Science.gov

Sample records for station sicherheitstechnische stellungnahme

  1. Space station

    NASA Technical Reports Server (NTRS)

    Stewart, Donald F.; Hayes, Judith

    1989-01-01

    The history of American space flight indicates that a space station is the next logical step in the scientific pursuit of greater knowledge of the universe. The Space Station and its complement of space vehicles, developed by NASA, will add new dimensions to an already extensive space program in the United States. The Space Station offers extraordinary benefits for a comparatively modest investment (currently estimated at one-ninth the cost of the Apollo Program). The station will provide a permanent multipurpose facility in orbit necessary for the expansion of space science and technology. It will enable significant advancements in life sciences research, satellite communications, astronomy, and materials processing. Eventually, the station will function in support of the commercialization and industrialization of space. Also, as a prerequisite to manned interplanetary exploration, the long-duration space flights typical of Space Station missions will provide the essential life sciences research to allow progressively longer human staytime in space.

  2. Space Station

    NASA Technical Reports Server (NTRS)

    Anderton, D. A.

    1985-01-01

    The official start of a bold new space program, essential to maintain the United States' leadership in space was signaled by a Presidential directive to move aggressively again into space by proceeding with the development of a space station. Development concepts for a permanently manned space station are discussed. Reasons for establishing an inhabited space station are given. Cost estimates and timetables are also cited.

  3. Observation Station

    ERIC Educational Resources Information Center

    Rutherford, Heather

    2011-01-01

    This article describes how a teacher integrates science observations into the writing center. At the observation station, students explore new items with a science theme and use their notes and questions for class writings every day. Students are exposed to a variety of different topics and motivated to write in different styles all while…

  4. Intelligent Virtual Station (IVS)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Intelligent Virtual Station (IVS) is enabling the integration of design, training, and operations capabilities into an intelligent virtual station for the International Space Station (ISS). A viewgraph of the IVS Remote Server is presented.

  5. Deregulation and Station Trafficking.

    ERIC Educational Resources Information Center

    Bates, Benjamin J.

    To test whether the revocation of the Federal Communications Commission's "Anti-Trafficking" rule (requiring television station owners to keep a station for three years before transferring its license to another party) impacted station owner behavior, a study compared the behavior of television station "traffickers" (owners seeking quick turnovers…

  6. Space Station Spartan study

    NASA Technical Reports Server (NTRS)

    Lane, J. H.; Schulman, J. R.; Neupert, W. M.

    1985-01-01

    The required extension, enhancement, and upgrading of the present Spartan concept are described to conduct operations from the space station using the station's unique facilities and operational features. The space station Spartan (3S), the free flyer will be deployed from and returned to the space station and will conduct scientific missions of much longer duration than possible with the current Spartan. The potential benefits of a space station Spartan are enumerated. The objectives of the study are: (1) to develop a credible concept for a space station Spartan; and (2) to determine the associated requirements and interfaces with the space station to help ensure that the 3S can be properly accommodated.

  7. Space Station Power System

    NASA Technical Reports Server (NTRS)

    Baraona, C. R.

    1984-01-01

    The strategies, reasoning, and planning guidelines used in the development of the United States Space Station Program are outlined. The power required to support Space Station missions and housekeeping loads is a key driver in overall Space Station design. conversely, Space Station requirements drive the power technology. Various power system technology options are discussed. The mission analysis studies resulting in the required Space Station capabilities are also discussed. An example of Space Station functions and a concept to provide them is presented. The weight, area, payload and altitude requirements on draft and mass requirements are described with a summary and status of key power systems technology requirements and issues.

  8. Space Station power system

    SciTech Connect

    Baraona, C.R.

    1984-04-01

    The strategies, reasoning, and planning guidelines used in the development of the United States Space Station Program are outlined. The power required to support Space Station missions and housekeeping loads is a key driver in overall Space Station design. conversely, Space Station requirements drive the power technology. Various power system technology options are discussed. The mission analysis studies resulting in the required Space Station capabilities are also discussed. An example of Space Station functions and a concept to provide them is presented. The weight, area, payload and altitude requirements on draft and mass requirements are described with a summary and status of key power systems technology requirements and issues.

  9. Space station automation II

    SciTech Connect

    Chiou, W.C.

    1986-01-01

    This book contains the proceedings of a conference on space station automation. Topics include the following: distributed artificial intelligence for space station energy management systems and computer architecture for tolerobots in earth orbit.

  10. Station Tour: Russian Segment

    NASA Video Gallery

    Expedition 33 Commander Suni Williams concludes her tour of the International Space Station with a visit to the Russian segment, which includes Zarya, the first segment of the station launched in 1...

  11. Space station power system

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Baraona, C. R.

    1984-01-01

    It is pointed out that space station planning at NASA began when NASA was created in 1958. However, the initiation of the program for a lunar landing delayed the implementation of plans for a space station. The utility of a space station was finally demonstrated with Skylab, which was launched in 1972. In May 1982, the Space Station Task Force was established to provide focus and direction for space station planning activities. The present paper provides a description of the planning activities, giving particular attention to the power system. The initial space station will be required to supply 75 kW of continuous electrical power, 60 kW for the customer and 15 kW for space station needs. Possible alternative energy sources for the space station include solar planar or concentrator arrays of either silicon or gallium arsenide.

  12. The Space Station program

    NASA Technical Reports Server (NTRS)

    Hinners, N. W.

    1986-01-01

    Cost constraints to a large degree control the functionality and form of the IOC of the Space Station. Planning of Station missions must be delayed to retain flexibility, a goal also served by modular development of the Station and by multi-use laboratory modules. Early emphasis on servicing other spacecraft is recommended, as is using available Shuttle flight time for R&D on Space Station technologies and operations.

  13. Canadian Space Station program

    NASA Technical Reports Server (NTRS)

    Doetsch, K. H.

    1991-01-01

    Information on the Canadian Space Station Program is given in viewgraph form. Topics covered include the Mobile Servicing Center (MSC), Space Station Freedom assembly milestones, the MB-3 launch configuration, a new workstation configuration, strategic technology development, the User Development Program, the Space Station Program budget, and Canada's future space activities.

  14. Space Station Live: Station Communications Upgrade

    NASA Video Gallery

    NASA Public Affairs Officer Nicole Cloutier-Lemasters recently spoke with Penny Roberts, one of the leads for the International Space Station Avionics and Software group, about the upgrade of the K...

  15. Space Station Freedom Utilization Conference

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The topics addressed in Space Station Freedom Utilization Conference are: (1) space station freedom overview and research capabilities; (2) space station freedom research plans and opportunities; (3) life sciences research on space station freedom; (4) technology research on space station freedom; (5) microgravity research and biotechnology on space station freedom; and (6) closing plenary.

  16. Space station power system

    NASA Technical Reports Server (NTRS)

    Baraona, Cosmo R.

    1987-01-01

    The major requirements and guidelines that affect the space station configuration and power system are explained. The evolution of the space station power system from the NASA program development-feasibility phase through the current preliminary design phase is described. Several early station concepts are described and linked to the present concept. Trade study selections of photovoltaic system technologies are described in detail. A summary of present solar dynamic and power management and distribution systems is also given.

  17. Station Crew Celebrates Christmas

    NASA Video Gallery

    Aboard the orbiting International Space Station, Expedition 34 Commander Kevin Ford, Russian Flight Engineers Oleg Novitskiy, Evgeny Tarelkin and Roman Romanenko, NASA Flight Engineer Tom Marshburn...

  18. Space Station fluid resupply

    NASA Technical Reports Server (NTRS)

    Winters, AL

    1990-01-01

    Viewgraphs on space station fluid resupply are presented. Space Station Freedom is resupplied with supercritical O2 and N2 for the ECLSS and USL on a 180 day resupply cycle. Resupply fluids are stored in the subcarriers on station between resupply cycles and transferred to the users as required. ECLSS contingency fluids (O2 and N2) are supplied and stored on station in a gaseous state. Efficiency and flexibility are major design considerations. Subcarrier approach allows multiple manifest combinations. Growth is achieved by adding modular subcarriers.

  19. Space Station operations

    NASA Technical Reports Server (NTRS)

    Gray, R. H.

    1985-01-01

    An evaluation of the success of the Space Station will be based on the service provided to the customers by the Station crew, the productivity of the crew, and the costs of operation. Attention is given to details regarding Space Station operations, a summary of operational philosophies and requirements, logistics and resupply operations, prelaunch processing and launch operations, on-orbit operations, aspects of maintainability and maintenance, habitability, and questions of medical care. A logistics module concept is considered along with a logistics module processing timeline, a habitability module concept, and a Space Station rescue mission.

  20. Space station executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An executive summary of the modular space station study is presented. The subjects discussed are: (1) design characteristics, (2) experiment program, (3) operations, (4) program description, and (5) research implications. The modular space station is considered a candidate payload for the low cost shuttle transportation system.

  1. "Inventive" Learning Stations

    ERIC Educational Resources Information Center

    Jarrett, Olga

    2010-01-01

    Learning stations can be used for myriad purposes--to teach concepts, integrate subject matter, build interest, and allow for inquiry--the possibilities are limited only by the imagination of the teacher and the supplies available. In this article, the author shares suggestions and a checklist for setting up successful learning stations. In…

  2. Space station dynamics

    NASA Technical Reports Server (NTRS)

    Berka, Reg

    1990-01-01

    Structural dynamic characteristics and responses of the Space Station due to the natural and induced environment are discussed. Problems that are peculiar to the Space Station are also discussed. These factors lead to an overall acceleration environment that users may expect. This acceleration environment can be considered as a loading, as well as a disturbance environment.

  3. The Station System

    ERIC Educational Resources Information Center

    Brooks, David W.

    1970-01-01

    Describes an introductory college chemistry course utilizing laboratory stations and laboratory instruction by video taped presentations. Author discusses the general operation of the laboratory, the method used in evaluating students' progress, the teaching effectiveness and economy of the station system. Results of a student questionnaire reveal…

  4. Targeting space station technologies

    NASA Technical Reports Server (NTRS)

    Olstad, W. B.

    1983-01-01

    NASA's Space Station Technology Steering Committee has undertaken the definition of the level of technology that is desirable for use in the initial design and operation of an evolutionary, long service life space station, as well as the longer term technology required for the improvement of capabilities. The technology should initially become available in 1986, in order to support a space station launch as early as 1990. Toward this end, the committee seeks to assess technology forecasts based on existing research and testing capacity, and then plan and monitor a program which will move current technology to the requisite level of sophistication and reliability. The Space Shuttle is assumed to be the vehicle for space station delivery, assembly, and support on a 90-day initial cycle. Space station tasks will be military, commercial, and scientific, including on-orbit satellite servicing.

  5. 4. EASTBOUND VIEW. NORTH TRACK WAITING STATION ON LEFT. STATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. EASTBOUND VIEW. NORTH TRACK WAITING STATION ON LEFT. STATION ON RIGHT. NOTE TUNNEL IN BACKGROUND. - Baltimore & Ohio Railroad, Harpers Ferry Station, Potomac Street, Harpers Ferry, Jefferson County, WV

  6. Space Station Induced Monitoring

    NASA Technical Reports Server (NTRS)

    Spann, James F. (Editor); Torr, Marsha R. (Editor)

    1988-01-01

    This report contains the results of a conference convened May 10-11, 1988, to review plans for monitoring the Space Station induced environment, to recommend primary components of an induced environment monitoring package, and to make recommendations pertaining to suggested modifications of the Space Station External Contamination Control Requirements Document JSC 30426. The contents of this report are divided as Follows: Monitoring Induced Environment - Space Station Work Packages Requirements, Neutral Environment, Photon Emission Environment, Particulate Environment, Surface Deposition/Contamination; and Contamination Control Requirements.

  7. Space station propulsion technology

    NASA Technical Reports Server (NTRS)

    Norman, A. M.; Briley, G. L.; Evans, S. A.

    1987-01-01

    The objectives of this program are to provide a demonstration of hydrogen/oxygen propulsion technology readiness for the initial operational capability (IOC) space station application, specifically gaseous hydrogen/oxygen and warm hydrogen thruster concepts, and to establish a means for evolving from the IOC space station propulsion system (SSPS) to that required to support and interface with advanced station functions. These objectives were met by analytical studies and by furnishing a propulsion test bed to the Marshall Space Flight Center for testing.

  8. Madrid space station

    NASA Technical Reports Server (NTRS)

    Fahnestock, R. J.; Renzetti, N. A.

    1975-01-01

    The Madrid space station, operated under bilateral agreements between the governments of the United States and Spain, is described in both Spanish and English. The space station utilizes two tracking and data acquisition networks: the Deep Space Network (DSN) of the National Aeronautics and Space Administration and the Spaceflight Tracking and Data Network (STDN) operated under the direction of the Goddard Space Flight Center. The station, which is staffed by Spanish employees, comprises four facilities: Robledo 1, Cebreros, and Fresnedillas-Navalagamella, all with 26-meter-diameter antennas, and Robledo 2, with a 64-meter antenna.

  9. The space station

    NASA Technical Reports Server (NTRS)

    Munoz, Abraham

    1988-01-01

    Conceived since the beginning of time, living in space is no longer a dream but rather a very near reality. The concept of a Space Station is not a new one, but a redefined one. Many investigations on the kinds of experiments and work assignments the Space Station will need to accommodate have been completed, but NASA specialists are constantly talking with potential users of the Station to learn more about the work they, the users, want to do in space. Present configurations are examined along with possible new ones.

  10. Station Assembly Animation

    NASA Video Gallery

    This animation depicts the assembly of the International Space Station since Nov. 20, 1998, with the delivery of the Zarya module, through May 16, 2011, with the delivery of the EXPRESS Logistics C...

  11. Multiple Craft Stations.

    ERIC Educational Resources Information Center

    Johns, Mary Sue

    1980-01-01

    Described are three craft stations (claywork, papermaking, and stamp designing) for intermediate grade students, to correlate with their classroom study which focused on Ohio: its history, geography, cities, industries, products and famous natives. (KC)

  12. Space Station Live! Tour

    NASA Video Gallery

    NASA is using the Internet and smartphones to provide the public with a new inside look at what happens aboard the International Space Station and in the Mission Control Center. NASA Public Affairs...

  13. Space Station Software Issues

    NASA Technical Reports Server (NTRS)

    Voigt, S. (Editor); Beskenis, S. (Editor)

    1985-01-01

    Issues in the development of software for the Space Station are discussed. Software acquisition and management, software development environment, standards, information system support for software developers, and a future software advisory board are addressed.

  14. Space Station Food System

    NASA Technical Reports Server (NTRS)

    Thurmond, Beverly A.; Gillan, Douglas J.; Perchonok, Michele G.; Marcus, Beth A.; Bourland, Charles T.

    1986-01-01

    A team of engineers and food scientists from NASA, the aerospace industry, food companies, and academia are defining the Space Station Food System. The team identified the system requirements based on an analysis of past and current space food systems, food systems from isolated environment communities that resemble Space Station, and the projected Space Station parameters. The team is resolving conflicts among requirements through the use of trade-off analyses. The requirements will give rise to a set of specifications which, in turn, will be used to produce concepts. Concept verification will include testing of prototypes, both in 1-g and microgravity. The end-item specification provides an overall guide for assembling a functional food system for Space Station.

  15. Destination Station Atlanta

    NASA Video Gallery

    Destination Station was recently in Atlanta from April 15 through April 21. During the week, NASA visited schools, hospitals, museums, and the city’s well known Atlanta Science Tavern Meet Up gro...

  16. Space Station - early concept

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Display model of space station concept--Manned Orbiting Research Laboratory in Saturn S-IVB Orbit configuration. Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, (Washington: NASA, 1995).

  17. Space station propulsion technology

    NASA Technical Reports Server (NTRS)

    Briley, G. L.

    1986-01-01

    The progress on the Space Station Propulsion Technology Program is described. The objectives are to provide a demonstration of hydrogen/oxygen propulsion technology readiness for the Initial Operating Capability (IOC) space station application, specifically gaseous hydrogen/oxygen and warm hydrogen thruster concepts, and to establish a means for evolving from the IOC space station propulsion to that required to support and interface with advanced station functions. The evaluation of concepts was completed. The accumulator module of the test bed was completed and, with the microprocessor controller, delivered to NASA-MSFC. An oxygen/hydrogen thruster was modified for use with the test bed and successfully tested at mixture ratios from 4:1 to 8:1.

  18. Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Keyes, Gilbert

    1991-01-01

    Information is given in viewgraph form on Space Station Freedom. Topics covered include future evolution, man-tended capability, permanently manned capability, standard payload rack dimensions, the Crystals by Vapor Transport Experiment (CVTE), commercial space projects interfaces, and pricing policy.

  19. Enabler operator station

    NASA Technical Reports Server (NTRS)

    Bailey, Andrea; Kietzman, John; King, Shirlyn; Stover, Rae; Wegner, Torsten

    1992-01-01

    The objective of this project was to design an onboard operator station for the conceptual Lunar Work Vehicle (LWV). The LWV would be used in the colonization of a lunar outpost. The details that follow, however, are for an Earth-bound model. The operator station is designed to be dimensionally correct for an astronaut wearing the current space shuttle EVA suit (which include life support). The proposed operator station will support and restrain an astronaut as well as to provide protection from the hazards of vehicle rollover. The threat of suit puncture is eliminated by rounding all corners and edges. A step-plate, located at the front of the vehicle, provides excellent ease of entry and exit. The operator station weight requirements are met by making efficient use of rigid members, semi-rigid members, and woven fabrics.

  20. Pilot's Desk Flight Station

    NASA Technical Reports Server (NTRS)

    Sexton, G. A.

    1984-01-01

    Aircraft flight station designs have generally evolved through the incorporation of improved or modernized controls and displays. In connection with a continuing increase in the amount of information displayed, this process has produced a complex and cluttered conglomeration of knobs, switches, and electromechanical displays. The result was often high crew workload, missed signals, and misinterpreted information. Advances in electronic technology have now, however, led to new concepts in flight station design. An American aerospace company in cooperation with NASA has utilized these concepts to develop a candidate conceptual design for a 1995 flight station. The obtained Pilot's Desk Flight Station is a unique design which resembles more an operator's console than today's cockpit. Attention is given to configuration, primary flight controllers, front panel displays, flight/navigation display, approach charts and weather display, head-up display, and voice command and response systems.

  1. Space station data flow

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The results of the space station data flow study are reported. Conceived is a low cost interactive data dissemination system for space station experiment data that includes facility and personnel requirements and locations, phasing requirements and implementation costs. Each of the experiments identified by the operating schedule is analyzed and the support characteristics identified in order to determine data characteristics. Qualitative and quantitative comparison of candidate concepts resulted in a proposed data system configuration baseline concept that includes a data center which combines the responsibility of reprocessing, archiving, and user services according to the various agencies and their responsibility assignments. The primary source of data is the space station complex which provides through the Tracking Data Relay Satellite System (TDRS) and by space shuttle delivery data from experiments in free flying modules and orbiting shuttles as well as from the experiments in the modular space station itself.

  2. The Space Station Chronicles

    NASA Video Gallery

    As early as the nineteenth century, writers and artists and scientists around the world began to publish their visions of a crewed outpost in space. Learn about the history of space stations, from ...

  3. Space Station Software Recommendations

    NASA Technical Reports Server (NTRS)

    Voigt, S. (Editor)

    1985-01-01

    Four panels of invited experts and NASA representatives focused on the following topics: software management, software development environment, languages, and software standards. Each panel deliberated in private, held two open sessions with audience participation, and developed recommendations for the NASA Space Station Program. The major thrusts of the recommendations were as follows: (1) The software management plan should establish policies, responsibilities, and decision points for software acquisition; (2) NASA should furnish a uniform modular software support environment and require its use for all space station software acquired (or developed); (3) The language Ada should be selected for space station software, and NASA should begin to address issues related to the effective use of Ada; and (4) The space station software standards should be selected (based upon existing standards where possible), and an organization should be identified to promulgate and enforce them. These and related recommendations are described in detail in the conference proceedings.

  4. Station Commander Praises AMS

    NASA Video Gallery

    When asked what's the most important International Space Station experiment, Commander Chris Hadfield names the Alpha Magnetic Spectrometer-2, a state-of-the-art particle physics detector that coul...

  5. Space station proposed

    NASA Astrophysics Data System (ADS)

    In his State of the Union address on January 25, President Ronald Reagan announced that he was directing the National Aeronautics and Space Administration (NASA) to “develop a permanently manned space station, and to do it within a decade.”Included in the NASA budget proposal sent to Congress the following week was $150 million for the station. This is the first request of many; expected costs will total roughly $8 billion by the early 1990's.

  6. Space Station galley design

    NASA Technical Reports Server (NTRS)

    Trabanino, Rudy; Murphy, George L.; Yakut, M. M.

    1986-01-01

    An Advanced Food Hardware System galley for the initial operating capability (IOC) Space Station is discussed. Space Station will employ food hardware items that have never been flown in space, such as a dishwasher, microwave oven, blender/mixer, bulk food and beverage dispensers, automated food inventory management, a trash compactor, and an advanced technology refrigerator/freezer. These new technologies and designs are described and the trades, design, development, and testing associated with each are summarized.

  7. Space station task force perspective

    NASA Technical Reports Server (NTRS)

    Hicks, C.

    1984-01-01

    Space station planning quidelines; architecture; functions; preliminary mission data base; scope for international and commercial participation; schedules; servicing capability; technology development; and space station program interfaces are discussed.

  8. Space station mobile transporter

    NASA Technical Reports Server (NTRS)

    Renshall, James; Marks, Geoff W.; Young, Grant L.

    1988-01-01

    The first quarter of the next century will see an operational space station that will provide a permanently manned base for satellite servicing, multiple strategic scientific and commercial payload deployment, and Orbital Maneuvering Vehicle/Orbital Transfer Vehicle (OMV/OTV) retrieval replenishment and deployment. The space station, as conceived, is constructed in orbit and will be maintained in orbit. The construction, servicing, maintenance and deployment tasks, when coupled with the size of the station, dictate that some form of transportation and manipulation device be conceived. The Transporter described will work in conjunction with the Orbiter and an Assembly Work Platform (AWP) to construct the Work Station. The Transporter will also work in conjunction with the Mobile Remote Servicer to service and install payloads, retrieve, service and deploy satellites, and service and maintain the station itself. The Transporter involved in station construction when mounted on the AWP and later supporting a maintenance or inspection task with the Mobile Remote Servicer and the Flight Telerobotic Servicer is shown.

  9. The Princess Elisabeth Station

    NASA Technical Reports Server (NTRS)

    Berte, Johan

    2012-01-01

    Aware of the increasing impact of human activities on the Earth system, Belgian Science Policy Office (Belspo) launched in 1997 a research programme in support of a sustainable development policy. This umbrella programme included the Belgian Scientific Programme on Antarctic Research. The International Polar Foundation, an organization led by the civil engineer and explorer Alain Hubert, was commissioned by the Belgian Federal government in 2004 to design, construct and operate a new Belgian Antarctic Research Station as an element under this umbrella programme. The station was to be designed as a central location for investigating the characteristic sequence of Antarctic geographical regions (polynia, coast, ice shelf, ice sheet, marginal mountain area and dry valleys, inland plateau) within a radius of 200 kilometers (approx.124 miles) of a selected site. The station was also to be designed as "state of the art" with respect to sustainable development, energy consumption, and waste disposal, with a minimum lifetime of 25 years. The goal of the project was to build a station and enable science. So first we needed some basic requirements, which I have listed here; plus we had to finance the station ourselves. Our most important requirement was that we decided to make it a zero emissions station. This was both a philosophical choice as we thought it more consistent with Antarctic Treaty obligations and it was also a logistical advantage. If you are using renewable energy sources, you do not have to bring in all the fuel.

  10. Shoring pumping station excavation

    SciTech Connect

    Glover, J.B.; Reardon, D.J. )

    1991-11-01

    The city of San Mateo, Calif., operates three 12- to 50-year old wastewater pumping stations on a 24-m (80-ft) wide lot located in a residential area near San Francisco Bay. Because the aging stations have difficulty pumping peak 2.19-m{sup 3}/s (50-mgd) wet-weather flows and have structural and maintenance problems, a new 2.62-m{sup 3}/s (60-mgd) station was proposed - the Dale Avenue Pumping Station - to replace the existing ones. To prevent potential damage to adjacent homes, the new station was originally conceived as a circular caisson type; however, a geotechnical investigation recommended against this type of structure because the stiff soils could make sinking the structure difficult. This prompted an investigation of possible shoring methods for the proposed structure. Several shoring systems were investigated, including steel sheeting, soldier beams and lagging, tieback systems, open excavation, and others; however, each had disadvantages that prevented its use. Because these conventional techniques were unacceptable, attention was turned to using deep soil mixing (DSM) to create a diaphragm wall around the area to be excavated before constructing the pumping station. Although this method has been used extensively in Japan since 1983, the Dale Avenue Pumping Station would be the technology's first US application. The technology's anticipated advantages were its impermeability, its fast and efficient installation that did not require tiebacks under existing homes, its adaptability to subsurface conditions ranging from soft ground to stiff clay to gravels, and its lack of pile-driving requirements that would cause high vibration levels during installation.

  11. UMTS Network Stations

    NASA Astrophysics Data System (ADS)

    Hernandez, C.

    2010-09-01

    The weakness of small island electrical grids implies a handicap for the electrical generation with renewable energy sources. With the intention of maximizing the installation of photovoltaic generators in the Canary Islands, arises the need to develop a solar forecasting system that allows knowing in advance the amount of PV generated electricity that will be going into the grid, from the installed PV power plants installed in the island. The forecasting tools need to get feedback from real weather data in "real time" from remote weather stations. Nevertheless, the transference of this data to the calculation computer servers is very complicated with the old point to point telecommunication systems that, neither allow the transfer of data from several remote weather stations simultaneously nor high frequency of sampling of weather parameters due to slowness of the connection. This one project has developed a telecommunications infrastructure that allows sensorizadas remote stations, to send data of its sensors, once every minute and simultaneously, to the calculation server running the solar forecasting numerical models. For it, the Canary Islands Institute of Technology has added a sophisticated communications network to its 30 weather stations measuring irradiation at strategic sites, areas with high penetration of photovoltaic generation or that have potential to host in the future photovoltaic power plants connected to the grid. In each one of the stations, irradiance and temperature measurement instruments have been installed, over inclined silicon cell, global radiation on horizontal surface and room temperature. Mobile telephone devices have been installed and programmed in each one of the weather stations, which allow the transfer of their data taking advantage of the UMTS service offered by the local telephone operator. Every minute the computer server running the numerical weather forecasting models receives data inputs from 120 instruments distributed

  12. Space power demonstration stations

    NASA Technical Reports Server (NTRS)

    Freitag, R. F.

    1976-01-01

    NASA major planning decisions from 1955 to date are summarized and new concepts connected with the advent of the Space Transportation Systems (STS) are set forth. The future Shuttle utilizations are considered, from 'manned booster' function for space transportation to such operations as deployment of modules and stations and assembly of large structures in space. The permanent occupancy of space will be a major goal of the space systems development in the 1980's with the following main phases: (1) achievement of easy access to earth orbit by means of the Shuttle and Spacelab; (2) achievement of permanent occupancy (Space Stations); (3) self-sufficiency of man in space. New techniques of space operation will become possible, using much larger, complicated satellites and simplified ground stations. Orbital assembly of large stations, using a permanent base in orbit, will enable practical utilization of space systems for everyday needs. Particular attention is given to the space solar power concept, involving the location in space of large satellite systems. Results of the studies on Manned Orbital Systems Concept (MOSC) and some future possibilities of Space Stations are analyzed.

  13. Space station contamination modeling

    NASA Technical Reports Server (NTRS)

    Gordon, T. D.

    1989-01-01

    Current plans for the operation of Space Station Freedom allow the orbit to decay to approximately an altitude of 200 km before reboosting to approximately 450 km. The Space Station will encounter dramatically increasing ambient and induced environmental effects as the orbit decays. Unfortunately, Shuttle docking, which has been of concern as a high contamination period, will likely occur during the time when the station is in the lowest orbit. The combination of ambient and induced environments along with the presence of the docked Shuttle could cause very severe contamination conditions at the lower orbital altitudes prior to Space Station reboost. The purpose here is to determine the effects on the induced external environment of Space Station Freedom with regard to the proposed changes in altitude. The change in the induced environment will be manifest in several parameters. The ambient density buildup in front of ram facing surfaces will change. The source of such contaminants can be outgassing/offgassing surfaces, leakage from the pressurized modules or experiments, purposeful venting, and thruster firings. The third induced environment parameter with altitude dependence is the glow. In order to determine the altitude dependence of the induced environment parameters, researchers used the integrated Spacecraft Environment Model (ISEM) which was developed for Marshall Space Flight Center. The analysis required numerous ISEM runs. The assumptions and limitations for the ISEM runs are described.

  14. ILRS Station Reporting

    NASA Technical Reports Server (NTRS)

    Noll, Carey E.; Pearlman, Michael Reisman; Torrence, Mark H.

