Science.gov

Sample records for state interindustry models

  1. Network structure of inter-industry flows

    NASA Astrophysics Data System (ADS)

    McNerney, James; Fath, Brian D.; Silverberg, Gerald

    2013-12-01

    We study the structure of inter-industry relationships using networks of money flows between industries in 45 national economies. We find these networks vary around a typical structure characterized by a Weibull link weight distribution, exponential industry size distribution, and a common community structure. The community structure is hierarchical, with the top level of the hierarchy comprising five industry communities: food industries, chemical industries, manufacturing industries, service industries, and extraction industries.

  2. Interindustry Wage Differentials and the Gender Wage Gap.

    ERIC Educational Resources Information Center

    Fields, Judith; Wolff, Edward N.

    1995-01-01

    Wages of female workers differ significantly by industry. The average woman earns about 65% as much as the average man; 12%-22% of the gap is explained by differences in patterns of interindustry wage differentials and 15%-19% by differences in gender distribution of workers. Combined industry effects explain about one-third of the gender wage…

  3. Fluctuation-dissipation theory of input-output interindustrial relations

    NASA Astrophysics Data System (ADS)

    Iyetomi, Hiroshi; Nakayama, Yasuhiro; Aoyama, Hideaki; Fujiwara, Yoshi; Ikeda, Yuichi; Souma, Wataru

    2011-01-01

    In this study, the fluctuation-dissipation theory is invoked to shed light on input-output interindustrial relations at a macroscopic level by its application to indices of industrial production (IIP) data for Japan. Statistical noise arising from finiteness of the time series data is carefully removed by making use of the random matrix theory in an eigenvalue analysis of the correlation matrix; as a result, two dominant eigenmodes are detected. Our previous study successfully used these two modes to demonstrate the existence of intrinsic business cycles. Here a correlation matrix constructed from the two modes describes genuine interindustrial correlations in a statistically meaningful way. Furthermore, it enables us to quantitatively discuss the relationship between shipments of final demand goods and production of intermediate goods in a linear response framework. We also investigate distinctive external stimuli for the Japanese economy exerted by the current global economic crisis. These stimuli are derived from residuals of moving-average fluctuations of the IIP remaining after subtracting the long-period components arising from inherent business cycles. The observation reveals that the fluctuation-dissipation theory is applicable to an economic system that is supposed to be far from physical equilibrium.

  4. Model State Efforts.

    ERIC Educational Resources Information Center

    Morgan, Gwen

    Models of state involvement in training child care providers are briefly discussed and the employers' role in training is explored. Six criteria for states that are taken as models are identified, and four are described. Various state activities are described for each criterion. It is noted that little is known about employer and other private…

  5. The economic impact of Sandia National Laboratories on central New Mexico and the state of New Mexico fiscal year 1997

    SciTech Connect

    Lansford, R.R.; Nielsen, T.G.; Schultz, J.; Adcock, L.D.; Gentry, L.M.; Ben-David, S.; Temple, J.

    1998-05-29

    Sandia National Laboratories (SNL) was established in 1949 to perform the engineering development and ordnance responsibilities associated with nuclear weapons. By the early 1960`s the facility had evolved into an engineering research and development laboratory and became a multiprogram laboratory during the 1970s. Sandia is operated for the US Department of Energy by the Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin, Incorporated. For several years, the US Department of Energy (DOE) Albuquerque Operations Office (AL) and New Mexico State University (NMSU) have maintained an inter-industry, input-output model with capabilities to assess the impacts of developments initiated outside the economy such as federal DOE monies that flow into the state, on an economy. This model will be used to assess economic, personal income and employment impacts of SNL on central New Mexico and the state of New Mexico. For this report, the reference period is FY 1997 (October 1, 1996, through September 30, 1997) and includes two major impact analyses: the impact of SNL activities on central New Mexico and the economic impacts of SNL on the state of New Mexico. For purposes of this report, the central New Mexico region includes Bernalillo, Sandoval, Valencia, and Torrance counties. Total impact represents both direct and indirect respending by business, including induced effects (respending by households). The standard multipliers used in determining impacts results from the inter-industry, input-output models developed for the four-county region and the state of New Mexico. 6 figs., 10 tabs.

  6. Models of multiquark states

    SciTech Connect

    Lipkin, H.J.

    1986-01-01

    The success of simple constituent quark models in single-hardon physics and their failure in multiquark physics is discussed, emphasizing the relation between meson and baryon spectra, hidden color and the color matrix, breakup decay modes, coupled channels, and hadron-hadron interactions via flipping and tunneling of flux tubes. Model-independent predictions for possible multiquark bound states are considered and the most promising candidates suggested. A quark approach to baryon-baryon interactions is discussed.

  7. The economic impact of the Department of Energy on the State of New Mexico Fiscal Year 1995

    SciTech Connect

    Lansford, R.R.; Adcock, L.D.; Gentry, L.M.; Ben-David, S.

    1996-08-01

    The U.S. Department of Energy (DOE) provides a major source of economic benefits in New Mexico, second only to the activities of the U.S. Department of Defense. The agency`s far-reaching economic influence within the state is the focus of this report. Economic benefits arising from the various activities and functions of both the Department and its contractors have accrued to the state continuously for over 45 years. For several years, DOE/Albuquerque Operations Office (AL) and New Mexico State University (NMSU) have maintained inter-industry, input-output modeling capabilities to assess DOE`s impacts on the state of New Mexico and the other substate regions most directly impacted by DOE activities. One of the major uses of input-output techniques is to assess the effects of developments initiated outside the economy such as federal DOE monies that flow into the state, on an economy.

  8. Inventory of state energy models

    SciTech Connect

    Melcher, A.G.; Gist, R.L.; Underwood, R.G.; Weber, J.C.

    1980-03-31

    These models address a variety of purposes, such as supply or demand of energy or of certain types of energy, emergency management of energy, conservation in end uses of energy, and economic factors. Fifty-one models are briefly described as to: purpose; energy system; applications;status; validation; outputs by sector, energy type, economic and physical units, geographic area, and time frame; structure and modeling techniques; submodels; working assumptions; inputs; data sources; related models; costs; references; and contacts. Discussions in the report include: project purposes and methods of research, state energy modeling in general, model types and terminology, and Federal legislation to which state modeling is relevant. Also, a state-by-state listing of modeling efforts is provided and other model inventories are identified. The report includes a brief encylopedia of terms used in energy models. It is assumed that many readers of the report will not be experienced in the technical aspects of modeling. The project was accomplished by telephone conversations and document review by a team from the Colorado School of Mines Research Institute and the faculty of the Colorado School of Mines. A Technical Committee (listed in the report) provided advice during the course of the project.

  9. Inter-Industry Wage Differentials and the Gender Wage Gap: An Identification Problem.

    ERIC Educational Resources Information Center

    Horrace, William C.; Oaxaca, Ronald L.

    2001-01-01

    States that a method for estimating gender wage gaps by industry yields estimates that vary according to arbitrary choice of omitted reference groups. Suggests alternative methods not susceptible to this problem that can be applied to other contexts, such as racial, union/nonunion, and immigrant/native wage differences. (SK)

  10. The economic impact of the Department of Energy on the State of New Mexico Fiscal Year 1998

    SciTech Connect

    Lansford, Robert R.; Adcock, Larry D.; Gentry, Lucille M.; Ben-David, Shaul; Temple, John

    1999-08-05

    The U.S. Department of Energy (DOE) provides a major source of economic benefits in New Mexico, second only to the activities of the U.S. Department of Defense. The agency's far-reaching economic influence within the state is the focus of this report. Economic benefits arising from the various activities and functions of both the Department and its contractors have accrued to the state continuously for over 50 years. For several years, DOE/Albuquerque Operations Office (AL) and New Mexico State University (NMSU) have maintained inter-industry, input-output modeling capabilities to assess DOE's impacts on the state of New Mexico and the other substate regions most directly impacted by DOE activities. One of the major uses of input-output techniques is to assess the effects of developments initiated outside the economy such as Federal DOE monies that flow into the state, on an economy. The information on which the models are based is updated periodically to ensure the most accurate depiction possible of the economy for the period of reference. For this report, the reference periods are Fiscal Year (FY) 1997 (October 1, 1996, through September 30, 1997), and FY 1998 (October 1, 1997, through September 30, 1998). Total impact represents both direct and indirect impacts (resending by business), including induced (resending by households) effects. The standard multipliers used in determining impacts result from the inter-industry, input-output models uniquely developed for New Mexico. This report includes seven main sections: (1) Introduction; (2) Profile of DOE Activities in New Mexico; (3) DOE Expenditure Patterns; (4) Measuring DOE/New Mexico's Economic Impact: (5) Technology Transfer within the Federal Labs funded by DOE/New Mexico; (6) Glossary of Terms; and (7) Technical Appendix containing a description of the model.

  11. The economic impact of the Department of Energy on the state of New Mexico fiscal year 1997

    SciTech Connect

    Lansford, R.R.; Nielsen, T.G.; Schultz, J.; Adcock, L.D.; Gentry, L.M.; Ben-David, S.; Temple, J.

    1998-05-29

    The US Department of Energy (DOE) provides a major source of economic benefits in New Mexico. The agency`s far-reaching economic influence within the state is the focus of this report. Economic benefits arising from the various activities and functions of both DOE and its contractors have accrued to the state continuously for over 50 years. For several years, DOE/Albuquerque Operations Office (AL) and New Mexico State University (NMSU) have maintained inter-industry, input-output modeling capabilities to assess DOE`s impacts on the state of New Mexico and the other substate regions most directly impacted by DOE activities. One of the major uses of input-output techniques is to assess the effects of developments initiated outside the economy such as federal DOE monies that flow into the state, on an economy. The information on which the models are based is updated periodically to ensure the most accurate depiction possible of the economy for the period of reference. For this report, the reference periods are Fiscal Year (FY) 1996 and FY 1997. Total impacts represents both direct and indirect impacts (respending by business), including induced (respending by households) effects. The standard multipliers used in determining impacts result from the inter-industry, input-output models uniquely developed for New Mexico. This report includes seven main sections: (1) introduction; (2) profile of DOE activities in New Mexico; (3) DOE expenditure patterns; (4) measuring DOE/New Mexico`s economic impact; (5) technology transfer within the federal labs funded by DOE/New Mexico; (6) glossary of terms; and (7) technical appendix containing a description of the model. 9 figs., 19 tabs.

  12. Battery-Charge-State Model

    NASA Technical Reports Server (NTRS)

    Vivian, H. C.

    1985-01-01

    Charge-state model for lead/acid batteries proposed as part of effort to make equivalent of fuel gage for battery-powered vehicles. Models based on equations that approximate observable characteristics of battery electrochemistry. Uses linear equations, easier to simulate on computer, and gives smooth transitions between charge, discharge, and recuperation.

  13. Modeling volatility using state space models.

    PubMed

    Timmer, J; Weigend, A S

    1997-08-01

    In time series problems, noise can be divided into two categories: dynamic noise which drives the process, and observational noise which is added in the measurement process, but does not influence future values of the system. In this framework, we show that empirical volatilities (the squared relative returns of prices) exhibit a significant amount of observational noise. To model and predict their time evolution adequately, we estimate state space models that explicitly include observational noise. We obtain relaxation times for shocks in the logarithm of volatility ranging from three weeks (for foreign exchange) to three to five months (for stock indices). In most cases, a two-dimensional hidden state is required to yield residuals that are consistent with white noise. We compare these results with ordinary autoregressive models (without a hidden state) and find that autoregressive models underestimate the relaxation times by about two orders of magnitude since they do not distinguish between observational and dynamic noise. This new interpretation of the dynamics of volatility in terms of relaxators in a state space model carries over to stochastic volatility models and to GARCH models, and is useful for several problems in finance, including risk management and the pricing of derivative securities. Data sets used: Olsen & Associates high frequency DEM/USD foreign exchange rates (8 years). Nikkei 225 index (40 years). Dow Jones Industrial Average (25 years). PMID:9730016

  14. Energy demand analytics using coupled technological and economic models

    EPA Science Inventory

    Impacts of a range of policy scenarios on end-use energy demand are examined using a coupling of MARKAL, an energy system model with extensive supply and end-use technological detail, with Inforum LIFT, a large-scale model of the us. economy with inter-industry, government, and c...

  15. Model Act for State Licensure of Psychologists

    ERIC Educational Resources Information Center

    American Psychologist, 2011

    2011-01-01

    As APA policy, the Model Act for State Licensure of Psychologists serves as a prototype for drafting state legislation regulating the practice of psychology. State legislatures are encouraged to use the language of this document and the policies that it espouses as the model for their own state licensure laws. Inevitably each state law will…

  16. Models of Communication in Multilingual States.

    ERIC Educational Resources Information Center

    Bamgbose, Ayo

    The paper draws attention to communication in multilingual states which may be said to exist at three levels: sub-state, state, and inter-state level. Communication at the sub-state level may involve an "in-group" language or a regional one, and hence a multilingual model is required at this level. At the state level, on the other hand, there will…

  17. The economic impact of Sandia National Laboratories on Central New Mexico and the State of New Mexico Fiscal Year 1998

    SciTech Connect

    Lansford, Robert R.; Adcock, Larry D.; Gentry, Lucille M.; Ben-David, Shaul; Temple, John

    1999-08-09

    Sandia National Laboratories (SNL) is a Department of Energy federally funded national security laboratory that uses engineering and science to ensure the security of the Nation. SNL provides scientific and engineering solutions to meet national needs in nuclear weapons and related defense systems, energy security, and environmental integrity. SNL works in partnerships with universities and industry to enhance their mission and transfer technology that will address emerging national challenges for both government and industry. For several years, the U.S. Department of Energy (DOE) Albuquerque Operations Office (AL) and New Mexico State University (NMSU) have maintained an inter-industry, input-output (I/O) model with capabilities to assess the impacts of developments initiated outside the economy such as federal DOE monies that flow into the state, on an economy. This model will be used to assess economic, personal income and employment impacts of SNL on Central New Mexico and the State of New Mexico. Caution should be exercised when comparing economic impacts between fiscal years prior to this report. The I/O model was rebased for FY 1998. The fringe benefits coefficients have been updated for the FY 1996 and FY 1997 economic impacts analysis. Prior to FY 1993 two different I/O base models were used to estimate the impacts. New technical information was released by the Bureau of Economic Analysis (BEA), U.S. Department of Commerce in 1991 and in 1994 and was incorporated in FY 1991, FY 1993, and FY 1994 I/O models. Also in 1993, the state and local tax coefficients and expenditure patterns were updated from a 1986 study for the FY 1992 report. Further details about the input-output model can be found in ''The Economic Impact of the Department of Energy on the State of New Mexico--FY 1998'' report by Lansford, et al. (1999). For this report, the reference period is FY 1998 (October 1, 1997, through September 30, 1998) and includes two major impact analyses: The

  18. Operationalizing resilience using state and transition models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In management, restoration, and policy contexts, the notion of resilience can be confusing. Systematic development of conceptual models of ecological state change (state transition models; STMs) can help overcome semantic confusion and promote a mechanistic understanding of resilience. Drawing on ex...

  19. Sandia Equation of State Model Library

    Energy Science and Technology Software Center (ESTSC)

    2013-08-29

    The software provides a general interface for querying thermodynamic states of material models along with implementation of both general and specific equation of state models. In particular, models are provided for the IAPWS-IF97 and IAPWS95 water standards as well as the associated water standards for viscosity, thermal conductivity, and surface tension. The interface supports implementation of models in a variety of independent variable spaces. Also, model support routines are included that allow for coupling ofmore » models and determination and representation of phase boundaries.« less

  20. Sandia Equation of State Model Library

    SciTech Connect

    Carpenter, John H.

    2013-08-29

    The software provides a general interface for querying thermodynamic states of material models along with implementation of both general and specific equation of state models. In particular, models are provided for the IAPWS-IF97 and IAPWS95 water standards as well as the associated water standards for viscosity, thermal conductivity, and surface tension. The interface supports implementation of models in a variety of independent variable spaces. Also, model support routines are included that allow for coupling of models and determination and representation of phase boundaries.

  1. Steady state HNG combustion modeling

    SciTech Connect

    Louwers, J.; Gadiot, G.M.H.J.L.; Brewster, M.Q.; Son, S.F.; Parr, T.; Hanson-Parr, D.

    1998-04-01

    Two simplified modeling approaches are used to model the combustion of Hydrazinium Nitroformate (HNF, N{sub 2}H{sub 5}-C(NO{sub 2}){sub 3}). The condensed phase is treated by high activation energy asymptotics. The gas phase is treated by two limit cases: the classical high activation energy, and the recently introduced low activation energy approach. This results in simplification of the gas phase energy equation, making an (approximate) analytical solution possible. The results of both models are compared with experimental results of HNF combustion. It is shown that the low activation energy approach yields better agreement with experimental observations (e.g. regression rate and temperature sensitivity), than the high activation energy approach.

  2. Modeling and the State Planning System.

    ERIC Educational Resources Information Center

    Bassett, Roger; Chisholm, Mark

    The State Planning System (SPS) is presented in the context of a mathematical model used to generate information about the possible impacts of postsecondary education policy decisions. Section I provides an introduction to modeling in higher education management, identifies some current postsecondary education modeling efforts, offers some…

  3. Occupancy estimation and modeling with multiple states and state uncertainty

    USGS Publications Warehouse

    Nichols, J.D.; Hines, J.E.; MacKenzie, D.I.; Seamans, M.E.; Gutierrez, R.J.

    2007-01-01

    The distribution of a species over space is of central interest in ecology, but species occurrence does not provide all of the information needed to characterize either the well-being of a population or the suitability of occupied habitat. Recent methodological development has focused on drawing inferences about species occurrence in the face of imperfect detection. Here we extend those methods by characterizing occupied locations by some additional state variable ( e. g., as producing young or not). Our modeling approach deals with both detection probabilities,1 and uncertainty in state classification. We then use the approach with occupancy and reproductive rate data from California Spotted Owls (Strix occidentalis occidentalis) collected in the central Sierra Nevada during the breeding season of 2004 to illustrate the utility of the modeling approach. Estimates of owl reproductive rate were larger than naive estimates, indicating the importance of appropriately accounting for uncertainty in detection and state classification.

  4. Bound States in Boson Impurity Models

    NASA Astrophysics Data System (ADS)

    Shi, Tao; Wu, Ying-Hai; González-Tudela, A.; Cirac, J. I.

    2016-04-01

    The formation of bound states involving multiple particles underlies many interesting quantum physical phenomena, such as Efimov physics or superconductivity. In this work, we show the existence of an infinite number of such states for some boson impurity models. They describe free bosons coupled to an impurity and include some of the most representative models in quantum optics. We also propose a family of wave functions to describe the bound states and verify that it accurately characterizes all parameter regimes by comparing its predictions with exact numerical calculations for a one-dimensional tight-binding Hamiltonian. For that model, we also analyze the nature of the bound states by studying the scaling relations of physical quantities, such as the ground-state energy and localization length, and find a nonanalytical behavior as a function of the coupling strength. Finally, we discuss how to test our theoretical predictions in experimental platforms, such as photonic crystal structures and cold atoms in optical lattices.

  5. Soil, resilience, and state and transition models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    State and transition models are based on the assumption that less resilient systems are more susceptible to state changes. The objective of this paper is to show how two different types of soil properties contribute to resilience through their direct and indirect effects on ecosystem processes, and ...

  6. Crowd macro state detection using entropy model

    NASA Astrophysics Data System (ADS)

    Zhao, Ying; Yuan, Mengqi; Su, Guofeng; Chen, Tao

    2015-08-01

    In the crowd security research area a primary concern is to identify the macro state of crowd behaviors to prevent disasters and to supervise the crowd behaviors. The entropy is used to describe the macro state of a self-organization system in physics. The entropy change indicates the system macro state change. This paper provides a method to construct crowd behavior microstates and the corresponded probability distribution using the individuals' velocity information (magnitude and direction). Then an entropy model was built up to describe the crowd behavior macro state. Simulation experiments and video detection experiments were conducted. It was verified that in the disordered state, the crowd behavior entropy is close to the theoretical maximum entropy; while in ordered state, the entropy is much lower than half of the theoretical maximum entropy. The crowd behavior macro state sudden change leads to the entropy change. The proposed entropy model is more applicable than the order parameter model in crowd behavior detection. By recognizing the entropy mutation, it is possible to detect the crowd behavior macro state automatically by utilizing cameras. Results will provide data support on crowd emergency prevention and on emergency manual intervention.

  7. Modeling in the Common Core State Standards

    ERIC Educational Resources Information Center

    Tam, Kai Chung

    2011-01-01

    The inclusion of modeling and applications into the mathematics curriculum has proven to be a challenging task over the last fifty years. The Common Core State Standards (CCSS) has made mathematical modeling both one of its Standards for Mathematical Practice and one of its Conceptual Categories. This article discusses the need for mathematical…

  8. A Model of Mental State Transition Network

    NASA Astrophysics Data System (ADS)

    Xiang, Hua; Jiang, Peilin; Xiao, Shuang; Ren, Fuji; Kuroiwa, Shingo

    Emotion is one of the most essential and basic attributes of human intelligence. Current AI (Artificial Intelligence) research is concentrating on physical components of emotion, rarely is it carried out from the view of psychology directly(1). Study on the model of artificial psychology is the first step in the development of human-computer interaction. As affective computing remains unpredictable, creating a reasonable mental model becomes the primary task for building a hybrid system. A pragmatic mental model is also the fundament of some key topics such as recognition and synthesis of emotions. In this paper a Mental State Transition Network Model(2) is proposed to detect human emotions. By a series of psychological experiments, we present a new way to predict coming human's emotions depending on the various current emotional states under various stimuli. Besides, people in different genders and characters are taken into consideration in our investigation. According to the psychological experiments data derived from 200 questionnaires, a Mental State Transition Network Model for describing the transitions in distribution among the emotions and relationships between internal mental situations and external are concluded. Further more the coefficients of the mental transition network model were achieved. Comparing seven relative evaluating experiments, an average precision rate of 0.843 is achieved using a set of samples for the proposed model.

  9. A Model of Solid State Gas Sensors

    NASA Astrophysics Data System (ADS)

    Woestman, J. T.; Brailsford, A. D.; Shane, M.; Logothetis, E. M.

    1997-03-01

    Solid state gas sensors are widely used to measure the concentrations of gases such as CO, CH_4, C_3H_6, H_2, C_3H8 and O2 The applications of these sensors range from air-to-fuel ratio control in combustion processes including those in automotive engines and industrial furnaces to leakage detection of inflammable and toxic gases in domestic and industrial environments. As the need increases to accurately measure smaller and smaller concentrations, problems such as poor selectivity, stability and response time limit the use of these sensors. In an effort to overcome some of these limitations, a theoretical model of the transient behavior of solid state gas sensors has been developed. In this presentation, a model for the transient response of an electrochemical gas sensor to gas mixtures containing O2 and one reducing species, such as CO, is discussed. This model accounts for the transport of the reactive species to the sampling electrode, the catalyzed oxidation/reduction reaction of these species and the generation of the resulting electrical signal. The model will be shown to reproduce the results of published steady state models and to agree with experimental steady state and transient data.

  10. Optimized Markov state models for metastable systems

    NASA Astrophysics Data System (ADS)

    Guarnera, Enrico; Vanden-Eijnden, Eric

    2016-07-01

    A method is proposed to identify target states that optimize a metastability index amongst a set of trial states and use these target states as milestones (or core sets) to build Markov State Models (MSMs). If the optimized metastability index is small, this automatically guarantees the accuracy of the MSM, in the sense that the transitions between the target milestones is indeed approximately Markovian. The method is simple to implement and use, it does not require that the dynamics on the trial milestones be Markovian, and it also offers the possibility to partition the system's state-space by assigning every trial milestone to the target milestones it is most likely to visit next and to identify transition state regions. Here the method is tested on the Gly-Ala-Gly peptide, where it is shown to correctly identify the expected metastable states in the dihedral angle space of the molecule without a priori information about these states. It is also applied to analyze the folding landscape of the Beta3s mini-protein, where it is shown to identify the folded basin as a connecting hub between an helix-rich region, which is entropically stabilized, and a beta-rich region, which is energetically stabilized and acts as a kinetic trap.

  11. Energy/economic model analysis. Macroeconomic impacts of research and development in gas supply and end use technologies

    NASA Astrophysics Data System (ADS)

    Goettle, R. J., IV; Hudson, E. A.

    1980-06-01

    The Gas Research Institute (GRI) needs to consider the economic impact of the various technologies whose research and development is supported by GRI funding. Three energy-economic models are useful for such a technology assessment. These models are: Energy Economic Modeling System, Energy Policy Model, and Time Stepped Energy System Optimization/Long Term Inter-Industry Transaction Model. These three models were used to help in the economic impact evaluation of various GRI research and development programs.

  12. The Lipkin model and coherent states

    NASA Astrophysics Data System (ADS)

    Bhaumik, Debajyoti; Choudhury, Ajoy; De, Mira; Roy, Binayak Dutta

    1981-03-01

    It is shown that the Bloch or angular momentum coherent states furnish a particularly efficacious basis for a discussion of various aspects of the Lipkin model of the ''nucleus.'' The Hartree-Fock description (as well as its projected version) is elegantly obtained in this framework. It is demonstrated that the ''transition probability'' between the first excited and ground states is proportional to the square of the number of ''nucleons,'' representing (in contrast to what obtains in the random phase approximation) a cooperativity of the ''super-radiant'' type. The extension of the model through the introduction of bosons permits, with the use of Bloch and Glauber coherent states, a succinct description of the phenomenon of boson condensation.

  13. Excited states in the soliton bag model

    SciTech Connect

    Saly, R.; Sundaresan, M.K.

    1984-02-01

    Numerical analysis of the solutions of the soliton bag model of Friedberg and Lee is performed. The recent analysis of Goldflam and Wilets is extended to include even-parity as well as odd-parity radially excited states. It is shown that the existence of the solutions (especially the odd-parity ones) restrict severely the allowed range of parameters.

  14. Markov state models of protein misfolding

    NASA Astrophysics Data System (ADS)

    Sirur, Anshul; De Sancho, David; Best, Robert B.

    2016-02-01

    Markov state models (MSMs) are an extremely useful tool for understanding the conformational dynamics of macromolecules and for analyzing MD simulations in a quantitative fashion. They have been extensively used for peptide and protein folding, for small molecule binding, and for the study of native ensemble dynamics. Here, we adapt the MSM methodology to gain insight into the dynamics of misfolded states. To overcome possible flaws in root-mean-square deviation (RMSD)-based metrics, we introduce a novel discretization approach, based on coarse-grained contact maps. In addition, we extend the MSM methodology to include "sink" states in order to account for the irreversibility (on simulation time scales) of processes like protein misfolding. We apply this method to analyze the mechanism of misfolding of tandem repeats of titin domains, and how it is influenced by confinement in a chaperonin-like cavity.

  15. Markov state models of protein misfolding.

    PubMed

    Sirur, Anshul; De Sancho, David; Best, Robert B

    2016-02-21

    Markov state models (MSMs) are an extremely useful tool for understanding the conformational dynamics of macromolecules and for analyzing MD simulations in a quantitative fashion. They have been extensively used for peptide and protein folding, for small molecule binding, and for the study of native ensemble dynamics. Here, we adapt the MSM methodology to gain insight into the dynamics of misfolded states. To overcome possible flaws in root-mean-square deviation (RMSD)-based metrics, we introduce a novel discretization approach, based on coarse-grained contact maps. In addition, we extend the MSM methodology to include "sink" states in order to account for the irreversibility (on simulation time scales) of processes like protein misfolding. We apply this method to analyze the mechanism of misfolding of tandem repeats of titin domains, and how it is influenced by confinement in a chaperonin-like cavity. PMID:26897000

  16. Input to state stability in reservoir models

    NASA Astrophysics Data System (ADS)

    Müller, Markus; Sierra, Carlos

    2016-04-01

    Models in ecology and biogeochemistry, in particular models of the global carbon cycle, can be generalized as systems of non-autonomous ordinary differential equations (ODEs). For many applications, it is important to determine the stability properties for this type of systems, but most methods available for autonomous systems are not necessarily applicable for the non-autonomous case. We discuss here stability notions for non-autonomous nonlinear models represented by systems of ODEs explicitly dependent on time and a time-varying input signal. We propose Input to State Stability (ISS) as candidate for the necessary generalization of the established analysis with respect to equilibria or invariant sets for autonomous systems, and show its usefulness by applying it to reservoir models typical for element cycling in ecosystem, e.g. in soil organic matter decomposition. We also show how ISS generalizes existent concepts formerly only available for Linear Time Invariant (LTI) and Linear Time Variant (LTV) systems to the nonlinear case.

  17. Markov state models and molecular alchemy

    NASA Astrophysics Data System (ADS)

    Schütte, Christof; Nielsen, Adam; Weber, Marcus

    2015-01-01

    In recent years, Markov state models (MSMs) have attracted a considerable amount of attention with regard to modelling conformation changes and associated function of biomolecular systems. They have been used successfully, e.g. for peptides including time-resolved spectroscopic experiments, protein function and protein folding , DNA and RNA, and ligand-receptor interaction in drug design and more complicated multivalent scenarios. In this article, a novel reweighting scheme is introduced that allows to construct an MSM for certain molecular system out of an MSM for a similar system. This permits studying how molecular properties on long timescales differ between similar molecular systems without performing full molecular dynamics simulations for each system under consideration. The performance of the reweighting scheme is illustrated for simple test cases, including one where the main wells of the respective energy landscapes are located differently and an alchemical transformation of butane to pentane where the dimension of the state space is changed.

