linkers. At the C terminus, MaAmyA carries a 300-aa domain which is uniquely associated with large multidomain amylases; its function remains to be elucidated. We concluded that M. aurum B8.A employs a multidomain enzyme system to initiate degradation of starch granules via pore formation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Degradation of Granular Starch by the Bacterium Microbacterium aurum Strain B8.A Involves a Modular α-Amylase Enzyme System with FNIII and CBM25 Domains

    PubMed Central

    Eeuwema, Wieger; Sarian, Fean D.; van der Kaaij, Rachel M.

    2015-01-01

    The bacterium Microbacterium aurum strain B8.A, originally isolated from a potato plant wastewater facility, is able to degrade different types of starch granules. Here we report the characterization of an unusually large, multidomain M. aurum B8.A α-amylase enzyme (MaAmyA). MaAmyA is a 1,417-amino-acid (aa) protein with a predicted molecular mass of 148 kDa. Sequence analysis of MaAmyA showed that its catalytic core is a family GH13_32 α-amylase with the typical ABC domain structure, followed by a fibronectin (FNIII) domain, two carbohydrate binding modules (CBM25), and another three FNIII domains. Recombinant expression and purification yielded an enzyme with the ability to degrade wheat and potato starch granules by introducing pores. Characterization of various truncated mutants of MaAmyA revealed a direct relationship between the presence of CBM25 domains and the ability of MaAmyA to form pores in starch granules, while the FNIII domains most likely function as stable linkers. At the C terminus, MaAmyA carries a 300-aa domain which is uniquely associated with large multidomain amylases; its function remains to be elucidated. We concluded that M. aurum B8.A employs a multidomain enzyme system to initiate degradation of starch granules via pore formation. PMID:26187958

  15. Glycemic response to corn starch modified with cyclodextrin glycosyltransferase and its relationship to physical properties

    USDA-ARS?s Scientific Manuscript database

    Corn starch was modified with cyclodextrin glycosyltransferase (CGTase) below the gelatinization temperature. The porous, partially hydrolyzed, granules with or without CGTase hydrolysis products, cyclodextrins (CDs) and short chain maltodextrins, may be used as an alternative to modified corn starc...

  16. Effects of non-starch polysaccharides enzymes on pancreatic and small intestinal digestive enzyme activities in piglet fed diets containing high amounts of barley.

    PubMed

    Li, Wei-Fen; Feng, Jie; Xu, Zi-Rong; Yang, Cai-Mei

    2004-03-15

    To investigate effects of non-starch polysaccharides(NSP) enzymes on pancreatic and small intestinal digestive enzyme activities in piglet fed diets containing high amounts of barley. Sixty crossbred piglets averaging 13.5 kg were randomly assigned to two treatment groups with three replications (pens) based on sex and mass. Each group was fed on the diet based on barley with or without added NSP enzymes (0.15%) for a 40-d period. At the end of the experiment the pigs were weighed. Three piglets of each group were chosen and slaughtered. Pancreas, digesta from the distal end of the duodenum and jejunal mucosa were collected for determination. Activities of the digestive enzymes trypsin, chymotrypsin, amylase and lipase were determined in the small intestinal sections as well as in homogenates of pancreatic tissue. Maltase, sucrase, lactase and gamma-glutamyl transpeptidase (gamma-GT) activities were analyzed in jejunal mucosa. Supplementation with NSP enzymes improved growth performance of piglets. It showed that NSP enzymes had no effect on digestive enzyme activities in pancreas, but decreased the activities of proteolytic enzyme, trypsin, amylase and lipase in duodenal contents by 57.56%, 76.08%, 69.03% and 40.22%(P<0.05) compared with control, and increased gamma-GT activities in jejunal mucosa by 118.75%(P<0.05). Supplementation with NSP enzymes in barley based diets could improve piglets' growth performance, decrease activities of proteolytic enzyme, trypsin, amylase and lipase in duodenal contents and increase gamma-GT activities in jejunal mucosa.

  17. Production of starch nanoparticles using normal maize starch via heat-moisture treatment under mildly acidic conditions and homogenization.

    PubMed

    Park, Eun Young; Kim, Min-Jung; Cho, MyoungLae; Lee, Ju Hun; Kim, Jong-Yea

    2016-10-20

    Normal maize starch was subjected to heat-moisture treatment (HMT) under mildly acidic conditions (0.000, 0.050, or 0.075M H2SO4) for various treatment times (3, 5, or 8h) followed by homogenization up to 60min to prepare nanoparticles. The combination of HMT (0.075M, for 8h) and homogenization (60min) produced nanoparticles with diameters of less than 50nm at a yield higher than 80%. X-ray diffractometry and size-exclusion chromatography revealed that HMT under mildly acidic conditions selectively hydrolyzed the starch chains (especially amylose and/or long chains of amylopectin) in the amorphous region of the granules without significant damage to the crystalline structure, however, modification of the molecular structure in the amorphous region increased fragility of the granules during homogenization. Homogenization for 60min caused obvious damage in the long-range crystalline structure of the HMT starch (0.15N, for 8h), while the short-range chain associations (FT-IR) remained intact. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Lactobacillus amylovorus, a new starch-hydrolyzing species from cattle waste-corn fermentations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, L.K.

    1981-01-01

    The morphology, physiology and fermentation characteristics of this hitherto unrecognized species are described. The new Lactobacillus species can be differentiated from L. acidophilus, L. jensenii, and L. leichmannii on the basis of starch fermentation, G + C content, vitamin requirements and stereoisomerism of lactic acid produced. The type strain of L. amylovorus is NRRL B-4540. (Refs. 39).

  19. SME-type carbapenem-hydrolyzing class A beta-lactamases from geographically diverse Serratia marcescens strains.

    PubMed

    Queenan, A M; Torres-Viera, C; Gold, H S; Carmeli, Y; Eliopoulos, G M; Moellering, R C; Quinn, J P; Hindler, J; Medeiros, A A; Bush, K

    2000-11-01

    Three sets of carbapenem-resistant Serratia marcescens isolates have been identified in the United States: 1 isolate in Minnesota in 1985 (before approval of carbapenems for clinical use), 5 isolates in Los Angeles (University of California at Los Angeles [UCLA]) in 1992, and 19 isolates in Boston from 1994 to 1999. All isolates tested produced two beta-lactamases, an AmpC-type enzyme with pI values of 8.6 to 9.0 and one with a pI value of approximately 9.5. The enzyme with the higher pI in each strain hydrolyzed carbapenems and was not inhibited by EDTA, similar to the chromosomal class A SME-1 beta-lactamase isolated from the 1982 London strain S. marcescens S6. The genes encoding the carbapenem-hydrolyzing enzymes were cloned in Escherichia coli and sequenced. The enzyme from the Minnesota isolate had an amino acid sequence identical to that of SME-1. The isolates from Boston and UCLA produced SME-2, an enzyme with a single amino acid change relative to SME-1, a substitution from valine to glutamine at position 207. Purified SME enzymes from the U. S. isolates had beta-lactam hydrolysis profiles similar to that of the London SME-1 enzyme. Pulsed-field gel electrophoresis analysis revealed that the isolates showed some similarity but differed by at least three genetic events. In conclusion, a family of rare class A carbapenem-hydrolyzing beta-lactamases first described in London has now been identified in S. marcescens isolates across the United States.

  20. SME-Type Carbapenem-Hydrolyzing Class A β-Lactamases from Geographically Diverse Serratia marcescens Strains

    PubMed Central

    Queenan, Anne Marie; Torres-Viera, Carlos; Gold, Howard S.; Carmeli, Yehuda; Eliopoulos, George M.; Moellering, Robert C.; Quinn, John P.; Hindler, Janet; Medeiros, Antone A.; Bush, Karen

    2000-01-01

    Three sets of carbapenem-resistant Serratia marcescens isolates have been identified in the United States: 1 isolate in Minnesota in 1985 (before approval of carbapenems for clinical use), 5 isolates in Los Angeles (University of California at Los Angeles [UCLA]) in 1992, and 19 isolates in Boston from 1994 to 1999. All isolates tested produced two β-lactamases, an AmpC-type enzyme with pI values of 8.6 to 9.0 and one with a pI value of approximately 9.5. The enzyme with the higher pI in each strain hydrolyzed carbapenems and was not inhibited by EDTA, similar to the chromosomal class A SME-1 β-lactamase isolated from the 1982 London strain S. marcescens S6. The genes encoding the carbapenem-hydrolyzing enzymes were cloned in Escherichia coli and sequenced. The enzyme from the Minnesota isolate had an amino acid sequence identical to that of SME-1. The isolates from Boston and UCLA produced SME-2, an enzyme with a single amino acid change relative to SME-1, a substitution from valine to glutamine at position 207. Purified SME enzymes from the U.S. isolates had β-lactam hydrolysis profiles similar to that of the London SME-1 enzyme. Pulsed-field gel electrophoresis analysis revealed that the isolates showed some similarity but differed by at least three genetic events. In conclusion, a family of rare class A carbapenem-hydrolyzing β-lactamases first described in London has now been identified in S. marcescens isolates across the United States. PMID:11036019

  1. Recreating the synthesis of starch granules in yeast

    PubMed Central

    Pfister, Barbara; Sánchez-Ferrer, Antoni; Diaz, Ana; Lu, Kuanjen; Otto, Caroline; Holler, Mirko; Shaik, Farooque Razvi; Meier, Florence; Mezzenga, Raffaele; Zeeman, Samuel C

    2016-01-01

    Starch, as the major nutritional component of our staple crops and a feedstock for industry, is a vital plant product. It is composed of glucose polymers that form massive semi-crystalline granules. Its precise structure and composition determine its functionality and thus applications; however, there is no versatile model system allowing the relationships between the biosynthetic apparatus, glucan structure and properties to be explored. Here, we expressed the core Arabidopsis starch-biosynthesis pathway in Saccharomyces cerevisiae purged of its endogenous glycogen-metabolic enzymes. Systematic variation of the set of biosynthetic enzymes illustrated how each affects glucan structure and solubility. Expression of the complete set resulted in dense, insoluble granules with a starch-like semi-crystalline organization, demonstrating that this system indeed simulates starch biosynthesis. Thus, the yeast system has the potential to accelerate starch research and help create a holistic understanding of starch granule biosynthesis, providing a basis for the targeted biotechnological improvement of crops. DOI: http://dx.doi.org/10.7554/eLife.15552.001 PMID:27871361

  2. Determination of dietary starch in animal feeds and pet food by an enzymatic-colorimetric method: collaborative study.

    PubMed

    Hall, Mary Beth

    2015-01-01

    Starch, glycogen, maltooligosaccharides, and other α-1,4- and α-1,6-linked glucose carbohydrates, exclusive of resistant starch, are collectively termed "dietary starch". This nutritionally important fraction is increasingly measured for use in diet formulation for animals as it can have positive or negative effects on animal performance and health by affecting energy supply, glycemic index, and formation of fermentation products by gut microbes. AOAC Method 920.40 that was used for measuring dietary starch in animal feeds was invalidated due to discontinued production of a required enzyme. As a replacement, an enzymatic-colorimetric starch assay developed in 1997 that had advantages in ease of sample handling and accuracy compared to other methods was considered. The assay was further modified to improve utilization of laboratory resources and reduce time required for the assay. The assay is quasi-empirical: glucose is the analyte detected, but its release is determined by run conditions and specification of enzymes. The modified assay was tested in an AOAC collaborative study to evaluate its accuracy and reliability for determination of dietary starch in animal feedstuffs and pet foods. In the assay, samples are incubated in screw cap tubes with thermostable α-amylase in pH 5.0 sodium acetate buffer for 1 h at 100°C with periodic mixing to gelatinize and partially hydrolyze α-glucan. Amyloglucosidase is added, and the reaction mixture is incubated at 50°C for 2 h and mixed once. After subsequent addition of water, mixing, clarification, and dilution as needed, free + enzymatically released glucose are measured. Values from a separate determination of free glucose are subtracted to give values for enzymatically released glucose. Dietary starch equals enzymatically released glucose multiplied by 162/180 (or 0.9) divided by the weight of the as received sample. Fifteen laboratories that represented feed company, regulatory, research, and commercial feed

  3. Changes in physicochemical properties and in vitro starch digestion of native and extruded maize flours subjected to branching enzyme and maltogenic α-amylase treatment.

    PubMed

    Román, Laura; Martínez, Mario M; Rosell, Cristina M; Gómez, Manuel

    2017-08-01

    Extrusion is an increasingly used type of processing which combined with enzymatic action could open extended possibilities for obtaining clean label modified flours. In this study, native and extruded maize flours were modified using branching enzyme (B) and a combination of branching enzyme and maltogenic α-amylase (BMA) in order to modulate their hydrolysis properties. The microstructure, pasting properties, in vitro starch hydrolysis and resistant starch content of the flours were investigated. Whereas BMA treatment led to greater number of holes on the granule surface in native samples, B and BMA extruded samples showed rougher surfaces with cavities. A reduction in the retrogradation trend was observed for B and BMA native flours, in opposition to the flat pasting profile of their extruded counterparts. The glucose release increased gradually for native flours as the time of reaction did, whereas for extruded flours a fast increase of glucose release was observed during the first minutes of reaction, and kept till the end, indicating a greater accessibility to their porous structure. These results suggested that, in enzymatically treated extruded samples, changes produced at larger hierarchical levels in their starch structure could have masked a slowdown in the starch digestion properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Enzymatic hydrolysis of anchovy fine powder at high and ambient pressure, and characterization of the hydrolyzates.

    PubMed

    Kim, Namsoo; Son, So-Hee; Maeng, Jin-Soo; Cho, Yong-Jin; Kim, Chong-Tai

    2016-02-01

    At specific conditions of high pressure, the stability and activity of some enzymes are reportedly known to increase. The aim of this study was to apply pressure-tolerant proteases to hydrolyzing anchovy fine powder (AFP) and to determine product characteristics of the resultant hydrolyzates. Anchovy fine powder enzyme hydrolyzates (AFPEHs) were produced at 300 MPa and ambient pressure using combinations of Flavourzyme 500MG, Alcalase 2.4L, Marugoto E and Protamex. When the same protease combination was used for hydrolysis, the contents of total soluble solids, total water-soluble nitrogen and trichloroacetic acid-soluble nitrogen in the AFPEHs produced at 300 MPa were conspicuously higher than those in the AFPEHs produced at ambient pressure. This result and electrophoretic characteristics indicated that the high-pressure process of this study accelerates protein hydrolysis compared with the ambient-pressure counterpart. Most peptides in the hydrolyzates obtained at 300 MPa had molecular masses less than 5 kDa. Functionality, sensory characteristics and the content of total free amino acids of selected hydrolyzates were also determined. The high-pressure hydrolytic process utilizing pressure-tolerant proteases was found to be an efficient method for producing protein hydrolyzates with good product characteristics. © 2015 Society of Chemical Industry.

  5. Low source-sink ratio reduces reserve starch in grapevine woody canes and modulates sugar transport and metabolism at transcriptional and enzyme activity levels.

    PubMed

    Silva, Angélica; Noronha, Henrique; Dai, Zhanwu; Delrot, Serge; Gerós, Hernâni

    2017-09-01

    Severe leaf removal decreases storage starch and sucrose in grapevine cv. Cabernet Sauvignon fruiting cuttings and modulates the activity of key enzymes and the expression of sugar transporter genes. Leaf removal is an agricultural practice that has been shown to modify vineyard efficiency and grape and wine composition. In this study, we took advantage of the ability to precisely control the number of leaves to fruits in Cabernet Sauvignon fruiting cuttings to study the effect of source-sink ratios (2 (2L), 6 (6L) and 12 (12) leaves per cluster) on starch metabolism and accumulation. Starch concentration was significantly higher in canes from 6L (42.13 ± 1.44 mg g DW -1 ) and 12L (43.50 ± 2.85 mg g DW -1 ) than in 2L (22.72 ± 3.10 mg g DW -1 ) plants. Moreover, carbon limitation promoted a transcriptional adjustment of genes involved in starch metabolism in grapevine woody tissues, including a decrease in the expression of the plastidic glucose-6-phosphate translocator, VvGPT1. Contrarily, the transcript levels of the gene coding the catalytic subunit VvAGPB1 of the VvAGPase complex were higher in canes from 2L plants than in 6L and 12L, which positively correlated with the biochemical activity of this enzyme. Sucrose concentration increased in canes from 2L to 6L and 12L plants, and the amount of total phenolics followed the same trend. Expression studies showed that VvSusy transcripts decreased in canes from 2L to 6L and 12L plants, which correlated with the biochemical activity of insoluble invertase, while the expression of the sugar transporters VvSUC11 and VvSUC12, together with VvSPS1, which codes an enzyme involved in sucrose synthesis, increased. Thus, sucrose seems to control starch accumulation through the adjustment of the cane sink strength.

  6. Impact of enzyme loading on the efficacy and recovery of cellulolytic enzymes immobilized on enzymogel nanoparticles.

    PubMed

    Samaratunga, Ashani; Kudina, Olena; Nahar, Nurun; Zakharchenko, Andrey; Minko, Sergiy; Voronov, Andriy; Pryor, Scott W

    2015-03-01

    Cellulase and β-glucosidase were adsorbed on a polyacrylic acid polymer brush grafted on silica nanoparticles to produce enzymogels as a form of enzyme immobilization. Enzyme loading on the enzymogels was increased to a saturation level of approximately 110 μg (protein) mg(-1) (particle) for each enzyme. Enzymogels with varied enzyme loadings were then used to determine the impact on hydrolysis rate and enzyme recovery. Soluble sugar concentrations during the hydrolysis of filter paper and Solka-Floc with the enzymogels were 45 and 53%, respectively, of concentrations when using free cellulase. β-Glucosidase enzymogels showed lower performance; hydrolyzate glucose concentrations were just 38% of those using free enzymes. Increasing enzyme loading on the enzymogels did not reduce net efficacy for cellulase and improved efficacy for β-glucosidase. The use of free cellulases and cellulase enzymogels resulted in hydrolyzates with different proportions of cellobiose and glucose, suggesting differential attachment or efficacy of endoglucanases, exoglucanases, and β-glucosidases present in cellulase mixtures. When loading β-glucosidase individually, higher enzyme loadings on the enzymogels produced higher hydrolyzate glucose concentrations. Approximately 96% of cellulase and 66 % of β-glucosidase were recovered on the enzymogels, while enzyme loading level did not impact recovery for either enzyme.

  7. Starch characteristics influencing resistant starch content of cooked buckwheat groats

    USDA-ARS?s Scientific Manuscript database

    Enzyme resistant starch (RS), owing to its health benefits such as colon cancer inhibition, reduced glycemic response, reduced cholesterol level, prevention of gall stone formation and obesity, has received an increasing attention from consumers and food manufacturers, whereas intrinsic and extrinsi...

  8. Amylolytic Enzymes Acquired from L-Lactic Acid Producing Enterococcus faecium K-1 and Improvement of Direct Lactic Acid Production from Cassava Starch.

    PubMed

    Unban, Kridsada; Kanpiengjai, Apinun; Takata, Goro; Uechi, Keiko; Lee, Wen-Chien; Khanongnuch, Chartchai

    2017-09-01

    An amylolytic lactic acid bacterium isolate K-1 was isolated from the wastewater of a cassava starch manufacturing factory and identified as Entercoccus faecium based on 16S rRNA gene sequence analysis. An extracellular α-amylase was purified to homogeneity and the molecular weight of the purified enzyme was approximately 112 kDa with optimal pH value and temperature measured of 7.0 and 40 °C, respectively. It was stable at a pH range of 6.0-7.0, but was markedly sensitive to high temperatures and low pH conditions, even at a pH value of 5. Ba 2+ , Al 3+ , and Co 2+ activated enzyme activity. This bacterium was capable of producing 99.2% high optically pure L-lactic acid of 4.3 and 8.2 g/L under uncontrolled and controlled pH at 6.5 conditions, respectively, in the MRS broth containing 10 g/L cassava starch as the sole carbon source when cultivated at 37 °C for 48 h. A control pH condition of 6.5 improved and stabilized the yield of L-lactic acid production directly from starch even at a high concentration of starch at up to 150 g/L. This paper is the first report describing the properties of purified α-amylase from E. faecium. Additionally, pullulanase and cyclodextrinase activities were also firstly recorded from E. faecium K-1.

  9. Critical and speculative review of the roles of multi-protein complexes in starch biosynthesis in cereals.

    PubMed

    Crofts, Naoko; Nakamura, Yasunori; Fujita, Naoko

    2017-09-01

    Starch accounts for the majority of edible carbohydrate resources generated through photosynthesis. Amylopectin is the major component of starch and is one of highest-molecular-weight biopolymers. Rapid and systematic synthesis of frequently branched hydro-insoluble amylopectin and efficient accumulation into amyloplasts of cereal endosperm is crucial. The functions of multiple starch biosynthetic enzymes, including elongation, branching, and debranching enzymes, must be temporally and spatially coordinated. Accordingly, direct evidence of protein-protein interactions of starch biosynthetic enzymes were first discovered in developing wheat endosperm in 2004, and they have since been shown in the developing seeds of other cereals. This review article describes structural characteristics of starches as well as similarities and differences in protein complex formation among different plant species and among mutant plants that are deficient in specific starch biosynthetic enzymes. In addition, evidence for protein complexes that are involved in the initiation stages of starch biosynthesis is summarized. Finally, we discuss the significance of protein complexes and describe new methods that may elucidate the mechanisms and roles of starch biosynthetic enzyme complexes. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Isolation of a cDNA Encoding a Granule-Bound 152-Kilodalton Starch-Branching Enzyme in Wheat1

    PubMed Central

    Båga, Monica; Nair, Ramesh B.; Repellin, Anne; Scoles, Graham J.; Chibbar, Ravindra N.

    2000-01-01

    Screening of a wheat (Triticum aestivum) cDNA library for starch-branching enzyme I (SBEI) genes combined with 5′-rapid amplification of cDNA ends resulted in isolation of a 4,563-bp composite cDNA, Sbe1c. Based on sequence alignment to characterized SBEI cDNA clones isolated from plants, the SBEIc predicted from the cDNA sequence was produced with a transit peptide directing the polypeptide into plastids. Furthermore, the predicted mature form of SBEIc was much larger (152 kD) than previously characterized plant SBEI (80–100 kD) and contained a partial duplication of SBEI sequences. The first SBEI domain showed high amino acid similarity to a 74-kD wheat SBEI-like protein that is inactive as a branching enzyme when expressed in Escherichia coli. The second SBEI domain on SBEIc was identical in sequence to a functional 87-kD SBEI produced in the wheat endosperm. Immunoblot analysis of proteins produced in developing wheat kernels demonstrated that the 152-kD SBEIc was, in contrast to the 87- to 88-kD SBEI, preferentially associated with the starch granules. Proteins similar in size and recognized by wheat SBEI antibodies were also present in Triticum monococcum, Triticum tauschii, and Triticum turgidum subsp. durum. PMID:10982440

  11. Genome-wide analysis of starch metabolism genes in potato (Solanum tuberosum L.).

    PubMed

    Van Harsselaar, Jessica K; Lorenz, Julia; Senning, Melanie; Sonnewald, Uwe; Sonnewald, Sophia

    2017-01-05

    Starch is the principle constituent of potato tubers and is of considerable importance for food and non-food applications. Its metabolism has been subject of extensive research over the past decades. Despite its importance, a description of the complete inventory of genes involved in starch metabolism and their genome organization in potato plants is still missing. Moreover, mechanisms regulating the expression of starch genes in leaves and tubers remain elusive with regard to differences between transitory and storage starch metabolism, respectively. This study aimed at identifying and mapping the complete set of potato starch genes, and to study their expression pattern in leaves and tubers using different sets of transcriptome data. Moreover, we wanted to uncover transcription factors co-regulated with starch accumulation in tubers in order to get insight into the regulation of starch metabolism. We identified 77 genomic loci encoding enzymes involved in starch metabolism. Novel isoforms of many enzymes were found. Their analysis will help to elucidate mechanisms of starch biosynthesis and degradation. Expression analysis of starch genes led to the identification of tissue-specific isoenzymes suggesting differences in the transcriptional regulation of starch metabolism between potato leaf and tuber tissues. Selection of genes predominantly expressed in developing potato tubers and exhibiting an expression pattern indicative for a role in starch biosynthesis enabled the identification of possible transcriptional regulators of tuber starch biosynthesis by co-expression analysis. This study provides the annotation of the complete set of starch metabolic genes in potato plants and their genomic localizations. Novel, so far undescribed, enzyme isoforms were revealed. Comparative transcriptome analysis enabled the identification of tuber- and leaf-specific isoforms of starch genes. This finding suggests distinct regulatory mechanisms in transitory and storage starch

  12. Kinetic modeling and exploratory numerical simulation of chloroplastic starch degradation

    PubMed Central

    2011-01-01

    Background Higher plants and algae are able to fix atmospheric carbon dioxide through photosynthesis and store this fixed carbon in large quantities as starch, which can be hydrolyzed into sugars serving as feedstock for fermentation to biofuels and precursors. Rational engineering of carbon flow in plant cells requires a greater understanding of how starch breakdown fluxes respond to variations in enzyme concentrations, kinetic parameters, and metabolite concentrations. We have therefore developed and simulated a detailed kinetic ordinary differential equation model of the degradation pathways for starch synthesized in plants and green algae, which to our knowledge is the most complete such model reported to date. Results Simulation with 9 internal metabolites and 8 external metabolites, the concentrations of the latter fixed at reasonable biochemical values, leads to a single reference solution showing β-amylase activity to be the rate-limiting step in carbon flow from starch degradation. Additionally, the response coefficients for stromal glucose to the glucose transporter kcat and KM are substantial, whereas those for cytosolic glucose are not, consistent with a kinetic bottleneck due to transport. Response coefficient norms show stromal maltopentaose and cytosolic glucosylated arabinogalactan to be the most and least globally sensitive metabolites, respectively, and β-amylase kcat and KM for starch to be the kinetic parameters with the largest aggregate effect on metabolite concentrations as a whole. The latter kinetic parameters, together with those for glucose transport, have the greatest effect on stromal glucose, which is a precursor for biofuel synthetic pathways. Exploration of the steady-state solution space with respect to concentrations of 6 external metabolites and 8 dynamic metabolite concentrations show that stromal metabolism is strongly coupled to starch levels, and that transport between compartments serves to lower coupling between metabolic

  13. Molecular, mesoscopic and microscopic structure evolution during amylase digestion of maize starch granules.

    PubMed

    Shrestha, Ashok K; Blazek, Jaroslav; Flanagan, Bernadine M; Dhital, Sushil; Larroque, Oscar; Morell, Matthew K; Gilbert, Elliot P; Gidley, Michael J

    2012-09-01

    Cereal starch granules with high (>50%) amylose content are a promising source of nutritionally desirable resistant starch, i.e. starch that escapes digestion in the small intestine, but the structural features responsible are not fully understood. We report the effects of partial enzyme digestion of maize starch granules on amylopectin branch length profiles, double and single helix contents, gelatinisation properties, crystallinity and lamellar periodicity. Comparing results for three maize starches (27, 57, and 84% amylose) that differ in both structural features and amylase-sensitivity allows conclusions to be drawn concerning the rate-determining features operating under the digestion conditions used. All starches are found to be digested by a side-by-side mechanism in which there is no major preference during enzyme attack for amylopectin branch lengths, helix form, crystallinity or lamellar organisation. We conclude that the major factor controlling enzyme susceptibility is granule architecture, with shorter length scales not playing a major role as inferred from the largely invariant nature of numerous structural measures during the digestion process (XRD, NMR, SAXS, DSC, FACE). Results are consistent with digestion rates being controlled by restricted diffusion of enzymes within densely packed granular structures, with an effective surface area for enzyme attack determined by external dimensions (57 or 84% amylose - relatively slow) or internal channels and pores (27% amylose - relatively fast). Although the process of granule digestion is to a first approximation non-discriminatory with respect to structure at molecular and mesoscopic length scales, secondary effects noted include (i) partial crystallisation of V-type helices during digestion of 27% amylose starch, (ii) preferential hydrolysis of long amylopectin branches during the early stage hydrolysis of 27% and 57% but not 84% amylose starches, linked with disruption of lamellar repeating structure

  14. Physicochemical properties of black pepper (Piper nigrum) starch.

    PubMed

    Zhu, Fan; Mojel, Reuben; Li, Guantian

    2018-02-01

    Black pepper (Piper nigrum) is among the most popular spices around the world. Starch is the major component of black pepper. However, little is known about functional properties of this starch. In this study, swelling, solubility, thermal properties, rheology, and enzyme susceptibility of 2 black pepper starches were studied and compared with those of maize starch. Pepper starch had lower water solubility and swelling power than maize starch. It had higher viscosity during pasting event. In dynamic oscillatory analysis, pepper starch had lower storage modulus. Thermal analysis showed that pepper starch had much higher gelatinization temperatures (e.g., conclusion temperature of 94°C) than maize starch. The susceptibility to α-amylolysis of pepper starch was not very different from that of maize starch. Overall, the differences in the physicochemical properties of the 2 pepper starches are non-significant. The relationships between structure (especially amylopectin internal molecular structure) and properties of starch components are highlighted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A thermophilic alkalophilic α-amylase from Bacillus sp. AAH-31 shows a novel domain organization among glycoside hydrolase family 13 enzymes.

    PubMed

    Saburi, Wataru; Morimoto, Naoki; Mukai, Atsushi; Kim, Dae Hoon; Takehana, Toshihiko; Koike, Seiji; Matsui, Hirokazu; Mori, Haruhide

    2013-01-01

    α-Amylases (EC 3.2.1.1) hydrolyze internal α-1,4-glucosidic linkages of starch and related glucans. Bacillus sp. AAH-31 produces an alkalophilic thermophilic α-amylase (AmyL) of higher molecular mass, 91 kDa, than typical bacterial α-amylases. In this study, the AmyL gene was cloned to determine its primary structure, and the recombinant enzyme, produced in Escherichia coli, was characterized. AmyL shows no hydrolytic activity towards pullulan, but the central region of AmyL (Gly395-Asp684) was similar to neopullulanase-like α-amylases. In contrast to known neopullulanase-like α-amylases, the N-terminal region (Gln29-Phe102) of AmyL was similar to carbohydrate-binding module family 20 (CBM20), which is involved in the binding of enzymes to starch granules. Recombinant AmyL showed more than 95% of its maximum activity in a pH range of 8.2-10.5, and was stable below 65 °C and from pH 6.4 to 11.9. The kcat values for soluble starch, γ-cyclodextrin, and maltotriose were 103 s(-1), 67.6 s(-1), and 5.33 s(-1), respectively, and the Km values were 0.100 mg/mL, 0.348 mM, and 2.06 mM, respectively. Recombinant AmyL did not bind to starch granules. But the substitution of Trp45 and Trp84, conserved in site 1 of CBM20, with Ala reduced affinity to soluble starch, while the mutations did not affect affinity for oligosaccharides. Substitution of Trp61, conserved in site 2 of CBM20, with Ala enhanced hydrolytic activity towards soluble starch, indicating that site 2 of AmyL does not contribute to binding to soluble long-chain substrates.

  16. Functional characterization of three (GH13) branching enzymes involved in cyanobacterial starch biosynthesis from Cyanobacterium sp. NBRC 102756.

    PubMed

    Suzuki, Ryuichiro; Koide, Keiichi; Hayashi, Mari; Suzuki, Tomoko; Sawada, Takayuki; Ohdan, Takashi; Takahashi, Hidekazu; Nakamura, Yasunori; Fujita, Naoko; Suzuki, Eiji

    2015-05-01

    Starch and glycogen are widespread storage polysaccharides in bacteria, plants, and animals. Recently, some cyanobacteria were found to accumulate water-insoluble α-glucan similar to amylopectin rather than glycogen, the latter of which is more commonly produced in these organisms. The amylopectin-producing species including Cyanobacterium sp. NBRC 102756 invariably have three branching enzyme (BE) homologs, BE1, BE2, and BE3, all belonging to the glycoside hydrolase family 13. Multiple BE isoforms in prokaryotes have not been previously studied. In the present work, we carried out functional characterization of these enzymes expressed in Escherichia coli. The recombinant enzymes were all active, although the specific activity of BE3 was much lower than those of BE1 and BE2. After the incubation of the enzymes with amylopectin or amylose, the reaction products were analyzed by fluorophore-assisted carbohydrate capillary electrophoresis method. BE1 and BE2 showed similar chain-length preference to BEIIb isoform of rice (Oryza sativa L.), while the catalytic specificity of BE3 was similar to that of rice BEI. These results indicate that starch-producing cyanobacteria have both type-I BE (BE3) and type-II BEs (BE1 and BE2) in terms of chain-length preferences, as is the case of plants. All BE isoforms were active against phosphorylase limit dextrin, in which outer branches had been uniformly diminished to 4 glucose residues. Based on its catalytic properties, BE3 was assumed to have a role to transfer the glucan chain bearing branch(es) to give rise to a newly growing unit, or cluster as observed in amylopectin molecule. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. 13C-Labeled-Starch Breath Test in Congenital Sucrase-isomaltase Deficiency.

    PubMed

    Robayo-Torres, Claudia C; Diaz-Sotomayor, Marisela; Hamaker, Bruce R; Baker, Susan S; Chumpitazi, Bruno P; Opekun, Antone R; Nichols, Buford L

    2018-06-01

    Human starch digestion is a multienzyme process involving 6 different enzymes: salivary and pancreatic α-amylase; sucrase and isomaltase (from sucrose-isomaltase [SI]), and maltase and glucoamylase (from maltase-glucoamylase [MGAM]). Together these enzymes cleave starch to smaller molecules ultimately resulting in the absorbable monosaccharide glucose. Approximately 80% of all mucosal maltase activity is accounted for by SI and the reminder by MGAM. Clinical studies suggest that starch may be poorly digested in those with congenital sucrase-isomaltase deficiency (CSID). Poor starch digestion occurs in individuals with CSID and can be documented using a noninvasive C-breath test (BT). C-Labled starch was used as a test BT substrate in children with CSID. Sucrase deficiency was previously documented in study subjects by both duodenal biopsy enzyme assays and C-sucrose BT. Breath CO2 was quantitated at intervals before and after serial C-substrate loads (glucose followed 75 minutes later by starch). Variations in metabolism were normalized against C-glucose BT (coefficient of glucose absorption). Control subjects consisted of healthy family members and a group of children with functional abdominal pain with biopsy-proven sucrase sufficiency. Children with CSID had a significant reduction of C-starch digestion mirroring that of their duodenal sucrase and maltase activity and C-sucrase BT. In children with CSID, starch digestion may be impaired. In children with CSID, starch digestion correlates well with measures of sucrase activity.

  18. Crystal structure of an essential enzyme in seed starch degradation: barley limit dextrinase in complex with cyclodextrins.

    PubMed

    Vester-Christensen, Malene Bech; Abou Hachem, Maher; Svensson, Birte; Henriksen, Anette

    2010-11-12

    Barley limit dextrinase [Hordeum vulgare limit dextrinase (HvLD)] catalyzes the hydrolysis of α-1,6 glucosidic linkages in limit dextrins. This activity plays a role in starch degradation during germination and presumably in starch biosynthesis during grain filling. The crystal structures of HvLD in complex with the competitive inhibitors α-cyclodextrin (CD) and β-CD are solved and refined to 2.5 Å and 2.1 Å, respectively, and are the first structures of a limit dextrinase. HvLD belongs to glycoside hydrolase 13 family and is composed of four domains: an immunoglobulin-like N-terminal eight-stranded β-sandwich domain, a six-stranded β-sandwich domain belonging to the carbohydrate binding module 48 family, a catalytic (β/α)(8)-like barrel domain that lacks α-helix 5, and a C-terminal eight-stranded β-sandwich domain of unknown function. The CDs are bound at the active site occupying carbohydrate binding subsites +1 and +2. A glycerol and three water molecules mimic a glucose residue at subsite -1, thereby identifying residues involved in catalysis. The bulky Met440, a unique residue at its position among α-1,6 acting enzymes, obstructs subsite -4. The steric hindrance observed is proposed to affect substrate specificity and to cause a low activity of HvLD towards amylopectin. An extended loop (Asp513-Asn520) between β5 and β6 of the catalytic domain also seems to influence substrate specificity and to give HvLD a higher affinity for α-CD than pullulanases. The crystal structures additionally provide new insight into cation sites and the concerted action of the battery of hydrolytic enzymes in starch degradation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Bioavailability of angiotensin I-converting enzyme (ACE) inhibitory peptides derived from Virgibacillus halodenitrificans SK1-3-7 proteinases hydrolyzed tilapia muscle proteins.

    PubMed

    Toopcham, Tidarat; Mes, Jurriaan J; Wichers, Harry J; Roytrakul, Sittiruk; Yongsawatdigul, Jirawat

    2017-04-01

    The angiotensin I-converting enzyme (ACE) inhibitory activity of protein hydrolysates from tilapia muscle fractions, namely mince (M), washed mince (WM), and sarcoplasmic protein (SP), were investigated. Each fraction was hydrolyzed by Virgibacillus halodenitrificans SK1-3-7 proteinases for up to 24h. After 8h of hydrolysis, the M hydrolysate (48% degree of hydrolysis (DH)) showed the highest ACE inhibitory activity, with an IC 50 value of 0.54mg/ml, while the SP hydrolysate exhibited the lowest DH and ACE inhibition. In vitro gastrointestinal digestion reduced the ACE inhibitory activity of the M hydrolysate but enhanced its transport across Caco-2 cell monolayers. The transported peptides were found to contain 3-4 amino acid residues showing strong ACE inhibition. The novel ACE inhibitory peptide with the highest inhibition was found to be MCS, with an IC 50 value of 0.29μM. Therefore, tilapia mince hydrolyzed by V. halodenitrificans proteinases contained ACE inhibitory peptides that are potentially bioavailable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A dispersion model for predicting the extent of starch liquefaction by Bacillus licheniformis alpha-amylase during reactive extrusion.

    PubMed

    Komolprasert, V; Ofoli, R Y

    1991-03-25

    A Baker-Perkins corotating twin screw extruder was used as a bioreactor to hydrolyze pregelantinized corn starch by themophilic Bacillus licheniformis alpha-amylase. The extruder was modeled as a tube, and characterized as a closed system. This characterization is not in the thermodynamic sense; rather, it relates to the profile of a tracer fluid upon entry to and exit from the reaction zone. The reaction kinetics were modeled by a modified first-order equation, which allowed the dispersion equation to be solved analytically with the Danckwerts boundary condition. Data from several extrusion runs were super-imposed to obtain a profile to evaluate the model. The dispersion number, determined from the first and second moments of the RTD curve, was primarily a function of the length of the reaction zone. There was good agreement between predictions and experimental data, especially at low dispersion numbers. In general, the axial dispersion model appears to be suitable for analysis of enzymatic reactions of up to 30% conversion. At a fixed flow rate and constant temperature, the extent of starch conversion depends significantly on moisture content, residence time and enzyme dosage, but not on screw speed.

  1. Modulation of starch digestion for slow glucose release through "toggling" of activities of mucosal "alpha"-glucosidases

    USDA-ARS?s Scientific Manuscript database

    Starch digestion involves the breakdown by alpha-amylase to small linear and branched malto-oligosaccharides, which are in turn hydrolyzed to glucose by the mucosal alpha-glucosidases, maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI). MGAM and SI are anchored to the small intestinal brush-bor...

  2. Wheat Starch with Low Retrogradation Properties Produced by Modification of the GtfB Enzyme 4,6-α-Glucanotransferase from Streptococcus thermophilus.

    PubMed

    Li, Xiaolei; Fei, Teng; Wang, Yong; Zhao, Yakun; Pan, Yutian; Li, Dan

    2018-04-18

    A GtfB enzyme 4,6-α-glucanotransferase from Streptococcus thermophilus lacking 761 N-terminal amino acids was heterologously expressed in Escherichia coli. Purified S. thermophilus GtfB showed transglycosylation activities toward starch, resulting in branch points of (α1→6)-glycosidic linkages plus linear chains of (α1→4)-glycosidic linkages. After wheat starch was modified at a rate of 0.1 g/mL by 1-4 U/g starch GtfB at pH 6.0 and 40 °C for 1 h, the weight-averaged molecular weight decreased from 1.70 × 10 7 g/mol to 1.21 × 10 6 to 3.41 × 10 6 g/mol, the amylose content decreased from 22.07 to 16.34-17.11%, and that of amylopectin long-branch chains decreased from 26.4 to 10.25-15.64% ( P < 0.05). After the GtfB-modified wheat starches were gelatinized and stored at 4 °C for 1-2 weeks, their endothermic enthalpies were significantly lower than that of the control sample ( P < 0.05), indicating low retrogradation rates.

  3. PROTEIN TARGETING TO STARCH Is Required for Localising GRANULE-BOUND STARCH SYNTHASE to Starch Granules and for Normal Amylose Synthesis in Arabidopsis

    PubMed Central

    Seung, David; Soyk, Sebastian; Coiro, Mario; Maier, Benjamin A.; Eicke, Simona; Zeeman, Samuel C.

    2015-01-01

    The domestication of starch crops underpinned the development of human civilisation, yet we still do not fully understand how plants make starch. Starch is composed of glucose polymers that are branched (amylopectin) or linear (amylose). The amount of amylose strongly influences the physico-chemical behaviour of starchy foods during cooking and of starch mixtures in non-food manufacturing processes. The GRANULE-BOUND STARCH SYNTHASE (GBSS) is the glucosyltransferase specifically responsible for elongating amylose polymers and was the only protein known to be required for its biosynthesis. Here, we demonstrate that PROTEIN TARGETING TO STARCH (PTST) is also specifically required for amylose synthesis in Arabidopsis. PTST is a plastidial protein possessing an N-terminal coiled coil domain and a C-terminal carbohydrate binding module (CBM). We discovered that Arabidopsis ptst mutants synthesise amylose-free starch and are phenotypically similar to mutants lacking GBSS. Analysis of granule-bound proteins showed a dramatic reduction of GBSS protein in ptst mutant starch granules. Pull-down assays with recombinant proteins in vitro, as well as immunoprecipitation assays in planta, revealed that GBSS physically interacts with PTST via a coiled coil. Furthermore, we show that the CBM domain of PTST, which mediates its interaction with starch granules, is also required for correct GBSS localisation. Fluorescently tagged Arabidopsis GBSS, expressed either in tobacco or Arabidopsis leaves, required the presence of Arabidopsis PTST to localise to starch granules. Mutation of the CBM of PTST caused GBSS to remain in the plastid stroma. PTST fulfils a previously unknown function in targeting GBSS to starch. This sheds new light on the importance of targeting biosynthetic enzymes to sub-cellular sites where their action is required. Importantly, PTST represents a promising new gene target for the biotechnological modification of starch composition, as it is exclusively involved

  4. Using proteomic analysis to investigate uniconazole-induced phytohormone variation and starch accumulation in duckweed (Landoltia punctata).

    PubMed

    Huang, Mengjun; Fang, Yang; Liu, Yang; Jin, Yanling; Sun, Jiaolong; Tao, Xiang; Ma, Xinrong; He, Kaize; Zhao, Hai

    2015-09-15

    Duckweed (Landoltia punctata) has the potential to remediate wastewater and accumulate enormous amounts of starch for bioethanol production. Using systematical screening, we determined that the highest biomass and starch percentage of duckweed was obtained after uniconazole application. Uniconazole contributes to starch accumulation of duckweed, but the molecular mechanism is still unclear. To elucidate the mechanisms of high starch accumulation, in the study, the responses of L. punctata to uniconazole were investigated using a quantitative proteomic approach combined with physiological and biochemical analysis. A total of 3327 proteins were identified. Among these identified proteins, a large number of enzymes involved in endogenous hormone synthetic and starch metabolic pathways were affected. Notably, most of the enzymes involved in abscisic acid (ABA) biosynthesis showed up-regulated expression, which was consistent with the content variation. The increased endogenous ABA may up-regulate expression of ADP-glucose pyrophosphorylase to promote starch biosynthesis. Importantly, the expression levels of several key enzymes in the starch biosynthetic pathway were up-regulated, which supported the enzymatic assay results and may explain why there is increased starch accumulation. These generated data linked uniconazole with changes in expression of enzymes involved in hormone biosynthesis and starch metabolic pathways and elucidated the effect of hormones on starch accumulation. Thus, this study not only provided insights into the molecular mechanisms of uniconazole-induced hormone variation and starch accumulation but also highlighted the potential for duckweed to be feedstock for biofuel as well as for sewage treatment.

  5. Milk glucosidase activity enables suckled pup starch digestion

    USDA-ARS?s Scientific Manuscript database

    Starch requires six enzymes for digestion to free glucose: two amylases (salivary and pancreatic) and four mucosal maltase activities; sucrase-isomaltase and maltase-glucoamylase. All are deficient in suckling rodents. The objective of this study is to test (13)C-starch digestion before weaning by m...

  6. Effect of citric acid concentration and hydrolysis time on physicochemical properties of sweet potato starches.

    PubMed

    Surendra Babu, Ayenampudi; Parimalavalli, Ramanathan; Rudra, Shalini Gaur

    2015-09-01

    Physicochemical properties of citric acid treated sweet potato starches were investigated in the present study. Sweet potato starch was hydrolyzed using citric acid with different concentrations (1 and 5%) and time periods (1 and 11 h) at 45 °C and was denoted as citric acid treated starch (CTS1 to CTS4) based on their experimental conditions. The recovery yield of acid treated starches was above 85%. The CTS4 sample displayed the highest amylose (around 31%) and water holding capacity its melting temperature was 47.66 °C. The digestibility rate was slightly increased for 78.58% for the CTS3 and CTS4. The gel strength of acid modified starches ranged from 0.27 kg to 1.11 kg. RVA results of acid thinned starches confirmed a low viscosity profile. CTS3 starch illustrated lower enthalpy compared to all other modified starches. All starch samples exhibited a shear-thinning behavior. SEM analysis revealed that the extent of visible degradation was increased at higher hydrolysis time and acid concentration. The CTS3 satisfied the criteria required for starch to act as a fat mimetic. Overall results conveyed that the citric acid treatment of sweet potato starch with 5% acid concentration and 11h period was an ideal condition for the preparation of a fat replacer. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Physicochemical properties of quinoa flour as affected by starch interactions.

    PubMed

    Li, Guantian; Zhu, Fan

    2017-04-15

    There has been growing interest in whole grain quinoa flour for new product development due to the unique nutritional benefits. The quality of quinoa flour is much determined by the properties of its major component starch as well as non-starch components. In this study, composition and physicochemical properties of whole grain flour from 7 quinoa samples have been analyzed. Flour properties have been correlated to the flour composition and the properties of isolated quinoa starches through chemometrics. Great variations in chemical composition, swelling power, water soluble index, enzyme susceptibility, pasting, gel texture, and thermal properties of the flour have been observed. Correlation analysis showed that thermal properties and enzyme susceptibility of quinoa flour are highly influenced by the starch. Interactions of starch with non-starch components, including lipids, protein, dietary fibre, phenolics, and minerals, greatly impacted the flour properties. For example, peak gelatinization temperature of the flour is positively correlated to that of the starch (r=0.948, p<0.01) and negatively correlated to the lipid content (r=-0.951, p<0.01). Understanding the roles of starch and other components in physicochemical properties of quinoa flour provides a basis for better utilization of this specialty crop. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Properties of thermoplastic starch and TPS/polycaprolactone blend reinforced with sisal whiskers using extrusion processing

    USDA-ARS?s Scientific Manuscript database

    Sisal whiskers (SW) were prepared by acid hydrolysis for subsequent evaluation as reinforcing material for biodegradable matrices of thermoplastic starch (TPS) and TPS/polycaprolactone (TPS/PCL) blends. The acid hydrolyzed SW had dimensions of 5±2 nm in diameter and 210±60 nm in length and 78% cryst...

  9. Slowly digestible waxy maize starch prepared by octenyl succinic anhydride esterification and heat-moisture treatment: glycemic response and mechanism.

    PubMed

    He, Jinhua; Liu, Jie; Zhang, Genyi

    2008-01-01

    The mechanism and molecular structure of the slowly digestible waxy maize starch prepared by octenyl succinic anhydride (OSA) esterification and heat-moisture treatment were investigated. The in vitro Englyst test showed a proportion of 28.3% slowly digestible starch (SDS) when waxy maize starch was esterified with 3% OSA (starch weight based, and it is named OSA-starch), and a highest SDS content of 42.8% was obtained after OSA-starch (10% moisture) was further heated at 120 degrees C for 4 h (named HOSA-starch). The in vivo glycemic response of HOSA-starch, which showed a delayed appearance of blood glucose peak and a significant reduction (32.2%) of the peak glucose concentration, further confirmed its slow digestion property. Amylopectin debranching analysis revealed HOSA-starch had the highest resistance to debranching enzymes of isoamylase and pullulanase, and a simultaneous decrease of K m and V m (enzyme kinetics) was also shown when HOSA-starch was digested by either alpha-amylase or amyloglucosidase, indicating that the slow digestion of HOSA-starch resulted from an uncompetitive inhibition of enzyme activity during digestion. Size exclusion chromatography analysis of HOSA-starch showed fragmented amylopectin molecules with more nonreducing ends that are favorable for RS conversion to SDS by the action of amyloglucosidase in the Englyst test. Further solubility analysis indicates that the water-insolubility of HOSA-starch is caused by OSA-mediated cross-linking of amylopectin and the hydrophobic interaction between OSA-modified starch molecules. The water-insolubility of HOSA-starch would decrease its enzyme accessibility, and the digestion products with attached OSA molecules might also directly act as the uncompetitive inhibitor to reduce the enzyme activity leading to a slow digestion of HOSA-starch.

  10. Effects of protease and non-starch polysaccharide enzyme on performance, digestive function, activity and gene expression of endogenous enzyme of broilers.

