Science.gov

Sample records for station service water

  1. Seabrook Station service water piping refurbishment using the joint seal method

    SciTech Connect

    Veilleux, J.E.; Kodal, A.S.

    1996-12-31

    The Seabrook Station service water system is fabricated from butt welded, cement lined, carbon steel piping. The service water system fluid is sea water from the Atlantic Ocean and/or potable water from a backup evaporative cooling tower. Joint compound was applied at field welds to seal cement liner crevices. Inspections of 24 inch (61 cm) above ground piping during a refueling outage revealed that the joint compound was degrading in a small percentage of the weld joints. At these locations, sea water was allowed to contact the piping substrate and initiate pitting corrosion. This paper discusses the refurbishment project conducted at Seabrook Station in which Miller Pipeline Corp. AMEX-10/WEKO Seals were installed in safety related service water piping at field weld joint cement liner crevices. This joint seal system utilizes an elastomer boot seal with 6% molybdenum stainless steel circumferential retaining bands on each side of the joint to secure the boot in place. This joint seal design provides a pressure tight seal in order to prevent further sea water intrusion into field weld joints due to degraded joint compound. Isolation of joints from the bulk oxygenated service water flow and high chlorides will arrest any current corrosion and prevent future degradation of these welded joints.

  2. Space Station Water Quality

    NASA Technical Reports Server (NTRS)

    Willis, Charles E. (Editor)

    1987-01-01

    The manned Space Station will exist as an isolated system for periods of up to 90 days. During this period, safe drinking water and breathable air must be provided for an eight member crew. Because of the large mass involved, it is not practical to consider supplying the Space Station with water from Earth. Therefore, it is necessary to depend upon recycled water to meet both the human and nonhuman water needs on the station. Sources of water that will be recycled include hygiene water, urine, and cabin humidity condensate. A certain amount of fresh water can be produced by CO2 reduction process. Additional fresh water will be introduced into the total pool by way of food, because of the free water contained in food and the water liberated by metabolic oxidation of the food. A panel of scientists and engineers with extensive experience in the various aspects of wastewater reuse was assembled for a 2 day workshop at NASA-Johnson. The panel included individuals with expertise in toxicology, chemistry, microbiology, and sanitary engineering. A review of Space Station water reclamation systems was provided.

  3. 1. GENERAL VIEW OF THE SOUTHBOUND SERVICE STATION AND SERVICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF THE SOUTHBOUND SERVICE STATION AND SERVICE ISLAND. - Merritt Parkway, Greenwich (Southbound) Service Station, Abutting North side of Merritt Parkway, Greenwich, Fairfield County, CT

  4. Credit BG. Interior of Deluge Water Booster Station displaying highcapacity ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. Interior of Deluge Water Booster Station displaying high-capacity electrically driven water pumps for fire fighting service - Edwards Air Force Base, North Base, Deluge Water Booster Station, Northeast of A Street, Boron, Kern County, CA

  5. Standardized Curriculum for Service Station Retailing.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    This curriculum guide for service station retailing was developed by the state of Mississippi to standardize vocational education course titles and core contents. The objectives contained in this document are common to all service station retailing programs in the state. The guide contains objectives for service station retailing I and II courses.…

  6. Servicing Capability for the Evolutionary Space Station

    NASA Technical Reports Server (NTRS)

    Alcorn, George; Corbo, Jim; Martin, Deborah; Levin, Lenny

    1990-01-01

    User servicing for Space Station Freedom (SSF) will span an evolutionary period paralleling that of the station's growth plan. This will include a baseline servicing configuration followed by a final growth phase in which all user servicing requirements are satisfied. Although the basic requirements for user servicing are not station configuration dependent, the emphasis placed on different aspects of servicing may change with the eventual SSF growth objectives. This paper will discuss the servicing requirements and how they will be satisfied by Freedom baseline and growth capabilities. The accomodation of the growth servicing elements will be addressed, including the required hooks and scars to implement these growth servicing capabilities.

  7. 47 CFR 80.123 - Service to stations on land.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Service to stations on land. 80.123 Section 80... Stations § 80.123 Service to stations on land. Marine VHF public coast stations, including AMTS coast stations, may provide service to stations on land in accordance with the following: (a) The public...

  8. Space Station solar water heater

    NASA Technical Reports Server (NTRS)

    Horan, D. C.; Somers, Richard E.; Haynes, R. D.

    1990-01-01

    The feasibility of directly converting solar energy for crew water heating on the Space Station Freedom (SSF) and other human-tended missions such as a geosynchronous space station, lunar base, or Mars spacecraft was investigated. Computer codes were developed to model the systems, and a proof-of-concept thermal vacuum test was conducted to evaluate system performance in an environment simulating the SSF. The results indicate that a solar water heater is feasible. It could provide up to 100 percent of the design heating load without a significant configuration change to the SSF or other missions. The solar heater system requires only 15 percent of the electricity that an all-electric system on the SSF would require. This allows a reduction in the solar array or a surplus of electricity for onboard experiments.

  9. 47 CFR 80.107 - Service of private coast stations and marine-utility stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Service of private coast stations and marine... Operating Procedures-Land Stations § 80.107 Service of private coast stations and marine-utility stations. A private coast station or a marine-utility station is authorized to transmit messages necessary for...

  10. NASA's Plum Brook Station Water Systems

    NASA Technical Reports Server (NTRS)

    Puzak, Robert M.; Kimpton, Arthur

    2006-01-01

    Plum Brook Station's water systems were built in the 1940s to support a World War II ordnance production complex. Because the systems had not been analyzed for current NASA usage, it was unknown if they could meet current requirements and codes or if they were efficient for current use. NASA wanted to determine what improvements would be needed or advisable to support its research projects, so it contracted a hydraulic analysis of the raw and domestic water systems. Burgess and Niple determined current water demands and water flow, developed and calibrated models of the two water systems, and evaluated efficiency improvements and cost-cutting options. They recommended replacing some water mains, installing a new service connection, and removing some high-maintenance items (an underground reservoir, some booster pumps, and a tower).

  11. NASA's robotic servicing role for Space Station

    NASA Technical Reports Server (NTRS)

    Powell, L.; Goss, R.; Spencer, R.

    1986-01-01

    Attention is given to evaluations of the relative impacts on and benefits to the Space Station Program of various levels of robotics devices for space servicing operations. The leading robotic candidate concept for the IOC Space Station, the Smart Front End, uses a small, stiff and highly dexterous work effector controlled by a human-in-the-loop from a remote control station. This configuration offers both a quality multifunctional performance capability at the work site as well as technology transparency through the ground teleoperation control mode.

  12. Servicing capability for the evolutionary Space Station

    NASA Technical Reports Server (NTRS)

    Thomas, Edward F.; Grems, Edward G., III; Corbo, James E.

    1990-01-01

    Since the beginning of the Space Station Freedom (SSF) program the concept of on-orbit servicing of user hardware has been an integral part of the program implementation. The user servicing system architecture has been divided into a baseline and a growth phase. The baseline system consists of the following hardware elements that will support user servicing - flight telerobotic servicer, crew and equipment translation aid, crew intravehicular and extravehicular servicing support, logistics supply system, mobile servicing center, and the special purpose dextrous manipulator. The growth phase incorporates a customer servicing facility (CSF), a station-based orbital maneuvering vehicle and an orbital spacecraft consumables resupply system. The requirements for user servicing were derived from the necessity to service attached payloads, free flyers and coorbiting platforms. These requirements include: orbital replacement units (ORU) and instrument changeout, National Space Transportation System cargo bay loading and unloading, contamination control and monitoring, thermal protection, payload berthing, storage, access to SSF distributed systems, functional checkout, and fluid replenishment. The baseline user servicing capabilities accommodate ORU and instrument changeout. However, this service is limited to attached payloads, either in situ or at a locally adjacent site. The growth phase satisfies all identified user servicing requirements by expanding servicing capabilities to include complex servicing tasks for attached payloads, free-flyers and coorbiting platforms at a dedicated, protected Servicing site. To provide a smooth evolution of user servicing the SSF interfaces that are necessary to accommodate the growth phase have been identified. The interface requirements on SSF have been greatly simplified by accommodating the growth servicing support elements within the CSF. This results in a single SSF interface: SSF to the CSF.

  13. Service Station Attendant. Performance Objectives. Basic Course.

    ERIC Educational Resources Information Center

    Davis, John

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 24 terminal objectives for a basic secondary level service station attendant course. The materials were developed for a two-semester course (2 and 3 hours daily). The specialized classroom and shop experiences are designed to enable the student…

  14. 47 CFR 80.123 - Service to stations on land.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Service to stations on land. 80.123 Section 80.123 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES... Stations § 80.123 Service to stations on land. Marine VHF public coast stations, including AMTS...

  15. 47 CFR 80.123 - Service to stations on land.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Service to stations on land. 80.123 Section 80.123 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES... Stations § 80.123 Service to stations on land. Marine VHF public coast stations, including AMTS...

  16. Regeneration of water at space stations

    NASA Astrophysics Data System (ADS)

    Grigoriev, A. I.; Sinyak, Yu. E.; Samsonov, N. M.; Bobe, L. S.; Protasov, N. N.; Andreychuk, P. O.

    2011-05-01

    The history, current status and future prospects of water recovery at space stations are discussed. Due to energy, space and mass limitations physical/chemical processes have been used and will be used in water recovery systems of space stations in the near future. Based on the experience in operation of Russian space stations Salut, Mir and International space station (ISS) the systems for water recovery from humidity condensate and urine are described. A perspective physical/chemical system for water supply will be composed of an integrated system for water recovery from humidity condensate, green house condensate, water from carbon dioxide reduction system and condensate from urine system; a system for water reclamation from urine; hygiene water processing system and a water storage system. Innovative processes and new water recovery systems intended for Lunar and Mars missions have to be tested on the international space station.

  17. Robotic mobile servicing platform for space station

    NASA Technical Reports Server (NTRS)

    Lowenthal, S. H.; Vanerden, L.

    1987-01-01

    The semi-autonomous inspection and servicing of the Space Station's major thermal, electrical, mechanical subsystems are critical needs for the safe and reliable operation of the station. A conceptual design is presented of a self-intelligent, small and highly mobile robotic platform. Equipped with suitable inspection sensors (cameras, ammonia detectors, etc.), this system's primary mission is to perform routine, autonomous inspection of the Station's primary subsystems. Typical tasks include detection of leaks from thermal fluid or refueling lines, as well as detection of micro-meteroid damage to the primary structure. Equipped with stereo cameras and a dexterous manipulator, simple teleoperator repairs and small On-orbit Replacement Unit (ORU) changeout can also be accomplished. More difficult robotic repairs would be left to the larger, more sophisticated Mobile Remote Manipulator System (MRMS). An ancillary function is to ferry crew members and equipment around the station. The primary design objectives were to provide a flexible, but uncomplicated robotic platform, one which caused minimal impact to the design of the Station's primary structure but could accept more advanced telerobotic technology as it evolves.

  18. 18. Station Service Control and Motor Control Center #2, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Station Service Control and Motor Control Center #2, view to the northeast. Note the circuit breaker switch on cart in left corner of photograph. This switch is part of the motor control center which has been temporarily removed from the slot marked with a tag that is visible at lower left end of control center. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  19. Solar water heater for NASA's Space Station

    NASA Technical Reports Server (NTRS)

    Somers, Richard E.; Haynes, R. Daniel

    1988-01-01

    The feasibility of using a solar water heater for NASA's Space Station is investigated using computer codes developed to model the Space Station configuration, orbit, and heating systems. Numerous orbit variations, system options, and geometries for the collector were analyzed. Results show that a solar water heater, which would provide 100 percent of the design heating load and would not impose a significant impact on the Space Station overall design is feasible. A heat pipe or pumped fluid radial plate collector of about 10-sq m, placed on top of the habitat module was found to be well suited for satisfying water demand of the Space Station. Due to the relatively small area required by a radial plate, a concentrator is unnecessary. The system would use only 7 to 10 percent as much electricity as an electric water-heating system.

  20. International Space Station Increment Operations Services

    NASA Astrophysics Data System (ADS)

    Michaelis, Horst; Sielaff, Christian

    2002-01-01

    The Industrial Operator (IO) has defined End-to-End services to perform efficiently all required operations tasks for the Manned Space Program (MSP) as agreed during the Ministerial Council in Edinburgh in November 2001. Those services are the result of a detailed task analysis based on the operations processes as derived from the Space Station Program Implementation Plans (SPIP) and defined in the Operations Processes Documents (OPD). These services are related to ISS Increment Operations and ATV Mission Operations. Each of these End-to-End services is typically characterised by the following properties: It has a clearly defined starting point, where all requirements on the end-product are fixed and associated performance metrics of the customer are well defined. It has a clearly defined ending point, when the product or service is delivered to the customer and accepted by him, according to the performance metrics defined at the start point. The implementation of the process might be restricted by external boundary conditions and constraints mutually agreed with the customer. As far as those are respected the IO has the free choice to select methods and means of implementation. The ISS Increment Operations Service (IOS) activities required for the MSP Exploitation program cover the complete increment specific cycle starting with the support to strategic planning and ending with the post increment evaluation. These activities are divided into sub-services including the following tasks: - ISS Planning Support covering the support to strategic and tactical planning up to the generation - Development &Payload Integration Support - ISS Increment Preparation - ISS Increment Execution These processes are tight together by the Increment Integration Management, which provides the planning and scheduling of all activities as well as the technical management of the overall process . The paper describes the entire End-to-End ISS Increment Operations service and the

  1. Using hydroacoustic stations as water column seismometers

    NASA Astrophysics Data System (ADS)

    Yildiz, Selda; Sabra, Karim; Dorman, Leroy M.; Kuperman, W. A.

    2013-06-01

    Getting seismic data from the deep oceans usually involves ocean-bottom seismometers, but hydrophone arrays may provide a practical alternative means of obtaining vector data. We here explore this possibility using hydrophone stations of the International Monitoring System, which have been used to study icebergs and T-wave propagation among others. These stations consist of three hydrophones at about the depth of the deep sound channel in a horizontal triangle array with 2 km sides. We use data from these stations in the very low-frequency regime (0.01-0.05 Hz band) to demonstrate that these stations can also be used as water column seismometers. By differencing the acoustic pressure, we obtain vector quantities analogous to what a seismometer would record. Comparing processed hydrophone station records of the 2004 Great Sumatra-Andaman Earthquake with broadband seismograms from a nearby island station, we find that the differenced hydrophones are indeed a practical surrogate for seismometers.

  2. NASA Alternate Access to Station Service Concept

    NASA Technical Reports Server (NTRS)

    Bailey, Michelle D.; Crumbly, Chris

    2001-01-01

    The evolving nature of the NASA space enterprise compels the agency to develop new and innovative space systems concepts. NASA, working with increasingly strained budgets and a declining manpower base, is attempting to transform from operational activities to procurement of commercial services. NASA's current generation reusable launch vehicle, the Shuttle, is in transition from a government owned and operated entity to a commercial venture to reduce the civil servant necessities for that program. NASA foresees its second generation launch vehicles being designed and operated by industry for commercial and government services. The "service" concept is a pioneering effort by NASA. The purpose the "service" is not only to reduce the civil servant overhead but will free up government resources for further research - and enable industry to develop a space business case so that industry can sustain itself beyond government programs. In addition, NASA desires a decreased responsibility thereby decreasing liability. The Second Generation Reusable Launch Vehicle (RLV) program is implementing NASA's Space Launch Initiative (SLI) to enable industry to develop the launch vehicles of the future. The Alternate Access to Station (AAS) project office within this program is chartered with enabling industry to demonstrate an alternate access capability for the International Space Station (ISS). The project will not accomplish this by traditional government procurement methods, not by integrating the space system within the project office, or by providing the only source of business for the new capability. The project funds will ultimately be used to purchase a service to take re-supply cargo to the ISS, much the same as any business might purchase a service from FedEx to deliver a package to its customer. In the near term, the project will fund risk mitigation efforts for enabling technologies. AAS is in some ways a precursor to the 2nd Generation RLV. By accomplishing ISS resupply

  3. NASA Alternate Access to Station Service Concept

    NASA Astrophysics Data System (ADS)

    Bailey, M. D.; Crumbly, C.

    2002-01-01

    The evolving nature of the NASA space enterprise compels the agency to develop new and innovative space systems concepts. NASA, working with increasingly strained budgets and a declining manpower base, is attempting to transform from operational activities to procurement of commercial services. NASA's current generation reusable launch vehicle, the Shuttle, is in transition from a government owned and operated entity to a commercial venture to reduce the civil servant necessities for that program. NASA foresees its second generation launch vehicles being designed and operated by industry for commercial and government services. The "service" concept is a pioneering effort by NASA. The purpose the "service" is not only to reduce the civil servant overhead but will free up government resources for further research and enable industry to develop a space business case so that industry can sustain itself beyond government programs. In addition, NASA desires a decreased responsibility thereby decreasing liability. The Second Generation Reusable Launch Vehicle (RLV) program is implementing NASA's Space Launch Initiative (SLI) to enable industry to develop the launch vehicles of the future. The Alternate Access to Station (AAS) project office within this program is chartered with enabling industry to demonstrate an alternate access capability for the International Space Station (ISS). The project will not accomplish this by traditional government procurement methods, not by integrating the space system within the project office, or by providing the only source of business for the new capability. The project funds will ultimately be used to purchase a service to take re-supply cargo to the ISS, much the same as any business might purchase a service from FedEx to deliver a package to its customer. In the near term, the project will fund risk mitigation efforts for enabling technologies. AAS is in some ways a precursor to the 2nd Generation RLV. By accomplishing ISS resupply

  4. Space station automation study-satellite servicing, volume 2

    NASA Technical Reports Server (NTRS)

    Meissinger, H. F.

    1984-01-01

    Technology requirements for automated satellite servicing operations aboard the NASA space station were studied. The three major tasks addressed: (1) servicing requirements (satellite and space station elements) and the role of automation; (2) assessment of automation technology; and (3) conceptual design of servicing facilities on the space station. It is found that many servicing functions cloud benefit from automation support; and the certain research and development activities on automation technologies for servicing should start as soon as possible. Also, some advanced automation developments for orbital servicing could be effectively applied to U.S. industrial ground based operations.

  5. Phase change water processing for Space Station

    NASA Technical Reports Server (NTRS)

    Zdankiewicz, E. M.; Price, D. F.

    1985-01-01

    The use of a vapor compression distillation subsystem (VCDS) for water recovery on the Space Station is analyzed. The self-contained automated system can process waste water at a rate of 32.6 kg/day and requires only 115 W of electric power. The improvements in the mechanical components of VCDS are studied. The operation of VCDS in the normal mode is examined. The VCDS preprototype is evaluated based on water quality, water production rate, and specific energy. The relation between water production rate and fluids pump speed is investigated; it is concluded that a variable speed fluids pump will optimize water production. Components development and testing currently being conducted are described. The properties and operation of the proposed phase change water processing system for the Space Station, based on vapor compression distillation, are examined.

  6. Residential proximity to gasoline service stations and preterm birth.

    PubMed

    Huppé, Vicky; Kestens, Yan; Auger, Nathalie; Daniel, Mark; Smargiassi, Audrey

    2013-10-01

    Preterm birth (PTB) is a growing public health problem potentially associated with ambient air pollution. Gasoline service stations can emit atmospheric pollutants, including volatile organic compounds potentially implicated in PTB. The objective of this study was to evaluate the relationship between residential proximity to gasoline service stations and PTB. Singleton live births on the Island of Montreal from 1994 to 2006 were obtained (n=267,478). Gasoline service station locations, presence of heavy-traffic roads, and neighborhood socioeconomic status (SES) were determined using a geographic information system. Multivariable logistic regression was used to analyze the association between PTB and residential proximity to gasoline service stations (50, 100, 150, 200, 250, and 500 m), accounting for maternal covariates, neighborhood SES, and heavy-traffic roads. For all distance categories beyond 50 m, presence of service stations was associated with a greater odds of PTB. Associations were robust to adjustment for maternal covariates for distance categories of 150 and 200 m but were nullified when adjusting for neighborhood SES. In analyses accounting for the number of service stations, the likelihood of PTB within 250 m was statistically significant in unadjusted models. Associations were, however, nullified in models accounting for maternal covariates or neighborhood SES. Our results suggest that there is no clear association between residential proximity to gasoline service stations in Montreal and PTB. Given the correlation between proximity of gasoline service stations and SES, it is difficult to delineate the role of these factors in PTB. PMID:23625119

  7. Photocopy of drawing (original blueprint of Special Type Service Station ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original blueprint of Special Type Service Station in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1941 architectural drawings by Standard Oil Company Engineering Department of Louisville, KY) PLAN - MacDill Air Force Base, Service Station, 7303 Hanger Loop Drive, Tampa, Hillsborough County, FL

  8. Photocopy of drawing (original blueprint of Special Type Service Station ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original blueprint of Special Type Service Station in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1941 architectural drawings by Standard Oil Company Engineering Department of Louisville, KY) SITE PLAN - MacDill Air Force Base, Service Station, 7303 Hanger Loop Drive, Tampa, Hillsborough County, FL

  9. Photocopy of drawing (original blueprint of Special Type Service Station ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original blueprint of Special Type Service Station in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1941 architectural drawings by Standard Oil Company Engineering Department of Louisville, KY) ELEVATIONS & SECTION - MacDill Air Force Base, Service Station, 7303 Hanger Loop Drive, Tampa, Hillsborough County, FL

  10. Pump station for radioactive waste water

    DOEpatents

    Whitton, John P.; Klos, Dean M.; Carrara, Danny T.; Minno, John J.

    2003-11-18

    A pump station for transferring radioactive particle containing waste water, includes: (a.) an enclosed sump having a vertically elongated right frusto conical wall surface and a bottom surface and (b.) a submersible volute centrifugal pump having a horizontally rotating impeller and a volute exterior surface. The sump interior surface, the bottom surface and the volute exterior surface are made of stainless steel having a 30 Ra or finer surface finish. A 15 Ra finish has been found to be most cost effective. The pump station is used for transferring waste water, without accumulation of radioactive fines.

  11. Space Station Water Processor Process Pump

    NASA Technical Reports Server (NTRS)

    Parker, David

    1995-01-01

    This report presents the results of the development program conducted under contract NAS8-38250-12 related to the International Space Station (ISS) Water Processor (WP) Process Pump. The results of the Process Pumps evaluation conducted on this program indicates that further development is required in order to achieve the performance and life requirements for the ISSWP.