  18. Modeling Bivariate Longitudinal Hormone Profiles by Hierarchical State Space Models

    PubMed Central

    Liu, Ziyue; Cappola, Anne R.; Crofford, Leslie J.; Guo, Wensheng

    2013-01-01

    The hypothalamic-pituitary-adrenal (HPA) axis is crucial in coping with stress and maintaining homeostasis. Hormones produced by the HPA axis exhibit both complex univariate longitudinal profiles and complex relationships among different hormones. Consequently, modeling these multivariate longitudinal hormone profiles is a challenging task. In this paper, we propose a bivariate hierarchical state space model, in which each hormone profile is modeled by a hierarchical state space model, with both population-average and subject-specific components. The bivariate model is constructed by concatenating the univariate models based on the hypothesized relationship. Because of the flexible framework of state space form, the resultant models not only can handle complex individual profiles, but also can incorporate complex relationships between two hormones, including both concurrent and feedback relationship. Estimation and inference are based on marginal likelihood and posterior means and variances. Computationally efficient Kalman filtering and smoothing algorithms are used for implementation. Application of the proposed method to a study of chronic fatigue syndrome and fibromyalgia reveals that the relationships between adrenocorticotropic hormone and cortisol in the patient group are weaker than in healthy controls. PMID:24729646

  19. Markov state models of biomolecular conformational dynamics

    PubMed Central

    Chodera, John D.; Noé, Frank

    2014-01-01

    It has recently become practical to construct Markov state models (MSMs) that reproduce the long-time statistical conformational dynamics of biomolecules using data from molecular dynamics simulations. MSMs can predict both stationary and kinetic quantities on long timescales (e.g. milliseconds) using a set of atomistic molecular dynamics simulations that are individually much shorter, thus addressing the well-known sampling problem in molecular dynamics simulation. In addition to providing predictive quantitative models, MSMs greatly facilitate both the extraction of insight into biomolecular mechanism (such as folding and functional dynamics) and quantitative comparison with single-molecule and ensemble kinetics experiments. A variety of methodological advances and software packages now bring the construction of these models closer to routine practice. Here, we review recent progress in this field, considering theoretical and methodological advances, new software tools, and recent applications of these approaches in several domains of biochemistry and biophysics, commenting on remaining challenges. PMID:24836551

  20. State energy modeling. Volume 1: An analysis of state energy modeling

    NASA Astrophysics Data System (ADS)

    Melcher, A. G.

    1981-05-01

    An inventory and analysis of state energy models were made. The inventory identified 69 models developed or used at the state government level. Most of these deal with energy demand and area mix as regards the sectors modeled and the fuel types included. Nearly all of these are econometric or econometric engineering end use models. Fewer models deal with energy supply, and several address both supply and demand. The most common types of models are econometric, engineering and use, linear programming, and input-output. Purposes of models include: forecasting; policy analysis; impact analysis; and scenario analysis. Uses include short term emergency management, long term strategic assessment, and specific applications in decisions on facility siting, utility capacity expansion and rate increases proposed legislation, and analysis of federal policy.

  1. Granger causality for state-space models

    NASA Astrophysics Data System (ADS)

    Barnett, Lionel; Seth, Anil K.

    2015-04-01

    Granger causality has long been a prominent method for inferring causal interactions between stochastic variables for a broad range of complex physical systems. However, it has been recognized that a moving average (MA) component in the data presents a serious confound to Granger causal analysis, as routinely performed via autoregressive (AR) modeling. We solve this problem by demonstrating that Granger causality may be calculated simply and efficiently from the parameters of a state-space (SS) model. Since SS models are equivalent to autoregressive moving average models, Granger causality estimated in this fashion is not degraded by the presence of a MA component. This is of particular significance when the data has been filtered, downsampled, observed with noise, or is a subprocess of a higher dimensional process, since all of these operations—commonplace in application domains as diverse as climate science, econometrics, and the neurosciences—induce a MA component. We show how Granger causality, conditional and unconditional, in both time and frequency domains, may be calculated directly from SS model parameters via solution of a discrete algebraic Riccati equation. Numerical simulations demonstrate that Granger causality estimators thus derived have greater statistical power and smaller bias than AR estimators. We also discuss how the SS approach facilitates relaxation of the assumptions of linearity, stationarity, and homoscedasticity underlying current AR methods, thus opening up potentially significant new areas of research in Granger causal analysis.

  2. Model bridging chimera state and explosive synchronization

    NASA Astrophysics Data System (ADS)

    Zhang, Xiyun; Bi, Hongjie; Guan, Shuguang; Liu, Jinming; Liu, Zonghua

    2016-07-01

    Global synchronization and partial synchronization are the two distinctive forms of synchronization in coupled oscillators and have been well studied in recent decades. Recent attention on synchronization is focused on the chimera state (CS) and explosive synchronization (ES), but little attention has been paid to their relationship. Here we study this topic by presenting a model to bridge these two phenomena, which consists of two groups of coupled oscillators, and its coupling strength is adaptively controlled by a local order parameter. We find that this model displays either CS or ES in two limits. In between the two limits, this model exhibits both CS and ES, where CS can be observed for a fixed coupling strength and ES appears when the coupling is increased adiabatically. Moreover, we show both theoretically and numerically that there are a variety of CS basin patterns for the case of identical oscillators, depending on the distributions of both the initial order parameters and the initial average phases. This model suggests a way to easily observe CS, in contrast to other models having some (weak or strong) dependence on initial conditions.

  3. Finite state modeling of aeroelastic systems

    NASA Technical Reports Server (NTRS)

    Vepa, R.

    1977-01-01

    A general theory of finite state modeling of aerodynamic loads on thin airfoils and lifting surfaces performing completely arbitrary, small, time-dependent motions in an airstream is developed and presented. The nature of the behavior of the unsteady airloads in the frequency domain is explained, using as raw materials any of the unsteady linearized theories that have been mechanized for simple harmonic oscillations. Each desired aerodynamic transfer function is approximated by means of an appropriate Pade approximant, that is, a rational function of finite degree polynomials in the Laplace transform variable. The modeling technique is applied to several two dimensional and three dimensional airfoils. Circular, elliptic, rectangular and tapered planforms are considered as examples. Identical functions are also obtained for control surfaces for two and three dimensional airfoils.

  4. A 2-categorical state sum model

    SciTech Connect

    Baratin, Aristide; Freidel, Laurent

    2015-01-15

    It has long been argued that higher categories provide the proper algebraic structure underlying state sum invariants of 4-manifolds. This idea has been refined recently, by proposing to use 2-groups and their representations as specific examples of 2-categories. The challenge has been to make these proposals fully explicit. Here, we give a concrete realization of this program. Building upon our earlier work with Baez and Wise on the representation theory of 2-groups, we construct a four-dimensional state sum model based on a categorified version of the Euclidean group. We define and explicitly compute the simplex weights, which may be viewed a categorified analogue of Racah-Wigner 6j-symbols. These weights solve a hexagon equation that encodes the formal invariance of the state sum under the Pachner moves of the triangulation. This result unravels the combinatorial formulation of the Feynman amplitudes of quantum field theory on flat spacetime proposed in A. Baratin and L. Freidel [Classical Quantum Gravity 24, 2027–2060 (2007)] which was shown to lead after gauge-fixing to Korepanov’s invariant of 4-manifolds.

  5. Active State Model for Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Park, Han; Chien, Steve; Zak, Michail; James, Mark; Mackey, Ryan; Fisher, Forest

    2003-01-01

    The concept of the active state model (ASM) is an architecture for the development of advanced integrated fault-detection-and-isolation (FDI) systems for robotic land vehicles, pilotless aircraft, exploratory spacecraft, or other complex engineering systems that will be capable of autonomous operation. An FDI system based on the ASM concept would not only provide traditional diagnostic capabilities, but also integrate the FDI system under a unified framework and provide mechanism for sharing of information between FDI subsystems to fully assess the overall health of the system. The ASM concept begins with definitions borrowed from psychology, wherein a system is regarded as active when it possesses self-image, self-awareness, and an ability to make decisions itself, such that it is able to perform purposeful motions and other transitions with some degree of autonomy from the environment. For an engineering system, self-image would manifest itself as the ability to determine nominal values of sensor data by use of a mathematical model of itself, and selfawareness would manifest itself as the ability to relate sensor data to their nominal values. The ASM for such a system may start with the closed-loop control dynamics that describe the evolution of state variables. As soon as this model was supplemented with nominal values of sensor data, it would possess self-image. The ability to process the current sensor data and compare them with the nominal values would represent self-awareness. On the basis of self-image and self-awareness, the ASM provides the capability for self-identification, detection of abnormalities, and self-diagnosis.

  6. Functional state modelling approach validation for yeast and bacteria cultivations

    PubMed Central

    Roeva, Olympia; Pencheva, Tania

    2014-01-01

    In this paper, the functional state modelling approach is validated for modelling of the cultivation of two different microorganisms: yeast (Saccharomyces cerevisiae) and bacteria (Escherichia coli). Based on the available experimental data for these fed-batch cultivation processes, three different functional states are distinguished, namely primary product synthesis state, mixed oxidative state and secondary product synthesis state. Parameter identification procedures for different local models are performed using genetic algorithms. The simulation results show high degree of adequacy of the models describing these functional states for both S. cerevisiae and E. coli cultivations. Thus, the local models are validated for the cultivation of both microorganisms. This fact is a strong structure model verification of the functional state modelling theory not only for a set of yeast cultivations, but also for bacteria cultivation. As such, the obtained results demonstrate the efficiency and efficacy of the functional state modelling approach. PMID:26740778

  7. State-space size considerations for disease-progression models.

    PubMed

    Regnier, Eva D; Shechter, Steven M

    2013-09-30

    Markov models of disease progression are widely used to model transitions in patients' health state over time. Usually, patients' health status may be classified according to a set of ordered health states. Modelers lump together similar health states into a finite and usually small, number of health states that form the basis of a Markov chain disease-progression model. This increases the number of observations used to estimate each parameter in the transition probability matrix. However, lumping together observably distinct health states also obscures distinctions among them and may reduce the predictive power of the model. Moreover, as we demonstrate, precision in estimating the model parameters does not necessarily improve as the number of states in the model declines. This paper explores the tradeoff between lumping error introduced by grouping distinct health states and sampling error that arises when there are insufficient patient data to precisely estimate the transition probability matrix. PMID:23609629

  8. Modeling diurnal hormone profiles by hierarchical state space models.

    PubMed

    Liu, Ziyue; Guo, Wensheng

    2015-10-30

    Adrenocorticotropic hormone (ACTH) diurnal patterns contain both smooth circadian rhythms and pulsatile activities. How to evaluate and compare them between different groups is a challenging statistical task. In particular, we are interested in testing (1) whether the smooth ACTH circadian rhythms in chronic fatigue syndrome and fibromyalgia patients differ from those in healthy controls and (2) whether the patterns of pulsatile activities are different. In this paper, a hierarchical state space model is proposed to extract these signals from noisy observations. The smooth circadian rhythms shared by a group of subjects are modeled by periodic smoothing splines. The subject level pulsatile activities are modeled by autoregressive processes. A functional random effect is adopted at the pair level to account for the matched pair design. Parameters are estimated by maximizing the marginal likelihood. Signals are extracted as posterior means. Computationally efficient Kalman filter algorithms are adopted for implementation. Application of the proposed model reveals that the smooth circadian rhythms are similar in the two groups but the pulsatile activities in patients are weaker than those in the healthy controls. PMID:26152819

  9. RNA fragment modeling with a nucleobase discrete-state model

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Bian, Yunqiang; Lin, Hui; Wang, Wei

    2012-02-01

    In this work we develop an approach for predicting the tertiary structures of RNA fragments by combining an RNA nucleobase discrete state (RNAnbds) model, a sequential Monte Carlo method, and a statistical potential. The RNAnbds model is designed for optimizing the configuration of nucleobases with respect to their preceding ones along the sequence and their spatial neighbors, in contrast to previous works that focus on RNA backbones. The tests of our approach with the fragments taken from a small RNA pseudoknot and a 23S ribosome RNA show that for short fragments (<10 nucleotides), the root mean square deviations (RMSDs) between the predicted and the experimental ones are generally smaller than 3 Å; for slightly longer fragments (10-15 nucleotides), most RMSDs are smaller than 4 Å. The comparison of our method with another physics-based predictor with a testing set containing nine loops shows that ours is superior in both accuracy and efficiency. Our approach is useful in facilitating RNA three-dimensional structure prediction as well as loop modeling. It also holds the promise of providing insight into the structural ensembles of RNA loops.

  10. The economic impact of Los Alamos National Laboratory on north-central New Mexico and the state of New Mexico fiscal year 1998

    SciTech Connect

    Lansford, R.R.; Adcock, L.D.; Gentry, L.M.; Ben-David, S.; Temple, J.

    1999-08-05

    Los Alamos National Laboratory (LANL) is a multidisciplinary, multiprogram laboratory with a mission to enhance national military and economic security through science and technology. Its mission is to reduce the nuclear danger through stewardship of the nation`s nuclear stockpile and through its nonproliferation and verification activities. An important secondary mission is to promote US industrial competitiveness by working with US companies in technology transfer and technology development partnerships. Los Alamos is involved in partnerships and collaborations with other federal agencies, with industry (including New Mexico businesses), and with universities worldwide. For this report, the reference period is FY 1998 (October 1, 1997, through September 30, 1998). It includes two major impact analysis: the impact of LANL activities on north-central New Mexico and the economic impacts of LANL on the state of New Mexico. Total impact represents both direct and indirect responding by business, including induced effects (responding by households). The standard multipliers used in determining impacts result from the inter-industry, input-output models developed for the three-county region and the state of New Mexico.

  11. The economic impact of Los Alamos National Laboratory on north-central New Mexico and the state of New Mexico fiscal year 1997

    SciTech Connect

    Lansford, R.R.; Nielsen, T.G.; Schultz, J.; Adcock, L.D.; Gentry, L.M.; Ben-David, S.; Temple, J.

    1998-05-29

    Los Alamos National Laboratory (LANL) is a multidisciplinary, multiprogram laboratory with a mission to enhance national military and economic security through science and technology. Its mission is to reduce the nuclear danger through stewardship of the nation`s nuclear stockpile and through its nonproliferation and verification activities. An important secondary mission is to promote US industrial competitiveness by working with US companies in technology transfer and technology development partnerships. Los Alamos is involved in partnerships and collaborations with other federal agencies, with industry (including New Mexico businesses), and with universities worldwide. For this report, the reference period is FY 1997 (October 1, 1996, through September 30, 1997) and includes two major impact analysis: the impact of LANL activities on north-central New Mexico and the economic impacts of LANL on the state of New Mexico. Total impact represents both direct and indirect respending by business, including induced effects (respending by households). The standard multipliers used in determining impacts result from the inter-industry, input-output models developed for the three-county region and the state of New Mexico. 5 figs., 12 tabs.

  12. Workforce Training: The Pellissippi State Model.

    ERIC Educational Resources Information Center

    Bogaty, Lisa; And Others

    A discussion is provided of the role of community colleges as the primary delivery sources for workforce retraining, using the Pellissippi State Workforce Innovation Program as a case study. The first sections of the paper document the need for worker retraining in the United States, reporting the Department of Labor Secretary's Commission on…

  13. Assessing the State of Substitution Models Describing Noncoding RNA Evolution

    PubMed Central

    Allen, James E.; Whelan, Simon

    2014-01-01

    Phylogenetic inference is widely used to investigate the relationships between homologous sequences. RNA molecules have played a key role in these studies because they are present throughout life and tend to evolve slowly. Phylogenetic inference has been shown to be dependent on the substitution model used. A wide range of models have been developed to describe RNA evolution, either with 16 states describing all possible canonical base pairs or with 7 states where the 10 mismatched nucleotides are reduced to a single state. Formal model selection has become a standard practice for choosing an inferential model and works well for comparing models of a specific type, such as comparisons within nucleotide models or within amino acid models. Model selection cannot function across different sized state spaces because the likelihoods are conditioned on different data. Here, we introduce statistical state-space projection methods that allow the direct comparison of likelihoods between nucleotide models and 7-state and 16-state RNA models. To demonstrate the general applicability of our new methods, we extract 287 RNA families from genomic alignments and perform model selection. We find that in 281/287 families, RNA models are selected in preference to nucleotide models, with simple 7-state RNA models selected for more conserved families with shorter stems and more complex 16-state RNA models selected for more divergent families with longer stems. Other factors, such as the function of the RNA molecule or the GC-content, have limited impact on model selection. Our models and model selection methods are freely available in the open-source PHASE 3.0 software. PMID:24391153

  14. Numerical implementation of a state variable model for friction

    SciTech Connect

    Korzekwa, D.A.; Boyce, D.E.

    1995-03-01

    A general state variable model for friction has been incorporated into a finite element code for viscoplasticity. A contact area evolution model is used in a finite element model of a sheet forming friction test. The results show that a state variable model can be used to capture complex friction behavior in metal forming simulations. It is proposed that simulations can play an important role in the analysis of friction experiments and the development of friction models.

  15. Viral kinetic modeling: state of the art

    SciTech Connect

    Canini, Laetitia; Perelson, Alan S.

    2014-06-25

    Viral kinetic modeling has led to increased understanding of the within host dynamics of viral infections and the effects of therapy. Here we review recent developments in the modeling of viral infection kinetics with emphasis on two infectious diseases: hepatitis C and influenza. We review how viral kinetic modeling has evolved from simple models of viral infections treated with a drug or drug cocktail with an assumed constant effectiveness to models that incorporate drug pharmacokinetics and pharmacodynamics, as well as phenomenological models that simply assume drugs have time varying-effectiveness. We also discuss multiscale models that include intracellular events in viral replication, models of drug-resistance, models that include innate and adaptive immune responses and models that incorporate cell-to-cell spread of infection. Overall, viral kinetic modeling has provided new insights into the understanding of the disease progression and the modes of action of several drugs. In conclusion, we expect that viral kinetic modeling will be increasingly used in the coming years to optimize drug regimens in order to improve therapeutic outcomes and treatment tolerability for infectious diseases.

  16. Viral kinetic modeling: state of the art

    DOE PAGESBeta

    Canini, Laetitia; Perelson, Alan S.

    2014-06-25

    Viral kinetic modeling has led to increased understanding of the within host dynamics of viral infections and the effects of therapy. Here we review recent developments in the modeling of viral infection kinetics with emphasis on two infectious diseases: hepatitis C and influenza. We review how viral kinetic modeling has evolved from simple models of viral infections treated with a drug or drug cocktail with an assumed constant effectiveness to models that incorporate drug pharmacokinetics and pharmacodynamics, as well as phenomenological models that simply assume drugs have time varying-effectiveness. We also discuss multiscale models that include intracellular events in viralmore » replication, models of drug-resistance, models that include innate and adaptive immune responses and models that incorporate cell-to-cell spread of infection. Overall, viral kinetic modeling has provided new insights into the understanding of the disease progression and the modes of action of several drugs. In conclusion, we expect that viral kinetic modeling will be increasingly used in the coming years to optimize drug regimens in order to improve therapeutic outcomes and treatment tolerability for infectious diseases.« less

  17. Quantum entangled supercorrelated states in the Jaynes-Cummings model

    NASA Astrophysics Data System (ADS)

    Rajagopal, A. K.; Jensen, K. L.; Cummings, F. W.

    1999-08-01

    The regions of independent quantum states, maximally classically correlated states, and purely quantum entangled (supercorrelated) states described in a recent formulation of quantum information theory by Cerf and Adami are explored here numerically in the parameter space of the well-known exactly soluble Jaynes-Cummings model for equilibrium and nonequilibrium time-dependent ensembles.

  18. Identification of linear system models and state estimators for controls

    NASA Technical Reports Server (NTRS)

    Chen, Chung-Wen

    1992-01-01

    The following paper is presented in viewgraph format and covers topics including: (1) linear state feedback control system; (2) Kalman filter state estimation; (3) relation between residual and stochastic part of output; (4) obtaining Kalman filter gain; (5) state estimation under unknown system model and unknown noises; and (6) relationship between filter Markov parameters and system Markov parameters.

  19. Comparing State SAT Scores Using a Mixture Modeling Approach

    ERIC Educational Resources Information Center

    Kim, YoungKoung Rachel

    2009-01-01

    Presented at the national conference for AERA (American Educational Research Association) in April 2009. The large variability of SAT taker population across states makes state-by-state comparisons of the SAT scores challenging. Using a mixture modeling approach, therefore, the current study presents a method of identifying subpopulations in terms…

  20. The folding transition state theory in simple model systems

    NASA Astrophysics Data System (ADS)

    Niewieczerzał, Szymon; Cieplak, Marek

    2008-06-01

    We present the results of an exact analysis of several model free energy landscapes of a protein to clarify the notion of the transition state and the physical meaning of the phi values determined in protein engineering experiments. We argue that a proper search strategy for the transition state in more realistic models should involve identification of a common part of various methods. Two of the models considered involve explicit conformations instead of just points on the free energy axis. These models are minimalistic as they are endowed only with five or 36 states to enumerate folding paths and to identify the transition state easily. Even though they display much of the two-state behavior, the phi values are found not to correspond to the conformation of the transition state.

  1. Development of Water Quality Modeling in the United States

    EPA Science Inventory

    This presentation describes historical trends in water quality model development in the United States, reviews current efforts, and projects promising future directions. Water quality modeling has a relatively long history in the United States. While its origins lie in the work...

  2. Matrix model for non-Abelian quantum Hall states

    NASA Astrophysics Data System (ADS)

    Dorey, Nick; Tong, David; Turner, Carl

    2016-08-01

    We propose a matrix quantum mechanics for a class of non-Abelian quantum Hall states. The model describes electrons which carry an internal SU(p ) spin. The ground states of the matrix model include spin-singlet generalizations of the Moore-Read and Read-Rezayi states and, in general, lie in a class previously introduced by Blok and Wen. The effective action for these states is a U(p ) Chern-Simons theory. We show how the matrix model can be derived from quantization of the vortices in this Chern-Simons theory and how the matrix model ground states can be reconstructed as correlation functions in the boundary WZW model.

  3. Descriptive Linear modeling of steady-state visual evoked response

    NASA Technical Reports Server (NTRS)

    Levison, W. H.; Junker, A. M.; Kenner, K.

    1986-01-01

    A study is being conducted to explore use of the steady state visual-evoke electrocortical response as an indicator of cognitive task loading. Application of linear descriptive modeling to steady state Visual Evoked Response (VER) data is summarized. Two aspects of linear modeling are reviewed: (1) unwrapping the phase-shift portion of the frequency response, and (2) parsimonious characterization of task-loading effects in terms of changes in model parameters. Model-based phase unwrapping appears to be most reliable in applications, such as manual control, where theoretical models are available. Linear descriptive modeling of the VER has not yet been shown to provide consistent and readily interpretable results.

  4. ADVANCED UTILITY SIMULATION MODEL DESCRIPTION OF MODIFICATIONS TO THE STATE LEVEL MODEL (VERSION 3.0)

    EPA Science Inventory

    The report documents modifications to the state level model portion of the Advanced Utility Simulation Model (AUSM), one of four stationary source emission and control cost forecasting models developed for the National Acid Precipitation Assessment Program (NAPAP). The AUSM model...

  5. State of Modeling Symmetry in Hohlraums

    SciTech Connect

    Jones, O. S.

    2015-07-22

    Modeling radiation drive asymmetry is challenging problem whose agreement with data depends on the hohlraum gas fill density. Modeling to date uses the HYDRA code with crossbeam energy transfer (CBET) calculated separately, and backscattered light removed from the input laser. For high fill hohlraums (~>1 mg/cc), matching symmetry requires ad hoc adjustments to CBET during picket and peak of drive. For near-vacuum hohlraums, there is little CBET or backscatter, and drive is more waist-high than predicted. For intermediate fill densities (~0.6 mg/cc) there appears to be a region of small CBET and backscatter where symmetry is reasonably well modeled. A new technique where backscatter and CBET are done “inline” appears it could bring high fill simulations closer to data.

  6. Minimal model for spoof acoustoelastic surface states

    SciTech Connect

    Christensen, J. Willatzen, M.; Liang, Z.

    2014-12-15

    Similar to textured perfect electric conductors for electromagnetic waves sustaining artificial or spoof surface plasmons we present an equivalent phenomena for the case of sound. Aided by a minimal model that is able to capture the complex wave interaction of elastic cavity modes and airborne sound radiation in perfect rigid panels, we construct designer acoustoelastic surface waves that are entirely controlled by the geometrical environment. Comparisons to results obtained by full-wave simulations confirm the feasibility of the model and we demonstrate illustrative examples such as resonant transmissions and waveguiding to show a few examples of many where spoof elastic surface waves are useful.

  7. Skyrme models and nuclear matter equation of state

    NASA Astrophysics Data System (ADS)

    Adam, C.; Haberichter, M.; Wereszczynski, A.

    2015-11-01

    We investigate the role of pressure in a class of generalized Skyrme models. We introduce pressure as the trace of the spatial part of the energy-momentum tensor and show that it obeys the usual thermodynamical relation. Then, we compute analytically the mean-field equation of state in the high- and medium-pressure regimes by applying topological bounds on compact domains. The equation of state is further investigated numerically for the charge-one Skyrmions. We identify which term in a generalized Skyrme model is responsible for which part in the equation of state. Further, we compare our findings with the corresponding results in the Walecka model.

  8. Metropolitan and state economic regions (MASTER) model - overview

    SciTech Connect

    Adams, R.C.; Moe, R.J.; Scott, M.J.

    1983-05-01

    The Metropolitan and State Economic Regions (MASTER) model is a unique multi-regional economic model designed to forecast regional economic activity and assess the regional economic impacts caused by national and regional economic changes (e.g., interest rate fluctuations, energy price changes, construction and operation of a nuclear waste storage facility, shutdown of major industrial operations). MASTER can be applied to any or all of the 268 Standard Metropolitan Statistical Areas (SMSAs) and 48 non-SMSA rest-of-state-areas (ROSAs) in the continental US. The model can also be applied to any or all of the continental US counties and states. This report is divided into four sections: capabilities and applications of the MASTER model, development of the model, model simulation, and validation testing.

  9. Steady-state CO/sub 2/ laser model

    SciTech Connect

    Scott, M.W.; Myers, G.D.

    1984-09-01

    A steady-state CO/sub 2/ lase model is reported which can be used to predict and evaluate the performance of cw slow-flow and no-flow CO/sub 2/ lasers. Traditional CO/sub 2/ laser models require the solution of several simultaneous differential equations and can be used to model pulsed and fast-flow lasers in addition to cw and slow-flow devices. The model reported here is computationally simpler, requiring only a routine to solve one equation in one unknown, but is only useful for lasers which operate in the steady state.

  10. Resilience-based application of state-and-transition models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We recommend that several conceptual modifications be incorporated into the state-and-transition model (STM) framework to: 1) explicitly link this framework to the concept of ecological resilience, 2) direct management attention away from thresholds and toward the maintenance of state resilience, an...

  11. Infinite Factorial Unbounded-State Hidden Markov Model.

    PubMed

    Valera, Isabel; Ruiz, Francisco J R; Perez-Cruz, Fernando

    2016-09-01

    There are many scenarios in artificial intelligence, signal processing or medicine, in which a temporal sequence consists of several unknown overlapping independent causes, and we are interested in accurately recovering those canonical causes. Factorial hidden Markov models (FHMMs) present the versatility to provide a good fit to these scenarios. However, in some scenarios, the number of causes or the number of states of the FHMM cannot be known or limited a priori. In this paper, we propose an infinite factorial unbounded-state hidden Markov model (IFUHMM), in which the number of parallel hidden Markovmodels (HMMs) and states in each HMM are potentially unbounded. We rely on a Bayesian nonparametric (BNP) prior over integer-valued matrices, in which the columns represent the Markov chains, the rows the time indexes, and the integers the state for each chain and time instant. First, we extend the existent infinite factorial binary-state HMM to allow for any number of states. Then, we modify this model to allow for an unbounded number of states and derive an MCMC-based inference algorithm that properly deals with the trade-off between the unbounded number of states and chains. We illustrate the performance of our proposed models in the power disaggregation problem. PMID:26571511

  12. A comparison of weighted ensemble and Markov state model methodologies

    NASA Astrophysics Data System (ADS)

    Feng, Haoyun; Costaouec, Ronan; Darve, Eric; Izaguirre, Jesús A.

    2015-06-01

    Computation of reaction rates and elucidation of reaction mechanisms are two of the main goals of molecular dynamics (MD) and related simulation methods. Since it is time consuming to study reaction mechanisms over long time scales using brute force MD simulations, two ensemble methods, Markov State Models (MSMs) and Weighted Ensemble (WE), have been proposed to accelerate the procedure. Both approaches require clustering of microscopic configurations into networks of "macro-states" for different purposes. MSMs model a discretization of the original dynamics on the macro-states. Accuracy of the model significantly relies on the boundaries of macro-states. On the other hand, WE uses macro-states to formulate a resampling procedure that kills and splits MD simulations for achieving better efficiency of sampling. Comparing to MSMs, accuracy of WE rate predictions is less sensitive to the definition of macro-states. Rigorous numerical experiments using alanine dipeptide and penta-alanine support our analyses. It is shown that MSMs introduce significant biases in the computation of reaction rates, which depend on the boundaries of macro-states, and Accelerated Weighted Ensemble (AWE), a formulation of weighted ensemble that uses the notion of colors to compute fluxes, has reliable flux estimation on varying definitions of macro-states. Our results suggest that whereas MSMs provide a good idea of the metastable sets and visualization of overall dynamics, AWE provides reliable rate estimations requiring less efforts on defining macro-states on the high dimensional conformational space.

  13. Analysis and Modelling of the Steady-State and Dynamic-State Discharge in SMES System

    NASA Astrophysics Data System (ADS)

    Chen, Xiao Yuan; Jin, Jian Xun

    The steady-state and dynamic-state discharge processes have been discussed to develop a superconducting magnetic energy storage (SMES) model in the paper. The SMES model allows the integrated analysis and optimization of the SMES devices, and their control systems, and can also serve as an independent storage module in the practical SMES application circuits, thus provide a method to link superconductivity technology to conventional power electronics in a SMES device.