    PubMed

    Yuan, Lin; Wang, Mingfa; Zhang, Xiaotu; Wang, Zhixiang

    2017-01-01

    Three hundred one-day-old male broiler chickens (Ross-308) were fed corn-soybean basal diets containing non-starch polysaccharide (NSP) enzyme and different levels of acid protease from 1 to 42 days of age to investigate the effects of exogenous enzymes on growth performance, digestive function, activity of endogenous digestive enzymes in the pancreas and mRNA expression of pancreatic digestive enzymes. For days 1-42, compared to the control chickens, average daily feed intake (ADFI) and average daily gain (ADG) were significantly enhanced by the addition of NSP enzyme in combination with protease supplementation at 40 or 80 mg/kg (p<0.05). Feed-to-gain ratio (FGR) was significantly improved by supplementation with NSP enzymes or NSP enzyme combined with 40 or 80 mg/kg protease compared to the control diet (p<0.05). Apparent digestibility of crude protein (ADCP) was significantly enhanced by the addition of NSP enzyme or NSP enzyme combined with 40 or 80 mg/kg protease (p<0.05). Cholecystokinin (CCK) level in serum was reduced by 31.39% with NSP enzyme combined with protease supplementation at 160 mg/kg (p<0.05), but the CCK level in serum was increased by 26.51% with NSP enzyme supplementation alone. After 21 days, supplementation with NSP enzyme and NSP enzyme combined with 40 or 80 mg/kg protease increased the activity of pancreatic trypsin by 74.13%, 70.66% and 42.59% (p<0.05), respectively. After 42 days, supplementation with NSP enzyme and NSP enzyme combined with 40 mg/kg protease increased the activity of pancreatic trypsin by 32.45% and 27.41%, respectively (p<0.05). However, supplementation with NSP enzyme and 80 or 160 mg/kg protease decreased the activity of pancreatic trypsin by 10.75% and 25.88%, respectively (p<0.05). The activities of pancreatic lipase and amylase were significantly higher in treated animals than they were in the control group (p<0.05). Supplementation with NSP enzyme, NSP enzyme combined with 40 or 80 mg/kg protease increased

  11. Effects of protease and non-starch polysaccharide enzyme on performance, digestive function, activity and gene expression of endogenous enzyme of broilers

    PubMed Central

    Wang, Mingfa; Zhang, Xiaotu; Wang, Zhixiang

    2017-01-01

    Three hundred one-day-old male broiler chickens (Ross-308) were fed corn-soybean basal diets containing non-starch polysaccharide (NSP) enzyme and different levels of acid protease from 1 to 42 days of age to investigate the effects of exogenous enzymes on growth performance, digestive function, activity of endogenous digestive enzymes in the pancreas and mRNA expression of pancreatic digestive enzymes. For days 1-42, compared to the control chickens, average daily feed intake (ADFI) and average daily gain (ADG) were significantly enhanced by the addition of NSP enzyme in combination with protease supplementation at 40 or 80 mg/kg (p<0.05). Feed-to-gain ratio (FGR) was significantly improved by supplementation with NSP enzymes or NSP enzyme combined with 40 or 80 mg/kg protease compared to the control diet (p<0.05). Apparent digestibility of crude protein (ADCP) was significantly enhanced by the addition of NSP enzyme or NSP enzyme combined with 40 or 80 mg/kg protease (p<0.05). Cholecystokinin (CCK) level in serum was reduced by 31.39% with NSP enzyme combined with protease supplementation at 160 mg/kg (p<0.05), but the CCK level in serum was increased by 26.51% with NSP enzyme supplementation alone. After 21 days, supplementation with NSP enzyme and NSP enzyme combined with 40 or 80 mg/kg protease increased the activity of pancreatic trypsin by 74.13%, 70.66% and 42.59% (p<0.05), respectively. After 42 days, supplementation with NSP enzyme and NSP enzyme combined with 40 mg/kg protease increased the activity of pancreatic trypsin by 32.45% and 27.41%, respectively (p<0.05). However, supplementation with NSP enzyme and 80 or 160 mg/kg protease decreased the activity of pancreatic trypsin by 10.75% and 25.88%, respectively (p<0.05). The activities of pancreatic lipase and amylase were significantly higher in treated animals than they were in the control group (p<0.05). Supplementation with NSP enzyme, NSP enzyme combined with 40 or 80 mg/kg protease increased

  12. Reinforcement Effect of Alkali Hydrolyzed Wheat Gluten and Starch in Carboxylated Styrene-Butadiene Composites

    USDA-ARS?s Scientific Manuscript database

    Wheat gluten (WG) and wheat starch (WS) are the protein and carbohydrate obtained from wheat flours. Wheat gluten is not water soluble or dispersible due to its hydrophobic nature. To prepare wheat gluten dispersions, an alkali hydrolysis reaction was carried out to produce a stable aqueous disper...

  13. Two Distinct Waxy Alleles Impact the Granule-Bound Starch Synthase in Sorghum

    USDA-ARS?s Scientific Manuscript database

    The granule-bound starch synthase (GBSS) is the enzyme responsible for amylose synthesis in starch granules. Loss of GBSS activity results in starch granules containing mostly amylopectin and little or no amylose, a phenotype described as waxy. Previously, two phenotypic classes of waxy alleles we...

  14. Eukaryotic starch degradation: integration of plastidial and cytosolic pathways.

    PubMed

    Fettke, Joerg; Hejazi, Mahdi; Smirnova, Julia; Höchel, Erik; Stage, Marion; Steup, Martin

    2009-01-01

    Starch is an important plant product widely used as a nutrient, as a source of renewable energy, and for many technological applications. In plants, starch is the almost ubiquitous storage carbohydrate whereas most heterotrophic prokaryotes and eukaryotes rely on glycogen. Despite close similarities in basic chemical features, starch and glycogen differ in both structural and physicochemical properties. Glycogen is a hydrosoluble macromolecule with evenly distributed branching points. Starch exists as a water-insoluble particle having a defined (and evolutionary conserved) internal structure. The biochemistry of starch requires the co-operation of up to 40 distinct (iso)enzymes whilst approximately 10 (iso)enzymes permit glycogen metabolism. The biosynthesis and degradation of native starch include the transition of carbohydrates from the soluble to the solid phase and vice versa. In this review, two novel aspects of the eukaryotic plastidial starch degradation are discussed: Firstly, biochemical reactions that take place at the surface of particulate glucans and mediate the phase transition of carbohydrates. Secondly, processes that occur downstream of the export of starch-derived sugars into the cytosol. Degradation of transitory starch mainly results in the formation of neutral sugars, such as glucose and maltose, that are transported into the cytosol via the respective translocators. The cytosolic metabolism of the neutral sugars includes the action of a hexokinase, a phosphoglucomutase, and a transglucosidase that utilizes high molecular weight glycans as a transient glucosyl acceptor or donor. Data are included on the transglucosidase (disproportionating isozyme 2) in Cyanophora paradoxa that accumulates storage carbohydrates in the cytosol rather than in the plastid.

  15. Heat damage and in vitro starch digestibility of puffed wheat kernels.

    PubMed

    Cattaneo, Stefano; Hidalgo, Alyssa; Masotti, Fabio; Stuknytė, Milda; Brandolini, Andrea; De Noni, Ivano

    2015-12-01

    The effect of processing conditions on heat damage, starch digestibility, release of advanced glycation end products (AGEs) and antioxidant capacity of puffed cereals was studied. The determination of several markers arising from Maillard reaction proved pyrraline (PYR) and hydroxymethylfurfural (HMF) as the most reliable indices of heat load applied during puffing. The considerable heat load was evidenced by the high levels of both PYR (57.6-153.4 mg kg(-1) dry matter) and HMF (13-51.2 mg kg(-1) dry matter). For cost and simplicity, HMF looked like the most appropriate index in puffed cereals. Puffing influenced starch in vitro digestibility, being most of the starch (81-93%) hydrolyzed to maltotriose, maltose and glucose whereas only limited amounts of AGEs were released. The relevant antioxidant capacity revealed by digested puffed kernels can be ascribed to both the new formed Maillard reaction products and the conditions adopted during in vitro digestion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Plastidial Disproportionating Enzyme Participates in Starch Synthesis in Rice Endosperm by Transferring Maltooligosyl Groups from Amylose and Amylopectin to Amylopectin1

    PubMed Central

    Dong, Xiangbai; Zhang, Du; Liu, Jie; Liu, Hualiang; Tian, Lihong; Jiang, Ling

    2015-01-01

    Plastidial disproportionating enzyme1 (DPE1), an α-1,4-d-glucanotransferase, has been thought to be involved in storage starch synthesis in cereal crops. However, the precise function of DPE1 remains to be established. We present here the functional identification of DPE1 in storage starch synthesis in rice (Oryza sativa) by endosperm-specific gene overexpression and suppression. DPE1 overexpression decreased amylose content and resulted in small and tightly packed starch granules, whereas DPE1 suppression increased amylose content and formed heterogeneous-sized, spherical, and loosely packed starch granules. Chains with degree of polymerization (DP) of 6 to 10 and 23 to 38 were increased, while chains with DP of 11 to 22 were decreased in amylopectin from DPE1-overexpressing seeds. By contrast, chains with DP of 6 to 8 and 16 to 36 were decreased, while chains with DP of 9 to 15 were increased in amylopectin from DPE1-suppressed seeds. Changes in DPE1 gene expression also resulted in modifications in the thermal and pasting features of endosperm starch granules. In vitro analyses revealed that recombinant DPE1 can break down amylose into maltooligosaccharides in the presence of Glc, while it can transfer maltooligosyl groups from maltooligosaccharide to amylopectin or transfer maltooligosyl groups within and among amylopectin molecules in the absence of Glc. Moreover, a metabolic flow of maltooligosyl groups from amylose to amylopectin was clearly identifiable when comparing DPE1-overexpressing lines with DPE1-suppressed lines. These findings demonstrate that DPE1 participates substantially in starch synthesis in rice endosperm by transferring maltooligosyl groups from amylose and amylopectin to amylopectin. PMID:26471894

  17. Starch granule initiation is controlled by a heteromultimeric isoamylase in potato tubers

    PubMed Central

    Bustos, Regla; Fahy, Brendan; Hylton, Christopher M.; Seale, Robert; Nebane, N. Miranda; Edwards, Anne; Martin, Cathie; Smith, Alison M.

    2004-01-01

    Starch granule initiation is not understood, but recent evidence implicates a starch debranching enzyme, isoamylase, in the control of this process. Potato tubers contain isoamylase activity attributable to a heteromultimeric protein containing Stisa1 and Stisa2, the products of two of the three isoamylase genes of potato. To discover whether this enzyme is involved in starch granule initiation, activity was reduced by expression of antisense RNA for Stisa1 or Stisa2. Transgenic tubers accumulated a small amount of a soluble glucan, similar in structure to the phytoglycogen of cereal, Arabidopsis, and Chlamydomonas mutants lacking isoamylase. The major effect, however, was on the number of starch granules. Transgenic tubers accumulated large numbers of tiny granules not seen in normal tubers. These data indicate that the heteromultimeric isoamylase functions during starch synthesis to suppress the initiation of glucan molecules in the plastid stroma that would otherwise crystallize to nucleate new starch granules. PMID:14766984

  18. Insights into molecular structure and digestion rate of oat starch.

    PubMed

    Xu, Jinchuan; Kuang, Qirong; Wang, Kai; Zhou, Sumei; Wang, Shuo; Liu, Xingxun; Wang, Shujun

    2017-04-01

    The in vitro digestibility of oat starch and its relationship with starch molecular structure was investigated. The in vitro digestion results showed that the first-order kinetic constant (k) of oat starches (OS-1 and OS-2) was lower than that of rice starch. The size of amylose chains, amylose content and degree of branching (DB) of amylopectin in oat starch were significantly higher than the corresponding parameters in rice starch. The larger molecular size of oat starch may account for its lower digestion rate. The fine structure of amylopectin showed that oat starch had less chains of DP 6-12 and DP>36, which may explain the small difference in digestion rate between oat and rice starch. The biosynthesis model from oat amylopectin fine structure data suggested a lower starch branching enzyme (SBE) activity and/or a higher starch synthase (SS) activity, which may decrease the DB of oat starch and increase its digestion rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Effects of Oligosaccharides Isolated From Pinewood Hot Water Pre-hydrolyzates on Recombinant Cellulases

    PubMed Central

    Fang, Hong; Kandhola, Gurshagan; Rajan, Kalavathy; Djioleu, Angele; Carrier, Danielle Julie; Hood, Kendall R.; Hood, Elizabeth E.

    2018-01-01

    Loblolly pine residues have enormous potential to be the raw material for advanced biofuel production due to extensive sources and high cellulose content. Hot water (HW) pretreatment, while being a relatively economical and clean technology for the deconstruction of lignocellulosic biomass, could also inhibit the ensuing enzymatic hydrolysis process because of the production of inhibitors. In this study, we investigated the effect of oligosaccharide fractions purified from HW pre-hydrolyzate of pinewood using centrifugal partition chromatography (CPC) on three recombinant cellulolytic enzymes (E1, CBHI and CBHII), which were expressed in the transgenic corn grain system. The efficiency of recombinant enzymes was measured using either a 4-methylumbelliferyl-β-D-cellobioside (MUC) or a cellulose-dinitrosalicylic acid (DNS) assay system. The results showed that HW pre-hydrolyzate CPC fractions contain phenolics, furans, and monomeric and oligomeric sugars. Among CPC fractions, oligomers composed of xylan, galactan, and mannan were inhibitory to the three recombinant enzymes and to the commercial cellulase cocktail, reducing the enzymatic efficiency to as low as 10%. PMID:29868572

  20. Effects of Oligosaccharides Isolated From Pinewood Hot Water Pre-hydrolyzates on Recombinant Cellulases.

    PubMed

    Fang, Hong; Kandhola, Gurshagan; Rajan, Kalavathy; Djioleu, Angele; Carrier, Danielle Julie; Hood, Kendall R; Hood, Elizabeth E

    2018-01-01

    Loblolly pine residues have enormous potential to be the raw material for advanced biofuel production due to extensive sources and high cellulose content. Hot water (HW) pretreatment, while being a relatively economical and clean technology for the deconstruction of lignocellulosic biomass, could also inhibit the ensuing enzymatic hydrolysis process because of the production of inhibitors. In this study, we investigated the effect of oligosaccharide fractions purified from HW pre-hydrolyzate of pinewood using centrifugal partition chromatography (CPC) on three recombinant cellulolytic enzymes (E1, CBHI and CBHII), which were expressed in the transgenic corn grain system. The efficiency of recombinant enzymes was measured using either a 4-methylumbelliferyl-β-D-cellobioside (MUC) or a cellulose-dinitrosalicylic acid (DNS) assay system. The results showed that HW pre-hydrolyzate CPC fractions contain phenolics, furans, and monomeric and oligomeric sugars. Among CPC fractions, oligomers composed of xylan, galactan, and mannan were inhibitory to the three recombinant enzymes and to the commercial cellulase cocktail, reducing the enzymatic efficiency to as low as 10%.

  1. Molecular Genetic Analysis of Glucan Branching Enzymes from Plants and Bacteria in Arabidopsis Reveals Marked Differences in Their Functions and Capacity to Mediate Starch Granule Formation1[OPEN

    PubMed Central

    Lu, Kuan-Jen; Streb, Sebastian; Meier, Florence; Pfister, Barbara; Zeeman, Samuel C.

    2015-01-01

    The major component of starch is the branched glucan amylopectin, the branching pattern of which is one of the key factors determining its ability to form semicrystalline starch granules. Here, we investigated the functions of different branching enzyme (BE) types by expressing proteins from maize (Zea mays BE2a), potato (Solanum tuberosum BE1), and Escherichia coli (glycogen BE [EcGLGB]) in Arabidopsis (Arabidopsis thaliana) mutant plants that are deficient in their endogenous BEs and therefore, cannot make starch. The expression of each of these three BE types restored starch biosynthesis to differing degrees. Full complementation was achieved using the class II BE ZmBE2a, which is most similar to the two endogenous Arabidopsis isoforms. Expression of the class I BE from potato, StBE1, resulted in partial complementation and high amylose starch. Expression of the glycogen BE EcGLGB restored only minimal amounts of starch production, which had unusual chain length distribution, branch point distribution, and granule morphology. Nevertheless, each type of BE together with the starch synthases and debranching enyzmes were able to create crystallization-competent amylopectin polymers. These data add to the knowledge of how the properties of the BE influence the final composition of starch and fine structure of amylopectin. PMID:26358415

  2. Characteristics of plastids responsible for starch synthesis in developing pea embryos.

    PubMed

    Smith, A M; Quinton-Tulloch, J; Denyer, K

    1990-03-01

    The nature of the starch-synthesising plastids in developing pea (Pisum sativum L.) embryos has been investigated. Chlorophyll and starch were distributed throughout the cotyledon during development. Chlorophyll content increased initially, then showed little change up to the point of drying out of the embryo. Starch content per embryo increased dramatically throughout development. The chlorophyll content per unit volume was highest on the outer edge of the cotyledon, while the starch content was highest on inner face. Nycodenz gradients, which fractionated mechanically-prepared plastids according to their starch content, failed to achieve any significant separation of plastids rich in starch and ADP-glucose pyrophosphorylase from those rich in chlorophyll and a Calvin-cycle marker enzyme, NADP-glyceraldehyde-3-phosphate dehydrogenase. However, material that was not sufficiently dense to enter the gradients was enriched in activity of the Calvin-cycle marker enzyme relative to that of ADP-glucose pyrophosphorylase. Nomarski and epi-fluorescence microscopy showed that intact, isolated plastids, including those with very large starch grains, invariably contained chlorophyll in stromal structures peripheral to the starch grain. We suggest that the starch-storing plastids of developing pea embryos are derived directly from chloroplasts, and retain chloroplast-like characteristics throughout their development. Developing pea embryos also contain chloroplasts which store little or no starch. These are probably located primarily on the outer edge of the cotyledons where there is sufficient light for photosynthesis at some stages of development.

  3. Dietary starch breakdown product sensing mobilizes and apically activates α-glucosidases in small intestinal enterocytes.

    PubMed

    Chegeni, Mohammad; Amiri, Mahdi; Nichols, Buford L; Naim, Hassan Y; Hamaker, Bruce R

    2018-02-20

    Dietary starch is finally converted to glucose for absorption by the small intestine mucosal α-glucosidases (sucrase-isomaltase [SI] and maltase-glucoamylase), and control of this process has health implications. Here, the molecular mechanisms were analyzed associated with starch-triggered maturation and transport of SI. Biosynthetic pulse-chase in Caco-2 cells revealed that the high MW SI species (265 kDa) induced by maltose (an α-amylase starch digestion product) had a higher rate of early trafficking and maturation compared with a glucose-induced SI (245 kDa). The maltose-induced SI was found to have higher affinity to lipid rafts, which are associated with enhanced targeting to the apical membrane and higher activity. Accordingly, in situ maltose-hydrolyzing action was enhanced in the maltose-treated cells. Thus, starch digestion products at the luminal surface of small intestinal enterocytes are sensed and accelerate the intracellular processing of SI to enhance starch digestion capacity in the intestinal lumen.-Chegeni, M., Amiri, M., Nichols, B. L., Naim, H. Y., Hamaker, B. R. Dietary starch breakdown product sensing mobilizes and apically activates α-glucosidases in small intestinal enterocytes.

  4. Optimization of maltodextrin production from avocado seed starch by response surface methodology

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh Viet; Ma, Tuyen-Hoang Nguyen; Nguyen, Tha Thi; Ho, Vinh-Nghi Kim; Vo, Hau Tan

    2018-04-01

    A process for maltodextrin production from avocado seed starch was reported in this study. Response surface methodology was used to investigate the effects of three independent variables for hydrolysis of the starch using a commercial food-grade α-amylase, Termamyl SC. These variables included enzyme concentration (0.05 - 0.15% starch), pH (5.0 - 6.0) and hydrolysis time (1.0 - 3.0 h), while the temperature fixed at 95°C. The result showed that the optimum conditions were using enzyme concentration at 0.12%, pH at 5.5 and 2.75 h of the incubation time. Under the optimum conditions, the recovered starch yield was 79.8% and the maltodextrin powder had 15.8 of dextrose equivalent.

  5. Comparative transcriptome analysis to investigate the high starch accumulation of duckweed (Landoltia punctata) under nutrient starvation.

    PubMed

    Tao, Xiang; Fang, Yang; Xiao, Yao; Jin, Yan-Ling; Ma, Xin-Rong; Zhao, Yun; He, Kai-Ze; Zhao, Hai; Wang, Hai-Yan

    2013-05-08

    Duckweed can thrive on anthropogenic wastewater and produce tremendous biomass production. Due to its relatively high starch and low lignin percentage, duckweed is a good candidate for bioethanol fermentation. Previous studies have observed that water devoid of nutrients is good for starch accumulation, but its molecular mechanism remains unrevealed. This study globally analyzed the response to nutrient starvation in order to investigate the starch accumulation in duckweed (Landoltia punctata). L. punctata was transferred from nutrient-rich solution to distilled water and sampled at different time points. Physiological measurements demonstrated that the activity of ADP-glucose pyrophosphorylase, the key enzyme of starch synthesis, as well as the starch percentage in duckweed, increased continuously under nutrient starvation. Samples collected at 0 h, 2 h and 24 h time points respectively were used for comparative gene expression analysis using RNA-Seq. A comprehensive transcriptome, comprising of 74,797 contigs, was constructed by a de novo assembly of the RNA-Seq reads. Gene expression profiling results showed that the expression of some transcripts encoding key enzymes involved in starch biosynthesis was up-regulated, while the expression of transcripts encoding enzymes involved in starch consumption were down-regulated, the expression of some photosynthesis-related transcripts were down-regulated during the first 24 h, and the expression of some transporter transcripts were up-regulated within the first 2 h. Very interestingly, most transcripts encoding key enzymes involved in flavonoid biosynthesis were highly expressed regardless of starvation, while transcripts encoding laccase, the last rate-limiting enzyme of lignifications, exhibited very low expression abundance in all three samples. Our study provides a comprehensive expression profiling of L. punctata under nutrient starvation, which indicates that nutrient starvation down-regulated the global metabolic

  6. Comparative transcriptome analysis to investigate the high starch accumulation of duckweed (Landoltia punctata) under nutrient starvation

    PubMed Central

    2013-01-01

    Background Duckweed can thrive on anthropogenic wastewater and produce tremendous biomass production. Due to its relatively high starch and low lignin percentage, duckweed is a good candidate for bioethanol fermentation. Previous studies have observed that water devoid of nutrients is good for starch accumulation, but its molecular mechanism remains unrevealed. Results This study globally analyzed the response to nutrient starvation in order to investigate the starch accumulation in duckweed (Landoltia punctata). L. punctata was transferred from nutrient-rich solution to distilled water and sampled at different time points. Physiological measurements demonstrated that the activity of ADP-glucose pyrophosphorylase, the key enzyme of starch synthesis, as well as the starch percentage in duckweed, increased continuously under nutrient starvation. Samples collected at 0 h, 2 h and 24 h time points respectively were used for comparative gene expression analysis using RNA-Seq. A comprehensive transcriptome, comprising of 74,797 contigs, was constructed by a de novo assembly of the RNA-Seq reads. Gene expression profiling results showed that the expression of some transcripts encoding key enzymes involved in starch biosynthesis was up-regulated, while the expression of transcripts encoding enzymes involved in starch consumption were down-regulated, the expression of some photosynthesis-related transcripts were down-regulated during the first 24 h, and the expression of some transporter transcripts were up-regulated within the first 2 h. Very interestingly, most transcripts encoding key enzymes involved in flavonoid biosynthesis were highly expressed regardless of starvation, while transcripts encoding laccase, the last rate-limiting enzyme of lignifications, exhibited very low expression abundance in all three samples. Conclusion Our study provides a comprehensive expression profiling of L. punctata under nutrient starvation, which indicates that nutrient starvation down

  7. Quantitative proteomic study of Aspergillus Fumigatus secretome revealed deamidation of secretory enzymes.

    PubMed

    Adav, Sunil S; Ravindran, Anita; Sze, Siu Kwan

    2015-04-24

    Aspergillus sp. plays an essential role in lignocellulosic biomass recycling and is also exploited as cell factories for the production of industrial enzymes. This study profiled the secretome of Aspergillus fumigatus when grown with cellulose, xylan and starch by high throughput quantitative proteomics using isobaric tags for relative and absolute quantification (iTRAQ). Post translational modifications (PTMs) of proteins play a critical role in protein functions. However, our understanding of the PTMs in secretory proteins is limited. Here, we present the identification of PTMs such as deamidation of secreted proteins of A. fumigatus. This study quantified diverse groups of extracellular secreted enzymes and their functional classification revealed cellulases and glycoside hydrolases (32.9%), amylases (0.9%), hemicellulases (16.2%), lignin degrading enzymes (8.1%), peptidases and proteases (11.7%), chitinases, lipases and phosphatases (7.6%), and proteins with unknown function (22.5%). The comparison of quantitative iTRAQ results revealed that cellulose and xylan stimulates expression of specific cellulases and hemicellulases, and their abundance level as a function of substrate. In-depth data analysis revealed deamidation as a major PTM of key cellulose hydrolyzing enzymes like endoglucanases, cellobiohydrolases and glucosidases. Hemicellulose degrading endo-1,4-beta-xylanase, monosidases, xylosidases, lignin degrading laccase, isoamyl alcohol oxidase and oxidoreductases were also found to be deamidated. The filamentous fungi play an essential role in lignocellulosic biomass recycling and fungal strains belonging to Aspergillus were also exploited as cell factories for the production of organic acids, pharmaceuticals, and industrially important enzymes. In this study, extracellular proteins secreted by thermophilic A. fumigatus when grown with cellulose, xylan and starch were profiled using isobaric tags for relative and absolute quantification (iTRAQ) by

  8. Application of cross-linked and hydrolyzed arabinoxylans in baking of model rye bread.

    PubMed

    Buksa, Krzysztof; Nowotna, Anna; Ziobro, Rafał

    2016-02-01

    The role of water extractable arabinoxylan with varying molar mass and structure (cross-linked vs. hydrolyzed) in the structure formation of rye bread was examined using a model bread. Instead of the normal flour, the dough contained starch, arabinoxylan and protein, which were isolated from rye wholemeal. It was observed that the applied mixes of these constituents result in a product closely resembling typical rye bread, even if arabinoxylan was modified (by cross-linking or hydrolysis). The levels of arabinoxylan required for bread preparation depended on its modification and mix composition. At 3% protein, the maximum applicable level of poorly soluble cross-linked arabinoxylan was 3%, as higher amounts of this preparation resulted in an extensively viscous dough and diminished bread volume. On the other hand highly soluble, hydrolyzed arabinoxylan could be used at a higher level (6%) together with larger amounts of rye protein (3% or 6%). Further addition of arabinoxylan leads to excessive water absorption, resulting in a decreased viscosity of the dough during baking and insufficient gas retention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Soybean cotyledon starch metabolism is sensitive to altered gravity conditions

    NASA Technical Reports Server (NTRS)

    Brown, C. S.; Piastuch, W. C.; Knott, W. M.

    1994-01-01

    We have demonstrated that etiolated soybean seedlings grown under the altered gravity conditions of clinorotation (1 rpm) and centrifugation (5xg) exhibit changes in starch metabolism. Cotyledon starch concentration was lower (-28%) in clinorotated plants and higher (+24%) in centrifuged plants than in vertical control plants. The activity of ADP-glucose pyrophosphorylase in the cotyledons was affected in a similar way, i.e. lower (-37%) in the clinorotated plants and higher (+22%) in the centrifuged plants. Other starch metabolic enzyme activities, starch synthase, starch phosphorylase and total hydrolase were not affected by the altered gravity treatments. We conclude that the observed changes in starch concentrations were primarily due to gravity-mediated differences in ADP-glucose pyrophosphorylase activity.

  10. D-lactic acid production by Sporolactobacillus inulinus Y2-8 immobilized in fibrous bed bioreactor using corn flour hydrolyzate.

    PubMed

    Zhao, Ting; Liu, Dong; Ren, Hengfei; Shi, Xinchi; Zhao, Nan; Chen, Yong; Ying, Hanjie

    2014-12-28

    In this study, a fibrous bed bioreactor (FBB) was used for D-lactic acid (D-LA) production by Sporolactobacillus inulinus Y2-8. Corn flour hydrolyzed with α-amylase and saccharifying enzyme was used as a cost-efficient and nutrient-rich substrate for D-LA production. A maximal starch conversion rate of 93.78% was obtained. The optimum pH for D-LA production was determined to be 6.5. Ammonia water was determined to be an ideal neutralizing agent, which improved the D-LA production and purification processes. Batch fermentation and fedbatch fermentation, with both free cells and immobilized cells, were compared to highlight the advantages of FBB fermentation. In batch mode, the D-LA production rate of FBB fermentation was 1.62 g/l/h, which was 37.29% higher than that of free-cell fermentation, and the D-LA optical purities of the two fermentation methods were above 99.00%. In fed-batch mode, the maximum D-LA concentration attained by FBB fermentation was 218.8 g/l, which was 37.67% higher than that of free-cell fermentation. Repeated-batch fermentation was performed to determine the long-term performance of the FBB system, and the data indicated that the average D-LA production rate was 1.62 g/l/h and the average yield was 0.98 g/g. Thus, hydrolyzed corn flour fermented by S. inulinus Y2-8 in a FBB may be used for improving D-LA fermentation by using ammonia water as the neutralizing agent.

  11. Molecular, mesoscopic and microscopic structure evolution during amylase digestion of extruded maize and high amylose maize starches.

    PubMed

    Shrestha, Ashok K; Blazek, Jaroslav; Flanagan, Bernadine M; Dhital, Sushil; Larroque, Oscar; Morell, Matthew K; Gilbert, Elliot P; Gidley, Michael J

    2015-03-15

    Extrusion processing of cereal starch granules with high (>50%) amylose content is a promising approach to create nutritionally desirable resistant starch, i.e. starch that escapes digestion in the small intestine. Whilst high amylose content seems to be required, the structural features responsible for the slow digestion of extrudates are not fully understood. We report the effects of partial enzyme digestion of extruded maize starches on amylopectin branch length profiles, double and single helix contents, crystallinity and lamellar periodicity. Comparing results for three extruded maize starches (27, 57, and 84% apparent amylose) that differ in amylase-sensitivity allows conclusions to be drawn concerning the rate-determining features operating under the digestion conditions used. Enzyme resistance is shown to originate from a combination of molecular and mesoscopic factors, including both recrystallization and an increase in very short branches during the digestion process. This is in contrast to the behaviour of the same starches in the granular form (Shrestha et al., 2012) where molecular and mesoscopic factors are secondary to microscopic structures in determining enzyme susceptibility. Based on the structure of residual material after long-time digestion (>8h), a model for resistant starch from processed high amylose maize starches is proposed based on a fringed micelle structure with lateral aggregation and enzyme susceptibility both limited by attached clusters of branch points. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Rethinking the starch digestion hypothesis for AMY1 copy number variation in humans.

    PubMed

    Fernández, Catalina I; Wiley, Andrea S

    2017-08-01

    Alpha-amylase exists across taxonomic kingdoms with a deep evolutionary history of gene duplications that resulted in several α-amylase paralogs. Copy number variation (CNV) in the salivary α-amylase gene (AMY1) exists in many taxa, but among primates, humans appear to have higher average AMY1 copies than nonhuman primates. Additionally, AMY1 CNV in humans has been associated with starch content of diets, and one known function of α-amylase is its involvement in starch digestion. Thus high AMY1 CNV is considered to result from selection favoring more efficient starch digestion in the Homo lineage. Here, we present several lines of evidence that challenge the hypothesis that increased AMY1 CNV is an adaptation to starch consumption. We observe that α- amylase plays a very limited role in starch digestion, with additional steps required for starch digestion and glucose metabolism. Specifically, we note that α-amylase hydrolysis only produces a minute amount of free glucose with further enzymatic digestion and glucose absorption being rate-limiting steps for glucose availability. Indeed α-amylase is nonessential for starch digestion since sucrase-isomaltase and maltase-glucoamylase can hydrolyze whole starch granules while releasing glucose. While higher AMY1 CN and CNV among human populations may result from natural selection, existing evidence does not support starch digestion as the major selective force. We report that in humans α-amylase is expressed in several other tissues where it may have potential roles of evolutionary significance. © 2017 Wiley Periodicals, Inc.

  13. Degradation of Glucan Primers in the Absence of Starch Synthase 4 Disrupts Starch Granule Initiation in Arabidopsis*

    PubMed Central

    Lu, Kuan-Jen; Stettler, Michaela; Streb, Sebastian

    2016-01-01

    Arabidopsis leaf chloroplasts typically contain five to seven semicrystalline starch granules. It is not understood how the synthesis of each granule is initiated or how starch granule number is determined within each chloroplast. An Arabidopsis mutant lacking the glucosyl-transferase, STARCH SYNTHASE 4 (SS4) is impaired in its ability to initiate starch granules; its chloroplasts rarely contain more than one large granule, and the plants have a pale appearance and reduced growth. Here we report that the chloroplastic α-amylase AMY3, a starch-degrading enzyme, interferes with granule initiation in the ss4 mutant background. The amy3 single mutant is similar in phenotype to the wild type under normal growth conditions, with comparable numbers of starch granules per chloroplast. Interestingly, the ss4 mutant displays a pleiotropic reduction in the activity of AMY3. Remarkably, complete abolition of AMY3 (in the amy3 ss4 double mutant) increases the number of starch granules produced in each chloroplast, suppresses the pale phenotype of ss4, and nearly restores normal growth. The amy3 mutation also restores starch synthesis in the ss3 ss4 double mutant, which lacks STARCH SYNTHASE 3 (SS3) in addition to SS4. The ss3 ss4 line is unable to initiate any starch granules and is thus starchless. We suggest that SS4 plays a key role in granule initiation, allowing it to proceed in a way that avoids premature degradation of primers by starch hydrolases, such as AMY3. PMID:27458017

  14. Mechanisms of starch digestion by α-amylase-Structural basis for kinetic properties.

    PubMed

    Dhital, Sushil; Warren, Frederick J; Butterworth, Peter J; Ellis, Peter R; Gidley, Michael J

    2017-03-24

    Recent studies of the mechanisms determining the rate and extent of starch digestion by α-amylase are reviewed in the light of current widely-used classifications for (a) the proportions of rapidly-digestible (RDS), slowly-digestible (SDS), and resistant starch (RS) based on in vitro digestibility, and (b) the types of resistant starch (RS 1,2,3,4…) based on physical and/or chemical form. Based on methodological advances and new mechanistic insights, it is proposed that both classification systems should be modified. Kinetic analysis of digestion profiles provides a robust set of parameters that should replace the classification of starch as a combination of RDS, SDS, and RS from a single enzyme digestion experiment. This should involve determination of the minimum number of kinetic processes needed to describe the full digestion profile, together with the proportion of starch involved in each process, and the kinetic properties of each process. The current classification of resistant starch types as RS1,2,3,4 should be replaced by one which recognizes the essential kinetic nature of RS (enzyme digestion rate vs. small intestinal passage rate), and that there are two fundamental origins for resistance based on (i) rate-determining access/binding of enzyme to substrate and (ii) rate-determining conversion of substrate to product once bound.

  15. Cohnella amylopullulanases: Biochemical characterization of two recombinant thermophilic enzymes.

    PubMed

    Zebardast Roodi, Fatemeh; Aminzadeh, Saeed; Farrokhi, Naser; Karkhane, AliAsghar; Haghbeen, Kamahldin

    2017-01-01

    Some industries require newer, more efficient recombinant enzymes to accelerate their ongoing biochemical reactions in harsh environments with less replenishment. Thus, the search for native enzymes from extremophiles that are suitable for use under industrial conditions is a permanent challenge for R & D departments. Here and toward such discoveries, two sequences homologous to amylopullulanases (EC 3.2.1.41, GH57) from an endogenous Cohnella sp., [Coh00831 (KP335161; 1998 bp) and Coh01133 (KP335160: 3678 bp)] were identified. The genes were heterologously expressed in E. coli to both determine their type and further characterize their properties. The isolated DNA was PCR amplified with gene specific primers and cloned in pET28a, and the recombinant proteins were expressed in E. coli BL21 (DE3). The temperatures and pH optima of purified recombinants Coh 01133 and Coh 00831 enzymes were 70°C and 8, and 60°C and 6, respectively. These enzymes are stable more than 90% in 60°C and 50°C for 90 min respectively. The major reactions released sugars which could be fractionated by HPLC analysis, from soluble starch were mainly maltose (G2), maltotriose (G3) and maltotetraose (G4). The enzymes hydrolyzed pullulan to maltotriose (G3) only. Enzyme activities for both proteins were improved in the availability of Mn2+, Ba2+, Ca2+, and Mg2+ and reduced in the presence of Fe2+, Li2+, Na2+, Triton X100 and urea. Moreover, Co2+, K+, and Cu2+ had a negative effect only on Coh 01133 enzyme.

  16. 7-methylguanosine diphosphate (m(7)GDP) is not hydrolyzed but strongly bound by decapping scavenger (DcpS) enzymes and potently inhibits their activity.

    PubMed

    Wypijewska, Anna; Bojarska, Elzbieta; Lukaszewicz, Maciej; Stepinski, Janusz; Jemielity, Jacek; Davis, Richard E; Darzynkiewicz, Edward

    2012-10-09

    Decapping scavenger (DcpS) enzymes catalyze the cleavage of a residual cap structure following 3' → 5' mRNA decay. Some previous studies suggested that both m(7)GpppG and m(7)GDP were substrates for DcpS hydrolysis. Herein, we show that mononucleoside diphosphates, m(7)GDP (7-methylguanosine diphosphate) and m(3)(2,2,7)GDP (2,2,7-trimethylguanosine diphosphate), resulting from mRNA decapping by the Dcp1/2 complex in the 5' → 3' mRNA decay, are not degraded by recombinant DcpS proteins (human, nematode, and yeast). Furthermore, whereas mononucleoside diphosphates (m(7)GDP and m(3)(2,2,7)GDP) are not hydrolyzed by DcpS, mononucleoside triphosphates (m(7)GTP and m(3)(2,2,7)GTP) are, demonstrating the importance of a triphosphate chain for DcpS hydrolytic activity. m(7)GTP and m(3)(2,2,7)GTP are cleaved at a slower rate than their corresponding dinucleotides (m(7)GpppG and m(3)(2,2,7)GpppG, respectively), indicating an involvement of the second nucleoside for efficient DcpS-mediated digestion. Although DcpS enzymes cannot hydrolyze m(7)GDP, they have a high binding affinity for m(7)GDP and m(7)GDP potently inhibits DcpS hydrolysis of m(7)GpppG, suggesting that m(7)GDP may function as an efficient DcpS inhibitor. Our data have important implications for the regulatory role of m(7)GDP in mRNA metabolic pathways due to its possible interactions with different cap-binding proteins, such as DcpS or eIF4E.

  17. Biosynthesis and subcellular distribution of hydrolyzable tannins.

    PubMed

    Grundhöfer, P; Niemetz, R; Schilling, G; Gross, G G

    2001-07-01

    Pathways to complex gallotannins have been elucidated by enzyme studies, indicating that beta-glucogallin is required as principal acyl donor. Evidence for the in vitro oxidation of pentagalloylglucose, the pivotal metabolite in this sequence, to ellagitannins, is presented. Immunohistochemical studies with antibodies raised against pentagalloylglucose and the galloyltransferase catalyzing the formation of this ester revealed that leaf mesophyll cell walls were a typical site of origin and deposition of hydrolyzable tannins. Seasonal changes of these compounds were studied with extracts from cell walls and intracellular space of oak leaves.

  18. Investigation of debranching pattern of a thermostable isoamylase and its application for the production of resistant starch.

    PubMed

    Li, Youran; Xu, Jingjing; Zhang, Liang; Ding, Zhongyang; Gu, Zhenghua; Shi, Guiyang

    2017-06-29

    Debranching enzymes contribute to the enzymatic production of resistant starch (RS) by reducing substrate molecular weight and increasing amylose yield. In the present study, the action pattern of a thermostable isoamylase-type debranching enzyme on different types of starch was investigated. The molecular weight distribution, glycosidic bond composition and contents of oligosaccharides released were monitored by various liquid chromatography techniques and nuclear magnetic resonance spectroscopy (NMR). These analyses showed that the isoamylase could specifically and efficiently attack α-1,6-glucosidic linkages at branch points, leaving the amylose favored by other amylolytic enzymes. Its ability to attack side chains composed of 1-3 glucose residues differentiates it from other isoamylases, a property which is also ideal for the RS preparation process. The enzyme was used as an auxiliary enzyme in the hydrolytic stage. The highest RS yield (53.8%) was achieved under the optimized conditions of 70 °C and pH 5.0, using 7 U isoamylase per g starch and 2 NU amylase per g starch. These data also help us better understand the application of isoamylase for preparation of other products from highly branched starch materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Engineering Potato Starch with a Higher Phosphate Content

    PubMed Central

    Xu, Xuan; Huang, Xing-Feng; Visser, Richard G. F.

    2017-01-01

    Phosphate esters are responsible for valuable and unique functionalities of starch for industrial applications. Also in the cell phosphate esters play a role in starch metabolism, which so far has not been well characterized in storage starch. Laforin, a human enzyme composed of a carbohydrate-binding module and a dual-specificity phosphatase domain, is involved in the dephosphorylation of glycogen. To modify phosphate content and better understand starch (de)phosphorylation in storage starch, laforin was engineered and introduced into potato (cultivar Kardal). Interestingly, expression of an (engineered) laforin in potato resulted in significantly higher phosphate content of starch, and this result was confirmed in amylose-free potato genetic background (amf). Modified starches exhibited altered granule morphology and size compared to the control. About 20–30% of the transgenic lines of each series showed red-staining granules upon incubation with iodine, and contained higher phosphate content than the blue-stained starch granules. Moreover, low amylose content and altered gelatinization properties were observed in these red-stained starches. Principle component and correlation analysis disclosed a complex correlation between starch composition and starch physico-chemical properties. Ultimately, the expression level of endogenous genes involved in starch metabolism was analysed, revealing a compensatory response to the decrease of phosphate content in potato starch. This study provides a new perspective for engineering starch phosphate content in planta by making use of the compensatory mechanism in the plant itself. PMID:28056069

  20. Preparation, structure, and digestibility of crystalline A- and B-type aggregates from debranched waxy starches.

    PubMed

    Cai, Liming; Shi, Yong-Cheng

    2014-05-25

    Highly crystalline A- and B-type aggregates were prepared from short linear α-1,4 glucans generated from completely debranched waxy maize and waxy potato starches by manipulating the chain length and crystallization conditions including starch solids concentration and crystallization temperature. The A-type crystalline products were more resistant to enzyme digestion than the B-type crystalline products, and the digestibility of the A- and B-type allomorphs was not correlated with the size of the aggregates formed. Annealing increased the peak melting temperature of the B-type crystallites, making it similar to that of the A-type crystallites, but did not improve the enzyme resistance of the B-type crystalline products. The possible reason for these results was due to the compact morphology as well as the denser packing pattern of double helices in A-type crystallites. Our observations counter the fact that most B-type native starches are more enzyme-resistant than A-type native starches. Crystalline type per se does not seem to be the key factor that controls the digestibility of native starch granules; the resistance of native starches with a B-type X-ray diffraction pattern is probably attributed to the other structural features in starch granules. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The effect of dietary faba bean and non-starch polysaccharide degrading enzymes on the growth performance and gut physiology of young turkeys.

    PubMed

    Mikulski, D; Juskiewicz, J; Przybylska-Gornowicz, B; Sosnowska, E; Slominski, B A; Jankowski, J; Zdunczyk, Z

    2017-12-01

    The aim of this study was to investigate the effect of dietary replacement of soya bean meal (SBM) with faba bean (FB) and a blend of non-starch polysaccharide (NSP) degrading enzymes on the gastrointestinal function, growth performance and welfare of young turkeys (1 to 56 days of age). An experiment with a 2×2 factorial design was performed to compare the efficacy of four diets: a SBM-based diet and a diet containing FB, with and without enzyme supplementation (C, FB, CE and FBE, respectively). In comparison with groups C, higher dry matter content and lower viscosity of the small intestinal digesta were noted in groups FB. The content of short-chain fatty acids (SCFAs) in the small intestinal digesta was higher in groups FB, but SCFA concentrations in the caecal digesta were comparable in groups C and FB. In comparison with control groups, similar BW gains, higher feed conversion ratio (FCR), higher dry matter content of excreta and milder symptoms of footpad dermatitis (FPD) were noted in groups FB. Enzyme supplementation increased the concentrations of acetate, butyrate and total SCFAs, but it did not increase the SCFA pool in the caecal digesta. The enzymatic preparation significantly improved FCR, reduced excreta hydration and the severity of FPD in turkeys. It can be concluded that in comparison with the SBM-based diet, the diet containing 30% of FB enables to achieve comparable BW gains accompanied by lower feed efficiency during the first 8 weeks of rearing. Non-starch polysaccharide-degrading enzymes can be used to improve the nutritional value of diets for young turkeys, but more desirable results of enzyme supplementation were noted in the SBM-based diet than in the FB-based diet.

  2. The Starch Granule-Associated Protein EARLY STARVATION1 Is Required for the Control of Starch Degradation in Arabidopsis thaliana Leaves[OPEN

    PubMed Central

    Feike, Doreen; Seung, David; Graf, Alexander; Bischof, Sylvain; Ellick, Tamaryn; Coiro, Mario; Soyk, Sebastian; Eicke, Simona; Mettler-Altmann, Tabea; Lu, Kuan Jen; Trick, Martin; Zeeman, Samuel C.

    2016-01-01

    To uncover components of the mechanism that adjusts the rate of leaf starch degradation to the length of the night, we devised a screen for mutant Arabidopsis thaliana plants in which starch reserves are prematurely exhausted. The mutation in one such mutant, named early starvation1 (esv1), eliminates a previously uncharacterized protein. Starch in mutant leaves is degraded rapidly and in a nonlinear fashion, so that reserves are exhausted 2 h prior to dawn. The ESV1 protein and a similar uncharacterized Arabidopsis protein (named Like ESV1 [LESV]) are located in the chloroplast stroma and are also bound into starch granules. The region of highest similarity between the two proteins contains a series of near-repeated motifs rich in tryptophan. Both proteins are conserved throughout starch-synthesizing organisms, from angiosperms and monocots to green algae. Analysis of transgenic plants lacking or overexpressing ESV1 or LESV, and of double mutants lacking ESV1 and another protein necessary for starch degradation, leads us to propose that these proteins function in the organization of the starch granule matrix. We argue that their misexpression affects starch degradation indirectly, by altering matrix organization and, thus, accessibility of starch polymers to starch-degrading enzymes. PMID:27207856

  3. Silicon tetrachloride plasma induced grafting for starch-based composites

    NASA Astrophysics Data System (ADS)

    Ma, Yonghui C.

    Non-modified virgin starch is seldom used directly in industrial applications. Instead, it is often physically and/or chemically modified to achieve certain enhanced properties. For many of the non-food applications, these modifications involve changing its hydrophilicity to create hydrophobic starch. In this study, the hydrophobic starch was produced through silicon tetrachloride (SiCl4) plasma induced graft polymerization, so that it could be used as a renewable and biodegradable component of, or substitute for, the petrochemical-based plastics. It was suggested that this starch graft-copolymer might be used as reinforcing components in silicone-rubber materials for starch-based composites. To make this starch graft-copolymer, the ethyl ether-extracted starch powders were surface functionalized by SiCl4 plasma using a 13.56 MHz radio frequency rotating plasma reactor and subsequently stabilized by either ethylene diamine or dichlorodimethylsilane (DCDMS). The functionalized starch was then graft-polymerized with DCDMS to form polydimethylsiloxane (PDMS) layers around the starch granules. The presence of this PDMS layer was demonstrated by electron spectroscopy for chemical analysis (ESCA/XPS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), gas chromatography-mass spectroscopy (GC-MS), thermo gravimetry/differential thermal analysis (TG/DTA), and other analyses. It was shown that the surface morphology, thermal properties, swelling characteristic, and hydrophilicity of starch were all changed due to the existence of this protective hydrophobic PDMS layer. Several different procedures to carry out the functionalization and graft polymerization steps were evaluated to improve the effectiveness of the reactions and to prevent the samples from being hydrolyzed by the grafting byproduct HCl. Actinometry, GC-MS, and residual gas analyzer (RGA) were used to investigate the mechanisms of the SiCl4 discharge and to optimize the plasma

  4. Debranching and Crystallization of Waxy Maize Starch in Relation to Enzyme Digestibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, L.; Shi, Y; Rong, L

    Molecular and crystal structures as well as morphology during debranching and crystallization of waxy maize starch at a high solid content (25%, w/w) were investigated, and the results were related to the digestibility of debranched products. The starch was cooked at 115-120 C for 10 min, cooled to 50 C and debranched by isoamylase. After 1 h of debranching, wormlike objects with 5-10 nm width and ca. 30 nm length were observed by transmission electron microscopy. Further release of linear chains and crystallization led to assembly of semi-crystalline structures in the form of nano-particles and subsequent growth of nano-particles intomore » large aggregates. After 24 h at 50 C, a debranched starch product with an A-type X-ray diffraction pattern, a high melting temperature (90-140 C), and high resistant starch content (71.4%) was obtained. Small-angle X-ray scattering results indicated that all debranched products were surface fractal in a dry state (4% moisture) but had a mass fractal structure when hydrated (e.g. 45% moisture).« less

  5. Cellulolytic enzyme compositions and uses thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyer, Prashant; Gaspar, Armindo Ribiero; Croonenberghs, James

    The present invention relates enzyme composition comprising a cellulolytic preparation and an acetylxylan esterase (AXE); and the used of cellulolytic enzyme compositions for hydrolyzing acetylated cellulosic material. Finally the invention also relates to processes of producing fermentation products from acetylated cellulosic materials using a cellulolytic enzyme composition of the invention.