  12. LOCATING MONITORING STATIONS IN WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Water undergoes changes in quality between the time it leaves the treatment plant and the time it reaches the customer's tap, making it important to select monitoring stations that will adequately monitor these changers. But because there is no uniform schedule or framework for ...

  13. Space station automation study: satellite servicing. Volume II. Technical report

    SciTech Connect

    Meissinger, H.F.

    1984-12-20

    This study was conducted by TRW over the six month time frame from early June through November 1984. Three major tasks were completed: Servicing Requirements (Satellite and Space Station Elements) and the Role of Automation; Assessment of Automation Technology; and Conceptual Design of Servicing Facilities on the Space Station. It was found that many servicing functions could benefit from automation support; that certain research and development activities on automation technologies for servicing should start as soon as possible; and some advanced automation developments for orbital servicing could be effectively applied to US industrial ground based operations. 42 refs., 49 figs., 20 tabs.

  14. Space station automation study: satellite servicing. Volume I. Executive summary

    SciTech Connect

    Not Available

    1984-11-30

    This study was conducted by TRW over the six month time frame from early June through November 1984. Three major tasks were completed: Servicing Requirements (Satellite and Space Station Elements) and the Role of Automation; Assessment of Automation Technology; and Conceptual Design of Servicing Facilities on the Space Station. It was found that many servicing functions could benefit from automation support; that certain research and development activities on automation technologies for servicing should start as soon as possible; and some advanced automation developments for orbital servicing could be effectively applied to US industrial ground based operations. 21 figs.

  15. The International Space Station As a Free Flyer Servicing Node

    NASA Technical Reports Server (NTRS)

    Antol, Jeffrey; Headley, David E.

    1999-01-01

    The International Space Station will provide a multitude of opportunities for an expanding customer base to make use of this international resource. One such opportunity is servicing of various visiting vehicles that are in a similar orbit to the station. Servicing may include change-out of payloads, replenishment of consumables, repair, and refurbishment operations. Previous studies have been conducted in which "paper" free flyers have been assessed against the station s ability to accommodate them. Over the last several months though, an already flown free flyer, EURECA, was assessed as a real-life visiting free flyer design reference mission. Issues such as capture/berthing, servicing, logistics support, and stowage were assessed for station design and operational approaches. This paper will highlight critical visiting vehicle design considerations, identify station issues, and provide recommendations for accommodation of a wide range of visiting vehicle requirements of the future.

  16. Selection of combined water electrolysis and resistojet propulsion for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.

    1988-01-01

    An analytical rationale is presented for the configuration of the NASA Space Station's two-element propulsion system, and attention is given to the cost benefits accruing to this system over the Space Station's service life. The principal system element uses gaseous oxygen and hydrogen obtained through water electrolysis to furnish attitude control, backup attitude control, and contingency maneuvering. The secondary element uses resistojets to augment Space Station reboost through the acceleration of waste gases in the direction opposite the Station's flight path.

  17. 14. Mark A. Bookspan, photographer AMTRAK STATION SERVICES OFFICE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Mark A. Bookspan, photographer AMTRAK STATION SERVICES OFFICE IN TRAIN CONCOURSE, LOOKING EAST - Los Angeles Union Passenger Terminal, Tracks & Shed, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  18. International Space Station Water Balance Operations

    NASA Technical Reports Server (NTRS)

    Tobias, Barry; Garr, John D., II; Erne, Meghan

    2011-01-01

    In November 2008, the Water Regenerative System racks were launched aboard Space Shuttle flight, STS-126 (ULF2) and installed and activated on the International Space Station (ISS). These racks, consisting of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA), completed the installation of the Regenerative (Regen) Environmental Control and Life Support Systems (ECLSS), which includes the Oxygen Generation Assembly (OGA) that was launched 2 years prior. With the onset of active water management on the US segment of the ISS, a new operational concept was required, that of water balance . In November of 2010, the Sabatier system, which converts H2 and CO2 into water and methane, was brought on line. The Regen ECLSS systems accept condensation from the atmosphere, urine from crew, and processes that fluid via various means into potable water, which is used for crew drinking, building up skip-cycle water inventory, and water for electrolysis to produce oxygen. Specification (spec) rates of crew urine output, condensate output, O2 requirements, toilet flush water, and drinking needs are well documented and used as the best guess planning rates when Regen ECLSS came online. Spec rates are useful in long term planning, however, daily or weekly rates are dependent upon a number of variables. The constantly changing rates created a new challenge for the ECLSS flight controllers, who are responsible for operating the ECLSS systems onboard ISS from Mission Control in Houston. This paper reviews the various inputs to water planning, rate changes, and dynamic events, including but not limited to: crew personnel makeup, Regen ECLSS system operability, vehicle traffic, water storage availability, and Carbon Dioxide Removal Assembly (CDRA), Sabatier, and OGA capability. Along with the inputs that change the various rates, the paper will review the different systems, their constraints, and finally the operational challenges and means by which flight controllers

  19. 2. WEST FRONT AND NORTH SIDE OF SERVICE STATION/LUNCHROOM WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. WEST FRONT AND NORTH SIDE OF SERVICE STATION/LUNCHROOM WITH RANGER STATION IN BACKGROUND, FACING SOUTH. - Chinquapin Service Station & Lunch Room, Glacier Point Road & State Highway 41, Wawona, Mariposa County, CA

  20. Contamination control concepts for space station customer servicing

    NASA Technical Reports Server (NTRS)

    Maruya, K. A.; Ryan, L. E.; Rosales, L. A.; Medler, E. H.

    1986-01-01

    The customer servicing operations envisioned for the space station, which include instrument repair, orbital replacement unit (ORU) changeout, and fluid replenishment for free-flying and attached payloads, are expected to create requirements for a unique contamination control subsystem for the customer servicing facility (CSF). Both the core space station and the CSF users present unique requirements/sensitivities, not all of which are currently defined with common criteria. Preliminary results from an assessment of the effects of the CSF-induced contamination environment are reported. Strategies for a comprehensive contamination control approach and a description of specific hardware devices and their applicability are discussed.

  1. Space Station flight telerobotic servicer functional requirements development

    NASA Technical Reports Server (NTRS)

    Oberright, John; Mccain, Harry; Whitman, Ruth I.

    1987-01-01

    The Space Station flight telerobotic servicer (FTS), a flight robotic system for use on the first Space Station launch, is described. The objectives of the FTS program include: (1) the provision of an alternative crew EVA by supporting the crew in assembly, maintenance, and servicing activities, and (2) the improvement of crew safety by performing hazardous tasks such as spacecraft refueling or thermal and power system maintenance. The NASA/NBS Standard Reference Model provides the generic, hierarchical, structured functional control definition for the system. It is capable of accommodating additional degrees of machine intelligence in the future.

  2. Evaluation of Service Station Attendant-Auto Care Project.

    ERIC Educational Resources Information Center

    Cress, Ronald J.

    The project described offers an approach to providing occupational skills to socially and educationally handicapped youth, specifically the skills necessary for a service station attendant in driveway salesmanship and auto care. The 10-page evaluation report presents project goals and objectives with evaluation data (represented graphically) and…

  3. VIEW OF MILL FROM KALA ROAD. REAR OF SERVICE STATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF MILL FROM KALA ROAD. REAR OF SERVICE STATION IN LEFT FOREGROUND, AND AUTOMOBILE AND TRACTOR REPAIR BUILDING TO THE RIGHT. STACK AND MILL IN BACKGROUND. VIEW FROM THE WEST - Kekaha Sugar Company, Sugar Mill Building, 8315 Kekaha Road, Kekaha, Kauai County, HI

  4. Food Service and Nutrition for the Space Station

    NASA Technical Reports Server (NTRS)

    Sauer, R. L. (Editor)

    1985-01-01

    The proceedings of the Workshop on Food Service and Nutrition for the Space Station, held in Houston, Texas, on April 10 and 11, 1984 was given. The workshop was attended by experts in food technology from industry, government, and academia. Following a general definition of unique space flight requirements, oral presentations were made on state of the art food technology with the objective of using this technology to support the space flight requirements. Numerous areas are identified which in the opinion of the conferees, would have space flight application. But additional effort, evaluation, or testing to include Shuttle inflight testing will be required for the technology to be applied to the Space Station.

  5. Space Station Freedom regenerative water recovery system configuration selection

    NASA Technical Reports Server (NTRS)

    Reysa, R.; Edwards, J.

    1991-01-01

    The Space Station Freedom (SSF) must recover water from various waste water sources to reduce 90 day water resupply demands for a four/eight person crew. The water recovery system options considered are summarized together with system configuration merits and demerits, resource advantages and disadvantages, and water quality considerations used to select the SSF water recovery system.

  6. 47 CFR 73.809 - Interference protection to full service FM stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Interference protection to full service FM stations. 73.809 Section 73.809 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Low Power FM Broadcast Stations (LPFM) § 73.809 Interference protection to full service FM stations. (a)...

  7. 47 CFR 101.503 - Digital Electronic Message Service Nodal Stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Digital Electronic Message Service Nodal... AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.503 Digital Electronic Message Service Nodal Stations. 10.6 GHz DEMS Nodal Stations may...

  8. 47 CFR 101.503 - Digital Electronic Message Service Nodal Stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Digital Electronic Message Service Nodal... AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.503 Digital Electronic Message Service Nodal Stations. 10.6 GHz DEMS Nodal Stations may...

  9. Servicing operations for the SIRTF Observatory at the Space Station

    NASA Technical Reports Server (NTRS)

    Wiltsee, Christopher B.; Manning, Larry A.

    1987-01-01

    This paper describes the servicing requirements, plans, and proposed Space Station-based servicing operations for the Space Infrared Telescope Facility (SIRTF) Observatory. SIRTF is a cryogenically-cooled, long-life, one meter class space telescope which will be operated by NASA as a free-flying observatory for infrared astronomy, in the mid-1990's. To achieve its 5-year lifetime requirement (10 year goal), SIRTF must be replenished periodically with cryogenic helium and have its life-limited modular subsystems replaced; capability for contingency repair of warm components will also be provided in the Observatory design. A general description of the SIRTF Observatory is given, including options for the support systems (spacecraft). The overall servicing philosophy and plans are addressed with scheduling and needed support elements described. A proposed Space Station-based servicing scenario is described, including orbital transfer, servicing and checkout operations. A detailed description and timeline for liquid helium replenishment operations is provided, including a conceptual design and technology development program for the cryogenic helium transfer dewar (tanker). Finally, a preliminary SIRTF spares/logistics philosophy is outlined, including tradeoffs to be considered.

  10. Definition of satellite servicing technology development missions for early space stations. Volume 2: Technical

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Early space station accommodation, build-up of space station manipulator capability, on-orbit spacecraft assembly test and launch, large antenna structure deployment, service/refurbish satellite, and servicing of free-flying materials processing platform are discussed.

  11. 47 CFR 80.333 - Stations in the maritime mobile-satellite service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Stations in the maritime mobile-satellite..., Alarm, Urgency and Safety Procedures § 80.333 Stations in the maritime mobile-satellite service. The...-satellite service....

  12. 47 CFR 80.333 - Stations in the maritime mobile-satellite service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Stations in the maritime mobile-satellite..., Alarm, Urgency and Safety Procedures § 80.333 Stations in the maritime mobile-satellite service. The...-satellite service....

  13. 47 CFR 80.333 - Stations in the maritime mobile-satellite service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Stations in the maritime mobile-satellite..., Alarm, Urgency and Safety Procedures § 80.333 Stations in the maritime mobile-satellite service. The...-satellite service....

  14. 47 CFR 80.333 - Stations in the maritime mobile-satellite service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Stations in the maritime mobile-satellite..., Alarm, Urgency and Safety Procedures § 80.333 Stations in the maritime mobile-satellite service. The...-satellite service....

  15. 47 CFR 80.333 - Stations in the maritime mobile-satellite service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Stations in the maritime mobile-satellite..., Alarm, Urgency and Safety Procedures § 80.333 Stations in the maritime mobile-satellite service. The...-satellite service....

  16. A Water-Service Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2011-01-01

    It is important to let students see the value of mathematics in design--and how mathematics lends perspective to problem solving. In this article, the author describes a water-service challenge which enables students to design a water utility system that uses surface runoff into an open reservoir as the potable water source. This challenge…

  17. 47 CFR 74.790 - Permissible service of digital TV translator and LPTV stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Permissible service of digital TV translator... DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.790 Permissible service of digital TV translator and LPTV stations. (a) Digital TV translator stations provide a means whereby...

  18. 47 CFR 74.790 - Permissible service of digital TV translator and LPTV stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Permissible service of digital TV translator... DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.790 Permissible service of digital TV translator and LPTV stations. (a) Digital TV translator stations provide a means whereby...

  19. 47 CFR 74.790 - Permissible service of digital TV translator and LPTV stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Permissible service of digital TV translator... DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.790 Permissible service of digital TV translator and LPTV stations. (a) Digital TV translator stations provide a means whereby...

  20. 47 CFR 74.790 - Permissible service of digital TV translator and LPTV stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Permissible service of digital TV translator... DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.790 Permissible service of digital TV translator and LPTV stations. (a) Digital TV translator stations provide a means whereby...

  1. 47 CFR 74.790 - Permissible service of digital TV translator and LPTV stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Permissible service of digital TV translator... DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.790 Permissible service of digital TV translator and LPTV stations. (a) Digital TV translator stations provide a means whereby...

  2. 47 CFR 73.6020 - Protection of stations in the land mobile radio service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Protection of stations in the land mobile radio... RADIO SERVICES RADIO BROADCAST SERVICES Class A Television Broadcast Stations § 73.6020 Protection of stations in the land mobile radio service. An application for digital operation of an existing Class A...

  3. 47 CFR 73.6020 - Protection of stations in the land mobile radio service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Protection of stations in the land mobile radio... RADIO SERVICES RADIO BROADCAST SERVICES Class A Television Broadcast Stations § 73.6020 Protection of stations in the land mobile radio service. An application for digital operation of an existing Class A...

  4. 47 CFR 73.6020 - Protection of stations in the land mobile radio service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Protection of stations in the land mobile radio... RADIO SERVICES RADIO BROADCAST SERVICES Class A Television Broadcast Stations § 73.6020 Protection of stations in the land mobile radio service. An application for digital operation of an existing Class A...

  5. 47 CFR 73.6020 - Protection of stations in the land mobile radio service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Protection of stations in the land mobile radio... RADIO SERVICES RADIO BROADCAST SERVICES Class A Television Broadcast Stations § 73.6020 Protection of stations in the land mobile radio service. An application for digital operation of an existing Class A...

  6. Space Station Environmental Health System water quality monitoring

    NASA Technical Reports Server (NTRS)

    Vincze, Johanna E.; Sauer, Richard L.

    1990-01-01

    One of the unique aspects of the Space Station is that it will be a totally encapsulated environment and the air and water supplies will be reclaimed for reuse. The Environmental Health System, a subsystem of CHeCS (Crew Health Care System), must monitor the air and water on board the Space Station Freedom to verify that the quality is adequate for crew safety. Specifically, the Water Quality Subsystem will analyze the potable and hygiene water supplies regularly for organic, inorganic, particulate, and microbial contamination. The equipment selected to perform these analyses will be commercially available instruments which will be converted for use on board the Space Station Freedom. Therefore, the commercial hardware will be analyzed to identify the gravity dependent functions and modified to eliminate them. The selection, analysis, and conversion of the off-the-shelf equipment for monitoring the Space Station reclaimed water creates a challenging project for the Water Quality engineers and scientists.

  7. Gasoline and vapor exposures in service station and leaking underground storage tank scenarios

    SciTech Connect

    Guldberg, P.H. )

    1992-01-01

    Exposure to gasoline and gasoline vapors from service station operations and leaking underground storage tanks is a major health concern. Six scenarios for human exposure were examined, based primarily on measured air and water concentrations of total hydrocarbons, benzene, xylenes, and toluene. Calculated mean and upper limit lifetime exposures provide a tool for assisting public health officials in assessing and managing gasoline-related health risks.

  8. Gasoline and vapor exposures in service station and leaking underground storage tank scenarios.

    PubMed

    Guldberg, P H

    1992-01-01

    Exposure to gasoline and gasoline vapors from service station operations and leaking underground storage tanks is a major health concern. Six scenarios for human exposure were examined, based primarily on measured air and water concentrations of total hydrocarbons, benzene, xylenes, and toluene. Calculated mean and upper limit lifetime exposures provide a tool for assisting public health officials in assessing and managing gasoline-related health risks. PMID:1504635

  9. International Space Station Bacteria Filter Element Service Life Evaluation

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    2005-01-01

    The International Space Station (ISS) uses high-efficiency particulate air filters to remove particulate matter from the cabin atmosphere. Known as bacteria filter elements (BFEs), there are 13 elements deployed on board the ISS's U.S. segment in the flight 4R assembly level. The preflight service life prediction of 1 yr for the BFEs is based upon engineering analysis of data collected during developmental testing that used a synthetic dust challenge. While this challenge is considered reasonable and conservative from a design perspective, an understanding of the actual filter loading is required to best manage the critical ISS program resources. Testing was conducted on BFEs returned from the ISS to refine the service life prediction. Results from this testing and implications to ISS resource management are provided.

  10. 14. PROJECT PLAN, INTAKE PIER, RAW WATER CONDUITS, PUMPING STATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. PROJECT PLAN, INTAKE PIER, RAW WATER CONDUITS, PUMPING STATION FORCE MAINS, TREATED WATER PIPELINES, AND FILTRATION PLANT, SHEET 1 OF 117, 1920. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  11. Space Station Water Processor Mostly Liquid Separator (MLS)

    NASA Technical Reports Server (NTRS)

    Lanzarone, Anthony

    1995-01-01

    This report presents the results of the development testing conducted under this contract to the Space Station Water Processor (WP) Mostly Liquid Separator (MLS). The MLS units built and modified during this testing demonstrated acceptable air/water separation results in a variety of water conditions with inlet flow rates ranging from 60 - 960 LB/hr.

  12. Supercritical water oxidation - Concept analysis for evolutionary Space Station application

    NASA Technical Reports Server (NTRS)

    Hall, John B., Jr.; Brewer, Dana A.

    1986-01-01

    The ability of a supercritical water oxidation (SCWO) concept to reduce the number of processes needed in an evolutionary Space Station design's Environmental Control and Life Support System (ECLSS), while reducing resupply requirements and enhancing the integration of separate ECLSS functions into a single Supercritical Water Oxidation process, is evaluated. While not feasible for an initial operational capability Space Station, the SCWO's application to the evolutionary Space Station configuration would aid the integration of eight ECLSS functions into a single one, thereby significantly reducing program costs.

  13. 47 CFR 73.6020 - Protection of stations in the land mobile radio service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... stations in the land mobile radio service. An application for digital operation of an existing Class A TV... 47 Telecommunication 4 2013-10-01 2013-10-01 false Protection of stations in the land mobile radio... accepted if it fails to protect stations in the land mobile radio service pursuant to the...

  14. 78 FR 39200 - Federal Earth Stations-Non-Federal Fixed Satellite Service Space Stations; Spectrum for Non...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ... of Documents in Rulemaking Proceedings, 63 FR 24121 (1998). Electronic Filers: Comments may be filed... COMMISSION 47 CFR Part 2 Federal Earth Stations--Non-Federal Fixed Satellite Service Space Stations; Spectrum for Non-Federal Space Launch Operations AGENCY: Federal Communications Commission. ACTION:...

  15. Automation of servicibility of radio-relay station equipment

    NASA Astrophysics Data System (ADS)

    Uryev, A. G.; Mishkin, Y. I.; Itkis, G. Y.

    1985-03-01

    Automation of the serviceability of radio relay station equipment must ensure central gathering and primary processing of reliable instrument reading with subsequent display on the control panel, detection and recording of failures soon enough, advance enough warning based on analysis of detertioration symptoms, and correct remote measurement of equipment performance parameters. Such an inspection will minimize transmission losses while reducing nonproductive time and labor spent on documentation and measurement. A multichannel automated inspection system for this purpose should operate by a parallel rather than sequential procedure. Digital data processing is more expedient in this case than analog method and, therefore, analog to digital converters are required. Spepcial normal, above limit and below limit test signals provide means of self-inspection, to which must be added adequate interference immunization, stabilization, and standby power supply. Use of a microcomputer permits overall refinement and expansion of the inspection system while it minimizes though not completely eliminates dependence on subjective judgment.

  16. Definition of technology development missions for early space station satellite servicing, volume 1

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The testbed role of an early manned space station in the context of a satellite servicing evolutionary development and flight demonstration technology plan which results in a satellite servicing operational capability is defined. A satellite servicing technology development mission (a set of missions) to be performed on an early manned space station is conceptually defined.

  17. Enhanced International Space Station Ku-Band Telemetry Service

    NASA Technical Reports Server (NTRS)

    Cecil, Andrew J.; Pitts, R. Lee; Welch, Steven J.; Bryan, Jason D.

    2014-01-01

    The International Space Station (ISS) is in an operational configuration. To fully utilize the ISS and take advantage of the modern protocols and updated Ku-band access, the Huntsville Operations Support Center (HOSC) has designed an approach to extend the Kuband forward link access for payload investigators to their on-orbit payloads. This dramatically increases the ground to ISS communications for those users. This access also enables the ISS flight controllers operating in the Payload Operations and Integration Center to have more direct control over the systems they are responsible for managing and operating. To extend the Ku-band forward link to the payload user community the development of a new command server is necessary. The HOSC subsystems were updated to process the Internet Protocol Encapsulated packets, enable users to use the service based on their approved services, and perform network address translation to insure that the packets are forwarded from the user to the correct payload repeating that process in reverse from ISS to the payload user. This paper presents the architecture, implementation, and lessons learned. This will include the integration of COTS hardware and software as well as how the device is incorporated into the operational mission of the ISS. Thus, this paper also discusses how this technology can be applicable to payload users of the ISS.

  18. Bioburden control for Space Station Freedom's Ultrapure Water System

    NASA Technical Reports Server (NTRS)

    Snodgrass, Donald W.; Rodgers, Elizabeth B.; Obenhuber, Don; Huff, Tim

    1991-01-01

    Bioburden control is one of the challenges for the Ultrapure Water System on Space Station Freedom. Bioburden control must enable the system to deliver water with a low bacterial count as well as maintain biological contamination at a manageable level, to permit continued production of quality water. Ozone has been chosen as the primary means of Bioburden control. Planned tests to determine the effectiveness of ozone on free-floating microbes and biofilms are described.