    2013-01-01

    Network stations provided system configuration documentation upon joining the ILRS. This information, found in the various site and system log files available on the ILRS website, is essential to the ILRS analysis centers, combination centers, and general user community. Therefore, it is imperative that the station personnel inform the ILRS community in a timely fashion when changes to the system occur. This poster provides some information about the various documentation that must be maintained. The ILRS network consists of over fifty global sites actively ranging to over sixty satellites as well as five lunar reflectors. Information about these stations are available on the ILRS website (http://ilrs.gsfc.nasa.gov/network/stations/index.html). The ILRS Analysis Centers must have current information about the stations and their system configuration in order to use their data in generation of derived products. However, not all information available on the ILRS website is as up-to-date as necessary for correct analysis of their data.

  15. Hydrogen vehicle fueling station

    SciTech Connect

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  16. Space station structures development

    NASA Technical Reports Server (NTRS)

    Teller, V. B.

    1986-01-01

    A study of three interrelated tasks focusing on deployable Space Station truss structures is discussed. Task 1, the development of an alternate deployment system for linear truss, resulted in the preliminary design of an in-space reloadable linear motor deployer. Task 2, advanced composites deployable truss development, resulted in the testing and evaluation of composite materials for struts used in a deployable linear truss. Task 3, assembly of structures in space/erectable structures, resulted in the preliminary design of Space Station pressurized module support structures. An independent, redundant support system was developed for the common United States modules.

  17. Space Station Habitability Research

    NASA Technical Reports Server (NTRS)

    Clearwater, Yvonne A.

    1988-01-01

    The purpose and scope of the Habitability Research Group within the Space Human Factors Office at the NASA/Ames Research Center is described. Both near-term and long-term research objectives in the space human factors program pertaining to the U.S. manned Space Station are introduced. The concept of habitability and its relevancy to the U.S. space program is defined within a historical context. The relationship of habitability research to the optimization of environmental and operational determinants of productivity is discussed. Ongoing habitability research efforts pertaining to living and working on the Space Station are described.

  18. Space Station habitability research

    NASA Technical Reports Server (NTRS)

    Clearwater, Y. A.

    1986-01-01

    The purpose and scope of the Habitability Research Group within the Space Human Factors Office at the NASA/Ames Research Cente is described. Both near-term and long-term research objectives in the space human factors program pertaining to the U.S. manned Space Station are introduced. The concept of habitability and its relevancy to the U.S. space program is defined within a historical context. The relationship of habitability research to the optimization of environmental and operational determinants of productivity is discussed. Ongoing habitability research efforts pertaining to living and working on the Space Station are described.

  19. Modular space station facilities.

    NASA Technical Reports Server (NTRS)

    Parker, P. J.

    1973-01-01

    The modular space station will operate as a general purpose laboratory (GPL). In addition, the space station will be able to support many attached or free-flying research and application modules that would be dedicated to specific projects like astronomy or earth observations. The GPL primary functions have been organized into functional laboratories including an electrical/electronics laboratory, a mechanical sciences laboratory, an experiment and test isolation laboratory, a hard data process facility, a data evaluation facility, an optical sciences laboratory, a biomedical and biosciences laboratory, and an experiment/secondary command and control center.

  20. Space Station design integration

    NASA Technical Reports Server (NTRS)

    Carlisle, Richard F.

    1988-01-01

    This paper discusses the top Program level design integration process which involves the integration of a US Space Station manned base that consists of both US and international Elements. It explains the form and function of the Program Requirements Review (PRR), which certifies that the program is ready for preliminary design, the Program Design Review (PDR), which certifies the program is ready to start the detail design, and the Critical Design Review (CDR), which certifies that the program is completing a design that meets the Program objectives. The paper also discusses experience, status to date, and plans for continued system integration through manufacturing, testing and final verification of the Space Station system performance.

  1. Power Station Design

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Kuljian Corporation provides design engineering and construction management services for power generating plants in more than 20 countries. They used WASP (Calculating Water and Steam Properties), a COSMIC program to optimize power station design. This enabled the company to substantially reduce lead time and software cost in a recent design project.

  2. Galileo Station Keeping Strategy

    NASA Technical Reports Server (NTRS)

    Perez-Cambriles, Antonio; Bejar-Romero, Juan Antonio; Aguilar-Taboada, Daniel; Perez-Lopez, Fernando; Navarro, Daniel

    2007-01-01

    This paper presents analyses done for the design and implementation of the Maneuver Planning software of the Galileo Flight Dynamics Facility. The station keeping requirements of the constellation have been analyzed in order to identify the key parameters to be taken into account in the design and implementation of the software.

  3. Kiowa Creek Switching Station

    SciTech Connect

    Not Available

    1990-03-01

    The Western Area Power Administration (Western) proposes to construct, operate, and maintain a new Kiowa Creek Switching Station near Orchard in Morgan County, Colorado. Kiowa Creek Switching Station would consist of a fenced area of approximately 300 by 300 feet and contain various electrical equipment typical for a switching station. As part of this new construction, approximately one mile of an existing 115-kilovolt (kV) transmission line will be removed and replaced with a double circuit overhead line. The project will also include a short (one-third mile) realignment of an existing line to permit connection with the new switching station. In accordance with the Council on Environmental Quality (CEQ) regulations for implementing the procedural provisions of the National Environmental Policy Act of 1969 (NEPA), 40 CFR Parts 1500--1508, the Department of Energy (DOE) has determined that an environmental impact statement (EIS) is not required for the proposed project. This determination is based on the information contained in this environmental assessment (EA) prepared by Western. The EA identifies and evaluates the environmental and socioeconomic effects of the proposed action, and concludes that the advance impacts on the human environment resulting from the proposed project would not be significant. 8 refs., 3 figs., 1 tab.

  4. Space Station Water Quality

    NASA Technical Reports Server (NTRS)

    Willis, Charles E. (Editor)

    1987-01-01

    The manned Space Station will exist as an isolated system for periods of up to 90 days. During this period, safe drinking water and breathable air must be provided for an eight member crew. Because of the large mass involved, it is not practical to consider supplying the Space Station with water from Earth. Therefore, it is necessary to depend upon recycled water to meet both the human and nonhuman water needs on the station. Sources of water that will be recycled include hygiene water, urine, and cabin humidity condensate. A certain amount of fresh water can be produced by CO2 reduction process. Additional fresh water will be introduced into the total pool by way of food, because of the free water contained in food and the water liberated by metabolic oxidation of the food. A panel of scientists and engineers with extensive experience in the various aspects of wastewater reuse was assembled for a 2 day workshop at NASA-Johnson. The panel included individuals with expertise in toxicology, chemistry, microbiology, and sanitary engineering. A review of Space Station water reclamation systems was provided.

  5. Mojave Base Station Implementation

    NASA Technical Reports Server (NTRS)

    Koscielski, C. G.

    1984-01-01

    A 12.2 meter diameter X-Y mount antenna was reconditioned for use by the crustal dynamic project as a fixed base station. System capabilities and characteristics and key performance parameters for subsystems are presented. The implementation is completed.

  6. Space Station - early concept

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Mock-up of Manned Space Laboratory. 'Two Langley engineers test an experimental air lock between an arriving spacecraft and a space station portal in January 1964.' : Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, p. 299.

  7. Space Station - early concept

    NASA Technical Reports Server (NTRS)

    1964-01-01

    'A Langley engineer takes a walk-in simulated zero gravity around a mock-up of a full-scale, 24-foot-diameter space station.' Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, p. 282.

  8. Space Station - early concept

    NASA Technical Reports Server (NTRS)

    1964-01-01

    'William N. Gardner, head of the MORL Studies Office, explains the interior design of the space station at the 1964 NASA inspection.' Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, p. 300.

  9. Space Station Final Configuration

    NASA Technical Reports Server (NTRS)

    1994-01-01

    An artist's conception of what the final configuration of the International Space Station (ISS) will look like when it is fully built and deployed. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide an unprecedented undertaking in scientific, technological, and international experimentation.

  10. Space Station structures

    NASA Astrophysics Data System (ADS)

    Schneider, W.

    1985-04-01

    A brief overview of some structural results that came from space station skunk works is presented. Detailed drawings of the pressurized modules, and primary truss structures such as deployable single fold beams, erectable beams and deployable double folds are given. Typical truss attachment devices and deployable backup procedures are also given.

  11. Space Station structures

    NASA Technical Reports Server (NTRS)

    Schneider, W.

    1985-01-01

    A brief overview of some structural results that came from space station skunk works is presented. Detailed drawings of the pressurized modules, and primary truss structures such as deployable single fold beams, erectable beams and deployable double folds are given. Typical truss attachment devices and deployable backup procedures are also given.

  12. International Space Station Assembly

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The International Space Station (ISS) is an unparalleled international scientific and technological cooperative venture that will usher in a new era of human space exploration and research and provide benefits to people on Earth. On-Orbit assembly began on November 20, 1998, with the launch of the first ISS component, Zarya, on a Russian Proton rocket. The Space Shuttle followed on December 4, 1998, carrying the U.S.-built Unity cornecting Module. Sixteen nations are participating in the ISS program: the United States, Canada, Japan, Russia, Brazil, Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United Kingdom. The ISS will include six laboratories and be four times larger and more capable than any previous space station. The United States provides two laboratories (United States Laboratory and Centrifuge Accommodation Module) and a habitation module. There will be two Russian research modules, one Japanese laboratory, referred to as the Japanese Experiment Module (JEM), and one European Space Agency (ESA) laboratory called the Columbus Orbital Facility (COF). The station's internal volume will be roughly equivalent to the passenger cabin volume of two 747 jets. Over five years, a total of more than 40 space flights by at least three different vehicles - the Space Shuttle, the Russian Proton Rocket, and the Russian Soyuz rocket - will bring together more than 100 different station components and the ISS crew. Astronauts will perform many spacewalks and use new robotics and other technologies to assemble ISS components in space.

  13. Station-keeping guidance

    NASA Technical Reports Server (NTRS)

    Gustafson, D. E.; Kriegsman, B. A.

    1972-01-01

    The station-keeping guidance system is described, which is designed to automatically keep one orbiting vehicle within a prescribed zone fixed with respect to another orbiting vehicle. The active vehicle, i.e. the one performing the station-keeping maneuvers, is referred to as the shuttle. The other passive orbiting vehicle is denoted as the workshop. The passive vehicle is assumed to be in a low-eccentricity near-earth orbit. The primary navigation sensor considered is a gimballed tracking radar located on board the shuttle. It provides data on relative range and range rate between the two vehicles. Also measured are the shaft and trunnion axes gimbal angles. An inertial measurement unit (IMU) is provided on board the orbiter. The IMU is used at all times to provide an attitude reference for the vehicle. The IMU accelerometers are used periodically to monitor the velocity-correction burns applied to the shuttle during the station-keeping mode. The guidance system is capable of station-keeping the shuttle in any arbitrary position with respect to the workshop by periodically applying velocity-correction pulses to the shuttle.

  14. Dragon Departs the Station

    NASA Video Gallery

    The Expedition 31 crew used the Canadarm2 robotic arm to demate the SpaceX Dragon cargo vehicle from the Earth-facing port of the station’s Harmony node at 4:07 a.m. EDT on Thursday. It was relea...

  15. INEL seismograph stations

    SciTech Connect

    Jackson, S.M.; Anderson, D.M.

    1985-10-01

    The report describes the array of five seismograph stations operated by the Idaho National Engineering Laboratory to monitor earthquake activity on and adjacent to the eastern Snake River plain. Also included is the earthquake catalog from October 1972-December 1984. 2 refs., 2 figs. (ACR)

  16. The Home Weather Station.

    ERIC Educational Resources Information Center

    Steinke, Steven D.

    1991-01-01

    Described is how an amateur weather observer measures and records temperature and precipitation at a well-equipped, backyard weather station. Directions for building an instrument shelter and a description of the instruments needed for measuring temperature and precipitation are included. (KR)

  17. Designing a Weather Station

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    The collection and analysis of weather data is crucial to the location of alternate energy systems like solar and wind. This article presents a design challenge that gives students a chance to design a weather station to collect data in advance of a large wind turbine installation. Data analysis is a crucial part of any science or engineering…

  18. Space Station power system options

    SciTech Connect

    Baraona, C.R.; Forestieri, A.F.

    1984-08-01

    This paper outlines the strategies, reasoning, and planning guidelines used in the development of the United States Space Station Program. The power required to support Space Station missions and housekeeping loads is a key driver in overall Space Station design. Conversely, Space Station requirements drive the power technology. Various power system technology options are discussed. The mission analysis studies resulting in the required Space Station capabilities are also discussed. An example of Space Station functions and a concept to provide them is presented. The weight, area, payload and altitude requirements on drag and mass requirements are described in this paper with a summary and status of key power systems technology requirements and issues.

  19. Hydrogen Filling Station

    SciTech Connect

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen

  20. Space Station Information Systems

    NASA Technical Reports Server (NTRS)

    Pittman, Clarence W.

    1988-01-01

    The utility of the Space Station is improved, the ability to manage and integrate its development and operation enhanced, and the cost and risk of developing the software for it is minimized by three major information systems. The Space Station Information System (SSIS) provides for the transparent collection and dissemination of operational information to all users and operators. The Technical and Management Information System (TMIS) provides all the developers with timely and consistent program information and a project management 'window' to assess the project status. The Software Support Environment (SSE) provides automated tools and standards to be used by all software developers. Together, these three systems are vital to the successful execution of the program.

  1. Battery charging stations

    SciTech Connect

    Bergey, M.

    1997-12-01

    This paper discusses the concept of battery charging stations (BCSs), designed to service rural owners of battery power sources. Many such power sources now are transported to urban areas for recharging. A BCS provides the opportunity to locate these facilities closer to the user, is often powered by renewable sources, or hybrid systems, takes advantage of economies of scale, and has the potential to provide lower cost of service, better service, and better cost recovery than other rural electrification programs. Typical systems discussed can service 200 to 1200 people, and consist of stations powered by photovoltaics, wind/PV, wind/diesel, or diesel only. Examples of installed systems are presented, followed by cost figures, economic analysis, and typical system design and performance numbers.

  2. A lunar space station

    NASA Technical Reports Server (NTRS)

    Trinh, LU; Merrow, Mark; Coons, Russ; Iezzi, Gabrielle; Palarz, Howard M.; Nguyen, Marc H.; Spitzer, Mike; Cubbage, Sam

    1989-01-01

    A concept for a space station to be placed in low lunar orbit in support of the eventual establishment of a permanent moon base is proposed. This space station would have several functions: (1) a complete support facility for the maintenance of the permanent moon base and its population; (2) an orbital docking area to facilitate the ferrying of materials and personnel to and from Earth; (3) a zero gravity factory using lunar raw materials to grow superior GaAs crystals for use in semiconductors and mass produce inexpensive fiber glass; and (4) a space garden for the benefit of the air food cycles. The mission scenario, design requirements, and technology needs and developments are included as part of the proposal.

  3. Space Station Furnace Facility

    SciTech Connect

    Cobb, S.D.; Lehoczky, S.L.

    1996-12-31

    The Space Station Furnace Facility (SSFF) is the modular, multi-user scientific instrumentation for conducting materials research in the reduced gravity ({approximately}10{sup {minus}6} g) environment of the International Space Station (ISS). The facility is divided into the Core System and two Instrument Racks (IRs). The Core System provides the common electrical and mechanical support equipment required to operate Experiment Modules (EMs). The EMs are investigator unique furnaces or apparatus designed to accomplish specific science investigations. Investigations are peer selected every two years from proposals submitted in response to National Aeronautics and Space Administration (NASA) Research Announcements. The SSFF Core systems are designed to accommodate an envelope of eight types of experiment modules. The first two modules to be developed for the first Instrument Rack include a High Temperature Gradient Furnace with Quench (HGFQ), and a Low Temperature Gradient Furnace (LGF). A new EM is planned to be developed every two years.

  4. Space station propulsion

    NASA Technical Reports Server (NTRS)

    Jones, Robert E.; Morren, W. Earl; Sovey, James S.; Tacina, Robert R.

    1987-01-01

    Two propulsion systems have been selected for the space station: gaseous H/O rockets for high thrust applications and the multipropellant resistojets for low thrust needs. These two thruster systems integrate very well with the fluid systems on the space station, utilizing waste fluids as their source of propellant. The H/O rocket will be fueled by electrolyzed water and the resistojets will use waste gases collected from the environmental control system and the various laboratories. The results are presented of experimental efforts with H/O and resistojet thrusters to determine their performance and life capability, as well as results of studies to determine the availability of water and waste gases.

  5. Space Station Technology, 1983

    NASA Technical Reports Server (NTRS)

    Wright, R. L. (Editor); Mays, C. R. (Editor)

    1984-01-01

    This publication is a compilation of the panel summaries presented in the following areas: systems/operations technology; crew and life support; EVA; crew and life support: ECLSS; attitude, control, and stabilization; human capabilities; auxillary propulsion; fluid management; communications; structures and mechanisms; data management; power; and thermal control. The objective of the workshop was to aid the Space Station Technology Steering Committee in defining and implementing a technology development program to support the establishment of a permanent human presence in space. This compilation will provide the participants and their organizations with the information presented at this workshop in a referenceable format. This information will establish a stepping stone for users of space station technology to develop new technology and plan future tasks.

  6. Station Crew Opens Dragon's Hatch

    NASA Video Gallery

    The hatch between the newly arrived SpaceX Dragon spacecraft and the Harmony module of the International Space Station was opened by NASA Astronaut Don Pettit at 5:53 am EDT as the station flew 253...

  7. Station Tour: Cupola and Leonardo

    NASA Video Gallery

    Expedition 33 Commander Suni Williams continues the tour of the International Space Station with a look at the station's observation deck, the cupola, as well as the Advanced Resistive Exercise Dev...

  8. Space Station evolution study

    NASA Technical Reports Server (NTRS)

    Evans, David B.

    1993-01-01

    This is the Space Station Freedom (SSF) Evolution Study 1993 Final Report, performed under NASA Contract NAS8-38783, Task Order 5.1. This task examined: (1) the feasibility of launching current National Space Transportation System (NSTS) compatible logistics elements on expendable launch vehicles (ELV's) and the associated modifications, and (2) new, non-NSTS logistics elements for launch on ELV's to augment current SSF logistics capability.

  9. Space Station Freedom status

    NASA Technical Reports Server (NTRS)

    Cox, John

    1991-01-01

    Several graphs are presented which illustrate the restructuring activities of the Space Station Freedom. The restructed SSF program meets the objectives including cost guidelines. The solution adopted best features from alternative concepts. The SSF program allows significantly greater utilization opportunities than other programs. It was decided that pre-integration simplifies on-orbit assembly planning and operations. The SSF permanently manned configuration is shown.

  10. Space Station - early

    NASA Technical Reports Server (NTRS)

    2002-01-01

    'North American selected this space station design in 1962 for final systems analysis. Incorporating all the advantages of a wheel configuration, it had rigid cylindrical modules arranged in a hexagonal shape with three rigid telescoping spokes. This configuration eliminated the need for exposed flexible fabric.' Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, p. 284.

  11. Space Station MMOD Shielding

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric

    2006-01-01

    This paper describes International Space Station (ISS) shielding for micrometeoroid orbital debris (MMOD) protection, requirements for protection, and the technical approach to meeting requirements. Current activities in MMOD protection for ISS will be described, including efforts to augment MMOD protection by adding shields on-orbit. Observed MMOD impacts on ISS elements such as radiators, modules and returned hardware will be described. Comparisons of the observed damage with predicted damage using risk assessment software will be made.

  12. Space station commonality analysis

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This study was conducted on the basis of a modification to Contract NAS8-36413, Space Station Commonality Analysis, which was initiated in December, 1987 and completed in July, 1988. The objective was to investigate the commonality aspects of subsystems and mission support hardware while technology experiments are accommodated on board the Space Station in the mid-to-late 1990s. Two types of mission are considered: (1) Advanced solar arrays and their storage; and (2) Satellite servicing. The point of departure for definition of the technology development missions was a set of missions described in the Space Station Mission Requirements Data Base. (MRDB): TDMX 2151 Solar Array/Energy Storage Technology; TDMX 2561 Satellite Servicing and Refurbishment; TDMX 2562 Satellite Maintenance and Repair; TDMX 2563 Materials Resupply (to a free-flyer materials processing platform); TDMX 2564 Coatings Maintenance Technology; and TDMX 2565 Thermal Interface Technology. Issues to be addressed according to the Statement of Work included modularity of programs, data base analysis interactions, user interfaces, and commonality. The study was to consider State-of-the-art advances through the 1990s and to select an appropriate scale for the technology experiments, considering hardware commonality, user interfaces, and mission support requirements. The study was to develop evolutionary plans for the technology advancement missions.

  13. Space station ventilation study

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Allen, G. E.

    1972-01-01

    A ventilation system design and selection method which is applicable to any manned vehicle were developed. The method was used to generate design options for the NASA 33-foot diameter space station, all of which meet the ventilation system design requirements. System characteristics such as weight, volume, and power were normalized to dollar costs for each option. Total system costs for the various options ranged from a worst case $8 million to a group of four which were all approximately $2 million. A system design was then chosen from the $2 million group and is presented in detail. A ventilation system layout was designed for the MSFC space station mockup which provided comfortable, efficient ventilation of the mockup. A conditioned air distribution system design for the 14-foot diameter modular space station, using the same techniques, is also presented. The tradeoff study resulted in the selection of a system which costs $1.9 million, as compared to the alternate configuration which would have cost $2.6 million.

  14. Space station advanced automation

    NASA Technical Reports Server (NTRS)

    Woods, Donald

    1990-01-01

    In the development of a safe, productive and maintainable space station, Automation and Robotics (A and R) has been identified as an enabling technology which will allow efficient operation at a reasonable cost. The Space Station Freedom's (SSF) systems are very complex, and interdependent. The usage of Advanced Automation (AA) will help restructure, and integrate system status so that station and ground personnel can operate more efficiently. To use AA technology for the augmentation of system management functions requires a development model which consists of well defined phases of: evaluation, development, integration, and maintenance. The evaluation phase will consider system management functions against traditional solutions, implementation techniques and requirements; the end result of this phase should be a well developed concept along with a feasibility analysis. In the development phase the AA system will be developed in accordance with a traditional Life Cycle Model (LCM) modified for Knowledge Based System (KBS) applications. A way by which both knowledge bases and reasoning techniques can be reused to control costs is explained. During the integration phase the KBS software must be integrated with conventional software, and verified and validated. The Verification and Validation (V and V) techniques applicable to these KBS are based on the ideas of consistency, minimal competency, and graph theory. The maintenance phase will be aided by having well designed and documented KBS software.

  15. Mir Space Station

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This is a view of the Russian Mir Space Station photographed by a crewmember of the second Shuttle/Mir docking mission, STS-74. The image shows: top - Progress supply vehicle, Kvant-1 module, and the Core module; middle left - Spektr module; middle center - Kristall module and Docking module; middle right - Kvant-2 module; and bottom - Soyuz. The Progress was an unmarned, automated version of the Soyuz crew transfer vehicle, designed to resupply the Mir. The Kvant-1 provided research in the physics of galaxies, quasars, and neutron stars by measuring electromagnetic spectra and x-ray emissions. The Core module served as the heart of the space station and contained the primary living and working areas, life support, and power, as well as the main computer, communications, and control equipment. The Spektr module provided Earth observation. It also supported research into biotechnology, life sciences, materials science, and space technologies. American astronauts used the Spektr as their living quarters. A main purpose of the Kristall module was to develop biological and materials production technologies in the space environment. The Docking module made it possible for the Space Shuttle to dock easily with the Mir. Kvant-2 was a scientific and airlock module, providing biological research, Earth observations, and EVA (extravehicular activity) capability. The Soyuz typically ferried three crewmembers to and from the Mir. The journey of the 15-year-old Russian Mir Space Station ended March 23, 2001, as the Mir re-entered the Earth's atmosphere and fell into the south Pacific Ocean.

  16. Space Station commercial user development

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The commercial utilization of the space station is investigated. The interest of nonaerospace firms in the use of the space station is determined. The user requirements are compared to the space station's capabilities and a feasibility analysis of a commercial firm acting as an intermediary between NASA and the private sector to reduce costs is presented.

  17. Build Your Own Space Station

    NASA Technical Reports Server (NTRS)

    Bolinger, Allison

    2016-01-01

    This presentation will be used to educate elementary students on the purposes and components of the International Space Station and then allow them to build their own space stations with household objects and then present details on their space stations to the rest of the group.

  18. Space station: Cost and benefits

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Costs for developing, producing, operating, and supporting the initial space station, a 4 to 8 man space station, and a 4 to 24 man space station are estimated and compared. These costs include contractor hardware; space station assembly and logistics flight costs; and payload support elements. Transportation system options examined include orbiter modules; standard and extended duration STS fights; reusable spacebased perigee kick motor OTV; and upper stages. Space station service charges assessed include crew hours; energy requirements; payload support module storage; pressurized port usage; and OTV service facility. Graphs show costs for science missions, space processing research, small communication satellites; large GEO transportation; OVT launch costs; DOD payload costs, and user costs.

  19. Mir Space Station

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is a view of the Russian Mir Space Station photographed by a crewmember of the fifth Shuttle/Mir docking mission, STS-81. The image shows: upper center - Progress supply vehicle, Kvant-1 module, and Core module; center left - Priroda module; center right - Spektr module; bottom left - Kvant-2 module; bottom center - Soyuz; and bottom right - Kristall module and Docking module. The Progress was an unmarned, automated version of the Soyuz crew transfer vehicle, designed to resupply the Mir. The Kvant-1 provided research in the physics of galaxies, quasars, and neutron stars, by measuring electromagnetic spectra and x-ray emissions. The Core module served as the heart of the space station and contained the primary living and working areas, life support, and power, as well as the main computer, communications, and control equipment. Priroda's main purpose was Earth remote sensing. The Spektr module provided Earth observation. It also supported research into biotechnology, life sciences, materials science, and space technologies. American astronauts used the Spektr as their living quarters. Kvant-2 was a scientific and airlock module, providing biological research, Earth observations, and EVA (extravehicular activity) capability. The Soyuz typically ferried three crewmembers to and from the Mir. A main purpose of the Kristall module was to develop biological and materials production technologies in the space environment. The Docking module made it possible for the Space Shuttle to dock easily with the Mir. The journey of the 15-year-old Russian Mir Space Station ended March 23, 2001, as the Mir re-entered the Earth's atmosphere and fell into the south Pacific Ocean.

  20. Submerged AUV Charging Station

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Chao, Yi; Curtin, Thomas

    2014-01-01

    Autonomous Underwater Vehicles (AUVs) are becoming increasingly important for military surveillance and mine detection. Most AUVs are battery powered and have limited lifetimes of a few days to a few weeks. This greatly limits the distance that AUVs can travel underwater. Using a series of submerged AUV charging stations, AUVs could travel a limited distance to the next charging station, recharge its batteries, and continue to the next charging station, thus traveling great distances in a relatively short time, similar to the Old West “Pony Express.” One solution is to use temperature differences at various depths in the ocean to produce electricity, which is then stored in a submerged battery. It is preferred to have the upper buoy submerged a reasonable distance below the surface, so as not to be seen from above and not to be inadvertently destroyed by storms or ocean going vessels. In a previous invention, a phase change material (PCM) is melted (expanded) at warm temperatures, for example, 15 °C, and frozen (contracted) at cooler temperatures, for example, 8 °C. Tubes containing the PCM, which could be paraffin such as pentadecane, would be inserted into a container filled with hydraulic oil. When the PCM is melted (expanded), it pushes the oil out into a container that is pressurized to about 3,000 psi (approx equals 20.7 MPa). When a valve is opened, the high-pressure oil passes through a hydraulic motor, which turns a generator and charges a battery. The low-pressure oil is finally reabsorbed into the PCM canister when the PCM tubes are frozen (contracted). Some of the electricity produced could be used to control an external bladder or a motor to the tether line, such that depth cycling is continued for a very long period of time. Alternatively, after the electricity is generated by the hydraulic motor, the exiting low-pressure oil from the hydraulic motor could be vented directly to an external bladder on the AUV, such that filling of the bladder

  1. Multimodality image display station

    NASA Astrophysics Data System (ADS)

    Myers, H. Joseph

    1990-07-01

    The Multi-modality Image Display Station (MIDS) is designed for the use of physicians outside of the radiology department. Connected to a local area network or a host computer, it provides speedy access to digitized radiology images and written diagnostics needed by attending and consulting physicians near the patient bedside. Emphasis has been placed on low cost, high performance and ease of use. The work is being done as a joint study with the University of Texas Southwestern Medical Center at Dallas, and as part of a joint development effort with the Mayo Clinic. MIDS is a prototype, and should not be assumed to be an IBM product.

  2. International Space Station

    NASA Technical Reports Server (NTRS)

    Wahlberg, Jennifer; Gordon, Randy

    2010-01-01

    This slide presentation reviews the research on the International Space Station (ISS), including the sponsorship of payloads by country and within NASA. Included is a description of the space available for research, the Laboratory "Rack" facilities, the external research facilities and those available from the Japanese Experiment Module (i.e., Kibo), and highlights the investigations that JAXA has maintained. There is also a review of the launch vehicles and spacecraft that are available for payload transportation to the ISS, including cargo capabilities of the spacecraft.