  6. In vitro starch digestibility, pasting and textural properties of mung bean: effect of different processing methods.

    PubMed

    Kaur, Maninder; Sandhu, Kawaljit Singh; Ahlawat, RavinderPal; Sharma, Somesh

    2015-03-01

    Mung bean was subjected to different processing conditions (soaking, germination, cooking and autoclaving) and their textural, pasting and in vitro starch digestibility characteristics were studied. A significant reduction in textural properties (hardness, cohesiveness, gumminess and chewiness) after cooking and autoclaving treatment of mung bean was observed. Flours made from differently processed mung bean showed significant differences (P < 0.05) in their pastin g characteristics. Peak and final viscosity were the highest for flour from germinated mung bean whereas those made from autoclaved mung bean showed the lowest value. in vitro starch digestibility of mung bean flours was assessed enzymatically using modified Englyst method and the parameters studied were readily digestible starch (RDS), slowly digestible starch (SDS), resistant starch (RS) and total starch (TS) content. Various processing treatments increased the RDS contents of mung bean, while the SDS content was found to be the highest for soaked and the lowest for the autoclaved sample. Germinated sample showed higher amount of digestible starch (RDS + SDS) as compared to raw and soaked samples. Flours from raw and soaked samples showed significantly low starch hydrolysis rate at all the temperatures with total hydrolysis of 29.9 and 31.2 %, respectively at 180 min whereas cooked and autoclaved samples showed high hydrolysis rates with 50.2 and 53.8 % of these hydrolyzing within 30 min of hydrolysis.

  7. A Parameterized Model of Amylopectin Synthesis Provides Key Insights into the Synthesis of Granular Starch

    PubMed Central

    Wu, Alex Chi; Morell, Matthew K.; Gilbert, Robert G.

    2013-01-01

    A core set of genes involved in starch synthesis has been defined by genetic studies, but the complexity of starch biosynthesis has frustrated attempts to elucidate the precise functional roles of the enzymes encoded. The chain-length distribution (CLD) of amylopectin in cereal endosperm is modeled here on the basis that the CLD is produced by concerted actions of three enzyme types: starch synthases, branching and debranching enzymes, including their respective isoforms. The model, together with fitting to experiment, provides four key insights. (1) To generate crystalline starch, defined restrictions on particular ratios of enzymatic activities apply. (2) An independent confirmation of the conclusion, previously reached solely from genetic studies, of the absolute requirement for debranching enzyme in crystalline amylopectin synthesis. (3) The model provides a mechanistic basis for understanding how successive arrays of crystalline lamellae are formed, based on the identification of two independent types of long amylopectin chains, one type remaining in the amorphous lamella, while the other propagates into, and is integral to the formation of, an adjacent crystalline lamella. (4) The model provides a means by which a small number of key parameters defining the core enzymatic activities can be derived from the amylopectin CLD, providing the basis for focusing studies on the enzymatic requirements for generating starches of a particular structure. The modeling approach provides both a new tool to accelerate efforts to understand granular starch biosynthesis and a basis for focusing efforts to manipulate starch structure and functionality using a series of testable predictions based on a robust mechanistic framework. PMID:23762422

  8. Maltase-glucoamylase modulates gluconeogenesis and sucrase-isomaltase dominates starch digestion glucogenesis

    USDA-ARS?s Scientific Manuscript database

    Six enzyme activities are needed to digest starch to absorbable free glucose; 2 luminal alpha-amylases (AMY) and 4 mucosal maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI) subunit activities are involved in the digestion. The AMY activities break down starch to soluble oligomeric dextrins; mu...

  9. Production of itaconic acid in Escherichia coli expressing recombinant α-amylase using starch as substrate.

    PubMed

    Okamoto, Shusuke; Chin, Taejun; Nagata, Keisuke; Takahashi, Tetsuya; Ohara, Hitomi; Aso, Yuji

    2015-05-01

    Several studies on fermentative production of a vinyl monomer itaconic acid from hydrolyzed starch using Aspergillus terreus have been reported. Herein, we report itaconic acid production by Escherichia coli expressing recombinant α-amylase, using soluble starch as its sole carbon source. To express α-amylase in E. coli, we first constructed recombinant plasmids expressing α-amylases by using cell surface display technology derived from two amylolytic bacteria, Bacillus amyloliquefaciens NBRC 15535(T) and Streptococcus bovis NRIC 1535. The recombinant α-amylase from S. bovis (SBA) showed activity at 28°C, which is the optimal temperature for production of itaconic acid, while α-amylase from B. amyloliquefaciens displayed no noticeable activity. E. coli cells expressing SBA produced 0.15 g/L itaconic acid after 69 h cultivation under pH-stat conditions, using 1% starch as the sole carbon source. In fact, E. coli cells expressing SBA had similar growth rates when grown in the presence of 1% glucose or starch, thereby highlighting the expression of an active α-amylase that enabled utilization of starch to produce itaconic acid in E. coli. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Characterization of a Novel Maltose-Forming α-Amylase from Lactobacillus plantarum subsp. plantarum ST-III.

    PubMed

    Jeon, Hye-Yeon; Kim, Na-Ri; Lee, Hye-Won; Choi, Hye-Jeong; Choung, Woo-Jae; Koo, Ye-Seul; Ko, Dam-Seul; Shim, Jae-Hoon

    2016-03-23

    A novel maltose (G2)-forming α-amylase from Lactobacillus plantarum subsp. plantarum ST-III was expressed in Escherichia coli and characterized. Analysis of conserved amino acid sequence alignments showed that L. plantarum maltose-producing α-amylase (LpMA) belongs to glycoside hydrolase family 13. The recombinant enzyme (LpMA) was a novel G2-producing α-amylase. The properties of purified LpMA were investigated following enzyme purification. LpMA exhibited optimal activity at 30 °C and pH 3.0. It produced only G2 from the hydrolysis of various substrates, including maltotriose (G3), maltopentaose (G5), maltosyl β-cyclodextrin (G2-β-CD), amylose, amylopectin, and starch. However, LpMA was unable to hydrolyze cyclodextrins. Reaction pattern analysis using 4-nitrophenyl-α-d-maltopentaoside (pNPG5) demonstrated that LpMA hydrolyzed pNPG5 from the nonreducing end, indicating that LpMA is an exotype α-amylase. Kinetic analysis revealed that LpMA had the highest catalytic efficiency (kcat/Km ratio) toward G2-β-CD. Compared with β-amylase, a well-known G2-producing enzyme, LpMA produced G2 more efficiently from liquefied corn starch due to its ability to hydrolyze G3.

  11. Systematic Analysis of Pericarp Starch Accumulation and Degradation during Wheat Caryopsis Development

    PubMed Central

    Yu, Xurun; Li, Bo; Wang, Leilei; Chen, Xinyu; Wang, Wenjun; Wang, Zhong; Xiong, Fei

    2015-01-01

    Although wheat (Triticum aestivum L.) pericarp starch granule (PSG) has been well-studied, our knowledge of its features and mechanism of accumulation and degradation during pericarp growth is poor. In the present study, developing wheat caryopses were collected and starch granules were extracted from their pericarp to investigate the morphological and structural characteristics of PSGs using microscopy, X-ray diffraction and Fourier transform infrared spectroscopy techniques. Relative gene expression levels of ADP-glucose pyrophosphorylase (APGase), granule-bound starch synthase II (GBSS II), and α-amylase (AMY) were quantified by quantitative real-time polymerase chain reaction. PSGs presented as single or multiple starch granules and were synthesized both in the amyloplast and chloroplast in the pericarp. PSG degradation occurred in the mesocarp, beginning at 6 days after anthesis. Amylose contents in PSGs were lower and relative degrees of crystallinity were higher at later stages of development than at earlier stages. Short-range ordered structures in the external regions of PSGs showed no differences in the developing pericarp. When hydrolyzed by α-amylase, PSGs at various developmental stages showed high degrees of enzymolysis. Expression levels of AGPase, GBSS II, and AMY were closely related to starch synthesis and degradation. These results help elucidate the mechanisms of accumulation and degradation as well as the functions of PSG during wheat caryopsis development. PMID:26394305

  12. Functional and structural characterization of plastidic starch phosphorylase during barley endosperm development

    PubMed Central

    Ruzanski, Christian; Krucewicz, Katarzyna; Meier, Sebastian; Hägglund, Per; Svensson, Birte; Palcic, Monica M.

    2017-01-01

    The production of starch is essential for human nutrition and represents a major metabolic flux in the biosphere. The biosynthesis of starch in storage organs like barley endosperm operates via two main pathways using different substrates: starch synthases use ADP-glucose to produce amylose and amylopectin, the two major components of starch, whereas starch phosphorylase (Pho1) uses glucose-1-phosphate (G1P), a precursor for ADP-glucose production, to produce α-1,4 glucans. The significance of the Pho1 pathway in starch biosynthesis has remained unclear. To elucidate the importance of barley Pho1 (HvPho1) for starch biosynthesis in barley endosperm, we analyzed HvPho1 protein production and enzyme activity levels throughout barley endosperm development and characterized structure-function relationships of HvPho1. The molecular mechanisms underlying the initiation of starch granule biosynthesis, that is, the enzymes and substrates involved in the initial transition from simple sugars to polysaccharides, remain unclear. We found that HvPho1 is present as an active protein at the onset of barley endosperm development. Notably, purified recombinant protein can catalyze the de novo production of α-1,4-glucans using HvPho1 from G1P as the sole substrate. The structural properties of HvPho1 provide insights into the low affinity of HvPho1 for large polysaccharides like starch or amylopectin. Our results suggest that HvPho1 may play a role during the initiation of starch biosynthesis in barley. PMID:28407006

  13. Understanding the synergistic effect and the main factors influencing the enzymatic hydrolyzability of corn stover at low enzyme loading by hydrothermal and/or ultrafine grinding pretreatment.

    PubMed

    Zhang, Haiyan; Li, Junbao; Huang, Guangqun; Yang, Zengling; Han, Lujia

    2018-05-26

    A thorough assessment of the microstructural changes and synergistic effects of hydrothermal and/or ultrafine grinding pretreatment on the subsequent enzymatic hydrolysis of corn stover was performed in this study. The mechanism of pretreatment was elucidated by characterizing the particle size, specific surface area (SSA), pore volume (PV), average pore size, cellulose crystallinity (CrI) and surface morphology of the pretreated samples. In addition, the underlying relationships between the structural parameters and final glucose yields were elucidated, and the relative significance of the factors influencing enzymatic hydrolyzability were assessed by principal component analysis (PCA). Hydrothermal pretreatment at a lower temperature (170 °C) combined with ultrafine grinding achieved a high glucose yield (80.36%) at a low enzyme loading (5 filter paper unit (FPU)/g substrate) which is favorable. The relative significance of structural parameters in enzymatic hydrolyzability was SSA > PV > average pore size > CrI/cellulose > particle size. PV and SSA exhibited logarithmic correlations with the final enzymatic hydrolysis yield. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Subcellular localization of pituitary enzymes

    NASA Technical Reports Server (NTRS)

    Smith, R. E.

    1970-01-01

    A cytochemical procedure is reported for identifying subcellular sites of enzymes hydrolyzing beta-naphthylamine substrates, and to study the sites of reaction product localization in cells of various tissues. Investigations using the substrate Leu 4-methoxy-8-naphthylamine, a capture with hexonium pararosaniline, and the final chelation of osmium have identified the hydrolyzing enzyme of rat liver cells; this enzyme localized on cell membranes with intense deposition in the areas of the parcanaliculi. The study of cells in the anterior pituitary of the rat showed the deposition of reaction product on cell membrane; and on the membranes of secretion granules contained within the cell. The deposition of reaction product on the cell membrane however showed no increase or decrease with changes in the physiological state of the gland and release of secretion granules from specific cells.

  15. Two Novel Glycoside Hydrolases Responsible for the Catabolism of Cyclobis-(1→6)-α-nigerosyl*

    PubMed Central

    Tagami, Takayoshi; Miyano, Eri; Sadahiro, Juri; Okuyama, Masayuki; Iwasaki, Tomohito; Kimura, Atsuo

    2016-01-01

    The actinobacterium Kribbella flavida NBRC 14399T produces cyclobis-(1→6)-α-nigerosyl (CNN), a cyclic glucotetraose with alternate α-(1→6)- and α-(1→3)-glucosidic linkages, from starch in the culture medium. We identified gene clusters associated with the production and intracellular catabolism of CNN in the K. flavida genome. One cluster encodes 6-α-glucosyltransferase and 3-α-isomaltosyltransferase, which are known to coproduce CNN from starch. The other cluster contains four genes annotated as a transcriptional regulator, sugar transporter, glycoside hydrolase family (GH) 31 protein (Kfla1895), and GH15 protein (Kfla1896). Kfla1895 hydrolyzed the α-(1→3)-glucosidic linkages of CNN and produced isomaltose via a possible linear tetrasaccharide. The initial rate of hydrolysis of CNN (11.6 s−1) was much higher than that of panose (0.242 s−1), and hydrolysis of isomaltotriose and nigerose was extremely low. Because Kfla1895 has a strong preference for the α-(1→3)-isomaltosyl moiety and effectively hydrolyzes the α-(1→3)-glucosidic linkage, it should be termed 1,3-α-isomaltosidase. Kfla1896 effectively hydrolyzed isomaltose with liberation of β-glucose, but displayed low or no activity toward CNN and the general GH15 enzyme substrates such as maltose, soluble starch, or dextran. The kcat/Km for isomaltose (4.81 ± 0.18 s−1 mm−1) was 6.9- and 19-fold higher than those for panose and isomaltotriose, respectively. These results indicate that Kfla1896 is a new GH15 enzyme with high substrate specificity for isomaltose, suggesting the enzyme should be designated an isomaltose glucohydrolase. This is the first report to identify a starch-utilization pathway that proceeds via CNN. PMID:27302067

  16. Resistant Starch: Variation among High Amylose Rice Varieties and Its Relationship with Apparent Amylose Content, Pasting Properties and Cooking Methods

    USDA-ARS?s Scientific Manuscript database

    Resistant starch (RS), which is not hydrolyzed in the small intestines, has proposed health benefits. We evaluated a set of 40 high amylose rice varieties for RS levels in cooked rice and approximately a 1.9-fold difference was found. The highest ones had more than two-fold greater RS concentration ...

  17. Evaluation of emerging factors blocking filtration of high-adjunct-ratio wort.

    PubMed

    Ma, Ting; Zhu, Linjiang; Zheng, Feiyun; Li, Yongxian; Li, Qi

    2014-08-20

    Corn starch has become a common adjunct for beer brewing in Chinese breweries. However, with increasing ratio of corn starch, problems like poor wort filtration performance arise, which will decrease production capacity of breweries. To solve this problem, factors affecting wort filtration were evaluated, such as the size of corn starch particle, special yellow floats formed during liquefaction of corn starch, and residual substance after liquefaction. The effects of different enzyme preparations including β-amylase and β-glucanase on filtration rate were also evaluated. The results indicate that the emerging yellow floats do not severely block filtration, while the fine and uniform-shape corn starch particle and its incompletely hydrolyzed residue after liquefaction are responsible for filtration blocking. Application of β-amylase preparation increased the filtration rate of liquefied corn starch. This study is useful for our insight into the filtration blocking problem arising in the process of high-adjunct-ratio beer brewing and also provides a feasible solution using enzyme preparations.

  18. Starch Degradation in the Cotyledons of Germinating Lentils

    PubMed Central

    Tárrago, Jorge Fernández; Nicolás, Gregorio

    1976-01-01

    Starch, total amylolytic and phosphorylase activities were determined in lentil cotyledons during the first days of germination. Several independent criteria show that the amylolytic activity is due mainly to an amylase of the α type. Starch is degraded slowly in the first days; during this time, α- and β-amylase activity are very low, while phosphorylase increases and reach a peak on the 3rd day. On the 4th day, there is a more rapid depletion of starch which coincides with an increase in α-amylase activity. By polyacrylamide gel electrophoresis of the crude starch-degrading enzyme, five bands were obtained: one phosphorylase, three α-amylases, and one β-amylase. Based on their heat lability or heat stability, two sets of α-amylase seem to exist in lentil cotyledons. Images PMID:16659730

  19. Esterase 22 and beta-glucuronidase hydrolyze retinoids in mouse liver

    PubMed Central

    Schreiber, Renate; Taschler, Ulrike; Wolinski, Heimo; Seper, Andrea; Tamegger, Stefanie N.; Graf, Maria; Kohlwein, Sepp D.; Haemmerle, Guenter; Zimmermann, Robert; Zechner, Rudolf; Lass, Achim

    2009-01-01

    Excess dietary vitamin A is esterified with fatty acids and stored in the form of retinyl ester (RE) predominantly in the liver. According to the requirements of the body, liver RE stores are hydrolyzed and retinol is delivered to peripheral tissues. The controlled mobilization of retinol ensures a constant supply of the body with the vitamin. Currently, the enzymes catalyzing liver RE hydrolysis are unknown. In this study, we identified mouse esterase 22 (Es22) as potent RE hydrolase highly expressed in the liver, particularly in hepatocytes. The enzyme is located exclusively at the endoplasmic reticulum (ER), implying that it is not involved in the mobilization of RE present in cytosolic lipid droplets. Nevertheless, cell culture experiments revealed that overexpression of Es22 attenuated the formation of cellular RE stores, presumably by counteracting retinol esterification at the ER. Es22 was previously shown to form a complex with β-glucuronidase (Gus). Our studies revealed that Gus colocalizes with Es22 at the ER but does not affect its RE hydrolase activity. Interestingly, however, Gus was capable of hydrolyzing the naturally occurring vitamin A metabolite retinoyl β-glucuronide. In conclusion, our observations implicate that both Es22 and Gus play a role in liver retinoid metabolism. PMID:19723663

  20. Scale-up of ethanol production from winter barley by the EDGE (enhanced dry grind enzymatic) process in fermentors up to 300 liters

    USDA-ARS?s Scientific Manuscript database

    A fermentation process, which was designated the EDGE (enhanced dry grind enzymatic) process, has recently been developed for barley ethanol production. In the EDGE process, in addition to the enzymes normally required for starch hydrolysis, commercial Beta-glucanases were used to hydrolyze (1,3)(1,...

  1. Role of Bacillus subtilis direct-fed microbial on digesta viscosity, bacterial translocation, and bone mineralization in turkey poults fed with a rye-based diet

    USDA-ARS?s Scientific Manuscript database

    Rye contains high concentrations of non-starch polysaccharides (NSP), leading to reduced digestibility. Since poultry have little or no endogenous enzymes capable of hydrolyzing these NSP, exogenous carbohydrases as feed additives are used in an attempt to reduce the anti-nutritional effects of the...

  2. Marine biofouling resistance of polyurethane with biodegradation and hydrolyzation.

    PubMed

    Xu, Wentao; Ma, Chunfeng; Ma, Jielin; Gan, Tiansheng; Zhang, Guangzhao

    2014-03-26

    We have prepared polyurethane with poly(ε-caprolactone) (PCL) as the segments of the main chain and poly(triisopropylsilyl acrylate) (PTIPSA) as the side chains by a combination of radical polymerization and a condensation reaction. Quartz crystal microbalance with dissipation studies show that polyurethane can degrade in the presence of enzyme and the degradation rate decreases with the PTIPSA content. Our studies also demonstrate that polyurethane is able to hydrolyze in artificial seawater and the hydrolysis rate increases as the PTIPSA content increases. Moreover, hydrolysis leads to a hydrophilic surface that is favorable to reduction of the frictional drag under dynamic conditions. Marine field tests reveal that polyurethane has good antifouling ability because polyurethane with a biodegradable PCL main chain and hydrolyzable PTIPSA side chains can form a self-renewal surface. Polyurethane was also used to carry and release a relatively environmentally friendly antifoulant, and the combined system exhibits a much higher antifouling performance even in a static marine environment.

  3. Structural characteristics and crystalline properties of lotus seed resistant starch and its prebiotic effects.

    PubMed

    Zhang, Yi; Zeng, Hongliang; Wang, Ying; Zeng, Shaoxiao; Zheng, Baodong

    2014-07-15

    Lotus seed resistant starch (LRS) is a type of retrograded starch that is commonly known as resistant starch type 3 (RS3). The structural and crystalline properties of unpurified LRS (NP-LRS3), enzyme purified LRS after drying (GP-LRS3), and enzyme purified LRS (ZP-LRS3) were characterized. The result showed that the molecular weights of NP-LRS3, GP-LRS3, and ZP-LRS3 were 0.102 × 10(6), 0.014 × 10(6), and 0.025 × 10(6)Da, respectively. Compared with native starch and high amylose maize starch (HAMS), LRS lacked the polarization cross and the irregularly shaped LRS granules had a rougher surface, B-type crystal structure, and greater level of molecular order. The FT-IR measurements indicated no differences in the chemical groups. Analysis by (13)C NMR indicated an increased propensity for double helix formation and higher crystallinity in LRS than in the two other types of starch. Moreover, LRS was more effective than either glucose or HAMS in promoting the proliferation of bifidobacteria. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Proteins from Multiple Metabolic Pathways Associate with Starch Biosynthetic Enzymes in High Molecular Weight Complexes: A Model for Regulation of Carbon Allocation in Maize Amyloplasts1[C][W][OA

    PubMed Central

    Hennen-Bierwagen, Tracie A.; Lin, Qiaohui; Grimaud, Florent; Planchot, Véronique; Keeling, Peter L.; James, Martha G.; Myers, Alan M.

    2009-01-01

    Starch biosynthetic enzymes from maize (Zea mays) and wheat (Triticum aestivum) amyloplasts exist in cell extracts in high molecular weight complexes; however, the nature of those assemblies remains to be defined. This study tested the interdependence of the maize enzymes starch synthase IIa (SSIIa), SSIII, starch branching enzyme IIb (SBEIIb), and SBEIIa for assembly into multisubunit complexes. Mutations that eliminated any one of those proteins also prevented the others from assembling into a high molecular mass form of approximately 670 kD, so that SSIII, SSIIa, SBEIIa, and SBEIIb most likely all exist together in the same complex. SSIIa, SBEIIb, and SBEIIa, but not SSIII, were also interdependent for assembly into a complex of approximately 300 kD. SSIII, SSIIa, SBEIIa, and SBEIIb copurified through successive chromatography steps, and SBEIIa, SBEIIb, and SSIIa coimmunoprecipitated with SSIII in a phosphorylation-dependent manner. SBEIIa and SBEIIb also were retained on an affinity column bearing a specific conserved fragment of SSIII located outside of the SS catalytic domain. Additional proteins that copurified with SSIII in multiple biochemical methods included the two known isoforms of pyruvate orthophosphate dikinase (PPDK), large and small subunits of ADP-glucose pyrophosphorylase, and the sucrose synthase isoform SUS-SH1. PPDK and SUS-SH1 required SSIII, SSIIa, SBEIIa, and SBEIIb for assembly into the 670-kD complex. These complexes may function in global regulation of carbon partitioning between metabolic pathways in developing seeds. PMID:19168640

  5. Development of modified starch technology (maltodextrin) from commercial tapioca on semi production scale using oil heater dextrinator

    NASA Astrophysics Data System (ADS)

    Triyono, Agus; Cecep Erwan Andriansyah, Raden; Luthfiyanti, Rohmah; Rahman, Taufik

    2017-12-01

    One way to improve functional starch is by modification of starch into dextrin or maltodextrin. Maltodextrin is used in the food industry as a food substitution. Development of enzymatically modified starch technology has been performed with the use of α-amylase at optimum pH of 5.5, temperature 75-85 °C, with enzyme activity of 135 KNU/g. The maltodextrin produced from commercial tapioca has the quality requirements for food according to SNI 1992. The yield of maltodextrin obtained is about 80%. The use of the optimum amount of the α-amylase enzyme is 0.07 % v/w and the substrate amount of tapioca starch is 35%. Analysis of the feasibility of modified starch with the assumption of production scale of 300 kg per day, the economic value of 10 years business, the price of starch is IDR 8,350/kg, from tapioca starch (tapioca) IDR 4,000 - IDR 4,500/kg.

  6. Characterization and Prebiotic Effect of the Resistant Starch from Purple Sweet Potato.

    PubMed

    Zheng, Yafeng; Wang, Qi; Li, Baoyu; Lin, Liangmei; Tundis, Rosa; Loizzo, Monica R; Zheng, Baodong; Xiao, Jianbo

    2016-07-19

    Purple sweet potato starch is a potential resource for resistant starch production. The effects of heat-moisture treatment (HMT) and enzyme debranching combined heat-moisture treatment (EHMT) on the morphological, crystallinity and thermal properties of PSP starches were investigated. The results indicated that, after HMT or EHMT treatments, native starch granules with smooth surface was destroyed to form a more compact, irregular and sheet-like structure. The crystalline pattern was transformed from C-type to B-type with decreasing relative crystallinity. Due to stronger crystallites formed in modified starches, the swelling power and solubility of HMT and EHMT starch were decreased, while the transition temperatures and gelatinization enthalpy were significantly increased. In addition, HMT and EHMT exhibited greater effects on the proliferation of bifidobacteria compared with either glucose or high amylose maize starch.

  7. Mining novel starch-converting Glycoside Hydrolase 70 enzymes from the Nestlé Culture Collection genome database: The Lactobacillus reuteri NCC 2613 GtfB.

    PubMed

    Gangoiti, Joana; van Leeuwen, Sander S; Meng, Xiangfeng; Duboux, Stéphane; Vafiadi, Christina; Pijning, Tjaard; Dijkhuizen, Lubbert

    2017-08-30

    The Glycoside hydrolase (GH) family 70 originally was established for glucansucrases of lactic acid bacteria (LAB) converting sucrose into α-glucan polymers. In recent years we have identified 3 subfamilies of GH70 enzymes (designated GtfB, GtfC and GtfD) as 4,6-α-glucanotransferases, cleaving (α1 → 4)-linkages in maltodextrins/starch and synthesizing new (α1 → 6)-linkages. In this work, 106 putative GtfBs were identified in the Nestlé Culture Collection genome database with ~2700 genomes, and the L. reuteri NCC 2613 one was selected for further characterization based on variations in its conserved motifs. Using amylose the L. reuteri NCC 2613 GtfB synthesizes a low-molecular-mass reuteran-like polymer consisting of linear (α1 → 4) sequences interspersed with (α1 → 6) linkages, and (α1 → 4,6) branching points. This product specificity is novel within the GtfB subfamily, mostly comprising 4,6-α-glucanotransferases synthesizing consecutive (α1 → 6)-linkages. Instead, its activity resembles that of the GtfD 4,6-α-glucanotransferases identified in non-LAB strains. This study demonstrates the potential of large-scale genome sequence data for the discovery of enzymes of interest for the food industry. The L. reuteri NCC 2613 GtfB is a valuable addition to the starch-converting GH70 enzyme toolbox. It represents a new evolutionary intermediate between families GH13 and GH70, and provides further insights into the structure-function relationships of the GtfB subfamily enzymes.

  8. Transcriptional and Biochemical Analysis of Starch Metabolism in the Hyperthermophilic Archaeon Pyrococcus furiosus

    PubMed Central

    Lee, Han-Seung; Shockley, Keith R.; Schut, Gerrit J.; Conners, Shannon B.; Montero, Clemente I.; Johnson, Matthew R.; Chou, Chung-Jung; Bridger, Stephanie L.; Wigner, Nathan; Brehm, Scott D.; Jenney, Francis E.; Comfort, Donald A.; Kelly, Robert M.; Adams, Michael W. W.

    2006-01-01

    Pyrococcus furiosus utilizes starch and its degradation products, such as maltose, as primary carbon sources, but the pathways by which these α-glucans are processed have yet to be defined. For example, its genome contains genes proposed to encode five amylolytic enzymes (including a cyclodextrin glucanotransferase [CGTase] and amylopullulanase), as well as two transporters for maltose and maltodextrins (Mal-I and Mal-II), and a range of intracellular enzymes have been purified that reportedly metabolize maltodextrins and maltose. However, precisely which of these enzymes are involved in starch processing is not clear. In this study, starch metabolism in P. furiosus was examined by biochemical analyses in conjunction with global transcriptional response data for cells grown on a variety of glucans. In addition, DNA sequencing led to the correction of two key errors in the genome sequence, and these change the predicted properties of amylopullulanase (now designated PF1935*) and CGTase (PF0478*). Based on all of these data, a pathway is proposed that is specific for starch utilization that involves one transporter (Mal-II [PF1933 to PF1939]) and only three enzymes, amylopullulanase (PF1935*), 4-α-glucanotransferase (PF0272), and maltodextrin phosphorylase (PF1535). Their expression is upregulated on starch, and together they generate glucose and glucose-1-phosphate, which then feed into the novel glycolytic pathway of this organism. In addition, the results indicate that several hypothetical proteins encoded by three gene clusters are also involved in the transport and processing of α-glucan substrates by P. furiosus. PMID:16513741

  9. Recent Research in Antihypertensive Activity of Food Protein-derived Hydrolyzates and Peptides.

    PubMed

    Saleh, Ahmed S M; Zhang, Qing; Shen, Qun

    2016-01-01

    Year to year obesity prevalence, reduced physical activities, bad habits/or stressful lifestyle, and other environmental and physiological impacts lead to increase in diseases such as coronary heart disease, stroke, cancer, diabetes, and hypertension worldwide. Hypertension is considered as one of the most common serious chronic diseases; however, discovery of medications with high efficacy and without side effects for treatment of patients remains a challenge for scientists. Recent trends in functional foods have evidenced that food bioactive proteins play a major role in the concepts of illness and curing; therefore, nutritionists, biomedical scientists, and food scientists are working together to develop improved systems for the discovery of peptides with increased potency and therapeutic benefits. This review presents a recent research carried out to date for the purpose of isolation and identification of bioactive hydrolyzates and peptides with angiotensin I converting enzyme inhibitory activity and antihypertensive effect from animal, marine, microbial, and plant food proteins. Effects of food processing and hydrolyzation conditions as well as some other impacts on formation, activity, and stability of these hydrolyzates and peptides are also presented.

  10. Effect of enzymatic hydrolysis on native starch granule structure.

    PubMed

    Blazek, Jaroslav; Gilbert, Elliot Paul

    2010-12-13

    Enzymatic digestion of six starches of different botanical origin was studied in real time by in situ time-resolved small-angle neutron scattering (SANS) and complemented by the analysis of native and digested material by X-ray diffraction, differential scanning calorimetry, small-angle X-ray scattering, and scanning electron microscopy with the aim of following changes in starch granule nanostructure during enzymatic digestion. This range of techniques enables coverage over five orders of length-scale, as is necessary for this hierarchically structured material. Starches studied varied in their digestibility and displayed structural differences in the course of enzymatic digestion. The use of time-resolved SANS showed that solvent-drying of digested residues does not induce any structural artifacts on the length scale followed by small-angle scattering. In the course of digestion, the lamellar peak intensity gradually decreased and low-q scattering increased. These trends were more substantial for A-type than for B-type starches. These observations were explained by preferential digestion of the amorphous growth rings. Hydrolysis of the semicrystalline growth rings was explained on the basis of a liquid-crystalline model for starch considering differences between A-type and B-type starches in the length and rigidity of amylopectin spacers and branches. As evidenced by differing morphologies of enzymatic attack among varieties, the existence of granular pores and channels and physical penetrability of the amorphous growth ring affect the accessibility of the enzyme to the substrate. The combined effects of the granule microstructure and the nanostructure of the growth rings influence the opportunity of the enzyme to access its substrate; as a consequence, these structures determine the enzymatic digestibility of granular starches more than the absolute physical densities of the amorphous growth rings and amorphous and crystalline regions of the semicrystalline

  11. Purification and characterization of the tween-hydrolyzing esterase of Mycobacterium smegmatis.

    PubMed Central

    Tomioka, H

    1983-01-01

    An esterase hydrolyzing Tween 80 (polyoxyethylene sorbitan monooleate) was purified from sonicated cell lysates of Mycobacterium smegmatis ATCC 14468 by DEAE-cellulose, Sephadex G-150, phenyl Sepharose, and diethyl-(2-hydroxypropyl) aminoethyl column chromatography and by subsequent preparative polyacrylamide gel electrophoresis. The molecular weight was estimated to be 36,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 41,000 by gel filtration on a Sephadex G-150 column. The esterase contained a single polypeptide. The esterase was stable to heat treatment at 100 degrees C and to a wide range of pH. The temperature and pH optima for the hydrolysis of Tween 80 were 50 degrees C and 8.3, respectively. The esterase had a narrow substrate specificity; it exhibited a high activity only on compounds having both polyoxyethylene and fatty acyl moieties, such as Tweens. Monoacylglyceride was hydrolyzed more slowly by this esterase and this enzyme exhibited a nonspecific esterase activity on p-nitrophenyl acyl esters, especially those having short chain acyl moieties. The Km and Vmax were 19.2 mM and 1,670 mumol/min per mg of protein for Tween 20, 6.6 mM and 278 mumol/min per mg of protein for Tween 80, and 0.25 mM and 196 mumol/min per mg of protein for p-nitrophenyl acetate, respectively. Observations of the effects of various chemical modifications on the activity of the esterase indicated that tyrosine, histidine, arginine, and methionine (with tryptophan) residues may be active amino acids which play important roles in the expression of Tween 80-hydrolyzing activity of the enzyme. PMID:6885719

  12. Enhancement of umami taste of hydrolyzed protein from wheat gluten by β-cyclodextrin.

    PubMed

    Wang, Lihua; Xu, Baocai; Li, Linlin; Zhang, Mengke; Feng, Tao; Wang, Jinpeng; Jin, Zhengyu

    2016-10-01

    Wheat gluten was hydrolyzed by Flavourzyme and Neutrase at pH 7.0 and 50 °C for 8 h with β-cyclodextrin (β-CD) employed in the reaction. The hydrolysates were enzyme deactivated, cooled and centrifuged at 1500 × g for 15 min. Sensory and chemical characterization of wheat gluten hydrolysates WGH-1 (reaction conducted without β-CD), WGH-2 (reaction conducted with β-CD) and WGH-3 (β-CD added to WGH-1) was performed. WGH-2 revealed enhanced umami taste and higher hydrolyzing degree, total free amino acid amount, protein yield and umami taste amino acid (Glu + Asp) amount. High-performance liquid chromatography showed that the proportion of molecular weight 180-500 Da in WGH-2 was 11.5% higher than that in WGH-1. Further research indicated that β-CD had multiple effects on the hydrolysis. It could not only increase the solubility of wheat gluten but also form inclusion complexes with resultants. This can both promote the hydrolysis and protect oligopeptides from degradation. β-CD was found to have the ability to increase the umami taste of enzyme-hydrolyzed vegetable protein from wheat gluten. The reasons analyzed were that β-CD could take part in the hydrolysis process by improving the solubility of wheat gluten and form inclusion complexes with resultants. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Encapsulation of alpha-amylase into starch-based biomaterials: an enzymatic approach to tailor their degradation rate.

    PubMed

    Azevedo, Helena S; Reis, Rui L

    2009-10-01

    This paper reports the effect of alpha-amylase encapsulation on the degradation rate of a starch-based biomaterial. The encapsulation method consisted in mixing a thermostable alpha-amylase with a blend of corn starch and polycaprolactone (SPCL), which were processed by compression moulding to produce circular disks. The presence of water was avoided to keep the water activity low and consequently to minimize the enzyme activity during the encapsulation process. No degradation of the starch matrix occurred during processing and storage (the encapsulated enzyme remained inactive due to the absence of water), since no significant amount of reducing sugars was detected in solution. After the encapsulation process, the released enzyme activity from the SPCL disks after 28days was found to be 40% comparatively to the free enzyme (unprocessed). Degradation studies on SPCL disks, with alpha-amylase encapsulated or free in solution, showed no significant differences on the degradation behaviour between both conditions. This indicates that alpha-amylase enzyme was successfully encapsulated with almost full retention of its enzymatic activity and the encapsulation of alpha-amylase clearly accelerates the degradation rate of the SPCL disks, when compared with the enzyme-free disks. The results obtained in this work show that degradation kinetics of the starch polymer can be controlled by the amount of encapsulated alpha-amylase into the matrix.

  14. Β-Amylase from Starchless Seeds of Trigonella Foenum-Graecum and Its Localization in Germinating Seeds

    PubMed Central

    Srivastava, Garima; Kayastha, Arvind M.

    2014-01-01

    Fenugreek (Trigonella foenum-graecum) seeds do not contain starch as carbohydrate reserve. Synthesis of starch is initiated after germination. A β-amylase from ungerminated fenugreek seeds was purified to apparent electrophoretic homogeneity. The enzyme was purified 210 fold with specific activity of 732.59 units/mg. Mr of the denatured enzyme as determined from SDS-PAGE was 58 kD while that of native enzyme calculated from size exclusion chromatography was 56 kD. Furthermore, its identity was confirmed to be β-amylase from MALDI-TOF analysis. The optimum pH and temperature was found to be 5.0 and 50°C, respectively. Starch was hydrolyzed at highest rate and enzyme showed a Km of 1.58 mg/mL with it. Antibodies against purified Fenugreek β-amylase were generated in rabbits. These antibodies were used for localization of enzyme in the cotyledon during different stages of germination using fluorescence and confocal microscopy. Fenugreek β-amylase was found to be the major starch degrading enzyme depending on the high amount of enzyme present as compared to α-amylase and also its localization at the periphery of amyloplasts. A new finding in terms of its association with protophloem was observed. Thus, this enzyme appears to be important for germination of seeds. PMID:24551136

  15. Measurement of Enzyme Kinetics by Use of a Blood Glucometer: Hydrolysis of Sucrose and Lactose

    ERIC Educational Resources Information Center

    Heinzerling, Peter; Schrader, Frank; Schanze, Sascha

    2012-01-01

    An alternative analytical method for measuring the kinetic parameters of the enzymes invertase and lactase is described. Invertase hydrolyzes sucrose to glucose and fructose and lactase hydrolyzes lactose to glucose and galactose. In most enzyme kinetics studies, photometric methods or test strips are used to quantify the derivates of the…

  16. Salivary digestive enzymes of the wheat bug, Eurygaster integriceps (Insecta: Hemiptera: Scutelleridae).

    PubMed

    Mehrabadi, Mohammad; Bandani, Ali Reza; Dastranj, Mehdi

    2014-06-01

    The digestive enzymes from salivary gland complexes (SGC) of Eurygaster integriceps, and their response to starvation and feeding were studied. Moreover, digestive amylases were partially purified and characterized by ammonium sulfate precipitation and gel filtration chromatography. The SGC are composed of two sections, the principal glands and accessory glands. The principal glands are further divided into the anterior lobes and posterior lobes. The SGC main enzyme was α-amylase, which hydrolyzed starch better than glycogen. The other carbohydrases were also present in the SGC complexes. Enzymatic activities toward mannose (α/β-mannosidases) were little in comparison to activities against glucose (α/β-glucosidases) and galactose (α/β-galactosidases), the latter being the greatest. Acid phosphatase showed higher activity than alkaline phosphatase. There was no measurable activity for lipase and aminopeptidase. Proteolytic activity was detected against general and specific protease substrates. Activities of all enzymes were increased in response to feeding in comparison to starved insects, revealing their induction and secretion in response to feeding pulse. The SGC amylases eluted in four major peaks and post-electrophoretic detection of the α-amylases demonstrated the existence of at least five isoamylases in the SGC. The physiological implication of these findings in pre-oral digestion of E. integriceps is discussed. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  17. Function and application of a non-ester-hydrolyzing carboxylesterase discovered in tulip.

    PubMed

    Nomura, Taiji

    2017-01-01

    Plants have evolved secondary metabolite biosynthetic pathways of immense rich diversity. The genes encoding enzymes for secondary metabolite biosynthesis have evolved through gene duplication followed by neofunctionalization, thereby generating functional diversity. Emerging evidence demonstrates that some of those enzymes catalyze reactions entirely different from those usually catalyzed by other members of the same family; e.g. transacylation catalyzed by an enzyme similar to a hydrolytic enzyme. Tuliposide-converting enzyme (TCE), which we recently discovered from tulip, catalyzes the conversion of major defensive secondary metabolites, tuliposides, to antimicrobial tulipalins. The TCEs belong to the carboxylesterase family in the α/β-hydrolase fold superfamily, and specifically catalyze intramolecular transesterification, but not hydrolysis. This non-ester-hydrolyzing carboxylesterase is an example of an enzyme showing catalytic properties that are unpredictable from its primary structure. This review describes the biochemical and physiological aspects of tulipalin biogenesis, and the diverse functions of plant carboxylesterases in the α/β-hydrolase fold superfamily.

  18. Plastidial Folate Prevents Starch Biosynthesis Triggered by Sugar Influx into Non-Photosynthetic Plastids of Arabidopsis

    PubMed Central

    Hayashi, Makoto; Tanaka, Mina; Yamamoto, Saki; Nakagawa, Taro; Kanai, Masatake; Anegawa, Aya; Ohnishi, Miwa; Mimura, Tetsuro; Nishimura, Mikio

    2017-01-01

    Abstract Regulation of sucrose–starch interconversion in plants is important to maintain energy supplies necessary for viability and growth. Arabidopsis mutants were screened for aberrant responses to sucrose to identify candidates with a defect in the regulation of starch biosynthesis. One such mutant, fpgs1-4, accumulated substantial amounts of starch in non-photosynthetic cells. Dark-grown mutant seedlings exhibited shortened hypocotyls and accumulated starch in etioplasts when supplied with exogenous sucrose/glucose. Similar starch accumulation from exogenous sucrose was observed in mutant chloroplasts, when photosynthesis was prevented by organ culture in darkness. Molecular genetic analyses revealed that the mutant was defective in plastidial folylpolyglutamate synthetase, one of the enzymes engaged in folate biosynthesis. Active folate derivatives are important biomolecules that function as cofactors for a variety of enzymes. Exogenously supplied 5-formyl-tetrahydrofolate abrogated the mutant phenotypes, indicating that the fpgs1-4 mutant produced insufficient folate derivative levels. In addition, the antifolate agents methotrexate and 5-fluorouracil induced starch accumulation from exogenously supplied sucrose in dark-grown seedlings of wild-type Arabidopsis. These results indicate that plastidial folate suppresses starch biosynthesis triggered by sugar influx into non-photosynthetic cells, demonstrating a hitherto unsuspected link between plastidial folate and starch metabolism. PMID:28586467

  19. Improving biomass and starch accumulation of bioenergy crop duckweed (Landoltia punctata) by abscisic acid application.

    PubMed

    Liu, Yang; Chen, Xiaoyi; Wang, Xinhui; Fang, Yang; Huang, Mengjun; Guo, Ling; Zhang, Yin; Zhao, Hai

    2018-06-22

    Duckweed is a valuable feedstock for bioethanol production due to its high biomass and starch accumulation. In our preliminary experiment, we found that abscisic acid (ABA) could simultaneously increase starch and biomass accumulation of duckweed, but the mechanisms are still unclear. The results showed that the biomass production of duckweed reached up to 59.70 and 63.93 g m -2 in 6 days, respectively, with an increase of 7% (P < 0.05) compared to the control. The starch percentage increased from 2.29% up to 46.18% after 14 days of treatment, with a total of starch level 2.6-fold higher than that of the control. Moreover, the level of endogenous ABA, zeatin-riboside (ZR) and indole-3-acetic acid (IAA) increased, while gibberellins (GAs) decreased. Notably, ABA content in treated samples reached 336.5 mg/kg (fresh weight), which was 7.5-fold greater than that of the control. Importantly, the enzyme activities involved in starch biosynthesis increased while those catalyzing starch degradation decreased after ABA application. Taken together, these results indicated that ABA can promote biomass and starch accumulation by regulating endogenous hormone levels and the activity of starch metabolism related key enzymes. These results will provide an operable method for high starch accumulation in duckweed for biofuels production.

  20. Effect of enzymatic hydrolysis of starch on pasting, rheological and viscoelastic properties of milk-barnyard millet (Echinochloa frumentacea) blends meant for spray drying.

    PubMed

    Kumar, P Arun; Pushpadass, Heartwin A; Franklin, Magdaline Eljeeva Emerald; Simha, H V Vikram; Nath, B Surendra

    2016-10-01

    The influence of enzymatic hydrolysis of starch on the pasting properties of barnyard millet was studied using a rheometer. The effects of blending hydrolyzed barnyard millet wort with milk at different ratios (0:1, 1:1, 1:1.5 and 1:2) on flow and viscoelastic behavior were investigated. From the pasting curves, it was evident that enzymatically-hydrolyzed starch did not exhibit typical pasting characteristics expected of normal starch. The Herschel-Bulkley model fitted well to the flow behaviour data, with coefficient of determination (R(2)) ranging from 0.942 to 0.988. All milk-wort blends demonstrated varying degree of shear thinning with flow behavior index (n) ranging from 0.252 to 0.647. Stress-strain data revealed that 1:1 blend of milk to wort had the highest storage modulus (7.09-20.06Pa) and an elastically-dominant behavior (phase angle <45°) over the tested frequency range. The crossover point of G' and G" shifted to higher frequencies with increasing wort content. From the flow and viscoelastic behavior, it was concluded that the 1:1 blend of milk to wort would have least phase separation and better flowability during spray drying. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Evolved strains of Scheffersomyces stipitis achieving high ethanol productivity on acid- and base-pretreated biomass hydrolyzate at high solids loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slininger, Patricia J.; Shea-Andersh, Maureen A.; Thompson, Stephanie R.

    Lignocellulosic biomass is an abundant, renewable feedstock useful for the production of fuel-grade ethanol via the processing steps of pretreatment, enzyme hydrolysis, and microbial fermentation. Traditional industrial yeasts do not ferment xylose and are not able to grow, survive, or ferment in concentrated hydrolyzates that contain enough sugar to support economical ethanol recovery since they are laden with toxic byproducts generated during pretreatment. Repetitive culturing in two types of concentrated hydrolyzates was applied along with ethanol challenged xylose-fed continuous culture to force targeted evolution of the native pentose fermenting yeast Scheffersomyces (Pichia) stipitis strain NRRL Y-7124 maintained in the ARSmore » Culture Collection, Peoria, IL. Isolates collected from various enriched populations were screened and ranked based on relative xylose uptake rate and ethanol yield. Ranking on hydrolyzates with and without nutritional supplementation was used to identify those isolates with best performance across diverse conditions. Robust S. stipitis strains adapted to perform very well in enzyme hydrolyzates of high solids loading ammonia fiber expansion-pretreated corn stover (18% weight per volume solids) and dilute sulfuric acid-pretreated switchgrass (20% w/v solids) were obtained. Improved features include reduced initial lag phase preceding growth, significantly enhanced fermentation rates, improved ethanol tolerance and yield, reduced diauxic lag during glucose-xylose transition, and ability to accumulate >40 g/L ethanol in <167 h when fermenting hydrolyzate at low initial cell density of 0.5 absorbance units and pH 5 to 6.« less

  2. Evolved strains of Scheffersomyces stipitis achieving high ethanol productivity on acid- and base-pretreated biomass hydrolyzate at high solids loading

    DOE PAGES

    Slininger, Patricia J.; Shea-Andersh, Maureen A.; Thompson, Stephanie R.; ...

    2015-04-09

    Lignocellulosic biomass is an abundant, renewable feedstock useful for the production of fuel-grade ethanol via the processing steps of pretreatment, enzyme hydrolysis, and microbial fermentation. Traditional industrial yeasts do not ferment xylose and are not able to grow, survive, or ferment in concentrated hydrolyzates that contain enough sugar to support economical ethanol recovery since they are laden with toxic byproducts generated during pretreatment. Repetitive culturing in two types of concentrated hydrolyzates was applied along with ethanol challenged xylose-fed continuous culture to force targeted evolution of the native pentose fermenting yeast Scheffersomyces (Pichia) stipitis strain NRRL Y-7124 maintained in the ARSmore » Culture Collection, Peoria, IL. Isolates collected from various enriched populations were screened and ranked based on relative xylose uptake rate and ethanol yield. Ranking on hydrolyzates with and without nutritional supplementation was used to identify those isolates with best performance across diverse conditions. Robust S. stipitis strains adapted to perform very well in enzyme hydrolyzates of high solids loading ammonia fiber expansion-pretreated corn stover (18% weight per volume solids) and dilute sulfuric acid-pretreated switchgrass (20% w/v solids) were obtained. Improved features include reduced initial lag phase preceding growth, significantly enhanced fermentation rates, improved ethanol tolerance and yield, reduced diauxic lag during glucose-xylose transition, and ability to accumulate >40 g/L ethanol in <167 h when fermenting hydrolyzate at low initial cell density of 0.5 absorbance units and pH 5 to 6.« less

  3. Determining Enzyme Activity by Radial Diffusion

    ERIC Educational Resources Information Center

    Davis, Bill D.

    1977-01-01

    Discusses advantages of radial diffusion assay in determining presence of enzyme and/or rough approximation of amount of enzyme activities. Procedures are included for the preparation of starch-agar plates, and the application and determination of enzyme. Techniques using plant materials (homogenates, tissues, ungerminated embryos, and seedlings)…

  4. Antimicrobial activity of tempeh gembus hydrolyzate

    NASA Astrophysics Data System (ADS)

    Noviana, A.; Dieny, F. F.; Rustanti, N.; Anjani, G.; Afifah, D. N.

    2018-02-01

    Tropical disease can be prevented by consumming fermented foods that have antimicrobial activity. One of them is tempeh gembus that has short shelf life. It can be overcome by processing it into hydrolyzate. This study aimed to determine antimicrobial activity of tempeh gembus hydrolyzate. Tempeh gembus was made of local soybean from Grobogan. They were added 5,000 ppm, 8,000 ppm, and 10,000 ppm of bromelain enzyme (TGH BE). Antimicrobial effects of TGH BE were tested against Staphylococcus aureus, Escherichia coli, Bacillus subtilis, and Steptococcus mutans. Antimicrobial test was carried out using Kirby-Bauer Disc Diffussion method. Soluble protein test used Bradford method. The largest inhibition zone against S. aureus and S. mutans were shown by TGH BE 8,000 ppm, 0.89±0.53 mm and 2.40±0.72 mm. The largest inhibition zone of B. subtilis, 7.33±2,25 mm, was shown by TGH BE 5,000 ppm. There wasn’t antimicrobial effect of TGH BE against E. coli. There weren’t significant differences of soluble protein (P=0.293) and the inhibition zones againt S. aureus (P = 0.967), E. coli (P = 1.000), B. subtilis (P = 0.645), S. mutans (P=0.817) of all treatments. There were antimicrobial activities of TGH BE against S. aureus, B. subtilis, and S. mutans.

  5. Transcriptional analysis of Myceliophthora thermophila on soluble starch and role of regulator AmyR on polysaccharide degradation.