  14. Neural mass model-based tracking of anesthetic brain states.

    PubMed

    Kuhlmann, Levin; Freestone, Dean R; Manton, Jonathan H; Heyse, Bjorn; Vereecke, Hugo E M; Lipping, Tarmo; Struys, Michel M R F; Liley, David T J

    2016-06-01

    Neural mass model-based tracking of brain states from electroencephalographic signals holds the promise of simultaneously tracking brain states while inferring underlying physiological changes in various neuroscientific and clinical applications. Here, neural mass model-based tracking of brain states using the unscented Kalman filter applied to estimate parameters of the Jansen-Rit cortical population model is evaluated through the application of propofol-based anesthetic state monitoring. In particular, 15 subjects underwent propofol anesthesia induction from awake to anesthetised while behavioral responsiveness was monitored and frontal electroencephalographic signals were recorded. The unscented Kalman filter Jansen-Rit model approach applied to frontal electroencephalography achieved reasonable testing performance for classification of the anesthetic brain state (sensitivity: 0.51; chance sensitivity: 0.17; nearest neighbor sensitivity 0.75) when compared to approaches based on linear (autoregressive moving average) modeling (sensitivity 0.58; nearest neighbor sensitivity: 0.91) and a high performing standard depth of anesthesia monitoring measure, Higuchi Fractal Dimension (sensitivity: 0.50; nearest neighbor sensitivity: 0.88). Moreover, it was found that the unscented Kalman filter based parameter estimates of the inhibitory postsynaptic potential amplitude varied in the physiologically expected direction with increases in propofol concentration, while the estimates of the inhibitory postsynaptic potential rate constant did not. These results combined with analysis of monotonicity of parameter estimates, error analysis of parameter estimates, and observability analysis of the Jansen-Rit model, along with considerations of extensions of the Jansen-Rit model, suggests that the Jansen-Rit model combined with unscented Kalman filtering provides a valuable reference point for future real-time brain state tracking studies. This is especially true for studies of

  15. State variable modeling of the integrated engine and aircraft dynamics

    NASA Astrophysics Data System (ADS)

    Rotaru, Constantin; Sprinţu, Iuliana

    2014-12-01

    This study explores the dynamic characteristics of the combined aircraft-engine system, based on the general theory of the state variables for linear and nonlinear systems, with details leading first to the separate formulation of the longitudinal and the lateral directional state variable models, followed by the merging of the aircraft and engine models into a single state variable model. The linearized equations were expressed in a matrix form and the engine dynamics was included in terms of variation of thrust following a deflection of the throttle. The linear model of the shaft dynamics for a two-spool jet engine was derived by extending the one-spool model. The results include the discussion of the thrust effect upon the aircraft response when the thrust force associated with the engine has a sizable moment arm with respect to the aircraft center of gravity for creating a compensating moment.

  16. Compact Two-State-Variable Second-Order Memristor Model.

    PubMed

    Kim, Sungho; Kim, Hee-Dong; Choi, Sung-Jin

    2016-06-01

    A key requirement for using memristors in functional circuits is a predictive physical model to capture the resistive switching behavior, which shall be compact enough to be implemented using a circuit simulator. Although a number of memristor models have been developed, most of these models (i.e., first-order memristor models) have utilized only a one-state-variable. However, such simplification is not adequate for accurate modeling because multiple mechanisms are involved in resistive switching. Here, a two-state-variable based second-order memristor model is presented, which considers the axial drift of the charged vacancies in an applied electric field and the radial vacancy motion caused by the thermophoresis and diffusion. In particular, this model emulates the details of the intrinsic short-term dynamics, such as decay and temporal heat summation, and therefore, it accurately predicts the resistive switching characteristics for both DC and AC input signals. PMID:27152649

  17. A nonlocal, ordinary, state-based plasticity model for peridynamics.

    SciTech Connect

    Mitchell, John Anthony

    2011-05-01

    An implicit time integration algorithm for a non-local, state-based, peridynamics plasticity model is developed. The flow rule was proposed in [3] without an integration strategy or yield criterion. This report addresses both of these issues and thus establishes the first ordinary, state-based peridynamics plasticity model. Integration of the flow rule follows along the lines of the classical theories of rate independent J{sub 2} plasticity. It uses elastic force state relations, an additive decomposition of the deformation state, an elastic force state domain, a flow rule, loading/un-loading conditions, and a consistency condition. Just as in local theories of plasticity (LTP), state variables are required. It is shown that the resulting constitutive model does not violate the 2nd law of thermodynamics. The report also develops a useful non-local yield criterion that depends upon the yield stress and horizon for the material. The modulus state for both the ordinary elastic material and aforementioned plasticity model is also developed and presented.

  18. Modeling of bi-equilibrium states in dielectric elastomer

    NASA Astrophysics Data System (ADS)

    Peng, Longgui

    2014-03-01

    Dielectric elastomer is a soft active material, producing fast deformation under voltage-activation. Under a specific boundary condition, trussed dielectric elastomer elongates mimicking the behavior of biological muscle. During this process, dielectric elastomer experiences a snap from one deformation mode to another, though both at the electromechanical equilibrium states. Based on thermodynamics, models are established to investigate electromechanical coupling at the two equilibrium states. Particular emphasis is devoted to establishing the governing equations of the two deformation modes with physical interpretations. The transition of equilibrium state is discussed, to predict the attainable stable state for application.

  19. Modeling solid-state transformations occurring in dissolution testing.

    PubMed

    Laaksonen, Timo; Aaltonen, Jaakko

    2013-04-15

    Changes in the solid-state form can occur during dissolution testing of drugs. This can often complicate interpretation of results. Additionally, there can be several mechanisms through which such a change proceeds, e.g. solvent-mediated transformation or crystal growth within the drug material itself. Here, a mathematical model was constructed to study the dissolution testing of a material, which undergoes such changes. The model consisted of two processes: the recrystallization of the drug from a supersaturated liquid state caused by the dissolution of the more soluble solid form and the crystal growth of the stable solid form at the surface of the drug formulation. Comparison to experimental data on theophylline dissolution showed that the results obtained with the model matched real solid-state changes and that it was able to distinguish between cases where the transformation was controlled either by solvent-mediated crystallization or solid-state crystal growth. PMID:23506958

  20. Ontology and modeling patterns for state-based behavior representation

    NASA Technical Reports Server (NTRS)

    Castet, Jean-Francois; Rozek, Matthew L.; Ingham, Michel D.; Rouquette, Nicolas F.; Chung, Seung H.; Kerzhner, Aleksandr A.; Donahue, Kenneth M.; Jenkins, J. Steven; Wagner, David A.; Dvorak, Daniel L.; Karban, Robert

    2015-01-01

    This paper provides an approach to capture state-based behavior of elements, that is, the specification of their state evolution in time, and the interactions amongst them. Elements can be components (e.g., sensors, actuators) or environments, and are characterized by state variables that vary with time. The behaviors of these elements, as well as interactions among them are represented through constraints on state variables. This paper discusses the concepts and relationships introduced in this behavior ontology, and the modeling patterns associated with it. Two example cases are provided to illustrate their usage, as well as to demonstrate the flexibility and scalability of the behavior ontology: a simple flashlight electrical model and a more complex spacecraft model involving instruments, power and data behaviors. Finally, an implementation in a SysML profile is provided.

  1. Simulation of the 3-state Potts model with chemical potential

    SciTech Connect

    Mercado, Ydalia Delgado; Gattringer, Christof; Evertz, Hans Gerd

    2011-05-23

    The 3-state Potts model with chemical potential is mapped to a flux representation where the complex action problem is resolved. We perform a Monte Carlo simulation based on a worm algorithm to study the phase diagram of the model. Our results shed light on the role which center symmetry and its breaking play for the QCD phase diagram.

  2. Funding Models of Community Colleges in 10 Midwest States

    ERIC Educational Resources Information Center

    Kenton, Carol Piper; Schuh, John H.; Huba, Mary E.; Shelley, Mack C., II

    2004-01-01

    The extent to which community colleges in 10 Midwest states relied on 12 current funds revenue sources between 1990 and 2000 is presented in this study. Four models of funding were identified and evaluated. All models generated revenue in excess of the change in the Higher Education Price Index (HEPI), a measure of inflation over the period…

  3. EXPOSURE ASSESSMENT MODELING: A STATE-OF-THE-ART REVIEW

    EPA Science Inventory

    The state-of-the-art review of exposure assessment modeling describes currently available models that simulate the environmental fate of substances, the exposure to such substances, and the effects of such exposure. The focus is first on exposure and effects, where relatively lit...

  4. Periodic ground state for the charged massive Schwinger model

    SciTech Connect

    Nagy, S.; Sailer, K.; Polonyi, J.

    2004-11-15

    It is shown that the charged massive Schwinger model supports a periodic vacuum structure for arbitrary charge density, similar to the common crystalline layout known in solid state physics. The dynamical origin of the inhomogeneity is identified in the framework of the bosonized model and in terms of the original fermionic variables.

  5. Thermodynamic State Ensemble Models of cis-Regulation

    PubMed Central

    Sherman, Marc S.; Cohen, Barak A.

    2012-01-01

    A major goal in computational biology is to develop models that accurately predict a gene's expression from its surrounding regulatory DNA. Here we present one class of such models, thermodynamic state ensemble models. We describe the biochemical derivation of the thermodynamic framework in simple terms, and lay out the mathematical components that comprise each model. These components include (1) the possible states of a promoter, where a state is defined as a particular arrangement of transcription factors bound to a DNA promoter, (2) the binding constants that describe the affinity of the protein–protein and protein–DNA interactions that occur in each state, and (3) whether each state is capable of transcribing. Using these components, we demonstrate how to compute a cis-regulatory function that encodes the probability of a promoter being active. Our intention is to provide enough detail so that readers with little background in thermodynamics can compose their own cis-regulatory functions. To facilitate this goal, we also describe a matrix form of the model that can be easily coded in any programming language. This formalism has great flexibility, which we show by illustrating how phenomena such as competition between transcription factors and cooperativity are readily incorporated into these models. Using this framework, we also demonstrate that Michaelis-like functions, another class of cis-regulatory models, are a subset of the thermodynamic framework with specific assumptions. By recasting Michaelis-like functions as thermodynamic functions, we emphasize the relationship between these models and delineate the specific circumstances representable by each approach. Application of thermodynamic state ensemble models is likely to be an important tool in unraveling the physical basis of combinatorial cis-regulation and in generating formalisms that accurately predict gene expression from DNA sequence. PMID:22479169

  6. Extensive ground state entropy in supersymmetric lattice models

    SciTech Connect

    Eerten, Hendrik van

    2005-12-15

    We present the result of calculations of the Witten index for a supersymmetric lattice model on lattices of various type and size. Because the model remains supersymmetric at finite lattice size, the Witten index can be calculated using row-to-row transfer matrices and the calculations are similar to calculations of the partition function at negative activity -1. The Witten index provides a lower bound on the number of ground states. We find strong numerical evidence that the Witten index grows exponentially with the number of sites of the lattice, implying that the model has extensive entropy in the ground state.

  7. An autonomous DNA model for finite state automata.

    PubMed

    Martinez-Perez, Israel M; Zimmermann, Karl-Heinz; Ignatova, Zoya

    2009-01-01

    In this paper we introduce an autonomous DNA model for finite state automata. This model called sticker automaton model is based on the hybridisation of single stranded DNA molecules (stickers) encoding transition rules and input data. The computation is carried out in an autonomous manner by one enzyme which allows us to determine whether a resulting double-stranded DNA molecule belongs to the automaton's language or not. PMID:19136366

  8. Component system identification and state-space model synthesis

    NASA Astrophysics Data System (ADS)

    Sjövall, Per; Abrahamsson, Thomas

    2007-10-01

    A scheme for synthesis of subsystem state-space models to be used for analysis of dynamic behaviour of built-up structures is presented. Using measurements on each component, subsystem models are identified adopting contemporary system identification methods. The subsystem state-space models are transformed into a coupling form, at which kinematic constraints and equilibrium conditions for the interfaces are introduced. The procedure is applied to a plane frame structure, which is built up of two components. It is found that the non-trivial model order determination constitutes a crucial step in the process. If the model order is incorrect at subsystem level, the synthesized model may radically fail to describe the properties of the built-up structure. It is also found that the identified subsystem models need to satisfy certain physically motivated constraints, e.g. reciprocity and passivity. Different approaches and methods to aid the model order determination and the estimation of physically consistent state-space models at subsystem level are discussed.

  9. On the time to steady state: insights from numerical modeling

    NASA Astrophysics Data System (ADS)

    Goren, L.; Willett, S.; McCoy, S. W.; Perron, J.

    2013-12-01

    How fast do fluvial landscapes approach steady state after an application of tectonic or climatic perturbation? While theory and some numerical models predict that the celerity of the advective wave (knickpoint) controls the response time for perturbations, experiments and other landscape evolution models demonstrate that the time to steady state is much longer than the theoretically predicted response time. We posit that the longevity of transient features and the time to steady state are controlled by the stability of the topology and geometry of channel networks. Evolution of a channel network occurs by a combination of discrete capture events and continuous migration of water divides, processes, which are difficult to represent accurately in landscape evolution models. We therefore address the question of the time to steady state using the DAC landscape evolution model that solves accurately for the location of water divides, using a combination of analytical solution for hillslopes and low-order channels together with a numerical solution for higher order channels. DAC also includes an explicit capture criterion. We have tested fundamental predictions from DAC and show that modeled networks reproduce natural network characteristics such as the Hack's exponent and coefficient and the fractal dimension. We define two steady-state criteria: a topographic steady state, defined by global, pointwise steady elevation, and a topological steady state defined as the state in which no further reorganization of the drainage network takes place. Analyzing block uplift simulations, we find that the time to achieve either topographic or topological steady state exceeds by an order of magnitude the theoretical response time of the fluvial network. The longevity of the transient state is the result of the area feedback, by which, migration of a divide changes the local contributing area. This change propagates downstream as a slope adjustment, forcing further divide migrations

  10. Stochastic EM algorithm for nonlinear state estimation with model uncertainties

    NASA Astrophysics Data System (ADS)

    Zia, Amin; Kirubarajan, Thiagalingam; Reilly, James P.; Shirani, Shahram

    2004-01-01

    In most solutions to state estimation problems like, for example, target tracking, it is generally assumed that the state evolution and measurement models are known a priori. The model parameters include process and measurement matrices or functions as well as the corresponding noise statistics. However, there are situations where the model parameters are not known a priori or are known only partially (i.e., with some uncertainty). Moreover, there are situations where the measurement is biased. In these scenarios, standard estimation algorithms like the Kalman filter and the extended Kalman Filter (EKF), which assume perfect knowledge of the model parameters, are not accurate. In this paper, the problem with uncertain model parameters is considered as a special case of maximum likelihood estimation with incomplete-data, for which a standard solution called the expectation-maximization (EM) algorithm exists. In this paper a new extension to the EM algorithm is proposed to solve the more general problem of joint state estimation and model parameter identification for nonlinear systems with possibly non-Gaussian noise. In the expectation (E) step, it is shown that the best variational distribution over the state variables is the conditional posterior distribution of states given all the available measurements and inputs. Therefore, a particular type of particle filter is used to estimate and update the posterior distribution. In the maximization (M) step the nonlinear measurement process parameters are approximated using a nonlinear regression method for adjusting the parameters of a mixture of Gaussians (MofG). The proposed algorithm is used to solve a nonlinear bearing-only tracking problem similar to the one reported recently with uncertain measurement process. It is shown that the algorithm is capable of accurately tracking the state vector while identifying the unknown measurement dynamics. Simulation results show the advantages of the new technique over standard

  11. Stochastic EM algorithm for nonlinear state estimation with model uncertainties

    NASA Astrophysics Data System (ADS)

    Zia, Amin; Kirubarajan, Thiagalingam; Reilly, James P.; Shirani, Shahram

    2003-12-01

    In most solutions to state estimation problems like, for example, target tracking, it is generally assumed that the state evolution and measurement models are known a priori. The model parameters include process and measurement matrices or functions as well as the corresponding noise statistics. However, there are situations where the model parameters are not known a priori or are known only partially (i.e., with some uncertainty). Moreover, there are situations where the measurement is biased. In these scenarios, standard estimation algorithms like the Kalman filter and the extended Kalman Filter (EKF), which assume perfect knowledge of the model parameters, are not accurate. In this paper, the problem with uncertain model parameters is considered as a special case of maximum likelihood estimation with incomplete-data, for which a standard solution called the expectation-maximization (EM) algorithm exists. In this paper a new extension to the EM algorithm is proposed to solve the more general problem of joint state estimation and model parameter identification for nonlinear systems with possibly non-Gaussian noise. In the expectation (E) step, it is shown that the best variational distribution over the state variables is the conditional posterior distribution of states given all the available measurements and inputs. Therefore, a particular type of particle filter is used to estimate and update the posterior distribution. In the maximization (M) step the nonlinear measurement process parameters are approximated using a nonlinear regression method for adjusting the parameters of a mixture of Gaussians (MofG). The proposed algorithm is used to solve a nonlinear bearing-only tracking problem similar to the one reported recently with uncertain measurement process. It is shown that the algorithm is capable of accurately tracking the state vector while identifying the unknown measurement dynamics. Simulation results show the advantages of the new technique over standard

  12. NARCCAP Model Validation for the Southeast United States

    NASA Astrophysics Data System (ADS)

    Kabela, E. D.; Carbone, G. J.

    2012-12-01

    Global climate models (GCMs) provide most projections of future climate change. But their coarse resolution limits their use in assessing regional climate change impacts on water resources, environmental quality, forest management, power plant operations, and many other fields. Such assessment requires translating global model output to more local scales. This research investigates dynamically downscaled regional climate model (RCM) output from the North American RegionalClimate Change Assessment Program (NARCCAP) in the Southeast United States. Analysis includes assessments of GCM and RCM performance and skill in the region during a historical reference period (1970-1999), with explanations of sources and magnitude of individual model bias. Three fundamental questions structure the research: 1) How skillful are dynamically downscaled models in simulating minimum and maximum temperature and mean precipitation in ahistorical reference period (1970-1999) for the Southeast United States? 2) What are the magnitude of biases for each NARCCAP member (and variable) and what is the potential source of the bias? 3) Does downscaling improve projections at local scales? In other words, is "value added" in downscaling? Analysis was performed on the states encompassing Alabama, Mississippi, and Tennessee (west sub-region), and Georgia, North Carolina, and South Carolina (east sub-region). Skill was determined using three methods: 1) Computing the overlap in probability density functions (PDF) between observations and models, 2) computing an index of agreement between models and observations, and 3) computing the root mean squared error (RMSE) between observations and models. Most models illustrated high skill for temperature. The outlier models included two RCMs run with the GFDL as their lateral boundary conditions; as these models suffered from a cold maximum temperature bias, attributed to erroneously high soil moisture. Precipitation skill using the PDF and index of

  13. Dynamic battery cell model and state of charge estimation

    NASA Astrophysics Data System (ADS)

    Wijewardana, S.; Vepa, R.; Shaheed, M. H.

    2016-03-01

    Mathematical modelling and the dynamic simulation of battery storage systems can be challenging and demanding due to the nonlinear nature of the battery chemistry. This paper introduces a new dynamic battery model, with application to state of charge estimation, considering all possible aspects of environmental conditions and variables. The aim of this paper is to present a suitable convenient, generic dynamic representation of rechargeable battery dynamics that can be used to model any Lithium-ion rechargeable battery. The proposed representation is used to develop a dynamic model considering the thermal balance of heat generation mechanism of the battery cell and the ambient temperature effect including other variables such as storage effects, cyclic charging, battery internal resistance, state of charge etc. The results of the simulations have been used to study the characteristics of a Lithium-ion battery and the proposed battery model is shown to produce responses within 98% of known experimental measurements.

  14. Animal Models of Psychosis: Current State and Future Directions

    PubMed Central

    Forrest, Alexandra D.; Coto, Carlos A.; Siegel, Steven J.

    2014-01-01

    Psychosis is an abnormal mental state characterized by disorganization, delusions and hallucinations. Animal models have become an increasingly important research tool in the effort to understand both the underlying pathophysiology and treatment of psychosis. There are multiple animal models for psychosis, with each formed by the coupling of a manipulation and a measurement. In this manuscript we do not address the diseases of which psychosis is a prominent comorbidity. Instead, we summarize the current state of affairs and future directions for animal models of psychosis. To accomplish this, our manuscript will first discuss relevant behavioral and electrophysiological measurements. We then provide an overview of the different manipulations that are combined with these measurements to produce animal models. The strengths and limitations of each model will be addressed in order to evaluate its cross-species comparability. PMID:25215267

  15. New Equation of State Models for Hydrodynamic Applications

    NASA Astrophysics Data System (ADS)

    Young, David A.; Barbee, Troy W., III; Rogers, Forrest J.

    1997-07-01

    Accurate models of the equation of state of matter at high pressures and temperatures are increasingly required for hydrodynamic simulations. We have developed two new approaches to accurate EOS modeling: 1) ab initio phonons from electron band structure theory for condensed matter and 2) the ACTEX dense plasma model for ultrahigh pressure shocks. We have studied the diamond and high pressure phases of carbon with the ab initio model and find good agreement between theory and experiment for shock Hugoniots, isotherms, and isobars. The theory also predicts a comprehensive phase diagram for carbon. For ultrahigh pressure shock states, we have studied the comparison of ACTEX theory with experiments for deuterium, beryllium, polystyrene, water, aluminum, and silicon dioxide. The agreement is good, showing that complex multispecies plasmas are treated adequately by the theory. These models will be useful in improving the numerical EOS tables used by hydrodynamic codes.

  16. Towards a Model Selection Rule for Quantum State Tomography

    NASA Astrophysics Data System (ADS)

    Scholten, Travis; Blume-Kohout, Robin

    Quantum tomography on large and/or complex systems will rely heavily on model selection techniques, which permit on-the-fly selection of small efficient statistical models (e.g. small Hilbert spaces) that accurately fit the data. Many model selection tools, such as hypothesis testing or Akaike's AIC, rely implicitly or explicitly on the Wilks Theorem, which predicts the behavior of the loglikelihood ratio statistic (LLRS) used to choose between models. We used Monte Carlo simulations to study the behavior of the LLRS in quantum state tomography, and found that it disagrees dramatically with Wilks' prediction. We propose a simple explanation for this behavior; namely, that boundaries (in state space and between models) play a significant role in determining the distribution of the LLRS. The resulting distribution is very complex, depending strongly both on the true state and the nature of the data. We consider a simplified model that neglects anistropy in the Fisher information, derive an almost analytic prediction for the mean value of the LLRS, and compare it to numerical experiments. While our simplified model outperforms the Wilks Theorem, it still does not predict the LLRS accurately, implying that alternative methods may be necessary for tomographic model selection. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE.

  17. Ground-state properties of the periodic Anderson model

    NASA Technical Reports Server (NTRS)

    Blankenbecler, R.; Fulco, J. R.; Gill, W.; Scalapino, D. J.

    1987-01-01

    The ground-state energy, hybridization matrix element, local moment, and spin-density correlations of a one-dimensional, finite-chain, periodic, symmetric Anderson model are obtained by numerical simulations and compared with perturbation theory and strong-coupling results. It is found that the local f-electron spins are compensated by correlation with other f-electrons as well as band electrons leading to a nonmagnetic ground state.

  18. Ground states of baryoleptonic Q-balls in supersymmetric models

    SciTech Connect

    Shoemaker, Ian M.; Kusenko, Alexander

    2008-10-01

    In supersymmetric generalizations of the standard model, all stable Q-balls are associated with some flat directions. We show that, if the flat direction has both the baryon number and the lepton number, the scalar field inside the Q-ball can deviate slightly from the flat direction in the ground state. We identify the true ground states of such nontopological solitons, including the electrically neutral and electrically charged Q-balls.

  19. Equation of State of the Two-Dimensional Hubbard Model.

    PubMed

    Cocchi, Eugenio; Miller, Luke A; Drewes, Jan H; Koschorreck, Marco; Pertot, Daniel; Brennecke, Ferdinand; Köhl, Michael

    2016-04-29

    The subtle interplay between kinetic energy, interactions, and dimensionality challenges our comprehension of strongly correlated physics observed, for example, in the solid state. In this quest, the Hubbard model has emerged as a conceptually simple, yet rich model describing such physics. Here we present an experimental determination of the equation of state of the repulsive two-dimensional Hubbard model over a broad range of interactions 0≲U/t≲20 and temperatures, down to k_{B}T/t=0.63(2) using high-resolution imaging of ultracold fermionic atoms in optical lattices. We show density profiles, compressibilities, and double occupancies over the whole doping range, and, hence, our results constitute benchmarks for state-of-the-art theoretical approaches. PMID:27176527

  20. Equation of State of the Two-Dimensional Hubbard Model

    NASA Astrophysics Data System (ADS)

    Cocchi, Eugenio; Miller, Luke A.; Drewes, Jan H.; Koschorreck, Marco; Pertot, Daniel; Brennecke, Ferdinand; Köhl, Michael

    2016-04-01

    The subtle interplay between kinetic energy, interactions, and dimensionality challenges our comprehension of strongly correlated physics observed, for example, in the solid state. In this quest, the Hubbard model has emerged as a conceptually simple, yet rich model describing such physics. Here we present an experimental determination of the equation of state of the repulsive two-dimensional Hubbard model over a broad range of interactions 0 ≲U /t ≲20 and temperatures, down to kBT /t =0.63 (2 ) using high-resolution imaging of ultracold fermionic atoms in optical lattices. We show density profiles, compressibilities, and double occupancies over the whole doping range, and, hence, our results constitute benchmarks for state-of-the-art theoretical approaches.

  1. Model Independent Decomposition of Two-State Data

    PubMed Central

    Landahl, Eric C.; Rice, Sarah E.

    2014-01-01

    Two-state models often provide an reasonable approximation of protein behaviors such as partner binding, folding, or conformational changes. Many different techniques have been developed to determine the population ratio between two states as a function of different experimental conditions. Data analysis is accomplished either by fitting individual measured spectra to a linear combination of known basis spectra, or alternatively by decomposing the entire set of spectra into two components using a least-squares optimization of free parameters within an assumed population model. Here we demonstrate that it is possible to directly determine the population ratio in a two-state system directly from data without an a priori model for basis spectra or populations by applying physical constraints iteratively to a Singular Value Decomposition of optical fluorescence, x-ray scattering, and electron paramagnetic resonance data. PMID:24483492

  2. Model-independent decomposition of two-state data.

    PubMed

    Landahl, Eric C; Rice, Sarah E

    2013-12-01

    Two-state models often provide a reasonable approximation of protein behaviors such as partner binding, folding, and conformational changes. Many different techniques have been developed to determine the population ratio between two states as a function of different experimental conditions. Data analysis is accomplished either by fitting individual measured spectra to a linear combination of known basis spectra or alternatively by decomposing the entire set of spectra into two components using a least-squares optimization of free parameters within an assumed population model. Here we demonstrate that it is possible to determine the population ratio in a two-state system directly from data without an a priori model for basis spectra or populations by applying physical constraints iteratively to a singular value decomposition of optical fluorescence, x-ray-scattering, and electron paramagnetic resonance data. PMID:24483492

  3. [Depression and the complete state model of health].

    PubMed

    Díaz, Darío; Blanco, Amalio; Horcajo, Javier; Valle, Carmen

    2007-05-01

    Health is a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity. In order to specify the contents of this positive state, the Complete State Model of Health (CSMH) considers mental health as a series of symptoms of hedonia and positive functioning, operationalized by measures of subjective, psychological, and social well-being. This model has empirically confirmed two new axioms: (a) rather than forming a single bipolar dimension, health and illness are correlated unipolar dimensions, and (b) the presence of mental health implies positive personal and social functioning. In the present article, we have taken the CSMH as the theoretical framework for the study of depression. Confirmatory factor analyses did not support the first axiom. In fact, the model that posits that measures of mental illness and health form a single bipolar dimension provided the best fit to the data. PMID:17425901

  4. Multi-state succession in wetlands: a novel use of state and transition models

    USGS Publications Warehouse

    Zweig, Christa L.; Kitchens, Wiley M.

    2009-01-01

    The complexity of ecosystems and mechanisms of succession are often simplified by linear and mathematical models used to understand and predict system behavior. Such models often do not incorporate multivariate, nonlinear feedbacks in pattern and process that include multiple scales of organization inherent within real-world systems. Wetlands are ecosystems with unique, nonlinear patterns of succession due to the regular, but often inconstant, presence of water on the landscape. We develop a general, nonspatial state and transition (S and T) succession conceptual model for wetlands and apply the general framework by creating annotated succession/management models and hypotheses for use in impact analysis on a portion of an imperiled wetland. The S and T models for our study area, Water Conservation Area 3A South (WCA3), Florida, USA, included hydrologic and peat depth values from multivariate analyses and classification and regression trees. We used the freeware Vegetation Dynamics Development Tool as an exploratory application to evaluate our S and T models with different management actions (equal chance [a control condition], deeper conditions, dry conditions, and increased hydrologic range) for three communities: slough, sawgrass (Cladium jamaicense), and wet prairie. Deeper conditions and increased hydrologic range behaved similarly, with the transition of community states to deeper states, particularly for sawgrass and slough. Hydrology is the primary mechanism for multi-state transitions within our study period, and we show both an immediate and lagged effect on vegetation, depending on community state. We consider these S and T succession models as a fraction of the framework for the Everglades. They are hypotheses for use in adaptive management, represent the community response to hydrology, and illustrate which aspects of hydrologic variability are important to community structure. We intend for these models to act as a foundation for further restoration

  5. Multi-state succession in wetlands: a novel use of state and transition models.

    PubMed

    Zweig, C L; Kitchens, W M

    2009-07-01

    The complexity of ecosystems and mechanisms of succession are often simplified by linear and mathematical models used to understand and predict system behavior. Such models often do not incorporate multivariate, nonlinear feedbacks in pattern and process that include multiple scales of organization inherent within real-world systems. Wetlands are ecosystems with unique, nonlinear patterns of succession due to the regular, but often inconstant, presence of water on the landscape. We develop a general, nonspatial state and transition (S and T) succession conceptual model for wetlands and apply the general framework by creating annotated succession/management models and hypotheses for use in impact analysis on a portion of an imperiled wetland. The S and T models for our study area, Water Conservation Area 3A South (WCA3), Florida, U.S.A., included hydrologic and peat depth values from multivariate analyses and classification and regression trees. We used the freeware Vegetation Dynamics Development Tool as an exploratory application to evaluate our S and T models with different management actions (equal chance [a control condition], deeper conditions, dry conditions, and increased hydrologic range) for three communities: slough, sawgrass (Cladium jamaicense), and wet prairie. Deeper conditions and increased hydrologic range behaved similarly, with the transition of community states to deeper states, particularly for sawgrass and slough. Hydrology is the primary mechanism for multi-state transitions within our study period, and we show both an immediate and lagged effect on vegetation, depending on community state. We consider these S and T succession models as a fraction of the framework for the Everglades. They are hypotheses for use in adaptive management, represent the community response to hydrology, and illustrate which aspects of hydrologic variability are important to community structure. We intend for these models to act as a foundation for further

  6. Computerized power supply analysis: State equation generation and terminal models

    NASA Technical Reports Server (NTRS)

    Garrett, S. J.