  3. Draper Station Analysis Tool

    NASA Technical Reports Server (NTRS)

    Bedrossian, Nazareth; Jang, Jiann-Woei; McCants, Edward; Omohundro, Zachary; Ring, Tom; Templeton, Jeremy; Zoss, Jeremy; Wallace, Jonathan; Ziegler, Philip

    2011-01-01

    Draper Station Analysis Tool (DSAT) is a computer program, built on commercially available software, for simulating and analyzing complex dynamic systems. Heretofore used in designing and verifying guidance, navigation, and control systems of the International Space Station, DSAT has a modular architecture that lends itself to modification for application to spacecraft or terrestrial systems. DSAT consists of user-interface, data-structures, simulation-generation, analysis, plotting, documentation, and help components. DSAT automates the construction of simulations and the process of analysis. DSAT provides a graphical user interface (GUI), plus a Web-enabled interface, similar to the GUI, that enables a remotely located user to gain access to the full capabilities of DSAT via the Internet and Webbrowser software. Data structures are used to define the GUI, the Web-enabled interface, simulations, and analyses. Three data structures define the type of analysis to be performed: closed-loop simulation, frequency response, and/or stability margins. DSAT can be executed on almost any workstation, desktop, or laptop computer. DSAT provides better than an order of magnitude improvement in cost, schedule, and risk assessment for simulation based design and verification of complex dynamic systems.

  4. The Capabilities of Space Stations

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Over the past two years the U.S. space station program has evolved to a three-phased international program, with the first phase consisting of the use of the U.S. Space Shuttle and the upgrading and use of the Russian Mir Space Station, and the second and third phases consisting of the assembly and use of the new International Space Station. Projected capabilities for research, and plans for utilization, have also evolved and it has been difficult for those not directly involved in the design and engineering of these space stations to learn and understand their technical details. The Committee on the Space Station of the National Research Council, with the concurrence of NASA, undertook to write this short report in order to provide concise and objective information on space stations and platforms -- with emphasis on the Mir Space Station and International Space Station -- and to supply a summary of the capabilities of previous, existing, and planned space stations. In keeping with the committee charter and with the task statement for this report, the committee has summarized the research capabilities of five major space platforms: the International Space Station, the Mir Space Station, the Space Shuttle (with a Spacelab or Spacehab module in its cargo bay), the Space Station Freedom (which was redesigned to become the International Space Station in 1993 and 1994), and Skylab. By providing the summary, together with brief descriptions of the platforms, the committee hopes to assist interested readers, including scientists and engineers, government officials, and the general public, in evaluating the utility of each system to meet perceived user needs.

  5. 47 CFR 97.119 - Station identification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SERVICE Station Operation Standards § 97.119 Station identification. (a) Each amateur station, except a space station or telecommand station, must transmit its assigned call sign on its transmitting channel... 47 Telecommunication 5 2014-10-01 2014-10-01 false Station identification. 97.119 Section...

  6. 47 CFR 97.119 - Station identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SERVICE Station Operation Standards § 97.119 Station identification. (a) Each amateur station, except a space station or telecommand station, must transmit its assigned call sign on its transmitting channel... 47 Telecommunication 5 2012-10-01 2012-10-01 false Station identification. 97.119 Section...

  7. 47 CFR 97.119 - Station identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SERVICE Station Operation Standards § 97.119 Station identification. (a) Each amateur station, except a space station or telecommand station, must transmit its assigned call sign on its transmitting channel... 47 Telecommunication 5 2013-10-01 2013-10-01 false Station identification. 97.119 Section...

  8. 47 CFR 97.119 - Station identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SERVICE Station Operation Standards § 97.119 Station identification. (a) Each amateur station, except a space station or telecommand station, must transmit its assigned call sign on its transmitting channel... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station identification. 97.119 Section...

  9. Space station furnace facility

    NASA Astrophysics Data System (ADS)

    Cobb, Sharon D.; Lehoczky, Sandor L.

    1996-07-01

    The Space Shuttle Furnace Facility (SSFF) is the modular, multi-user scientific instrumentation for conducting materials research in the reduced gravity environment of the International Space Station. The facility is divided into the Core System and two Instrument Racks. The core system provides the common electrical and mechanical support equipment required to operate experiment modules (EMs). The EMs are investigator unique furnaces or apparatus designed to accomplish specific science investigations. Investigations are peer selected every two years from proposals submitted in response to National Aeronautics and Space Administration Research Announcements. The SSFF Core systems are designed to accommodate an envelope of eight types of experiment modules. The first two modules to be developed for the first instrument rack include a high temperature gradient furnace with quench, and a low temperature gradient furnace. A new EM is planned to be developed every two years.

  10. Hydrogen vehicle fueling station

    SciTech Connect

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.; Prenger, F.C.; Hill, D.D.

    1995-09-01

    The authors describe a hydrogen vehicle fueling station that receives and stores hydrogen in liquid form and dispenses it either as a liquid or compressed gas. The economics that accrue from the favorable weight and volume advantages of liquid hydrogen support this concept both now and probably for some time to come. The model for liquid transfer to a 120-liter vehicle tank shows that transfer times under five minutes are feasible with pump-assisted transfer, or for pressure transfer with subcooling greater than 1 K. The model for compressed gas transfer shows that underfilling of nearly 30% can occur during rapid filling. Cooling the fill gas to 214 K completely eliminates underfilling.

  11. Advanced ground station architecture

    NASA Technical Reports Server (NTRS)

    Zillig, David; Benjamin, Ted

    1994-01-01

    This paper describes a new station architecture for NASA's Ground Network (GN). The architecture makes efficient use of emerging technologies to provide dramatic reductions in size, operational complexity, and operational and maintenance costs. The architecture, which is based on recent receiver work sponsored by the Office of Space Communications Advanced Systems Program, allows integration of both GN and Space Network (SN) modes of operation in the same electronics system. It is highly configurable through software and the use of charged coupled device (CCD) technology to provide a wide range of operating modes. Moreover, it affords modularity of features which are optional depending on the application. The resulting system incorporates advanced RF, digital, and remote control technology capable of introducing significant operational, performance, and cost benefits to a variety of NASA communications and tracking applications.

  12. Hydrogen vehicle fueling station

    SciTech Connect

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.

    1996-12-31

    The authors describe a hydrogen vehicle fueling station that receives and stores hydrogen in liquid form and dispenses it either as a liquid or compressed gas. The economics of distribution that accrue from the favorable weight and volume advantages of liquid hydrogen support this concept both now and for some time to come. The authors model for liquid transfer to a 120 L vehicle tank shows that tank filling times under five minutes are feasible with pump-assisted transfer, or for pressure transfer with subcooling greater than 1 K. The authorsmodel for compressed gas transfer shows that vehicle tank underfilling of nearly 30 percent can occur during rapid refueling. Cooling the fill gas to 214 K completely eliminates the underfilling problem.

  13. Exobiology experiments for space station

    NASA Technical Reports Server (NTRS)

    Devincenzi, D. L.; Griffiths, L. D.

    1985-01-01

    The benefits the Space Station could provide to the study of the origin, evolution, and distribution of life throughout the universe are described. Space Station experiments relevant to the cosmic evolution of biogenic elements and compounds, prebiotic chemical evolution, early evolution of life, and the evolution of advanced life forms are examined. The application of astronomical and astrometric observations to be obtained from the Space Station to the origin of life research is discussed.

  14. Space Station Technology Summary

    NASA Technical Reports Server (NTRS)

    Iacabucci, R.; Evans, S.; Briley, G.; Delventhal, R. A.; Braunscheidel, E.

    1989-01-01

    The completion of the Space Station Propulsion Advanced Technology Programs established an in-depth data base for the baseline gaseous oxygen/gaseous hydrogen thruster, the waste gas resistojet, and the associated system operations. These efforts included testing of a full end-to-end system at National Aeronautics and Space Administration (NASA)-Marshall Space Flight Center (MSFC) in which oxygen and hydrogen were generated from water by electrolysis at 6.89 MPa (1,000 psia), stored and fired through the prototype thruster. Recent end-to-end system tests which generate the oxygen/hydrogen propellants by electrolysis of water at 20.67 MPa (3,000 psia) were completed on the Integrated Propulsion Test Article (IPTA) at NASA-Johnson Space Center (JSC). Resistojet testing has included 10,000 hours of life testing, plume characterization, and electromagnetic interference (EMI) testing. Extensive 25-lbf thruster testing was performed defining operating performance characteristics across the required mixture ratio and thrust level ranges. Life testing has accumulated 27 hours of operation on the prototype thruster. A total of seven injectors and five thrust chambers were fabricated to the same basic design. Five injectors and three thrust chambers designed to incorporate improved life, performance, and producibility characteristics are ready for testing. Five resistojets were fabricated and tested, with modifications made to improve producibility. The lessons learned in the area of producibility for both the O2/H2 thrusters and for the resistojet have resolved critical fabrication issues. The test results indicate that all major technology issues for long life and reliability for space station application were resolved.

  15. Integrated microfluidic probe station.

    PubMed

    Perrault, C M; Qasaimeh, M A; Brastaviceanu, T; Anderson, K; Kabakibo, Y; Juncker, D

    2010-11-01

    The microfluidic probe (MFP) consists of a flat, blunt tip with two apertures for the injection and reaspiration of a microjet into a solution--thus hydrodynamically confining the microjet--and is operated atop an inverted microscope that enables live imaging. By scanning across a surface, the microjet can be used for surface processing with the capability of both depositing and removing material; as it operates under immersed conditions, sensitive biological materials and living cells can be processed. During scanning, the MFP is kept immobile and centered over the objective of the inverted microscope, a few micrometers above a substrate that is displaced by moving the microscope stage and that is flushed continuously with the microjet. For consistent and reproducible surface processing, the gap between the MFP and the substrate, the MFP's alignment, the scanning speed, the injection and aspiration flow rates, and the image capture need all to be controlled and synchronized. Here, we present an automated MFP station that integrates all of these functionalities and automates the key operational parameters. A custom software program is used to control an independent motorized Z stage for adjusting the gap, a motorized microscope stage for scanning the substrate, up to 16 syringe pumps for injecting and aspirating fluids, and an inverted fluorescence microscope equipped with a charge-coupled device camera. The parallelism between the MFP and the substrate is adjusted using manual goniometer at the beginning of the experiment. The alignment of the injection and aspiration apertures along the scanning axis is performed using a newly designed MFP screw holder. We illustrate the integrated MFP station by the programmed, automated patterning of fluorescently labeled biotin on a streptavidin-coated surface. PMID:21133501

  16. Integrated microfluidic probe station

    NASA Astrophysics Data System (ADS)

    Perrault, C. M.; Qasaimeh, M. A.; Brastaviceanu, T.; Anderson, K.; Kabakibo, Y.; Juncker, D.

    2010-11-01

    The microfluidic probe (MFP) consists of a flat, blunt tip with two apertures for the injection and reaspiration of a microjet into a solution—thus hydrodynamically confining the microjet—and is operated atop an inverted microscope that enables live imaging. By scanning across a surface, the microjet can be used for surface processing with the capability of both depositing and removing material; as it operates under immersed conditions, sensitive biological materials and living cells can be processed. During scanning, the MFP is kept immobile and centered over the objective of the inverted microscope, a few micrometers above a substrate that is displaced by moving the microscope stage and that is flushed continuously with the microjet. For consistent and reproducible surface processing, the gap between the MFP and the substrate, the MFP's alignment, the scanning speed, the injection and aspiration flow rates, and the image capture need all to be controlled and synchronized. Here, we present an automated MFP station that integrates all of these functionalities and automates the key operational parameters. A custom software program is used to control an independent motorized Z stage for adjusting the gap, a motorized microscope stage for scanning the substrate, up to 16 syringe pumps for injecting and aspirating fluids, and an inverted fluorescence microscope equipped with a charge-coupled device camera. The parallelism between the MFP and the substrate is adjusted using manual goniometer at the beginning of the experiment. The alignment of the injection and aspiration apertures along the scanning axis is performed using a newly designed MFP screw holder. We illustrate the integrated MFP station by the programmed, automated patterning of fluorescently labeled biotin on a streptavidin-coated surface.

  17. International Space Station Research Racks

    NASA Video Gallery

    The International Space Station has a variety of multidisciplinary laboratory facilities and equipment available for scientists to use. This video highlights the capabilities of select facilities. ...

  18. Space Station Engineering Design Issues

    NASA Technical Reports Server (NTRS)

    Mcruer, Duane T.; Boehm, Barry W.; Debra, Daniel B.; Green, C. Cordell; Henry, Richard C.; Maycock, Paul D.; Mcelroy, John H.; Pierce, Chester M.; Stafford, Thomas P.; Young, Laurence R.

    1989-01-01

    Space Station Freedom topics addressed include: general design issues; issues related to utilization and operations; issues related to systems requirements and design; and management issues relevant to design.

  19. Space Station: The next iteration

    NASA Astrophysics Data System (ADS)

    Foley, Theresa M.

    1995-01-01

    NASA's international space station is nearing the completion stage of its troublesome 10-year design phase. With a revised design and new management team, NASA is tasked to deliver the station on time at a budget acceptable to both Congress and the White House. For the next three years, NASA is using tried-and-tested Russian hardware as the technical centerpiece of the station. The new station configuration consists of eight pressurized modules in which the crew can live and work; a long metal truss to connect the pieces; a robot arm for exterior jobs; a solar power system; and propelling the facility in space.

  20. Students Learn About Station Robotics

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, Robotics Systems Flight Controller Jason Dyer participates in a Digital Learning Network (DLN) event with students at East Stroudsber...

  1. Agricultural Experiment Stations and Branch Stations in the United States

    ERIC Educational Resources Information Center

    Pearson, Calvin H.; Atucha, Amaya

    2015-01-01

    In 1887, Congress passed the Hatch Act, which formally established and provided a funding mechanism for agricultural experiment stations in each state and territory in the United States. The main purpose of agricultural experiment stations is to conduct agricultural research to meet the needs of the citizens of the United States. The objective of…

  2. International Space Station Power Systems

    NASA Technical Reports Server (NTRS)

    Propp, Timothy William

    2001-01-01

    This viewgraph presentation gives a general overview of the International Space Station Power Systems. The topics include: 1) The Basics of Power; 2) Space Power Systems Design Constraints; 3) Solar Photovoltaic Power Systems; 4) Energy Storage for Space Power Systems; 5) Challenges of Operating Power Systems in Earth Orbit; 6) and International Space Station Electrical Power System.

  3. The space station power system

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The requirements for electrical power by the proposed Space Station Freedom are discussed. The options currently under consideration are examined. The three power options are photovoltaic, solar dynamic, and a hybrid system. Advantages and disadvantages of each system are tabulated. Drawings and artist concepts of the Space Station configuration are provided.

  4. Sighting the International Space Station

    ERIC Educational Resources Information Center

    Teets, Donald

    2008-01-01

    This article shows how to use six parameters describing the International Space Station's orbit to predict when and in what part of the sky observers can look for the station as it passes over their location. The method requires only a good background in trigonometry and some familiarity with elementary vector and matrix operations. An included…

  5. Space Station medical sciences concepts

    NASA Technical Reports Server (NTRS)

    Mason, J. A. (Editor); Johnson, P. C., Jr. (Editor)

    1984-01-01

    Current life sciences concepts relating to Space Station are presented including the following: research, extravehicular activity, biobehavioral considerations, medical care, maintenance of dental health, maintaining health through physical conditioning and countermeasures, protection from radiation, atmospheric contamination control, atmospheric composition, noise pollution, food supply and service, clothing and furnishings, and educational program possibilities. Information on the current status of Soviet Space Stations is contained.

  6. Computer-Assisted Laboratory Stations.

    ERIC Educational Resources Information Center

    Snyder, William J., Hanyak, Michael E.

    1985-01-01

    Describes the advantages and features of computer-assisted laboratory stations for use in a chemical engineering program. Also describes a typical experiment at such a station: determining the response times of a solid state humidity sensor at various humidity conditions and developing an empirical model for the sensor. (JN)

  7. Space Station lubrication considerations

    NASA Technical Reports Server (NTRS)

    Leger, Lubert J.; Dufrane, Keith

    1987-01-01

    Future activities in space will require the use of large structures and high power availability in order to fully exploit opportunities in Earth and stellar observations, space manufacturing and the development of optimum space transportation vehicles. Although these large systems will have increased capabilities, the associated development costs will be high, and will dictate long life with minimum maintenance. The Space Station provides a concrete example of such a system; it is approximately one hundred meters in major dimensions and has a life requirement of thirty years. Numerous mechanical components will be associated with these systems, a portion of which will be exposed to the space environment. If the long life and low maintenance goals are to be satisfied, lubricants and lubrication concepts will have to be carefully selected. Current lubrication practices are reviewed with the intent of determining acceptability for the long life requirements. The effects of exposure of lubricants and lubricant binders to the space environment are generally discussed. Potential interaction of MoS2 with atomic oxygen, a component of the low Earth orbit environment, appears to be significant.

  8. Space station impact experiments

    NASA Technical Reports Server (NTRS)

    Schultz, P.; Ahrens, T.; Alexander, W. M.; Cintala, M.; Gault, D.; Greeley, R.; Hawke, B. R.; Housen, K.; Schmidt, R.

    1986-01-01

    Four processes serve to illustrate potential areas of study and their implications for general problems in planetary science. First, accretional processes reflect the success of collisional aggregation over collisional destruction during the early history of the solar system. Second, both catastrophic and less severe effects of impacts on planetary bodies survivng from the time of the early solar system may be expressed by asteroid/planetary spin rates, spin orientations, asteroid size distributions, and perhaps the origin of the Moon. Third, the surfaces of planetary bodies directly record the effects of impacts in the form of craters; these records have wide-ranging implications. Fourth, regoliths evolution of asteroidal surfaces is a consequence of cumulative impacts, but the absence of a significant gravity term may profoundly affect the retention of shocked fractions and agglutinate build-up, thereby biasing the correct interpretations of spectral reflectance data. An impact facility on the Space Station would provide the controlled conditions necessary to explore such processes either through direct simulation of conditions or indirect simulation of certain parameters.

  9. Space Station crew workload - Station operations and customer accommodations

    NASA Technical Reports Server (NTRS)

    Shinkle, G. L.

    1985-01-01

    The features of the Space Station which permit crew members to utilize work time for payload operations are discussed. The user orientation, modular design, nonstressful flight regime, in space construction, on board control, automation and robotics, and maintenance and servicing of the Space Station are examined. The proposed crew size, skills, and functions as station operator and mission specialists are described. Mission objectives and crew functions, which include performing material processing, life science and astronomy experiments, satellite and payload equipment servicing, systems monitoring and control, maintenance and repair, Orbital Maneuvering Vehicle and Mobile Remote Manipulator System operations, on board planning, housekeeping, and health maintenance and recreation, are studied.

  10. 46 CFR 108.633 - Fire stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Fire stations. 108.633 Section 108.633 Shipping COAST... Equipment Markings and Instructions § 108.633 Fire stations. Each fire station must be identified by marking: “FIRE STATION NO. __;” next to the station in letters and numbers at least 5 centimeters (2 inches) high....

  11. 46 CFR 108.633 - Fire stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fire stations. 108.633 Section 108.633 Shipping COAST... Equipment Markings and Instructions § 108.633 Fire stations. Each fire station must be identified by marking: “FIRE STATION NO. __;” next to the station in letters and numbers at least 5 centimeters (2 inches) high....

  12. 47 CFR 97.209 - Earth station.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Earth station. 97.209 Section 97.209... SERVICE Special Operations § 97.209 Earth station. (a) Any amateur station may be an Earth station. A holder of any class operator license may be the control operator of an Earth station, subject to...

  13. 47 CFR 97.209 - Earth station.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Earth station. 97.209 Section 97.209... SERVICE Special Operations § 97.209 Earth station. (a) Any amateur station may be an Earth station. A holder of any class operator license may be the control operator of an Earth station, subject to...

  14. 47 CFR 97.209 - Earth station.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Earth station. 97.209 Section 97.209... SERVICE Special Operations § 97.209 Earth station. (a) Any amateur station may be an Earth station. A holder of any class operator license may be the control operator of an Earth station, subject to...

  15. 47 CFR 74.783 - Station identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.783 Station identification. (a) Each low power TV and TV translator station not... television station licensee for this purpose. (c) A low power TV station shall comply with the...

  16. 47 CFR 74.783 - Station identification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.783 Station identification. (a) Each low power TV and TV translator station not... television station licensee for this purpose. (c) A low power TV station shall comply with the...

  17. 47 CFR 74.783 - Station identification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.783 Station identification. (a) Each low power TV and TV translator station not... television station licensee for this purpose. (c) A low power TV station shall comply with the...

  18. 47 CFR 74.783 - Station identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.783 Station identification. (a) Each low power TV and TV translator station not... television station licensee for this purpose. (c) A low power TV station shall comply with the...

  19. 47 CFR 74.783 - Station identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.783 Station identification. (a) Each low power TV and TV translator station not... television station licensee for this purpose. (c) A low power TV station shall comply with the...

  20. 47 CFR 97.207 - Space station.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Space station. 97.207 Section 97.207... SERVICE Special Operations § 97.207 Space station. (a) Any amateur station may be a space station. A holder of any class operator license may be the control operator of a space station, subject to...

  1. 47 CFR 73.210 - Station classes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Station classes. 73.210 Section 73.210... Broadcast Stations § 73.210 Station classes. (a) The rules applicable to a particular station, including... are defined in § 73.205. Allotted station classes are indicated in the Table of Allotments, §...

  2. 47 CFR 73.210 - Station classes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Station classes. 73.210 Section 73.210... Broadcast Stations § 73.210 Station classes. (a) The rules applicable to a particular station, including... are defined in § 73.205. Allotted station classes are indicated in the Table of Allotments, §...

  3. 47 CFR 73.210 - Station classes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Station classes. 73.210 Section 73.210... Broadcast Stations § 73.210 Station classes. (a) The rules applicable to a particular station, including... are defined in § 73.205. Allotted station classes are indicated in the Table of Allotments, §...

  4. 47 CFR 73.210 - Station classes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Station classes. 73.210 Section 73.210... Broadcast Stations § 73.210 Station classes. (a) The rules applicable to a particular station, including... are defined in § 73.205. Allotted station classes are indicated in the Table of Allotments, §...

  5. 47 CFR 73.210 - Station classes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Station classes. 73.210 Section 73.210... Broadcast Stations § 73.210 Station classes. (a) The rules applicable to a particular station, including... are defined in § 73.205. Allotted station classes are indicated in the Table of Allotments, §...

  6. 47 CFR 74.1281 - Station records.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Station records. 74.1281 Section 74.1281... FM Broadcast Booster Stations § 74.1281 Station records. (a) The licensee of a station authorized under this Subpart shall maintain adequate station records, including the current instrument...

  7. 47 CFR 74.1281 - Station records.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Station records. 74.1281 Section 74.1281... FM Broadcast Booster Stations § 74.1281 Station records. (a) The licensee of a station authorized under this Subpart shall maintain adequate station records, including the current instrument...

  8. 47 CFR 74.1281 - Station records.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Station records. 74.1281 Section 74.1281... FM Broadcast Booster Stations § 74.1281 Station records. (a) The licensee of a station authorized under this Subpart shall maintain adequate station records, including the current instrument...

  9. 47 CFR 74.1281 - Station records.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Station records. 74.1281 Section 74.1281... FM Broadcast Booster Stations § 74.1281 Station records. (a) The licensee of a station authorized under this Subpart shall maintain adequate station records, including the current instrument...

  10. 47 CFR 74.1281 - Station records.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Station records. 74.1281 Section 74.1281... FM Broadcast Booster Stations § 74.1281 Station records. (a) The licensee of a station authorized under this Subpart shall maintain adequate station records, including the current instrument...

  11. 47 CFR 97.209 - Earth station.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Earth station. 97.209 Section 97.209... SERVICE Special Operations § 97.209 Earth station. (a) Any amateur station may be an Earth station. A holder of any class operator license may be the control operator of an Earth station, subject to...

  12. 47 CFR 97.209 - Earth station.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Earth station. 97.209 Section 97.209... SERVICE Special Operations § 97.209 Earth station. (a) Any amateur station may be an Earth station. A holder of any class operator license may be the control operator of an Earth station, subject to...

  13. 46 CFR 108.633 - Fire stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Fire stations. 108.633 Section 108.633 Shipping COAST... Equipment Markings and Instructions § 108.633 Fire stations. Each fire station must be identified by marking: “FIRE STATION NO. __;” next to the station in letters and numbers at least 5 centimeters (2 inches) high....

  14. 46 CFR 108.633 - Fire stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Fire stations. 108.633 Section 108.633 Shipping COAST... Equipment Markings and Instructions § 108.633 Fire stations. Each fire station must be identified by marking: “FIRE STATION NO. __;” next to the station in letters and numbers at least 5 centimeters (2 inches) high....

  15. 46 CFR 108.633 - Fire stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Fire stations. 108.633 Section 108.633 Shipping COAST... Equipment Markings and Instructions § 108.633 Fire stations. Each fire station must be identified by marking: “FIRE STATION NO. __;” next to the station in letters and numbers at least 5 centimeters (2 inches) high....

  16. 47 CFR 97.109 - Station control.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station control. 97.109 Section 97.109... SERVICE Station Operation Standards § 97.109 Station control. (a) Each amateur station must have at least one control point. (b) When a station is being locally controlled, the control operator must be at...

  17. 47 CFR 97.109 - Station control.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Station control. 97.109 Section 97.109... SERVICE Station Operation Standards § 97.109 Station control. (a) Each amateur station must have at least one control point. (b) When a station is being locally controlled, the control operator must be at...

  18. 47 CFR 97.207 - Space station.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Space station. 97.207 Section 97.207... SERVICE Special Operations § 97.207 Space station. (a) Any amateur station may be a space station. A holder of any class operator license may be the control operator of a space station, subject to...

  19. 47 CFR 97.207 - Space station.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Space station. 97.207 Section 97.207... SERVICE Special Operations § 97.207 Space station. (a) Any amateur station may be a space station. A holder of any class operator license may be the control operator of a space station, subject to...

  20. 47 CFR 97.207 - Space station.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Space station. 97.207 Section 97.207... SERVICE Special Operations § 97.207 Space station. (a) Any amateur station may be a space station. A holder of any class operator license may be the control operator of a space station, subject to...

  1. 47 CFR 97.207 - Space station.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Space station. 97.207 Section 97.207... SERVICE Special Operations § 97.207 Space station. (a) Any amateur station may be a space station. A holder of any class operator license may be the control operator of a space station, subject to...

  2. Micro Weather Station

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E.

    1999-01-01

    Improved in situ meteorological measurements in the troposphere and stratosphere are needed for studies of weather and climate, both as a primary data source and as validation for remote sensing instruments. Following the initial development and successful flight validation of the surface acoustic wave (SAW) hygrometer, the micro weather station program was directed toward the development of an integrated instrument, capable of accurate, in situ profiling of the troposphere, and small enough to fly on a radiosonde balloon for direct comparison with standard radiosondes. On April 23, 1998, working with Frank Schmidlin and Bob Olson of Wallops Island Flight Facility, we flew our instrument in a dual payload experiment, for validation and direct comparison with a Vaisala radiosonde. During that flight, the SAW dewpoint hygrometer measured frostpoint down to -76T at 44,000 feet. Using a laptop computer in radio contact with the balloon, we monitored data in real time, issued the cutdown command, and recovered the payload less than an hour after landing in White Sands Missile Range, 50 miles from the launch site in Hatch, New Mexico. Future flights will extend the intercomparison, and attempt to obtain in situ meteorological profiles from the surface through the tropopause. The SAW hygrometer was successfully deployed on the NASA DC8 as part of NASA's Third Convection and Moisture Experiment (CAMEX-3) during August and September, 1998. This field campaign was devoted to the study of hurricane tracking and intensification using NASA-funded aircraft. In situ humidity data from the SAW hygrometer are currently being analyzed and compared with data from other instruments on the DC8 and ER2 aircraft. Additional information is contained in the original.

  3. Space station propulsion requirements study

    NASA Technical Reports Server (NTRS)

    Wilkinson, C. L.; Brennan, S. M.

    1985-01-01

    Propulsion system requirements to support Low Earth Orbit (LEO) manned space station development and evolution over a wide range of potential capabilities and for a variety of STS servicing and space station operating strategies are described. The term space station and the overall space station configuration refers, for the purpose of this report, to a group of potential LEO spacecraft that support the overall space station mission. The group consisted of the central space station at 28.5 deg or 90 deg inclinations, unmanned free-flying spacecraft that are both tethered and untethered, a short-range servicing vehicle, and a longer range servicing vehicle capable of GEO payload transfer. The time phasing for preferred propulsion technology approaches is also investigated, as well as the high-leverage, state-of-the-art advancements needed, and the qualitative and quantitative benefits of these advancements on STS/space station operations. The time frame of propulsion technologies applicable to this study is the early 1990's to approximately the year 2000.

  4. 47 CFR 73.877 - Station logs for LPFM stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... observation and the name of the person making the entry. The following information must be entered in the station log: (a) Any extinguishment or malfunction of the antenna structure obstruction...

  5. March 20, 2012 Space Station Briefing: Station Configuration (Narrated)

    NASA Video Gallery

    This animation, presented by Expedition 32 Lead Flight Director Dina Contella during the March 20, 2012 ISS Program and Science Overview Briefing, shows the configuration of the space station durin...

  6. March 20, 2012 Space Station Briefing: Station Configuration

    NASA Video Gallery

    This animation, presented by Expedition 32 Lead Flight Director Dina Contella during the March 20, 2012 ISS Program and Science Overview Briefing, shows the configuration of the space station durin...