    PubMed

    Xu, Guanbao; Li, Jingen; Liu, Qian; Sun, Wenliang; Jiang, Min; Tian, Chaoguang

    2018-05-24

    Thermophilic fungus Myceliophthora thermophila has great capacity for biomass degradation and is an attractive option for use as cell factory to produce chemicals directly from renewable polysaccharides, such as starch, rather than monomer glucose. To date, there has been no transcriptomic analysis of this thermophilic fungus on starch. This study determined the transcriptomic profile of M. thermophila responding to soluble starch and a 342-gene set was identified as a "starch regulon", including the major amylolytic enzyme (Mycth_72393). Its overexpression led to increased amylase activities on starch by 35%. Furthermore, overexpressing the key amylolytic enzyme regulator AmyR in M. thermophila significantly increased amylase activity by 30%. Deletion of amyR by the CRISPR/Cas9 system led to the relief of carbon catabolite repression and 3-fold increased lignocellulase activities on cellulose. This study will accelerate rational fungal strain engineering for biochemical production from biomass substrates such as raw corn starch and even crop straw. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Characteristics of Metroxylon sagu resistant starch type III as prebiotic substance.

    PubMed

    Zi-Ni, Tan; Rosma, Ahmad; Napisah, Hussin; Karim, Alias A; Liong, Min-Tze

    2015-04-01

    Resistant starch type III (RS3 ) was produced from sago (Metroxylon sagu) and evaluated for its characteristics as a prebiotic. Two RS3 samples designated sago RS and HCl-sago RS contained 35.71% and 68.30% RS, respectively, were subjected to hydrolyses by gastric juice and digestive enzymes and to absorption. Both sago RS and HCl-sago RS were resistant to 180 min hydrolysis by gastric acidity at pH 1 to 4 with less than 0.85% hydrolyzed. Both samples were also resistant toward hydrolysis by gastrointestinal tract enzymes and intestinal absorption with 96.75% and 98.69% of RS3 were recovered respectively after 3.5 h digestion and overnight dialysis at 37 °C. Sago RS3 supported the growth of both beneficial (lactobacilli and Bifidobacteria) and pathogenic microbes (Escherichia coli, Campylobacter coli, and Clostridium perfringens) in the range of 2.60 to 3.91 log10 CFU/mL. Hence, prebiotic activity score was applied to describe the extent to which sago RS3 supports selective growth of the lactobacilli and bifidobacteria strains over pathogenic bacteria. The highest scores were obtained from Bifidobacterium sp. FTDC8943 grown on sago RS (+0.26) and HCl-sago RS (+0.24) followed by L. bulgaricus FTDC1511 grown on sago RS (+0.21). The findings had suggested that sago RS3 has the prebiotic partial characteristics and it is suggested to further assess the suitability of sago RS3 as a prebiotic material. © 2015 Institute of Food Technologists®

  7. Effect of DHA supplementation on digestible starch utilization by rainbow trout.

    PubMed

    Tapia-Salazar, M; Bureau, W; Panserat, S; Corraze, G; Bureau, D P

    2006-01-01

    Rainbow trout has a limited ability to utilize digestible carbohydrates efficiently. Trout feeds generally contain high levels of DHA, a fatty acid known to inhibit a number of glycolytic and lipogenic enzymes in animals. A study was conducted to determine whether carbohydrate utilization by rainbow trout might be affected by dietary DHA level. Two low-carbohydrate (<4 % digestible carbohydrate) basal diets were formulated to contain 1 (adequate) or 4 (excess) g/100 g DHA diet respectively. The two basal diets were diluted with increasing levels of digestible starch (0 %, 10 %, 20 % and 30 %, respectively) to produce eight diets. These diets were fed to fish for 12 weeks at 15 degrees C according to a pair-fed protocol that consisted of feeding the same amount of basal diet but different amounts of starch. Live weight, N and lipid gains, hepatic glycogen and plasma glucose values significantly increased, whereas feed efficiency (gain:feed) significantly decreased, with increasing starch intake (P<0.05). The retention efficiency of N (N gain/digestible N intake) improved with starch supplementation but was not affected by DHA level (P>0.05). Starch increased the activity of glucokinase, pyruvate kinase, glucose 6-phosphate dehydrogenase and fatty acid synthase (P<0.05) but did not affect hexokinase and malic enzyme activity. DHA had no effect on growth but increased plasma glucose and reduced carcass lipid and liver glycogen contents (P<0.05). Glycolytic and lipogenic enzymes were not affected by DHA level, except for pyruvate kinase, which was reduced by increasing DHA level. These results suggest only a marginal effect of dietary DHA on the ability of fish to utilize carbohydrate.

  8. Physical and functional properties of arrowroot starch extrudates.

    PubMed

    Jyothi, A N; Sheriff, J T; Sajeev, M S

    2009-03-01

    Arrowroot starch, a commercially underexploited tuber starch but having potential digestive and medicinal properties, has been subjected to extrusion cooking using a single screw food extruder. Different levels of feed moisture (12%, 14%, and 16%) and extrusion temperatures (140, 150, 160, 170, 180, and 190 degrees C) were used for extrusion. The physical properties--bulk density, true density, porosity, and expansion ratio; functional properties such as water absorption index, water solubility index, oil absorption index, pasting, rheological, and textural properties; and in vitro enzyme digestibility of the extrudates were determined. The expansion ratio of the extrudates ranged from 3.22 to 6.09. The water absorption index (6.52 to 8.85 g gel/g dry sample), water solubility index (15.92% to 41.31%), and oil absorption index (0.50 to 1.70 g/g) were higher for the extrudates in comparison to native starch (1.81 g gel/g dry sample, 1.16% and 0.60 g/g, respectively). The rheological properties, storage modulus, and loss modulus of the gelatinized powdered extrudates were significantly lower (P < 0.05) and these behaved like solutions rather than a paste or a gel. Hardness and toughness were more for the samples extruded at higher feed moisture and lower extrusion temperature, whereas snap force and energy were higher at lower feed moisture and temperature. There was a significant decrease in the percentage digestibility of arrowroot starch (30.07% after 30 min of incubation with the enzyme) after extrusion (25.27% to 30.56%). Extrusion cooking of arrowroot starch resulted in products with very good expansion, color, and lower digestibility, which can be exploited for its potential use as a snack food.

  9. Starch Flocculation by the Sweet Potato Sour Liquid Is Mediated by the Adhesion of Lactic Acid Bacteria to Starch

    PubMed Central

    Zhang, Lili; Yu, Yang; Li, Xinhua; Li, Xiaona; Zhang, Huajiang; Zhang, Zhen; Xu, Yunhe

    2017-01-01

    In the current study, we focused on the mechanism underlying starch flocculation by the sweet potato sour liquid. The traditional microbial techniques and 16S rDNA sequencing revealed that Lactobacillus was dominant flocculating microorganism in sour liquid. In total, 86 bacteria, 20 yeasts, and 10 molds were isolated from the sour liquid and only eight Lactobacillus species exhibited flocculating activity. Lactobacillus paracasei subsp. paracasei L1 strain with a high flocculating activity was isolated and identified, and the mechanism of starch flocculation was examined. L. paracasei subsp. paracasei L1 cells formed chain-like structures on starch granules. Consequently, these cells connected the starch granules to one another, leading to formation of large flocs. The results of various treatments of L1 cells indicated that bacterial surface proteins play a role in flocculation and L1 cells adhered to the surface of starch granules via specific surface proteins. These surface starch-binding proteins were extracted using the guanidine hydrochloride method; 10 proteins were identified by mass spectrometry: three of these proteins were glycolytic enzymes; two were identified as the translation elongation factor Tu; one was a cell wall hydrolase; one was a surface antigen; one was lyzozyme M1; one was a glycoside hydrolase; and one was an uncharacterized proteins. This study will paves the way for future industrial application of the L1 isolate in starch processing and food manufacturing. PMID:28791000

  10. Mapping and comparative proteomic analysis of the starch biosynthetic pathway in rice by 2D PAGE/MS.

    PubMed

    Chang, Tao-Shan; Liu, Chih-Wei; Lin, Yu-Ling; Li, Chao-Yi; Wang, Arthur Z; Chien, Min-Wei; Wang, Chang-Sheng; Lai, Chien-Chen

    2017-11-01

    Our results not only provide a comprehensive overview of the starch biosynthetic pathway in the developing endosperm but also reveal some important protein markers that regulate the synthesis of starch. In human diets, rice (Oryza sativa L.) is an important source of starch, a substantial amount of which is accumulated in developing endosperm. A better understanding of the complicated pathways involved in starch biosynthesis is needed to improve the yield and quality of rice and other cereal crops through breeding. One pure line rice mutant, SA0419, was induced from a wild-type rice, TNG67, by sodium azide mutagenesis; therefore, TNG67 and SA0419 share the same genetic background. SA0419 is, however, a unique glutinous rice with a lower amylose content (8%) than that of TNG67 (20%), and the grains of SA0419 develop earlier and faster than those of TNG67. In this study, we used a comparative proteomic analysis to identify the differentially expressed proteins that may explain the differences in starch biosynthesis and the characteristics of TNG67 and SA0419. A gel-based proteomic approach was applied to profile the expressed proteome in the developing endosperm of these two rice varieties by nano-LC/MS/MS. Several over-expressed proteins were found in SA0419, such as plastidial ADP-glucose pyrophosphorylase (AGPase), phosphoglucomutase (PGM), pyrophosphate-fructose 6-phosphate 1-phosphotransferase (PFP), 6-phosphofructokinase (PFK), pyruvate phosphate dikinase (PPDK), starch branching enzymes (SBE) and starch debranching enzyme (SDBE), with those proteins mainly being involved in the pathways of starch metabolism and PPDK-mediated gluconeogenesis. Those over-expressed enzymes may contribute to the relatively early development, similar starch accumulation and rapid grain filling of SA0419 as compared with TNG67. This study provides a detailed biochemical description of starch biosynthesis and related information regarding a unique starch mutant that may assist future

  11. Incorporation of dietary fibre-rich oyster mushroom (Pleurotus sajor-caju) powder improves postprandial glycaemic response by interfering with starch granule structure and starch digestibility of biscuit.

    PubMed

    Ng, Sze Han; Robert, Sathyasurya Daniel; Wan Ahmad, Wan Amir Nizam; Wan Ishak, Wan Rosli

    2017-07-15

    The purpose of this study was to determine the effects of Pleurotus sajor-caju (PSC) powder addition at 0, 4, 8 and 12% levels on the nutritional values, pasting properties, thermal characteristics, microstructure, in vitro starch digestibility, in vivo glycaemic index (GI) and sensorial properties of biscuits. Elevated incorporation levels of PSC powder increased the dietary fibre (DF) content and reduced the pasting viscosities and starch gelatinisation enthalpy value of biscuits. The addition of DF-rich PSC powder also interfered with the integrity of the starch granules by reducing the sizes and inducing the uneven spherical shapes of the starch granules, which, in turn, resulted in reduced starch susceptibility to digestive enzymes. The restriction starch hydrolysis rate markedly reduced the GI of biscuits. The incorporation of 8% PSC powder in biscuits (GI=49) could be an effective way of developing a nutritious and low-GI biscuit without jeopardizing its desirable sensorial properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Starch accumulation in hulless barley during grain filling.

    PubMed

    Zheng, Xu-Guang; Qi, Jun-Cang; Hui, Hong-Shan; Lin, Li-Hao; Wang, Feng

    2017-12-01

    Starch consists of two types of molecules: amylose and amylopectin. The objective of this study was increase understanding about mechanisms related to starch accumulation in hulless barley (Hordeum vulgare L.) grain by measuring temporal changes in (i) grain amylose and amylopectin content, (ii) starch synthase activity, and (iii) the relative expressions of key starch-related genes. The amylopectin/amylose ratio gradually declined in both Beiqing 6 and Kunlun 12. In both cultivars, the activities of adenosine diphosphate glucose pyrophosphorylase, soluble starch synthase (SSS), granule bound starch synthase (GBSS), and starch branching enzyme (SBE) increased steadily during grain filling, reaching their maximums 20-25 days after anthesis. The activities of SSS and SBE were greater in Ganken 5 than in either Beiqing 6 or Kunlun 12. The expression of GBSS I was greater in Beiqing 6 and Kunlun 12 than in Ganken 5. In contrast, the expression of SSS I, SSS II and SBE I was greater in Ganken 5 than in Beiqing 6 and Kunlun 12. The peak in GBSS I expression was later than that of SSS I, SSS II, SBE IIa and SBE IIb. The GBSS I transcript in Kunlun 12 was expressed on average 90 times more than the GBSS II transcript. The results suggest that SBE and SSS may control starch synthesis at the transcriptional level, whereas GBSS I may control starch synthesis at the post transcriptional level. GBSS I is mainly responsible for amylose synthesis whereas SSS I and SBE II are mainly responsible for amylopectin synthesis in amyloplasts.

  13. Enhancing polyphenol extraction from unripe apples by carbohydrate-hydrolyzing enzymes.

    PubMed

    Zheng, Hu-zhe; Hwang, In-Wook; Chung, Shin-Kyo

    2009-12-01

    The effects of process variables such as enzyme types, enzyme ratio, reaction temperature, pH, time, and ethanol concentration on the extraction of unripe apple polyphenol were investigated. The results indicated that Viscozyme L had the strongest effect on polyphenols extraction and was selected to study the polyphenol composition. The ratio of enzyme (Viscozyme L) to substrate (2 fungal beta-glucanase units (FBG)) at 0.02, reaction at pH 3.7, 50 degrees C for 12 h, and ethanol concentration of 70% were chosen as the most favorable extraction condition. Total phenolic content (TPC), reducing sugar content (RSC), and extraction yield increased by about 3, 1.5, and 2 times, respectively, compared with control. The contents of p-coumaric acid, ferulic acid, and caffeic acid increased to 8, 4, and 32 times, respectively. The enzyme-aided polyphenol extraction process from unripe apples might be applied to food industry for enhancing bioactive compound production.

  14. Enhancing polyphenol extraction from unripe apples by carbohydrate-hydrolyzing enzymes*

    PubMed Central

    Zheng, Hu-zhe; Hwang, In-Wook; Chung, Shin-Kyo

    2009-01-01

    The effects of process variables such as enzyme types, enzyme ratio, reaction temperature, pH, time, and ethanol concentration on the extraction of unripe apple polyphenol were investigated. The results indicated that Viscozyme L had the strongest effect on polyphenols extraction and was selected to study the polyphenol composition. The ratio of enzyme (Viscozyme L) to substrate (2 fungal beta-glucanase units (FBG)) at 0.02, reaction at pH 3.7, 50 °C for 12 h, and ethanol concentration of 70% were chosen as the most favorable extraction condition. Total phenolic content (TPC), reducing sugar content (RSC), and extraction yield increased by about 3, 1.5, and 2 times, respectively, compared with control. The contents of p-coumaric acid, ferulic acid, and caffeic acid increased to 8, 4, and 32 times, respectively. The enzyme-aided polyphenol extraction process from unripe apples might be applied to food industry for enhancing bioactive compound production. PMID:19946955

  15. Plastidial Folate Prevents Starch Biosynthesis Triggered by Sugar Influx into Non-Photosynthetic Plastids of Arabidopsis.

    PubMed

    Hayashi, Makoto; Tanaka, Mina; Yamamoto, Saki; Nakagawa, Taro; Kanai, Masatake; Anegawa, Aya; Ohnishi, Miwa; Mimura, Tetsuro; Nishimura, Mikio

    2017-08-01

    Regulation of sucrose-starch interconversion in plants is important to maintain energy supplies necessary for viability and growth. Arabidopsis mutants were screened for aberrant responses to sucrose to identify candidates with a defect in the regulation of starch biosynthesis. One such mutant, fpgs1-4, accumulated substantial amounts of starch in non-photosynthetic cells. Dark-grown mutant seedlings exhibited shortened hypocotyls and accumulated starch in etioplasts when supplied with exogenous sucrose/glucose. Similar starch accumulation from exogenous sucrose was observed in mutant chloroplasts, when photosynthesis was prevented by organ culture in darkness. Molecular genetic analyses revealed that the mutant was defective in plastidial folylpolyglutamate synthetase, one of the enzymes engaged in folate biosynthesis. Active folate derivatives are important biomolecules that function as cofactors for a variety of enzymes. Exogenously supplied 5-formyl-tetrahydrofolate abrogated the mutant phenotypes, indicating that the fpgs1-4 mutant produced insufficient folate derivative levels. In addition, the antifolate agents methotrexate and 5-fluorouracil induced starch accumulation from exogenously supplied sucrose in dark-grown seedlings of wild-type Arabidopsis. These results indicate that plastidial folate suppresses starch biosynthesis triggered by sugar influx into non-photosynthetic cells, demonstrating a hitherto unsuspected link between plastidial folate and starch metabolism. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  16. Reinforcement Effect of Alkali-Hydrolyzed Wheat Gluten and Shear-Degraded Wheat Starch in Carboxylated Styrene-Butadiene Composites

    USDA-ARS?s Scientific Manuscript database

    Wheat gluten (WG) and wheat starch (WS) are the protein and carbohydrate obtained from wheat flours. Wheat gluten is not water soluble or dispersible due to its hydrophobic nature. To prepare wheat gluten dispersions, an alkali hydrolysis reaction was carried out to produce a stable aqueous disper...

  17. Digestion of starch in a dynamic small intestinal model.

    PubMed

    Jaime-Fonseca, M R; Gouseti, O; Fryer, P J; Wickham, M S J; Bakalis, S

    2016-12-01

    The rate and extent of starch digestion have been linked with important health aspects, such as control of obesity and type-2 diabetes. In vitro techniques are often used to study digestion and simulated nutrient absorption; however, the effect of gut motility is often disregarded. The present work aims at studying fundamentals of starch digestion, e.g. the effect of viscosity on digestibility, taking into account both biochemical and engineering (gut motility) parameters. New small intestinal model (SIM) that realistically mimics gut motility (segmentation) was used to study digestibility and simulated oligosaccharide bio accessibility of (a) model starch solutions; (b) bread formulations. First, the model was compared with the rigorously mixed stirred tank reactor (STR). Then the effects of enzyme concentration/flow rate, starch concentration, and digesta viscosity (addition of guar gum) were evaluated. Compared to the STR, the SIM showed presence of lag phase when no digestive processes could be detected. The effects of enzyme concentration and flow rate appeared to be marginal in the region of mass transfer limited reactions. Addition of guar gum reduced simulated glucose absorption by up to 45 % in model starch solutions and by 35 % in bread formulations, indicating the importance of chyme rheology on nutrient bioaccessibility. Overall, the work highlights the significance of gut motility in digestive processes and offers a powerful tool in nutritional studies that, additionally to biochemical, considers engineering aspects of digestion. The potential to modulate food digestibility and nutrient bioaccessibility by altering food formulation is indicated.

  18. Lineage-Specific Evolutionary Histories and Regulation of Major Starch Metabolism Genes during Banana Ripening

    PubMed Central

    Jourda, Cyril; Cardi, Céline; Gibert, Olivier; Giraldo Toro, Andrès; Ricci, Julien; Mbéguié-A-Mbéguié, Didier; Yahiaoui, Nabila

    2016-01-01

    Starch is the most widespread and abundant storage carbohydrate in plants. It is also a major feature of cultivated bananas as it accumulates to large amounts during banana fruit development before almost complete conversion to soluble sugars during ripening. Little is known about the structure of major gene families involved in banana starch metabolism and their evolution compared to other species. To identify genes involved in banana starch metabolism and investigate their evolutionary history, we analyzed six gene families playing a crucial role in plant starch biosynthesis and degradation: the ADP-glucose pyrophosphorylases (AGPases), starch synthases (SS), starch branching enzymes (SBE), debranching enzymes (DBE), α-amylases (AMY) and β-amylases (BAM). Using comparative genomics and phylogenetic approaches, these genes were classified into families and sub-families and orthology relationships with functional genes in Eudicots and in grasses were identified. In addition to known ancestral duplications shaping starch metabolism gene families, independent evolution in banana and grasses also occurred through lineage-specific whole genome duplications for specific sub-families of AGPase, SS, SBE, and BAM genes; and through gene-scale duplications for AMY genes. In particular, banana lineage duplications yielded a set of AGPase, SBE and BAM genes that were highly or specifically expressed in banana fruits. Gene expression analysis highlighted a complex transcriptional reprogramming of starch metabolism genes during ripening of banana fruits. A differential regulation of expression between banana gene duplicates was identified for SBE and BAM genes, suggesting that part of starch metabolism regulation in the fruit evolved in the banana lineage. PMID:27994606

  19. Complete Genome of the Starch-Degrading Myxobacteria Sandaracinus amylolyticus DSM 53668T

    PubMed Central

    Sharma, Gaurav; Khatri, Indu; Subramanian, Srikrishna

    2016-01-01

    Myxobacteria are members of δ-proteobacteria and are typified by large genomes, well-coordinated social behavior, gliding motility, and starvation-induced fruiting body formation. Here, we report the 10.33 Mb whole genome of a starch-degrading myxobacterium Sandaracinus amylolyticus DSM 53668T that encodes 8,962 proteins, 56 tRNA, and two rRNA operons. Phylogenetic analysis, in silico DNA-DNA hybridization and average nucleotide identity reveal its divergence from other myxobacterial species and support its taxonomic characterization into a separate family Sandaracinaceae, within the suborder Sorangiineae. Sequence similarity searches using the Carbohydrate-active enzymes (CAZyme) database help identify the enzyme repertoire of S. amylolyticus involved in starch, agar, chitin, and cellulose degradation. We identified 16 α-amylases and two γ-amylases in the S. amylolyticus genome that likely play a role in starch degradation. While many of the amylases are seen conserved in other δ-proteobacteria, we notice several novel amylases acquired via horizontal transfer from members belonging to phylum Deinococcus-Thermus, Acidobacteria, and Cyanobacteria. No agar degrading enzyme(s) were identified in the S. amylolyticus genome. Interestingly, several putative β-glucosidases and endoglucanases proteins involved in cellulose degradation were identified. However, the absence of cellobiohydrolases/exoglucanases corroborates with the lack of cellulose degradation by this bacteria. PMID:27358428

  20. Effect of starch ingestion on plasma glutamate concentrations in humans ingesting monosodium L-glutamate in soup.

    PubMed

    Stegink, L D; Filer, L J; Baker, G L

    1985-02-01

    Plasma glutamate concentrations in human subjects are markedly lower when monosodium L-glutamate is ingested in a water solution containing partially hydrolyzed starch than when ingested in water alone. This study was carried out to investigate whether starch ingested as crackers had a similar effect. Eight normal adult subjects (four male, four female) ingested three servings of a beef consommé providing 50 mg/kg body weight monosodium L-glutamate. One serving was consommé alone, the other two were accompanied by sufficient crackers to provide 0.25 or 0.5 g starch per kilogram body weight, respectively. Ingestion of consommé containing glutamate significantly increased the mean plasma glutamate concentration above baseline to a mean peak value 30 min later. The peak after consumption of 0.5 g starch per kilogram body weight, but not 0.25 g/kg body weight, was significantly lower than when consommé alone was ingested. These data indicate that simultaneous ingestion of metabolizable carbohydrate with glutamate has a marked effect on the plasma glutamate response and indicate that the threshold value for carbohydrate is greater than 0.25 g/kg body weight.

  1. New starch phenotypes produced by TILLING in barley.

    PubMed

    Sparla, Francesca; Falini, Giuseppe; Botticella, Ermelinda; Pirone, Claudia; Talamè, Valentina; Bovina, Riccardo; Salvi, Silvio; Tuberosa, Roberto; Sestili, Francesco; Trost, Paolo

    2014-01-01

    Barley grain starch is formed by amylose and amylopectin in a 1:3 ratio, and is packed into granules of different dimensions. The distribution of granule dimension is bimodal, with a majority of small spherical B-granules and a smaller amount of large discoidal A-granules containing the majority of the starch. Starch granules are semi-crystalline structures with characteristic X-ray diffraction patterns. Distinct features of starch granules are controlled by different enzymes and are relevant for nutritional value or industrial applications. Here, the Targeting-Induced Local Lesions IN Genomes (TILLING) approach was applied on the barley TILLMore TILLING population to identify 29 new alleles in five genes related to starch metabolism known to be expressed in the endosperm during grain filling: BMY1 (Beta-amylase 1), GBSSI (Granule Bound Starch Synthase I), LDA1 (Limit Dextrinase 1), SSI (Starch Synthase I), SSIIa (Starch Synthase IIa). Reserve starch of nine M3 mutant lines carrying missense or nonsense mutations was analysed for granule size, crystallinity and amylose/amylopectin content. Seven mutant lines presented starches with different features in respect to the wild-type: (i) a mutant line with a missense mutation in GBSSI showed a 4-fold reduced amylose/amylopectin ratio; (ii) a missense mutations in SSI resulted in 2-fold increase in A:B granule ratio; (iii) a nonsense mutation in SSIIa was associated with shrunken seeds with a 2-fold increased amylose/amylopectin ratio and different type of crystal packing in the granule; (iv) the remaining four missense mutations suggested a role of LDA1 in granule initiation, and of SSIIa in determining the size of A-granules. We demonstrate the feasibility of the TILLING approach to identify new alleles in genes related to starch metabolism in barley. Based on their novel physicochemical properties, some of the identified new mutations may have nutritional and/or industrial applications.

  2. Physicochemical interactions of maize starch with ferulic acid.

    PubMed

    Karunaratne, Rusiru; Zhu, Fan

    2016-05-15

    Ferulic acid is widely present in diverse foods and has great health benefits. Starch is a major food component and can be flexibly employed to formulate various products. In this study, the effect of ferulic acid addition on various physicochemical properties of normal maize starch was explored. The properties including swelling, pasting, steady shear and dynamic oscillation rheology, gelatinization, retrogradation, and gel texture were affected by ferulic acid to various extents, depending on the addition level. Enzyme susceptibility of granular starch to α-amylase was not affected. These influences may be explained by the functions of solubilized as well as insoluble ferulic acid which was in the form of crystals in starch matrix. On the molecular level, V-type amylose-ferulic acid inclusion complex formation was not observed by both co-precipitation and acidification methods. The results of this study may inspire further studies on the interactions of phenolics with other food ingredients and their role in food quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Isolation and partial characterization of starch from banana cultivars grown in Colombia.

    PubMed

    Chávez-Salazar, A; Bello-Pérez, L A; Agama-Acevedo, E; Castellanos-Galeano, F J; Álvarez-Barreto, C I; Pacheco-Vargas, G

    2017-05-01

    Banana starch is resistant to hydrolysis by digestive enzymes due to its structure and dietary fibre content. Starch was isolated from the following three cultivars of Colombian Musaceae: Gros Michel (dessert), Dominico Harton and FHIA 20 (cooking); also, the amylose and amylopectin contents, morphology of the granules, thermal properties, pasting, molecular characteristics and digestibility were determined. The total starch content, amylose content and digestibility (gelatinized starch) were higher in cooking varieties; the purity and gelatinization temperature were similar for the three varieties, but the enthalpy was higher in the dessert variety. The three varieties showed higher viscosities in the pasting profile compared to commercial maize starch in both acid and neutral conditions. Starch granules presented with heterogeneous sizes and shapes (elongated and ovals) that had birefringence. The Dominico Hartón variety showed the lowest rapidly digestible starch (RDS) value in the gelatinized sample that is in agreement with the greater proportion of long chains. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Amylopectin molecular structure in relation to physicochemical properties of quinoa starch.

    PubMed

    Li, Guantian; Zhu, Fan

    2017-05-15

    Structure-function relationships of starch components remain a subject of research interest. Quinoa starch has very small granules (∼2μm) with unique properties. In this study, nine quinoa starches varied greatly in composition, structure, and physicochemical properties were selected for the analysis of structure-function relationships. Pearson correlation analysis revealed that the properties related to gelatinization such as swelling power, water solubility index, crystallinity, pasting, and thermal properties are much affected by the amylopectin chain profile and amylose content. The parameters of gel texture and amylose leaching are much related to amylopectin internal structure. Other properties such as enzyme susceptibility and particle size distribution are also strongly correlated with starch composition and amylopectin structure. Interesting findings indicate the importance of amylopectin internal structure and individual unit chain profile in determining the physicochemical properties of starch. This work highlights some relationships among composition, amylopectin structure and physicochemical properties of quinoa starch. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Amylase addition increases starch ruminal digestion in first-lactation cows fed high and low starch diets.

    PubMed

    Nozière, P; Steinberg, W; Silberberg, M; Morgavi, D P

    2014-01-01

    The objective of this study was to evaluate the effect of an exogenous amylase preparation on digestion of low- and high-starch diets in dairy cattle. Rumen and total-tract nutrient digestibility were measured in a 4×4 Latin square design with 28-d periods using 4 first-lactation cows cannulated at the rumen and duodenum. Corn silage-based diets had 20 or 30% starch, attained by changing the composition of concentrate, with or without addition of an exogenous amylase preparation. Effects of the enzyme additive were observed on ruminal digestibility but not at the total-tract level. Ruminal digestibility of starch increased from 75% in control to 81% with amylase supplementation. This difference in ruminal starch digestion was compensated postruminally, so that the total-tract digestibility of starch was almost complete and did not differ between treatments. The amylase supplement also increased the true ruminal digestibility of organic matter but did not affect microbial N flow to the duodenum. Amylase supplement reduced the proportion of acetate and butyrate and increased that of propionate, particularly in the high-starch diet, where it tended to increase the concentration of total volatile fatty acids in the rumen. Other effects were a higher amylase activity in the solid-associated microbial community and a tendency for lower numbers of protozoa. In contrast, we observed no changes in intake, production, dry matter and fiber (neutral detergent fiber and acid detergent fiber) digestibility, or ruminal digestion, and no or small changes on selected fibrolytic and amylolytic bacteria and on the microbial community in general. We conclude that the exogenous amylase improved starch digestion in the rumen in first-lactation cows with moderate intake and production levels. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Comparison of a xylanase and a complex of non starch polysaccharide-degrading enzymes with regard to performance and bacterial metabolism in weaned piglets.

    PubMed

    Vahjen, Wilfried; Osswald, Tanja; Schäfer, Klaus; Simon, Ortwin

    2007-04-01

    Weaned piglets were fed a wheat based diet either non-supplemented or supplemented with a multi-enzyme preparation or a xylanase mono-enzyme preparation, respectively. Both enzyme preparations increased live weight gain nonsignificantly, but only animals of the xylanase group showed a trend (p = 0.076) for an improved feed conversion. Only precaecal digestibility of total amino acids was improved significantly when the mono-enzyme preparation was added. Improvements of digestibility of crude fat, crude protein and starch did not reach the significance level. Both enzyme preparations reduced jejunal viscosity, however viscosity in the colon was only reduced by the mono-enzyme preparation. Both enzymes significantly reduced Lactobacillus spp. cell numbers as well as bacterial metabolites in the stomach and showed similar nonsignificant modifications in jejunum contents except for acetate in the mono-enzyme group. Total jejunal bile acids were unchanged. Compared to the control, the ratio of the main conjugated to the main deconjugated bile acid was significantly higher in the mono-enzyme group. This study has shown that the mono- and multi-enzyme preparation can lead to improved performance in wheat based diets for piglets. Like in poultry, the main mode of action seems to be the reduction of small intestinal viscosity. However, the generation of fermentable carbohydrates by the multi-enzyme preparation may mask beneficial effects on performance due to the development of an active bile acid deconjugating microbiota in the small intestine.

  7. Proteome Profile of Starch Granules Purified from Rice (Oryza sativa) Endosperm

    PubMed Central

    Xing, Shihai; Meng, Xiaoxi; Zhou, Lihui; Mujahid, Hana; Zhao, Chunfang; Zhang, Yadong; Wang, Cailin; Peng, Zhaohua

    2016-01-01

    Starch is the most important food energy source in cereals. Many of the known enzymes involved in starch biosynthesis are partially or entirely granule-associated in the endosperm. Studying the proteome of rice starch granules is critical for us to further understand the mechanisms underlying starch biosynthesis and packaging of starch granules in rice amyloplasts, consequently for the improvement of rice grain quality. In this article, we developed a protocol to purify starch granules from mature rice endosperm and verified the quality of purified starch granules by microscopy observations, I2 staining, and Western blot analyses. In addition, we found the phenol extraction method was superior to Tris-HCl buffer extraction method with respect to the efficiency in recovery of starch granule associated proteins. LC-MS/MS analysis showed identification of already known starch granule associated proteins with high confidence. Several proteins reported to be involved in starch synthesis in prior genetic studies in plants were also shown to be enriched with starch granules, either directly or indirectly, in our studies. In addition, our results suggested that a few additional candidate proteins may also be involved in starch synthesis. Furthermore, our results indicated that some starch synthesis pathway proteins are subject to protein acetylation modification. GO analysis and KEGG pathway enrichment analysis showed that the identified proteins were mainly located in plastids and involved in carbohydrate metabolism. This study substantially advances the understanding of the starch granule associated proteome in rice and post translational regulation of some starch granule associated proteins. PMID:27992503

  8. Proteome Profile of Starch Granules Purified from Rice (Oryza sativa) Endosperm.

    PubMed

    Xing, Shihai; Meng, Xiaoxi; Zhou, Lihui; Mujahid, Hana; Zhao, Chunfang; Zhang, Yadong; Wang, Cailin; Peng, Zhaohua

    2016-01-01

    Starch is the most important food energy source in cereals. Many of the known enzymes involved in starch biosynthesis are partially or entirely granule-associated in the endosperm. Studying the proteome of rice starch granules is critical for us to further understand the mechanisms underlying starch biosynthesis and packaging of starch granules in rice amyloplasts, consequently for the improvement of rice grain quality. In this article, we developed a protocol to purify starch granules from mature rice endosperm and verified the quality of purified starch granules by microscopy observations, I2 staining, and Western blot analyses. In addition, we found the phenol extraction method was superior to Tris-HCl buffer extraction method with respect to the efficiency in recovery of starch granule associated proteins. LC-MS/MS analysis showed identification of already known starch granule associated proteins with high confidence. Several proteins reported to be involved in starch synthesis in prior genetic studies in plants were also shown to be enriched with starch granules, either directly or indirectly, in our studies. In addition, our results suggested that a few additional candidate proteins may also be involved in starch synthesis. Furthermore, our results indicated that some starch synthesis pathway proteins are subject to protein acetylation modification. GO analysis and KEGG pathway enrichment analysis showed that the identified proteins were mainly located in plastids and involved in carbohydrate metabolism. This study substantially advances the understanding of the starch granule associated proteome in rice and post translational regulation of some starch granule associated proteins.

  9. Isolation and characterization of an anaerobic ruminal bacterium capable of degrading hydrolyzable tannins.

    PubMed Central

    Nelson, K E; Pell, A N; Schofield, P; Zinder, S

    1995-01-01

    An anaerobic diplococcoid bacterium able to degrade hydrolyzable tannins was isolated from the ruminal fluid of a goat fed desmodium (Desmodium ovalifolium), a tropical legume which contains levels as high as 17% condensed tannins. This strain grew under anaerobic conditions in the presence of up to 30 g of tannic acid per liter and tolerated a range of phenolic monomers, including gallic, ferulic, and p-coumaric acids. The predominant fermentation product from tannic acid breakdown was pyrogallol, as detected by high-performance liquid chromatography and mass spectrometry. Tannic acid degradation was dependent on the presence of a sugar such as glucose, fructose, arabinose, sucrose, galactose, cellobiose, or soluble starch as an added carbon and energy source. The strain also demonstrated resistance to condensed tannins up to a level of 4 g/liter. PMID:7574640

  10. Production of starch with antioxidative activity by baking starch with organic acids.

    PubMed

    Miwa, Shoji; Nakamura, Megumi; Okuno, Michiko; Miyazaki, Hisako; Watanabe, Jun; Ishikawa-Takano, Yuko; Miura, Makoto; Takase, Nao; Hayakawa, Sachio; Kobayashi, Shoichi

    2011-01-01

    A starch ingredient with antioxidative activity, as measured by the DPPH method, was produced by baking corn starch with an organic acid; it has been named ANOX sugar (antioxidative sugar). The baking temperature and time were fixed at 170 °C and 60 min, and the organic acid used was selected from preliminary trials of various kinds of acid. The phytic acid ANOX sugar preparation showed the highest antioxidative activity, but the color of the preparation was almost black; we therefore selected L-tartaric acid which had the second highest antioxidative activity. The antioxidative activity of the L-tartaric acid ANOX sugar preparation was stable against temperature, light, and enzyme treatments (α-amylase and glucoamylase). However, the activity was not stable against variations in water content and pH value. The antioxidative activity of ANOX sugar was stabilized by treating with boiled water or nitrogen gas, or by pH adjustment.

  11. Maize endosperm-specific transcription factors O2 and PBF network the regulation of protein and starch synthesis

    PubMed Central

    Zhang, Zhiyong; Zheng, Xixi; Yang, Jun; Messing, Joachim; Wu, Yongrui

    2016-01-01

    The maize endosperm-specific transcription factors opaque2 (O2) and prolamine-box binding factor (PBF) regulate storage protein zein genes. We show that they also control starch synthesis. The starch content in the PbfRNAi and o2 mutants was reduced by ∼5% and 11%, respectively, compared with normal genotypes. In the double-mutant PbfRNAi;o2, starch was decreased by 25%. Transcriptome analysis reveals that >1,000 genes were affected in each of the two mutants and in the double mutant; these genes were mainly enriched in sugar and protein metabolism. Pyruvate orthophosphate dikinase 1 and 2 (PPDKs) and starch synthase III (SSIII) are critical components in the starch biosynthetic enzyme complex. The expression of PPDK1, PPDK2, and SSIII and their protein levels are further reduced in the double mutants as compared with the single mutants. When the promoters of these genes were analyzed, we found a prolamine box and an O2 box that can be additively transactivated by PBF and O2. Starch synthase IIa (SSIIa, encoding another starch synthase for amylopectin) and starch branching enzyme 1 (SBEI, encoding one of the two main starch branching enzymes) are not directly regulated by PBF and O2, but their protein levels are significantly decreased in the o2 mutant and are further decreased in the double mutant, indicating that o2 and PbfRNAi may affect the levels of some other transcription factor(s) or mRNA regulatory factor(s) that in turn would affect the transcript and protein levels of SSIIa and SBEI. These findings show that three important traits—nutritional quality, calories, and yield—are linked through the same transcription factors. PMID:27621432

  12. Potential of using multiscale kenaf fibers as reinforcing filler in cassava starch-kenaf biocomposites.

    PubMed

    Zainuddin, Siti Yasmine Zanariah; Ahmad, Ishak; Kargarzadeh, Hanieh; Abdullah, Ibrahim; Dufresne, Alain

    2013-02-15

    Biodegradable materials made from cassava starch and kenaf fibers were prepared using a solution casting method. Kenaf fibers were treated with NaOH, bleached with sodium chlorite and acetic buffer solution, and subsequently acid hydrolyzed to obtain cellulose nanocrystals (CNCs). Biocomposites in the form of films were prepared by mixing starch and glycerol/sorbitol with various filler compositions (0-10 wt%). X-ray diffraction revealed that fiber crystallinity increased after each stage of treatment. Morphological observations and size reductions of the extracted cellulose and CNCs were studied using field emission scanning electron microscopy and transmission electron microscopy. The effects of different treatments and filler contents of the biocomposites were evaluated through mechanical tests. Results showed that the tensile strengths and moduli of the biocomposites increased after each treatment and the optimum filler content was 6%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Encapsulation and delivery of food ingredients using starch based systems.

    PubMed

    Zhu, Fan

    2017-08-15

    Functional ingredients can be encapsulated by various wall materials for controlled release in food and digestion systems. Starch, as one of the most abundant natural carbohydrate polymers, is non-allergenic, GRAS, and cheap. There has been increasing interest of using starch in native and modified forms to encapsulate food ingredients such as flavours, lipids, polyphenols, carotenoids, vitamins, enzymes, and probiotics. Starches from various botanical sources in granular or amorphous forms are modified by chemical, physical, and/or enzymatic means to obtain the desired properties for targeted encapsulation. Other wall materials are also employed in combination with starch to facilitate some types of encapsulation. Various methods of crafting the starch-based encapsulation such as electrospinning, spray drying, antisolvent, amylose inclusion complexation, and nano-emulsification are introduced in this mini-review. The physicochemical and structural properties of the particles are described. The encapsulation systems can positively influence the controlled release of food ingredients in food and nutritional applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. SNPs in genes functional in starch-sugar interconversion associate with natural variation of tuber starch and sugar content of potato (Solanum tuberosum L.).

    PubMed

    Schreiber, Lena; Nader-Nieto, Anna Camila; Schönhals, Elske Maria; Walkemeier, Birgit; Gebhardt, Christiane

    2014-07-31

    Starch accumulation and breakdown are vital processes in plant storage organs such as seeds, roots, and tubers. In tubers of potato (Solanum tuberosum L.) a small fraction of starch is converted into the reducing sugars glucose and fructose. Reducing sugars accumulate in response to cold temperatures. Even small quantities of reducing sugars affect negatively the quality of processed products such as chips and French fries. Tuber starch and sugar content are inversely correlated complex traits that are controlled by multiple genetic and environmental factors. Based on in silico annotation of the potato genome sequence, 123 loci are involved in starch-sugar interconversion, approximately half of which have been previously cloned and characterized. By means of candidate gene association mapping, we identified single-nucleotide polymorphisms (SNPs) in eight genes known to have key functions in starch-sugar interconversion, which were diagnostic for increased tuber starch and/or decreased sugar content and vice versa. Most positive or negative effects of SNPs on tuber-reducing sugar content were reproducible in two different collections of potato cultivars. The diagnostic SNP markers are useful for breeding applications. An allele of the plastidic starch phosphorylase PHO1a associated with increased tuber starch content was cloned as full-length cDNA and characterized. The PHO1a-HA allele has several amino acid changes, one of which is unique among all known starch/glycogen phosphorylases. This mutation might cause reduced enzyme activity due to impaired formation of the active dimers, thereby limiting starch breakdown. Copyright © 2014 Schreiber et al.

  15. SNPs in Genes Functional in Starch-Sugar Interconversion Associate with Natural Variation of Tuber Starch and Sugar Content of Potato (Solanum tuberosum L.)

    PubMed Central

    Schreiber, Lena; Nader-Nieto, Anna Camila; Schönhals, Elske Maria; Walkemeier, Birgit; Gebhardt, Christiane

    2014-01-01

    Starch accumulation and breakdown are vital processes in plant storage organs such as seeds, roots, and tubers. In tubers of potato (Solanum tuberosum L.) a small fraction of starch is converted into the reducing sugars glucose and fructose. Reducing sugars accumulate in response to cold temperatures. Even small quantities of reducing sugars affect negatively the quality of processed products such as chips and French fries. Tuber starch and sugar content are inversely correlated complex traits that are controlled by multiple genetic and environmental factors. Based on in silico annotation of the potato genome sequence, 123 loci are involved in starch-sugar interconversion, approximately half of which have been previously cloned and characterized. By means of candidate gene association mapping, we identified single-nucleotide polymorphisms (SNPs) in eight genes known to have key functions in starch-sugar interconversion, which were diagnostic for increased tuber starch and/or decreased sugar content and vice versa. Most positive or negative effects of SNPs on tuber-reducing sugar content were reproducible in two different collections of potato cultivars. The diagnostic SNP markers are useful for breeding applications. An allele of the plastidic starch phosphorylase PHO1a associated with increased tuber starch content was cloned as full-length cDNA and characterized. The PHO1a-HA allele has several amino acid changes, one of which is unique among all known starch/glycogen phosphorylases. This mutation might cause reduced enzyme activity due to impaired formation of the active dimers, thereby limiting starch breakdown. PMID:25081979

  16. Starch Biosynthesis in Developing Wheat Grain 1

    PubMed Central

    Keeling, Peter L.; Wood, John R.; Tyson, R. Huw; Bridges, Ian G.

    1988-01-01

    We have used 13C-labeled sugars and nuclear magnetic resonance (NMR) spectrometry to study the metabolic pathway of starch biosynthesis in developing wheat grain (Triticum aestivum cv Mardler). Our aim was to examine the extent of redistribution of 13C between carbons atoms 1 and 6 of [1-13C] or [6-13C]glucose (or fructose) incorporated into starch, and hence provide evidence for or against the involvement of triose phosphates in the metabolic pathway. Starch synthesis in the endosperm tissue was studied in two experimental systems. First, the 13C sugars were supplied to isolated endosperm tissue incubated in vitro, and second the 13C sugars were supplied in vivo to the intact plant. The 13C starch produced by the endosperm tissue of the grain was isolated and enzymically degraded to glucose using amyloglucosidase, and the distribution of 13C in all glucosyl carbons was quantified by 13C-NMR spectrometry. In all of the experiments, irrespective of the incubation time or incubation conditions, there was a similar pattern of partial (between 15 and 20%) redistribution of label between carbons 1 and 6 of glucose recovered from starch. There was no detectable increase over background 13C incidence in carbons 2 to 5. Within each experiment, the same pattern of partial redistribution of label was found in the glucosyl and fructosyl moieties of sucrose extracted from the tissue. Since it is unlikely that sucrose is present in the amyloplast, we suggest that the observed redistribution of label occurred in the cytosolic compartment of the endosperm cells and that both sucrose and starch are synthesized from a common pool of intermediates, such as hexose phosphate. We suggest that redistribution of label occurs via a cytosolic pathway cycle involving conversion of hexose phosphate to triose phosphate, interconversion of triose phosphate by triose phosphate isomerase, and resynthesis of hexose phosphate in the cytosol. A further round of triose phosphate interconversion in

  17. Most of ADP·glucose linked to starch biosynthesis occurs outside the chloroplast in source leaves

    PubMed Central

    Baroja-Fernández, Edurne; Muñoz, Francisco José; Zandueta-Criado, Aitor; Morán-Zorzano, María Teresa; Viale, Alejandro Miguel; Alonso-Casajús, Nora; Pozueta-Romero, Javier

    2004-01-01

    Sucrose and starch are end products of two segregated gluconeogenic pathways, and their production takes place in the cytosol and chloroplast of green leaves, respectively. According to this view, the plastidial ADP·glucose (ADPG) pyrophosphorylase (AGP) is the sole enzyme catalyzing the synthesis of the starch precursor molecule ADPG. However, a growing body of evidences indicates that starch formation involves the import of cytosolic ADPG to the chloroplast. This evidence is consistent with the idea that synthesis of the ADPG linked to starch biosynthesis takes place in the cytosol by means of sucrose synthase, whereas AGP channels the glucose units derived from the starch breakdown. To test this hypothesis, we first investigated the subcellular localization of ADPG. Toward this end, we constructed transgenic potato plants that expressed the ADPG-cleaving adenosine diphosphate sugar pyrophosphatase (ASPP) from Escherichia coli either in the chloroplast or in the cytosol. Source leaves from plants expressing ASPP in the chloroplast exhibited reduced starch and normal ADPG content as compared with control plants. Most importantly however, leaves from plants expressing ASPP in the cytosol showed a large reduction of the levels of both ADPG and starch, whereas hexose phosphates increased as compared with control plants. No pleiotropic changes in photosynthetic parameters and maximum catalytic activities of enzymes closely linked to starch and sucrose metabolism could be detected in the leaves expressing ASPP in the cytosol. The overall results show that, essentially similar to cereal endosperms, most of the ADPG linked to starch biosynthesis in source leaves occurs in the cytosol. PMID:15326306

  18. Application of microbial α-amylase in industry – A review

    PubMed Central

    de Souza, Paula Monteiro; de Oliveira Magalhães, Pérola

    2010-01-01

    Amylases are one of the main enzymes used in industry. Such enzymes hydrolyze the starch molecules into polymers composed of glucose units. Amylases have potential application in a wide number of industrial processes such as food, fermentation and pharmaceutical industries. α-Amylases can be obtained from plants, animals and microorganisms. However, enzymes from fungal and bacterial sources have dominated applications in industrial sectors. The production of α-amylase is essential for conversion of starches into oligosaccharides. Starch is an important constituent of the human diet and is a major storage product of many economically important crops such as wheat, rice, maize, tapioca, and potato. Starch-converting enzymes are used in the production of maltodextrin, modified starches, or glucose and fructose syrups. A large number of microbial α-amylases has applications in different industrial sectors such as food, textile, paper and detergent industries. The production of α-amylases has generally been carried out using submerged fermentation, but solid state fermentation systems appear as a promising technology. The properties of each α-amylase such as thermostability, pH profile, pH stability, and Ca-independency are important in the development of fermentation process. This review focuses on the production of bacterial and fungal α-amylases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications. PMID:24031565

  19. Application of microbial α-amylase in industry - A review.

    PubMed

    de Souza, Paula Monteiro; de Oliveira Magalhães, Pérola

    2010-10-01

    Amylases are one of the main enzymes used in industry. Such enzymes hydrolyze the starch molecules into polymers composed of glucose units. Amylases have potential application in a wide number of industrial processes such as food, fermentation and pharmaceutical industries. α-Amylases can be obtained from plants, animals and microorganisms. However, enzymes from fungal and bacterial sources have dominated applications in industrial sectors. The production of α-amylase is essential for conversion of starches into oligosaccharides. Starch is an important constituent of the human diet and is a major storage product of many economically important crops such as wheat, rice, maize, tapioca, and potato. Starch-converting enzymes are used in the production of maltodextrin, modified starches, or glucose and fructose syrups. A large number of microbial α-amylases has applications in different industrial sectors such as food, textile, paper and detergent industries. The production of α-amylases has generally been carried out using submerged fermentation, but solid state fermentation systems appear as a promising technology. The properties of each α-amylase such as thermostability, pH profile, pH stability, and Ca-independency are important in the development of fermentation process. This review focuses on the production of bacterial and fungal α-amylases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications.

