Science.gov

Sample records for starch residues document

  1. Directly dated starch residues document early formative maize (Zea mays L.) in tropical Ecuador.

    PubMed

    Zarrillo, Sonia; Pearsall, Deborah M; Raymond, J Scott; Tisdale, Mary Ann; Quon, Dugane J

    2008-04-01

    The study of maize (Zea mays L.) domestication has advanced from questions of its origins to the study-and debate-of its dietary role and the timing of its dispersal from Mexico. Because the investigation of maize's spread is hampered by poor preservation of macrobotanical remains in the Neotropics, research has focused on microbotanical remains whose contexts are often dated by association, leading some to question the dates assigned. Furthermore, some scholars have argued that maize was not introduced to southwestern Ecuador until approximately 4150-3850 calendar years before the present (cal B.P.), that it was used first and foremost as a fermented beverage in ceremonial contexts, and that it was not important in everyday subsistence, challenging previous studies based on maize starch and phytoliths. To further investigate these questions, we analyzed every-day cooking vessels, food-processing implements, and sediments for starch and phytoliths from an archaeological site in southwestern Ecuador constituting a small Early Formative village. Employing a new technique to recover starch granules from charred cooking-pot residues we show that maize was present, cultivated, and consumed here in domestic contexts by at least 5300-4950 cal B.P. Directly dating the residues by accelerator mass spectrometry (AMS) radiocarbon measurement, our results represent the earliest direct dates for maize in Early Formative Ecuadorian sites and provide further support that, once domesticated approximately 9000 calendar years ago, maize spread rapidly from southwestern Mexico to northwestern South America. PMID:18362336

  2. Agro-industrial residue from starch extraction of Pachyrhizus ahipa as filler of thermoplastic corn starch films.

    PubMed

    López, O V; Versino, F; Villar, M A; García, M A

    2015-12-10

    Biocomposites films based on thermoplastic corn starch (TPS) containing 0.5% w/w fibrous residue from Pachyrhizus ahipa starch extraction (PASR) were obtained by melt-mixing and compression molding. PASR is mainly constituted by remaining cell walls and natural fibers, revealed by Scanning Electron Microscopy (SEM). Chemical composition of the residue indicated that fiber and starch were the principal components. Biocomposites thermo-stability was determined by Thermo-Gravimetric Analysis. A continuous PASR-TPS interface was observed by SEM, as a result of a good adhesion of the fibrous residue to starch matrix. Likewise, films containing PASR presented fewer superficial cracks than TPS ones, whereas their fracture surfaces were more irregular. Besides, the presence of PASR increased starch films roughness, due to fibers agglomerates. Films reinforced with PASR showed significantly lower water vapor permeability (WVP). In addition, PARS filler increased maximum tensile strength and Young's modulus of TPS films, thus leading to more resistant starch matrixes. PMID:26428131

  3. Structural changes of high-amylose rice starch residues following in vitro and in vivo digestion.

    PubMed

    Man, Jianmin; Yang, Yang; Zhang, Changquan; Zhou, Xinghua; Dong, Ying; Zhang, Fengmin; Liu, Qiaoquan; Wei, Cunxu

    2012-09-12

    High-amylose cereal starch has a great benefit on human health through its resistant starch content. In this paper, starches were isolated from mature grains of high-amylose transgenic rice line (TRS) and its wild-type rice cultivar Te-qing (TQ) and digested in vitro and in vivo. The structural changes of digestive starch residues were characterized using DSC, XRD, (13)C CP/MAS NMR, and ATR-FTIR. TQ starch was very susceptible to digestion; its residues following in vitro and in vivo digestion showed similar structural characteristics with TQ control starch, which suggested that both amorphous and crystalline structures were simultaneously digested. Both amorphous and the long-range order structures were also simultaneously hydrolyzed in TRS starch, but the short-range order (double helix) structure in the external region of TRS starch granule increased with increasing digestion time. The A-type polymorph of TRS C-type starch was hydrolyzed more rapidly than the B-type polymorph. These results suggested that B-type crystallinity and short-range order structure in the external region of starch granule made TRS starch resistant to digestion. PMID:22917081

  4. Morphology and structural properties of high-amylose rice starch residues hydrolysed by amyloglucosidase.

    PubMed

    Man, Jianmin; Yang, Yang; Huang, Jun; Zhang, Changquan; Zhang, Fengmin; Wang, Youping; Gu, Minghong; Liu, Qiaoquan; Wei, Cunxu

    2013-06-15

    High-amylose starches are attracting considerable attention because of their potential health benefits and industrial uses. Enzyme hydrolysis of starch is involved in many biological and industrial processes. In this paper, starches were isolated from high-amylose transgenic rice (TRS) and its wild type rice, Te-qing (TQ). The morphological and structural changes of starch residues following Aspergillus niger amyloglucosidase (AAG) hydrolysis were investigated. AAG hydrolysed TQ starch from the granule surface, and TRS starch from the granule interior. During AAG hydrolysis, the content of amorphous structure increased, the contents of ordered structure and single helix decreased, and gelatinisation enthalpy decreased in TQ and TRS starch residues. The A-type polymorph of TRS C-type starch was hydrolysed faster than the B-type polymorph. The short-range ordered structure and B-type polymorph in the peripheral region of the subgranule and the surrounding band of TRS starch increased the resistance of TRS starch to AAG hydrolysis. PMID:23497862

  5. Improved starch recovery from potatoes by enzymes and reduced water holding of the residual fibres.

    PubMed

    Ramasamy, Urmila R; Lips, Steef; Bakker, Rob; Gruppen, Harry; Kabel, Mirjam A

    2014-11-26

    During the industrial extraction of starch from potatoes (Seresta), some starch remains within undisrupted potato cells in the fibrous side-stream. The aim of this study was to investigate if enzymatic degradation of cell wall polysaccharides (CWPs) can enhance starch recovery and lower the water holding capacity (WHC) of the "fibre" fraction. The use of a pectinase-rich preparation recovered 58% of the starch present in the "fibre" fraction. Also, the "fibre" fraction retained only 40% of the water present in the non-enzyme treated "fibre". This was caused by the degradation of pectins, in particular arabinogalactan side chains calculated as the sum of galactosyl and arabinosyl residues. PMID:25256483

  6. Residual feed intake is repeatable for lactating Holstein dairy cows fed high and low starch diets.

    PubMed

    Potts, S B; Boerman, J P; Lock, A L; Allen, M S; VandeHaar, M J

    2015-07-01

    Residual feed intake (RFI) is a tool to quantify feed efficiency in livestock and is commonly used to assess feed efficiency independent of production level, body weight (BW), or BW change. Lactating Holstein cows (n=109; 44 primiparous and 65 multiparous), averaging (mean ± standard deviation, SD) 665±77kg of BW, 42±9kg of milk/d, and 120±30 d postpartum, were fed diets of high (HI) or low (LO) starch content in 4 crossover experiments with two 28-d treatment periods. The LO diets were ~40% neutral detergent fiber (NDF) and ~14% starch and the HI diets were ~26% NDF and ~30% starch. Individual dry matter intake (DMI) of a cow was modeled as a function of milk energy output, metabolic BW, body energy change, and fixed effects of parity, experiment, cohort nested within experiment, and diet nested within cohort and experiment; RFI for each cow was the residual error term. Cows were classified as high (>0.5 SD of the mean), medium (±0.5 SD of the mean), or low (<-0.5 SD of the mean) RFI. On average, for the linear model used to determine RFI for individual cows, each unit increase in milk energy output, metabolic BW, or body energy gain was associated with 0.35, 0.09, or 0.05kg increase in DMI, respectively. When compared with LO diets, HI diets increased energy partitioning to body energy gain and tended to increase DMI. The correlation between RFI when cows were fed HI diets and RFI when cows were fed LO diets was 0.73 and was similar across each parity and experiment. Fifty-six percent of cows maintained the same RFI classification (high, medium, or low RFI) and only 4 of 109 cows changed from high RFI to low RFI or vice versa when diets were changed. Milk:feed, income over feed cost, and DMI were also highly repeatable (r=0.72, 0.84, and 0.92, respectively). We achieved significant changes in milk yield and component concentration as well as energy partitioning between HI and LO diets and still determined RFI to be repeatable across diets. We conclude that

  7. Direct fermentation of potato starch and potato residues to lactic acid by Geobacillus stearothermophilus under non-sterile conditions

    PubMed Central

    Smerilli, Marina; Neureiter, Markus; Wurz, Stefan; Haas, Cornelia; Frühauf, Sabine; Fuchs, Werner

    2015-01-01

    BACKGROUND Lactic acid is an important biorefinery platform chemical. The use of thermophilic amylolytic microorganisms to produce lactic acid by fermentation constitutes an efficient strategy to reduce operating costs, including raw materials and sterilization costs. RESULTS A process for the thermophilic production of lactic acid by Geobacillus stearothermophilus directly from potato starch was characterized and optimized. Geobacillus stearothermophilus DSM 494 was selected out of 12 strains screened for amylolytic activity and the ability to form lactic acid as the major product of the anaerobic metabolism. In total more than 30 batches at 3–l scale were run at 60 °C under non-sterile conditions. The process developed produced 37 g L−1 optically pure (98%) L-lactic acid in 20 h from 50 g L−1 raw potato starch. As co-metabolites smaller amounts (<7% w/v) of acetate, formate and ethanol were formed. Yields of lactic acid increased from 66% to 81% when potato residues from food processing were used as a starchy substrate in place of raw potato starch. CONCLUSIONS Potato starch and residues were successfully converted to lactic acid by G. stearothermophilus. The process described in this study provides major benefits in industrial applications and for the valorization of starch-rich waste streams. © 2015 The Authors.Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:25937690

  8. Quarry residuals RI/FS scoping document. [Weldon Spring quarry

    SciTech Connect

    Not Available

    1991-10-01

    The purpose of this document is to serve as a planning tool for the implementation of the Quarry Residual Remedial Investigation/Feasibility Study (RI/FS) process and to provide direct input to revising and updating the 1988 Work Plan for the Weldon Spring Site Remedial Action Project (WSSRAP) Remedial Investigation/Feasibility Study-Environmental Impact Statement for the Weldon Spring Site (RI/FS-EIS) (Peterson et al. 1988) for this effort. The scoping process is intended to outline the tasks necessary to develop and implement activities in compliance with the Comprehensive Environmental Response, Compensation and Liability Act-National Environmental Policy Act (CERCLA-NEPA) process from detailed planning through the appropriate decision document. In addition to scoping the entire process, this document will serve as the primary tool for planning and accomplishing all activities to be developed in the Quarry Residual RI/FS Work Plan. Subsequent tasks are difficult to plan at this time. 10 refs., 5 figs., 5 tabs.

  9. Cassava starch factory residues in the diet of slow-growing broilers.

    PubMed

    Picoli, Karla Paola; Murakami, Alice Eiko; Nunes, Ricardo Vianna; do Amaral Duarte, Cristiane Regina; Eyng, Cinthia; Ospina-Rojas, Ivan Camilo

    2014-12-01

    The objective of this study was to evaluate the effect of inclusion of dehydrated cassava starch residue (DCSR) on the performance, gastrointestinal tract characteristics and carcass traits of ISA Label JA57 slow-growing broilers. A total of 510 broilers at 21 were distributed in a randomized experimental design with 5 treatments (2, 4, 6, 8, and 10 % DCSR inclusion) and a control group, 5 replicates, and 17 birds per experimental unit. The DCSR inclusion from 21 to 49 days of age negatively influenced (P < 0.05) weight gain and feed intake and did not affect (P > 0.05) feed conversion in the broilers with increasing of DCSR inclusion. From 21 to 79 days, DCSR inclusion impaired (P < 0.05) weight gain, feed conversion, and poultry litter quality with increasing of DCSR inclusion. The level of blood triglycerides showed a quadratic response (P < 0.05) at 79 days of age with the highest value predicted to occur at 5.45 % of DCSR inclusion. DCSR levels affected (P < 0.05) the gastrointestinal organ characteristics, cecal content pH, and pigmentation of the shank, breast, and thigh meat of the birds but did not alter (P > 0.05) the other parameters of carcass quality and yield, cuts, and percentage of abdominal fat. In conclusion, DCSR inclusion levels above 2 % compromised broiler performance. PMID:25069971

  10. Recovery of Glucose from Residual Starch of Sago Hampas for Bioethanol Production

    PubMed Central

    Awg-Adeni, D. S.; Bujang, K. B.; Hassan, M. A.; Abd-Aziz, S.

    2013-01-01

    Lower concentration of glucose was often obtained from enzymatic hydrolysis process of agricultural residue due to complexity of the biomass structure and properties. High substrate load feed into the hydrolysis system might solve this problem but has several other drawbacks such as low rate of reaction. In the present study, we have attempted to enhance glucose recovery from agricultural waste, namely, “sago hampas,” through three cycles of enzymatic hydrolysis process. The substrate load at 7% (w/v) was seen to be suitable for the hydrolysis process with respect to the gelatinization reaction as well as sufficient mixture of the suspension for saccharification process. However, this study was focused on hydrolyzing starch of sago hampas, and thus to enhance concentration of glucose from 7% substrate load would be impossible. Thus, an alternative method termed as cycles I, II, and III which involved reusing the hydrolysate for subsequent enzymatic hydrolysis process was introduced. Greater improvement of glucose concentration (138.45 g/L) and better conversion yield (52.72%) were achieved with the completion of three cycles of hydrolysis. In comparison, cycle I and cycle II had glucose concentration of 27.79 g/L and 73.00 g/L, respectively. The glucose obtained was subsequently tested as substrate for bioethanol production using commercial baker's yeast. The fermentation process produced 40.30 g/L of ethanol after 16 h, which was equivalent to 93.29% of theoretical yield based on total glucose existing in fermentation media. PMID:23509813

  11. Studies on the Pasting and Rheology of Rice Starch with Different Protein Residual

    NASA Astrophysics Data System (ADS)

    Lin, Qinlu; Liu, Zhonghua; Xiao, Huaxi; Li, Lihui; Yu, Fengxiang; Tian, Wei

    Indica rice starch and japonica rice starch were used in the study. The protein contents of the two rice variety were respectively 0.43%, 0.62%, 0.84%, 1.08%, 1.25%. The pasting and rheological properties of samples were determined with Rapid Visco Analyzer and dynamic rheometer. The results indicated that, with the increase of protein content, the peak viscosity, breakdown viscosity and final viscosity of rice starch paste decreased, the setback viscosity increased and the pasting temperature did not change significantly. With the increase of protein content, the consistency coefficient of starch decreased, the corresponding yield stress also decreased, however, the flow behavior index increased with the decrease of consistency coefficient. At same temperature, the storage modulus G' was greater when the protein content was higher.

  12. A single residue mutation abolishes attachment of the CBM26 starch-binding domain from Lactobacillus amylovorus alpha-amylase.

    PubMed

    Rodríguez-Sanoja, Romina; Oviedo, N; Escalante, L; Ruiz, B; Sánchez, S

    2009-03-01

    Starch is degraded by amylases that frequently have a modular structure composed of a catalytic domain and at least one non-catalytic domain that is involved in polysaccharide binding. The C-terminal domain from the Lactobacillus amylovorus alpha-amylase has an unusual architecture composed of five tandem starch-binding domains (SBDs). These domains belong to family 26 in the carbohydrate-binding modules (CBM) classification. It has been reported that members of this family have only one site for starch binding, where aromatic amino acids perform the binding function. In SBDs, fold similarities are better conserved than sequences; nevertheless, it is possible to identify in CBM26 members at least two aromatic residues highly conserved. We attempt to explain polysaccharide recognition for the L. amylovorus alpha-amylase SBD through site-directed mutagenesis of aromatic amino acids. Three amino acids were identified as essential for binding, two tyrosines and one tryptophan. Y18L and Y20L mutations were found to decrease the SBD binding capacity, but unexpectedly, the mutation at W32L led to a total loss of affinity, either with linear or ramified substrates. The critical role of Trp 32 in substrate binding confirms the presence of just one binding site in each alpha-amylase SBD. PMID:19052787

  13. Characterization of Maize Amylose-extender (ae) Mutant Starches. Part II: Structures and Properties of Starch Residues Remaining After Enzymatic Hydrolyis at Boiling-water Temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    GEMS-0067 maize ae-line starch developed by Truman State University and the Germplasm Enhancement of Maize (GEM) Project consisted of 39.4%-43.2% resistant-starch (RS), which was larger than the existing ae-line starches of H99ae, OH43ae, B89ae, and B84ae (11.5%-19.1%) as reported in part I of the s...

  14. The Role of Cysteine Residues in Redox Regulation and Protein Stability of Arabidopsis thaliana Starch Synthase 1

    PubMed Central

    Skryhan, Katsiaryna; Cuesta-Seijo, Jose A.; Nielsen, Morten M.; Marri, Lucia; Mellor, Silas B.; Glaring, Mikkel A.; Jensen, Poul E.; Palcic, Monica M.; Blennow, Andreas

    2015-01-01

    Starch biosynthesis in Arabidopsis thaliana is strictly regulated. In leaf extracts, starch synthase 1 (AtSS1) responds to the redox potential within a physiologically relevant range. This study presents data testing two main hypotheses: 1) that specific thiol-disulfide exchange in AtSS1 influences its catalytic function 2) that each conserved Cys residue has an impact on AtSS1 catalysis. Recombinant AtSS1 versions carrying combinations of cysteine-to-serine substitutions were generated and characterized in vitro. The results demonstrate that AtSS1 is activated and deactivated by the physiological redox transmitters thioredoxin f1 (Trxf1), thioredoxin m4 (Trxm4) and the bifunctional NADPH-dependent thioredoxin reductase C (NTRC). AtSS1 displayed an activity change within the physiologically relevant redox range, with a midpoint potential equal to -306 mV, suggesting that AtSS1 is in the reduced and active form during the day with active photosynthesis. Cys164 and Cys545 were the key cysteine residues involved in regulatory disulfide formation upon oxidation. A C164S_C545S double mutant had considerably decreased redox sensitivity as compared to wild type AtSS1 (30% vs 77%). Michaelis-Menten kinetics and molecular modeling suggest that both cysteines play important roles in enzyme catalysis, namely, Cys545 is involved in ADP-glucose binding and Cys164 is involved in acceptor binding. All the other single mutants had essentially complete redox sensitivity (98–99%). In addition of being part of a redox directed activity “light switch”, reactivation tests and low heterologous expression levels indicate that specific cysteine residues might play additional roles. Specifically, Cys265 in combination with Cys164 can be involved in proper protein folding or/and stabilization of translated protein prior to its transport into the plastid. Cys442 can play an important role in enzyme stability upon oxidation. The physiological and phylogenetic relevance of these findings

  15. Growth performance and carcass characteristics of feedlot Thai native × Lowline Angus crossbred steer fed with fermented cassava starch residue.

    PubMed

    Pilajun, Ruangyote; Wanapat, Metha

    2016-04-01

    Ten Thai native × Lowline Angus crossbred (50:50) steers were used in a completely randomized design to receive two treatments including concentrate containing cassava chips (Control) and fermented cassava starch residue (FCSR) as major carbohydrate sources. FCSR was prepared as yeast (Saccharomyces cerevisiae) inoculates with exogenous enzyme addition. All steers received ad libitum rice straw and concentrate in equal proportions (1:1). Replacement of cassava chip with FCSR increased neutral detergent fiber and acid detergent fiber intakes but decreased non-protein nitrogen intake of steers. Digestibility of dry matter, organic matter, and crude protein were decreased with replacement of cassava chip by FCSR; however, digested nutrients were similar between groups. Replacement of cassava chip in the concentrate with FCSR resulted in comparable growth performance and feed efficiency of the feedlot steers. Moreover, carcass characteristics in terms of yield and meat quality of the steers were not affected by cassava chips replaced by FCSR as a major carbohydrate source in the concentrate. In conclusion, replacement of cassava chip in the concentrate with FCSR decreased feed digestibility; however, it did not impact negatively on growth performance and carcass traits of feedlot Thai native × Lowline Angus crossbred steers. PMID:26942915

  16. Agro-industrial residues and starch for growth and co-production of polyhydroxyalkanoate copolymer and α-amylase by Bacillus sp. CFR-67

    PubMed Central

    Shamala, T. R.; Vijayendra, S.V.N; Joshi, G.J.

    2012-01-01

    Polyhydroxyalkanoates (PHA) and α-amylase (α-1,4 glucan-4-glucanohydrolase, E.C. 3.2.1.1) were co-produced by Bacillus sp. CFR-67 using unhydrolysed corn starch as a substrate. Bacterial growth and polymer production were enhanced with the supplementation of hydrolysates of wheat bran (WBH) or rice bran (RBH) individually or in combination (5–20 g L-1, based on weight of soluble substrates-SS). In batch cultivation, a mixture of WBH and RBH (1:1, 10 g L-1 of SS) along with ammonium acetate (1.75 g L-1) and corn starch (30 g L-1) produced maximum quantity of biomass (10 g L-1) and PHA (5.9 g L-1). The polymer thus produced was a copolymer of polyhydroxybutyrate-co-hydroxyvalerate of 95:5 to 90:10 mol%. Presence of WBH and corn starch (10–50 g L-1) in the medium enhanced fermentative yield of α-amylase (2–40 U mL-1 min-1). The enzyme was active in a wide range of pH (4–9) and temperature (40–60°C). This is the first report on simultaneous production of copolymer of bacterial PHA and α-amylase from unhydrolysed corn starch and agro-industrial residues as substrates. PMID:24031933

  17. Starch poisoning

    MedlinePlus

    Cooking starch poisoning; Laundry starch poisoning ... Cooking and laundry starch are both made from vegetable products, most commonly: Corn Potatoes Rice Wheat Both are usually considered nonpoisonous (nontoxic), but ...

  18. Residual structures in the unfolded state of starch-binding domain of glucoamylase revealed by near-UV circular dichroism and protein engineering techniques.

    PubMed

    Ota, Chiaki; Ikeguchi, Masamichi; Tanaka, Akiyoshi; Hamada, Daizo

    2016-10-01

    Protein folding is a thermodynamic process driven by energy gaps between the native and unfolded states. Although a wealth of information is available on the structure of folded species, there is a paucity of data on unfolded species. Here, we analyzed the structural properties of the unfolded state of the starch-binding domain of glucoamylase from Aspergillus niger (SBD) formed in the presence of guanidinium hydrochloride (GuHCl). Although far-UV CD and intrinsic tryptophan fluorescence spectra as well as small angle X-ray scattering suggested that SBD assumes highly unfolded structures in the presence of GuHCl, near-UV circular dichroism of wild-type SBD suggested the presence of residual structures in the unfolded state. Analyses of the unfolded states of tryptophan mutants (W543L, W563A, W590A and W615L) using Similarity Parameter, a modified version of root mean square deviation as a measure of similarity between two spectra, suggested that W543 and W563 have preferences to form native-like residual structures in the GuHCl-unfolded state. In contrast, W615 was entirely unstructured, while W590 tended to form non-native ordered structures in the unfolded state. These data and the amino acid sequence of SBD suggest that local structural propensities in the unfolded state can be determined by the probability of the presence of hydrophobic or charged residues nearby tryptophan residues. PMID:27164491

  19. Mechanism of removal of undesirable residual amylase, insoluble starch, and select colorants from refinery streams by powdered activated carbons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a need in the world-wide sugar industry to find a practical and economical solution to remove or inactivate residual alpha-amylase that are high temperature stable from factory or refinery streams. A survey of refineries that used amylase and had activated carbon systems for decolorization,...

  20. Structural and molecular basis of starch viscosity in hexaploid wheat.

    PubMed

    Ral, J-P; Cavanagh, C R; Larroque, O; Regina, A; Morell, M K

    2008-06-11

    Wheat starch is considered to have a low paste viscosity relative to other starches. Consequently, wheat starch is not preferred for many applications as compared to other high paste viscosity starches. Increasing the viscosity of wheat starch is expected to increase the functionality of a range of wheat flour-based products in which the texture is an important aspect of consumer acceptance (e.g., pasta, and instant and yellow alkaline noodles). To understand the molecular basis of starch viscosity, we have undertaken a comprehensive structural and rheological analysis of starches from a genetically diverse set of wheat genotypes, which revealed significant variation in starch traits including starch granule protein content, starch-associated lipid content and composition, phosphate content, and the structures of the amylose and amylopectin fractions. Statistical analysis highlighted the association between amylopectin chains of 18-25 glucose residues and starch pasting properties. Principal component analysis also identified an association between monoesterified phosphate and starch pasting properties in wheat despite the low starch-phosphate level in wheat as compared to tuber starches. We also found a strong negative correlation between the phosphate ester content and the starch content in flour. Previously observed associations between internal starch granule fatty acids and the swelling peak time and pasting temperature have been confirmed. This study has highlighted a range of parameters associated with increased starch viscosity that could be used in prebreeding/breeding programs to modify wheat starch pasting properties. PMID:18459791

  1. [Starch aspiration].

    PubMed

    Volk, O; Neidhöfer, M; Schregel, W

    1999-06-01

    Starch is a white, neutral smelling, insoluble and harmless powder. The case of a 24-year old worker with a pronounced bronchospasm and arterial hypoxaemia after a collapse and aspiration during working in a silo filled with corn starch will be reported. Medication consisted mainly in mucolytics. Intensive airway clearing consisted of repeated bronchoscopies, bedding, tapotement and vibration massage. The patient has made a complete recovery in 3 days. PMID:10429779

  2. Deficiency of maize starch-branching enzyme i results in altered starch fine structure, decreased digestibility and reduced coleoptile growth during germination

    PubMed Central

    2011-01-01

    Background Two distinct starch branching enzyme (SBE) isoforms predate the divergence of monocots and dicots and have been conserved in plants since then. This strongly suggests that both SBEI and SBEII provide unique selective advantages to plants. However, no phenotype for the SBEI mutation, sbe1a, had been previously observed. To explore this incongruity the objective of the present work was to characterize functional and molecular phenotypes of both sbe1a and wild-type (Wt) in the W64A maize inbred line. Results Endosperm starch granules from the sbe1a mutant were more resistant to digestion by pancreatic α-amylase, and the sbe1a mutant starch had an altered branching pattern for amylopectin and amylose. When kernels were germinated, the sbe1a mutant was associated with shorter coleoptile length and higher residual starch content, suggesting that less efficient starch utilization may have impaired growth during germination. Conclusions The present report documents for the first time a molecular phenotype due to the absence of SBEI, and suggests strongly that it is associated with altered physiological function of the starch in vivo. We believe that these results provide a plausible rationale for the conservation of SBEI in plants in both monocots and dicots, as greater seedling vigor would provide an important survival advantage when resources are limited. PMID:21599988

  3. Morphological and mechanical characterization of thermoplastic starch and its blends with polylactic acid using cassava starch and bagasse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study aims the use of an agro waste coming from the industrialization of cassava starch, known as cassava bagasse (BG). This material contains residual starch and cellulose fibers which can be used to obtain thermoplastic starch (TPS) and /or blends reinforced with fibers. In this context, it w...

  4. Porous starch extracted from Chinese rice wine vinasse: characterization and adsorption properties.

    PubMed

    Li, Hongyan; Jiao, Aiquan; Wei, Benxi; Wang, Yong; Wu, Chunsen; Jin, Zhengyu; Tian, Yaoqi

    2013-10-01

    Chinese rice wine vinasse (the fermentation residue after removal of the crude wine or beer) contains 20-30% residual native starch. These starches are partly hydrolyzed by amylase and glucoamylase during rice wine fermentation, indicating that it is a potential source of porous starch, which is a value-added material. In the present study, morphological, short-range order, crystalline, and thermal studies were determined to characterize the structural and chemical properties of vinasse starch. The results showed that vinasse starch granule had a rough and porous shape and was much more ordered than native starch. Vinasse starch also could tolerate a higher temperature than native starch. The water and oil adsorptive capacities of vinasse starch were 1.89 and 4.14 times higher than that of native rice starch. These results suggest that vinasse is an effective and economical source of porous starch for using as adsorbent. PMID:23850681

  5. Starch phosphorylation: insights and perspectives.

    PubMed

    Mahlow, Sebastian; Orzechowski, Sławomir; Fettke, Joerg

    2016-07-01

    During starch metabolism, the phosphorylation of glucosyl residues of starch, to be more precise of amylopectin, is a repeatedly observed process. This phosphorylation is mediated by dikinases, the glucan, water dikinase (GWD) and the phosphoglucan, water dikinase (PWD). The starch-related dikinases utilize ATP as dual phosphate donor transferring the terminal γ-phosphate group to water and the β-phosphate group selectively to either C6 position or C3 position of a glucosyl residue within amylopectin. By the collaborative action of both enzymes, the initiation of a transition of α-glucans from highly ordered, water-insoluble state to a less order state is realized and thus the initial process of starch degradation. Consequently, mutants lacking either GWD or PWD reveal a starch excess phenotype as well as growth retardation. In this review, we focus on the increased knowledge collected over the last years related to enzymatic properties, the precise definition of the substrates, the physiological implications, and discuss ongoing questions. PMID:27147464

  6. Starch phosphorylation in potato tubers is influenced by allelic variation in the genes encoding glucan water dikinase, starch branching enzymes I and II, and starch synthase III

    PubMed Central

    Carpenter, Margaret A.; Joyce, Nigel I.; Genet, Russell A.; Cooper, Rebecca D.; Murray, Sarah R.; Noble, Alasdair D.; Butler, Ruth C.; Timmerman-Vaughan, Gail M.