  7. Space Station Human Factors Research Review. Volume 3: Space Station Habitability and Function: Architectural Research

    NASA Technical Reports Server (NTRS)

    Cohen, Marc M. (Editor); Eichold, Alice (Editor); Heers, Susan (Editor)

    1987-01-01

    Articles are presented on a space station architectural elements model study, space station group activities habitability module study, full-scale architectural simulation techniques for space stations, and social factors in space station interiors.

  8. Space Station Freedom Evolution Symposium

    NASA Technical Reports Server (NTRS)

    Ott, Richard H.

    1991-01-01

    Information on the Space Station Freedom Evolution Symposium is given in viewgraph form. Topics covered include industry development needs and the Office of Commercial Programs strategy, the three-phase program to develop commercial space, Centers for the Commercial Development of Space (CCDS), key provisions of the Joint Endeavor agreement, current commercial flight experiment requirements, the CCDS expendable launch vehicle program, the Commercial Experiment Transporter (COMET) program, commercial launch dates, payload sponsors, the commercial roles of the Space Station Freedom, and a listing of the Office of Commercial Programs Space Station Freedom payloads.

  9. Biotechnology opportunities on Space Station

    NASA Technical Reports Server (NTRS)

    Deming, Jess; Henderson, Keith; Phillips, Robert W.; Dickey, Bernistine; Grounds, Phyllis

    1987-01-01

    Biotechnology applications which could be implemented on the Space Station are examined. The advances possible in biotechnology due to the favorable microgravity environment are discussed. The objectives of the Space Station Life Sciences Program are: (1) the study of human diseases, (2) biopolymer processing, and (3) the development of cryoprocessing and cryopreservation methods. The use of the microgravity environment for crystal growth, cell culturing, and the separation of biological materials is considered. The proposed Space Station research could provide benefits to the fields of medicine, pharmaceuticals, genetics, agriculture, and industrial waste management.

  10. Space Station Freedom user's guide

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This guide is intended to inform prospective users of the accommodations and resources provided by the Space Station Freedom program. Using this information, they can determine if Space Station Freedom is an appropriate laboratory or facility for their research objectives. The steps that users must follow to fly a payload on Freedom are described. This guide covers the accommodations and resources available on the Space Station during the Man-Tended Capability (MTC) period, scheduled to begin the end of 1996, and a Permanently Manned Capability (PMC) beginning in late 1999.

  11. Space station neutral external environment

    NASA Technical Reports Server (NTRS)

    Ehlers, H.; Leger, L.

    1988-01-01

    Molecular contamination levels arising from the external induced neutral environment of the Space Station (Phase 1 configuration) were calculated using the MOLFLUX model. Predicted molecular column densities and deposition rates generally meet the Space Station contamination requirements. In the doubtful cases of deposition due to materials outgassing, proper material selection, generally excluding organic products exposed to the external environment, must be considered to meet contamination requirements. It is important that the Space Station configuration, once defined, is not significantly modified to avoid introducing new unacceptable contamination sources.

  12. Space Station Freedom food management

    NASA Technical Reports Server (NTRS)

    Whitehurst, Troy N., Jr.; Bourland, Charles T.

    1992-01-01

    This paper summarizes the specification requirements for the Space Station Food System, and describes the system that is being designed and developed to meet those requirements. Space Station Freedom will provide a mix of frozen, refrigerated, rehydratable, and shelf stable foods. The crew will pre-select preferred foods from an approved list, to the extent that proper nutrition balance is maintained. A galley with freezers, refrigerators, trash compactor, and combination microwave and convection ovens will improve crew efficiency and productivity during the long Space Station Freedom (SSF) missions.

  13. Experimental compact space power station

    NASA Astrophysics Data System (ADS)

    Pospisil, M.; Pospisilova, L.; Hanzelka, Z.; Prochazka, M.

    1980-09-01

    A hexagonal structure of 1-km diameter and a weight of 500 metric tons situated at geosynchronous orbit is proposed for testing a space power station of 64 MW peak power in operation and for evaluating materials, means and methods needed for production of large stations. In this compact space power station, solar blankets and microwave sources are situated on one supporting structure, thus saving a lot of auxiliary parts, but the exploitation of solar elements is 3.3 times lower than for an earlier concept.

  14. 47 CFR 80.107 - Service of private coast stations and marine-utility stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Service of private coast stations and marine... Operating Procedures-Land Stations § 80.107 Service of private coast stations and marine-utility stations. A private coast station or a marine-utility station is authorized to transmit messages necessary for...

  15. 47 CFR 73.6016 - Digital Class A TV station protection of TV broadcast stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Digital Class A TV station protection of TV... Class A TV station protection of TV broadcast stations. Digital Class A TV stations must protect authorized TV broadcast stations, applications for minor changes in authorized TV broadcast stations filed...

  16. 47 CFR 73.6016 - Digital Class A TV station protection of TV broadcast stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Digital Class A TV station protection of TV... Class A TV station protection of TV broadcast stations. Digital Class A TV stations must protect authorized TV broadcast stations, applications for minor changes in authorized TV broadcast stations filed...

  17. 47 CFR 73.6016 - Digital Class A TV station protection of TV broadcast stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Digital Class A TV station protection of TV... Class A TV station protection of TV broadcast stations. Digital Class A TV stations must protect authorized TV broadcast stations, applications for minor changes in authorized TV broadcast stations filed...

  18. 47 CFR 73.6016 - Digital Class A TV station protection of TV broadcast stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Digital Class A TV station protection of TV... Class A TV station protection of TV broadcast stations. Digital Class A TV stations must protect authorized TV broadcast stations, applications for minor changes in authorized TV broadcast stations filed...

  19. 47 CFR 73.6016 - Digital Class A TV station protection of TV broadcast stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Digital Class A TV station protection of TV... Class A TV station protection of TV broadcast stations. Digital Class A TV stations must protect authorized TV broadcast stations, applications for minor changes in authorized TV broadcast stations filed...

  20. Station Commander Sends Holiday Greetings

    NASA Video Gallery

    Aboard the International Space Station, Expedition 30 Commander Dan Burbank of NASA sends season's greetings to the world and shares his thoughts about being in orbit aboard the space-based laborat...

  1. Station Change of Command Ceremony

    NASA Video Gallery

    The reins of the International Space Station were passed from Expedition 29 Commander Mike Fossum of NASA to his NASA colleague, newly arrived Expedition 30 Commander Dan Burbank in a ceremony on t...

  2. The space station power system

    NASA Technical Reports Server (NTRS)

    Baraona, C. R.

    1986-01-01

    The manned space station is the next major NASA program. It presents many challenges to the power system designers. The power system in turn is a major driver on the overall configuration. In this paper, the major requirements and guidelines that affect the station configuration and the power system are explained. The evolution of the space station power system from the NASA program development-feasibility phase through the current preliminary design phase is described. Several early station concepts, both fanciful and feasible, are described and linked to the present concept. The recently completed Phase B trade study selections of photovoltaic system technologies are described in detail. A summary of the present solar dynamic and power management and distribution systems is also given for completeness.

  3. Korea Geodetic VLBI Station, Sejong

    NASA Technical Reports Server (NTRS)

    Donghyun, Baek; Sangoh, Yi; Hongjong, Oh; Sangchul, Han

    2013-01-01

    The Sejong VLBI station officially joined the IVS as a new Network Station in 2012. This report summarizes the activities of the Sejong station during 2012. The following are the activities at the station: 1) VLBI test observations were carried out with the Tsukuba 34-m antenna of the GSI in Japan. As a result, the Sejong antenna needs to improve its efficiency, which is currently in progress, 2) A survey to connect the VLBI reference point to GNSS and ground marks was conducted, and 3) To see the indirect effects of RFI (Radio Frequency Interference) at this place, we checked the omni-direction (AZ 0? to 360?, EL fixed at 7?) for RFI influence.

  4. New Crewmates Welcomed Aboard Station

    NASA Video Gallery

    Flight Engineers Kevin Ford, Oleg Novitskiy and Evgeny Tarelkin join their Expedition 33 crewmates after the hatches between the International Space Station and the Soyuz TMA-06M spacecraft opened ...

  5. Space Station Live: Microbiome Experiment

    NASA Video Gallery

    NASA Public Affairs Officer Lori Meggs talks with Microbiome experiment Investigator Mark Ott to learn more about this research taking place aboard the International Space Station. The Microbiome e...

  6. Robots Aboard International Space Station

    NASA Video Gallery

    Ames Research Center, MIT and Johnson Space Center have two new robotics projects aboard the International Space Station (ISS). Robonaut 2, a two-armed humanoid robot with astronaut-like dexterity,...

  7. WVU Hydrogen Fuel Dispensing Station

    SciTech Connect

    Davis, William

    2015-09-01

    The scope of this project was changed during the course of the project. Phase I of the project was to construct a site similar to the site at Central West Virginia Regional Airport in Charleston, WV to show that duplication of the site was a feasible method of conducting hydrogen stations. Phase II of the project was necessitated due to a lack of funding that was planned for the development of the station in Morgantown. The US Department of Energy determined that the station in Charleston would be dismantled and moved to Morgantown and reassembled at the Morgantown site. This necessitated storage of the components of the station for almost a year at the NAFTC Headquarters which caused a number of issues with the equipment that will be discussed in later portions of this report. This report will consist of PHASE I and PHASE II with discussions on each of the tasks scheduled for each phase of the project.

  8. Students Speak With Station Capcom

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, ISS capcom Hal Getzelman participates in a Digital Learning Network (DLN) event with students at Colvin Run Elementary School in Vien...

  9. Space station automation and autonomy

    SciTech Connect

    Carlisle, R.F.

    1984-08-01

    Mission definition and technology assessment studies support the necessity of incorporating increasing degrees of automation in a space station. As presently envisioned, a space station will evolve over 10-20 years. As the complexity of the space station grows, decision-making must be transferred from the crew to an on-board computer system in order to increase the productivity of the man/machine system. Thus, growth considerations require that provision be made for increasing degrees of automation as the space station evolves. Awareness by the planners and technologists of automated system interactions, of the functional role of automation and autonomy, and of design concepts that permit growth will significantly affect technology and system choices. The power system is an excellent case study for examining its possible evolution from manual to automated and continued evolution towards autonomous control. The purpose of this paper is to give an overview of the requirements for this evolution from the systems perspective.

  10. Station Tour: Harmony, Tranquility, Unity

    NASA Video Gallery

    Expedition 33 Commander Suni Williams starts off her tour of the International Space Station with a look at its nodes -- Harmony, Tranquility and Unity -- which include the crew's sleeping quarters...

  11. International Space Station (ISS) Alpha

    NASA Technical Reports Server (NTRS)

    1994-01-01

    An artist's concept of a fully deployed International Space Station (ISS) Alpha. The ISS-A is a multidisciplinary laboratory, technology test bed, and observatory that will provide an unprecedented undertaking in scientific, technological, and international experiments.

  12. Space Station reference configuration description

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The data generated by the Space Station Program Skunk Works over a period of 4 months which supports the definition of a Space Station reference configuration is documented. The data were generated to meet these objectives: (1) provide a focal point for the definition and assessment of program requirements; (2) establish a basis for estimating program cost; and (3) define a reference configuration in sufficient detail to allow its inclusion in the definition phase Request for Proposal (RFP).

  13. ANSS Backbone Station Quality Assessment

    NASA Astrophysics Data System (ADS)

    Leeds, A.; McNamara, D.; Benz, H.; Gee, L.

    2006-12-01

    In this study we assess the ambient noise levels of the broadband seismic stations within the United States Geological Survey's (USGS) Advanced National Seismic System (ANSS) backbone network. The backbone consists of stations operated by the USGS as well as several regional network stations operated by universities. We also assess the improved detection capability of the network due to the installation of 13 additional backbone stations and the upgrade of 26 existing stations funded by the Earthscope initiative. This assessment makes use of probability density functions (PDF) of power spectral densities (PSD) (after McNamara and Buland, 2004) computed by a continuous noise monitoring system developed by the USGS- ANSS and the Incorporated Research Institutions in Seismology (IRIS) Data Management Center (DMC). We compute the median and mode of the PDF distribution and rank the stations relative to the Peterson Low noise model (LNM) (Peterson, 1993) for 11 different period bands. The power of the method lies in the fact that there is no need to screen the data for system transients, earthquakes or general data artifacts since they map into a background probability level. Previous studies have shown that most regional stations, instrumented with short period or extended short period instruments, have a higher noise level in all period bands while stations in the US network have lower noise levels at short periods (0.0625-8.0 seconds), high frequencies (8.0- 0.125Hz). The overall network is evaluated with respect to accomplishing the design goals set for the USArray/ANSS backbone project which were intended to increase broadband performance for the national monitoring network.

  14. Tsukuba 32-m VLBI Station

    NASA Technical Reports Server (NTRS)

    Kawabata, Ryoji; Kurihara, Shinobu; Fukuzaki, Yoshihiro; Kuroda, Jiro; Tanabe, Tadashi; Mukai, Yasuko; Nishikawa, Takashi

    2013-01-01

    The Tsukuba 32-m VLBI station is operated by the Geospatial Information Authority of Japan. This report summarizes activities of the Tsukuba 32-m VLBI station in 2012. More than 200 sessions were observed with the Tsukuba 32-m and other GSI antennas in accordance with the IVS Master Schedule of 2012. We have started installing the observing facilities that will be fully compliant with VLBI2010 for the first time in Japan.

  15. Space Station robotics planning tools

    NASA Technical Reports Server (NTRS)

    Testa, Bridget Mintz

    1992-01-01

    The concepts are described for the set of advanced Space Station Freedom (SSF) robotics planning tools for use in the Space Station Control Center (SSCC). It is also shown how planning for SSF robotics operations is an international process, and baseline concepts are indicated for that process. Current SRMS methods provide the backdrop for this SSF theater of multiple robots, long operating time-space, advanced tools, and international cooperation.

  16. STS-131: Discovery Does Backflip at Station

    NASA Video Gallery

    Commander Alan Poindexter performs a Rendezvous Pitch Maneuver as Discovery approaches the International Space Station for docking, allowing the station crew to photograph the orbiter's heat shield...

  17. Hey] What's Space Station Freedom?

    NASA Astrophysics Data System (ADS)

    Vonehrenfried, Dutch

    This video, 'Hey] What's Space Station Freedom?', has been produced as a classroom tool geared toward middle school children. There are three segments to this video. Segment One is a message to teachers presented by Dr. Jeannine Duane, New Jersey, 'Teacher in Space'. Segment Two is a brief Social Studies section and features a series of Presidential Announcements by President John F. Kennedy (May 1961), President Ronald Reagan (July 1982), and President George Bush (July 1989). These historical announcements are speeches concerning the present and future objectives of the United States' space programs. In the last segment, Charlie Walker, former Space Shuttle astronaut, teaches a group of middle school children, through models, computer animation, and actual footage, what Space Station Freedom is, who is involved in its construction, how it is to be built, what each of the modules on the station is for, and how long and in what sequence this construction will occur. There is a brief animation segment where, through the use of cartoons, the children fly up to Space Station Freedom as astronauts, perform several experiments and are given a tour of the station, and fly back to Earth. Space Station Freedom will take four years to build and will have three lab modules, one from ESA and another from Japan, and one habitation module for the astronauts to live in.

  18. Space station functional relationships analysis

    NASA Technical Reports Server (NTRS)

    Tullis, Thomas S.; Bied, Barbra R.

    1988-01-01

    A systems engineering process is developed to assist Space Station designers to understand the underlying operational system of the facility so that it can be physically arranged and configured to support crew productivity. The study analyzes the operational system proposed for the Space Station in terms of mission functions, crew activities, and functional relationships in order to develop a quantitative model for evaluation of interior layouts, configuration, and traffic analysis for any Station configuration. Development of the model involved identification of crew functions, required support equipment, criteria of assessing functional relationships, and tools for analyzing functional relationship matrices, as well as analyses of crew transition frequency, sequential dependencies, support equipment requirements, potential for noise interference, need for privacy, and overall compatability of functions. The model can be used for analyzing crew functions for the Initial Operating Capability of the Station and for detecting relationships among these functions. Note: This process (FRA) was used during Phase B design studies to test optional layouts of the Space Station habitat module. The process is now being automated as a computer model for use in layout testing of the Space Station laboratory modules during Phase C.

  19. 47 CFR 97.221 - Automatically controlled digital station.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... station. (a) This rule section does not apply to an auxiliary station, a beacon station, a repeater station, an earth station, a space station, or a space telecommand station. (b) A station may be... 47 Telecommunication 5 2010-10-01 2010-10-01 false Automatically controlled digital station....

  20. 47 CFR 97.221 - Automatically controlled digital station.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... station. (a) This rule section does not apply to an auxiliary station, a beacon station, a repeater station, an earth station, a space station, or a space telecommand station. (b) A station may be... 47 Telecommunication 5 2014-10-01 2014-10-01 false Automatically controlled digital station....

  1. 47 CFR 97.221 - Automatically controlled digital station.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... station. (a) This rule section does not apply to an auxiliary station, a beacon station, a repeater station, an earth station, a space station, or a space telecommand station. (b) A station may be... 47 Telecommunication 5 2012-10-01 2012-10-01 false Automatically controlled digital station....

  2. 47 CFR 97.221 - Automatically controlled digital station.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... station. (a) This rule section does not apply to an auxiliary station, a beacon station, a repeater station, an earth station, a space station, or a space telecommand station. (b) A station may be... 47 Telecommunication 5 2013-10-01 2013-10-01 false Automatically controlled digital station....

  3. 47 CFR 97.221 - Automatically controlled digital station.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... station. (a) This rule section does not apply to an auxiliary station, a beacon station, a repeater station, an earth station, a space station, or a space telecommand station. (b) A station may be... 47 Telecommunication 5 2011-10-01 2011-10-01 false Automatically controlled digital station....

  4. Space Station Freedom as an engineering experiment station: An overview

    NASA Technical Reports Server (NTRS)

    Rose, M. Frank

    1992-01-01

    In this presentation, the premise that Space Station Freedom has great utility as an engineering experiment station will be explored. There are several modes in which it can be used for this purpose. The most obvious are space qualification, process development, in space satellite repair, and materials engineering. The range of engineering experiments which can be done at Space Station Freedom run the gamut from small process oriented experiments to full exploratory development models. A sampling of typical engineering experiments are discussed in this session. First and foremost, Space Station Freedom is an elaborate experiment itself, which, if properly instrumented, will provide engineering guidelines for even larger structures which must surely be built if humankind is truly 'outward bound.' Secondly, there is the test, evaluation and space qualification of advanced electric thruster concepts, advanced power technology and protective coatings which must of necessity be tested in the vacuum of space. The current approach to testing these technologies is to do exhaustive laboratory simulation followed by shuttle or unmanned flights. Third, the advanced development models of life support systems intended for future space stations, manned mars missions, and lunar colonies can be tested for operation in a low gravity environment. Fourth, it will be necessary to develop new protective coatings, establish construction techniques, evaluate new materials to be used in the upgrading and repair of Space Station Freedom. Finally, the industrial sector, if it is ever to build facilities for the production of commercial products, must have all the engineering aspects of the process evaluated in space prior to a commitment to such a facility.

  5. Introduction to Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Kohrs, Richard

    1992-01-01

    NASA field centers and contractors are organized to develop 'work packages' for Space Station Freedom. Marshall Space Flight Center and Boeing are building the U.S. laboratory and habitation modules, nodes, and environmental control and life support system; Johnson Space Center and McDonnell Douglas are responsible for truss structure, data management, propulsion systems, thermal control, and communications and guidance; Lewis Research Center and Rocketdyne are developing the power system. The Canadian Space Agency (CSA) is contributing a Mobile Servicing Center, Special Dextrous Manipulator, and Mobile Servicing Center Maintenance Depot. The National Space Development Agency of Japan (NASDA) is contributing a Japanese Experiment Module (JEM), which includes a pressurized module, logistics module, and exposed experiment facility. The European Space Agency (ESA) is contributing the Columbus laboratory module. NASA ground facilities, now in various stages of development to support Space Station Freedom, include: Marshall Space Flight Center's Payload Operations Integration Center and Payload Training Complex (Alabama), Johnson Space Center's Space Station Control Center and Space Station Training Facility (Texas), Lewis Research Center's Power System Facility (Ohio), and Kennedy Space Center's Space Station Processing Facility (Florida). Budget appropriations impact the development of the Space Station. In Fiscal Year 1988, Congress appropriated only half of the funds that NASA requested for the space station program ($393 million vs. $767 million). In FY 89, NASA sought $967 million for the program, and Congress appropriated $900 million. NASA's FY 90 request was $2.05 billion compared to an appropriation of $1.75 billion; the FY 91 request was $2.45 billion, and the appropriation was $1.9 billion. After NASA restructured the Space Station Freedom program in response to directions from Congress, the agency's full budget request of $2.029 billion for Space Station

  6. The ACTS NASA Ground Station/Master Control Station

    NASA Technical Reports Server (NTRS)

    Meadows, David N.

    1992-01-01

    Two of the major components of the ACTS Ground Segment are the NASA Ground Station (NGS) and the Master Control Station (MCS), colocated at the NASA Lewis Research Center. Essentially, the NGS provides the communications links by which the MCS performs its various network control and monitoring functions. The NGS also provides telecommunications links capable of transmission/reception of up to approximately 70 Mbit/s of digital telephonic traffic. Operating as a system, the entire complex of equipment is referred to as the NGS/MCS. This paper provides an 'as-built' description of the NGS/MCS as a system.

  7. 47 CFR 95.119 - Station identification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... station identification is the call sign assigned to the GMRS station or system. (c) A unit number may be... 47 Telecommunication 5 2014-10-01 2014-10-01 false Station identification. 95.119 Section 95.119... SERVICES General Mobile Radio Service (GMRS) § 95.119 Station identification. (a) Except as provided...

  8. 47 CFR 74.582 - Station identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Station identification. 74.582 Section 74.582... § 74.582 Station identification. (a) Each aural broadcast STL or intercity relay station, when transmitting program material or information shall transmit station identification at the beginning and end...

  9. 47 CFR 74.582 - Station identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Station identification. 74.582 Section 74.582... § 74.582 Station identification. (a) Each aural broadcast STL or intercity relay station, when transmitting program material or information shall transmit station identification at the beginning and end...

  10. 47 CFR 74.482 - Station identification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Station identification. 74.482 Section 74.482....482 Station identification. (a) Each remote pickup broadcast station shall be identified by the transmission of the assigned station or system call sign, or by the call sign of the associated...

  11. 47 CFR 74.582 - Station identification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Station identification. 74.582 Section 74.582... § 74.582 Station identification. (a) Each aural broadcast STL or intercity relay station, when transmitting program material or information shall transmit station identification at the beginning and end...

  12. 47 CFR 95.119 - Station identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... station identification is the call sign assigned to the GMRS station or system. (c) A unit number may be... 47 Telecommunication 5 2013-10-01 2013-10-01 false Station identification. 95.119 Section 95.119... SERVICES General Mobile Radio Service (GMRS) § 95.119 Station identification. (a) Except as provided...

  13. 47 CFR 74.582 - Station identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Station identification. 74.582 Section 74.582... § 74.582 Station identification. (a) Each aural broadcast STL or intercity relay station, when transmitting program material or information shall transmit station identification at the beginning and end...

  14. 47 CFR 95.119 - Station identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... station identification is the call sign assigned to the GMRS station or system. (c) A unit number may be... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station identification. 95.119 Section 95.119... SERVICES General Mobile Radio Service (GMRS) § 95.119 Station identification. (a) Except as provided...

  15. 47 CFR 74.582 - Station identification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Station identification. 74.582 Section 74.582... § 74.582 Station identification. (a) Each aural broadcast STL or intercity relay station, when transmitting program material or information shall transmit station identification at the beginning and end...

  16. 47 CFR 74.482 - Station identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Station identification. 74.482 Section 74.482....482 Station identification. (a) Each remote pickup broadcast station shall be identified by the transmission of the assigned station or system call sign, or by the call sign of the associated...

  17. 47 CFR 74.482 - Station identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Station identification. 74.482 Section 74.482....482 Station identification. (a) Each remote pickup broadcast station shall be identified by the transmission of the assigned station or system call sign, or by the call sign of the associated...

  18. 47 CFR 74.482 - Station identification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Station identification. 74.482 Section 74.482....482 Station identification. (a) Each remote pickup broadcast station shall be identified by the transmission of the assigned station or system call sign, or by the call sign of the associated...

  19. 47 CFR 95.119 - Station identification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... station identification is the call sign assigned to the GMRS station or system. (c) A unit number may be... 47 Telecommunication 5 2011-10-01 2011-10-01 false Station identification. 95.119 Section 95.119... SERVICES General Mobile Radio Service (GMRS) § 95.119 Station identification. (a) Except as provided...

  20. 47 CFR 74.482 - Station identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Station identification. 74.482 Section 74.482....482 Station identification. (a) Each remote pickup broadcast station shall be identified by the transmission of the assigned station or system call sign, or by the call sign of the associated...

  1. 47 CFR 97.109 - Station control.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Station control. 97.109 Section 97.109 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Station Operation Standards § 97.109 Station control. (a) Each amateur station must have at...

  2. 47 CFR 97.109 - Station control.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Station control. 97.109 Section 97.109 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Station Operation Standards § 97.109 Station control. (a) Each amateur station must have at...

  3. 47 CFR 97.109 - Station control.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Station control. 97.109 Section 97.109 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Station Operation Standards § 97.109 Station control. (a) Each amateur station must have at...

  4. 47 CFR 73.1120 - Station location.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Station location. 73.1120 Section 73.1120... Rules Applicable to All Broadcast Stations § 73.1120 Station location. Each AM, FM, TV and Class A TV... be the geographical station location....

  5. 47 CFR 73.1120 - Station location.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Station location. 73.1120 Section 73.1120... Rules Applicable to All Broadcast Stations § 73.1120 Station location. Each AM, FM, TV and Class A TV... be the geographical station location....

  6. 47 CFR 73.1120 - Station location.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Station location. 73.1120 Section 73.1120... Rules Applicable to All Broadcast Stations § 73.1120 Station location. Each AM, FM, TV and Class A TV... be the geographical station location....

  7. 47 CFR 73.1120 - Station location.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Station location. 73.1120 Section 73.1120... Rules Applicable to All Broadcast Stations § 73.1120 Station location. Each AM, FM, TV and Class A TV... be the geographical station location....

  8. 47 CFR 90.249 - Control stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Control stations. 90.249 Section 90.249... MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.249 Control stations. Control... following: (a) Frequencies for control stations. (1) Control stations may be authorized to operate...

  9. 47 CFR 90.249 - Control stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Control stations. 90.249 Section 90.249... MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.249 Control stations. Control... following: (a) Frequencies for control stations. (1) Control stations may be authorized to operate...

  10. 47 CFR 80.405 - Station license.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Station license. 80.405 Section 80.405... MARITIME SERVICES Station Documents § 80.405 Station license. (a) Requirement. Except as provided in § 80... in accordance with subpart B of this part. (c) Posting. (1) The current station authorization for...

  11. 47 CFR 80.405 - Station license.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Station license. 80.405 Section 80.405... MARITIME SERVICES Station Documents § 80.405 Station license. (a) Requirement. Except as provided in § 80... in accordance with subpart B of this part. (c) Posting. (1) The current station authorization for...

  12. 47 CFR 80.405 - Station license.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station license. 80.405 Section 80.405... MARITIME SERVICES Station Documents § 80.405 Station license. (a) Requirement. Except as provided in § 80... in accordance with subpart B of this part. (c) Posting. (1) The current station authorization for...

  13. 47 CFR 80.405 - Station license.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Station license. 80.405 Section 80.405... MARITIME SERVICES Station Documents § 80.405 Station license. (a) Requirement. Except as provided in § 80... in accordance with subpart B of this part. (c) Posting. (1) The current station authorization for...

  14. 47 CFR 80.405 - Station license.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Station license. 80.405 Section 80.405... MARITIME SERVICES Station Documents § 80.405 Station license. (a) Requirement. Except as provided in § 80... in accordance with subpart B of this part. (c) Posting. (1) The current station authorization for...

  15. 47 CFR 80.409 - Station logs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station logs. 80.409 Section 80.409 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Station Documents § 80.409 Station logs. (a) General requirements. Logs must be established and properly maintained as follows:...

  16. 47 CFR 80.409 - Station logs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Station logs. 80.409 Section 80.409 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Station Documents § 80.409 Station logs. (a) General requirements. Logs must be established and properly maintained as follows:...

  17. 46 CFR 28.395 - Embarkation stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... least one designated survival craft embarkation station and any additional embarkation stations necessary so that an embarkation station is readily accessible from each accommodation space and work space. Each embarkation station must be arranged to allow the safe boarding of survival craft....

  18. 46 CFR 185.514 - Station bill.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Station bill. 185.514 Section 185.514 Shipping COAST...) OPERATIONS Preparations for Emergencies § 185.514 Station bill. (a) A station bill must be posted by the... requiring more than four crew members at any one time, including the master. (b) The station bill...