  19. Evaluation of vapor recovery systems efficiency and personal exposure in service stations in Mexico City.

    PubMed

    Cruz-Núñez, Xochitl; Hernández-Solís, José M; Ruiz-Suárez, Luis G

    2003-06-20

    Results of a field study on the efficiency of vapor recovery systems currently used in gasoline service stations in Mexico City are presented. Nine gasoline stations were studied, representing the several technologies available in Mexico City. The test was applied to a fixed vehicular fleet of approximately 10 private and public service vehicles. Each one of the gasoline service stations tested reported efficiencies above 80% in the recovery of vapor losses from gasoline which is the minimum permissible value by Mexican regulations. Implications to the emissions inventory are discussed. A second goal of this study was to measure the potential exposure of service attendants to three important components of gasoline: benzene; toluene; and xylenes. The influence of spatial location of personnel within the service station was also evaluated by measuring levels of the three compounds both at the refueling area and in the service station office. Results are discussed and compared to a previous study. PMID:12798092

  20. 26. GENERAL VIEW OF SLC3W MST STATION 63 (TOP SERVICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. GENERAL VIEW OF SLC-3W MST STATION 63 (TOP SERVICE STATION FOR DELIVERY VEHICLE) FROM NORTHEAST CORNER SHOWING REMOVABLE SAFETY RAILS SURROUNDING CENTRAL OPENING, PULLEY AND WINCH SYSTEM FOR RAISING SERVICE PLATFORM, AND PLATFORM HINGES - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  1. 47 CFR 25.215 - Technical requirements for space stations in the Direct Broadcast Satellite Service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Technical requirements for space stations in the Direct Broadcast Satellite Service. 25.215 Section 25.215 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.215 Technical requirements for space stations in...

  2. Definition of technology development missions for early space station satellite servicing, volume 2

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The results of all aspects of the early space station satellite servicing study tasks are presented. These results include identification of servicing tasks (and locations), identification of servicing mission system and detailed objectives, functional/operational requirements analyses of multiple servicing scenarios, assessment of critical servicing technology capabilities and development of an evolutionary capability plan, design and validation of selected servicing technology development missions (TDMs), identification of space station satellite servicing accommodation needs, and the cost and schedule implications of acquiring both required technology capability development and conducting the selected TDMs.

  3. Water quality program elements for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L.; Ramanathan, Raghupathy; Straub, John E.; Schultz, John R.

    1991-01-01

    A strategy is outlined for the development of water-quality criteria and standards relevant to recycling and monitoring the in-flight water for the Space Station Freedom (SSF). The water-reclamation subsystem of the SSF's ECLSS is described, and the objectives of the water-quality are set forth with attention to contaminants. Quality parameters are listed for potable and hygiene-related water including physical and organic parameters, inorganic constituents, bactericides, and microbial content. Comparisons are made to the quality parameters established for the Shuttle's potable water and to the EPA's current standards. Specific research is required to develop in-flight monitoring techniques for unique SSF contaminants, ECLSS microbial control, and on- and off-line monitoring. After discussing some of the in-flight water-monitoring hardware it is concluded that water reclamation and recycling are necessary and feasible for the SSF.

  4. Survey of fluoride levels in vended water stations.

    PubMed

    Jadav, Urvi G; Archarya, Bhavini S; Velasquez, Gisela M; Vance, Bradley J; Tate, Robert H; Quock, Ryan L

    2014-01-01

    This study sought to measure the fluoride concentration of water derived from vended water stations (VWS) and to identify its clinical implications, especially with regard to caries prevention and fluorosis. VWS and corresponding tap water samples were collected from 34 unique postal zip codes; samples were analyzed in duplicate for fluoride concentration. Average fluoride concentration in VWS water was significantly lower than that of tap water (P < 0.001). Fluoride concentration in the VWS water ranged from <0.01 ppm to 0.04 ppm, with a mean concentration of 0.02 ppm (±0.02 ppm). Patients utilizing VWS as their primary source of drinking water may not be receiving optimal caries preventive benefits; thus dietary fluoride supplementation may be indicated. Conversely, to minimize the risk of fluorosis in infants consuming reconstituted infant formula, water from a VWS may be used. PMID:25184716

  5. Definition of technology development missions for early Space Station satellite servicing. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The Executive Summary volume 1, includes an overview of both phases of the Definition of Technology Development Missions for Early Space Station Satellite Servicing. The primary purpose of Phase 1 of the Marshall Space Flight Center (MSFC) Satellite Servicing Phase 1 study was to establish requirements for demonstrating the capability of performing satellite servicing activities on a permanently manned Space Station in the early 1990s. The scope of Phase 1 included TDM definition, outlining of servicing objectives, derivation of initial Space Station servicing support requirements, and generation of the associated programmatic schedules and cost. The purpose of phase 2 of the satellite servicing study was to expand and refine the overall understanding of how best to use the manned space station as a test bed for demonstration of satellite servicing capabilities.

  6. Space Station Freedom Water Recovery test total organic carbon accountability

    NASA Technical Reports Server (NTRS)

    Davidson, Michael W.; Slivon, Laurence; Sheldon, Linda; Traweek, Mary

    1991-01-01

    Marshall Space Flight Center's (MSFC) Water Recovery Test (WRT) addresses the concept of integrated hygiene and potable reuse water recovery systems baselined for Space Station Freedom (SSF). To assess the adequacy of water recovery system designs and the conformance of reclaimed water quality to established specifications, MSFC has initiated an extensive water characterization program. MSFC's goal is to quantitatively account for a large percentage of organic compounds present in waste and reclaimed hygiene and potable waters from the WRT and in humidity condensate from Spacelab missions. The program is coordinated into Phase A and B. Phase A's focus is qualitative and semi-quantitative. Precise quantitative analyses are not emphasized. Phase B's focus centers on a near complete quantitative characterization of all water types. Technical approaches along with Phase A and partial Phase B investigations on the compositional analysis of Total Organic Carbon (TOC) Accountability are presented.

  7. Atmosphere and water quality monitoring on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Niu, William

    1990-01-01

    In Space Station Freedom air and water will be supplied in closed loop systems. The monitoring of air and water qualities will ensure the crew health for the long mission duration. The Atmosphere Composition Monitor consists of the following major instruments: (1) a single focusing mass spectrometer to monitor major air constituents and control the oxygen/nitrogen addition for the Space Station; (2) a gas chromatograph/mass spectrometer to detect trace contaminants; (3) a non-dispersive infrared spectrometer to determine carbon monoxide concentration; and (4) a laser particle counter for measuring particulates in the air. An overview of the design and development concepts for the air and water quality monitors is presented.

  8. Index of stations : surface-water data-collection network of Texas, September 1998

    USGS Publications Warehouse

    Gandara, S. C., (compiler); Barbie, Dana L.

    1999-01-01

    As of September 30, 1998, the surface-water data-collection network of Texas (table 1) included 313 continuous-recording streamflow stations (D), 22 gage-height record only stations (G), 23 crest-stage partial-record stations (C), 39 flood-hydrograph partial-record stations (H), 25 low-flow partial-record stations (L), 1 continuous-recording temperature station (M1), 25 continuous-recording temperature and conductivity stations (M2), 3 continuous-recording temperature, conductivity, and dissolved oxygen stations (M3), 13 continuous-recording temperature, conductivity, dissolved oxygen, and pH stations (M4), 5 daily chemical-quality stations (Qd), 133 periodic chemical-quality stations (Qp), 16 reservoir/lake surveys for water quality (Qs), and 70 continuous or daily reservoir-content stations (R). Plate 1 identifies the major river basins in Texas and shows the location of the stations listed in table 1.

  9. Space water electrolysis: Space Station through advance missions

    NASA Technical Reports Server (NTRS)

    Davenport, Ronald J.; Schubert, Franz H.; Grigger, David J.

    1991-01-01

    Static Feed Electrolyzer (SFE) technology can satisfy the need for oxygen (O2) and Hydrogen (H2) in the Space Station Freedom and future advanced missions. The efficiency with which the SFE technology can be used to generate O2 and H2 is one of its major advantages. In fact, the SFE is baselined for the Oxygen Generation Assembly within the Space Station Freedom's Environmental Control and Life Support System (ECLSS). In the conventional SFE process an alkaline electrolyte is contained within the matrix and is sandwiched between two porous electrodes. The electrodes and matrix make up a unitized cell core. The electrolyte provides the necessary path for the transport of water and ions between the electrodes, and forms a barrier to the diffusion of O2 and H2. A hydrophobic, microporous membrane permits water vapor to diffuse from the feed water to the cell core. This membrane separates the liquid feed water from the product H2, and, therefore, avoids direct contact of the electrodes by the feed water. The feed water is also circulated through an external heat exchanger to control the temperature of the cell.

  10. User assembly and servicing system for Space Station, an evolving architecture approach

    NASA Technical Reports Server (NTRS)

    Lavigna, Thomas A.; Cline, Helmut P.

    1988-01-01

    On-orbit assembly and servicing of a variety of scientific and applications hardware systems is expected to be one of the Space Station's primary functions. The hardware to be serviced will include the attached payloads resident on the Space Station, the free-flying satellites and co-orbiting platforms brought to the Space Station, and the polar orbiting platforms. The requirements for assembly and servicing such a broad spectrum of missions have led to the development of an Assembly and Servicing System Architecture that is composed of a complex array of support elements. This array is comprised of US elements, both Space Station and non-Space Station, and elements provided by Canada to the Space Station Program. For any given servicing or assembly mission, the necessary support elements will be employed in an integrated manner to satisfy the mission-specific needs. The structure of the User Assembly and Servicing System Architecture and the manner in which it will evolved throughout the duration of the phased Space Station Program are discussed. Particular emphasis will be placed upon the requirements to be accommodated in each phase, and the development of a logical progression of capabilities to meet these requirements.

  11. 47 CFR 25.215 - Technical requirements for space stations in the Direct Broadcast Satellite Service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the Direct Broadcast Satellite Service. 25.215 Section 25.215 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.215 Technical requirements for space stations in the Direct Broadcast Satellite Service. In addition to §...

  12. 47 CFR 25.215 - Technical requirements for space stations in the Direct Broadcast Satellite Service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the Direct Broadcast Satellite Service. 25.215 Section 25.215 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.215 Technical requirements for space stations in the Direct Broadcast Satellite Service. In addition to §...

  13. 47 CFR 25.215 - Technical requirements for space stations in the Direct Broadcast Satellite Service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the Direct Broadcast Satellite Service. 25.215 Section 25.215 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.215 Technical requirements for space stations in the Direct Broadcast Satellite Service. In addition to §...

  14. 47 CFR 73.809 - Interference protection to full service FM stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... station that operates on the same channel, first-adjacent channel or intermediate frequency (IF) channel... frequency (IF) channel interference overlap will be determined based upon overlap of the 91 dBu F(50,50... Federal Communications Commission, attention Audio Services Division. The LPFM station must...

  15. 47 CFR 73.809 - Interference protection to full service FM stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... station that operates on the same channel, first-adjacent channel or intermediate frequency (IF) channel... frequency (IF) channel interference overlap will be determined based upon overlap of the 91 dBu F(50,50... Federal Communications Commission, attention Audio Services Division. The LPFM station must...

  16. Video- Water Droplet Demonstration on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video clip, Dr. Pettit demonstrates a spilling phenomenon with films of water. After drawing a 100-200 micron thick film of pure water, which is impossible to do on Earth, Dr. Pettit oscillates the film back and forth like a drum head, forcing the water droplets to spill off. He observes that although the phenomenon looks much like drops of water that are ejected from the surface of a pool when a rock is dropped in, the underlying physics are very different.

  17. NASA PLUM BROOK STATION EMPLOYEE MARK WOIKE BRIEFS THE DIRECTOR OF ENGINEERING AND TECHNICAL SERVICE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA PLUM BROOK STATION EMPLOYEE MARK WOIKE BRIEFS THE DIRECTOR OF ENGINEERING AND TECHNICAL SERVICES - RANDALL FURNAS - ON THE DEPARTMENT OF ENERGY COMBUSTOR TECHNOLOGY TESTING IN THE HYPERSONIC TUNNEL FACILITY

  18. Space station automation study-satellite servicing. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A plan for advancing the state of automation and robotics technology as an integral part of the U.S. space station development effort was studied. This study was undertaken: (1) to determine the benefits that will accrue from using automated systems onboard the space station in support of satellite servicing; (2) to define methods for increasing the capacity for, and effectiveness of satellite servicing while reducing demands on crew time and effort and on ground support; (3) to find optimum combinations of men/machine activities in the performance of servicing functions; and (4) project the evolution of automation technology needed to enhance or enable satellite servicing capabilities to match the evolutionary growth of the space station. A secondary intent is to accelerate growth and utilization of robotics in terrestrial applications as a spin-off from the space station program.

  19. 76 FR 79113 - Amendment of Service and Eligibility Rules for FM Broadcast Translator Stations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... Commission's document, Report No. 2941, released December 13, ] 2011. The full text of this document is... of Service and Eligibility Rules for FM Broadcast Translator Stations, published at 74 FR...

  20. International Space Station Potable Water Characterization for 2013

    NASA Technical Reports Server (NTRS)

    Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.; Mudgett, Paul D.

    2014-01-01

    In this post-construction, operational phase of International Space Station (ISS) with an ever-increasing emphasis on its use as a test-bed for future exploration missions, the ISS crews continue to rely on water reclamation systems for the majority of their water needs. The onboard water supplies include U.S. Segment potable water from humidity condensate and urine, Russian Segment potable water from condensate, and ground-supplied potable water, as reserve. In 2013, the cargo returned on the Soyuz 32-35 flights included archival potable water samples collected from Expeditions 34-37. The former Water and Food Analytical Laboratory (now Toxicology and Evironmental Chemistry Laboratory) at the NASA Johnson Space Center continued its long-standing role of performing chemical analyses on ISS return water samples to verify compliance with potable water quality specifications. This paper presents and discusses the analytical results for potable water samples returned from Expeditions 34-37, including a comparison to ISS quality standards. During the summer of 2013, the U.S. Segment potable water experienced a third temporary rise and fall in total organic carbon (TOC) content, as the result of organic contamination breaking through the water system's treatment process. Analytical results for the Expedition 36 archival samples returned on Soyuz 34 confirmed that dimethylsilanediol was once again the responsible contaminant, just as it was for the previous comparable TOC rises in 2010 and 2012. Discussion herein includes the use of the in-flight total organic carbon analyzer (TOCA) as a key monitoring tool for tracking these TOC rises and scheduling appropriate remediation.

  1. International Space Station Potable Water Characterization for 2013

    NASA Technical Reports Server (NTRS)

    Straub, John E. II; Plumlee, Debrah K.; Schultz, John R..; Mudgett, Paul D.

    2014-01-01

    In this post-construction, operational phase of International Space Station (ISS) with an ever-increasing emphasis on its use as a test-bed for future exploration missions, the ISS crews continue to rely on water reclamation systems for the majority of their water needs. The onboard water supplies include US Segment potable water from humidity condensate and urine, Russian Segment potable water from condensate, and ground-supplied potable water, as reserve. In 2013, the cargo returned on the Soyuz 32-35 flights included archival potable water samples collected from Expeditions 34-37. The Water and Food Analytical Laboratory at the NASA Johnson Space Center continued its long-standing role of performing chemical analyses on ISS return water samples to verify compliance with potable water quality specifications. This paper presents and discusses the analytical results for potable water samples returned from Expeditions 34-37, including a comparison to ISS quality standards. During the summer of 2013, the U.S. Segment potable water experienced an anticipated temporary rise and fall in total organic carbon (TOC) content, as the result of organic contamination breaking through the water system's treatment process. Analytical results for the Expedition 36 archival samples returned on Soyuz 34 confirmed that dimethylsilanediol was once again the responsible contaminant, just as it was for comparable TOC rises in 2010 and 2012. Discussion herein includes the use of the in-flight Total Organic Carbon Analyzer (TOCA) as a key monitoring tool for tracking these TOC rises and scheduling appropriate remediation action.

  2. Human factors issues in telerobotic systems for Space Station Freedom servicing

    NASA Technical Reports Server (NTRS)

    Malone, Thomas B.; Permenter, Kathryn E.

    1990-01-01

    Requirements for Space Station Freedom servicing are described and the state-of-the-art for telerobotic system on-orbit servicing of spacecraft is defined. The projected requirements for the Space Station Flight Telerobotic Servicer (FTS) are identified. Finally, the human factors issues in telerobotic servicing are discussed. The human factors issues are basically three: the definition of the role of the human versus automation in system control; the identification of operator-device interface design requirements; and the requirements for development of an operator-machine interface simulation capability.

  3. U.S. Space Station platform - Configuration technology for customer servicing

    NASA Technical Reports Server (NTRS)

    Dezio, Joseph A.; Walton, Barbara A.

    1987-01-01

    Features of the Space Station coorbiting and polar orbiting platforms (COP and POP, respectively) are described that will allow them to be configured optimally to meet mission requirements and to be assembled, serviced, and modified on-orbit. Both of these platforms were designed to permit servicing at the Shuttle using the remote manipulator system with teleoperated end effectors; EVA was planned as a backup and for unplanned payload failure modes. Station-based servicing is discussed as well as expendable launch vehicle-based servicing concepts.

  4. Installation of the Light-Water Breeder Reactor at the Shippingport Atomic Power Station (LWBR Development Program)

    SciTech Connect

    Massimino, R.J.; Williams, D.A.

    1983-05-01

    This report summarizes the refueling operations performed to install a Light Water Breeder Reactor (LWBR) core into the existing pressurized water reactor vessel at the Shippingport Atomic Power Station. Detailed descriptions of the major installation operations (e.g., primary system preconditioning, fuel installation, pressure boundary seal welding) are included as appendices to this report; these operations are of technical interest to any reactor servicing operation, whether the reactor is a breeder or a conventional light water non-breeder core.

  5. Space Station user traffic model analysis for mission payload servicing into the twenty-first century

    NASA Technical Reports Server (NTRS)

    Gould, G. J.

    1986-01-01

    The Space Station-based Customer Servicing Facility service bay requirements for service accommodation to the Initial Orbit Capability (IOC) and far-term Station Accommodation Test Sets (SETS) missions are analyzed using the developed mission traffic model. Analysis results are presented which indicate that one servicing bay will be sufficient to accommodate IOC customer servicing requirements. Growth servicing requirements indicate that an additional servicing bay will be needed for accommodation of the far-term SATS mission payloads. Even though the level of total mission accommodation is below 100 percent for one bay at IOC and two bays during growth operations, the levels are such that operational work-around exists so that additional servicing bays will not be required.

  6. International Space Station (ISS) Water Transfer Hardware Logistics

    NASA Technical Reports Server (NTRS)

    Shkedi, Brienne D.

    2006-01-01

    Water transferred from the Space Shuttle to the International Space Station (ISS) is generated as a by-product from the Shuttle fuel cells, and is generally preferred over the Progress which has to launch water from the ground. However, launch mass and volume are still required for the transfer and storage hardware. Some of these up-mass requirements have been reduced since ISS assembly began due to changes in the storage hardware (CWC). This paper analyzes the launch mass and volume required to transfer water from the Shuttle and analyzes the up-mass savings due to modifications in the CWC. Suggestions for improving the launch mass and volume are also provided.

  7. A comparison of the Shuttle remote manipulator system and the Space Station Freedom mobile servicing center

    NASA Technical Reports Server (NTRS)

    Taylor, Edith C.; Ross, Michael

    1989-01-01

    The Shuttle Remote Manipulator System is a mature system which has successfully completed 18 flights. Its primary functional design driver was the capability to deploy and retrieve payloads from the Orbiter cargo bay. The Space Station Freedom Mobile Servicing Center is still in the requirements definition and early design stage. Its primary function design drivers are the capabilities: to support Space Station construction and assembly tasks; to provide external transportation about the Space Station; to provide handling capabilities for the Orbiter, free flyers, and payloads; to support attached payload servicing in the extravehicular environment; and to perform scheduled and un-scheduled maintenance on the Space Station. The differences between the two systems in the area of geometric configuration, mobility, sensor capabilities, control stations, control algorithms, handling performance, end effector dexterity, and fault tolerance are discussed.

  8. Quantifying The Water Quality Services Of Wetlands

    EPA Science Inventory

    Wetlands are well recognized for their potential for providing a wide range of important ecological services including their ability to provide water quality protection. Watershed-scale water quality trading could create market driven incentives to restore and construct wetlands...

  9. Service Members Permanent Change of Station Relief Act

    THOMAS, 112th Congress

    Sen. Begich, Mark [D-AK

    2011-03-03

    03/03/2011 Read twice and referred to the Committee on Armed Services. (text of measure as introduced: CR S1223) (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  10. International Space Station USOS Potable Water Dispenser Development

    NASA Technical Reports Server (NTRS)

    Shaw, Laura A.; Barreda, Jose L.

    2008-01-01

    The International Space Station (ISS) Russian Segment currently provides potable water dispensing capability for crewmember food and beverage rehydration. All ISS crewmembers rehydrate Russian and U.S. style food packages from this location. A new United States On-orbit Segment (USOS) Potable Water Dispenser (PWD) is under development. This unit will provide additional potable water dispensing capability to support an onorbit crew of six. The PWD is designed to provide incremental quantities of hot and ambient temperature potable water to U.S. style food packages. It will receive iodinated water from the Fuel Cell Water Bus in the U.S. Laboratory element. The unit will provide potable-quality water, including active removal of biocidal iodine prior to dispensing. A heater assembly contained within the unit will be able to supply up to 2.0 liters of hot water (65 to 93oC) every thirty minutes. This quantity will allow three to four crewmembers to rehydrate their food and beverages from this location during a single meal. The unit is designed to remain functional for up to ten years with replacement of limited life items such as filters. It will be the size of two stacked Shuttle Middeck lockers (approximately the size of two small suitcases) and integrated into a science payload rack in the U.S. Laboratory element. Providing potable-quality water at the proper temperature for food and beverage reconstitution is critical to maintaining crew health and well-being. The numerous engineering challenges as well as human factors and safety considerations during the concept, design, and prototyping are outlined in this paper.

  11. Relative Effects of Daily Feedback and Weekly Feedback on Customer Service Behavior at a Gas Station

    ERIC Educational Resources Information Center

    So, Yongjoon; Lee, Kyehoon; Oah, Shezeen

    2013-01-01

    The relative effects of daily and weekly feedback on customer service behavior at a gas station were assessed using an ABC within-subjects design. Four critical service behaviors were identified and measured daily. After baseline (A), weekly feedback (B) was introduced, and daily feedback (C) was introduced in the next phase. The results indicated…

  12. The Context for Food Service and Nutrition in the Space Station

    NASA Technical Reports Server (NTRS)

    Glaser, P. E.