    2015-01-01

    Starch phosphorylation is an important aspect of plant metabolism due to its role in starch degradation. Moreover, the degree of phosphorylation of starch determines its physicochemical properties and is therefore relevant for industrial uses of starch. Currently, starch is chemically phosphorylated to increase viscosity and paste stability. Potato cultivars with elevated starch phosphorylation would make this process unnecessary, thereby bestowing economic and environmental benefits. Starch phosphorylation is a complex trait which has been previously shown by antisense gene repression to be influenced by a number of genes including those involved in starch synthesis and degradation. We have used an association mapping approach to discover genetic markers associated with the degree of starch phosphorylation. A diverse collection of 193 potato lines was grown in replicated field trials, and the levels of starch phosphorylation at the C6 and C3 positions of the glucosyl residues were determined by mass spectrometry of hydrolyzed starch from tubers. In addition, the potato lines were genotyped by amplicon sequencing and microsatellite analysis, focusing on candidate genes known to be involved in starch synthesis. As potato is an autotetraploid, genotyping included determination of allele dosage. Significant associations (p < 0.001) were found with SNPs in the glucan water dikinase (GWD), starch branching enzyme I (SBEI) and the starch synthase III (SSIII) genes, and with a SSR allele in the SBEII gene. SNPs in the GWD gene were associated with C6 phosphorylation, whereas polymorphisms in the SBEI and SBEII genes were associated with both C6 and C3 phosphorylation and the SNP in the SSIII gene was associated with C3 phosphorylation. These allelic variants have potential as genetic markers for starch phosphorylation in potato. PMID:25806042

  7. The Two Plastidial Starch-Related Dikinases Sequentially Phosphorylate Glucosyl Residues at the Surface of Both the A- and B-Type Allomorphs of Crystallized Maltodextrins But the Mode of Action Differs1

    PubMed Central

    Hejazi, Mahdi; Fettke, Joerg; Paris, Oskar; Steup, Martin

    2009-01-01

    In this study, two crystallized maltodextrins were generated that consist of the same oligoglucan pattern but differ strikingly in the physical order of double helices. As revealed by x-ray diffraction, they represent the highly ordered A- and B-type allomorphs. Both crystallized maltodextrins were similar in size distribution and birefringence. They were used as model substrates to study the consecutive action of the two starch-related dikinases, the glucan, water dikinase and the phosphoglucan, water dikinase. The glucan, water dikinase and the phosphoglucan, water dikinase selectively esterify glucosyl residues in the C6 and C3 positions, respectively. Recombinant glucan, water dikinase phosphorylated both allomorphs with similar rates and caused complete glucan solubilization. Soluble neutral maltodextrins inhibited the glucan, water dikinase-mediated phosphorylation of crystalline particles. Recombinant phosphoglucan, water dikinase phosphorylated both the A- and B-type allomorphs only following a prephosphorylation by the glucan, water dikinase, and the activity increased with the extent of prephosphorylation. The action of the phosphoglucan, water dikinase on the prephosphorylated A- and B-type allomorphs differed. When acting on the B-type allomorph, by far more phosphoglucans were solubilized as compared with the A type. However, with both allomorphs, the phosphoglucan, water dikinase formed significant amounts of monophosphorylated phosphoglucans. Thus, the enzyme is capable of acting on neutral maltodextrins. It is concluded that the actual carbohydrate substrate of the phosphoglucan, water dikinase is defined by physical rather than by chemical parameters. A model is proposed that explains, at the molecular level, the consecutive action of the two starch-related dikinases. PMID:19395406

  8. Plant-crafted starches for bioplastics production.

    PubMed

    Sagnelli, Domenico; Hebelstrup, Kim H; Leroy, Eric; Rolland-Sabaté, Agnès; Guilois, Sophie; Kirkensgaard, Jacob J K; Mortensen, Kell; Lourdin, Denis; Blennow, Andreas

    2016-11-01

    Transgenically-produced amylose-only (AO) starch was used to manufacture bioplastic prototypes. Extruded starch samples were tested for crystal residues, elasticity, glass transition temperature, mechanical properties, molecular mass and microstructure. The AO starch granule crystallinity was both of the B- and Vh-type, while the isogenic control starch was mainly A-type. The first of three endothermic transitions was attributed to gelatinization at about 60°C. The second and third peaks were identified as melting of the starch and amylose-lipid complexes, respectively. After extrusion, the AO samples displayed Vh- and B-type crystalline structures, the B-type polymorph being the dominant one. The AO prototypes demonstrated a 6-fold higher mechanical stress at break and 2.5-fold higher strain at break compared to control starch. Dynamic mechanical analysis showed a significant increase in the storage modulus (E') for AO samples compared to the control. The data support the use of pure starch-based bioplastics devoid of non-polysaccharide fillers. PMID:27516287

  9. Maltase-glucoamylase: Mucosal regulator of prandial starch glucogenesis and complimentary hepatic gluconeogenesis of mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In previous studies we have shown that maltase-glucoamylase (Mgam) is required for efficient starch digestion and insulin response to starch feeding. It was hypothesized that the slower rate of starch digestion by residual sucrase-isomaltase (Si) maltase failed to regulate gluconeogenesis. Here, rat...

  10. Starch metabolism in leaves.

    PubMed

    Orzechowski, Sławomir

    2008-01-01

    Starch is the most abundant storage carbohydrate produced in plants. The initiation of transitory starch synthesis and degradation in plastids depends mainly on diurnal cycle, post-translational regulation of enzyme activity and starch phosphorylation. For the proper structure of starch granule the activities of all starch synthase isoenzymes, branching enzymes and debranching enzymes are needed. The intensity of starch biosynthesis depends mainly on the activity of AGPase (adenosine 5'-diphosphate glucose pyrophosphorylase). The key enzymes in starch degradation are beta-amylase, isoamylase 3 and disproportionating enzyme. However, it should be underlined that there are some crucial differences in starch metabolism between heterotrophic and autotrophic tissues, e.g. is the ability to build multiprotein complexes responsible for biosynthesis and degradation of starch granules in chloroplasts. The observed huge progress in understanding of starch metabolism was possible mainly due to analyses of the complete Arabidopsis and rice genomes and of numerous mutants with altered starch metabolism in leaves. The aim of this paper is to review current knowledge on transient starch metabolism in higher plants. PMID:18787712

  11. Gourd and squash artifacts yield starch grains of feasting foods from preceramic Peru.

    PubMed

    Duncan, Neil A; Pearsall, Deborah M; Benfer, Robert A

    2009-08-11

    In a study of residues from gourd and squash artifacts, we recovered starch grains from manioc (Manihot esculenta), potato (Solanum sp.), chili pepper (Capsicum spp.), arrowroot (Maranta arundinacea), and algarrobo (Prosopis sp.) from feasting contexts at the Buena Vista site, a central Peruvian preceramic site dating to approximately 2200 calendar years B.C. This study has implications for the study of plant food use wherever gourds or squashes are preserved, documents the earliest evidence for the consumption of algarrobo and arrowroot in Peru, and provides insights into foods consumed at feasts. PMID:19633184

  12. Gourd and squash artifacts yield starch grains of feasting foods from preceramic Peru

    PubMed Central

    Duncan, Neil A.; Pearsall, Deborah M.; Benfer, Robert A.

    2009-01-01

    In a study of residues from gourd and squash artifacts, we recovered starch grains from manioc (Manihot esculenta), potato (Solanum sp.), chili pepper (Capsicum spp.), arrowroot (Maranta arundinacea), and algarrobo (Prosopis sp.) from feasting contexts at the Buena Vista site, a central Peruvian preceramic site dating to ≈2200 calendar years B.C. This study has implications for the study of plant food use wherever gourds or squashes are preserved, documents the earliest evidence for the consumption of algarrobo and arrowroot in Peru, and provides insights into foods consumed at feasts. PMID:19633184

  13. Starch nanoparticles: a review.

    PubMed

    Le Corre, Déborah; Bras, Julien; Dufresne, Alain

    2010-05-10

    Starch is a natural, renewable, and biodegradable polymer produced by many plants as a source of stored energy. It is the second most abundant biomass material in nature. The starch structure has been under research for years, and because of its complexity, an universally accepted model is still lacking (Buleon, A.; et al. Int. J. Biol. Macromol. 1998, 23, 85-112). However, the predominant model for starch is a concentric semicrystalline multiscale structure that allows the production of new nanoelements: (i) starch nanocrystals resulting from the disruption of amorphous domains from semicrystalline granules by acid hydrolysis and (ii) starch nanoparticles produced from gelatinized starch. This paper intends to give a clear overview of starch nanoparticle preparation, characterization, properties, and applications. Recent studies have shown that they could be used as fillers to improve mechanical and barrier properties of biocomposites. Their use for industrial packaging, continuously looking for innovative solutions for efficient and sustainable systems, is being investigated. Therefore, recently, starch nanoparticles have been the focus of an exponentially increasing number of works devoted to develop biocomposites by blending starch nanoparticles with different biopolymeric matrices. To our knowledge, this topic has never been reviewed, despite several published strategies and conclusions. PMID:20405913

  14. Retrogradation enthalpy does not always reflect the retrogradation behavior of gelatinized starch

    PubMed Central

    Wang, Shujun; Li, Caili; Zhang, Xiu; Copeland, Les; Wang, Shuo

    2016-01-01

    Starch retrogradation is a term used to define the process in which gelatinized starch undergoes a disorder-to-order transition. A thorough understanding of starch retrogradation behavior plays an important role in maintaining the quality of starchy foods during storage. By means of DSC, we have demonstrated for the first time that at low water contents, the enthalpy change of retrograded starch is higher than that of native starch. In terms of FTIR and Raman spectroscopic results, we showed that the molecular order of reheated retrograded starch samples is lower than that of DSC gelatinized starch. These findings have led us to conclude that enthalpy change of retrograded starch at low water contents involves the melting of recrystallized starch during storage and residual starch crystallites after DSC gelatinization, and that the endothermic transition of retrograded starch gels at low water contents does not fully represent the retrogradation behavior of starch. Very low or high water contents do not favor the occurrence of starch retrogradation. PMID:26860788

  15. Starch: Structure, Properties, Chemistry, and Enzymology

    NASA Astrophysics Data System (ADS)

    Robyt, John F.

    Starch is a very important and widely distributed natural product, occurring in the leaves of green plants, seeds, fruits, stems, roots, and tubers. It serves as the chemical storage form of the energy of the sun and is the primary source of energy for the organisms on the Earth. Starch is composed of two kinds of polysaccharides, amylose and amylopectin, exclusively composed of D-glucose residues with α-(1→4) linkages in a linear amylose and α-(1→4) linkages and ˜5% α-(1→6) branch linkages in amylopectin, both combined in a water-insoluble granule that is partially crystalline and whose size, shape, and morphology are dependent on its biological source. The properties, isolation, fractionation, enzymatic degradation, biosynthesis, chemical modification, and specific methods of analysis of starch are presented.

  16. Starch bioengineering affects cereal grain germination and seedling establishment

    PubMed Central

    Hebelstrup, Kim H.; Blennow, Andreas

    2014-01-01

    Cereal grain germination is central for plant early development, and efficient germination has a major role in crop propagation and malting. Endosperm starch is the prime energy reserve in germination and seedling establishment. In this study, it was hypothesized that optimized starch granule structure, and not only the endosperm starch content per se, is important for germination and seedling establishment. For that purpose, wild-type (WT), and specifically engineered degradable hyperphosphorylated (HP) starch and more resistant amylose-only (AO) starch barley lines were used. The transgenics showed no severe phenotypes and the WT and HP lines degraded the starch similarly, having 30% residual starch after 12 d of germination. However, the AO line showed significant resistance to degradation, having 57% residual starch. Interestingly, protein and β-glucan (BG) degradation was stimulated for both HP and AO lines as compared with the WT. At late seedling establishment stages, specific sugars were rapidly consumed in the AO line. α-Amylase activity was distinctly suppressed in both the HP and the AO lines. Pre-germination β-amylase deposition was low in the AO grains and β-amylase was generally suppressed in both HP and AO lines throughout germination. As further supported by scanning electron microscopy and histochemical analyses on grain and seedlings, it was concluded that inadequate starch granule deposition in combination with the suppressed hydrolase activity leads to temporal and compensating re-direction of starch, sugar, and protein catabolism important to maintain metabolic dynamics during grain germination and seedling establishment. PMID:24642850

  17. New insights into redox control of starch degradation.

    PubMed

    Santelia, Diana; Trost, Paolo; Sparla, Francesca

    2015-06-01

    Starch is one of the major sinks of fixed carbon in photosynthetic tissues of higher plants. Carbon fixation and the synthesis of primary starch occur during the day in the chloroplast stroma, whereas starch degradation typically occurs during the following night to fuel the whole plant with energy and carbon in the absence of photosynthesis. Redox-based regulatory systems play a central role in the modulation of several chloroplastic pathways. Reversible oxidations of cysteine residues are post-translational modifications that orchestrate the precise functioning of chloroplast pathways together with changes in pH, Mg(2+) and concentrations of metabolic intermediates. Leaf starch metabolism has been intensively studied. The enzymes involved in starch synthesis and degradation have been identified and characterized. However, the redox control of the enzymes responsible for starch degradation at night remains elusive, and their response to redox transitions conflicts with the timing of the physiological events. Most of the enzymes of starch degradation are activated by reducing conditions, characteristic of daytime. Thus, redox control may have only a minor role during starch degradation at night, but could become relevant for daily stomatal opening in guard cells or in the re-allocation of fixed carbon in mesophyll cells in response to stress conditions. PMID:25899330

  18. Starch Metabolism in Arabidopsis

    PubMed Central

    Streb, Sebastian; Zeeman, Samuel C.

    2012-01-01

    Starch is the major non-structural carbohydrate in plants. It serves as an important store of carbon that fuels plant metabolism and growth when they are unable to photosynthesise. This storage can be in leaves and other green tissues, where it is degraded during the night, or in heterotrophic tissues such as roots, seeds and tubers, where it is stored over longer time periods. Arabidopsis accumulates starch in many of its tissues, but mostly in its leaves during the day. It has proven to be a powerful genetic system for discovering how starch is synthesised and degraded, and new proteins and processes have been discovered. Such work has major significance for our starch crops, whose yield and quality could be improved by the application of this knowledge. Research into Arabidopsis starch metabolism has begun to reveal how its daily turnover is integrated into the rest of metabolism and adapted to the environmental conditions. Furthermore, Arabidopsis mutant lines deficient in starch metabolism have been employed as tools to study other biological processes ranging from sugar sensing to gravitropism and flowering time control. This review gives a detailed account of the use of Arabidopsis to study starch metabolism. It describes the major discoveries made and presents an overview of our understanding today, together with some as-yet unresolved questions. PMID:23393426

  19. Characterization of starch nanoparticles

    NASA Astrophysics Data System (ADS)

    Szymońska, J.; Targosz-Korecka, M.; Krok, F.

    2009-01-01

    Nanomaterials already attract great interest because of their potential applications in technology, food science and medicine. Biomaterials are biodegradable and quite abundant in nature, so they are favoured over synthetic polymer based materials. Starch as a nontoxic, cheap and renewable raw material is particularly suitable for preparation of nanoparticles. In the paper, the structure and some physicochemical properties of potato and cassava starch particles of the size between 50 to 100 nm, obtained by mechanical treatment of native starch, were presented. We demonstrated, with the aim of the Scanning Electron Microscopy (SEM) and the non-contact Atomic Force Microscopy (nc-AFM), that the shape and dimensions of the obtained nanoparticles both potato and cassava starch fit the blocklets - previously proposed as basic structural features of native starch granules. This observation was supported by aqueous solubility and swelling power of the particles as well as their iodine binding capacity similar to those for amylopectin-type short branched polysaccharide species. Obtained results indicated that glycosidic bonds of the branch linkage points in the granule amorphous lamellae might be broken during the applied mechanical treatment. Thus the released amylopectin clusters could escape out of the granules. The starch nanoparticles, for their properties qualitatively different from those of native starch granules, could be utilized in new applications.

  20. Enzymatic acylation of starch.

    PubMed

    Alissandratos, Apostolos; Halling, Peter J

    2012-07-01

    Starch a cheap, abundant and renewable natural material has been chemically modified for many years. The popular modification acylation has been used to adjust rheological properties as well as deliver polymers with internal plasticizers and other potential uses. However the harsh reaction conditions required to produce these esters may limit their use, especially in sensitive applications (foods, pharmaceuticals, etc.). The use of enzymes to catalyse acylation may provide a suitable alternative due to high selectivities and mild reaction conditions. Traditional hydrolase-catalysed synthesis in non-aqueous apolar media is hard due to lack of polysaccharide solubility. However, acylated starch derivatives have recently been successfully produced in other non-conventional systems: (a) surfactant-solubilised subtilisin and suspended amylose in organic media; (b) starch nanoparticles dispersed in organic medium with immobilised lipase; (c) aqueous starch gels with lipase and dispersed fatty acids. We attempt a systematic review that draws parallels between the seemingly unrelated approaches described. PMID:22138593

  1. Resistant starches and health.

    PubMed

    Kendall, Cyril W C; Emam, Azadeh; Augustin, Livia S A; Jenkins, David J A

    2004-01-01

    It was initially hypothesized that resistant starches, i.e., starch that enters the colon, would have protective effects on chronic colonic diseases, including reduction of colon cancer risk and in the treatment of ulcerative colitis. Recent studies have confirmed the ability of resistant starch to increase fecal bulk, increase the molar ratio of butyrate in relation to other short-chain fatty acids, and dilute fecal bile acids. However the ability of resistant starch to reduce luminal concentrations of compounds that are damaging to the colonic mucosa, including fecal ammonia, phenols, and N-nitroso compounds, still requires clear demonstration. As such, the effectiveness of resistant starch in preventing or treating colonic diseases remains to be assessed. Nevertheless, there is a fraction of what has been termed resistant (RS1) starch, which enters the colon and acts as slowly digested or lente carbohydrate in the small intestine. Foods in this class are low glycemic index and have been shown to reduce the risk of chronic disease. They have been associated with systemic physiological effects such as reduced postprandial insulin levels and higher HDL cholesterol levels. Consumption of low glycemic index foods has been shown to be related to reductions in risk of coronary heart disease and Type 2 diabetes. Type 2 diabetes has in turn been related to a higher risk of colon cancer. If carbohydrates have a protective role in colon cancer prevention this may lie partly in the systemic effects of low glycemic index foods. The colonic advantages of different carbohydrates, varying in their glycemic index and resistant starch content, therefore, remain to be determined. However, as recent positive research findings continue to mount, there is reason for optimism over the possible health advantages of those resistant starches, which are slowly digested in the small intestine. PMID:15287678

  2. Centrifugally spun starch-based fibers from amylopectin rich starches.

    PubMed

    Li, Xianglong; Chen, Huanhuan; Yang, Bin

    2016-02-10

    Centrifugal spinning and electrospinning have proved to be effective techniques for fabricating micro-to-nanofibers. However, starches of amylopectin content above 65% cannot be fabricated to fiber by electrospinning. This paper is focus on the centrifugal spinnability of amylopectin rich starches. We investigated the amylopectin content of starches by Dual-wavelength colorimetry, studied the rheological properties of starch dopes to determine entanglement concentration (ce) by rotary rheometer. Results indicated that amylopectin rich native corn and potato starches, which with amylopectin content higher than 65%, were suitable for centrifugal spinning to micro-to-nanofibers. Additionally, starch-based fibers were successfully fabricated from the amylose rich corn starch as well. Rheological studies showed that the entanglement concentration (ce) of starch solution was crucial for successful centrifugal spinning. PMID:26686151

  3. Development of maize starch granules

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize kernels of self-pollinated inbred line B73 harvested on various days after pollination (DAP) were subjected for starch granule development studies. Starch in endosperms was first observed on 6 DAP. A small amount of starch granules (<2% of dry weight) was found in the endosperm on 12 DAP. S...

  4. Fractionation and reconstitution experiments provide insight into the role of wheat starch in frozen dough.

    PubMed

    Tao, Han; Wang, Pei; Ali, Barkat; Wu, Fengfeng; Jin, Zhengyu; Xu, Xueming

    2016-01-01

    The wheat dough was subjected to freezing/thawing treatment for 0, 3, 7, and 10 cycles and fractionated into non-gluten proteins and starch. High-performance liquid chromatography revealed changes in molecular mass distribution occurred for the extracted non-gluten proteins. As for the residual starch, it reflected a loss of chemical components such as amylose, proteins and lipids induced by freezing treatment. X-ray diffraction revealed increased crystallinity in separated starch as the freezing cycle was repeated. Rapid visco-analyser exhibited different pasting behaviors on starch pellets, especially on the breakdown and setback viscosities. In the reconstituted dough, an increase was observed in storage and loss modulus, corresponding to the presence of freezing/thawing-treated starches, which was changed as a result of higher water absorption. These results extended the knowledge of starch granules in dough deterioration upon freezing process and might contribute to the better understanding of frozen dough quality loss. PMID:26213014

  5. Changes of multi-scale structure during mimicked DSC heating reveal the nature of starch gelatinization

    NASA Astrophysics Data System (ADS)

    Wang, Shujun; Zhang, Xiu; Wang, Shuo; Copeland, Les

    2016-06-01

    A thorough understanding of starch gelatinization is extremely important for precise control of starch functional properties for food processing and human nutrition. Here we reveal the molecular mechanism of starch gelatinization by differential scanning calorimetry (DSC) in conjunction with a protocol using the rapid viscosity analyzer (RVA) to generate material for analysis under conditions that simulated the DSC heating profiles. The results from DSC, FTIR, Raman, X-ray diffraction and small angle X-ray scattering (SAXS) analyses all showed that residual structural order remained in starch that was heated to the DSC endotherm end temperature in starch:water mixtures of 0.5 to 4:1 (v/w). We conclude from this study that the DSC endotherm of starch at a water:starch ratio of 2 to 4 (v/w) does not represent complete starch gelatinization. The DSC endotherm of starch involves not only the water uptake and swelling of amorphous regions, but also the melting of starch crystallites.

  6. Changes of multi-scale structure during mimicked DSC heating reveal the nature of starch gelatinization

    PubMed Central

    Wang, Shujun; Zhang, Xiu; Wang, Shuo; Copeland, Les

    2016-01-01

    A thorough understanding of starch gelatinization is extremely important for precise control of starch functional properties for food processing and human nutrition. Here we reveal the molecular mechanism of starch gelatinization by differential scanning calorimetry (DSC) in conjunction with a protocol using the rapid viscosity analyzer (RVA) to generate material for analysis under conditions that simulated the DSC heating profiles. The results from DSC, FTIR, Raman, X-ray diffraction and small angle X-ray scattering (SAXS) analyses all showed that residual structural order remained in starch that was heated to the DSC endotherm end temperature in starch:water mixtures of 0.5 to 4:1 (v/w). We conclude from this study that the DSC endotherm of starch at a water:starch ratio of 2 to 4 (v/w) does not represent complete starch gelatinization. The DSC endotherm of starch involves not only the water uptake and swelling of amorphous regions, but also the melting of starch crystallites. PMID:27319782

  7. SURFACE PROPERTIES OF WATER SOLUBLE STARCH, STARCH ACETATES AND STARCH ACETATES/ALKENYLSUCCINATES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface and interfacial tensions with hexadecane were measured for starch and water soluble starch ester solutions in order to determine their potential as stabilizers or emulsifiers. The surface tension for an acid hydrolysed starch (maltodextrin) initially declined with concentration and then rea...

  8. Structural mechanisms of plant glucan phosphatases in starch metabolism.

    PubMed

    Meekins, David A; Vander Kooi, Craig W; Gentry, Matthew S

    2016-07-01

    Glucan phosphatases are a recently discovered class of enzymes that dephosphorylate starch and glycogen, thereby regulating energy metabolism. Plant genomes encode two glucan phosphatases, called Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2), that regulate starch metabolism by selectively dephosphorylating glucose moieties within starch glucan chains. Recently, the structures of both SEX4 and LSF2 were determined, with and without phosphoglucan products bound, revealing the mechanism for their unique activities. This review explores the structural and enzymatic features of the plant glucan phosphatases, and outlines how they are uniquely adapted to perform their cellular functions. We outline the physical mechanisms used by SEX4 and LSF2 to interact with starch glucans: SEX4 binds glucan chains via a continuous glucan-binding platform comprising its dual-specificity phosphatase domain and carbohydrate-binding module, while LSF2 utilizes surface binding sites. SEX4 and LSF2 both contain a unique network of aromatic residues in their catalytic dual-specificity phosphatase domains that serve as glucan engagement platforms and are unique to the glucan phosphatases. We also discuss the phosphoglucan substrate specificities inherent to SEX4 and LSF2, and outline structural features within the active site that govern glucan orientation. This review defines the structural mechanism of the plant glucan phosphatases with respect to phosphatases, starch metabolism and protein-glucan interaction, thereby providing a framework for their application in both agricultural and industrial settings. PMID:26934589

  9. The Characterization of Modified Starch Branching Enzymes: Toward the Control of Starch Chain-Length Distributions

    PubMed Central

    Li, Cheng; Wu, Alex Chi; Go, Rob Marc; Malouf, Jacob; Turner, Mark S.; Malde, Alpeshkumar K.; Mark, Alan E.; Gilbert, Robert G.

    2015-01-01

    Starch is a complex branched glucose polymer whose branch molecular weight distribution (the chain-length distribution, CLD) influences nutritionally important properties such as digestion rate. Chain-stopping in starch biosynthesis is by starch branching enzyme (SBE). Site-directed mutagenesis was used to modify SBEIIa from Zea mays (mSBEIIa) to produce mutants, each differing in a single conserved amino-acid residue. Products at different times from in vitro branching were debranched and the time evolution of the CLD measured by size-exclusion chromatography. The results confirm that Tyr352, Glu513, and Ser349 are important for mSBEIIa activity while Arg456 is important for determining the position at which the linear glucan is cut. The mutant mSBEIIa enzymes have different activities and suggest the length of the transferred chain can be varied by mutation. The work shows analysis of the molecular weight distribution can yield information regarding the enzyme branching sites useful for development of plants yielding starch with improved functionality. PMID:25874689

  10. RHEOLOGY OF STARCH-LIPID COMPOSITES YOGURTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yogurt is traditionally made by fermenting liquid milk. The ability of starches to thicken, gel, and hold water has been exploited in yogurt manufacture. The addition of starch increases the viscosity of yogurt, but some starches impart an undesirable taste and promote phase separation. Starch-li...

  11. Specific oxidation pattern of soluble starch with TEMPO-NaBr-NaClO system.

    PubMed

    Hao, Jie; Lu, Jiaojiao; Xu, Naiyu; Linhardt, Robert J; Zhang, Zhenqing

    2016-08-01

    Oxidized starch, one of the most important starch derivatives, has many different properties and applications. Currently, there are two ways to produce oxidized starch, through specific and nonspecific oxidation. Specific oxidation using the stable nitroxyl radical, 2,2,6,6-tetramethyl preparidinloxy (TEMPO), with NaBr and NaClO can produce oxidized starches with different properties under good quality control. In the current study, we examine the products of specifically oxidized starch. As the amount of oxidant and the temperature, two critical factors impacting the oxidation of starch were thoroughly investigated. Analysis of the molecular weight (MW), degree of oxidization (DO) and the detailed structures of corresponding products was accomplished using gel permeation chromatography with multi-angle laser light scattering (GPC-MALLS), infrared (IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and quadrapole time-of-flight mass spectrometry (Q/TOF-MS). According to the analytical results, the oxidation patterns of starch treated with specific oxidant TEMPO-NaBr-NaClO were established. When high amounts of oxidant was applied, more glucose residues within starch were oxidized to glucuronic acids (higher DO) and substantial degradation to starch oligosaccharides was observed. By selecting a reaction temperature of 25°C a high DO could be obtained for a given amount of oxidant. The reducing end sugar residue within oxidized starch was itself oxidized and ring opened in all TEMPO-NaBr-NaClO reactions. Furthermore, extra oxidant generated additional novel structures in the reducing end residues of some products, particularly in low temperature reactions. PMID:27112871

  12. Starch Suspensions with Different Fluids

    NASA Astrophysics Data System (ADS)

    Lim, Melody; Melville, Audrey; Dijksman, Joshua; Behringer, Robert

    2014-03-01

    A suspension made of starch particles dispersed in water displays significant non-Newtonian behavior for high enough particulate concentration. This surprising behavior has recently inspired a series of experiments that have shed much light on the possible mechanism behind this phenomenon. In our studies we assess the role of the fluid phase in these suspensions. We find that using fluids other than water can significantly alter the behavior of starch suspensions. Through mechanical tests of various kinds, we assess the interaction between starch particles and different liquids, and how this interaction affects the non-Newtonian behavior of starch suspensions.

  13. A family of starch-active polysaccharide monooxygenases

    PubMed Central

    Vu, Van V.; Beeson, William T.; Span, Elise A.; Farquhar, Erik R.; Marletta, Michael A.

    2014-01-01

    The recently discovered fungal and bacterial polysaccharide monooxygenases (PMOs) are capable of oxidatively cleaving chitin, cellulose, and hemicelluloses that contain β(1→4) linkages between glucose or substituted glucose units. They are also known collectively as lytic PMOs, or LPMOs, and individually as AA9 (formerly GH61), AA10 (formerly CBM33), and AA11 enzymes. PMOs share several conserved features, including a monocopper center coordinated by a bidentate N-terminal histidine residue and another histidine ligand. A bioinformatic analysis using these conserved features suggested several potential new PMO families in the fungus Neurospora crassa that are likely to be active on novel substrates. Herein, we report on NCU08746 that contains a C-terminal starch-binding domain and an N-terminal domain of previously unknown function. Biochemical studies showed that NCU08746 requires copper, oxygen, and a source of electrons to oxidize the C1 position of glycosidic bonds in starch substrates, but not in cellulose or chitin. Starch contains α(1→4) and α(1→6) linkages and exhibits higher order structures compared with chitin and cellulose. Cellobiose dehydrogenase, the biological redox partner of cellulose-active PMOs, can serve as the electron donor for NCU08746. NCU08746 contains one copper atom per protein molecule, which is likely coordinated by two histidine ligands as shown by X-ray absorption spectroscopy and sequence analysis. Results indicate that NCU08746 and homologs are starch-active PMOs, supporting the existence of a PMO superfamily with a much broader range of substrates. Starch-active PMOs provide an expanded perspective on studies of starch metabolism and may have potential in the food and starch-based biofuel industries. PMID:25201969

  14. A family of starch-active polysaccharide monooxygenases.

    PubMed

    Vu, Van V; Beeson, William T; Span, Elise A; Farquhar, Erik R; Marletta, Michael A

    2014-09-23

    The recently discovered fungal and bacterial polysaccharide monooxygenases (PMOs) are capable of oxidatively cleaving chitin, cellulose, and hemicelluloses that contain β(1→4) linkages between glucose or substituted glucose units. They are also known collectively as lytic PMOs, or LPMOs, and individually as AA9 (formerly GH61), AA10 (formerly CBM33), and AA11 enzymes. PMOs share several conserved features, including a monocopper center coordinated by a bidentate N-terminal histidine residue and another histidine ligand. A bioinformatic analysis using these conserved features suggested several potential new PMO families in the fungus Neurospora crassa that are likely to be active on novel substrates. Herein, we report on NCU08746 that contains a C-terminal starch-binding domain and an N-terminal domain of previously unknown function. Biochemical studies showed that NCU08746 requires copper, oxygen, and a source of electrons to oxidize the C1 position of glycosidic bonds in starch substrates, but not in cellulose or chitin. Starch contains α(1→4) and α(1→6) linkages and exhibits higher order structures compared with chitin and cellulose. Cellobiose dehydrogenase, the biological redox partner of cellulose-active PMOs, can serve as the electron donor for NCU08746. NCU08746 contains one copper atom per protein molecule, which is likely coordinated by two histidine ligands as shown by X-ray absorption spectroscopy and sequence analysis. Results indicate that NCU08746 and homologs are starch-active PMOs, supporting the existence of a PMO superfamily with a much broader range of substrates. Starch-active PMOs provide an expanded perspective on studies of starch metabolism and may have potential in the food and starch-based biofuel industries. PMID:25201969

  15. Silicon tetrachloride plasma induced grafting for starch-based composites

    NASA Astrophysics Data System (ADS)

    Ma, Yonghui C.