  20. Pullulanase: Role in Starch Hydrolysis and Potential Industrial Applications

    PubMed Central

    Hii, Siew Ling; Tan, Joo Shun; Ling, Tau Chuan; Ariff, Arbakariya Bin

    2012-01-01

    The use of pullulanase (EC 3.2.1.41) has recently been the subject of increased applications in starch-based industries especially those aimed for glucose production. Pullulanase, an important debranching enzyme, has been widely utilised to hydrolyse the α-1,6 glucosidic linkages in starch, amylopectin, pullulan, and related oligosaccharides, which enables a complete and efficient conversion of the branched polysaccharides into small fermentable sugars during saccharification process. The industrial manufacturing of glucose involves two successive enzymatic steps: liquefaction, carried out after gelatinisation by the action of α-amylase; saccharification, which results in further transformation of maltodextrins into glucose. During saccharification process, pullulanase has been used to increase the final glucose concentration with reduced amount of glucoamylase. Therefore, the reversion reaction that involves resynthesis of saccharides from glucose molecules is prevented. To date, five groups of pullulanase enzymes have been reported, that is, (i) pullulanase type I, (ii) amylopullulanase, (iii) neopullulanase, (iv) isopullulanase, and (v) pullulan hydrolase type III. The current paper extensively reviews each category of pullulanase, properties of pullulanase, merits of applying pullulanase during starch bioprocessing, current genetic engineering works related to pullulanase genes, and possible industrial applications of pullulanase. PMID:22991654

  1. Brewing Science in the Chemistry Laboratory: A "Mashing" Investigation of Starch and Carbohydrates

    ERIC Educational Resources Information Center

    Pelter, Michael W.; McQuade, Jennifer

    2005-01-01

    The experiments that mimic the actual brewing process to explain the science to the nonscience majors is performed using malted barley as the source for both the starch and the amylase enzyme. The experiment introduces the concept of monitoring the progress of chemical reaction and was able to show the chemical breakdown of the starch to simple…

  2. Enzyme-based processing of soybean carbohydrate: Recent developments and future prospects.

    PubMed

    Al Loman, Abdullah; Ju, Lu-Kwang

    2017-11-01

    Soybean is well known for its high-value oil and protein. Carbohydrate is, however, an underutilized major component, representing almost 26-30% (w/w) of the dried bean. The complex soybean carbohydrate is not easily hydrolyzable and can cause indigestibility when included in food and feed. Enzymes can be used to hydrolyze the carbohydrate for improving soybean processing and value of soybean products. Here the enzyme-based processing developed for the following purposes is reviewed: hydrolysis of different carbohydrate-rich by/products from soybean processing, improvement of soybean oil extraction, and increase of nutritional value of soybean-based food and animal feed. Once hydrolyzed into fermentable sugars, soybean carbohydrate can find more value-added applications and further improve the overall economics of soybean processing. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. In vivo phosphoproteome characterization reveals key starch granule-binding phosphoproteins involved in wheat water-deficit response.

    PubMed

    Chen, Guan-Xing; Zhen, Shou-Min; Liu, Yan-Lin; Yan, Xing; Zhang, Ming; Yan, Yue-Ming

    2017-10-23

    Drought stress during grain development causes significant yield loss in cereal production. The phosphorylated modification of starch granule-binding proteins (SGBPs) is an important mechanism regulating wheat starch biosynthesis. In this study, we performed the first proteomics and phosphoproteomics analyses of SGBPs in elite Chinese bread wheat (Triticum aestivum L.) cultivar Jingdong 17 under well-watered and water-stress conditions. Water stress treatment caused significant reductions in spike grain numbers and weight, total starch and amylopectin content, and grain yield. Two-dimensional gel electrophoresis revealed that the quantity of SGBPs was reduced significantly by water-deficit treatment. Phosphoproteome characterization of SGBPs under water-deficit treatment demonstrated a reduced level of phosphorylation of main starch synthesis enzymes, particularly for granule-bound starch synthase (GBSS I), starch synthase II-a (SS II-a), and starch synthase III (SS III). Specifically, the Ser34 site of the GBSSI protein, the Tyr358 site of SS II-a, and the Ser837 site of SS III-a exhibited significant less phosphorylation under water-deficit treatment than well-watered treatment. Furthermore, the expression levels of several key genes related with starch biosynthesis detected by qRT-PCR were decreased significantly at 15 days post-anthesis under water-deficit treatment. Immunolocalization showed a clear movement of GBSS I from the periphery to the interior of starch granules during grain development, under both water-deficit and well-watered conditions. Our results demonstrated that the reduction in gene expression or transcription level, protein expression and phosphorylation levels of starch biosynthesis related enzymes under water-deficit conditions is responsible for the significant decrease in total starch content and grain yield.

  4. Purification and characterization of a thermostable α-amylase produced by the fungus Paecilomyces variotii.

    PubMed

    Michelin, Michele; Silva, Tony M; Benassi, Vivian M; Peixoto-Nogueira, Simone C; Moraes, Luiz Alberto B; Leão, Juliana M; Jorge, João A; Terenzi, Héctor F; Polizeli, Maria de Lourdes T M

    2010-11-02

    An α-amylase produced by Paecilomyces variotii was purified by DEAE-cellulose ion exchange chromatography, followed by Sephadex G-100 gel filtration and electroelution. The α-amylase showed a molecular mass of 75 kDa (SDS-PAGE) and pI value of 4.5. Temperature and pH optima were 60°C and 4.0, respectively. The enzyme was stable for 1 h at 55°C, showing a t₅₀ of 53 min at 60°C. Starch protected the enzyme against thermal inactivation. The α-amylase was more stable in alkaline pH. It was activated mainly by calcium and cobalt, and it presented as a glycoprotein with 23% carbohydrate content. The enzyme preferentially hydrolyzed starch and, to a lower extent, amylose and amylopectin. The K(m) of α-amylase on Reagen® and Sigma® starches were 4.3 and 6.2 mg/mL, respectively. The products of starch hydrolysis analyzed by TLC were oligosaccharides such as maltose and maltotriose. The partial amino acid sequence of the enzyme presented similarity to α-amylases from Bacillus sp. These results confirmed that the studied enzyme was an α-amylase ((1→4)-α-glucan glucanohydrolase). Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Modeling and experimental studies on intermittent starch feeding and citrate addition in simultaneous saccharification and fermentation of starch to flavor compounds.

    PubMed

    Chavan, Abhijit R; Raghunathan, Anuradha; Venkatesh, K V

    2009-04-01

    Simultaneous saccharification and fermentation (SSF) is a combined process of saccharification of a renewable bioresource and fermentation process to produce products, such as lactic acid and ethanol. Recently, SSF has been extensively used to convert various sources of cellulose and starch into fermentative products. Here, we present a study on production of buttery flavors, namely diacetyl and acetoin, by growing Lactobacillus rhamnosus on a starch medium containing the enzyme glucoamylase. We further develop a structured kinetics for the SSF process, which includes enzyme and growth kinetics. The model was used to simulate the effect of pH and temperature on the SSF process so as to obtain optimum operating conditions. The model was experimentally verified by conducting SSF using an initial starch concentration of 100 g/L. The study demonstrated that the developed kinetic was able to suggest strategies for improved productivities. The developed model was able to accurately predict the enhanced productivity of flavors in a three stage process with intermittent addition of starch. Experimental and simulations demonstrated that citrate addition can also lead to enhanced productivity of flavors. The developed optimal model for SSF was able to capture the dynamics of SSF in batch mode as well as in a three stage process. The structured kinetics was also able to quantify the effect of multiple substrates present in the medium. The study demonstrated that structured kinetic models can be used in the future for design and optimization of SSF as a batch or a fed-batch process.

  6. Physicochemical properties and digestibility of common bean (Phaseolus vulgaris L.) starches.

    PubMed

    Du, Shuang-Kui; Jiang, Hongxin; Ai, Yongfeng; Jane, Jay-Lin

    2014-08-08

    Physicochemical properties and digestibility of pinto bean, red kidney bean, black bean and navy bean starches were analyzed. All the common bean starches had oval and spherical granules with average diameter of 25.3-27.4 μm. Amylose contents were 32.0-45.4%. Black bean starch showed the highest peak viscosity, breakdown, final viscosity and setback, whereas red kidney bean starch showed the lowest pasting temperature, peak viscosity, breakdown, and setback. Pinto bean starch showed the highest onset and peak gelatinization temperatures, and the lowest gelatinization temperature range; whereas navy bean starch exhibited the lowest values. Amylopectin of red kidney bean had the highest molecular weight (Mw) and z-average gyration radius (Rz), whereas black bean amylopectin had the lowest values of Mw and Rz. The proportions of DP 6-12, DP 13-24, DP 25-36, and DP ≥ 37 and average branch-chain lengths were 23.30-35.21%, 47.79-53.53%, 8.99-12.65%, 6.39-13.49%, and 17.91-21.56, respectively. All the native bean starches were highly resistant to enzyme digestion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. New Starch Phenotypes Produced by TILLING in Barley

    PubMed Central

    Sparla, Francesca; Falini, Giuseppe; Botticella, Ermelinda; Pirone, Claudia; Talamè, Valentina; Bovina, Riccardo; Salvi, Silvio; Tuberosa, Roberto; Sestili, Francesco; Trost, Paolo

    2014-01-01

    Barley grain starch is formed by amylose and amylopectin in a 1∶3 ratio, and is packed into granules of different dimensions. The distribution of granule dimension is bimodal, with a majority of small spherical B-granules and a smaller amount of large discoidal A-granules containing the majority of the starch. Starch granules are semi-crystalline structures with characteristic X-ray diffraction patterns. Distinct features of starch granules are controlled by different enzymes and are relevant for nutritional value or industrial applications. Here, the Targeting-Induced Local Lesions IN Genomes (TILLING) approach was applied on the barley TILLMore TILLING population to identify 29 new alleles in five genes related to starch metabolism known to be expressed in the endosperm during grain filling: BMY1 (Beta-amylase 1), GBSSI (Granule Bound Starch Synthase I), LDA1 (Limit Dextrinase 1), SSI (Starch Synthase I), SSIIa (Starch Synthase IIa). Reserve starch of nine M3 mutant lines carrying missense or nonsense mutations was analysed for granule size, crystallinity and amylose/amylopectin content. Seven mutant lines presented starches with different features in respect to the wild-type: (i) a mutant line with a missense mutation in GBSSI showed a 4-fold reduced amylose/amylopectin ratio; (ii) a missense mutations in SSI resulted in 2-fold increase in A:B granule ratio; (iii) a nonsense mutation in SSIIa was associated with shrunken seeds with a 2-fold increased amylose/amylopectin ratio and different type of crystal packing in the granule; (iv) the remaining four missense mutations suggested a role of LDA1 in granule initiation, and of SSIIa in determining the size of A-granules. We demonstrate the feasibility of the TILLING approach to identify new alleles in genes related to starch metabolism in barley. Based on their novel physicochemical properties, some of the identified new mutations may have nutritional and/or industrial applications. PMID:25271438

  8. Kinetic properties of two Rhizopus exo-polygalacturonase enzymes hydrolyzing galacturonic acid oligomers using isothermal titration calorimetry

    USDA-ARS?s Scientific Manuscript database

    The kinetic characteristics of two Rhizopus oryzae exo-polygalacturonases acting on galacturonic acid oligomers (GalpA) were determined using isothermal titration calorimetry (ITC). RPG15 hydrolyzing (GalpA)2 demonstrated a Km of 55 uM and kcat of 10.3 s^-1^ while RPG16 was shown to have greater af...

  9. Production, Purification, and Gene Cloning of a β-Fructofuranosidase with a High Inulin-hydrolyzing Activity Produced by a Novel Yeast Aureobasidium sp. P6 Isolated from a Mangrove Ecosystem.

    PubMed

    Jiang, Hong; Ma, Yan; Chi, Zhe; Liu, Guang-Lei; Chi, Zhen-Ming

    2016-08-01

    After screening of over 300 yeast strains isolated from the mangrove ecosystems, it was found that Aureobasidium sp. P6 strain had the highest inulin-hydrolyzing activity. Under the optimal conditions, this yeast strain produced an inulin-hydrolyzing activity of 30.98 ± 0.8 U/ml after 108 h of a 10-l fermentation. After the purification, a molecular weight of the enzyme which had the inulin-hydrolyzing activity was estimated to be 47.6 kDa, and the purified enzyme could actively hydrolyze both sucrose and inulin and exhibit a transfructosylating activity at 30.0 % sucrose, converting sucrose into fructooligosaccharides (FOS), indicating that the purified enzyme was a β-D-fructofuranosidase. After the full length of a β-D-fructofuranosidase gene (accession number KU308553) was cloned from Aureobasidium sp. P6 strain, a protein deduced from the cloned gene contained the conserved sequences MNDPNGL, RDP, ECP, FS, and Q of a glycosidehydrolase GH32 family, respectively, but did not contain a conserved sequence SVEVF, and the amino acid sequence of the protein from Aureobasidium sp. P6 strain had a high similarity to that of the β-fructofuranosidase from any other fungal strains. After deletion of the β-D-fructofuranosidase gene, the disruptant still had low inulin hydrolyzing and invertase activities and a trace amount of the transfructosylating activity, indicating that the gene encoding an inulinase may exist in the Aureobasidium sp. P6 strain.

  10. Characterization and Nucleotide Sequence of CARB-6, a New Carbenicillin-Hydrolyzing β-Lactamase from Vibrio cholerae

    PubMed Central

    Choury, Danièle; Aubert, Gérald; Szajnert, Marie-France; Azibi, Kemal; Delpech, Marc; Paul, Gérard

    1999-01-01

    A clinical strain of Vibrio cholerae non-O1 non-O139 isolated in France produced a new β-lactamase with a pI of 5.35. The purified enzyme, with a molecular mass of 33,000 Da, was characterized. Its kinetic constants show it to be a carbenicillin-hydrolyzing enzyme comparable to the five previously reported CARB β-lactamases and to SAR-1, another carbenicillin-hydrolyzing β-lactamase that has a pI of 4.9 and that is produced by a V. cholerae strain from Tanzania. This β-lactamase is designated CARB-6, and the gene for CARB-6 could not be transferred to Escherichia coli K-12 by conjugation. The nucleotide sequence of the structural gene was determined by direct sequencing of PCR-generated fragments from plasmid DNA with four pairs of primers covering the whole sequence of the reference CARB-3 gene. The gene encodes a 288-amino-acid protein that shares 94% homology with the CARB-1, CARB-2, and CARB-3 enzymes, 93% homology with the Proteus mirabilis N29 enzyme, and 86.5% homology with the CARB-4 enzyme. The sequence of CARB-6 differs from those of CARB-3, CARB-2, CARB-1, N29, and CARB-4 at 15, 16, 17, 19, and 37 amino acid positions, respectively. All these mutations are located in the C-terminal region of the sequence and at the surface of the molecule, according to the crystal structure of the Staphylococcus aureus PC-1 β-lactamase. PMID:9925522

  11. From "An Enzyme Able to Destroy Penicillin" to Carbapenemases: 70 Years of Beta-lactamase Misbehaviour.

    PubMed

    Frère, Jean-Marie; Sauvage, Eric; Kerff, Frédéric

    2016-01-01

    As early as 1940, Abraham and Chain described "an enzyme able to destroy penicillin". In the late 1940's, penicillin-resistant strains of Staphylococcus aureus were found to be a clinical problem. They produced a penicillinase that could hydrolyze the amide bond in the β-lactam ring. Later, an enzyme mediated by an R-factor was isolated from Enterobacteriaceae. Methicillin and cephalosporins, both very poor substrates of the S. aureus enzyme, were found to be sensitive to this new enzyme. Third generation cephalosporins appeared to solve the problem, but further enzymes were selected that exhibited extended spectra and could for instance hydrolyze cefotaxime and/or ceftazidime. The discovery of carbapenems constituted a major advance for our antimicrobial arsenal: they inactivated most of the essential penicillin binding proteins effectively and escaped the activity of nearly all known -β lactamases. However, the metallo-β-lactamases, which had not been recognised as a major danger before 1990, were found to act as effective carbapenemases and started to spread in a worrying way. Moreover, carbapenem-hydrolyzing enzymes were found in each of the 3 classes of active-site serine β-lactamases.

  12. A titration approach to identify the capacity for starch digestion in milk-fed calves.

    PubMed

    Gilbert, M S; van den Borne, J J G C; Berends, H; Pantophlet, A J; Schols, H A; Gerrits, W J J

    2015-02-01

    Calf milk replacers (MR) commonly contain 40% to 50% lactose. For economic reasons, starch is of interest as a lactose replacer. Compared with lactose, starch digestion is generally low in calves. It is, however, unknown which enzyme limits the rate of starch digestion. The objectives were to determine which enzyme limits starch digestion and to assess the maximum capacity for starch digestion in milk-fed calves. A within-animal titration study was performed, where lactose was exchanged stepwise for one of four starch products (SP). The four corn-based SP differed in size and branching, therefore requiring different ratios of starch-degrading enzymes for their complete hydrolysis to glucose: gelatinised starch (α-amylase and (iso)maltase); maltodextrin ((iso)maltase and α-amylase); maltodextrin with α-1,6-branching (isomaltase, maltase and α-amylase) and maltose (maltase). When exceeding the animal's capacity to enzymatically hydrolyse starch, fermentation occurs, leading to a reduced faecal dry matter (DM) content and pH. Forty calves (13 weeks of age) were assigned to either a lactose control diet or one of four titration strategies (n=8 per treatment), each testing the stepwise exchange of lactose for one SP. Dietary inclusion of each SP was increased weekly by 3% at the expense of lactose and faecal samples were collected from the rectum weekly to determine DM content and pH. The increase in SP inclusion was stopped when faecal DM content dropped below 10.6% (i.e. 75% of the average initial faecal DM content) for 3 consecutive weeks. For control calves, faecal DM content and pH did not change over time. For 87% of the SP-fed calves, faecal DM and pH decreased already at low inclusion levels, and linear regression provided a better fit of the data (faecal DM content or pH v. time) than non-linear regression. For all SP treatments, faecal DM content and pH decreased in time (P<0.001) and slopes for faecal DM content and pH in time differed from CON; P<0

  13. Growth ring formation in the starch granules of potato tubers.

    PubMed

    Pilling, Emma; Smith, Alison M

    2003-05-01

    Starch granules from higher plants contain alternating zones of semicrystalline and amorphous material known as growth rings. The regulation of growth ring formation is not understood. We provide several independent lines of evidence that growth ring formation in the starch granules of potato (Solanum tuberosum) tubers is not under diurnal control. Ring formation is not abolished by growth in constant conditions, and ring periodicity and appearance are relatively unaffected by a change from a 24-h to a 40-h photoperiod, and by alterations in substrate supply to the tuber that are known to affect the diurnal pattern of tuber starch synthesis. Some, but not all, of the features of ring formation are consistent with the involvement of a circadian rhythm. Such a rhythm might operate by changing the relative activities of starch-synthesizing enzymes: Growth ring formation is disrupted in tubers with reduced activity of a major isoform of starch synthase. We suggest that physical as well as biological mechanisms may contribute to the control of ring formation, and that a complex interplay of several factors may by involved.

  14. Experiment 9: ASTROCULTURE: Growth and Starch Accumulation of Potato Tuber

    NASA Technical Reports Server (NTRS)

    Tibbitts, Theodore W.; Brown, Christopher S.; Croxdale, Judith G.; Wheeler, Raymond M.

    1998-01-01

    Potato explants (leaf, small stem section, and axillary bud) flown on STS-73 developed tubers of 1.5 cm diameter and 1.7 g mass during the 16-day period of space flight. The experiment was undertaken in the ASTROCULTURE(TM) experiment package under controlled temperature, humidity, lighting, and carbon dioxide concentrations. The tubers that formed in the explant system under microgravity had the same gross morphology, the same anatomical configuration of cells and tissues, and the same sizes, shapes, and surface character of starch granules as tubers formed in a 1 g environment. The total accumulation of starch and other energy containing compounds was similar in space flight and ground control tubers. Enzyme activity of starch synthase, starch phosphorylase, and total hydrolase was similar in space flight and ground controls, but activity of ADP-glucose pyrophosphorylase was reduced in the space flight tuber tissue. This experiment documented that potatoes will metabolize and accumulate starch as effectively in space flight as on the ground. Thus, this data provides the potential for effective utilization of potatoes in life support systems of space bases.

  15. Space Experiment on Tuber Development and Starch Accumulation for CELSS

    NASA Technical Reports Server (NTRS)

    Tibbitts,Theodore W.; Croxdale, Judith C.; Brown, Christopher S.

    1997-01-01

    Potato explants (leaf, small stem section, and axillary bud), flown on STS-73, developed tubers of 1.5 cm diameter and 1.7 g mass during the 16 day period of spaceflight. The experiment was undertaken in the ASTROCULTURE(Trademark) experiment package under controlled temperature, humidity, lighting, and carbon dioxide concentrations. The tubers formed in the explant system under microgravity had the same gross morphology, the same anatomical configuration of cells and tissues, and the same sizes, shapes, and surface character of starch granules as tubers formed in a 1 g environment. The total accumulation of starch and other energy containing compounds was singular in space flight and ground control tubers. Enzyme activity of starch synthase, starch phosphorylase, and total hydrolase was similar in spaceflight and ground controls but activity of ADP-glucose pyrophosphorylase was reduced in the spaceflight tuber tissue. This experiment documented that potatoes will metabolize and accumulate starch as effectively in spaceflight as on the ground and thus this data provides the potential for effective utilization of potatoes in life support systems of space bases.

  16. Analyzing genetic diversity in conifers...isozyme resolution by starch gel electrophoresis

    Treesearch

    M. Thompson Conkle

    1972-01-01

    Enzymes in forest tree materials can be resolved by starch gel electrophoresis. A gel slab is prepared in a mold assembled from glass and plastic. Wicks containing an aqueous extract of macerated plant material are inserted in the gel and processed. The gel is sliced, stained, examined, and photographed. Isozyme bands produced by differential migration of enzymes...

  17. Physicochemical properties of quinoa starch.

    PubMed

    Li, Guantian; Wang, Sunan; Zhu, Fan

    2016-02-10

    Physicochemical properties of quinoa starches isolated from 26 commercial samples from a wide range of collection were studied. Swelling power (SP), water solubility index (WSI), amylose leaching (AML), enzyme susceptibility, pasting, thermal and textural properties were analyzed. Apparent amylose contents (AAM) ranged from 7.7 to 25.7%. Great variations in the diverse physicochemical properties were observed. Correlation analysis showed that AAM was the most significant factor related to AML, WSI, and pasting parameters. Correlations among diverse physicochemical parameters were analyzed. Principal component analysis using twenty three variables were used to visualize the difference among samples. Six principal components were extracted which could explain 88.8% of the total difference. The wide variations in physicochemical properties could contribute to innovative utilization of quinoa starch for food and non-food applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Allelic variants of the amylose extender mutation of maize demonstrate phenotypic variation in starch structure resulting from modified protein–protein interactions

    PubMed Central

    Liu, Fushan; Ahmed, Zaheer; Lee, Elizabeth A.; Donner, Elizabeth; Liu, Qiang; Ahmed, Regina; Morell, Matthew K.; Emes, Michael J.; Tetlow, Ian J.

    2012-01-01

    amylose extender (ae−) starches characteristically have modified starch granule morphology resulting from amylopectin with reduced branch frequency and longer glucan chains in clusters, caused by the loss of activity of the major starch branching enzyme (SBE), which in maize endosperm is SBEIIb. A recent study with ae− maize lacking the SBEIIb protein (termed ae1.1 herein) showed that novel protein–protein interactions between enzymes of starch biosynthesis in the amyloplast could explain the starch phenotype of the ae1.1 mutant. The present study examined an allelic variant of the ae− mutation, ae1.2, which expresses a catalytically inactive form of SBEIIb. The catalytically inactive SBEIIb in ae1.2 lacks a 28 amino acid peptide (Val272–Pro299) and is unable to bind to amylopectin. Analysis of starch from ae1.2 revealed altered granule morphology and physicochemical characteristics distinct from those of the ae1.1 mutant as well as the wild-type, including altered apparent amylose content and gelatinization properties. Starch from ae1.2 had fewer intermediate length glucan chains (degree of polymerization 16–20) than ae1.1. Biochemical analysis of ae1.2 showed that there were differences in the organization and assembly of protein complexes of starch biosynthetic enzymes in comparison with ae1.1 (and wild-type) amyloplasts, which were also reflected in the composition of starch granule-bound proteins. The formation of stromal protein complexes in the wild-type and ae1.2 was strongly enhanced by ATP, and broken by phosphatase treatment, indicating a role for protein phosphorylation in their assembly. Labelling experiments with [γ-32P]ATP showed that the inactive form of SBEIIb in ae1.2 was phosphorylated, both in the monomeric form and in association with starch synthase isoforms. Although the inactive SBEIIb was unable to bind starch directly, it was strongly associated with the starch granule, reinforcing the conclusion that its presence in the

  19. Advanced water splitting for green hydrogen gas production through complete oxidation of starch by in vitro metabolic engineering.

    PubMed

    Kim, Jae-Eung; Kim, Eui-Jin; Chen, Hui; Wu, Chang-Hao; Adams, Michael W W; Zhang, Y-H Percival

    2017-11-01

    Starch is a natural energy storage compound and is hypothesized to be a high-energy density chemical compound or solar fuel. In contrast to industrial hydrolysis of starch to glucose, an alternative ATP-free phosphorylation of starch was designed to generate cost-effective glucose 6-phosphate by using five thermophilic enzymes (i.e., isoamylase, alpha-glucan phosphorylase, 4-α-glucanotransferase, phosphoglucomutase, and polyphosphate glucokinase). This enzymatic phosphorolysis is energetically advantageous because the energy of α-1,4-glycosidic bonds among anhydroglucose units is conserved in the form of phosphorylated glucose. Furthermore, we demonstrated an in vitro 17-thermophilic enzyme pathway that can convert all glucose units of starch, regardless of branched and linear contents, with water to hydrogen at a theoretic yield (i.e., 12 H 2 per glucose), three times of the theoretical yield from dark microbial fermentation. The use of a biomimetic electron transport chain enabled to achieve a maximum volumetric productivity of 90.2mmol of H 2 /L/h at 20g/L starch. The complete oxidation of starch to hydrogen by this in vitro synthetic (enzymatic) biosystem suggests that starch as a natural solar fuel becomes a high-density hydrogen storage compound with a gravimetric density of more than 14% H 2 -based mass and an electricity density of more than 3000Wh/kg of starch. Copyright © 2017. Published by Elsevier Inc.

  20. Structure of the Arabidopsis Glucan Phosphatase LIKE SEX FOUR2 Reveals a Unique Mechanism for Starch Dephosphorylation[W

    PubMed Central

    Meekins, David A.; Guo, Hou-Fu; Husodo, Satrio; Paasch, Bradley C.; Bridges, Travis M.; Santelia, Diana; Kötting, Oliver; Vander Kooi, Craig W.; Gentry, Matthew S.

    2013-01-01

    Starch is a water-insoluble, Glc-based biopolymer that is used for energy storage and is synthesized and degraded in a diurnal manner in plant leaves. Reversible phosphorylation is the only known natural starch modification and is required for starch degradation in planta. Critical to starch energy release is the activity of glucan phosphatases; however, the structural basis of dephosphorylation by glucan phosphatases is unknown. Here, we describe the structure of the Arabidopsis thaliana starch glucan phosphatase LIKE SEX FOUR2 (LSF2) both with and without phospho-glucan product bound at 2.3Å and 1.65Å, respectively. LSF2 binds maltohexaose-phosphate using an aromatic channel within an extended phosphatase active site and positions maltohexaose in a C3-specific orientation, which we show is critical for the specific glucan phosphatase activity of LSF2 toward native Arabidopsis starch. However, unlike other starch binding enzymes, LSF2 does not possess a carbohydrate binding module domain. Instead we identify two additional glucan binding sites located within the core LSF2 phosphatase domain. This structure is the first of a glucan-bound glucan phosphatase and provides new insights into the molecular basis of this agriculturally and industrially relevant enzyme family as well as the unique mechanism of LSF2 catalysis, substrate specificity, and interaction with starch granules. PMID:23832589

  1. Comparative Transcriptome Analysis Reveals Critical Function of Sucrose Metabolism Related-Enzymes in Starch Accumulation in the Storage Root of Sweet Potato

    PubMed Central

    Zhang, Kai; Wu, Zhengdan; Tang, Daobin; Luo, Kai; Lu, Huixiang; Liu, Yingying; Dong, Jie; Wang, Xin; Lv, Changwen; Wang, Jichun; Lu, Kun

    2017-01-01

    The starch properties of the storage root (SR) affect the quality of sweet potato (Ipomoea batatas (L.) Lam.). Although numerous studies have analyzed the accumulation and properties of starch in sweet potato SRs, the transcriptomic variation associated with starch properties in SR has not been quantified. In this study, we measured the starch and sugar contents and analyzed the transcriptome profiles of SRs harvested from sweet potatoes with high, medium, and extremely low starch contents, at five developmental stages [65, 80, 95, 110, and 125 days after transplanting (DAP)]. We found that differences in both water content and starch accumulation in the dry matter affect the starch content of SRs in different sweet potato genotypes. Based on transcriptome sequencing data, we assembled 112336 unigenes, and identified several differentially expressed genes (DEGs) involved in starch and sucrose metabolism, and revealed the transcriptional regulatory network controlling starch and sucrose metabolism in sweet potato SRs. Correlation analysis between expression patterns and starch and sugar contents suggested that the sugar–starch conversion steps catalyzed by sucrose synthase (SuSy) and UDP-glucose pyrophosphorylase (UGPase) may be essential for starch accumulation in the dry matter of SRs, and IbβFRUCT2, a vacuolar acid invertase, might also be a key regulator of starch content in the SRs. Our results provide valuable resources for future investigations aimed at deciphering the molecular mechanisms determining the starch properties of sweet potato SRs. PMID:28690616

  2. Bio-insecticide Bacillus thuringiensis spores encapsulated with amaranth derivatized starches: studies on the propagation "in vitro".

    PubMed

    Rodríguez, Ana Priscila García; Martínez, Marcela Gaytán; Barrera-Cortés, Josefina; Ibarra, Jorge E; Bustos, Fernando Martínez

    2015-02-01

    Bacillus thuringiensis (Bt) is one of the bioinsecticides used worldwide due to its specific toxicity against target pests in their larval stage. Despite this advantage, its use is limited because of their short persistence in field when exposed to ultra violet light and changing environmental conditions. In this work, microencapsulation has been evaluated as a promising method to improve Bt activity. The objective of this study was to develop and characterize native and modified amaranth starch granules and evaluate their potential application as wall materials in the microcapsulation of B thuringiensis serovar kurstaki HD-1 (Bt- HD1), produced by spray drying. Native amaranth starch granules were treated by hydrolyzation, high energy milling (HEM) and were chemically modified by phosphorylation and succinylation. The size of the Bt microcapsules varied from 12.99 to 17.14 μm adequate to protect the spores of Bt from ultraviolet radiation. The aw coefficient of the microcapsules produced by the modified starches after drying was low (0.14-1.88), which prevent microbial growth. Microcapsules prepared with phosphorylated amaranth starch presented the highest bacterial count and active material yield. Different concentrations of the encapsulated Bt formulation in phosphorylated amaranth starch showed a high level of insecticidal activity when tested on M. sexta larvae and has great potential to be developed as a bioinsecticide formulation, also, the level of toxicity is much higher than that found in some of the products commercially available.

  3. Differential effects of genetically distinct mechanisms of elevating amylose on barley starch characteristics.

    PubMed

    Regina, Ahmed; Blazek, Jaroslav; Gilbert, Elliot; Flanagan, Bernadine M; Gidley, Michael J; Cavanagh, Colin; Ral, Jean-Philippe; Larroque, Oscar; Bird, Anthony R; Li, Zhongyi; Morell, Matthew K

    2012-07-01

    The relationships between starch structure and functionality are important in underpinning the industrial and nutritional utilisation of starches. In this work, the relationships between the biosynthesis, structure, molecular organisation and functionality have been examined using a series of defined genotypes in barley with low (<20%), standard (20-30%), elevated (30-50%) and high (>50%) amylose starches. A range of techniques have been employed to determine starch physical features, higher order structure and functionality. The two genetic mechanisms for generating high amylose contents (down-regulation of branching enzymes and starch synthases, respectively) yielded starches with very different amylopectin structures but similar gelatinisation and viscosity properties driven by reduced granular order and increased amylose content. Principal components analysis (PCA) was used to elucidate the relationships between genotypes and starch molecular structure and functionality. Parameters associated with granule order (PC1) accounted for a large percentage of the variance (57%) and were closely related to amylose content. Parameters associated with amylopectin fine structure accounted for 18% of the variance but were less closely aligned to functionality parameters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Combi-metal organic framework (Combi-MOF) of α-amylase and glucoamylase for one pot starch hydrolysis.

    PubMed

    Salgaonkar, Manish; Nadar, Shamraja S; Rathod, Virendra K

    2018-07-01

    The multi-enzyme biocatalyst allows to run in vitro multi-step cascade reactions in single pot. An efficient combi-metal organic frameworks (combi-MOF) of α-amylase and glucoamylase for one pot starch hydrolysis was constructed by mixing zinc acetate and 2‑methylimmidazole with enzyme mixture in one pot under biocompatible conditions. The prepared combi-MOF was characterized and analyzed by powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). Thermo-stability was evaluated for combi-MOF in the range of 55 to 75°C which showed three folds improved stability in terms of half-life. In kinetic parameter studies, rate of starch hydrolysis (V max ) of combi-MOF was found to be enhanced after co-immobilization. Further, combi-MOF was recycled in batch mode which retained up to 52% residual activity after five successive cycles of reuse. In addition to that, combi-MOF exhibited extraordinary storage stability till 24days. At the end, starch hydrolytic activity of combi-MOF was tested for different sources of starch (corn, rice, wheat and potato) which exhibited higher rate of hydrolysis than mixture of free enzymes due to spatially co-localized multi-enzymatic systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Low-temperature effect on enzyme activities involved in sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) seedlings.

    PubMed

    Rosa, Mariana; Hilal, Mirna; González, Juan A; Prado, Fernando E

    2009-04-01

    The effect of low temperature on growth, sucrose-starch partitioning and related enzymes in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) was studied. The growth of cotyledons and growing axes in seedlings grown at 25/20 degrees C (light/dark) and shifted to 5/5 degrees C was lower than in those only growing at 25/20 degrees C (unstressed). However, there were no significant differences between low-temperature control and salt-treated seedlings. The higher activities of sucrose phosphate synthase (SPS, EC 2.4.1.14) and soluble acid invertase (acid INV, EC 3.2.1.25) were observed in salt-stressed cotyledons; however, the highest acid INV activity was observed in unstressed cotyledons. ADP-glucose pyrophosphorylase (ADP-GPPase, EC 2.7.7.27) was higher in unstressed cotyledons than in stressed ones. However, between 0 and 4days the highest value was observed in salt-stressed cotyledons. The lowest value of ADP-GPPase was observed in salt-acclimated cotyledons. Low temperature also affected sucrose synthase (SuSy, EC 2.4.1.13) activity in salt-treated cotyledons. Sucrose and glucose were higher in salt-stressed cotyledons, but fructose was essentially higher in low-temperature control. Starch was higher in low-temperature control; however, the highest content was observed at 0day in salt-acclimated cotyledons. Results demonstrated that low temperature induces different responses on sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons. Data also suggest that in salt-treated cotyledons source-sink relations (SSR) are changed in order to supply soluble sugars and proline for the osmotic adjustment. Relationships between starch formation and SuSy activity are also discussed.

  6. Metabolic analysis of kiwifruit (Actinidia deliciosa) berries from extreme genotypes reveals hallmarks for fruit starch metabolism

    PubMed Central

    Nardozza, Simona; MacRae, Elspeth A.; Sulpice, Ronan; Clearwater, Michael J.

    2013-01-01

    Tomato, melon, grape, peach, and strawberry primarily accumulate soluble sugars during fruit development. In contrast, kiwifruit (Actinidia Lindl. spp.) and banana store a large amount of starch that is released as soluble sugars only after the fruit has reached maturity. By integrating metabolites measured by gas chromatography–mass spectrometry, enzyme activities measured by a robot-based platform, and transcript data sets during fruit development of Actinidia deliciosa genotypes contrasting in starch concentration and size, this study identified the metabolic changes occurring during kiwifruit development, including the metabolic hallmarks of starch accumulation and turnover. At cell division, a rise in glucose (Glc) concentration was associated with neutral invertase (NI) activity, and the decline of both Glc and NI activity defined the transition to the cell expansion and starch accumulation phase. The high transcript levels of β-amylase 9 (BAM9) during cell division, prior to net starch accumulation, and the correlation between sucrose phosphate synthase (SPS) activity and sucrose suggest the occurrence of sucrose cycling and starch turnover. ADP-Glc pyrophosphorylase (AGPase) is identified as a key enzyme for starch accumulation in kiwifruit berries, as high-starch genotypes had 2- to 5-fold higher AGPase activity, which was maintained over a longer period of time and was also associated with enhanced and extended transcription of the AGPase large subunit 4 (APL4). The data also revealed that SPS and galactinol might affect kiwifruit starch accumulation, and suggest that phloem unloading into kiwifruit is symplastic. These results are relevant to the genetic improvement of quality traits such as sweetness and sugar/acid balance in a range of fruit species. PMID:24058160

  7. Metabolic analysis of kiwifruit (Actinidia deliciosa) berries from extreme genotypes reveals hallmarks for fruit starch metabolism.

    PubMed

    Nardozza, Simona; Boldingh, Helen L; Osorio, Sonia; Höhne, Melanie; Wohlers, Mark; Gleave, Andrew P; MacRae, Elspeth A; Richardson, Annette C; Atkinson, Ross G; Sulpice, Ronan; Fernie, Alisdair R; Clearwater, Michael J

    2013-11-01

    Tomato, melon, grape, peach, and strawberry primarily accumulate soluble sugars during fruit development. In contrast, kiwifruit (Actinidia Lindl. spp.) and banana store a large amount of starch that is released as soluble sugars only after the fruit has reached maturity. By integrating metabolites measured by gas chromatography-mass spectrometry, enzyme activities measured by a robot-based platform, and transcript data sets during fruit development of Actinidia deliciosa genotypes contrasting in starch concentration and size, this study identified the metabolic changes occurring during kiwifruit development, including the metabolic hallmarks of starch accumulation and turnover. At cell division, a rise in glucose (Glc) concentration was associated with neutral invertase (NI) activity, and the decline of both Glc and NI activity defined the transition to the cell expansion and starch accumulation phase. The high transcript levels of β-amylase 9 (BAM9) during cell division, prior to net starch accumulation, and the correlation between sucrose phosphate synthase (SPS) activity and sucrose suggest the occurrence of sucrose cycling and starch turnover. ADP-Glc pyrophosphorylase (AGPase) is identified as a key enzyme for starch accumulation in kiwifruit berries, as high-starch genotypes had 2- to 5-fold higher AGPase activity, which was maintained over a longer period of time and was also associated with enhanced and extended transcription of the AGPase large subunit 4 (APL4). The data also revealed that SPS and galactinol might affect kiwifruit starch accumulation, and suggest that phloem unloading into kiwifruit is symplastic. These results are relevant to the genetic improvement of quality traits such as sweetness and sugar/acid balance in a range of fruit species.

  8. Hydrolyzable Polyureas Bearing Hindered Urea Bonds

    PubMed Central

    2015-01-01

    Hydrolyzable polymers are widely used materials that have found numerous applications in biomedical, agricultural, plastic, and packaging industrials. They usually contain ester and other hydrolyzable bonds, such as anhydride, acetal, ketal, or imine, in their backbone structures. Here, we report the first design of hydrolyzable polyureas bearing dynamic hindered urea bonds (HUBs) that can reversibly dissociate to bulky amines and isocyanates, the latter of which can be further hydrolyzed by water, driving the equilibrium to facilitate the degradation of polyureas. Polyureas bearing 1-tert-butyl-1-ethylurea bonds that show high dynamicity (high bond dissociation rate), in the form of either linear polymers or cross-linked gels, can be completely degraded by water under mild conditions. Given the simplicity and low cost for the production of polyureas by simply mixing multifunctional bulky amines and isocyanates, the versatility of the structures, and the tunability of the degradation profiles of HUB-bearing polyureas, these materials are potentially of very broad applications. PMID:25406025

  9. Extraction of starch from hulled and hull-less barley with papain and aqueous sodium hydroxide.

    PubMed

    Sharma, Priyanka; Tejinder, S

    2014-12-01

    Starch was isolated from hulled (VJM 201) and hull-less (BL 134) barley with papain and aqueous sodium hydroxide treatments. For enzyme-assisted extraction, barley was steeped in water containing 0.2 % SO2 + 0.55 % lactic acid at 50° ± 2 °C for 4-5 h. The slurry was mixed with 0.4-2.0 g papain/kg barley and incubated at 50° ± 2 °C for 1-5 h. Aqueous sodium hydroxide (0.01-0.05 M) was added to the finely ground barley meal. The alkaline slurry was incubated at ambient temperature (25° ± 2 °C) for 15-60 min. The starch and grain fractions were isolated by screening and centrifugation. Increases in the time of treatment significantly affected the fiber, centrifugation and non-starch residue losses. Concentration of papain and sodium hydroxide had negligible effect on extraction losses. The enzyme-assisted extraction efficiency of starch was higher (80.7-84.6 %) than the alkaline method (70.9-83.7 %). The hulled barley showed higher extraction efficiency than the hull-less barley. The slurry treated with 0.4 g papain/kg barley for 5 h and 0.03 M sodium hydroxide for 60 min produced maximal yield of starch. Barley starch showed desirably high pasting temperature, water binding capacity and hold viscosity; and low final and setback viscosity compared with the commercial corn starch. The alkaline extracted hull-less barley starch showed exceptionally high peak and hold viscosities.

  10. Characterization of starch from tubers of yam bean (Pachyrhizus ahipa).

    PubMed

    Forsyth, Jane L; Ring, Steve G; Noel, Timothy R; Parker, Roger; Cairns, Paul; Findlay, Kim; Shewry, Peter R

    2002-01-16

    Detailed studies of the starch present in tubers of six accessions of Pachyrhizus ahipa (ahipa) have been carried out using starches from tubers of P. erosus (Mexican yam bean) and seeds of ahipa and wheat for comparison. Starch accounted for 56-58% of the tuber dry weight with granules occurring in a range of geometric forms and in sizes from below 5 microm to about 35 microm (mean about 10 microm in all accessions except two). The amylose content ranged from 11.6 to 16.8% compared with 16.9% in P. erosus tubers and over 23% in the seed starches. X- ray diffraction analysis showed A-type or C(A)-type diffraction patterns. The chain-length distribution of the amylopectin after enzyme debranching showed a peak at DP11 similar to that of wheat starch, but had a less marked shoulder at DP 21-22 and contained a higher proportion of longer chains. Differential scanning calorimitry showed an endothermic peak corresponding to gelatinization with T(max) ranging from 59 to 63 degrees C, which was similar to the T(max) of wheat (about 64 degrees C). The composition of the ahipa starch may mean that it is suitable for food applications that require low amylose content and low retrogradation after processing.

  11. Selected Probiotic Lactobacilli Have the Capacity To Hydrolyze Gluten Peptides during Simulated Gastrointestinal Digestion.

    PubMed

    Francavilla, Ruggiero; De Angelis, Maria; Rizzello, Carlo Giuseppe; Cavallo, Noemi; Dal Bello, Fabio; Gobbetti, Marco

    2017-07-15

    The aim of this study was to demonstrate the capacity of probiotic lactobacilli to hydrolyze immunogenic gluten peptides. Eighteen commercial strains of probiotic lactobacilli with highly variable peptidase activity (i.e., aminopeptidase N, iminopeptidase, prolyl endopeptidyl peptidase, tripeptidase, prolidase, prolinase, and dipeptidase), including toward Pro-rich peptides, were tested in this study. Ten probiotic strains were selected on the basis of their specific enzyme activity. When pooled, these 10 strains provided the peptidase portfolio that is required to completely degrade the immunogenic gluten peptides involved in celiac disease (CD). The selected probiotic mixture was able to completely hydrolyze well-known immunogenic epitopes, including the gliadin 33-mer peptide, the peptide spanning residues 57 to 68 of the α9-gliadin (α9-gliadin peptide 57-68), A-gliadin peptide 62-75, and γ-gliadin peptide 62-75. During digestion under simulated gastrointestinal conditions, the pool of 10 selected probiotic lactobacilli strongly hydrolyzed the wheat bread gluten (ca. 18,000 ppm) to less than 10 ppm after 360 min of treatment. As determined by multidimensional chromatography (MDLC) coupled to nanoelectrospray ionization (nano-ESI)-tandem mass spectrometry (MS/MS), no known immunogenic peptides were detected in wheat bread that was digested in the presence of the probiotics. Accordingly, the level of cytokines (interleukin 2 [IL-2], IL-10, and interferon gamma [IFN-γ]) produced by duodenal biopsy specimens from CD patients who consumed wheat bread digested by probiotics was similar to the baseline value (negative control). Probiotics that specifically hydrolyze gluten polypeptides could also be used to hydrolyze immunogenic peptides that contaminate gluten-free products. This could provide a new and safe adjunctive therapy alternative to the gluten-free diet (GFD). IMPORTANCE This study confirmed that probiotic Lactobacillus strains have different enzymatic

  12. The Conversion of Starch and Sugars into Branched C10 and C11 Hydrocarbons.

    PubMed

    Sutton, Andrew D; Kim, Jin K; Wu, Ruilian; Hoyt, Caroline B; Kimball, David B; Silks, Louis A; Gordon, John C

    2016-09-08

    Oligosaccharides, such as starch, cellulose, and hemicelluloses, are abundant and easily obtainable bio-derived materials that can potentially be used as precursors for fuels and chemical feedstocks. To access the pertinent molecular building blocks (i.e., 5- or 6-carbon containing sugar units) located within these biopolymers and transform them into useful fuel precursors, oligosaccharide depolymerization followed by chain extension is required. This chain extension can readily be performed via a Garcia-Gonzalez-like approach using β-diketones under mild conditions to provide fuel precursors containing an increased carbon atom content that meets fuel requirements. In a subsequent step, ring opening and hydrodeoxygenation chemistry of these species allows for the preparation of branched alkanes under relatively mild conditions. This approach can be applied to monomeric sugars (glucose and xylose), oligosaccharides (starch), and potentially to hydrolyzed dedicated energy crops to allow the conversion of real biomass into fuel type molecules. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The barley amo1 locus is tightly linked to the starch synthase IIIa gene and negatively regulates expression of granule-bound starch synthetic genes

    PubMed Central

    Li, Zhongyi; Li, Dehong; Du, Xihua; Wang, Hong; Larroque, Oscar; Jenkins, Colin L. D.; Jobling, Stephen A.; Morell, Matthew K.

    2011-01-01

    In this study of barley starch synthesis, the interaction between mutations at the sex6 locus and the amo1 locus has been characterized. Four barley genotypes, the wild type, sex6, amo1, and the amo1sex6 double mutant, were generated by backcrossing the sex6 mutation present in Himalaya292 into the amo1 ‘high amylose Glacier’. The wild type, amo1, and sex6 genotypes gave starch phenotypes consistent with previous studies. However, the amo1sex6 double mutant yielded an unexpected phenotype, a significant increase in starch content relative to the sex6 phenotype. Amylose content (as a percentage of starch) was not increased above the level observed for the sex6 mutation alone; however, on a per seed basis, grain from lines containing the amo1 mutation (amo1 mutants and amo1sex6 double mutants) synthesize significantly more amylose than the wild-type lines and sex6 mutants. The level of granule-bound starch synthase I (GBSSI) protein in starch granules is increased in lines containing the amo1 mutation (amo1 and amo1sex6). In the amo1 genotype, starch synthase I (SSI), SSIIa, starch branching enzyme IIa (SBEIIa), and SBEIIb also markedly increased in the starch granules. Genetic mapping studies indicate that the ssIIIa gene is tightly linked to the amo1 locus, and the SSIIIa protein from the amo1 mutant has a leucine to arginine residue substitution in a conserved domain. Zymogram analysis indicates that the amo1 phenotype is not a consequence of total loss of enzymatic activity although it remains possible that the amo1 phenotype is underpinned by a more subtle change. It is therefore proposed that amo1 may be a negative regulator of other genes of starch synthesis. PMID:21813797

  14. Partial purification and characterization of exoinulinase from Kluyveromyces marxianus YS-1 for preparation of high-fructose syrup.

    PubMed

    Singh, Ram Sarup; Dhaliwal, Rajesh; Puri, Munish

    2007-05-01

    An extracellular exoinulinase (2,1-beta-D fructan fructanohydrolase, EC 3.2.1.7), which catalyzes the hydrolysis of inulin into fructose and glucose, was purified 23.5-fold by ethanol precipitation, followed by Sephadex G-100 gel permeation from a cell-free extract of Kluyveromyces marxianus YS-1. The partially purified enzyme exhibited considerable activity between pH 5 to 6, with an optimum pH of 5.5, while it remained stable (100%) for 3 h at the optimum temperature of 50 degrees C. Mn2+ and Ca2+ produced a 2.4-fold and 1.2-fold enhancement in enzyme activity, whereas Hg2+ and Ag2+ completely inhibited the inulinase. A preparation of the partially purified enzyme effectively hydrolyzed inulin, sucrose, and raffinose, yet no activity was found with starch, lactose, and maltose. The enzyme preparation was then successfully used to hydrolyze pure inulin and raw inulin from Asparagus racemosus for the preparation of a high-fructose syrup. In a batch system, the exoinulinase hydrolyzed 84.8% of the pure inulin and 86.7% of the raw Asparagus racemosus inulin, where fructose represented 43.6 mg/ml and 41.3 mg/ml, respectively.

  15. Impact of amylosucrase modification on the structural and physicochemical properties of native and acid-thinned waxy corn starch.

    PubMed

    Zhang, Hao; Zhou, Xing; He, Jian; Wang, Tao; Luo, Xiaohu; Wang, Li; Wang, Ren; Chen, Zhengxing

    2017-04-01

    Recombinant amylosucrase from Neisseria polysaccharea was utilized to modify native and acid-thinned starches. The molecular structures and physicochemical properties of modified starches were investigated. Acid-thinned starch displayed much lower viscosity after gelatinization than did the native starch. However, the enzyme exhibited similar catalytic efficiency for both forms of starch. The modified starches had higher proportions of long (DP>33) and intermediate chains (DP 13-33), and X-ray diffraction showed a B-type crystalline structure for all modified starches. With increasing reaction time, the relative crystallinity and endothermic enthalpy of the modified starches gradually decreased, whereas the melting peak temperatures and resistant starch contents increased. Slight differences were observed in thermal parameters, relative crystallinity, and branch chain length distribution between the modified native and acid-thinned starches. Moreover, the digestibility of the modified starches was not affected by acid hydrolysis pretreatment, but was affected by the percentage of intermediate and long chains. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Purification and biochemical characterization of a thermostable extracellular glucoamylase produced by the thermotolerant fungus Paecilomyces variotii.