    1985-01-01

    Commercial activities in space represent diverse markets where international competitors will be motivated by economic, technical and political considerations. These considerations are given and discussed. The space station program, industrial participation and the potential benefits of commercial activities in space are described. How food service and nutrition affects habitability, effects on physical condition, dietary goals, food preparation and meal service are detailed.

  13. A Demonstration Training Program for Potential School Dropouts. A Service Station Training School for Dropout-Prone Students.

    ERIC Educational Resources Information Center

    Rull, Marvin H.; Moore, Richard O.

    One phase of the curriculum demonstration program sponsored jointly by the Quincy Public Schools and Southern Illinois University is the Service Station Training School described within this report. The Service Station Training School was one of several sheltered work stations which were developed to provide preemployment experiences and training…

  14. 76 FR 7847 - Glenn A. Baxter, Application To Renew License for Amateur Radio Service Station K1MAN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ... COMMISSION Glenn A. Baxter, Application To Renew License for Amateur Radio Service Station K1MAN AGENCY... renew the license for Amateur Radio Service Station K1MAN filed by Glenn A. Baxter should be granted.... Baxter for renewal of his license for Amateur Radio Station K1MAN should be granted. As discussed...

  15. SCaN Network Ground Station Receiver Performance for Future Service Support

    NASA Technical Reports Server (NTRS)

    Estabrook, Polly; Lee, Dennis; Cheng, Michael; Lau, Chi-Wung

    2012-01-01

    Objectives: Examine the impact of providing the newly standardized CCSDS Low Density Parity Check (LDPC) codes to the SCaN return data service on the SCaN SN and DSN ground stations receivers: SN Current Receiver: Integrated Receiver (IR). DSN Current Receiver: Downlink Telemetry and Tracking (DTT) Receiver. Early Commercial-Off-The-Shelf (COTS) prototype of the SN User Service Subsystem Component Replacement (USS CR) Narrow Band Receiver. Motivate discussion of general issues of ground station hardware design to enable simple and cheap modifications for support of future services.

  16. Urine pretreatment for waste water processing systems. [for space station

    NASA Technical Reports Server (NTRS)

    Winkler, H. E.; Verostko, C. E.; Dehner, G. F.

    1983-01-01

    Recovery of high quality water from urine is an essential part of life support on a Space Station to avoid costly launch and resupply penalties. Water can be effectively recovered from urine by distillation following pretreatment by a chemical agent to inhibit microorganism contamination and fix volatile ammonia constituents. This paper presents the results of laboratory investigations of several pretreatment chemicals which were tested at several concentration levels in combination with sulfuric acid in urine. The optimum pretreatment formulation was then evaluated with urine in the Hamilton Standard Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES). Over 2600 hours of test time was accumulated. Results of these laboratory and system tests are presented in this paper.

  17. IET. Coupling station (TAN620) and service room section and details. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET. Coupling station (TAN-620) and service room section and details. Interior electrical features inside coupling station. Cable terminal assembly for patch panel for plug. Ralph M. Parsons 902-4-ANP-620-E 401. Date: February 1954. Approved by INEEL Classification Office for public release. INEEL index code no. 035-0620-10-693-106958 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  18. Servicing of the future European stations/platforms through European means

    NASA Astrophysics Data System (ADS)

    Eymar, P.; Peyrin, Y.; Cougnet, C.; Brudieu, P.; Dutto, P.

    In order to get a better knowledge of servicing problems and scenarii of the future European In Orbit Infrastructure, CNES (French Space Agency) decided to fund two separate servicing analysis, respectively conducted by Aérospatiale and MATRA. Aérospatiale work deals with several possible manned stations, taking into account a previous study, while MATRA work deals with polar platform aspects. The first part (Servicing of manned Space Stations) deals with a possible optimization of the roles to be played both by the future Ariane 5 launcher in automatic mode and by the Hermes Spaceplane for the servicing of some future manned space stations: the Columbus pressurized module on the U.S. Space Station, a non-evolutive one-module autonomous station and a multi-module one with a growth capability. After having identified the potential cargoes required for the maintenance and servicing of these stations (analysis of payloads, maintenance ORUs, consumales, crew exchange) and the possible frequencies of such a servicing, it is intended to show how it can be achieved through European means. Established scenarii make use of the Ariane 5 launcher combined either with the Hermes vehicle or with an automated payload. Solutions using payload carriers and/or logistic modules are examined, and possible impacts on stations and/or vehicles are identified further, following investigations on orbital transfer operations. The second part (Servicing of polar platforms) describes the possible scenarii of in-orbit implementation and servicing of a polar platform (number of Ariane 5 launches, modes of transfer, type of service vehicles, servicing orbit, …). This part is focused on the in-orbit operation to exchange on ORU (Orbital Replaceable Unit), once both platform and Hermes (or other servicing vehicle) are attached. After a review of the main tasks to be performed and the possible means to be used as manipulator or EVA, the paper describes the scenario (extraction of an ORU

  19. EXPRESS Service to the International Space Station: EXPRESS Pallet

    NASA Technical Reports Server (NTRS)

    Primm, Lowell; Bergmann, Alan

    1998-01-01

    The International Space Station (ISS) will be the ultimate scientific accomplishment in the history of NASA, with its primary objective of providing unique scientific investigation opportunities. This objective is the basis for the creation of the EXPRESS Pallet System (ExPs). The EXPRESS Pallet will provide extremal/unpressurized accommodations for a wide variety of external users. The payload developers represent many science disciplines, including earth observation, communications, solar and deep space viewing, long-term exposure, and many others. The EXPRESS Pallet will provide a mechanism to maximum utilization of the limited ISS unpressurized payload volume, standard physical payload interfaces for users, a standard integration template for users and the capability to changeout payloads on-orbit. The EXPRESS Pallet provides access to Ram, Wake, Starboard, Port, Nadir, Zenith and Earth Limb for exposure and viewing. 'Me ExPs consists of the Pallet structure, payload Adapters, and a subsystem assembly which includes data controller, power distribution and conversion, and Extra Vehicular Robotics/Extra-Vehicular Activity systems.

  20. Express service to the international space station: Express pallet

    NASA Astrophysics Data System (ADS)

    Primm, Lowell; Bergmann, Alan

    1999-01-01

    The International Space Station (ISS) will be the ultimate scientific accomplishment in the history of NASA, with its primary objective of providing unique scientific investigation opportunities. This objective is the basis for the creation of the EXPRESS Pallet System (ExPS). The EXPRESS Pallet will provide external/unpressurized accommodations for a wide variety of external users. The payload developers represent many science disciplines, including earth observation, communications, solar and deep space viewing, long-term exposure, and many others. The EXPRESS Pallet will provide a mechanism to maximum utilization of the limited ISS unpressurized payload volume, standard physical payload interfaces for users, a standard integration template for users and the capability to changeout payloads on-orbit. The EXPRESS Pallet provides access to Ram, Wake, Starboard, Port, Nadir, Zenith and Earth Limb for exposure and viewing. The ExPs consists of the Pallet structure, payload Adapters, and a subsystem assembly which includes data controller, power distribution and conversion, and Extra Vehicular Robotics/Extra-Vehicular Activity systems.

  1. Design Drivers of Water Data Services

    NASA Astrophysics Data System (ADS)

    Valentine, D.; Zaslavsky, I.

    2008-12-01

    The CUAHSI Hydrologic Information System (HIS) is being developed as a geographically distributed network of hydrologic data sources and functions that are integrated using web services so that they function as a connected whole. The core of the HIS service-oriented architecture is a collection of water web services, which provide uniform access to multiple repositories of observation data. These services use SOAP protocols communicating WaterML (Water Markup Language). When a client makes a data or metadata request using a CUAHSI HIS web service, these requests are made in standard manner, following the CUAHSI HIS web service signatures - regardless of how the underlying data source may be organized. Also, regardless of the format in which the data are returned by the source, the web services respond to requests by returning the data in a standard format of WaterML. The goal of WaterML design has been to capture semantics of hydrologic observations discovery and retrieval and express the point observations information model as an XML schema. To a large extent, it follows the representation of the information model as adopted by the CUASHI Observations Data Model (ODM) relational design. Another driver of WaterML design is specifications and metadata adopted by USGS NWIS, EPA STORET, and other federal agencies, as it seeks to provide a common foundation for exchanging both agency data and data collected in multiple academic projects. Another WaterML design principle was to create, in version 1 of HIS in particular, a fairly rigid and simple XML schema which is easy to generate and parse, thus creating the least barrier for adoption by hydrologists. WaterML includes a series of elements that reflect common notions used in describing hydrologic observations, such as site, variable, source, observation series, seriesCatalog, and data values. Each of the three main request methods in the water web services - GetSiteInfo, GetVariableInfo, and GetValues - has a

  2. Exposure to methyl tert-butyl ether and benzene among service station attendants and operators.

    PubMed

    Hartle, R

    1993-12-01

    Concerns for atmospheric pollution from auto exhaust have led to the blending of "oxygenates" with motor fuels. The most common oxygenate, methyl tert-butyl ether (MTBE) is currently required within several metropolitan areas (Denver and Phoenix) in the range of 12% of the motor fuel. Amendments to the Clean Air Act may expand this requirement to as many as 44 other areas of the United States in the near future. In consideration of the magnitude of potential uncontrolled exposures from its extensive use and a related concern involving the potential influence of MTBE blending on exposures to other constituents of gasoline (particularly benzene), an evaluation of exposures among service station attendants and operators was undertaken at the request, and in cooperation with, the American Petroleum Institute during the latter part of 1990. For application of the survey results to a broad audience, three categories or types of service stations were identified with regard to MTBE use and exposure potential: a) service stations that do not use MTBE or use it only as an octane enhancer, b) service stations with seasonal requirements to use 12-15% MTBE (the Denver, Colorado, and Phoenix, Arizona, metropolitan areas), and c) service stations equipped with stage II (active) vapor recovery systems (several coastal areas, most notably Southern California). At the two sampled service stations that use only minimal amounts of MTBE (less than 1%), only 1 of 32 personal breathing zone (PBZ) samples from attendants was above the analytical limit of detection, reported at 0.16 ppm. The geometric mean concentration of benzene among this same population (n = 32) was 0.04 ppm.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8020445

  3. Integrated water management system - Description and test results. [for Space Station waste water processing

    NASA Technical Reports Server (NTRS)

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  4. Definition of technology development missions for early Space Station satellite servicing. Volume 2: Technical

    NASA Technical Reports Server (NTRS)

    Cable, D. A.; Diewald, C. A.; Hills, T. C.; Parmentier, T. J.; Spencer, R. A.; Stone, G. E.

    1984-01-01

    Volume 2 contains the Technical Report of the approach and results of the Phase 2 study. The phase 2 servicing study was initiated in June 1983, and is being reported in this document. The scope of the contract was to: (1) define in detail five selected technology development missions (TDM); (2) conduct a design requirement analysis to refine definitions of satellite servicing requirements at the space station; and (3) develop a technology plan that would identify and schedule prerequisite precursor technology development, associated. STS flight experiments and space station experiments needed to provide onorbit validation of the evolving technology.

  5. Development of an automated checkout, service and maintenance system for a Space Station EVAS

    NASA Technical Reports Server (NTRS)

    Abeles, Fred J.; Tri, Terry; Blaser, Robert

    1988-01-01

    The development of a new operational system for the Space Station will minimize the time normally spent on performing on-orbit checkout, servicing, and maintenance of an extravehicular activity system of the Space Station. This system, the Checkout, Servicing, and Maintenance System (COSM), is composed of interactive control software interfacing with software simulations of hardware components. The major elements covered in detail include the controller, the EMU simulator and the regenerative life support system. The operational requirements and interactions of the individual elements as well as the protocols are also discussed.

  6. PI Microgravity Services Role for International Space Station Operations

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1998-01-01

    During the ISS era, the NASA Lewis Research Center's Principal Investigator Microgravity Services (PIMS) project will provide to principal investigators (PIs) microgravity environment information and characterization of the accelerations to which their experiments were exposed during on orbit operations. PIMS supports PIs by providing them with microgravity environment information for experiment vehicles, carriers, and locations within the vehicle. This is done to assist the PI with their effort to evaluate the effect of acceleration on their experiments. Furthermore, PIMS responsibilities are to support the investigators in the area of acceleration data analysis and interpretation, and provide the Microgravity science community with a microgravity environment characterization of selected experiment carriers and vehicles. Also, PIMS provides expertise in the areas of microgravity experiment requirements, vibration isolation, and the implementation of requirements for different spacecraft to the microgravity community and other NASA programs.

  7. Migration strategies for service-enabling ground control stations for unmanned systems

    NASA Astrophysics Data System (ADS)

    Kroculick, Joseph B.

    2011-06-01

    Future unmanned systems will be integrated into the Global Information Grid (GIG) and support net-centric data sharing, where information in a domain is exposed to a wide variety of GIG stakeholders that can make use of the information provided. Adopting a Service-Oriented Architecture (SOA) approach to package reusable UAV control station functionality into common control services provides a number of benefits including enabling dynamic plug and play of components depending on changing mission requirements, supporting information sharing to the enterprise, and integrating information from authoritative sources such as mission planners with the UAV control stations data model. It also allows the wider enterprise community to use the services provided by unmanned systems and improve data quality to support more effective decision-making. We explore current challenges in migrating UAV control systems that manage multiple types of vehicles to a Service-Oriented Architecture (SOA). Service-oriented analysis involves reviewing legacy systems and determining which components can be made into a service. Existing UAV control stations provide audio/visual, navigation, and vehicle health and status information that are useful to C4I systems. However, many were designed to be closed systems with proprietary software and hardware implementations, message formats, and specific mission requirements. An architecture analysis can be performed that reviews legacy systems and determines which components can be made into a service. A phased SOA adoption approach can then be developed that improves system interoperability.

  8. Rapid toxicity detection in water quality control utilizing automated multispecies biomonitoring for permanent space stations

    NASA Technical Reports Server (NTRS)

    Morgan, E. L.; Young, R. C.; Smith, M. D.; Eagleson, K. W.

    1986-01-01

    The objective of this study was to evaluate proposed design characteristics and applications of automated biomonitoring devices for real-time toxicity detection in water quality control on-board permanent space stations. Simulated tests in downlinking transmissions of automated biomonitoring data to Earth-receiving stations were simulated using satellite data transmissions from remote Earth-based stations.

  9. June 2013 Meteotsunami Captured by NOAA/NOS Coastal Water Level Stations

    NASA Astrophysics Data System (ADS)

    Bailey, K.; DiVeglio, C.; Welty, A.

    2014-12-01

    On June 13, 2013, a north-south oriented, long formation of strong storms passed eastward over the New Jersey coast. Three hours later, while the weather was calm, a sudden runup of water along the New Jersey and New England coasts was witnessed despite no nearby seismic activity. Post-event analysis revealed that a rare meteotsunami impacted the East Coast of the United States. The strong pressure jump associated with the storms generated an ocean wave that became amplified when the speed of the storms reached the speed of the wave, creating resonance. The wave approached the Mid-Atlantic shelf break and reflected back, explaining the time lag between the passing storms and the incoming wave. The National Water Level Observing Network (NWLON) stations maintained by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) Center for Operational Oceanographic Products and Services (CO-OPS) measured strong water level oscillations at several stations along the eastern seaboard. The detided one-minute data show the tsunami signal with maximum amplitudes ranging from 0.16 m at Nantucket Island, MA to 0.61 m. at Newport, RI. The Narragansett Bay stations captured the meteotsunami wave propagating northward and diminishing towards the innermost part of the Bay. The Atlantic City, NJ station captured the 3.2-mb pressure jump in the six-minute barometer data from the passing storms as well as the incoming wave that hit three hours later with a maximum amplitude of 0.47 m. Along the U.S. coast, harbor shape and orientation contributed to the strength of the tsunami wave, and some stations that were in shadowed areas did not measure a strong signal despite being in an area of measurable impact. Meteotsunamis pose a threat to the U.S. coastline, and without high-resolution observations and models these events cannot be quantitatively forecasted. NOAA does not currently have an operational warning system but the June 2013 meteotsunami provides an

  10. Safety management of deep water station-keeping systems

    NASA Astrophysics Data System (ADS)

    Moan, Torgeir

    2009-06-01

    Based on relevant in-service experience, this paper discusses how risks associated with station-keeping systems can be controlled through adequate design criteria, inspection, repair and maintenance practice, as well as quality assurance and control of the engineering processes. Particular focus must be placed on quantitative design for system robustness. The application of structural reliability analysis to quantify safety is briefly reviewed. In particular it was emphasized that reliability predictions based on normal uncertainties and variability yielded lower failure rates than those experienced for predictions of hulls and catenary mooring systems; gross errors in design, fabrication and operation were responsible. For this reason the broad safety management approach mentioned above was proposed. Moreover, it was found that this approach needed to be supported by a quantitative risk assessment. Finally, the challenges in dealing with the effects of human factors in risk management are outlined, along with means to deal with them in a qualitative manner, by the so-called barrier method to limit risk.

  11. Ecosystem services in urban water investment.

    PubMed

    Kandulu, John M; Connor, Jeffery D; MacDonald, Darla Hatton

    2014-12-01

    Increasingly, water agencies and utilities have an obligation to consider the broad environmental impacts associated with investments. To aid in understanding water cycle interdependencies when making urban water supply investment decisions, an ecosystem services typology was augmented with the concept of integrated water resources management. This framework is applied to stormwater harvesting in a case study catchment in Adelaide, South Australia. Results show that this methodological framework can effectively facilitate systematic consideration and quantitative assessment of broad environmental impacts of water supply investments. Five ecosystem service impacts were quantified including provision of 1) urban recreational amenity, 2) regulation of coastal water quality, 3) salinity, 4) greenhouse gas emissions, and 5) support of estuarine habitats. This study shows that ignoring broad environmental impacts can underestimate ecosystem service benefits of water supply investments by a value of up to A$1.36/kL, or three times the cost of operating and maintenance of stormwater harvesting. Rigorous assessment of the public welfare impacts of water infrastructure investments is required to guide long-term optimal water supply investment decisions. Numerous challenges remain in the quantification of broad environmental impacts of a water supply investment including a lack of peer-reviewed studies of environmental impacts, aggregation of incommensurable impacts, potential for double-counting errors, uncertainties in available impact estimates, and how to determine the most suitable quantification technique. PMID:24992048

  12. 47 CFR 73.809 - Interference protection to full service FM stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...)(1) and (a)(2). Intermediate frequency (IF) channel interference overlap will be determined based... licensee and the Federal Communications Commission, attention Audio Services Division. The LPFM station... that results from the radiation of radio frequency energy outside its assigned channel. Upon notice...

  13. 47 CFR 73.809 - Interference protection to full service FM stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...)(1) and (a)(2). Intermediate frequency (IF) channel interference overlap will be determined based... licensee and the Federal Communications Commission, attention Audio Services Division. The LPFM station... that results from the radiation of radio frequency energy outside its assigned channel. Upon notice...

  14. Regenerative water supply for an interplanetary space station: The experience gained on the space stations “Salut”, “Mir”, ISS and development prospects

    NASA Astrophysics Data System (ADS)

    Bobe, Leonid; Samsonov, Nikoly; Gavrilov, Lev; Novikov, Vladimir; Tomashpolskiy, Mihail; Andreychuk, Peter; Protasov, Nikoly; Synjak, Yury; Skuratov, Vladimir

    2007-06-01

    Based on the experience in operation of Russian space stations Salut, Mir and International space station ISS the station's water balance data, parameters and characteristics of the systems for water recovery have been obtained. Using the data design analysis an integrated water supply system for an interplanetary space station has been performed. A packaged physical/chemical system for water supply is composed of an integrated system for water recovery from humidity condensate, green house condensate, water from carbon dioxide reduction system and condensate from urine system; a system for water reclamation from urine; hygiene water processing system and a water storage system. The take off mass of the packaged water supply system (including expendables, redundancy hardware, equivalent mass of power consumption and of thermal control) is appropriate for Mars missions. The international space station is indispensable for verifying innovative processes and new water recovery systems intended for missions to Mars.

  15. 47 CFR 101.135 - Shared use of radio stations and the offering of private carrier service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101... Operational Fixed Point-to-Point Microwave radio stations may share the use of their facilities on a...

  16. 47 CFR 101.135 - Shared use of radio stations and the offering of private carrier service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101... Operational Fixed Point-to-Point Microwave radio stations may share the use of their facilities on a...

  17. 47 CFR 101.135 - Shared use of radio stations and the offering of private carrier service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101... Operational Fixed Point-to-Point Microwave radio stations may share the use of their facilities on a...

  18. 47 CFR 101.135 - Shared use of radio stations and the offering of private carrier service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101... Operational Fixed Point-to-Point Microwave radio stations may share the use of their facilities on a...

  19. 47 CFR 101.135 - Shared use of radio stations and the offering of private carrier service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101... Operational Fixed Point-to-Point Microwave radio stations may share the use of their facilities on a...

  20. Characterization and monitoring of microbial species in the international space station drinking water

    NASA Technical Reports Server (NTRS)

    Duc, M. T. La; Vankateswaran, K.; Sumner, R.; Pierson, D.

    2003-01-01

    The focus of this study is to develop procedures to characterize the microbial quality of the drinking water for the International Space Station (ISS) and shuttle at various stages of water treatment.

  1. Definition of technology development missions for early space stations orbit transfer vehicle serving. Phase 2, task 1: Space station support of operational OTV servicing

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Representative space based orbital transfer vehicles (OTV), ground based vehicle turnaround assessment, functional operational requirements and facilities, mission turnaround operations, a comparison of ground based versus space based tasks, activation of servicing facilities prior to IOC, fleet operations requirements, maintenance facilities, OTV servicing facilities, space station support requirements, and packaging for delivery are discussed.

  2. 47 CFR 95.424 - (CB Rule 24) How do I have my CB station transmitter serviced?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false (CB Rule 24) How do I have my CB station transmitter serviced? 95.424 Section 95.424 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Citizens Band (CB) Radio Service Other...

  3. 47 CFR 95.424 - (CB Rule 24) How do I have my CB station transmitter serviced?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false (CB Rule 24) How do I have my CB station transmitter serviced? 95.424 Section 95.424 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Citizens Band (CB) Radio Service Other...