    Non-modified virgin starch is seldom used directly in industrial applications. Instead, it is often physically and/or chemically modified to achieve certain enhanced properties. For many of the non-food applications, these modifications involve changing its hydrophilicity to create hydrophobic starch. In this study, the hydrophobic starch was produced through silicon tetrachloride (SiCl4) plasma induced graft polymerization, so that it could be used as a renewable and biodegradable component of, or substitute for, the petrochemical-based plastics. It was suggested that this starch graft-copolymer might be used as reinforcing components in silicone-rubber materials for starch-based composites. To make this starch graft-copolymer, the ethyl ether-extracted starch powders were surface functionalized by SiCl4 plasma using a 13.56 MHz radio frequency rotating plasma reactor and subsequently stabilized by either ethylene diamine or dichlorodimethylsilane (DCDMS). The functionalized starch was then graft-polymerized with DCDMS to form polydimethylsiloxane (PDMS) layers around the starch granules. The presence of this PDMS layer was demonstrated by electron spectroscopy for chemical analysis (ESCA/XPS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), gas chromatography-mass spectroscopy (GC-MS), thermo gravimetry/differential thermal analysis (TG/DTA), and other analyses. It was shown that the surface morphology, thermal properties, swelling characteristic, and hydrophilicity of starch were all changed due to the existence of this protective hydrophobic PDMS layer. Several different procedures to carry out the functionalization and graft polymerization steps were evaluated to improve the effectiveness of the reactions and to prevent the samples from being hydrolyzed by the grafting byproduct HCl. Actinometry, GC-MS, and residual gas analyzer (RGA) were used to investigate the mechanisms of the SiCl4 discharge and to optimize the plasma

  16. Gas-Cooled Fast Breeder Reactor Preliminary Safety Information Document, Amendment 10. GCFR residual heat removal system criteria, design, and performance

    SciTech Connect

    Not Available

    1980-09-01

    This report presents a comprehensive set of safety design bases to support the conceptual design of the gas-cooled fast breeder reactor (GCFR) residual heat removal (RHR) systems. The report is structured to enable the Nuclear Regulatory Commission (NRC) to review and comment in the licensability of these design bases. This report also presents information concerning a specific plant design and its performance as an auxiliary part to assist the NRC in evaluating the safety design bases.

  17. Understanding shape and morphology of unusual tubular starch nanocrystals.

    PubMed

    Gong, Bei; Liu, Wenxia; Tan, Hua; Yu, Dehai; Song, Zhaoping; Lucia, Lucian A

    2016-10-20

    Starch nanocrystals (SNC) are aptly described as the insoluble degradation byproducts of starch granules that purportedly display morphologies that are platelet-like, round, square, and oval-like. In this work, we reported the preparation of SNC with unprecedented tubular structures through sulfuric acid hydrolysis of normal maize starch, subsequent exposure to ammonia and relaxation at 4°C. High-resolution transmission electron microscopy observation clearly proved that the SNCs possess tubular nanostructures with polygonal cross-section. After further reviewing the transformations of SNC by acid hydrolysis, ammonia treatment, and curing time at 4°C, a mechanism for T-SNC formation is suggested. It is conjectured that T-SNC gradually self-assembles by combination of smaller platelet-like/square nanocrystals likely loosely aggregated by starch molecular chains from residual amorphous regions. This work paves the way for the pursuit of new approaches for the preparation of starch-based nanomaterials possessing unique morphologies. PMID:27474612

  18. Middle Stone Age starch acquisition in the Niassa Rift, Mozambique

    NASA Astrophysics Data System (ADS)

    Mercader, Julio; Bennett, Tim; Raja, Mussa

    2008-09-01

    The quest for direct lines of evidence for Paleolithic plant consumption during the African Middle Stone Age has led scientists to study residues and use-wear on flaked stone tools. Past work has established lithic function through multiple lines of evidence and the spatial breakdown of use-wear and microscopic traces on tool surfaces. This paper focuses on the quantitative analysis of starch assemblages and the botanical identification of grains from flake and core tools to learn about human ecology of carbohydrate use around the Niassa woodlands, in the Mozambican Rift. The processing of starchy plant parts is deduced from the occurrence of starch assemblages that presumably got attached to stone tool surfaces by actions associated with extractive or culinary activities. Specifically, we investigate starch grains from stone tools recently excavated in northern Mozambique at the site of Mikuyu; which presumably spans the middle to late Pleistocene and represents similar sites found along the Malawi/Niassa corridor that links East, Southern, and Central Africa. Starch was extracted and processed with a diverse tool kit consisting of scrapers, cores, points, flakes, and other kinds of tools. The microbotanical data suggests consumption of seeds, legumes, caryopses, piths, underground storage organs, nuts, and mesocarps from more than a dozen families. Our data suggest a great antiquity for starch use in Africa as well as an expanded diet and intensification.

  19. Starch-filled polymer composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report describes the development of degradable polymer composites that can be made at room temperature without special equipments. The developed composites are made from ethyl cyanoacrylate and starch. The polymer composites produced by this procedure contain 60 wt% of starch with compressive s...

  20. Starch Applications for Delivery Systems

    NASA Astrophysics Data System (ADS)

    Li, Jason

    2013-03-01

    Starch is one of the most abundant and economical renewable biopolymers in nature. Starch molecules are high molecular weight polymers of D-glucose linked by α-(1,4) and α-(1,6) glycosidic bonds, forming linear (amylose) and branched (amylopectin) structures. Octenyl succinic anhydride modified starches (OSA-starch) are designed by carefully choosing a proper starch source, path and degree of modification. This enables emulsion and micro-encapsulation delivery systems for oil based flavors, micronutrients, fragrance, and pharmaceutical actives. A large percentage of flavors are encapsulated by spray drying in today's industry due to its high throughput. However, spray drying encapsulation faces constant challenges with retention of volatile compounds, oxidation of sensitive compound, and manufacturing yield. Specialty OSA-starches were developed suitable for the complex dynamics in spray drying and to provide high encapsulation efficiency and high microcapsule quality. The OSA starch surface activity, low viscosity and film forming capability contribute to high volatile retention and low active oxidation. OSA starches exhibit superior performance, especially in high solids and high oil load encapsulations compared with other hydrocolloids. The submission is based on research and development of Ingredion

  1. Responsive starch-based materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch, a low-cost, annually renewable resource, is naturally hydrophilic and its properties change with relative humidity. Starch’s hygroscopic nature can be used to develop materials which change shape or volume in response to environmental changes (e.g. humidity). For example, starch-based graf...

  2. Starch-Lignin Baked Foams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch-kraft lignin foams were prepared by a baking process. Replacing up to 20% of the starch with lignin has no effect on foam density or overall morphology. At 10% replacement, lignin marginally increases water resistance and modulus of elasticity but decreases strain at maximum stress. At 20% re...

  3. Brucite nanoplate reinforced starch bionanocomposites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper the mechanical reinforcement in a series of bionanocomposites films based on starch and nano-sized brucite, Mg(OH)2, was investigated. Brucite nanoplates with an aspect ratio of 9.25 were synthesized by wet precipitation and incorporated into starch matrices at different concentrations...

  4. Rapid determination of residues of pesticides in honey by µGC-ECD and GC-MS/MS: Method validation and estimation of measurement uncertainty according to document No. SANCO/12571/2013.

    PubMed

    Paoloni, Angela; Alunni, Sabrina; Pelliccia, Alessandro; Pecorelli, Ivan

    2016-01-01

    A simple and straightforward method for simultaneous determination of residues of 13 pesticides in honey samples (acrinathrin, bifenthrin, bromopropylate, cyhalothrin-lambda, cypermethrin, chlorfenvinphos, chlorpyrifos, coumaphos, deltamethrin, fluvalinate-tau, malathion, permethrin and tetradifon) from different pesticide classes has been developed and validated. The analytical method provides dissolution of honey in water and an extraction of pesticide residues by n-Hexane followed by clean-up on a Florisil SPE column. The extract was evaporated and taken up by a solution of an injection internal standard (I-IS), ethion, and finally analyzed by capillary gas chromatography with electron capture detection (GC-µECD). Identification for qualitative purpose was conducted by gas chromatography with triple quadrupole mass spectrometer (GC-MS/MS). A matrix-matched calibration curve was performed for quantitative purposes by plotting the area ratio (analyte/I-IS) against concentration using a GC-µECD instrument. According to document No. SANCO/12571/2013, the method was validated by testing the following parameters: linearity, matrix effect, specificity, precision, trueness (bias) and measurement uncertainty. The analytical process was validated analyzing blank honey samples spiked at levels equal to and greater than 0.010 mg/kg (limit of quantification). All parameters were satisfactorily compared with the values established by document No. SANCO/12571/2013. The analytical performance was verified by participating in eight multi-residue proficiency tests organized by BIPEA, obtaining satisfactory z-scores in all 70 determinations. Measurement uncertainty was estimated according to the top-down approaches described in Appendix C of the SANCO document using the within-laboratory reproducibility relative standard deviation combined with laboratory bias using the proficiency test data. PMID:26671720

  5. Starches, Sugars and Obesity

    PubMed Central

    Aller, Erik E. J. G.; Abete, Itziar; Astrup, Arne; Martinez, J. Alfredo; van Baak, Marleen A.

    2011-01-01

    The rising prevalence of obesity, not only in adults but also in children and adolescents, is one of the most important public health problems in developed and developing countries. As one possible way to tackle obesity, a great interest has been stimulated in understanding the relationship between different types of dietary carbohydrate and appetite regulation, body weight and body composition. The present article reviews the conclusions from recent reviews and meta-analyses on the effects of different starches and sugars on body weight management and metabolic disturbances, and provides an update of the most recent studies on this topic. From the literature reviewed in this paper, potential beneficial effects of intake of starchy foods, especially those containing slowly-digestible and resistant starches, and potential detrimental effects of high intakes of fructose become apparent. This supports the intake of whole grains, legumes and vegetables, which contain more appropriate sources of carbohydrates associated with reduced risk of cardiovascular and other chronic diseases, rather than foods rich in sugars, especially in the form of sugar-sweetened beverages. PMID:22254101

  6. Alkynyl polysaccharides: synthesis of propargyl potato starch followed by subsequent derivatizations.

    PubMed

    Tankam, Pascal F; Müller, Romy; Mischnick, Petra; Hopf, Henning

    2007-10-15

    Potato starch propargyl ethers (PgS) with degrees of substitution (DS) from 0.1 to 2.2 have been prepared by etherification of starch with sodium hydroxide or Li dimsyl in Me(2)SO and propargyl bromide. DS values and substituent distribution were determined after hydrolysis and acetylation by GC-MS. The order of reactivity was 2>6>3, with O-3 substitution being preferably observed in the trisubstituted units. Repeated analysis of the starch derivatives revealed that propargyl residues were lost during storage, a phenomenon that was not fully understood until now. Selected PgS were further functionalized: (a) O- and C-methylated to O-(2-butynyl)-O-methyl starch (BMS), (b) in a Mannich type reaction with diethylamine and formaldehyde to yield O-(4-diethylamino)-2-butinyl starch (DEABiS), (c) in a 1,3-dipolar cycloaddition with benzyl azide ('click-chemistry') to a N-benzyltriazole derivatized starch (BTrS), and (d) with carbon dioxide to O-(3-carboxy)-2-butinyl starch (CBiS). While the yield of carboxylation was only poor, conversion was high or nearly quantitative for reactions a-c. Thus, it is demonstrated that starch propargyl ethers are valuable intermediates for the preparation of functional polysaccharides. PMID:17573053

  7. Mixed biopolymer systems based on starch.

    PubMed

    Abd Elgadir, M; Akanda, Md Jahurul Haque; Ferdosh, Sahena; Mehrnoush, Amid; Karim, Alias A; Noda, Takahiro; Sarker, Md Zaidul Islam

    2012-01-01

    A binary mixture of starch-starch or starch with other biopolymers such as protein and non-starch polysaccharides could provide a new approach in producing starch-based food products. In the context of food processing, a specific adjustment in the rheological properties plays an important role in regulating production processing and optimizing the applicability, stability, and sensory of the final food products. This review examines various biopolymer mixtures based on starch and the influence of their interaction on physicochemical and rheological properties of the starch-based foods. It is evident that the physicochemical and rheological characteristics of the biopolymers mixture are highly dependent on the type of starch and other biopolymers that make them up mixing ratios, mixing procedure and presence of other food ingredients in the mixture. Understanding these properties will lead to improve the formulation of starch-based foods and minimize the need to resort to chemically modified starch. PMID:22231495

  8. Powder and compaction characteristics of pregelatinized starches.

    PubMed

    Rojas, J; Uribe, Y; Zuluaga, A

    2012-06-01

    Pregelatinized starch is widely used as a pharmaceutical aid, especially as a filler-binder. It is known that the tableting performance of excipients could be affected by their source. The aim of this study was to evaluate the powder and tableting properties of pregelatinized starches obtained from yucca, corn and rice and compare those properties with those of Starch 1500. This material had the lowest particle size, and porosity and largest density and best flow. However, yucca starch and corn starch showed an irregular granule morphology, better compactibility and compressibility than Starch 1500. Their onset of plastic deformation and their strain rate sensitivity was comparable to that of Starch 1500. These two materials showed compact disintegration slower that Starch 1500. Conversely, rice starch showed a high elasticity, and friability, low compactibility, which are undesirable for direct compression. This study demonstrated the potential use of pregelatinized starches, especially those obtained from yucca and corn as direct compression filler-binders. PMID:22822539

  9. Experiment 9: ASTROCULTURE: Growth and Starch Accumulation of Potato Tuber

    NASA Technical Reports Server (NTRS)

    Tibbitts, Theodore W.; Brown, Christopher S.; Croxdale, Judith G.; Wheeler, Raymond M.

    1998-01-01

    Potato explants (leaf, small stem section, and axillary bud) flown on STS-73 developed tubers of 1.5 cm diameter and 1.7 g mass during the 16-day period of space flight. The experiment was undertaken in the ASTROCULTURE(TM) experiment package under controlled temperature, humidity, lighting, and carbon dioxide concentrations. The tubers that formed in the explant system under microgravity had the same gross morphology, the same anatomical configuration of cells and tissues, and the same sizes, shapes, and surface character of starch granules as tubers formed in a 1 g environment. The total accumulation of starch and other energy containing compounds was similar in space flight and ground control tubers. Enzyme activity of starch synthase, starch phosphorylase, and total hydrolase was similar in space flight and ground controls, but activity of ADP-glucose pyrophosphorylase was reduced in the space flight tuber tissue. This experiment documented that potatoes will metabolize and accumulate starch as effectively in space flight as on the ground. Thus, this data provides the potential for effective utilization of potatoes in life support systems of space bases.

  10. Space Experiment on Tuber Development and Starch Accumulation for CELSS

    NASA Technical Reports Server (NTRS)

    Tibbitts,Theodore W.; Croxdale, Judith C.; Brown, Christopher S.

    1997-01-01

    Potato explants (leaf, small stem section, and axillary bud), flown on STS-73, developed tubers of 1.5 cm diameter and 1.7 g mass during the 16 day period of spaceflight. The experiment was undertaken in the ASTROCULTURE(Trademark) experiment package under controlled temperature, humidity, lighting, and carbon dioxide concentrations. The tubers formed in the explant system under microgravity had the same gross morphology, the same anatomical configuration of cells and tissues, and the same sizes, shapes, and surface character of starch granules as tubers formed in a 1 g environment. The total accumulation of starch and other energy containing compounds was singular in space flight and ground control tubers. Enzyme activity of starch synthase, starch phosphorylase, and total hydrolase was similar in spaceflight and ground controls but activity of ADP-glucose pyrophosphorylase was reduced in the spaceflight tuber tissue. This experiment documented that potatoes will metabolize and accumulate starch as effectively in spaceflight as on the ground and thus this data provides the potential for effective utilization of potatoes in life support systems of space bases.

  11. Effects of granule swelling on starch saccharification by granular starch hydrolyzing enzyme.

    PubMed

    Li, Zhaofeng; Cai, Liming; Gu, Zhengbiao; Shi, Yong-Cheng

    2014-08-13

    The effects of granule swelling on enzymatic saccharification of normal corn starch by granular starch hydrolyzing enzyme were investigated. After swelling, Km values for the saccharification of granular starch decreased compared with native granular starch, indicating that granule swelling caused granular starch hydrolyzing enzyme to have higher affinity for starch granules. The partial swelling of starch granules enhanced starch saccharification. Furthermore, the enhancement at an earlier stage of enzymatic reaction was much more significant than that at later stages. For granular starch pretreated at 67.5 °C for 30 min, conversions to glucose after incubation with the enzyme at 32 °C for 4 and 24 h were approximately 3-fold and 26% higher than for native granular starch, respectively. As a result, proper heat pretreatment of granular starch before simultaneous saccharification and fermentation has great potential to facilitate industrial production of ethanol by use of granular starch hydrolyzing enzyme. PMID:25039418

  12. A method for routine measurements of total sugar and starch content in woody plant tissues.

    PubMed

    Chow, Pak S; Landhäusser, Simon M

    2004-10-01

    Several extraction and measurement methods currently employed in the determination of total sugar and starch contents in plant tissues were investigated with the view to streamline the process of total sugar and starch determination. Depending on the type and source of tissue, total sugar and starch contents estimated from samples extracted with 80% hot ethanol were significantly greater than from samples extracted with a methanol:chloroform:water solution. The residual ethanol did not interfere with the sugar and starch determination, rendering the removal of ethanol from samples unnecessary. The use of phenol-sulfuric acid with a phenol concentration of 2% provided a relatively simple and reliable colorimetric method to quantify the total soluble-sugar concentration. Performing parallel sugar assays with and without phenol was more useful for accounting for the interfering effects of other substances present in plant tissue than using chloroform. For starch determination, an enzyme mixture of 1000 U alpha-amylase and 5 U amyloglucosidase digested starch in plant tissue samples more rapidly and completely than previously recommended enzyme doses. Dilute sulfuric acid (0.005 N) was less suitable for starch digestion than enzymatic hydrolysis because the acid also broke down structural carbohydrates, resulting in overestimates of starch content. After the enzymatic digestion of starch, the glucose hydrolyzate obtained was measured with a peroxidase-glucose oxidase/o-dianisidine reagent; absorbance being read at 525 nm after the addition of sulfuric acid. With the help of this series of studies, we developed a refined and shortened method suitable for the rapid measurement of total sugar and starch contents in woody plant tissues. PMID:15294759

  13. Microscopic Analysis of Corn Fiber Using Corn Starch- and Cellulose-Specific Molecular Probes

    SciTech Connect

    Porter, S. E.; Donohoe, B. S.; Beery, K. E.; Xu, Q.; Ding, S.-Y.; Vinzant, T. B.; Abbas, C. A.; Himmel, M. E.

    2007-09-01

    Ethanol is the primary liquid transportation fuel produced from renewable feedstocks in the United States today. The majority of corn grain, the primary feedstock for ethanol production, has been historically processed in wet mills yielding products such as gluten feed, gluten meal, starch, and germ. Starch extracted from the grain is used to produce ethanol in saccharification and fermentation steps; however the extraction of starch is not 100% efficient. To better understand starch extraction during the wet milling process, we have developed fluorescent probes that can be used to visually localize starch and cellulose in samples using confocal microscopy. These probes are based on the binding specificities of two types of carbohydrate binding modules (CBMs), which are small substrate-specific protein domains derived from carbohydrate degrading enzymes. CBMs were fused, using molecular cloning techniques, to a green fluorescent protein (GFP) or to the red fluorescent protein DsRed (RFP). Using these engineered probes, we found that the binding of the starch-specific probe correlates with starch content in corn fiber samples. We also demonstrate that there is starch internally localized in the endosperm that may contribute to the high starch content in corn fiber. We also surprisingly found that the cellulose-specific probe did not bind to most corn fiber samples, but only to corn fiber that had been hydrolyzed using a thermochemical process that removes the residual starch and much of the hemicellulose. Our findings should be of interest to those working to increase the efficiency of the corn grain to ethanol process.

  14. Effect of nylon bag and protozoa on in vitro corn starch disappearance.

    PubMed

    van Zwieten, J T; van Vuuren, A M; Dijkstra, J

    2008-03-01

    An in vitro experiment was carried out to study whether the presence of protozoa in nylon bags can explain the underestimation of the in situ degradation of slowly degradable starch. Corn of a high (flint) and a low (dent) vitreousness variety was ground over a 3-mm screen, weighed in nylon bags with a pore size of 37 microm, and washed in cold water. Samples of washed cornstarch were incubated in 40-mL tubes with faunated and defaunated ruminal fluid. An additional amount of washed corn, in nylon bags, was inserted in each incubation tube. Incubations were carried out for 0, 2, 4, 6, 12, and 24 h, and starch residue in tube and nylon bag was determined. In general, starch disappearance from the nylon bag was less than from the tube, and was less with faunated than defaunated rumen fluid, but corn variety did not affect starch disappearance. When no protozoa were present, the disappearance of starch from the bags was higher after 6 and 12 h incubation compared with presence of protozoa. However, in the tubes, there was no difference in starch disappearance due to presence or absence of protozoa. Estimated lag time was higher in presence (4.6 h) then absence (3.6 h) of protozoa. It was concluded that the effect of presence or absence of protozoa on starch disappearance differs within or outside nylon bags. The reduced disappearance rate of starch inside the nylon bags in the presence of protozoa helps to explain the underestimation of starch degradation based on the in sacco procedure when compared with in vivo data upon incubation of slowly degradable starch sources. PMID:18292269

  15. Preparation and characterization of starch-based loose-fill packaging foams

    NASA Astrophysics Data System (ADS)

    Fang, Qi

    difference existed in water absorption characteristics between foams made of regular and waxy starches. Empirical models were developed to correlate foam water absorption characteristics with relative humidity and polymer content. The developed models fit the data well with relatively small standard errors and uniformly scattered residual plots. Foams with higher polymer content had better abrasion resistance than did foams with lower polymer content.

  16. Structure of Waxy Maize Starch Hydrolyzed by Maltogenic α-Amylase in Relation to Its Retrogradation.

    PubMed

    Grewal, Navneet; Faubion, Jon; Feng, Guohua; Kaufman, Rhett C; Wilson, Jeff D; Shi, Yong-Cheng

    2015-04-29

    Maltogenic α-amylase is widely used as an antistaling agent in bakery foods. The objective of this study was to determine the degree of hydrolysis (DH) and starch structure after maltogenic amylase treatments in relation to its retrogradation. Waxy maize starch was cooked and hydrolyzed to different degrees by a maltogenic amylase. High-performance anion-exchange chromatography and size exclusion chromatography were used to determine saccharides formed and the molecular weight (Mw) distributions of the residual starch structure, respectively. Chain length (CL) distributions of debranched starch samples were further related to amylopectin (AP) retrogradation. Differential scanning calorimetry (DSC) results showed the complete inhibition of retrogradation when starches were hydrolyzed to >20% DH. Mw and CL distributions of residual AP structure indicated that with an increase in %DH, a higher proportion of unit chains with degree of polymerization (DP) ≤9 and a lower proportion of unit chains with DP ≥17 were formed. A higher proportion of short outer AP chains that cannot participate in the formation of double helices supports the decrease in and eventual inhibition of retrogradation observed with the increase in %DH. These results suggest that the maltogenic amylase could play a powerful role in inhibiting the staling of baked products even at limited starch hydrolysis. PMID:25843595

  17. Starch as a renewable finish to improve the pesticide-protective properties of conventional workclothes.

    PubMed

    Obendorf, S K; Kasunick, R S; Ravichandran, V; Borsa, J; Coffman, C W

    1991-07-01

    Because many pesticide handlers persist in wearing and reusing conventional workclothes, a renewable functional finish that enhances the pesticide-protective qualities of fabrics would be useful. This study investigated the ability of starch to act as a pesticide trap, preventing transfer and increasing removal by laundering, and the effect of carboxymethyl cellulose on release of pesticide in laundry. The retention and distribution of methyl parathion (MeP) on 65% polyester/35% cotton fabric was studied with four finishes: starch and carboxymethyl cellulose (CMC) as nondurable finishes; durable press resin (DP) and durable press/carboxymethyl cellulose (DP/CMC) as durable finishes. Starching with an add-on of 8% (w/w) effectively reduced the area of contamination and enhanced the removal of methyl parathion from polyester/cotton fabrics. Residual pesticide values for CMC, DP, and DP/CMC finishes were similar to that of the unfinished fabric. While distribution profiles of methyl parathion throughout the yarn and fiber structures were similar for all the finishes, lower concentrations of pesticide were observed on the cotton fibers from the starched fabric. Starch reduced the pesticide transferring by rubbing from both 100% cotton and 65% polyester/cotton fabrics. These studies support the intriguing theory that starch can act as a pesticide trap on the fabric surface to decrease pesticide transfer and to enhance pesticide removal. Extensive penetration studies, field studies, and additional investigation of fiber, yarn, and fabric parameters are needed to further quantify the effects of starch. PMID:1898107

  18. Starch-degrading polysaccharide monooxygenases.

    PubMed

    Vu, Van V; Marletta, Michael A

    2016-07-01

    Polysaccharide degradation by hydrolytic enzymes glycoside hydrolases (GHs) is well known. More recently, polysaccharide monooxygenases (PMOs, also known as lytic PMOs or LPMOs) were found to oxidatively degrade various polysaccharides via a copper-dependent hydroxylation. PMOs were previously thought to be either GHs or carbohydrate binding modules (CBMs), and have been re-classified in carbohydrate active enzymes (CAZY) database as auxiliary activity (AA) families. These enzymes include cellulose-active fungal PMOs (AA9, formerly GH61), chitin- and cellulose-active bacterial PMOs (AA10, formerly CBM33), and chitin-active fungal PMOs (AA11). These PMOs significantly boost the activity of GHs under industrially relevant conditions, and thus have great potential in the biomass-based biofuel industry. PMOs that act on starch are the latest PMOs discovered (AA13), which has expanded our perspectives in PMOs studies and starch degradation. Starch-active PMOs have many common structural features and biochemical properties of the PMO superfamily, yet differ from other PMO families in several important aspects. These differences likely correlate, at least in part, to the differences in primary and higher order structures of starch and cellulose, and chitin. In this review we will discuss the discovery, structural features, biochemical and biophysical properties, and possible biological functions of starch-active PMOs, as well as their potential application in the biofuel, food, and other starch-based industries. Important questions regarding various aspects of starch-active PMOs and possible economical driving force for their future studies will also be highlighted. PMID:27170366

  19. Investigating the Mechanisms of Amylolysis of Starch Granules by Solution-State NMR

    PubMed Central

    2015-01-01

    Starch is a prominent component of the human diet and is hydrolyzed by α-amylase post-ingestion. Probing the mechanism of this process has proven challenging, due to the intrinsic heterogeneity of individual starch granules. By means of solution-state NMR, we demonstrate that flexible polysaccharide chains protruding from the solvent-exposed surfaces of waxy rice starch granules are highly mobile and that during hydrothermal treatment, when the granules swell, the number of flexible residues on the exposed surfaces increases by a factor of 15. Moreover, we show that these flexible chains are the primary substrates for α-amylase, being cleaved in the initial stages of hydrolysis. These findings allow us to conclude that the quantity of flexible α-glucan chains protruding from the granule surface will greatly influence the rate of energy acquisition from digestion of starch. PMID:25815624

  20. Effects of dry method esterification of starch on the degradation characteristics of starch/polylactic acid composites.

    PubMed

    Zuo, Ying Feng; Gu, Jiyou; Qiao, Zhibang; Tan, Haiyan; Cao, Jun; Zhang, Yanhua

    2015-01-01

    Maleic anhydride esterified corn starch was prepared by dry method. Esterified starch/polylactic acid (PLA) biodegradable composite was produced via melt extrusion method with blending maleic anhydride esterified corn starch and PLA. The influence of the dry method esterification of starch on the degradation characteristics of starch/PLA composites was investigated by the natural aging degradation which was soil burial method. Test results of mass loss rate showed that the first 30 days of degradation was mainly starch degradation, and the degradation rate of esterified starch/PLA (ES/PLA) was slower than that of native starch/PLA (NS/PLA). Therefore, the damage degree of ES/PLA on the surface and inside was smaller than that of NS/PLA, and the infrared absorption peak intensities of C-O, C=O and C-H were stronger than that of NS/PLA. With the increasing time of soil burial degradation, the damage degree of NS/PLA and ES/PLA on the exterior and interior were gradually increased, whereas the infrared absorption peak intensities of C-O, C=O and C-H were gradually decreased. The XRD diffraction peak intensity of PLA in composites showed an increased trend at first which was then followed by a decreased one along with the increasing time of soil burial degradation, indicating that the degradation of amorphous regions of PLA was earlier than its crystalline regions. When the soil burial time was the same, the diffraction peak intensity of PLA in ES/PLA was stronger than that of NS/PLA. If the degradation time was the same, T0, Ti and residual rate of thermal decomposition of NS/PLA were larger than those of ES/PLA. The tensile strength and bending strength of composites were decreased gradually with soil burial time increasing. Both the tensile strength and bending strength of ES/PLA were stronger than those of NS/PLA. PMID:25192854

  1. Rheological properties of reactive extrusion modified waxy starch and waxy starch-polyacrylamide copolymer gels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rheological properties of modified waxy starch and waxy starch-polyacrylamide graft copolymers prepared by reactive extrusion were investigated. Both materials can absorb huge amount of water and form gels. The modified waxy starch and waxy starch-polyacrylamide graft copolymer gels all exhibite...