    PubMed

    Michelin, Michele; Ruller, Roberto; Ward, Richard J; Moraes, Luiz Alberto B; Jorge, João A; Terenzi, Héctor F; Polizeli, Maria de Lourdes T M

    2008-01-01

    An extracellular glucoamylase produced by Paecilomyces variotii was purified using DEAE-cellulose ion exchange chromatography and Sephadex G-100 gel filtration. The purified protein migrated as a single band in 7% PAGE and 8% SDS-PAGE. The estimated molecular mass was 86.5 kDa (SDS-PAGE). Optima of temperature and pH were 55 degrees C and 5.0, respectively. In the absence of substrate the purified glucoamylase was stable for 1 h at 50 and 55 degrees C, with a t (50) of 45 min at 60 degrees C. The substrate contributed to protect the enzyme against thermal denaturation. The enzyme was mainly activated by manganese metal ions. The glucoamylase produced by P. variotii preferentially hydrolyzed amylopectin, glycogen and starch, and to a lesser extent malto-oligossacarides and amylose. Sucrose, p-nitrophenyl alpha-D-maltoside, methyl-alpha-D-glucopyranoside, pullulan, alpha- and beta-cyclodextrin, and trehalose were not hydrolyzed. After 24 h, the products of starch hydrolysis, analyzed by thin layer chromatography, showed only glucose. The circular dichroism spectrum showed a protein rich in alpha-helix. The sequence of amino acids of the purified enzyme VVTDSFR appears similar to glucoamylases purified from Talaromyces emersonii and with the precursor of the glucoamylase from Aspergillus oryzae. These results suggested the character of the enzyme studied as a glucoamylase (1,4-alpha-D-glucan glucohydrolase).

  17. Potential of the waste from beer fermentation broth for bio-ethanol production without any additional enzyme, microbial cells and carbohydrates.

    PubMed

    Ha, Jung Hwan; Shah, Nasrullah; Ul-Islam, Mazhar; Park, Joong Kon

    2011-08-10

    The potential of the waste from beer fermentation broth (WBFB) for the production of bio-ethanol using a simultaneous saccharification and fermentation process without any extra additions of saccharification enzymes, microbial cells or carbohydrate was tested. The major microbial cells in WBFB were isolated and identified. The variations in compositions of WBFB with stock time were investigated. There was residual activity of starch hydrolyzing enzymes in WBFB. The effects of reaction modes e.g. static and shaking on bio-ethanol production were studied. After 7 days of cultivation using the supernatant of WBFB at 30 °C the ethanol concentration reached 103.8 g/L in shaking culture and 91.5 g/L in static culture. Agitation experiments conducted at a temperature-profile process in which temperature was increased from 25 to 67 °C shortened the simultaneous process time. The original WBFB was more useful than the supernatant of WBFB in getting the higher concentration of ethanol and reducing the fermentation time. From this whole study it was found that WBFB is a cheap and suitable source for bio-ethanol production. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Growth Ring Formation in the Starch Granules of Potato Tubers1

    PubMed Central

    Pilling, Emma; Smith, Alison M.

    2003-01-01

    Starch granules from higher plants contain alternating zones of semicrystalline and amorphous material known as growth rings. The regulation of growth ring formation is not understood. We provide several independent lines of evidence that growth ring formation in the starch granules of potato (Solanum tuberosum) tubers is not under diurnal control. Ring formation is not abolished by growth in constant conditions, and ring periodicity and appearance are relatively unaffected by a change from a 24-h to a 40-h photoperiod, and by alterations in substrate supply to the tuber that are known to affect the diurnal pattern of tuber starch synthesis. Some, but not all, of the features of ring formation are consistent with the involvement of a circadian rhythm. Such a rhythm might operate by changing the relative activities of starch-synthesizing enzymes: Growth ring formation is disrupted in tubers with reduced activity of a major isoform of starch synthase. We suggest that physical as well as biological mechanisms may contribute to the control of ring formation, and that a complex interplay of several factors may by involved. PMID:12746541

  19. L+-lactic acid production from starch by a novel amylolytic Lactococcus lactis subsp. lactis B84.

    PubMed

    Petrov, Kaloyan; Urshev, Zoltan; Petrova, Penka

    2008-06-01

    A new Lactococcus lactis subsp. lactis B84, capable of utilizing starch as a sole carbon source and producing L(+)-lactate, was isolated from spontaneously fermented rye sourdough. Aiming at maximum lactic acid productivity, the components of the media and the cultivation conditions were varied. In MRS-starch medium (with absence of yeast and meat extracts), at 33 degrees C, agitation 200 rpm and pH 6.0 for 6 days complete starch hydrolysis occurred and 5.5 gl(-1) lactic acid were produced from 18 gl(-1) starch. The identification of strain B84 was based on genetic criteria. Amplified ribosomal DNA restriction analysis (ARDRA), PCR with species-specific primers and sequencing of the 16S rDNA proved its species affiliation. Four genes for enzymes, involved in starch degradation were detected in B84 genome: amyL, amyY, glgP and apu, coding cytoplasmic and extracellular alpha-amylases, glycogen phosphorylase and amylopullulanase, respectively. Reverse transcription PCR experiments showed that both genes, encoding alpha-amylases (amyL and amyY) were expressed into mRNAs, whereas apu and glgP were not. Amylase activity assay was performed at different pH and temperatures. The cell-bond amylase proved to be the key enzyme, involved in the starch hydrolysis with maximum activity at 45 degrees C and pH 5.4.

  20. Effects of sorghum (Sorghum bicolor (L.) Moench) tannins on α-amylase activity and in vitro digestibility of starch in raw and processed flours.

    PubMed

    Mkandawire, Nyambe L; Kaufman, Rhett C; Bean, Scott R; Weller, Curtis L; Jackson, David S; Rose, Devin J

    2013-05-08

    The purpose of this study was to investigate the effects of tannins on starch digestion in tannin-containing sorghum extracts and wholegrain flours from 12 sorghum varieties. Extracts reduced amylase activity in a tannin concentration-dependent manner when the extract was mixed with the enzyme before substrate (amylopectin) addition, with higher molecular weight tannins showing greater reduction. Conversely, when the extract and substrate were combined before enzyme addition an enhancement in amylase activity was experienced. In uncooked, cooked, and cooked and stored wholegrain sorghum flours, rapidly digestible, slowly digestible, and resistant starches were not correlated with tannin content or molecular weight distribution. Resistant starch increased from 6.5% to 22-26% when tannins were added to starch up to 50% (starch weight). Tannin extracts both reduced and enhanced amylase activity depending on conditions, and, while these trends were clear in extracts, the effects on starch digestion in wholegrain flours was more complex.

  1. Responses of Landoltia punctata to cobalt and nickel: Removal, growth, photosynthesis, antioxidant system and starch metabolism.

    PubMed

    Guo, Ling; Ding, Yanqiang; Xu, Yaliang; Li, Zhidan; Jin, Yanling; He, Kaize; Fang, Yang; Zhao, Hai

    2017-09-01

    Landoltia punctata has been considered as a potential bioenergy crop due to its high biomass and starch yields in different cultivations. Cobalt and nickel are known to induce starch accumulation in duckweed. We monitored the growth rate, net photosynthesis rate, total chlorophyll content, Rubisco activity, Co 2+ and Ni 2+ contents, activity of antioxidant enzymes, starch content and activity of related enzymes under various concentrations of cobalt and nickel. The results indicate that Co 2+ and Ni 2+ (≤0.5mgL -1 ) can facilitate growth in the beginning. Although the growth rate, net photosynthesis rate, chlorophyll content and Rubisco activity were significantly inhibited at higher concentrations (5mgL -1 ), the starch content increased sharply up to 53.3% dry weight (DW) in L. punctata. These results were attributed to the increase in adenosine diphosphate-glucose pyrophosphorylase (AGPase) and soluble starch synthase (SSS) activities and the decrease in α-amylase activity upon exposure to excess Co 2+ and Ni 2+ . In addition, a substantial increase in the antioxidant enzyme activities and high flavonoid contents in L. punctata may have largely resulted in the metal tolerance. Furthermore, the high Co 2+ and Ni 2+ contents (2012.9±18.8 and 1997.7±29.2mgkg -1 DW) in the tissue indicate that L. punctata is a hyperaccumulator. Thus, L. punctata can be considered as a potential candidate for the simultaneous bioremediation of Co 2+ - and Ni 2+ -polluted water and high-quality biomass production. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Copper-mediated homogeneous living radical polymerization of acrylamide with waxy potato starch-based macroinitiator.

    PubMed

    Fan, Yifei; Cao, Huatang; van Mastrigt, Frank; Pei, Yutao; Picchioni, Francesco

    2018-07-15

    Cu 0 -mediated living radical polymerization (Cu 0 -mediated LRP) was employed in this research for the synthesis of starch-g-polyacrylamide (St-g-PAM). The use of a controlled radical grafting technique is necessary, as compared to the traditional free-radical polymerization methods, in order to obtain a well-defined structure of the final product. This is in turn essential for studying the relationship between such structure and the end-properties. Waxy potato starch-based water-soluble macroinitiator was first synthesized by esterification with 2-bromopropionyl bromide in the mixture of dimethylacetamide and lithium chloride. With the obtained macroinitiator, St-g-PAM was homogeneously synthesized by aqueous Cu 0 -mediated LRP using CuBr/hexamethylated tris(2-aminoethyl)amine (Me 6 Tren) as catalyst. The successful synthesis of the macroinitiator and St-g-PAM was proved by NMR, FT-IR, SEM, XRD and TGA analysis. The molecular weight and polydispersity of PAM chains were analyzed by gel permeation chromatography (GPC) after hydrolyzing the starch backbone. Monomer conversion was monitored by gas chromatography (GC), on the basis of which the kinetics were determined. A preliminarily rheological study was performed on aqueous solutions of the prepared materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Virus-Induced Gene Silencing Identifies an Important Role of the TaRSR1 Transcription Factor in Starch Synthesis in Bread Wheat.

    PubMed

    Liu, Guoyu; Wu, Yufang; Xu, Mengjun; Gao, Tian; Wang, Pengfei; Wang, Lina; Guo, Tiancai; Kang, Guozhang

    2016-09-23

    The function of a wheat starch regulator 1 (TaRSR1) in regulating the synthesis of grain storage starch was determined using the barley stripe mosaic virus-virus induced gene-silencing (BSMV-VIGS) method in field experiments. Chlorotic stripes appeared on the wheat spikes infected with barley stripe mosaic virus-virus induced gene-silencing- wheat starch regulator 1 (BSMV-VIGS-TaRSR1) at 15 days after anthesis, at which time the transcription levels of the TaRSR1 gene significantly decreased. Quantitative real-time PCR was also used to measure the transcription levels of 26 starch synthesis-related enzyme genes in the grains of BSMV-VIGS-TaRSR1-silenced wheat plants at 20, 27, and 31 days after anthesis. The results showed that the transcription levels of some starch synthesis-related enzyme genes were markedly induced at different sampling time points: TaSSI, TaSSIV, TaBEIII, TaISA1, TaISA3, TaPHOL, and TaDPE1 genes were induced at each of the three sampling time points and TaAGPS1-b, TaAGPL1, TaAGPL2, TaSSIIb, TaSSIIc, TaSSIIIb, TaBEI, TaBEIIa, TaBEIIb, TaISA2, TaPHOH, and TaDPE2 genes were induced at one sampling time point. Moreover, both the grain starch contents, one thousand kernel weights, grain length and width of BSMV-VIGS-TaRSR1-infected wheat plants significantly increased. These results suggest that TaRSR1 acts as a negative regulator and plays an important role in starch synthesis in wheat grains by temporally regulating the expression of specific starch synthesis-related enzyme genes.

  4. Virus-Induced Gene Silencing Identifies an Important Role of the TaRSR1 Transcription Factor in Starch Synthesis in Bread Wheat

    PubMed Central

    Liu, Guoyu; Wu, Yufang; Xu, Mengjun; Gao, Tian; Wang, Pengfei; Wang, Lina; Guo, Tiancai; Kang, Guozhang

    2016-01-01

    The function of a wheat starch regulator 1 (TaRSR1) in regulating the synthesis of grain storage starch was determined using the barley stripe mosaic virus—virus induced gene-silencing (BSMV-VIGS) method in field experiments. Chlorotic stripes appeared on the wheat spikes infected with barley stripe mosaic virus-virus induced gene-silencing- wheat starch regulator 1 (BSMV-VIGS-TaRSR1) at 15 days after anthesis, at which time the transcription levels of the TaRSR1 gene significantly decreased. Quantitative real-time PCR was also used to measure the transcription levels of 26 starch synthesis-related enzyme genes in the grains of BSMV-VIGS-TaRSR1-silenced wheat plants at 20, 27, and 31 days after anthesis. The results showed that the transcription levels of some starch synthesis-related enzyme genes were markedly induced at different sampling time points: TaSSI, TaSSIV, TaBEIII, TaISA1, TaISA3, TaPHOL, and TaDPE1 genes were induced at each of the three sampling time points and TaAGPS1-b, TaAGPL1, TaAGPL2, TaSSIIb, TaSSIIc, TaSSIIIb, TaBEI, TaBEIIa, TaBEIIb, TaISA2, TaPHOH, and TaDPE2 genes were induced at one sampling time point. Moreover, both the grain starch contents, one thousand kernel weights, grain length and width of BSMV-VIGS-TaRSR1-infected wheat plants significantly increased. These results suggest that TaRSR1 acts as a negative regulator and plays an important role in starch synthesis in wheat grains by temporally regulating the expression of specific starch synthesis-related enzyme genes. PMID:27669224

  5. Effect of Multiple Freezing/Thawing Cycles on the Structural and Functional Properties of Waxy Rice Starch

    PubMed Central

    Tao, Han; Yan, Juan; Zhao, Jianwei; Tian, Yaoqi; Jin, Zhengyu; Xu, Xueming

    2015-01-01

    The structural and functional properties of non-gelatinized waxy rice starch were investigated after 1, 3, 7, and 10 freezing/thawing cycles. Freezing caused an increasing damaged starch from 1.36% in native waxy rice starch to 5.77% in 10 freezing/thawing-treated starch (FTS), as evidenced by the cracking surface on starch granules. More dry matter concentration was leached, which was characterized by high amylopectin concentration (4.34 mg/mL). The leaching was accompanied by a decrease in relative crystallinity from 35.19% in native starch to 31.34% in 10 FTS. Freezing treatment also led to significant deviations in the functional characteristics, for instance decreased gelatinization temperature range, enthalpy, and pasting viscosities. The resistant starch content of 10FTS significantly decreased from 58.9% to 19%, whereas the slowly digested starch content greatly increased from 23.8% in native starch to 50.3%. The increase in susceptibility to enzyme hydrolysis may be attributed to porous granular surface, amylopectin leaching, and the decrease in the relative crystallinity caused by freezing water. PMID:26018506

  6. Effect of multiple freezing/thawing cycles on the structural and functional properties of waxy rice starch.

    PubMed

    Tao, Han; Yan, Juan; Zhao, Jianwei; Tian, Yaoqi; Jin, Zhengyu; Xu, Xueming

    2015-01-01

    The structural and functional properties of non-gelatinized waxy rice starch were investigated after 1, 3, 7, and 10 freezing/thawing cycles. Freezing caused an increasing damaged starch from 1.36% in native waxy rice starch to 5.77% in 10 freezing/thawing-treated starch (FTS), as evidenced by the cracking surface on starch granules. More dry matter concentration was leached, which was characterized by high amylopectin concentration (4.34 mg/mL). The leaching was accompanied by a decrease in relative crystallinity from 35.19% in native starch to 31.34% in 10 FTS. Freezing treatment also led to significant deviations in the functional characteristics, for instance decreased gelatinization temperature range, enthalpy, and pasting viscosities. The resistant starch content of 10FTS significantly decreased from 58.9% to 19%, whereas the slowly digested starch content greatly increased from 23.8% in native starch to 50.3%. The increase in susceptibility to enzyme hydrolysis may be attributed to porous granular surface, amylopectin leaching, and the decrease in the relative crystallinity caused by freezing water.

  7. Two Strategies for Microbial Production of an Industrial Enzyme-Alpha-Amylase

    NASA Technical Reports Server (NTRS)

    Bernhardsdotter, Eva C. M. J.; Garriott, Owen; Pusey, Marc L.; Ng, Joseph D.

    2003-01-01

    Extremophiles are microorganisms that thrive in, from an anthropocentric view, extreme environments including hot springs, soda lakes and arctic water. This ability of survival at extreme conditions has rendered extremophiles to be of interest in astrobiology, evolutionary biology as well as in industrial applications. Of particular interest to the biotechnology industry are the biological catalysts of the extremophiles, the extremozymes, whose unique stabilities at extreme conditions make them potential sources of novel enzymes in industrial applications. There are two major approaches to microbial enzyme production. This entails enzyme isolation directly from the natural host or creating a recombinant expression system whereby the targeted enzyme can be overexpressed in a mesophilic host. We are employing both methods in the effort to produce alpha-amylases from a hyperthermophilic archaeon (Thermococcus) isolated from a hydrothermal vent in the Atlantic Ocean, as well as from alkaliphilic bacteria (Bacillus) isolated from a soda lake in Tanzania. Alpha-amylases catalyze the hydrolysis of internal alpha-1,4-glycosidic linkages in starch to produce smaller sugars. Thermostable alpha-amylases are used in the liquefaction of starch for production of fructose and glucose syrups, whereas alpha-amylases stable at high pH have potential as detergent additives. The alpha-amylase encoding gene from Thermococcus was PCR amplified using carefully designed primers and analyzed using bioinformatics tools such as BLAST and Multiple Sequence Alignment for cloning and expression in E.coli. Four strains of Bacillus were grown in alkaline starch-enriched medium of which the culture supernatant was used as enzyme source. Amylolytic activity was detected using the starch-iodine method.

  8. Low frequency ultrasonic-assisted hydrolysis of starch in the presence of α-amylase.

    PubMed

    Gaquere-Parker, Anne; Taylor, Tamera; Hutson, Raihannah; Rizzo, Ashley; Folds, Aubrey; Crittenden, Shastina; Zahoor, Neelam; Hussein, Bilal; Arruda, Aaron

    2018-03-01

    Hydrolysis of starch is an important process in the food industry and in the production of bioethanol or smaller carbohydrate molecules that can be used as starting blocks for chemical synthesis. Such hydrolysis can be enhanced by lowering the pH, heating the reaction mixture or catalyzing the reaction with enzymes. This study reports the effect of sonication on the reaction rate of starch hydrolysis at different temperatures, in the presence or absence of alpha-amylase. Starch Azure, a commercially available potato starch covalently linked with Remazol Brilliant Blue, has been chosen since its hydrolysis releases a blue dye, which concentration can be monitored by UV Vis spectroscopy. Ultrasounds, regardless of experimental conditions, provide the highest reaction rate for such hydrolysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Dynamics of the Streptococcus gordonii Transcriptome in Response to Medium, Salivary α-Amylase, and Starch

    PubMed Central

    Haase, Elaine M.; Feng, Xianghui; Pan, Jiachuan; Miecznikowski, Jeffrey C.

    2015-01-01

    Streptococcus gordonii, a primary colonizer of the tooth surface, interacts with salivary α-amylase via amylase-binding protein A (AbpA). This enzyme hydrolyzes starch to glucose, maltose, and maltodextrins that can be utilized by various oral bacteria for nutrition. Microarray studies demonstrated that AbpA modulates gene expression in response to amylase, suggesting that the amylase-streptococcal interaction may function in ways other than nutrition. The goal of this study was to explore the role of AbpA in gene regulation through comparative transcriptional profiling of wild-type KS1 and AbpA− mutant KS1ΩabpA under various environmental conditions. A portion of the total RNA isolated from mid-log-phase cells grown in 5% CO2 in (i) complex medium with or without amylase, (ii) defined medium (DM) containing 0.8% glucose with/without amylase, and (iii) DM containing 0.2% glucose and amylase with or without starch was reverse transcribed to cDNA and the rest used for RNA sequencing. Changes in the expression of selected genes were validated by quantitative reverse transcription-PCR. Maltodextrin-associated genes, fatty acid synthesis genes and competence genes were differentially expressed in a medium-dependent manner. Genes in another cluster containing a putative histidine kinase/response regulator, peptide methionine sulfoxide reductase, thioredoxin protein, lipoprotein, and cytochrome c-type protein were downregulated in KS1ΩabpA under all of the environmental conditions tested. Thus, AbpA appears to modulate genes associated with maltodextrin utilization/transport and fatty acid synthesis. Importantly, in all growth conditions AbpA was associated with increased expression of a potential two-component signaling system associated with genes involved in reducing oxidative stress, suggesting a role in signal transduction and stress tolerance. PMID:26025889

  10. Dynamics of the Streptococcus gordonii Transcriptome in Response to Medium, Salivary α-Amylase, and Starch.

    PubMed

    Haase, Elaine M; Feng, Xianghui; Pan, Jiachuan; Miecznikowski, Jeffrey C; Scannapieco, Frank A

    2015-08-15

    Streptococcus gordonii, a primary colonizer of the tooth surface, interacts with salivary α-amylase via amylase-binding protein A (AbpA). This enzyme hydrolyzes starch to glucose, maltose, and maltodextrins that can be utilized by various oral bacteria for nutrition. Microarray studies demonstrated that AbpA modulates gene expression in response to amylase, suggesting that the amylase-streptococcal interaction may function in ways other than nutrition. The goal of this study was to explore the role of AbpA in gene regulation through comparative transcriptional profiling of wild-type KS1 and AbpA(-) mutant KS1ΩabpA under various environmental conditions. A portion of the total RNA isolated from mid-log-phase cells grown in 5% CO2 in (i) complex medium with or without amylase, (ii) defined medium (DM) containing 0.8% glucose with/without amylase, and (iii) DM containing 0.2% glucose and amylase with or without starch was reverse transcribed to cDNA and the rest used for RNA sequencing. Changes in the expression of selected genes were validated by quantitative reverse transcription-PCR. Maltodextrin-associated genes, fatty acid synthesis genes and competence genes were differentially expressed in a medium-dependent manner. Genes in another cluster containing a putative histidine kinase/response regulator, peptide methionine sulfoxide reductase, thioredoxin protein, lipoprotein, and cytochrome c-type protein were downregulated in KS1ΩabpA under all of the environmental conditions tested. Thus, AbpA appears to modulate genes associated with maltodextrin utilization/transport and fatty acid synthesis. Importantly, in all growth conditions AbpA was associated with increased expression of a potential two-component signaling system associated with genes involved in reducing oxidative stress, suggesting a role in signal transduction and stress tolerance. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Purification, characterization, and substrate specificity of a glucoamylase with steroidal saponin-rhamnosidase activity from Curvularia lunata.

    PubMed

    Feng, Bing; Hu, Wei; Ma, Bai-ping; Wang, Yong-ze; Huang, Hong-ze; Wang, Sheng-qi; Qian, Xiao-hong

    2007-10-01

    It has been previously reported that a glucoamylase from Curvularia lunata is able to hydrolyze the terminal 1,2-linked rhamnosyl residues of sugar chains at C-3 position of steroidal saponins. In this work, the enzyme was isolated and identified after isolation and purification by column chromatography including gel filtration and ion-exchange chromatography. Analysis of protein fragments by MALDI-TOF/TOF proteomics Analyzer indicated the enzyme to be 1,4-alpha-D-glucan glucohydrolase EC 3.2.1.3, GA and had considerable homology with the glucoamylase from Aspergillus oryzae. We first found that the glucoamylase was produced from C. lunata and was able to hydrolyze the terminal rhamnosyl of steroidal saponins. The enzyme had the general character of glucoamylase, which hydrolyze starch. It had a molecular mass of 66 kDa and was optimally active at 50 degrees C, pH 4, and specific activity of 12.34 U mg of total protein(-1) under the conditions, using diosgenin-3-O-alpha-L-rhamnopyranosyl(1-->4)-[alpha-L-rhamnopyranosyl (1-->2)]-beta-D-glucopyranoside (compound II) as the substrate. Furthermore, four kinds of commercial glucoamylases from Aspergillus niger were investigated in this work, and they had the similar activity in hydrolyzing terminal rhamnosyl residues of steroidal saponin.

  12. Starch poisoning

    MedlinePlus

    Cooking starch poisoning; Laundry starch poisoning ... Cooking and laundry starch are both made from vegetable products, most commonly: Corn Potatoes Rice Wheat Both are usually considered nonpoisonous (nontoxic), but ...

  13. 21 CFR 184.1150 - Bacterially-derived protease enzyme preparation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (EC 3.4.24.28), which catalyze the hydrolysis of peptide bonds in proteins. (b) The ingredient meets... ingredient is used as an enzyme as defined in § 170.3(o)(9) of this chapter to hydrolyze proteins or... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Bacterially-derived protease enzyme preparation...

  14. 21 CFR 184.1150 - Bacterially-derived protease enzyme preparation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...: (1) The ingredient is used as an enzyme as defined in § 170.3(o)(9) of this chapter to hydrolyze... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Bacterially-derived protease enzyme preparation... subtilisin (EC 3.4.21.62) and neutral proteinase (EC 3.4.24.28), which catalyze the hydrolysis of peptide...

  15. 21 CFR 184.1150 - Bacterially-derived protease enzyme preparation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...: (1) The ingredient is used as an enzyme as defined in § 170.3(o)(9) of this chapter to hydrolyze... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Bacterially-derived protease enzyme preparation... subtilisin (EC 3.4.21.62) and neutral proteinase (EC 3.4.24.28), which catalyze the hydrolysis of peptide...

  16. 21 CFR 184.1150 - Bacterially-derived protease enzyme preparation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...: (1) The ingredient is used as an enzyme as defined in § 170.3(o)(9) of this chapter to hydrolyze... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Bacterially-derived protease enzyme preparation... subtilisin (EC 3.4.21.62) and neutral proteinase (EC 3.4.24.28), which catalyze the hydrolysis of peptide...

  17. 21 CFR 184.1150 - Bacterially-derived protease enzyme preparation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...: (1) The ingredient is used as an enzyme as defined in § 170.3(o)(9) of this chapter to hydrolyze... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bacterially-derived protease enzyme preparation... subtilisin (EC 3.4.21.62) and neutral proteinase (EC 3.4.24.28), which catalyze the hydrolysis of peptide...

  18. Structural Mechanisms of Plant Glucan Phosphatases in Starch Metabolism

    PubMed Central

    Meekins, David A.; Vander Kooi, Craig W.; Gentry, Matthew S.

    2016-01-01

    Glucan phosphatases are a recently discovered class of enzymes that dephosphorylate starch and glycogen, thereby regulating energy metabolism. Plant genomes encode for two glucan phosphatases called Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2) that regulate starch metabolism by selectively dephosphorylating glucose moieties within starch glucan chains. Recently, the structures of both SEX4 and LSF2 were determined, with and without phosphoglucan products bound, revealing the mechanism for their unique activities. This review explores the structural and enzymatic features of the plant glucan phosphatases and outlines how they are uniquely adapted for carrying out their cellular functions. We outline the physical mechanisms employed by SEX4 and LSF2 to interact with starch glucans: SEX4 binds glucan chains via a continuous glucan binding platform comprised of its Dual Specificity Phosphatase (DSP) domain and Carbohydrate Binding Module (CBM) while LSF2 utilizes Surface Binding Sites (SBSs). SEX4 and LSF2 both contain a unique network of aromatic residues in their catalytic DSP domains that serve as glucan engagement platforms and are unique to the glucan phosphatases. We also discuss the phosphoglucan substrate specificities inherent to SEX4 and LSF2 and outline structural features within the active site that govern glucan orientation. This review defines the structural mechanism of the plant glucan phosphatases with respect to phosphatases, starch metabolism, and protein-glucan interaction; thereby providing a framework for their applications in both agricultural and industrial settings. PMID:26934589

  19. Effect of resistant and digestible rice starches on human cytokine and lactate metabolic networks in serum.

    PubMed

    Wang, Huisong; Pang, Guangchang

    2017-05-01

    Resistant starch generated after treating ordinary starch is of great significance to human health in the countries with overnutrition. However, its functional evaluation in the human body has been rarely reported. By determining the lactate metabolic flux, 12 serum enzymes expression level and 38 serum cytokines in healthy volunteers, the variation in cytokine network and lactate metabolic network in serum were investigated to compare the mechanism of the physiological effects between the two starches. The results indicated that compared with digestible starch, resistant starch had anti-inflammatory effects, increased anabolism, and decreased catabolism. Further, the intercellular communication networks including cytokine and lactate metabolic networks were mapped out. The relationship suggested that resistant starch might affect and control the secretion of cytokines to regulate lactate metabolic network in the body, promoting the development of immunometabolism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Kinetic analysis of glucoamylase-catalyzed hydrolysis of starch granules from various botanical sources.

    PubMed

    Tatsumi, Hirosuke; Katano, Hajime; Ikeda, Tokuji

    2007-04-01

    The kinetics of glucoamylase-catalyzed hydrolysis of starch granules from six different botanical sources (rice, wheat, maize, cassava, sweet potato, and potato) was studied by the use of an electrochemical glucose sensor. A higher rate of hydrolysis was obtained as a smaller size of starch granules was used. The adsorbed amount of glucoamylase on the granule surface per unit area did not vary very much with the type of starch granules examined, while the catalytic constants of the adsorbed enzyme (k(0)) were determined to be 23.3+/-4.4, 14.8+/-6.0, 6.2+/-1.8, 7.1+/-4.1, 4.6+/-3.0, and 1.6+/-0.6 s(-1) for rice, wheat, maize, cassava, sweet potato, and potato respectively, showing that k(0) was largely influenced by the type of starch granules. A comparison of the k(0)-values in relation to the crystalline structure of the starch granules suggested that k(0) increases as the crystalline structure becomes dense.

  1. Influence of resistant starch and slowly digestible starch on rice texture.

    USDA-ARS?s Scientific Manuscript database

    Rice, comprised mainly of starch, serves as a significant source of caloric energy world-wide, therefore differences in starch digestibility are important to human health. Rice starch consists of three forms based on digestibility, rapidly digestible starch (RDS), slowly digestible starch (SDS), and...

  2. Digestion of Starch Granules from Maize, Potato and Wheat by Larvae of the the Yellow Mealworm, Tenebrio molitor and the Mexican Bean Weevil, Zabrotes subfasciatus

    PubMed Central

    Meireles, Elaine A.; Carneiro, Cíntia N. B.; DaMatta, Renato A.; Samuels, Richard I.; Silva, Carlos P.

    2009-01-01

    Scanning electron microscopy images were taken of starch granules from different sources following exposure in vivo and in vitro to gut α-amylases isolated from Tenebrio molitor L. (Coleoptera: Tenebrionidae) and Zabrotes subfasciatus Boheman (Coleoptera: Bruchidae). One α-amylase was isolated from whole larval midguts of T. molitor using non-denaturing SDS-PAGE, while two other α-amylase fractions were isolated from whole larval midguts of Z. subfasciatus using hydrophobic interaction chromatography., Digested starch granules from larvae fed on maize, potato or wheat were isolated from midgut contents. Combinations of starch granules with isolated α-amylases from both species showed similar patterns of granule degradation. In vitro enzymatic degradation of maize starch granules by the three different α-amylase fractions began by creating small holes and crater-like areas on the surface of the granules. Over time, these holes increased in number and area resulting in extensive degradation of the granule structure. Granules from potato did not show formation of pits and craters on their surface, but presented extensive erosion in their interior. For all types of starch, as soon as the interior of the starch granule was reached, the inner layers of amylose and amylopectin were differentially hydrolyzed, resulting in a striated pattern. These data support the hypothesis that the pattern of starch degradation depends more on the granule type than on the α-amylase involved. PMID:19619014

  3. Fermentation by amylolytic lactic acid bacteria and consequences for starch digestibility of plantain, breadfruit, and sweet potato flours.

    PubMed

    Haydersah, Julien; Chevallier, Isabelle; Rochette, Isabelle; Mouquet-Rivier, Claire; Picq, Christian; Marianne-Pépin, Thérèse; Icard-Vernière, Christèle; Guyot, Jean-Pierre

    2012-08-01

    The potential of tropical starchy plants such as plantain (Musa paradisiaca), breadfruit (Artocarpus communis), and sweet potato (Ipomoea batatas) for the development of new fermented foods was investigated by exploiting the capacity of some lactic acid bacteria to hydrolyze starch. The amylolytic lactic acid bacteria (ALAB) Lactobacillus plantarum A6 and Lactobacillus fermentum Ogi E1 were able to change the consistency of thick sticky gelatinized slurries of these starchy fruits and tubers into semiliquid to liquid products. Consequently, a decrease in apparent viscosity and an increase in Bostwick flow were observed. These changes and the production of maltooligosaccharides confirmed starch hydrolysis. Sucrose in sweet potato was not fermented by strain A6 and poorly fermented by strain Ogi E1, suggesting possible inhibition of sucrose fermentation. In all 3 starchy plants, rapidly digestible starch (RDS) was higher than slowly digestible starch (SDS) and resistant starch (RS) represented between 17% and 30% dry matter (DM). The digestibility of plantain was not affected by fermentation, whereas the RDS content of breadfruit and sweet potato decreased and the RS content increased after fermentation. The characteristics resulting from different combinations of gluten free starchy plants (plantain, breadfruit, sweet potato) and amylolytic lactic acid bacteria (ALAB) offer opportunities to develop new functional fermented beverages, mainly for breadfruit and sweet potato, after further investigation of their formulation, sensory attributes, nutritional, and prebiotic characteristics. Journal of Food Science © 2012 Institute of Food Technologists® No claim to original US government works.

  4. Oligomeric hydrolyzable tannins from Monochaetum multiflorum.

    PubMed

    Isaza, José H; Ito, Hideyuki; Yoshida, Takashi

    2004-02-01

    Four hydrolyzable tannins, nobotanins Q, R, S, and T, were isolated from the aqueous acetone extract of the dried leaves of Monochaetum multiflorum (Melastomataceae), a plant indigenous to Colombia. Their dimeric and tetrameric structures were elucidated by spectral and chemical methods. Eight known hydrolyzable tannin monomers and eight ellagitannin oligomers characteristic of melastomataceous plants were also characterized as tannin constituents of the plant.

  5. Understanding sugar yield loss and enzyme inhibition due to oligosaccharides accumulation during high solids-loading enzymatic hydrolisis.

    USDA-ARS?s Scientific Manuscript database

    During enzymatic hydrolysis of biomass, polysaccharides are cleaved by glycosyl hydrolases to soluble oligosaccharides and further hydrolyzed by ß-glucosidase, ß-xylosidase and other enzymes to monomeric sugars. However, not all oligosaccharides can be fully hydrolyzed and they may accumulate to 18-...

  6. Effect of heat-moisture treatment on multi-scale structures and physicochemical properties of breadfruit starch.

    PubMed

    Tan, Xiaoyan; Li, Xiaoxi; Chen, Ling; Xie, Fengwei; Li, Lin; Huang, Jidong

    2017-04-01

    Breadfruit starch was subjected to heat-moisture treatment (HMT) at different moisture content (MC). HMT did not apparently change the starch granule morphology but decreased the molecular weight and increased the amylose content. With increased MC, HMT transformed the crystalline structure (B→A+B→A) and decreased the relative crystallinity. With ≥25% MC, the scattering peak at ca. 0.6nm -1 disappeared, suggesting the lamellar structure was damaged. Compared with native starch, HMT-modified samples showed greater thermostability. Increased MC contributed to a higher pasting temperature, lower viscosity, and no breakdown. The pasting temperature of native and HMT samples ranged from 68.8 to 86.2°C. HMT increased the slowly-digestible starch (SDS) and resistant starch (RS) contents. The SDS content was 13.24% with 35% MC, which was 10.25% higher than that of native starch. The increased enzyme resistance could be ascribed to the rearrangement of molecular chains and more compact granule structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Molecular improvements in microbial α-amylases for enhanced stability and catalytic efficiency.

    PubMed

    Sindhu, Raveendran; Binod, Parameswaran; Madhavan, Aravind; Beevi, Ummalyma Sabeela; Mathew, Anil Kuruvilla; Abraham, Amith; Pandey, Ashok; Kumar, Vinod

    2017-12-01

    α-Amylases is one of the most important industrial enzyme which contributes to 25% of the industrial enzyme market. Though it is produced by plant, animals and microbial source, those from microbial source seems to have potential applications due to their stability and economic viability. However a large number of α-amylases from different sources have been detailed in the literature, only few numbers of them could withstand the harsh industrial conditions. Thermo-stability, pH tolerance, calcium independency and oxidant stability and starch hydrolyzing efficiency are the crucial qualities for α-amylase in starch based industries. Microbes can be genetically modified and fine tuning can be done for the production of enzymes with desired characteristics for specific applications. This review focuses on the native and recombinant α-amylases from microorganisms, their heterologous production and the recent molecular strategies which help to improve the properties of this industrial enzyme. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Modification of starch metabolism in transgenic Arabidopsis thaliana increases plant biomass and triples oilseed production.

    PubMed

    Liu, Fushan; Zhao, Qianru; Mano, Noel; Ahmed, Zaheer; Nitschke, Felix; Cai, Yinqqi; Chapman, Kent D; Steup, Martin; Tetlow, Ian J; Emes, Michael J

    2016-03-01

    We have identified a novel means to achieve substantially increased vegetative biomass and oilseed production in the model plant Arabidopsis thaliana. Endogenous isoforms of starch branching enzyme (SBE) were substituted by either one of the endosperm-expressed maize (Zea mays L.) branching isozymes, ZmSBEI or ZmSBEIIb. Transformants were compared with the starch-free background and with the wild-type plants. Each of the maize-derived SBEs restored starch biosynthesis but both morphology and structure of starch particles were altered. Altered starch metabolism in the transformants is associated with enhanced biomass formation and more-than-trebled oilseed production while maintaining seed oil quality. Enhanced oilseed production is primarily due to an increased number of siliques per plant whereas oil content and seed number per silique are essentially unchanged or even modestly decreased. Introduction of cereal starch branching isozymes into oilseed plants represents a potentially useful strategy to increase biomass and oilseed production in related crops and manipulate the structure and properties of leaf starch. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Role of plant β-glucosidases in the dual defense system of iridoid glycosides and their hydrolyzing enzymes in Plantago lanceolata and Plantago major.

    PubMed

    Pankoke, Helga; Buschmann, Torsten; Müller, Caroline

    2013-10-01

    The typical defense compounds of Plantaginaceae are the iridoid glycosides, which retard growth and/or enhance mortality of non-adapted herbivores. In plants, glycosidic defense compounds and hydrolytic enzymes often form a dual defense system, in which the glycosides are activated by the enzymes to exert biological effects. Yet, little is known about the activating enzymes in iridoid glycoside-containing plants. To examine the role of plant-derived β-glucosidases in the dual defense system of two common plantain species, Plantago lanceolata and Plantago major, we determined the concentration of iridoid glycosides as well as the β-glucosidase activity in leaves of different age. To investigate the presence of other leaf metabolites potentially involved in plant defense, we used a metabolic fingerprinting approach with ultra-high performance liquid chromatography coupled with time-of-flight-mass spectrometry. According to the optimal defense hypothesis, more valuable parts such as young leaves should be better protected than less valuable parts. Therefore, we expected that both, the concentrations of defense compounds as well as the β-glucosidase activity, should be highest in younger leaves and decrease with increasing leaf age. Both species possessed β-glucosidase activity, which hydrolyzed aucubin, one of the two most abundant iridoid glycosides in both plant species, with high activity. In line with the optimal defense hypothesis, the β-glucosidase activity in both Plantago species as well as the concentration of defense-related metabolites such as iridoid glycosides correlated negatively to leaf age. When leaf extracts were incubated with bovine serum albumin and aucubin, SDS-PAGE revealed a protein-denaturing effect of the leaf extracts of both plantain species, suggesting that iridoid glycosides and plant β-glucosidase interact in a dual defense system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Identification of UDP glucosyltransferases from the aluminum-resistant tree Eucalyptus camaldulensis forming β-glucogallin, the precursor of hydrolyzable tannins.

    PubMed

    Tahara, Ko; Nishiguchi, Mitsuru; Frolov, Andrej; Mittasch, Juliane; Milkowski, Carsten

    2018-08-01

    In the highly aluminum-resistant tree Eucalyptus camaldulensis, hydrolyzable tannins are proposed to play a role in internal detoxification of aluminum, which is a major factor inhibiting plant growth on acid soils. To understand and modulate the molecular mechanisms of aluminum detoxification by hydrolyzable tannins, the biosynthetic genes need to be identified. In this study, we identified and characterized genes encoding UDP-glucose:gallate glucosyltransferase, which catalyzes the formation of 1-O-galloyl-β-d-glucose (β-glucogallin), the precursor of hydrolyzable tannins. By homology-based cloning, seven full-length candidate cDNAs were isolated from E. camaldulensis and expressed in Escherichia coli as recombinant N-terminal His-tagged proteins. Phylogenetic analysis classified four of these as UDP glycosyltransferase (UGT) 84A subfamily proteins (UGT84A25a, -b, UGT84A26a, -b) and the other three as UGT84J subfamily proteins (UGT84J3, -4, -5). In vitro enzyme assays showed that the UGT84A proteins catalyzed esterification of UDP-glucose and gallic acid to form 1-O-galloyl-β-d-glucose, whereas the UGT84J proteins were inactive. Further analyses with UGT84A25a and -26a indicated that they also formed 1-O-glucose esters of other structurally related hydroxybenzoic and hydroxycinnamic acids with a preference for hydroxybenzoic acids. The UGT84A genes were expressed in leaves, stems, and roots of E. camaldulensis, regardless of aluminum stress. Taken together, our results suggest that the UGT84A subfamily enzymes of E. camaldulensis are responsible for constitutive production of 1-O-galloyl-β-d-glucose, which is the first step of hydrolyzable tannin biosynthesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. 21 CFR 184.1985 - Aminopeptidase enzyme preparation derived from lactococcus lactis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Streptococcus lactis). The preparation contains the enzyme aminopeptidase (CAS Reg. No. 9031-94-1; EC 3.4.11.1) and other peptidases that hydrolyze milk proteins. The preparation is produced by pure culture... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aminopeptidase enzyme preparation derived from...

  12. 21 CFR 184.1985 - Aminopeptidase enzyme preparation derived from lactococcus lactis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Streptococcus lactis). The preparation contains the enzyme aminopeptidase (CAS Reg. No. 9031-94-1; EC 3.4.11.1) and other peptidases that hydrolyze milk proteins. The preparation is produced by pure culture... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Aminopeptidase enzyme preparation derived from...

  13. 21 CFR 184.1985 - Aminopeptidase enzyme preparation derived from lactococcus lactis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Streptococcus lactis). The preparation contains the enzyme aminopeptidase (CAS Reg. No. 9031-94-1; EC 3.4.11.1) and other peptidases that hydrolyze milk proteins. The preparation is produced by pure culture... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Aminopeptidase enzyme preparation derived from...

  14. 21 CFR 184.1985 - Aminopeptidase enzyme preparation derived from lactococcus lactis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Streptococcus lactis). The preparation contains the enzyme aminopeptidase (CAS Reg. No. 9031-94-1; EC 3.4.11.1) and other peptidases that hydrolyze milk proteins. The preparation is produced by pure culture... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Aminopeptidase enzyme preparation derived from...

  15. Proteomic analysis of common bean seed with storage protein deficiency reveals up-regulation of sulfur-rich proteins and starch and raffinose metabolic enzymes, and down-regulation of the secretory pathway.

    PubMed

    Marsolais, Frédéric; Pajak, Agnieszka; Yin, Fuqiang; Taylor, Meghan; Gabriel, Michelle; Merino, Diana M; Ma, Vanessa; Kameka, Alexander; Vijayan, Perumal; Pham, Hai; Huang, Shangzhi; Rivoal, Jean; Bett, Kirstin; Hernández-Sebastià, Cinta; Liu, Qiang; Bertrand, Annick; Chapman, Ralph

    2010-06-16

    A deficiency in major seed storage proteins is associated with a nearly two-fold increase in sulfur amino acid content in genetically related lines of common bean (Phaseolus vulgaris). Their mature seed proteome was compared by an approach combining label-free quantification by spectral counting, 2-DE, and analysis of selective extracts. Lack of phaseolin, phytohemagglutinin and arcelin was mainly compensated by increases in legumin, alpha-amylase inhibitors and mannose lectin FRIL. Along with legumin, albumin-2, defensin and albumin-1 were major contributors to the elevated sulfur amino acid content. Coordinate induction of granule-bound starch synthase I, starch synthase II-2 and starch branching enzyme were associated with minor alteration of starch composition, whereas increased levels of UDP-glucose 4-epimerase were correlated with a 30% increase in raffinose content. Induction of cell division cycle protein 48 and ubiquitin suggested enhanced ER-associated degradation. This was not associated with a classical unfolded protein response as the levels of ER HSC70-cognate binding protein were actually reduced in the mutant. Repression of rab1 GTPase was consistent with decreased traffic through the secretory pathway. Collectively, these results have implications for the nutritional quality of common bean, and provide information on the pleiotropic phenotype associated with storage protein deficiency in a dicotyledonous seed. Crown Copyright 2010. Published by Elsevier B.V. All rights reserved.

  16. The Evaluation of Dipeptidyl Peptidase (DPP)-IV, α-Glucosidase and Angiotensin Converting Enzyme (ACE) Inhibitory Activities of Whey Proteins Hydrolyzed with Serine Protease Isolated from Asian Pumpkin (Cucurbita ficifolia).

    PubMed

    Konrad, Babij; Anna, Dąbrowska; Marek, Szołtysik; Marta, Pokora; Aleksandra, Zambrowicz; Józefa, Chrzanowska

    2014-01-01

    In the present study, whey protein concentrate (WPC-80) and β-lactoglobulin were hydrolyzed with a noncommercial serine protease isolated from Asian pumpkin ( Cucurbita ficifolia ). Hydrolysates were further fractionated by ultrafiltration using membranes with cut-offs equal 3 and 10 kDa. Peptide fractions of molecular weight lower than 3 and 3-10 kDa were further subjected to the RP-HPLC. Separated preparations were investigated for their potential as the natural inhibitors of dipeptidyl peptidase (DPP-IV), α-glucosidase and angiotensin converting enzyme (ACE). WPC-80 hydrolysate showed higher inhibitory activities against the three tested enzymes than β-lactoglobulin hydrolysate. Especially high biological activities were exhibited by peptide fractions of molecular weight lower than 3 kDa, with ACE IC50 <0.64 mg/mL and DPP-IV IC50 <0.55 mg/mL. This study suggests that peptides generated from whey proteins may support postprandial glycemia regulation and blood pressure maintenance, and could be used as functional food ingredients in the diet of patients with type 2 diabetes.

  17. Co-immobilization of glucoamylase and glucose oxidase for electrochemical sequential enzyme electrode for starch biosensor and biofuel cell.

    PubMed

    Lang, Qiaolin; Yin, Long; Shi, Jianguo; Li, Liang; Xia, Lin; Liu, Aihua

    2014-01-15

    A novel electrochemical sequential biosensor was constructed by co-immobilizing glucoamylase (GA) and glucose oxidase (GOD) on the multi-walled carbon nanotubes (MWNTs)-modified glassy carbon electrode (GCE) by chemical crosslinking method, where glutaraldehyde and bovine serum albumin was used as crosslinking and blocking agent, respectively. The proposed biosensor (GA/GOD/MWNTs/GCE) is capable of determining starch without using extra sensors such as Clark-type oxygen sensor or H2O2 sensor. The current linearly decreased with the increasing concentration of starch ranging from 0.005% to 0.7% (w/w) with the limit of detection of 0.003% (w/w) starch. The as-fabricated sequential biosensor can be applicable to the detection of the content of starch in real samples, which are in good accordance with traditional Fehling's titration. Finally, a stable starch/O2 biofuel cell was assembled using the GA/GOD/MWNTs/GCE as bioanode and laccase/MWNTs/GCE as biocathode, which exhibited open circuit voltage of ca. 0.53 V and the maximum power density of 8.15 μW cm(-2) at 0.31 V, comparable with the other glucose/O2 based biofuel cells reported recently. Therefore, the proposed biosensor exhibited attractive features such as good stability in weak acidic buffer, good operational stability, wide linear range and capable of determination of starch in real samples as well as optimal bioanode for the biofuel cell. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Physicochemical properties of starches isolated from pumpkin compared with potato and corn starches.

    PubMed

    Przetaczek-Rożnowska, Izabela

    2017-08-01

    The aim of the study was to characterize the selected physicochemical, thermal and rheological properties of pumpkin starches and compared with the properties of potato and corn starches used as control samples. Pumpkin starches could be used in the food industry as a free gluten starch. Better thermal and rheological properties could contribute to reduce the costs of food production. The syneresis of pumpkin starches was similar to that of potato starch but much lower than that for corn starch. Pasting temperatures of pumpkin starches were lower by 17-21.7°C and their final viscosities were over 1000cP higher than corn paste, but were close to the values obtained for potato starch. The thermodynamic characteristic showed that the transformation temperatures of pumpkin starches were lower than those measured for control starches. A level of retrogradation was much lower in pumpkin starch pastes (32-48%) than was in the case of corn (59%) or potato (77%) starches. The pumpkin starches gels were characterized by a much greater hardness, cohesiveness and chewiness, than potato or corn starches gels. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Production of Cyclodextrins by CGTase from Bacillus clausii Using Different Starches as Substrates

    NASA Astrophysics Data System (ADS)

    Alves-Prado, H. F.; Carneiro, A. A. J.; Pavezzi, F. C.; Gomes, E.; Boscolo, M.; Franco, C. M. L.; da Silva, R.