  4. 47 CFR 95.424 - (CB Rule 24) How do I have my CB station transmitter serviced?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false (CB Rule 24) How do I have my CB station transmitter serviced? 95.424 Section 95.424 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Citizens Band (CB) Radio Service Other...

  5. 47 CFR 95.424 - (CB Rule 24) How do I have my CB station transmitter serviced?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false (CB Rule 24) How do I have my CB station transmitter serviced? 95.424 Section 95.424 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Citizens Band (CB) Radio Service Other...

  6. 47 CFR 95.424 - (CB Rule 24) How do I have my CB station transmitter serviced?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false (CB Rule 24) How do I have my CB station transmitter serviced? 95.424 Section 95.424 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Citizens Band (CB) Radio Service Other...

  7. Service offerings and interfaces for the ACTS network of earth stations

    NASA Technical Reports Server (NTRS)

    Coney, T. A.; Dobyns, T. R.; Chitre, D. M.; Lindstrom, R.

    1988-01-01

    The NASA Advanced Communications Technology Satellite (ACTS) will use a network of about 20 earth stations to operate as a Mode 1 network. This network will support two ACTS program objectives: to verify the technical performance of ACTS Mode 1 operation in GEO and to demonstrate the types and quality of services that can be provided by an ACTS Mode 1 communications system. The terrestrial interface design is a critical element in assuring that these network earth stations will meet the objectives. In this paper, the applicable terrestrial interface design requirements, the resulting interface specifications, and the associated terrestrial input/output hardware are discussed. A functional block diagram of a network earth station is shown.

  8. GEOSS Water Services for Data and Maps

    NASA Astrophysics Data System (ADS)

    Arctur, D. K.; Maidment, D. R.; Lawford, R. G.

    2013-12-01

    The Global Earth Observation System of Systems (GEOSS) has a Water Strategic Target, which is 'to produce comprehensive sets of data and information products to support decision-making for efficient management of the world's water resources, based on coordinated, sustained observations of the water cycle on multiple scales.' This target is intended to be reached by 2015. In support of this target, and activities of the Integrated Water Cycle Observations (IGWCO) Community of Practice, work began in 2012 on a GEOSS Architecture Implementation Pilot called GEOSS Water Services that will provide additional operational capability for in situ water observations, as a federated resource in GEOSS. The scope of this project is to provide a global registry of water data, mapping tools, and modeling services catalogued using the standards and procedures of the Open Geospatial Consortium and the World Meteorological Organization. This registry will be open to all participants and institutions from any country or level of government, and applies to any type of water information, although the initial focus will be on physical hydrology. This presentation will introduce the project team and objectives, and show results achieved.

  9. Wind Climate Analyses for National Weather Service Stations in the Southeast

    SciTech Connect

    Weber, A.H.

    2003-02-10

    Wind speed and direction data have been collected by National Weather Service (NWS) Stations in the U.S. for a number of years and presented in various forms to help depict the climate for different regions. The Savannah River Technology Center (SRTC) is particularly interested in the Southeast since mesoscale models using NWS wind observations are run on a daily basis for emergency response and other operational purposes at the Savannah River Site (SRS). Historically, wind roses have been a convenient method to depict the predominant wind speeds and directions at measurement sites. Some typical applications of wind rose data are for climate and risk assessment; air pollution exposure and dose calculations; siting industrial plants, wind turbine generators, businesses, and homes; city planning; and air stagnation and high ozone concentration studies. The purpose of this paper is to demonstrate the overall relationships of wind patterns for NWS stations in the Southeast. Since organized collection of wind data records in the NWS developed rapidly in conjunction with the expansion of commercial aviation after World War II there are now about 50 years of wind speed and direction data available for a large number of NWS stations in this area. In this study we used wind roses for relatively short time scales to show the progression of winds diurnally and monthly to span a typical year. The date used here consist of wind records from 13 National Weather Service Stations in the Southeastern U.S. for approximately 50-year periods.

  10. 1990 National Water Quality Laboratory Services Catalog

    USGS Publications Warehouse

    Pritt, Jeffrey, (Edited By); Jones, Berwyn E.

    1989-01-01

    PREFACE This catalog provides information about analytical services available from the National Water Quality Laboratory (NWQL) to support programs of the Water Resources Division of the U.S. Geological Survey. To assist personnel in the selection of analytical services, the catalog lists cost, sample volume, applicable concentration range, detection level, precision of analysis, and preservation techniques for samples to be submitted for analysis. Prices for services reflect operationa1 costs, the complexity of each analytical procedure, and the costs to ensure analytical quality control. The catalog consists of five parts. Part 1 is a glossary of terminology; Part 2 lists the bottles, containers, solutions, and other materials that are available through the NWQL; Part 3 describes the field processing of samples to be submitted for analysis; Part 4 describes analytical services that are available; and Part 5 contains indices of analytical methodology and Chemical Abstract Services (CAS) numbers. Nomenclature used in the catalog is consistent with WATSTORE and STORET. The user is provided with laboratory codes and schedules that consist of groupings of parameters which are measured together in the NWQL. In cases where more than one analytical range is offered for a single element or compound, different laboratory codes are given. Book 5 of the series 'Techniques of Water Resources Investigations of the U.S. Geological Survey' should be consulted for more information about the analytical procedures included in the tabulations. This catalog supersedes U.S. Geological Survey Open-File Report 86-232 '1986-87-88 National Water Quality Laboratory Services Catalog', October 1985.

  11. Mature data transport and command management services for the Space Station

    NASA Technical Reports Server (NTRS)

    Carper, R. D.

    1986-01-01

    The duplex space/ground/space data services for the Space Station are described. The need to separate the uplink data service functions from the command functions is discussed. Command management is a process shared by an operation control center and a command management system and consists of four functions: (1) uplink data communications, (2) management of the on-board computer, (3) flight resource allocation and management, and (4) real command management. The new data service capabilities provided by microprocessors, ground and flight nodes, and closed loop and open loop capabilities are studied. The need for and functions of a flight resource allocation management service are examined. The system is designed so only users can access the system; the problems encountered with open loop uplink access are analyzed. The procedures for delivery of operational, verification, computer, and surveillance and monitoring data directly to users are reviewed.

  12. Trade study comparing specimen chamber servicing methods for the Space Station Centrifuge Facility

    NASA Technical Reports Server (NTRS)

    Calvisi, Michael L.; Sun, Sidney C.

    1991-01-01

    The Specimen Chamber Service Unit, a component of the Space Station Centrifuge Facility, must provide a clean enclosure on a continuing basis for the facility's plant, rodent and primate specimens. The specimen chambers can become soiled and can require periodic servicing to maintain a clean environment for the specimens. Two methods of servicing the specimen chambers are discussed: washing the chambers with an on-board washer, or disposing of the soiled chambers and replacing them with clean ones. Many of these issues are addressed by developing several servicing options, using either cleaning or replacement as the method of providing clean specimen chambers, and then evaluating each option according to a set of established quantitative and qualitative criteria. Disposing and replacing the Specimen Chambers is preferable to washing them.

  13. Automation and robotics and related technology issues for Space Station customer servicing

    NASA Technical Reports Server (NTRS)

    Cline, Helmut P.

    1987-01-01

    Several flight servicing support elements are discussed within the context of the Space Station. Particular attention is given to the servicing facility, the mobile servicing center, and the flight telerobotic servicer (FTS). The role that automation and robotics can play in the design and operation of each of these elements is discussed. It is noted that the FTS, which is currently being developed by NASA, will evolve to increasing levels of autonomy to allow for the virtual elimination of routine EVA. Some of the features of the FTS will probably be: dual manipulator arms having reach and dexterity roughly equivalent to that of an EVA-suited astronaut, force reflection capability allowing efficient teleoperation, and capability of operating from a variety of support systems.

  14. Mature data transport and command management services for the Space Station

    NASA Astrophysics Data System (ADS)

    Carper, R. D.

    The duplex space/ground/space data services for the Space Station are described. The need to separate the uplink data service functions from the command functions is discussed. Command management is a process shared by an operation control center and a command management system and consists of four functions: (1) uplink data communications, (2) management of the on-board computer, (3) flight resource allocation and management, and (4) real command management. The new data service capabilities provided by microprocessors, ground and flight nodes, and closed loop and open loop capabilities are studied. The need for and functions of a flight resource allocation management service are examined. The system is designed so only users can access the system; the problems encountered with open loop uplink access are analyzed. The procedures for delivery of operational, verification, computer, and surveillance and monitoring data directly to users are reviewed.

  15. Service Life Extension of the Propulsion System of Long-Term Manned Orbital Stations

    NASA Technical Reports Server (NTRS)

    Kamath, Ulhas; Kuznetsov, Sergei; Spencer, Victor

    2014-01-01

    One of the critical non-replaceable systems of a long-term manned orbital station is the propulsion system. Since the propulsion system operates beginning with the launch of station elements into orbit, its service life determines the service life of the station overall. Weighing almost a million pounds, the International Space Station (ISS) is about four times as large as the Russian space station Mir and about five times as large as the U.S. Skylab. Constructed over a span of more than a decade with the help of over 100 space flights, elements and modules of the ISS provide more research space than any spacecraft ever built. Originally envisaged for a service life of fifteen years, this Earth orbiting laboratory has been in orbit since 1998. Some elements that have been launched later in the assembly sequence were not yet built when the first elements were placed in orbit. Hence, some of the early modules that were launched at the inception of the program were already nearing the end of their design life when the ISS was finally ready and operational. To maximize the return on global investments on ISS, it is essential for the valuable research on ISS to continue as long as the station can be sustained safely in orbit. This paper describes the work performed to extend the service life of the ISS propulsion system. A system comprises of many components with varying failure rates. Reliability of a system is the probability that it will perform its intended function under encountered operating conditions, for a specified period of time. As we are interested in finding out how reliable a system would be in the future, reliability expressed as a function of time provides valuable insight. In a hypothetical bathtub shaped failure rate curve, the failure rate, defined as the number of failures per unit time that a currently healthy component will suffer in a given future time interval, decreases during infant-mortality period, stays nearly constant during the service

  16. Service Life Extension of the Propulsion System of Long-Term Manned Orbital Stations

    NASA Technical Reports Server (NTRS)

    Kamath, Ulhas; Kuznetsov, Sergei; Shaevich, Sergey; Spencer, Victor

    2014-01-01

    One of the critical non-replaceable systems of a long-term manned orbital station is the propulsion system. Since the propulsion system operates beginning with the launch of station elements into orbit, its service life determines the service life of the station overall. Weighing almost a million pounds, the International Space Station (ISS) is about four times as large as the Russian space station Mir and about five times as large as the U.S. Skylab. Constructed over a span of more than a decade with the help of over 100 space flights, elements and modules of the ISS provide more research space than any spacecraft ever built. Originally envisaged for a service life of fifteen years, this Earth orbiting laboratory has been in orbit since 1998. Some elements that have been launched later in the assembly sequence were not yet built when the first elements were placed in orbit. Hence, some of the early modules that were launched at the inception of the program were already nearing the end of their design life when the ISS was finally ready and operational. To maximize the return on global investments on ISS, it is essential for the valuable research on ISS to continue as long as the station can be sustained safely in orbit. This paper describes the work performed to extend the service life of the ISS propulsion system. A system comprises of many components with varying failure rates. Reliability of a system is the probability that it will perform its intended function under encountered operating conditions, for a specified period of time. As we are interested in finding out how reliable a system would be in the future, reliability expressed as a function of time provides valuable insight. In a hypothetical bathtub shaped failure rate curve, the failure rate, defined as the number of failures per unit time that a currently healthy component will suffer in a given future time interval, decreases during infant-mortality period, stays nearly constant during the service

  17. Elementary and Secondary Educational Services of Public Television Grantees: Highlights from the 1997 Station Activities Survey. CPB Research Notes, No. 104.

    ERIC Educational Resources Information Center

    Corporation for Public Broadcasting, Washington, DC.

    This report provides a summary of K-12 educational services offered by Corporation for Public Broadcasting-supported television stations from CPB's annual Station Activities Survey. Stations are broken into cohorts by license type and budget size. The 1997 Station Activities Survey asked public television stations whether they provided…

  18. Field investigation source area ST58 old Quartermaster service station, Eielson Air Force Base, Alaska

    SciTech Connect

    Liikala, T.L.; Evans, J.C.

    1995-01-01

    Source area ST58 is the site of the old Quartermaster service station at Eielson Air Force Base, Alaska. The source area is one of several Source Evaluation Report sites being investigated by Pacific Northwest Laboratory for the US Air Force as candidates for no further remedial action, interim removal action, or a remedial investigation/feasibility study under a Federal Facilities Agreement. The purpose of this work was to characterize source area ST58 and excavate the most contaminated soils for use in composting treatability studies. A field investigation was conducted to determine the nature and extent of soil contamination. The field investigation entailed a records search; grid node location, surface geophysical, and soil gas surveys; and test pit soil sampling. Soil excavation followed based on the results of the field investigation. The site was backfilled with clean soil. Results from this work indicate close spatial correlation between screening instruments, used during the field investigation and soil excavation, and laboratory analyses. Gasoline was identified as the main subsurface contaminant based on the soil gas surveys and test pit soil sampling. A center of contamination was located near the northcentral portion of the source area, and a center was located in the northwestern comer. The contamination typically occurred near or below a former soil horizon probably as a result of surface spills and leaks from discontinuities and/or breaks in the underground piping. Piping locations were delineated during the surface geophysical surveys and corresponded very well to unscaled drawings of the site. The high subsurface concentrations of gasoline detected in the northwestern comer of the source area probably reflect ground-water contamination and/or possibly floating product.

  19. Optimization of maneuvers and resources for the rendezvous of a servicing vehicle to a space station

    NASA Astrophysics Data System (ADS)

    Magne, Jacques; Canu, Richard; Joulot, Antoine

    Addressing the generation of flight scenarios for the rendezvous of a servicing vehicle to a space station, solutions in terms of sequences of maneuvers shall be found that meet a generally complex set of mission constraints while optimizing the needed resources. For the optimization of maneuvers and resources during rendezvous, this paper describes a methodology based on the parametric optimization of a sequence of genetic non-impulsional thrust maneuvers which are defined by the user from a standard catalog, allowing to cope with both translations and rotations. The method uses a reduced gradient algorithm to find an optimal trajectory that meet every mission constraint. Most attention has been paid to the standard of realism in the modeling of the chaser and target dynamics, and in the formalization of the constraints on the approach trajectories; these last ones are defined as the terminal position, the attitude and kinematic capture conditions for berthing or docking, the maximal duration allocated to the approach, path constraints, the propulsive capacities of the chaser and a `safety' constraint, which in other words means that any failure on the chaser during the approach shall result in collision avoiding trajectories or in a mechanical contract to the station within safe limits. The criterion for scenarios optimization can be minimization of propellant consumption or phase duration, or a weighed combination of both. For illustration purpose, example results are given for the final approach of a servicing vehicle to an Earth-pointed space station.

  20. PILOT STUDY FOR REMOVAL OF ARSENIC FROM DRINKING WATER AT THE FALLON, NEVADA NAVAL AIR STATION

    EPA Science Inventory

    The report presents the results of pilot plant testing of two treatment methods capable of removing arsenic from drinking water; activated alumina and ion exchange. Using the Naval Air Station (NAS) drinking water (raw water arsenic concentration = 0.080 - 0.116 mg/l) for evaluat...

  1. Alkaline water electrolysis technology for Space Station regenerative fuel cell energy storage

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Hoberecht, M. A.; Le, M.

    1986-01-01

    The regenerative fuel cell system (RFCS), designed for application to the Space Station energy storage system, is based on state-of-the-art alkaline electrolyte technology and incorporates a dedicated fuel cell system (FCS) and water electrolysis subsystem (WES). In the present study, emphasis is placed on the WES portion of the RFCS. To ensure RFCS availability for the Space Station, the RFCS Space Station Prototype design was undertaken which included a 46-cell 0.93 cu m static feed water electrolysis module and three integrated mechanical components.

  2. High pressure water electrolysis for space station EMU recharge

    NASA Technical Reports Server (NTRS)

    Lance, Nick; Puskar, Michael; Moulthrop, Lawrence; Zagaja, John

    1988-01-01

    A high pressure oxygen recharge system (HPORS), is being developed for application on board the Space Station. This electrolytic system can provide oxygen at up to 6000 psia without a mechanical compressor. The Hamilton standard HPORS based on a solid polymer electrolyte system is an extension of the much larger and succesful 3000 psia system of the U.S. Navy. Cell modules have been successfully tested under conditions beyond which spacecraft may encounter during launch. The control system with double redundancy and mechanical backups for all electronically controlled components is designed to ensure a safe shutdown.

  3. Ground-water flow in the shallow aquifer system at the Naval Weapons Station Yorktown, Virginia

    USGS Publications Warehouse

    Smith, Barry S.

    2001-01-01

    The Environmental Directorate of the Naval Weapons Station Yorktown, Virginia, is concerned about possible contamination of ground water at the Station. Ground water at the Station flows through a shallow system of layered aquifers and leaky confining units. The units of the shallow aquifer system are the Columbia aquifer, the Cornwallis Cave confining unit, the Cornwallis Cave aquifer, the Yorktown confining unit, and the Yorktown-Eastover aquifer. The Eastover-Calvert confining unit separates the shallow aquifer system from deeper confined aquifers beneath the Station. A three-dimensional, finite-difference, ground-water flow model was used to simulate steady-state ground-water flow of the shallow aquifer system in and around the Station. The model simulated ground-water flow from the peninsular drainage divide that runs across the Lackey Plain near the southern end of the Station north to King Creek and the York River and south to Skiffes Creek and the James River. The model was calibrated by minimizing the root mean square error between 4 7 measured and corresponding simulated water levels. The calibrated model was used to determine the ground-water budget and general directions of ground-water flow. A particle-tracking routine was used with the calibrated model to estimate groundwater flow paths, flow rates, and traveltimes from selected sites at the Station. Simulated ground-water flow velocities of the Station-area model were small beneath the interstream areas of the Lackey Plain and Croaker Flat, but increased outward toward the streams and rivers where the hydraulic gradients are larger. If contaminants from the land surface entered the water table at or near the interstream areas of the Station, where hydraulic gradients are smaller, they would migrate more slowly than if they entered closer to the streams or the shores of the rivers where gradients commonly are larger. The ground-water flow simulations indicate that some ground water leaks downward from

  4. 10 CFR 434.518 - Service water heating.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Service water heating. 434.518 Section 434.518 Energy... RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.518 Service water heating. 518.1The service water loads for Prototype and Reference Buildings are defined in terms of Btu/h per person...

  5. 10 CFR 434.518 - Service water heating.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Service water heating. 434.518 Section 434.518 Energy... RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.518 Service water heating. 518.1The service water loads for Prototype and Reference Buildings are defined in terms of Btu/h per person...

  6. 10 CFR 434.518 - Service water heating.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Service water heating. 434.518 Section 434.518 Energy... RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.518 Service water heating. 518.1The service water loads for Prototype and Reference Buildings are defined in terms of Btu/h per person...

  7. 10 CFR 434.518 - Service water heating.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Service water heating. 434.518 Section 434.518 Energy... RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.518 Service water heating. 518.1 The service water loads for Prototype and Reference Buildings are defined in terms of Btu/h per person...

  8. International Space Station Bacteria Filter Element Post-Flight Testing and Service Life Prediction

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; von Jouanne, R. G.; Turner, E. H.

    2003-01-01

    The International Space Station uses high efficiency particulate air (HEPA) filters to remove particulate matter from the cabin atmosphere. Known as Bacteria Filter Elements (BFEs), there are 13 elements deployed on board the ISS's U.S. Segment. The pre-flight service life prediction of 1 year for the BFEs is based upon performance engineering analysis of data collected during developmental testing that used a synthetic dust challenge. While this challenge is considered reasonable and conservative from a design perspective, an understanding of the actual filter loading is required to best manage the critical ISS Program resources. Thus testing was conducted on BFEs returned from the ISS to refine the service life prediction. Results from this testing and implications to ISS resource management are discussed. Recommendations for realizing significant savings to the ISS Program are presented.

  9. Station descriptions and availability of discharge and water-quality data through 1985 for eastern Montana stream sites not included in the National Water Data Exchange Program

    USGS Publications Warehouse

    Groskinsky Link, B. L.; Cary, L.E.

    1988-01-01

    Stations were selected to monitor water discharge and water quality of streams in eastern Montana. This report describes the stations and indicates the availability of hydrologic data through 1985. Included are stations that are operated by organizations that do not belong to the National Water Data Exchange (NAWDEX) program operated by the U.S. Geological Survey. Each station description contains a narration of the station 's history including location, drainage area, elevation, operator, period of record, type of equipment and instruments used at the station, and data availability. The data collected at each station have been identified according to type: water discharge, chemical quality, and suspended sediment. Descriptions are provided for 113 stations. These data have potential uses in characterizing small hydrologic basins, as well as other uses. A map of eastern Montana shows the location of the stations selected. (USGS)

  10. A methodology for automation and robotics evaluation applied to the space station telerobotic servicer

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Gyanfi, Max; Volkmer, Kent; Zimmerman, Wayne

    1988-01-01

    The efforts of a recent study aimed at identifying key issues and trade-offs associated with using a Flight Telerobotic Servicer (FTS) to aid in Space Station assembly-phase tasks is described. The use of automation and robotic (A and R) technologies for large space systems would involve a substitution of automation capabilities for human extravehicular or intravehicular activities (EVA, IVA). A methodology is presented that incorporates assessment of candidate assembly-phase tasks, telerobotic performance capabilities, development costs, and effect of operational constraints (space transportation system (STS), attached payload, and proximity operations). Changes in the region of cost-effectiveness are examined under a variety of systems design assumptions. A discussion of issues is presented with focus on three roles the FTS might serve: (1) as a research-oriented testbed to learn more about space usage of telerobotics; (2) as a research based testbed having an experimental demonstration orientation with limited assembly and servicing applications; or (3) as an operational system to augment EVA and to aid the construction of the Space Station and to reduce the programmatic (schedule) risk by increasing the flexibility of mission operations.

  11. The Space Station Freedom Flight Telerobotic Servicer: the design and evolution of a dexterous space robot

    NASA Technical Reports Server (NTRS)

    McCain, H. G.; Andary, J. F.; Hewitt, D. R.; Haley, D. C.