  2. Comparison of Cationic and Unmodified Starches in Reactive Extrusion of Starch-Polyacrylamide Graft Copolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Graft copolymers of starch and polyacrylamide (PAAm) were prepared using reactive extrusion in a corotating twin screw extruder. The effect of cationic starch modification was examined using unmodified and cationic dent starch (approximately 23% amylose) and waxy maize starch (approximately 2% amyl...

  3. Quality of Spelt Wheat and its Starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flours from 5 spelt cultivars grown over 3 years were evaluated as to their bread baking quality and isolated starch properties. The starch properties included amylose contents, gelatinization temperatures (differential scanning calorimetry), granule size distributions and pasting properties. Mill...

  4. Studies of Amylose Content in Potato Starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato starch is typically low in amylose (~20-25%), but high amylose starch has superior nutritional qualities. The ratio between amylose and amylopectin is the most important property influencing the physical properties of starch. There is a strong case to be made for the development of food crops...

  5. Starch in the Wet-End

    NASA Astrophysics Data System (ADS)

    de Clerck, Peter

    Starch has been used in papermaking almost since the invention of paper. The global paper industry consumes almost 5 million tonnes of starch per year, making starch the third most important raw material in papermaking. Roughly 20% of this is used in the wet-end.

  6. Starch Granule Variability in Wild Solanum Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because most of the dry matter of potato tubers is starch, an understanding of starch properties is important in potato improvement programs. Starch granule size is considered to influence tuber processing quality parameters such as gelatinization temperature, viscosity, and water holding capacity. ...

  7. TRIBOLOGICAL PROPERTIES OF CHEMICALLY MODIFIED STARCH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch is one of the most abundantly available plant-based biopolymer. It is a major component of such high volume commodity crops as corn, potato, and rice. Starch is a highly crystalline, high molecular weight poly(glucose) biopolymer. Starch is insoluble in water in its native state. Various ...

  8. Esterification of Starch in Ionic Liquids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We shall discuss the use of various ionic liquids in the preparation of starch esters. Starch was reacted with vinyl acetate in different 1-butyl-3-methylimidazolium (bmim) salts as solvents in an effort to produce starches with different acetylation patterns. Overall degree of substitution (DS) w...

  9. Rice functionality, starch structure and the genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Through collaborative efforts among USDA scientists at Beaumont, Texas, we have gained in-depth knowledge of how rice functionality, i.e. the texture of the cooked rice, rice processing properties, and starch gelatinization temperature, are associated with starch-synthesis genes and starch structure...

  10. Structure of Porous Starch Microcellular Foam Particles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A relatively new starch product with various novel applications is a porous microcellular foam. The foam product is made by dehydrating a starch hydrogel in a solvent such as ethanol and then removing the solvent to form a foam product. The process involves heating an aqueous slurry of starch (8% w/...

  11. Properties of retrograded and acetylated starch produced via starch extrusion or starch hydrolysis with pullulanase.

    PubMed

    Kapelko, M; Zięba, T; Gryszkin, A; Styczyńska, M; Wilczak, A

    2013-09-12

    The aim of the present study was to determine the impact of serial modifications of starch, including firstly starch extrusion or hydrolysis with pullulanase, followed by retrogradation (through freezing and defrosting of pastes) and acetylation (under industrial conditions), on its susceptibility to amylolysis. The method of production had a significant effect on properties of the resultant preparations, whilst the direction and extent of changes depended on the type of modification applied. In the produced starch esters, the degree of substitution, expressed by the per cent of acetylation, ranged from 3.1 to 4.4 g/100 g. The acetylation had a significant impact on contents of elements determined with the atomic emission spectrometry, as it contributed to an increased Na content and decreased contents of Ca and K. The DSC thermal characteristics enabled concluding that the modifications caused an increase in temperatures and a decrease in heat of transition (or its lack). The acetylation of retrograded starch preparations increased their solubility in water and water absorbability. The modifications were found to exert various effects on the rheological properties of pastes determined based on the Brabender's pasting characteristics and flow curves determined with the use of an oscillatory-rotating viscosimeter. All starch acetates produced were characterized by ca. 40% resistance to amylolysis. PMID:23911484

  12. The synergetic effect of starch and alpha amylase on the biodegradation of n-alkanes.

    PubMed

    Karimi, M; Biria, D

    2016-06-01

    The impact of adding soluble starch on biodegradation of n-alkanes (C10-C14) by Bacillus subtilis TB1 was investigated. Gas chromatography was employed to measure the residual hydrocarbons in the system. It was observed that the efficiency of biodegradation improved with the presence of starch and the obtained residual hydrocarbons in the system were 53% less than the samples without starch. The produced bacterial enzymes were studied through electrophoresis and reverse zymography for explaining the observations. The results indicated that the produced amylase by the bacteria can degrade hydrocarbons and the same was obtained by the application of a commercial alpha amylase sample. In addition, in silico docking of alpha-amylase with n-alkanes with different molecular weights was studied by Molegro virtual docker which showed high negative binding energies and further substantiated the experimental observations. Overall, the findings confirmed the catalytic effect of alpha amylase on n-alkanes degradation. PMID:26971168

  13. Starch characteristics influencing resistant starch content of cooked buckwheat groats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enzyme resistant starch (RS), owing to its health benefits such as colon cancer inhibition, reduced glycemic response, reduced cholesterol level, prevention of gall stone formation and obesity, has received an increasing attention from consumers and food manufacturers, whereas intrinsic and extrinsi...

  14. Maltase-glucoamylase: Mucosal regulator of prandial starch glucogenesis and complementary hepatic gluconeogenesis of mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It was hypothesized that the slower rate of starch digestion by residual sucraseisomaltase (Si) maltase failed to fully regulate gluconeogenesis. In the present study the rate of gluconeogenesis was measured directly (J Appl Physiol 104: 944-951, 2008) and compared with exogenous glucose derived fro...

  15. Structure-function relationships in the catalytic and starch binding domains of glucoamylase.

    PubMed

    Coutinho, P M; Reilly, P J

    1994-03-01

    Sixteen primary sequences from five sub-families of fungal, yeast and bacterial glucoamylases were related to structural information from the model of the catalytic domain of Aspergillus awamori var. X100 glucoamylase obtained by protein crystallography. This domain is composed of thirteen alpha-helices, with five conserved regions defining the active site. Interactions between methyl alpha-maltoside and active site residues were modelled, and the importance of these residues on the catalytic action of different glucoamylases was shown by their presence in each primary sequence. The overall structure of the starch binding domain of some fungal glucoamylases was determined based on homology to the C-terminal domains of Bacillus cyclodextrin glucosyl-transferases. Crystallography indicated that this domain contains 6-8 beta-strands and homology allowed the attribution of a disulfide bridge in the glucoamylase starch binding domain. Glucoamylase residues Thr525, Asn530 and Trp560, homologous to Bacillus stearothermophilus cyclodextrin glucosyltransferase residues binding to maltose in the C-terminal domain, could be involved in raw-starch binding. The structure and length of the linker region between the catalytic and starch binding domains in fungal glucoamylases can vary substantially, a further indication of the functional independence of the two domains. PMID:8177888

  16. MICROBIAL YIELD AND FIBER DIGESTION FROM SUCROSE, STARCH, PECTIN AND BERMUDAGRASS FIBER FERMENTATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effect of nonfiber carbohydrates (NFC: sucrose, starch and pectin) fermented with isolated bermudagrass neutral detergent residue (iNDF) on microbial product yield and neutral detergent fiber (NDF) digestion was examined. iNDF with three concentrations of individual NFC (~40 to 120 hexose equivalent...

  17. Starch Products. Learning Activity Pack and Instructor's Guide 5.9. Commercial Foods and Culinary Arts Competency-Based Series. Section 5: Basic Food Preparation.

    ERIC Educational Resources Information Center

    Florida State Univ., Tallahassee. Center for Studies in Vocational Education.

    This document consists of a learning activity packet (LAP) for the student and an instructor's guide for the teacher. The LAP is intended to acquaint occupational home economics students with some basic information about starches and with three starch products found throughout the world: cereals and rice, potatoes, and pasta. Illustrated…

  18. A Study of the Work of Daniel Starch: A Chapter in the History of the Application of Psychology and Statistics to Education and Other Areas.

    ERIC Educational Resources Information Center

    Johanningmeier, Erwin V.

    This document examines the work of Daniel Starch, emphasizing his work in educational psychology and advertising. After earning his doctorate in psychology (1906), Starch attempted to apply the findings of the new science to education and to advertising. This application met with much success. In advertising, he devised new sampling techniques and…

  19. Mechanical properties and solubility in water of corn starch-collagen composite films: Effect of starch type and concentrations.

    PubMed

    Wang, Kun; Wang, Wenhang; Ye, Ran; Liu, Anjun; Xiao, Jingdong; Liu, Yaowei; Zhao, Yana

    2017-02-01

    This study investigated the possibility of enhancing the properties of collagen with three different maize starches: waxy maize starch, normal starch, and high amylose starch. Scanning electron microscopy images revealed that starch-collagen films had a rougher surface compared to pure collagen films which became smoother upon heating. Amylose starch and normal starch increased the tensile strength of unheated collagen films in both dry and wet states, while all starches increased tensile strength of collagen film by heating. Depending upon the amylose content and starch concentrations, film solubility in water decreased with the addition of starch. DSC thermograms demonstrated that addition of all starches improved the thermal stability of the collagen film. Moreover, X-ray diffraction results indicated that except for high amylose starch, the crystallinity of both starch and collagen was significantly decreased when subject to heating. FTIR spectra indicated that intermolecular interactions between starch and collagen were enhanced upon heating. PMID:27596411

  20. Properties of baked foams from citric acid modified cassava starch and native cassava starch blends.

    PubMed

    Pornsuksomboon, Kanlaya; Holló, Berta Barta; Szécsényi, Katalin Mészáros; Kaewtatip, Kaewta

    2016-01-20

    Starch foams from native cassava starch (NS) and citric acid modified cassava starch (CNS) were prepared using baking processes with blend ratios of 80/20, 60/40, 50/50, 40/60 and 20/80. The density, thickness, morphology, thermal stability and water absorption of the NS, CNS and blended starch foams were determined. The ratio of the two starch components had a significant influence on the density and thickness of the blended starch foams. All blended starch foams showed good water resistance. Moreover, the morphology of the blended starch foam with the NS/CNS ratio of 50/50 showed a more ordered distribution of cell sizes with thicker cell walls than for the NS and CNS foams. The thermal stability of the blended starch foams was somewhat lower than the stability of the NS foam but not to the extent that it affected any potential practical applications. PMID:26572335

  1. Annealing properties of rice starch.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal properties of starch can be modified by annealing, i.e., a pre-treatment in excessive amounts of water at temperatures below the gelatinization temperatures. This treatment is known to improve the crystalline properties, and is a useful tool to gain a better control of the functional proper...

  2. Starch composites with aconitic acid.

    PubMed

    Gilfillan, William Neil; Doherty, William O S

    2016-05-01

    The aim of this project is to examine the effectiveness of using aconitic acid (AcA), a tricarboxylic acid which contains a carbon/carbon double bond (CC), to enhance the properties of starch-based films. Starch/glycerol cast films were prepared with 0, 2, 5, 10 and 15wt% AcA (starch wt% basis) and the properties analysed. It was shown that AcA acted as both a cross-linking agent and also a strong plasticising agent. The 5wt% AcA derived starch films were the most effectively cross-linked having the lowest solubility (28wt%) and decreased swelling coefficient (35vol.%) by approximately 3 times and 2.4 times respectively compared to the control film submerged in water (23°C). There was also a significant increase in the film elongation at break by approximately 35 times (compared to the control) with the addition of 15wt% AcA, emphasising the plasticising effect of AcA. However, generally there was a reduced tensile strength, softening of the film, and reduced thermal stability with increased amounts of AcA. PMID:26876996

  3. Structural basis for the glucan phosphatase activity of Starch Excess4

    SciTech Connect

    Vander Kooi, Craig W.; Taylor, Adam O.; Pace, Rachel M.; Meekins, David A.; Guo, Hou-Fu; Kim, Youngjun; Gentry, Matthew S.

    2010-11-12

    Living organisms utilize carbohydrates as essential energy storage molecules. Starch is the predominant carbohydrate storage molecule in plants while glycogen is utilized in animals. Starch is a water-insoluble polymer that requires the concerted activity of kinases and phosphatases to solubilize the outer surface of the glucan and mediate starch catabolism. All known plant genomes encode the glucan phosphatase Starch Excess4 (SEX4). SEX4 can dephosphorylate both the starch granule surface and soluble phosphoglucans and is necessary for processive starch metabolism. The physical basis for the function of SEX4 as a glucan phosphatase is currently unclear. Herein, we report the crystal structure of SEX4, containing phosphatase, carbohydrate-binding, and C-terminal domains. The three domains of SEX4 fold into a compact structure with extensive interdomain interactions. The C-terminal domain of SEX4 integrally folds into the core of the phosphatase domain and is essential for its stability. The phosphatase and carbohydrate-binding domains directly interact and position the phosphatase active site toward the carbohydrate-binding site in a single continuous pocket. Mutagenesis of the phosphatase domain residue F167, which forms the base of this pocket and bridges the two domains, selectively affects the ability of SEX4 to function as a glucan phosphatase. Together, these results reveal the unique tertiary architecture of SEX4 that provides the physical basis for its function as a glucan phosphatase.

  4. Structural basis for the glucan phosphatase activity of Starch Excess4

    PubMed Central

    Vander Kooi, Craig W.; Taylor, Adam O.; Pace, Rachel M.; Meekins, David A.; Guo, Hou-Fu; Kim, Youngjun; Gentry, Matthew S.

    2010-01-01

    Living organisms utilize carbohydrates as essential energy storage molecules. Starch is the predominant carbohydrate storage molecule in plants while glycogen is utilized in animals. Starch is a water-insoluble polymer that requires the concerted activity of kinases and phosphatases to solubilize the outer surface of the glucan and mediate starch catabolism. All known plant genomes encode the glucan phosphatase Starch Excess4 (SEX4). SEX4 can dephosphorylate both the starch granule surface and soluble phosphoglucans and is necessary for processive starch metabolism. The physical basis for the function of SEX4 as a glucan phosphatase is currently unclear. Herein, we report the crystal structure of SEX4, containing phosphatase, carbohydrate-binding, and C-terminal domains. The three domains of SEX4 fold into a compact structure with extensive interdomain interactions. The C-terminal domain of SEX4 integrally folds into the core of the phosphatase domain and is essential for its stability. The phosphatase and carbohydrate-binding domains directly interact and position the phosphatase active site toward the carbohydrate-binding site in a single continuous pocket. Mutagenesis of the phosphatase domain residue F167, which forms the base of this pocket and bridges the two domains, selectively affects the ability of SEX4 to function as a glucan phosphatase. Together, these results reveal the unique tertiary architecture of SEX4 that provides the physical basis for its function as a glucan phosphatase. PMID:20679247

  5. Omega documentation

    SciTech Connect

    Howerton, R.J.; Dye, R.E.; Giles, P.C.; Kimlinger, J.R.; Perkins, S.T.; Plechaty, E.F.

    1983-08-01

    OMEGA is a CRAY I computer program that controls nine codes used by LLNL Physical Data Group for: 1) updating the libraries of evaluated data maintained by the group (UPDATE); 2) calculating average values of energy deposited in secondary particles and residual nuclei (ENDEP); 3) checking the libraries for internal consistency, especially for energy conservation (GAMCHK); 4) producing listings, indexes and plots of the library data (UTILITY); 5) producing calculational constants such as group averaged cross sections and transfer matrices for diffusion and Sn transport codes (CLYDE); 6) producing and updating standard files of the calculational constants used by LLNL Sn and diffusion transport codes (NDFL); 7) producing calculational constants for Monte Carlo transport codes that use group-averaged cross sections and continuous energy for particles (CTART); 8) producing and updating standard files used by the LLNL Monte Carlo transport codes (TRTL); and 9) producing standard files used by the LANL pointwise Monte Carlo transport code MCNP (MCPOINT). The first four of these functions and codes deal with the libraries of evaluated data and the last five with various aspects of producing calculational constants for use by transport codes. In 1970 a series, called PD memos, of internal and informal memoranda was begun. These were intended to be circulated among the group for comment and then to provide documentation for later reference whenever questions arose about the subject matter of the memos. They have served this purpose and now will be drawn upon as source material for this more comprehensive report that deals with most of the matters covered in those memos.

  6. Physicochemical and functional properties of ozone-oxidized starch.

    PubMed

    Chan, Hui T; Bhat, Rajeev; Karim, Alias A

    2009-07-01

    The effects of oxidation by ozone gas on some physicochemical and functional properties of starch (corn, sago, and tapioca) were investigated. Starch in dry powder form was exposed to ozone for 10 min at different ozone generation times (OGTs). Carboxyl and carbonyl contents increased markedly in all starches with increasing OGTs. Oxidation significantly decreased the swelling power of oxidized sago and tapioca starches but increased that of oxidized corn starch. The solubility of tapioca starch decreased and sago starch increased after oxidation. However, there was an insignificant changed in the solubility of oxidized corn starch. Intrinsic viscosity [eta] of all oxidized starches decreased significantly, except for tapioca starch oxidized at 5 min OGT. Pasting properties of the oxidized starches followed different trends as OGTs increased. These results show that under similar conditions of ozone treatment, the extent of starch oxidation varies among different types of starch. PMID:19489606

  7. Rheological and textural properties of pulse starch gels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The properties of starch gels from black beans, chickpeas, lentils and navy beans were investigated. Differences were shown between starch sources, and effect of starch concentration was studied. Navy bean starch had the highest peak and final viscosities in pasting tests, while black bean starch h...

  8. Physicochemical Properties of Starch Isolated from Bracken (Pteridium aquilinim) Rhizome.

    PubMed

    Yu, Xurun; Wang, Jin; Zhang, Jing; Wang, Leilei; Wang, Zhong; Xiong, Fei

    2015-12-01

    Bracken (Pteridium aquilinum) is an important wild plant starch resource worldwide. In this work, starch was separated from bracken rhizome, and the physicochemical properties of this starch were systematically investigated and compared with 2 other common starches, that is, starches from waxy maize and potato. There were significant differences in shape, birefringence patterns, size distribution, and amylose content between bracken and the 2 other starches. X-ray diffraction analysis revealed that bracken starch exhibited a typical C-type crystalline structure. Bracken starch presented, respectively, lower and higher relative degree of crystallinity than waxy maize and potato starches. Ordered structures in particle surface differed among these 3 starches. The swelling power tendency of bracken starch in different temperature intervals was very similar to that of potato starch. The viscosity parameters during gelatinization were the lowest in waxy maize, followed by bracken and potato starches. The contents of 3 nutritional components, that is, rapidly digestible, slowly digestible, and resistant starches in native, gelatinized, and retrograded starch from bracken rhizome presented more similarities with potato starch than waxy maize starch. These finding indicated that physicochemical properties of bracken starch showed more similarities with potato starch than waxy maize starch. PMID:26551243

  9. The Simultaneous Abolition of Three Starch Hydrolases Blocks Transient Starch Breakdown in Arabidopsis*

    PubMed Central

    Streb, Sebastian; Eicke, Simona; Zeeman, Samuel C.

    2012-01-01

    In this study, we investigated which enzymes are involved in debranching amylopectin during transient starch degradation. Previous studies identified two debranching enzymes, isoamylase 3 (ISA3) and limit dextrinase (LDA), involved in this process. However, plants lacking both enzymes still degrade substantial amounts of starch. Thus, other enzymes/mechanisms must contribute to starch breakdown. We show that the chloroplastic α-amylase 3 (AMY3) also participates in starch degradation and provide evidence that all three enzymes can act directly at the starch granule surface. The isa3 mutant has a starch excess phenotype, reflecting impaired starch breakdown. In contrast, removal of AMY3, LDA, or both enzymes together has no impact on starch degradation. However, removal of AMY3 or LDA in addition to ISA3 enhances the starch excess phenotype. In plants lacking all three enzymes, starch breakdown is effectively blocked, and starch accumulates to the highest levels observed so far. This provides indirect evidence that the heteromultimeric debranching enzyme ISA1-ISA2 is not involved in starch breakdown. However, we illustrate that ISA1-ISA2 can hydrolyze small soluble branched glucans that accumulate when ISA3 and LDA are missing, albeit at a slow rate. Starch accumulation in the mutants correlates inversely with plant growth. PMID:23019330

  10. Biosynthesis of starch in chloroplasts.

    PubMed

    Nomura, T; Nakayama, N; Murata, T; Akazawa, T

    1967-03-01

    The enzymic synthesis of ADP-glucose and UDP-glucose by chloroplastic pyrophosphorylase of bean and rice leaves has been demonstrated by paper chromatographic techniques. In both tissues, the activity of UDP-glucose-pyrophosphorylase was much higher than ADP-glucose-pyrophosphorylase. Glycerate-3-phosphate, phosphoenolpyruvate and fructose-1,6-diphosphate did not stimulate ADP-glucose formation by a pyrophosphorylation reaction. The major metabolic pathway for UDP-glucose utilization appears to be the synthesis of either sucrose or sucrose-P. On the other hand, a specific precursor role of ADP-glucose for synthesizing chloroplast starch by the ADP-glucose-starch transglucosylase reaction is supported by the coupled enzyme system of ADP-glucose-pyrophosphorylase and transglucosylase, isolated from chloroplasts. None of the glycolytic intermediates stimulated the glucose transfer in the enzyme sequence of reaction system employed. PMID:4292567

  11. Physicochemical properties of quinoa starch.

    PubMed

    Li, Guantian; Wang, Sunan; Zhu, Fan

    2016-02-10

    Physicochemical properties of quinoa starches isolated from 26 commercial samples from a wide range of collection were studied. Swelling power (SP), water solubility index (WSI), amylose leaching (AML), enzyme susceptibility, pasting, thermal and textural properties were analyzed. Apparent amylose contents (AAM) ranged from 7.7 to 25.7%. Great variations in the diverse physicochemical properties were observed. Correlation analysis showed that AAM was the most significant factor related to AML, WSI, and pasting parameters. Correlations among diverse physicochemical parameters were analyzed. Principal component analysis using twenty three variables were used to visualize the difference among samples. Six principal components were extracted which could explain 88.8% of the total difference. The wide variations in physicochemical properties could contribute to innovative utilization of quinoa starch for food and non-food applications. PMID:26686137

  12. Formation of nanoporous aerogels from wheat starch.

    PubMed

    Ubeyitogullari, Ali; Ciftci, Ozan N

    2016-08-20

    Biodegradable nanoporous aerogels were obtained from wheat starch using a simple and green method based on supercritical carbon dioxide (SC-CO2) drying. Effects of processing parameters (temperature, wheat starch concentration and mixing rate during gelatinization; temperature, pressure, and flow rate of CO2, during SC-CO2 drying) on the aerogel formation were investigated, and optimized for the highest surface area and smallest pore size of the aerogels. At the optimized conditions, wheat starch aerogels had surface areas between 52.6-59.7m(2)/g and densities ranging between 0.05-0.29g/cm(3). The average pore size of the starch aerogels was 20nm. Starch aerogels were stable up to 280°C. Due to high surface area and nanoporous structure, wheat starch aerogels are promising carrier systems for bioactives and drugs in food and pharmaceutical industries. PMID:27178916

  13. Reduction of the plastidial phosphorylase in potato (Solanum tuberosum L.) reveals impact on storage starch structure during growth at low temperature.

    PubMed

    Orawetz, Tom; Malinova, Irina; Orzechowski, Slawomir; Fettke, Joerg

    2016-03-01

    Tubers of potato (Solanum tuberosum L.), one of the most important crops, are a prominent example for an efficient production of storage starch. Nevertheless, the synthesis of this storage starch is not completely understood. The plastidial phosphorylase (Pho1; EC 2.4.1.1) catalyzes the reversible transfer of glucosyl residues from glucose-1-phosphate to the non-reducing end of α-glucans with the release of orthophosphate. Thus, the enzyme is in principle able to act during starch synthesis. However, so far under normal growth conditions no alterations in tuber starch metabolism were observed. Based on analyses of other species and also from in vitro experiments with potato tuber slices it was supposed, that Pho1 has a stronger impact on starch metabolism, when plants grow under low temperature conditions. Therefore, we analyzed the starch content, granule size, as well as the internal structure of starch granules isolated from potato plants grown under low temperatures. Besides wild type, transgenic potato plants with a strong reduction in the Pho1 activity were analyzed. No significant alterations in starch content and granule size were detected. In contrast, when plants were cultivated at low temperatures the chain length distributions of the starch granules were altered. Thus, the granules contained more short glucan chains. That was not observed in the transgenic plants, revealing that Pho1 in wild type is involved in the formation of the short glucan chains, at least at low temperatures. PMID:26828405

  14. GUIDANCE DOCUMENTS

    EPA Science Inventory

    Defn: Guidance Document - A peer-reviewed document stating overarching principles and practices to be followed (also includes handbook documents).

    The diurnal metabolism of leaf starch.

    PubMed

    Zeeman, Samuel C; Smith, Steven M; Smith, Alison M

    2007-01-01

    Starch is a primary product of photosynthesis in leaves. In most plants, a large fraction of the carbon assimilated during the day is stored transiently in the chloroplast as starch for use during the subsequent night. Photosynthetic partitioning into starch is finely regulated, and the amount of carbohydrate stored is dependent on the environmental conditions, particularly day length. This regulation is applied at several levels to control the flux of carbon from the Calvin cycle into starch biosynthesis. Starch is composed primarily of branched glucans with an architecture that allows the formation of a semi-crystalline insoluble granule. Biosynthesis has been most intensively studied in non-photosynthetic starch-storing organs, such as developing seeds and tubers. Biosynthesis in leaves has received less attention, but recent reverse-genetic studies of Arabidopsis (thale cress) have produced data generally consistent with what is known for storage tissues. The pathway involves starch synthases, which elongate the glucan chains, and branching enzymes. Remarkably, enzymes that partially debranch glucans are also required for normal amylopectin synthesis. In the last decade, our understanding of starch breakdown in leaves has advanced considerably. Starch is hydrolysed to maltose and glucose at night via a pathway that requires recently discovered proteins in addition to well-known enzymes. These sugars are exported from the plastid to support sucrose synthesis, respiration and growth. In the present review we provide an overview of starch biosynthesis, starch structure and starch degradation in the leaves of plants. We focus on recent advances in each area and highlight outstanding questions. PMID:17150041

  15. Structural and functional properties of C-type starches.

    PubMed

    Cai, Jinwen; Cai, Canhui; Man, Jianmin; Zhou, Weidong; Wei, Cunxu

    2014-01-30

    This study investigated the structural and functional properties of C-type starches from pea seeds, faba bean seeds, yam rhizomes and water chestnut corms. These starches were mostly oval in shape with significantly different sizes and contents of amylose, damaged starch and phosphorus. Pea, faba bean and water chestnut starches had central hila, and yam starch had eccentric hilum. Water chestnut and yam starches had higher amylopectin short and long chain, respectively. Water chestnut and faba bean starches showed CA-type crystallinities, and pea and yam starches had C-type crystallinities. Water chestnut starch had the highest swelling power, granule swelling and pasting viscosity, lowest gelatinization temperatures and enthalpy. Faba bean starch had the lowest pasting viscosity, whereas yam starch had the highest gelatinization temperatures. Water chestnut and yam starches possessed significantly higher and lower susceptibility to acid and enzyme hydrolysis, the highest and lowest RDS contents, and the lowest and highest RS contents, respectively. PMID:24299776

  16. Sucrose-to-Starch Metabolism in Tomato Fruit Undergoing Transient Starch Accumulation.

    PubMed Central

    Schaffer, A. A.; Petreikov, M.

    1997-01-01

    Immature green tomato (Lycopersicon esculentum) fruits undergo a period of transient starch accumulation characterized by developmental changes in the activities of key enzymes in the sucrose (Suc)-to-starch metabolic pathway. Activities of Suc synthase, fructokinase, ADP-glucose (Glc) pyrophosphorylase, and soluble and insoluble starch synthases decline dramatically in parallel to the decrease in starch levels in the developing fruit. Comparison of "maximal" in vitro activities of the enzymes in the Suc-to-starch pathway suggests that these same enzymes are limiting to the rate of starch accumulation. In contrast, activities of invertase, UDP-Glc pyrophosphorylase, nucleoside diphosphate kinase, phosphoglucoisomerase, and phosphoglucomutase do not exhibit dramatic decreases in activity and appear to be in excess of starch accumulation rates. Starch accumulation is spatially localized in the inner and radial pericarp and columella, whereas the outer pericarp and seed locule contain little starch. The seed locule is characterized by lower activities of Suc synthase, UDP-Glc pyrophosphorylase, phosphoglucomutase, ADP-Glc pyrophosphorylase, and soluble and insoluble starch synthases. The outer pericarp exhibits comparatively lower activities of ADP-Glc pyrophosphorylase and insoluble starch synthase only. These data are discussed in terms of the developmental and tissue-specific coordinated control of Suc-to-starch metabolism. PMID:12223639

  17. Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch.