  19. 46 CFR 169.813 - Station bills.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Station bills. 169.813 Section 169.813 Shipping COAST... § 169.813 Station bills. (a) A station bill (muster list) shall be prepared and signed by the master of... vessel, particularly in the living spaces, before the vessel sails. (b) The station bill must set...

  20. 46 CFR 28.395 - Embarkation stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... least one designated survival craft embarkation station and any additional embarkation stations necessary so that an embarkation station is readily accessible from each accommodation space and work space. Each embarkation station must be arranged to allow the safe boarding of survival craft....

  1. 46 CFR 169.813 - Station bills.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Station bills. 169.813 Section 169.813 Shipping COAST... § 169.813 Station bills. (a) A station bill (muster list) shall be prepared and signed by the master of... vessel, particularly in the living spaces, before the vessel sails. (b) The station bill must set...

  2. 46 CFR 122.514 - Station bill.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Station bill. 122.514 Section 122.514 Shipping COAST... Emergencies § 122.514 Station bill. (a) A station bill must be posted by the master on a vessel of more than... regards to the content of a station bill, the duties of the crew, emergency signals, an emergency...

  3. 46 CFR 28.395 - Embarkation stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... least one designated survival craft embarkation station and any additional embarkation stations necessary so that an embarkation station is readily accessible from each accommodation space and work space. Each embarkation station must be arranged to allow the safe boarding of survival craft....

  4. 46 CFR 122.514 - Station bill.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Station bill. 122.514 Section 122.514 Shipping COAST... Emergencies § 122.514 Station bill. (a) A station bill must be posted by the master on a vessel of more than... regards to the content of a station bill, the duties of the crew, emergency signals, an emergency...

  5. 46 CFR 122.514 - Station bill.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Station bill. 122.514 Section 122.514 Shipping COAST... Emergencies § 122.514 Station bill. (a) A station bill must be posted by the master on a vessel of more than... regards to the content of a station bill, the duties of the crew, emergency signals, an emergency...

  6. 46 CFR 169.813 - Station bills.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Station bills. 169.813 Section 169.813 Shipping COAST... § 169.813 Station bills. (a) A station bill (muster list) shall be prepared and signed by the master of... vessel, particularly in the living spaces, before the vessel sails. (b) The station bill must set...

  7. 46 CFR 122.514 - Station bill.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Station bill. 122.514 Section 122.514 Shipping COAST... Emergencies § 122.514 Station bill. (a) A station bill must be posted by the master on a vessel of more than... regards to the content of a station bill, the duties of the crew, emergency signals, an emergency...

  8. 46 CFR 185.514 - Station bill.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Station bill. 185.514 Section 185.514 Shipping COAST...) OPERATIONS Preparations for Emergencies § 185.514 Station bill. (a) A station bill must be posted by the... requiring more than four crew members at any one time, including the master. (b) The station bill...

  9. 46 CFR 169.813 - Station bills.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Station bills. 169.813 Section 169.813 Shipping COAST... § 169.813 Station bills. (a) A station bill (muster list) shall be prepared and signed by the master of... vessel, particularly in the living spaces, before the vessel sails. (b) The station bill must set...

  10. 46 CFR 28.395 - Embarkation stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... least one designated survival craft embarkation station and any additional embarkation stations necessary so that an embarkation station is readily accessible from each accommodation space and work space. Each embarkation station must be arranged to allow the safe boarding of survival craft....

  11. 46 CFR 122.514 - Station bill.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Station bill. 122.514 Section 122.514 Shipping COAST... Emergencies § 122.514 Station bill. (a) A station bill must be posted by the master on a vessel of more than... regards to the content of a station bill, the duties of the crew, emergency signals, an emergency...

  12. 46 CFR 169.813 - Station bills.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Station bills. 169.813 Section 169.813 Shipping COAST... § 169.813 Station bills. (a) A station bill (muster list) shall be prepared and signed by the master of... vessel, particularly in the living spaces, before the vessel sails. (b) The station bill must set...

  13. 46 CFR 185.514 - Station bill.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Station bill. 185.514 Section 185.514 Shipping COAST...) OPERATIONS Preparations for Emergencies § 185.514 Station bill. (a) A station bill must be posted by the... requiring more than four crew members at any one time, including the master. (b) The station bill...

  14. 46 CFR 28.395 - Embarkation stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... least one designated survival craft embarkation station and any additional embarkation stations necessary so that an embarkation station is readily accessible from each accommodation space and work space. Each embarkation station must be arranged to allow the safe boarding of survival craft....

  15. 46 CFR 185.514 - Station bill.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Station bill. 185.514 Section 185.514 Shipping COAST...) OPERATIONS Preparations for Emergencies § 185.514 Station bill. (a) A station bill must be posted by the... requiring more than four crew members at any one time, including the master. (b) The station bill...

  16. 46 CFR 185.514 - Station bill.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Station bill. 185.514 Section 185.514 Shipping COAST...) OPERATIONS Preparations for Emergencies § 185.514 Station bill. (a) A station bill must be posted by the... requiring more than four crew members at any one time, including the master. (b) The station bill...

  17. 47 CFR 90.249 - Control stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Control stations. 90.249 Section 90.249... MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.249 Control stations. Control... following: (a) Frequencies for control stations. (1) Control stations may be authorized to operate...

  18. 47 CFR 90.249 - Control stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Control stations. 90.249 Section 90.249... MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.249 Control stations. Control... following: (a) Frequencies for control stations. (1) Control stations may be authorized to operate...

  19. Micro Weather Stations for Mars

    NASA Technical Reports Server (NTRS)

    Crisp, David; Kaiser, William J.; VanZandt, Thomas R.; Hoenk, Michael E.; Tillman, James E.

    1995-01-01

    A global network of weather stations will be needed to characterize the near-surface environment on Mars. Here, we review the scientific and measurement objectives of this network. We also show how these objectives can be met within the cost-constrained Mars Surveyor Program by augmenting the Mars Pathfinder-derived landers with large numbers of very small (less than 5 liter), low-mass (less than 5 kg), low-power, low-cost Mini-meteorological stations. Each station would include instruments for measuring atmospheric. pressures, temperatures, wind velocities, humidity, and airborne dust abundance. They would also include a data handling, telemetry, power, atmospheric entry, and deployment systems in a rugged package capable of direct entry and a high-impact landing. In this paper, we describe these systems and summarize the data-taking strategies and data volumes needed to achieve the surface meteorology objectives for Mars.

  20. Photogrammetric stations for robot vision

    NASA Astrophysics Data System (ADS)

    Haggren, Henrik G. A.

    1992-03-01

    Photogrammetric stations are used for vision based dynamic control of 3-D related phenomena. The vision sensors are fixed solid-state cameras which are permanently mounted and set up for a specific control task. The on-site calibration of the station allows the continuous processing of the 3-D space coordinates for all object points according to their actual 2-D image locations For automated control processes the object points are targeted using predefined templates extracted from the perspective images. The precision of an object point measured by the station is better than 1:10,000 of the object volume in all three coordinates. The vision application presented here is the locating of car bodies in the 3-D space of a robotic sealing cell.

  1. Space Station Payload Adaptation System

    NASA Technical Reports Server (NTRS)

    Taylor, Kenneth R.; Adams, Charles L.

    1990-01-01

    The development and design of a system of containers for the efficient integration of Space Station payloads is described called the Space Station Payload Adaptation System (SSPAS). The SSPAS was developed to address the incorporation of multiple payloads, the use of a small payload carrier, large numbers of samples, and on-orbit servicing. SSPAS subsystems such as the Spacelab rack are modular and designed for integration into the 'Quick Is Beautiful' (QIB) facility. The QIB is designed to provide access to space for small- and medium-sized microgravity research projects and proof-of-concept investigations. The power-distribution and heat-rejection potential of the QIB are described, and an improved experiment-apparatus container is proposed. The SSPAS rack-mounting and container concepts are concluded to make up an efficent system that can effectively exploit the R&D potential of the Space Station.

  2. Space Station Freedom media handbook

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This handbook explains in lay terms, the work that is going on at the NASA Centers and contractors' plants in designing and developing the Space Station Freedom. It discusses the roles, responsibilities, and tasks required to build the Space Station Freedom's elements, systems, and components. New, required ground facilities are described, organized by NASA Center in order to provide a local angle for the media. Included are information on the historical perspective, international aspects, the utilization of the Space Station Freedom, a look at future possibilities, a description of the program, its management, program phases and milestones, and considerable information on the role of various NASA Centers, contractors and international partners. A list of abbreviations, a four-page glossary, and a list of NASA contacts are contained in the appendices.

  3. Space Station - The next logical step

    NASA Technical Reports Server (NTRS)

    Finn, T. T.; Hodge, J. D.

    1984-01-01

    NASA is committed to the development of a permanently manned Space Station within a decade, in concert with European and Japanese space agencies. In addition to continuing scientific research, the Space Station will proceed with applied science and industrialization experiments. International cooperation opportunities arise within the Space Station program for users (in the definition of missions), for builders (in the development of station resources and capabilities), and operators (in the orbital maintenance of the Space Station).

  4. DGPS ground station integrity monitoring

    NASA Technical Reports Server (NTRS)

    Skidmore, Trent A.; Vangraas, Frank

    1995-01-01

    This paper summarizes the development of a unique Differential Global Positioning System (DGPS) ground station integrity monitor which can offer improved availability over conventional code-differential monitoring systems. This monitoring technique, called code/carrier integrity monitoring (CCIM), uses the highly stable integrated Doppler measurement to smooth the relatively noisy code-phase measurements. The pseudorange correction is therefore comprised of the integrated Doppler measurement plus the CCIM offset. The design and operational results of a DGPS ground station integrity monitor are reported. A robust integrity monitor is realized which is optimized for applications such as the Special Category I (SCAT-I) defined in the RTCA Minimum Aviation System Performance Standards.

  5. Space Station personal hygiene study

    NASA Technical Reports Server (NTRS)

    Prejean, Stephen E.; Booher, Cletis R.

    1986-01-01

    A personal hygiene system is currently under development for Space Station application that will provide capabilities equivalent to those found on earth. This paper addresses the study approach for specifying both primary and contingency personal hygiene systems and provisions for specified growth. Topics covered are system definition and subsystem descriptions. Subsystem interfaces are explored to determine which concurrent NASA study efforts must be monitored during future design phases to stay up-to-date on critical Space Station parameters. A design concept for a three (3) compartment personal hygiene facility is included as a baseline for planned test and verification activities.

  6. Space Station ECLSS Integration Analysis

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Space Station Environmental Control and Life Support System (ECLSS) contract with NASA MSFC covered the time frame from 9 May 1985 to 31 Dec. 1992. The contract roughly covered the period of Space Station Freedom (SSF) development from early Phase B through Phase C/D Critical Design Review (CDR). During this time, McDonnell Douglas Aerospace-Huntsville (formerly McDonnell Douglas Space Systems Company) performed an analytical support role to MSFC for the development of analytical math models and engineering trade studies related to the design of the ECLSS for the SSF.

  7. OSSA Space Station waste inventory

    NASA Technical Reports Server (NTRS)

    Rasmussen, Daryl N.; Johnson, Catherine C.; Bosley, John J.; Curran, George L.; Mains, Richard

    1987-01-01

    NASA's Office of Space Science and Applications has compiled an inventory of the types and quantities of the wastes that will be generated by the Space Station's initial operational phase in 35 possible mission scenarios. The objective of this study was the definition of waste management requirements for both the Space Station and the Space Shuttles servicing it. All missions, when combined, will produce about 5350 kg of gaseous, liquid and solid wastes every 90 days. A characterization has been made of the wastes in terms of toxicity, corrosiveness, and biological activity.

  8. 47 CFR 73.6018 - Digital Class A TV station protection of DTV stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Digital Class A TV station protection of DTV... TV station protection of DTV stations. Digital Class A TV stations must protect the DTV service that... application for digital operation of an existing Class A TV station or to change the facilities of a...

  9. 47 CFR 73.6018 - Digital Class A TV station protection of DTV stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Digital Class A TV station protection of DTV... TV station protection of DTV stations. Digital Class A TV stations must protect the DTV service that... application for digital operation of an existing Class A TV station or to change the facilities of a...

  10. 47 CFR 73.6018 - Digital Class A TV station protection of DTV stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Digital Class A TV station protection of DTV... TV station protection of DTV stations. Digital Class A TV stations must protect the DTV service that... application for digital operation of an existing Class A TV station or to change the facilities of a...

  11. 47 CFR 73.6018 - Digital Class A TV station protection of DTV stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Digital Class A TV station protection of DTV... TV station protection of DTV stations. Digital Class A TV stations must protect the DTV service that... application for digital operation of an existing Class A TV station or to change the facilities of a...

  12. 47 CFR 73.6018 - Digital Class A TV station protection of DTV stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Digital Class A TV station protection of DTV... TV station protection of DTV stations. Digital Class A TV stations must protect the DTV service that... application for digital operation of an existing Class A TV station or to change the facilities of a...

  13. Computer networking at SLR stations

    NASA Astrophysics Data System (ADS)

    Novotny, Antonin

    1993-06-01

    There are several existing communication methods to deliver data from the satellite laser ranging (SLR) station to the SLR data center and back: telephonmodem, telex, and computer networks. The SLR scientific community has been exploiting mainly INTERNET, BITNET/EARN, and SPAN. The total of 56 countries are connected to INTERNET and the number of nodes is exponentially growing. The computer networks mentioned above and others are connected through E-mail protocol. The scientific progress of SLR requires the increase of communication speed and the amount of the transmitted data. The TOPEX/POSEIDON test campaign required to deliver Quick Look data (1.7 kB/pass) from a SLR site to SLR data center within 8 hours and full rate data (up to 500 kB/pass) within 24 hours. We developed networking for the remote SLR station in Helwan, Egypt. The reliable scheme for data delivery consists of: compression of MERIT2 format (up to 89 percent), encoding to ASCII Me (files); and e-mail sending from SLR station--e-mail receiving, decoding, and decompression at the center. We do propose to use the ZIP method for compression/decompression and the UUCODE method for ASCII encoding/decoding. This method will be useful for stations connected via telephonemodems or commercial networks. The electronics delivery could solve the problem of the too late receiving of the FR data by SLR data center.

  14. Neutral Buoyancy Simulator - Space Station

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Skylab's success proved that scientific experimentation in a low gravity environment was essential to scientific progress. A more permanent structure was needed to provide this space laboratory. President Ronald Reagan, on January 25, 1984, during his State of the Union address, claimed that the United States should exploit the new frontier of space, and directed NASA to build a permanent marned space station within a decade. The idea was that the space station would not only be used as a laboratory for the advancement of science and medicine, but would also provide a staging area for building a lunar base and manned expeditions to Mars and elsewhere in the solar system. President Reagan invited the international community to join with the United States in this endeavour. NASA and several countries moved forward with this concept. By December 1985, the first phase of the space station was well underway with the design concept for the crew compartments and laboratories. Pictured are two NASA astronauts, at Marshall Space Flight Center's (MSFC) Neutral Buoyancy Simulator (NBS), practicing construction techniques they later used to construct the space station after it was deployed.

  15. Space station molecular sieve development

    NASA Technical Reports Server (NTRS)

    Chang, C.; Rousseau, J.

    1986-01-01

    An essential function of a space environmental control system is the removal of carbon dioxide (CO2) from the atmosphere to control the partial pressure of this gas at levels lower than 3 mm Hg. The use of regenerable solid adsorbents for this purpose was demonstrated effectively during the Skylab mission. Earlier sorbent systems used zeolite molecular sieves. The carbon molecular sieve is a hydrophobic adsorbent with excellent potential for space station application. Although carbon molecular sieves were synthesized and investigated, these sieves were designed to simulate the sieving properties of 5A zeolite and for O2/N2 separation. This program was designed to develop hydrophobic carbon molecular sieves for CO2 removal from a space station crew environment. It is a first phase effort involved in sorbent material development and in demonstrating the utility of such a material for CO2 removal on space stations. The sieve must incorporate the following requirements: it must be hydrophobic; it must have high dynamic capacity for carbon dioxide at the low partial pressure of the space station atmosphere; and it must be chemiclly stable and will not generate contaminants.

  16. The Medicina Station Status Report

    NASA Technical Reports Server (NTRS)

    Orfei, Alessandro; Orlati, Andrea; Maccaferri, Giuseppe

    2013-01-01

    General information about the Medicina Radio Astronomy Station, the 32-m antenna status, and the staff in charge of the VLBI observations is provided. In 2012, the data from geodetic VLBI observations were acquired using the Mark 5A recording system with good results. Updates of the hardware were performed and are briefly described.

  17. Space Station Freedom commercial infrastructure

    NASA Technical Reports Server (NTRS)

    Barquinero, Kevin; Cassidy, Jeff

    1989-01-01

    NASA policy concerning the commercial infrastructure of the Space Station is examined. Plans for receiving and evaluating unsolicited proposals to provide commercial infrastructure are outlined. The guidelines for development of the commercial infrastructure and examples of opportunities for industry are listed. Also, a program for industry feedback concerning the commercial infrastructure policy is discussed.

  18. NOAA PMEL Station Chemistry Data

    DOE Data Explorer

    Quinn, Patricia

    2008-04-04

    Submicron and supermicron samples are analyzed by ion chromatography for Cl-, NO3-, SO4-2, Na+, NH4+, K+, Mg2+, and Ca+2. The analysis of MSA-, Br-, and oxalate has been added to some stations. Samples also are analyzed for total mass by gravimetric analysis at 55 +/- 5% RH.

  19. Space Station-Baseline Configuration

    NASA Technical Reports Server (NTRS)

    1989-01-01

    In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts the baseline configuration, which features a 110-meter-long horizontal boom with four pressurized modules attached in the middle. Located at each end are four photovoltaic arrays generating a total of 75-kW of power. Two attachment points for external payloads are provided along this boom. The four pressurized modules include the following: A laboratory and habitation module provided by the United States; two additional laboratories, one each provided by the European Space Agency (ESA) and Japan; and an ESA-provided Man-Tended Free Flyer, a pressurized module capable of operations both attached to and separate from the Space Station core. Canada was expected to provide the first increment of a Mobile Serving System.

  20. Space Station reference configuration update

    NASA Technical Reports Server (NTRS)

    Bonner, Tom F., Jr.

    1985-01-01

    The reference configuration of the NASA Space Station as of November 1985 is presented in a series of diagrams, drawings, graphs, and tables. The configurations for components to be contributed by ESA, Canada, and Japan are included. Brief captions are provided, along with answers to questions raised at the conference.

  1. Space station propulsion test bed

    NASA Technical Reports Server (NTRS)

    Briley, G. L.; Evans, S. A.

    1989-01-01

    A test bed was fabricated to demonstrate hydrogen/oxygen propulsion technology readiness for the intital operating configuration (IOC) space station application. The test bed propulsion module and computer control system were delivered in December 1985, but activation was delayed until mid-1986 while the propulsion system baseline for the station was reexamined. A new baseline was selected with hydrogen/oxygen thruster modules supplied with gas produced by electrolysis of waste water from the space shuttle and space station. As a result, an electrolysis module was designed, fabricated, and added to the test bed to provide an end-to-end simulation of the baseline system. Subsequent testing of the test bed propulsion and electrolysis modules provided an end-to-end demonstration of the complete space station propulsion system, including thruster hot firings using the oxygen and hydrogen generated from electrolysis of water. Complete autonomous control and operation of all test bed components by the microprocessor control system designed and delivered during the program was demonstrated. The technical readiness of the system is now firmly established.

  2. Space Station Planetology Experiments (SSPEX)

    SciTech Connect

    Greeley, R.; Williams, R.J.

    1986-05-01

    A meeting of 50 planetary scientists considered the uses of the Space Station to support experiments in their various disciplines. Abstracts (28) present concepts for impact and aeolian processes, particle formation and interaction, and other planetary science experiments. Summaries of the rationale, hardware concepts, accomodations, and recommendations are included.

  3. Space Station power system selection

    NASA Technical Reports Server (NTRS)

    Rice, R. R.

    1986-01-01

    The Space Station power system selection process is described with attention given to management organization and technical considerations. A hybrid power system was chosen because of the large life cycle cost savings. The power management and distribution system that was chosen was the 400 Hz system.

  4. Computer networking at SLR stations

    NASA Technical Reports Server (NTRS)

    Novotny, Antonin

    1993-01-01

    There are several existing communication methods to deliver data from the satellite laser ranging (SLR) station to the SLR data center and back: telephonmodem, telex, and computer networks. The SLR scientific community has been exploiting mainly INTERNET, BITNET/EARN, and SPAN. The total of 56 countries are connected to INTERNET and the number of nodes is exponentially growing. The computer networks mentioned above and others are connected through E-mail protocol. The scientific progress of SLR requires the increase of communication speed and the amount of the transmitted data. The TOPEX/POSEIDON test campaign required to deliver Quick Look data (1.7 kB/pass) from a SLR site to SLR data center within 8 hours and full rate data (up to 500 kB/pass) within 24 hours. We developed networking for the remote SLR station in Helwan, Egypt. The reliable scheme for data delivery consists of: compression of MERIT2 format (up to 89 percent), encoding to ASCII Me (files); and e-mail sending from SLR station--e-mail receiving, decoding, and decompression at the center. We do propose to use the ZIP method for compression/decompression and the UUCODE method for ASCII encoding/decoding. This method will be useful for stations connected via telephonemodems or commercial networks. The electronics delivery could solve the problem of the too late receiving of the FR data by SLR data center.

  5. Mobile Lunar Laser Ranging Station

    ERIC Educational Resources Information Center

    Intellect, 1977

    1977-01-01

    Harlan Smith, chairman of the University of Texas's Astronomy Department, discusses a mobile lunar laser ranging station which could help determine the exact rates of movement between continents and help geophysicists understand earthquakes. He also discusses its application for studying fundamental concepts of cosmology and physics. (Editor/RK)

  6. Automatic Weather Station (AWS) Lidar

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A.R.; Abshire, James B.; Spinhirne, James D.; Smith, David E. (Technical Monitor)

    2000-01-01

    An autonomous, low-power atmospheric lidar instrument is being developed at NASA Goddard Space Flight Center. This compact, portable lidar will operate continuously in a temperature controlled enclosure, charge its own batteries through a combination of a small rugged wind generator and solar panels, and transmit its data from remote locations to ground stations via satellite. A network of these instruments will be established by co-locating them at remote Automatic Weather Station (AWS) sites in Antarctica under the auspices of the National Science Foundation (NSF). The NSF Office of Polar Programs provides support to place the weather stations in remote areas of Antarctica in support of meteorological research and operations. The AWS meteorological data will directly benefit the analysis of the lidar data while a network of ground based atmospheric lidar will provide knowledge regarding the temporal evolution and spatial extent of Type la polar stratospheric clouds (PSC). These clouds play a crucial role in the annual austral springtime destruction of stratospheric ozone over Antarctica, i.e. the ozone hole. In addition, the lidar will monitor and record the general atmospheric conditions (transmission and backscatter) of the overlying atmosphere which will benefit the Geoscience Laser Altimeter System (GLAS). Prototype lidar instruments have been deployed to the Amundsen-Scott South Pole Station (1995-96, 2000) and to an Automated Geophysical Observatory site (AGO 1) in January 1999. We report on data acquired with these instruments, instrument performance, and anticipated performance of the AWS Lidar.

  7. Italy's Intelligent Educational Training Station

    ERIC Educational Resources Information Center

    Ponti, Giorgio

    2005-01-01

    The Intelligent Educational Training Station has been developed in Italy to meet emerging school building needs. The project, for schools from the primary to upper secondary level, proposes flexible architecture for an "intelligent school" network, and was developed by CISEM, the Centre for Educational Innovation and Experimentation of Milan.

  8. Mobile Alternative Fueling Station Locator

    SciTech Connect

    Not Available

    2009-04-01

    The Department of Energy's Alternative Fueling Station Locator is available on-the-go via cell phones, BlackBerrys, or other personal handheld devices. The mobile locator allows users to find the five closest biodiesel, electricity, E85, hydrogen, natural gas, and propane fueling sites using Google technology.

  9. Space Station Planetology Experiments (SSPEX)

    NASA Technical Reports Server (NTRS)

    Greeley, R. (Editor); Williams, R. J. (Editor)

    1986-01-01

    A meeting of 50 planetary scientists considered the uses of the Space Station to support experiments in their various disciplines. Abstracts (28) present concepts for impact and aeolian processes, particle formation and interaction, and other planetary science experiments. Summaries of the rationale, hardware concepts, accomodations, and recommendations are included.

  10. Barrow Meteoroloigcal Station (BMET) Handbook

    SciTech Connect

    Ritsche, MT

    2004-11-01

    The Barrow meteorology station (BMET) uses mainly conventional in situ sensors mounted at four different heights on a 40 m tower to obtain profiles of wind speed, wind direction, air temperature, and humidity. It also obtains barometric pressure, visibility, and precipitation data.

  11. Work/control stations in Space Station weightlessness

    NASA Technical Reports Server (NTRS)

    Willits, Charles

    1990-01-01

    An ergonomic integration of controls, displays, and associated interfaces with an operator, whose body geometry and dynamics may be altered by the state of weightlessness, is noted to rank in importance with the optimal positioning of controls relative to the layout and architecture of 'body-ported' work/control stations applicable to the NASA Space Station Freedom. A long-term solution to this complex design problem is envisioned to encompass the following features: multiple imaging, virtual optics, screen displays controlled by a keyboard ergonomically designed for weightlessness, cursor control, a CCTV camera, and a hand-controller featuring 'no-grip' vernier/tactile positioning. This controller frees all fingers for multiple-switch actuations, while retaining index/register determination with the hand controller. A single architectural point attachment/restraint may be used which requires no residual muscle tension in either brief or prolonged operation.

  12. The International Space Station Habitat

    NASA Astrophysics Data System (ADS)

    Watson, Patricia Mendoza; Engle, Mike

    2003-01-01

    The International Space Station (ISS) is an engineering project unlike any other. The vehicle is inhabited and operational as it is constructed. The habitability resources available to the crew are the sleep quarters, the galley, the waste and hygiene compartment, and exercise equipment. These items are mainly in the Russian Service Module and their placement is awkward for the crew to use and work around. ISS assembly will continue with the truss build and the addition of the International Partner Laboratories. Prior to the addition of the International Partner Laboratories. Node 2 will be added. The Node 2 module will provide additional stowage volume and room for more crew sleep quarters. The purpose of the ISS is to perform research and a major area of emphasis is on the effects of long duration space flight on humans, as result of this research the habitability requirements for the International Space Station crews will be determined.

  13. Manned space stations - A perspective

    NASA Astrophysics Data System (ADS)

    Disher, J. H.

    1981-09-01

    The findings from the Skylab missions are discussed as they relate to the operations planning of future space stations such as Spacelab and the proposed Space Operations Center. Following a brief description of the Skylab spacecraft, the significance of the mission as a demonstration of the possibility of effecting emergency repairs in space is pointed out. Specific recommendations made by Skylab personnel concerning capabilities for future in-flight maintenance are presented relating to the areas of spacecraft design criteria, tool selection and spares carried. Attention is then given to relevant physiological findings, and to habitability considerations in the areas of sleep arrangements, hygiene, waste management, clothing, and food. The issue of contamination control is examined in detail as a potential major system to be integrated into future design criteria. The importance of the Skylab results to the designers of future space stations is emphasized.

  14. Space Station Freedom avionics technology

    NASA Technical Reports Server (NTRS)

    Edwards, A.

    1990-01-01

    The Space Station Freedom Program (SSFP) encompasses the design, development, test, evaluation, verification, launch, assembly, and operation and utilization of a set of spacecraft in low earth orbit (LEO) and their supporting facilities. The spacecraft set includes: the Space Station Manned Base (SSMB), a European Space Agency (ESA) provided Man-Tended Free Flyer (MTFF) at an inclination of 28.5 degrees and nominal attitude of 410 km, a USA provided Polar Orbiting Platform (POP), and an ESA provided POP in sun-synchronous, near polar orbits at a nominal altitude of 822 km. The SSMB will be assembled using the National Space Transportation System (NSTS). The POPs and the MTFF will be launched by Expendable Launch Vehicles (ELVs): a Titan 4 for the US POP and an Ariane for the ESA POP and MTFF. The US POP will for the most part use derivatives of systems flown on unmanned LEO spacecraft. The SSMB portion of the overall program is presented.

  15. Space Station tethered elevator system

    NASA Technical Reports Server (NTRS)

    Haddock, Michael H.; Anderson, Loren A.; Hosterman, K.; Decresie, E.; Miranda, P.; Hamilton, R.

    1989-01-01

    The optimized conceptual engineering design of a space station tethered elevator is presented. The tethered elevator is an unmanned, mobile structure which operates on a ten-kilometer tether spanning the distance between Space Station Freedom and a platform. Its capabilities include providing access to residual gravity levels, remote servicing, and transportation to any point along a tether. The report discusses the potential uses, parameters, and evolution of the spacecraft design. Emphasis is placed on the elevator's structural configuration and three major subsystem designs. First, the design of elevator robotics used to aid in elevator operations and tethered experimentation is presented. Second, the design of drive mechanisms used to propel the vehicle is discussed. Third, the design of an onboard self-sufficient power generation and transmission system is addressed.