    1978-01-01

    To aid engineers that design power supply systems two analysis tools that can be used with the state equation analysis package were developed. These tools include integration routines that start with the description of a power supply in state equation form and yield analytical results. The first tool uses a computer program that works with the SUPER SCEPTRE circuit analysis program and prints the state equation for an electrical network. The state equations developed automatically by the computer program are used to develop an algorithm for reducing the number of state variables required to describe an electrical network. In this way a second tool is obtained in which the order of the network is reduced and a simpler terminal model is obtained.

  7. Series analysis of Q-state checkerboard Potts models

    SciTech Connect

    Hansel, D.; Maillard, J.M.

    1988-12-01

    The series analysis of the low temperature expansion of the checkerboard q-state Potts model in a magnetic field initiated in two previous papers is continued. In particular algebraic varieties of the parameter space (corresponding or generalizing the so-called disorder solutions), the checkerboard Potts model and its Bethe approximation are indistinguishable as far as one is concerned with the partition function and its first order derivatives. The difference between the two models occurs for higher order derivatives. In particular one gives the exact expression of the (low temperature expansion of the) susceptibility of the checkerboard Ising model in zero magnetic field on one of these varieties.

  8. Exploring extensions to multi-state models with multiple unobservable states

    USGS Publications Warehouse

    Bailey, L.L.; Kendall, W.L.; Church, D.R.

    2009-01-01

    Many biological systems include a portion of the target population that is unobservable during certain life history stages. Transition to and from an unobservable state may be of primary interest in many ecological studies and such movements are easily incorporated into multi-state models. Several authors have investigated properties of open-population multi-state mark-recapture models with unobservable states, and determined the scope and constraints under which parameters are identifiable (or, conversely, are redundant), but only in the context of a single observable and a single unobservable state (Schmidt et al. 2002; Kendall and Nichols 2002; Schaub et al. 2004; Kendall 2004). Some of these constraints can be relaxed if data are collected under a version of the robust design (Kendall and Bjorkland 2001; Kendall and Nichols 2002; Kendall 2004; Bailey et al. 2004), which entails >1 capture period per primary period of interest (e.g., 2 sampling periods within a breeding season). The critical assumption shared by all versions of the robust design is that the state of the individual (e.g. observable or unobservable) remains static for the duration of the primary period (Kendall 2004). In this paper, we extend previous work by relaxing this assumption to allow movement among observable states within primary periods while maintaining static observable or unobservable states. Stated otherwise, both demographic and geographic closure assumptions are relaxed, but all individuals are either observable or unobservable within primary periods. Within these primary periods transitions are possible among multiple observable states, but transitions are not allowed among the corresponding unobservable states. Our motivation for this work is exploring potential differences in population parameters for pond-breeding amphibians, where the quality of habitat surrounding the pond is not spatially uniform. The scenario is an example of a more general case where individuals move

  9. State to State and Charged Particle Kinetic Modeling of Time Filtering and Cs Addition

    SciTech Connect

    Capitelli, M.; Gorse, C.; Longo, S.; Diomede, P.; Pagano, D.

    2007-08-10

    We present here an account on the progress of kinetic simulation of non equilibrium plasmas in conditions of interest for negative ion production by using the 1D Bari code for hydrogen plasma simulation. The model includes the state to state kinetics of the vibrational level population of hydrogen molecules, plus a PIC/MCC module for the multispecies dynamics of charged particles. In particular we present new results for the modeling of two issues of great interest: the time filtering and the Cs addition via surface coverage.

  10. Distributed state-space generation of discrete-state stochastic models

    NASA Technical Reports Server (NTRS)

    Ciardo, Gianfranco; Gluckman, Joshua; Nicol, David

    1995-01-01

    High-level formalisms such as stochastic Petri nets can be used to model complex systems. Analysis of logical and numerical properties of these models of ten requires the generation and storage of the entire underlying state space. This imposes practical limitations on the types of systems which can be modeled. Because of the vast amount of memory consumed, we investigate distributed algorithms for the generation of state space graphs. The distributed construction allows us to take advantage of the combined memory readily available on a network of workstations. The key technical problem is to find effective methods for on-the-fly partitioning, so that the state space is evenly distributed among processors. In this paper we report on the implementation of a distributed state-space generator that may be linked to a number of existing system modeling tools. We discuss partitioning strategies in the context of Petri net models, and report on performance observed on a network of workstations, as well as on a distributed memory multi-computer.

  11. Magnetic models for the United States for 1985

    USGS Publications Warehouse

    Peddie, Norman W.; Zunde, Audronis K.

    1990-01-01

    New models describing the magnetic field in the United States at the beginning of 1985 and the rate of change expected during the next few years have been developed. The models--which will serve as the basis for a new set of magnetic charts--were derived from several tens of thousands of original field measurements from land, marine, and aerial surveys; from values derived from the MAGSAT-based International Geomagnetic Reference Field; and from recent data from magnetic observatories and repeat stations. , They are in the form of spherical harmonic series that represent the scalar magnetic potential from which all the field components can be derived. The models for the conterminous States and Alaska are of maximum degree and order 4 (24 coefficients each) and the models for Hawaii are of maximum degree and order 2 (8 coefficients each).

  12. Two Dimensional State Transition of a Swarming Model

    NASA Astrophysics Data System (ADS)

    Chuang, Yao-Li; Marthaler, Daniel

    2005-03-01

    A rotating mill is widely seen in swarming patterns of various species, such as ants, fishes, or daphnia. Levine et al. (2000) proposed an individual based model which produces a pair of co- existing clockwise and counter-clockwise mills on top of each other while a unified rotating mill can be achieved by switching the formula of the self-propulsion to an ensemble average. Without changing its fundamental concepts, we modify the model to include a Rayleigh-type self-driving mechanism, which has a cleaner connection to its continuum limit, i.e., macroscopic description, where analysis can be more efficiently done. By varying parameter values, we find that the modified model goes through a three-stage transition from the co-existing state to the unified state. We also compare the numerical results of the model and of its continuum counterpart.

  13. Nonequilibrium Steady States of a Stochastic Model System.

    NASA Astrophysics Data System (ADS)

    Zhang, Qiwei

    We study the nonequilibrium steady state of a stochastic lattice gas model, originally proposed by Katz, Lebowitz and Spohn (Phys. Rev. B 28: 1655 (1983)). Firstly, we solve the model on some small lattices exactly in order to see the general dependence of the steady state upon different parameters of the model. Nextly, we derive some analytical results for infinite lattice systems by taking some suitable limits. We then present some renormalization group results for the continuum version of the model via field theoretical techniques, the supersymmetry of the critical dynamics in zero field is also explored. Finally, we report some very recent 3-D Monte Carlo simulation results, which have been obtained by applying Multi-Spin-Coding techniques on a CDC vector supercomputer - Cyber 205 at John von Neumann Center.

  14. On rate-state and Coulomb failure models

    USGS Publications Warehouse

    Gomberg, J.; Beeler, N.; Blanpied, M.

    2000-01-01

    We examine the predictions of Coulomb failure stress and rate-state frictional models. We study the change in failure time (clock advance) Δt due to stress step perturbations (i.e., coseismic static stress increases) added to "background" stressing at a constant rate (i.e., tectonic loading) at time t0. The predictability of Δt implies a predictable change in seismicity rate r(t)/r0, testable using earthquake catalogs, where r0 is the constant rate resulting from tectonic stressing. Models of r(t)/r0, consistent with general properties of aftershock sequences, must predict an Omori law seismicity decay rate, a sequence duration that is less than a few percent of the mainshock cycle time and a return directly to the background rate. A Coulomb model requires that a fault remains locked during loading, that failure occur instantaneously, and that Δt is independent of t0. These characteristics imply an instantaneous infinite seismicity rate increase of zero duration. Numerical calculations of r(t)/r0 for different state evolution laws show that aftershocks occur on faults extremely close to failure at the mainshock origin time, that these faults must be "Coulomb-like," and that the slip evolution law can be precluded. Real aftershock population characteristics also may constrain rate-state constitutive parameters; a may be lower than laboratory values, the stiffness may be high, and/or normal stress may be lower than lithostatic. We also compare Coulomb and rate-state models theoretically. Rate-state model fault behavior becomes more Coulomb-like as constitutive parameter a decreases relative to parameter b. This is because the slip initially decelerates, representing an initial healing of fault contacts. The deceleration is more pronounced for smaller a, more closely simulating a locked fault. Even when the rate-state Δt has Coulomb characteristics, its magnitude may differ by some constant dependent on b. In this case, a rate-state model behaves like a modified

  15. Grothendieck's constant and local models for noisy entangled quantum states

    SciTech Connect

    Acin, Antonio; Gisin, Nicolas; Toner, Benjamin

    2006-06-15

    We relate the nonlocal properties of noisy entangled states to Grothendieck's constant, a mathematical constant appearing in Banach space theory. For two-qubit Werner states {rho}{sub p}{sup W}=p|{psi}{sup -}><{psi}{sup -}|+(1-p)1/4, we show that there is a local model for projective measurements if and only if p{<=}1/K{sub G}(3), where K{sub G}(3) is Grothendieck's constant of order 3. Known bounds on K{sub G}(3) prove the existence of this model at least for p < or approx. 0.66, quite close to the current region of Bell violation, p{approx}0.71. We generalize this result to arbitrary quantum states.

  16. Model for Vortex Ring State Influence on Rotorcraft Flight Dynamics

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2005-01-01

    The influence of vortex ring state (VRS) on rotorcraft flight dynamics is investigated, specifically the vertical velocity drop of helicopters and the roll-off of tiltrotors encountering VRS. The available wind tunnel and flight test data for rotors in vortex ring state are reviewed. Test data for axial flow, non-axial flow, two rotors, unsteadiness, and vortex ring state boundaries are described and discussed. Based on the available measured data, a VRS model is developed. The VRS model is a parametric extension of momentum theory for calculation of the mean inflow of a rotor, hence suitable for simple calculations and real-time simulations. This inflow model is primarily defined in terms of the stability boundary of the aircraft motion. Calculations of helicopter response during VRS encounter were performed, and good correlation is shown with the vertical velocity drop measured in flight tests. Calculations of tiltrotor response during VRS encounter were performed, showing the roll-off behavior characteristic of tiltrotors. Hence it is possible, using a model of the mean inflow of an isolated rotor, to explain the basic behavior of both helicopters and tiltrotors in vortex ring state.

  17. Model for Vortex Ring State Influence on Rotorcraft Flight Dynamics

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2004-01-01

    The influence of vortex ring state (VRS) on rotorcraft flight dynamics is investigated, specifically the vertical velocity drop of helicopters and the roll-off of tiltrotors encountering VRS. The available wind tunnel and flight test data for rotors in vortex ring state are reviewed. Test data for axial flow, nonaxial flow, two rotors, unsteadiness, and vortex ring state boundaries are described and discussed. Based on the available measured data, a VRS model is developed. The VRS model is a parametric extension of momentum theory for calculation of the mean inflow of a rotor, hence suitable for simple calculations and real-time simulations. This inflow model is primarily defined in terms of the stability boundary of the aircraft motion. Calculations of helicopter response during VRS encounter were performed, and good correlation is shown with the vertical velocity drop measured in flight tests. Calculations of tiltrotor response during VRS encounter were performed, showing the roll-off behavior characteristic of tiltrotors. Hence it is possible, using a model of the mean inflow of an isolated rotor, to explain the basic behavior of both helicopters and tiltrotors in vortex ring state.

  18. The States of Matter: A Model that Makes Sense.

    ERIC Educational Resources Information Center

    Swartz, Clifford

    1989-01-01

    Provides instructional models for solids, liquids, and gases that incorporate a few adjustments for keeping the features and scale as valid as possible. States that 99 percent of the material in the universe is in a dominant form called plasma. (RT)

  19. Practical guidance for developing state-and-transition models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    State-and-transition models (STMs) are synthetic descriptions of the dynamics of vegetation and surface soils occurring within specific ecological sites. STMs consist of a diagram and narratives that describe the dynamics and its causes. STMs are developed using a broad array of evidence including h...

  20. Spatially-explicit representation of state-and-transition models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The broad-scale assessment of natural resource conditions (e.g., rangeland health, restoration needs) requires knowledge of their spatial distribution. We argue that creating a database that links state-and-transition models (STMs) to spatial units is a valuable management tool for structuring groun...

  1. LACIE: Wheat yield models for the United States, revision A

    NASA Technical Reports Server (NTRS)

    1977-01-01

    For abstract, see volume 1 N77-30577. The enclosed maps indicate the areal coverage of the various models for spring (durum and other spring) and winter wheat. The given regions are the combination of several climatic divisions and many times comprise an entire state.

  2. Molecular Modeling and Computational Chemistry at Humboldt State University.

    ERIC Educational Resources Information Center

    Paselk, Richard A.; Zoellner, Robert W.

    2002-01-01

    Describes a molecular modeling and computational chemistry (MM&CC) facility for undergraduate instruction and research at Humboldt State University. This facility complex allows the introduction of MM&CC throughout the chemistry curriculum with tailored experiments in general, organic, and inorganic courses as well as a new molecular modeling…

  3. Structural Model of Weak Binding Actomyosin in the Prepowerstroke State*

    PubMed Central

    Várkuti, Boglárka H.; Yang, Zhenhui; Malnasi-Csizmadia, Andras

    2015-01-01

    We present the first in silico model of the weak binding actomyosin in the initial powerstroke state, representing the actin binding-induced major structural changes in myosin. First, we docked an actin trimer to prepowerstroke myosin then relaxed the complex by a 100-ns long unrestrained molecular dynamics. In the first few nanoseconds, actin binding induced an extra primed myosin state, i.e. the further priming of the myosin lever by 18° coupled to a further closure of switch 2 loop. We demonstrated that actin induces the extra primed state of myosin specifically through the actin N terminus-activation loop interaction. The applied in silico methodology was validated by forming rigor structures that perfectly fitted into an experimentally determined EM map of the rigor actomyosin. Our results unveiled the role of actin in the powerstroke by presenting that actin moves the myosin lever to the extra primed state that leads to the effective lever swing. PMID:25416786

  4. Energy modeling. Volume 2: Inventory and details of state energy models

    NASA Astrophysics Data System (ADS)

    Melcher, A. G.; Underwood, R. G.; Weber, J. C.; Gist, R. L.; Holman, R. P.; Donald, D. W.

    1981-05-01

    An inventory of energy models developed by or for state governments is presented, and certain models are discussed in depth. These models address a variety of purposes such as: supply or demand of energy or of certain types of energy; emergency management of energy; and energy economics. Ten models are described. The purpose, use, and history of the model is discussed, and information is given on the outputs, inputs, and mathematical structure of the model. The models include five models dealing with energy demand, one of which is econometric and four of which are econometric-engineering end-use models.

  5. Three-state herding model of the financial markets

    NASA Astrophysics Data System (ADS)

    Kononovicius, A.; Gontis, V.

    2013-01-01

    We propose a Markov jump process with the three-state herding interaction. We see our approach as an agent-based model for the financial markets. Under certain assumptions this agent-based model can be related to the stochastic description exhibiting sophisticated statistical features. Along with power-law probability density function of the absolute returns we are able to reproduce the fractured power spectral density, which is observed in the high-frequency financial market data. The given example of consistent agent-based and stochastic modeling will provide a background for further developments in the research of complex social systems.

  6. Understanding x-ray driven impulsive electronic state redistribution using a three-state model

    NASA Astrophysics Data System (ADS)

    Ware, Matthew R.; Cryan, James; Bucksbaum, Philip H.

    2016-05-01

    The natural timescale for electron motion is extremely fast; electrons can move across molecular bonds in less than a femtosecond. To understand this fast motion and the role of electronic coherence, we are interested in creating a superposition of valence excited states through excitation with a broad bandwidth (>5eV) laser pulse. In the x-ray regime, the molecular ground state can couple to valence-excited states through an intermediate autoionizing resonance in a process known as stimulated x-ray Raman scattering (SXRS). X-rays excite electrons from the highly localized K-shells in a molecule, creating a superposition of valence-excited states initially localized around a target atom in the molecule. Coherences between states in the superposition will subsequently drive charge transfer as the wavepacket spreads out across the molecule. We use an effective 3-state model coupling the ground, auto-ionizing, and valence-excited states in diatomic systems to study the cross-section of SXRS as function of x-ray intensity, central frequency, bandwidth, and chirp. We also make observations on how the x-ray parameters affect the degree of initial localization to an atom of the wavepacket created in SXRS. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division.

  7. Dynamic models for problems of species occurrence with multiple states

    USGS Publications Warehouse

    MacKenzie, D.I.; Nichols, J.D.; Seamans, M.E.; Gutierrez, R.J.

    2009-01-01

    Recent extensions of occupancy modeling have focused not only on the distribution of species over space, but also on additional state variables (e.g., reproducing or not, with or without disease organisms, relative abundance categories) that provide extra information about occupied sites. These biologist-driven extensions are characterized by ambiguity in both species presence and correct state classification, caused by imperfect detection. We first show the relationships between independently published approaches to the modeling of multistate occupancy. We then extend the pattern-based modeling to the case of sampling over multiple seasons or years in order to estimate state transition probabilities associated with system dynamics. The methodology and its potential for addressing relevant ecological questions are demonstrated using both maximum likelihood (occupancy and successful reproduction dynamics of California Spotted Owl) and Markov chain Monte Carlo estimation approaches (changes in relative abundance of green frogs in Maryland). Just as multistate capture?recapture modeling has revolutionized the study of individual marked animals, we believe that multistate occupancy modeling will dramatically increase our ability to address interesting questions about ecological processes underlying population-level dynamics.

  8. Modeling species occurrence dynamics with multiple states and imperfect detection

    USGS Publications Warehouse

    MacKenzie, D.I.; Nichols, J.D.; Seamans, M.E.; Gutierrez, R.J.

    2009-01-01

    Recent extensions of occupancy modeling have focused not only on the distribution of species over space, but also on additional state variables (e.g., reproducing or not, with or without disease organisms, relative abundance categories) that provide extra information about occupied sites. These biologist-driven extensions are characterized by ambiguity in both species presence and correct state classification, caused by imperfect detection. We first show the relationships between independently published approaches to the modeling of multistate occupancy. We then extend the pattern-based modeling to the case of sampling over multiple seasons or years in order to estimate state transition probabilities associated with system dynamics. The methodology and its potential for addressing relevant ecological questions are demonstrated using both maximum likelihood (occupancy and successful reproduction dynamics of California Spotted Owl) and Markov chain Monte Carlo estimation approaches (changes in relative abundance of green frogs in Maryland). Just as multistate capture-recapture modeling has revolutionized the study of individual marked animals, we believe that multistate occupancy modeling will dramatically increase our ability to address interesting questions about ecological processes underlying population-level dynamics. ?? 2009 by the Ecological Society of America.

  9. Using Markov state models to study self-assembly.

    PubMed

    Perkett, Matthew R; Hagan, Michael F

    2014-06-01

    Markov state models (MSMs) have been demonstrated to be a powerful method for computationally studying intramolecular processes such as protein folding and macromolecular conformational changes. In this article, we present a new approach to construct MSMs that is applicable to modeling a broad class of multi-molecular assembly reactions. Distinct structures formed during assembly are distinguished by their undirected graphs, which are defined by strong subunit interactions. Spatial inhomogeneities of free subunits are accounted for using a recently developed Gaussian-based signature. Simplifications to this state identification are also investigated. The feasibility of this approach is demonstrated on two different coarse-grained models for virus self-assembly. We find good agreement between the dynamics predicted by the MSMs and long, unbiased simulations, and that the MSMs can reduce overall simulation time by orders of magnitude. PMID:24907984

  10. Magnon edge states in the hardcore- Bose-Hubbard model.

    PubMed

    Owerre, S A

    2016-11-01

    Quantum Monte Carlo (QMC) simulation has uncovered nonzero Berry curvature and bosonic edge states in the hardcore-Bose-Hubbard model on the gapped honeycomb lattice. The competition between the chemical potential and staggered onsite potential leads to an interesting quantum phase diagram comprising the superfluid phase, Mott insulator, and charge density wave insulator. In this paper, we present a semiclassical perspective of this system by mapping to a spin-1/2 quantum XY model. We give an explicit analytical origin of the quantum phase diagram, the Berry curvatures, and the edge states using semiclassical approximations. We find very good agreement between the semiclassical analyses and the QMC results. Our results show that the topological properties of the hardcore-Bose-Hubbard model are the same as those of magnon in the corresponding quantum spin system. Our results are applicable to systems of ultracold bosonic atoms trapped in honeycomb optical lattices. PMID:27603092

  11. Using Markov state models to study self-assembly

    PubMed Central

    Perkett, Matthew R.; Hagan, Michael F.

    2014-01-01

    Markov state models (MSMs) have been demonstrated to be a powerful method for computationally studying intramolecular processes such as protein folding and macromolecular conformational changes. In this article, we present a new approach to construct MSMs that is applicable to modeling a broad class of multi-molecular assembly reactions. Distinct structures formed during assembly are distinguished by their undirected graphs, which are defined by strong subunit interactions. Spatial inhomogeneities of free subunits are accounted for using a recently developed Gaussian-based signature. Simplifications to this state identification are also investigated. The feasibility of this approach is demonstrated on two different coarse-grained models for virus self-assembly. We find good agreement between the dynamics predicted by the MSMs and long, unbiased simulations, and that the MSMs can reduce overall simulation time by orders of magnitude. PMID:24907984

  12. An Extended Equation of State Modeling Method I. Pure Fluids

    NASA Astrophysics Data System (ADS)

    Scalabrin, G.; Bettio, L.; Marchi, P.; Piazza, L.; Richon, D.

    2006-09-01

    A new technique is proposed here to represent the thermodynamic surface of a pure fluid in the fundamental Helmholtz energy form. The peculiarity of the present method is the extension of a generic equation of state for the target fluid, which is assumed as the basic equation, through the distortion of its independent variables by individual shape functions, which are represented by a neural network used as function approximator. The basic equation of state for the target fluid can have the simple functional form of a cubic equation, as, for instance, the Soave-Redlich-Kwong equation assumed in the present study. A set of nine fluids including hydrocarbons, haloalkane refrigerants, and strongly polar substances has been considered. For each of them the model has been regressed and then validated against volumetric and caloric properties generated in the vapor, liquid, and supercritical regions from highly accurate dedicated equations of state. In comparison with the underlying cubic equation of state, the prediction accuracy is improved by a factor between 10 and 100, depending on the property and on the region. It has been verified that about 100 density experimental points, together with from 10 to 20 coexistence data, are sufficient to guarantee high prediction accuracy for different thermodynamic properties. The method is a promising modeling technique for the heuristic development of multiparameter dedicated equations of state from experimental data.

  13. MODELING THE DEMAND FOR E85 IN THE UNITED STATES

    SciTech Connect

    Liu, Changzheng; Greene, David L

    2013-10-01

    How demand for E85 might evolve in the future in response to changing economics and policies is an important subject to include in the National Energy Modeling System (NEMS). This report summarizes a study to develop an E85 choice model for NEMS. Using the most recent data from the states of Minnesota, North Dakota, and Iowa, this study estimates a logit model that represents E85 choice as a function of prices of E10 and E85, as well as fuel availability of E85 relative to gasoline. Using more recent data than previous studies allows a better estimation of non-fleet demand and indicates that the price elasticity of E85 choice appears to be higher than previously estimated. Based on the results of the econometric analysis, a model for projecting E85 demand at the regional level is specified. In testing, the model produced plausible predictions of US E85 demand to 2040.

  14. Ground-state phase diagram of the quantum Rabi model

    NASA Astrophysics Data System (ADS)

    Ying, Zu-Jian; Liu, Maoxin; Luo, Hong-Gang; Lin, Hai-Qing; You, J. Q.

    2015-11-01

    The Rabi model plays a fundamental role in understanding light-matter interaction. It reduces to the Jaynes-Cummings model via the rotating-wave approximation, which is applicable only to the cases of near resonance and weak coupling. However, recent experimental breakthroughs in upgrading light-matter coupling order require understanding the physics of the full quantum Rabi model (QRM). Despite the fact that its integrability and energy spectra have been exactly obtained, the challenge to formulate an exact wave function in a general case still hinders physical exploration of the QRM. Here we unveil a ground-state phase diagram of the QRM, consisting of a quadpolaron and a bipolaron as well as their changeover in the weak-, strong-, and intermediate-coupling regimes, respectively. An unexpected overweighted antipolaron is revealed in the quadpolaron state, and a hidden scaling behavior relevant to symmetry breaking is found in the bipolaron state. An experimentally accessible parameter is proposed to test these states, which might provide novel insights into the nature of the light-matter interaction for all regimes of the coupling strengths.

  15. Mathematical model for Dengue with three states of infection

    NASA Astrophysics Data System (ADS)

    Hincapie, Doracelly; Ospina, Juan

    2012-06-01

    A mathematical model for dengue with three states of infection is proposed and analyzed. The model consists in a system of differential equations. The three states of infection are respectively asymptomatic, partially asymptomatic and fully asymptomatic. The model is analyzed using computer algebra software, specifically Maple, and the corresponding basic reproductive number and the epidemic threshold are computed. The resulting basic reproductive number is an algebraic synthesis of all epidemic parameters and it makes clear the possible control measures. The microscopic structure of the epidemic parameters is established using the quantum theory of the interactions between the atoms and radiation. In such approximation, the human individual is represented by an atom and the mosquitoes are represented by radiation. The force of infection from the mosquitoes to the humans is considered as the transition probability from the fundamental state of atom to excited states. The combination of computer algebra software and quantum theory provides a very complete formula for the basic reproductive number and the possible control measures tending to stop the propagation of the disease. It is claimed that such result may be important in military medicine and the proposed method can be applied to other vector-borne diseases.

  16. Control of discrete event systems modeled as hierarchical state machines

    NASA Technical Reports Server (NTRS)

    Brave, Y.; Heymann, M.

    1991-01-01

    The authors examine a class of discrete event systems (DESs) modeled as asynchronous hierarchical state machines (AHSMs). For this class of DESs, they provide an efficient method for testing reachability, which is an essential step in many control synthesis procedures. This method utilizes the asynchronous nature and hierarchical structure of AHSMs, thereby illustrating the advantage of the AHSM representation as compared with its equivalent (flat) state machine representation. An application of the method is presented where an online minimally restrictive solution is proposed for the problem of maintaining a controlled AHSM within prescribed legal bounds.

  17. Modelling and simulation of large solid state laser systems

    SciTech Connect

    Simmons, W.W.; Warren, W.E.

    1986-01-01

    The role of numerical methods to simulate the several physical processes (e.g., diffraction, self-focusing, gain saturation) that are involved in coherent beam propagation through large laser systems is discussed. A comprehensive simulation code for modeling the pertinent physical phenomena observed in laser operations (growth of small-scale modulation, spatial filter, imaging, gain saturation and beam-induced damage) is described in some detail. Comparisons between code results and solid state laser output performance data are presented. Design and performance estimation of the large Nova laser system at LLNL are given. Finally, a global design rule for large, solid state laser systems is discussed.

  18. Quasi-classical models of transition state absorption or emission

    NASA Astrophysics Data System (ADS)

    Lee, Soo-Y.; Pollard, W. Thomas; Mathies, Richard A.

    1989-11-01

    By making a short-time approximation to the correlation function in the quantum result for transition state absorption (or emission) we obtain the Lorentzian and reflection results as integrals of simple configuration space functions. These and the time-integrated quantum results are used to derive and unify the following descriptions of transition-state absorption: (a) the classical model of Bersohn and Zewail, (b) the time-dependent wave mechanical description by Agrawal, Mohan and Sathyamurthy, (c) the classical trajectory approach by Polanyi and coworkers and (d) the time-independent quantum-mechanical description by Engel, Bacic, Schinke and Shapiro.

  19. Coherent states and nonlinear dynamics of the three state quasi-spin model with soliton solutions

    NASA Astrophysics Data System (ADS)

    Agüero, M.; Alvarado, R.; Frias, M.

    1998-11-01

    In this paper the generalized coherent states defined as points of the coset space {SU(2)}/{U(1)} are used as trial wave functions in order to study the quasi-spin model of the nonlinear ϕ6-theory. In the simple version of the quasi-classical theory deduced from this method a complete integrable system is obtained. In a general context, the ground state and linear spectrum of the nonlinear lattice equation were evaluated. Finally, by analyzing the effective potential, the first and second order phase transitions are shown to exist.

  20. An Extended Equation of State Modeling Method II. Mixtures

    NASA Astrophysics Data System (ADS)

    Scalabrin, G.; Marchi, P.; Stringari, P.; Richon, D.

    2006-09-01

    This work is the extension of previous work dedicated to pure fluids. The same method is extended to the representation of thermodynamic properties of a mixture through a fundamental equation of state in terms of the Helmholtz energy. The proposed technique exploits the extended corresponding-states concept of distorting the independent variables of a dedicated equation of state for a reference fluid using suitable scale factor functions to adapt the equation to experimental data of a target system. An existing equation of state for the target mixture is used instead of an equation for the reference fluid, completely avoiding the need for a reference fluid. In particular, a Soave-Redlich-Kwong cubic equation with van der Waals mixing rules is chosen. The scale factors, which are functions of temperature, density, and mole fraction of the target mixture, are expressed in the form of a multilayer feedforward neural network, whose coefficients are regressed by minimizing a suitable objective function involving different kinds of mixture thermodynamic data. As a preliminary test, the model is applied to five binary and two ternary haloalkane mixtures, using data generated from existing dedicated equations of state for the selected mixtures. The results show that the method is robust and straightforward for the effective development of a mixture- specific equation of state directly from experimental data.