    1991-01-01

    The Flight Telerobotic Servicer (FTS) Project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station) Freedom (SSF). The FTS will provide a telerobotic capability to the Freedom Station in the early assembly phases of the program and will be employed for assembly, maintenance, and inspection applications throughout the lifetime of the space station. Appropriately configured elements of the FTS will also be employed for robotic manipulation in remote satellite servicing applications and possibly the Lunar/Mars Program. In mid-1989, the FTS entered the flight system design and implementation phase (Phase C/D) of development with the signing of the FTS prime contract with Martin Marietta Astronautics Group in Denver, Colorado. The basic FTS design is now established and can be reported on in some detail. This paper will describe the FTS flight system design and the rationale for the specific design approaches and component selections. The current state of space technology and the nature of the FTS task dictate that the FTS be designed with sophisticated teleoperation capabilities for its initial primary operating mode. However, there are technologies, such as advanced computer vision and autonomous planning techniques currently in research and advanced development phases which would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Therefore, a specific requirement on the initial FTS design is that it has the capability to evolve as new technology becomes available. This paper will describe the FTS design approach for evolution to more autonomous capabilities. Some specific task applications of the FTS and partial automation approaches of these tasks will also be discussed in this paper.

  12. The Space Station Freedom Flight Telerobotic Servicer: the design and evolution of a dexterous space robot.

    PubMed

    McCain, H G; Andary, J F; Hewitt, D R; Haley, D C

    1991-01-01

    The Flight Telerobotic Servicer (FTS) Project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station) Freedom (SSF). The FTS will provide a telerobotic capability to the Freedom Station in the early assembly phases of the program and will be employed for assembly, maintenance, and inspection applications throughout the lifetime of the space station. Appropriately configured elements of the FTS will also be employed for robotic manipulation in remote satellite servicing applications and possibly the Lunar/Mars Program. In mid-1989, the FTS entered the flight system design and implementation phase (Phase C/D) of development with the signing of the FTS prime contract with Martin Marietta Astronautics Group in Denver, Colorado. The basic FTS design is now established and can be reported on in some detail. This paper will describe the FTS flight system design and the rationale for the specific design approaches and component selections. The current state of space technology and the nature of the FTS task dictate that the FTS be designed with sophisticated teleoperation capabilities for its initial primary operating mode. However, there are technologies, such as advanced computer vision and autonomous planning techniques currently in research and advanced development phases which would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Therefore, a specific requirement on the initial FTS design is that it has the capability to evolve as new technology becomes available. This paper will describe the FTS design approach for evolution to more autonomous capabilities. Some specific task applications of the FTS and partial automation approaches of these tasks will also be discussed in this paper. PMID:11540062

  13. Video- Demonstration of Seltzer Tablet in Water Onboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video clip, Pettit demonstrates dropping an Alka Seltzer tablet into a film of water which becomes a floating ball of activity filled water. Watch the video to see the surprising results!

  14. 47 CFR 25.214 - Technical requirements for space stations in the Satellite Digital Audio Radio Service and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the Satellite Digital Audio Radio Service and associated terrestrial repeaters. 25.214 Section 25.214 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.214 Technical requirements for space stations in the Satellite Digital Audio...

  15. 47 CFR 25.214 - Technical requirements for space stations in the satellite digital audio radio service and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the satellite digital audio radio service and associated terrestrial repeaters. 25.214 Section 25.214 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.214 Technical requirements for space stations in the satellite digital audio...

  16. 47 CFR 25.214 - Technical requirements for space stations in the satellite digital audio radio service and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the satellite digital audio radio service and associated terrestrial repeaters. 25.214 Section 25.214 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.214 Technical requirements for space stations in the satellite digital audio...

  17. 47 CFR 25.214 - Technical requirements for space stations in the satellite digital audio radio service and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the satellite digital audio radio service and associated terrestrial repeaters. 25.214 Section 25.214 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.214 Technical requirements for space stations in the satellite digital audio...

  18. 47 CFR 25.214 - Technical requirements for space stations in the Satellite Digital Audio Radio Service and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the Satellite Digital Audio Radio Service and associated terrestrial repeaters. 25.214 Section 25.214 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.214 Technical requirements for space stations in the Satellite Digital Audio...

  19. Bacteriological and Physicochemical Studies on Tigris River Near the Water Purification Stations within Baghdad Province

    PubMed Central

    Al-Bayatti, Khalid K.; Al-Arajy, Kadhum H.; Al-Nuaemy, Seba Hussain

    2012-01-01

    We studied the physical, chemical, and microbiological factors that influence drinking water quality processed from River Tigris, and of the three main drinking water purification stations located at different parts of Tigris River, along with evaluation of drinking water of Al-Shula region in Baghdad city. Water samples were taken monthly from December 2009 to September 2010. Physical and chemical analyses of water included determination of temperature, pH, turbidity, electrical conductivity, total dissolved solids, salinity, dissolved oxygen, and biological oxygen demand. The results of water before and after purification indicated values within the international allowable levels. Microbial analyses included estimation of the number of total viable microbial counts, total coliform, total fecal E. coli and Pseudomonas aeruginosa, and other pathogenic bacteria that might be present in the water of the three stations and of the Tigris River, and also the tap water from Al-Shula houses. The results indicated that the types and proportions of various bacterial species isolated from different water sources were almost similar. This indicates inefficient purification procedures in all the stations studied, which exceeded the internationally allowable level of pathogens in potable water. Also, this explains the high incidence rate of children diarrheal reported in Al-Shula region. PMID:23365587

  20. Advancements in water vapor electrolysis technology. [for Space Station ECLSS

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Heppner, Dennis B.; Sudar, Martin

    1988-01-01

    The paper describes a technology development program whose goal is to develop water vapor electrolysis (WVE) hardware that can be used selectively as localized topping capability in areas of high metabolic activity without oversizing the central air revitalization system on long-duration manned space missions. The WVE will be used primarily to generate O2 for the crew cabin but also to provide partial humidity control by removing water vapor from the cabin atmosphere. The electrochemically based WVE interfaces with cabin air which is controlled in the following ranges: dry bulb temperature of 292 to 300 K; dew point temperature of 278 to 289 K; relative humidity of 25 to 75 percent; and pressure of 101 + or - 1.4 kPa. Design requirements, construction details, and results for both single-cell and multicell module testing are presented, and the preliminary sizing of a multiperson subsystem is discussed.

  1. Space Station Environmental Control and Life Support Systems: An Update on Waste Water Reclamation

    NASA Technical Reports Server (NTRS)

    Ferner, Kathleen M.

    1994-01-01

    Since the mid-1980's, work has been ongoing In the development of the various environmental control and life support systems (ECLSS) for the space station. Part of this effort has been focused on the development of a new subsystem to reclaim waste water that had not been previously required for shuttle missions. Because of the extended manned missions proposed, reclamation of waste water becomes imperative to avoid the weight penalties associated with resupplying a crew's entire water needs for consumption and daily hygiene. Hamilton Standard, under contract to Boeing Aerospace and Electronics, has been designing the water reclamation system for space station use. Since June of 1991, Hamilton Standard has developed a combined water processor capable of reclaiming potable quality water from waste hygiene water, used laundry water, processed urine, Shuttle fuel cell water, humidity condensate and other minor waste water sources. The system was assembled and then tested with over 27,700 pounds of 'real' waste water. During the 1700 hours of system operation required to process this waste water, potable quality water meeting NASA and Boeing specifications was produced. This paper gives a schematic overview of the system, describes the test conditions and test results and outlines the next steps for system development.

  2. Service offerings and interfaces for the ACTS network of Earth stations

    NASA Technical Reports Server (NTRS)

    Coney, Thom A.

    1988-01-01

    The Advanced Communications Satellite (ACTS) is capable of two modes of communication. Mode 1 is a mesh network of Earth stations using baseband-switched, time-division multiple-access (BBS-TDMA) and hopping beams. Mode 2 is a mesh network using satellite-switched, time-division multiple-access (SS-TDMA) and fixed (or hopping) beams. The purpose of this paper is to present the functional requirements and the design of the ACTS Mode 1 Earth station terrestrial interface. Included among the requirements are that: (1) the interface support standard telecommunications service offerings (i.e., voice, video and data at rates ranging from 9.6 kbps to 44 Mbps); (2) the interface support the unique design characteristics of the ACTS communications systems (e.g., the real time demand assignment of satellite capacity); and (3) the interface support test hardware capable of validating ACTS communications processes. The resulting interface design makes use of an appropriate combination of T1 or T3 multiplexers and a small central office (maximum capacity 56 subscriber lines per unit).

  3. Effects of tunnel and station size on the costs and service of subway transit systems

    NASA Technical Reports Server (NTRS)

    Dayman, B., Jr.

    1979-01-01

    The feasibility of less spacious, less costly underground rail mass transit system designs is studied. The major cost saving expected from alternative tunnel designs results from using precast concrete segment liners in place of steel. The saying expected for a two-foot decrease in the diameter of twin, single track tunnels is about two million dollars per route mile from 13 million dollars for precast concrete segment liners (a saving of about 16%). The cost per route-mile of a double track tunnel appears to be 15 to 25% higher than for the twin, single track tunnels. The effective cost saving expected from stations with four-car train capability instead of the usual eight-car trains is nearly 25% or seven million dollars per route mile. The saving in station costs can be obtained while improving service to the user (lower transit time and less waiting for trains) up to a capacity of 36,000 riders per hour in each direction.

  4. Packaging's Contribution for the Effectiveness of the Space Station's Food Service Operation

    NASA Technical Reports Server (NTRS)

    Rausch, B. A.

    1985-01-01

    Storage limitations will have a major effect on space station food service. For example: foods with low bulk density such as ice cream, bread, cake, standard type potato chips and other low density snacks, flaked cereals, etc., will exacerbate the problem of space limitations; package containers are inherently volume consuming and refuse creating; and the useful observation that the optimum package is no package at all leads to the tentative conclusion that the least amount of packaging per unit of food, consistent with storage, aesthetics, preservation, cleanliness, cost and disposal criteria, is the most practical food package for the space station. A series of trade offs may have to be made to arrive at the most appropriate package design for a particular type of food taking all the criteria into account. Some of these trade offs are: single serve vs. bulk; conventional oven vs. microwave oven; nonmetallic aseptically vs. non-aseptically packaged foods; and comparison of aseptic vs. nonaseptic food packages. The advantages and disadvantages are discussed.

  5. Logistics and operations integration requirements to support Space Station servicing of free flying spacecraft - OMV flight operation

    NASA Technical Reports Server (NTRS)

    Bell, Jerome A.; Mcgeehan, Richard T.

    1987-01-01

    The logistics of OMV free-flyer servicing are examined, with emphasis on integrating the OMV operations into the overall STS-Space Station system. The depletion rate of consumables and lifetimes of free-flyer components are known quantities, which permits definition of a predictable maintenance schedule. Servicing with an OMV will depend on the position and capabilities of the OMV, Shuttle and Station when free-flyer maintenance is needed. Optimized orbital servicing of free-flyers will involve coordination of and resolution of schedule conflicts among STS, the OMV and the Station. The scheduled availability of any of the three components will be predicted in terms of probabilities that any one of the components will not be needed for another mission while performing the mission they are on.

  6. The impact of integrated water management on the Space Station propulsion system

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.

    1987-01-01

    The water usage of elements in the Space Station integrated water system (IWS) is discussed, and the parameters affecting the overall water balance and the water-electrolysis propulsion-system requirements are considered. With nominal IWS operating characteristics, extra logistic water resupply (LWR) is found to be unnecessary in the satisfaction of the nominal propulsion requirements. With the consideration of all possible operating characteristics, LWR will not be required in 65.5 percent of the cases, and for 17.9 percent of the cases LWR can be eliminated by controlling the stay time of theShuttle Orbiter orbiter.

  7. Problems in water recycling for Space Station Freedom and long duration life support

    NASA Technical Reports Server (NTRS)

    Janik, D. S.; Crump, W. J.; Macler, B. A.; Wydeven, T., Jr.; Sauer, R. L.

    1989-01-01

    A biologically-enhanced, physical/chemical terminal water treatment testbed for the Space Station Freedom is proposed. Recycled water requirements for human, animal, plant and/or combined crews for long duration space missions are discussed. An effective terminal treatment method for recycled water reclamation systems that is based on using granular activated carbon as the principal active agent and the controls of microbial contamination and growth within recycled water systems are examined. The roles of plants in water recycling within CELSS is studied.

  8. Meteorological data for water years 1988-94 from five weather stations at Yucca Mountain, Nevada

    SciTech Connect

    Flint, A.L.; Davies, W.J.

    1997-11-01

    This report describes meteorological data collected from five weather stations at Yucca Mountain, Nevada, from as early as April 1987 through September 1994. The measurements include solar radiation, temperature, relative humidity, wind speed, wind vector magnitude, wind direction, wind vector direction, barometric pressure, and precipitation. Measurements were made very 10 seconds and averaged every 15 minutes. The data were collected as part of the geologic and hydrologic site-characterization studies of Yucca Mountain, a potential repository for high-level radioactive waste. Precipitation at the site ranged from a low of 12 millimeters total for water year 1989 to a high of 312 millimeters total for water year 1993. Air temperature ranged from a low of 15.1 degrees Celsius in December 1990 (water year 1991) to a high of 41.9 degrees Celsius in July 1989 (water year 1989). The weather station network also provides information on the spatial variability of precipitation and temperature.

  9. Potential Release Site Sediment Concentrations Correlated to Storm Water Station Runoff through GIS Modeling

    SciTech Connect

    C.T. McLean

    2005-06-01

    This research examined the relationship between sediment sample data taken at Potential Release Sites (PRSs) and storm water samples taken at selected sites in and around Los Alamos National Laboratory (LANL). The PRSs had been evaluated for erosion potential and a matrix scoring system implemented. It was assumed that there would be a stronger relationship between the high erosion PRSs and the storm water samples. To establish the relationship, the research was broken into two areas. The first area was raster-based modeling, and the second area was data analysis utilizing the raster based modeling results and the sediment and storm water sample results. Two geodatabases were created utilizing raster modeling functions and the Arc Hydro program. The geodatabase created using only Arc Hydro functions contains very fine catchment drainage areas in association with the geometric network and can be used for future contaminant tracking. The second geodatabase contains sub-watersheds for all storm water stations used in the study along with a geometric network. The second area of the study focused on data analysis. The analytical sediment data table was joined to the PRSs spatial data in ArcMap. All PRSs and PRSs with high erosion potential were joined separately to create two datasets for each of 14 analytes. Only the PRSs above the background value were retained. The storm water station spatial data were joined to the table of analyte values that were either greater than the National Pollutant Discharge Elimination System (NPDES) Multi-Sector General Permit (MSGP) benchmark value, or the Department of Energy (DOE) Drinking Water Defined Contribution Guideline (DWDCG). Only the storm water stations were retained that had sample values greater than the NPDES MSGP benchmark value or the DOE DWDCG. Separate maps were created for each analyte showing the sub-watersheds, the PRSs over background, and the storm water stations greater than the NPDES MSGP benchmark value or the

  10. Status of the Space Station water reclamation and management subsystem design concept

    NASA Technical Reports Server (NTRS)

    Bagdigian, R. M.; Mortazavi, P. L.

    1987-01-01

    A development status report is presented for the NASA Space Station's water reclamation and management (WRM) system, for which the candidate phase change-employing processing technologies are an air evaporation subsystem, a thermoelectric integrated membrane evaporation subsystem, and the vapor compression distillation subsystem. These WRM candidates employ evaporation to effect water removal from contaminants, but differ in their control of the vapor/liquid interface in zero-gravity and in the recovery of the latent heat of vaporization.

  11. Water management requirements for animal and plant maintenance on the Space Station

    NASA Technical Reports Server (NTRS)

    Johnson, C. C.; Rasmussen, D.; Curran, G.

    1987-01-01

    Long-duration Space Station experiments that use animals and plants as test specimens will require increased automation and advanced technologies for water management in order to free scientist-astronauts from routine but time-consuming housekeeping tasks. The three areas that have been identified as requiring water management and that are discusseed are: (1) drinking water and humidity condensate of the animals, (2) nutrient solution and transpired water of the plants, and (3) habitat cleaning methods. Automation potential, technology assessment, crew time savings, and resupply penalties are also discussed.

  12. Microwave radiometer observations of interannual water vapor variability and vertical structure over a tropical station

    NASA Astrophysics Data System (ADS)

    Renju, R.; Suresh Raju, C.; Mathew, Nizy; Antony, Tinu; Krishna Moorthy, K.

    2015-05-01

    The intraseasonal and interannual characteristics and the vertical distribution of atmospheric water vapor from the tropical coastal station Thiruvananthapuram (TVM) located in the southwestern region of the Indian Peninsula are examined from continuous multiyear, multifrequency microwave radiometer profiler (MRP) measurements. The accuracy of MRP for precipitable water vapor (PWV) estimation, particularly during a prolonged monsoon period, has been demonstrated by comparing with the PWV derived from collocated GPS measurements based on regression model between PWV and GPS wet delay component which has been developed for TVM station. Large diurnal and intraseasonal variations of PWV are observed during winter and premonsoon seasons. There is large interannual PWV variability during premonsoon, owing to frequent local convection and summer thunderstorms. During monsoon period, low interannual PWV variability is attributed to the persistent wind from the ocean which brings moisture to this coastal station. However, significant interannual humidity variability is seen at 2 to 6 km altitude, which is linked to the monsoon strength over the station. Prior to monsoon onset over the station, the specific humidity increases up to 5-10 g/kg in the altitude region above 5 km and remains consistently so throughout the active spells.

  13. Efforts to Reduce International Space Station Crew Maintenance for the Management of the Extravehicular Mobility Unit Transport Loop Water Quality

    NASA Technical Reports Server (NTRS)

    Steele, John W.; Etter, David; Rector, Tony; Boyle, Robert; Vandezande, Christopher

    2013-01-01

    The EMU (Extravehicular Mobility Unit) contains a semi-closed-loop re-circulating water circuit (Transport Loop) to absorb heat into a LCVG (Liquid Coolant and Ventilation Garment) worn by the astronaut. A second, single-pass water circuit (Feed-water Loop) provides water to a cooling device (Sublimator) containing porous plates, and that water sublimates through the porous plates to space vacuum. The cooling effect from the sublimation of this water translates to a cooling of the LCVG water that circulates through the Sublimator. The quality of the EMU Transport Loop water is maintained through the use of a water processing kit (ALCLR Airlock Cooling Loop Remediation) that is used to periodically clean and disinfect the water circuit. Opportunities to reduce crew time associated with on-orbit ALCLR operations include a detailed review of the historical water quality data for evidence to support an extension to the implementation cycle. Furthermore, an EMU returned after 2-years of use on the ISS (International Space Station) is being used as a test bed to evaluate the results of extended and repeated ALCLR implementation cycles. Finally, design, use and on-orbit location enhancements to the ALCLR kit components are being considered to allow the implementation cycle to occur in parallel with other EMU maintenance and check-out activities, and to extend the life of the ALCLR kit components. These efforts are undertaken to reduce the crew-time and logistics burdens for the EMU, while ensuring the long-term health of the EMU water circuits for a post-Shuttle 6-year service life.

  14. Space Station water degradation study covering the first 24 months of exposure

    NASA Technical Reports Server (NTRS)

    Mcright, P. S.; Roman, M. C.

    1995-01-01

    This report describes the MSFC space station water degradation study (WDS) and presents interim results from the first 24 months of testing. The WDS simulates the stagnant storage of water in distribution lines before the activation of the space station's water processor by storing processed water at ambient temperature in valved sections of 1-in stainless steel and titanium tube. The WDS seeks to determine whether the water quality will degrade unacceptably and whether microbial growth will proceed to an unmanageable extent during extended stagnation. During the first 24 months, significant changes have occurred. Although iodine, which is used as a biocide, was nearly depleted within the first 6 months of testing, microbial growth has been minimal. This report describes the decrease in iodine concentration and the results of microbial and biofilm analyses. Increases in total organic carbon, iodide, chloride, nickel, iron, and chromium concentrations are presented and discussed. The observed increase in conductivity and the decreases in pH and turbidity are also presented. The authors conclude that, with proper preparation, potable water can be stored under stagnant conditions without unmanageable degradation in water quality; a flushing operation and subsequent processing of the degraded water should render the water system ready for use.

  15. Definition of technology development missions for early space station, orbit transfer vehicle servicing. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Orbital Transfer Vehicle (OTV) servicing study scope, propellant transfer, storage and reliquefaction technology development missions (TDM), docking and berthing TDM, maintenance TDM, OTV/payload integration TDM, combined TDMS design, summary space station accomodations, programmatic analysis, and TDM equipment operational usage are discussed.

  16. 75 FR 8149 - Arizona Public Service Company, et al. Palo Verde Nuclear Generating Station, Units 1, 2, and 3...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Arizona Public Service Company, et al. Palo Verde Nuclear Generating Station, Units 1, 2, and 3 Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory Commission (NRC) is considering issuance of an exemption...

  17. Health Risk Assessment of Ambient Air Concentrations of Benzene, Toluene and Xylene (BTX) in Service Station Environments

    PubMed Central

    Edokpolo, Benjamin; Yu, Qiming Jimmy; Connell, Des

    2014-01-01

    A comprehensive evaluation of the adverse health effects of human exposures to BTX from service station emissions was carried out using BTX exposure data from the scientific literature. The data was grouped into different scenarios based on activity, location and occupation and plotted as Cumulative Probability Distributions (CPD) plots. Health risk was evaluated for each scenario using the Hazard Quotient (HQ) at 50% (CEXP50) and 95% (CEXP95) exposure levels. HQ50 and HQ95 > 1 were obtained with benzene in the scenario for service station attendants and mechanics repairing petrol dispensing pumps indicating a possible health risk. The risk was minimized for service stations using vapour recovery systems which greatly reduced the benzene exposure levels. HQ50 and HQ95 < 1 were obtained for all other scenarios with benzene suggesting minimal risk for most of the exposed population. However, HQ50 and HQ95 < 1 was also found with toluene and xylene for all scenarios, suggesting minimal health risk. The lifetime excess Cancer Risk (CR) and Overall Risk Probability for cancer on exposure to benzene was calculated for all Scenarios and this was higher amongst service station attendants than any other scenario. PMID:24945191

  18. Analysis of fixed-station water-quality data in the Umpqua River basin, Oregon

    USGS Publications Warehouse

    Rinella, J.F.