    PubMed

    Wokadala, Obiro Cuthbert; Emmambux, Naushad Mohammad; Ray, Suprakas Sinha

    2014-11-01

    In this study, waxy and high amylose starches were modified through butyl-etherification to facilitate compatibility with polylactide (PLA). Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy and wettability tests showed that hydrophobic butyl-etherified waxy and high amylose starches were obtained with degree of substitution values of 2.0 and 2.1, respectively. Differential scanning calorimetry, tensile testing, and scanning electron microscopy (SEM) demonstrated improved PLA/starch compatibility for both waxy and high amylose starch after butyl-etherification. The PLA/butyl-etherified waxy and high amylose starch composite films had higher tensile strength and elongation at break compared to PLA/non-butyl-etherified composite films. The morphological study using SEM showed that PLA/butyl-etherified waxy starch composites had a more homogenous microstructure compared to PLA/butyl-etherified high amylose starch composites. Thermogravimetric analysis showed that PLA/starch composite thermal stability decreased with starch butyl-etherification for both waxy and high amylose starches. This study mainly demonstrates that PLA/starch compatibility can be improved through starch butyl-etherification. PMID:25129738

  18. Position of modifying groups on starch chains of octenylsuccinic anhydride-modified waxy maize starch.

    PubMed

    Bai, Yanjie; Kaufman, Rhett C; Wilson, Jeff D; Shi, Yong-Cheng

    2014-06-15

    Octenylsuccinic anhydride (OSA)-modified starches with a low (0.018) and high (0.092) degree of substitution (DS) were prepared from granular native waxy maize starch in aqueous slurry. The position of OS substituents along the starch chains was investigated by enzyme hydrolysis followed by chromatographic analysis. Native starch and two OS starches with a low and high DS had β-limit values of 55.9%, 52.8%, and 34.4%, respectively. The weight-average molecular weight of the β-limit dextrin from the OS starch with a low DS was close to that of the β-limit dextrin from native starch but lower than that of the β-limit dextrin from the OS starch with a high DS. Debranching of OS starches was incomplete compared with native starch. OS groups in the OS starch with a low DS were located on the repeat units near the branching points, whereas the OS substituents in the OS starch with a high DS occurred both near the branching points and the non-reducing ends. PMID:24491720

  19. Starch-Soybean Oil Composites with High Oil: Starch Ratios Prepared by Steam Jet Cooking

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aqueous mixtures of soybean oil and starch were jet cooked at oil:starch ratios ranging from 0.5:1 to 4:1 to yield dispersions of micron-sized oil droplets that were coated with a thin layer of starch at the oil-water interface. The jet cooked dispersions were then centrifuged at 2060 and 10,800 x ...

    1. Starch aerogel beads obtained from inclusion complexes prepared from high amylose starch and sodium palmitate

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Starch aerogels are a class of low density highly porous renewable materials currently prepared from retrograded starch gels and are of interest for their good surface area, porosity, biocompatibility, and biodegradability. Recently, we have reported on starches containing amylose-fatty acid salt h...

    2. Issues of Starch in Sugarcane Processing and Prospects of Breeding for Low Starch Content in Sugarcane

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Starch is a sugarcane impurity that adversely affects the quantity and quality of sugar processes and products. The increased production of combine and green harvested sugarcane has increased delivery of starch to sugarcane factories. Starch occurs as granules composed of amylose and amylopectin p...

    3. Microalgae--novel highly efficient starch producers.

      PubMed

      Brányiková, Irena; Maršálková, Barbora; Doucha, Jiří; Brányik, Tomáš; Bišová, Kateřina; Zachleder, Vilém; Vítová, Milada

      2011-04-01

      The freshwater alga Chlorella, a highly productive source of starch, might substitute for starch-rich terrestrial plants in bioethanol production. The cultivation conditions necessary for maximizing starch content in Chlorella biomass, generated in outdoor scale-up solar photobioreactors, are described. The most important factor that can affect the rate of starch synthesis, and its accumulation, is mean illumination resulting from a combination of biomass concentration and incident light intensity. While 8.5% DW of starch was attained at a mean light intensity of 215 µmol/(m2 s1), 40% of DW was synthesized at a mean light intensity 330 µmol/(m2 s1). Another important factor is the phase of the cell cycle. The content of starch was highest (45% of DW) prior to cell division, but during the course of division, its cellular level rapidly decreased to about 13% of DW in cells grown in light, or to about 4% in those kept in the dark during the division phase. To produce biomass with high starch content, it is necessary to suppress cell division events, but not to disturb synthesis of starch in the chloroplast. The addition of cycloheximide (1 mg/L), a specific inhibitor of cytoplasmic protein synthesis, and the effect of element limitation (nitrogen, sulfur, phosphorus) were tested. The majority of the experiments were carried out in laboratory-scale photobioreactors, where culture treatments increased starch content to up to about 60% of DW in the case of cycloheximide inhibition or sulfur limitation. When the cells were limited by phosphorus or nitrogen supply, the cellular starch content increased to 55% or 38% of DW, respectively, however, after about 20 h, growth of the cultures stopped producing starch, and the content of starch again decreased. Sulfur limited and cycloheximide-treated cells maintained a high content of starch (60% of DW) for up to 2 days. Sulfur limitation, the most appropriate treatment for scaled-up culture of starch-enriched biomass

    4. Improved method for detection of starch hydrolysis

      SciTech Connect

      Ohawale, M.R.; Wilson, J.J.; Khachatourians, G.G.; Ingledew, W.M.

      1982-09-01

      A new starch hydrolysis detection method which does not rely on iodine staining or the use of color-complexed starch is described. A linear relationship was obtained with agar-starch plates when net clearing zones around colonies of yeasts were plotted against enzyme levels (semilogarithm scale) produced by the same yeast strains in liquid medium. A similar relationship between starch clearing zones and alpha-amylase levels from three different sources was observed. These observations suggest that the method is useful in mutant isolations, strain improvement programs, and the prediction of alpha-amylase activities in culture filtrates or column effluents. (Refs. 18).

    5. The properties of antimicrobial films derived from poly(lactic acid)/starch/chitosan blended matrix.

      PubMed

      Bie, Pingping; Liu, Peng; Yu, Long; Li, Xiaoxi; Chen, Ling; Xie, Fengwei

      2013-10-15

      An antimicrobial material with a slow release property was developed based on poly(lactic acid)/starch/chitosan blends, in which chitosan acted as an antimicrobial agent while PLA and starch together were used as a slow-releasing device. An increase in the starch content drastically improved the hydrophilicity of the blends, which was favorable for the diffusion of the embedded chitosan. Moreover, the release of chitosan was observed to occur in two stages, with a very fast release stage initially and a slow but durable release stage as the latter. These two stages exhibited the effectiveness and long residual action of antimicrobial property of the blends respectively, demonstrating the suitability to be used for foods with high water activity, such as fresh meat. The tensile and thermal properties further verified the promising use of the blend material in packaging. PMID:23987434

    6. Synthesis of cellobiose from starch by the successive actions of two phosphorylases.

      PubMed

      Suzuki, Masayuki; Kaneda, Kyoko; Nakai, Yukiko; Kitaoka, Motomitsu; Taniguchi, Hajime

      2009-10-31

      Cellobiose was enzymatically synthesized from starch using two phosphorylases. Under the presence of 1 M Pi inorganic phosphate), glucan phosphorylase converted 40% of glucose residues in the starch molecule into G1P (glucose-1-phosphate). By electrodialysis fitted with an ion exchange membrane having molecular weight cutoff of 100, Pi was effectively dialyzed out and G1P was recovered with 80% yield. G1P and glucose were incubated with cellobiose phosphorylase in the presence of magnesium acetate at an alkaline condition. Inorganic phosphate coformed with cellobiose was immediately removed as insoluble magnesium ammonium phosphate and 85% of added G1P was converted into cellobiose. On the whole, cellobiose was produced with 60% yield from G1P and, at least, 23.7% yield from starch. PMID:19631300

    7. Cell mediated immunity to corn starch in starch-induced granulomatous peritonitis.

      PubMed

      Goodacre, R L; Clancy, R L; Davidson, R A; Mullens, J E

      1976-03-01

      Two patients with histologically diagnosed starch induced granulomatous peritonitis (SGP) have been shown to have cell mediated immunity to corn starch using the techniques of macrophage migration inhibition and lymphocyte DNA synthesis. Control groups of normal subjects, patients with uncomplicated laparotomy, and patients with Crohn's disease were negative in both tests. Lymphocytes from two patients with band adhesions, one of whom had biopsy evidence of a granulomatous reaction to starch, were sensitized to starch. Cell mediated immunity to starch may contribute to the pathogenesis of SGP, and some band adhesions may be a chronic low grade manifestation of this disorder. PMID:1269987

    8. Rheology and pressurised gyration of starch and starch-loaded poly(ethylene oxide).

      PubMed

      Mahalingam, S; Ren, G G; Edirisinghe, M J

      2014-12-19

      This work investigates the rheology and spinning of starch and starch-loaded poly(ethylene oxide) (PEO) by pressurised gyration in order to prepare nanofibres. The spinning dope's rheological properties played a crucial role in fibre formation. Newtonian behaviour is observed in 1-20 wt% starch suspensions and non-Newtonian behaviour is found in all the PEO-starch mixtures. Pressurised gyration of the starch suspensions produced beads only but PEO-starch mixtures generated fibres. The fibre diameter of the PEO-starch samples is shown to be a function of polymer concentration and rotating speed of the gyration system. Fibre formation can only be facilitated below a certain working pressure. The concentration of starch in the PEO-starch mixtures is crucial in defining whether beaded or continuous fibres were generated and this is related to the composition of the spinning dope. FT-IR, XRD and microscopy studies indicated very good miscibility of starch and PEO in the nanofibres. The storage modulus of the PEO-starch were also studied as a function of temperature (30-150°C) and showed interesting results but it was not possible to deduce general trends valid for the entire temperature range. PMID:25263892

    9. Preparation and characterization of acetylated starch nanoparticles as drug carrier: Ciprofloxacin as a model.

      PubMed

      Mahmoudi Najafi, Seyed Heydar; Baghaie, Maryam; Ashori, Alireza

      2016-06-01

      The objective of this study was to characterize in-vitro the potential of acetylated corn starch (ACS) particles as a matrix for the delivery of ciprofloxacin (CFx). ACS was successfully synthesized and optimized by the reaction of native corn starch using acetic anhydride and acetic acid with low and high degrees of substitution (DS). The nanoprecipitation method was applied for the formation of the ACS-based nanoparticles, by the dropwise addition of water to acetone solution of ACS under stirring. The effects of acetylation and nanoprecipitation on the morphology and granular structure of ACS samples were examined by the FT-IR, XRD, DSL and SEM techniques. The efficiency of CFx loading was also evaluated via encapsulation efficiency (EE) in ACS nanoparticles. The average degree of acetyl substitution per glucose residue of corn starch was 0.33, 2.00, and 2.66. The nanoparticles size of the ACS and ACS-loaded with CFx were measured and analyzed relative to the solvent:non-solvent ratio. Based on the results, ACS nanoparticles with DS of 2.00 and water:acetone of 3:1 had 312nm diameter. Increasing DS in starch acetate led to increase in the EE from 67.7 to 89.1% and with increasing ratio of water/acetone from 1:1 to 3:1, the EE raised from 48.5 to 89.1%. X-ray diffraction indicated that A-type pattern of native starch was completely transformed into the V-type pattern of acetylated starch. The scanning electron microscopy showed that the different sizes of pores formed on the acetylated starch granules were utterly converted into the uniform-sized spherical nanoparticles after the nanoprecipitation. PMID:26893054

    10. Characterisation of corn starch-based films reinforced with taro starch nanoparticles.

      PubMed

      Dai, Lei; Qiu, Chao; Xiong, Liu; Sun, Qingjie

      2015-05-01

      Taro starch nanoparticles (TSNPs) obtained by hydrolysis with pullulanase and the recrystallisation of gelatinised starch were used as reinforcing agents in corn starch films. The influence of TSNPs contents (0.5-15%) on the physical, mechanical, thermal, and structural properties of starch films was investigated. An increase in the concentration of TSNPs led to a significant decrease in the water vapour permeability (WVP) of films. The addition of TSNPs increased the tensile strength (TS) of films from 1.11 MPa to 2.87 MPa. Compared with pure starch films, the surfaces of nanocomposite films became uneven. The onset temperature (To) and melting temperature (Tm) of films containing TSNPs were higher than those of pure starch films. The addition of TSNPs improved the thermal stability of starch films. PMID:25529655

    11. Functional properties of yam bean (Pachyrhizus erosus) starch.

      PubMed

      Mélo, E A; Stamford, T L M; Silva, M P C; Krieger, N; Stamford, N P

      2003-08-01

      The study was carried out in order to determine and establish the functional characters of starch extracted from yam bean (Pachyrhizus erosus (L) Urban) compared with cassava starch. Yam bean is a tropical tuber legume easily grown and holds a great potential as a new source of starch. Yam bean starch shows functional properties which are peculiar to those of most starch root crops. Gelatinization temperature (53-63 degrees C) and the pasting temperature (64.5 degrees C) are less than those of cereal starch, however, the swelling power is high (54.4 g gel/g dried starch). Yam bean starch paste presents a high viscosity profile, high retrogradation tendency and low stability on cooking. The functional properties of yam bean starch, similar to those of cassava starch, allows yam bean to be used as a potential new source of starch. PMID:12676508

    12. The activity of barley alpha-amylase on starch granules is enhanced by fusion of a starch binding domain from Aspergillus niger glucoamylase.

      PubMed

      Juge, Nathalie; Nøhr, Jane; Le Gal-Coëffet, Marie-Françoise; Kramhøft, Birte; Furniss, Caroline S M; Planchot, Véronique; Archer, David B; Williamson, Gary; Svensson, Birte

      2006-02-01

      High affinity for starch granules of certain amylolytic enzymes is mediated by a separate starch binding domain (SBD). In Aspergillus niger glucoamylase (GA-I), a 70 amino acid O-glycosylated peptide linker connects SBD with the catalytic domain. A gene was constructed to encode barley alpha-amylase 1 (AMY1) fused C-terminally to this SBD via a 37 residue GA-I linker segment. AMY1-SBD was expressed in A. niger, secreted using the AMY1 signal sequence at 25 mg x L(-1) and purified in 50% yield. AMY1-SBD contained 23% carbohydrate and consisted of correctly N-terminally processed multiple forms of isoelectric points in the range 4.1-5.2. Activity and apparent affinity of AMY1-SBD (50 nM) for barley starch granules of 0.034 U x nmol(-1) and K(d) = 0.13 mg x mL(-1), respectively, were both improved with respect to the values 0.015 U x nmol(-1) and 0.67 mg x mL(-1) for rAMY1 (recombinant AMY1 produced in A. niger). AMY1-SBD showed a 2-fold increased activity for soluble starch at low (0.5%) but not at high (1%) concentration. AMY1-SBD hydrolysed amylose DP440 with an increased degree of multiple attack of 3 compared to 1.9 for rAMY1. Remarkably, at low concentration (2 nM), AMY1-SBD hydrolysed barley starch granules 15-fold faster than rAMY1, while higher amounts of AMY-SBD caused molecular overcrowding of the starch granule surface. PMID:16403494

    13. Friction Properties of Chemically Modified Starch

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Starch is a high molecular weight polyglucose biopolymer that, in its native state, is insoluble in water at room temperature. One way of improving its water solubility is by esterification of its free hydroxyl groups. Waxy maize, normal corn, and high amylose corn starches were esterified with ac...

    14. Pasting characteristics of starch-lipid composites

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Starch-lipid composites (SLC) have been used as fat replacers and stabilizers in beef patties, dairy products, and baked goods. The SLC are produced by mixing aqueous starch slurry with a lipid source, and steam jet-cooking. The SLC may be dried using a drum drier and then milled in a Retch mill. ...

    15. Production of PLA-Starch Fibers

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Composites of polylactic acid (PLA) with starch have been prepared previously in an effort to reduce cost as well as to modify other properties such as biodegradation rate. However, strength and elongation both decrease on addition of starch due to poor adhesion and stress concentration at the inte...

    16. Antimicrobial nanostructured starch based films for packaging.

      PubMed

      Abreu, Ana S; Oliveira, M; de Sá, Arsénio; Rodrigues, Rui M; Cerqueira, Miguel A; Vicente, António A; Machado, A V

      2015-09-20

      Montmorillonite modified with a quaternary ammonium salt C30B/starch nanocomposite (C30B/ST-NC), silver nanoparticles/starch nanocomposite (Ag-NPs/ST-NC) and both silver nanoparticles/C30B/starch nanocomposites (Ag-NPs/C30B/ST-NC) films were produced. The nanoclay (C30B) was dispersed in a starch solution using an ultrasonic probe. Different concentrations of Ag-NPs (0.3, 0.5, 0.8 and 1.0mM) were synthesized directly in starch and in clay/starch solutions via chemical reduction method. Dispersion of C30B silicate layers and Ag-NPs in ST films characterized by X-ray and scanning electron microscopy showed that the presence of Ag-NPs enhanced clay dispersion. Color and opacity measurements, barrier properties (water vapor and oxygen permeabilities), dynamic mechanical analysis and contact angle were evaluated and related with the incorporation of C30B and Ag-NPs. Films presented antimicrobial activity against Staphylococcus aureus, Escherichia coli and Candida albicans without significant differences between Ag-NPs concentrations. The migration of components from the nanostructured starch films, assessed by food contact tests, was minor and under the legal limits. These results indicated that the starch films incorporated with C30B and Ag-NPs have potential to be used as packaging nanostructured material. PMID:26050897

    17. A high amylose (amylomaize) starch raises proximal large bowel starch and increases colon length in pigs.

      PubMed

      Topping, D L; Gooden, J M; Brown, I L; Biebrick, D A; McGrath, L; Trimble, R P; Choct, M; Illman, R J

      1997-04-01

      Young male pigs consumed a diet of fatty minced beef, safflower oil, skim milk powder, sucrose, cornstarch and wheat bran. Starch provided 50% of total daily energy either as low amylose cornstarch, high amylose (amylomaize) cornstarch or as a 50/50 mixture of corn and high amylose starch. Neither feed intake nor body weight gain as affected by dietary starch. Final plasma cholesterol concentrations were significantly higher than initial values in pigs fed the 50/50 mixture of corn and high amylose starch. Biliary concentrations of lithocholate and deoxycholate were lower in pigs fed high amylose starch. Large bowel length correlated positively with the dietary content of high amylose starch. Concentrations of butyrate in portal venous plasma were significantly lower in pigs fed high amylose starch than in those fed cornstarch. Neither large bowel digesta mass nor the concentrations of total or individual volatile fatty acids were affected by diet. However, the pool of propionate in the proximal colon and the concentration of propionate in feces were higher in pigs fed amylose starch. Concentrations of starch were uniformly low along the large bowel and were unaffected by starch type. In pigs with cecal cannula, digesta starch concentrations were higher with high amylose starch than with cornstarch. Electron micrographic examination of high amylose starch granules from these animals showed etching patterns similar to those of granules obtained from human ileostomy effluent. It appears that high amylose starch contributes to large bowel bacterial fermentation in the pig but that its utilization may be relatively rapid. PMID:9109613

    18. New type of starch-binding domain: the direct repeat motif in the C-terminal region of Bacillus sp. no. 195 alpha-amylase contributes to starch binding and raw starch degrading.

      PubMed

      Sumitani, J; Tottori, T; Kawaguchi, T; Arai, M

      2000-09-01

      The alpha-amylase from Bacillus sp. no. 195 (BAA) consists of two domains: one is the catalytic domain similar to alpha-amylases from animals and Streptomyces in the N-terminal region; the other is the functionally unknown domain composed of an approx. 90-residue direct repeat in the C-terminal region. The gene coding for BAA was expressed in Streptomyces lividans TK24. Three active forms of the gene products were found. The pH and thermal profiles of BAAs, and their catalytic activities for p-nitrophenyl maltopentaoside and soluble starch, showed almost the same behaviours. The largest, 69 kDa, form (BAA-alpha) was of the same molecular mass as that of the mature protein estimated from the nucleotide sequence, and had raw-starch-binding and -degrading abilities. The second largest, 60 kDa, form (BAA-beta), whose molecular mass was the same as that of the natural enzyme from Bacillus sp. no. 195, was generated by proteolytic processing between the two repeat sequences in the C-terminal region, and had lower activities for raw starch binding and degrading than those of BAA-alpha. The smallest, 50 kDa, form (BAA-gamma) contained only the N-terminal catalytic domain as a result of removal of the C-terminal repeat sequence, which led to loss of binding and degradation of insoluble starches. Thus the starch adsorption capacity and raw-starch-degrading activity of BAAs depends on the existence of the repeat sequence in the C-terminal region. BAA-alpha was specifically adsorbed on starch or dextran (alpha-1,4 or alpha-1,6 glucan), and specifically desorbed with maltose or beta-cyclodextrin. These observations indicated that the repeat sequence of the enzyme was functional in the starch-binding domain (SBD). We propose the designation of the homologues to the SBD of glucoamylase from Aspergillus niger as family I SBDs, the homologues to that of glucoamylase from Rhizopus oryzae as family II, and the homologues of this repeat sequence of BAA as family III. PMID:10947962

    19. Declassified Documents.

      ERIC Educational Resources Information Center

      Brown, Karen M.

      Journalists and other investigators are daily using declassified government documents to shed light on historical and current events, but few have discovered how to tap the wealth of documents once classified but now in the public realm. An executive order from President Reagan eliminating declassification procedures and allowing released…

    20. Termination Documentation

      ERIC Educational Resources Information Center

      Duncan, Mike; Hill, Jillian

      2014-01-01

      In this study, we examined 11 workplaces to determine how they handle termination documentation, an empirically unexplored area in technical communication and rhetoric. We found that the use of termination documentation is context dependent while following a basic pattern of infraction, investigation, intervention, and termination. Furthermore,…

    1. Document control and document management.

      PubMed

      Djemal, K K

      1999-12-01

      Most schemes for the accreditation (e.g. United Kingdom Accreditation Service) and certification (e.g. BS EN ISO 9002) of laboratories include a requirement to establish and maintain procedures for the management and control of documents generated internally. Such documents include policy statements, procedures, specifications, and some notices and memoranda. Organisations benefit from using agreed and approved information and from knowing that staff are using agreed and approved methods in their operating procedures. Document control systems are likely to become compulsory as accreditation schemes, such as Clinical Pathology Accreditation (CPA) for clinical microbiology laboratories, align with international standards. The Technical Services Division (TSD) in PHLS Headquarters has been developing a control system for various documents that it issues to the PHLS and control of documentation that forms the TSD quality system. The document control system has recently developed into a document management system that provides a mechanism for managing all documents generated or received by the division. TSD's approach is described here to provide laboratories and other organisations with ideas for how they could set up or develop their own document management system to improve accessibility to information. PMID:10598395

    2. Occurrence of amylose-lipid complexes in teff and maize starch biphasic pastes.

      PubMed

      Wokadala, Obiro Cuthbert; Ray, Suprakas Sinha; Emmambux, Mohammad Naushad

      2012-09-01

      The occurrence of amylose-lipid complexes was determined in maize and teff starch biphasic pastes i.e. peak viscosity pastes at short and prolonged pasting times. Maize and teff starches were pasted for 11.5 and 130 min with or without added stearic acid followed by thermo-stable alpha-amylase hydrolysis in a rapid visco-analyzer. X-ray diffraction analysis of pastes before and residues after hydrolysis showed crystalline V-amylose diffraction patterns for the starches pasted for a prolonged time with added stearic acid while less distinct V-amylose patterns with non-complexed stearic acid peaks were observed with a short pasting time. Differential scanning calorimetry of pastes before and residues after paste hydrolysis showed that Type I amylose-lipid complexes were formed after pasting for the short duration with added stearic acid, while Type II complexes are formed after pasting for the prolonged time. The present research provides evidence that amylose-lipid complexes play an important role in starch biphasic pasting. PMID:24751084

    3. Effects of waxy rice starch and short chain amylose (SCA) on the formation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in a model system.

      PubMed

      Yu, Di; Yu, Shu-Juan

      2016-03-01

      Starch is a glucose polymer of vast importance to mankind. It forms the major component of all our staple foods. Starch is often used as an important material in cooking meat. In this study, the effects of waxy rice starch and short chain amylose (SCA) from debranched waxy rice starch on the formation of PhIP in a model system were investigated and compared. The results showed that the addition of waxy rice starch and SCA significantly decreased PhIP, and the effect of SCA was more pronounced than that of waxy rice starch. This decrease may be attributed to the fact that the glucose residues of starch condense with the amino group of the creatinine formed N-glycosyl conjugate. This reaction path could disturb the reaction of creatinine with phenylacetaldehyde, subsequently influence the aldol condensation product formation, and finally suppress the formation of PhIP. Furthermore, the complex spatial structure of waxy rice starch disturbs the reaction of the glucosyl hydroxyl groups of glucose with the amino group of creatinine in the model reaction. So the effect of SCA was more pronounced than that of waxy rice starch on suppressing PhIP formation. A possible mechanism of waxy rice starch and SCA for inhibiting PhIP formation in the model system is also proposed. PMID:26887688

    4. Starch Origin and Thermal Processing Affect Starch Digestion in a Minipig Model of Pancreatic Exocrine Insufficiency.

      PubMed

      Mößeler, Anne; Vagt, Sandra; Beyerbach, Martin; Kamphues, Josef

      2015-01-01

      Although steatorrhea is the most obvious symptom of pancreatic exocrine insufficiency (PEI), enzymatic digestion of protein and starch is also impaired. Low praecaecal digestibility of starch causes a forced microbial fermentation accounting for energy losses and meteorism. To optimise dietetic measures, knowledge of praecaecal digestibility of starch is needed but such information from PEI patients is rare. Minipigs fitted with an ileocaecal fistula with (n = 3) or without (n = 3) pancreatic duct ligation (PL) were used to estimate the rate of praecaecal disappearance (pcD) of starch. Different botanical sources of starch (rice, amaranth, potato, and pea) were fed either raw or cooked. In the controls (C), there was an almost complete pcD (>92%) except for potato starch (61.5%) which was significantly lower. In PL pcD of raw starch was significantly lower for all sources of starch except for amaranth (87.9%). Thermal processing increased pcD in PL, reaching values of C for starch from rice, potato, and pea. This study clearly underlines the need for precise specification of starch used for patients with specific dietetic needs like PEI. Data should be generated in suitable animal models or patients as tests in healthy individuals would not have given similar conclusions. PMID:26064101

    5. Starch Origin and Thermal Processing Affect Starch Digestion in a Minipig Model of Pancreatic Exocrine Insufficiency

      PubMed Central

      Mößeler, Anne; Vagt, Sandra; Beyerbach, Martin; Kamphues, Josef

      2015-01-01

      Although steatorrhea is the most obvious symptom of pancreatic exocrine insufficiency (PEI), enzymatic digestion of protein and starch is also impaired. Low praecaecal digestibility of starch causes a forced microbial fermentation accounting for energy losses and meteorism. To optimise dietetic measures, knowledge of praecaecal digestibility of starch is needed but such information from PEI patients is rare. Minipigs fitted with an ileocaecal fistula with (n = 3) or without (n = 3) pancreatic duct ligation (PL) were used to estimate the rate of praecaecal disappearance (pcD) of starch. Different botanical sources of starch (rice, amaranth, potato, and pea) were fed either raw or cooked. In the controls (C), there was an almost complete pcD (>92%) except for potato starch (61.5%) which was significantly lower. In PL pcD of raw starch was significantly lower for all sources of starch except for amaranth (87.9%). Thermal processing increased pcD in PL, reaching values of C for starch from rice, potato, and pea. This study clearly underlines the need for precise specification of starch used for patients with specific dietetic needs like PEI. Data should be generated in suitable animal models or patients as tests in healthy individuals would not have given similar conclusions. PMID:26064101

    6. Molecular disassembly of rice and lotus starches during thermal processing and its effect on starch digestibility.

      PubMed

      Wang, Shujun; Sun, Yue; Wang, Jinrong; Wang, Shuo; Copeland, Les

      2016-02-01

      The molecular disassembly of starch during thermal processing is a major determinant for the susceptibility of starch to enzymatic digestion. In the present study, the effects of thermal processing on the disassembly of the granular structure and the in vitro enzymatic digestibility of rice and lotus starches were investigated. After heating at 50 °C, rice and lotus starches did not show significant changes in granular morphology, long-range crystallinity and short-range molecular order. As the temperature increased to 60 °C, rice starch underwent a partial gelatinization followed by an incomplete disruption of granular morphology, crystallites and molecular order. In contrast, lotus starch was almost completely gelatinized at 60 °C. At 70 °C or higher, both starches were fully gelatinized with complete disruption of the micro and macro structures. Our results show that gelatinization greatly increased the in vitro enzymatic digestibility of both starches, but that the degree of disassembly of the starch structure during thermal processing was not a major determinant of the digestibility of gelatinized starch. PMID:26829664

    7. Adsorption of Polyethylene from Solution onto Starch Film Surfaces

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Since starch adsorbs onto polyethylene (PE) surfaces from cooled solutions of jet cooked starch, this study was carried out to determine whether adsorption of PE onto hydrophilic starch film surfaces would also take place if starch films were placed in hot solutions of PE in organic solvents, and th...

    8. 21 CFR 178.3520 - Industrial starch-modified.

      Code of Federal Regulations, 2014 CFR

      2014-04-01

      ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Industrial starch-modified. 178.3520 Section 178... § 178.3520 Industrial starch-modified. Industrial starch-modified may be safely used as a component of..., transporting, or holding food, subject to the provisions of this section. (a) Industrial starch-modified...

    9. Formation of Elongated Starch Granules in High-amylose Maize

      Technology Transfer Automated Retrieval System (TEKTRAN)

      GEMS-0067 maize starch contains up to 32% elongated starch granules much higher than amylose-extender (ae) single-mutant maize starch (~7%) and normal (non-mutant) maize starch (0%). These elongated granules are highly resistant to enzymatic hydrolysis at 95-100 C, which function as resistant starc...

    10. Catalytically-inactive beta-amylase BAM4 required for starch breakdown in Arabidopsis leaves is a starch-binding-protein.