  16. Space Station Freedom propulsion activities

    NASA Technical Reports Server (NTRS)

    Spera, David A. (Editor)

    1990-01-01

    The technical highlights and accomplishments made at NASA LeRC in the development of the Space Station Freedom (SSF) propulsion system are discussed. The objectives are as follows: develop and characterize resistojet-thruster components and assemblies; develop and characterize hydrogen-oxygen thruster components; and conduct system trade studies. The research projects primarily characterize propulsion performance and life. Other tests include environmental impacts, such as exhaust gas profiles and electromagnetic interference. The technical activities that are highlighted are being conducted at LeRC within the Aerospace Technology and Space Station Freedom directorates. These activities include the following: derivation of design analysis models; trade studies of design options; propulsion system impact studies; and component testing for characterization and design verification.

  17. Space Station solar water heater

    NASA Technical Reports Server (NTRS)

    Horan, D. C.; Somers, Richard E.; Haynes, R. D.

    1990-01-01

    The feasibility of directly converting solar energy for crew water heating on the Space Station Freedom (SSF) and other human-tended missions such as a geosynchronous space station, lunar base, or Mars spacecraft was investigated. Computer codes were developed to model the systems, and a proof-of-concept thermal vacuum test was conducted to evaluate system performance in an environment simulating the SSF. The results indicate that a solar water heater is feasible. It could provide up to 100 percent of the design heating load without a significant configuration change to the SSF or other missions. The solar heater system requires only 15 percent of the electricity that an all-electric system on the SSF would require. This allows a reduction in the solar array or a surplus of electricity for onboard experiments.

  18. Space station power semiconductor package

    NASA Technical Reports Server (NTRS)

    Balodis, Vilnis; Berman, Albert; Devance, Darrell; Ludlow, Gerry; Wagner, Lee

    1987-01-01

    A package of high-power switching semiconductors for the space station have been designed and fabricated. The package includes a high-voltage (600 volts) high current (50 amps) NPN Fast Switching Power Transistor and a high-voltage (1200 volts), high-current (50 amps) Fast Recovery Diode. The package features an isolated collector for the transistors and an isolated anode for the diode. Beryllia is used as the isolation material resulting in a thermal resistance for both devices of .2 degrees per watt. Additional features include a hermetical seal for long life -- greater than 10 years in a space environment. Also, the package design resulted in a low electrical energy loss with the reduction of eddy currents, stray inductances, circuit inductance, and capacitance. The required package design and device parameters have been achieved. Test results for the transistor and diode utilizing the space station package is given.

  19. Space Station trash removal system

    NASA Technical Reports Server (NTRS)

    Petro, Andrew J. (Inventor)

    1993-01-01

    A trash removal system for space stations is described. The system is comprised of a disposable trash bag member and an attached, compacted large, lightweight inflatable balloon element. When the trash bag member is filled, the astronaut places the bag member into space through an airlock. Once in the vacuum of space, the balloon element inflates. Due to the large cross-sectional area of the balloon element relative to its mass, the combined balloon element and the trash bag member are slowed by atmospheric drag to a much greater extent than the Space Station's. The balloon element and bag member lose altitude and re-enter the atmosphere, and the elements and contents are destroyed by aerodynamic heating. The novelty of this system is in the unique method of using the vacuum of space and aerodynamic heating to dispose of waste material with a minimum of increase in orbital debris.

  20. Space station protective coating development

    NASA Technical Reports Server (NTRS)

    Pippin, H. G.; Hill, S. G.

    1989-01-01

    A generic list of Space Station surfaces and candidate material types is provided. Environmental exposures and performance requirements for the different Space Station surfaces are listed. Coating materials and the processing required to produce a viable system, and appropriate environmental simulation test facilities are being developed. Mass loss data from the original version of the atomic oxygen test chamber and the improved facility; additional environmental exposures performed on candidate materials; and materials properties measurements on candidate coatings to determine the effects of the exposures are discussed. Methodologies of production, and coating materials, used to produce the large scale demonstration articles are described. The electronic data base developed for the contract is also described. The test chamber to be used for exposure of materials to atomic oxygen was built.

  1. Science in space with the Space Station

    NASA Technical Reports Server (NTRS)

    Banks, Peter M.

    1987-01-01

    The potential of the Space Station as a versatile scientific laboratory is discussed, reviewing plans under consideration by the NASA Task Force on Scientific Uses of the Space Station. The special advantages offered by the Station for expanding the scope of 'space science' beyond astrophysics, geophysics, and terrestrial remote sensing are stressed. Topics examined include the advantages of a manned presence, the scientific value and cost effectiveness of smaller, more quickly performable experiments, improved communications for ground control of Station experiments, the international nature of the Station, the need for more scientist astronauts for the Station crew, Station on-orbit maintenance and repair services for coorbiting platforms, and the need for Shuttle testing of proposed Station laboratory equipment and procedures.

  2. 47 CFR 74.781 - Station records.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.781 Station records. (a) The licensee of a low power TV, TV translator, or...

  3. 47 CFR 74.781 - Station records.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.781 Station records. (a) The licensee of a low power TV, TV translator, or...

  4. 47 CFR 74.781 - Station records.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.781 Station records. (a) The licensee of a low power TV, TV translator, or...

  5. 47 CFR 74.781 - Station records.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.781 Station records. (a) The licensee of a low power TV, TV translator, or...

  6. 47 CFR 74.781 - Station records.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.781 Station records. (a) The licensee of a low power TV, TV translator, or...

  7. 75 FR 22674 - Moynihan Station Development Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... Quality NEPA implementing regulations, 40 CFR parts 1500-1508, and the FRA NEPA procedures, 64 FR 28545... Federal Railroad Administration Moynihan Station Development Project AGENCY: Federal Railroad... comment period for the Moynihan Station Development Project Environmental Assessment. SUMMARY: The...

  8. Earth Views From the International Space Station

    NASA Video Gallery

    In celebration of Earth Day, NASA presents images of Earth captured by cameras aboard the International Space Station. Traveling at an approximate speed of 17,500 miles per hour, the space station ...

  9. Space station operations task force summary report

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A companion to the Space Stations Operation Task Force Panels' Reports, this document summarizes all space station program goals, operations, and the characteristics of the expected user community. Strategies for operation and recommendations for implementation are included.

  10. Fortaleza Station Report for 2012

    NASA Technical Reports Server (NTRS)

    Kaufmann, Pierre; Pereira de Lucena, A. Macilio; Sombra da Silva, Adeildo

    2013-01-01

    This is a brief report about the activities carried out at the Fortaleza geodetic VLBI station (ROEN: R´adio Observat´orio Espacial do Nordeste), located in Eus´ebio, CE, Brazil, during the period from January until December 2012. The observing activities were resumed in May after the major maintenance that comprised the azimuth bearing replacement. The total observational experiments consisted of 103 VLBI sessions and continuous GPS monitoring recordings.

  11. International space station wire program

    NASA Technical Reports Server (NTRS)

    May, Todd

    1995-01-01

    Hardware provider wire systems and current wire insulation issues for the International Space Station (ISS) program are discussed in this viewgraph presentation. Wire insulation issues include silicone wire contamination, Tefzel cold temperature flexibility, and Russian polyimide wire insulation. ISS is a complex program with hardware developed and managed by many countries and hundreds of contractors. Most of the obvious wire insulation issues are known by contractors and have been precluded by proper selection.

  12. Stage measurement at gaging stations

    USGS Publications Warehouse

    Sauer, Vernon B.; Turnipseed, D. Phil

    2010-01-01

    Stream and reservoir stage are critical parameters in the computation of stream discharge and reservoir volume, respectively. In addition, a record of stream stage is useful in the design of structures that may be affected by stream elevation, as well as for the planning for various uses of flood plains. This report describes equipment and methodology for the observation, sensing, and recording of stage in streams and reservoirs. Although the U.S. Geological Survey (USGS) still uses the traditional, basic stilling-well float system as a predominant gaging station, modern electronic stage sensors and water-level recorders are now commonly used. Bubble gages coupled with nonsubmersible pressure transducers eliminate the need for stilling wells. Submersible pressure transducers have become common in use for the measurement of stage in both rivers and lakes. Furthermore, noncontact methods, such as radar, acoustic, and laser methods of sensing water levels, are being developed and tested, and in the case of radar, are commonly used for the measurement of stage. This report describes commonly used gaging-station structures, as well as the design and operation of gaging stations. Almost all of the equipment and instruments described in this report will meet the accuracy standard set by the USGS Office of Surface Water (OSW) for the measurement of stage for most applications, which is ?0.01 foot (ft) or 0.2 percent of the effective stage. Several telemetry systems are used to transmit stage data from the gaging station to the office, although satellite telemetry has become the standard. These telemetry systems provide near real-time stage data, as well as other information that alerts the hydrographer to extreme or abnormal events, and instrument malfunctions.

  13. Technology assessment of space stations

    NASA Technical Reports Server (NTRS)

    Coates, V. T.

    1971-01-01

    The social impacts, both beneficial and detrimental, which can be expected from a system of space stations operating over relatively long periods of time in Earth orbit, are examined. The survey is an exercise in technology assessment. It is futuristic in nature. It anticipates technological applications which are still in the planning stage, and many of the conclusions are highly speculative and for this reason controversial.

  14. Crew quarters for Space Station

    NASA Technical Reports Server (NTRS)

    Mount, F. E.

    1989-01-01

    The only long-term U.S. manned space mission completed has been Skylab, which has similarities as well as differences to the proposed Space Station. With the exception of Skylab missions, there has been a dearth of experience on which to base the design of the individual Space Station Freedom crew quarters. Shuttle missions commonly do not have sleep compartments, only 'sleeping arrangements'. There are provisions made for each crewmember to have a sleep restraint and a sleep liner, which are attached to a bulkhead or a locker. When the Shuttle flights began to have more than one working shift, crew quarters became necessary due to noise and other disturbances caused by crew task-related activities. Shuttle missions that have planned work shifts have incorporated sleep compartments. To assist in gaining more information and insight for the design of the crew quarters for the Space Station Freedom, a survey was given to current crewmembers with flight experience. The results from this survey were compiled and integrated with information from the literature covering space experience, privacy, and human-factors issues.

  15. Space Station atmospheric monitoring systems.

    PubMed

    Buoni, C; Coutant, R; Barnes, R; Slivon, L

    1988-05-01

    A technology assessment study on atmospheric monitoring systems was performed by Battelle Columbus Division for the National Aeronautics and Space Administration's John F. Kennedy Space Center under Contract No. NAS 10-11033. In this assessment, the objective was to identify, analyze, and recommend systems to sample and measure Space Station atmospheric contaminants and identify where additional research and technology advancements were required. To achieve this objective, it was necessary to define atmospheric monitoring requirements and to assess the state of the art and advanced technology and systems for technical and operational compatibility with monitoring goals. Three technical tasks were defined to support these needs: Definition of Monitoring Requirements, Assessment of Sampling and Analytical Technology, and Technology Screening and Recommendations. Based on the analysis, the principal candidates recommended for development at the Space Station's initial operational capability were: (1) long-path Fourier transform infrared for rapid detection of high-risk contamination incidences, and (2) gas chromatography/mass spectrometry utilizing mass selective detection (or ion-trap) technologies for detailed monitoring of extended crew exposure to low level (ppbv) contamination. The development of a gas chromatography/mass spectrometry/matrix isolation-Fourier transform infrared system was recommended as part of the long range program of upgrading Space Station trace-contaminant monitoring needs. PMID:11542838

  16. Microbiology on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L. (Editor); Mcginnis, Michael R. (Editor); Mishra, S. K. (Editor); Wogan, Christine F. (Editor)

    1991-01-01

    This panel discussion convened in Houston, Texas, at the Lunar and Planetary Institute, on November 6 to 8, 1989, to review NASA's plans for microbiology on Space Station Freedom. A panel of distinguished scientists reviewed, validated, and recommended revisions to NASA's proposed acceptability standards for air, water, and internal surfaces on board Freedom. Also reviewed were the proposed microbiology capabilities and monitoring plan, disinfection procedures, waste management, and clinical issues. In the opinion of this advisory panel, ensuring the health of the Freedom's crews requires a strong goal-oriented research effort to determine the potential effects of microorganisms on the crewmembers and on the physical environment of the station. Because there are very few data addressing the fundamental question of how microgravity influences microbial function, the panel recommended establishing a ground-based microbial model of Freedom, with subsequent evaluation using in-flight shuttle data. Sampling techniques and standards will be affected by both technological advances in microgravity-compatible instrumentation, and by changes in the microbial population over the life of the station.

  17. Space Station atmospheric monitoring systems

    NASA Technical Reports Server (NTRS)

    Buoni, C.; Coutant, R.; Barnes, R.; Slivon, L.

    1988-01-01

    A technology assessment study on atmospheric monitoring systems was performed by Battelle Columbus Division for the National Aeronautics and Space Administration's John F. Kennedy Space Center under Contract No. NAS 10-11033. In this assessment, the objective was to identify, analyze, and recommend systems to sample and measure Space Station atmospheric contaminants and identify where additional research and technology advancements were required. To achieve this objective, it was necessary to define atmospheric monitoring requirements and to assess the state of the art and advanced technology and systems for technical and operational compatibility with monitoring goals. Three technical tasks were defined to support these needs: Definition of Monitoring Requirements, Assessment of Sampling and Analytical Technology, and Technology Screening and Recommendations. Based on the analysis, the principal candidates recommended for development at the Space Station's initial operational capability were: (1) long-path Fourier transform infrared for rapid detection of high-risk contamination incidences, and (2) gas chromatography/mass spectrometry utilizing mass selective detection (or ion-trap) technologies for detailed monitoring of extended crew exposure to low level (ppbv) contamination. The development of a gas chromatography/mass spectrometry/matrix isolation-Fourier transform infrared system was recommended as part of the long range program of upgrading Space Station trace-contaminant monitoring needs.

  18. Optimization of station battery replacement

    NASA Astrophysics Data System (ADS)

    Jancauskas, J. R.; Shook, D. A.

    1994-08-01

    During a loss of ac power at a nuclear generating station (including diesel generators), batteries provide the source of power which is required to operate safety-related components. Because traditional lead-acid batteries have a qualified life of 20 years, the batteries must be replaced a minimum of once during a station's lifetime, twice if license extension is pursued, and more often depending on actual in-service dates and the results of surveillance tests. Replacement of batteries often occurs prior to 20 years as a result of systems changes caused by factors such as Station Blackout Regulations, control system upgrades, incremental load growth, and changes in the operating times of existing equipment. Many of these replacement decisions are based on the predictive capabilities of manual design basis calculations. The inherent conservatism of manual calculations may result in battery replacements occurring before actually required. Computerized analysis of batteries can aid in optimizing the timing of replacements as well as in interpreting service test data. Computerized analysis also provides large benefits in maintaining the as-configured load profile and corresponding design margins, while also providing the capability to quickly analyze proposed modifications and respond to internal and external audits.

  19. 47 CFR 74.1265 - Posting of station license.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Posting of station license. 74.1265 Section 74... Translator Stations and FM Broadcast Booster Stations § 74.1265 Posting of station license. (a) The station... station or the manner of operation shall be kept in the station record file maintained by the licensee...

  20. 47 CFR 74.1265 - Posting of station license.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Posting of station license. 74.1265 Section 74... Translator Stations and FM Broadcast Booster Stations § 74.1265 Posting of station license. (a) The station... station or the manner of operation shall be kept in the station record file maintained by the licensee...

  1. 47 CFR 74.1265 - Posting of station license.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Posting of station license. 74.1265 Section 74... Translator Stations and FM Broadcast Booster Stations § 74.1265 Posting of station license. (a) The station... station or the manner of operation shall be kept in the station record file maintained by the licensee...

  2. 47 CFR 74.1265 - Posting of station license.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Posting of station license. 74.1265 Section 74... Translator Stations and FM Broadcast Booster Stations § 74.1265 Posting of station license. (a) The station... station or the manner of operation shall be kept in the station record file maintained by the licensee...

  3. Space station propulsion-ECLSS interaction study

    NASA Technical Reports Server (NTRS)

    Brennan, Scott M.

    1986-01-01

    The benefits of the utilization of effluents of the Space Station Environmental Control and Life Support (ECLS) system are examined. Various ECLSS-propulsion system interaction options are evaluated and compared on the basis of weight, volume, and power requirements. Annual propulsive impulse to maintain station altitude during a complete solar cycle of eleven years and the effect on station resupply are considered.

  4. 33 CFR 401.62 - Seaway stations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Seaway stations. 401.62 Section 401.62 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Radio Communications § 401.62 Seaway stations. The Seaway stations are located as...

  5. 47 CFR 80.519 - Station identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Stations must identify transmissions by announcing in the English language the station's assigned call sign. In lieu of the identification of the station by voice, the official call sign may be transmitted by... drawbridges may be identified by use of the name of the bridge in lieu of the call sign. Identification...

  6. 47 CFR 22.313 - Station identification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Station identification. 22.313 Section 22.313... Operational and Technical Requirements Operational Requirements § 22.313 Station identification. The licensee... identified in accordance with the requirements of this section. (a) Station identification is not...

  7. 47 CFR 95.835 - Station identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SERVICES 218-219 MHz Service System Requirements § 95.835 Station identification. No RTU or CTS is required to transmit a station identification announcement. ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Station identification. 95.835 Section...

  8. 47 CFR 95.835 - Station identification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SERVICES 218-219 MHz Service System Requirements § 95.835 Station identification. No RTU or CTS is required to transmit a station identification announcement. ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Station identification. 95.835 Section...

  9. 47 CFR 90.735 - Station identification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Station identification. 90.735 Section 90.735....735 Station identification. (a) Except for nationwide systems authorized in the 220-222 MHz band, station identification is required pursuant to § 90.425 of this part. (b) Trunked systems shall employ...

  10. 47 CFR 95.835 - Station identification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SERVICES 218-219 MHz Service System Requirements § 95.835 Station identification. No RTU or CTS is required to transmit a station identification announcement. ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Station identification. 95.835 Section...

  11. 47 CFR 22.313 - Station identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Station identification. 22.313 Section 22.313... Operational and Technical Requirements Operational Requirements § 22.313 Station identification. The licensee... identified in accordance with the requirements of this section. (a) Station identification is not...

  12. 47 CFR 90.735 - Station identification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Station identification. 90.735 Section 90.735....735 Station identification. (a) Except for nationwide systems authorized in the 220-222 MHz band, station identification is required pursuant to § 90.425 of this part. (b) Trunked systems shall employ...

  13. 47 CFR 95.835 - Station identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SERVICES 218-219 MHz Service System Requirements § 95.835 Station identification. No RTU or CTS is required to transmit a station identification announcement. ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station identification. 95.835 Section...

  14. 47 CFR 90.735 - Station identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station identification. 90.735 Section 90.735....735 Station identification. (a) Except for nationwide systems authorized in the 220-222 MHz band, station identification is required pursuant to § 90.425 of this part. (b) Trunked systems shall employ...

  15. 47 CFR 22.313 - Station identification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Station identification. 22.313 Section 22.313... Operational and Technical Requirements Operational Requirements § 22.313 Station identification. The licensee... identified in accordance with the requirements of this section. (a) Station identification is not...

  16. 47 CFR 90.735 - Station identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Station identification. 90.735 Section 90.735....735 Station identification. (a) Except for nationwide systems authorized in the 220-222 MHz band, station identification is required pursuant to § 90.425 of this part. (b) Trunked systems shall employ...

  17. 47 CFR 90.647 - Station identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Station identification. 90.647 Section 90.647..., 851-869 Mhz, 896-901 Mhz, and 935-940 Mhz Bands § 90.647 Station identification. (a) Conventional... at 30 minute intervals. Such station identification shall be made on the lowest frequency in the...

  18. 47 CFR 22.313 - Station identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Station identification. 22.313 Section 22.313... Operational and Technical Requirements Operational Requirements § 22.313 Station identification. The licensee... identified in accordance with the requirements of this section. (a) Station identification is not...

  19. 47 CFR 90.647 - Station identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station identification. 90.647 Section 90.647..., 851-869 Mhz, 896-901 Mhz, and 935-940 Mhz Bands § 90.647 Station identification. (a) Conventional... at 30 minute intervals. Such station identification shall be made on the lowest frequency in the...

  20. 47 CFR 97.201 - Auxiliary station.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Special Operations § 97.201 Auxiliary station. (a) Any amateur station licensed to a holder of a Technician, General, Advanced or Amateur Extra Class operator license may be an auxiliary station. A...

  1. 47 CFR 97.201 - Auxiliary station.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Special Operations § 97.201 Auxiliary station. (a) Any amateur station licensed to a holder of a Technician, General, Advanced or Amateur Extra Class operator license may be an auxiliary station. A...

  2. 47 CFR 97.201 - Auxiliary station.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Special Operations § 97.201 Auxiliary station. (a) Any amateur station licensed to a holder of a Technician, General, Advanced or Amateur Extra Class operator license may be an auxiliary station. A...

  3. 47 CFR 97.201 - Auxiliary station.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Special Operations § 97.201 Auxiliary station. (a) Any amateur station licensed to a holder of a Technician, General, Advanced or Amateur Extra Class operator license may be an auxiliary station. A...

  4. 30 CFR 57.12085 - Transformer stations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Transformer stations. 57.12085 Section 57.12085 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Underground Only § 57.12085 Transformer stations. Transformer stations shall be enclosed to prevent...

  5. 47 CFR 1.911 - Station files.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Station files. 1.911 Section 1.911... Applications and Proceedings Application Requirements and Procedures § 1.911 Station files. Applications... maintained by the Commission in ULS. These files constitute the official records for these stations...

  6. 47 CFR 1.1704 - Station files.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Station files. 1.1704 Section 1.1704... System (COALS) § 1.1704 Station files. Applications, notifications, correspondence, electronic filings.... These files constitute the official records for these stations and supersede any other records,...

  7. 47 CFR 74.1283 - Station identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Station identification. 74.1283 Section 74.1283 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO, AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES FM Broadcast Translator Stations and FM Broadcast Booster Stations...

  8. 47 CFR 90.425 - Station identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station identification. 90.425 Section 90.425 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Operating Requirements § 90.425 Station identification. Stations licensed under this part shall...

  9. Space station internal environmental and safety concerns

    NASA Technical Reports Server (NTRS)

    Cole, Matthew B.

    1987-01-01

    Space station environmental and safety concerns, especially those involving fires, are discussed. Several types of space station modules and the particular hazards associated with each are briefly surveyed. A brief history of fire detection and suppression aboard spacecraft is given. Microgravity fire behavior, spacecraft fire detector systems, space station fire suppression equipment and procedures, and fire safety in hyperbaric chambers are discussed.

  10. Standardized Curriculum for Service Station Retailing.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    This curriculum guide for service station retailing was developed by the state of Mississippi to standardize vocational education course titles and core contents. The objectives contained in this document are common to all service station retailing programs in the state. The guide contains objectives for service station retailing I and II courses.…

  11. 47 CFR 73.1201 - Station identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Station identification. 73.1201 Section 73.1201 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.1201 Station identification. (a) When regularly required. Broadcast...

  12. 47 CFR 73.1201 - Station identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Station identification. 73.1201 Section 73.1201 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.1201 Station identification. (a) When regularly required. Broadcast...

  13. 47 CFR 25.206 - Station identification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Station identification. 25.206 Section 25.206 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.206 Station identification. The requirement to transmit station identification...

  14. 47 CFR 80.1003 - Station required.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Station required. 80.1003 Section 80.1003 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Radiotelephone Installations Required by the Bridge-to-Bridge Act § 80.1003 Station required. Vessels subject to the...

  15. 47 CFR 80.1003 - Station required.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Station required. 80.1003 Section 80.1003 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Radiotelephone Installations Required by the Bridge-to-Bridge Act § 80.1003 Station required. Vessels subject to the...

  16. 47 CFR 80.1003 - Station required.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Station required. 80.1003 Section 80.1003 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Radiotelephone Installations Required by the Bridge-to-Bridge Act § 80.1003 Station required. Vessels subject to the...

  17. 47 CFR 80.1003 - Station required.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station required. 80.1003 Section 80.1003 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Radiotelephone Installations Required by the Bridge-to-Bridge Act § 80.1003 Station required. Vessels subject to the...

  18. 47 CFR 78.69 - Station records.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Station records. 78.69 Section 78.69 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES CABLE TELEVISION RELAY SERVICE General Operating Requirements § 78.69 Station records. Each licensee of a CARS station...

  19. 47 CFR 78.57 - Station inspection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Station inspection. 78.57 Section 78.57 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES CABLE TELEVISION RELAY SERVICE General Operating Requirements § 78.57 Station inspection. The station and all records required...

  20. 47 CFR 78.57 - Station inspection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Station inspection. 78.57 Section 78.57 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES CABLE TELEVISION RELAY SERVICE General Operating Requirements § 78.57 Station inspection. The station and all records required...

  1. 47 CFR 78.57 - Station inspection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Station inspection. 78.57 Section 78.57 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES CABLE TELEVISION RELAY SERVICE General Operating Requirements § 78.57 Station inspection. The station and all records required...

  2. 47 CFR 78.57 - Station inspection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Station inspection. 78.57 Section 78.57 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES CABLE TELEVISION RELAY SERVICE General Operating Requirements § 78.57 Station inspection. The station and all records required...

  3. 47 CFR 78.57 - Station inspection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Station inspection. 78.57 Section 78.57 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES CABLE TELEVISION RELAY SERVICE General Operating Requirements § 78.57 Station inspection. The station and all records required...

  4. 47 CFR 101.213 - Station identification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Station identification. 101.213 Section 101.213 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.213 Station identification. Stations in these services are...

  5. 47 CFR 101.201 - Station inspection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Station inspection. 101.201 Section 101.201 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.201 Station inspection. The licensee of each station authorized...

  6. 47 CFR 101.213 - Station identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station identification. 101.213 Section 101.213 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.213 Station identification. Stations in these services are...

  7. 47 CFR 101.217 - Station records.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station records. 101.217 Section 101.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.217 Station records. Each licensee of a station subject to...

  8. 47 CFR 101.201 - Station inspection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station inspection. 101.201 Section 101.201 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.201 Station inspection. The licensee of each station authorized...

  9. 47 CFR 101.217 - Station records.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Station records. 101.217 Section 101.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.217 Station records. Each licensee of a station subject to...

  10. 49 CFR 195.128 - Station piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Station piping. 195.128 Section 195.128 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Design Requirements § 195.128 Station piping. Any pipe to be installed in a station that...

  11. 49 CFR 195.128 - Station piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Station piping. 195.128 Section 195.128 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Design Requirements § 195.128 Station piping. Any pipe to be installed in a station that...

  12. 47 CFR 73.1201 - Station identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the transmitting station and the licensee providing the programming, and/or the name of the network of... on the station's license, and/or the station's network affiliation may be inserted between the call... one of its multicast streams to transmit the programming of another television licensee must...

  13. A historical perspective on space station

    NASA Technical Reports Server (NTRS)

    Hook, W. Ray

    1991-01-01

    The historical development of space stations is presented through a series of various spacecraft configurations including: (1) Salut 6; (2) Skylab; (3) the Space Operations Center (SOC); (4) the Manned Science and Applications Space Platform; (5) Space Station Freedom; and (4) the Mir Space Station.

  14. 47 CFR 32.2311 - Station apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Station apparatus. 32.2311 Section 32.2311... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2311 Station apparatus. (a) This account shall include the original cost of station apparatus, including...

  15. 47 CFR 80.935 - Station clock.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station clock. 80.935 Section 80.935... MARITIME SERVICES Compulsory Radiotelephone Installations for Small Passenger Boats § 80.935 Station clock. Each station subject to this subpart must have a working clock or timepiece readily available to...

  16. 47 CFR 97.203 - Beacon station.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Beacon station. 97.203 Section 97.203... SERVICE Special Operations § 97.203 Beacon station. (a) Any amateur station licensed to a holder of a Technician, Technician Plus, General, Advanced or Amateur Extra Class operator license may be a beacon....

  17. 47 CFR 97.203 - Beacon station.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Beacon station. 97.203 Section 97.203... SERVICE Special Operations § 97.203 Beacon station. (a) Any amateur station licensed to a holder of a Technician, General, Advanced or Amateur Extra Class operator license may be a beacon. A holder of...

  18. 47 CFR 97.203 - Beacon station.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Beacon station. 97.203 Section 97.203... SERVICE Special Operations § 97.203 Beacon station. (a) Any amateur station licensed to a holder of a Technician, General, Advanced or Amateur Extra Class operator license may be a beacon. A holder of...

  19. 47 CFR 97.203 - Beacon station.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Beacon station. 97.203 Section 97.203... SERVICE Special Operations § 97.203 Beacon station. (a) Any amateur station licensed to a holder of a Technician, General, Advanced or Amateur Extra Class operator license may be a beacon. A holder of...

  20. 47 CFR 97.203 - Beacon station.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Beacon station. 97.203 Section 97.203... SERVICE Special Operations § 97.203 Beacon station. (a) Any amateur station licensed to a holder of a Technician, General, Advanced or Amateur Extra Class operator license may be a beacon. A holder of...

  1. 47 CFR 101.201 - Station inspection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Station inspection. 101.201 Section 101.201 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.201 Station inspection. The licensee of each station authorized...

  2. 47 CFR 101.217 - Station records.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Station records. 101.217 Section 101.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.217 Station records. Each licensee of a station subject to...