  1. Modeling of cortical signals using echo state networks

    NASA Astrophysics Data System (ADS)

    Zhou, Hanying; Wang, Yongji; Huang, Jiangshuai

    2009-10-01

    Diverse modeling frameworks have been utilized with the ultimate goal of translating brain cortical signals into prediction of visible behavior. The inputs to these models are usually multidimensional neural recordings collected from relevant regions of a monkey's brain while the outputs are the associated behavior which is typically the 2-D or 3-D hand position of a primate. Here our task is to set up a proper model in order to figure out the move trajectories by input the neural signals which are simultaneously collected in the experiment. In this paper, we propose to use Echo State Networks (ESN) to map the neural firing activities into hand positions. ESN is a newly developed recurrent neural network(RNN) model. Besides its dynamic property and short term memory just as other recurrent neural networks have, it has a special echo state property which endows it with the ability to model nonlinear dynamic systems powerfully. What distinguished it from transitional recurrent neural networks most significantly is its special learning method. In this paper we train this net with a refined version of its typical training method and get a better model.

  2. Nonequilibrium Steady States in Models of Prebiotic Evolution

    NASA Astrophysics Data System (ADS)

    Halley, J. W.; Wynveen, A.

    2014-12-01

    We report computational results from a model for prebiotic evolution.The model is schematic, but contains a correct description of thebasic statistical problem associated with understanding how the initiation of life can occur given the strong entropic barriers (sometimesknown as 'Eigen's paradox' and appearing in experiments as the 'tar problem'). The model is similar to one of the modelsintroduced years ago by Kauffman and coworkers. The important innovationwhich we introduce is imposition of the requirement that, to qualifyas a lifelike dynamical chemical system, the system must not be inchemical equilibrium. That constraint turns out to have major qualitativeeffects on the conclusions. In particular, very sparse chemical networksturn out to be the most favorable ones for generating autocatalyticnonequilibrium states. This suggests qualitatively that deserts might bebetter than ponds for initiating life. Some details of the models andsimulations will be described, including recent results in which weintroduce spatial diffusion and a proxy for temperature into the description ofthe model chemistry. Results on growth rates, convergence and theoverall probability of generation of lifelike states as a function ofparameters of the chemical network model will be presented.

  3. Evaluation of the Current State of Integrated Water Quality Modelling

    NASA Astrophysics Data System (ADS)

    Arhonditsis, G. B.; Wellen, C. C.; Ecological Modelling Laboratory

    2010-12-01

    Environmental policy and management implementation require robust methods for assessing the contribution of various point and non-point pollution sources to water quality problems as well as methods for estimating the expected and achieved compliance with the water quality goals. Water quality models have been widely used for creating the scientific basis for management decisions by providing a predictive link between restoration actions and ecosystem response. Modelling water quality and nutrient transport is challenging due a number of constraints associated with the input data and existing knowledge gaps related to the mathematical description of landscape and in-stream biogeochemical processes. While enormous effort has been invested to make watershed models process-based and spatially-distributed, there has not been a comprehensive meta-analysis of model credibility in watershed modelling literature. In this study, we evaluate the current state of integrated water quality modeling across the range of temporal and spatial scales typically utilized. We address several common modeling questions by providing a quantitative assessment of model performance and by assessing how model performance depends on model development. The data compiled represent a heterogeneous group of modeling studies, especially with respect to complexity, spatial and temporal scales and model development objectives. Beginning from 1992, the year when Beven and Binley published their seminal paper on uncertainty analysis in hydrological modelling, and ending in 2009, we selected over 150 papers fitting a number of criteria. These criteria involved publications that: (i) employed distributed or semi-distributed modelling approaches; (ii) provided predictions on flow and nutrient concentration state variables; and (iii) reported fit to measured data. Model performance was quantified with the Nash-Sutcliffe Efficiency, the relative error, and the coefficient of determination. Further, our

  4. A Bayesian state-space formulation of dynamic occupancy models

    USGS Publications Warehouse

    Royle, J. Andrew; Kery, M.

    2007-01-01

    Species occurrence and its dynamic components, extinction and colonization probabilities, are focal quantities in biogeography and metapopulation biology, and for species conservation assessments. It has been increasingly appreciated that these parameters must be estimated separately from detection probability to avoid the biases induced by nondetection error. Hence, there is now considerable theoretical and practical interest in dynamic occupancy models that contain explicit representations of metapopulation dynamics such as extinction, colonization, and turnover as well as growth rates. We describe a hierarchical parameterization of these models that is analogous to the state-space formulation of models in time series, where the model is represented by two components, one for the partially observable occupancy process and another for the observations conditional on that process. This parameterization naturally allows estimation of all parameters of the conventional approach to occupancy models, but in addition, yields great flexibility and extensibility, e.g., to modeling heterogeneity or latent structure in model parameters. We also highlight the important distinction between population and finite sample inference; the latter yields much more precise estimates for the particular sample at hand. Finite sample estimates can easily be obtained using the state-space representation of the model but are difficult to obtain under the conventional approach of likelihood-based estimation. We use R and Win BUGS to apply the model to two examples. In a standard analysis for the European Crossbill in a large Swiss monitoring program, we fit a model with year-specific parameters. Estimates of the dynamic parameters varied greatly among years, highlighting the irruptive population dynamics of that species. In the second example, we analyze route occupancy of Cerulean Warblers in the North American Breeding Bird Survey (BBS) using a model allowing for site

  5. A Bayesian state-space formulation of dynamic occupancy models.

    PubMed

    Royle, J Andrew; Kéry, Marc

    2007-07-01

    Species occurrence and its dynamic components, extinction and colonization probabilities, are focal quantities in biogeography and metapopulation biology, and for species conservation assessments. It has been increasingly appreciated that these parameters must be estimated separately from detection probability to avoid the biases induced by non-detection error. Hence, there is now considerable theoretical and practical interest in dynamic occupancy models that contain explicit representations of metapopulation dynamics such as extinction, colonization, and turnover as well as growth rates. We describe a hierarchical parameterization of these models that is analogous to the state-space formulation of models in time series, where the model is represented by two components, one for the partially observable occupancy process and another for the observations conditional on that process. This parameterization naturally allows estimation of all parameters of the conventional approach to occupancy models, but in addition, yields great flexibility and extensibility, e.g., to modeling heterogeneity or latent structure in model parameters. We also highlight the important distinction between population and finite sample inference; the latter yields much more precise estimates for the particular sample at hand. Finite sample estimates can easily be obtained using the state-space representation of the model but are difficult to obtain under the conventional approach of likelihood-based estimation. We use R and WinBUGS to apply the model to two examples. In a standard analysis for the European Crossbill in a large Swiss monitoring program, we fit a model with year-specific parameters. Estimates of the dynamic parameters varied greatly among years, highlighting the irruptive population dynamics of that species. In the second example, we analyze route occupancy of Cerulean Warblers in the North American Breeding Bird Survey (BBS) using a model allowing for site

  6. Modeling of Material Removal by Solid State Heat Capacity Lasers

    SciTech Connect

    Boley, C D; Rubenchik, A M

    2002-04-17

    Pulsed lasers offer the capability of rapid material removal. Here we present simulations of steel coupon tests by two solid state heat capacity lasers built at LLNL. Operating at 1.05 pm, these deliver pulse energies of about 80 J at 10 Hz, and about 500 J at 20 Hz. Each is flashlamp-pumped. The first laser was tested at LLNL, while the second laser has been delivered to HELSTF, White Sands Missile Range. Liquid ejection appears to be an important removal mechanism. We have modeled these experiments via a time-dependent code called THALES, which describes heat transport, melting, vaporization, and the hydrodynamics of liquid, vapor, and air. It was previously used, in a less advanced form, to model drilling by copper vapor lasers [1] . It was also used to model vaporization in beam dumps for a high-power laser [2]. The basic model is in 1D, while the liquid hydrodynamics is handled in 2D.

  7. State-based models for planning and execution coordination

    NASA Technical Reports Server (NTRS)

    Bennett, Matthew B.; Knight, Russell L.; Rasmussen, Robert D.; Ingham, Michel D.

    2005-01-01

    Many traditional planners are built on top of existing execution engines that were not necessarily intended to be operated by a planner. The Mission Data System has been designed from the onset to have both an execution and planning engine and provides a framework for producing state-based models that can be used to coordinate planning and execution. The models provide a basis for ensuring the consistency of assumptions made by the execution engine and planner, and the frameworks provide a basis for run time communications between the planner and execution engines.

  8. The state of art model for thermal transistor

    NASA Astrophysics Data System (ADS)

    Vachhani, M. G.; Gajjar, P. N.

    2016-05-01

    A state of art model for thermal transistor is proposed using three FK 1D chains. In this paper we study how control over heat transfer in nanoscale materials be achieved using microscopic model of thermal transistor. We study the influence of spring constant of source segment on the switching efficiency, thermal amplification and working region of the thermal transistor. We found the increase in switching efficiency and thermal amplification where as decrease in working region with increase in spring constant of source segment.

  9. Climatological Structures of the GRIPS Models: Mean States and Forcing

    NASA Technical Reports Server (NTRS)

    Pawson, Steven

    1999-01-01

    The GCM-Reality Intercomparison Project for SPARC (GRIPS) is assessing and monitoring the performance of state-of-the-art general circulation models (GCMs). A wide variety of tasks have been initiated. These are designed to: (1) assess the ability of the GCMs to represent the current climatological structure of the troposphere and middle atmosphere,(2) to compare their response to imposed forcing anomalies, and (3) to estimate the certainty with which future climate perturbations can be predicted. This paper is concerned with assessments of the climatological states in the GCM simulations. Comparing the simulations with observational datasets reveals considerable discrepancies in the modelled fields. While it might be anticipated that certain types of biases in the model simulations might be related to the formulation of different aspects of the numerical package (dynamical schemes, cloud schemes, radiation transfer, inclusion of gravity wave drag), there is no clear relationship between these features. This paper attempts to draw a more comprehensive picture of the GCMs'performance than has previously been shown, by comparing the dominant forcing mechanisms in the models with observational estimates, and relating model deficiencies to the differences in the physical mechanisms in the GCMS.

  10. Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies

    NASA Technical Reports Server (NTRS)

    Suh, Peter M.; Conyers, Howard J.; Mavris, Dimitri N.

    2014-01-01

    This paper introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio and number of control surfaces. A doublet lattice approach is taken to compute generalized forces. A rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. Although, all parameters can be easily modified if desired.The focus of this paper is on tool presentation, verification and validation. This process is carried out in stages throughout the paper. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool. Therefore the flutter speed and frequency for a clamped plate are computed using V-g and V-f analysis. The computational results are compared to a previously published computational analysis and wind tunnel results for the same structure. Finally a case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to V-g and V-f analysis. This also includes the analysis of the model in response to a 1-cos gust.

  11. Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies

    NASA Technical Reports Server (NTRS)

    Suh, Peter M.; Conyers, Howard J.; Mavris, Dimitri N.

    2015-01-01

    This paper introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing-edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio, and number of control surfaces. Using this information, the generalized forces are computed using the doublet-lattice method. Using Roger's approximation, a rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. All parameters can be easily modified if desired. The focus of this paper is on tool presentation, verification, and validation. These processes are carried out in stages throughout the paper. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool, therefore, the flutter speed and frequency for a clamped plate are computed using damping-versus-velocity and frequency-versus-velocity analysis. The computational results are compared to a previously published computational analysis and wind-tunnel results for the same structure. A case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to damping-versus-velocity and frequency-versus-velocity analysis, including the analysis of the model in response to a 1-cos gust.

  12. Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies

    NASA Technical Reports Server (NTRS)

    Suh, Peter M.; Conyers, Howard Jason; Mavris, Dimitri N.

    2015-01-01

    This report introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing-edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio, and number of control surfaces. Using this information, the generalized forces are computed using the doublet-lattice method. Using Roger's approximation, a rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. All parameters can be easily modified if desired. The focus of this report is on tool presentation, verification, and validation. These processes are carried out in stages throughout the report. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool, therefore, the flutter speed and frequency for a clamped plate are computed using damping-versus-velocity and frequency-versus-velocity analysis. The computational results are compared to a previously published computational analysis and wind-tunnel results for the same structure. A case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to damping-versus-velocity and frequency-versus-velocity analysis, including the analysis of the model in response to a 1-cos gust.

  13. Ground-state entanglement in the XXZ model

    SciTech Connect

    Gu Shijian; Lin Haiqing; Tian Guangshan

    2005-05-15

    In this paper, we investigate spin entanglement in the XXZ model defined on a d-dimensional bipartite lattice. The concurrence, a measure of the entanglement between two spins, is analyzed. We prove rigorously that the ground-state concurrence reaches maximum at the isotropic point. For dimensionality d{>=}2, the concurrence develops a cusp at the isotropic point and we attribute it to the existence of magnetic long-range order.

  14. Modeling, State Estimation and Control of Unmanned Helicopters

    NASA Astrophysics Data System (ADS)

    Lau, Tak Kit

    Unmanned helicopters hold both tremendous potential and challenges. Without risking the lives of human pilots, these vehicles exhibit agile movement and the ability to hover and hence open up a wide range of applications in the hazardous situations. Sparing human lives, however, comes at a stiff price for technology. Some of the key difficulties that arise in these challenges are: (i) There are unexplained cross-coupled responses between the control axes on the hingeless helicopters that have puzzled researchers for years. (ii) Most, if not all, navigation on the unmanned helicopters relies on Global Navigation Satellite Systems (GNSSs), which are susceptible to jamming. (iii) It is often necessary to accommodate the re-configurations of the payload or the actuators on the helicopters by repeatedly tuning an autopilot, and that requires intensive human supervision and/or system identification. For the dynamics modeling and analysis, we present a comprehensive review on the helicopter actuation and dynamics, and contributes toward a more complete understanding on the on-axis and off-axis dynamical responses on the helicopter. We focus on a commonly used modeling technique, namely the phase-lag treatment, and employ a first-principles modeling method to justify that (i) why that phase-lag technique is inaccurate, (ii) how we can analyze the helicopter actuation and dynamics more accurately. Moreover, these dynamics modeling and analysis reveal the hard-to-measure but crucial parameters on a helicopter model that require the constant identifications, and hence convey the reasoning of seeking a model-implicit method to solve the state estimation and control problems on the unmanned helicopters. For the state estimation, we present a robust localization method for the unmanned helicopter against the GNSS outage. This method infers position from the acceleration measurement from an inertial measurement unit (IMU). In the core of our method are techniques of the sensor

  15. BPS states in supersymmetric chiral models with higher derivative terms

    NASA Astrophysics Data System (ADS)

    Nitta, Muneto; Sasaki, Shin

    2014-11-01

    We study the higher derivative chiral models with four supercharges and Bogomol'nyi-Prasad-Sommerfield (BPS) states in these models. The off-shell Lagrangian generically includes higher powers of the auxiliary fields F , which causes distinct on-shell branches associated with the solutions to the auxiliary fields equation. We point out that the model admits a supersymmetric completion of arbitrary higher derivative bosonic models of a single complex scalar field, and an arbitrary scalar potential can be introduced even without superpotentials. As an example, we present a supersymmetric extension of the Faddeev-Skyrme model without four time derivatives, in contrast to the previously proposed supersymmetric Faddeev-Skyrme-like model containing four time derivatives. In general, higher derivative terms together with a superpotential result in deformed scalar potentials. We find that higher derivative corrections to 1 /2 BPS domain walls and 1 /2 BPS lumps are exactly canceled out, while the 1 /4 BPS lumps (as compact baby Skyrmions) depend on a characteristic feature of the higher derivative models. We also find a new 1 /4 BPS condition for domain wall junctions, which generically receives higher derivative corrections.

  16. A Knowledge Discovery from POS Data using State Space Models

    NASA Astrophysics Data System (ADS)

    Sato, Tadahiko; Higuchi, Tomoyuki

    The number of competing-brands changes by new product's entry. The new product introduction is endemic among consumer packaged goods firm and is an integral component of their marketing strategy. As a new product's entry affects markets, there is a pressing need to develop market response model that can adapt to such changes. In this paper, we develop a dynamic model that capture the underlying evolution of the buying behavior associated with the new product. This extends an application of a dynamic linear model, which is used by a number of time series analyses, by allowing the observed dimension to change at some point in time. Our model copes with a problem that dynamic environments entail: changes in parameter over time and changes in the observed dimension. We formulate the model with framework of a state space model. We realize an estimation of the model using modified Kalman filter/fixed interval smoother. We find that new product's entry (1) decreases brand differentiation for existing brands, as indicated by decreasing difference between cross-price elasticities; (2) decreases commodity power for existing brands, as indicated by decreasing trend; and (3) decreases the effect of discount for existing brands, as indicated by a decrease in the magnitude of own-brand price elasticities. The proposed framework is directly applicable to other fields in which the observed dimension might be change, such as economic, bioinformatics, and so forth.

  17. Modeling of Solid State Transformer for the FREEDM System Demonstration

    NASA Astrophysics Data System (ADS)

    Jiang, Youyuan

    The Solid State Transformer (SST) is an essential component in the FREEDM system. This research focuses on the modeling of the SST and the controller hardware in the loop (CHIL) implementation of the SST for the support of the FREEDM system demonstration. The energy based control strategy for a three-stage SST is analyzed and applied. A simplified average model of the three-stage SST that is suitable for simulation in real time digital simulator (RTDS) has been developed in this study. The model is also useful for general time-domain power system analysis and simulation. The proposed simplified av-erage model has been validated in MATLAB and PLECS. The accuracy of the model has been verified through comparison with the cycle-by-cycle average (CCA) model and de-tailed switching model. These models are also implemented in PSCAD, and a special strategy to implement the phase shift modulation has been proposed to enable the switching model simulation in PSCAD. The implementation of the CHIL test environment of the SST in RTDS is described in this report. The parameter setup of the model has been discussed in detail. One of the dif-ficulties is the choice of the damping factor, which is revealed in this paper. Also the grounding of the system has large impact on the RTDS simulation. Another problem is that the performance of the system is highly dependent on the switch parameters such as voltage and current ratings. Finally, the functionalities of the SST have been realized on the platform. The distributed energy storage interface power injection and reverse power flow have been validated. Some limitations are noticed and discussed through the simulation on RTDS.

  18. Modeling Pilot State in Next Generation Aircraft Alert Systems

    NASA Technical Reports Server (NTRS)

    Carlin, Alan S.; Alexander, Amy L.; Schurr, Nathan

    2011-01-01

    The Next Generation Air Transportation System will introduce new, advanced sensor technologies into the cockpit that must convey a large number of potentially complex alerts. Our work focuses on the challenges associated with prioritizing aircraft sensor alerts in a quick and efficient manner, essentially determining when and how to alert the pilot This "alert decision" becomes very difficult in NextGen due to the following challenges: 1) the increasing number of potential hazards, 2) the uncertainty associated with the state of potential hazards as well as pilot slate , and 3) the limited time to make safely-critical decisions. In this paper, we focus on pilot state and present a model for anticipating duration and quality of pilot behavior, for use in a larger system which issues aircraft alerts. We estimate pilot workload, which we model as being dependent on factors including mental effort, task demands. and task performance. We perform a mathematically rigorous analysis of the model and resulting alerting plans. We simulate the model in software and present simulated results with respect to manipulation of the pilot measures.

  19. Central United States Velocity Model Version 1: Description and Validation

    NASA Astrophysics Data System (ADS)

    Ramirez Guzman, L.; Williams, R. A.; Boyd, O. S.; Hartzell, S.

    2009-12-01

    We describe and test via numerical simulations a velocity model of the Central United States (CUSVM Version 1). Our model covers an area of 650,000 km2 and includes parts of Arkansas, Mississippi, Alabama, Illinois, Missouri, Kentucky and Tennessee. The model represents the compilation of research carried out for decades consisting of seismic refraction and reflection lines, geophysical logs, and inversions of the regional seismic properties. The CUSVM has a higher resolution description around Memphis and St. Louis, two of the largest urban areas in the Central United States. The density, p- and s-wave velocities are synthesized in a stand-alone spatial data base that can be queried to generate the required input for numerical simulations. We calibrate the CUSVM using three earthquakes located N, SW and SE of the zone encompassed by the model to sample different paths of propagation. The selected stations in the comparisons reflect different geological site conditions and cover distances ranging from 50 to 450 km away from the epicenters. The results indicate that both within and outside the Mississippi embayment, the CUSVM satisfactorily reproduces: a) the body wave arrival times and b) the observed regional variations in ground motion amplitude and duration in the frequency range 0-0.75Hz.

  20. Modeling individual effects in the Cormack-Jolly-Seber Model: A state-space formulation

    USGS Publications Warehouse

    Royle, J. Andrew

    2008-01-01

    In population and evolutionary biology, there exists considerable interest in individual heterogeneity in parameters of demographic models for open populations. However, flexible and practical solutions to the development of such models have proven to be elusive. In this article, I provide a state-space formulation of open population capture-recapture models with individual effects. The state-space formulation provides a generic and flexible framework for modeling and inference in models with individual effects, and it yields a practical means of estimation in these complex problems via contemporary methods of Markov chain Monte Carlo. A straightforward implementation can be achieved in the software package WinBUGS. I provide an analysis of a simple model with constant parameter detection and survival probability parameters. A second example is based on data from a 7-year study of European dippers, in which a model with year and individual effects is fitted.

  1. Phenomenological model for transient deformation based on state variables

    SciTech Connect

    Jackson, M S; Cho, C W; Alexopoulos, P; Mughrabi, H; Li, C Y

    1980-01-01

    The state variable theory of Hart, while providing a unified description of plasticity-dominated deformation, exhibits deficiencies when it is applied to transient deformation phenomena at stresses below yield. It appears that the description of stored anelastic strain is oversimplified. Consideration of a simple physical picture based on continuum dislocation pileups suggests that the neglect of weak barriers to dislocation motion is the source of these inadequacies. An appropriately modified description incorporating such barriers then allows the construction of a macroscopic model including transient effects. Although the flow relations for the microplastic element required in the new theory are not known, tentative assignments may be made for such functions. The model then exhibits qualitatively correct behavior when tensile, loading-unloading, reverse loading, and load relaxation tests are simulated. Experimental procedures are described for determining the unknown parameters and functions in the new model.

  2. Steady state model of an industrial FCC unit

    SciTech Connect

    Lopez-Isunza, F.; Ancheyta-Juarez, J.

    1996-12-31

    A reactor model has been developed to simulate the steady-state of an industrial fluid catalytic cracking unit using a three-lump kinetic expression with parameters estimated from experiments in a microactivity test reactor. The model considers a transported bed reactor (riser) where gas-oil and catalyst are in contact to perform the endothermic cracking reactions, interacting with a two-phase moving bed regenerator with recirculation where the combustion of the coke deposited on the catalyst takes place. The model is used to find best operating conditions for maximizing gasoline yield in terms of gas-oil feed temperature (To) and recycled catalyst to gas-oil ratio (C/O). 12 refs., 4 figs.

  3. Finite element implementation of state variable-based viscoplasticity models

    NASA Technical Reports Server (NTRS)

    Iskovitz, I.; Chang, T. Y. P.; Saleeb, A. F.

    1991-01-01

    The implementation of state variable-based viscoplasticity models is made in a general purpose finite element code for structural applications of metals deformed at elevated temperatures. Two constitutive models, Walker's and Robinson's models, are studied in conjunction with two implicit integration methods: the trapezoidal rule with Newton-Raphson iterations and an asymptotic integration algorithm. A comparison is made between the two integration methods, and the latter method appears to be computationally more appealing in terms of numerical accuracy and CPU time. However, in order to make the asymptotic algorithm robust, it is necessary to include a self adaptive scheme with subincremental step control and error checking of the Jacobian matrix at the integration points. Three examples are given to illustrate the numerical aspects of the integration methods tested.

  4. Finite state aeroelastic model for use in rotor design optimization

    NASA Technical Reports Server (NTRS)

    He, Chengjian; Peters, David A.

    1993-01-01

    In this article, a rotor aeroelastic model based on a newly developed finite state dynamic wake, coupled with blade finite element analysis, is described. The analysis is intended for application in rotor blade design optimization. A coupled simultaneous system of differential equations combining blade structural dynamics and aerodynamics is established in a formulation well-suited for design sensitivity computation. Each blade is assumed to be an elastic beam undergoing flap bending, lead-lag bending, elastic twist, and axial deflections. Aerodynamic loads are computed from unsteady blade element theory where the rotor three-dimensional unsteady wake is described by a generalized dynamic wake model. Correlation of results obtained from the analysis with flight test data is provided to assess model accuracy.

  5. Nonlinear State Estimation and Modeling of a Helicopter UAV

    NASA Astrophysics Data System (ADS)

    Barczyk, Martin

    Experimentally-validated nonlinear flight control of a helicopter UAV has two necessary conditions: an estimate of the vehicle’s states from noisy multirate output measurements, and a nonlinear dynamics model with minimum complexity, physically controllable inputs and experimentally identified parameter values. This thesis addresses both these objectives for the Applied Nonlinear Controls Lab (ANCL)'s helicopter UAV project. A magnetometer-plus-GPS aided Inertial Navigation System (INS) for outdoor flight as well as an Attitude and Heading Reference System (AHRS) for indoor testing are designed, implemented and experimentally validated employing an Extended Kalman Filter (EKF), using a novel calibration technique for the magnetometer aiding sensor added to remove the limitations of an earlier GPS-only aiding design. Next the recently-developed nonlinear observer design methodology of invariant observers is adapted to the aided INS and AHRS examples, employing a rotation matrix representation for the state manifold to obtain designs amenable to global stability analysis, obtaining a direct nonlinear design for gains of the AHRS observer, modifying the previously-proposed Invariant EKF systematic method for computing gains, and culminating in simulation and experimental validation of the observers. Lastly a nonlinear control-oriented model of the helicopter UAV is derived from first principles, using a rigid-body dynamics formulation augmented with models of the on-board subsystems: main rotor forces and blade flapping dynamics, the Bell-Hiller system and flybar flapping dynamics, tail rotor forces, tail gyro unit, engine and rotor speed, servo operation, fuselage drag, and tail stabilizer forces. The parameter values in the resulting models are identified experimentally. Using these the model is further simplified to be tractable for model-based control design.

  6. Modeling the human invader in the United States

    USGS Publications Warehouse

    Stohlgren, Thomas J.; Jarnevich, Catherine S.; Giri, Chandra P.

    2010-01-01

    Modern biogeographers recognize that humans are seen as constituents of ecosystems, drivers of significant change, and perhaps, the most invasive species on earth. We found it instructive to model humans as invasive organisms with the same environmental factors. We present a preliminary model of the spread of modern humans in the conterminous United States between 1992 and 2001 based on a subset of National Land Cover Data (NLCD), a time series LANDSAT product. We relied on the commonly used Maxent model, a species-environmental matching model, to map urbanization. Results: Urban areas represented 5.1% of the lower 48 states in 2001, an increase of 7.5% (18,112 km2) in the nine year period. At this rate, an area the size of Massachusetts is converted to urban land use every ten years. We used accepted models commonly used for mapping plant and animal distributions and found that climatic and environmental factors can strongly predict our spread (i.e., the conversion of forests, shrub/grass, and wetland areas into urban areas), with a 92.5% success rate (Area Under the Curve). Adding a roads layer in the model improved predictions to a 95.5% success rate. 8.8% of the 1-km2> cells in the conterminous U.S. now have a major road in them. In 2001, 0.8% of 1-km2 > cells in the U.S. had an urbanness value of > 800, (>89% of a 1-km2> cell is urban), while we predict that 24.5% of 1-km2> cells in the conterminous U.S. will be > 800 eventually. Main conclusion: Humans have a highly predictable pattern of urbanization based on climatic and topographic variables. Conservation strategies may benefit from that predictability.

  7. Modeling the human invader in the United States

    NASA Astrophysics Data System (ADS)

    Stohlgren, Thomas J.; Jarnevich, Catherine S.; Giri, Chandra P.

    2010-02-01

    Modern biogeographers recognize that humans are seen as constituents of ecosystems, drivers of significant change, and perhaps, the most invasive species on earth. We found it instructive to model humans as invasive organisms with the same environmental factors. We present a preliminary model of the spread of modern humans in the conterminous United States between 1992 and 2001 based on a subset of National Land Cover Data (NLCD), a time series LANDSAT product. We relied on the commonly used Maxent model, a species-environmental matching model, to map urbanization. Results: Urban areas represented 5.1% of the lower 48 states in 2001, an increase of 7.5% (18,112 km2) in the nine year period. At this rate, an area the size of Massachusetts is converted to urban land use every ten years. We used accepted models commonly used for mapping plant and animal distributions and found that climatic and environmental factors can strongly predict our spread (i.e., the conversion of forests, shrub/grass, and wetland areas into urban areas), with a 92.5% success rate (Area Under the Curve). Adding a roads layer in the model improved predictions to a 95.5% success rate. 8.8% of the 1-km2 cells in the conterminous U.S. now have a major road in them. In 2001, 0.8% of 1-km2 cells in the U.S. had an urbanness value of > 800, (>89% of a 1-km2 cell is urban), while we predict that 24.5% of 1-km2 cells in the conterminous U.S. will be > 800 eventually. Main conclusion: Humans have a highly predictable pattern of urbanization based on climatic and topographic variables. Conservation strategies may benefit from that predictability.

  8. Using thermal stress to model aspects of disease states.

    PubMed

    Wilson, Thad E; Klabunde, Richard E; Monahan, Kevin D

    2014-07-01

    Exposure to acute heat or cold stress elicits numerous physiological responses aimed at maintaining body temperatures. Interestingly, many of the physiological responses, mediated by the cardiovascular and autonomic nervous systems, resemble aspects of, or responses to, certain disease states. The purpose of this Perspective is to highlight some of these areas in order to explore how they may help us better understand the pathophysiology underlying aspects of certain disease states. The benefits of using this human thermal stress approach are that (1) no adjustments for inherent comparative differences in animals are needed, (2) non-medicated healthy humans with no underlying co-morbidities can be studied in place of complex patients, and (3) more mechanistic perturbations can be safely employed without endangering potentially vulnerable populations. Cold stress can be used to induce stable elevations in blood pressure. Cold stress may also be used to model conditions where increases in myocardial oxygen demand are not met by anticipated increases in coronary blood flow, as occurs in older adults. Lower-body negative pressure has the capacity to model aspects of shock, and the further addition of heat stress improves and expands this model because passive-heat exposure lowers systemic vascular resistance at a time when central blood volume and left-ventricular filling pressure are reduced. Heat stress can model aspects of heat syncope and orthostatic intolerance as heat stress decreases cerebral blood flow and alters the Frank-Starling mechanism resulting in larger decreases in stroke volume for a given change in left-ventricular filling pressure. Combined, thermal perturbations may provide in vivo paradigms that can be employed to gain insights into pathophysiological aspects of certain disease states. PMID:24956954

  9. Modeling biofiltration of VOC mixtures under steady-state conditions

    SciTech Connect

    Baltzis, B.C.; Wojdyla, S.M.; Zarook, S.M.