      PubMed

      Li, Jing; Francisco, Perigio; Zhou, Wenxu; Edner, Christoph; Steup, Martin; Ritte, Gerhard; Bond, Charles S; Smith, Steven M

      2009-09-01

      Of the four chloroplast beta-amylase (BAM) proteins identified in Arabidopsis, BAM3 and BAM4 were previously shown to play the major roles in leaf starch breakdown, although BAM4 apparently lacks key active site residues and beta-amylase activity. Here we tested multiple BAM4 proteins with different N-terminal sequences with a range of glucan substrates and assay methods, but detected no alpha-1,4-glucan hydrolase activity. BAM4 did not affect BAM1, BAM2 or BAM3 activity even when added in 10-fold excess, nor the BAM3-catalysed release of maltose from isolated starch granules in the presence of glucan water dikinase. However, BAM4 binds to amylopectin and to amylose-Sepharose whereas BAM2 has very low beta-amylase activity and poor glucan binding. The low activity of BAM2 may be explained by poor glucan binding but absence of BAM4 activity is not. These results suggest that BAM4 facilitates starch breakdown by a mechanism involving direct interaction with starch or other alpha-1,4-glucan. PMID:19664588

    11. FUEL ETHANOL PRODUCTION FROM AGRICULTURAL RESIDUES AND PROCESSING BYPRODUCTS

      Technology Transfer Automated Retrieval System (TEKTRAN)

      In 2005, the production of fuel ethanol from corn starch reached 4.5 billion gallons in the U.S. Various agricultural residues such as corn stover and wheat straw, and agricultural processing byproducts such as corn fiber and rice hulls, can serve as low-cost lignocellulosic feedstocks for conversi...

    12. Fuel ethanol production from crop residues and processing byproducts

      Technology Transfer Automated Retrieval System (TEKTRAN)

      In 2007, the production of fuel ethanol from corn starch reached 6.5 billion gallons in the U.S.A. Various crop residues such as corn stover, wheat straw, and barley straw, and crop processing byproducts such as corn fiber and rice hulls can serve as low-cost lignocellulosic feedstocks for conversi...

    13. 75 FR 879 - National Starch and Chemical Company Specialty Starches Division Including On-Site Leased Workers...

      Federal Register 2010, 2011, 2012, 2013, 2014

      2010-01-06

      ..., applicable to workers of National Starch and Chemical Company, Specialty Starches Division, Island Falls, Maine. The notice was published in the Federal Register on December 31, 2007 (72 FR 74343). At the... Employment and Training Administration National Starch and Chemical Company Specialty Starches...

    14. Applicability, Commercial Utility and Recent Patents on Starch and Starch Derivative as Pharmaceutical Drug Delivery Carrier.

      PubMed

      Pandey, Shreya; Malviya, Rishabha; Sharma, Pramod K

      2015-01-01

      Natural polymers are widely utilized in pharmaceutical and food industries. Starch, a major carbohydrate is a staple food in human and animal diets which is simply extractable from various sources, like potato, maize, corn, wheat, etc. It is widely used as a raw material in various food and non food industries as well as in paper, textile and other industries. This article summarizes the starch and modification of starch and to produce a novel molecule with various applications in industries including number of advances in pharmaceutical industry. The unique characteristics of starch and their modified form can be successfully used as drug delivery carriers in various pharmaceutical preparations. It is widely used as controlled and sustained release polymer, tablet disintegrant, drug delivery carrier, plasma volume expander and also finds its applicability in bone tissue engineering and in artificial red cells. It also includes the patents related to starch and modified starch based products and their commercial utility. PMID:26205680

    15. Scanning probe acoustic microscopy of extruded starch materials: direct visual evidence of starch crystal.

      PubMed

      Liu, Zhongdong; Liu, Boxiang; Li, Mengxing; Wei, Min; Li, Hua; Liu, Peng; Wan, Tuo

      2013-10-15

      Scanning probe acoustic microscopy (SPAM) has been successfully used to study inorganic and keratin biomaterials. However, few studies have attempted to apply SPAM to structural study of non-keratin organic materials such as starch based materials. This study investigated hardness and surface finish to establish sample preparation method suitable for SPAM imaging and acquired clear acoustic images of extruded starch materials. Acquired acoustic images directly exhibited certain structure of starch materials and provided visual evidence of starch material components and aggregates. In addition, through correlating acoustic images with X-ray diffraction data, crystal-structural information in nano-scale was obtained and acoustic image contrast showed a linear relationship with starch amylose content in extruded starch materials. PMID:23987357

    16. Effects of salts on the gelatinization and retrogradation properties of maize starch and waxy maize starch.

      PubMed

      Wang, Wei; Zhou, Hongxian; Yang, Hong; Zhao, Siming; Liu, Youming; Liu, Ru

      2017-01-01

      The objective of this study was to evaluate the effects of salts on the gelatinization and retrogradation of maize and waxy maize starch. Experimental results showed that the salting-out or structure-making ions, such as F(-) and SO4(2-), decreased the swelling power, solubility and transparency of both starches, but increased the gelatinization temperature, enthalpy, and syneresis, due to the tendency of these ions to protect the hydrogen bond links among starch molecules. On the other hand, the salting-in or structure-breaking ions, such as I(-) and SCN(-), exhibited the opposite effects. Microscopic observations confirmed such effects of salts on both starches. Furthermore, the effects of salts were more significant on waxy maize and on normal maize starch. Generally, salts could significantly influence on the gelatinization and retrogradation of maize and waxy maize starch, following the order of the Hofmeister series. PMID:27507481

    17. Resistant starch improvement of rice starches under a combination of acid and heat-moisture treatments.

      PubMed

      Hung, Pham Van; Vien, Ngo Lam; Lan Phi, Nguyen Thi

      2016-01-15

      The effects of a combination of acid and heat-moisture treatment on formation of resistant starch (RS) and characteristics of high-amylose, normal and waxy rice starches were investigated in this study. The degrees of polymerization of the rice starches treated with citric acid, lactic acid or acetic acid were significantly reduced as compared to the native starches. The RS contents of acid and heat-moisture treated rice starches were in a range of 30.1-39.0%, significantly higher than those of native rice starches (6.3-10.2%) and those of heat-moisture treated rice starches (18.5-23.9%). The acid and heat-moisture treatments reduced swelling power and viscosity, but increased solubility of the starches, while the crystalline structure did not change. Among the organic acids used, citric acid had the most impact on starch characteristics and RS formation, followed by lactic acid and acetic acid. The results are useful in production of RS for functional food application. PMID:26258703

    18. In vitro analyses of resistant starch in retrograded waxy and normal corn starches.

      PubMed

      Zhou, Xing; Chung, Hyun-Jung; Kim, Jong-Yea; Lim, Seung-Taik

      2013-04-01

      Gelatinized waxy and normal corn starches (40% starch) were subjected to temperature cycling between 4 and 30°C (1 day at each temperature) or isothermal storage (4°C) to induce retrogradation. The in vitro analysis methods that are currently used for the measurement of resistant starch (RS), i.e. Englyst, AACC 32-40 and Goni methods, were compared with homogenized retrograded starch gels and freeze-dried powders of the gels. RS contents obtained by the three analysis methods were in the following order: Goni>Englyst>AACC. Although different RS values were obtained among the analysis methods, similar trends in regards to the starch type and storage conditions could be observed. Little or no RS was found in freeze-dried powders of the retrograded starch gels and storage conditions had no effect, indicating that the physical state for RS analysis is important. More RS was found in normal corn starch gels than in waxy corn starch gels under identical storage conditions and in the gels stored under temperature cycling than those under isothermal storage (4°C), indicating that the presence of amylose inhibits starch digestion and the level of crystalline structure of re-crystallized amylopectin also affects the RS formation during retrogradation. PMID:23291029

    19. Dilute solution properties of canary seed (Phalaris canariensis) starch in comparison to wheat starch.

      PubMed

      Irani, Mahdi; Razavi, Seyed M A; Abdel-Aal, El-Sayed M; Hucl, Pierre; Patterson, Carol Ann

      2016-06-01

      Dilute solution properties of an unknown starch are important to understand its performance and applications in food and non-food industries. In this paper, rheological and molecular properties (intrinsic viscosity, molecular weight, shape factor, voluminosity, conformation and coil overlap parameters) of the starches from two hairless canary seed varieties (CO5041 & CDC Maria) developed for food use were evaluated in the dilute regime (Starch dispersions in DMSO (0.5g/dl)) and compared with wheat starch (WS). The results showed that Higiro model is the best among five applied models for intrinsic viscosity determination of canary seed starch (CSS) and WS on the basis of coefficient of determination (R(2)) and root mean square error (RMSE). WS sample showed higher intrinsic viscosity value (1.670dl/g) in comparison to CSS samples (1.325-1.397dl/g). Berry number and the slope of master curve demonstrated that CSS and WS samples were in dilute domain without entanglement occurrence. The shape factor suggested spherical and ellipsoidal structure for CO5041 starch and ellipsoidal for CDC Maria starch and WS. The molecular weight, coil radius and coil volume of CSSs were smaller than WS. The behavior and molecular characterization of canary seed starch showed its unique properties compared with wheat starch. PMID:26902890

    20. Fuel ethanol production from agricultural residues: current status and future prospects

      Technology Transfer Automated Retrieval System (TEKTRAN)

      In 2007, about 6.5 billion gallons of ethanol were produced from corn starch in the U.S. Various agricultural residues such as corn stover, wheat straw, rice straw, and barley straw can serve as low-cost lignocellulosic feedstocks for conversion to fuel ethanol. These residues contain both cellulo...

    1. Cooking behavior and starch digestibility of NUTRIOSE® (resistant starch) enriched noodles from sweet potato flour and starch.

      PubMed

      Menon, Renjusha; Padmaja, G; Sajeev, M S

      2015-09-01

      The effect of a resistant starch source, NUTRIOSE® FB06 at 10%, 15% and 20% in sweet potato flour (SPF) and 5% and 10% in sweet potato starch (SPS) in reducing the starch digestibility and glycaemic index of noodles was investigated. While NUTRIOSE (10%) significantly reduced the cooking loss in SPF noodles, this was enhanced in SPS noodles and guar gum (GG) supplementation reduced CL of both noodles. In vitro starch digestibility (IVSD) was significantly reduced in test noodles compared to 73.6g glucose/100g starch in control SPF and 65.9 g in SPS noodles. Resistant starch (RS) was 54.96% for NUTRIOSE (15%)+GG (1%) fortified SPF noodles and 53.3% for NUTRIOSE (5%)+GG (0.5%) fortified SPS noodles, as against 33.8% and 40.68%, respectively in SPF and SPS controls. Lowest glycaemic index (54.58) and the highest sensory scores (4.23) were obtained for noodles with 15% NUTRIOSE+1% GG. PMID:25842330

    2. Document Monitor

      NASA Technical Reports Server (NTRS)

      1988-01-01

      The charters of Freedom Monitoring System will periodically assess the physical condition of the U.S. Constitution, Declaration of Independence and Bill of Rights. Although protected in helium filled glass cases, the documents are subject to damage from light vibration and humidity. The photometer is a CCD detector used as the electronic film for the camera system's scanning camera which mechanically scans the document line by line and acquires a series of images, each representing a one square inch portion of the document. Perkin-Elmer Corporation's photometer is capable of detecting changes in contrast, shape or other indicators of degradation with 5 to 10 times the sensitivity of the human eye. A Vicom image processing computer receives the data from the photometer stores it and manipulates it, allowing comparison of electronic images over time to detect changes.

    3. Physicochemical and binder properties of starch obtained from Cyperus esculentus.

      PubMed

      Manek, Rahul V; Builders, Philip F; Kolling, William M; Emeje, Martins; Kunle, Olobayo O

      2012-06-01

      The purpose of this study was to isolate starch from the tubers of Cyperus esculentus L. and evaluate its physicochemical and binder properties. Extraction of starch using sodium metabisulfite yielded 37 g of starch per 100 g of the tubers. Scanning electron microscopy indicated that Cyperus starch consists of oval to elliptical particles with a smooth surface. Cyperus starch demonstrates a narrow particle size distribution with a mean of 8.25 μm. Cyperus starch conforms well to United States Pharmacopeia standards established for widely used starches like maize and potato. The X-ray powder diffraction pattern and moisture sorption profile of Cyperus starch were comparable to that of maize starch. Cyperus starch had lower swelling power than maize and potato starch, indicative of stronger associative forces within the granules. Carr's index and Hausner ratio indicate that Cyperus starch should have comparable flow properties with respect to maize and potato starch. Cyperus starch was employed as binder for the formulation of metronidazole tablets. Formulations containing 5%, 7.5%, and 10% Cyperus starch were compared with those containing 10% potato starch. At 10% binder concentration, the tablets containing Cyperus starch exhibited better hardness and negligible friability as compared with those with potato starch. Although the binder concentration had a significant effect on the disintegration time of the tablets, it did not seem to affect the dissolution profile. These results indicate that Cyperus starch provides excellent binding properties without compromising drug release characteristics and should be explored in pharmaceutical formulations. PMID:22350737

    4. Starch Synthesis in Arabidopsis Is Achieved by Spatial Cotranscription of Core Starch Metabolism Genes1[W][OA

      PubMed Central

      Tsai, Huang-Lung; Lue, Wei-Ling; Lu, Kuan-Jen; Hsieh, Ming-Hsiun; Wang, Shue-Mei; Chen, Jychian

      2009-01-01

      Starch synthesis and degradation require the participation of many enzymes, occur in both photosynthetic and nonphotosynthetic tissues, and are subject to environmental and developmental regulation. We examine the distribution of starch in vegetative tissues of Arabidopsis (Arabidopsis thaliana) and the expression of genes encoding core enzymes for starch synthesis. Starch is accumulated in plastids of epidermal, mesophyll, vascular, and root cap cells but not in root proper cells. We also identify cells that can synthesize starch heterotrophically in albino mutants. Starch synthesis in leaves is regulated by developmental stage and light. Expression of gene promoter-β-glucuronidase fusion constructs in transgenic seedlings shows that starch synthesis genes are transcriptionally active in cells with starch synthesis and are inactive in root proper cells except the plastidial phosphoglucose isomerase. In addition, ADG2 (for ADPG PYROPHOSPHORYLASE2) is not required for starch synthesis in root cap cells. Expression profile analysis reveals that starch metabolism genes can be clustered into two sets based on their tissue-specific expression patterns. Starch distribution and expression pattern of core starch synthesis genes are common in Arabidopsis and rice (Oryza sativa), suggesting that the regulatory mechanism for starch metabolism genes may be conserved evolutionarily. We conclude that starch synthesis in Arabidopsis is achieved by spatial coexpression of core starch metabolism genes regulated by their promoter activities and is fine-tuned by cell-specific endogenous and environmental controls. PMID:19759345

    5. Isolation and Purification of Leaf Starch Components

      PubMed Central

      Chang, Chong W.

      1979-01-01

      A procedure was developed for the separation and purification of amylose and amylopectin isolated from cotton leaves. Cotton leaves were homogenized in 0.02 molar phosphate buffer at pH 7.0 containing HgCl2 plus toluene. Crude starch granules were collected by centrifugation and partially purified by treating with acetone and toluene. The starch granules were then dispersed in dimethylsulfoxide and precipitated with ethyl alcohol. The precipitate was suspended in boiling water. Amylose was separated from amylopectin and cell wall particles on a Sepharose 2B column and further purified with thymol and butanol. Amylopectin was then separated from the colloidal cell wall contaminants by its specific interaction with concanavalin A. Purities of starch components were verified by specific biochemical and enzymic tests in addition to their iodine-binding capacity. This procedure should also be suitable for purification of starch components from other plant sources. PMID:16661064

    6. Biotechnological relevance of starch-degrading enzymes

      SciTech Connect

      Stewart, G.G.

      1987-01-01

      Traditional enzymes, such as the amylases and the proteases, have been improved, novel applications have been found and new and valuable products have been marketed. The enzymatic hydrolysis of starch is described in some detail. (Refs. 8).

    7. Starch-Poly(Hydroxylalkanoate) Composites and Blends

      Technology Transfer Automated Retrieval System (TEKTRAN)

      This paper summarizes research on starch-polyhydroxyalkanoate (PHA) blends and composites. Efforts to increase compatibility, characterize mechanical and biodegradation properties are described. A range of blend products have been prepared including molded plastics, films and foams. Finally, futu...

    8. Production of modified starches by gamma irradiation

      NASA Astrophysics Data System (ADS)

      Kang, Il-Jun; Byun, Myung-Woo; Yook, Hong-Sun; Bae, Chun-Ho; Lee, Hyun-Soo; Kwon, Joong-Ho; Chung, Cha-Kwon

      1999-04-01

      As a new processing method for the production of modified starch, gamma irradiation and four kinds of inorganic peroxides were applied to commercial corn starch. The addition of inorganic peroxides without gamma irradiation or gamma irradiation without the addition of inorganic peroxides effectively decreased initial viscosity, but did not sufficiently keep viscosity stable. The combination of adding ammonium persulfate (APS) and gamma irradiation showed the lowest initial viscosity and the best stability out of the tested four kinds of inorganic peroxides. Among the tested mixing methods of APS, soaking was found to be more effective than dry blending or spraying. Therefore, the production of modified starch with low viscosity as well as with sufficient viscosity stability became feasible by the control of gamma irradiation dose levels and the amount of added APS to starch.

    9. Rheological behaviour of heated potato starch dispersions

      NASA Astrophysics Data System (ADS)

      Juszczak, L.; Witczak, M.; Ziêba, T.; Fortuna, T.

      2012-10-01

      The study was designed to investigate the rheological properties of heated potato starch dispersions. Water suspensions of starch were heated at 65, 80 or 95°C for 5, 15, 30 or 60 min. The dispersions obtained were examined for granule size distribution and rheology. It was found that the starch dispersions significantly differed in both respects. The mean diameters of starch granules were largest for the dispersion heated at 65°C and smallest for that heated at 95°C. As the heating temperature was raised, the yield stresses and consistency coefficients decreased, while the flow behaviour indexes and Casson plastic viscosities increased. There were also differences in the viscoelastic properties of the dispersions: for those heated at 65°C the storage and loss moduli increased with heating time whereas for those heated at 80°C both moduli decreased.

    10. Enzymatic pretreatment for preparing starch nanocrystals.

      PubMed

      LeCorre, Déborah; Vahanian, Elina; Dufresne, Alain; Bras, Julien

      2012-01-01

      Starch nanocrystals (SNCs) are crystalline platelets resulting from the acid hydrolysis of starch. A limiting factor for their more widespread use is their preparation duration. Therefore, this study investigates the possibility of developing an enzymatic pretreatment of starch to reduce the acid hydrolysis duration. A screening of three types of enzymes, namely, α-amylase, β-amylase, and glucoamylase, is proposed, and the latter was selected for a pretreatment. Compared with the regular kinetics of hydrolysis for preparing SNC, that of pretreated starch was much faster. The extent of hydrolysis normally reached in 24 h was obtained after only 6 h, and the regular final yield (15% after 5 days) was reached in 45 h. AFM and X-ray diffraction measurements confirmed that the obtained nanoparticles were indeed SNC. PMID:22133316

    11. The molecular structure of waxy maize starch nanocrystals.

      PubMed

      Angellier-Coussy, Hélène; Putaux, Jean-Luc; Molina-Boisseau, Sonia; Dufresne, Alain; Bertoft, Eric; Perez, Serge

      2009-08-17

      The insoluble residues obtained by submitting amylopectin-rich native starch granules from waxy maize to a mild acid hydrolysis consist of polydisperse platelet nanocrystals that have retained the allomorphic type of the parent granules. The present investigation is a detailed characterization of their molecular composition. Two major groups of dextrins were found in the nanocrystals and were isolated. Each group was then structurally characterized using beta-amylase and debranching enzymes (isoamylase and pullulanase) in combination with anion-exchange chromatography. The chain lengths of the dextrins in both groups corresponded with the thickness of the crystalline lamellae in the starch granules. Only approximately 62 mol% of the group of smaller dextrins with an average degree of polymerization (DP) 12.2 was linear, whereas the rest consisted of branched dextrins. The group of larger dextrins (DP 31.7) apparently only consisted of branched dextrins, several of which were multiply branched molecules. It was shown that many of the branch linkages were resistant to the action of the debranching enzymes. The distribution of branched molecules in the two populations of dextrins suggested that the nanocrystals possessed a regular and principally homogeneous molecular structure. PMID:19414173

    12. Scientific Documentation.

      ERIC Educational Resources Information Center

      Pieper, Gail W.

      1980-01-01

      Describes how scientific documentation is taught in three 50-minute sessions in a technical writing course. Tells how session one distinguishes between in-text notes, footnotes, and reference entries; session two discusses the author-year system of citing references; and session three is concerned with the author-number system of reference…

    13. Heat expanded starch-based compositions.

      PubMed

      Glenn, Gregory M; Klamczynski, Artur K; Holtman, Kevin M; Shey, Justin; Chiou, Bor-Sen; Berrios, Jose; Wood, Delilah; Orts, William J; Imam, Syed H

      2007-05-16

      A heat expansion process similar to that used for expanded bead polystyrene was used to expand starch-based compositions. Foam beads made by solvent extraction had the appearance of polystyrene beads but did not expand when heated due to an open-cell structure. Nonporous beads, pellets, or particles were made by extrusion or by drying and milling cooked starch slurries. The samples expanded into a low-density foam by heating 190-210 degrees C for more than 20 s at ambient pressures. Formulations containing starch (50-85%), sorbitol (5-15%), glycerol (4-12%), ethylene vinyl alcohol (EVAL, 5-15%), and water (10-20%) were studied. The bulk density was negatively correlated to sorbitol, glycerol, and water content. Increasing the EVAL content increased the bulk density, especially at concentrations higher than 15%. Poly(vinyl alcohol) (PVAL) increased the bulk density more than EVAL. The bulk density was lowest in samples made of wheat and potato starch as compared to corn starch. The expansion temperature for the starch pellets decreased more than 20 degrees C as the moisture content was increased from 10 to 25%. The addition of EVAL in the formulations decreased the equilibrium moisture content of the foam and reduced the water absorption during a 1 h soaking period. PMID:17432870

    14. Physicochemical properties and digestibility of hydrothermally treated waxy rice starch.

      PubMed

      Zeng, Feng; Ma, Fei; Kong, Fansheng; Gao, Qunyu; Yu, Shujuan

      2015-04-01

      Waxy rice starch was subjected to annealing (ANN) and heat-moisture treatment (HMT). These starches were also treated by a combination of ANN and HMT. The impact of single and dual modifications (ANN-HMT and HMT-ANN) on the molecular weight (M(w)), crystalline structure, thermal properties, and the digestibility were investigated. The relative crystallinity and short-range order on the granule surface increased on ANN, whereas decreased on HMT. All treated starches showed lower M(w) than that of the native starch. Gelatinization onset temperature, peak temperature and conclusion temperature increased for both single and dual treatments. Increased slowly digestible starch content was found on HMT and ANN-HMT. However, resistant starch levels decreased in all treated starches as compared with native starch. The results would imply that hydrothermal treatment induced structural changes in waxy rice starch significantly affected its digestibility. PMID:25442528

    15. Radiation grafting of styrene on starch with high efficiency

      NASA Astrophysics Data System (ADS)

      Sheikh, N.; Akhavan, A.; Ataeivarjovi, E.

      2013-04-01

      Wheat starch grafted with polystyrene (PS-g-starch) was synthesized via polymerization grafting of styrene on starch by gamma-ray. The effects of starch/styrene weight ratio, and amount of applied doses (5-40 kGy) on the percentage of grafting, G (%), were investigated. The results showed that G (%) increased with increasing starch content. The optimum condition, starch/styrene weight ratio 1/3 and the applied dose 10 kGy, led to 252.9% of grafting. The obtained graft copolymer was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermal gravimetric analysis, and scanning electron microscopy. FTIR spectroscopy as well as the XRD analysis exhibited the changes in chemical and crystalline structure of starch after grafting reaction. TGA demonstrated the changes in thermal stability of PS-g-starch copolymer. SEM micrographs indicated porous patches of PS adhering on the starch.

    16. The Other Double Helix--The Fascinating Chemistry of Starch

      NASA Astrophysics Data System (ADS)

      Hancock, Robert D.; Tarbet, Bryon J.

      2000-08-01

      Current textbooks deal only briefly with the chemistry of starch. A short review with 21 references is presented, describing the structure of starch and indicating the double helix structure of A-type and B-type starch. The structure of the starch granule is examined, pointing out the existence of growth rings of alternating crystalline and noncrystalline starch, with growing amylopectin molecules extending from the hilum (point of origin) to the surface of the starch granule. The swelling of starch granules in water, above the gelatinization temperature of about 60 °C, is discussed. The process of gelatinization involves unraveling of the starch helix and a manyfold increase in volume of the starch granule as water is imbibed and bound to the unraveled starch polymer by hydrogen bonding. Baking bread or pastries causes unraveling of the starch helix, and the process by which these products become stale corresponds primarily to the re-forming of the starch helix. The importance of this phenomenon in food science is discussed. The absorption of nonpolar linear molecules such as I2, or linear nonpolar portions of molecules such as n-butanol or fats and phospholipids, by the C-type helix of starch is examined. The way in which starch is structurally modified to retard staling is discussed in relation to food technology.

    17. Molecular Basis of the Waxy Endosperm Starch Phenotype in Broomcorn Millet (Panicum miliaceum L.)

      PubMed Central

      Hunt, Harriet V.; Denyer, Kay; Packman, Len C.; Jones, Martin K.; Howe, Christopher J.

      2010-01-01

      Waxy varieties of the tetraploid cereal broomcorn millet (Panicum miliaceum L.) have endosperm starch granules lacking detectable amylose. This study investigated the basis of this phenotype using molecular and biochemical methods. Iodine staining of starch granules in 72 plants from 38 landrace accessions found 58 nonwaxy and 14 waxy phenotype plants. All waxy types were in plants from Chinese and Korean accessions, a distribution similar to that of the waxy phenotype in other cereals. Granule-bound starch synthase I (GBSSI) protein was present in the endosperm of both nonwaxy and waxy individuals, but waxy types had little or no granule-bound starch synthase activity compared with the wild types. Sequencing of the GBSSI (Waxy) gene showed that this gene is present in two different forms (L and S) in P. miliaceum, which probably represent homeologues derived from two distinct diploid ancestors. Protein products of both these forms are present in starch granules. We identified three polymorphisms in the exon sequence coding for mature GBSSI peptides. A 15-bp deletion has occurred in the S type GBSSI, resulting in the loss of five amino acids from glucosyl transferase domain 1 (GTD1). The second GBSSI type (L) shows two sequence polymorphisms. One is the insertion of an adenine residue that causes a reading frameshift, and the second causes a cysteine–tyrosine amino acid polymorphism. These mutations appear to have occurred in parallel from the ancestral allele, resulting in three GBSSI-L alleles in total. Five of the six possible genotype combinations of the S and L alleles were observed. The deletion in the GBSSI-S gene causes loss of protein activity, and there was 100% correspondence between this deletion and the waxy phenotype. The frameshift mutation in the L gene results in the loss of L-type protein from starch granules. The L isoform with the tyrosine residue is present in starch granules but is nonfunctional. This loss of function may result from the

    18. Plantain and banana starches: granule structural characteristics explain the differences in their starch degradation patterns.

      PubMed

      Soares, Claudinéia Aparecida; Peroni-Okita, Fernanda Helena Gonçalves; Cardoso, Mateus Borba; Shitakubo, Renata; Lajolo, Franco Maria; Cordenunsi, Beatriz Rosana

      2011-06-22

      Different banana cultivars were used to investigate the influences of starch granule structure and hydrolases on degradation. The highest degrees of starch degradation were observed in dessert bananas during ripening. Scanning electron microscopy images revealed smooth granule surface in the green stage in all cultivars, except for Mysore. The small and round granules were preferentially degraded in all of the cultivars. Terra demonstrated a higher degree of crystallinity and a short amylopectin chain length distribution, resulting in high starch content in the ripe stage. Amylose content and the crystallinity index were more strongly correlated than the distribution of amylopectin branch chain lengths in banana starches. α- and β-amylase activities were found in both forms, soluble in the pulp and associated with the starch granule. Starch-phosphorylase was not found in Mysore. On the basis of the profile of α-amylase in vitro digestion and the structural characteristics, it could be concluded that the starch of plantains has an arrangement of granules more resistant to enzymes than the starch of dessert bananas. PMID:21591784

    19. Characterization of starch films containing starch nanoparticles: part 1: physical and mechanical properties.

      PubMed

      Shi, Ai-Min; Wang, Li-Jun; Li, Dong; Adhikari, Benu

      2013-07-25

      We report, for the first time, the preparation method and characteristics of starch films incorporating spray dried and vacuum freeze dried starch nanoparticles. Physical properties of these films such as morphology, crystallinity, water vapor permeability (WVP), opacity, and glass transition temperature (Tg) and mechanical properties (strain versus temperature, strain versus stress, Young's modulus and toughness) were measured. Addition of both starch nanoparticles in starch films increased roughness of surface, lowered degree of crystallinity by 23.5%, WVP by 44% and Tg by 4.3°C, respectively compared to those of starch-only films. Drying method used in preparation of starch nanoparticles only affected opacity of films. The incorporation of nanoparticles in starch films resulted into denser films due to which the extent of variation of strain with temperature was much lower. The toughness and Young's modulus of films containing both types of starch nanoparticles were lower than those of control films especially at <100°C. PMID:23768605

    20. Rheological properties of starch-oil composites with high oil: starch ratios

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Many applications have been developed for aqueous dispersions of jet-cooked starch-oil composites prepared by excess steam jet cooking. Previous formulations have typically contained between 20% and 50% oil by weight based on the weight of starch. In order to expand the range of potential applicat...

    1. Characterization of enzyme-resistant starch in maize amylose-extender mutant starches

      Technology Transfer Automated Retrieval System (TEKTRAN)

      In the human digestive system, a type of starch known as resistant starch (RS) can not be digested. RS is not absorbed in the small intestine, and is passed to the large intestine where it is fermented by bacteria to produce short-chain fatty acids, which have anti-cancer and anti-inflammatory prop...

    2. STARCH-OIL INTERACTION IN DRY FILM LUBRICANTS WITH CHEMICALLY MODIFIED STARCH

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Starch is one of the most abundant farm-based raw materials. It is a significant component of such high volume commodity crops as corn, potato, rice, wheat, and barley. Because of the large surplus of these crops over demand, there is a great deal of interest in developing new uses for starch-base...