  3. 47 CFR 101.201 - Station inspection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Station inspection. 101.201 Section 101.201 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.201 Station inspection. The licensee of each station authorized...

  4. 47 CFR 101.213 - Station identification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Station identification. 101.213 Section 101.213 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.213 Station identification. Stations in these services are...

  5. 47 CFR 101.217 - Station records.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Station records. 101.217 Section 101.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.217 Station records. Each licensee of a station subject to...

  6. 47 CFR 101.217 - Station records.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Station records. 101.217 Section 101.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.217 Station records. Each licensee of a station subject to...

  7. 47 CFR 101.201 - Station inspection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Station inspection. 101.201 Section 101.201 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.201 Station inspection. The licensee of each station authorized...

  8. 47 CFR 101.213 - Station identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Station identification. 101.213 Section 101.213 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.213 Station identification. Stations in these services are...

  9. 47 CFR 101.213 - Station identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Station identification. 101.213 Section 101.213 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.213 Station identification. Stations in these services are...

  10. 1. EXTERIOR OF CENTRAL HEATING STATION, BUILDING 102, LOOKING NORTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OF CENTRAL HEATING STATION, BUILDING 102, LOOKING NORTH. - Mill Valley Air Force Station, Central Heating Station, East Ridgecrest Boulevard, Mount Tamalpais, Mill Valley, Marin County, CA

  11. 47 CFR 90.476 - Interconnection of fixed stations and certain mobile stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... mobile stations. 90.476 Section 90.476 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Transmitter Control Interconnected Systems § 90.476 Interconnection of fixed stations and certain mobile stations. (a) Fixed stations...

  12. Space station group activities habitability module study

    NASA Technical Reports Server (NTRS)

    Nixon, David

    1986-01-01

    This study explores and analyzes architectural design approaches for the interior of the Space Station Habitability Module (originally defined as Habitability Module 1 in Space Station Reference Configuration Decription, JSC-19989, August 1984). In the Research Phase, architectural program and habitability design guidelines are specified. In the Schematic Design Phase, a range of alternative concepts is described and illustrated with drawings, scale-model photographs and design analysis evaluations. Recommendations are presented on the internal architectural, configuration of the Space Station Habitability Module for such functions as the wardroom, galley, exercise facility, library and station control work station. The models show full design configurations for on-orbit performance.

  13. A customer-friendly Space Station

    NASA Technical Reports Server (NTRS)

    Pivirotto, D. S.

    1984-01-01

    This paper discusses the relationship of customers to the Space Station Program currently being defined by NASA. Emphasis is on definition of the Program such that the Space Station will be conducive to use by customers, that is by people who utilize the services provided by the Space Station and its associated platforms and vehicles. Potential types of customers are identified. Scenarios are developed for ways in which different types of customers can utilize the Space Station. Both management and technical issues involved in making the Station 'customer friendly' are discussed.

  14. Astrophysical payload accommodation on the space station

    NASA Technical Reports Server (NTRS)

    Woods, B. P.

    1985-01-01

    Surveys of potential space station astrophysics payload requirements and existing point mount design concepts were performed to identify potential design approaches for accommodating astrophysics instruments from space station. Most existing instrument pointing systems were designed for operation from the space shuttle and it is unlikely that they will sustain their performance requirements when exposed to the space station disturbance environment. The technology exists or is becoming available so that precision pointing can be provided from the space station manned core. Development of a disturbance insensitive pointing mount is the key to providing a generic system for space station. It is recommended that the MSFC Suspended Experiment Mount concept be investigated for use as part of a generic pointing mount for space station. Availability of a shirtsleeve module for instrument change out, maintenance and repair is desirable from the user's point of view. Addition of a shirtsleeve module on space station would require a major program commitment.

  15. Timber Mountain Precipitation Monitoring Station

    SciTech Connect

    Lyles, Brad; McCurdy, Greg; Chapman, Jenny; Miller, Julianne

    2012-01-01

    A precipitation monitoring station was placed on the west flank of Timber Mountain during the year 2010. It is located in an isolated highland area near the western border of the Nevada National Security Site (NNSS), south of Pahute Mesa. The cost of the equipment, permitting, and installation was provided by the Environmental Monitoring Systems Initiative (EMSI) project. Data collection, analysis, and maintenance of the station during fiscal year 2011 was funded by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office Environmental Restoration, Soils Activity. The station is located near the western headwaters of Forty Mile Wash on the Nevada Test and Training Range (NTTR). Overland flows from precipitation events that occur in the Timber Mountain high elevation area cross several of the contaminated Soils project CAU (Corrective Action Unit) sites located in the Forty Mile Wash watershed. Rain-on-snow events in the early winter and spring around Timber Mountain have contributed to several significant flow events in Forty Mile Wash. The data from the new precipitation gauge at Timber Mountain will provide important information for determining runoff response to precipitation events in this area of the NNSS. Timber Mountain is also a groundwater recharge area, and estimation of recharge from precipitation was important for the EMSI project in determining groundwater flowpaths and designing effective groundwater monitoring for Yucca Mountain. Recharge estimation additionally provides benefit to the Underground Test Area Sub-project analysis of groundwater flow direction and velocity from nuclear test areas on Pahute Mesa. Additionally, this site provides data that has been used during wild fire events and provided a singular monitoring location of the extreme precipitation events during December 2010 (see data section for more details). This letter report provides a summary of the site location, equipment, and data collected in

  16. Space Station Laboratory Module Exhibit

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Engineers from NASA's Glenn Research Center demonstrate the access to one of the experiment racks planned for the U.S. Destiny laboratory module on the International Space Station (ISS). This mockup has the full diameter, full corridor width, and half the length of the module. The mockup includes engineering mockups of the Fluids and Combustion Facility being developed by NASA's Glenn Research Center. (The full module will be six racks long; the mockup is three racks long). Listening at center is former astronaut Brewster Shaw (center), now a program official with the Boeing Co., the ISS prime contractor. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  17. Automatic assembly of space stations

    NASA Technical Reports Server (NTRS)

    Wang, P. K. C.

    1985-01-01

    A problem in the automatic assembly of space stations is the determination of guidance laws for the terminal rendezvous and docking of two structural components or modules. The problem involves the feedback control of both the relative attitude and translational motion of the modules. A suitable mathematical model based on rigid body dynamics was used. The basic requirements, physical constraints and difficulties associated with the control problem are discussed. An approach which bypasses some of the difficulties is proposed. A nonlinear guidance law satisfying the basic requirements is derived. The implementation requirements is discussed. The performance of the resulting feedback control system with rigid and flexible structural components is studied by computer simulation.

  18. Neutron proton crystallography station (PCS)

    SciTech Connect

    Fisher, Zoe; Kovalevsky, Andrey; Johnson, Hannah; Mustyakimov, Marat

    2009-01-01

    The PCS (Protein Crystallography Station) at Los Alamos Neutron Science Center (LANSCE) is a unique facility in the USA that is designed and optimized for detecting and collecting neutron diffraction data from macromolecular crystals. PCS utilizes the 20 Hz spallation neutron source at LANSCE to enable time-of-flight measurements using 0.6-7.0 {angstrom} neutrons. This increases the neutron flux on the sample by using a wavelength range that is optimal for studying macromolecular crystal structures. The diagram below show a schematic of PCS and photos of the detector and instrument cave.

  19. The Automated Planetary Space Station

    NASA Technical Reports Server (NTRS)

    Ivie, C. V.; Friedman, L. D.

    1977-01-01

    Results are presented for a study on mission definition and design to determine broad technology directions and needs for advanced planetary spacecraft and future planetary missions. The discussion covers mission selection, system design, and technology assessment and review for a multicomponent spacecraft exploration facility provided with nuclear power propulsion. As an example, the Automated Planetary Space Station at Jupiter is examined as a generic concept which has the capability of conducting in-depth investigations of different aspects of the entire Jovian system. Mission planning is discussed relative to low-thrust trajectory control, automatic target identification and landing, roving vehicle operation, and automated sample analysis.

  20. Dubuque generation station, Dubuque, Iowa

    SciTech Connect

    Peltier, R.

    2008-10-15

    Alliant Energy's Dubuque generation station is a fine example of why small does not mean insignificant in the power generation industry. This winner of the EUCG best performer award in the small plant category shows that its operating excellence towers over that of many larger and much newer coal-fired power plants. The plant has three operating units with boilers originally designed for Illinois basin coal but now Powder River Basin coal makes up 75% of the coal consumed. The boilers can also burn natural gas. 4 photos.

  1. MRDIS Standalone Central Alarm Station

    SciTech Connect

    2012-09-12

    The MRDIS Standalone Central Alarm Station(MRDIS-CAS} is a software system for receiving, storing, and reviewing radiation data collected by the Mobile Radiation Detection and Identification System (MRDIS}, a mobile radiation scanning system developed for use in foreign ports for the DOE Megaports Initiative. It is designed to run on one of the on board computers in the MRDIS cab. It will collect, store, and display data from the MRDIS without the need for wireless communications or centralized server technology. It is intended to be a lightweight replacement for a distributed Megaports communication system in ports where the necessary communications infrastructure does not exist for a full Megaports communications system.

  2. 47 CFR 25.209 - Earth station antenna performance standards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... pattern defined in paragraphs (a)(3) and (4) of this section. (2) 17/24 GHz BSS telemetry earth stations... design of any terrestrial station, any other earth station, or any space station beyond those...

  3. Technologies for space station autonomy

    NASA Technical Reports Server (NTRS)

    Staehle, R. L.

    1984-01-01

    This report presents an informal survey of experts in the field of spacecraft automation, with recommendations for which technologies should be given the greatest development attention for implementation on the initial 1990's NASA Space Station. The recommendations implemented an autonomy philosophy that was developed by the Concept Development Group's Autonomy Working Group during 1983. They were based on assessments of the technologies' likely maturity by 1987, and of their impact on recurring costs, non-recurring costs, and productivity. The three technology areas recommended for programmatic emphasis were: (1) artificial intelligence expert (knowledge based) systems and processors; (2) fault tolerant computing; and (3) high order (procedure oriented) computer languages. This report also describes other elements required for Station autonomy, including technologies for later implementation, system evolvability, and management attitudes and goals. The cost impact of various technologies is treated qualitatively, and some cases in which both the recurring and nonrecurring costs might be reduced while the crew productivity is increased, are also considered. Strong programmatic emphasis on life cycle cost and productivity is recommended.

  4. Interferometer for Space Station Windows

    NASA Technical Reports Server (NTRS)

    Hall, Gregory

    2003-01-01

    Inspection of space station windows for micrometeorite damage would be a difficult task insitu using current inspection techniques. Commercially available optical profilometers and inspection systems are relatively large, about the size of a desktop computer tower, and require a stable platform to inspect the test object. Also, many devices currently available are designed for a laboratory or controlled environments requiring external computer control. This paper presents an approach using a highly developed optical interferometer to inspect the windows from inside the space station itself using a self- contained hand held device. The interferometer would be capable as a minimum of detecting damage as small as one ten thousands of an inch in diameter and depth while interrogating a relatively large area. The current developmental state of this device is still in the proof of concept stage. The background section of this paper will discuss the current state of the art of profilometers as well as the desired configuration of the self-contained, hand held device. Then, a discussion of the developments and findings that will allow the configuration change with suggested approaches appearing in the proof of concept section.

  5. Space Station Biological Research Project

    NASA Technical Reports Server (NTRS)

    Johnson, C. C.; Wade, C. E.; Givens, J. J.

    1997-01-01

    To meet NASA's objective of using the unique aspects of the space environment to expand fundamental knowledge in the biological sciences, the Space Station Biological Research Project at Ames Research Center is developing, or providing oversight, for two major suites of hardware which will be installed on the International Space Station (ISS). The first, the Gravitational Biology Facility, consists of Habitats to support plants, rodents, cells, aquatic specimens, avian and reptilian eggs, and insects and the Habitat Holding Rack in which to house them at microgravity; the second, the Centrifuge Facility, consists of a 2.5 m diameter centrifuge that will provide acceleration levels between 0.01 g and 2.0 g and a Life Sciences Glovebox. These two facilities will support the conduct of experiments to: 1) investigate the effect of microgravity on living systems; 2) what level of gravity is required to maintain normal form and function, and 3) study the use of artificial gravity as a countermeasure to the deleterious effects of microgravity observed in the crew. Upon completion, the ISS will have three complementary laboratory modules provided by NASA, the European Space Agency and the Japanese space agency, NASDA. Use of all facilities in each of the modules will be available to investigators from participating space agencies. With the advent of the ISS, space-based gravitational biology research will transition from 10-16 day short-duration Space Shuttle flights to 90-day-or-longer ISS increments.

  6. Space station operating system study

    NASA Technical Reports Server (NTRS)

    Horn, Albert E.; Harwell, Morris C.

    1988-01-01

    The current phase of the Space Station Operating System study is based on the analysis, evaluation, and comparison of the operating systems implemented on the computer systems and workstations in the software development laboratory. Primary emphasis has been placed on the DEC MicroVMS operating system as implemented on the MicroVax II computer, with comparative analysis of the SUN UNIX system on the SUN 3/260 workstation computer, and to a limited extent, the IBM PC/AT microcomputer running PC-DOS. Some benchmark development and testing was also done for the Motorola MC68010 (VM03 system) before the system was taken from the laboratory. These systems were studied with the objective of determining their capability to support Space Station software development requirements, specifically for multi-tasking and real-time applications. The methodology utilized consisted of development, execution, and analysis of benchmark programs and test software, and the experimentation and analysis of specific features of the system or compilers in the study.

  7. Test stations: a modular approach

    NASA Astrophysics Data System (ADS)

    Capone, Benjamin R.; Remillard, Paul; Everett, Jonathan E.

    1996-06-01

    Recent requests for test stations to characterize and evaluate thermal and visible imaging systems have shown remarkable similarities. They contain the usual request for target patterns for the measurement of MRTD, NETD, SiTF for the infrared thermal imager and similar patterns for measuring CTF and SNR for the visible imager. The combined systems almost invariably include some type of laser designator/rangefinder in the total package requiring the need for LOS registration among the various individual units. Similarities also exist in that the requests are for large collimator apertures and focal lengths for projecting the desired signals into the unit under test apertures. Diversified Optical Products, Inc. has developed and is continually improving test station hardware and software to provide modularity in design and versatility in operation while satisfying individual test requirements and maintaining low cost. A high emissivity, DSP controlled, high slew rate, low cost, blackbody source with excellent uniformity and stability has been produced to function as the driver for thermal image target projectors. Several types of sources for producing energy in the visible portion of the spectrum have been evaluated. Software for selection of targets, sources, focus and auto- collimation has been developed and tested.

  8. Space Station Facility government estimating

    NASA Technical Reports Server (NTRS)

    Brown, Joseph A.

    1993-01-01

    This new, unique Cost Engineering Report introduces the 800-page, C-100 government estimate for the Space Station Processing Facility (SSPF) and Volume IV Aerospace Construction Price Book. At the January 23, 1991, bid opening for the SSPF, the government cost estimate was right on target. Metric, Inc., Prime Contractor, low bid was 1.2 percent below the government estimate. This project contains many different and complex systems. Volume IV is a summary of the cost associated with construction, activation and Ground Support Equipment (GSE) design, estimating, fabrication, installation, testing, termination, and verification of this project. Included are 13 reasons the government estimate was so accurate; abstract of bids, for 8 bidders and government estimate with additive alternates, special labor and materials, budget comparison and system summaries; and comments on the energy credit from local electrical utility. This report adds another project to our continuing study of 'How Does the Low Bidder Get Low and Make Money?' which was started in 1967, and first published in the 1973 AACE Transaction with 18 ways the low bidders get low. The accuracy of this estimate proves the benefits of our Kennedy Space Center (KSC) teamwork efforts and KSC Cost Engineer Tools which are contributing toward our goals of the Space Station.

  9. 47 CFR 80.109 - Transmission to a plurality of mobile stations by a public coast station.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Transmission to a plurality of mobile stations... Procedures Operating Procedures-Land Stations § 80.109 Transmission to a plurality of mobile stations by a... mobile stations....

  10. 47 CFR 80.109 - Transmission to a plurality of mobile stations by a public coast station.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Transmission to a plurality of mobile stations... Procedures Operating Procedures-Land Stations § 80.109 Transmission to a plurality of mobile stations by a... mobile stations....

  11. 47 CFR 80.105 - General obligations of coast stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false General obligations of coast stations. 80.105... Stations § 80.105 General obligations of coast stations. Each coast station or marine-utility station must...) public coast stations may provide fixed or hybrid services on a co-primary basis with mobile operations....

  12. 47 CFR 80.105 - General obligations of coast stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false General obligations of coast stations. 80.105... Stations § 80.105 General obligations of coast stations. Each coast station or marine-utility station must...) public coast stations may provide fixed or hybrid services on a co-primary basis with mobile operations....

  13. 47 CFR 80.105 - General obligations of coast stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false General obligations of coast stations. 80.105... Stations § 80.105 General obligations of coast stations. Each coast station or marine-utility station must...) public coast stations may provide fixed or hybrid services on a co-primary basis with mobile operations....

  14. 47 CFR 80.105 - General obligations of coast stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false General obligations of coast stations. 80.105... Stations § 80.105 General obligations of coast stations. Each coast station or marine-utility station must...) public coast stations may provide fixed or hybrid services on a co-primary basis with mobile operations....

  15. 47 CFR 80.105 - General obligations of coast stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false General obligations of coast stations. 80.105... Stations § 80.105 General obligations of coast stations. Each coast station or marine-utility station must...) public coast stations may provide fixed or hybrid services on a co-primary basis with mobile operations....

  16. 47 CFR 80.123 - Service to stations on land.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Service to stations on land. 80.123 Section 80... Stations § 80.123 Service to stations on land. Marine VHF public coast stations, including AMTS coast stations, may provide service to stations on land in accordance with the following: (a) The public...

  17. 47 CFR 80.401 - Station documents requirement.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Station documents requirement. 80.401 Section... SERVICES STATIONS IN THE MARITIME SERVICES Station Documents § 80.401 Station documents requirement. Licensees of radio stations are required to have current station documents as indicated in the...

  18. 47 CFR 80.401 - Station documents requirement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Station documents requirement. 80.401 Section... SERVICES STATIONS IN THE MARITIME SERVICES Station Documents § 80.401 Station documents requirement. Licensees of radio stations are required to have current station documents as indicated in the...

  19. 47 CFR 80.401 - Station documents requirement.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Station documents requirement. 80.401 Section... SERVICES STATIONS IN THE MARITIME SERVICES Station Documents § 80.401 Station documents requirement. Licensees of radio stations are required to have current station documents as indicated in the...

  20. 47 CFR 80.401 - Station documents requirement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station documents requirement. 80.401 Section... SERVICES STATIONS IN THE MARITIME SERVICES Station Documents § 80.401 Station documents requirement. Licensees of radio stations are required to have current station documents as indicated in the...

  1. 47 CFR 80.401 - Station documents requirement.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Station documents requirement. 80.401 Section... SERVICES STATIONS IN THE MARITIME SERVICES Station Documents § 80.401 Station documents requirement. Licensees of radio stations are required to have current station documents as indicated in the...

  2. International Space Station: Expedition 2000

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Live footage of the International Space Station (ISS) presents an inside look at the groundwork and assembly of the ISS. Footage includes both animation and live shots of a Space Shuttle liftoff. Phil West, Engineer; Dr. Catherine Clark, Chief Scientist ISS; and Joe Edwards, Astronaut, narrate the video. The first topic of discussion is People and Communications. Good communication is a key component in our ISS endeavor. Dr. Catherine Clark uses two soup cans attached by a string to demonstrate communication. Bill Nye the Science Guy talks briefly about science aboard the ISS. Charlie Spencer, Manager of Space Station Simulators, talks about communication aboard the ISS. The second topic of discussion is Engineering. Bonnie Dunbar, Astronaut at Johnson Space Flight Center, gives a tour of the Japanese Experiment Module (JEM). She takes us inside Node 2 and the U.S. Lab Destiny. She also shows where protein crystal growth experiments are performed. Audio terminal units are used for communication in the JEM. A demonstration of solar arrays and how they are tested is shown. Alan Bell, Project Manager MRMDF (Mobile Remote Manipulator Development Facility), describes the robot arm that is used on the ISS and how it maneuvers the Space Station. The third topic of discussion is Science and Technology. Dr. Catherine Clark, using a balloon attached to a weight, drops the apparatus to the ground to demonstrate Microgravity. The bursting of the balloon is observed. Sherri Dunnette, Imaging Technologist, describes the various cameras that are used in space. The types of still cameras used are: 1) 35 mm, 2) medium format cameras, 3) large format cameras, 4) video cameras, and 5) the DV camera. Kumar Krishen, Chief Technologist ISS, explains inframetrics, infrared vision cameras and how they perform. The Short Arm Centrifuge is shown by Dr. Millard Reske, Senior Life Scientist, to subject astronauts to forces greater than 1-g. Reske is interested in the physiological effects of

  3. Space Stations using the Skylon Launch System

    NASA Astrophysics Data System (ADS)

    Hempsell, M.

    After the International Space Station is decommissioned in 2020 or soon after, Skylon will be an operating launch system and it is the obvious means to launch any successor in orbit infrastructure. The study looked at establishing 14 stations of 7 different types located from Low Earth Orbit to the Moon's surface with common elements all launched by Skylon. The key reason for the study was to validate Skylon could launch such an infrastructure, but the study's secondary objectives were to contribute to consideration of what should replace the ISS, and explore a ``multiple small station'' architecture. It was found that the total acquisition costs for LEO stations could be below 1 billion (2010) while for stations beyond LEO total acquisition costs were found to be between 3 and £5 billion. No technical constraints on the Skylon launch system were found that would prevent it launching all 14 stations in under 5 years.

  4. Using hydroacoustic stations as water column seismometers

    NASA Astrophysics Data System (ADS)

    Yildiz, Selda; Sabra, Karim; Dorman, Leroy M.; Kuperman, W. A.

    2013-06-01

    Getting seismic data from the deep oceans usually involves ocean-bottom seismometers, but hydrophone arrays may provide a practical alternative means of obtaining vector data. We here explore this possibility using hydrophone stations of the International Monitoring System, which have been used to study icebergs and T-wave propagation among others. These stations consist of three hydrophones at about the depth of the deep sound channel in a horizontal triangle array with 2 km sides. We use data from these stations in the very low-frequency regime (0.01-0.05 Hz band) to demonstrate that these stations can also be used as water column seismometers. By differencing the acoustic pressure, we obtain vector quantities analogous to what a seismometer would record. Comparing processed hydrophone station records of the 2004 Great Sumatra-Andaman Earthquake with broadband seismograms from a nearby island station, we find that the differenced hydrophones are indeed a practical surrogate for seismometers.

  5. Raising the AIQ of the Space Station

    NASA Technical Reports Server (NTRS)

    Lum, Henry; Heer, Ewald

    1987-01-01

    Expert systems and robotics technologies are to be significantly advanced during the Space Station program. Artificial intelligence systems (AI) on the Station will include 'scars', which will permit upgrading the AI capabilities as the Station evolves to autonomy. NASA-Ames is managing the development of the AI systems through a series of demonstrations, the first, controlling a single subsystem, to be performed in 1988. The capabilities being integrated into the first demonstration are described; however, machine learning and goal-driven natural language understanding will not reach a prototype stage until the mid-1990s. Steps which will be taken to endow the computer systems with the ability to move from heuristic reasoning to factual knowledge, i.e., learning from experience, are explored. It is noted that the development of Space Station expert systems depends on the development of experts in Station operations, which will not happen until the Station has been used extensively by crew members.

  6. Raising the AIQ of the Space Station

    SciTech Connect

    Lum, H.; Heer, E.

    1987-01-01

    Expert systems and robotics technologies are to be significantly advanced during the Space Station program. Artificial intelligence systems (AI) on the Station will include scars, which will permit upgrading the AI capabilities as the Station evolves to autonomy. NASA-Ames is managing the development of the AI systems through a series of demonstrations, the first, controlling a single subsystem, to be performed in 1988. The capabilities being integrated into the first demonstration are described; however, machine learning and goal-driven natural language understanding will not reach a prototype stage until the mid-1990s. Steps which will be taken to endow the computer systems with the ability to move from heuristic reasoning to factual knowledge, i.e., learning from experience, are explored. It is noted that the development of Space Station expert systems depends on the development of experts in Station operations, which will not happen until the Station has been used extensively by crew members.

  7. Maintenance evaluation for space station liquid systems

    NASA Technical Reports Server (NTRS)

    Flugel, Charles

    1987-01-01

    Many of the thermal and environmental control life support subsystems as well as other subsystems of the space station utilize various liquids and contain components which are either expendables or are life-limited in some way. Since the space station has a 20-year minimum orbital lifetime requirement, there will also be random failures occurring within the various liquid-containing subsystems. These factors as well as the planned space station build-up sequence require that maintenance concepts be developed prior to the design phase. This applies to the equipment which needs maintenance as well as the equipment which may be required at a maintenance work station within the space station. This paper presents several maintenance concepts for liquid-containing items and a flight experiment program which would allow for evaluation and improvement of these concepts so they can be incorporated in the space station designs at the outset of its design phase.

  8. The International Space Station Habitat

    NASA Technical Reports Server (NTRS)

    Watson, Patricia Mendoza; Engle, Mike

    2003-01-01

    The International Space Station (ISS) is an engineering project unlike any other. The vehicle is inhabited and operational as construction goes on. The habitability resources available to the crew are the crew sleep quarters, the galley, the waste and hygiene compartment, and exercise equipment. These items are mainly in the Russian Service Module and their placement is awkward for the crew to deal with ISS assembly will continue with the truss build and the addition of International Partner Laboratories. Also, Node 2 and 3 will be added. The Node 2 module will provide additional stowage volume and room for more crew sleep quarters. The Node 3 module will provide additional Environmental Control and Life Support Capability. The purpose of the ISS is to perform research and a major area of emphasis is the effects of long duration space flight on humans, a result of this research they will determine what are the habitability requirements for long duration space flight.

  9. Space Station Laboratory Module Exhibit

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Engineers from NASA's Glenn Research Center demonstrate the access to one of the experiment racks planned for the U.S. Destiny laboratory module on the International Space Station (ISS). This mockup has the full diameter, full corridor width, and half the length of the module. The mockup includes engineering mockups of the Fluids and Combustion Facility being developed by NASA's Glenn Research Center. (The full module will be six racks long; the mockup is three racks long). Listening at left (coat and patterned tie) is John-David Bartoe, ISS research manager at NASA's Johnson Space Center and a payload specialist on Spacelab 2 mission (1985). Photo credit: NASA/Marshall Space Flight Center (MSFC)

  10. Space Station Biological Research Project

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine C.; Hargens, Alan R.; Wade, Charles E.

    1995-01-01

    NASA Ames Research Center is responsible for the development of the Space Station Biological Research Project (SSBRP) which will support non-human life sciences research on the International Space Station Alpha (ISSA). The SSBRP is designed to support both basic research to understand the effect of altered gravity fields on biological systems and applied research to investigate the effects of space flight on biological systems. The SSBRP will provide the necessary habitats to support avian and reptile eggs, cells and tissues, plants and rodents. In addition a habitat to support aquatic specimens will be provided by our international partners. Habitats will be mounted in ISSA compatible racks at u-g and will also be mounted on a 2.5 m diameter centrifuge except for the egg incubator which has an internal centrifuge. The 2.5 m centrifuge will provide artificial gravity levels over the range of 0.01 G to 2 G. The current schedule is to launch the first rack in 1999, the Life Sciences glovebox and a second rack early in 2001, a 4 habitat 2.5 in centrifuge later the same year in its own module, and to upgrade the centrifuge to 8 habitats in 2004. The rodent habitats will be derived from the Advanced Animal Habitat currently under development for the Shuttle program and will be capable of housing either rats or mice individually or in groups (6 rats/group and at least 12 mice/group). The egg incubator will be an upgraded Avian Development Facility also developed for the Shuttle program through a Small Business and Innovative Research grant. The Space Tissue Loss cell culture apparatus, developed by Walter Reed Army Institute of Research, is being considered for the cell and tissue culture habitat. The Life Sciences Glovebox is crucial to all life sciences experiments for specimen manipulation and performance of science procedures. It will provide two levels of containment between the work volume and the crew through the use of seals and negative pressure. The glovebox

  11. Space Station tethered waste disposal

    NASA Technical Reports Server (NTRS)

    Rupp, Charles C.

    1988-01-01

    The Shuttle Transportation System (STS) launches more payload to the Space Station than can be returned creating an accumulation of waste. Several methods of deorbiting the waste are compared including an OMV, solid rocket motors, and a tether system. The use of tethers is shown to offer the unique potential of having a net savings in STS launch requirement. Tether technology is being developed which can satisfy the deorbit requirements but additional effort is required in waste processing, packaging, and container design. The first step in developing this capability is already underway in the Small Expendable Deployer System program. A developmental flight test of a tether initiated recovery system is seen as the second step in the evolution of this capability.