    1986-01-01

    An appraisal of surface water quality in the Umpqua River basin was made using existing monthly data collected by the Oregon Department of Environmental Quality and the U.S. Geological Survey in cooperation with the Douglas County Water Resources Survey. This appraisal was limited to interpretation of instantaneous monthly water quality data collected in the Umpqua River basin from water years 1974 to 1983. These data were used to compare water quality conditions throughout the basin and to determine if data collected from the NASQAN (National Stream Quality Accounting network) station are representative of upstream basin conditions. In general, data collected at the NASQAN station represent a composite of water quality from the North and South Umpqua Rivers. These river basins account for 82 % of the NASQAN station drainage. Water quality concentrations, loads, yields, and trends were statistically described and related to point source effluent loads and basin characteristics including geohydrology, hydrology, population, land use, and water use. Available point-and nonpoint-source data provided minimal information for determining cause-effect relations and for explaining observed trends in water quality; however, the data did indicate that the largest effluent discharges are located in the South Umpqua River basin in the Roseburg-Winston area. Instantaneous and annual flow weighted levels of specific conductance, phosphorus, organic plus ammonia nitrogen, nitrite plus nitrate, and fecal coliform bacteria are generally highest in the South Umpqua River near Roseburg. These high levels generally occur during the summer months when river flow is extremely low relative to flow in the North Umpqua River. The North Umpqua River has among the lowest constituent concentrations observed in the basin. (Lantz-PTT)

  19. Characterization of bottom-sediment, water, and elutriate chemistry at selected stations at Reelfoot Lake, Tennessee

    USGS Publications Warehouse

    Broshears, R.E.

    1991-01-01

    To better-understand and predict the potential effect of dredging on water quality at Reelfoot Lake, chemical analyses were conducted on samples of lake water, bottom sediment, and elutriate water. Chemical analyses were conducted on samples of lake water, bottom sediment, and elutriate water collected at five stations in the lake during November 1988. Lake water was of the calcium magnesium bicarbonate type with an average dissolved-solids concentration of 120 milligrams per liter. Trace constituents were present in bottom sediments at concentrations representative of their average relative abundance in the earth?s crust. Elutriate waters prepared by mixing bottom sediment and lake water had suspended-solids concentrations as high as 2,000 milligrams per liter which exerted significant oxygen demand Trace constituents in the unfiltered elutriate waters were elevated with respect to lake water; elevated concentrations were attributable to the increased suspended-solids concentrations. Concentrations of total-recoverable copper, lead., and zinc in many elutriate waters exceeded U.S. Environmental Protection Agency?s water-quality criteria for the protection of freshwater aquatic life. The toxicity of elutriate waters, as measured by a 48-hour bioassay with Ceriodaphnia dubia, was low.

  20. Operation of a soil vapor extraction and air sparging system at a former gasoline service station

    SciTech Connect

    Gromicko, G.J.; Klingensmith, R.C.; Simpson, D.K.

    1995-12-31

    Closure activities for three underground storage tanks (USTs) were conducted at Quaker State Corporation`s (QSC) former service station in Conneaut, Pennsylvania as part of a property transfer during July, 1991. The facility, formerly owned by QSC, was operated from construction (early 1960`s) through the sale of the property (early 1980`s). Subsequent to sale of the facility, the property has been resold and the building reconfigured several times. The facility is located on a comer lot located along state highway Route 322 in the business district of Conneaut Lake as shown in Figure 1. Across the highway to the north, is Conneaut lake. The site is bordered by a residential property to the south and commercial properties on the east and west. A Pennsylvania State Game Commission Game Lands, is located approximately 150 feet southeast of the property Quaker State again became involved with the property in 1991 when the cur-rent owner attempted to sell the property and the lender for the prospective purchaser identified the presence of USTs. Subsequent to the confirmation of the USTS, UST closure activities were initiated. Subsurface investigations were conducted to delineate the extent of potential petroleum impacts and corrective actions were initiated which are on-going today.

  1. Inter- annual variability of water vapor over an equatorial coastal station using Microwave Radiometer observations.

    NASA Astrophysics Data System (ADS)

    Renju, Ramachandran Pillai; Uma, K. N.; Krishna Moorthy, K.; Mathew, Nizy; Raju C, Suresh

    The south-western region of the Indian peninsula is the gateway of Indian summer monsoon. This region experiences continuous monsoon rain for a longer period of about six months from June to November. The amount of water vapor variability is one of the important parameters to study the onset, active and break phases of the monsoon. Keeping this in view, a multi-frequency Microwave Radiometer Profiler (MRP) has been made operational for continuous measurements of water vapor over an equatorial coastal station Thiruvananthapuram (8.5(°) N, 76.9(°) E) since April 2010. The MRP estimated precipitable water vapor (PWV) for different seasons including monsoon periods have been evaluated by comparing with the collocated GPS derived water vapor and radiosonde measurements. The diurnal, seasonal and inter annual variation of water vapor has been studied for the last four years (2010-2013) over this station. The significant diurnal variability of water vapor is found only during the winter and pre-monsoon periods (Dec -April). The vertical distribution of water vapour is studied in order to understand its variability especially during the onset of monsoon. During the building up of south-west monsoon, the specific humidity increases to ˜ 10g/kg in the altitude range of 4-6 km and consistently maintained it throughout the active spells and reduces to below 2g/kg during break spells of monsoon. The instrument details and the results will be presented.

  2. Power Station Design

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Kuljian Corporation provides design engineering and construction management services for power generating plants in more than 20 countries. They used WASP (Calculating Water and Steam Properties), a COSMIC program to optimize power station design. This enabled the company to substantially reduce lead time and software cost in a recent design project.

  3. 78 FR 14952 - Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ... Electronic Comment Filing System (ECFS). See Electronic Filing of Documents in Rulemaking Proceedings, 63 FR... Geostationary-Orbit Space Stations AGENCY: Federal Communications Commission. ACTION: Proposed rule....

  4. Design and implementation of CUAHSI WaterML and WaterOneFlow Web Services

    NASA Astrophysics Data System (ADS)

    Valentine, D. W.; Zaslavsky, I.; Whitenack, T.; Maidment, D.

    2007-12-01

    WaterOneFlow is a term for a group of web services created by and for the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) community. CUAHSI web services facilitate the retrieval of hydrologic observations information from online data sources using the SOAP protocol. CUAHSI Water Markup Language (below referred to as WaterML) is an XML schema defining the format of messages returned by the WaterOneFlow web services. \

  5. Relocation of Advanced Water Vapor Radiometer 1 to Deep Space Station 55

    NASA Astrophysics Data System (ADS)

    Oswald, J.; Riley, L.; Hubbard, A.; Rosenberger, H.; Tanner, A.; Keihm, S.; Jacobs, Christopher S.; Lanyi. G. E.; Naudet, C. J.

    2005-11-01

    In June of 2004, the Advanced Water Vapor Radiometer (AWVR) unit no. 1 was relocated to the Deep Space Station (DSS) 55 site in Madrid, Spain, from DSS 25 in Goldstone, California. This article summarizes the relocation activity and the subsequent operation and data acquisition. This activity also relocated the associated Microwave Temperature Profiler (MTP) and Surface Meteorology (SurfMET) package that collectively comprise the Cassini Media Calibration System (MCS).

  6. Relocation of Advanced Water Vapor Radiometer 1 to Deep Space Station 55

    NASA Technical Reports Server (NTRS)

    Oswald, J.; Riley, L.; Hubbard, A.; Rosenberger, H.; Tanner, A.; Keihm, S.; Jacobs, C.; Lanyi, G.; Naudet, C.

    2005-01-01

    In June of 2004, the Advanced Water Vapor Radiometer (AWVR) unit no. 1 was relocated to the Deep Space Station (DSS) 55 site in Madrid, Spain, from DSS 25 in Goldstone, California. This article summarizes the relocation activity and the subsequent operation and data acquisition. This activity also relocated the associated Microwave Temperature Profiler (MTP) and Surface Meteorology (SurfMET) package that collectively comprise the Cassini Media Calibration System (MCS).

  7. Video- Soldering Iron Inserted Through a Film of Water Onboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video, Dr. Pettit demonstrates the result of inserting a soldering iron into a thin film or sheet of water in space. Dr. Pettit makes comparative comments about the differences and similarities of boiling processes in space and on Earth.

  8. Video-A Bottle of Water And Bubbles Rotate on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video, Pettit performs a demonstration in which he shook up a bottle that was half full of water, half full of air, so that bubbles formed, then spun it real fast to see what would happen to the bubbles. Watch the video to see the outcome.

  9. Video- Astronauts Don Pettit and Ken Bowersox Paint Water Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. Science begets art in this video as Dr. Pettit and commander Ken Bowersox demonstrate two dimensional diffusion using food coloring in a film of water when they created an intriguing birdlike image. Dr. Pettit wonders aloud 'It makes us wonder what Matisse could do with a medium like this.'

  10. Network hydraulics inclusion in water quality event detection using multiple sensor stations data.

    PubMed

    Oliker, Nurit; Ostfeld, Avi

    2015-09-01

    Event detection is one of the current most challenging topics in water distribution systems analysis: how regular on-line hydraulic (e.g., pressure, flow) and water quality (e.g., pH, residual chlorine, turbidity) measurements at different network locations can be efficiently utilized to detect water quality contamination events. This study describes an integrated event detection model which combines multiple sensor stations data with network hydraulics. To date event detection modelling is likely limited to single sensor station location and dataset. Single sensor station models are detached from network hydraulics insights and as a result might be significantly exposed to false positive alarms. This work is aimed at decreasing this limitation through integrating local and spatial hydraulic data understanding into an event detection model. The spatial analysis complements the local event detection effort through discovering events with lower signatures by exploring the sensors mutual hydraulic influences. The unique contribution of this study is in incorporating hydraulic simulation information into the overall event detection process of spatially distributed sensors. The methodology is demonstrated on two example applications using base runs and sensitivity analyses. Results show a clear advantage of the suggested model over single-sensor event detection schemes. PMID:25996752

  11. Microbiological Tests Performed During the Design of the International Space Station ECLSS: Part 1, Bulk Phase Water and Wastewater

    NASA Technical Reports Server (NTRS)

    Roman, Monsi C.; Mittelman, Marc W.

    2010-01-01

    This slide presentation summarizes the studies performed to assess the bulk phase microbial community during the Space Station Water Recover Tests (WRT) from 1990-1998. These tests show that it is possible to recycle water from different sources including urine, and produce water that can exceed the quality of municpally produced tap water.

  12. 7. Unit 3 Service Water System Valves, view to the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Unit 3 Service Water System Valves, view to the east. These pipes and valves supply water from the draft chest for cooling the generator barrels. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  13. Studies on Anthropogenic Impact on Water Quality in Hilo (Hawaii) Bay and Mapping the Study Stations Using Geospatial Technologies

    NASA Astrophysics Data System (ADS)

    Cartier, A. J.; Williams, M. S.; Adolf, J.; Sriharan, S.

    2015-12-01

    Hilo Bay has uncharacteristically brown waters compared to other waters found in Hawai'i. The majority of the freshwater entering Hilo Bay is from storm and surface water runoff. The anthropogenic impact on water quality at Hilo Bay is due to sediment entrance, cesspools (Bacteria), and invasive species (Albizia). This poster presentation will focus on the water quality and phytoplankton collected on a weekly basis at a buoy positioned one meter from the shore of Hilo Bay, preserving the phytoplankton intact, concentrating and dehydrating the sample with ethanol, and viewing the phytoplankton with a scanning electron microscope (Hitachi S-3400NII). The GPS (Global Positioning System) points were collected at the sampling stations. Three transects on three separate dates were performed in Hilo Bay with salinity, percent dissolved oxygen, turbidity, secchi depth, temperature, and chlorophyll fluorescence data collected at each sampling station. A consistent trend observed in all transects was as distance from the river increased turbidity decreased and salinity increased. The GPS data on June 30, 2015 showed a major correlation between stations and their distance from shore. There is a decrease in the turbidity but not the temperature for these stations. The GPS points collected on July 7, 2015 at thirteen stations starting with station one being at the shore to the water, showed that the salinity concentration fluctuate noticeably at the first 6 stations. As we proceed further away from the shore, the salinity concentration increases from stations seven through thirteen. The water temperature shows little variation throughout the thirteen stations. The turbidity level was high at the shore and shows a noticeable drop at station thirteen.

  14. The Use of Water During the Crew 144, Mars Desert Research Station, Utah Desert

    NASA Astrophysics Data System (ADS)

    De Morais Mendonca Teles, Antonio

    2016-07-01

    Well. from November 29th to December 14th, 2014, the author conducted astrobiological and geological surveys, as analog astronaut member of the international Crew 144, at the site of the Mars Society's Mars Desert Research Station, located at a remote location in the Utah desert, United States. The use of water for drinking, bathing, cleaning, etc., in the crew was a major issue for consideration for a human expedition to the planet Mars in the future. The author would like to tell about the factors of the rationalized use of water.

  15. Video-Bubbles Inserted Into a Floating Drop of Water on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. Inserting a bubble into a floating ball of water in space is difficult, as Pettit demonstrates in this video. Blowing the bubble is the easy part. Getting it to stay in the center of the ball of water is much more difficult. Watch the video to see the technique Dr. Pettit finally uses and see the resulting visual surprise offered by the ensuing optical properties.

  16. Space Station propulsion - Advanced development testing of the water electrolysis concept at MSFC

    NASA Technical Reports Server (NTRS)

    Jones, Lee W.; Bagdigian, Deborah R.

    1989-01-01

    The successful demonstration at Marshall Space Flight Center (MSFC) that the water electrolysis concept is sufficiently mature to warrant adopting it as the baseline propulsion design for Space Station Freedom is described. In particular, the test results demonstrated that oxygen/hydrogen thruster, using gaseous propellants, can deliver more than two million lbf-seconds of total impulse at mixture ratios of 3:1 to 8:1 without significant degradation. The results alao demonstrated succcessful end-to-end operation of an integrated water electrolysis propulsion system.

  17. Test results on re-use of reclaimed shower water: Summary. [space stations

    NASA Technical Reports Server (NTRS)

    Verostko, C. E.; Garcia, R.; Sauer, R.; Linton, A. T.; Elms, T.; Reysa, R. P.

    1988-01-01

    A microgravity whole body shower (WBS) and waste water recovery systems (WWRS) were evaluated in three separate closed loop tests. Following a protocol similar to that anticipated for the U.S. Space Station, test subjects showered in a prototype whole body shower. The WWRS processes evaluated during the test series were phase change and reverse osmosis (RO). A preprototype Thermoelectric Integrated Hollow Fiber Membrane Evaporation Subsystem phase change process was used for the initial test with chemical pretreatment of the shower water waste input. The second and third tests concentrated on RO technologies. The second test evaluated a dynamic RO membrane consisting of zirconium oxide polyacrylic acid (ZOPA) membranes deposited on the interior diameter of 316L porous stainless steel tubes while the final test employed a thin semipermeable RO membrane deposited on the interior surface of polysulfone hollow fibers. All reclaimed water was post-treated for purity using ion exchange and granular activated carbon beds immediately followed by microbial control treatment using both heat and iodine. The test hardware, controls exercised for whole body showering, types of soaps evaluated, shower subject response to reclaimed water showering, and shower water collection and chemical pretreatment (if required) for microbial control are described. The WWRS recovered water performance and the effectiveness of the reclaimed water post-treatment techniques used for maintaining water purity and microorganism control are compared. Results on chemical and microbial impurity content of the water samples obtained from various locations in the shower water reuse system are summarized.

  18. Experimental investigations of overvoltages in 6kV station service cable networks of thermal power plants

    SciTech Connect

    Vukelja, P.I.; Naumov, R.M.; Drobnjak, G.V.; Mrvic, J.D.

    1996-12-31

    The paper presents the results of experimental investigations of overvoltages on 6kV isolated neutral station service cable networks of thermal power plants. The overvoltages were recorded with capacitive voltage measurement systems made at the Nikola Tesla Institute. Wideband capacitive voltage measurement systems recorded a flat response from below power frequencies to 10MHz. Investigations of overvoltages were performed for appearance and interruption of metal earth faults, intermittent earth faults, switching operation of HV motors switchgear, switching operation of transformers switchgear, and transfer of the network supply from one transformer to another. On the basis of these investigations, certain measures are proposed for limiting overvoltages and for the reliability of station service of thermal power plants.

  19. Diagram of the Water Recovery and Management for the International Space Station

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This diagram shows the flow of water recovery and management in the International Space Station (ISS). The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center is responsible for the regenerative ECLSS hardware, as well as providing technical support for the rest of the system. The regenerative ECLSS, whose main components are the Water Recovery System (WRS), and the Oxygen Generation System (OGS), reclaims and recycles water oxygen. The ECLSS maintains a pressurized habitation environment, provides water recovery and storage, maintains and provides fire detection/ suppression, and provides breathable air and a comfortable atmosphere in which to live and work within the ISS. The ECLSS hardware will be located in the Node 3 module of the ISS.

  20. Water-related constraints to the development of geothermal electric generating stations

    SciTech Connect

    Robertson, R.C.; Shepherd, A.D.; Rosemarin, C.S.; Mayfield, M.W.

    1981-06-01

    The water-related constraints, which may be among the most complex and variable of the issues facing commercialization of geothermal energy, are discussed under three headings: (1) water requirements of geothermal power stations, (2) resource characteristics of the most promising hydrothermal areas and regional and local water supply situations, and (3) legal issues confronting potential users of water at geothermal power plants in the states in which the resource areas are located. A total of 25 geothermal resource areas in California, New Mexico, Oregon, Idaho, Utah, Hawaii, and Alaska were studied. Each had a hydrothermal resource temperature in excess of 150/sup 0/C (300/sup 0/F) and an estimated 30-year potential of greater than 100-MW(e) capacity.

  1. 33 CFR 334.778 - Pensacola Bay and waters contiguous to the Naval Air Station, Pensacola, FL; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... contiguous to the Naval Air Station, Pensacola, FL; restricted area. 334.778 Section 334.778 Navigation and... RESTRICTED AREA REGULATIONS § 334.778 Pensacola Bay and waters contiguous to the Naval Air Station, Pensacola... Federal, State, or local law enforcement agency are restricted from transiting, anchoring, or...

  2. Bringing ecosystem services into integrated water resources management.

    PubMed

    Liu, Shuang; Crossman, Neville D; Nolan, Martin; Ghirmay, Hiyoba

    2013-11-15

    In this paper we propose an ecosystem service framework to support integrated water resource management and apply it to the Murray-Darling Basin in Australia. Water resources in the Murray-Darling Basin have been over-allocated for irrigation use with the consequent degradation of freshwater ecosystems. In line with integrated water resource management principles, Australian Government reforms are reducing the amount of water diverted for irrigation to improve ecosystem health. However, limited understanding of the broader benefits and trade-offs associated with reducing irrigation diversions has hampered the planning process supporting this reform. Ecosystem services offer an integrative framework to identify the broader benefits associated with integrated water resource management in the Murray-Darling Basin, thereby providing support for the Government to reform decision-making. We conducted a multi-criteria decision analysis for ranking regional potentials to provide ecosystem services at river basin scale. We surveyed the wider public about their understanding of, and priorities for, managing ecosystem services and then integrated the results with spatially explicit indicators of ecosystem service provision. The preliminary results of this work identified the sub-catchments with the greatest potential synergies and trade-offs of ecosystem service provision under the integrated water resources management reform process. With future development, our framework could be used as a decision support tool by those grappling with the challenge of the sustainable allocation of water between irrigation and the environment. PMID:23900082

  3. Performance Evaluation of the Operational Air Quality Monitor for Water Testing Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Wallace, William T.; Limero, Thomas F.; Gazda, Daniel B.; Macatangay, Ariel V.; Dwivedi, Prabha; Fernandez, Facundo M.

    2014-01-01

    In the history of manned spaceflight, environmental monitoring has relied heavily on archival sampling. For short missions, this type of sample collection was sufficient; returned samples provided a snapshot of the presence of chemical and biological contaminants in the spacecraft air and water. However, with the construction of the International Space Station (ISS) and the subsequent extension of mission durations, soon to be up to one year, the need for enhanced, real-time environmental monitoring became more pressing. The past several years have seen the implementation of several real-time monitors aboard the ISS, complemented with reduced archival sampling. The station air is currently monitored for volatile organic compounds (VOCs) using gas chromatography-differential mobility spectrometry (Air Quality Monitor [AQM]). The water on ISS is analyzed to measure total organic carbon and biocide concentrations using the Total Organic Carbon Analyzer (TOCA) and the Colorimetric Water Quality Monitoring Kit (CWQMK), respectively. The current air and water monitors provide important data, but the number and size of the different instruments makes them impractical for future exploration missions. It is apparent that there is still a need for improvements in environmental monitoring capabilities. One such improvement could be realized by modifying a single instrument to analyze both air and water. As the AQM currently provides quantitative, compound-specific information for target compounds present in air samples, and many of the compounds are also targets for water quality monitoring, this instrument provides a logical starting point to evaluate the feasibility of this approach. In this presentation, we will discuss our recent studies aimed at determining an appropriate method for introducing VOCs from water samples into the gas phase and our current work, in which an electro-thermal vaporization unit has been interfaced with the AQM to analyze target analytes at the

  4. Balloon-borne observations of lower stratospheric water vapor at Syowa Station, Antarctica in 2013

    NASA Astrophysics Data System (ADS)

    Tomikawa, Yoshihiro; Sato, Kaoru; Hirasawa, Naohiko; Tsutsumi, Masaki; Nakamura, Takuji

    2015-12-01

    Balloon-borne observations of lower stratospheric water vapor were conducted with the Cryogenic Frostpoint Hygrometer (CFH) in July, September, and November 2013 at Syowa Station (69.0oS, 39.6oE) in the Antarctic. High-precision and high vertical resolution data of water vapor concentration up to an altitude of about 28 km were obtained successfully except for a contamination in the observation of July 2013. A comparison between the CFH and coincident satellite (i.e., Aura/MLS) observations showed a good agreement within their uncertainty. A position of Syowa Station relative to the stratospheric polar vortex edge varied depending on both the observation date and altitude. Temperature and pressure histories of the observed air parcels were examined by 10-day backward trajectories. These analyses clearly demonstrated that most air parcels observed in the lower stratosphere above Syowa Station experienced final dehydration inside the polar vortex. On the other hand, a clear signature of rehydration or incomplete dehydration was also observed around a 25 hPa pressure level in the observation of July 2013.

  5. "Shower head" water connection for servicing railroad locomotives, perspective view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    "Shower head" water connection for servicing railroad locomotives, perspective view looking NW across ATSF railyard. - Grand Canyon Village Utilities, Grand Canyon National Park, Grand Canyon Village, Coconino County, AZ

  6. 10 CFR 434.518 - Service water heating.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Building type Btu/person-hour 1 Assembly 215 Office 175 Retail 135 Warehouse 225 School 215 Hotel/Motel... at the site, #2 fuel oil. Exception: If electric resistance service water heating is preferable to...