    3. Physicochemical properties and in vitro starch digestibility of potato starch/protein blends.

      PubMed

      Lu, Zhan-Hui; Donner, Elizabeth; Yada, Rickey Y; Liu, Qiang

      2016-12-10

      This study aimed to investigate effects of starch-protein interactions on physicochemical properties and in vitro starch digestibility of composite potato starch/protein blends (0, 5, 10, or 15% protein) during processing (cooking, cooling and reheating). The effect on recrystallization and short-range ordering in starch was studied by light microscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy. The results show that protein in the blend proportionally restricted starch granule swelling during cooking and facilitated amylopectin recrystallization during cold-storage. The facilitating effect of protein diminished with increasing blend ratio. Resistant starch content in the processed blends was positively correlated to intensity ratio of 1053/1035cm(-1) in FTIR spectra arising from slow retrogradation of amylopectin (r(2)>0.88, P≤0.05), whose formation was favored by the presence of protein in the blends and further enhanced by cooling of cooked blends. As a conclusion, starch-protein interaction reduced starch digestibility of the processed blends. PMID:27577912

    4. Preparation and characterization of resistant starch III from elephant foot yam (Amorphophallus paeonifolius) starch.

      PubMed

      Reddy, Chagam Koteswara; Haripriya, Sundaramoorthy; Noor Mohamed, A; Suriya, M

      2014-07-15

      The purpose of this study was to assess the properties of resistant starch (RS) III prepared from elephant foot yam starch using pullulanase enzyme. Native and gelatinized starches were subjected to enzymatic hydrolysis (pullulanase, 40 U/g per 10h), autoclaved (121°C/30 min), stored under refrigeration (4°C/24h) and then lyophilized. After preparation of resistant starch III, the morphological, physical, chemical and functional properties were assessed. The enzymatic and retrogradation process increased the yield of resistant starch III from starch with a concomitant increase increase in its water absorption capacity and water solubility index. A decrease in swelling power was observed due to the hydrolysis and thermal process. Te reduced pasting properties and hardness of resistant starch III were associated with the disintegration of starch granules due to the thermal process. The viscosity was found to be inversely proportional to the RS content in the sample. The thermal properties of RS increased due to retrogradation and recrystallization (P<0.05). PMID:24594151

    5. Resistant Starch and Starch Thermal Characteristics in Exotic Corn Lines Grown in Temperate and Tropical Environments

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Corn as a food that is heated and cooled to allow starch retrogradation has higher levels of resistant starch (RS). Increasing the amount of RS can make corn an even healthier food and may be accomplished by breeding and selection, especially by using exotic germplasm. Sixty breeding lines of introg...

    6. Resistant-starch Formation in High-amylose Maize Starch During Kernel Development

      Technology Transfer Automated Retrieval System (TEKTRAN)

      The objective of this study was to understand the resistant-starch (RS) formation during the kernel development of high-amylose maize, GEMS-0067 line. RS content of the starch, determined using AOAC Method 991.43 for total dietary fiber, increased with kernel maturation and the increase in amylose/...

    7. Effect of gamma irradiation on thermophysical properties of plasticized starch and starch surfactant films

      NASA Astrophysics Data System (ADS)

      Cieśla, Krystyna; Watzeels, Nick; Rahier, Hubert

      2014-06-01

      In this work the influence of gamma irradiation on the thermomechanical properties of the films formed in potato starch-glycerol and potato starch-glycerol-surfactant systems were examined by Dynamic Mechanical Analysis, DMA, and Differential Scanning Calorimetry, DSC, and the results were correlated to the amount of the volatile fraction in the films.

    8. Cecropia peltata Accumulates Starch or Soluble Glycogen by Differentially Regulating Starch Biosynthetic Genes[W][OA

      PubMed Central

      Bischof, Sylvain; Umhang, Martin; Eicke, Simona; Streb, Sebastian; Qi, Weihong; Zeeman, Samuel C.

      2013-01-01

      The branched glucans glycogen and starch are the most widespread storage carbohydrates in living organisms. The production of semicrystalline starch granules in plants is more complex than that of small, soluble glycogen particles in microbes and animals. However, the factors determining whether glycogen or starch is formed are not fully understood. The tropical tree Cecropia peltata is a rare example of an organism able to make either polymer type. Electron micrographs and quantitative measurements show that glycogen accumulates to very high levels in specialized myrmecophytic structures (Müllerian bodies), whereas starch accumulates in leaves. Compared with polymers comprising leaf starch, glycogen is more highly branched and has shorter branches—factors that prevent crystallization and explain its solubility. RNA sequencing and quantitative shotgun proteomics reveal that isoforms of all three classes of glucan biosynthetic enzyme (starch/glycogen synthases, branching enzymes, and debranching enzymes) are differentially expressed in Müllerian bodies and leaves, providing a system-wide view of the quantitative programming of storage carbohydrate metabolism. This work will prompt targeted analysis in model organisms and cross-species comparisons. Finally, as starch is the major carbohydrate used for food and industrial applications worldwide, these data provide a basis for manipulating starch biosynthesis in crops to synthesize tailor-made polyglucans. PMID:23632447

    9. Position of modifying groups on starch chains of octenylsuccinic anhydride-modified waxy maize starch

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Octenylsuccinic anhydride (OSA)-modified starches with degree of substitution of 0.018 (OS-S-L) and 0.092 (OS-S-H) were prepared from granular native waxy maize starch in an aqueous slurry system. The substitution distribution of OS groups was investigated by enzyme hydrolysis followed by chromatogr...

    10. No Latex Starch Utilization in Euphorbia esula L.

      PubMed

      Nissen, S J; Foley, M E

      1986-06-01

      Utilization of leaf, stem, root, and latex starch was monitored in Euphorbia esula L. plants. Leaf, stem, and root starch decreased rapidly during a 52 day light starvation period while latex starch did not. Scanning electron and light microscope studies provided additional evidence that no changes in latex starch granules had occurred. Amylase activity (6.6 units per milligram protein) could be isolated from latex. However, latex starch granules were extremely resistant to enzymic hydrolysis by latex amylases, Bacillus subtilis alpha-amylase, and by amyloglucosidase from Aspergillus niger. Results indicate that latex starch grains do not function as utilizable carbohydrate in this species under these conditions. PMID:16664883

    11. Effects of starch synthase IIa gene dosage on grain, protein and starch in endosperm of wheat.

      PubMed

      Konik-Rose, Christine; Thistleton, Jenny; Chanvrier, Helene; Tan, Ihwa; Halley, Peter; Gidley, Michael; Kosar-Hashemi, Behjat; Wang, Hong; Larroque, Oscar; Ikea, Joseph; McMaugh, Steve; Regina, Ahmed; Rahman, Sadequr; Morell, Matthew; Li, Zhongyi

      2007-11-01

      Starch synthases (SS) are responsible for elongating the alpha-1,4 glucan chains of starch. A doubled haploid population was generated by crossing a line of wheat, which lacks functional ssIIa genes on each genome (abd), and an Australian wheat cultivar, Sunco, with wild type ssIIa alleles on each genome (ABD). Evidence has been presented previously indicating that the SGP-1 (starch granule protein-1) proteins present in the starch granule in wheat are products of the ssIIa genes. Analysis of 100 progeny lines demonstrated co-segregation of the ssIIa alleles from the three genomes with the SGP-1 proteins, providing further evidence that the SGP-1 proteins are the products of the ssIIa genes. From the progeny lines, 40 doubled haploid lines representing the eight possible genotypes for SSIIa (ABD, aBD, AbD, ABd, abD, aBd, Abd, abd) were characterized for their grain weight, protein content, total starch content and starch properties. For some properties (chain length distribution, pasting properties, swelling power, and gelatinization properties), a progressive change was observed across the four classes of genotypes (wild type, single nulls, double nulls and triple nulls). However, for other grain properties (seed weight and protein content) and starch properties (total starch content, granule morphology and crystallinity, granule size distribution, amylose content, amylose-lipid dissociation properties), a statistically significant change only occurred for the triple nulls, indicating that all three genes had to be missing or inactive for a change to occur. These results illustrate the importance of SSIIa in controlling grain and starch properties and the importance of amylopectin fine structure in controlling starch granule properties in wheat. PMID:17721773

    12. Starches of varied digestibilities differentially modify intestinal function in rats.

      PubMed

      Lajvardi, A; Mazarin, G I; Gillespie, M B; Satchithanandam, S; Calvert, R J

      1993-12-01

      Starches of different digestibilities may enter the colon to different extents and alter colonic function. Male Fischer 344 rats were fed diets containing 25% cooked potato starch, arrowroot starch, high amylose cornstarch or raw potato starch for 6 wk. Fecal weight, transit time, colonic thymidine kinase activity (a marker for cell proliferation), and weight, starch content and pH of the cecum and proximal and distal colon were measured. Raw potato starch was much less completely digested than high amylose cornstarch, resulting in a 32-fold greater amount of undigested starch entering the cecum in the raw potato starch group. Both the high amylose cornstarch and raw potato starch diets significantly enhanced fecal weight and produced large intestinal hypertrophy, effects that were greatest in the raw potato starch group. Raw potato starch feeding was associated with the highest level of thymidine kinase activity, although the differences in thymidine kinase activity among the four groups were not significant. This diet also produced a 50% longer transit time. Entry of a large amount of raw potato starch into the colon resulted in greater luminal acidity, greater luminal bulk and slower transit. A much smaller amount of starch entered the colon in the high amylose cornstarch group and resulted in fecal bulking but no alteration in transit. PMID:8263598

    13. Utilization of sorghum, rice, corn flours with potato starch for the preparation of gluten-free pasta.

      PubMed

      Ferreira, Sila Mary Rodrigues; de Mello, Ana Paula; de Caldas Rosa dos Anjos, Mônica; Krüger, Cláudia Carneiro Hecke; Azoubel, Patrícia Moreira; de Oliveira Alves, Márcia Aurelina

      2016-01-15

      The aim of this study was to evaluate the use of mixture of sorghum-rice-corn flour and potato starch in the development of gluten-free pasta for celiac disease patients. The experiment was designed according to simplex-lattice method and different types of gluten-free flours were used, such as sorghum, rice, corn, and potato starch. The fifteen formulations were subjected to sensory analysis (Mixed Structured Scale - MSS) and seven formulations were selected in respect to taste and grittiness. These formulations were subjected to Quantitative Descriptive Analysis (QDA), which evaluated the attributes: appearance, color, odor, hardness, elasticity, stickiness, grittiness, taste, residual bitterness and overall quality. Results showed significant difference in appearance, color and hardness. The formulations that showed the best sensory results were submitted to chemical analysis and cooking quality of pasta. It was observed that the best results for mixing is sorghum flour, rice flour and potato starch. PMID:26258714

    14. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

      PubMed Central

      2012-01-01

      Background Starch is stored in higher plants as granules composed of semi-crystalline amylopectin and amorphous amylose. Starch granules provide energy for the plant during dark periods and for germination of seeds and tubers. Dietary starch is also a highly glycemic carbohydrate being degraded to glucose and rapidly absorbed in the small intestine. But a portion of dietary starch, termed “resistant starch” (RS) escapes digestion and reaches the large intestine, where it is fermented by colonic bacteria producing short chain fatty acids (SCFA) which are linked to several health benefits. The RS is preferentially derived from amylose, which can be increased by suppressing amylopectin synthesis by silencing of starch branching enzymes (SBEs). However all the previous works attempting the production of high RS crops resulted in only partly increased amylose-content and/or significant yield loss. Results In this study we invented a new method for silencing of multiple genes. Using a chimeric RNAi hairpin we simultaneously suppressed all genes coding for starch branching enzymes (SBE I, SBE IIa, SBE IIb) in barley (Hordeum vulgare L.), resulting in production of amylose-only starch granules in the endosperm. This trait was segregating 3:1. Amylose-only starch granules were irregularly shaped and showed peculiar thermal properties and crystallinity. Transgenic lines retained high-yield possibly due to a pleiotropic upregualtion of other starch biosynthetic genes compensating the SBEs loss. For gelatinized starch, a very high content of RS (65 %) was observed, which is 2.2-fold higher than control (29%). The amylose-only grains germinated with same frequency as control grains. However, initial growth was delayed in young plants. Conclusions This is the first time that pure amylose has been generated with high yield in a living organism. This was achieved by a new method of simultaneous suppression of the entire complement of genes encoding starch branching enzymes. We

    15. Regulation of starch synthesis in potato tubers

      SciTech Connect

      Davies, H.; Oparka, K.; Viola, R.; Wright, K.; Ross, H. )

      1990-05-01

      Following tuber excision from the mother plant sucrose synthase activity fell from 3,120 to 960 nmol/g.f. wt./h within 7 days and starch synthesis ({sup 14}C sucrose incorporated into isolated discs) from 23 to 7 nmol/g.f. wt./h. While the maximum catalytic activity of sucrose synthase was more than sufficient to account for the observed rate of starch synthesis a maximum of 27% of sucrose incorporated by discs was converted into starch within 3 h. This compared with 80% conversion of {sup 14}C glucose incorporated. Tuber excision also reduced the rate of starch biosynthesis with glucose as a substrate (from 206 to 64 nmol/g.f. wt./h). The activities of UDPG-pyrophosphorylase, PPi-PFK, ATP-PFK, starch synthase and hexokinase (glucose or fructose substrates) were unaffected by tuber removal. ADPG pyrophosphorylase activity was reduced from 8,000 to 4,500 nmol/g.f. wt./h. Preliminary experiments indicate that the decline in sucrose synthease activity is prevented by maintaining sucrose flux into tubers through the cut stolon.

    16. Initiator Effects in Reactive Extrusion of Starch Graft Copolymers

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Graft copolymers of starch with water-soluble polymers such as polyacrylamide have potential applications including hydrogels, superabsorbents, and thickening agents. Reactive extrusion is a rapid, continuous method for production of starch graft copolymers with high reaction and grafting efficienc...

    17. Cloning and extracellular expression of a raw starch digesting α-amylase (Blamy-I) and its application in bioethanol production from a non-conventional source of starch.

      PubMed

      Roy, Jetendra K; Manhar, Ajay K; Nath, Dhrubajyoti; Mandal, Manabendra; Mukherjee, Ashis K

      2015-11-01

      The aim of this study was to clone and efficiently express a raw starch-digesting α-amylase enzyme in the culture media and also to investigate the potential application of this recombinant enzyme in the digestion of non-conventional raw starch for bioethanol production. A raw starch digesting α-amylase gene isolated from Bacillus licheniformis strain AS08E was cloned and extracellularly expressed in E. coli cells using the native signal peptide. The mature recombinant α-amylase (Blamy-I) consisting of 483 amino acid residues was found to be homogenous with a mass of 55.3 kDa (by SDS-PAGE analysis) and a predicted pI of 6.05. Structural and functional analysis of Blamy-I revealed the presence of an extra Ca(2+) -binding region between the A and C domains responsible for higher thermostability of this enzyme. The statistical optimization of E. coli culture conditions resulted in an approximately eightfold increase in extracellular expression of Blamy-I as compared to its production under non-optimized conditions. Blamy-I demonstrated optimum enzyme activity at 80 °C and pH 10.0, and efficiently hydrolyzed raw starch isolated from a non-conventional, underutilized jack fruit seeds. Further utilization of this starch for bioethanol production using Blamy-I and Saccharomyces cerevisiae also proved to be highly promising. PMID:26135919

    18. Crop residues

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Crop residues [e.g., corn (Zea mays) stover and small grain straw] are sometimes excluded when discussing cellulosic energy crops per se, but because of the vast area upon which they are grown and their current role in the development of cellulosic energy systems. This chapter focuses on current cor...

    19. Starch behaviors and mechanical properties of starch blend films with different plasticizers.

      PubMed

      Nguyen Vu, Hoang Phuong; Lumdubwong, Namfone

      2016-12-10

      The main objective of the study was to gain insight into structural and mechanical starch behaviors of the plasticized starch blend films. Mechanical properties and starch behaviors of cassava (CS)/and mungbean (MB) (50/50, w/w) starch blend films containing glycerol (Gly) or sorbitol (Sor) at 33% weight content were investigated. It was found that tensile strength TS and %E of the Gly-CSMB films were similar to those of MB films; but%E of all Sor-films was identical. TS of plasticized films increased when AM content and crystallinity increased. When Sor was substituted for Gly, crystallinity of starch films and their TS increased. The CSMB and MB films had somewhat a similar molecular profile and comparable mechanical properties. Therefore, it was proposed the starch molecular profile containing amylopectin with high M¯w, low M¯w of amylose, and the small size of intermediates may impart the high TS and%E of starch films. PMID:27577902

    20. Measurement of resistant starch by enzymatic digestion in starch and selected plant materials: collaborative study.

      PubMed

      McCleary, Barry V; McNally, Marian; Rossiter, Patricia

      2002-01-01

      Interlaboratory performance statistics was determined for a method developed to measure the resistant starch (RS) content of selected plant food products and a range of commercial starch samples. Food materials examined contained RS (cooked kidney beans, green banana, and corn flakes) and commercial starches, most of which naturally contain, or were processed to yield, elevated RS levels. The method evaluated was optimized to yield RS values in agreement with those reported for in vivo studies. Thirty-seven laboratories tested 8 pairs of blind duplicate starch or plant material samples with RS values between 0.6 (regular maize starch) and 64% (fresh weight basis). For matrixes excluding regular maize starch, repeatability relative standard deviation (RSDr) values ranged from 1.97 to 4.2%, and reproducibility relative standard deviation (RSDR) values ranged from 4.58 to 10.9%. The range of applicability of the test is 2-64% RS. The method is not suitable for products with <1% RS (e.g., regular maize starch; 0.6% RS). For such products, RSDr and RSDR values are unacceptably high. PMID:12374410

    1. Conformational Contribution to the Heat Capacity of Starch and Starch-Water

      NASA Astrophysics Data System (ADS)

      Pyda, Marek; Wunderlich, Bernhard

      2000-03-01

      The heat capacities of starch and starch-water have been measured using adiabatic calorimetry, and standard differential scanning calorimetry (DSC) and are reported from 5 K to 510 K. The amorphous starch containing 10 wt water shows a glass transition around 350 K. The heat capacities of the solid of amorphous, dry starch is linked to an approximate group vibrational spectrum, and the Tarasov equation is used to estimate the heat capacity contribution due to skeletal vibrations ( theta1 = 830 K and theta2 = 85 K theta3 = 85 K, Nskeletal = 17). The calculated and experimental heat capacities agree to better than ±3between 5 and 250 K. The experimental heat capacities of starch-water and dry starch are compared over the whole range of temperatures. Above the glass transition the differences are interpreted as contributions of different conformational heat capacities from interacting chain of carbohydrate with water. The conformational part is evaluated from a fit of the experimental Cp of starch-water, decreased by the vibrational and the external Cp to a one-dimensional Ising model with two discrete states and stiffness, cooperativity, and degeneracy parameters. NSF, Polymers Program, DMR-9703692, and the Div. of Mat. Sci., BES, DOE at ORNL, managed by Lockheed Martin Energy Research Corp., DE-AC05-96OR22464.

    2. Acetylated adipate of retrograded starch as RS 3/4 type resistant starch.

      PubMed

      Kapelko-Żeberska, M; Zięba, T; Spychaj, R; Gryszkin, A

      2015-12-01

      This study was aimed at producing acetylated adipate of retrograded starch (ADA-R) with various degrees of substitution with functional groups and at determining the effect of esterification degree on resistance and pasting characteristics of the produced preparations. Paste was prepared from native potato starch, and afterwards frozen and defrosted. After drying and disintegration, the paste was acetylated and crosslinked using various doses of reagents. An increase in the total degree of esterification of the produced ADA-R-preparation caused an increase in its resistance to the action of amyloglucosidase. Viscosity of the paste produced from ADA-R-preparation in a wide range of acetylation degrees was increasing along with increasing crosslinking of starch. The study demonstrated that acetylated adipate of retrograded starch may be classified as a preparation of RS 3/4 type resistant starch (retrograded starch/chemically-modified starch) with good texture-forming properties. The conducted modification offers the possibility of modeling the level of resistance of the produced preparation. PMID:26041205

    3. Probing starch-iodine interaction by atomic force microscopy.

      PubMed

      Du, Xiongwei; An, Hongjie; Liu, Zhongdong; Yang, Hongshun; Wei, Lijuan

      2014-01-01

      We explored the interaction of iodine with three crystalline type starches, corn, potato, and sweet potato starches using atomic force microscopy. Results revealed that starch molecules aggregated through interaction with iodine solution as well as iodine vapor. Detailed fine structures such as networks, chains, and super-helical structures were found in iodide solution tests. The nanostructures formed due to iodine adsorption could help to understand the formation and properties of the starch-iodine complex. PMID:24338992

    4. Rapid and sensitive quantification of C3- and C6-phosphoesters in starch by fluorescence-assisted capillary electrophoresis.

      PubMed

      Verbeke, Jeremy; Penverne, Christophe; D'Hulst, Christophe; Rolando, Christian; Szydlowski, Nicolas

      2016-11-01

      Phosphate groups are naturally present in starch at C3- or C6-position of the glucose residues and impact the structure of starch granules. Their precise quantification is necessary for understanding starch physicochemical properties and metabolism. Nevertheless, reliable quantification of Glc-3-P remains laborious and time consuming. Here we describe a capillary electrophoresis method for simultaneous measurement of both Glc-6-P and Glc-3-P after acid hydrolysis of starch. The sensitivity threshold was estimated at the fg scale, which is compatible with the analysis of less than a μg of sample. The method was validated by analyzing antisense potato lines deficient in SBEs, GWD or GBSS. We show that Glc-3-P content is altered in the latter and that these variations do not correlate with modifications in Glc-6-P content. We anticipate the method reported here to be an efficient tool for high throughput study of starch phosphorylation at both C3- and C6-position. PMID:27516330

    5. Identification of teosinte, maize, and Tripsacum in Mesoamerica by using pollen, starch grains, and phytoliths

      PubMed Central

      Holst, Irene; Moreno, J. Enrique; Piperno, Dolores R.

      2007-01-01

      We examined pollen grains and starch granules from a large number of modern populations of teosinte (wild Zea spp.), maize (Zea mays L.), and closely related grasses in the genus Tripsacum to assess their strengths and weaknesses in studying the origins and early dispersals of maize in its Mesoamerican cradle of origin. We report new diagnostic criteria and question the accuracy of others used previously by investigators to identify ancient maize where its wild ancestor, teosinte, is native. Pollen grains from teosinte overlap in size with those of maize to a much greater degree than previously reported, making the differentiation of wild and domesticated maize in palynological studies difficult. There is presently no valid method for separating maize and teosinte pollen on a morphological basis. Starch grain analysis, a recently developed tool of archaeobotany, appears to be of significant utility in distinguishing the seeds of teosinte from maize. We propose that the differences in starch grain morphology and size between wild and domesticated maize defined in this study may be associated with domestication genes in Zea that have been documented in the starch biosynthesis pathway. As previously reported, phytoliths effectively discriminate the female reproductive structures of Tripsacum, teosinte, and maize. Multiproxy microfossil studies of archaeological and paleoecological contexts appear to be effective tools for investigating the earliest stages of maize domestication and dispersals. PMID:17978176

    6. Orbitmpi Documentation

      SciTech Connect

      Lisa L. Lowe

      2000-10-05

      Orbitmpi is a parallelized version of Roscoe White's Orbit code. The code has been parallelized using MPI, which makes it portable to many types of machines. The guidelines used for the parallelization were to increase code performance with minimal changes to the code's original structure. This document gives a general description of how the parallel sections of the code run. It discusses the changes made to the original code and comments on the general procedure for future additions to Orbitmpi, as well as describing the effects of a parallelized random number generator on the code's output. Finally, the scaling results from Hecate and from Puffin are presented. Hecate is a 64-processor Origin 2000 machine, with MIPS R12000 processors and 16GB of memory, and Puffin is a PC cluster with 9 dual-processor 450 MHz Pentium III (18 processors max.), with 100Mbits ethernet communication.

    7. ISOLATION OF AMYLOSE FROM STARCH SOLUTIONS BY PHASE SEPARATION*

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Conventionally, fractionation of the two components of starches, amylopectin and amylose had been achieved by aqueous dispersion or aqueous leaching of granules, and selective retrogradation or alcohol precipitation of one component from starch dispersion. Recently, we found that starch solutions s...

    8. Adsorption of Polyethylene from Solution onto Starch Film Surfaces

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Starch films were prepared by jet cooking aqueous dispersions of high-amylose starch and then allowing the jet cooked dispersions to air-dry on Teflon surfaces. When the starch films were immersed in 1 % solutions of PE in 1-dodecanol, dodecane and xylene at 120º C and the solutions were allowed to...

    9. Amylose Content in Tuber Starch of Wild Potato Species

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Approximately 20% of potato tuber fresh weight is starch, which is composed of amylose (straight chains of glucose) and amylopectin (branched chains). Potato starch is low in amylose (~25%), but high amylose starch has superior nutritional qualities. Amylose content has been determined in tuber samp...

    10. Starch as a feedstock for bioproducts and packaging

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Much progress has been achieved in developing starch-based feedstocks as a partial replacement for petroleum-based feedstocks. Although starch remains a poor direct substitute for plastics, composite starch-based materials have useful functional properties and are in commercial production as a repla...

    11. HRP-Mediated Synthesis of Starch-Polyacrylamide Graft Copolymers

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Modified starch-based polymers can be engineered for specific properties by combining starch with synthetic polymers through graft copolymerization. Polyacrylamide grafted starch have received a great deal of applications in areas such as superabsorbent paper-making additives, drag reduction and te...

    12. Extraction of starch from wheat flour by alkaline solution

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Separation of starch from wheat flour with high purity is very important for the analysis of starch such as amylose and amylopectin determination by size exclusion HPLC (SE-HPLC). A procedure that extracts starch from flour by ethanol precipitation after dissolving flour in KOH and urea solution wa...

    13. Recent processing methods for preparing starch-based bioproducts

      Technology Transfer Automated Retrieval System (TEKTRAN)

      There is currently an intense interest in starch-based materials because of the low cost of starch, the replacement of dwindling petroleum-based resources with annually-renewable feedstocks, the biodegradability of starch-based products, and the creation of new markets for farm commodities. Non-trad...

    14. PROSPECTS OF BREEDING FOR LOW STARCH CONTENT IN SUGARCANE

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Elevated levels of starch in sugarcane juice adversely affect the processing quality of raw and refined sugar. Despite reports of differences among cultivars for starch content, most research has focused on processing aids to minimize the negative processing effects of starch. Deploying cultivars ...

    15. Amylose Content in Tuber Starch of Potato Cultivars

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Potato tuber is mostly water and starch. Approximately 20% of fresh tuber weight is the starch and the remainder is water. Most of the starch in the tuber, approximately 75%, is amylopectin and 25% amylose, but can vary depending on the cultivar. A total of 162 American (85) and foreign (77) potato ...

    16. HRP-Mediated Synthesis of Starch-Polyacrylamide Graft Copolymers

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Modified starch-based polymers can be engineered for specific properties by combining starch with synthetic polymers through graft copolymerization. Polyacrylamide grafted starches have received a great deal of applications in areas such as superabsorbent paper-making additives, drag reduction and ...

    17. Starch-based Foam Composite Materials: processing and bioproducts

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Starch is an abundant, biodegradable, renewable and low-cost commodity that has been explored as a replacement for petroleum-based plastics. By itself, starch is a poor replacement for plastics because of its moisture sensitivity and brittle properties. Efforts to improve starch properties and funct...

    18. Starch Catabolism by a Prominent Human Gut Symbiont Is Directed by the Recognition of Amylose Helices

      SciTech Connect

      Koropatkin, Nicole M.; Martens, Eric C.; Gordon, Jeffrey I.; Smith, Thomas J.

      2009-01-12

      The human gut microbiota performs functions that are not encoded in our Homo sapiens genome, including the processing of otherwise undigestible dietary polysaccharides. Defining the structures of proteins involved in the import and degradation of specific glycans by saccharolytic bacteria complements genomic analysis of the nutrient-processing capabilities of gut communities. Here, we describe the atomic structure of one such protein, SusD, required for starch binding and utilization by Bacteroides thetaiotaomicron, a prominent adaptive forager of glycans in the distal human gut microbiota. The binding pocket of this unique {alpha}-helical protein contains an arc of aromatic residues that complements the natural helical structure of starch and imposes this conformation on bound maltoheptaose. Furthermore, SusD binds cyclic oligosaccharides with higher affinity than linear forms. The structures of several SusD/oligosaccharide complexes reveal an inherent ligand recognition plasticity dominated by the three-dimensional conformation of the oligosaccharides rather than specific interactions with the composite sugars.

    19. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism

      PubMed Central

      Shaik, Shahnoor S.; Obata, Toshihiro; Hebelstrup, Kim H.; Schwahn, Kevin; Fernie, Alisdair R.; Mateiu, Ramona V.; Blennow, Andreas

      2016-01-01

      Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro-structure was achieved by decreasing starch branching and increasing starch-bound phosphate content in the barley caryopsis starch by RNAi suppression of all three Starch Branching Enzyme (SBE) isoforms or overexpression of potato Glucan Water Dikinase (GWD). The resulting lines displayed Amylose-Only (AO) and Hyper-Phosphorylated (HP) starch chemotypes, respectively. We studied the influence of these alterations on primary metabolism, grain composition, starch structural features and starch granule morphology over caryopsis development at 10, 20 and 30 days after pollination (DAP) and at grain maturity. While HP showed relatively little effect, AO showed significant reduction in starch accumulation with re-direction to protein and β-glucan (BG) accumulation. Metabolite profiling indicated significantly higher sugar accumulation in AO, with re-partitioning of carbon to accumulate amino acids, and interestingly it also had high levels of some important stress-related metabolites and potentially protective metabolites, possibly to elude deleterious effects. Investigations on starch molecular structure revealed significant increase in starch phosphate and amylose content in HP and AO respectively with obvious differences in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch-bound phosphate as a result of overexpressing GWD. PMID:26891365

    20. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism.

      PubMed

      Shaik, Shahnoor S; Obata, Toshihiro; Hebelstrup, Kim H; Schwahn, Kevin; Fernie, Alisdair R; Mateiu, Ramona V; Blennow, Andreas

      2016-01-01

      Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro-structure was achieved by decreasing starch branching and increasing starch-bound phosphate content in the barley caryopsis starch by RNAi suppression of all three Starch Branching Enzyme (SBE) isoforms or overexpression of potato Glucan Water Dikinase (GWD). The resulting lines displayed Amylose-Only (AO) and Hyper-Phosphorylated (HP) starch chemotypes, respectively. We studied the influence of these alterations on primary metabolism, grain composition, starch structural features and starch granule morphology over caryopsis development at 10, 20 and 30 days after pollination (DAP) and at grain maturity. While HP showed relatively little effect, AO showed significant reduction in starch accumulation with re-direction to protein and β-glucan (BG) accumulation. Metabolite profiling indicated significantly higher sugar accumulation in AO, with re-partitioning of carbon to accumulate amino acids, and interestingly it also had high levels of some important stress-related metabolites and potentially protective metabolites, possibly to elude deleterious effects. Investigations on starch molecular structure revealed significant increase in starch phosphate and amylose content in HP and AO respectively with obvious differences in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch-bound phosphate as a result of overexpressing GWD. PMID:26891365

    1. Starch Biosynthesis in Developing Wheat Grain 1

      PubMed Central

      Keeling, Peter L.; Wood, John R.; Tyson, R. Huw; Bridges, Ian G.