    1997-06-01

    Treatment of air streams contaminated with binary volatile organic compound (VOC) mixtures in classical biofilters under steady-state conditions of operation was described with a general mathematical model. The model accounts for potential kinetic interactions among the pollutants, effects of oxygen availability on biodegradation, and biomass diversification in the filter bed. While the effects of oxygen were always taken into account, two distinct cases were considered for the experimental model validation. The first involves kinetic interactions, but no biomass differentiation, used for describing data from biofiltration of benzene/toluene mixtures. The second case assumes that each pollutant is treated by a different type of biomass. Each biomass type is assumed to form separate patches of biofilm on the solid packing material, thus kinetic interference does not occur. This model was used for describing biofiltration of ethanol/butanol mixtures. Experiments were performed with classical biofilters packed with mixtures of peat moss and perlite (2:3, volume:volume). The model equations were solved through the use of computer codes based on the fourth-order Runge-Kutta technique for the gas-phase mass balances and the method of orthogonal collocation for the concentration profiles in the biofilms. Good agreement between model predictions and experimental data was found in almost all cases. Oxygen was found to be extremely important in the case of polar VOCs (ethanol/butanol).

  10. Specificity in Transition State Binding: The Pauling Model Revisited

    PubMed Central

    Amyes, Tina L.; Richard, John P.

    2013-01-01

    Linus Pauling proposed that the large rate accelerations for enzymes are due to the high specificity of the protein catalyst for binding the reaction transition state. The observation that stable analogs of the transition states for enzymatic reactions often act as tight-binding binding inhibitors provided early support for this simple and elegant proposal. We review experimental results which support the proposal that Pauling’s model provides a satisfactory explanation for the rate accelerations for many heterolytic enzymatic reactions through high energy reaction intermediates, such as proton transfer and decarboxylation. Specificity in transition state binding is obtained when the total intrinsic binding energy of the substrate is significantly larger than the binding energy observed at the Michaelis complex. The results of recent studies to characterize the specificity in binding of the enolate oxygen at the transition state for the 1,3-isomerization reaction catalyzed by ketosteroid isomerase are reviewed. Interactions between pig heart succinyl-CoA:3-oxoacid coenzyme A transferase (SCOT) and the nonreacting portions of CoA are responsible for a rate increase of 3 × 1012-fold, which is close to the estimated total 5 × 1013-fold enzymatic rate acceleration. Studies that partition the interactions between SCOT and CoA into their contributing parts are reviewed. Interactions of the protein with the substrate phosphodianion group provide a ca. 12 kcal/mol stabilization of the transition state for the reactions catalyzed by triosephosphate isomerase, orotidine 5′-monophosphate decarboxylase and α-glycerol phosphate dehydrogenase. The interactions of these enzymes with the substrate piece phosphite dianion provide a 6 – 8 kcal/mol stabilization of the transition state for reaction of the appropriate truncated substrate. Enzyme activation by phosphite dianion reflects the higher dianion affinity for binding to the enzyme-transition state complex compared

  11. Finite state model of locomotion for functional electrical stimulation systems.

    PubMed

    Popović, D B

    1993-01-01

    A finite state model of locomotion was developed to simplify a controller design for motor activities of handicapped humans. This paper presents a model developed for real time control of locomotion with functional electrical stimulation (FES) assistive systems. Hierarchical control of locomotion was adopted with three levels: voluntary, coordination and actuator level. This paper deals only with coordination level of control. In our previous studies we demonstrated that a skill-based expert system can be used for coordination level of control in multi-joint FES systems. Basic elements in this skill-based expert system are production rules. Production rules have the form of If-Then conditional expressions. A technique of automatic determination of these conditional expressions is presented in this paper. This technique for automatic synthesis of production rules uses fuzzy logic and artificial neural networks (ANN). The special class of fuzzy logic elements used in this research is called preferential neurons. The preferential neurons were used to estimate the relevance of each of the sensory inputs to the recognition of patterns defined as finite states. The combination of preferential neurons forms a preferential neural network. The preferential neural network belongs to a class of ANNs. The preferential neural network determined the set of finite states convenient for a skill-based expert system for different modalities of locomotion. PMID:8234764

  12. Pentaquark states in a diquark-triquark model

    NASA Astrophysics Data System (ADS)

    Zhu, Ruilin; Qiao, Cong-Feng

    2016-05-01

    The diquark-triquark model is used to explain charmonium-pentaquark states, i.e., Pc (4380) and Pc (4450), which were observed recently by the LHCb Collaboration. For the first time, we investigate the properties of the color attractive configuration of a triquark and we define a nonlocal light cone distribution amplitude for pentaquark states, where both diquark and triquark are not pointlike, but they have nonzero size. We establish an effective diquark-triquark Hamiltonian based on spin-orbital interaction. According to the Hamiltonian, we show that the minimum mass splitting between 5/2+ and 3/2- is around 100 MeV, which may naturally solve the challenging problem of small mass splitting between Pc (4450) and Pc (4380). This helps to understand the peculiarities of Pc (4380) with a broad decay width whereas Pc (4450) has a narrow decay width. Based on the diquark-triquark model, we predict more pentaquark states, which will hopefully be measured in future experiments.

  13. Ground state of the three-band Hubbard model

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Takashi; Koike, Soh; Yamaji, Kunihiko

    2001-11-01

    The ground state of the two-dimensional three-band Hubbard model in oxide superconductors is investigated by using the variational Monte Carlo method. The Gutzwiller-projected BCS and spin density wave (SDW) functions are employed in the search for a possible ground state with respect to dependences on electron density. Antiferromagnetic correlations are considerably strong near half-filling. It is shown that the d-wave state may exist away from half-filling for both the hole and electron doping cases. The overall structure of the phase diagram obtained by our calculations qualitatively agrees with experimental indications. The superconducting condensation energy is in reasonable agreement with the experimental value obtained from specific heat and critical magnetic field measurements for optimally doped samples. The inhomogeneous SDW state is also examined near 1/8 doping. Incommensurate magnetic structures become stable due to hole doping in the underdoped region, where the transfer tpp between oxygen orbitals plays an important role in determining a stable stripe structure.

  14. Periodic Striped Ground States in Ising Models with Competing Interactions

    NASA Astrophysics Data System (ADS)

    Giuliani, Alessandro; Seiringer, Robert

    2016-06-01

    We consider Ising models in two and three dimensions, with short range ferromagnetic and long range, power-law decaying, antiferromagnetic interactions. We let J be the ratio between the strength of the ferromagnetic to antiferromagnetic interactions. The competition between these two kinds of interactions induces the system to form domains of minus spins in a background of plus spins, or vice versa. If the decay exponent p of the long range interaction is larger than d + 1, with d the space dimension, this happens for all values of J smaller than a critical value J c (p), beyond which the ground state is homogeneous. In this paper, we give a characterization of the infinite volume ground states of the system, for p > 2d and J in a left neighborhood of J c (p). In particular, we prove that the quasi-one-dimensional states consisting of infinite stripes (d = 2) or slabs (d = 3), all of the same optimal width and orientation, and alternating magnetization, are infinite volume ground states. Our proof is based on localization bounds combined with reflection positivity.

  15. Modeling of efficient solid-state cooler on layered multiferroics.

    PubMed

    Starkov, Ivan; Starkov, Alexander

    2014-08-01

    We have developed theoretical foundations for the design and optimization of a solid-state cooler working through caloric and multicaloric effects. This approach is based on the careful consideration of the thermodynamics of a layered multiferroic system. The main section of the paper is devoted to the derivation and solution of the heat conduction equation for multiferroic materials. On the basis of the obtained results, we have performed the evaluation of the temperature distribution in the refrigerator under periodic external fields. A few practical examples are considered to illustrate the model. It is demonstrated that a 40-mm structure made of 20 ferroic layers is able to create a temperature difference of 25K. The presented work tries to address the whole hierarchy of physical phenomena to capture all of the essential aspects of solid-state cooling. PMID:25073143

  16. Language Model Combination and Adaptation Using Weighted Finite State Transducers

    NASA Technical Reports Server (NTRS)

    Liu, X.; Gales, M. J. F.; Hieronymus, J. L.; Woodland, P. C.

    2010-01-01

    In speech recognition systems language model (LMs) are often constructed by training and combining multiple n-gram models. They can be either used to represent different genres or tasks found in diverse text sources, or capture stochastic properties of different linguistic symbol sequences, for example, syllables and words. Unsupervised LM adaption may also be used to further improve robustness to varying styles or tasks. When using these techniques, extensive software changes are often required. In this paper an alternative and more general approach based on weighted finite state transducers (WFSTs) is investigated for LM combination and adaptation. As it is entirely based on well-defined WFST operations, minimum change to decoding tools is needed. A wide range of LM combination configurations can be flexibly supported. An efficient on-the-fly WFST decoding algorithm is also proposed. Significant error rate gains of 7.3% relative were obtained on a state-of-the-art broadcast audio recognition task using a history dependently adapted multi-level LM modelling both syllable and word sequences

  17. Modeling Clinical States and Metabolic Rhythms in Bioarcheology

    PubMed Central

    Qualls, Clifford; Bianucci, Raffaella; Spilde, Michael N.; Phillips, Genevieve; Wu, Cecilia; Appenzeller, Otto

    2015-01-01

    Bioarcheology is cross disciplinary research encompassing the study of human remains. However, life's activities have, up till now, eluded bioarcheological investigation. We hypothesized that growth lines in hair might archive the biologic rhythms, growth rate, and metabolism during life. Computational modeling predicted the physical appearance, derived from hair growth rate, biologic rhythms, and mental state for human remains from the Roman period. The width of repeat growth intervals (RI's) on the hair, shown by confocal microscopy, allowed computation of time series of periodicities of the RI's to model growth rates of the hairs. Our results are based on four hairs from controls yielding 212 data points and the RI's of six cropped hairs from Zweeloo woman's scalp yielding 504 data points. Hair growth was, ten times faster than normal consistent with hypertrichosis. Cantú syndrome consists of hypertrichosis, dyschondrosteosis, short stature, and cardiomegaly. Sympathetic activation and enhanced metabolic state suggesting arousal was also present. Two-photon microscopy visualized preserved portions of autonomic nerve fibers surrounding the hair bulb. Scanning electron microscopy found evidence that a knife was used to cut the hair three to five days before death. Thus computational modeling enabled the elucidation of life's activities 2000 years after death in this individual with Cantu syndrome. This may have implications for archeology and forensic sciences. PMID:26346040

  18. Regional Climate Model Projections for the State of Washington

    SciTech Connect

    Salathe, E.; Leung, Lai-Yung R.; Qian, Yun; Zhang, Yongxin

    2010-05-05

    Global climate models do not have sufficient spatial resolution to represent the atmospheric and land surface processes that determine the unique regional heterogeneity of the climate of the State of Washington. If future large-scale weather patterns interact differently with the local terrain and coastlines than current weather patterns, local changes in temperature and precipitation could be quite different from the coarse-scale changes projected by global models. Regional climate models explicitly simulate the interactions between the large-scale weather patterns simulated by a global model and the local terrain. We have performed two 100-year climate simulations using the Weather and Research Forecasting (WRF) model developed at the National Center for Atmospheric Research (NCAR). One simulation is forced by the NCAR Community Climate System Model version 3 (CCSM3) and the second is forced by a simulation of the Max Plank Institute, Hamburg, global model (ECHAM5). The mesoscale simulations produce regional changes in snow cover, cloudiness, and circulation patterns associated with interactions between the large-scale climate change and the regional topography and land-water contrasts. These changes substantially alter the temperature and precipitation trends over the region relative to the global model result or statistical downscaling. To illustrate this effect, we analyze the changes from the current climate (1970-1999) to the mid 21st century (2030-2059). Changes in seasonal-mean temperature, precipitation, and snowpack are presented. Several climatological indices of extreme daily weather are also presented: precipitation intensity, fraction of precipitation occurring in extreme daily events, heat wave frequency, growing season length, and frequency of warm nights. Despite somewhat different changes in seasonal precipitation and temperature from the two regional simulations, consistent results for changes in snowpack and extreme precipitation are found in

  19. A mathematical model of pan evaporation under steady state conditions

    NASA Astrophysics Data System (ADS)

    Lim, Wee Ho; Roderick, Michael L.; Farquhar, Graham D.

    2016-09-01

    In the context of changing climate, global pan evaporation records have shown a spatially-averaged trend of ∼ -2 to ∼ -3 mm a-2 over the past 30-50 years. This global phenomenon has motivated the development of the "PenPan" model (Rotstayn et al., 2006). However, the original PenPan model has yet to receive an independent experimental evaluation. Hence, we constructed an instrumented US Class A pan at Canberra Airport (Australia) and monitored it over a three-year period (2007-2010) to uncover the physics of pan evaporation under non-steady state conditions. The experimental investigations of pan evaporation enabled theoretical formulation and parameterisation of the aerodynamic function considering the wind, properties of air and (with or without) the bird guard effect. The energy balance investigation allowed for detailed formulation of the short- and long-wave radiation associated with the albedos and the emissivities of the pan water surface and the pan wall. Here, we synthesise and generalise those earlier works to develop a new model called the "PenPan-V2" model for application under steady state conditions (i.e., uses a monthly time step). Two versions (PenPan-V2C and PenPan-V2S) are tested using pan evaporation data available across the Australian continent. Both versions outperformed the original PenPan model with better representation of both the evaporation rate and the underlying physics of a US Class A pan. The results show the improved solar geometry related calculations (e.g., albedo, area) for the pan system led to a clear improvement in representing the seasonal cycle of pan evaporation. For general applications, the PenPan-V2S is simpler and suited for applications including an evaluation of long-term trends in pan evaporation.

  20. State estimation issues: External system modeling enhancements. Volume 1: External system modeling guidelines; Final report

    SciTech Connect

    Rahimi, A.F.; Kato, K.; Stadlin, W.; Ansari, S.H. |; Brandwajn, V.; Bose, A.

    1995-04-01

    The single largest source of error in state estimation, an inadequate external system model, affects the usefulness of energy management system (EMS) applications. EPRI has developed comprehensive guidelines to help utilities enhance external system modeling for state estimation and has demonstrated use of the guidelines on three host utility systems without data exchange. These guidelines address network topology, analog measurement, inter-utility data exchange, and application procedures and recommendations. They include specific guidelines for utility types and network analysis applications, and validate the Normalized Level of Impact (NLI) as a key index for external system modeling. This report provides valuable insight to the veteran, as well as first-time state estimator implementors and users. A useful reference source, the extensive guidelines supply answers and helpful advice, as well as recommendations for future work. Volume 1 contains external system modeling guidelines, and Volume 2 is a summary of responses to the utility and EMS supplier survey questionnaire used in this project.

  1. Current state of genome-scale modeling in filamentous fungi.

    PubMed

    Brandl, Julian; Andersen, Mikael R

    2015-06-01

    The group of filamentous fungi contains important species used in industrial biotechnology for acid, antibiotics and enzyme production. Their unique lifestyle turns these organisms into a valuable genetic reservoir of new natural products and biomass degrading enzymes that has not been used to full capacity. One of the major bottlenecks in the development of new strains into viable industrial hosts is the alteration of the metabolism towards optimal production. Genome-scale models promise a reduction in the time needed for metabolic engineering by predicting the most potent targets in silico before testing them in vivo. The increasing availability of high quality models and molecular biological tools for manipulating filamentous fungi renders the model-guided engineering of these fungal factories possible with comprehensive metabolic networks. A typical fungal model contains on average 1138 unique metabolic reactions and 1050 ORFs, making them a vast knowledge-base of fungal metabolism. In the present review we focus on the current state as well as potential future applications of genome-scale models in filamentous fungi. PMID:25700817

  2. A statistical model of steady-state solvatochromism.

    PubMed

    Roliński, O; Balter, A

    1995-12-01

    This work provides a description of the solvatochromic effect in terms of a hard-sphere model taking into account the microscopic parameters of the solution. The average energies of the solute-solvent system were calculated for Franck-Condon and relaxed states assuming pairwise electrostatic interactions between polarizable, dipolar molecules contained in clusters made of 1-solute and 10-solvent molecules. This in turn allowed us to estimate the values of the solvatochromic shifts. The dependence of these shifts on temperature and electronic properties of molecules expressed in terms of their polarity and polarizability was investigated. PMID:24226908

  3. Linear modeling of steady-state behavioral dynamics.

    PubMed Central

    Palya, William L; Walter, Donald; Kessel, Robert; Lucke, Robert

    2002-01-01

    The observed steady-state behavioral dynamics supported by unsignaled periods of reinforcement within repeating 2,000-s trials were modeled with a linear transfer function. These experiments employed improved schedule forms and analytical methods to improve the precision of the measured transfer function, compared to previous work. The refinements include both the use of multiple reinforcement periods that improve spectral coverage and averaging of independently determined transfer functions. A linear analysis was then used to predict behavior observed for three different test schedules. The fidelity of these predictions was determined. PMID:11831782

  4. New equation of state model for hydrodynamic applications

    SciTech Connect

    Young, D.A.; Barbee, T.W. III; Rogers, F.J.

    1997-07-01

    Two new theoretical methods for computing the equation of state of hot, dense matter are discussed.The ab initio phonon theory gives a first-principles calculation of lattice frequencies, which can be used to compare theory and experiment for isothermal and shock compression of solids. The ACTEX dense plasma theory has been improved to allow it to be compared directly with ultrahigh pressure shock data on low-Z materials. The comparisons with experiment are good, suggesting that these models will be useful in generating global EOS tables for hydrodynamic simulations.

  5. Approximate flash calculations for equation-of-state compositional models

    SciTech Connect

    Nghiem, L.X.; Li, Y.K.

    1985-02-01

    An approximate method for flash calculations (AFC) with an equation of state is presented. The equations for AFC are obtained by linearizing the thermodynamic equilibrium equations at an equilibrium condition termed reference condition. The AFC equations are much simpler than the actual equations for flash calculations and yet give almost the same results. A procedure for generating new reference conditions to keep the AFC results close to the true flash calculation (TFC) results is described. AFC is compared to TFC in the calculation of standard laboratory tests and in the simulation of gas injection processes with a composition model. Excellent results are obtained with AFC in less than half the original execution time.

  6. New equation of state models for hydrodynamic applications

    NASA Astrophysics Data System (ADS)

    Young, David A.; Barbee, Troy W.; Rogers, Forrest J.

    1998-07-01

    Two new theoretical methods for computing the equation of state of hot, dense matter are discussed. The ab initio phonon theory gives a first-principles calculation of lattice frequencies, which can be used to compare theory and experiment for isothermal and shock compression of solids. The ACTEX dense plasma theory has been improved to allow it to be compared directly with ultrahigh pressure shock data on low-Z materials. The comparisons with experiment are good, suggesting that these models will be useful in generating global EOS tables for hydrodynamic simulations.

  7. Model Representation of Multi-Cyclic Phenomena Using Role State Variables: Model Based Fast Idling Control of SI Engine

    NASA Astrophysics Data System (ADS)

    Jimbo, Tomohiko; Hayakawa, Yoshikazu

    The present paper describes a model representation of multi-cyclic phenomena for a multi-cylinder engine system. The model is simplified for implementation as a practical engine controller. The simplified model with physically meaningful variables can be used in design considering practical objectives and constraints more effectively. The proposed approach consists of two steps. First, an approximate analytical discrete crank angle model (i.e., a periodically time-varying state space model) is derived from the conservation laws. Second, the concept of role state variables is proposed to transform the periodically time-varying state space model into a time-invariant state space model. The stabilizability and optimality of the time-invariant state space model imply those of the periodically time-varying state space model. The time-invariant state space model is used to design cold start feedforward and feedback controllers.

  8. Model-independent confirmation of the Z (4430 )- state

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Bauer, Th.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carranza-Mejia, H.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Giani', S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gordon, H.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hartmann, T.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jaton, P.; Jawahery, A.; Jezabek, M.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kaballo, M.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Kelsey, M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, G.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lopez-March, N.; Lowdon, P.; Lu, H.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Manca, G.; Mancinelli, G.; Manzali, M.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martín Sánchez, A.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Moggi, N.; Molina Rodriguez, J.; Monteil, S.; Moran, D.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A.-B.; Mountain, R.; Muheim, F.; Müller, K.; Muresan, R.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, G.; Orlandea, M.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pazos Alvarez, A.; Pearce, A.; Pellegrino, A.; Pepe Altarelli, M.; Perazzini, S.; Perez Trigo, E.; Perret, P.; Perrin-Terrin, M.; Pescatore, L.; Pesen, E.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poluektov, A.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Powell, A.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, A.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Roa Romero, D. A.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruffini, F.; Ruiz, H.; Ruiz Valls, P.; Sabatino, G.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sapunov, M.; Sarti, A.; Satriano, C.; Satta, A.; Savrie, M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Senderowska, K.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spinella, F.; Spradlin, P.; Stagni, F.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Subbiah, V. K.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szilard, D.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; Voss, H.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiedner, D.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, F.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.; LHCb Collaboration

    2015-12-01

    The decay B0→ψ (2 S )K+π- is analyzed using 3 fb-1 of p p collision data collected with the LHCb detector. A model-independent description of the ψ (2 S )π mass spectrum is obtained, using as input the K π mass spectrum and angular distribution derived directly from data, without requiring a theoretical description of resonance shapes or their interference. The hypothesis that the ψ (2 S )π mass spectrum can be described in terms of K π reflections alone is rejected with more than 8 σ significance. This provides confirmation, in a model-independent way, of the need for an additional resonant component in the mass region of the Z (4430 )- exotic state.

  9. State-variable friction for the Burridge-Knopoff model

    NASA Astrophysics Data System (ADS)

    Clancy, Ian; Corcoran, David

    2009-07-01

    This work shows the relationship of the state variable rock-friction law proposed by Dieterich to the Carlson and Langer friction law commonly used in the Burridge-Knopoff (BK) model of earthquakes. Further to this, the Dieterich law is modified to allow slip rates of zero magnitude yielding a three parameter friction law that is included in the BK system. Dynamic phases of small scale and large scale events are found with a transition surface in the parameter space. Near this transition surface the event size distribution follows a power law with an exponent that varies as the transition is approached contrasting with the invariant exponent observed using the Carlson and Langer friction. This variability of the power-law exponent is consistent with the range of exponents measured in real earthquake systems and is more selective than the range observed in the Olami-Feder-Christensen model.

  10. Modeling Dynamic Ductility: An Equation of State for Porous Metals

    SciTech Connect

    Colvin, J

    2007-07-27

    Enhanced heating from shock compression of a porous material can potentially suppress or delay cracking of the material on subsequent expansion. In this paper we quantify the expected enhanced heating in an experiment in which a sector of a thin cylindrical shell is driven from the inside surface by SEMTEX high explosive ({approx}1 {micro}s FWHM pressure pulse with peak pressure {approx}21.5 GPa). We first derive an analytical equation of state (EOS) for porous metals, then discuss the coupling of this EOS with material elastic-plastic response in a 2D hydrocode, and then discuss the modeling of the HE experiment with both fully dense and 10% porous Ta and a Bi/Ta composite. Finally, we compare our modeling with some recent experimental data.

  11. Modelling of pulsed and steady-state DEMO scenarios

    NASA Astrophysics Data System (ADS)

    Giruzzi, G.; Artaud, J. F.; Baruzzo, M.; Bolzonella, T.; Fable, E.; Garzotti, L.; Ivanova-Stanik, I.; Kemp, R.; King, D. B.; Schneider, M.; Stankiewicz, R.; Stępniewski, W.; Vincenzi, P.; Ward, D.; Zagórski, R.

    2015-07-01

    Scenario modelling for the demonstration fusion reactor (DEMO) has been carried out using a variety of simulation codes. Two DEMO concepts have been analysed: a pulsed tokamak, characterized by rather conventional physics and technology assumptions (DEMO1) and a steady-state tokamak, with moderately advanced physics and technology assumptions (DEMO2). Sensitivity to impurity concentrations, radiation, and heat transport models has been investigated. For DEMO2, the impact of current driven non-inductively by neutral beams has been studied by full Monte Carlo simulations of the fast ion distribution. The results obtained are a part of a more extensive research and development (R&D) effort carried out in the EU in order to develop a viable option for a DEMO reactor, to be adopted after ITER for fusion energy research.

  12. Constrained model predictive control, state estimation and coordination

    NASA Astrophysics Data System (ADS)

    Yan, Jun

    In this dissertation, we study the interaction between the control performance and the quality of the state estimation in a constrained Model Predictive Control (MPC) framework for systems with stochastic disturbances. This consists of three parts: (i) the development of a constrained MPC formulation that adapts to the quality of the state estimation via constraints; (ii) the application of such a control law in a multi-vehicle formation coordinated control problem in which each vehicle operates subject to a no-collision constraint posed by others' imperfect prediction computed from finite bit-rate, communicated data; (iii) the design of the predictors and the communication resource assignment problem that satisfy the performance requirement from Part (ii). Model Predictive Control (MPC) is of interest because it is one of the few control design methods which preserves standard design variables and yet handles constraints. MPC is normally posed as a full-state feedback control and is implemented in a certainty-equivalence fashion with best estimates of the states being used in place of the exact state. However, if the state constraints were handled in the same certainty-equivalence fashion, the resulting control law could drive the real state to violate the constraints frequently. Part (i) focuses on exploring the inclusion of state estimates into the constraints. It does this by applying constrained MPC to a system with stochastic disturbances. The stochastic nature of the problem requires re-posing the constraints in a probabilistic form. In Part (ii), we consider applying constrained MPC as a local control law in a coordinated control problem of a group of distributed autonomous systems. Interactions between the systems are captured via constraints. First, we inspect the application of constrained MPC to a completely deterministic case. Formation stability theorems are derived for the subsystems and conditions on the local constraint set are derived in order to

  13. Matrix product states and the non-Abelian rotor model

    NASA Astrophysics Data System (ADS)

    Milsted, Ashley

    2016-04-01

    We use uniform matrix product states to study the (1 +1 )D O (2 ) and O (4 ) rotor models, which are equivalent to the Kogut-Susskind formulation of matter-free non-Abelian lattice gauge theory on a "Hawaiian earring" graph for U (1 ) and S U (2 ), respectively. Applying tangent space methods to obtain ground states and determine the mass gap and the β function, we find excellent agreement with known results, locating the Berezinskii-Kosterlitz-Thouless transition for O (2 ) and successfully entering the asymptotic weak-coupling regime for O (4 ). To obtain a finite local Hilbert space, we truncate in the space of generalized Fourier modes of the gauge group, comparing the effects of different cutoff values. We find that higher modes become important in the crossover and weak-coupling regimes of the non-Abelian theory, where entanglement also suddenly increases. This could have important consequences for tensor network state studies of Yang-Mills on higher-dimensional graphs.

  14. Solid state stability studies of model dipeptides: aspartame and aspartylphenylalanine.

    PubMed

    Leung, S S; Grant, D J

    1997-01-01

    Some solid-state pharmaceutical properties and the solid-state thermal stability of the model dipeptides aspartame (APM) and aspartylphenylalanine (AP), have been investigated. Studies by differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), high-performance liquid chromatography, powder X-ray diffraction, and optical microscopy have shown that the dipeptides undergo solid state intramolecular aminolysis of the type, solid --> solid + gas. This reaction was observed for APM at 167-180 degrees C with the liberation of methanol and for AP at 186-202 degrees C with the liberation of water. The exclusive solid product of the degradation reaction of both dipeptides is the cyclic compound 3-(carboxymethyl)-6-benzyl-2,5-dioxopiperazine. The rates of the degradation reactions were monitored by isothermal TGA and by temperature-ramp DSC and were found to follow kinetics based on nucleation control with activation energies of about 266 kJ mol(-1) for APM and 234 kJ mol(-1) for AP. PMID:9002461

  15. An Examination of State Funding Models Regarding Virtual Schools for Public Elementary and Secondary Education in the United States

    ERIC Educational Resources Information Center

    Stedrak, Luke J.

    2012-01-01

    This study contains an analysis of virtual schools, public policy, and funding in the United States. The purpose of this study was to determine what public policies and legislation were in place regarding the funding models of virtual education on a state by state basis. Furthermore, this study addressed how allocations were being made by state…

  16. State-of-the-art Model M-2 Maintenance System

    SciTech Connect

    Herndon, J.N.; Martin, H.L.; Satterlee, P.E. Jr.; Jelatis, D.G.; Jennrich, C.E.

    1984-04-01

    The Model M-2 Maintenance System is part of an ongoing program within the Consolidated Fuel Reprocessing Program (CFRP) at Oak Ridge National Laboratory (ORNL) to improve remote manipulation technology for future nuclear fuel reprocessing and other remote applications. Techniques, equipment, and guidelines which can improve the efficiency of remote maintenance are being developed. The Model M-2 Maintenance System, installed in the Integrated Equipment Test (IET) Facility at ORNL, provides a complete, integrated remote maintenance system for the demonstration and development of remote maintenance techniques. The system comprises a pair of force-reflecting servomanipulator arms, television viewing, lighting, and auxiliary lifting capabilities, thereby allowing manlike maintenance operations to be executed remotely within the remote cell mockup area in the IET. The Model M-2 Maintenance System incorporates an upgraded version of the proven Central Research Laboratories' Model M servomanipulator. Included are state-of-the-art brushless dc servomotors for improved performance, remotely removable wrist assemblies, geared azimuth drive, and a distributed microprocessor-based digital control system. 5 references, 8 figures.