    Cyclodextrins (CDs) are cyclic oligasaccharides composed by d-glucose monomers joined by α-1,4-d glicosidic linkages. The main types of CDs are α-, β- and γ-CDs consisting of cycles of six, seven, and eight glucose monomers, respectively. Their ability to form inclusion complexes is the most important characteristic, allowing their wide industrial application. The physical property of the CD-complexed compound can be altered to improve stability, volatility, solubility, or bio-availability. The cyclomaltodextrin glucanotransferase (CGTase, EC 2.4.1.19) is an enzyme capable of converting starch into CD molecules. In this work, the CGTase produced by Bacillus clausii strain E16 was used to produce CD from maltodextrin and different starches (commercial soluble starch, corn, cassava, sweet potato, and waxy corn starches) as substrates. It was observed that the substrate sources influence the kind of CD obtained and that this CGTase displays a β-CGTase action, presenting a better conversion of soluble starch at 1.0%, of which 80% was converted in CDs. The ratio of total CD produced was 0:0.89:0.11 for α/β/γ. It was also observed that root and tuber starches were more accessible to CGTase action than seed starch under the studied conditions.

  20. Reduced protein carbonylation of cube steak and catfish fillet using antioxidative coatings containing cheddar whey, casein hydrolyzate and oolong tea extract

    USDA-ARS?s Scientific Manuscript database

    Hydrolysis of casein using chymotrypsin results in the formation of polypeptides (casein hydrolyzate, CH) with a hydrophobic aromatic amino acid on one end of the chain because the enzyme selectively cleaves the adjacent peptide-bond. Due to resonance of the aromatic micro-domain, thiols become redo...

  1. Characterization of Cellulase Enzyme Inhibitors Formed During the Chemical Pretreatments of Rice Straw

    NASA Astrophysics Data System (ADS)

    Rajan, Kalavathy

    Production of fuels and chemicals from a renewable and inexpensive resource such as lignocellulosic biomass is a lucrative and sustainable option for the advanced biofuel and bio-based chemical platform. Agricultural residues constitute the bulk of potential feedstock available for cellulosic fuel production. On a global scale, rice straw is the largest source of agricultural residues and is therefore an ideal crop model for biomass deconstruction studies. Lignocellulosic biofuel production involves the processes of biomass conditioning, enzymatic saccharification, microbial fermentation and ethanol distillation, and one of the major factors affecting its techno-economic feasibility is the biomass recalcitrance to enzymatic saccharification. Preconditioning of lignocellulosic biomass, using chemical, physico-chemical, mechanical and biological pretreatments, is often practiced such that biomass becomes available to downstream processing. Pretreatments, such as dilute acid and hot water, are effective means of biomass conversion. However, despite their processing importance, preconditioning biomass also results in the production of carbohydrate and lignin degradation products that are inhibitory to downstream saccharification enzymes. The saccharification enzyme cocktail is made up of endo-cellulase, exo-cellulase and beta-glucosidase enzymes, whose role is to cleave cellulose polymers into glucose monomers. Specifically, endo-cellulase and exo-cellulase enzymes cleave cellulose chains in the middle and at the end, resulting in cellobiose molecules, which are hydrolyzed into glucose by beta-glucosidase. Unfortunately, degradation compounds generated during pretreatment inhibit the saccharification enzyme cocktail. Various research groups have identified specific classes of inhibitors formed during biomass pretreatment and have studied their inhibitory effect on the saccharification cocktail. These various research groups prepared surrogate solutions in an attempt to

  2. Evaluation of the Significance of Starch Surface Binding Sites on Human Pancreatic α-Amylase.

    PubMed

    Zhang, Xiaohua; Caner, Sami; Kwan, Emily; Li, Chunmin; Brayer, Gary D; Withers, Stephen G

    2016-11-01

    Starch provides the major source of caloric intake in many diets. Cleavage of starch into malto-oligosaccharides in the gut is catalyzed by pancreatic α-amylase. These oligosaccharides are then further cleaved by gut wall α-glucosidases to release glucose, which is absorbed into the bloodstream. Potential surface binding sites for starch on the pancreatic amylase, distinct from the active site of the amylase, have been identified through X-ray crystallographic analyses. The role of these sites in the degradation of both starch granules and soluble starch was probed by the generation of a series of surface variants modified at each site to disrupt binding. Kinetic analysis of the binding and/or cleavage of substrates ranging from simple maltotriosides to soluble starch and insoluble starch granules has allowed evaluation of the potential role of each such surface site. In this way, two key surface binding sites, on the same face as the active site, are identified. One site, containing a pair of aromatic residues, is responsible for attachment to starch granules, while a second site featuring a tryptophan residue around which a malto-oligosaccharide wraps is shown to heavily influence soluble starch binding and hydrolysis. These studies provide insights into the mechanisms by which enzymes tackle the degradation of largely insoluble polymers and also present some new approaches to the interrogation of the binding sites involved.

  3. Isolation of dextran-hydrolyzing intestinal bacteria and characterization of their dextranolytic activities.

    PubMed

    Kim, Jin Kyoung; Shin, So-Yeon; Moon, Jin Seok; Li, Ling; Cho, Seung Kee; Kim, Tae-Jip; Han, Nam Soo

    2015-06-01

    The aim of this study was to isolate dextran-hydrolyzing bacteria from the human intestines and to identify their dextranolytic enzymes. For this, dextranase-producing microorganisms were screened from fecal samples by using blue dextran-containing media. Colonies producing a decolorized zone were isolated and they were grouped using RAPD-PCR. 16S rRNA gene sequencing analysis revealed the isolates were Bacteroides (B.) thetaiotaomicron, B. ovatus, B. vulgatus, B. dorei, B. xylanisolvens, B. uniformis, and Veillonella (V.) rogosae. Thin layer chromatography analysis showed that the dextranases exhibit mainly endo-type activity and produce various oligosaccharides including isomaltose and isomaltotriose. Zymogram analysis demonstrated that enzymes localized mainly in the cell membrane fraction and the molecular weight was 50-70 kDa. When cultured in a dextran-containing medium, all strains isolated in this study produced short-chain fatty acids, with butyric acid as the major compound. This is the first study to report that human intestinal B. xylanisolvens, B. dorei, and V. rogosae metabolize dextran utilizing dextranolytic enzymes. © 2015 Wiley Periodicals, Inc.

  4. Effect of endogenous proteins and lipids on starch digestibility in rice flour.

    PubMed

    Ye, Jiangping; Hu, Xiuting; Luo, Shunjing; McClements, David Julian; Liang, Lu; Liu, Chengmei

    2018-04-01

    The composition and structure of the food matrix can have a major impact on the digestion. The aim of this work was to investigate the effects of endogenous proteins and lipids on starch digestibility in rice flour, with an emphasis on establishing the underlying physicochemical mechanisms involved. Native long-grain indica rice flour and rice flour with the lipids and/or proteins removed were subjected to a simulated digestion in vitro. A significant increase in starch digestibility was observed after removal of proteins, lipids, or both. The starch digestibility of the rice flour without lipids was slightly lower than that without proteins, even though the proteins content was about 10-fold higher than the lipids content. Microstructural analysis suggested that the proteins and lipids were normally attached to the surfaces of the starch granules in the native rice flour, thus inhibiting their contact with digestive enzymes. Moreover, the proteins and lipids restricted the swelling of the starch granules, which may have decreased their digestion by reducing their surface areas. In addition, amylose-lipid complex was detected in the rice flour, which is also known to slow down starch digestion. These results have important implications for the design of foods with improved nutritional profiles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. An enzyme complex increases in vitro dry matter digestibility of corn and wheat in pigs.

    PubMed

    Park, Kyu Ree; Park, Chan Sol; Kim, Beob Gyun

    2016-01-01

    Two experiments were conducted to determine the effects of enzyme complex on in vitro dry matter (DM) digestibility for feed ingredients. The objective of experiment 1 was to screen feed ingredients that can be effective substrates for an enzyme complex, mainly consisted of β-pentosanase, β-glucanase and α-amylase, using in vitro digestibility methods. In experiment 1, the test ingredients were three grain sources (barley, corn and wheat) and six protein supplements (canola meal, copra expellers, cottonseed meal, distillers dried grains with solubles, palm kernel expellers and soybean meal). In vitro ileal and total tract digestibility (IVID and IVTTD, respectively) of DM for test ingredients were determined. In vitro digestibility methods consisted of two- or three-step procedure simulating in vivo digestion in the pig gastrointestinal tracts with or without enzyme complex. As the enzyme complex added, the IVID of DM for corn and wheat increased (p < 0.05) by 5.0 and 2.6 percentage unit, respectively. The IVTTD of DM for corn increased (p < 0.05) by 3.1 percentage unit with enzyme complex addition. As the effect of enzyme complex was the greatest in corn digestibility, corn grains were selected to determine the in vitro digestibility of the fractions (starch, germ, hull and gluten) that maximally respond to the enzyme complex in experiment 2. The IVID of DM for corn starch, germ and hull increased (p < 0.05) by 16.0, 2.8 and 1.2 percentage unit, respectively. The IVTTD of DM for corn starch and hull also increased (p < 0.05) by 8.6 and 0.9 percentage unit, respectively, with enzyme complex addition. In conclusion, the enzyme complex increases in vitro DM digestibility of corn and wheat, and the digestibility increments of corn are mainly attributed to the increased digestibility of corn starch.

  6. Kinetic studies of amylase and biomass production by Calvatia gigantea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kekos, D.; Macris, B.J.

    1987-01-01

    Production of alpha-amylase (alpha-4, glucan 4-glucanohydrolase, EC 3.2.1.1) by microorganisms has been practiced for many years in small and large scale operations and the literature on this enzyme is voluminous. Aspergillus niger and Aspergillus oryzae have been reported as the main fungal species used for commercial production of the enzyme. On the other hand, large volumes of low-cost agricultural products such as acorn (the perisperm-free dry seed contains approximately 60% starch) are wasted in many countries and provide a challenge to biotechnology to efficiently utilize these rich sources of starch for the production of high added value products like enzymes.more » C. gigantea is an edible puffball excreting high levels of alpha-amylase when cultivated on different sources of starch containing elevated quantities of toxic tannic compounds. This fungus has been employed for the production of microbial protein from wastes and acorns containing high levels of toxic tannic compounds. The same fungus was also reported to grow on both hydrolyzable and condensed tannins as sole carbon sources. The present work was undertaken to investigate certain kinetic characteristics of alpha-amylase and biomass production by C. gigantea grown on soluble and acorn starch in a lab fermenter. (Refs. 18).« less

  7. Gelatin- and starch-based hydrogels. Part B: In vitro mesenchymal stem cell behavior on the hydrogels.

    PubMed

    Van Nieuwenhove, Ine; Salamon, Achim; Adam, Stefanie; Dubruel, Peter; Van Vlierberghe, Sandra; Peters, Kirsten

    2017-04-01

    Tissue regeneration often occurs only to a limited extent. By providing a three-dimensional matrix serving as a surrogate extracellular matrix that promotes adult stem cell adhesion, proliferation and differentiation, scaffold-guided tissue regeneration aims at overcoming this limitation. In this study, we applied hydrogels made from crosslinkable gelatin, the hydrolyzed form of collagen, and functionalized starch which were characterized in depth and optimized as described in Van Nieuwenhove et al., 2016. "Gelatin- and Starch-Based Hydrogels. Part A: Hydrogel Development, Characterization and Coating", Carbohydrate Polymers 152:129-39. Collagen is the main structural protein in animal connective tissue and the most abundant protein in mammals. Starch is a carbohydrate consisting of a mixture of amylose and amylopectin. Hydrogels were developed with varying chemical composition (ratio of starch to gelatin applied) and different degrees of methacrylation of the applied gelatin phase. The hydrogels used exhibited no adverse effect on viability of the stem cells cultured on them. Moreover, initial cell adhesion did not differ significantly between them, while the strongest proliferation was observed on the hydrogel with the highest degree of cross-linking. On the least crosslinked and thus most flexible hydrogels, the highest degree of adipogenic differentiation was found, while osteogenic differentiation was the strongest on the most rigid, starch-blended hydrogels. Hydrogel coating with extracellular matrix compounds aggrecan or fibronectin prior to cell seeding exhibited no significant effects. Thus, gelatin-based hydrogels can be optimized regarding maximum promotion of either adipogenic or osteogenic stem cell differentiation in vitro, which makes them promising candidates for in vivo evaluation in clinical studies aiming at either soft or hard tissue regeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Evidence of native starch degradation with human small intestinal maltase-glucoamylase (recombinant)

    USDA-ARS?s Scientific Manuscript database

    Action of human small intestinal brush border carbohydrate digesting enzymes is thought to involve only final hydrolysis reactions of oligosaccharides to monosaccharides. In vitro starch digestibility assays use fungal amyloglucosidase to provide this function. In this study, recombinant N-terminal ...

  9. Cloning and characterization of ginsenoside Ra1-hydrolyzing beta-D-xylosidase from Bifidobacterium breve K-110.

    PubMed

    Hyun, Yang-Jin; Kim, Bomi; Kim, Dong-Hyun

    2012-04-01

    beta-D-Xylosidase (E.C. 3.2.1.37) from Bifidobacterium breve K-110, which hydrolyzes ginsenoside Ra1 to ginsenoside Rb2, was cloned and expressed in Escherichia coli. The (His6)-tagged recombinant enzyme, designated as XlyBK- 110, was efficiently purified using Ni²⁺-affinity chromatography (109.9-fold, 84% yield). The molecular mass of XylBK- 100 was found to be 55.7 kDa by SDS-PAGE. Its sequence revealed a 1,347 bp open reading frame (ORF) encoding a protein containing 448 amino acids, which showed 82% identity (DNA) to the previously reported glycosyl hydrolase family 30 of Bifidobacterium adolescentis ATCC 15703. The Km and Vmax values toward p-nitrophenyl-beta-D-xylopyranoside (pNPX) were 1.45mM and 10.75 micromol/min/mg, respectively. This enzyme had pH and temperature optima at 6.0 and 45 degrees C, respectively. XylBK-110 acted to the greatest extent on xyloglucosyl kakkalide, followed by pNPX and ginsenoside Ra1, but did not act on p-nitrophenyl-alpha-Larabinofuranoside, p-nitrophenyl-beta-D-glucopyranoside, or p-nitrophenyl-beta-D-fucopyranoside. In conclusion, this is the first report on the cloning and expression of beta-Dxylosidase- hydrolyzing ginsenoside Ra1 and kakkalide from human intestinal microflora.

  10. Cloning and characterization of alpha-glucuronidase enzyme

    USDA-ARS?s Scientific Manuscript database

    Hemicellulose is the second largest source of biomass on Earth. Xylan, a polymer of beta-1,4-linked xylose residues, is a common component of hemicellulose. The enzymes xylanase and beta-xylosidase hydrolyze the xylan into xylose which can then be fermented into value-added products. However, the...

  11. Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch.

    PubMed

    Wokadala, Obiro Cuthbert; Emmambux, Naushad Mohammad; Ray, Suprakas Sinha

    2014-11-04

    In this study, waxy and high amylose starches were modified through butyl-etherification to facilitate compatibility with polylactide (PLA). Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy and wettability tests showed that hydrophobic butyl-etherified waxy and high amylose starches were obtained with degree of substitution values of 2.0 and 2.1, respectively. Differential scanning calorimetry, tensile testing, and scanning electron microscopy (SEM) demonstrated improved PLA/starch compatibility for both waxy and high amylose starch after butyl-etherification. The PLA/butyl-etherified waxy and high amylose starch composite films had higher tensile strength and elongation at break compared to PLA/non-butyl-etherified composite films. The morphological study using SEM showed that PLA/butyl-etherified waxy starch composites had a more homogenous microstructure compared to PLA/butyl-etherified high amylose starch composites. Thermogravimetric analysis showed that PLA/starch composite thermal stability decreased with starch butyl-etherification for both waxy and high amylose starches. This study mainly demonstrates that PLA/starch compatibility can be improved through starch butyl-etherification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Characterisation of corn starch-based films reinforced with taro starch nanoparticles.

    PubMed

    Dai, Lei; Qiu, Chao; Xiong, Liu; Sun, Qingjie

    2015-05-01

    Taro starch nanoparticles (TSNPs) obtained by hydrolysis with pullulanase and the recrystallisation of gelatinised starch were used as reinforcing agents in corn starch films. The influence of TSNPs contents (0.5-15%) on the physical, mechanical, thermal, and structural properties of starch films was investigated. An increase in the concentration of TSNPs led to a significant decrease in the water vapour permeability (WVP) of films. The addition of TSNPs increased the tensile strength (TS) of films from 1.11 MPa to 2.87 MPa. Compared with pure starch films, the surfaces of nanocomposite films became uneven. The onset temperature (To) and melting temperature (Tm) of films containing TSNPs were higher than those of pure starch films. The addition of TSNPs improved the thermal stability of starch films. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Modification of starch metabolism in transgenic Arabidopsis thaliana increases plant biomass and triples oilseed production

    DOE PAGES

    Liu, Fushan; Zhao, Qianru; Mano, Noel; ...

    2015-08-19

    Here, we have identified a novel means to achieve substantially increased vegetative biomass and oilseed production in the model plant Arabidopsis thaliana. Endogenous isoforms of starch branching enzyme (SBE) were substituted by either one of the endosperm–expressed maize ( Zea mays L.) branching isozymes, ZmSBEI or ZmSBEIIb. Transformants were compared with the starch–free background and with the wild–type plants. Each of the maize–derived SBEs restored starch biosynthesis but both morphology and structure of starch particles were altered. Altered starch metabolism in the transformants is associated with enhanced biomass formation and more–than–trebled oilseed production while maintaining seed oil quality. Enhanced oilseedmore » production is primarily due to an increased number of siliques per plant whereas oil content and seed number per silique are essentially unchanged or even modestly decreased. Introduction of cereal starch branching isozymes into oilseed plants represents a potentially useful strategy to increase biomass and oilseed production in related crops and manipulate the structure and properties of leaf starch.« less

  14. Modification of starch metabolism in transgenic Arabidopsis thaliana increases plant biomass and triples oilseed production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Fushan; Zhao, Qianru; Mano, Noel

    Here, we have identified a novel means to achieve substantially increased vegetative biomass and oilseed production in the model plant Arabidopsis thaliana. Endogenous isoforms of starch branching enzyme (SBE) were substituted by either one of the endosperm–expressed maize ( Zea mays L.) branching isozymes, ZmSBEI or ZmSBEIIb. Transformants were compared with the starch–free background and with the wild–type plants. Each of the maize–derived SBEs restored starch biosynthesis but both morphology and structure of starch particles were altered. Altered starch metabolism in the transformants is associated with enhanced biomass formation and more–than–trebled oilseed production while maintaining seed oil quality. Enhanced oilseedmore » production is primarily due to an increased number of siliques per plant whereas oil content and seed number per silique are essentially unchanged or even modestly decreased. Introduction of cereal starch branching isozymes into oilseed plants represents a potentially useful strategy to increase biomass and oilseed production in related crops and manipulate the structure and properties of leaf starch.« less

  15. Monitoring of soluble starch hydrolysis induced by α-amylase from Aspergillus oryzae using ultrasonic spectroscopy

    NASA Astrophysics Data System (ADS)

    Sierra, Carlos; Resa, Pablo; Buckin, Vitaly; Elvira, Luis

    2012-05-01

    The online monitoring of enzymatic starch hydrolysis is an important issue for several industrial sectors, mainly in the alimentary industry. Ultrasonic non-invasive methods based on the detection of wave velocity and amplitude changes can be used to study this enzymatic reaction. These wave propagating changes are result of physicalchemical modifications produced in the media by the starch hydrolysis. In this work the starch hydrolysis induced by the enzyme α-amylase from Aspergillus oryzae is studied. This biochemical reaction has been monitored using a high-resolution ultrasonic spectroscopy (HR-US) which is non-invasive and nondestructive. The measured time profiles o of ultrasonic velocity are explained in terms of the starch hydrolysis and the subsequent production of oligosaccharides as a consequence of the enzymatic action. The obtained results have been compared to a conventional off-line technique used in biochemistry, the iodine-starch reaction, a spectrophotometric method to quantify the amount of starch remaining in the medium. The combination of these two types of measurement provides more complete information about the biochemical processes occurred during hydrolysis.

  16. Overlapping functions of the starch synthases SSII and SSIII in amylopectin biosynthesis in Arabidopsis

    PubMed Central

    Zhang, Xiaoli; Szydlowski, Nicolas; Delvallé, David; D'Hulst, Christophe; James, Martha G; Myers, Alan M

    2008-01-01

    Background The biochemical mechanisms that determine the molecular architecture of amylopectin are central in plant biology because they allow long-term storage of reduced carbon. Amylopectin structure imparts the ability to form semi-crystalline starch granules, which in turn provides its glucose storage function. The enzymatic steps of amylopectin biosynthesis resemble those of the soluble polymer glycogen, however, the reasons for amylopectin's architectural distinctions are not clearly understood. The multiplicity of starch biosynthetic enzymes conserved in plants likely is involved. For example, amylopectin chain elongation in plants involves five conserved classes of starch synthase (SS), whereas glycogen biosynthesis typically requires only one class of glycogen synthase. Results Null mutations were characterized in AtSS2, which codes for SSII, and mutant lines were compared to lines lacking SSIII and to an Atss2, Atss3 double mutant. Loss of SSII did not affect growth rate or starch quantity, but caused increased amylose/amylopectin ratio, increased total amylose, and deficiency in amylopectin chains with degree of polymerization (DP) 12 to DP28. In contrast, loss of both SSII and SSIII caused slower plant growth and dramatically reduced starch content. Extreme deficiency in DP12 to DP28 chains occurred in the double mutant, far more severe than the summed changes in SSII- or SSIII-deficient plants lacking only one of the two enzymes. Conclusion SSII and SSIII have partially redundant functions in determination of amylopectin structure, and these roles cannot be substituted by any other conserved SS, specifically SSI, GBSSI, or SSIV. Even though SSIII is not required for the normal abundance of glucan chains of DP12 to DP18, the enzyme clearly is capable of functioning in production such chains. The role of SSIII in producing these chains cannot be detected simply by analysis of an individual mutation. Competition between different SSs for binding to

  17. 21 CFR 173.5 - Acrylate-acrylamide resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... sugar juice and liquor or corn starch hydrolyzate in an amount not to exceed 5 parts per million by weight of the juice or 10 parts per million by weight of the liquor or the corn starch hydrolyzate. (2...

  18. Inferring transcriptional gene regulation network of starch metabolism in Arabidopsis thaliana leaves using graphical Gaussian model

    PubMed Central

    2012-01-01

    Background Starch serves as a temporal storage of carbohydrates in plant leaves during day/night cycles. To study transcriptional regulatory modules of this dynamic metabolic process, we conducted gene regulation network analysis based on small-sample inference of graphical Gaussian model (GGM). Results Time-series significant analysis was applied for Arabidopsis leaf transcriptome data to obtain a set of genes that are highly regulated under a diurnal cycle. A total of 1,480 diurnally regulated genes included 21 starch metabolic enzymes, 6 clock-associated genes, and 106 transcription factors (TF). A starch-clock-TF gene regulation network comprising 117 nodes and 266 edges was constructed by GGM from these 133 significant genes that are potentially related to the diurnal control of starch metabolism. From this network, we found that β-amylase 3 (b-amy3: At4g17090), which participates in starch degradation in chloroplast, is the most frequently connected gene (a hub gene). The robustness of gene-to-gene regulatory network was further analyzed by TF binding site prediction and by evaluating global co-expression of TFs and target starch metabolic enzymes. As a result, two TFs, indeterminate domain 5 (AtIDD5: At2g02070) and constans-like (COL: At2g21320), were identified as positive regulators of starch synthase 4 (SS4: At4g18240). The inference model of AtIDD5-dependent positive regulation of SS4 gene expression was experimentally supported by decreased SS4 mRNA accumulation in Atidd5 mutant plants during the light period of both short and long day conditions. COL was also shown to positively control SS4 mRNA accumulation. Furthermore, the knockout of AtIDD5 and COL led to deformation of chloroplast and its contained starch granules. This deformity also affected the number of starch granules per chloroplast, which increased significantly in both knockout mutant lines. Conclusions In this study, we utilized a systematic approach of microarray analysis to discover

  19. The "Food Polymer Science" approach to the practice of industrial R&D, leading to patent estates based on fundamental starch science and technology.

    PubMed

    Slade, Louise; Levine, Harry

    2018-04-13

    This article reviews the application of the "Food Polymer Science" approach to the practice of industrial R&D, leading to patent estates based on fundamental starch science and technology. The areas of patents and patented technologies reviewed here include: (a) soft-from-the-freezer ice creams and freezer-storage-stable frozen bread dough products, based on "cryostabilization technology" of frozen foods, utilizing commercial starch hydrolysis products (SHPs); (b) glassy-matrix encapsulation technology for flavors and other volatiles, based on structure-function relationships for commercial SHPs; (c) production of stabilized whole-grain wheat flours for biscuit products, based on the application of "solvent retention capacity" technology to develop flours with reduced damaged starch; (d) production of improved-quality, low-moisture cookies and crackers, based on pentosanase enzyme technology; (e) production of "baked-not-fried," chip-like, starch-based snack products, based on the use of commercial modified-starch ingredients with selected functionality; (f) accelerated staling of a starch-based food product from baked bread crumb, based on the kinetics of starch retrogradation, treated as a crystallization process for a partially crystalline glassy polymer system; and (g) a process for producing an enzyme-resistant starch, for use as a reduced-calorie flour replacer in a wide range of grain-based food products, including cookies, extruded expanded snacks, and breakfast cereals.

  20. Partially hydrolyzed guar gum as a potential prebiotic source.

    PubMed

    Mudgil, Deepak; Barak, Sheweta; Patel, Ami; Shah, Nihir

    2018-06-01

    Guar galactomannan was enzymatically hydrolyzed to obtain partially hydrolyzed guar gum which can be utilized as prebiotic source. In present study, growth of probiotics (Lactic Acid Bacteria strains) were studied with glucose, partially hydrolyzed guar gum and native guar gum. All the six strains were galactose &/or mannose positive using the API CHl 50 test. Almost all these strains showed an ability to assimilate partially hydrolyzed guar gum with respect to increase in optical density and viable cell count with concomitant decrease in the pH of the growth medium. Streptococcus thermophilus MD2 exhibited higher growth (7.78 log cfu/ml) while P. parvulus AI1 showed comparatively less growth (7.24 log cfu/ml) as compared to used lactobacillus and Weissella strains. Outcomes of the current study suggest that partially hydrolyzed guar can be considered as potential prebiotic compound that may further stimulate the growth of potentially probiotic bacteria or native gut microflora. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Molecular details of a starch utilization pathway in the human gut symbiont Eubacterium rectale

    PubMed Central

    Cockburn, Darrell W.; Orlovsky, Nicole I.; Foley, Matthew H.; Kwiatkowski, Kurt J.; Bahr, Constance M.; Maynard, Mallory; Demeler, Borries; Koropatkin, Nicole M.

    2015-01-01

    Summary Eubacterium rectale is a prominent human gut symbiont yet little is known about the molecular strategies this bacterium has developed to acquire nutrients within the competitive gut ecosystem. Starch is one of the most abundant glycans in the human diet, and E. rectale increases in vivo when the host consumes a diet rich in resistant starch, although it is not a primary degrader of this glycan. Here we present the results of a quantitative proteomics study in which we identify two glycoside hydrolase 13 family enzymes, and three ABC transporter solute-binding proteins that are abundant during growth on starch and, we hypothesize, work together at the cell surface to degrade starch and capture the released maltooligosaccharides. EUR_21100 is a multidomain cell wall anchored amylase that preferentially targets starch polysaccharides, liberating maltotetraose, while the membrane associated maltogenic amylase EUR_01860 breaks down maltooligosaccharides longer than maltotriose. The three solute-binding proteins display a range of glycan-binding specificities that ensure the capture of glucose through maltoheptaose and some α1,6-branched glycans. Taken together, we describe a pathway for starch utilization by E. rectale DSM 17629 that may be conserved among other starch-degrading Clostridium cluster XIVa organisms in the human gut. PMID:25388295

  2. Enzymes in Fermented Fish.

    PubMed

    Giyatmi; Irianto, H E

    Fermented fish products are very popular particularly in Southeast Asian countries. These products have unique characteristics, especially in terms of aroma, flavor, and texture developing during fermentation process. Proteolytic enzymes have a main role in hydrolyzing protein into simpler compounds. Fermentation process of fish relies both on naturally occurring enzymes (in the muscle or the intestinal tract) as well as bacteria. Fermented fish products processed using the whole fish show a different characteristic compared to those prepared from headed and gutted fish. Endogenous enzymes like trypsin, chymotrypsin, elastase, and aminopeptidase are the most involved in the fermentation process. Muscle tissue enzymes like cathepsins, peptidases, transaminases, amidases, amino acid decarboxylases, glutamic dehydrogenases, and related enzymes may also play a role in fish fermentation. Due to the decreased bacterial number during fermentation, contribution of microbial enzymes to proteolysis may be expected prior to salting of fish. Commercial enzymes are supplemented during processing for specific purposes, such as quality improvement and process acceleration. In the case of fish sauce, efforts to accelerate fermentation process and to improve product quality have been studied by addition of enzymes such as papain, bromelain, trypsin, pepsin, and chymotrypsin. © 2017 Elsevier Inc. All rights reserved.

  3. Novel mutant alleles of the starch synthesis gene TaSSIVb-D result in the reduction of starch granule number per chloroplast in wheat.

    PubMed

    Guo, Huijun; Liu, Yunchuan; Li, Xiao; Yan, Zhihui; Xie, Yongdun; Xiong, Hongchun; Zhao, Linshu; Gu, Jiayu; Zhao, Shirong; Liu, Luxiang

    2017-05-08

    Transient starch provides carbon and energy for plant growth, and its synthesis is regulated by the joint action of a series of enzymes. Starch synthesis IV (SSIV) is one of the important starch synthase isoforms, but its impact on wheat starch synthesis has not yet been reported due to the lack of mutant lines. Using the TILLING approach, we identified 54 mutations in the wheat gene TaSSIVb-D, with a mutation density of 1/165 Kb. Among these, three missense mutations and one nonsense mutation were predicted to have severe impacts on protein function. In the mutants, TaSSIVb-D was significantly down-regulated without compensatory increases in the homoeologous genes TaSSIVb-A and TaSSIVb-B. Altered expression of TaSSIVb-D affected granule number per chloroplast; compared with wild type, the number of chloroplasts containing 0-2 granules was significantly increased, while the number containing 3-4 granules was decreased. Photosynthesis was affected accordingly; the maximum quantum yield and yield of PSII were significantly reduced in the nonsense mutant at the heading stage. These results indicate that TaSSIVb-D plays an important role in the formation of transient starch granules in wheat, which in turn impact the efficiency of photosynthesis. The mutagenized population created in this study allows the efficient identification of novel alleles of target genes and could be used as a resource for wheat functional genomics.

  4. Engineering starch accumulation by manipulation of phosphate metabolism of starch.

    PubMed

    Weise, Sean E; Aung, Kimberly; Jarou, Zach J; Mehrshahi, Payam; Li, Ziru; Hardy, Anna C; Carr, David J; Sharkey, Thomas D

    2012-06-01

    A new understanding of leaf starch degradation has emerged in the last 10 years. It has been shown that starch phosphorylation and dephosphorylation are critical components of this process. Glucan, water dikinase (GWD) (and phosphoglucan, water dikinase) adds phosphate to starch, and phosphoglucan phosphatase (SEX4) removes these phosphates. To explore the use of this metabolism to manipulate starch accumulation, Arabidopsis (Arabidopsis thaliana) plants were engineered by introducing RNAi constructs designed to reduce expression of AtGWD and AtSEX4. The timing of starch build-up was altered with ethanol-inducible and senescence-induced gene promoters. Ethanol induction of RNAi lines reduced transcript for AtGWD and AtSEX4 by 50%. The transgenic lines had seven times more starch than wild type at the end of the dark period but similar growth rates and total biomass. Elevated leaf starch content in maize leaves was engineered by making an RNAi construct against a gene in maize that appeared to be homologous to AtGWD. The RNAi construct was expressed using the constitutive ubiquitin promoter. Leaf starch content at the end of a night period in engineered maize plants was 20-fold higher than in untransformed plants with no impact on total plant biomass. We conclude that plants can be engineered to accumulate starch in the leaves with little impact on vegetative biomass. © 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  5. Purification and Characterization of a Highly Efficient Calcium-Independent α-Amylase from Talaromyces pinophilus 1-95

    PubMed Central

    Xian, Liang; Wang, Fei; Luo, Xiang; Feng, Yu-Liang; Feng, Jia-Xun

    2015-01-01

    Alpha-amylase is a very important enzyme in the starch conversion process. Most of the α-amylases are calcium-dependent and exhibit poor performance in the simultaneous saccharification and fermentation process of industrial bioethanol production that uses starch as feedstock. In this study, an extracellular amylolytic enzyme was purified from the culture broth of newly isolated Talaromyces pinophilus strain 1-95. The purified amylolytic enzyme, with an apparent molecular weight of 58 kDa on SDS-PAGE, hydrolyzed maltopentaose, maltohexaose, and maltoheptaose into mainly maltose and maltotriose and minor amount of glucose, confirming the endo-acting mode of the enzyme, and hence, was named Talaromyces pinophilus α-amylase (TpAA). TpAA was most active at pH 4.0–5.0 (with the temperature held at 37°C) and 55°C (at pH 5.0), and stable within the pH range of 5.0–9.5 (at 4°C) and below 45°C (at pH 5.0). Interestingly, the Ca2+ did not improve its enzymatic activity, optimal temperature, or thermostability of the enzyme, indicating that the TpAA was Ca2+-independent. TpAA displayed higher enzyme activity toward malto-oligosaccharides and dextrin than other previously reported α-amylases. This highly active Ca2+-independent α-amylase may have potential applications in starch-to-ethanol conversion process. PMID:25811759

  6. Molecular evolution accompanying functional divergence of duplicated genes along the plant starch biosynthesis pathway

    PubMed Central

    2014-01-01

    Background Starch is the main source of carbon storage in the Archaeplastida. The starch biosynthesis pathway (sbp) emerged from cytosolic glycogen metabolism shortly after plastid endosymbiosis and was redirected to the plastid stroma during the green lineage divergence. The SBP is a complex network of genes, most of which are members of large multigene families. While some gene duplications occurred in the Archaeplastida ancestor, most were generated during the sbp redirection process, and the remaining few paralogs were generated through compartmentalization or tissue specialization during the evolution of the land plants. In the present study, we tested models of duplicated gene evolution in order to understand the evolutionary forces that have led to the development of SBP in angiosperms. We combined phylogenetic analyses and tests on the rates of evolution along branches emerging from major duplication events in six gene families encoding sbp enzymes. Results We found evidence of positive selection along branches following cytosolic or plastidial specialization in two starch phosphorylases and identified numerous residues that exhibited changes in volume, polarity or charge. Starch synthases, branching and debranching enzymes functional specializations were also accompanied by accelerated evolution. However, none of the sites targeted by selection corresponded to known functional domains, catalytic or regulatory. Interestingly, among the 13 duplications tested, 7 exhibited evidence of positive selection in both branches emerging from the duplication, 2 in only one branch, and 4 in none of the branches. Conclusions The majority of duplications were followed by accelerated evolution targeting specific residues along both branches. This pattern was consistent with the optimization of the two sub-functions originally fulfilled by the ancestral gene before duplication. Our results thereby provide strong support to the so-called “Escape from Adaptive Conflict

  7. Bagasse hydrolyzates from Agave tequilana as substrates for succinic acid production by Actinobacillus succinogenes in batch and repeated batch reactor.

    PubMed

    Corona-González, Rosa Isela; Varela-Almanza, Karla María; Arriola-Guevara, Enrique; Martínez-Gómez, Álvaro de Jesús; Pelayo-Ortiz, Carlos; Toriz, Guillermo

    2016-04-01

    The aim of this work was to obtain fermentable sugars by enzymatic or acid hydrolyses of Agave tequilana Weber bagasse in order to produce succinic acid with Actinobacillus succinogenes. Hydrolyses were carried out with mineral acids (sulfuric and hydrochloric acids) or a commercial cellulolytic enzyme, and were optimized statistically by a response surface methodology, having as factors the concentration of acid/enzyme and time of hydrolysis. The concentration of sugars obtained at optimal conditions for each hydrolysis were 21.7, 22.4y 19.8g/L for H2SO4, HCl and the enzymatic preparation respectively. Concerning succinic acid production, the enzymatic hydrolyzates resulted in the highest yield (0.446g/g) and productivity (0.57g/Lh) using A. succinogenes in a batch reactor system. Repeated batch fermentation with immobilized A. succinogenes in agar and with the enzymatic hydrolyzates resulted in a maximum concentration of succinic acid of 33.6g/L from 87.2g/L monosaccharides after 5 cycles in 40h, obtaining a productivity of 1.32g/Lh. Copyright © 2016. Published by Elsevier Ltd.

  8. Effects of epithalon on activities gastrointestinal enzymes in young and old rats.

    PubMed

    Khavinson, V Kh; Malinin, V V; Timofeeva, N M; Egorova, V V; Nikitina, A A

    2002-03-01

    Peroral administration of Epithalon (Ala-Glu-Asp-Gly) to male and female Wistar rats aging 3 and 11 months changed activity of enzymes hydrolyzing carbohydrates, proteins, and phosphoric acid esters in various portions of the gastrointestinal tract. The most pronounced activation of enzymes was observed in 11-month-old animals. This effect diminished the differences in enzyme activities between young and old rats (compared to untreated animals). Our results indicate that Epithalon modulates activity of gastrointestinal enzymes during aging.

  9. Altering the rate of glucose release from starch-based foods by spray-drying with an extract from barley.

    PubMed

    Razzaq, Hussam A A; Sutton, Kevin H; Motoi, Lidia

    2013-08-30

    Health outcomes associated with sustained elevated blood glucose may be better managed by limiting glucose availability for uptake. Glucose release from consumed starch may be altered using various methods, but many are not suitable for high-carbohydrate foods. This study describes an approach to protect starch granules, while generally maintaining their physical characteristics, with an extract from barley using spray-drying. The use of the extract resulted in the coating of the starch granules with a film-like material composed of β-glucans and proteins. This coincided with a reduction in starch digestion and a significant increase in the indigestible (resistant) starch component. Substitution of the starch component in a model snack bar by the coated starch was also associated with lowering starch digestion in the bar. The barley extract provides a physical barrier that may limit the exposure of starch to the digestive enzymes and water, with a consequent reduction in starch digestion and the rate of glucose release. It is possible, therefore, to produce wheat starch with lower digestibility and glucose release rate that may be used as a healthier substitute in high-carbohydrate foods by coating the granules with polymers extracted from barley cereals through spray-drying. © 2013 Society of Chemical Industry.

  10. Physical and biological treatments of polyethylene-rice starch plastic films.

    PubMed

    el-Naggar, Manal M A; Farag, Magdy Gh

    2010-04-15

    This study aimed to produce an industrial applicable thermo-stable alpha-amylase from marine Bacillus amyloliquefaciens which isolated and selected according to its significant enzyme production. The effect of different pH values and temperatures on the bacterial growth and the enzyme production was estimated using an experimental statistical design; maximum amylase production and bacterial growth was obtained at pH 7.0 and 50 degrees C. Some biodegradable polyethylene rice starch plastic films (PERS-P) were manufactured using 0, 2.5, 5, 7.5 and 10% starch concentrations. The biodegradability (reduction in the plastic elongation%) was tested using the exposure to UV radiation at lambda(300-400 nm) (intensity of about 1000 W/m(2)) and the produced B. amyloliquefaciens thermo-stable alpha-amylase. A significant reduction in the elongation% of these biodegradable plastics was observed in both cases especially on testing the 10% PERS-P; they showed a reduction of 26% and 20%, respectively, compared to the untreated plastic films (180+/-5). 2009 Elsevier B.V. All rights reserved.

  11. Starch blockers--their effect on calorie absorption from a high-starch meal.

    PubMed

    Bo-Linn, G W; Santa Ana, C A; Morawski, S G; Fordtran, J S

    1982-12-02

    It has been known for more than 25 years that certain plant foods, such as kidney beans and wheat, contain a substance that inhibits the activity of salivary and pancreatic amylase. More recently, this antiamylase has been purified and marketed for use in weight control under the generic name "starch blockers." Although this approach to weight control is highly popular, it has never been shown whether starch-blocker tablets actually reduce the absorption of calories from starch. Using a one-day calorie-balance technique and a high-starch (100 g) meal (spaghetti, tomato sauce, and bread), we measured the excretion of fecal calories after normal subjects had taken either placebo or starch-blocker tablets. If the starch-blocker tablets had prevented the digestion of starch, fecal calorie excretion should have increased by 400 kcal. However, fecal calorie excretion was the same on the two test days (mean +/- S.E.M., 80 +/- 4 as compared with 78 +/- 2). We conclude that starch-blocker tablets do not inhibit the digestion and absorption of starch calories in human beings.

  12. Influence of media composition on the production of alkaline α-amylase from Bacillus subtilis CB-18.

    PubMed

    Ogbonnaya, Nwokoro; Odiase, Anthonia

    2012-01-01

    Starch, a homopolysaccharide is an important and an abundant food reserve and energy source. Starches are processed to yield different products which find many industrial applications. Alpha-amylases hydrolyze starch by cleaving α-1,4-glucosidic bonds and have been used in food, textile and pharmaceutical industries [Sun et al. 2010]. Enzymatic conversion of starch with amylase presents an economically superior alternative to the conventional method of starch gelatinization. Alkaline α-amylase has an important position in the global enzyme market as a constituent of detergent. In this paper, we screened soil bacteria and an isolate, alkalophilic Bacillus subtilis CB-18 was found to produce an alkaline α-amylase in different media. MATERIAL AND METHODS. Screening of the isolates for amylolytic activity was carried out by growing bacteria isolated from the soil in starch agar plates and subsequently staining the plates with iodine solution to reveal zones of hydrolysis of starch. The selected isolate, Bacillus subtlis CB-18 was grown in different media at alkaline pH to evaluate the influence of media composition on alkaline α-amylase production. Enzyme assay was carried out by growing the culture in a broth medium and obtaining cell - free culture supernatant after centrifugation at 2515 × g for 15 minutes Amylase activity was determined by incubating 0.5 ml of crude enzyme solution in 0.1M Tris/HCl buffer (pH 8.5) with 0.5 ml of 1% soluble starch solution. The reaction was terminated by the addition of DNS reagent and reducing sugar produced from the amylolytic reaction was determined. Bacillus subtilis CB-18 used for this work was selected because it produced 7 mm zone diameter on starch agar plate. This organism was cultured in different alkaline broth media containing 2% soluble starch as inducer carbohydrate for α-amylase production. Among the carbon sources used for enzyme production, sorbitol was the best to stimulate enzyme production with

  13. Cooking behavior and starch digestibility of NUTRIOSE® (resistant starch) enriched noodles from sweet potato flour and starch.

    PubMed

    Menon, Renjusha; Padmaja, G; Sajeev, M S

    2015-09-01

    The effect of a resistant starch source, NUTRIOSE® FB06 at 10%, 15% and 20% in sweet potato flour (SPF) and 5% and 10% in sweet potato starch (SPS) in reducing the starch digestibility and glycaemic index of noodles was investigated. While NUTRIOSE (10%) significantly reduced the cooking loss in SPF noodles, this was enhanced in SPS noodles and guar gum (GG) supplementation reduced CL of both noodles. In vitro starch digestibility (IVSD) was significantly reduced in test noodles compared to 73.6g glucose/100g starch in control SPF and 65.9 g in SPS noodles. Resistant starch (RS) was 54.96% for NUTRIOSE (15%)+GG (1%) fortified SPF noodles and 53.3% for NUTRIOSE (5%)+GG (0.5%) fortified SPS noodles, as against 33.8% and 40.68%, respectively in SPF and SPS controls. Lowest glycaemic index (54.58) and the highest sensory scores (4.23) were obtained for noodles with 15% NUTRIOSE+1% GG. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Mechanisms by which resistant starches and non-starch polysaccharide sources affect the metabolism and disposition of the food carcinogen, 2-amino-3-methylimidazo[4,5-f]quinoline.

    PubMed

    Kestell, P; Zhu, S; Ferguson, L R

    2004-03-25

    Although both non-starch polysaccharides (NSP) and resistant starches (RS) are included in current definitions of dietary fibre, our previous work has suggested fundamental differences in the way in which these two classes of material affect the disposition and absorption of a dietary carcinogen. The present studies explore whether different effects on carcinogen metabolism could play a role in the contrasting patterns seen previously. Groups of female Wistar rats were pre-fed for 4 weeks one of five types of defined diet (AIN-76). The control diet contained 35% maize starch and no dietary fibre. The RS-containing diets had all the maize starch substituted with either Hi-maize or potato starch. In the NSP-containing diets, 10% of the maize starch was substituted with dietary fibre in the form of either lignified plant cell walls (wheat straw) or soluble dietary fibre (apple pectin). Pre-fed rats were gavaged with the food carcinogen, [2-14C] 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), and plasma and urinary metabolites characterized using HPLC at various time intervals after administration. After 4 h gavage, plasma from rats on both RS-containing diets contained significantly higher levels of intact IQ and lower levels of the major metabolites, IQ-5-O-glucuronide and IQ-5-sulfate, as compared with plasma from the negative control group at this time. In contrast, plasma from animals on the NSP-containing wheat straw diet (and to a lesser extent the apple pectin diet) showed significantly lower levels of intact IQ, and significantly higher levels of the two major metabolites, as compared with those from the control rats. These different metabolite profiles were also reflected in different urinary excretion profiles. Urine from rats pre-fed RS-containing diets revealed significantly slower metabolite excretion as compared with urine from rats that had been given the NSP-containing diets. Western blotting methodologies also profiled differences between the effects of

  15. New starch methodology to measure both soluble and insoluble starch

    USDA-ARS?s Scientific Manuscript database

    Starch is a natural sugarcane juice impurity that greatly influences raw sugar quality and affects factory and refinery processing. Since the advent of the USDA Starch Research method, the mechanisms in which starch concentration and physical form affects sugar crop processing, conversion, and end-g...

  16. Concomitant production of detergent compatible enzymes by Bacillus flexus XJU-1.

    PubMed

    Niyonzima, Francois N; More, Sunil S

    2014-01-01

    A soil screened Bacillus flexus XJU-1 was induced to simultaneously produce alkaline amylase, alkaline lipase and alkaline protease at their optimum levels on a common medium under submerged fermentation. The basal cultivation medium consisted of 0.5% casein, 0.5% starch and 0.5% cottonseed oil as an inducer for protease, amylase, and lipase, respectively. The casein also served as nitrogen source for all 3 enzymes. The starch was also found to act as carbon source additive for both lipase and protease. Maximum enzyme production occurred on fermentation medium with 1.5% casein, 1.5% soluble starch, 2% cottonseed oil, 2% inoculum size, initial pH of 11.0, incubation temperature of 37 °C and 1% soybean meal as a nitrogen source supplement. The analysis of time course study showed that 24 h was optimum incubation time for amylase whereas 48 h was the best time for both lipase and protease. After optimization, a 3.36-, 18.64-, and 27.33-fold increase in protease, amylase and lipase, respectively was recorded. The lipase was produced in higher amounts (37.72 U/mL) than amylase and protease about 1.27 and 5.85 times, respectively. As the 3 enzymes are used in detergent formulations, the bacterium can be commercially exploited to secrete the alkaline enzymes for use in detergent industry. This is the first report for concomitant production of 3 alkaline enzymes by a bacterium.

  17. Optimization of Extrusion Process of Directly Expanded Snacks Based on Potato Starch in a Single Step for the Formation of Type IV Resistant Starch.

    PubMed

    Calvo-López, Amira Daniela; Martínez-Bustos, Fernando

    2017-09-01

    Resistant starch type IV (RSIV) can be produced by chemical modifications (etherized or esterified) such as conversion, substitution, or cross-linking, which can prevent its digestion by blocking enzyme access and forming atypical linkages. In this research, the effects of barrel temperature (145.86-174.14 °C), the screw speed (42.93-57.07 Hz) and derivatization (esterification) in the formation of RSIV content of directly expanded snacks (second generation snacks) were studied. Potato starch was chemically modified by phosphorylation and succinylation, and expanded by using the extrusion cooking process. Snacks with phosphorylated starch showed expansion index from 2.57 to 3.23, bulk density from 306.19 to 479.00 kg/m 3 and RSIV from 43.27 to 55.81%. Snacks with succinylated starch had expansion index from 3.52 to 3.82, bulk density from 99.85 to 134.51 kg/m 3 and RSIV from 23.17 to 35.01%. The results found in this work showed that it is possible to manufacture extruded directly expanded snacks (second-generation snacks) such as a ready-to-eat (RTE) with good physicochemical properties and without substantial loss of extrusion functionality, which could bring a healthy benefit due to the presence of RSIV.

  18. Rapid and Complete Enzyme Hydrolysis of Lignocellulosic Nanofibrils

    Treesearch

    Raquel Martin-Sampedro; Ilari Filpponen; Ingrid C. Hoeger; J.Y. Zhu; Janne Laine; Orlando J. Rojas

    2012-01-01

    Rapid enzymatic saccharification of lignocellulosic nanofibrils (LCNF) was investigated by monitoring nanoscale changes in mass via quartz crystal microgravimetry and also by measuring reducing sugar yields. In only a few minutes LCNF thin films were completely hydrolyzed upon incubation in multicomponent enzyme systems. Conversion to sugars and oligosaccharides of...

  19. Liquid Chromatography-Mass Spectrometry Analysis Reveals Hydrolyzed Gluten in Beers Crafted To Remove Gluten.

    PubMed

    Colgrave, Michelle L; Byrne, Keren; Howitt, Crispin A

    2017-11-08

    During brewing, gluten proteins may be solubilized, modified, complexed, hydrolyzed, and/or precipitate. Gluten fragments that persist in conventional beers render them unsuitable for people with celiac disease (CD) or gluten intolerance. Barley-based beers crafted to remove gluten using proprietary precipitation and/or application of enzymes, e.g. prolyl endopeptidases (PEP) that degrade the proline-rich gluten molecules, are available commercially. Gluten measurement in fermented products remains controversial. The industry standard, a competitive ELISA, may indicate gluten values <20 mg/kg, which is deemed safe for people with CD. However, in this study, liquid chromatography-mass spectrometry analyses revealed gluten peptides derived from hydrolyzed fragments, many >30 kDa in size. Barley gluten (hordeins) were detected in all beers analyzed with peptides representing all hordein classes detected in conventional beers but also, alarmingly, in many gluten-reduced beers. It is evident that PEP digestion was incomplete in several commercial beers, and peptides comprising missed cleavages were identified, warranting further optimization of PEP application in an industrial setting.