      1988-01-01

      We have used 13C-labeled sugars and nuclear magnetic resonance (NMR) spectrometry to study the metabolic pathway of starch biosynthesis in developing wheat grain (Triticum aestivum cv Mardler). Our aim was to examine the extent of redistribution of 13C between carbons atoms 1 and 6 of [1-13C] or [6-13C]glucose (or fructose) incorporated into starch, and hence provide evidence for or against the involvement of triose phosphates in the metabolic pathway. Starch synthesis in the endosperm tissue was studied in two experimental systems. First, the 13C sugars were supplied to isolated endosperm tissue incubated in vitro, and second the 13C sugars were supplied in vivo to the intact plant. The 13C starch produced by the endosperm tissue of the grain was isolated and enzymically degraded to glucose using amyloglucosidase, and the distribution of 13C in all glucosyl carbons was quantified by 13C-NMR spectrometry. In all of the experiments, irrespective of the incubation time or incubation conditions, there was a similar pattern of partial (between 15 and 20%) redistribution of label between carbons 1 and 6 of glucose recovered from starch. There was no detectable increase over background 13C incidence in carbons 2 to 5. Within each experiment, the same pattern of partial redistribution of label was found in the glucosyl and fructosyl moieties of sucrose extracted from the tissue. Since it is unlikely that sucrose is present in the amyloplast, we suggest that the observed redistribution of label occurred in the cytosolic compartment of the endosperm cells and that both sucrose and starch are synthesized from a common pool of intermediates, such as hexose phosphate. We suggest that redistribution of label occurs via a cytosolic pathway cycle involving conversion of hexose phosphate to triose phosphate, interconversion of triose phosphate by triose phosphate isomerase, and resynthesis of hexose phosphate in the cytosol. A further round of triose phosphate interconversion in

    2. Properties of thermoplastic starch from cassave bagasse and cassava starch and their blends with poly (lactic acid).

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Cassava bagasse is an inexpensive and broadly available waste byproduct from cassava starch production. It contains roughly 50% cassava starch along with mostly fiber and could be a valuable feedstock for various bioproducts. Cassava bagasse and cassava starch were used in this study to make fiber-r...

    3. Characterization of Maize Amylose-Extender (ae) Mutant Starches. Part I: Relationship Between Resistant Starch Contents and Molecular Structures

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Endosperm starches were isolated from kernels of seven maize amylose-extender (ae) lines. The resistant starch (RS) contents, measured using AOAC method 991.43, showed that three new ae-mutant starch lines developed by the USDA-ARS Germplasm Enhancement (GEM) and Truman State University had larger R...

    4. Reinforcement of injectable calcium phosphate cement by gelatinized starches.

      PubMed

      Liu, Huiling; Guan, Ying; Wei, Donglei; Gao, Chunxia; Yang, Huilin; Yang, Lei

      2016-04-01

      Current injectable calcium phosphate bone cements (CPC) encounter the problems of low strength, high brittleness, and low cohesion in aqueous environment, which greatly hinder their clinical applications for loading-bearing bone substitution and minimally invasive orthopedic surgeries. Here, a strategy of using gelatinized starches to reinforce injectable CPC was investigated. Four types of starches, namely corn starch, crosslinked starch, cationic starch, and Ca-modified starch, were studied for their influence on CPC mechanical properties, injectability, setting times, anticollapsibility, and cytocompatibility. Gelatinized starch significantly improved compressive strength and modulus as well as strain energy density of CPC to different extents. Specifically, both corn starch and Ca-modified starch revealed sixfold and more than twofold increases in the compressive strength and modulus of CPC, respectively. The addition of gelatinized starches with proper contents increased the injectability and anticollapsibility of CPC. In addition, osteoblast proliferation tests on leaching solution of modified cements showed that gelatinized starches had no adverse effect on cell proliferation, and all cement samples resulted in better osteoblast proliferation compared to phosphate-buffered solution control. The mechanisms behind the reinforcing effect of different starches were preliminarily studied. Two possible mechanisms, reinforcement by the second phase of gelatinized starch and strong interlocking of apatite crystals, were proposed based on the results of starch zeta potential and viscosity, cement microstructure, and resultant mechanical properties. In conclusion, incorporating gelatinized starches could be an effective, facile, and bio-friendly strategy to reinforce injectable CPC and improve its mechanical stability, and thus, should be further studied and developed. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 615-625, 2016. PMID

    5. Structural characteristics of slowly digestible starch and resistant starch isolated from heat-moisture treated waxy potato starch.

      PubMed

      Lee, Chang Joo; Moon, Tae Wha

      2015-07-10

      The objective of this study was to investigate the structural characteristics of slowly digestible starch (SDS) and resistant starch (RS) fractions isolated from heat-moisture treated waxy potato starch. The waxy potato starch with 25.7% moisture content was heated at 120°C for 5.3h. Scanning electron micrographs of the cross sections of RS and SDS+RS fractions revealed a growth ring structure. The branch chain-length distribution of debranched amylopectin from the RS fraction had a higher proportion of long chains (DP ≥ 37) than the SDS+RS fraction. The X-ray diffraction intensities of RS and SDS+RS fractions were increased compared to the control. The SDS+RS fraction showed a lower gelatinization enthalpy than the control while the RS fraction had a higher value than the SDS+RS fraction. In this study we showed the RS fraction is composed mainly of crystalline structure and the SDS fraction consists of weak crystallites and amorphous regions. PMID:25857975

    6. Starch nanocrystals and starch nanoparticles from waxy maize as nanoreinforcement: A comparative study.

      PubMed

      Bel Haaj, Sihem; Thielemans, Wim; Magnin, Albert; Boufi, Sami

      2016-06-01

      The morphological, structural and thermal behavior of starch nanocrystals (SNCs) extracted from waxy maize starch through an acid hydrolysis were compared with those of starch nanoparticles (SNPs) obtained through an ultrasound treatment starting from the same waxy maize starch. The SNPs were found to be completely amorphous, slightly smaller and had no surface charge, whereas the SNCs had the expected platelet-like morphology with a negative surface charge introduced as a result of the use of sulphuric acid in the acid hydrolysis step. SNCs also showed better thermal stability than SNPs in the presence of water. As a result of their platelet-like morphology, the SNCs performed better in reinforcing a polymer film. On the other hand, SNPs reduced the transparency of the nanocomposite films to a lesser extent than the SNCs due to their smaller size. PMID:27083374

    7. Development and Characterization of Spaghetti with High Resistant Starch Content Supplemented with Banana Starch

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Pasta products, such as spaghetti, are relatively healthy foods traditionally manufactured from durum wheat semolina and water. Nutritionally improved spaghetti products with additional health benefits can be produced by supplementing durum wheat with suitable food additives, such as banana starch....

    8. Resistant Starch: Promise for Improving Human Health12

      PubMed Central

      Birt, Diane F.; Boylston, Terri; Hendrich, Suzanne; Jane, Jay-Lin; Hollis, James; Li, Li; McClelland, John; Moore, Samuel; Phillips, Gregory J.; Rowling, Matthew; Schalinske, Kevin; Scott, M. Paul; Whitley, Elizabeth M.

      2013-01-01

      Ongoing research to develop digestion-resistant starch for human health promotion integrates the disciplines of starch chemistry, agronomy, analytical chemistry, food science, nutrition, pathology, and microbiology. The objectives of this research include identifying components of starch structure that confer digestion resistance, developing novel plants and starches, and modifying foods to incorporate these starches. Furthermore, recent and ongoing studies address the impact of digestion-resistant starches on the prevention and control of chronic human diseases, including diabetes, colon cancer, and obesity. This review provides a transdisciplinary overview of this field, including a description of types of resistant starches; factors in plants that affect digestion resistance; methods for starch analysis; challenges in developing food products with resistant starches; mammalian intestinal and gut bacterial metabolism; potential effects on gut microbiota; and impacts and mechanisms for the prevention and control of colon cancer, diabetes, and obesity. Although this has been an active area of research and considerable progress has been made, many questions regarding how to best use digestion-resistant starches in human diets for disease prevention must be answered before the full potential of resistant starches can be realized. PMID:24228189

    9. Water dynamics and retrogradation of ultrahigh pressurized wheat starch.

      PubMed

      Doona, Christopher J; Feeherry, Florence E; Baik, Moo-Yeol

      2006-09-01

      The water dynamics and retrogradation kinetics behavior of gelatinized wheat starch by either ultrahigh pressure (UHP) processing or heat are investigated. Wheat starch completely gelatinized in the condition of 90, 000 psi at 25 degrees C for 30 min (pressurized gel) or 100 degrees C for 30 min (heated gel). The physical properties of the wheat starches were characterized in terms of proton relaxation times (T2 times) measured using time-domain nuclear magnetic resonance spectroscopy and evaluated using commercially available continuous distribution modeling software. Different T2 distributions in both micro- and millisecond ranges between pressurized and heated wheat starch gels suggest distinctively different water dynamics between pressurized and heated wheat starch gels. Smaller water self-diffusion coefficients were observed for pressurized wheat starch gels and are indicative of more restricted translational proton mobility than is observed with heated wheat starch gels. The physical characteristics associated with changes taking place during retrogradation were evaluated using melting curves obtained with differential scanning calorimetry. Less retrogradation was observed in pressurized wheat starch, and it may be related to a smaller quantity of freezable water in pressurized wheat starch. Starches comprise a major constituent of many foods proposed for commercial potential using UHP, and the present results furnish insight into the effect of UHP on starch gelatinization and the mechanism of retrogradation during storage. PMID:16939331

    10. Analysis of octenylsuccinate rice and tapioca starches: Distribution of octenylsuccinic anhydride groups in starch granules.

      PubMed

      Whitney, Kristin; Reuhs, Bradley L; Ovando Martinez, Maribel; Simsek, Senay

      2016-11-15

      Characterization of the fine structure of octenylsuccinic anhydride (OSA) starch would lead to a better understanding of functional properties. OSA rice and tapioca starches were analyzed using microscopy, liquid chromatography and nuclear magnetic resonance. Chain length distribution of amylopectin changed significantly (P<0.05) after OSA esterification. Weight averaged degree of polymerization (DPw) decreased significantly (P<0.05) from 16.47 to 13.29 and from 14.87 to 12.47 in native and OSA rice and tapioca starches, respectively. The chain length distribution of pure amylopectin fractions suggested that OSA groups were not present in the amylopectin portion of the starch. (1)H NMR analysis of pure amylose and amylopectin fractions indicated that OSA substitution was present only in amylose fractions of rice and tapioca starches. Esterification with 3% OSA results in starch that has OSA substituted mainly on amylose chains or possibly on amylopectin chains that have been hydrolyzed from the amylopectin molecules during esterification. PMID:27283674

    11. Granule-bound starch synthase I in isolated starch granules elongates malto-oligosaccharides processively.

      PubMed Central

      Denyer, K; Waite, D; Motawia, S; Møller, B L; Smith, A M

      1999-01-01

      Isoforms of starch synthase belonging to the granule-bound starch synthase I (GBSSI) class synthesize the amylose component of starch in plants. Other granule-bound isoforms of starch synthase, such as starch synthase II (SSII), are unable to synthesize amylose. The kinetic properties of GBSSI and SSII that are responsible for these functional differences have been investigated using starch granules from embryos of wild-type peas and rug5 and lam mutant peas, which contain, respectively, both GBSSI and SSII, GBSSI but not SSII and SSII but not GBSSI. We show that GBSSI in isolated granules elongates malto-oligosaccharides processively, adding more than one glucose molecule for each enzyme-glucan encounter. Granule-bound SSII can elongate malto-oligosaccharides, but has a lower affinity for these than GBSSI and does not elongate processively. As a result of these properties GBSSI synthesizes longer malto-oligosaccharides than SSII. The significance of these results with respect to the roles of GBSSI and SSII in vivo is discussed. PMID:10229673

    12. Nucleoside Diphosphate Sugar-Starch Glucosyl Transferase Activity of wx Starch Granules 1

      PubMed Central

      Nelson, Oliver E.; Chourey, Prem S.; Chang, Ming Tu

      1978-01-01

      Starch granule preparations from the endosperm tissue of all waxy maize (Zea mays L.) mutants tested have low and approximately equal capability to incorporate glucose from adenosine diphosphate glucose into starch. As the substrate concentration is reduced, however, the activity of waxy preparations relative to nonmutant increases until, at the lowest substrate concentration utilized (0.1 μM), the activity of the waxy preparations is nearly equal to that of the nonmutant preparation. The apparent Km (adenosine diphosphate glucose) for starch granule preparations from wx-C/wx-C/wx-C endosperms was 7.1 × 10−5 M, which is compared to 3 × 10−3 M for preparations from nonwaxy endosperms. Starch granule preparations from three other waxy mutants of independent mutational origin have levels of enzymic activity approximately equal to wx-C at a given substrate concentration giving rise to similar apparent Km estimates. We conclude that there is in maize endosperm starch granules a second starch granule-bound glycosyl transferase, whose presence is revealed when mutation eliminates activity of the more active glucosyl transferase catalyzing the same reaction. PMID:16660522

    13. LOW WASTEWATER POTATO STARCH/PROTEIN PRODUCTION

      EPA Science Inventory

      While potato starch has been an item of commerce for many years, traditional processing methods have incurred large volumes of high BOD effluents. The research summarized by this report has lead to a modified process which upgrades the soluble components formerly discarded in the...

    14. Iodine catalyzed acetylation of starch and cellulose

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Starch and cellulose, earth's most abundant biopolymers, are of tremendous economic importance. Over 90% of cotton and 50% of wood are made of cellulose. Wood and cotton are the major resources for all cellulose products such as paper, textiles, construction materials, cardboard, as well as such c...

    15. Heat expanded starch-based compositions

      Technology Transfer Automated Retrieval System (TEKTRAN)

      A heat expansion process similar to that used for expanded bead polystyrene was used to expand starch-based compositions. Foam beads made by solvent extraction had the appearance of polystyrene beads but their open-cell structure precluded them from expanding further when heated. Non-porous beads, p...

    16. Breadmaking with zein-starch dough

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Mixtures of maize prolamins (zein) and starch form a cohesive, extensible, viscoelastic dough when mixed above zein's glass transition temperature, e.g. at 35-40 degrees Celsius. Although this phenomenon has long been known, it has not yet been successfully used for gluten-free breadmaking. We fou...

    17. Reactions of Starch in Ionic Liquids

      Technology Transfer Automated Retrieval System (TEKTRAN)

      We found that starches are found to be soluble at 80 ºC in ionic liquids such as 1-butyl-3-methylimidazolium chloride (BMIMCl) and 1-butyl-3-methylimidazolium dicyanamide (BMIMdca) in concentration up to 10% (w/w). Higher concentrations of biopolymers in these novel solvents resulted in solutions w...

    18. Novel products from starch based feedstocks

      Technology Transfer Automated Retrieval System (TEKTRAN)

      There has been progress in the utilization of starch as a partial replacement for petroleum based plastics, but it remains a poor direct substitute for plastics, and a moderate one for composites. Our research focuses on using polymers produced from direct fermentation such as poly(lactic acid) or m...

    19. Starch: chemistry, microstructure, processing and enzymatic degradation

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Starch is recognized as one of the most abundant and important commodities containing value added attributes for a vast number of industrial applications. Its chemistry, structure, property and susceptibility to various chemical, physical and enzymatic modifications offer a high technological value ...

    20. Starch-lipid composites containing cimmamaldehyde

      Technology Transfer Automated Retrieval System (TEKTRAN)

      The formulation of a starch-lipid composite containing cinnamaldehyde as antimicrobial agent has been studied. Cinnamaldehyde was incorporated as an emulsion using Acetem 90-50K as a carrier and Tween 60 as the emulsifier. Oil in water emulsions were prepared by direct emulsification using a high sh...

    1. Degradation of Native Starch Granules by Barley α-Glucosidases 1

      PubMed Central

      Sun, Zhuotao; Henson, Cynthia A.

      1990-01-01

      The initial hydrolysis of native (unboiled) starch granules in germinating cereal kernels is considered to be due to α-amylases. We report that barley (Hordeum vulgare L.) seed α-glucosidases (EC 3.2.1.20) can hydrolyze native starch granules isolated from barley kernels and can do so at rates comparable to those of the predominant α-amylase isozymes. Two α-glucosidase charge isoforms were used individually and in combination with purified barley α-amylases to study in vitro starch digestion. Dramatic synergism, as much as 10.7-fold, of native starch granule hydrolysis, as determined by reducing sugar production, occurred when high pl α-glucosidase was combined with either high or low pl α-amylase. Synergism was also found when low pl α-glucosidase was combined with α-amylases. Scanning electron micrographs revealed that starch granule degradation by α-amylases alone occurred specifically at the equatorial grooves of lenticular granules. Granules hydrolyzed by combinations of α-glucosidases and α-amylases exhibited larger and more numerous holes on granule surfaces than did those granules attacked by α-amylase alone. As the presence of α-glucosidases resulted in more areas being susceptible to hydrolysis, we propose that this synergism is due, in part, to the ability of the α-glucosidases to hydrolyze glucosidic bonds other than α-1,4- and α-1,6- that are present at the granule surface, thereby eliminating bonds which were barriers to hydrolysis by α-amylases. Since both α-glucosidase and α-amylase are synthesized in aleurone cells during germination and secreted to the endosperm, the synergism documented here may function in vivo as well as in vitro. Images Figure 1 Figure 3 Figure 4 PMID:16667704

    2. PROTEIN TARGETING TO STARCH Is Required for Localising GRANULE-BOUND STARCH SYNTHASE to Starch Granules and for Normal Amylose Synthesis in Arabidopsis

      PubMed Central

      Seung, David; Soyk, Sebastian; Coiro, Mario; Maier, Benjamin A.; Eicke, Simona; Zeeman, Samuel C.

      2015-01-01

      The domestication of starch crops underpinned the development of human civilisation, yet we still do not fully understand how plants make starch. Starch is composed of glucose polymers that are branched (amylopectin) or linear (amylose). The amount of amylose strongly influences the physico-chemical behaviour of starchy foods during cooking and of starch mixtures in non-food manufacturing processes. The GRANULE-BOUND STARCH SYNTHASE (GBSS) is the glucosyltransferase specifically responsible for elongating amylose polymers and was the only protein known to be required for its biosynthesis. Here, we demonstrate that PROTEIN TARGETING TO STARCH (PTST) is also specifically required for amylose synthesis in Arabidopsis. PTST is a plastidial protein possessing an N-terminal coiled coil domain and a C-terminal carbohydrate binding module (CBM). We discovered that Arabidopsis ptst mutants synthesise amylose-free starch and are phenotypically similar to mutants lacking GBSS. Analysis of granule-bound proteins showed a dramatic reduction of GBSS protein in ptst mutant starch granules. Pull-down assays with recombinant proteins in vitro, as well as immunoprecipitation assays in planta, revealed that GBSS physically interacts with PTST via a coiled coil. Furthermore, we show that the CBM domain of PTST, which mediates its interaction with starch granules, is also required for correct GBSS localisation. Fluorescently tagged Arabidopsis GBSS, expressed either in tobacco or Arabidopsis leaves, required the presence of Arabidopsis PTST to localise to starch granules. Mutation of the CBM of PTST caused GBSS to remain in the plastid stroma. PTST fulfils a previously unknown function in targeting GBSS to starch. This sheds new light on the importance of targeting biosynthetic enzymes to sub-cellular sites where their action is required. Importantly, PTST represents a promising new gene target for the biotechnological modification of starch composition, as it is exclusively involved

    3. Heavy metal removal from industrial effluents by sorption on cross-linked starch: chemical study and impact on water toxicity.

      PubMed

      Sancey, Bertrand; Trunfio, Giuseppe; Charles, Jérémie; Minary, Jean-François; Gavoille, Sophie; Badot, Pierre-Marie; Crini, Grégorio

      2011-03-01

      Batch sorption experiments using a starch-based sorbent were carried out for the removal of heavy metals present in industrial water discharges. The influence of contact time, mass of sorbent and pollutant load was investigated. Pollutant removal was dependent on the mass of sorbent and contact time, but independent of the contaminant load. The process was uniform, rapid and efficient. Sorption reached equilibrium in 60 min irrespective of the metal considered (e.g. Zn, Pb, Cu, Ni, Fe and Cd), reducing concentrations below those permitted by law. The material also removed residual turbidity and led to a significant decrease in the residual chemical oxygen demand (COD) present in the industrial water discharge. The germination success of lettuce (Lactuca sativa) was used as a laboratory indicator of phytotoxicity. The results show that the sorption using a starch-based sorbent as non-conventional material, is a viable alternative for treating industrial wastewaters. PMID:21067859

    4. Continuous enzymatic liquefaction of starch for saccharification

      SciTech Connect

      Carr, M.E.; Black, L.T.; Bagby, M.O.

      1982-01-01

      A process was explored for continuous enzymatic liquefaction of corn starch at high concentration and subsequent saccharification to glucose. The process appears to be quite efficient for conversion of starch to glucose and enzymatic liquefaction and should be readily adaptable to industrial fermentation processes. Preliminary work indicated that milled corn or other cereal grains also can be suitably converted by such a process. Essentially, the process involved incorporation of a thermostable, bacterial alpha-amylase for liquefaction and, subsequently, of a glucoamylase into the continuous mixer under conditions conductive to rapid enzymatic hydrolyses. Also studied was the effect on substrate liquefaction of variables such as starch concentration (40-70%), level of alpha-amylase (0.14-0.4%, dry starch basis), temperature (70-100 degrees C), pH (5.8-7.1), and residence time (6 and 12 minutes). The degree of liquefaction was assessed by determining 1) the Brookfield viscosity, 2) the amount of reducing groups, and 3) the rate and extent of glucose formed after glucoamylase treatment. Best liquefaction processing conditions were achieved by using 50-60% starch concentration, at 95 degrees C, with 0.4% alpha-amylase, and a 6 minute residence period in the mixer. Under these conditions, rates and extents of glucose obtained after glucoamylase treatment approached those obtained in longer laboratory batch liquefactions. The amount of glucose formed in 24 hours with the use of 0.4% glucoamylase was 86% of theory after a 6-min continuous liquefaction, compared to 90% for a 30-min laboratory batch liquefaction (95 degrees C, 0.4% alpha-amylase). (Refs. 15).

    5. Starch biosynthesis: sucrose as a substrate for the synthesis of a highly branched component found in 12 varieties of starches.

      PubMed

      Mukerjea, Rupendra; Robyt, John F

      2003-09-01

      D-[14C]glucose was incorporated into starch when 12 varieties of starch granules were incubated with [14C]sucrose. Digestion of the 14C-labeled starches with porcine pancreatic alpha amylase showed that a high percentage (16.1-84.1%) of the synthesized starch gave a relatively high molecular weight alpha-limit dextrin. Hydrolysis of the 12 varieties of starch granules by alpha amylase, without sucrose treatment, also gave an alpha-limit dextrin, ranging in amounts from 0.51% (w/w) for amylomaize-7 starch to 8.47% (w/w) for rice starch. These alpha-limit dextrins had relatively high molecular weights, 2.47 kDa for amylomaize-7 starch to 5.75 kDa for waxy maize starch, and a high degree of alpha-(1-->6) branching, ranging from 15.6% for rice starch to 41.1% for shoti starch. ADPGlc and UDPGlc did not synthesize a significant amount (1-2%) of the branched component, suggesting that sucrose is the probable substrate for the in vivo synthesis of the component and that sucrose is not first converted into a nucleotide-glucose diphosphate intermediate. PMID:12932364

    6. Deficiency of Starch Synthase IIIa and IVb Alters Starch Granule Morphology from Polyhedral to Spherical in Rice Endosperm.

      PubMed

      Toyosawa, Yoshiko; Kawagoe, Yasushi; Matsushima, Ryo; Crofts, Naoko; Ogawa, Masahiro; Fukuda, Masako; Kumamaru, Toshihiro; Okazaki, Yozo; Kusano, Miyako; Saito, Kazuki; Toyooka, Kiminori; Sato, Mayuko; Ai, Yongfeng; Jane, Jay-Lin; Nakamura, Yasunori; Fujita, Naoko

      2016-03-01

      Starch granule morphology differs markedly among plant species. However, the mechanisms controlling starch granule morphology have not been elucidated. Rice (Oryza sativa) endosperm produces characteristic compound-type granules containing dozens of polyhedral starch granules within an amyloplast. Some other cereal species produce simple-type granules, in which only one starch granule is present per amyloplast. A double mutant rice deficient in the starch synthase (SS) genes SSIIIa and SSIVb (ss3a ss4b) produced spherical starch granules, whereas the parental single mutants produced polyhedral starch granules similar to the wild type. The ss3a ss4b amyloplasts contained compound-type starch granules during early developmental stages, and spherical granules were separated from each other during subsequent amyloplast development and seed dehydration. Analysis of glucan chain length distribution identified overlapping roles for SSIIIa and SSIVb in amylopectin chain synthesis, with a degree of polymerization of 42 or greater. Confocal fluorescence microscopy and immunoelectron microscopy of wild-type developing rice seeds revealed that the majority of SSIVb was localized between starch granules. Therefore, we propose that SSIIIa and SSIVb have crucial roles in determining starch granule morphology and in maintaining the amyloplast envelope structure. We present a model of spherical starch granule production. PMID:26747287

    7. Hydrolysis of native and heat-treated starches at sub-gelatinization temperature using granular starch hydrolyzing enzyme.

      PubMed

      Uthumporn, U; Shariffa, Y N; Karim, A A

      2012-03-01

      The effect of heat treatment below the gelatinization temperature on the susceptibility of corn, mung bean, sago, and potato starches towards granular starch hydrolysis (35°C) was investigated. Starches were hydrolyzed in granular state and after heat treatment (50°C for 30 min) by using granular starch hydrolyzing enzyme for 24 h. Hydrolyzed heat-treated starches showed a significant increase in the percentage of dextrose equivalent compared to native starches, respectively, with corn 53% to 56%, mung bean 36% to 47%, sago 15% to 26%, and potato 12% to 15%. Scanning electron microscopy micrographs showed the presence of more porous granules and surface erosion in heat-treated starch compared to native starch. X-ray analysis showed no changes but with sharper peaks for all the starches, suggested that hydrolysis occurred on the amorphous region. The amylose content and swelling power of heat-treated starches was markedly altered after hydrolysis. Evidently, this enzyme was able to hydrolyze granular starches and heat treatment before hydrolysis significantly increased the degree of hydrolysis. PMID:22203397

    8. A simple technique of preparing stable CLEAs of phenylalanine ammonia lyase using co-aggregation with starch and bovine serum albumin.

      PubMed

      Cui, Jian Dong; Sun, Li Mei; Li, Lian Lian

      2013-08-01

      Cross-linked enzyme aggregates (CLEAs) have been recently proposed as an alternative to conventional immobilization methods on solid carriers. However, the low cross-linking efficiency causes the major activity loss and instability in the conventional protocol for CLEA preparation. Herein, the effects of bovine serum albumin and starch addition on the cross-linking efficiency of CLEAs of phenylalanine ammonia lyase (PAL) from Rhodotorula glutinis were evaluated. A co-aggregation strategy was developed to improve cross-linking efficiency by adding starch and bovine serum albumin (BSA). CLEAs of PAL prepared in the presence of BSA and starch (PSB-CLEAs) retained 36 % activity, whereas CLEAs prepared without BSA and starch (PAL-CLEAs) retained only 8 % activity of the starting enzyme preparation. Compared with PAL-CLEAs, the thermal stability of PSB-CLEAs has improved considerably, maintaining 30 % residual activity after 4 h of incubation at 70 °C, whereas the PAL-CLEAs have only 13 % residual activity. PSB-CLEAs also exhibited the expected increased stability of PAL against hydrophilic organic solvents, superior operability, and higher storage stability. The proposed technique of preparing CLEAs using co-aggregation with starch and BSA would rank among the potential strategies for efficiently preparing robust and highly stable enzyme aggregates. PMID:23754561

    9. Properties of foam and composite materials made o starch and cellulose fiber

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Composite materials were made of starch and cellulose fibers. Pre-gelatinized starch was effective in dispersing pulp fiber in a starch matrix to form a viscous starch/fiber dough. The starch/fiber dough was a useful feedstock for various composite foam and plastic materials. Viscous blends of star...

    10. Characterization of banana starches obtained from cultivars grown in Brazil.

      PubMed

      de Barros Mesquita, Camila; Leonel, Magali; Franco, Célia Maria Landi; Leonel, Sarita; Garcia, Emerson Loli; Dos Santos, Thaís Paes Rodrigues

      2016-08-01

      The starch market is constantly evolving and studies that provide information about the physical and rheological properties of native starches to meet the diverse demands of the sector are increasingly necessary. In this study starches obtained from five cultivars of banana were analyzed for size and shape of granules, crystallinity, chemical composition, resistant starch, swelling power, solubility, thermal and paste properties. The granules of starch were large (36.58-47.24μm), oval, showed crystallinity pattern type B and the index of crystallinity ranged from 31.94 to 34.06%. The phosphorus content ranged from 0.003 to 0.011%, the amylose ranged from 25.13 to 29.01% and the resistant starch ranged from 65.70 to 80.28%. The starches showed high peak viscosity and breakdown, especially those obtained from 'Nanicão' and 'Grand Naine'. Peak temperature of gelatinization was around 71°C, the enthalpy change (ΔH) ranged from 9.45 to 14.73Jg(-1). The starch from 'Grand Naine' showed higher swelling power (15.19gg(-1)) and the starch from 'Prata-Anã' higher solubility (11.61%). The starches studied are highlighted by their physical and chemical characteristics and may be used in several applications. PMID:27180297