  17. Dislocation models of interseismic deformation in the western United States

    USGS Publications Warehouse

    Pollitz, F.F.; McCrory, P.; Svarc, J.; Murray, J.

    2008-01-01

    The GPS-derived crustal velocity field of the western United States is used to construct dislocation models in a viscoelastic medium of interseismic crustal deformation. The interseismic velocity field is constrained by 1052 GPS velocity vectors spanning the ???2500-km-long plate boundary zone adjacent to the San Andreas fault and Cascadia subduction zone and extending ???1000 km into the plate interior. The GPS data set is compiled from U.S. Geological Survey campaign data, Plate Boundary Observatory data, and the Western U.S. Cordillera velocity field of Bennett et al. (1999). In the context of viscoelastic cycle models of postearthquake deformation, the interseismic velocity field is modeled with a combination of earthquake sources on ???100 known faults plus broadly distributed sources. Models that best explain the observed interseismic velocity field include the contributions of viscoelastic relaxation from faulting near the major plate margins, viscoelastic relaxation from distributed faulting in the plate interior, as well as lateral variations in depth-averaged rigidity in the elastic lithosphere. Resulting rigidity variations are consistent with reduced effective elastic plate thickness in a zone a few tens of kilometers wide surrounding the San Andreas fault (SAF) system. Primary deformation characteristics are captured along the entire SAF system, Eastern California Shear Zone, Walker Lane, the Mendocino triple junction, the Cascadia margin, and the plate interior up to ???1000 km from the major plate boundaries.

  18. Dislocation models of interseismic deformation in the western United States

    NASA Astrophysics Data System (ADS)

    Pollitz, Fred F.; McCrory, Patricia; Svarc, Jerry; Murray, Jessica

    2008-04-01

    The GPS-derived crustal velocity field of the western United States is used to construct dislocation models in a viscoelastic medium of interseismic crustal deformation. The interseismic velocity field is constrained by 1052 GPS velocity vectors spanning the ˜2500-km-long plate boundary zone adjacent to the San Andreas fault and Cascadia subduction zone and extending ˜1000 km into the plate interior. The GPS data set is compiled from U.S. Geological Survey campaign data, Plate Boundary Observatory data, and the Western U.S. Cordillera velocity field of Bennett et al. (1999). In the context of viscoelastic cycle models of postearthquake deformation, the interseismic velocity field is modeled with a combination of earthquake sources on ˜100 known faults plus broadly distributed sources. Models that best explain the observed interseismic velocity field include the contributions of viscoelastic relaxation from faulting near the major plate margins, viscoelastic relaxation from distributed faulting in the plate interior, as well as lateral variations in depth-averaged rigidity in the elastic lithosphere. Resulting rigidity variations are consistent with reduced effective elastic plate thickness in a zone a few tens of kilometers wide surrounding the San Andreas fault (SAF) system. Primary deformation characteristics are captured along the entire SAF system, Eastern California Shear Zone, Walker Lane, the Mendocino triple junction, the Cascadia margin, and the plate interior up to ˜1000 km from the major plate boundaries.

  19. The present state of geomagnetic comprehensive models and their applications

    NASA Astrophysics Data System (ADS)

    Sabaka, T.; Olsen, N.

    2003-04-01

    Over the last couple of years a marked advancement in magnetic field modelling capabilities has occurred, spawned by exciting new mapping missions such as Oersted, CHAMP and SACC. A new class of models, popularly known as "comprehensive models" (CMs), has arisen in which fields from the major near- Earth electric current systems have been parameterized, and these parameters coestimated from surface and satellite data such that an optimal partitioning of the constituent signals is achieved. The best CMs to date have been derived from observatory data as well as from POGO, Magsat, Oersted and CHAMP satellite data. While the implications from these models concerning core secular variation (SV), lithospheric fields, ionospheric currents systems, etc., are of great interest, perhaps the most intriguing CM contributions come in the form of applications to other problems. This talk will briefly outline the present state of the CMs and survey some of their current and anticipated applications, such as the removal of SV and diurnal signals from aeromagnetic surveys, inflight satellite magnetometer calibration, and induction studies.

  20. Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism

    PubMed Central

    Fleming, R.M.T.; Thiele, I.; Provan, G.; Nasheuer, H.P.

    2010-01-01

    The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an organism. Understanding the metabolism of a single cell and multi-cell organism will provide the knowledge for the rational design of growth conditions to produce commercially valuable reagents in biotechnology. Here, we demonstrate how equations representing steady state mass conservation, energy conservation, the second law of thermodynamics, and reversible enzyme kinetics can be formulated as a single system of linear equalities and inequalities, in addition to linear equalities on exponential variables. Even though the feasible set is non-convex, the reformulation is exact and amenable to large-scale numerical analysis, a prerequisite for computationally feasible genome scale modelling. Integrating flux, concentration and kinetic variables in a unified constraint-based formulation is aimed at increasing the quantitative predictive capacity of flux balance analysis. Incorporation of experimental and theoretical bounds on thermodynamic and kinetic variables ensures that the predicted steady state fluxes are both thermodynamically and biochemically feasible. The resulting in silico predictions are tested against fluxomic data for central metabolism in E. coli and compare favourably with in silico prediction by flux balance analysis. PMID:20230840

  1. Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism.

    PubMed

    Fleming, R M T; Thiele, I; Provan, G; Nasheuer, H P

    2010-06-01

    The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an organism. Understanding the metabolism of a single cell and multi-cell organism will provide the knowledge for the rational design of growth conditions to produce commercially valuable reagents in biotechnology. Here, we demonstrate how equations representing steady state mass conservation, energy conservation, the second law of thermodynamics, and reversible enzyme kinetics can be formulated as a single system of linear equalities and inequalities, in addition to linear equalities on exponential variables. Even though the feasible set is non-convex, the reformulation is exact and amenable to large-scale numerical analysis, a prerequisite for computationally feasible genome scale modelling. Integrating flux, concentration and kinetic variables in a unified constraint-based formulation is aimed at increasing the quantitative predictive capacity of flux balance analysis. Incorporation of experimental and theoretical bounds on thermodynamic and kinetic variables ensures that the predicted steady state fluxes are both thermodynamically and biochemically feasible. The resulting in silico predictions are tested against fluxomic data for central metabolism in Escherichia coli and compare favourably with in silico prediction by flux balance analysis. PMID:20230840

  2. Ground-State of the Bose-Hubbard Model

    NASA Astrophysics Data System (ADS)

    Mancini, J. D.; Fessatidis, V.; Bowen, S. P.; Murawski, R. K.; Maly, J.

    The Bose-Hubbard Model represents a s simple theoretical model to describe the physics of interacting Boson systems. In particular it has proved to be an effective description of a number of physical systems such as arrays of Josephson arrays as well as dilute alkali gases in optical lattices. Here we wish to study the ground-state of this system using two disparate but related moments calculational schemes: the Lanczos (tridiagonal) method as well as a Generalized moments approach. The Hamiltonian to be studied is given by (in second-quantized notation): H = - t ∑ < i , j > bi†bj +U/2 ∑ inini - 1 - μ ∑ ini . Here i is summed over all lattice sites, and < i , j > denotes summation over all neighbhoring sites i and j, while bi† and bi are bosonic creation and annihilation operators. ni = bi†bi gives the number of particles on site i. Parameter t is the hopping amplitude, describing mobility of bosons in the lattice. Parameter U describes the on-site interaction, repulsive, if U > 0 , and attractive for U < 0 . μ is the chemical potential. Both the ground-state energy and energy gap are evaluated as a function of t, U and μ.

  3. Modeling switchgrass derived cellulosic ethanol distribution in the United States.

    PubMed

    Morrow, William R; Griffin, W Michael; Matthews, H Scott

    2006-05-01

    Discussions of alternative fuel and propulsion technologies for transportation often overlook the infrastructure required to make these options practical and cost-effective. We estimate ethanol production facility locations and use a linear optimization model to consider the economic costs of distributing various ethanol fuel blends to all metropolitan areas in the United States. Fuel options include corn-based E5 (5% ethanol, 95% gasoline) to E16 from corn and switchgrass, as short-term substitutes for petroleum-based fuel. Our estimates of 1-2 cents per L of ethanol blend for downstream rail or truck transportation remain a relatively small fraction of total fuel cost. However, for even the relatively small blends of ethanol modeled, the transportation infrastructure demands would be comparably larger than the current demands of petroleum. Thus if ethanol is to be competitive in the long run, then in addition to process efficiency improvements, more efficient transportation infrastructure will need to be developed, such as pipelines. In addition to these results, national and regional policy challenges on how to pay for and optimize a new fuel and distribution infrastructure in the United States are discussed. PMID:16719086

  4. Excited states of ribosome translocation revealed through integrative molecular modeling

    PubMed Central

    Whitford, Paul C.; Ahmed, Aqeel; Yu, Yanan; Hennelly, Scott P.; Tama, Florence; Spahn, Christian M. T.; Onuchic, José N.; Sanbonmatsu, Karissa Y.

    2011-01-01

    The dynamic nature of biomolecules leads to significant challenges when characterizing the structural properties associated with function. While X-ray crystallography and imaging techniques (such as cryo-electron microscopy) can reveal the structural details of stable molecular complexes, strategies must be developed to characterize configurations that exhibit only marginal stability (such as intermediates) or configurations that do not correspond to minima on the energy landscape (such as transition-state ensembles). Here, we present a methodology (MDfit) that utilizes molecular dynamics simulations to generate configurations of excited states that are consistent with available biophysical and biochemical measurements. To demonstrate the approach, we present a sequence of configurations that are suggested to be associated with transfer RNA (tRNA) movement through the ribosome (translocation). The models were constructed by combining information from X-ray crystallography, cryo-electron microscopy, and biochemical data. These models provide a structural framework for translocation that may be further investigated experimentally and theoretically to determine the precise energetic character of each configuration and the transition dynamics between them. PMID:22080606

  5. Excited states of ribosome translocation revealed through integrative molecular modeling.

    PubMed

    Whitford, Paul C; Ahmed, Aqeel; Yu, Yanan; Hennelly, Scott P; Tama, Florence; Spahn, Christian M T; Onuchic, José N; Sanbonmatsu, Karissa Y

    2011-11-22

    The dynamic nature of biomolecules leads to significant challenges when characterizing the structural properties associated with function. While X-ray crystallography and imaging techniques (such as cryo-electron microscopy) can reveal the structural details of stable molecular complexes, strategies must be developed to characterize configurations that exhibit only marginal stability (such as intermediates) or configurations that do not correspond to minima on the energy landscape (such as transition-state ensembles). Here, we present a methodology (MDfit) that utilizes molecular dynamics simulations to generate configurations of excited states that are consistent with available biophysical and biochemical measurements. To demonstrate the approach, we present a sequence of configurations that are suggested to be associated with transfer RNA (tRNA) movement through the ribosome (translocation). The models were constructed by combining information from X-ray crystallography, cryo-electron microscopy, and biochemical data. These models provide a structural framework for translocation that may be further investigated experimentally and theoretically to determine the precise energetic character of each configuration and the transition dynamics between them. PMID:22080606

  6. Developing a PLC-friendly state machine model: lessons learned

    NASA Astrophysics Data System (ADS)

    Pessemier, Wim; Deconinck, Geert; Raskin, Gert; Saey, Philippe; Van Winckel, Hans

    2014-07-01

    Modern Programmable Logic Controllers (PLCs) have become an attractive platform for controlling real-time aspects of astronomical telescopes and instruments due to their increased versatility, performance and standardization. Likewise, vendor-neutral middleware technologies such as OPC Unified Architecture (OPC UA) have recently demonstrated that they can greatly facilitate the integration of these industrial platforms into the overall control system. Many practical questions arise, however, when building multi-tiered control systems that consist of PLCs for low level control, and conventional software and platforms for higher level control. How should the PLC software be structured, so that it can rely on well-known programming paradigms on the one hand, and be mapped to a well-organized OPC UA interface on the other hand? Which programming languages of the IEC 61131-3 standard closely match the problem domains of the abstraction levels within this structure? How can the recent additions to the standard (such as the support for namespaces and object-oriented extensions) facilitate a model based development approach? To what degree can our applications already take advantage of the more advanced parts of the OPC UA standard, such as the high expressiveness of the semantic modeling language that it defines, or the support for events, aggregation of data, automatic discovery, ... ? What are the timing and concurrency problems to be expected for the higher level tiers of the control system due to the cyclic execution of control and communication tasks by the PLCs? We try to answer these questions by demonstrating a semantic state machine model that can readily be implemented using IEC 61131 and OPC UA. One that does not aim to capture all possible states of a system, but rather one that attempts to organize the course-grained structure and behaviour of a system. In this paper we focus on the intricacies of this seemingly simple task, and on the lessons that we

  7. Modeling the 1992 Landers Earthquake with a Rate and State Friction Model.

    NASA Astrophysics Data System (ADS)

    Mohammedi, H.; Madariaga, R.; Perrin, G.

    2002-12-01

    We study rupture propagation in realistic earthquake models under rate and state dependent friction and we apply it to the modeling of the 28 June 1992, Landers earthquake. In our simulations we use a modified version of rate and state proposed by Perrin, Rice and Zheng, the so called PRZ law. Full inversion with PRZ is not yet possible because of the much higher numerical cost of modeling a fault under rate and state than with slip weakening friction laws (SW). Also PRZ has a larger number of independent parameters than slip weakening. We obtain reasonable initial models through the use of the ratio κ between available strain energy and energy relase rate. Because in PRZ friction there are more parameters than in SW we have not yet been able to identify all relevant non-dimensional numbers that control rupture in this model, but a very important one is a logarithmic map that controls whether instable slip may occur or not. This map has the form log ˙ D/v0 = λ ˙ D/v0, where λ is a nondimensional number akin to κ . It includes the parameters of the friction law and the characteristic length of the initial stress, velocity or state fields. ˙ D is slip velocity and v0 a reference speed that defines the initial stress field. Using the results of dynamic inversion from Peyrat et al, we find reasonable rupture models for the initiation of the Landers earthquake. The slip weakening distance in rate and state Dc, as defined by Bizarri and Cocco, is of the order of a few tens of cm. Dc is determined from L, the relaxation length in rate and state, as a subproduct of the logarithmic map cited above.

  8. Multiscale air quality modeling of the Northeastern United States

    NASA Astrophysics Data System (ADS)

    Kumar, Naresh; Russell, Armistead G.

    The Urban and Regional Multiscale (URM) model has been used to study the ozone problem in the northeastern United States. The model was applied to a multiday ozone episode extending from 2 July 1988 to 8 July 1988. The URM model is particularly suitable for application to the Northeast as there is a dense network of urban centers along with large rural areas, and the model allows the use of variable grid sizes to effectively capture the pollutant dynamics while being computationally efficient. This study particularly concentrates on how spatial grid resolution affects results, particularly in the Northeast Corridor, a string of urban centers extending from Washington D.C. to Boston. Three different grid systems are employed in the model simulations to examine this issue. The most dynamic grid system uses grid sizes varying from 4.625 to 74 km, with the finest grids concentrated in the Northeast Corridor. The uniform grid system uses a uniform grid size of 18.5 km similar to that used in the regional oxidant model (ROM). The intermediate grid system uses grid sizes varying from 4.625 to 18.5 km. When finer grids are used over the urban areas, as in the intermediate and the most dynamic grid systems, the model predicted higher peak ozone concentrations with greater detail. Sensitivity calculations were performed to quantify the effect of various inputs on the predicted ozone. Effects of zeroing the initial conditions persisted until 7 July 1988. When using background levels of species concentrations as initial conditions, the effect lasted only for two days of simulation. Boundary conditions impacted the ozone concentrations near the boundary cells only. Emission inputs were the major factor in producing the large concentrations of ozone predicted in the Northeast Corridor. The URM model was also used to study ozone control strategy issues in the Northeast Corridor. A suite of simulations was performed where anthropogenic NO x and VOC emission levels were reducd

  9. State-transition modeling: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force--3.

    PubMed

    Siebert, Uwe; Alagoz, Oguzhan; Bayoumi, Ahmed M; Jahn, Beate; Owens, Douglas K; Cohen, David J; Kuntz, Karen M

    2012-01-01

    State-transition modeling is an intuitive, flexible, and transparent approach of computer-based decision-analytic modeling including both Markov model cohort simulation and individual-based (first-order Monte Carlo) microsimulation. Conceptualizing a decision problem in terms of a set of (health) states and transitions among these states, state-transition modeling is one of the most widespread modeling techniques in clinical decision analysis, health technology assessment, and health-economic evaluation. State-transition models have been used in many different populations and diseases, and their applications range from personalized health care strategies to public health programs. Most frequently, state-transition models are used in the evaluation of risk factor interventions, screening, diagnostic procedures, treatment strategies, and disease management programs. The goal of this article was to provide consensus-based guidelines for the application of state-transition models in the context of health care. We structured the best practice recommendations in the following sections: choice of model type (cohort vs. individual-level model), model structure, model parameters, analysis, reporting, and communication. In each of these sections, we give a brief description, address the issues that are of particular relevance to the application of state-transition models, give specific examples from the literature, and provide best practice recommendations for state-transition modeling. These recommendations are directed both to modelers and to users of modeling results such as clinicians, clinical guideline developers, manufacturers, or policymakers. PMID:22999130

  10. An Inter-Industry Comparison of VET in Australian SMEs: Inter-Industry Comparison

    ERIC Educational Resources Information Center

    Jones, Janice

    2006-01-01

    Purpose: The purpose of this paper is to compare and contrast the extent and nature of Vocational Education and Training (VET) vis-a-vis other forms of training in three size categories of small-to-medium-sized enterprises (SMEs) from two industry sectors. Design/methodology/approach: The longitudinal panel data employed in this paper are drawn…

  11. Steady States in SIRS Epidemical Model of Mobile Individuals

    NASA Astrophysics Data System (ADS)

    Zhang, Duan-Ming; He, Min-Hua; Yu, Xiao-Ling; Pan, Gui-Jun; Sun, Hong-Zhang; Su, Xiang-Ying; Sun, Fan; Yin, Yan-Ping; Li, Rui; Liu, Dan

    2006-01-01

    We consider an epidemical model within socially interacting mobile individuals to study the behaviors of steady states of epidemic propagation in 2D networks. Using mean-field approximation and large scale simulations, we recover the usual epidemic behavior with critical thresholds δc and pc below which infectious disease dies out. For the population density δ far above δc, it is found that there is linear relationship between contact rate λ and the population density δ in the main. At the same time, the result obtained from mean-field approximation is compared with our numerical result, and it is found that these two results are similar by and large but not completely the same.

  12. Thermodynamics of bread baking: A two-state model

    NASA Astrophysics Data System (ADS)

    Zürcher, Ulrich

    2014-03-01

    Bread baking can be viewed as a complex physico-chemical process. It is governed by transport of heat and is accompanied by changes such as gelation of starch, the expansion of air cells within dough, and others. We focus on the thermodynamics of baking and investigate the heat flow through dough and find that the evaporation of excess water in dough is the rate-limiting step. We consider a simplified one-dimensional model of bread, treating the excess water content as a two-state variable that is zero for baked bread and a fixed constant for unbaked dough. We arrive at a system of coupled, nonlinear ordinary differential equations, which are solved using a standard Runge-Kutta integration method. The calculated baking times are consistent with common baking experience.

  13. Models explaining motor vehicle death rates in the United States.

    PubMed

    Zlatoper, T J

    1989-04-01

    This paper is a selective survey of models explaining motor vehicle death rates in the United States. First, it reviews Peltzman's 1975 study of the effect of automobile safety regulation and critiques of the study. Then it summarizes several subsequent statistical studies of highway fatalities. The surveyed studies are typically regression analyses of the impact of various factors on motor vehicle deaths. They are categorized in this paper according to which of three types of data they utilized: time-series; cross-sectional; or pooled time-series, cross-sectional. This paper notes what can be inferred collectively from the surveyed studies regarding the impacts of various factors on highway fatalities. It also discusses certain shortcomings of the studies in general along with possible remedies, and makes recommendations regarding future research. Tabular summaries of the statistical studies surveyed in this paper are included in the Appendix. PMID:2785390

  14. Approximate flash calculations for equation-of-state compositional models--

    SciTech Connect

    Nghiem, L.X.; Li, Y.K. )

    1990-02-01

    An approximate flash-calculation (AFC) method with an equation of state (EOS) is presented. The equations for AFC are obtained by linearizing the thermodynamic equilibrium equations at an equilibrium condition called the reference condition. The AFC equations are much simpler than the actual equations for flash calculations and yet give almost the same results. A procedure for generating new reference conditions to keep the AFC results close to the true flash-calculation (TFC) results is described. AFC is compared with TFC in the calculation of standard laboratory tests and in the simulation of gas-injection processes with a compositional model. Excellent results are obtained with AFC in less than half the original execution time.

  15. Langevin equation with fluctuating diffusivity: A two-state model

    NASA Astrophysics Data System (ADS)

    Miyaguchi, Tomoshige; Akimoto, Takuma; Yamamoto, Eiji

    2016-07-01

    Recently, anomalous subdiffusion, aging, and scatter of the diffusion coefficient have been reported in many single-particle-tracking experiments, though the origins of these behaviors are still elusive. Here, as a model to describe such phenomena, we investigate a Langevin equation with diffusivity fluctuating between a fast and a slow state. Namely, the diffusivity follows a dichotomous stochastic process. We assume that the sojourn time distributions of these two states are given by power laws. It is shown that, for a nonequilibrium ensemble, the ensemble-averaged mean-square displacement (MSD) shows transient subdiffusion. In contrast, the time-averaged MSD shows normal diffusion, but an effective diffusion coefficient transiently shows aging behavior. The propagator is non-Gaussian for short time and converges to a Gaussian distribution in a long-time limit; this convergence to Gaussian is extremely slow for some parameter values. For equilibrium ensembles, both ensemble-averaged and time-averaged MSDs show only normal diffusion and thus we cannot detect any traces of the fluctuating diffusivity with these MSDs. Therefore, as an alternative approach to characterizing the fluctuating diffusivity, the relative standard deviation (RSD) of the time-averaged MSD is utilized and it is shown that the RSD exhibits slow relaxation as a signature of the long-time correlation in the fluctuating diffusivity. Furthermore, it is shown that the RSD is related to a non-Gaussian parameter of the propagator. To obtain these theoretical results, we develop a two-state renewal theory as an analytical tool.

  16. Langevin equation with fluctuating diffusivity: A two-state model.

    PubMed

    Miyaguchi, Tomoshige; Akimoto, Takuma; Yamamoto, Eiji

    2016-07-01

    Recently, anomalous subdiffusion, aging, and scatter of the diffusion coefficient have been reported in many single-particle-tracking experiments, though the origins of these behaviors are still elusive. Here, as a model to describe such phenomena, we investigate a Langevin equation with diffusivity fluctuating between a fast and a slow state. Namely, the diffusivity follows a dichotomous stochastic process. We assume that the sojourn time distributions of these two states are given by power laws. It is shown that, for a nonequilibrium ensemble, the ensemble-averaged mean-square displacement (MSD) shows transient subdiffusion. In contrast, the time-averaged MSD shows normal diffusion, but an effective diffusion coefficient transiently shows aging behavior. The propagator is non-Gaussian for short time and converges to a Gaussian distribution in a long-time limit; this convergence to Gaussian is extremely slow for some parameter values. For equilibrium ensembles, both ensemble-averaged and time-averaged MSDs show only normal diffusion and thus we cannot detect any traces of the fluctuating diffusivity with these MSDs. Therefore, as an alternative approach to characterizing the fluctuating diffusivity, the relative standard deviation (RSD) of the time-averaged MSD is utilized and it is shown that the RSD exhibits slow relaxation as a signature of the long-time correlation in the fluctuating diffusivity. Furthermore, it is shown that the RSD is related to a non-Gaussian parameter of the propagator. To obtain these theoretical results, we develop a two-state renewal theory as an analytical tool. PMID:27575079

  17. Entanglement and Majorana edge states in the Kitaev model

    NASA Astrophysics Data System (ADS)

    Mandal, Saptarshi; Maiti, Moitri; Varma, Vipin Kerala

    2016-07-01

    We investigate the von Neumann entanglement entropy and Schmidt gap in the vortex-free ground state of the Kitaev model on the honeycomb lattice for square/rectangular and cylindrical subsystems. We find that, for both the subsystems, the free-fermionic contribution to the entanglement entropy SE exhibits signatures of the phase transitions between the gapless and gapped phases. However, within the gapless phase, we find that SE does not show an expected monotonic behavior as a function of the coupling Jz between the suitably defined one-dimensional chains for either geometry; moreover, the system generically reaches a point of minimum entanglement within the gapless phase before the entanglement saturates or increases again until the gapped phase is reached. This may be attributed to the onset of gapless modes in the bulk spectrum and the competition between the correlation functions along various bonds. In the gapped phase, on the other hand, SE always monotonically varies with Jz independent of the subregion size or shape. Finally, further confirming the Li-Haldane conjecture, we find that the Schmidt gap Δ defined from the entanglement spectrum also signals the topological transitions but only if there are corresponding zero-energy Majorana edge states that simultaneously appear or disappear across the transitions. We analytically corroborate some of our results on entanglement entropy, the Schmidt gap, and the bulk-edge correspondence using perturbation theory.

  18. Interactions of multiquark states in the chromodielectric model

    SciTech Connect

    Martens, Gunnar; Greiner, Carsten; Leupold, Stefan; Mosel, Ulrich

    2006-05-01

    We investigate 4-quark (qqqq) systems as well as multiquark states with a large number of quarks and antiquarks using the chromodielectric model. In the former type of systems the flux distribution and the corresponding energy of such systems for planar and nonplanar geometries are studied. From the comparison to the case of two independent qq-strings we deduce the interaction potential between two strings. We find an attraction between strings and a characteristic string flip if there are two degenerate string combinations between the four particles. The interaction shows no strong Van-der-Waals forces and the long range behavior of the potential is well described by a Yukawa potential, which might be confirmed in future lattice calculations. The multiquark states develop an inhomogeneous porous structure even for particle densities large compared to nuclear matter constituent quark densities. We present first results of the dependence of the system on the particle density pointing towards a percolation type of transition from a hadronic matter phase to a quark matter phase. The critical energy density is found at {epsilon}{sub c}=1.2 GeV/fm{sup 3}.

  19. Modeling thermophoretic effects in solid-state nanopores

    PubMed Central

    Belkin, Maxim; Chao, Shu-Han; Giannetti, Gino; Aksimentiev, Aleksei

    2014-01-01

    Local modulation of temperature has emerged as a new mechanism for regulation of molecular transport through nanopores. Predicting the effect of such modulations on nanopore transport requires simulation protocols capable of reproducing non-uniform temperature gradients observed in experiment. Conventional molecular dynamics (MD) method typically employs a single thermostat for maintaining a uniform distribution of temperature in the entire simulation domain, and, therefore, can not model local temperature variations. In this article, we describe a set of simulation protocols that enable modeling of nanopore systems featuring non-uniform distributions of temperature. First, we describe a method to impose a temperature gradient in all-atom MD simulations based on a boundary-driven non-equilibrium MD protocol. Then, we use this method to study the effect of temperature gradient on the distribution of ions in bulk solution (the thermophoretic effect). We show that DNA nucleotides exhibit differential response to the same temperature gradient. Next, we describe a method to directly compute the effective force of a thermal gradient on a prototypical biomolecule—a fragment of double-stranded DNA. Following that, we demonstrate an all-atom MD protocol for modeling thermophoretic effects in solid-state nanopores. We show that local heating of a nanopore volume can be used to regulate the nanopore ionic current. Finally, we show how continuum calculations can be coupled to a coarse-grained model of DNA to study the effect of local temperature modulation on electrophoretic motion of DNA through plasmonic nanopores. The computational methods described in this article are expected to find applications in rational design of temperature-responsive nanopore systems. PMID:25395899

  20. Review: Regional groundwater flow modeling in heavily irrigated basins of selected states in the western United States

    NASA Astrophysics Data System (ADS)

    Rossman, Nathan R.; Zlotnik, Vitaly A.

    2013-09-01

    Water resources in agriculture-dominated basins of the arid western United States are stressed due to long-term impacts from pumping. A review of 88 regional groundwater-flow modeling applications from seven intensively irrigated western states (Arizona, California, Colorado, Idaho, Kansas, Nebraska and Texas) was conducted to provide hydrogeologists, modelers, water managers, and decision makers insight about past modeling studies that will aid future model development. Groundwater models were classified into three types: resource evaluation models (39 %), which quantify water budgets and act as preliminary models intended to be updated later, or constitute re-calibrations of older models; management/planning models (55 %), used to explore and identify management plans based on the response of the groundwater system to water-development or climate scenarios, sometimes under water-use constraints; and water rights models (7 %), used to make water administration decisions based on model output and to quantify water shortages incurred by water users or climate changes. Results for 27 model characteristics are summarized by state and model type, and important comparisons and contrasts are highlighted. Consideration of modeling uncertainty and the management focus toward sustainability, adaptive management and resilience are discussed, and future modeling recommendations, in light of the reviewed models and other published works, are presented.