  12. The remote security station (RSS)

    SciTech Connect

    Pletta, J.B. )

    1991-01-01

    This paper reports that, as an outgrowth of research into physical security systems, Sandia is investigating robotic technologies for improving physical security performance and flexibility. Robotic systems have the potential to allow more effective utilization of security personnel, especially in scenarios where they might be exposed to harm. They also can supplement fixed site installations where sensors have failed or where transient assets are present. The Remote Security Station (RSS) program for the defense Nuclear Agency is developing a proof-of-principle robotic system which will be used to evaluate the role, and associated cost, of robotic technologies in exterior physical security systems. The RSS consists of three primary elements: a fixed but quickly moveable tripod with intrusion detection sensors and assessment camera; a mobile robotic platform with a functionally identical security module; and a control console which allows an operator to perform security functions and teleoperate the mobile platform.

  13. MRDIS Standalone Central Alarm Station

    Energy Science and Technology Software Center (ESTSC)

    2012-09-12

    The MRDIS Standalone Central Alarm Station(MRDIS-CAS} is a software system for receiving, storing, and reviewing radiation data collected by the Mobile Radiation Detection and Identification System (MRDIS}, a mobile radiation scanning system developed for use in foreign ports for the DOE Megaports Initiative. It is designed to run on one of the on board computers in the MRDIS cab. It will collect, store, and display data from the MRDIS without the need for wireless communicationsmore » or centralized server technology. It is intended to be a lightweight replacement for a distributed Megaports communication system in ports where the necessary communications infrastructure does not exist for a full Megaports communications system.« less

  14. Space station trace contaminant control

    NASA Technical Reports Server (NTRS)

    Olcutt, T.

    1985-01-01

    Different systems for the control of space station trace contaminants are outlined. The issues discussed include: spacecabin contaminant sources, technology base, contaminant control system elements and configuration, approach to contaminant control, contaminant load model definition, spacecraft maximum allowable concentrations, charcoal bed sizing and performance characteristics, catalytic oxidizer sizing and performance characteristics, special sorbent bed sizing, animal and plant research payload problems, and emergency upset contaminant removal. It is concluded that the trace contaminant control technology base is firm, the necessary hardware tools are available, and the previous design philosophy is still applicable. Some concerns are the need as opposed to danger of the catalytic oxidizer, contaminants with very low allowable concentrations, and the impact of relaxing materials requirements.

  15. Bioisolation on the Space Station

    NASA Technical Reports Server (NTRS)

    Bonting, Sjoerd L.; Arno, Roger D.; Kishiyama, Jenny S.; Johnson, Catherine C.

    1988-01-01

    Animal research on the Space Station presents the need for bioisolation, which is here defined as instrumental and operational provisions, which will prevent the exchange of particles greater than 0.3-micron size and microorganisms between crew and animals. Current design principles for the Biological Research Project thus call for: (1) use of specific pathogen-free animals; (2) keeping animals at all times in enclosed habitats, provided with microbial filters and a waste collection system; (3) placing habitats in a holding rack, centrifuge, and workbench, all equipped with particulate and odor filters, (4) washing dirty cage units in an equipment cleaner, with treatment and recycling of the water; (5) designing components and facilities so as to ensure maximal accessibility for cleaning; and (6) defining suitable operational procedures. Limited ground tests of prototype components indicate that proper bioisolation can thus be achieved.

  16. Station Program Note Pull Automation

    NASA Technical Reports Server (NTRS)

    Delgado, Ivan

    2016-01-01

    Upon commencement of my internship, I was in charge of maintaining the CoFR (Certificate of Flight Readiness) Tool. The tool acquires data from existing Excel workbooks on NASA's and Boeing's databases to create a new spreadsheet listing out all the potential safety concerns for upcoming flights and software transitions. Since the application was written in Visual Basic, I had to learn a new programming language and prepare to handle any malfunctions within the program. Shortly afterwards, I was given the assignment to automate the Station Program Note (SPN) Pull process. I developed an application, in Python, that generated a GUI (Graphical User Interface) that will be used by the International Space Station Safety & Mission Assurance team here at Johnson Space Center. The application will allow its users to download online files with the click of a button, import SPN's based on three different pulls, instantly manipulate and filter spreadsheets, and compare the three sources to determine which active SPN's (Station Program Notes) must be reviewed for any upcoming flights, missions, and/or software transitions. Initially, to perform the NASA SPN pull (one of three), I had created the program to allow the user to login to a secure webpage that stores data, input specific parameters, and retrieve the desired SPN's based on their inputs. However, to avoid any conflicts with sustainment, I altered it so that the user may login and download the NASA file independently. After the user has downloaded the file with the click of a button, I defined the program to check for any outdated or pre-existing files, for successful downloads, to acquire the spreadsheet, convert it from a text file to a comma separated file and finally into an Excel spreadsheet to be filtered and later scrutinized for specific SPN numbers. Once this file has been automatically manipulated to provide only the SPN numbers that are desired, they are stored in a global variable, shown on the GUI, and

  17. Preparing EMU for Space Station.

    PubMed

    Wilde, R C

    1995-07-01

    In today's fiscally constrained environment, it can be expected that systems designed for one space program will increasingly be used to support other programs. The example of the U.S. extravehicular mobility unit (EMU), designed for use with the Space Shuttle, and now part of the baseline for the International Space Station (ISS) program, illustrates the adaption process. Certifying the Shuttle's EMU for use aboard ISS requires addressing three fundamental issues: Identifying new ISS requirements to be imposed on the EMU. Extending Shuttle's EMU on-orbit service interval to meet ISS's longer missions. Certifying Shuttle's EMU to meet new environments unique to ISS. Upon completion of the certification process, Shuttle's EMU will meet all requirements for supporting both the Shuttle and ISS program. This paper discusses the processes for addressing these issues and progress to date in achieving resolution. PMID:11541316

  18. Space Station alpha joint bearing

    NASA Technical Reports Server (NTRS)

    Everman, Michael R.; Jones, P. Alan; Spencer, Porter A.

    1987-01-01

    Perhaps the most critical structural system aboard the Space Station is the Solar Alpha Rotary Joint which helps align the power generation system with the sun. The joint must provide structural support and controlled rotation to the outboard transverse booms as well as power and data transfer across the joint. The Solar Alpha Rotary Joint is composed of two transition sections and an integral, large diameter bearing. Alpha joint bearing design presents a particularly interesting problem because of its large size and need for high reliability, stiffness, and on orbit maintability. The discrete roller bearing developed is a novel refinement to cam follower technology. It offers thermal compensation and ease of on-orbit maintenance that are not found in conventional rolling element bearings. How the bearing design evolved is summarized. Driving requirements are reviewed, alternative concepts assessed, and the selected design is described.

  19. Maintainability planning for the Space Station

    NASA Technical Reports Server (NTRS)

    Egan, G. R.

    1986-01-01

    The planned NASA Space Station, which is expected to have many years of on-orbit operation, for the first time confronts spacecraft designers with major questions of maintainability in design. A Maintainability Guidelines Document has been distributed to all Space Station Definition and Preliminary Design personnel of the Space Station Program Office. Trade studies are being performed to determine the most economical balance between initial (reliability) cost and life cycle cost (crew time and replacement hardware) costs.

  20. Space Station end effector strategy study

    NASA Technical Reports Server (NTRS)

    Katzberg, Stephen J.; Jensen, Robert L.; Willshire, Kelli F.; Satterthwaite, Robert E.

    1987-01-01

    The results of a study are presented for terminology definition, identification of functional requirements, technolgy assessment, and proposed end effector development strategies for the Space Station Program. The study is composed of a survey of available or under-developed end effector technology, identification of requirements from baselined Space Station documents, a comparative assessment of the match between technology and requirements, and recommended strategies for end effector development for the Space Station Program.

  1. Space Station Freedom Utilization Conference: Executive summary

    NASA Technical Reports Server (NTRS)

    1992-01-01

    From August 3-6, 1992, Space Station Freedom Program (SSFP) representatives and prospective Space Station Freedom researchers gathered at the Von Braun Civic Center in Huntsville, Alabama, for NASA's first annual Space Station Freedom (SSF) Utilization Conference. The sessions presented are: (1) overview and research capabilities; (2) research plans and opportunities; (3) life sciences research; (4) technology research; (4) microgravity research and biotechnology; and (5) closing plenary.

  2. Space Station Freedom Utilization Conference. Executive summary

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Space Station Freedom Utilization Conference was held on 3-6 Aug. 1992 in Huntsville, Alabama. The purpose of the conference was to bring together prospective space station researchers and the people in NASA and industry with whom they would be working to exchange information and discuss plans and opportunities for space station research. Topics covered include: research capabilities; research plans and opportunities; life sciences research; technology research; and microgravity research and biotechnology.

  3. International Space Station (ISS) Payload Information Source

    NASA Technical Reports Server (NTRS)

    Griswold, Tom

    2002-01-01

    The International Space Station Payload Information Source CD is a joint effort of NASA and United Space Alliance. It is an introduction to the Space Station's capabilities, payload accommodations and the payload integration process. The CD is designed for use in conjunction with the station payloads website. The outline for the website includes fields of research, getting on board, international partners, about the ISS, basic accommodations, specialized facilities, payload integration, payload processing, payload operations, and reference documents.

  4. El Paso automates main line compressor stations

    SciTech Connect

    Kind, R.H. )

    1989-12-01

    This paper reports how an El Paso natural gas company has automated 27 compressor stations on its main line gas-transmission system, ahead of its 5-year schedule begun in 1984. The project involved the total automation (unmanned operation) of one reciprocating engine-driven compressor station and 21 turbine-driven compressor facilities; the semi-automation (computer-assisted operation) of six reciprocating engine-driven compressor stations; and the addition of a central control facility located in El Paso.

  5. 47 CFR 80.1119 - Receipt and acknowledgement of distress alerts by coast stations and coast earth stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... by coast stations and coast earth stations. 80.1119 Section 80.1119 Telecommunication FEDERAL... § 80.1119 Receipt and acknowledgement of distress alerts by coast stations and coast earth stations. (a... for coast stations.) (b) Coast earth stations in receipt of distress alerts must ensure that they...

  6. 47 CFR 80.1119 - Receipt and acknowledgement of distress alerts by coast stations and coast earth stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... by coast stations and coast earth stations. 80.1119 Section 80.1119 Telecommunication FEDERAL... § 80.1119 Receipt and acknowledgement of distress alerts by coast stations and coast earth stations. (a... for coast stations.) (b) Coast earth stations in receipt of distress alerts must ensure that they...

  7. 47 CFR 80.1119 - Receipt and acknowledgement of distress alerts by coast stations and coast earth stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... by coast stations and coast earth stations. 80.1119 Section 80.1119 Telecommunication FEDERAL... § 80.1119 Receipt and acknowledgement of distress alerts by coast stations and coast earth stations. (a... for coast stations.) (b) Coast earth stations in receipt of distress alerts must ensure that they...

  8. 47 CFR 80.1119 - Receipt and acknowledgement of distress alerts by coast stations and coast earth stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... by coast stations and coast earth stations. 80.1119 Section 80.1119 Telecommunication FEDERAL... § 80.1119 Receipt and acknowledgement of distress alerts by coast stations and coast earth stations. (a... for coast stations.) (b) Coast earth stations in receipt of distress alerts must ensure that they...

  9. 47 CFR 80.1119 - Receipt and acknowledgement of distress alerts by coast stations and coast earth stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... by coast stations and coast earth stations. 80.1119 Section 80.1119 Telecommunication FEDERAL... § 80.1119 Receipt and acknowledgement of distress alerts by coast stations and coast earth stations. (a... for coast stations.) (b) Coast earth stations in receipt of distress alerts must ensure that they...

  10. Validated Fault Tolerant Architectures for Space Station

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan H.

    1990-01-01

    Viewgraphs on validated fault tolerant architectures for space station are presented. Topics covered include: fault tolerance approach; advanced information processing system (AIPS); and fault tolerant parallel processor (FTPP).

  11. Station Commander Congratulates New Flight Directors

    NASA Video Gallery

    Aboard the International Space Station, Expedition 29 Commander Mike Fossum congratulates Judd Frieling, Tomas Gonzalez-Torres and Greg Whitney on being selected as NASA's newest flight directors. ...

  12. ISS Update: Preparing to Leave the Station

    NASA Video Gallery

    NASA Public Affairs Officer Amiko Kauderer interviews NASA astronaut Mike Fossum about his time as commander of the International Space Station's Expedition 29 crew, including his preparations for ...

  13. Astronaut 'Checks In' From Space Station

    NASA Video Gallery

    NASA astronaut and International Space Station Commander Doug Wheelock became the first person to "check in" from space Friday using the mobile social networking application Foursquare. Wheelock's ...

  14. Expedition 27 Undocks from the Station

    NASA Video Gallery

    After spending 157 days aboard the International Space Station, Dmitry Kondratyev, NASA Flight Engineer Cady Coleman and European Space Agency Flight Engineer Paolo Nespoli undocked from the statio...

  15. The NASA Space Station program plans

    NASA Technical Reports Server (NTRS)

    Freitag, R. F.

    1984-01-01

    The design of a permanently manned space station is discussed. The role of the space shuttle, planning guidelines, international cooperation, and commercial possibilities are among the topics discussed.

  16. The NASA Space Station program plans

    NASA Technical Reports Server (NTRS)

    Freitag, R. F.

    1985-01-01

    The design of a permanently manned Space Station is discussed. The role of the Space Shuttle, planning guidelines, international cooperation, and commercial possibilities are among the topics discussed.

  17. Station Crew Training Integrator Talks With Students

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, Expedition 34/35 Training Integrator Alicia Simpson participates in a Digital Learning Network (DLN) event with students from Christ ...

  18. Space Station Live: Fluids and Combustion Facility

    NASA Video Gallery

    NASA Public Affairs Officer Brandi Dean speaks with Robert Corban, Fluids and Combustion Facility Manager, about the research being performed aboard the International Space Station using this state...

  19. ISS Update: Earth Observations From Space Station

    NASA Video Gallery

    NASA Public Affairs Officer Amiko Kauderer interviews Cynthia Evans, Space Station Associate Program Scientist for Earth Observations, as NASA prepares to celebrate Earth Day. Evans discusses the t...

  20. Concrete: Potential material for Space Station

    NASA Technical Reports Server (NTRS)

    Lin, T. D.

    1992-01-01

    To build a permanent orbiting space station in the next decade is NASA's most challenging and exciting undertaking. The space station will serve as a center for a vast number of scientific products. As a potential material for the space station, reinforced concrete was studied, which has many material and structural merits for the proposed space station. Its cost-effectiveness depends on the availability of lunar materials. With such materials, only 1 percent or less of the mass of a concrete space structure would have to be transported from earth.

  1. Space Station engineering and technology development

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Historical background, costs, organizational assignments, technology development, user requirements, mission evolution, systems analyses and design, systems engineering and integration, contracting, and policies of the space station are discussed.

  2. Assessing the acoustical climate of underground stations.

    PubMed

    Nowicka, Elzbieta

    2007-01-01

    Designing a proper acoustical environment--indispensable to speech recognition--in long enclosures is difficult. Although there is some literature on the acoustical conditions in underground stations, there is still little information about methods that make estimation of correct reverberation conditions possible. This paper discusses the assessment of the reverberation conditions of underground stations. A comparison of the measurements of reverberation time in Warsaw's underground stations with calculated data proves there are divergences between measured and calculated early decay time values, especially for long source-receiver distances. Rapid speech transmission index values for measured stations are also presented. PMID:18082025

  3. Space Station Live: ISS Communications Unit Upgrade

    NASA Video Gallery

    NASA Public Affairs Officer Nicole Cloutier-Lemasters interviews International Space Station Flight Director Mike Lammers about the recent Ku communications unit upgrade work taking place aboard th...

  4. Space Station Live: Robotic Refueling Mission

    NASA Video Gallery

    NASA Public Affairs Officer Dan Huot speaks with Robert Pickle, Robotic Refueling Mission ROBO lead, about the International Space Station demonstration of the tools, technologies and techniques to...

  5. Data quality control of ADSN Broadband stations

    NASA Astrophysics Data System (ADS)

    Alili, Azouaou; Yelles-chaouche, Abd el karim; Allili, Toufik; Messemen, Walid

    2014-05-01

    In this work we present the analysis of continuous waveform of the Algerian digital seismic network recorded during five years from 2008 to 2013 for twenty broadband stations using the power spectral densities (PSDs) and their corresponding probability density functions (PDFs) algorithm of McNamara, and Buland (2004). ADSN Broadband stations data quality is one main concern and interest of ADSN technical team. Indeed, the quality of the data from broadband stations is continuously controlled in quasi-realtime using "PQLX" (Pascal Quick Look eXtended) software to compute the PDFs and PSDs during the operation of the stations at different frequency range. At each station the level of noise is shown, which we can see diurnal and seasonal variation. From the data analysis, most of the ADSN Broadband stations display good records in the several frequency domains in relation with their site installation. However some of stations near the urban areas could present some noisy disturbances. This led sometimes to generate some ghost events. In the low frequency, some stations could be still influenced by the temperature variations. This long period of records from 2008 to 2013, led us to analyze and control the several stations year by year taking into account the seasons and to know about their work during five years. This analysis is also very important to improve in the future quality of station installation and choose the optimal station design in aim to reduce cultural noise and large fluctuation of temperature and pressure. Key words: PQLX, PDFs, PSDs, Broad Band

  6. 47 CFR 95.139 - Adding a small base station or a small control station.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Adding a small base station or a small control... SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES General Mobile Radio Service (GMRS) § 95.139 Adding a small base station or a small control station. (a) Except for a GMRS system licensed to a non-individual,...

  7. 47 CFR 95.139 - Adding a small base station or a small control station.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Adding a small base station or a small control... SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES General Mobile Radio Service (GMRS) § 95.139 Adding a small base station or a small control station. (a) Except for a GMRS system licensed to a non-individual,...

  8. Hydrogen Station Cost Estimates: Comparing Hydrogen Station Cost Calculator Results with other Recent Estimates

    SciTech Connect

    Melaina, M.; Penev, M.

    2013-09-01

    This report compares hydrogen station cost estimates conveyed by expert stakeholders through the Hydrogen Station Cost Calculation (HSCC) to a select number of other cost estimates. These other cost estimates include projections based upon cost models and costs associated with recently funded stations.

  9. 47 CFR 95.139 - Adding a small base station or a small control station.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Adding a small base station or a small control... SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES General Mobile Radio Service (GMRS) § 95.139 Adding a small... or more small base stations or a small control station may be added to a GMRS system at any...

  10. 47 CFR 95.139 - Adding a small base station or a small control station.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Adding a small base station or a small control... SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES General Mobile Radio Service (GMRS) § 95.139 Adding a small... or more small base stations or a small control station may be added to a GMRS system at any...

  11. 47 CFR 95.139 - Adding a small base station or a small control station.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Adding a small base station or a small control... SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES General Mobile Radio Service (GMRS) § 95.139 Adding a small... or more small base stations or a small control station may be added to a GMRS system at any...

  12. International Space Station Medical Operations

    NASA Technical Reports Server (NTRS)

    Jones, Jeffrey A.

    2008-01-01

    NASA is currently the leader, in conjunction with our Russian counterpart co-leads, of the Multilateral Medical Policy Board (MMPB), the Multilateral Medical Operations Panel (MMOP), which coordinates medical system support for International Space Station (ISS) crews, and the Multilateral Space Medicine Board (MSMB), which medically certifies all crewmembers for space flight on-board the ISS. These three organizations have representatives from NASA, RSA-IMBP (Russian Space Agency- Institute for Biomedical Problems), GCTC (Gagarin Cosmonaut Training Center), ESA (European Space Agency), JAXA (Japanese Space Agency), and CSA (Canadian Space Agency). The policy and strategic coordination of ISS medical operations occurs at this level, and includes interactions with MMOP working groups in Radiation Health, Countermeasures, Extra Vehicular Activity (EVA), Informatics, Environmental Health, Behavioral Health and Performance, Nutrition, Clinical Medicine, Standards, Post-flight Activities and Rehabilitation, and Training. Each ISS Expedition has a lead Crew Surgeon from NASA and a Russian Crew Surgeon from GCTC assigned to the mission. Day-to-day issues are worked real-time by the flight surgeons and biomedical engineers (also called the Integrated Medical Group) on consoles at the MCC (Mission Control Center) in Houston and the TsUP (Center for Flight Control) in Moscow/Korolev. In the future, this may also include mission control centers in Europe and Japan, when their modules are added onto the ISS. Private medical conferences (PMCs) are conducted regularly and upon crew request with the ISS crew via private audio and video communication links from the biomedical MPSR (multipurpose support room) at MCC Houston. When issues arise in the day-to-day medical support of ISS crews, they are discussed and resolved at the SMOT (space medical operations team) meetings, which occur weekly among the International Partners. Any medical or life science issue that is not resolved at

  13. Space station control moment gyro control

    NASA Technical Reports Server (NTRS)

    Bordano, Aldo

    1987-01-01

    The potential large center-of-pressure to center-of-gravity offset of the space station makes the short term, within an orbit, variations in density of primary importance. The large range of uncertainty in the prediction of solar activity will penalize the design, developments, and operation of the space station.

  14. 47 CFR 95.1007 - Station inspection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station inspection. 95.1007 Section 95.1007 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Low Power Radio Service (LPRS) General Provisions § 95.1007 Station inspection. All LPRS...

  15. 47 CFR 22.313 - Station identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... continuity of any public communication in progress, provided that station identification is transmitted at the conclusion of that public communication. (c) Station identification must be transmitted by telephony using the English language or by telegraphy using the international Morse code, and in a form...

  16. 47 CFR 95.119 - Station identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Station identification. 95.119 Section 95.119 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES General Mobile Radio Service (GMRS) § 95.119 Station identification. (a) Except as provided in paragraph (e), every GMRS...

  17. 47 CFR 95.835 - Station identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Station identification. 95.835 Section 95.835 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES 218-219 MHz Service System Requirements § 95.835 Station identification. No RTU or CTS is required to transmit a...

  18. 47 CFR 90.735 - Station identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Station identification. 90.735 Section 90.735 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Regulations Governing Licensing and Use of Frequencies in the 220-222 MHz Band § 90.735 Station identification....

  19. 47 CFR 95.1205 - Station identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station identification. 95.1205 Section 95.1205 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Medical Device Radiocommunication Service (MedRadio) § 95.1205 Station identification. A...

  20. 47 CFR 95.1207 - Station inspection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station inspection. 95.1207 Section 95.1207 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Medical Device Radiocommunication Service (MedRadio) § 95.1207 Station inspection. Any...

  1. 47 CFR 95.1205 - Station identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Station identification. 95.1205 Section 95.1205 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Medical Device Radiocommunication Service (MedRadio) § 95.1205 Station identification. A...

  2. 47 CFR 95.1205 - Station identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Station identification. 95.1205 Section 95.1205 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Medical Device Radiocommunication Service (MedRadio) § 95.1205 Station identification. A...

  3. 47 CFR 95.1205 - Station identification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Station identification. 95.1205 Section 95.1205 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Medical Device Radiocommunication Service (MedRadio) § 95.1205 Station identification. A...

  4. 47 CFR 95.1205 - Station identification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Station identification. 95.1205 Section 95.1205 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Medical Device Radiocommunication Service (MedRadio) § 95.1205 Station identification. A...

  5. 47 CFR 97.205 - Repeater station.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Special Operations § 97.205 Repeater station. (a) Any amateur station licensed to a holder of a Technician, General, Advanced or Amateur Extra Class operator license may be a repeater. A holder of...

  6. 47 CFR 97.201 - Auxiliary station.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Special Operations § 97.201 Auxiliary station. (a) Any amateur station licensed to a holder of a Technician, Technician Plus, General, Advanced or Amateur Extra Class operator license may be an...

  7. 47 CFR 97.205 - Repeater station.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Special Operations § 97.205 Repeater station. (a) Any amateur station licensed to a holder of a Technician, General, Advanced or Amateur Extra Class operator license may be a repeater. A holder of...

  8. 47 CFR 97.205 - Repeater station.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Special Operations § 97.205 Repeater station. (a) Any amateur station licensed to a holder of a Technician, General, Advanced or Amateur Extra Class operator license may be a repeater. A holder of...

  9. 47 CFR 97.205 - Repeater station.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Special Operations § 97.205 Repeater station. (a) Any amateur station licensed to a holder of a Technician, General, Advanced or Amateur Extra Class operator license may be a repeater. A holder of...

  10. 47 CFR 97.205 - Repeater station.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Special Operations § 97.205 Repeater station. (a) Any amateur station licensed to a holder of a Technician, General, Advanced or Amateur Extra Class operator license may be a repeater. A holder of...

  11. 30 CFR 57.14103 - Operators' stations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Equipment Safety Devices and Maintenance Requirements § 57.14103 Operators' stations. (a) If windows are provided on operators' stations of self-propelled mobile equipment, the windows shall be made of safety glass or material with equivalent safety characteristics. The windows shall be maintained to...

  12. 30 CFR 56.14103 - Operators stations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Safety Devices and Maintenance Requirements § 56.14103 Operators stations. (a) If windows are provided on operators' stations of self-propelled mobile equipment, the windows shall be made of safety glass or material with equivalent safety characteristics. The windows shall be maintained to provide visibility...

  13. 78 FR 50370 - Travelers' Information Stations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... of Documents in Rulemaking Proceedings, 63 FR 24121 (May 1, 1998). Electronic Filers: Comments may be... COMMISSION 47 CFR Part 90 Travelers' Information Stations AGENCY: Federal Communications Commission. ACTION... to part 90 of the Commission's rules pertaining to public safety Travelers' Information Stations...

  14. Sheshan VLBI Station Report for 2012

    NASA Technical Reports Server (NTRS)

    Xia, Bo; Shen, Zhiqiang; Hong, Xiaoyu; Fan, Qingyuan

    2013-01-01

    This report summarizes the observing activities at the Sheshan station (SESHAN25) in 2012. It includes international VLBI observations for astrometry, geodesy, and astrophysics and domestic observations for satellite tracking. We also report on updates and on development of the facilities at the station.

  15. 47 CFR 90.425 - Station identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... citations affecting § 90.425, see the List of CFR Sections Affected, which appears in the Finding Aids...) When a mobile station transmits on a different frequency than its associated base station, the assigned...) The frequency of the keyed tone comprising the identification signal shall be 1200 ±800 Hz. A...

  16. 47 CFR 90.425 - Station identification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... citations affecting § 90.425, see the List of CFR Sections Affected, which appears in the Finding Aids...) When a mobile station transmits on a different frequency than its associated base station, the assigned...) The frequency of the keyed tone comprising the identification signal shall be 1200 ±800 Hz. A...

  17. 47 CFR 90.425 - Station identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Note: For Federal Register citations affecting § 90.425, see the List of CFR Sections Affected, which...) When a mobile station transmits on a different frequency than its associated base station, the assigned...) The frequency of the keyed tone comprising the identification signal shall be 1200 ±800 Hz. A...

  18. 47 CFR 90.425 - Station identification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Note: For Federal Register citations affecting § 90.425, see the List of CFR Sections Affected, which...) When a mobile station transmits on a different frequency than its associated base station, the assigned...) The frequency of the keyed tone comprising the identification signal shall be 1200 ±800 Hz. A...

  19. Background noise spectra of global seismic stations

    SciTech Connect

    Wada, M.M.; Claassen, J.P.

    1996-08-01

    Over an extended period of time station noise spectra were collected from various sources for use in estimating the detection and location performance of global networks of seismic stations. As the database of noise spectra enlarged and duplicate entries became available, an effort was mounted to more carefully select station noise spectra while discarding others. This report discusses the methodology and criteria by which the noise spectra were selected. It also identifies and illustrates the station noise spectra which survived the selection process and which currently contribute to the modeling efforts. The resulting catalog of noise statistics not only benefits those who model network performance but also those who wish to select stations on the basis of their noise level as may occur in designing networks or in selecting seismological data for analysis on the basis of station noise level. In view of the various ways by which station noise were estimated by the different contributors, it is advisable that future efforts which predict network performance have available station noise data and spectral estimation methods which are compatible with the statistics underlying seismic noise. This appropriately requires (1) averaging noise over seasonal and/or diurnal cycles, (2) averaging noise over time intervals comparable to those employed by actual detectors, and (3) using logarithmic measures of the noise.

  20. Interpreting carnivore scent-station surveys

    USGS Publications Warehouse

    Sargeant, G.A.; Johnson, D.H.; Berg, W.E.

    1998-01-01

    The scent-station survey method has been widely used to estimate trends in carnivore abundance. However, statistical properties of scent-station data are poorly understood, and the relation between scent-station indices and carnivore abundance has not been adequately evaluated. We assessed properties of scent-station indices by analyzing data collected in Minnesota during 1986-03. Visits to stations separated by <2 km were correlated for all species because individual carnivores sometimes visited several stations in succession. Thus, visits to stations had an intractable statistical distribution. Dichotomizing results for lines of 10 stations (0 or 21 visits) produced binomially distributed data that were robust to multiple visits by individuals. We abandoned 2-way comparisons among years in favor of tests for population trend, which are less susceptible to bias, and analyzed results separately for biogeographic sections of Minnesota because trends differed among sections. Before drawing inferences about carnivore population trends, we reevaluated published validation experiments. Results implicated low statistical power and confounding as possible explanations for equivocal or conflicting results of validation efforts. Long-term trends in visitation rates probably reflect real changes in populations, but poor spatial and temporal resolution, susceptibility to confounding, and low statistical power limit the usefulness of this survey method.