  20. Surface Localization of Zein Storage Proteins in Starch Granules from Maize Endosperm1

    PubMed Central

    Mu-Forster, Chen; Wasserman, Bruce P.

    1998-01-01

    Starch granules from maize (Zea mays) contain a characteristic group of polypeptides that are tightly associated with the starch matrix (C. Mu-Forster, R. Huang, J.R. Powers, R.W. Harriman, M. Knight, G.W. Singletary, P.L. Keeling, B.P. Wasserman [1996] Plant Physiol 111: 821–829). Zeins comprise about 50% of the granule-associated proteins, and in this study their spatial distribution within the starch granule was determined. Proteolysis of starch granules at subgelatinization temperatures using the thermophilic protease thermolysin led to selective removal of the zeins, whereas granule-associated proteins of 32 kD or above, including the waxy protein, starch synthase I, and starch-branching enzyme IIb, remained refractory to proteolysis. Granule-associated proteins from maize are therefore composed of two distinct classes, the surface-localized zeins of 10 to 27 kD and the granule-intrinsic proteins of 32 kD or higher. The origin of surface-localized δ-zein was probed by comparing δ-zein levels of starch granules obtained from homogenized whole endosperm with granules isolated from amyloplasts. Starch granules from amyloplasts contained markedly lower levels of δ-zein relative to granules prepared from whole endosperm, thus indicating that δ-zein adheres to granule surfaces after disruption of the amyloplast envelope. Cross-linking experiments show that the zeins are deposited on the granule surface as aggregates. In contrast, the granule-intrinsic proteins are prone to covalent modification, but do not form intermolecular cross-links. We conclude that individual granule intrinsic proteins exist as monomers and are not deposited in the form of multimeric clusters within the starch matrix. PMID:9536075

  1. Interactions between the concentration of non-starch polysaccharides in wheat and the addition of an enzyme mixture in a broiler digestibility and performance trial.

    PubMed

    Smeets, N; Nuyens, F; Van Campenhout, L; Delezie, E; Niewold, T A

    2018-06-01

    Two broiler trials were designed to investigate the relationship between the concentration of non-starch polysaccharides (NSP) in wheat and 1) its nutritional value for broilers and 2) the efficacy of exogenous enzymes. In a balance trial, diets were formulated with 3 wheat cultivars (Rustic and Viscount-medium NSP, Centenaire-high NSP) and were tested with or without the addition of an exogenous enzyme mixture. The diets were fed to 144 male Ross 308 broiler chickens housed in digestibility cages. Total tract nutrient digestibilities and AMEn were measured from 18 to 22 d of age. In a performance trial, diets were formulated with wheat (medium NSP diet) or with wheat mixed with rye and barley (high NSP diet) and were tested with or without the addition of an exogenous enzyme mixture. The diets were fed to 960 male Ross 308 broilers housed in pens and broiler performance during starter, grower and finisher periods was measured.In the balance trial, wheat cultivar did not affect nutrient digestibility or AMEn. Enzyme addition caused a significant increase in nutrient digestibilities and AMEn for the diet formulated with the high NSP wheat Centenaire only. In the performance trial, feeding the high NSP diet resulted in a higher feed conversion ratio and lower final body weight compared to the medium NSP diet. The largest improvements by enzyme addition were observed in the high NSP diet.In conclusion, the study was not able to show a consistent relationship between the NSP concentration of wheat and its nutritional value, but did demonstrate that the effect of an enzyme mixture on nutrient digestibility or broiler performance depends upon the NSP concentration in the diet.

  2. Interactions between the concentration of non-starch polysaccharides in wheat and the addition of an enzyme mixture in a broiler digestibility and performance trial

    PubMed Central

    Smeets, N; Nuyens, F; Van Campenhout, L; Delezie, E; Niewold, T A

    2018-01-01

    ABSTRACT Two broiler trials were designed to investigate the relationship between the concentration of non-starch polysaccharides (NSP) in wheat and 1) its nutritional value for broilers and 2) the efficacy of exogenous enzymes. In a balance trial, diets were formulated with 3 wheat cultivars (Rustic and Viscount—medium NSP, Centenaire—high NSP) and were tested with or without the addition of an exogenous enzyme mixture. The diets were fed to 144 male Ross 308 broiler chickens housed in digestibility cages. Total tract nutrient digestibilities and AMEn were measured from 18 to 22 d of age. In a performance trial, diets were formulated with wheat (medium NSP diet) or with wheat mixed with rye and barley (high NSP diet) and were tested with or without the addition of an exogenous enzyme mixture. The diets were fed to 960 male Ross 308 broilers housed in pens and broiler performance during starter, grower and finisher periods was measured. In the balance trial, wheat cultivar did not affect nutrient digestibility or AMEn. Enzyme addition caused a significant increase in nutrient digestibilities and AMEn for the diet formulated with the high NSP wheat Centenaire only. In the performance trial, feeding the high NSP diet resulted in a higher feed conversion ratio and lower final body weight compared to the medium NSP diet. The largest improvements by enzyme addition were observed in the high NSP diet. In conclusion, the study was not able to show a consistent relationship between the NSP concentration of wheat and its nutritional value, but did demonstrate that the effect of an enzyme mixture on nutrient digestibility or broiler performance depends upon the NSP concentration in the diet. PMID:29471412

  3. Enzymes as Enhancers for the Biodegradation of Synthetic Polymers in Wastewater.

    PubMed

    Haernvall, Karolina; Zitzenbacher, Sabine; Biundo, Antonino; Yamamoto, Motonori; Schick, Michael Bernhard; Ribitsch, Doris; Guebitz, Georg M

    2018-02-16

    Synthetic polyesters are today the second-largest class of ingredients in household products and are entering wastewater treatment plants (WWTPs) after product utilization. One approach to improve polymer biodegradation in wastewater would be to complement current processes with polyester-hydrolyzing enzymes and their microbial producers. In this study, the hydrolysis of poly(oxyethylene terephthalate) polymer by hydrolases from wastewater microorganisms was investigated in vitro and under realistic WWTP conditions. An esterase and a cutinase from Pseudomonas pseudoalcaligenes and a lipase from Pseudomonas pelagia were heterologously expressed in Escherichia coli BL21-Gold(DE3) and were purified by a C-terminal His 6 tag. The hydrolases were proven to hydrolyze the polymer effectively, which is a prerequisite for further biodegradation. The hydrolases maintained high activity up to 50 % upon lowering the temperature from 28 to 15 °C to mimic WWTP conditions. The hydrolases were also not inhibited by the wastewater matrix. Polyester-hydrolyzing enzymes active under WWTP conditions and their microbial producers thus have the potential to improve biological treatment of wastewater rich in synthetic polymers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Preparation and characterization of non-crystalline granular starch and corresponding carboxymethyl starch.

    PubMed

    Zhang, Bao; Li, Xiaomin; Xie, Qiutao; Tao, Han; Wang, Wu; Chen, Han-Qing

    2017-10-01

    Native corn starch slurried in 50% ethanol solution was treated at 60°C, 70°C, 80°C, and 85°C, respectively. The resultant starches were investigated by polarized microscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffractometry (XRD). The Maltese cross of ethanol-heating treated starch gradually weaken with increasing temperature and completely disappeared at 85°C. SEM data indicated the treated granular exhibited a rougher surface with more pores and grooves than native starch granular, but the shape of the treated starch was still intact. DSC and XRD data confirmed ethanol-heating treated starch changed from crystalline to non-crystalline structure at 85°C. The highest degree of substitution (DS) and corresponding reaction efficiency (RE) for the carboxymethylation of native starch were 0.66 and 36.7%, respectively, while the corresponding DS and RE for non-crystalline granular starches increased by 0.29 and 16.1% at the same reaction condition, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A Forward Genetic Approach in Chlamydomonas reinhardtii as a Strategy for Exploring Starch Catabolism

    PubMed Central

    Duchêne, Thierry; Cogez, Virginie; Cousin, Charlotte; Peltier, Gilles; Ball, Steven G.; Dauvillée, David

    2013-01-01

    A screen was recently developed to study the mobilization of starch in the unicellular green alga Chlamydomonas reinhardtii. This screen relies on starch synthesis accumulation during nitrogen starvation followed by the supply of nitrogen and the switch to darkness. Hence multiple regulatory networks including those of nutrient starvation, cell cycle control and light to dark transitions are likely to impact the recovery of mutant candidates. In this paper we monitor the specificity of this mutant screen by characterizing the nature of the genes disrupted in the selected mutants. We show that one third of the mutants consisted of strains mutated in genes previously reported to be of paramount importance in starch catabolism such as those encoding β-amylases, the maltose export protein, and branching enzyme I. The other mutants were defective for previously uncharacterized functions some of which are likely to define novel proteins affecting starch mobilization in green algae. PMID:24019981

  6. Effects of thermo-resistant non-starch polysaccharide degrading multi-enzyme on growth performance, meat quality, relative weights of body organs and blood profile in broiler chickens.

    PubMed

    Mohammadi Gheisar, M; Hosseindoust, A; Kim, I H

    2016-06-01

    This research was conducted to study the performance and carcass parameters of broiler chickens fed diets supplemented with heat-treated non-starch polysaccharide degrading enzyme. A total of 432 one-day old Ross 308 broiler chickens were allocated to five treatments: (i) CON (basal diet), (ii) E1: CON + 0.05% multi-enzyme, (iii) E2: CON + 0.1% multi-enzyme, (iv) E3: CON + 0.05% thermo-resistant multi-enzyme and (v) E4: CON + 0.1% thermo-resistant multi-enzyme, each treatment consisted of six replications and 12 chickens in each replication. The chickens were housed in three floor battery cages during 28-day experimental period. On days 1-7, gain in body weight (BWG) improved by feeding the diets supplemented with thermo-resistant multi-enzyme. On days 7-21 and 1-28, chickens fed the diets containing thermo-resistant multi-enzyme showed improved (p < 0.05) BWG and feed conversion ratio (FCR) compared to CON group. Supplementing the diets with multi-enzyme or thermo-resistant multi-enzyme affected the percentage of drip loss on d 1 (p < 0.05). Drip loss percentage on days 3 and 5 and also meat colour were not affected significantly. Supplementing the diets with multi-enzyme or thermo-resistant multi-enzyme did not affect the relative weights of organs but compared to CON group, relative weight of breast muscle increased and abdominal fat decreased (p < 0.05). Among measured blood constituents, chickens fed supplemented diets with thermo-resistant multi-enzyme showed higher (p < 0.05) IgG. Counts of red and white blood cells and lymphocyte percentage were not affected. In conclusion, the results demonstrated that supplementing pelleted diets with thermo-resistant multi-enzyme improved performance of broiler chickens. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  7. Enhanced enzymatic hydrolysis of lignocellulose by optimizing enzyme complexes.

    PubMed

    Zhang, Mingjia; Su, Rongxin; Qi, Wei; He, Zhimin

    2010-03-01

    To enhance the conversion of the cellulose and hemicellulose, the corncob pretreated by aqueous ammonia soaking was hydrolyzed by enzyme complexes. The saturation limit for cellulase (Spezyme CP) was determined as 15 mg protein/g glucan (50 filter paper unit (FPU)/g glucan). The accessory enzymes (beta-glucosidase, xylanase, and pectinase) were supplemented to hydrolyze cellobiose (cellulase-inhibiting product), hemicellulose, and pectin (the component covering the fiber surfaces), respectively. It was found that beta-glucosidase (Novozyme 188) loading of 1.45 mg protein/g glucan [30 cellobiase units (CBU)/g glucan] was enough to eliminate the cellobiose inhibitor, and 2.9 mg protein/g glucan (60 CBU/g glucan) was the saturation limit. The supplementation of xylanase and pectinase can increase the conversion of cellulose and hemicellulose significantly. The yields of glucose and xylose enhanced with the increasing enzyme loading, but the increasing trend became low at high loading. Compared with xylanase, pectinase was more effective to promote the hydrolysis of cellulose and hemicellulose. The supplementation of pectinase with 0.12 mg protein/g glucan could increase the yields of glucose and xylose by 7.5% and 29.3%, respectively.

  8. Isolated starches from yams (Dioscorea sp) grown at the Venezuelan Amazons: structure and functional properties.

    PubMed

    Pérez, Elevina; Rolland-Sabaté, Agnès; Dufour, Dominique; Guzmán, Romel; Tapia, María; Raymundez, Marìa; Ricci, Julien; Guilois, Sophie; Pontoire, Bruno; Reynes, Max; Gibert, Olivier

    2013-10-15

    This work aimed to characterize the molecular structure and functional properties of starches isolated from wild Dioscorea yams grown at the Amazons, using conventional and up-to-date methodologies. Among the high purity starches isolated (≥99%), the chain lengths were similar, whereas variations in gelatinization profile were observed. Starches have shown varied-shaped granules with monomodal distribution, and B-type crystallinity. Variations in amylose contents found by three analyses were hypothesized being related to intermediate material. Linear chain lengths were similar, and their amylopectins showed a dense, spherical conformation and similar molecular characteristics. The average molar mass and the radius of gyration of the chromatograms of the yam amylopectin, M¯W and R¯G were ranging between 174×10(6) g mol(-1) and 237×10(6) g mol(-1), and 201 nm and 233 nm, respectively. The white yams starches were more sensible to enzymes than the other two. All starches have shown a wide range of functional and nutritional properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Contribution of mucosal maltase-glucoamylase activities to mouse small intestinal starch alpha-glucogenesis

    USDA-ARS?s Scientific Manuscript database

    Digestion of starch requires activities provided by 6 interactive small intestinal enzymes. Two of these are luminal endo-glucosidases named alpha-amylases. Four are exo-glucosidases bound to the luminal surface of enterocytes. These mucosal activities were identified as 4 different maltases. Two ma...

  10. Important Aspects of Post-Prandial Antidiabetic Drug, Acarbose.

    PubMed

    Singla, Rajeev Kumar; Singh, Radha; Dubey, Ashok Kumar

    2016-01-01

    Acarbose, a well known and efficacious α-amylase and α-glucosidase inhibitor, is a postprandial acting antidiabetic drug. DNS-based α-amylase inhibitory assays showed that use of acarbose at concentrations above 125 µg/ml resulted in release of reducing sugar in the reaction, an unexpected observation. Objective of the present study was to design experimental strategies to address this unusual finding. Acarbose was found to be susceptible to thermo-lysis. Further, besides being an inhibitor, it could also be hydrolyzed by porcine pancreatic α-amylase, but had weaker affinity for α - amylase compared to starch. GRIP docking was done for the mechanistic analysis of the active site in the enzyme for substrate, inhibitor and, inhibitor's metabolite (K2). Interaction between acarbose and α-amylase involved significant hydrogen binding compared to that of starch, producing a stronger enzyme-inhibitor complex. Further, docking analysis led us to predict the site on α-amylase where the inhibitor (acarbose) bound more tightly, which possibly affected the binding and hydrolysis of starch exerting its effective anti-diabetic function.

  11. Unique Organization of Extracellular Amylases into Amylosomes in the Resistant Starch-Utilizing Human Colonic Firmicutes Bacterium Ruminococcus bromii

    PubMed Central

    Ze, Xiaolei; Ben David, Yonit; Laverde-Gomez, Jenny A.; Dassa, Bareket; Sheridan, Paul O.; Duncan, Sylvia H.; Louis, Petra; Henrissat, Bernard; Juge, Nathalie; Koropatkin, Nicole M.; Bayer, Edward A.

    2015-01-01

    ABSTRACT Ruminococcus bromii is a dominant member of the human gut microbiota that plays a key role in releasing energy from dietary starches that escape digestion by host enzymes via its exceptional activity against particulate “resistant” starches. Genomic analysis of R. bromii shows that it is highly specialized, with 15 of its 21 glycoside hydrolases belonging to one family (GH13). We found that amylase activity in R. bromii is expressed constitutively, with the activity seen during growth with fructose as an energy source being similar to that seen with starch as an energy source. Six GH13 amylases that carry signal peptides were detected by proteomic analysis in R. bromii cultures. Four of these enzymes are among 26 R. bromii proteins predicted to carry dockerin modules, with one, Amy4, also carrying a cohesin module. Since cohesin-dockerin interactions are known to mediate the formation of protein complexes in cellulolytic ruminococci, the binding interactions of four cohesins and 11 dockerins from R. bromii were investigated after overexpressing them as recombinant fusion proteins. Dockerins possessed by the enzymes Amy4 and Amy9 are predicted to bind a cohesin present in protein scaffoldin 2 (Sca2), which resembles the ScaE cell wall-anchoring protein of a cellulolytic relative, R. flavefaciens. Further complexes are predicted between the dockerin-carrying amylases Amy4, Amy9, Amy10, and Amy12 and two other cohesin-carrying proteins, while Amy4 has the ability to autoaggregate, as its dockerin can recognize its own cohesin. This organization of starch-degrading enzymes is unprecedented and provides the first example of cohesin-dockerin interactions being involved in an amylolytic system, which we refer to as an “amylosome.” PMID:26419877

  12. A Putative Gene sbe3-rs for Resistant Starch Mutated from SBE3 for Starch Branching Enzyme in Rice (Oryza sativa L.)

    USDA-ARS?s Scientific Manuscript database

    Foods high in resistant starch (RS) are beneficial to prevent various diseases including diabetes, colon cancer, diarrhea and chronic renal or hepatic diseases. Elevated RS in rice is important for public health since rice is a staple food for half of the world’s population. A japonica mutant ‘Jiang...

  13. Four flavonoid compounds from Phyllostachys edulis leaf extract retard the digestion of starch and its working mechanisms.

    PubMed

    Yang, Jun-Peng; He, Hao; Lu, Yan-Hua

    2014-08-06

    Bamboo leaf extract as a food additive has been used for preventing the oxidation of food. In the present study, we investigated the influence of Phyllostachys edulis leaf extract on starch digestion. Orientin, isoorientin, vitexin, and isovitexin were determined as its α-amylase inhibitory constituents. An inhibitory kinetics experiment demonstrated that they competitively inhibit α-amylase with Ki values of respectively 152.6, 11.5, 569.6, and 75.8 μg/mL. Molecular docking showed the four flavones can interact with the active site of α-amylase, and their inhibitory activity was greatly influenced by the glucoside linking position and 3'-hydroxyl. Moreover, the results of starch-iodine complex spectroscopy, X-ray diffraction, and scanning electron microscopy indicated that P. edulis flavonoids retard the digestion of starch not only through interaction with digestive enzymes, but also through interaction with starch. Thus, P. edulis leaf extract can be potentially used as a starch-based food additive for adjusting postprandial hyperglycemia.

  14. A study on starch profile of rajma bean (Phaseolus vulgaris) incorporated noodle dough and its functional characteristics.

    PubMed

    Bharath Kumar, S; Prabhasankar, P

    2015-08-01

    Starch profile reflects functional characteristics like digestibility and product quality. A study was aimed to incorporate rajma in noodle processing to improve product and nutritional quality and also to reduce starch digestibility. It is known that some of the pulses like Kidney beans have an isoforms of Starch-Branching-Enzyme (SBE) helps in converting amylose to amylopectin. Rajma flour was incorporated at 10%, 20% and 30% with Triticumdurum and subjected to rheological, physico-chemical and amylose/amylopectin determination using High-Performance-Size-Exclusion-Chromatography (HPSEC). Results revealed that rajma flour decreased peak-viscosity from 954 to 683 BU and increased water absorption. Protein and dietary fiber content increased significantly. Sensory profile showed higher overall quality (>8.5). In vitro starch digestibility reduced from 65% to 49%. Starch profile from HPSEC showed changes in amylose:amylopectin peak, this may be because of the presence of SBE, further studies may be required to support the hypothesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Effect of resistant starch RS4 added to the high-fat diets on selected biochemical parameters in Wistar rats.

    PubMed

    Bronkowska, Monika; Orzeł, Dagmara; Łoźna, Karolina; Styczyńska, Marzena; Biernat, Jadwiga; Gryszkin, Artur; Zieba, Tomasz; Kapelko, Małgorzata

    2013-01-01

    Resistant starch (RS) is part of potato starch that is not digested in the gastrointestinal tract. RS4 is a chemically modified starch (for example by oxidation and esterification) and physically (by heating). The study was aimed at determining the effect of resistant starch on lipid metabolism and activity of hepatic enzymes in Wistar strain rats fed high-fat diets containing 15% of lard or 15% of soybean oil. Four types of diets were administered to the animals (4 groups of males, n = 32): control diet (K1) containing 15% of soybean oil; control diet (K2) containing 15% of lard as well as two groups receiving the same diets with 10% addition of resistant starch RS4 (K1S and K2S). The mean concentration of total cholesterol was lower in the group of animals fed a diet with vegetable oil (39.9 mg/dl) as compared to that reported in the group of rats fed the lard-supplemented diet (55.2 mg/dl). Compared to the control groups in both groups of animals receiving the diet supplemented with resistant starch RS4 the total cholesterol concentration in serum decreased by ca. 25% (differences were statistically significant). In groups of rats receiving oil- or lard-containing diets with the addition of the resistant starch preparation the concentration of triglycerides in serum decreased by ca. 47% and 10%, respectively. A beneficial effect of the resistant starch RS4 added to Wistar rats diets on the lipid metabolism has been shown. The concentrations of total cholesterol and triglycerides in the serum were lower and concentration of HDL-cholesterol was higher in the rats fed with the diets containing the addition of the RS4 preparation as compared to the control groups. Based on the activity of hepatic enzymes the degree of liver damage was lower in groups of rats fed with diets containing resistant starch RS4 as compared to the control groups.

  16. Substrates and method for determining enzymes

    DOEpatents

    Smith, Robert E.; Bissell, Eugene R.

    1981-01-01

    A method is disclosed for determining the presence of an enzyme in a biological fluid, which includes the steps of contacting the fluid with a synthetic chromogenic substrate, which is an amino acid derivative of 7-amino-4-trifluoromethylcoumarin; incubating the substrate-containing fluid to effect enzymatic hydrolysis; and fluorometrically determining the presence of the free 7-amino-4-trifluoromethylcoumarin chromophore in the hydrolyzate.

  17. Substrates and method for determining enzymes

    DOEpatents

    Smith, R.E.; Bissell, E.R.

    1981-10-13

    A method is disclosed for determining the presence of an enzyme in a biological fluid, which includes the steps of contacting the fluid with a synthetic chromogenic substrate, which is an amino acid derivative of 7-amino-4-trifluoromethylcoumarin; incubating the substrate-containing fluid to effect enzymatic hydrolysis; and fluorometrically determining the presence of the free 7-amino-4-trifluoromethylcoumarin chromophore in the hydrolyzate. No Drawings

  18. Powdered hide model for vegetable tanning II. hydrolyzable tannin

    USDA-ARS?s Scientific Manuscript database

    Vegetable tannages employ both condensed and hydrolyzable tannins. As part of our exploration of tanning mechanisms, we reported last year on interactions of the condensed tannin, quebracho, with powdered hide. In this study, the interactions of chestnut extract, a hydrolyzable tannin, with powdere...

  19. Transcriptome analysis of carbohydrate metabolism during bulblet formation and development in Lilium davidii var. unicolor.

    PubMed

    Li, XueYan; Wang, ChunXia; Cheng, JinYun; Zhang, Jing; da Silva, Jaime A Teixeira; Liu, XiaoYu; Duan, Xin; Li, TianLai; Sun, HongMei

    2014-12-19

    The formation and development of bulblets are crucial to the Lilium genus since these processes are closely related to carbohydrate metabolism, especially to starch and sucrose metabolism. However, little is known about the transcriptional regulation of both processes. To gain insight into carbohydrate-related genes involved in bulblet formation and development, we conducted comparative transcriptome profiling of Lilium davidii var. unicolor bulblets at 0 d, 15 d (bulblets emerged) and 35 d (bulblets formed a basic shape with three or four scales) after scale propagation. Analysis of the transcriptome revealed that a total of 52,901 unigenes with an average sequence size of 630 bp were generated. Based on Clusters of Orthologous Groups (COG) analysis, 8% of the sequences were attributed to carbohydrate transport and metabolism. The results of KEGG pathway enrichment analysis showed that starch and sucrose metabolism constituted the predominant pathway among the three library pairs. The starch content in mother scales and bulblets decreased and increased, respectively, with almost the same trend as sucrose content. Gene expression analysis of the key enzymes in starch and sucrose metabolism suggested that sucrose synthase (SuSy) and invertase (INV), mainly hydrolyzing sucrose, presented higher gene expression in mother scales and bulblets at stages of bulblet appearance and enlargement, while sucrose phosphate synthase (SPS) showed higher expression in bulblets at morphogenesis. The enzymes involved in the starch synthetic direction such as ADPG pyrophosphorylase (AGPase), soluble starch synthase (SSS), starch branching enzyme (SBE) and granule-bound starch synthase (GBSS) showed a decreasing trend in mother scales and higher gene expression in bulblets at bulblet appearance and enlargement stages while the enzyme in the cleavage direction, starch de-branching enzyme (SDBE), showed higher gene expression in mother scales than in bulblets. An extensive transcriptome

  20. Effect of roasted pea flour/starch and encapsulated pea starch incorporation on the in vitro starch digestibility of pea breads.

    PubMed

    Lu, Zhan-Hui; Donner, Elizabeth; Liu, Qiang

    2018-04-15

    Oven or microwave roasting and alginate encapsulation of pea flour and starch to produce novel pea ingredients for enrichment of slowly digestible starch (SDS) and resistant starch (RS) content in pea bread were investigated. Pea flour treated either by oven roasting (160°C, 30min) or by microwave roasting (1.1kW, 6min) effectively retained its low starch digestibility similar to its native form (∼25% SDS; ∼60% RS). When oven roasting was applied to pea starch, SDS content increased triply compared to the fully boiled counterpart. Alginate encapsulation effectively controlled carbohydrate release to simulated gastric, intestinal and colonic fluids, and thus largely enriched the SDS and RS fractions in starch. Pea bread containing up to 37.5% of encapsulated roasted MPS pea starch not only provided high SDS and RS fractions (23.9% SDS and 30.2% RS) compared to a white bread control (0.2% SDS and 2.5% RS), but also provided an acceptable palatability. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  1. Carboxylesterases: General detoxifying enzymes

    PubMed Central

    Hatfield, M. Jason; Umans, Robyn A.; Hyatt, Janice L.; Edwards, Carol C; Wierdl, Monika; Tsurkan, Lyudmila; Taylor, Michael R.; Potter, Philip M.

    2016-01-01

    Carboxylesterases (CE) are members of the esterase family of enzymes, and as their name suggests, they are responsible for the hydrolysis of carboxylesters into the corresponding alcohol and carboxylic acid. To date, no endogenous CE substrates have been identified and as such, these proteins are thought to act as a mechanism to detoxify ester-containing xenobiotics. As a consequence, they are expressed in tissues that might be exposed to such agents (lung and gut epithelia, liver, kidney, etc.). CEs demonstrate very broad substrate specificities and can hydrolyze compounds as diverse as cocaine, oseltamivir (Tamiflu), permethrin and irinotecan. In addition, these enzymes are irreversibly inhibited by organophosphates such as Sarin and Tabun. In this overview, we will compare and contrast the two human enzymes that have been characterized, and evaluate the biology of the interaction of these proteins with organophosphates (principally nerve agents). PMID:26892220

  2. Resistant starch: Variation among high amylose rice varieties and its relationship with apparent amylose content, pasting properties and cooking methods.

    PubMed

    Chen, Ming-Hsuan; Bergman, Christine J; McClung, Anna M; Everette, Jace D; Tabien, Rodante E

    2017-11-01

    Resistant starch (RS), which is not hydrolyzed in the small intestine, has proposed health benefits. We evaluated 40 high amylose rice varieties for RS content in cooked rice and a 1.9-fold difference was found. Some varieties had more than two-fold greater RS content than a US long-grain intermediate-amylose rice. The high amylose varieties were grouped into four classes according to paste viscosity and gelatinization temperature based on genetic variants of the Waxy and Starch Synthase IIa genes, respectively. RS content was not different between the four paste viscosity-gelatinization temperature classes. Multiple linear regression analysis showed that apparent amylose content and pasting temperature were strong predictors of RS within each class. Two cooking methods, fixed water-to-rice ratio/time and in excess-water/minimum-cook-time, were compared using six rice varieties that were extremes in RS in each of the genetic variant classes, no difference in RS content due to cooking method was observed. Published by Elsevier Ltd.

  3. Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation.

    PubMed

    MacNeill, Gregory J; Mehrpouyan, Sahar; Minow, Mark A A; Patterson, Jenelle A; Tetlow, Ian J; Emes, Michael J

    2017-07-20

    Starch commands a central role in the carbon budget of the majority of plants on earth, and its biological role changes during development and in response to the environment. Throughout the life of a plant, starch plays a dual role in carbon allocation, acting as both a source, releasing carbon reserves in leaves for growth and development, and as a sink, either as a dedicated starch store in its own right (in seeds and tubers), or as a temporary reserve of carbon contributing to sink strength, in organs such as flowers, fruits, and developing non-starchy seeds. The presence of starch in tissues and organs thus has a profound impact on the physiology of the growing plant as its synthesis and degradation governs the availability of free sugars, which in turn control various growth and developmental processes. This review attempts to summarize the large body of information currently available on starch metabolism and its relationship to wider aspects of carbon metabolism and plant nutrition. It highlights gaps in our knowledge and points to research areas that show promise for bioengineering and manipulation of starch metabolism in order to achieve more desirable phenotypes such as increased yield or plant biomass. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Iminosugar inhibitors of carbohydrate-active enzymes that underpin cereal grain germination and endosperm metabolism

    PubMed Central

    Andriotis, Vasilios M. E.; Rejzek, Martin; Rugen, Michael D.; Svensson, Birte; Smith, Alison M.; Field, Robert A.

    2016-01-01

    Starch is a major energy store in plants. It provides most of the calories in the human diet and, as a bulk commodity, it is used across broad industry sectors. Starch synthesis and degradation are not fully understood, owing to challenging biochemistry at the liquid/solid interface and relatively limited knowledge about the nature and control of starch degradation in plants. Increased societal and commercial demand for enhanced yield and quality in starch crops requires a better understanding of starch metabolism as a whole. Here we review recent advances in understanding the roles of carbohydrate-active enzymes in starch degradation in cereal grains through complementary chemical and molecular genetics. These approaches have allowed us to start dissecting aspects of starch degradation and the interplay with cell-wall polysaccharide hydrolysis during germination. With a view to improving and diversifying the properties and uses of cereal grains, it is possible that starch degradation may be amenable to manipulation through genetic or chemical intervention at the level of cell wall metabolism, rather than simply in the starch degradation pathway per se. PMID:26862201

  5. 40 CFR 721.4585 - Lecithins, phospholipase A2-hydrolyzed.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Lecithins, phospholipase A2-hydrolyzed... Substances § 721.4585 Lecithins, phospholipase A2-hydrolyzed. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as lecithins...

  6. Acetylated adipate of retrograded starch as RS 3/4 type resistant starch.

    PubMed

    Kapelko-Żeberska, M; Zięba, T; Spychaj, R; Gryszkin, A

    2015-12-01

    This study was aimed at producing acetylated adipate of retrograded starch (ADA-R) with various degrees of substitution with functional groups and at determining the effect of esterification degree on resistance and pasting characteristics of the produced preparations. Paste was prepared from native potato starch, and afterwards frozen and defrosted. After drying and disintegration, the paste was acetylated and crosslinked using various doses of reagents. An increase in the total degree of esterification of the produced ADA-R-preparation caused an increase in its resistance to the action of amyloglucosidase. Viscosity of the paste produced from ADA-R-preparation in a wide range of acetylation degrees was increasing along with increasing crosslinking of starch. The study demonstrated that acetylated adipate of retrograded starch may be classified as a preparation of RS 3/4 type resistant starch (retrograded starch/chemically-modified starch) with good texture-forming properties. The conducted modification offers the possibility of modeling the level of resistance of the produced preparation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The thermolysin family (M4) of enzymes: therapeutic and biotechnological potential.

    PubMed

    Adekoya, Olayiwola A; Sylte, Ingebrigt

    2009-01-01

    Zinc containing peptidases are widely distributed in nature and have important roles in many physiological processes. M4 family comprises numerous zinc-dependent metallopeptidases that hydrolyze peptide bonds. A large number of these enzymes are implicated as virulence factors of the microorganisms that produce them and are therefore potential drug targets. Some enzymes of the family are able to function at the extremes of temperatures, and some function in organic solvents. Thereby enzymes of the thermolysin family have an innovative potential for biotechnological applications.

  8. Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic biomass and process strategy for high titers.

    PubMed

    Slininger, Patricia J; Dien, Bruce S; Kurtzman, Cletus P; Moser, Bryan R; Bakota, Erica L; Thompson, Stephanie R; O'Bryan, Patricia J; Cotta, Michael A; Balan, Venkatesh; Jin, Mingjie; Sousa, Leonardo da Costa; Dale, Bruce E

    2016-08-01

    Oleaginous yeasts can convert sugars to lipids with fatty acid profiles similar to those of vegetable oils, making them attractive for production of biodiesel. Lignocellulosic biomass is an attractive source of sugars for yeast lipid production because it is abundant, potentially low cost, and renewable. However, lignocellulosic hydrolyzates are laden with byproducts which inhibit microbial growth and metabolism. With the goal of identifying oleaginous yeast strains able to convert plant biomass to lipids, we screened 32 strains from the ARS Culture Collection, Peoria, IL to identify four robust strains able to produce high lipid concentrations from both acid and base-pretreated biomass. The screening was arranged in two tiers using undetoxified enzyme hydrolyzates of ammonia fiber expansion (AFEX)-pretreated cornstover as the primary screening medium and acid-pretreated switch grass as the secondary screening medium applied to strains passing the primary screen. Hydrolyzates were prepared at ∼18-20% solids loading to provide ∼110 g/L sugars at ∼56:39:5 mass ratio glucose:xylose:arabinose. A two stage process boosting the molar C:N ratio from 60 to well above 400 in undetoxified switchgrass hydrolyzate was optimized with respect to nitrogen source, C:N, and carbon loading. Using this process three strains were able to consume acetic acid and nearly all available sugars to accumulate 50-65% of cell biomass as lipid (w/w), to produce 25-30 g/L lipid at 0.12-0.22 g/L/h and 0.13-0.15 g/g or 39-45% of the theoretical yield at pH 6 and 7, a performance unprecedented in lignocellulosic hydrolyzates. Three of the top strains have not previously been reported for the bioconversion of lignocellulose to lipids. The successful identification and development of top-performing lipid-producing yeast in lignocellulose hydrolyzates is expected to advance the economic feasibility of high quality biodiesel and jet fuels from renewable biomass, expanding the market

  9. Hydrolysis of various thai agricultural biomasses using the crude enzyme from Aspergillus aculeatus iizuka FR60 isolated from soil

    PubMed Central

    Boonmee, Atcha

    2012-01-01

    In this study, forty-two fungi from soil were isolated and tested for their carboxymethyl cellulase (CMCase) and xylanase activities. From all isolates, the fungal isolate FR60, which was identified as Aspergillus aculeatus Iizuka, showed high activities in both CMCase and xylanase with 517 mU/mg protein and 550 mU/mg protein, respectively. The crude enzyme from A. aculeatus Iizuka FR60 could hydrolyze several agricultural residues such as corncob, and sweet sorghum leaf and stalk at comparable rates with respect to the tested commercial enzymes and with a maximum rate in rice hull hydrolysis (29 μg sugar g-1 dry weight substrate mg-1 enzyme hr-1). The highest amount of glucose was obtained from corncob by using the crude enzyme from A. aculeatus Iizuka FR60 (10.1 g/100 g dry substrate). From overall enzymatic treatment results, the lowest sugar yield was from rice hulls treatment (1.6 g/100 g dry weight) and the highest amount of reducing sugar was obtained from rice straw treatment (15.3 g/100 g dry weight). Among tested agricultural wastes, rice hull could not be effectively hydrolyzed by enzymes, whereas sugarcane leaf and stalk, and peanut shell could be effectively hydrolyzed (30-31% total sugar comparing with total sugar yield from acid treatment). PMID:24031852

  10. Rheological properties of reactive extrusion modified waxy starch and waxy starch-polyacrylamide copolymer gels

    USDA-ARS?s Scientific Manuscript database

    The rheological properties of modified waxy starch and waxy starch-polyacrylamide graft copolymers prepared by reactive extrusion were investigated. Both materials can absorb huge amount of water and form gels. The modified waxy starch and waxy starch-polyacrylamide graft copolymer gels all exhibite...

  11. Characterization of Proteins in Filtrate from Biodegradation of Crop Residue

    NASA Technical Reports Server (NTRS)

    Horton, Wileatha; Trotman, A. A.

    1997-01-01

    Biodegradation of plant biomass is a feasible path for transformation of crop residue and recycling of nutrients for crop growth. The need to model the effects of factors associated with recycling of plant biomass resulting from hydroponic sweet potato production has led to investigation of natural soil isolates with the capacity for starch hydrolysis. This study sought to use nondenaturing gel electrophoresis to characterize the proteins present in filtered effluent from bioreactors seeded with starch hydrolyzing bacterial culture used in the biodegradation of senesced sweet potato biomass. The study determined the relative molecular weight of proteins in sampled effluent and the protein banding pattern was characterized. The protein profiles of effluent were similar for samples taken from independent runs under similar conditions of starch hydrolysis. The method can be used as a quality control tool for confirmation of starch hydrolysis of crop biomass. In addition, this method will allow monitoring for presence of contaminants within the system-protein profiles indicative of new enzymes in the bioreactors.

  12. The effect of fermentation and addition of vegetable oil on resistant starch formation in wholegrain breads.

    PubMed

    Buddrick, Oliver; Jones, Oliver A H; Hughes, Jeff G; Kong, Ing; Small, Darryl M

    2015-08-01

    Resistant starch has potential health benefits but the factors affecting its formation in bread and baked products are not well studied. Here, the formation of resistant starch in wholemeal bread products was evaluated in relation to the processing conditions including fermentation time, temperature and the inclusion of palm oil as a vitamin source. The effects of each the factor were assessed using a full factorial design. The impact on final starch content of traditional sourdough fermentation of wholemeal rye bread, as well as the bulk fermentation process of wheat and wheat/oat blends of wholemeal bread, was also assessed by enzyme assay. Palm oil content was found to have a significant effect on the formation of resistant starch in all of the breads while fermentation time and temperature had no significant impact. Sourdough fermentation of rye bread was found to have a greater impact on resistant starch formation than bulk fermentation of wheat and wheat blend breads, most likely due the increased organic acid content of the sourdough process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Design of starch functionalized biodegradable P(MAA-co-MMA) as carrier matrix for l-asparaginase immobilization.

    PubMed

    Ulu, Ahmet; Koytepe, Suleyman; Ates, Burhan

    2016-11-20

    We prepared biodegradable P(MAA-co-MMA)-starch composite as carrier matrix for the immobilization of l-asparaginase (l-ASNase), an important chemotherapeutic agent in acute lymphoblastic leukemia. Chemical characteristics and thermal stability of the prepared composites were determined by FT-IR, TGA, DTA and, DSC, respectively. Also, biodegradability measurements of P(MAA-co-MMA)-starch composites were carried out to examine the effects of degradation of the starch. Then, l-ASNase was immobilized on the P(MAA-co-MMA)-starch composites. The surface morphology of the composite before and after immobilization was characterized by SEM, EDX, and AFM. The properties of the immobilized l-ASNase were investigated and compared with the free enzyme. The immobilized l-ASNase had better showed thermal and pH stability, and remained stable after 30days of storage at 25°C. Thus, based on the findings of the present work, the P(MAA-co-MMA)-starch composite can be exploited as the biocompatible matrix used for l-ASNase immobilization for medical applications due to biocompatibility and biodegradability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Identification and Characterization of MalA in the Maltose/Maltodextrin Operon of Sulfolobus acidocaldarius DSM639

    PubMed Central

    Choi, Kyoung-Hwa; Hwang, Sungmin

    2013-01-01

    A putative maltose/maltodextrin operon was found in the Sulfolobus acidocaldarius DSM639 genome. The gene cluster consisted of 7 genes (malA, trmB, amyA, malG, malF, malE, and malK). Here, we report the identification of MalA, which is responsible for the hydrolysis of maltose or maltodextrin to glucose in S. acidocaldarius. The transcription level of malA was increased 3-fold upon the addition of maltose or starch to the medium. Moreover, the α-glucosidase activity for maltose as a substrate in cell extracts of S. acidocaldarius DSM639 was also 11- and 10-fold higher during growth in YT medium (Brock's mineral salts, 0.1% [wt/vol] tryptone, and 0.005% [wt/vol] yeast extract) containing maltose or starch, respectively, than during growth on other sugars. The gene encoding MalA was cloned and expressed in S. acidocaldarius. The enzyme purified from the organism was a dodecamer in its active state and showed strong maltose-hydrolyzing activity at 100°C and pH 5.0. MalA was remarkably thermostable, with half-lives of 33.8 h, 10.6 h, and 1.8 h at 95°C, 100°C, and 105°C, respectively. Substrate specificity and kinetic studies of MalA with maltooligosaccharides indicated that MalA efficiently hydrolyzed maltose to maltopentaose, which is a typical characteristic of GH31-type α-glucosidases. However, glycogen or starch was not hydrolyzed. Reverse transcription-PCR, sugar uptake, and growth studies of the wild-type DSM639 and ΔmalEFG mutant on different sugars demonstrated that MalA located in the mal operon gene cluster is involved in maltose and starch metabolism in S. acidocaldarius. PMID:23396915

  15. Preparation and characterization of aminoethyl hydroxypropyl starch modified with collagen peptide.

    PubMed

    Wen, Huigao; Hu, Jin; Ge, Hongyu; Zou, Shengqiong; Xiao, Yao; Li, Ya; Feng, Han; Fan, Lihong

    2017-08-01

    The preparation of aminoethyl hydroxypropyl starch collagen peptide (AEHPS-COP) was via an enzyme-catalyzed reaction between amino groups in aminoethyl hydroxypropyl starch (AEHPS) and γ-carboxamide groups in collagen peptide (COP) by using microbial transglutaminase (MTGase) as biocatalyst. As an intermediate reactant, AEHPS was synthesized from hydroxypropyl starch (HPS) and 2-chloroethylamine hydrochloride (CEH). The chemical structures of HPS, AEHPS and AEHPS-COP were characterized by Fourier transform infrared spectroscopy (FT-IR) and 13 C nuclear magnetic resonance ( 13 C NMR). The reaction conditions that influenced the degree of substitution (DS) of AEHPS-COP were optimized, which included the reaction temperature, the reaction time, the mass ratio of collagen peptide to aminoethyl hydroxypropyl starch and the pH value. In addition, in vitro antioxidant activities of AEHPS-COP were evaluated through the scavenging activity of hydroxyl and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. Furthermore, the methylthiazol tetrazolium (MTT) assay was applied to investigate the cell viability of AEHPS-COP. The results indicated that the AEHPS-COP exhibited better cell viability to L929 mouse fibroblast cells. Therefore, the AEHPS-COP showed a promising potential application in cosmetic, biomedical and pharmaceutical fields. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Bifidobacterium pseudolongum has characteristics of a keystone species in bifidobacterial blooms in the ceca of rats fed Hi-Maize starch.

    PubMed

    Centanni, Manuela; Lawley, Blair; Butts, Christine A; Roy, Nicole; Lee, Julian; Kelly, William J; Tannock, Gerald W

    2018-05-25

    Starches resistant to mammalian digestion are present in foods and pass to the large bowel where they may be degraded and fermented by the microbiota. Increases in relative abundances of bifidobacteria (blooms) have been reported in rats whose diet was supplemented with Hi-Maize resistant starch. We determined that the bifidobacterial species present in the rat cecum under these circumstances mostly belonged to Bifidobacterium animalis However, cultures of B. animalis isolated from the rats failed to degrade Hi-Maize starch to any extent. In contrast, Bifidobacterium pseudolongum also detected in the rat microbiota had high starch-degrading ability. Transcriptional comparisons showed increased expression of a Type 1 pullulanase, alpha amylase, and 'glycogen debranching enzyme' by B. pseudolongum when cultured in medium containing Hi-Maize starch. Maltose was released into the culture medium and B. animalis cultures had shorter doubling times in maltose medium compared to B. pseudolongum Thus B. pseudolongum, which was present at a consistently low abundance in the microbiota, but which has extensive enzymic capacity to degrade resistant starch, showed the attributes of a keystone species associated with the bifidobacterial bloom. IMPORTANCE This study addresses the microbiology and function of a natural ecosystem (the rat gut) using DNA-based observations and in vitro experimentation. The microbial community (microbiota, microbiome) of the large bowel of animals, including humans, has been studied extensively by use of high throughput DNA sequencing methods and advanced bioinformatics analysis. These studies reveal the compositions and genetic capacities of microbiotas, but not the intricacies of how microbial communities function. Our work, combining DNA sequence analysis and laboratory experiments with cultured strains of bacteria, revealed that increased abundance of bifidobacteria in the rat gut, induced by feeding indigestible starch, involved a species that

  17. A coarse-grained model for synergistic action of multiple enzymes on cellulose

    DOE PAGES

    Asztalos, Andrea; Daniels, Marcus; Sethi, Anurag; ...

    2012-08-01

    In this study, degradation of cellulose to glucose requires the cooperative action of three classes of enzymes, collectively known as cellulases. Endoglucanases randomly bind to cellulose surfaces and generate new chain ends by hydrolyzing -1,4-D-glycosidic bonds. Exoglucanases bind to free chain ends and hydrolyze glycosidic bonds in a processive manner releasing cellobiose units. Then, -glucosidases hydrolyze soluble cellobiose to glucose. Optimal synergistic action of these enzymes is essential for efficient digestion of cellulose. Experiments show that as hydrolysis proceeds and the cellulose substrate becomes more heterogeneous, the overall degradation slows down. As catalysis occurs on the surface of crystalline cellulose,more » several factors affect the overall hydrolysis. Therefore, spatial models of cellulose degradation must capture effects such as enzyme crowding and surface heterogeneity, which have been shown to lead to a reduction in hydrolysis rates. As a result, we present a coarse-grained stochastic model for capturing the key events associated with the enzymatic degradation of cellulose at the mesoscopic level. This functional model accounts for the mobility and action of a single cellulase enzyme as well as the synergy of multiple endo- and exo-cellulases on a cellulose surface. The quantitative description of cellulose degradation is calculated on a spatial model by including free and bound states of both endo- and exo-cellulases with explicit reactive surface terms (e.g., hydrogen bond breaking, covalent bond cleavages) and corresponding reaction rates. The dynamical evolution of the system is simulated by including physical interactions between cellulases and cellulose. In conclusion, our coarse-grained model reproduces the qualitative behavior of endoglucanases and exoglucanases by accounting for the spatial heterogeneity of the cellulose surface as well as other spatial factors such as enzyme crowding. Importantly, it captures the endo

  18. OsBT1 encodes an ADP-glucose transporter involved in starch synthesis and compound granule formation in rice endosperm

    PubMed Central

    Li, Sanfeng; Wei, Xiangjin; Ren, Yulong; Qiu, Jiehua; Jiao, Guiai; Guo, Xiuping; Tang, Shaoqing; Wan, Jianmin; Hu, Peisong

    2017-01-01

    Starch is the main storage carbohydrate in higher plants. Although several enzymes and regulators for starch biosynthesis have been characterized, a complete regulatory network for starch synthesis in cereal seeds remains elusive. Here, we report the identification and characterization of the rice Brittle1 (OsBT1) gene, which is expressed specifically in the developing endosperm. The osbt1 mutant showed a white-core endosperm and a significantly lower grain weight than the wild-type. The formation and development of compound starch granules in osbt1 was obviously defective: the amyloplast was disintegrated at early developmental stages and the starch granules were disperse and not compound in the endosperm cells in the centre region of osbt1 seeds. The total starch content and amylose content was decreased and the physicochemical properties of starch were altered. Moreover, the degree of polymerization (DP) of amylopectin in osbt1 was remarkably different from that of wild-type. Map-based cloning of OsBT1 indicated that it encodes a putatively ADP-glucose transporter. OsBT1 coded protein localizes in the amyloplast envelope membrane. Furthermore, the expression of starch synthesis related genes was also altered in the osbt1 mutant. These findings indicate that OsBT1 plays an important role in starch synthesis and the formation of compound starch granules. PMID:28054650

  19. Thermostable enzymes as biocatalysts in the biofuel industry.

    PubMed

    Yeoman, Carl J; Han, Yejun; Dodd, Dylan; Schroeder, Charles M; Mackie, Roderick I; Cann, Isaac K O

    2010-01-01

    Lignocellulose is the most abundant carbohydrate source in nature and represents an ideal renewable energy source. Thermostable enzymes that hydrolyze lignocellulose to its component sugars have significant advantages for improving the conversion rate of biomass over their mesophilic counterparts. We review here the recent literature on the development and use of thermostable enzymes for the depolymerization of lignocellulosic feedstocks for biofuel production. Furthermore, we discuss the protein structure, mechanisms of thermostability, and specific strategies that can be used to improve the thermal stability of lignocellulosic biocatalysts. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Thermostable Enzymes as Biocatalysts in the Biofuel Industry

    PubMed Central

    Yeoman, Carl J.; Han, Yejun; Dodd, Dylan; Schroeder, Charles M.; Mackie, Roderick I.

    2015-01-01

    Lignocellulose is the most abundant carbohydrate source in nature and represents an ideal renewable energy source. Thermostable enzymes that hydrolyze lignocellulose to its component sugars have significant advantages for improving the conversion rate of biomass over their mesophilic counterparts. We review here the recent literature on the development and use of thermostable enzymes for the depolymerization of lignocellulosic feedstocks for biofuel production. Furthermore, we discuss the protein structure, mechanisms of thermostability, and specific strategies that can be used to improve the thermal stability of lignocellulosic biocatalysts. PMID:20359453