  1. Oxygen consumption dynamics in steady-state tumour models.

    PubMed

    Grimes, David Robert; Fletcher, Alexander G; Partridge, Mike

    2014-09-01

    Oxygen levels in cancerous tissue can have a significant effect on treatment response: hypoxic tissue is both more radioresistant and more chemoresistant than well-oxygenated tissue. While recent advances in medical imaging have facilitated real-time observation of macroscopic oxygenation, the underlying physics limits the resolution to the millimetre domain, whereas oxygen tension varies over a micrometre scale. If the distribution of oxygen in the tumour micro-environment can be accurately estimated, then the effect of potential dose escalation to these hypoxic regions could be better modelled, allowing more realistic simulation of biologically adaptive treatments. Reaction-diffusion models are commonly used for modelling oxygen dynamics, with a variety of functional forms assumed for the dependence of oxygen consumption rate (OCR) on cellular status and local oxygen availability. In this work, we examine reaction-diffusion models of oxygen consumption in spherically and cylindrically symmetric geometries. We consider two different descriptions of oxygen consumption: one in which the rate of consumption is constant and one in which it varies with oxygen tension in a hyperbolic manner. In each case, we derive analytic approximations to the steady-state oxygen distribution, which are shown to closely match the numerical solutions of the equations and accurately predict the extent to which oxygen can diffuse. The derived expressions relate the limit to which oxygen can diffuse into a tissue to the OCR of that tissue. We also demonstrate that differences between these functional forms are likely to be negligible within the range of literature estimates of the hyperbolic oxygen constant, suggesting that the constant consumption rate approximation suffices for modelling oxygen dynamics for most values of OCR. These approximations also allow the rapid identification of situations where hyperbolic consumption forms can result in significant differences from constant

  2. Simulating spin-boson models with matrix product states

    NASA Astrophysics Data System (ADS)

    Wall, Michael; Safavi-Naini, Arghavan; Rey, Ana Maria

    2016-05-01

    The global coupling of few-level quantum systems (``spins'') to a discrete set of bosonic modes is a key ingredient for many applications in quantum science, including large-scale entanglement generation, quantum simulation of the dynamics of long-range interacting spin models, and hybrid platforms for force and spin sensing. In many situations, the bosons are integrated out, leading to effective long-range interactions between the spins; however, strong spin-boson coupling invalidates this approach, and spin-boson entanglement degrades the fidelity of quantum simulation of spin models. We present a general numerical method for treating the out-of-equilibrium dynamics of spin-boson systems based on matrix product states. While most efficient for weak coupling or small numbers of boson modes, our method applies for any spatial and operator dependence of the spin-boson coupling. In addition, our approach allows straightforward computation of many quantities of interest, such as the full counting statistics of collective spin measurements and quantum simulation infidelity due to spin-boson entanglement. We apply our method to ongoing trapped ion quantum simulator experiments in analytically intractable regimes. This work is supported by JILA-NSF-PFC-1125844, NSF-PIF- 1211914, ARO, AFOSR, AFOSR-MURI, and the NRC.

  3. Steady state model of electrochemical gas sensors with multiple reactions

    SciTech Connect

    Brailsford, A.D.; Yussouff, M.; Logothetis, E.M.

    1996-12-31

    A general first-principles model of the steady state response of metal oxide gas sensors was developed by the authors and applied to the case of both electrochemical and resistive type oxygen sensors. It can describe many features of the experimentally observed response of commercial electrochemical zirconia sensors exposed to non-equilibrium gas mixtures consisting of O{sub 2} and one or more reducing species (CO, H{sub 2} , etc). However, the calculated sensor emf as a function of R`= 2p{sub O2}/P{sub CO} (or 2p{sub O2}/P{sub H2}) always showed a sharp transition from high to low values at some R` value and had a small value for R` >> 1. These results do not agree with the broad transitions and relatively high emf values for large R`, as observed experimentally at low temperatures. This paper discusses an extension of the model which is able to describe all aspects of the observed response.

  4. Natural State Model of the Nesjavellir Geothermal Field, Iceland

    SciTech Connect

    Bodvarsson, G.S.; Pruess, K.; Stefansson, V.; Steingrimsson, B.; Bjornsson, S.; Gunnarsson, A.; Gunnlaugsson, E.

    1986-01-21

    The Nesjavellir geothermal system in southern Iceland is very complex from both a thermal and hydrologic point of view. There are large pressure and temperature gradients in the wellfield and zones with drastically different pressure potentials. Thus, natural fluid flow is substantial in the system and flow patterns are complex. We have developed a two-dimensional natural state model for the Nesjavellir system that matches reasonably well the observed pressure and temperature distributions. The match with field data has allowed determination of the energy recharge to the system and the permeability distribution. Fluids recharge the system at rate of 0.02 kg/s/m with an enthalpy of 1460 kJ/kg. The permeability in the main reservoir is estimated to be in the range of 1.5 to 2.0 md, which agrees well with injection test results from individual wells. Permeabilities in shallower reservoirs are about an order of magnitude higher. Most of the main reservoir is under twephase conditions, as are shallow aquifers in the southern part of the field. The model results also suggest that the low temperatures in the shallow part of the northern region of the field may be due to the young age of the system; i.e., the system is gradually heating up. If this is the case the estimated age of the system near the wellfield is on the order of a few thousand years.

  5. An application of a queuing model for sea states

    NASA Astrophysics Data System (ADS)

    Loffredo, L.; Monbaliu, J.; Anderson, C.

    2012-04-01

    Unimodal approaches in design practice have shown inconsistencies in terms of directionality and limitations for accurate sea states description. Spectral multimodality needs to be included in the description of the wave climate. It can provide information about the coexistence of different wave systems originating from different meteorological events, such as locally generated wind waves and swell systems from distant storms. A 20 years dataset (1989-2008) for a location on the North Sea (K13, 53.2°N 3.2°E) has been retrieved from the ECMWF ERA- Interim re-analysis data archive, providing a consistent and homogeneous dataset. The work focuses on the joint and conditional probability distributions of wind sea and swell systems. For marine operations and design applications, critical combinations of wave systems may exist. We define a critical sea state on the basis of a set of thresholds, which can be not necessarily extreme, the emphasis is given to the dangerous combination of different wave systems concerning certain operations (i.e. small vessels navigation, dredging). The distribution of non-operability windows is described by a point process model with random and independent events, whose occurrences and lengths can be described only probabilistically. These characteristics allow to treat the emerging patterns as a part of a queuing system. According to this theory, generally adopted for several applications including traffic flows and waiting lines, the input process describes the sequence of requests for a service and the service mechanism the length of time that these requests will occupy the facilities. For weather-driven processes at sea an alternating renewal process appears as a suitable model. It consists of a sequence of critical events (period of inoperability), each of random duration, separated by calms, also of random durations. Inoperability periods and calms are assumed independent. In this model it is not possible more than one critical

  6. Marginal dimensions of the Potts model with invisible states

    NASA Astrophysics Data System (ADS)

    Krasnytska, M.; Sarkanych, P.; Berche, B.; Holovatch, Yu; Kenna, R.

    2016-06-01

    We reconsider the mean-field Potts model with q interacting and r non-interacting (invisible) states. The model was recently introduced to explain discrepancies between theoretical predictions and experimental observations of phase transitions in some systems where the Z q -symmetry is spontaneously broken. We analyse the marginal dimensions of the model, i.e., the value of r at which the order of the phase transition changes. In the q = 2 case, we determine that value to be {r}{{c}}=3.65(5); there is a second-order phase transition there when r\\lt {r}{{c}} and a first-order one at r\\gt {r}{{c}}. We also analyse the region 1≤slant q\\lt 2 and show that the change from second to first order there is manifest through a new mechanism involving two marginal values of r. The q = 1 limit gives bond percolation. Above the lower value r c1, the order parameters exhibit discontinuities at temperature \\tilde{t} below a critical value t c. The larger value r c2 marks the point at which the phase transition at t c changes from second to first order. Thus, for {r}{{c}1}\\lt r\\lt {r}{{c}2}, the transition at t c remains second order while at \\tilde{t} the system undergoes a first order phase transition. As r increases further, \\tilde{t} increases, bringing the discontinuity closer to t c. Finally, when r exceeds r c2 \\tilde{t} coincides with t c and the phase transition becomes first order. This new mechanism indicates how the discontinuity characteristic of first order phase transitions emerges.

  7. A microphysical model explains rate-and-state friction

    NASA Astrophysics Data System (ADS)

    Chen, Jianye; Spiers, Christopher J.

    2015-04-01

    The rate-and-state friction (RSF) laws were originally developed as a phenomenological description of the frictional behavior observed in lab experiments. In previous studies, the empirical RSF laws have been extensively and quite successfully applied to fault mechanisms. However, these laws can not readily be envisioned in terms of the underlying physics. There are several critical discrepancies between seismological constraints on RSF behavior associated with earthquakes and lab-derived RSF parameters, in particular regarding the static stress drop and characteristic slip distance associated with seismic events. Moreover, lab friction studies can address only limited fault topographies, displacements, experimental durations and P-T conditions, which means that scale issues, and especially processes like dilatation and fluid-rock interaction, cannot be fully taken into account. Without a physical basis accounting for such effects, extrapolation of lab-derived RSF data to nature involves significant, often unknown uncertainties. In order to more reliably apply experimental results to natural fault zones, and notably to extrapolate lab data beyond laboratory pressure, temperature and velocity conditions, an understanding of the microphysical mechanisms governing fault frictional behavior is required. Here, following some pioneering efforts (e.g. Niemeijer and Spiers, 2007; Den Hartog and Spiers, 2014), a mechanism-based microphysical model is developed for describing the frictional behavior of carbonate fault gouge, assuming that the frictional behavior seen in lab experiments is controlled by competing processes of intergranular slip versus contact creep by pressure solution. The model basically consists of two governing equations derived from energy/entropy balance considerations and the kinematic relations that apply to a granular fault gouge undergoing shear and dilation/compaction. These two equations can be written as ˙τ/K = Vimp- Lt[λ˙γsbps +(1-

  8. Excited-state quantum phase transitions in the interacting boson model: Spectral characteristics of 0+ states and effective order parameter

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zuo, Yan; Pan, Feng; Draayer, J. P.

    2016-04-01

    The spectral characteristics of the Lπ=0+ excited states in the interacting boson model are systematically investigated. It is found that various types of excited-state quantum phase transitions may widely occur in the model as functions of the excitation energy, which indicates that the phase diagram of the interacting boson model can be dynamically extended along the direction of the excitation energy. It has also been justified that the d -boson occupation probability ρ (E ) is qualified to be taken as the effective order parameter to identify these excited-state quantum phase transitions. In addition, the underlying relation between the excite-state quantum phase transition and the chaotic dynamics is also stated.

  9. Multi-temperature model derived from state-to-state kinetics for hypersonic entry in Jupiter atmosphere

    SciTech Connect

    Colonna, G.; Pietanza, L. D.; D'Ammando, G.; Capitelli, M.

    2014-12-09

    A state-to-state model of H{sub 2}/He plasmas coupling the master equations for internal distributions of heavy species with the transport equation for the free electrons has been used as a basis for implementing a multi-temperature kinetic model. In the multi-temperature model internal distributions of heavy particles are Boltzmann, the electron energy distribution function is Maxwell, and the rate coefficients of the elementary processes become a function of local temperatures associated to the relevant equilibrium distributions. The state-to-state and multi-temperature models have been compared in the case of a homogenous recombining plasma, reproducing the conditions met during supersonic expansion though converging-diverging nozzles.

  10. Unfolding Physiological State: Mortality Modelling in Intensive Care Units

    PubMed Central

    Ghassemi, Marzyeh; Naumann, Tristan; Doshi-Velez, Finale; Brimmer, Nicole; Joshi, Rohit; Rumshisky, Anna; Szolovits, Peter

    2014-01-01

    Accurate knowledge of a patient’s disease state and trajectory is critical in a clinical setting. Modern electronic healthcare records contain an increasingly large amount of data, and the ability to automatically identify the factors that influence patient outcomes stand to greatly improve the efficiency and quality of care. We examined the use of latent variable models (viz. Latent Dirichlet Allocation) to decompose free-text hospital notes into meaningful features, and the predictive power of these features for patient mortality. We considered three prediction regimes: (1) baseline prediction, (2) dynamic (time-varying) outcome prediction, and (3) retrospective outcome prediction. In each, our prediction task differs from the familiar time-varying situation whereby data accumulates; since fewer patients have long ICU stays, as we move forward in time fewer patients are available and the prediction task becomes increasingly difficult. We found that latent topic-derived features were effective in determining patient mortality under three timelines: inhospital, 30 day post-discharge, and 1 year post-discharge mortality. Our results demonstrated that the latent topic features important in predicting hospital mortality are very different from those that are important in post-discharge mortality. In general, latent topic features were more predictive than structured features, and a combination of the two performed best. The time-varying models that combined latent topic features and baseline features had AUCs that reached 0.85, 0.80, and 0.77 for in-hospital, 30 day post-discharge and 1 year post-discharge mortality respectively. Our results agreed with other work suggesting that the first 24 hours of patient information are often the most predictive of hospital mortality. Retrospective models that used a combination of latent topic features and structured features achieved AUCs of 0.96, 0.82, and 0.81 for in-hospital, 30 day, and 1-year mortality prediction. Our

  11. Estimation of State Transition Probabilities: A Neural Network Model

    NASA Astrophysics Data System (ADS)

    Saito, Hiroshi; Takiyama, Ken; Okada, Masato

    2015-12-01

    Humans and animals can predict future states on the basis of acquired knowledge. This prediction of the state transition is important for choosing the best action, and the prediction is only possible if the state transition probability has already been learned. However, how our brains learn the state transition probability is unknown. Here, we propose a simple algorithm for estimating the state transition probability by utilizing the state prediction error. We analytically and numerically confirmed that our algorithm is able to learn the probability completely with an appropriate learning rate. Furthermore, our learning rule reproduced experimentally reported psychometric functions and neural activities in the lateral intraparietal area in a decision-making task. Thus, our algorithm might describe the manner in which our brains learn state transition probabilities and predict future states.

  12. A steady-state model of the lunar ejecta cloud

    NASA Astrophysics Data System (ADS)

    Christou, Apostolos

    2014-05-01

    Every airless body in the solar system is surrounded by a cloud of ejecta produced by the impact of interplanetary meteoroids on its surface [1]. Such ``dust exospheres'' have been observed around the Galilean satellites of Jupiter [2,3]. The prospect of long-term robotic and human operations on the Moon by the US and other countries has rekindled interest on the subject [4]. This interest has culminated with the - currently ongoing - investigation of the Moon's dust exosphere by the LADEE spacecraft [5]. Here a model is presented of a ballistic, collisionless, steady state population of ejecta launched vertically at randomly distributed times and velocities and moving under constant gravity. Assuming a uniform distribution of launch times I derive closed form solutions for the probability density functions (pdfs) of the height distribution of particles and the distribution of their speeds in a rest frame both at the surface and at altitude. The treatment is then extended to particle motion with respect to a moving platform such as an orbiting spacecraft. These expressions are compared with numerical simulations under lunar surface gravity where the underlying ejection speed distribution is (a) uniform (b) a power law. I discuss the predictions of the model, its limitations, and how it can be validated against near-surface and orbital measurements.[1] Gault, D. Shoemaker, E.M., Moore, H.J., 1963, NASA TN-D 1767. [2] Kruger, H., Krivov, A.V., Hamilton, D. P., Grun, E., 1999, Nature, 399, 558. [3] Kruger, H., Krivov, A.V., Sremcevic, M., Grun, E., 2003, Icarus, 164, 170. [4] Grun, E., Horanyi, M., Sternovsky, Z., 2011, Planetary and Space Science, 59, 1672. [5] Elphic, R.C., Hine, B., Delory, G.T., Salute, J.S., Noble, S., Colaprete, A., Horanyi, M., Mahaffy, P., and the LADEE Science Team, 2014, LPSC XLV, LPI Contr. 1777, 2677.

  13. New York State Adult Functional Literacy Models. Final Report.

    ERIC Educational Resources Information Center

    Heller, Barbara R.

    This report discusses a nationwide study of Adult Performance Level (APL) which involved sixteen projects in seven states and was conducted to (1) examine the University of Texas at Austin's APL study and describe the results and recommendations in terms of the adult needs in New York State; (2) examine several New York State Adult Basic Education…

  14. Modeling lake trophic state: a random forest approach

    EPA Science Inventory

    Productivity of lentic ecosystems has been well studied and it is widely accepted that as nutrient inputs increase, productivity increases and lakes transition from low trophic state (e.g. oligotrophic) to higher trophic states (e.g. eutrophic). These broad trophic state classi...

  15. Freed by interaction kinetic states in the Harper model

    NASA Astrophysics Data System (ADS)

    Frahm, Klaus M.; Shepelyansky, Dima L.

    2015-12-01

    We study the problem of two interacting particles in a one-dimensional quasiperiodic lattice of the Harper model. We show that a short or long range interaction between particles leads to emergence of delocalized pairs in the non-interacting localized phase. The properties of these freed by interaction kinetic states (FIKS) are analyzed numerically including the advanced Arnoldi method. We find that the number of sites populated by FIKS pairs grows algebraically with the system size with the maximal exponent b = 1, up to a largest lattice size N = 10 946 reached in our numerical simulations, thus corresponding to a complete delocalization of pairs. For delocalized FIKS pairs the spectral properties of such quasiperiodic operators represent a deep mathematical problem. We argue that FIKS pairs can be detected in the framework of recent cold atom experiments [M. Schreiber et al., Science 349, 842 (2015)] by a simple setup modification. We also discuss possible implications of FIKS pairs for electron transport in the regime of charge-density wave and high T c superconductivity.

  16. Modeling asymmetric cavity collapse with plasma equations of state

    NASA Astrophysics Data System (ADS)

    Tully, Brett; Hawker, Nicholas; Ventikos, Yiannis

    2016-05-01

    We explore the effect that equation of state (EOS) thermodynamics has on shock-driven cavity-collapse processes. We account for full, multidimensional, unsteady hydrodynamics and incorporate a range of relevant EOSs (polytropic, QEOS-type, and SESAME). In doing so, we show that simplified analytic EOSs, like ideal gas, capture certain critical parameters of the collapse such as velocity of the main transverse jet and pressure at jet strike, while also providing a good representation of overall trends. However, more sophisticated EOSs yield different and more relevant estimates of temperature and density, especially for higher incident shock strengths. We model incident shocks ranging from 0.1 to 1000 GPa, the latter being of interest in investigating the warm dense matter regime for which experimental and theoretical EOS data are difficult to obtain. At certain shock strengths, there is a factor of two difference in predicted density between QEOS-type and SESAME EOS, indicating cavity collapse as an experimental method for exploring EOS in this range.

  17. Characterizing the Relationship between Steady State and Response Using Analytical Expressions for the Steady States of Mass Action Models

    PubMed Central

    Loriaux, Paul Michael; Tesler, Glenn; Hoffmann, Alexander

    2013-01-01

    The steady states of cells affect their response to perturbation. Indeed, diagnostic markers for predicting the response to therapeutic perturbation are often based on steady state measurements. In spite of this, no method exists to systematically characterize the relationship between steady state and response. Mathematical models are established tools for studying cellular responses, but characterizing their relationship to the steady state requires that it have a parametric, or analytical, expression. For some models, this expression can be derived by the King-Altman method. However, King-Altman requires that no substrate act as an enzyme, and is therefore not applicable to most models of signal transduction. For this reason we developed py-substitution, a simple but general method for deriving analytical expressions for the steady states of mass action models. Where the King-Altman method is applicable, we show that py-substitution yields an equivalent expression, and at comparable efficiency. We use py-substitution to study the relationship between steady state and sensitivity to the anti-cancer drug candidate, dulanermin (recombinant human TRAIL). First, we use py-substitution to derive an analytical expression for the steady state of a published model of TRAIL-induced apoptosis. Next, we show that the amount of TRAIL required for cell death is sensitive to the steady state concentrations of procaspase 8 and its negative regulator, Bar, but not the other procaspase molecules. This suggests that activation of caspase 8 is a critical point in the death decision process. Finally, we show that changes in the threshold at which TRAIL results in cell death is not always equivalent to changes in the time of death, as is commonly assumed. Our work demonstrates that an analytical expression is a powerful tool for identifying steady state determinants of the cellular response to perturbation. All code is available at http://signalingsystems.ucsd.edu/models-and-code/ or

  18. Practical Application of Model-based Programming and State-based Architecture to Space Missions

    NASA Technical Reports Server (NTRS)

    Horvath, Gregory; Ingham, Michel; Chung, Seung; Martin, Oliver; Williams, Brian

    2006-01-01

    A viewgraph presentation to develop models from systems engineers that accomplish mission objectives and manage the health of the system is shown. The topics include: 1) Overview; 2) Motivation; 3) Objective/Vision; 4) Approach; 5) Background: The Mission Data System; 6) Background: State-based Control Architecture System; 7) Background: State Analysis; 8) Overview of State Analysis; 9) Background: MDS Software Frameworks; 10) Background: Model-based Programming; 10) Background: Titan Model-based Executive; 11) Model-based Execution Architecture; 12) Compatibility Analysis of MDS and Titan Architectures; 13) Integrating Model-based Programming and Execution into the Architecture; 14) State Analysis and Modeling; 15) IMU Subsystem State Effects Diagram; 16) Titan Subsystem Model: IMU Health; 17) Integrating Model-based Programming and Execution into the Software IMU; 18) Testing Program; 19) Computationally Tractable State Estimation & Fault Diagnosis; 20) Diagnostic Algorithm Performance; 21) Integration and Test Issues; 22) Demonstrated Benefits; and 23) Next Steps

  19. Bistability and State Transition of a Delay Differential Equation Model of Neutrophil Dynamics

    NASA Astrophysics Data System (ADS)

    Ma, Suqi; Zhu, Kaiyi; Lei, Jinzhi

    This paper studies the existence of bistable states and control strategies to induce state transitions of a delay differential equation model of neutrophil dynamics. We seek the conditions that a stable steady state and an oscillatory state coexist in the neutrophil dynamical system. Physiologically, stable steady state represents the healthy state, while oscillatory state is usually associated with diseases such as cyclical neutropenia. We study the control strategies to induce the transitions from the disease state to the healthy state by introducing temporal perturbations to system parameters. This study is valuable in designing clinical protocols for the treatment of cyclical neutropenia.

  20. Grey-Markov model with state membership degree and its application

    NASA Astrophysics Data System (ADS)

    Ye, Jing; Li, Bingjun; Liu, Fang

    2013-10-01

    In the Grey-Markov forecasting, the extent of a given state that a research object belongs to is expressed as state membership degree. The state membership degree can help compensate for the inaccurate states division and improve the predicted results. Based on the Grey-Markov forecasting analysis, this paper uses the central triangle albino function to calculate the state membership degrees of research objects and determine the state transition probability. Thereby, the new model achieves the improvement of conventional Grey-Markov model. Taking the grain production of Henan Province as an example, the validity and applicability of the improved model are verified.

  1. Quadractic Model of Thermodynamic States in SDF Explosions

    SciTech Connect

    Kuhl, A L; Khasainov, B

    2007-05-04

    We study the thermodynamic states encountered during Shock-Dispersed-Fuel (SDF) explosions. Such explosions contain up to six components: three fuels (PETN, TNT and Aluminum) and their products corresponding to stoichiometric combustion with air. We establish the loci in thermodynamic state space that correctly describes the behavior of the components. Results are fit with quadratic functions that serve as fast equations of state suitable for 3D numerical simulations of SDF explosions.

  2. State-space models' dirty little secrets: even simple linear Gaussian models can have estimation problems.

    PubMed

    Auger-Méthé, Marie; Field, Chris; Albertsen, Christoffer M; Derocher, Andrew E; Lewis, Mark A; Jonsen, Ian D; Mills Flemming, Joanna

    2016-01-01

    State-space models (SSMs) are increasingly used in ecology to model time-series such as animal movement paths and population dynamics. This type of hierarchical model is often structured to account for two levels of variability: biological stochasticity and measurement error. SSMs are flexible. They can model linear and nonlinear processes using a variety of statistical distributions. Recent ecological SSMs are often complex, with a large number of parameters to estimate. Through a simulation study, we show that even simple linear Gaussian SSMs can suffer from parameter- and state-estimation problems. We demonstrate that these problems occur primarily when measurement error is larger than biological stochasticity, the condition that often drives ecologists to use SSMs. Using an animal movement example, we show how these estimation problems can affect ecological inference. Biased parameter estimates of a SSM describing the movement of polar bears (Ursus maritimus) result in overestimating their energy expenditure. We suggest potential solutions, but show that it often remains difficult to estimate parameters. While SSMs are powerful tools, they can give misleading results and we urge ecologists to assess whether the parameters can be estimated accurately before drawing ecological conclusions from their results. PMID:27220686

  3. A model of cerebellar computations for dynamical state estimation

    NASA Technical Reports Server (NTRS)

    Paulin, M. G.; Hoffman, L. F.; Assad, C.

    2001-01-01

    The cerebellum is a neural structure that is essential for agility in vertebrate movements. Its contribution to motor control appears to be due to a fundamental role in dynamical state estimation, which also underlies its role in various non-motor tasks. Single spikes in vestibular sensory neurons carry information about head state. We show how computations for optimal dynamical state estimation may be accomplished when signals are encoded in spikes. This provides a novel way to design dynamical state estimators, and a novel way to interpret the structure and function of the cerebellum.

  4. Modelling valuations for health states: the effect of duration.

    PubMed

    Dolan, P

    1996-12-01

    An important issue which has been raised in the measurement of health status is the effect that the time spent in a health state may have on the way that state is perceived. Recently a set of valuations for health states defined in terms of the EuroQol Descriptive System was generated from a study of over 3000 members of the UK general public. The valuations were elicited using the visual analogue scale (VAS) and time trade-off (TTO) methods and were for states that lasted for 10 years. Using VAS valuations for states lasting 1 month, 1 year and 10 years derived from a subset of respondents to the general population study, this paper presents valuation "tariffs" for all EuroQol states based on the different durations. The results support those of previous studies which suggest that poor states of health become more intolerable the longer they last. Such findings suggest that the results of studies in which the value given to a health state is assumed to be linearly related to the time spent in that health state should be treated with caution and subjected to sensitivity analysis over an appropriate range of values. PMID:10162421

  5. Proton Therapy Expansion Under Current United States Reimbursement Models

    SciTech Connect

    Kerstiens, John; Johnstone, Peter A.S.

    2014-06-01

    Purpose: To determine whether all the existing and planned proton beam therapy (PBT) centers in the United States can survive on a local patient mix that is dictated by insurers, not by number of patients. Methods and Materials: We determined current and projected cancer rates for 10 major US metropolitan areas. Using published utilization rates, we calculated patient percentages who are candidates for PBT. Then, on the basis of current published insurer coverage policies, we applied our experience of what would be covered to determine the net number of patients for whom reimbursement is expected. Having determined the net number of covered patients, we applied our average beam delivery times to determine the total number of minutes needed to treat that patient over the course of their treatment. We then calculated our expected annual patient capacity per treatment room to determine the appropriate number of treatment rooms for the area. Results: The population of patients who will be both PBT candidates and will have treatments reimbursed by insurance is significantly smaller than the population who should receive PBT. Coverage decisions made by insurers reduce the number of PBT rooms that are economically viable. Conclusions: The expansion of PBT centers in the US is not sustainable under the current reimbursement model. Viability of new centers will be limited to those operating in larger regional metropolitan areas, and few metropolitan areas in the US can support multiple centers. In general, 1-room centers require captive (non–PBT-served) populations of approximately 1,000,000 lives to be economically viable, and a large center will require a population of >4,000,000 lives. In areas with smaller populations or where or a PBT center already exists, new centers require subsidy.

  6. Sensitivity of global model prediction to initial state uncertainty

    NASA Astrophysics Data System (ADS)

    Miguez-Macho, Gonzalo

    The sensitivity of global and North American forecasts to uncertainties in the initial conditions is studied. The Utah Global Model is initialized with reanalysis data sets obtained from the National Centers for Environmental Prediction (NCEP) and the European Centre for Medium- Range Weather Forecasts (ECMWF). The differences between these analyses provide an estimate of initial uncertainty. The influence of certain scales of the initial uncertainty is tested in experiments with initial data change from NCEP to ECMWF reanalysis in a selected spectral band. Experiments are also done to determine the benefits of targeting local regions for forecast errors over North America. In these tests, NCEP initial data are replaced by ECMWF data in the considered region. The accuracy of predictions with initial data from either reanalysis only differs over the mid-latitudes of the Southern Hemisphere, where ECMWF initialized forecasts have somewhat greater skill. Results from the spectral experiments indicate that most of this benefit is explained by initial differences of the longwave components (wavenumbers 0-15). Approximately 67% of the 120-h global forecast difference produced by changing initial data from ECMWF to NCEP reanalyses is due to initial changes only in wavenumbers 0-15, and more than 85% of this difference is produced by initial changes in wavenumbers 0-20. The results suggest that large-scale errors of the initial state may play a more prominent role than suggested in some singular vector analyses, and favor global observational coverage to resolve the long waves. Results from the regional targeting experiments indicate that for forecast errors over North America, a systematic benefit comes only when the ``targeted'' region includes most of the north Pacific, pointing again at large scale errors as being prominent, even for midrange predictions over a local area.

  7. Conceptual geologic model and native state model of the Roosevelt Hot Springs hydrothermal system

    SciTech Connect

    Faulder, D.D.

    1991-01-01

    A conceptual geologic model of the Roosevelt Hot Springs hydrothermal system was developed by a review of the available literature. The hydrothermal system consists of a meteoric recharge area in the Mineral Mountains, fluid circulation paths to depth, a heat source, and an outflow plume. A conceptual model based on the available data can be simulated in the native state using parameters that fall within observed ranges. The model temperatures, recharge rates, and fluid travel times are sensitive to the permeability in the Mineral Mountains. The simulation results suggests the presence of a magma chamber at depth as the likely heat source. A two-dimensional study of the hydrothermal system can be used to establish boundary conditions for further study of the geothermal reservoir.

  8. Establishing a State Outdoor Education Association: The New York Model.

    ERIC Educational Resources Information Center

    Benjamin, Thomas P.

    Because the New York Outdoor Education Association (NYSOEA) has made significant contributions to the establishment and expansion of outdoor education programs in the state and throughout the world, this guide is directed toward those who want to strengthen their own state or regional association or to create one. The paper provides an analysis of…

  9. A Cross-Institutional Factor Structure Replication of the Michigan State University Sirs Faculty Evaluation Model

    ERIC Educational Resources Information Center

    Arreola, Raoul A.

    1973-01-01

    Determines that the factor structure of the instructional model measured by the Michigan State University Student Instructional Rating System (SIRS) form could be replicated by an adapted version of the SIRS instrument at Florida State University. (Author)

  10. Oscillator-like coherent states for the Jaynes-Cummings Model

    NASA Technical Reports Server (NTRS)

    Berubelauziere, Y.; Hussin, V.; Nieto, Michael M.

    1995-01-01

    A new way of diagonalizing the Jaynes-Cummings Hamiltonian is proposed, which allows the definition of annihilation operators and coherent states for this model. Mean values and dispersions over these states are computed and interpreted.