  7. International Space Station Common Cabin Air Assembly Water Separator On-Orbit Operation, Failure, and Redesign

    NASA Technical Reports Server (NTRS)

    Balistreri, Steven F., Jr.; Shaw, Laura A.; Laliberte, Yvon

    2010-01-01

    The ability to control the temperature and humidity of an environment or habitat is critical for human survival. These factors are important to maintaining human health and comfort, as well as maintaining mechanical and electrical equipment in good working order to support the human and to accomplish mission objectives. The temperature and humidity of the International Space Station (ISS) United States On-orbit Segment (USOS) cabin air is controlled by the Common Cabin Air Assembly (CCAA). The CCAA consists of a fan, a condensing heat exchanger (CHX), an air/water separator, temperature and liquid sensors, and electrical controlling hardware and software. The Water Separator (WS) pulls in air and water from the CHX, and centrifugally separates the mixture, sending the water to the condensate bus and the air back into the CHX outlet airstream. Two distinct early failures of the CCAA Water Separator in the Quest Airlock forced operational changes and brought about the re-design of the Water Separator to improve the useful life via modification kits. The on-orbit operational environment of the Airlock presented challenges that were not foreseen with the original design of the Water Separator. Operational changes were instituted to prolong the life of the third installed WS, while waiting for newly designed Water Separators to be delivered on-orbit. The modification kit design involved several different components of the Water Separator, including the innovative use of a fabrication technique to build the impellers used in Water Separators out of titanium instead of aluminum. The technique allowed for the cost effective production of the low quantity build. This paper will describe the failures of the Water Separators in the Quest Airlock, the operational constraints that were implemented to prolong the life of the installed Water Separators throughout the USOS, and the innovative re-design of the CCAA Water Separator.

  8. 78 FR 19172 - Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ..., FR Doc. 2013-04429, on page 14952, column 1, correct the DATES section to read as follows: DATES... Geostationary-Orbit Space Stations AGENCY: Federal Communications Commission. ACTION: Proposed rule;...

  9. Definition of technology development missions for early space station, orbit transfer vehicle servicing, volume 2

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Propellant transfer, storage, and reliquefaction TDM; docking and berthing technology development mission; maintenance technology development mission; OTV/payload integration, space station interface/accommodations; combined TDM conceptual design; programmatic analysis; and TDM equipment usage are discussed.

  10. Assessing the effects of regional payment for watershed services program on water quality using an intervention analysis model.

    PubMed

    Lu, Yan; He, Tian

    2014-09-15

    Much attention has been recently paid to ex-post assessments of socioeconomic and environmental benefits of payment for ecosystem services (PES) programs on poverty reduction, water quality, and forest protection. To evaluate the effects of a regional PES program on water quality, we selected chemical oxygen demand (COD) and ammonia-nitrogen (NH3-N) as indicators of water quality. Statistical methods and an intervention analysis model were employed to assess whether the PES program produced substantial changes in water quality at 10 water-quality sampling stations in the Shaying River watershed, China during 2006-2011. Statistical results from paired-sample t-tests and box plots of COD and NH3-N concentrations at the 10 stations showed that the PES program has played a positive role in improving water quality and reducing trans-boundary water pollution in the Shaying River watershed. Using the intervention analysis model, we quantitatively evaluated the effects of the intervention policy, i.e., the watershed PES program, on water quality at the 10 stations. The results suggest that this method could be used to assess the environmental benefits of watershed or water-related PES programs, such as improvements in water quality, seasonal flow regulation, erosion and sedimentation, and aquatic habitat. PMID:25016470

  11. Water recovery and management test support modeling for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Mohamadinejad, Habib; Bacskay, Allen S.

    1990-01-01

    The water-recovery and management (WRM) subsystem proposed for the Space Station Freedom program is outlined, and its computerized modeling and simulation based on a Computer Aided System Engineering and Analysis (CASE/A) program are discussed. A WRM test model consisting of a pretreated urine processing (TIMES), hygiene water processing (RO), RO brine processing using TIMES, and hygiene water storage is presented. Attention is drawn to such end-user equipment characteristics as the shower, dishwasher, clotheswasher, urine-collection facility, and handwash. The transient behavior of pretreated-urine, RO waste-hygiene, and RO brine tanks is assessed, as well as the total input/output to or from the system. The model is considered to be beneficial for pretest analytical predictions as a program cost-saving feature.

  12. Using Mass Spectrometry to Detect Silanol Compounds in Water from the International Space Station

    NASA Technical Reports Server (NTRS)

    Rutz, Jeffrey A.; Kuo, C. K. Mike; Alverson, James T.; Wallace, William T.; Gazda, Daniel B.

    2016-01-01

    Routine environmental monitoring is required during human spaceflight to help safeguard the health of crew members and assess the performance of vehicle Environmental Control and Life Support (ECLS) systems. In the case of the International Space Station (ISS), water quality monitoring is performed using a combination of in-flight and archival methods. Over the past several years, there have been periodic increases in the total organic carbon (TOC) levels in the water produced by the US Water Recovery System (WRS). When the first increase occurred in 2009, no target organic species were detected that could account for the increase. Here we describe the efforts to identify the unknown contaminants and develop methods to quantify them.

  13. Solid polymer electrolyte water electrolysis system development. [to generate oxygen for manned space station applications

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Solid polymer electrolyte technology used in a water electrolysis system (WES) to generate oxygen and hydrogen for manned space station applications was investigated. A four-man rated, low pressure breadboard water electrolysis system with the necessary instrumentation and controls was fabricated and tested. A six man rated, high pressure, high temperature, advanced preprototype WES was developed. This configuration included the design and development of an advanced water electrolysis module, capable of operation at 400 psig and 200 F, and a dynamic phase separator/pump in place of a passive phase separator design. Evaluation of this system demonstrated the goal of safe, unattended automated operation at high pressure and high temperature with an accumulated gas generation time of over 1000 hours.

  14. Emerging climate services for water resources planning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The author’s perspective on new or experimental forecasts and data products that may be important for water resource planning were shared. Everyone who lives and works with the consequences of weather and climate have known or suspected for years that climate is shifting, have been adapting, and wa...

  15. International Space Station USOS Potable Water Dispenser On-Orbit Functionality Versus Design

    NASA Technical Reports Server (NTRS)

    Toon, Katherine P.; Lovell, Randal W.

    2010-01-01

    The International Space Station (ISS) currently provides potable water dispensing for rehydrating crewmember food and drinking packages. There is one system located in the United States On-orbit Segment (USOS) and one system in the Russian Segment. Shuttle mission STS-126 delivered the USOS Potable Water Dispenser (PWD) to ISS on ULF2; subsequent activation occurred on November 2008. The PWD is capable of supporting an ISS crew of six, but nominally supplies only half this crew size. The PWD design provides incremental quantities of hot and ambient temperature potable water to US food and beverage packages. PWD receives iodinated water from the US Water Recovery System (WRS) Fuel Cell Water Bus, which feeds from the Water Processing Assembly (WPA). The PWD removes the biocidal iodine to make the water potable prior to dispensing. A heater assembly contained within the unit supplies up to 2.0 L of hot water (65 to 93 ?C) every 30 min. During a single meal, this quantity of water supports three to four crewmembers? food rehydration and beverages. The unit design has a functional life expectancy of 10 years, with replacement of limited life items, such as filters. To date, the PWD on-orbit performance is acceptable. Since activation of the PWD, there were several differences between on-orbit functionality and expected performance of hardware design. The comparison of on-orbit functionality to performance of hardware design is discussed for the following key areas: 1) microbial contamination, 2) no-dispense and water leakage scenarios, and 3) under-dispense scenarios.

  16. Evaluation of available analytical techniques for monitoring the quality of space station potable water

    NASA Technical Reports Server (NTRS)

    Geer, Richard D.

    1989-01-01

    To assure the quality of potable water (PW) on the Space Station (SS) a number of chemical and physical tests must be conducted routinely. After reviewing the requirements for potable water, both direct and indirect analytical methods are evaluated that could make the required tests and improvements compatible with the Space Station operation. A variety of suggestions are made to improve the analytical techniques for SS operation. The most important recommendations are: (1) the silver/silver chloride electrode (SB) method of removing I sub 2/I (-) biocide from the water, since it may interfere with analytical procedures for PW and also its end uses; (2) the orbital reactor (OR) method of carrying out chemistry and electrochemistry in microgravity by using a disk shaped reactor on an orbital table to impart artificial G force to the contents, allowing solution mixing and separation of gases and liquids; and (3) a simple ultra low volume highly sensitive electrochemical/conductivity detector for use with a capillary zone electrophoresis apparatus. It is also recommended, since several different conductivity and resistance measurements are made during the analysis of PW, that the bipolar pulse measuring circuit be used in all these applications for maximum compatibility and redundancy of equipment.

  17. Sustainable Urban Water and Wastewater Services: The TRUST Approach

    EPA Science Inventory

    The TRUST (Transitions to the Urban Water Services of Tomorrow) Project is a research program funded by the European Union Seventh Framework Programme. The overall objective of TRUST is to help water and wastewater authorities and utilities across Europe to formulate and impleme...

  18. International Space Station (ISS) Potable Water Dispenser (PWD) Beverage Adapter (BA) Redesign

    NASA Technical Reports Server (NTRS)

    Edgerly, Rachel; Benoit, Jace; Shindo, David

    2012-01-01

    The Potable Water Dispenser used on the International Space Station (ISS) interfaces with food and drink packages using the Beverage Adapter and Needle. Unexpected leakage has been seen in this interface. The Beverage Adapter used on ]orbit was returned to the ground for Test, Teardown, and Evaluation. The results of that investigation prompted a redesign of the Beverage Adapter and Needle. The Beverage Adapter materials were changed to be more corrosion resistant, and the Needle was redesigned to preclude leakage. The redesigns have been tested and proven.

  19. A low cost micro-station to monitor soil water potential for irrigation management

    NASA Astrophysics Data System (ADS)

    Vannutelli, Edoardo; Masseroni, Daniele; Facchi, Arianna; Gandolfi, Claudio; Renga, Filippo

    2014-05-01

    The RISPArMiA project (which stands for "reduction of water wastage through the continuous monitoring of agri-environmental parameters") won in 2013 the contest called "LINFAS - The New Ideas Make Sustainable Agriculture" and sponsored by two Italian Foundations (Fondazione Italiana Accenture and Fondazione Collegio Università Milanesi). The objective of the RISPArMiA project is to improve the irrigation efficiency at the farm scale, by providing the farmer with a valuable decision support system for the management of irrigation through the use of low-cost sensors and technologies that can easily be interfaced with Mobile devices. Through the installation of tensiometric sensors within the cropped field, the soil water potential can be continuously monitored. Using open hardware electronic platforms, a data-logger for storing the measured data will be built. Data will be then processed through a software that will allow the conversion of the monitored information into an irrigation advice. This will be notified to the farmer if the measured soil water potential exceed literature crop-specific tensiometric thresholds. Through an extrapolation conducted on the most recent monitored data, it will be also possible to obtain a simple soil water potential prevision in absence of rain events. All the information will be sent directly to a virtual server and successively on the farmer Mobile devices. Each micro-station is completely autonomous from the energy point of view, since it is powered by batteries recharged by a solar panel. The transmission modulus consists of a GSM apparatus with a SIM card. The use of free platforms (Arduino) and low cost sensors (Watermark 200SS tensiometers and soil thermocouples) will significantly reduce the costs of construction of the micro-station which are expected to be considerably lower than those required for similar instruments on the market today . Six prototype micro-stations are actually under construction. Their field testing

  20. International Space Station (ISS) Potable Water Dispenser (PWD) Beverage Adapter (BA) Redesign

    NASA Technical Reports Server (NTRS)

    Edgerly, Rachel; Benoit, Jace; Shindo, David

    2011-01-01

    The Potable Water Dispenser used on the International Space Station (ISS) interfaces with food and drink packages using the Beverage Adapter and Needle. Unexpected leakage has been seen in this interface. The Beverage Adapter used on-orbit was returned to the ground for Test, Teardown, and Evaluation. The results of that investigation prompted a redesign of the Beverage Adapter and Needle. The Beverage Adapter materials will be changed to be more corrosion resistant, and the Needle will be redesigned to preclude leakage. The redesigns have been tested and proven.

  1. Video- Water Injected Into Bubble Onboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video, Dr. Pettit demonstrates using a syringe to inject water into a bubble. The result amazed Dr. Pettit and his crew mates. They observed that the droplets may bounce around for 5 or 6 collisions within the bubble, and then may partially or all at once exchange masses with the bubble. Dr. Pettit speculates the dynamics as a possible interplay between tension forces of kinetic energy and momentum, and possibly even charged forces.

  2. Sustainable water services and interaction with water resources in Europe and in Brazil

    NASA Astrophysics Data System (ADS)

    Barraqué, B.; Formiga Johnsson, R. M.; Britto, A. L.

    2007-09-01

    The increasing interaction between large cities and nature makes "urban water" an issue: water resources and water services - including public water supply, sewage collection and treatment, and in large cities, storm water control -, which had become separate issues thanks to the process of water transport and treatment technologies, are now increasingly interfering with each other. We cannot take nature for granted anymore, and we need to protect water resources, if only to reduce the long term cost of transporting and treating water. In this paper, we compare the historical development of water industry technologies in European and Brazilian metropolitan areas, in their socio-economic and political context, tracing it through three "ages" of water technology and services which developed under civil engineering, sanitary engineering, and environmental engineering perspectives: the "quantity of water" and civil engineering paradigm was developed on the assumption that water should be drawn from natural environments far from the cities; in the "water quality" and chemical/sanitation engineering paradigm, water treatment was invented and allowed cities to take water from rivers closer to them and treat it, but also to reduce sewer discharge impacts; finally, the environmental engineering paradigm proposes to overcome the supply side perspective, by introducing demand side management, water conservation, water allocation flexibilisation, and an integrated approach to water services, water resources management, and land use policies.

  3. 76 FR 28983 - Media Bureau Seeks Comment on the Economic Impact of Low-Power FM Stations on Full-Service...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-19

    ...This document solicits public comments on the economic impact of low-power FM stations on full-service commercial FM stations in connection with the Commission's preparation of an economic study and report due to Congress, as required by section 8 of the Local Community Radio Act of...

  4. Mitigation of Damage to the International Space Station (ISS) from Water Dumps

    NASA Technical Reports Server (NTRS)

    Schmidl, William; Visentine, James T.; Mikatarian, Ron

    2004-01-01

    The International Space Station (ISS) and Orbiter dump water overboard. This water is from the ISS condensate system, and from the Orbiter s fuel cell (supply side) and wastewater (urine and condensate) systems. Water dumped from either the ISS or Orbiter is a possible source of damage. When water is dumped into a vacuum, some of it flashes into a vapor. The expanding vapor bursts the liquid stream into vapor, and small and large liquid/ice particles. The large liquid/ice particles are approximately 2 mm in diameter and have nominal velocities of approximately 31 Wsec (U.S. Lab) and 50 Wsec (Orbiter). As these liquid/ice particles impact, they can cause mechanical damage due to erosion/pitting of sensitive surfaces, including solar array or radiator surfaces. Solar arrays are of particular concern because of the thin optical coatings on the surface of the cells. The thickness of these coatings is in the range of 1300 to 44000 angstroms. Damage to these coatings can cause degradation of the cells optical characteristics. To mitigate damage from water dumps, the characteristics of the water dumps were studied and an impact code was used to study damage to sensitive surfaces. The results were used to develop the constraints needed to mitigate damage to ISS hardware from Orbiter and U.S. Lab dumps.

  5. The development of water services and their interaction with water resources in European and Brazilian cities

    NASA Astrophysics Data System (ADS)

    Barraqué, B.; Formiga Johnsson, R. M.; Nogueira de Paiva Britto, A. L.

    2008-08-01

    The extension and complexity of large cities creates "urban water" and a related issue: public water services, including public water supply, sewage collection and treatment, and storm water control, had previously become a policy sector separate from water resource allocation issues thanks to water transport and treatment technologies. Large metropolitan areas today cannot take nature for granted anymore, and they need to protect water resources, if only to reduce the long term cost of transporting and treating water. In this paper, we compare the historical development of water services in European and Brazilian metropolitan areas, placing the technological developments in their geographic, socio-economic and political contexts. Our frame is to follow the successive contributions of civil engineering, sanitary engineering, and environmental engineering: the "quantity of water" and civil engineering paradigm allowed to mobilise water in and out of the city, and up the hills or the floors; in the "water quality" and chemical/sanitary engineering paradigm, water treatment gave more freedom to cities to take water from rivers closer to them, but also to reduce sewer discharge impacts; lastly, the environmental engineering paradigm proposes to overcome the supply side perspective, by introducing demand side management, water conservation, water allocation flexibilisation, and an integrated approach to water services, water resources management, and land use policies.

  6. International Space Station USOS Potable Water Dispenser On-Orbit Functionality vs Design

    NASA Technical Reports Server (NTRS)

    Toon, Katherine P.; Lovell, Randal W.

    2009-01-01

    The International Space Station (ISS) currently provides potable water dispensing for rehydrating crewmembers food and drinking packages with one system located in the United States On-orbit Segment (USOS) and one system in the Russian Segment. The USOS Potable Water Dispenser (PWD) was delivered to ISS on ULF2, Shuttle Mission STS-126, and was subsequently activated in November 2008. The PWD activation on ISS is capable of supporting an ISS crew of six but nominally supplies only half the crew. The PWD is designed to provide incremental quantities of hot and ambient temperature potable water to US style food packages. PWD receives iodinated water from the US Laboratory Fuel Cell Water Bus, which is fed from the Water Processing Assembly (WPA). The PWD removes the biocidal iodine to make the water potable prior to dispensing. A heater assembly contained within the unit supplies up to 2.0 liters of hot water (65 to 93oC) every thirty minutes. This quantity supports three to four crewmembers to rehydrate their food and beverages from this location during a single meal. The unit is designed to remain functional for up to ten years with replacement of limited life items such as filters. To date, the PWD on-orbit performance has been acceptable. Since activation of the PWD, there have been several differences between on-orbit functionality and expected performance of hardware design. The comparison of on-orbit functionality to performance of hardware design is outlined for the following key areas: microbiology, PWD to food package water leakage, no-dispense scenarios, under-dispense scenarios, and crewmember feedback on actual on-orbit use.

  7. The development of a volatile organics concentrator for use in monitoring Space Station water quality

    NASA Technical Reports Server (NTRS)

    Bodek, Itamar; Ehntholt, Daniel J.; Stolki, Thomas J.; Valentine, James R.; Trabanino, Rudy; Webb, Johanna V.; Sauer, Richard L.

    1991-01-01

    A breadboard concept of a volatile organics concentrator (VOC) is manufactured and tested for optimized water-quality analysis in a space environment. The VOC system is attached to a gas chromatograph/mass spectrometer to analyze the volatile chemicals relevant to the operation of Space Station Freedom. The preliminary tests include: (1) comparisons with analyses based on direct on-column injections of standards; (2) analyses of iodinated volatile organics; (3) comparisons of nitrogen vs helium as the chromatography carrier gas; and (4) measurements of collection efficiency. The VOC can analyze EPA method-624 analytes at comparable detection using flame-ionization detection and can analyze volatile iodinated compounds. The breadboard has good reproducibility and can use nitrogen as a carrier gas; good results are noted for the collection and concentration levels and for water removal.

  8. Recent developments in water quality monitoring for Space Station reclaimed wastewaters

    NASA Technical Reports Server (NTRS)

    Small, John W.; Verostko, Charles E.; Linton, Arthur T.; Burchett, Ray

    1987-01-01

    This paper discusses the recent developments in water quality monitoring for Space Station reclaimed wastewaters. A preprototype unit that contains an ultraviolet absorbance organic carbon monitor integrated with pH and conductivity sensors is presented. The preprototype has provisions for automated operation and is a reagentless flow-through system without any gas/liquid interfaces. The organic carbon monitor detects by utraviolet absorbance the organic impurities in reclaimed wastewater which may be correlated to the organic carbon content of the water. A comparison of the preprototype organic carbon detection values with actual total organic carbon measurements is presented. The electrolyte double junction concept for the pH sensor and fixed electrodes for both the pH and conductivity sensors are discussed. In addition, the development of a reagentless organic carbon analyzer that incorporates ultraviolet oxidation and infrared detection is presented. Detection sensitivities, hardware development, and operation are included.

  9. Status of the International Space Station Regenerative ECLSS Water Recovery and Oxygen Generation Systems

    NASA Technical Reports Server (NTRS)

    Bagdigian, Robert M.; Cloud, Dale

    2005-01-01

    NASA is developing three racks containing regenerative water recovery and oxygen generation systems (WRS and OGS) for deployment on the International Space Station (ISS). The major assemblies included in these racks are the Water Processor Assembly (WPA), Urine Processor Assembly (UPA), Oxygen Generation Assembly (OGA), and the Power Supply Module (PSM) supporting the OGA. The WPA and OGA are provided by Hamilton Sundstrand Space Systems International (HSSSI), Inc., while the UPA and PSM are developed in- house by the Marshall Space Flight Center (MSFC). The assemblies have completed the manufacturing phase and are in various stages of testing and integration into the flight racks. This paper summarizes the status as of April 2005 and describes some of the technical challenges encountered and lessons learned over the past year.

  10. Application of biocatalysts to Space Station ECLSS and PMMS water reclamation

    NASA Technical Reports Server (NTRS)

    Jolly, Clifford D.; Bagdigian, Robert M.

    1989-01-01

    Immobilized enzyme reactors have been developed and tested for potential water reclamation applications in the Space Station Freedom Environmental Control and Life Support System (ECLSS) and Process Materials Management System (PMMS). The reactors convert low molecular weight organic contaminants found in ECLSS and PMMS wastewaters to compounds that are more efficiently removed by existing technologies. Demonstration of the technology was successfully achieved with two model reactors. A packed bed reactor containing immobilized urease was found to catalyze the complete decomposition of urea to by-products that were subsequently removed using conventional ion exchange results. A second reactor containing immobilized alcohol oxidase showed promising results relative to its ability to convert methanol and ethanol to the corresponding aldehydes for subsequent removal. Preliminary assessments of the application of biocatalysts to ECLSS and PMMS water reclamation sytems are presented.